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Abstract 

This thesis is inspired by the ESRGCambridge project "Structural Modelling of the UK 
Economy within a VAR Framework using Quarterly and Monthly Data" and, in 
particular, the studies by Garratt et al (1998,2001). The primary aim is to apply the 
Long-Run Structural Cointegrating VAR approach, developed within the ESRG 
Cambridge project, in order to empirically investigate UK Aggregate Demand and 
Supply. The empirical analysis is intended to complement the recently developed macro- 
econometric model of the UK in Garratt et al (1998,2001) by (i) addressing the issue of 
structural change and (ii) providing an explicit model of the supply-side of the economy. 
The recently developed techniques in Johansen and Nielsen (1994), Hansen (2000) and 
Johansen, Mosconi and Nielsen (2000) are utilised in order to control for and assess the 
possible long-run effects of different exchange rate regimes. In the light of the well- 
documented finite-sample bias, statistical inference relies in large part on simulation 
methods along the lines of, inter alia, van Giersbergen (1996), Li and Maddala 1997 , Harris and Judge (1998), Mantalos and Shukur (1998), Gredenhoff and Jacobson 

(1998), 

Fachin (2000), Jacobson et al (2001) and Greenslade et al (2002). A practical problem 
concerning the use of these methods for inference on the cointegrating parameters is 
identified and a solution is proposed. The Generalised Impulse Responses developed in 
Koop et al (1996) and Pesaran and Shin (1998) and the Persistence Profiles proposed by 
Lee et al (1992) and Lee and Pesaran (1993a) are used in order to illustrate the dynamic 
properties of the estimated systems and provide an informal comparison with the 
Garratt et al (1998,2001) models. 
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Introduction 

Cointegration analysis can be regarded as the natural consequence of the classic study by 

Nelson and Plosser (1982), who demonstrated that the presence of a unit root could not 

be rejected for a wide range of macroeconomic time series. The unit-root reality meant 

that contemporary econometric analyses were subject to the spurious regression hazard. 

Consequently, non-stationarity was considered a nuisance, which the seminal papers of 

Engle and Granger (1987) and Johansen (1988) attempted to deal with. This gave rise to 

the development of cointegration analysis, which has been a focal aspect of macro- 

econometric applications over the past 15 years. 

Although Johansen (1988) treated cointegration as a purely statistical 

phenomenon of elimination of stochastic trends, it was soon appreciated that it had great 

potential as a means for distinguishing between the short-run dynamics and the long-run 

equilibrium relations. The work of King et al (1991) and Mellander et al (1992) treated 

cointegrating relations as being associated with long-run equilibria derived from 

economic theory. This created the scope to both impose and test the structure implied 

by economic theory, thus, paving the way for the modelling approach that has been 

termed in Garratt et al (2000) as Long-Run Structural Cointegrating VAR. 

This approach was in most part developed and systematically applied to UK data 

within the research project Structural Modelling of the UK Economy within a VAR 

Framework using Quarterly and Monthly Data, funded by the ESRC and the Isaac 

Newton Trust of Trinity College Cambridge. This project has produced a number of 

important developments concerning, inter alia, (i) the treatment of deterministic terms 

and weakly exogenous 1(1) variables in Pesaran, Shin and Smith (2000), (ii) the 

formulation and testing of general hypotheses on the model parameters in Pesaran and 
Shin (2001), and (iii) the investigation of the dynamic properties with the use of 
Persistence Profiles and Generalised Impulse Responses in Lee et al (1992) and Pesaran 

and Shin (1996,1998). Although some of the technical aspects of (i) had previously been 

considered in the literature by, e. g., Johansen and Juselius (1990) and Johansen (1992), 
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the project placed particular emphasis on the role of economic theory, which is described 

in detail in Pesaran and Smith (1998). 

The primary output of this research project has been the development of a small 

scale macro-econometric model for the UK by Garratt et al (1998,2001) that utilises 

most of the methodological advances mentioned above. The economic theory used in 

these studies as a guide in the over-identification of the cointegrating parameters consists 

of a general set of arbitrage and other long-run equilibrium conditions, like the 

Uncovered Interest Parity (UIP), the Fisher Interest Parity (FIP) and Purchasing Power 

Parity (PPP). 

Even though economic theory can (or even should) play a key role in the 

development of macro-econometric cointegrating VAR models, a formal verdict on its 

empirical relevance will ultimately have to rely on statistical inference. The contributions 

of, inter a4 Johansen and Juselius (1990), Johansen (1992), Johansen and Nielsen 

(1994), Johansen, Mosconi and Nielsen (2000), Pesaran, Shin and Smith (2000), Hansen 

(2000) and Pesaran and Smith (2001) provide the statistical framework for asymptotic 

inference on a number of hypotheses. However, a substantial body of evidence has 

accumulated over the past decade, casting serious doubts on the reliability of asymptotic 

methods using sample sizes typically available to applied researchers. In the absence of 

analytical expressions for the finite-sample distributions, inference within small samples 

has relied on the use of correction factors and simulation methods. The dramatic increase 

in computing power since the early 1990s resulted in a growing amount of interest in the 

latter approach, as indicated by the studies of, inter al a, van Giersbergen (1996), Harris 

and Judge (1998), Mantalos and Shukur (1998), Gredenhoff and Jacobson (1998), Fachin 

(2000), Jacobson et al (2001) and Greenslade et al (2002). 

This thesis is inspired by the ESRGCambridge project and, in particular, the 

Garratt et al (1998,2001) papers, thanks to Professor K. C. Lee, one of the members of 

the project, who is based at the University of Leicester. The empirical chapters of the 

thesis provide, in most part, an analysis of the Garratt et a1 (1998) data set within the 

long-run structural cointegrating VAR framework. However, the structure imposed on 
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the cointegrating relations is motivated here by a slightly different view of the UK 

economy, based on standard Aggregate Demand - Aggregate Supply, (AD-AS), theory. 

The recently developed techniques regarding the treatment of structural change in 

Johansen and Nielsen (1994), Hansen (2000) and Johansen, Mosconi and Nielsen (2000) 

are utilised in order to control and assess the possible long-run effects of different 

exchange rate regimes. In the light of the well-documented finite-sample bias, statistical 

inference on the validity of the underlying economic theory relies in large part on 

simulation methods. A practical problem concerning the use of these methods for 

inference on the cointegrating parameters is identified and a solution is proposed. 

Generalised Impulse Responses and Persistence Profiles are used in order to illustrate the 

dynamic properties of the estimated systems and provide an informal comparison with 

the Garratt et x1(1998,2001) models. The thesis is organised as follows: 

Chapter 1 briefly discusses the econometric tools used in the empirical chapters. 

It is not intended to be a detailed literature review and simply aims at introducing the 

basic concepts, while providing some intuition for the relative strengths and weaknesses 

of the different approaches. Emphasis is placed on the treatment of the deterministic 

terms, the modelling conditionally on weakly exogenous variables, the application of 

simulation methods in cointegrating VAR models and the use of Impulse Responses and 

Persistence Profiles for the evaluation of the model's dynamic properties. 

Chapter 2 is a preliminary attempt at estimating a long-run structural VAR 

model of UK Aggregate Demand. It is a variant of the Garratt et al (1998,2001) papers 

based on IS-LM theory. The GIRs and PPs reveal many similarities in the dynamic 

behaviour of the estimated model with the Garratt et al (1998,2001) papers, despite 

significant differences in model specification. However, the empirical analysis reveals 

certain limitations, which motivate the following chapter. 

The third chapter is an attempt to improve on Chapter 2 in two directions. First, 

the issue of long-run structural change is addressed by utilising the techniques developed 

in Johansen and Nielsen (1994), Hansen (2000) and Johansen, Mosconi and Nielsen 

(2000). Second, a practical solution is proposed to the convergence problems that 
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typically arise when applying simulation methods for inference on the cointegrating 

parameters. The suggested modifications in both areas are shown to provide meaningful 

improvements over the analysis in Chapter 2. Again, GIRs and PPs are used to highlight 

some of the similarities and differences with the Garratt et al (1998,2001) papers. 

While Chapters 2 and 3 focus on UK Aggregate Demand, Chapter 4 looks at 

Aggregate Supply by considering the behaviour of the UK labour market. A 

cointegrating VAR model is estimated with a long-run structure that is shown to be 

consistent with the Lee and Pesaran (1993b) view of the labour market. The 

identification and aggregation problems that typically arise in time series analyses of 

labour markets are resolved according to Lee and Papaikonomou (2002). The GIR and 

PP analysis demonstrates the typical sluggishness of labour markets and illustrates the 

relative contributions of labour demand and supply to the slow adjustment to long-run 

equilibrium. 

Chapter 5 combines the AD and AS sub-systems estimated in Chapters 3 and 4 

in order to form a cointegrating VAR model of the UK with a complete AD-AS long-run 

structure. The estimated cointegrating relations and the dynamic properties of the 

complete model are compared with the sub-systems in Chapters 3 and 4, as well as with 

the Garratt et a1 (1998,2001) models. The empirical analysis also highlights some of the 

difficulties associated with statistical inference within relatively large systems, recently 
discussed by Greenslade et al (2002). It is argued that in large models, inference should 
be guided by the more reliable evidence obtained from smaller sub-systems and the use 

of economic theory, as suggested in Garratt et a1 (2000). 
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Chapter 1 

An Introduction to Cointegrating 

VAR Modelling 



1.1 The Unrestricted Vector Autoregression 

The foundations for the Vector Autoregression (VAR) methodology were laid in the seminal 

paper by Sims (1980). Sims severely criticized the way that contemporary econometric practice 

was being conducted and, in particular, focused on what he termed "incredible" restrictions 

on the short-run dynamics, which were being routinely imposed in the estimation of large- 

scale macroeconometric models. As an alternative he proposed what is frequently termed 

"a-theoretical" Vector Autoregression. 

The statistical basis of the unrestricted VAR modelling approach is the Wold decomposition 

theorem, Wold (1938). According to this theorem if a vector zt = [zit, z2t, ""., znt]' is weakly 

or covariance stationary, denoted zt - 1(0), it can be expressed as the sum of a deterministic 

component and an infinite MA process 

zt = B(L)(at&t + et) ,t=1,2,..., T, (1.1) 

where fit is an n1, x1 deterministic vector that may contain a constant, a linear term, seasonal 

dummies, intervention dummies or other regressors that are considered fixed and non-stochastic, 

a is an nx np coefficient matrix, et is an nx1 vector of serially uncorrelated disturbances 

with E(et) =0 and E(etet) = 1Z positive definite and B(L) is a polynomial matrix in the lag- 

operator, L, of infinite degree given by B (L) _ 1_0 
B=Li, where the Bi's are nxn coefficient 

matrices with Bo = I, 

Provided that all roots of B (p) lie outside the unit circle, i. e. IB (p) l=0 for (pj > 1, 

then B(L) is absolutely summable and hence the process B(L)et is well defined, ' Under this 

'For a proof see Lutkepohl (1993, Appendix C. 3) 

6 



condition B(L)-1 can be approximated by a polynomial matrix 4ý(L) of finite degree p, where 

4(L) _ -11o - Ep 1 ýPjL` and $o = I, . Pre-multiplication of expression (1.1) by B(L)-1 and 

application of the approximation B(L)-1 =k (L) yields 

P 

Zt = aot + cI Zt-t + et, (1.2) 
i=1 

where the ibi's and the Bs's are related according to Bi = ýý=1 B1-j4 for i>0.2 Expression 

(1.2) is known as an unrestricted Vector Autoregression of order p, denoted VAR(p). It shows 

that, under the assumptions mentioned above, any covariance stationary process, zt, can be 

approximately described by some finite number, p, of its own past values, a deterministic 

component, a0t, and some random innovation, et. 

1.2 Vector Autoregression and Cointegration 

In the seminal work by Nelson and Plosser (1982) it was demonstrated that the null hypothesis 

of a unit root cannot be rejected for a wide range of macroeconomic time series. In other 

words, there is a wide range of variables for which zt is difference stationary, denoted zt I(1) 

and therefore, the modelling problem should be re-formulated in terms of A zt. Under the 

assumption that zt N I(1), the polynomial matrix 4ý(L) in (1.2) is allowed to have roots that 

fall on, as well as outside the unit circle, i. e. I4)(p)l =0 for IpI > 1, and is commonly re- 

parameterized as 

4ý(L) - -HL + I'(L)(1- L), (1.3) 

'These relations are obtained from the approximation B(L)-1 ='1(L), or equivalently B(L)4P(L) = I,, by 
collecting terms with equal powers of L. 
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where II = -(I. - Ep 1 -I_) = -, b(1), r(L) = I, z - Er, r Li and ri =-E +1 ý'ý, i= 

1,2,..., p-1. Therefore, the unrestricted VAR(p) given by (1.2) can be expressed as 

P-1 

Ozt = ai&t + IIzt-1 + I'iOzt-i + et. (1.4) 

Expression (1.4) is known as cointegrating transformation, Johansen decomposition, Vector Er- 

ror Correction Model (VECM) or Cointegrating VAR(p). 

According to the definition of cointegration in Engle and Granger (1987), the elements of 

the vector zt = [zit, z2ti """, z,,, t]' are said to be cointegrated of order d, b denoted zt - CI(d, b) 

with cointegrating vector 0 if: 

1) All the elements of zt are integrated of the same order, d, i. e. zt N I(d) and 

2) There is a non-zero vector ß= 1011132 1 ... 1 0�1' such that the linear combination ß'zt is 

integrated of order d-b, i. e. ß'zt -I (d - b), for all d, b such that 0<b<d. 

It becomes self-evident that expression (1.4) is consistent with cointegration by simply 

solving for IIze_1 to get 

P-1 

IIzt-i = Ozt - atp - riAzt-t - et. (1.5) 

In the case that zt is known to be difference stationary the right hand side of (1.5) is clearly 1(0), 

since it only involves lagged differences of zt, the deterministic terms att and the disturbance 

vector et, where az/it and et are by definition 1(0). This implies that for a non-zero II-matrix, 

the linear combinations 11zt_1 of the I(1) elements of zt are stationary, in which case according 

to the definition of cointegration the elements of zt are cointegrated of order 1,1. 
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Expression (1.5) is also very useful in giving a very intuitive insight into the Johansen 

procedure for testing for the number of cointegrating vectors. The fact that zt is assumed to 

be I(1) places a restriction on the II-matrix. In particular, it restricts II to being singular, 

since pre-multiplication of (1.5) by II-1 would lead to the contradiction that zt_1 is equal to 

a stationary right hand side. It is worth noting, however, that singularity of H is merely a 

necessary condition for cointegration as it does not exclude the possibility II = 0. In that 

case there would be no stationary combinations of zt, i. e. the elements of zt would not be 

cointegrated and the use of a VAR in differences would be appropriate. 

1.2.1 Testing for Cointegration: The Johansen Procedure 

As was shown earlier with the use of (1.5), the assumption zt - I(1) imposes a singularity 

restriction on H, which from elementary matrix algebra is equivalent to rank-deficiency of 

H. Thus, for any rank-deficient, non-zero II-matrix there are linear combinations of the zit's, 

i=1,2,.. ., n, which are stationary. The rank of H, denoted rank EH], gives the number of 

linearly independent stationary combinations in IIzt_l, i. e. the number of cointegrating vectors. 

Clearly, the question of cointegration is simply a question of rank[ITJ which by the singu- 

larity assumption has to be such that n> rank[II] > 0. Finding rank[II] can be reduced to 

an eigenvalue problem. As any square matrix, II may be expressed according to the Jordan 

representation or Jordan canonical form as 

II = pip-, I (1.6) 
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where P is nxn full-rank and J is block-diagonal with a typical block of the form 

A 
Ji(A)=[A],. 12(A)= 

0 

A10 
1 

J3(A)° 0A1s..., 
A 

00A 

(1.7) 

with A being an eigenvalue of II, i. e. a solution to the characteristic equation IAI,, - III = 0. 

The characteristic equation is a scalar polynomial in A of n-th degree and as such it will have n 

solutions which may be real, complex, distinct or repeated. The dimension of the typical block 

J= of the J-matrix, indicated by the subscript "i", is equal to the multiplicity of A. Therefore, 

in the case where the A's are distinct, i. e. they all have unitary multiplicity, all JA's are scalars 

and the J-matrix becomes 

0 ... 0 

0 A2 
J= (1.8) 

"0 

0 ... 0 An 

In this special case the columns of P are eigenvectors of II. 

From the Jordan representation given by (1.6) it follows that the determinant of II is equal 

to the determinant of J, since 

ýIIý = IPJP-11 _ 
1Pp-i 

= IJI . (1.9) 

As was shown above, in the case of distinct roots the J-matrix is diagonal which means that 
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its determinant is given by the product of the diagonal elements3 

n 
IJI_ A. (1.10) 

Combining (1.9) and (1.10) gives the determinant of II as a function of U's eigenvalues 

n 

Expression (1.11) effectively establishes the link between the eigenvalues Aq- and rank[II] since 

the dimension of the largest non-zero determinant that can be found in II, i. e. the rank of 

II, will equal the number of the non-zero's provided, of course, that the Aj's are ordered as 

IX11 > 1A21 > ... > 1>, I. Thus, testing for the number of cointegrating vectors is equivalent to 

testing for the number of significantly non-zero eigenvalues of the estimated II-matrix. 

Johansen (1988) provides two test statistics for this purpose. For testing the null hypothesis 

of r cointegrating relations 

Hr : rank[II] =r (1.12) 

against the alternative hypothesis 

H,. +1 : rank[II] =r+1, (1.13) 

r=0,1, ..., n-1, within the context of (1.4) the suggested statistic is known as maximal 

'It is straight forward to show that this is a general result and is not limited to the case of distinct eigenvalues. 
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eigenvalue and is given by the log-likelihood ratio 

L? Z(H, ýH, +1) _ -T log(1- ä,. 
+l). 

For testing the null hypothesis (1.12) against the alternative 

H� : rank[II] =n 

(1.14) 

(1.15) 

for r=0,1, ..., n-1 the proposed log-likelihood ratio statistic is known as A- trace and is 

given by 
n 

G1Z(HrI Hn) = -T 
E 1og(1- 

i=r+1 

(1.16) 

where ä, in (1.14) and äj, are the estimates of the r-th and i-th largest eigenvalues of the 

II-matrix, respectively. Johansen (1988) proves that an estimate of the stochastic II-matrix is 

given by 

soo soisii Sio, (1.17) 

where the matrices Soo, Sol, Slo and Sil are defined as follows 

T 

Sij=T-lZritrt9 i, i =0,1, (1.18) 
t=1 

with rot and rlt, being the residuals obtained from the OLS regressions of Ozt and zt_ion 

(fit, uzt-1, ýz't-2, 
..., 

uzt-p+l)ý, respectively. 

Clearly, the further the estimated eigenvalues are from zero the more negative are the terms 

log(1- A_) and the larger the test statistics. The critical values for the two statistics were first 
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provided by Johansen (1988) and later by inter alia Johansen and Juselius (1990), Osterwald- 

Lenum (1992) and Pesaran, Shin and Smith (2000), hereafter PSS. 

1.3 Long Run Structural Cointegrating VARs 

As shown earlier, the econometric framework of the Vector Autoregression in (1.2) allows the 

representation of zt as a function of a finite number, p, of its own past values, a deterministic 

component, a&t, and some random innovation, et. This approach was accused of being a- 

theoretical, as it is based solely on the statistical properties of zt, leaving no role for economic 

theory, other than perhaps the choice of the variables entering zt. Attempts to provide (1.2) with 

an economic structure have frequently been based on the fact that economic theory can quite 

often supply information regarding the contemporaneous relationships between the elements of 

zt. When the theoretical contemporaneous relations take the form Aaze, where AO is a known 

nxn coefficient matrix, the theory-consistent, or structural VAR (SVAR) representation of zt 

is given by 
P 

Aozt = nikt +E Atzt-i + vt, (1.19) 
J=j 

where n and A;, i=0,1, ..., p, are the structural coefficient matrices and vt is the vector of 

structural disturbances and the structural VECM (SVECM) representation takes the form 

P-1 

AoLzt = not + A(1)zt-i + ri Ozt-i + vt, (1.20) 
i=1 

where I'{ EJ 
=; +1 Af and A(1) =- ýp o Aj. Provided that IA0I 76 0, the VAR(p) in (1.2) 

and its cointegrating re-parameterization in (1.4) can be interpreted as reduced-form versions 
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of (1.19) and (1.20) respectively, with a= Aý ln, -I)i = 4'Ai, i=1,2,..., p, ri = Ao irj,, 

i=1,2,..., p-1, II=4'A(1) and et =4lvt. 

Under the assumption zt N I(1), attention is limited to the SVECM in (1.20) and the 

reduced-form VECM in (1.4). As illustrated in previous sections, the assumption zt N I(1) 

necessarily implies singularity of A(1), or equivalently rank[A(l)] =r<n. In the case when 

r=0 the elements of zt are not cointegrated and the use of a VAR(p) in differences would be 

appropriate. When 0<r<n, i. e. A(1) is a non-zero, rank-deficient matrix, it may be written 

as 

A(1) = a#ý3ý, (1.21) 

or in reduced form as 

11 =a/3', (1.22) 

where at, a and /3 are nxr, full column rank with a =4la,,. The matrix)3, usually referred 

to as the cointegrating matrix, has columns equal to the cointegrating vectors. In other words 

its columns contain the parameters of the stationary combinations of the zit's. The matrices 

a, and a contain the weights with which the cointegrating vectors enter the n equations of the 

structural and reduced-form models, respectively. Johansen (1995, p. 71), Pesaran and Smith 

(1998), Pesaran and Shin (2001) and others, show that a and 0 are not unique, since ö'= aß' 

for &= aQ and iß = ßQ'-1, where Q is any non-singular rxr matrix. This illustrates the need 

for exactly r2 identifying restrictions, since uniqueness of a and 0 requires the r2 elements of 

Q to be uniquely specified. 

It is, therefore, apparent that there are generally two issues of identification that arise 

within the modelling framework of (1.4). The first, is the traditional problem of identification 
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of the contemporaneous coefficient matrix Ao and the retrieval of the structural parameters 

and disturbances from the reduced-form model. The second issue is the identification of the 

cointegrating matrix, /3. Since iQ appears in both, the structural and the reduced-form models 

through (1.21) and (1.22) respectively, it is possible to identify the cointegrating, or long- 

run relations within the reduced-form model (1.4), while abstracting from the identification 

of the short-run dynamic coefficients, and thus, avoiding Sims' (1980) criticism of incredible 

restrictions. The term Long Run Structural VAR is used to describe precisely that, namely, 

Cointegrating VAR models that impose a structure only on /3, while leaving the short-run 

dynamics to be determined by the data. 

1.3.1 Identification of 0 and the Role of Economic Theory: King et al (1991) 

In the procedure proposed by Johansen (1988) the r2 restrictions required for the exact- 

identification of 6 are chosen so that its columns are eigenvectors of II with unitary length. 

However, this arbitrary normalising restriction has the unfortunate property that the cointe- 

grating vectors obtained in this fashion will not have a straightforward economic interpretation. 

An economically more interesting choice of the exactly identifying restrictions is via the use of 

economic theory. From an economist's point of view, stationarity is linked with the concept of 

long-run equilibrium. Thus, if one is confronted with the problem of identifying the station- 

ary linear combinations of economic variables it is only natural that economic theory should 

motivate the choice of the identifying restrictions. 

However, using economic theory as a guide with respect to the nature of the cointegrat- 

ing relations results quite often in more than r2, or over-identifying restrictions. The work of 

Johansen (1991), among others, provides the statistical basis for one to impose and test restric- 
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tions over and above the r2 just-identifying restrictions. The validity of the over-identifying 

restrictions can be investigated by means of the likelihood-ratio test-statistic which in this case 

is asymptotically distributed as a X2 variate with degrees of freedom equal to the number of 

over-identifying restrictions. 4 This provides the tool with which to directly test the empirical 

validity of what economic theory has to say about the long-run equilibrium. 

Perhaps the most frequently cited empirical work in this vein is that of King, Plosser, Stock 

and Watson (1991) who, among other things, investigate the prediction of a wide class of Real 

Business Cycle (RBC) models, namely, that the ratios of consumption and investment relative 

to output known as "the great ratios" are constant. Provided that consumption, investment 

and output are I(1) variables they can be modelled within the cointegrating VAR framework 

specified by (1.4), where zt = [ct, it, yt]' and ct, it, and yt stand for the natural logarithms 

of consumption, investment and output respectively. RBC theory predicts that there should 

be two long-run relationships between these three variables, which translates into two coin- 

tegrating vectors. Furthermore, the same theory provides information on the exact values of 

the parameters in the cointegrating vectors. In particular, the otherwise unrestricted, long-run 

structural model has the following form 

Act all a12 
1 

Dit = a0 + a21 a22 
0 

Dyt a31 a32 

where ao is a constant. 

Ct-i 

0 -1 n-i 
Zt-i + r'AZt-; + et, 

1 -1=1 
Yt-1 

(1.23) 

4Pesaran, Shin and Smith (2000) generalise this result for systems with weakly exogenous I(1) variables, while 
Pesaran and Shin (2001) consider the case of non-linear restrictions. 
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Since there are two cointegrating vectors, r=2, there is need for r2 =4 exactly identifying 

restrictions. However, economic theory assigns values to all six components of the )3-matrix, 

thus, leaving two over-identifying restrictions to be tested. Using US data and for p=6, King et 

al (1991) found support for the presence of two cointegrating vectors, which were then identified 

by imposing the four restrictions implied by the left 2x2 block of the 6'-matrix in (1.23). The 

remaining two over-identifying restrictions were then tested and could not be rejected at the 

5% level, thus, giving support to the underlying economic theory-5 

Clearly, the two cointegrating vectors in (1.23) have a very precise economic interpretation 

as stationary deviations from the long-run equilibria c-y and i-y. Consequently, the elements 

aij of the a-matrix can be interpreted as speed of adjustment coefficients to departures from the 

long-run equilibria, which is why a is usually referred to as the long-run or speed of adjustment 

matrix. 

1.3.2 Over-Identification of )(3 and Unit Root Testing 

The potential to impose and test over-identifying restrictions on /3 creates the opportunity for 

an interesting application. A special case of over-identifying restrictions which is of particular 

interest is the assignment of fixed numerical values to all the elements in a number of cointe- 

grating vectors. This is generally expressed as /3 = [b, 0], where the nxs matrix b is a set of 

s cointegrating vectors with fixed elements and the nx (r - s) matrix 0 is the remaining set of 

r-s cointegrating vectors to be estimated. Such a set of restrictions is especially interesting, 

because it allows for the formulation (and testing) of the hypothesis that a single variable or a 

'At a further stage the authors augment the vector zt by including real money supply, interest rates and 
inflation, which appear to play a very important role contrary to RBC theory. 
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set of variables in zt is stationary. As pointed out in Johansen (1995; pp. 74) "... the question of 

stationarity of individual series can be formulated in a natural way in terms of parameters in 

the multivariate system, and is a hypothesis that is conveniently checked inside the model rather 

than a question that has to be determined before the analysis starts". 

The hypothesis that a variable in zt is stationary is exactly equivalent to the hypothesis 

that this variable is the single entry in a cointegrating relationship. Thus, a test of stationarity 

for variable zit, i=1,2, ..., n, is equivalent to a test of the restriction 6= [b, 0], where b is 

now an nx1 vector with the i-th element being the only non-zero entry. For example, if one 

is interested in testing the hypothesis zlt N 1(0) the restricted cointegrating matrix would be 

b' 
ý3ý _ _ 

ýý 

10 """ 0 

ý11 021 ". " Onl 

Ol, 
r-1 

02, 
r-1 """ On, 

r-1 

where the non-zero element of b was arbitrarily set equal to unity. 

(1.24) 

As mentioned earlier, a general result concerning statistical inference in cointegrating sys- 

tems is that the LR statistic for testing over-identifying restrictions on ß is asymptotically X2 

with degrees of freedom equal to the number of over-identifying restrictions. The set of restric- 

tions in (1.24) can be seen as a special case of over-identification in which one cointegrating 

vector is fixed, i. e. subject to n restrictions, while the remaining r-1 vectors are each subject 

to r exactly identifying restrictions, giving a total of n+ r(r - 1) restrictions. Therefore, the 

likelihood ratio statistic for testing the hypothesis zit - 1(0), i=1,2, ... ,n is asymptotically 

chi-squared with n+ r(r -1) - r2 =n-r degrees of freedom. This test is commonly referred 
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to as multivariate ADF, although, contrary to the standard ADF test the null hypothesis here 

is that of stationarity. 

This demonstrates the potential to both accommodate and test for the existence of 1(0) 

variables in zt within a cointegrating VAR framework. It should be noted, however, that 

this result cannot be interpreted as an argument for relinquishing the use of conventional unit 

root tests prior to estimating the model. The reason is that the procedure described above 

relies on the assumption that zt consists only of mixtures of 1(0) and I(1) variables and is not 

applicable in the presence of variables with higher orders of integration6. Furthermore, this test 

procedure is sensitive to the choice of the number of cointegrating vectors, r, and it is widely 

recognised that the existing cointegrating rank tests can be quite uninformative in relatively 

small samples7. This issue, however, will be discussed in more detail in subsequent sections. 

1.4 Treatment of the Deterministic Components 

So far, the deterministic elements in (1.4) have been assuming the general form alit, where 

a and Ot were defined below (1.1). It is only natural that different specifications for alit can 

have quite different implications on the deterministic behaviour of Azt, zt and the cointegrating 

relations iß'zt. The cointegrating VAR literature has placed considerable emphasis on these 

implications which are considered in detail inter alia by Johansen (1995, section 5.7), Pesaran 

and Pesaran (1997), Pesaran and Smith (1998) and PSS. When considering the case zt N I(1), 

'See Haldrup (1998) for a discussion on the potentially pervasive effects on the properties of the estimators 
in cointegrating VAR models involving mixtures of I(1) and 1(2) variables. 

'See, for example, Reimers(1992), Cheung and Lai (1993), van Giersbergen (1996), Harris and Judge (1998) 

and Mantalos and Shukur (1998). 
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the MA representation of Ozt takes the form of 

Ozt = C(L)(atPt + et), (1.25) 

where 

00 
C(L) _> CjL` = C(1) + (1- L)C*(L) 

=o 
i 

Co = In, G'1 = 4ý1 - n, Ci = E4ýjCi_j, for i>1, (1.26) 
j=1 

00 

C*(L) - >Ci*L', Cp=In-C(1), C; =C 1+Cf, fori>0. 
i=0 

Using (1.26) the MA representations of Azt and zt take the form 

Azt = C(1)(aOt + et) + C*(L)(aAtPt + Det), (1.27) 

t 
zt = C(1) E(atii + ei) + C* (L) (a'al't + et), (1.28) 

i=0 

where the last t terms of the sum C(1) Ejt_o es are known as the reduced-form stochastic 

trends, C(1) measures the cumulative effect of all past reduced-form shocks, et, and according 

to Granger's representation theorem may be expressed as8 

C(1) = al(air(1)A-, )-ia, (1.29) 

BFor more details see Johansen (1995; Theorem 4.2; pp. 49-52) 
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where al, O1 are nx (n - r), full column rank and are orthogonal complements of a and ß, 

respectively, so that a'al =0 and ß'/3l = 0. This representation illustrates that cointegration 

may also be interpreted as a process of elimination of stochastic trends. The number of linearly 

independent stochastic trends is given by rank[C(1)], which by (1.29) can be shown to vary 

according to n-r. Therefore, in the case when the non-stationary elements of zt do not 

cointegrate, i. e. r=0, zt is driven by n independent stochastic trends. When r=n and, 

thus, zt is stationary all stochastic trends are eliminated. This is a quite intuitive result, since 

stationarity of zt implies that the et's will only have a temporary effect which requires that the 

cumulative effect C(1) be zero, or equivalently, rank[C(l)] = 0. 

The literature typically considers five different specifications for the deterministic compo- 

nents at/it which are available in standard econometric packages like Microfit 4.0. These speci- 

fications allow for fit to contain, at most, a constant and a linear trend, thus, abstracting from 

the analysis of models with intervention or other dummies. In this section, attention is focused 

on the most general of the five specifications, denoted as H(r) in Johansen (1995; pp. 81), or 

Case V in Pesaran and Pesaran (1997), Pesaran and Smith (1998) and PSS. 9 The remaining 

four cases can be easily formulated as special cases of Case V, while the presence of intervention 

dummies in the deterministic vector will be considered in a separate section. 

Under Case V the deterministic terms take the form 

alit = ap + alt, (1.30) 

where ao is an n-vector of constants and al is an n-vector of coefficients to the linear trend, t. 

9To avoid confusion, the Pesaran et al terminology will be adopted for the rest of this thesis. 
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Using this specification the MA representations (1.27) and (1.28) may be written as 

Ozt = bo + blt + C(L)et, (1.31) 

ze = zo + (bo +1 bi)t + Zb, t2 + C(1) E ei + C*(L)(et - eo), (1.32) 
i=l 

where bo = C(1)ao + C*(1)al, bi = C(1)al and zo = bo + C(1)eo + C*(L)eo. The MA 

representation of the cointegrating relations may be obtained through pre-multiplication of 

(1.32) by /3' as 

ß'zt = A'zo + /3'bot + fi'C* (L) (et - eo), (1.33) 
S 

where the result ß'C(1) =0 that follows from (1.29) was applied and ß'zo = f3 bo+f3C*(L)eo, 

)3'bo = (3'C*(1)al. It is apparent from (1.32) that under Case V, zt contains both a linear 

and a quadratic deterministic trend, in addition to the stochastic trend Ei_i es, while the 

cointegrating relations in (1.33) contain only a linear deterministic trend. 

The remaining four cases are specified as follows: 

Case I: ao = al = 0. This is the case when the VECM has no intercepts and no deter- 

ministic trends. In terms of (1.32) and (1.33) this implies bo = bl =0 and, thus, neither zt 

nor ýl3'zt contain a deterministic trend. As Pesaran and Pesaran (1997) point out "Case I is 

included for completeness and is unlikely to be of relevance in economic applications". 

Case II: as = -Hit and al = 0, where µ is an nx1 vector of unknown coefficients. 

This is the case when there are no deterministic trends in the VECM and the intercepts are 

restricted so that they enter the cointegrating vectors. For any non-zero, rank-deficient II this 

case also implies b0 = bl = 0, since bo = C(1)ao = -C(1)IIµ =0 by use of (1.22) and (1.29). 
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Consequently, zt and 6'zt do not contain deterministic trends. 

Case III: ao 00 and al = 0. In this case there are no deterministic trends in the VECM 

and the intercepts are unrestricted. The implication of this on the MA representation is that 

bo = C(1)ao and bi = 0. This means that quadratic trends are eliminated, while a linear trend 

enters the MA representation of zt through the term C(1)aot but it is not present in ß'zt since 

ß'C(1) =0 by (1.29). 

Case IV: ao j6 0 and a1= -IIry, where ry is an nx1 vector of unknown coefficients. This 

is the case when intercepts in the VECM are unrestricted and the trends are restricted so 

that they enter the cointegrating vectors. This implies bo = C(1)ao - C*(1)11y and bi = 0, 

since bl = C(1)al = -C(1)H7 =0 by use of (1.22) and (1.29). It can also be shown10 that 

C*(1)H = -I,, and, thus, bo = C(1)ao + -y. Therefore, quadratic trends are eliminated and 

a linear trend is present in both zt and ß'zt; in the first instance as [C(1)ao + -y]t and in the 

second as ß'ryt. 

A point frequently stressed in the studies by Pesaran et al concerns the presence of the term 

2b1t2 in (1.32) that arises from the inclusion of unrestricted trend coefficients in the VECM 

under Case V. The presence of these terms is argued to be undesirable in macroeconomic appli- 

cations, since for any rank-deficient II-matrix the level of zt will exhibit quadratic deterministic 

trending behaviour, which is not characteristic of macroeconomic time series. Furthermore, the 

number of quadratic trends will be a function of the number of cointegrating vectors, since the 

number of independent quadratic trends depends on rank[C(1)] =n-r, which varies directly 

with r. In the light of this, Pesaran et al favour the restriction of the coefficients on the linear 

trend in cointegrating VAR models according to Case N, which as shown above, excludes the 

10For a proof see Pesaran and Shin (1995). 
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possibility of quadratic trends while allowing for a linear trend in both zt and 8'zt. 

Statistical inference on the validity of the restrictions ao = -IIµ and al = -IIlr conditional 

on rank[II] =r can be made by means of the likelihood-ratio statistic which is asymptotically 

a chi-squared variate with n-r degrees of freedom. The restriction that a linear trend is not 

present in the cointegrating relations, known as co-trending hypothesis [Park (1992), takes the 

form ß'C*(1)a1= 0 under Case V and 13'ry =0 under Case N and is generally true if al = 0. 

1.4.1 The Presence of Intervention Dummies 

An interesting extension of the models considered thus far arises when the deterministic terms 

alit are allowed to also include intervention dummies, in addition to the constant and the linear 

trend. This adds an important new dimension to the modelling problems that can be addressed 

within a cointegrating VAR(p) by providing the opportunity to explicitly model structural 

change. The inclusion of intervention dummies has been briefly considered by Johansen (1995) 

and in more detail by Johansen and Nielsen (1994), Hansen (2000) and Johansen, Mosconi and 

Nielsen (2000). An empirical application within a small open economy VAR can be found in 

Jacobson et al (2001). 

The deterministic terms will now assume the following form that will be referred to as Case 

Vd: 

at/it = as + alt + a2Dt, 

where a2 is an nx nd coefficient matrix and Dt is an nd vector of dummies, 

(1.34) 
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Dt = [Dit, D2t, ... , Dndt i, with 

1, fortjo<t5 tjq, 
Djt nd. 

0, otherwise, 

The MA representations of Azt, zt and the cointegrating relations /3'zt under (1.34) become 

Ozt = bo + bit + b2Dt + C* (L)a20Dt + C(L)et, (1.35) 

tt 
zt = zo+(bo+2b1)t+2blt2+b2EDi+C(1)1: ei+ 

i=1 i=1 

+C* (L) [et - eo + a2 (Dt - Do)], (1.36) 

ß'zt = ß'zo + P'bot + p'C* (L) [et - eo + a2 (Dt - Do)], (1.37) 

where b2 = C(1)a2, zo = bo+b2Do+C(1)eo+C*(L)(eo+a2Do), and bo, bl are defined below 

(1.32). Expression (1.35) reveals that Azt contains two sources of structural change. The first 

is an intercept with multiple breaks in the form of b2Dt, and the second is a series of one-off 

"blips" in the form of C* (L)a20Dt, where 

1, fort=too+1, 

&Djt = -1, for t= tjq + 1, ' .7=1,2, ... nd. 

0, otherwise, 

The level of zt in (1.36) also contains two sources of structural change. The first takes the form 
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of the broken trends b2 Ei-1 Di, where Ei 
=1 

Di = [Ei=1 D1i, Ei 
_1 

D2i, """, 
Eß_1 Dfl ]and 

t-tjo, for tjo<t<tjq, 
t 

Dpi = tjo - tjq, fort > tjq, ' .? nd. 
i=1 

0, otherwise, 

The second is a smoothed version of Dt in the form of 

t nd t 

C* (L)a2Dt =: Ci a2Dt-i =E1: (Ci a2)jDj, t-i, 
i=0 j=1 i=0 

where 

t Et-t'°-1 C*a2 s fort9o < t< t74 
,ý s=t-tfq 

ýýýý 

E(Ci a2)JDj, t-i =, .7=1,2.... Ind, 
i=o 0, otherwise, 

and (Ci*a2)1 is the j-th column of C; a2. A smoothed version of Dt appears also in the cointe- 

grating relations in (1.37) in the form of (3'C*(L)a2Dt. 

As was discussed in the previous section, leaving the coefficient al unrestricted results in 

the level of zt exhibiting quadratic deterministic behaviour, with the number of independent 

quadratic trends varying with r according to rank[C(1)] = n-r. In order to avoid this property 

while still allowing for trend-stationary cointegrating vectors, it was suggested to impose the 

restriction al = -IIry according to Case N. A similar argument can be made in favour of 

restricting a2. Leaving a2 unrestricted results in the level of zt in (1.36) containing the broken 

trends b2 Ei=1 D; with the number of independent broken trends varying, again, according to 

rank[C(1)] =n-r. 
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Taking both of these considerations into account results in what will be denoted as Case 

IVd, where ao ,-0, a1= -IIFy and a2 = -116, where ry and 6 are nx1 and nx nd, respectively, 

both containing unknown coefficients. This set of restrictions results in bo = C(1)ao + ry and 

bl = b2 = 0. Therefore, as in Case N, quadratic trends are eliminated and a linear trend is 

present in zt as [C(1)ao+7]t and in /3'zt as /3'7t. Furthermore, the broken trends are eliminated 

and a broken intercept is present in both zt and ß'zt; in the first instance as -C*(L)IIbDt and 

in the second as p'C*(L)HÖDt. 

1.4.2 Testing for Cointegrating Rank under Different Specifications for the 

Deterministic Terms 

Different specifications for the deterministic components inevitably require different definitions 

for rot and rlt in (1.18) when testing for rank[IIJ. To illustrate this point consider the general, 

reduced-form cointegrating VAR(p) in (1.4) which, for example, under Case IVd may be written 

as 
P-1 

Lzt = a0 + II*z*t-1 + ri0zt-i + et, (1.38) 
i=1 

where z*t_1 = [zt_i, t, Dt]', II* = II[In, --t, - 6] and provided that 0<r<n, fl = ap; with 

0' = [0', -ß'ry, - ß'b]. Therefore, the problem of determining the number of cointegrating 

vectors in the context of (1.38) is a question of rank[II, ], where the estimate of the stochastic 

II. -matrix is now given by 

SHOOS*o1S*'1S*io (1.39) 
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and the matrices S*oo, S. oi, S, lo and S*11 are defined as follows: 

T 

S#ij = T-1 E ritr, t, i, = 0,1, (1.40) 
t=1 

with rot and rlt, being now the residuals obtained from the OLS regressions of Azt and 

, respectively. [t, Di, Zt-i]' on [1, Oz't-1, Ozt-2, ..., uzt-p+ýýI 

In general, rot is the residual obtained from the OLS regression of Azt on [p't', Ozt_1, 

Ozt_2, ..., Ozz_P+1]', where 0' contains all unrestricted deterministic terms, i. e. those terms for 

which a. = 94- 0, i=0,1,2. The residual rlt is obtained from the OLS regression of [tfr ', zt_1]' on 

[t, b Oz _1,0Zt-2' """I Oz 
_ 1}where -it contains the deterministic terms that are restricted 

so that they may enter the cointegrating relations, i. e. those terms for which aj, i=0,1,2 is 

restricted to be a multiple of H. 

Asymptotic distributions for the cointegrating rank statistics under Cases I-V have been 

derived and tabulated in, inter alia, Johansen (1995; sections 11,12) while PSS generalise the 

results for the case of partial systems. However, as shown in Johansen and Nielsen (1994) and 

Johansen, Mosconi and Nielsen (2000), the asymptotic distribution of the tests in the presence 

of intervention dummies is not only model but also variable-specific, as it depends on the timing 

of the break(s). The variety of cases that can arise in the presence of nd intervention dummies, 

each with potentially different break timing is rich enough to have deterred any attempts for 

systematic tabulation of asymptotic percentiles. Therefore, asymptotic critical values rarely 

emerge in the literature, e. g. Johansen, Mosconi and Nielsen (2000) and Jacobson et al (2001), 

and when they do they are generally quite case-specific. 
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1.5 Partial Systems 

Although, in principle, all variables in zt may be treated symmetrically within (1.4), there are 

certain advantages to be gained in empirical applications by treating a sub-set of zt as weakly 

exogenous. It is, thus, not surprising that cointegrating VAR models conditional on weakly 

exogenous I(1) variables have attracted a considerable amount of interest. The concept of 

weak exogeneity within the cointegrating VAR model was first investigated by Johansen (1992) 

and further discussed in Johansen (1995, section 8) whereas, more recently, PSS provided an 

integrated statistical framework for estimation and inference. 

In order to illustrate the concept as well as the implications of weak exogeneity consider 

the case when it is possible to partition zt into a vector yt of ny endogenous variables and 

a vector xt of ny exogenous variables, zt = [., xt]', and similarly the matrices a= [ay, az}', 

r= [rk, r }', i=1,..., p- 1, a=[at, a'2]' and the disturbance vector et = [e , t, e, ]' with 

variance matrix fl = 
OYY OYx 

. 
It is, thus, possible to re-write the general, symmetric 

1xy Oxx 

VECM given by (1.4) in partitioned form as 

Ayt C", 
,P 

ri,, et 

tý (1.41) 

L=t+ 
ßZt-1 +I OZt-i + 

Axt ax ax t-1 rix ext 

Multiplication of the second row of (1.41) by T= S1JXSlz1 and subtraction from the first yields 

the conditional model for Ayt given Axt as 

P-1 
AYt = C1&t + (ay - Tay)ß'zt-i +> WjOzt-i + TOxt + ut, (1.42) 

ii-1 
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where c= aye - Tar, W; = I't, - TI'j,, i =1, ..., p-1, and ut = eyt - Te., t, while the marginal 

model of ixt is given by 

P-1 

Axt = a. Ot + axß'zt-i +Z rsxAzt-i + ext. (1.43) 
i=l 

Despite the fact that the process ut is by construction orthogonal to eatll, it is not possible 

to render the information provided by the marginal model (1.43) redundant in the efficient 

estimation and inference concerning the parameters of the conditional model (1.42) as they 

both share the common cointegrating matrix, 3. As Johansen (1995; pp. 122) points out "... there 

may be a considerable problem as well as loss of information in the analysis of the conditional 

equation (. ) without taking into account the second equation (. )". 

A sufficient condition for the efficient analysis of (1.42) is 

ax=0, (1.44) 

known as weak erogeneity condition. Under (1.44) the conditional and the marginal models 

take the form 

P-1 

Dyt = cOt + avß'zt-i +`i zt_i + TOxt + ut, (1.45) 
4=1 

P-1 

Axt = axt t+> ri. Azt-i + eat, (1.46) 
i=1 

where the marginal model (1.46) is now redundant for efficient conditional estimation and 

"This is immediately verified since E(eytut) = E[ext(eyt -Test)'] = E(exte't) - E(exte¢tf); z' '. ) = ttyy - nZ: nzz f2: y = 0. 
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inference concerning both the deterministic and short-run coefficients c, ay, T, and Ti, i= 

1,2,.. ., p-1, as well as the long-run cointegrating coefficients ß. The obvious advantage of 

this in empirical applications is that, in the presence of weak exogeneity, one can escape the 

explicit modelling of xt, thus effectively reducing the dimensions of the estimated system and 

economising on degrees of freedom. Furthermore, the exogeneity condition (1.44) may be used 

to provide part of the restrictions required in order to identify the structural or policy shocks 

vt in (1.20), although this will be discussed in more detail in subsequent sections. 12 

Pesaran and Smith (1998), among others, stress the fact that in the case of economic 

applications, economic theory can be a very useful guide in choosing the candidate variables 

to be included in the weakly exogenous vector xt. This is because under (1.44) the vector 

xt has the economic interpretation of long-run forcing with respect to yt. This property is 

indicated by the fact that xt can influence yt in (1.45) both in the short run through the 

terms Ep i 'IJiOzt-i and TOxt, as well as in the long run through the error correction terms 

ayf3'zt_i, while yt can only have a short-run effect on xt via the terms 1 ri zt_{ in (1.46). 

Thus, in applications that involve the modelling of small open economies, for example, where 

zt includes both, domestic and foreign variables, the natural candidate for xt would be the set 

of foreign variables. However, weak exogeneity of xt is clearly a hypothesis that is defined in 

terms of the parameters of the model and as such it may be formally tested. 

12 Perhaps one disadvantage of working with a cointegrating VAR model conditional on weakly exogenous I(1) 

variables like (1.45) is the additional burden it places on computing time when engaging into simulation exercises, 
as will be illustrated later in this chapter. 
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1.5.1 Testing for Weak Exogeneity: Johansen (1992) and Pesaran, Shin and 

Smith (2000) 

There are two main approaches to testing for weak exogeneity. The first one is due to Johansen 

(1992) who proposes a direct test of condition (1.44) within the symmetric system (1.41) by 

means of the likelihood ratio statistic which is shown to be asymptotically X2 with rnx degrees 

of freedom. However, as mentioned earlier, the increasing interest in partial systems in macro- 

economic applications arises primarily from the limited amount of available data points and 

the need to escape the explicit modelling of all the variables in zt. From this point of view, the 

Johansen (1992) approach has the disadvantage that it requires estimation of the symmetric, 

n-dimensional system. 

In cases where the dimensions of the full system are prohibitive, or at least not easily 

handled, PSS propose an alternative approach. This is based on the implications of the weak 

exogeneity condition (1.44) on the marginal model. A casual inspection of (1.46) immediately 

reveals that the marginal model does not involve any levels' relationships. Consequently, the 

presence of cointegration in (1.46) would constitute a rejection of weak exogeneity of xt. This 

clearly suggests the use of the maximum eigenvalue and/or A- trace cointegration rank tests, 

defined in (1.14) and (1.16), respectively, within the marginal model as an alternative way of 

testing for weak exogeneity. However, this raises the following issue. 

The Johansen (1992) test was characterised above as direct in the sense that the null hypoth- 

esis tested is the weak exogeneity condition (1.44) and is mutually exclusive to the alternative. 

Thus, a rejection/non-rejection of the null corresponds directly to a rejection/non-rejection of 

weak exogeneity. When testing for cointegration within the marginal model (1.46), however, 
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this is no longer the case. Even though a rejection of the null of no cointegration is equivalent 

to rejection of weak exogeneity, failure to reject the null merely indicates absence of cointe- 

gration among the xi's, i=1,2,. .., na,. This does not necessarily verify the validity of the 

weak exogeneity condition (1.44), as it does not exclude the possibility of non-zero ay loadings 

on error-correction terms of the form [ßßy, O,,, 
x]zt_l, where f3', is rx ny and On. is an rx nx 

matrix of zeros. Thus, testing for cointegrating rank in the marginal model may only provide 

conclusive evidence against weak exogeneity of xt in the form of cointegrating relations among 

the xi's, i=1,2, ... , n... In the inconclusive case of non cointegration in the marginal model, 

one possible course of action suggested in an early version of PSS is to obtain the estimates 

'81 zt_1 using the conditional model in (1.45) and then test for their significance in the marginal 

model in (1.46). 

1.5.2 Asymptotic Inference within Partial Systems and the Special Case in 

R. ahbek and Mosconi (1999) 

PSS provide an integrated framework for estimation and asymptotic inference within cointe- 

grating VAR models conditional on weakly exogenous I(1) variables of the type of (1.45) with 

deterministic components given by Cases IN discussed earlier. In the case of partitioned sys- 

tems the restrictions on the deterministic components ao = -IIµ and al = -n7 take the form 

co = -fl and cl = -IIby, where II, = a, )3' and c2 = aßy - 'Y'ap.,, i=0,1. PSS show 

that the asymptotic distribution of the LR statistic for testing co = -IIyµ and cl = -IIyy 

conditional on rank[II,, ] =r is x2 with ny -r degrees of freedom. Under Case N, for example, 
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the conditional and marginal models take the form 

P-1 
Dyt = Co + ny*z: t-1 +E` iAzt-t + Thxt + ut, (1.47) 

P-1 

Axt = ao,. + E I'sýOzt-= + ext, (1.48) 
i=l 

respectively, where z*t_1 = [zt_l, t]', 11y. = lIV [In, -7] and provided that 0<r<n, Hy* = 

ay, B* with j3* = [0', -ß'-y]. For statistical inference on cointegrating rank within (1.47) PSS 

present modified versions of the cointegration rank statistics (1.14) and (1.16), formulated in 

terms of rank[IIy*]. The stochastic IIy*-matrix is given by 

Sý 0Sv*oiSyi1Sv«io (1.49) 

and the matrices Sy*oo, S&*ol, Sy*lo and Sy*11 are defined as follows 

T 

Sy: ij = T-1 > rttriit, i, i=0,1, (1.50) 
t=1 

where, in general, rot is the residual obtained from the OLS regression of Lyt on [? Pt , L\zt_1, 

Oz't_2, ..., Oz't_p+1, Axt]' and %bt contains all unrestricted deterministic terms, i. e. those terms 

for which ci 0, i=0,1. The residual rlt is generally obtained from the OLS regressions 

of [fit', zit_, ]' on [fit, Ozt_1, Ozt_2,..., Ozt_i, +j, A4]', where t/' contains the deterministic 

terms that are restricted so that they may enter the cointegrating relations, i. e. those terms 

for which c;., i=0,1 is restricted to be a multiple of Hy. PSS derive the limit distributions of 

the modified cointegration rank statistics and tabulate the asymptotic critical values for Cases 
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IN. 

However, there is a minor issue concerning asymptotic inference on cointegrating rank within 

conditional models that deserves further attention. This is a rather technical point raised in the 

study of Rahbek and Mosconi (1999) and revolves around the statistical concept of "asymptotic 

similarity". A test is called asymptotically similar with respect to a parameter cp if the rejection 

frequency under the null is independent of cp as the sample size approaches infinity. 13 Rahbek 

and Mosconi (1999) demonstrate that in a model given by 

P-1 
DYt = aß'Yt-1 + I'iAYt-i + ewt + Et' (1.51 

i-1 

where yt is an ny-dimensional I(1) process and wt is an nw-dimensional 1(0) process, the 

rejection frequency (and thus also the critical values) of the cointegration rank tests is not 

asymptotically similar with respect to 0 due to the presence of nuisance parameters in the 

asymptotic distribution of the tests. The intuition behind this result is highlighted with the 

use of the Granger representation of yt that takes the form of 

t 
Yt = C(1) E(Ei + ewt) + C* (L) (Et + 6wt) + A, (1.52) 

i=l 

where C(1) and C*(L) are given by (1.29) and (1.26) respectively, while A depends on initial 

values. The non-similarity of the limit distribution with respect to 6 is shown to be due to the 

lack of balance in the way that wt appears in the stationary and non-stationary parts of yt. In 

particular, the I(1) part of yt contains the accumulated terms Et_i wi, while the stationary 

13 For more details see also Nielsen and Rahbek (2000). 
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part /. 3'yt does not, due to (1.29). 

In order to eliminate the nuisance parameters from the asymptotic distribution of the coin- 

tegration rank tests and, thus, restore asymptotic similarity, Rahbek and Mosconi propose the 

inclusion of Ei=l wi as a regressor in (1.51) with a coefficient of the form -IIt9, or equivalently 

-aß't9, where 19 is an ny x n, � matrix of unknown parameters. Under this modification, the 

model becomes 
P-1 

AYt = ap*Y*t-1 + I'iDYt-i + ®wt + Et, (1.53) 
i=1 

where yet-1 = [5t-l, Ei=1 wi]' and -fß'i9] which illustrates that ýi=1 wi now enters 

the cointegrating relations. 

The model in (1.51) can arise as a special case of a cointegrating VAR(p) conditional on 

weakly exogenous variables. In particular, consider the conditional model in (1.45) with the 

deterministic terms treated according to Case I and p =1 

Dyt=av[01 ßzJ Yt-i + TOxt + ut, 
Xt-1 

(1.54) 

where /3k,, , 6. are nb xr and n, xr respectively. In the event that xt - I(1), then for /3 =0 

the model takes the form of (1.51) with Axt playing the role of wt. Although PSS [section 4.3] 

appreciate this possibility, they stress the fact that the inclusion of the cumulative terms in 

the cointegrating relations as suggested by Rahbek and Mosconi in (1.53) may lack the support 

of economic theory. They, therefore, suggest a test of -, 3't9 = 0, which is a test of n,,, over- 

identifying, zero-restrictions in each of the r, exactly identified cointegrating relations and is, 

thus, asymptotically X2 with rn,,, degrees of freedom. 
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In the event that xt - 1(0) and /3x =0 then the terms Axt in (1.54) follow an I(-1), or 

over-differenced process. As a result, they cumulate to a stationary process which as explained 

in Nielsen and Rahbek (2000) implies that the terms Ei 
_1 wi are of smaller order of magnitude 

than EL Es and can, thus, be ignored for asymptotic purposes. However, even with a station- 

ary xt there is still the possibility ay/3 ,=T, in which case the Rahbek and Mosconi criticism 

applies. Again, a test of -, 8'19 =0 suggested by PSS will indicate whether the cumulative 

terms in (1.53) can be ignored. 

1.6 Finite Sample Inference within Cointegrating VAR Models 

As discussed in the previous sections, statistical inference within the cointegrating VAR(p) 

framework relies almost entirely on the use of LR statistics14. Their asymptotic distribution 

may be standard chi-squared (LR tests for the choice of the intercept/trend specification, LR 

tests of over-identifying restrictions on the cointegrating matrix, ý0) or non-standard (cointe- 

gration rank tests). In both cases a substantial body of evidence has accumulated over the past 

decade revealing that in finite samples the asymptotic distributions provide a very poor approx- 

imation to the actual distribution of the test statistics. Reinsel and Ahn (1988), Blangiewicz 

and Charemza (1989), Reimers (1992), Cheung and Lai (1993), van Giersbergen (1996), Harris 

and Judge (1998), Mantalos and Shukur (1998) and Greenslade et al (2002) among others, 

suggest that the asymptotic distributions of the A- trace and maximal eigenvalue cointegrat- 

ing rank tests under-estimate the finite-sample critical values, thus leading to over-rejection 

The use of (appropriately modified) model selection criteria such as the SBC, AIC and HQC has been 
considered in inter alia Lütkepohl (1993), Pesaran and Pesaran (1997) and Pesaran and Smith (1998) as a 
means for joint determination of lag-length and cointegrating rank. However, as noted in Latkepohl (1993; 
pp. 387) the statistical properties of such a procedure are currently unknown in general". 
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of the null. Gredenhoff and Jacobson (1998), Fachin (2000), Johansen (2000a, b) and Jacob- 

son et al (2001) are examples of studies illustrating that the small-sample bias of chi-squared 

tests can also be quite significant. As a consequence of the evolution of this rather rich liter- 

ature, the small-sample bias in asymptotic inference within multivariate cointegrating systems 

is considered today to be well-documented and its presence is undisputed. 

Following the developments in the cointegrating VAR literature, the studies on finite-sample 

inference focused first on the cointegration rank tests and later on x2 tests. The need to control 

for sample size when testing for cointegration was recognised as early as Reinsel and Ahn 

(1988). It was both the growing amount and the compelling nature of the findings supporting 

the presence of a significant finite-sample bias that quickly resulted in the emphasis being placed 

on how rather than whether to deal with it. Two general approaches have been considered. 

1.6.1 Finite Sample Correction Factors 

The first approach to controlling for sample size is the traditional adjustment of the test statis- 

tics (or the asymptotic critical values) by a correction factor that takes into account the sample 

size, the number of estimated parameters and available degrees of freedom in the tradition of 

Sims' (1980) Adjusted Likelihood Ratio (ALR). The idea of adjusting the statistics, or the 

asymptotic critical values, through multiplication by a single scaling factor was particularly 

appealing in the late 80's and early 90's when the limited power of microcomputers did not 

allow for widespread use of simulation methods. 

Reinsel and Ahn (1988,1992) proposed a small-sample correction for symmetric systems by 

replacing T by T- np in the calculation of the maximal eigenvalue and A- trace statistics in 

(1.14) and (1.16), respectively, where T, n and p are defined below (1.1). This is equivalent to 
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scaling the statistics by a factor 

SF=(T-np)/T, (1.55) 

or, as in Cheung and Lai (1993), adjusting the asymptotic critical values by SF-1. Since both, 

n and p are positive integers and for np < T, then SF E (0; 1) and SF-1 E (1; 71 for finite 

values of T. This implies that in finite samples the unadjusted test statistics are too large, or 

equivalently, the asymptotic critical values are too small, thus leading to over-rejection of the 

non-cointegration null. As mentioned in Johansen (1995; pp. 99) "the theoretical justification 

for this result (i. e. the scaling of the statistics by SF) presents a very difficult mathematical 

problem", which is why the studies on the validity of this approach had to rely on simulation 

methods. Reimers (1992) and Cheung and Lai (1993) investigated the idea of the Reinsel and 

Ahn scaling factor and found support in favour of the suggested correction with the use of 

Monte Carlo simulations. 

Cheung and Lai (1993), in particular, investigate the Reinsel and Ahn correction within a 

symmetric system under Case III. They estimate the following response surface equation 

CRT 

C, 
T= ßo + ß1SF-' + errors, (1.56) 

where CRT is the simulated estimate of the finite-sample critical value and CRS is the asymp- 

totic critical value at the corresponding significance level. The ratio CRTICR,,. is a measure 

of finite-sample bias; the further away from unity it is, the greater the extent of the bias. In 

the case that ßo =0 and ß1 =1 the bias varies according to the Reinsel and Ahn scaling 

factor. The small-sample critical value CRT was simulated for various values of T, n and p 

using 20,000 replications and in all cases the joint restriction ßo =0 and ßl =1 was rejected. 
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This suggests that the proposed correction factor does not yield unbiased estimates of the true 

finite-sample critical values and that more accurate estimates can be provided by the response 

surface. However, in all cases, i3, was found to be significantly positive and close to 0.9. This 

indicates that the bias is a positive function of SF-', thus, verifying that in finite samples 

the cointegration rank tests tend to over-reject the null of no cointegration. Using a similar 

approach, the same authors also find that the A-trace statistic is more reliable than the maximal 

eigenvalue in the absence of residual normality. 

As the cointegrating VAR literature started to address the issues of the treatment of de- 

terministic regressors and the testing of hypotheses on the cointegrating matrix, Johansen and 

Juselius (1990), Johansen (1991), the familiar X2 distribution made its debut in asymptotic in- 

ference within multivariate cointegrating systems. The timing of these developments coincided 

with the surging interest on bootstrap methods (discussed in the following sub-section) and 

as a result, the bulk of the literature investigating the finite-sample bias in X2 tests abstracts 

from the use of correction factors. A recent revival of the adjustment approach, however, can 

be found in Johansen (2000a, b). These two studies propose a Bartlett correction [see Bartlett 

(1937)] for the likelihood ratio test of linear over-identifying restrictions on the cointegrating 

matrix, ß. The first study considers the case of known adjustment coefficients, a, and the 

second generalises the results for an unknown ti-matrix in symmetric systems like (1.4) under 

Cases IV and V. The proposed correction factor is rather complicated and takes the general 

form 

SFB = nt, na+nT4[2(n�+na+1)+nd+n+n, xj+ (1.57) 

Z. [(n -1)v(ß) + 2(c(ß) + Cd(r))], 
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where n, is the dimension of the restricted cointegrating vectors, na is the number of stochastic 

trends plus the number of restricted deterministic terms, n, z is the dimension of the vector of 

(demeaned) stacked lagged differences [Az't_1- E(izt_1), ..., Azt_ 1- E(ýzt_ 1)]ý, nd is the 

number of unrestricted deterministic terms and v(ý), c(ý) and cd(ý) are complicated functions 

of model parameters. As before, the usefulness of the scaling factor in (1.57) is demonstrated 

with the use of simulation methods. 

Overall, the evidence on adjusted statistics indicated that they are an improvement over 

asymptotic inference. However, results have also suggested that the finite-sample bias cannot be 

adequately quantified by a simple scaling factor. Perhaps the most crucial point in studies like 

Cheung and Lai (1993), though, is the implicit acknowledgement of the superiority of simulation 

methods. After all, it was the simulated CRT's in (1.56) that were used to produce the true 

measure of the bias by which the performance of the scaling factor was evaluated. This view, in 

combination with the dramatic increase in computing power, attracted considerable attention 

on bootstrap methods. 

1.6.2 The Bootstrap Approach in the Cointegrating VAR(p) 

The idea of the bootstrap was originally introduced by Efron (1979) and later applied to the 

simple regression model by Freedman (1981). The general bootstrap approach is as follows. If a 

distribution TI is expressed in terms of a parameter of interest 9 and inference on 0 can be based 

on a statistic S then it is possible to obtain an empirical approximation of the distribution of 

S based on a single random sample from ! in the following manner. If (y', y2, ..., yq) is the 

available random sample from W, generate B bootstrap samples of size l (usually chosen to 

be equal to q) (yi, y2, ..., yj ), B by drawing with replacement from (y', y2, ..., yq). 
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For each of the bootstrap samples it is possible to compute the bootstrap statistic SS the 

distribution of which is known as the bootstrapped distribution of S and can be used for 

making inference about 0. This particular method is valid for IID observations. Departures 

from the IID assumption have led to modifications, primarily, in the resampling method'5 but 

the underlying idea remains the same, i. e., use the single available sample to generate bootstrap 

samples in order to obtain an approximation of the distribution of S. 

Following the dramatic increase in computing power, the bootstrap approach gained in- 

creasing popularity as a means for simulating the finite-sample distributions in multivariate 

cointegration analyses. Perhaps the first issue that arises when considering the application of 

the bootstrap in the context of a general regression model, is whether to resample the data 

set directly or resample the residuals first and use them in order to generate the bootstrap 

data sets. Li and Maddala (1997) argue that in the context of cointegrating regressions where 

the variables under consideration are CI (1,1) the direct resampling of the data is not a valid 

approach for two reasons. First, resampling the data directly will not take into account the 

cointegrating properties of the data series, which is a piece of information that is used in the 

estimation of the model and, second and most important, a bootstrap sample of an I(1) process 

is not I(1) at all. Li and Maddala (1993) provide some empirical evidence on the superiority of 

the residual-based bootstrap over the direct resampling scheme in the context of cointegration 

regression models. 

Thus, in the context of a cointegrating VAR model the bootstrap approach can be sum- 

marised in the following three steps: 

(i) The model is estimated under the null hypothesis of interest using the available data set 

"'For an overview see Li and Maddala (1996) 
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of length T. 

(ii) A large number of, say, B pseudo-data sets of length T are simulated using the estimates 

from (i) plus B appropriately constructed disturbance vectors et, j=1, ..., B, t=1, ..., T. 

(iii) The statistic of interest is computed for each of the B simulated data sets in order to 

obtain an empirical approximation of the finite-sample distribution of the test statistic. 

The two broad methods that have been adopted for the generation of the disturbance terms 

to be used in step (ii) gave rise to the distinction between parametric and non-parametric 

bootstrap. In the parametric version the error terms used in the simulation of the pseudo-data 

sets are random draws from a pre-specified distribution. In the non-parametric version the 

error terms are obtained by drawing with replacement from either 

(a) the (normalised) residuals obtained from step (i), Li and Maddala (1996,1997), or 

(b) the (normalised) residuals obtained from estimating the model under the alternative 

hypothesis, Fachin (2000). 

As an illustration consider the process for generating bootstrap samples in a symmetric 

system similar to van Giersbergen (1996) and Harris and Judge (1998). The model takes the 

form of (1.4) with the deterministic terms being treated according to Case I and is given by 

P-1 
Ozt = a/3'zt-1 + riAzt-t + et, (1.58) 

where et - N, ß(0, SZ) and t=1, ..., T. Estimation of (1.58) under the null hypothesis of interest 

will provide estimates of II p-1, et and SZ. In the parametric case the 

bootstrap residuals et, j =1, ..., B are drawn randomly from N�(0, el). In the non-parametric 

version (a) the et's are drawn with replacement from the (normalised) estimated residuals, et. 
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In the non-parametric version (b) the model is re-estimated under the alternative and gives rise 

to a new set of estimated residuals, say e*t. The et's are now drawn with replacement from the 

(normalised) e*t's. For each of the e, B and for t=p, 0 zl is constructed as 

P-1 

Ozt = etYzt-i + I'i zt-i + (1.59) 
s_i 

using the starting values zo,..., zp_1 from the actual data set. The simulated data series is 

completed for t>p as 
P-1 

+ L, 
I'i0 

_i 
+ (1.60) 

i=1 

Fachin (2000) argues that when bootstrapping the LR test of over-identifying restrictions on 

the cointegrating matrix, ý3, the non-parametric bootstrap in (b) should be preferred to (a). The 

intuition behind this is the following. In the event that the null hypothesis under consideration 

is false, i. e. if the over-identifying restrictions imposed are very binding, then the cointegrating 

relations under the null will not be stationary which will be reflected in the presence of I(1) 

error terms. This, however, will not be captured by the non-parametric bootstrap in (a), since 

drawing with replacement from an 1(1) process results in an 1(0) sample. 

The problem of non-stationary error terms under the null identified in Fachin (2000) can be 

considered as a special case of residual autocorrelation since, by definition, an I(1) process is 

autocorrelated of order one with unitary coefficient. As noted by Li and Maddala (1996), van 

Giersbergen (1996), Harris and Judge (1998) and others, the application of the non-parametric 

bootstrap is problematic in cases when the estimated VAR model is more generally misspecified 

and suffers from any form of residual autocorrelation. In such cases the resampling schemes 

discussed above, where the bootstrapped residuals are generated as random draws with re- 
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placement from the estimated residuals, will not maintain the serial correlation of the latter. 

The most popular alternative that deals with this problem is the stationary bootstrap [Politis 

and Romano (1994)] which resamples blocks of residuals, thus, maintaining the autocorrelation 

structure. However, van Giersbergen (1996) shows that the ordinary bootstrap in most cases 

has higher power than the stationary bootstrap. This in combination with the pervasive effects 

of serial correlation on the consistency of the ML estimator in cointegrating systems leads van 

Giersbergen (1996; pp. 401) to the conclusion that "... it is better to have a sufficiently high 

order VAR model to improve the power of the test... hence, the practical use of the stationary 

bootstrap seems limited". 

The usefulness of the parametric bootstrap, on the other hand, is limited by the extent to 

which the assumptions on the pre-specified distribution of the residuals are not valid. In many 

applications of the parametric bootstrap the residuals are drawn from a multivariate normal 

distribution with variance equal to its estimate from the true data set, as for example in Garratt 

et al (1998,2000) and Jacobson et at (2001). In the event that the diagnostic tests appear to 

reject the assumption of residual normality, parametric results may be complemented by non- 

parametric as in Garratt et at (2001), hereafter GLPS, and Lee and Papaikonomou (2002). 

The application of bootstrap methods in symmetric cointegrating systems has generally been 

found to significantly improve on asymptotic inference concerning cointegrating rank16, van 

Giersbergen (1996), as well as in the case of X2 tests, Gredenhoff and Jacobson (1998), Fachin 

(2000). The same findings are verified in Jacobson et al (2001) for a seven-dimensional model 

with intervention dummies. Studies based on small partial systems like Mantalos and Shukur 

16 Harris and Judge (1998), however, using non-parametric methods in a symmetric, three-dimensional VAR(1) 
under Case I, find the bootstrap cointegration rank tests to have poor size properties in the presence of a single 
cointegrating relation. 
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(1998) also support strongly the use of bootstrap tests. These findings are further verified for 

the case of more complicated partial systems with relatively large dimensions (eight-variable 

models) by Greenslade et al (2002), although the application of the bootstrap in such systems 

will be discussed in more detail in the following section. In all cases, however, the bootstrap 

approach has confirmed the presence of a significant finite-sample bias in favour of rejection. 

1.6.3 The Bootstrap Approach in Partial Systems 

Early applications of the bootstrap were focused on simple symmetric systems of a relatively low 

dimension (typically ranging between three and five). Although the results from such studies 

could provide very helpful guidance, they need not be directly applicable to the more compli- 

cated systems that arose following the developments in the areas of modelling conditionally 

on weakly exogenous variables and the treatment of the deterministic terms. The general ap- 

proach given by steps (i)-(iii) in the previous section still applies in the case of partial systems. 

However, the presence of weakly exogenous variables creates an additional issue with regard to 

the data-generating process in step (ii). 

Consider, for example, the conditional and marginal models under Case IVd which take the 

form 

P-1 
Dyt = CO + ay)l3;, z. t-1 + fi0zt-i + Thxt + ut, (1.61) 

i-1 

P-1 
Axt = aoa +E ri zt-i + e., t, (1.62) 

i=1 

respectively, where zt = [y, xt]', Zt-1 = 
[zt-1, t, Dt}', 

N* = ý', 
-' 

p'-fr 
-06], ut N Nny (0,0uu) 
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ext - N.. (0,1l ) and t=1, .., 
T. As mentioned in previous sections, asymptotic critical values 

for the cointegration rank tests have not been systematically tabulated for models involving 

intervention dummies such as (1.61). As a result, a bootstrap exercise is the only available 

means by which to obtain small-sample critical values for these tests unless, of course, one 

is prepared to first simulate the asymptotic distributions and then use a scaling factor to 

correct for sample size. However, in the light of the empirical evidence discussed earlier on the 

performance of scaling factors, the latter course of action would be a less wise allocation of 

computing resources. The additional complication that arises when applying the bootstrap in 

conditional models is caused by the presence of the contemporaneous terms Tixt in (1.61). 

One possibility is to assume that xt is fixed to its values from the original data set, as in 

Garratt et at (2000). Estimation of (1.61) under the null will give estimates of co, äy, ý,,, 'Y;, 

i=1,..., p -1, 'Y', üt and fl.,,. The bootstrap disturbances t4, j=1,..., B, t=1, ..., T maybe 

constructed according to the parametric or non-parametric schemes discussed in the previous 

section and for each of the ut, j=1, ..., B and for t=p, 0 is constructed as 

P-1 
Ay3t = co + ä&(. i. z*t-1 + IYiLzt-i + TOxt + ut 

i=1 
(1.63) 

using the starting values zo,..., zp_i from the actual data. The simulated data series 0y is 

completed for t>p as 

0= co +a[' 
-i, t-i t, Di + xYt -i + TOxt + ut (1.64) Yýr 

s-1 Axt-i 

where the original xt series is used in each of the B simulations. 
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Clearly, treating the weakly exogenous vector xt as fixed allows one to simulate only the 

yt series which significantly reduces the computational burden. However, this approach is in 

conflict with the underlying analysis of systems with weakly exogenous variables. As shown 

in previous sections, a model such as (1.61) arises after conditioning Dyt on Axt, where xt is 

treated as a stochastic process as indicated by the peripheral model in (1.62). Relaxing the 

assumption of fixed xt requires the joint simulation of both, yt and xt. There are two ways for 

doing so. 

In the first approach (1.61) and (1.62) are estimated under the null hypothesis of interest 

i to provide estimates of 80, &y, ýCi*, 'Y i, 'Y', üt ýuu äoß rtx, 6 and Styx, i= 1, ..., p-1. Two 

sets of bootstrap residuals are required in this case, 14 and e't, j =1, ..., B, t =1, ..., T. In the 

parametric version these are drawn randomly from Nn� (0, fl.. ) and N,, 
x 
(0, Oa ), respectively. 

In the non-parametric version (a) the 14's and eýxt's are drawn with replacement from the 

(normalised) estimated residuals, fit and hext. In the non-parametric version (b) the conditional 

model (1.61) is re-estimated under the alternative to produce the estimated residuals fit and 

the 14's are now drawn with replacement from the (normalised) ü*t. 17 

For each of the eýyt, j =1, ..., B, and for t=p, Oxt is simulated first as 

P-1 

= ä0x +E xif i, Azt-i + eýxt (1.65) 

i=l 
17The non-parametric version (b) was proposed by Fachin (2000) for the bootstrap test of over-identifying 

restrictions on beta. The marginal model is not affected by any hypothesis on beta and thus, does not need to 
be re-estimated. 
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and then for each of the ut, B, Ay3t is simulated as 

P-1 

0_ eo + &J3 z*t-1 + `I iAzt-i + tI X+u (1.66) 
s=1 

using the starting values zo, ..., zt_1 from the original data set. For p<t< 2p - 1, A34 is 

simulated first as 

and then iy as 

t-p p-1 
ý3Ct = a0a + rkx0ý_k +E rixAzt-i + 4t 

k=1 i=t-p+1 

t-p p-1 
At= e0 + äyX. z t-1 + i/kOZt-k +s t-i 

k=1 i=t-pß-1 

(1.67) 

(1.68) 

using the starting values zt_p, ..., zp_1. The bootstrapped data series is completed fort > 2p -1 

as 

and 

P-1 

A24 = äo. + teOzt-i + e''xt (1.69) 
i=1 

P-1 

Ly = eo + äyJ . z: t-1 +Z Ü'i0 
-i 

+ TOxt + ut. (1.70) 
i=1 

As can be seen from (1.65)-(1.70) the contemporaneous presence of Axt in the conditional 

model forces the simulation process to iterate between the marginal and conditional models 

when treating xt as stochastic. The first observation for xt is generated in order to be used in 

the simulation of the first observation for yt, which in turn is required for the next observation 

of 4 and so on. Clearly, this process is considerably more time consuming than holding xt 
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fixed. An alternative data generating scheme, possibly more efficient in terms of computing 

time, might be the joint simulation of xt and y, j=1, ..., B, with the use of the underlying, 

symmetric system implied by (1.61) and (1.62). In this case, the underlying, symmetric model 

(in partitioned form) is given by 

Dyt [aovl av P-1 rig eat 
+ p*z*t-i + uzt-i + (1.71) 

Axt 80x a s-1 

[riz] 

ext 

where z z*t_1 = z_ tDö and e= e' with t= [Y, x]', [t1, , tl', A* = [P', A' ] et [e' , t]' 
variance matrix i= 

nyy nyx 

. The last nx rows of (1.71) give the marginal model in 
nxy Oxx 

(1.62) and the remaining terms in the first ny rows are linked to the conditional model (1.61) 

through the relations 

%= co + Taos, ebt = ut + Te., t and riy = Tj + Tri., i=1, ..., p-1. (1.72) 

Thus, it is possible to estimate the conditional and marginal models (1.61) and (1.62) to get 

Co, &y, üt, fl.., äo., ria, ext and nxxt i=1, 
""., p - 1, and then use these estimates 

to construct ä0,, e and f, 
,i=1, ..., p-1, according to (1.72). The bootstrap residuals 

et = [e', ext]', j=1, ..., B, t=1, ..., T, may now be obtained using the parametric and non- 

parametric methods discussed earlier and the simulated series xt and yt ,j=1, ..., B, can be 

generated simultaneously within (1.71). For each of the ei, j=1, 
..., 

B and fort = p, A4 is 

constructed as 

äy 
' P-1 

0ý = ap + A*Z*t-1 + fi1Zt-i + et7, (1.73) 
0 i=1 
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where äo = [äo' 
y, 

äox]' and ri = [I''iy, I'ty1', i=1, ..., p-1, and using the starting values 

ZO,..., zp-i from the actual data set. The simulated data series is completed for t>p as 

P-1 
Ozt = äo + 

aý Ä*z; 
t_1 + 1' zt_s + et. (1.74) 

The performance of the bootstrap in partial systems has been investigated by Mantalos and 

Shukur (1998) within a small bivariate system under Case I with the weakly exogenous variable 

treated as a stochastic process. The evidence presented strongly suggests the use of bootstrap 

methods for finite-sample inference regarding cointegrating rank within samples of sizes 20,40, 

60 and 100. Greenslade et al (2002) consider a more realistic system in eight variables, three of 

which are treated as weakly exogenous. The sample size in this study is 112 and the lag-lengths 

considered are 2,4,6 and 8. The deterministic terms are specified according to Case I while the 

weakly exogenous vector is treated both as fixed and as a stochastic process. Again, the overall 

evidence supports the use of bootstrap critical values for the determination of cointegrating 

rank in the sample size under consideration. Treating the weakly exogenous vector as fixed or 

stochastic appears to have little or no impact on the performance of the bootstrap. However, the 

determination of the endogeneity and weak exogeneity status prior to inference on cointegrating 

rank is shown to significantly improve the performance of the bootstrapped cointegration rank 

tests. 
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1.6.4 Bootstrapping the LR Test for Over-Identification of f3 and the Use of 

Simulated Annealing 

Although the application of the bootstrap approach (parametric or non-parametric) described 

above is straightforward in the case of the cointegration rank tests, there is a major practical 

issue that complicates its application to the tests of over-identification of the cointegrating 

matrix, 0. The general hypothesis to be tested takes the form 

Ho: AEx=Qov, (1.75) 

where 8EX and 130V are the exactly and over-identified cointegrating matrices, respectively, 

and ýQpv can be any linear or non-linear transformation of ýQEX. A test of (1.75) is given 

by comparison of the maximised log-likelihoods LL(T3EX) and LL(Äov) with the statistic 

LR = 2[LL(i3Ex) - LL(ßoy)]. This test statistic is asymptotically X2 with degrees of freedom 

equal to k- r2, where k stands for the total number of restrictions in /3oy and k< nr. '8 A 

bootstrap distribution of LR can be obtained in the following three steps: 

(1) A large number of B data sets are simulated using the parametric or non-parametric 

methods discussed in previous sections. 

(2) For each of the B simulated data sets the system's log-likelihood is maximised for 

both, the exactly and over-identified cointegrating matrices in order to obtain LL(i3 ) and 

LL(jov), = 1, ..., B. 

(3) The LR statistic LR = 2[LL(&X) - LL(, Yov)], j=1, ..., B, is computed for each of 

the bootstrap samples in order to get an empirical approximation of its distribution. 

l"For more details see, for example, Pesaran and Shin (2001). 
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However, as noted in an early version of Garratt et al (2000), in the case of over-identified 

systems with a "large" number of cointegrating vectors and free parameters, conventional algo- 

rithms (like the modified Newton Raphson used by Microfit . ¢. 0) quite frequently fail to converge 

to the global maximum in the absence of very accurate starting values. In order to avoid the 

inevitable convergence obstacles that arise when solving B such optimization problems in step 

(2), existing research, e. g. Garratt et al (1998) and Jacobson et at (2001), has frequently been 

restricting itself to the use of what will be denoted as bootstrap 1. 

In this bootstrap experiment the over-identified cointegrating matrix is not being estimated 

for each bootstrap sample. Instead, it is assumed to be equal to its estimate from the original 

data set, Mio 
y, and the computed statistic becomes LR1 = 2[LL(T3 x) -LL((3 py)], j=1, ..., B. 

In effect, this is a test of 

Ho, 1 : AEx = Qov (1.76) 

that imposes the maximum number of over-identifying restrictions nr - r2. In this case the 

computational aspects of the bootstrap exercise are dramatically simplified as the error correc- 

tion terms under the null are fixed, which allows for the over-identified model to be estimated 

by standard OLS. The limitation of this approach is rather obvious when )30V involves free 

parameters, i. e. k< nr. In this case, the hypothesis tested by LRl is more restrictive than 

(1.75), as it imposes a specific numerical value on all the elements of the cointegrating ma- 

trix. Since ýov is bound to be sub-optimal with respect to the free parameters in ßov for 

all but the actual data set, the difference LL(7EX) - LL(%iov) will always be greater than 

LL(%3EX) - LL(%iov), j =1, ..., B and, thus, the critical values obtained from bootstrap 1 will 

inevitably be positively biased. Although this result helps illustrate the limitations of bootstrap 
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1, it does not render a test of (1.76) entirely useless regarding small-sample inference on (1.75). 

In fact, it demonstrates that, to the extent that a bootstrap exercise is a valid approach for 

approximating the finite-sample distributions, these maintain the property of the asymptotic X2 

distributions which guarantees that critical values increase with the number of over-identifying 

restrictions. Thus, rejection of (1.76) necessarily means rejection of (1.75) in both, infinite and 

finite samples. 

In the event that bootstrap 1 leads to non-rejection of (1.76), though, the outcome on (1.75) 

is inconclusive. In the light of the practical difficulties involved in bootstrapping (1.75) directly, 

the two papers by Johansen (2000a, b) discussed in previous sections, have revived the scaling 

factor approach by proposing a Bartlett-type, small-sample correction for LR. Chapter 3 of 

this thesis introduces the use of the global optimization algorithm Simulated Annealing (SA) 

discussed in Goffe et al (1994) and adapted to Gauss by E. G. Tsionas (1995) as a means for 

overcoming the convergence problems involved in the simulation of the finite-sample distribution 

of LR. The main strength of SA lies on the fact that it does not depend on the parameters' 

initial values. The algorithm allows for downhill as well as uphill movements, which makes 

it possible to explore the whole surface of the likelihood function before converging to the 

global maximum, at a cost though, of computational speed. The user has control over the 

thoroughness with which the SA algorithm explores the surface of the objective function, the 

parameter range and the strictness of the termination criteria. This makes it possible to carry 

out what will be denoted as bootstrap 2, where LL(T33v), B, is being maximised for 

each of the simulated data sets with respect to the free parameters in ß pv with the use of the 

SA algorithm. This method has also been implemented in GLPS and Lee and Papaikonomou 

(2002). 
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1.7 Investigation of the Dynamic Properties in the Cointegrat- 

ing VAR(p) 

The dynamic behaviour of a general cointegrating VAR model such as (1.4) has been investi- 

gated in the literature by evaluating the response of individual variables and the cointegrating 

relations to both, variable-specific and system-wide shocks. The tools employed for the evalu- 

ation of the effects of such shocks are the Orthogonalised Impulse Responses (OIR) proposed 

by Sims (1980), the more recently developed Generalised Impulse Responses (GIR) in Koop et 

al (1996) and Pesaran and Shin (1998) and the Persistence Profiles (PP) proposed by Lee et al 

(1992), Lee and Pesaran (1993a) and Pesaran and Shin (1996). The application of these tools 

to partial systems such as (1.45) may be carried out within the underlying symmetric system 

in (1.41) subject to the weak exogeneity condition (1.44). 

1.7.1 Impulse Responses 

An impulse response function measures the expected effect of a hypothetical n-vector of shocks 

of size c= [ci...... 
,, 
]' at a given point in time, t, on the future values of A zt, zt and ß'zt. It 

may, therefore, be described as a conditional expectation of A zt, zt and /3'zt, given 4 and the 

known history of the economy 

IRoz(Ný cý ýt-i) = E(Ozt+Nlet= c, Et-i) - E(Ozt+NIEt-i), (1.77) 

IRz(N, S, Et-1) = E(Zt+NI et = c, Et-i) - E(zt+NIyt-1), (1.78) 

IRp, x(N, c, Et-i) = E(p'zt+Nlet= c, Et-i) - E()O'zt+Nl Et-i), (1.79) 
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where N=0,1,2,..., and St_, stands for the information set available at time t-1. For the 

general, reduced-form model (1.4), the known history of Ozt, zt and (3'zt is summarised by the 

MA representations 

Ozt = C(L)(ailit + et), zt = B(L)(aot + et) and )3'zt = B'f3 (L)(a'%t + et), (1.80) 

where t=1,2,..., T, E(etet) = Il, C(L) is defined in (1.26) and 

00 i 

B(L) = (1 - L)- C(L) =E Bitt, Bi =E Ci, for i>0. (1.81) 
i=o j=o 

Combining the definitions (1.77)-(1.79) with (1.80) results in 

IR&, (N, S, St-1) = CNc, IRz(N, c, Et-i) = BNS and IRß, 
z(N, c, Et-i) = ß'BNC, (1.82) 

where N=0,1,2,.... The matrices CN and BN can be obtained from the relations 

N 
CO = In, Cl=$1-In, CN=Eý>jCN_j, forN>1, 

j=1 
N 

B0 = In, BN =E 4jBN_j, for N>1, (1.83) 
j=1 

and (1.81) using the estimates from (1.4) and noting that 

, 1= In + II + rl, ibi = ri - ri for i=2,..., p- land 4)p = -rp-1, (1.84) 
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by the definition of II and r i, i=1, ... ,p-1, 
in (1.3). Thus, according to (1.82), the matrices 

CN, BN and OBN describe the expected responses of Ozt+N, zt+N and f3'zt+N, N=0,1,2,... ' 

respectively, to a unitary, system-wide, reduced-form impulse et =c= [1, 
... , 1]'. Over an 

infinite horizon the impulse responses in (1.82) converge to lim {CN}c = 0, by stationarity 
N-ºoo 

of Ozt, 
llimo 

{BN}c = C(1)c, by (1.81) and Nliý 
{p'BN}c = p'C(1)c = 0, by (1.81) and 

(1.29), indicating that shocks on the stationary Ozt and )3'zt are transitory, while they have a 

permanent effect C(1)c on the I(1) vector zt. 

Although symmetric, system-wide shocks help illustrate the general dynamic behaviour of 

the model, they are of limited use when addressing more interesting economic questions. For 

the purpose of policy evaluation, for example, attention is focused on the effect of shocks in 

particular sectors of the economy. For this purpose the conditional expectations in (1.77)-(1.79) 

need to be re-defined as 

IRoz(N, Si, Et-1) = E(Ozt+Nlei = Si, 't-1) - E(Ozt+NIEt-1), (1.85) 

IR. (N, Si, Et-1) = E(Zt+Nl ei = c$, Et-1) - E(zt+NIyt-1), (1.86) 

IRQýxýNý Sig ýt-1ý = E(Pf Zt+NIei = Si, =t-1) - EýQýZt+Nýýt-1ýý (1.87) 

N=0,1,2,..., and i=1, ... , n. Combining (1.85)-(1.87) with (1.80) results in 

IRo: (N, sý, ýe-i) = wti1CNStsi4; i, IR: (N, ci, Et-i) = wj; 1BNSZsist and 

(1.88) 

where wig is the i-th element in the j-th column of 11 and sf is an nx1 selection vector with 
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unity as its i-th element and zeros elsewhere, so that 11si gives the i-th column of 0. In the 

event that the ei's, i=1,..., n, are uncorrelated and, thus, fl is diagonal, then wti 1 SZsi = s;. 

Therefore, the effect of a unit shock in the i-th equation of the system at time t, i. e. eit = s= = 1, 

on AZt+4v, zt+N and Q'zt+x, N=0,1,2,..., would be described by the i-th column of CN, BN 

and ß'. 13N, respectively. However, in the modelling framework of a cointegrating VAR(p) the 

ei's, i=1, ..., n, are generally assumed to be correlated and, thus, ft is not diagonal. Several 

approaches have been considered in this context. 19 

1.7.2 Orthogonalised Impulse Responses 

The traditional approach is due to Sims (1980) who suggested looking at the response of Ozt, 

zt and ß'zt to the transformed shocks 

S -1 wt =S eta (1.89) 

where S is nxn, lower triangular with unit diagonal. The transformed shocks are orthogonal 

since E(vi vi') = S-1SZS''1 = ES, where ES is diagonal and Sims' transformation matrix, 

S, may be obtained from the triangular factorisation S2 = SESS'. Solving (1.89) for et and 

substituting in the MA representations (1.80) results in 

Ozt = C(L)(at/it + Svt ), zt = B(L)(at/it + Svt) and ß'zt = f3'B(L)(at/it + Svt ). (1.90) 

Re-defining the conditional expectations (1.85)-(1.87) in terms of the orthogonalised residu- 

als v t, i=1,... ,n and combining them with (1.90) results in Sims' orthogonalised impulse 

19 For a detailed overview see Levtchenkova et al (1998). 
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responses 

OIRöx(N, S'i, Et-1) = CNSsisi, OIRz (Ne Ci, Et-1)= BNSSici and 

OIRß, 
z 
(N, c1, St_i) = ß'BNSsic ,N=0,1,2,..., i=1, ... , n. (1.91) 

The fact that S is lower triangular, though, has the consequence that a shock v ist has a quite 

different effect on Ozt+N, zt+N and O'zt+N depending on the ordering of the zit's in zt. If, for 

example, a unitary shock hits the n-th equation in the system at time t, then Ssn = sn and 

the responses of Ozt+N, zt+N and ß'zt+N are given by the n-th column of CN, BN and ß'BN, 

respectively. However, simply re-ordering the zit's so that zt, is now the first entry in zt results 

in the quite different responses CNSsl, BNSs1 and 8'BNSS1. Just as in the case of (1.82), 

over an infinite horizon Sims' OIR's become OIRöz(oo, Si, 't_1) = OIRÄ, 
Z(oo, cj, ßt_1) =0 

and OIRz (oo, si, St-1) = C(1)Sssc by (1.81) and (1.29), thereby reflecting the fact that Ozt 

and A'zt are 1(0), while zt - I(1). 

Very frequently the orthogonalised impulses are alternatively computed as 

H -1 vt =H et, (1.92) 

where H= S(ES)1"2, lower triangular and is obtained from the Cholesky decomposition fl = 

HH'. In this case the transformed shocks are orthogonal with E" = E(VHVH') = H-iSZH''1 

= I,, and the OIR's take the form 

OIRÖs(N, c, Et-1) = CNHSis{, OIRH(N, Ci, Et-1)= BNHsisi and 
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OIRßz(N, s%, ýt_i) = J3ýBNHsisý, N=0,1,2, ... ,i =1, ... , n. (1.93) 

1.7.3 Impulse Responses and Economic Structure 

Although the OIR's in (1.91) and (1.93) are routinely being used for policy evaluation, the 

orthogonalised disturbances vt and vH defined in (1.89) and (1.92), respectively, are identified 

merely in order to satisfy an orthogonality condition. It is for this reason that they cannot be 

considered structural in the sense of (1.19) and (1.20), as the identifying restrictions are not 

derived from economic theory. The structural VAR (SVAR) literature, on the other hand, 

focuses on the identification of the structural shocks 

vt=Aoet (1.94) 

with variance E= E(vtvt) = Aof)A;. This is done by imposing restrictions on the contempo- 

raneous loadings Ao and E derived from relevant economic theory as in Shapiro and Watson 

(1988), Blanchard and Quah (1989) and Gall (1992), although, very frequently these amount to, 

or at least include, an orthogonality condition. In such cases theory acts as a guide regarding 

the ordering of the zit's in zt, which determines the causal chain in the system. As was hinted 

at in previous sections, weak exogeneity may provide part of the identifying restrictions through 

the relation 4la. = [a4,0]1 that follows from (1.22) and the weak exogeneity condition (1.44). 

1.7.4 Permanent-Transitory Decomposition 

Another popular way of obtaining an economically meaningful AO is by distinguishing between 

n-r permanent components, vt = [vß, ... , VP; - ,., t]', and r transitory components, vt = 
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[v.... 
, VT it X, in the structural shocks vt = [vt', vt']'. This is the approach taken in King et 

al (1991), Mellander et al (1992) and more recently in Jacobson et al (2001) and is based on 

the reduced-form, common stochastic trends representation of zt in (1.28). In terms of vt this 

takes the form 

zt=zo+C(1)E(a s+Ao1 
Vi 

)+C*(L)(aft+Ao1 
vt 

), (1.95) 
i=1 LVT vt 

where zo = zo - C*(L)(aipp + 41vo), C*(L) is defined in (1.26) and C(1) is given by (1.29). 

As discussed previously, the implication of the representation of C(1) according to (1.29) is 

that zt is driven by n-r independent stochastic trends C(1)A, ' E==i v;. The determination 

of the structural loadings Ao is based on the identification of the n-r stochastic trends driving 

the system. The latter is achieved by first noting that the transitory nature of vT implies that 

the cumulative effect C(1)41 takes the form 

C(1)A' =[A0], (1.96) 

where A is the nx (n - r) matrix of the long-run multipliers of vi and the nxr block of 

zeros is the long-run effect of vT . In the presence of more than one stochastic trends, A is only 

identified up to multiplication by a non-singular (n - r) x (n - r) matrix P. King et at (1991) 

require that A= ÄP with Ä being an nx (n - r) matrix of known coefficients and P being an 

(n - r) x (n - r), lower triangular matrix with unit diagonal. The choice of A is guided by the 

desired economic interpretation of the vp's, i=1, .... n-r, and the estimated cointegrating 

relations. The unknown parameters below the main diagonal of P are determined by requiring 
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that vp is independent of the transitory components vT , so that 

E= E(vtvt) 
EP 0 

L0 ET 

where ET = E(vt vt') and the vp's, i=1,... , n-r, are themselves assumed to be uncorrelated 

with EP = E(vt vp') = In_,.. In the case of a single stochastic trend, i. e. n-r=1, the matrix 

of long-run multipliers, A, is an n-vector. In this case identification of the single vp can be 

achieved upon normalisation of A and through (1.97). 

1.7.5 Generalised Impulse Responses 

As illustrated above, impulse response analysis has revolved around the identification of "struc- 

tural" disturbances that arise as linear transformations of the reduced form shocks et 20 In the 

case of Sims' (1980), the transformed residuals are identified in such a way as to capture the 

"distinct patterns of movement", while in the SVAR literature more emphasis is placed on the 

use of economic theory. Nevertheless, even when theory-consistent identification schemes are 

employed they usually amount to, or at least include, orthogonalisation conditions that leave 

the interpretation of the impulse responses depending on the ordering of the variables. The use 

of orthogonality conditions could be, to some extent, the result of failure on the part of eco- 

nomic theory to deliver the n2 restrictions required for the unique specification of Ao in (1.94), 

or even an attempt to moderate Sims' criticism of "incredible restrictions" on the short-run 

dynamics in the cases when the n2 restrictions are indeed provided. Perhaps most importantly, 

20This assumption is required in order to exclude non-invertible components from the model in the presence 
of so-called Blaschke factors. For more details see Warne (2000). 
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though, it is a reflection of the conviction that structural shocks are mutually independent. 

The generalised impulse response literature, Koop et al (1996) and Pesaran and Shin (1998), 

openly challenges this view. There are many theoretical and practical reasons why structural 

shocks may indeed be strongly correlated and Pesaran and Smith (1998; footnote 15) provide 

examples from both micro and macroeconomic theory. Especially in macroeconomic applica- 

tions, one practical reason why structural shocks can be expected to be correlated is the low 

data frequency. Even if there are no a priori reasons why a particular pair of structural distur- 

bances should be correlated, there would be no realistic way of capturing their distinct effect 

if they occur within the same period, which typically means a quarter or even a year. Thus, 

rather than attempting to describe the effect of specific shocks, the Gfft's focus on the effects 

of realistic shocks, that is shocks which are typical by historical standards, as described by the 

estimated covariance matrix fl. 

The GIR's take the form of (1.88), where the size of the reduced-form shock hitting sector i 

at time t is scaled so that eit = si = wiz 2. Thus, the scaled GIR's of Ozt+N, zt+N and ßß'zt+N 

are given by 

GIRöz(Ný Sig ýt-1J = Wii1/2CNI1SI, GIRz(N, Ci, Et-1) = W-112BNSZS{ and 

GIRÄ, 
x(N, ss, ßt_1) = wtý1/2ß'BN 1sß, N=0,1,2, 

... ,i =1, ... , n. (1.98) 

As in the case of (1.82) and Sims' OIR's above, over an infinite horizon the GIR's become 

GIRöz(oo, cj, Et-i) = GIR , (oo, c, Et-1) =0 and GIRz(oo, Sig ýt-1) = wis1IZC(1)nsi by 

(1.81) and (1.29), thus, reflecting the stationarity of Ozt and ß'zt and non-stationarity of zt. 

The GIR's can also be applied in order to study the effects of the structural disturbances 
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vt in (1.94) when E is not necessarily diagonal. In this case the GIR's to a structural shock 

vet = sf = of 
ýZ take the form of 

GIRÖxýN, c , Et-j) = Qii1/ZCNA01E31, GIRzýNýq, St-1) = Qts112BN. A 1F3i and 

GIR 1/Z 
, z(N, Si, Et-1) = cii Q'BNA1ESi, N= 0,1,2, ... ,i=1, ... , n, (1.99 

with GIRnzýooý Sig ýt-i) = GIRßýxýooý Sig ýt-1) = 0, GIRz ýNý Sig ýt-1) = Q{{1/2C(1)A01Fsi. 

A further advantage of the GIR approach is that, unlike orthogonalised responses, the GIR's 

are unique and invariant to the ordering of the variables in zt. Pesaran and Shin (1998) prove 

that, apart from the obvious case when fl is diagonal, the OIR's and GIR's coincide only when 

considering a shock in the first equation. Applications of the GIR approach can be found in 

Pesaran and Shin (1998), Pesaran and Smith (1998), Garratt et al (1998,2000,2001) and 

Jacobs and Wallis (2002). 

1.7.6 Persistence Profiles 

Persistence Profiles (PP) were introduced by Lee et at (1992) and Lee and Pesaran (1993a) 

and are further discussed in inter alia Pesaran and Shin (1996) and Pesaran and Smith (1998). 

They measure the time profile of the effect of system-wide shocks on aZt+N, za+N and ß'Zt+N, 

N=0,1,2,.. .. A number of equivalent definitions are discussed in Pesaran and Shin (1996) 

but in order to maintain a link with the previous discussion on impulse responses, the PP's will 

be defined here as 

PPoz(N) = Var{E(Azt+NI Et) - E(Ozt+Nj t-i)}, (1.100) 
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PP, x(N) = Var{E(zt+NI Wit) - E(zt+NIýt-1)}, (1.101) 

PPQýx(N) = Var{E(f3'zt+NI2t) - E(p'zt+Njyt-1)}, (1.102) 

where N=0,1,2,..., and Var{. } denotes the variance. The persistence profiles are, therefore, 

measuring the variance of the revision in the N-step-ahead forecasts of 2zt, zt and /3'zt. Com- 

bining (1.100)-(1.102) with the MA representations in (1.80) gives the (unscaled) persistence 

profiles 

PPo, z(N) = CN1IC'N, PPZ(N) = BNSZBN and PPp'z(N) = ß'BNflBNQ, (1.103) 

where N=0,1,0,1,2..... Just as in the case of the impulse responses discussed above, over 

an infinite horizon the PP's take the values PPoz(oo) = PPß', z(oo) =0 and PPx(oo) _ 

C(1)fIC(1)' by (1.81) and (1.29), reflecting the fact that zt is difference stationary and /3'zt is 

I(0). 

In a similar manner, the (unscaled) PP's for the i-th equation OZj, t+N, zi, t+N, i=1, ... , n, 

and the j-th cointegrating relation Bj' zt+N, j=1, ... , r, can be found to be the scalars 

PP(Az;, N) = siCNSZCNs{, PP(zi, N) = S=BNSZBNS; and 

PP(ß''zt, N) = (1.104) 

where /. 3j is the j-th column of /3 and s2 is an nx1 selection vector with the i-th element equal 

to unity and zeros elsewhere, so that PP(E z, N) and PP(zs, N) are the i-th element on the 

main diagonal of PPA, z (N) and PP, t (N), respectively. Also, writing [3j = /3cß, where c2 is an 
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rx1 selection vector with the j-th element equal to unity and zeros elsewhere, illustrates that 

PP(, Bj'zt, N) =c PPQ; z(N)cj, 
i. e. it is the j-th element on the main diagonal of PPpiz(N). 

Over an infinite horizon the profiles in (1.104) are given by PP(Ozz, oo) = PP(i3 zt, oo) =0 

and PP(zi, oo) = siC(1)1 C(1)'st. Using the properties in (1.83) it is easily verified that the 

values of these profiles on impact, i. e. for N=0, are given by PP(Oz;, 0) = PP(z;, 0) = sýSZst 

= wij and PP(ß''zt, 0) = c, )3, n3c? =c SZc3 = wjj. The scaled PP's are obtained by setting 

PP(Azi, 0) = PP(zi, 0) = PP(/3 zt, 0) =1 and are, thus, given by 

PP'(M, N) = wzf'siCN(ICNSi, PP3(zi, N) = wii1S BNfBNsj and 

PP()3j'zt, N) = LJjj'ß NSZBNpj, (1.105) 

where N=0,1,2,..., i=1, ... , n, j=1, ... , r, with PP° (ixe, oo) = PP" ()3jzt, oo) =0 and 

PP3(zi, co) = wii1szC(1)SlC(1)'s;. 

Persistence profiles, like the GIR's discussed in the previous sub-section, are unique and 

invariant to the ordering of the variables in zt. Moreover, they are invariant to whether the 

system-wide shock under consideration is the reduced form, et, or any "structural" linear com- 

bination vt = Aoet. This is easily verified by formulating the MA representations in (1.80) in 

terms of vt and applying the definitions in (1.100)-(1.102). For PPQ'z(N), for example, this 

yields /3'BN4'E(41)'B N' 0, which by (1.94) is equal to Iß'BN11Bjq(3. Persistence profiles 

can, thus, be used in order to measure the speed of convergence of Azt, zt and )3'zt to their 

equilibrium, after-shock values by avoiding the controversies associated with the analysis of 

variable-specific innovations discussed above. However, the literature has been concentrated 

on PP'(f3 zt, N) in (1.105), that measures the speed with which the j-th cointegrating rela- 
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tion 1ßjzt+N, returns to equilibrium after a system-wide shock [see, for example, 

Pesaran and Shin (1996), Garratt et al (2000), GLPS and Lee and Papaikonomou (2002)]. 
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Chapter 2 

Identification and Testing of the 

IS-LM Model in the Long Run for 

the UK 
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2.1 Introduction 

A recent application of the long-run structural cointegrating VAR approach to the UK economy 

is the development of a small-scale macroeconometric model in Garratt et al (1998) and its 

more recent version in Garratt et al (2001). These two studies utilise most of the econometric 

techniques reviewed in Chapter 1 regarding the treatment of the deterministic components, the 

modelling conditionally on I(1) weakly exogenous variables, the use of bootstrap methods and 

the advances in impulse response analysis. The economic theory used in these studies as a guide 

in the over-identification of the cointegrating parameters consists of a general set of arbitrage 

and other long-run equilibrium conditions, like the Uncovered Interest Parity (UIP), the Fisher 

Interest Parity (FIP), Purchasing Power Parity (PPP), etc. 

This chapter is inspired by the Garratt et al (1998,2001) papers and uses, in most part, 

the data set analysed in the former study. However, the imposition of economic structure 

on the long-run is motivated here by a different economic framework. The basis of this is a 

modified version of the Mundell-Fleming model. This is, in essence, the dynamic IS-LM model 

developed by Turnovsky and Miller (1984) and Blanchard and Fischer (1989), reformulated 

within the context of a small open economy. The model gives rise to very familiar equilibrium 

conditions for the asset market, the goods market and the balance of payments, which are 

shown to impose a set of testable, over-identifying restrictions on the cointegrating parameters. 

The empirical analysis of the long run also considers one further cointegrating relation, namely, 

the modified PPP in Garratt et al (1998). 

The aim of this chapter is not to provide a self-contained macroeconometric model of the 

UK. Rather than that, the main focus here is on the long-run behaviour of the demand-side of 
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the economy, and the extent to which this can be described by the static equilibrium relations 

predicted by the modified IS-LM model. This is tested in the tradition of King et al (1991), 

Mellander et al (1992) and Garratt et al (1998,2001) by assessing the significance of the over- 

identifying restrictions imposed by theory on the cointegrating matrix, within an otherwise 

unrestricted cointegrating VAR(p). The short-run dynamic behaviour of the estimated, long- 

run structural model is evaluated with the use of Persistence Profiles and Generalised Impulse 

Responses. These are shown to produce very similar results with existing VAR models of the 

UK economy. 

Chapter 2 is organised as follows. The following section derives the static, long-run equilib- 

rium conditions to be investigated in the empirical analysis. Section 2.3 presents the data set 

and conducts a preliminary investigation into the order of integration of the variables. Section 

2.4 illustrates how the equilibrium relationships may be embedded within a long-run structural 

VAR model and Section 2.5 presents the empirical findings. Most of the evidence in Section 

2.5 is based on asymptotic inference and the use of small-sample scaling factors. Section 2.6 is 

motivated by the well-documented finite sample bias associated with asymptotic inference in 

cointegrating VAR applications and the limitations of scaling factors. 1 This section makes use 

of bootstrap techniques in order to simulate the finite-sample distributions for some key test 

statistics in Section 2.5. Section 2.7 looks at the short-run dynamics of the estimated model 

and Section 2.8 concludes. 

I See Chapter 1, section 1.6. 
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2.2 The Modified IS-LM Model 

In the standard IS-LM model the assets available to economic agents are distinguished between 

interest bearing and non-interest bearing. This section derives four long-run equilibrium condi- 

tions for a dynamic version of the open economy IS-LM similar to Trnovsky and Miller (1984) 

and Blanchard and Fischer (1989), in which the interest bearing assets are further distinguished 

between short-term (instantaneous) nominal bonds and long-term consols or perpetuities. The 

former pay an interest rate Rt while the latter pay the rate LIt. The model is also extended by 

one further long-run relationship derived from the modified version of relative PPP introduced 

in Garratt et at (1998). 

2.2.1 The LM Relation 

Real demand for non-interest bearing assets is viewed as being driven by a transactions motive 

and a speculative motive 
Mt 
Pt = L(TRMt, SPMt), (2. i) 

where ML denotes the level of nominal money demand, Pt is the price level, TRMt and SPMt 

stand for the transactions and speculative motive respectively and the subscript t denotes the 

time period. 

The transactions motive represents real money demanded for transaction purposes and 

arises from the fact that payments and receipts are not synchronised. It has traditionally been 

modelled simply as a positive function of real income. However, in the light of the empirical 

findings in Garratt et al (1998), the transactions demand for money will be assumed to be also 
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a negative function of the volume of non-cash (credit card) transactions 

TRMt =1n(Y'O"E)-1), (2.2) 

where Y is the level of real income, ß11 is a positive constant and 6t is the volume of non-cash 

transactions. Assuming that the volume of non-cash transactions has been increasing through 

time it can modelled as 

6t = exp{dlit}, 

where d11 is a positive constant. 

(2.3) 

The speculative motive represents the part of real money demand that is driven by the 

opportunity cost of holding money as opposed to short-term bonds and has been modelled as 

a negative function of the nominal short-term interest rate, Rt 

SPMt = -Q12Re, 

where 1312 is a positive constant. 

Real money demand is assumed to have the following functional form 

(2.4) 

Mi 
Pt = Doi exp{TRMt + SPMt}, (2.5) 

where Dol is a constant. Combining (2.2)-(2.5) gives 

d pt 
= D01YQýý exp{-ß12Rt - dllt}. (2.6) 

t 
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Equilibrium in the money market prevails when real money demand equals real money supply. 

Thus, in a stochastic framework the money market can be described in the long run by 

Mt Mt 
Pt = ,t exP{? I1, t}, (2.7) 

where Mt is the nominal money supply and rjl, t is a mean zero, serially uncorrelated, covariance 

stationary process. Substitution of (2.6) in (2.7) gives 

Mt 
=D01" eXP{-Q12Rt -diit + 7]1} (2.8) pt ,t 

Taking the natural logarithm and rearranging gives the following log linear expression for the 

temporary deviations 771, t from the long-run equilibrium 

77i, t = d01 + Mt -A- , Oiiyt + Q12Rt + dllt, (2.9) 

where lower case letters will hereafter denote the natural logarithm of the variables unless stated 

otherwise. 

2.2.2 The IS Relation 

The long-run equilibrium condition in the goods market for a small open economy is given by 

Yt = (Ct + INt + Gt + Xt - IMt) exp{(1- '1)172, t}, (2.10) 
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where Y is output, Ct is planned consumption expenditure, INt is planned investment expen- 

diture, Gt is planned government spending on goods and services, Xt - Mt is the planned trade 

balance, -fl is a constant different from unity, 772, t is a mean zero, serially uncorrelated, covari- 

ance stationary process and all variables are in real terms. Expression (2.10) states that in the 

long run factor incomes are on average equal to planned aggregate spending. The stationary 

shocks '12, t introduce short-term deviations from the long-run equilibrium. 

It is assumed that planned consumption is simply a positive function of income 

Ct=C(Y), 1>Cy>0. 

Real planned investment is taken to be a negative function of the long-term interest rate, 

thereby reflecting the long-run financial commitments associated with real investment decisions 

INt = IN(LIt), INLI < 0. (2.12) 

(2.11) 

Under the assumption that the Marshall-Lerner condition holds, the volume of real exports is 

modelled as a positive function of the real exchange rate and foreign income, while the volume 

of real imports is modelled as a negative function of the real exchange rate and a positive 

function of domestic income 

Xt =X (EtPP /Pt, Yt ), XEpS/p > O, Xy > O, (2.13) 

IA = IM(EtPt /Pt, Y), IMEP. IP<0, IMY>0, (2.14) 

where Et is the nominal effective exchange rate in units of domestic currency per unit of foreign 
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currency and the superscript "*" denotes foreign. 

Defining real private expenditure by Zt and the ratio of planned government spending to 

planned private expenditure by wt - Gt/Zt, the equilibrium condition given by (2.10) may be 

written as 

Y= (1 +wt)Ztexp{(1 -'Yi)n2, t}i (2.15) 

where wt is assumed to be constant. Real private expenditure is assumed to have the following 

functional form 

Zt = D021' exp{-'Y2LIt} 
( Et 

pt 
pt*)7s 

(yt )l4, (2.16) 

where D02 is a constant and 'y >0, i=2,3,4. Substituting (2.16) in (2.15), taking logarithms 

and rearranging gives the following log-linear expression for the stationary shocks 772, t 

712, t = d02 + Yt + ß21 LIt - , 322 (et - Pt + Pt) - 023yt (2.17) 

where ß2i_ (1-'Yi)-i'Yi+i, i=1,2,3, and d02 = -(1-'yl)-1 [ln(D02) + ln(1 + Wt)]- 

2.2.3 The BP Relation 

The long-run equilibrium condition for the balance of payments is defined as 

Xt - IMt + NKIt = exp{73, t} -1, (2.18) 

where Xt - IMt (current account) is as above, NKIt stands for net capital inflows (capital 

account) and 713, t is a mean zero, serially uncorrelated, covariance stationary process. Expression 

(2.18) states that, on average, the current and capital accounts must sum to zero. 
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Defining the ratio of the capital account to one plus the current account by 6t - NKIt/(1 + 

Xt - IMt), allows for the equilibrium condition in (2.18) to be re-formulated as 

(1 + Xt - IMt) (1 + St) = exp{r13, t}. (2.19) 

It is assumed that 

. a32 
1+ Xt - IMt = A03Y-a31 

r Et 
A 

(yt *)033(2.20) 

where A03 is a constant and ON > 0, i=1,2,3. It is also assumed that 1+ 6t is proportional 

to departures from the Uncovered Interest Parity (UIP), ? ]Ulpt, and to the degree of capital 

mobility, Kt 

1+ St = Bo3 exp{v Jpt}Kt, (2.21) 

where B03 is a constant. 

The UIP is an arbitrage condition between domestic and foreign currency denominated 

assets. It states that economic agents are willing to keep domestic currency denominated assets 

as long as the domestic (short-term) interest rate exceeds the foreign (short-term) interest rate 

by the amount of the expected depreciation and is assumed to hold in the following exponential 

form 

exp{77ujp, t} = C03 exp{Rt - R; } 
Et 

(2.22) 
t+1 

where C03 is a constant and the superscript "e" denotes expectation formed at time t. 

The degree of capital mobility, Kt is modelled as the following positive exponential function 

of time 

Kt = exp{d13t}, (2.23) 
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where d13 > 0. This specification intends to capture the gradual removal of capital restrictions 

over the last three decades world-wide and the additional liberalisation of capital movements 

experienced by the UK through the process of economic integration within the European Union. 

Substitution of (2.20)-(2.23) in (2.19) yields 

E Et p ( 
ptt* 

32 
D03y-R31 

1 

where D03 = AMB03C03. 

*)Q33 * 
Et 

ýYt exp{Rt - Rt } 
Ei+i - exP{7)3, t}, (2.24) 

The assumption on the exchange rate expectations formation mechanism is the one adopted 

in Garratt et al (1998), namely 

0+1 = Et+i exP{ýe, t+i}, (2.25) 

where 77e, t+1 is a serially uncorrelated, not necessarily mean-zero, covariance stationary process. 

This expectations formation mechanism is consistent with Rational Expectations but it is much 

less restrictive as it allows for a non-zero mean in the expectational error. In other words, 

expression (2.25) allows for systematic over/under predictions but requires that the mean and 

variance of the errors is constant. Substitution of (2.25) in (2.24), taking logarithms and 

rearranging yields 

773, t + 77e, t+1 + Det+l = d03 - Q31yt + Rt - Rt* + 032 (et - pt + pt) + ß33yt + d13t. (2.26) 
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2.2.4 The PPP Relation 

The Purchasing Power Parity (PPP) is a goods market arbitrage condition. In its absolute 

version it states that in a world of homogenous information sets across consumers and across 

countries, free trade and non-existent transport costs, market forces will equalise the prices 

of identical baskets of goods (expressed in domestic currency and converted by the current 

exchange rate) internationally 

Pt =EtPP. (2.27) 

It is clear that absolute PPP relies on a series of strong assumptions. There is a substantial 

amount of literature that develops modified versions of (2.27) by relaxing its underlying assump- 

tions. The present study adopts the modified version of relative PPP presented in Garratt et 

al (1998) given by 

e 
Pt = Do4EtPt 

(p) 
exp{-i4, t}, (2.28) 

t/ 

where D04,0 are constants, Pt' is an oil price index and 774, t is a mean zero, serially uncorrelated, 

covariance stationary process. Garratt et al (1998) mention the possibility that 774, t follows a 

trend stationary process which would be consistent with the "Harrod-Balassa-Samuelson effect". 

This possibility arises in the presence of differential productivity growth rates in the traded and 

non-traded goods sectors across countries. In such a case the price of a basket of traded and 

non-traded goods would rise more rapidly in countries with higher productivity growth in the 

traded goods sector. This is a hypothesis that can and will be tested in section 2.5.6. A value 

of D04 other than unity would imply permanent deviations from absolute PPP due to, say, 

persisting transportation costs, trade barriers and possibly, even though less likely, persisting 
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heterogeneity in the available information sets. The stationary shock 774, t captures transitory 

deviations from PPP due to, say, information heterogeneity. 

Garratt et at (1998) justify the inclusion of relative oil prices by the fact that the discovery 

of oil reserves in the UK effectively classifies it as an oil producer, which means that the oil price 

shocks in the 1970's could have a direct effect on the real exchange rate. A non-zero value of 9 

would indicate such a long-run effect. They also point out that: "... the importance of explicitly 

taking into account the effects of oil price changes on the dynamics of real exchange rates has 

been widely acknowledged in applied work; see, for example, Johansen and Juselius (1992)". 

Taking the natural logarithm of (2.28) and rearranging yields the following log-linear ex- 

pression for the stationary deviations 7j4, t from the long-run equilibrium PPP 

714, t-d04+et -pt +Pt'+'e(t - pt*). (2.29) 

2.2.5 Interest Rate Arbitrage 

The final building block of the model is an arbitrage condition between long and short-term 

real interest rates. This arises from the assumption that economic agents equalise the rates of 

return on both consols and short-term bonds up to a constant risk premium. This condition is 

assumed to hold in the following exponential form 

exp{ ý'ý, t 
+ ý'ý Pc 

,t} 
D05 exp{Rt + 71Frp, t} 

pth 
(2.30) 

t+1 

where D05 is a constant, Pc, t is the price of a consol, and 77Frp, t is a mean zero, serially 

uncorrelated, covariance stationary process. The left-hand side of (2.30) is an exponential 
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function of the instantaneous real rate of return of the consol which consists of the coupon 

payment, 11P,,, t, and the expected capital gains, APce 
, t"The right-hand side gives 

the real rate of return of short-term bonds, given by a stochastic, exponential version of the 

Fisher Interest Parity (FIP), weighted by the risk premium D05. It states that in the long 

run the real short-term interest rate deviates from the short nominal rate, Rt, by the natural 

logarithm of expected inflation and the stationary innovation 1lFIpt. 

Taking the natural logarithm of (2.30) and utilising the identity LIt -1/P,,, t gives 

LIt - ALIt+l = d05 + Rt +7IFIP, t - DePt+l" (2.31) 

Price and interest rate expectations are assumed to be formed according to 

Pt'+, = Pt+i exp{rjp, t+l}, (2.32) 

Llt+i = Llt+l +77Lr, t+iº (2.33) 

where r7p, t+i and 77LI, t+i are serially uncorrelated, covariance stationary expectational errors 

with possibly non-zero means. Substitution of (2.32) and (2.33) in (2.31) gives a log-linear 

equilibrium relation between long and short-term interest rates in terms of observables and 

structural shocks as 

das +Rt - LIt = Opt+l - ILlt+l -71FIP, t +rlp, t+l -''JLI, t+l" (2.34) 
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2.3 Data Overview 

2.3.1 Definition of the Variables and the Sample Period 

Section 2.2 has considered the four long-run equilibrium relationships defining the modified 

Mundell-Fleming model with an interest term structure and a further long-run equilibrium 

condition derived from the modified PPP theory. These five in total long-run relationships 

were formulated in terms of the ten variables in it = [rnt, yt, Rt, . *, LIt, et, pt, pt, pt, yfl'. 

The empirical counterparts of these variables were constructed using almost exclusively the data 

set used in the study by Garratt et al (1998), which was kindly made available by Professor K. 

C. Lee. 2 

The data is quarterly, seasonally adjusted and extends over the period 1963g1-1998g2. Time 

plots of the variables are to be found in Figure 2.1. The chosen lag-lengths impose a lower bound 

in the sample period in order for all the regressions to be comparable, which as in Garratt et 

al (1998) is 1965g1. However, there is one potentially problematic feature associated with any 

attempt to estimate the five long-run relationships within the sample period 1965g1-1998g2. 

This has to do with the fact that it covers periods of different exchange rate regimes. There are 

two substantial periods in which exchange rates were not allowed to float. The first one covers 

the pre-1973 period when the Bretton Woods system of fixed exchange rates was still in full 

operation. The second extends over the eight observations 1990g4-1992g3 which signifies the 

UK's short membership in the European Exchange Rate Mechanism (Eß. M), during which the 

pound was allowed to fluctuate within limits of ±6%. This may be problematic as the long-run 

position of the IS, LM and BP curves following exogenous or policy shocks is directly related 

'Details on the definitions are provided in the data appendix. 
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to the exchange rate regime in operation. Despite this potentially problematic limitation and 

having in mind the quite large size of the model it was decided that all estimation be carried 

out over the full sample period 1965g1-1998g2 3 

2.3.2 ADF and Phillips Perron Unit Root Tests 

The empirical examination of the five equilibrium relationships within the context of the gen- 

eral cointegrating VAR(p) in (1.4) needs to be preceded by an investigation of the order of 

integration of the variables in it. As illustrated in the introductory Chapter 1, section 1.3.2, 

the question of stationarity of individual series can be addressed inside the model with the 

use of the multivariate ADF test. However, this approach is valid only under the assumption 

that the highest order of integration of the individual series in it is one. The purpose of this 

section is to test this assumption with the employment of Augmented Dickey-Fuller, (ADF), 

and Phillips-Perron (1988), (PP) tests. 4 

Tables 2.1a and 2.1b report the results of the ADF(k) tests, k=1,... 4, applied to the levels 

and the differences of the variables, respectively. The tests appear to give consistent results as 

far as the variables yt, Rt, Rt, LIt, et and yt are concerned, which are all found to be I(1) 

irrespective of the order of augmentation, k, in the underlying Dickey-Fuller regressions. The 

presence of some quite large statistics in the levels of yt for k=0, Rt for k=1,2, and especially 

in the case of R; for k=3,4, could raise some suspicion of stationarity for these series in the 

3 The problem of estimation over a period covering different exchange rate regimes will be addressed in the 
following chapters. 

4It is a well established fact that ADF and PP tests have serious limitations and may result in ambiguous 
results, especially in the case of variables which are on the borderline I(0)-1(1) or 1(1)-I(2). However, as Garratt 

et al (1998) point out, ambiguities of this kind may still prove very useful when being confronted with the choice 
of the number of cointegrating vectors, r. For example, knowing that a variable is likely to be on the borderline 
I(0)-I(1) would imply that the cointegrating rank tests can be anticipated to be biased in favour of rejecting the 
null. 
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sample under consideration. Since the inclusion of 1(0) variables in a cointegrating VAR(p) 

is not problematic, these results do not raise any concern and the question of stationarity of 

yt , Rt and R; is left to be determined at a later stage in a multivariate setting. In the case 

of pt, pt and mt, however, the test results are alarming as they suggest that these variables 

could possibly be 1(2). The application of the Phillips-Perron tests, PP(e), Q=0,5,10,15,20, 

reported in Tables 2.2a and 2.2b, yields similar results. The variables yt, R;, LIt, et and mt 

are consistently found to be I(1) and there is again some indication that yt and Rt could be 

stationary. As in the case of the ADF tests, the PP tests also suggest that pr and pt might be 

1(2). 

An important point raised in Charemza and Syczewska (1998) is that it is not possible 

to draw a formal conclusion concerning the order of integration of the variables based on the 

results presented above, without investigating the joint distribution of the ADF and PP tests. 

Such a task has not been undertaken here and, thus, inference will inevitably have to rely on an 

"eye-ball" approach. The joint application of the ADF and PP tests appears to support that yt, 

Rt, R;, LIt, et and yt are at most I(1) variables and may, thus, be modelled within the general 

cointegrating VAR(p) in (1.4). This econometric framework, however, is inconsistent with the 

potentially 1(2) variables pt, pt and mt. A popular strategy in the presence of 1(2) variables 

is to transform time series a priori in order to obtain variables that are unambiguously I(1) 

rather than dealing with mixtures of I(1) and 1(2) variables directly. 5 Therefore, in the light 

of the ambiguity concerning the presence of a second unit root in pt, pt and mt, it was decided 

to work with the variables pt - pt, pt - pt and mt - pt instead, which are consistently found to 

5This strategy has been suggested inter alia by Alogoskoufis and Smith (1991), Boyd and Smith (1998), 
Haldrup (1998), Pesaran and Smith (1998) and Garratt et at (1998,2001). 
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be I(1) by both, ADF and PP tests. 

The use of the transformed variables has important advantages from a statistical point of 

view. It resolves the problem of dealing with mixtures of I(1) and 1(2) variables, while at 

the same time helps economise on degrees of freedom by effectively reducing the dimensions 

of the system. Nevertheless, from an economic perspective this approach has an unfortunate 

implication. The use of the transformed variable pt - pt renders the interest rate arbitrage 

condition in (2.34) unidentifiable and, as a consequence, it has been dropped from the empirical 

analysis which will be based on zt = [mt -Pt, Yt, Rt, Rt*, LIE, et, Pt- pt, Pi- Pt, Vt]'. 

2.4 Econometric Formulation of the Model 

The discussion in the previous section indicated that the vector zt = [mt - pt, yt, Rt, R;, 

LIt, et, pt- pt, pt- pt, yt]' is an appropriate choice for the empirical investigation of the 

model within a cointegrating VAR framework. For the reasons mentioned earlier the long-run 

arbitrage condition between short and long-term bonds has been dropped from the empirical 

analysis. The remaining four equilibrium conditions derived in section 2.2 can be expressed in 

terms of the variables in zt as 

E1, t = d01 + (Mt - Pt) - Qiiyt + Qi2Rt + dllt, (2.35) 

E2, t = dal + yt + 021LIt - 622[et - (Pt - Pt) + (pi - pt o)] - ß23Y , (2.36) 

63, t = d03 - Q3, yt + Rt - Rt" + Iß32[et - (Pt - Pt) + (Pt 
- PL )l `}' Iß33yt + d13t, (2.37) 

e4, t = d04 + et - 
(pt 

- Pt) + 04, ('t 
- Pt), (2.38) 
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where ci, t = ? ]t, t, i=1,2,4, e3, t = 773, t + tle, t+1 + Det+1, and 341 =1 -- 0. 

Last period's stationary deviations Ej, t_l, i=1,2,3,4, from these four equilibrium condi- 

tions may be written in matrix form as 

Et-i = do + dl (t - 1) + iß'zt_l, (2.39) 

where et = [el, t, e2, t, e3, t, e4, t] 1, d0 = [d019 421 d039 d041', d1 = [d11, O, d13, O]' and 

11 -ß11 0 12 000000 

Pý -0100 

ß21 -ß22 ß22 -ß22 -ß23 
(2.40) 

0 -ß31 1 -1 0 032 -ß32 ß32 ß33 

000001 -1 ß41 0 

These temporary disequilibria may be embedded in a VAR(p) model of zt as 

P-1 
Ozt = no + act-, + I'{Azt-s + et, (2.41) 

which may alternatively be written in the form of 

P-1 
Ozt = a0 + at + aß'zt-1 +Z I'iazt-i + et, (2.42) 

i=1 

where ap = no + a(do - dl) and al = adl. Re-writing this last expression as 

P-1 
Azt = ao + a, 3; z*t-i + I'; Ozt-t + et, (2.43) 
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where /3, = [f3', dl] and z*t_i = [zt_1, t]', reveals that the structural relations (2.35)-(2.38) may 

be studied within a cointegrating VAR(p) with unrestricted intercepts ao and trend coefficients 

restricted according to Case IV, that is al = -II-y. 6 

Considering the size of the available data set and in the light of the small-open economy 

assumption, it was decided to treat the variables pt - pt and yt as weakly exogenous7 so that zt 

can be partitioned as zt = [yt, xt]', where yt = [mt-pt, Vt, Rt, R;, LIt, et, pt-pt]', xt = [fie -pä, 

yt ]' and similarly the matrices a. i = [a;, 
y, ate]', i=0,1, ri = [r=y, rtx]', i=1, ..., p-1, a= 

Stay Styx 
]' with variance matrix [= 

ý 
[a, a i] ' and the disturbance vector et = [ems, eßt 

11xy c'xx 

Therefore, under condition (1.44), the conditional model for Ayt given Axt and the marginal 

model for Axt are given by 

P-1 
Dyt = co + ayß; Z*t-1 +E WiLzt-i + Thxt + ut, (2.44) 

i=1 

P-1 
Axt = ao. +E rixOZt-i + ext, (2.45) 

i=1 

where ci = aiy - Tai, i=U, 1, Ii = ray - Tri., i=1, ..., p-1, ut = eyt - Text and 

T= SZy. 0- . The restrictions on the trend coefficients in (2.44) take the form cl = -IIyy, 

where Ily = ayß'. Estimation of (2.44) will yield estimates for ay, /3, dl, co, the short- 

run dynamic coefficients Ti, i=1,... p - 1, and the disturbances ut with their associated 

covariance matrix Stun. The constants do may be retrieved according to Appendix A. The 

long-run implications of the economic theory summarized by (2.35)-(2.38) can be tested in two 

6For more details on the treatment of the deterministic components according to Cases I-V see Chapter 1, 

section 1.4. 
7The choice of the weakly exogenous vector is more formally justified in subsequent sections. 
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broad stages within the chosen econometric framework. First, statistical inference on rank[Hy] 

will indicate the extent to which the data support the presence of four long run relations among 

the variables in zt. Second, provided that the cointegrating rank is four, there will be the need 

for 16 exactly-identifying restrictions on ß*. The relations (2.35)-(2.38), however, impose a 

total of 29 restrictions on ß,,, which leaves 13 over-identifying restrictions to be tested. 

2.5 Estimation Results 

Identification and testing of the long-run equilibrium relationships (2.35)-(2.38) will be carried 

out within the conditional model (2.44). All estimation is carried out using Microfit 4.0 and 

Gauss 386i. 

2.5.1 Determination of the Order of the VAR 

Having decided in section 2.3.2 that the highest order of integration of the variables in zt can 

reasonably be assumed to be one, the first issue that is addressed in this section is the choice of 

the lag-length of the model, p. Following Garratt et al (1998), Johansen (1995), Pesaran, Shin 

and Smith (2000) and others, this was done at a first stage within an unrestricted VAR(4) in 

the level of zt = [mt - pt, lit, Rt, N, LIt, et, pt- pt, Pt- pt, yt]'. The maximum order 4 was 

chosen a priori bearing in mind the number of variables in zt, the available sample size and the 

quarterly nature of the data. 

Table 2.3 reports the Adjusted Likelihood Ratio (ALR) statistics for testing the hypotheses 

p=0,1,2,3 as well as the values of the AIC and SBC. Pesaran and Smith (1998) point out in 

footnote 25 that "... when determining the lag length in an autoregression, if the correct model 

is in the set being considered the AIC is inconsistent, namely as T goes to infinity it will not 
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necessarily choose the correct lag length; whereas the SBC is consistent". The ALR tests reject 

the hypothesis p=0 and p=1 at the 5% level but provide no evidence with which to reject 

p=2 and p=3. However, the model selection criteria unanimously select p=1. 

At a second stage, following Pesaran and Smith (1998) a series of cointegrating VARs were 

estimated for yt = [mt - pt, alt, Rt, Rt , LIt, et, pt - ptIl' conditionally on xt = [pt - pt, yt ]' for 

alternative values of p, r and intercept and trend specifications. Table 2.5 reports the values 

of the model selection criteria AIC, SBC, and HQC all of which have a maximum at p=1. 

However, Pesaran and Smith (1998; pp. 489) highlight the fact that the use of model selection 

criteria in cointegrating VAR models is problematic from a statistical point of view due to the 

fact that they treat all the parameters symmetrically and thus, do not take into account the 

super-consistency of the ML estimates of the long-run coefficients. 

Johansen (1995) advises against the inclusion of too many lags as they would very rapidly 

increase the number of estimated parameters in a cointegrating VAR. However, Garratt et 

al (1998) refer to Kilian (1997) for their argument that the consequences of over-estimating 

the order of the VAR are much less serious than under-estimating it. On the same grounds 

and in the light of the ALR tests in Table 2.3, it was decided to follow the Garratt et al 

(1998) approach and work with a cointegrating VAR(2), instead of a VAR(1) favoured by the 

model selection criteria. Johansen's (1995) point was also taken into consideration. However, 

instead of risking under-estimation of p, it was considered more sensible to reduce the number of 

estimated parameters by working with a cointegrating VAR(2) conditional on weakly exogenous 

I(1) variables. 
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2.5.2 Determination of the Weakly Exogenous Vector 

In order to capitalize on the gains associated with partial systems, discussed in Chapter 1, it 

was decided to formulate the model conditionally on weakly exogenous I(1) variables. Having in 

mind the evidence in Greenslade et al (2002)8, the determination of the weak exogeneity status 

was chosen to precede inference on cointegration rank. The obvious candidates for the weakly 

exogenous vector are the foreign variables R;, pt - pt and yt . Nevertheless, under condition 

(1.44) the weakly exogenous variables should not cointegrate. Following Pesaran, Shin and 

Smith (2000), this condition was tested within a VAR(2) in the weakly exogenous variables 

xt+ _ [R;, pt - Pt, yt ]' augmented by one lagged difference of the endogenous variables yt = 

[rr - pt, yt, Rt, LIt, et, pt - pt]' .9 
As can be seen from Table 2.4a, the null of no cointegration 

is comfortably rejected at the 95% level by both the A-trace and maximum eigenvalue test 

statistics, indicating that xt does not satisfy condition (1.44). The same hypothesis was tested 

for the vector xt = [pt - pt, yt]' within a VAR(2) augmented by one lagged difference of the 

endogenous variables yt = [mt - pt, yt, Rt, R;, LIt, et, pt - pt]'. As can be seen from Table 

2.4b, both test statistics clearly fail to reject the null of no cointegration at the 95% and 90% 

levels. These results indicate that xt can be treated as weakly exogenous-10 

These results imply that the foreign interest rate will have to be treated as an endogenous 

variable, which even though is not problematic could be thought as counter-intuitive. Pesaran, 

Shin and Smith (2000) justify the treatment of the foreign interest rate as endogenous to the 

'See Chapter 1, end of section 1.6.3. 
°This corresponds to the marginal model for xt . 

loft is worth noting that the presence of cointegration among the elements of xt could be a reflection of a 
stationary Ri . The multivariate ADF tests discussed in the following section, however, appear to reject such a 
hypothesis for reasonable values of r. Furthermore, as will become apparent in subsequent sections, the estimated 
error-correction terms appear to be strongly significant in the equation for R;, thus, supporting its treatment as 
an endogenous variable. 
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UK by the importance of the country's position in the world financial markets. Furthermore, as 

mentioned in the data appendix, the foreign interest rate variable used in this study is measured 

as a weighted average of the US, Japanese, German and French rates. It is not unrealistic to 

expect at least the German and French rates to be to some degree endogenous to the UK, in 

which case, the constructed variable could also be expected to satisfy this assumption. The 

extent to which this is true can and will be examined later by testing for joint significance of 

the error correction terms in the foreign interest rate equation. 

2.5.3 Treatment of the Deterministic Terms 

A further issue that needs to be addressed is the treatment of the deterministic components. 

According to the economic theory of section 2.2, the money market and balance of payments 

equilibrium conditions and possibly even the PPP condition can be modelled as trend-stationary 

processes. This implies that the trend coefficients in the empirical model would have to be 

restricted according to case N, so that they may enter the cointegrating vectors. Further, as 

discussed in Chapter 1, section 1.4, such a restriction ensures that the levels of the variables 

under consideration do not exhibit quadratic trending behaviour with the number of quadratic 

trends varying directly with r. In the context of the conditional model (2.44) this restriction 

takes the form cl = -Hy-f. Pesaran, . Shin and Smith (2000) show that statistical inference 

on the validity of this restriction, conditional on rank(Hy) = r, can be made by means of the 

likelihood-ratio statistic. Asymptotically, this is a chi-squared variate with ny -r degrees of 

freedom, where ny is the number of endogenous variables. This section also considers Sims' 

adjusted LR, (ALR), statistic in an attempt to control for sample size. 

The LR and ALR statistics are reported in Table 2.6, and clearly reject the trend restrictions 
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at the 5% level for r=0, ..., 5 and r=0, ..., 4, respectively. An inspection of the model 

selection criteria reported in Table 2.5 shows that, given the chosen value of p=2, the SBC 

favours the restricted trends specification irrespective of the choice of r. The HQC selects the 

restricted model for r=1,2,3, and 6, while for r=4 it favours the unrestricted model and it 

is inconclusive for r=5. The AIC favours the restricted trends specification only for r=6. 

However, the reliability of the LR statistics is doubtful in the light of the relatively small size 

of the sample, see for example Gredenhoff and Jacobson (1998). The use of the ALR and the 

model selection criteria is also problematic, as they place an equal weight on all coefficients, 

thus, ignoring the fact that the ML estimates of the short and long run coefficients converge to 

their true values at a different speed. 

In the light of these mixed results and having in mind the limitations of the LR, ALR and 

the model selection criteria in this context, it was decided to put more weight on the theoretical 

priors and use the restricted trend specification, which has received solid support only from the 

SBC. 

2.5.4 Multivariate ADF Tests 

The preceding discussion on the treatment of the deterministic terms and weak exogeneity has 

provided reasonable evidence in favour of the specification of the empirical model according to 

(2.44). Based on the ADF and PP tests in section 2.3.2 it has been assumed throughout that 

the elements of zt are at most I(1). In this section, the question of stationarity of individual 

series in zt is addressed within the multivariate setting of (2.44). As illustrated in Chapter 

1, section 1.3.2, stationarity of individual elements in zt is equivalent to the restriction of 

the cointegrating matrix /3 according to (1.24). Within the context of (2.44) the test of this 
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restriction is asymptotically X2 with n* -r degrees of freedom, where n. is the number of 

elements in z, t. The test is directly dependent on the choice of r, since the null hypothesis 

is formulated conditionally on the number of cointegrating vectors. For this reason the test 

statistics were calculated for all alternative numbers of cointegrating relationsll. Table 2.7 

summarizes the results. The null of stationarity is generally rejected for all values of r with the 

exception of the foreign interest rate which is found to be stationary for r=6. However, the 

cointegration rank tests discussed in the following section suggest that this result is probably a 

reflection of a particularly over-estimated choice of r. 

2.5.5 Determination of the Cointegrating Rank 

This section investigates the number of cointegrating relationships present in the trend re- 

stricted, conditional VAR(2) given by (2.44) by means of the A-trace and maximum eigenvalue 

statistics. These were originally developed by Johansen (1988) and Johansen and Juselius 

(1990) and later adapted to the analysis of cointegrating VAR models conditional on I(1) 

weakly exogenous variables by Pesaran, Shin and Smith (2000). In a preliminary attempt to 

control for the well documented small-sample bias of these tests12, this section also makes use 

of the Reinsel and Ahn (1988,1992) adjusted statistics. These were computed by scaling the 

A-trace and maximum eigenvalue statistics by the factor in (1.55), where n was replaced by ny. 

The results are reported in Table 2.8a. The adjusted and unadjusted maximum eigenvalue 

favours values of r in the region 2-3, whereas the A-trace and adjusted W-trace indicate that 

r lies in the region 4-5. As illustrated previously, economic theory suggests that there are 

"Clearly, Clearly, this test is not defined in the cases r=0 and r since in the former the null hypothesis is true 
with probability 0 and in the latter with probability 1. 

12See Chapter 1, section 1.6. 
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four cointegrating relationships, which is consistent with the adjusted A-trace. Furthermore, 

Cheung and Lai (1993) argue that the A-trace should be considered more reliable in the absence 

of residual normality, which seems to be the case in five out of the seven equations in the system. 

In the light of this, the theoretical prediction that r=4 seems plausible. This choice is also 

supported by a series of cointegrating rank tests calculated for smaller VAR models, estimated 

separately for each equilibrium relationship and groups of two equilibrium relationships. 

Nevertheless, as mentioned in Chapter 1, section 1.6.1, the Reinsel and Ahn scaling factor in 

(1.55) provides only a relatively crude small-sample correction. Furthermore, its application has 

only been considered in the context of symmetric systems and its performance within partial 

systems remains unknown. For these reasons the question of the cointegrating rank will be 

further investigated with the use of bootstrap techniques in subsequent sections. 

2.5.6 Over-Identification 

The inclusion of the long-run relations (2.35)-(2.38) within the cointegrating VAR framework 

of (2.44) imposes the following structure on the trend-augmented cointegrating matrix P*: 

1 -ß11 /312 000000 d11 

0100 021 -022 ß22 
-Q22 -Q23 0 

(2.46) 

0 -ß31 1 -1 0 032 -lß32 832 
l833 d13 

000001 -1 041 00 

where the first row corresponds to the stationary deviations from the long-run LM equilibrium, 

the second row corresponds to temporary departures from the long-run IS relation, the third 

row represents the BP disequilibria and the fourth row is the deviation from the modified 
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PPP condition. This structure subjects the cointegrating matrix to a total of 29 restrictions 

of which r2 = 16 are exactly identifying. This leaves 13 over-identifying restrictions to be 

tested. A subset of 12 over-identifying restrictions arises by allowing for a non-zero element in 

the last column of the PPP vector. This would allow for the structural shock 714, t to be trend 

stationary, in which case, as noted in section 2.2.4, the PPP relation would be consistent with 

the Harrod-Balassa-Samuelson hypothesis. This subset will be denoted as Rpul, while the full 

set of over-identifying restrictions in (2.46) will be denoted as ROV2. 

Table 2.9 presents the LR and ALR statistics for testing Rovi and ROV2.13 The 12 over- 

identifying restrictions in Rovi are rejected by both test statistics at the 5% and 10% levels. 

The estimated trend coefficient in the PPP relation is very small (0.00023) and insignificant 

(t-ratio = 0.38), suggesting that the Harrod-Balassa-Samuelson hypothesis is not consistent 

with the data. Setting the trend coefficient in the PPP relation equal to zero results in the 

full set of restrictions ROV2. The ALR statistic provides no evidence with which to reject the 

13 over-identifying restrictions in ROV2 at the 5% level, even though the LR still does. In the 

light of a potentially substantial small-sample bias in the LR statistic and, considering the fact 

that the null is rejected by a relatively small margin, it seems more sensible to put more weight 

on the ALR. It is thus plausible to conclude that the over-identifying restrictions imposed by 

the theory in section 2.2 are more likely to be supported by the data. This is supported more 

strongly by the bootstrap experiments in subsequent sections. 

The estimated long-run relations subject to ROV2 are reported in Table 2.10. Even though 

all coefficients carry the sign predicted by theory, the IS and BP relations appear to be estimated 

13For the reasons mentioned earlier, the use of the ALR as a small-sample adjustment to the LR is not 
entirely appropriate in the context of cointegrating VARS. Section 7 deals more formally with the problem of 
small-sample bias. 
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relatively imprecisely. In particular, the coefficient on the real exchange rate in the IS relation 

appears to be strongly insignificant. 

The imprecision in the estimation of the IS and the BP relations is likely to be caused by 

the fact that the data set covers distinct periods of fixed and flexible exchange rate regimes. As 

noted in section 2.3.1, the pre-1973 period and the observations between 1990q4 and 1992q3 

are characterised by a fixed exchange rate regime, whereas in the remaining sample, exchange 

rates are floating. The standard Mundell Fleming model gives a very clear insight into the fact 

that the long run position of the IS, the LM and the BP curves, following an exogenous or 

a policy disturbance, is directly affected by the exchange rate regime in operation. However, 

this is very likely to be much less problematic in the case of the BP curve as the degree of 

capital mobility increases. This would cause the current account to become progressively less 

significant compared to the capital account and, thus, eliminate the channel through which the 

exchange rate can affect the position of the BP curve in the R-Y plane. 

As was argued in section 2.2.3 such a tendency has been observed in the case of the UK and 

worldwide over the period under consideration. In this study this is captured by the strongly 

significant linear time trend in the BP relation. This helps explain the relatively higher precision 

in the estimation of the BP compared to the IS. One possible way of dealing with the problem 

of different exchange rate regimes would be to allow for a structural break in the equilibrium 

relations, by allowing for 0/1 intervention dummies to enter the cointegrating vectors. This, 

however, will be investigated in the chapters to follow. 

The LM relation has been investigated in a similar framework, inter alia, by Hoffman and 

Rasche (1991), King et at (1991), Stock and Watson (1993) and Garratt et at (1998), the general 

findings of which are supportive of the results presented here. However, the value of the income 
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elasticity of the money demand has typically been found to be smaller. King et a1 (1991), for 

example, find an income elasticity of 1.2. However, this value is quite likely to be negatively 

biased due to the steady decline in money demand for transactions purposes, caused by the 

gradual increase in non-cash transactions. In this study, as in Garratt et al (1998), an effort was 

made to capture this tendency with a linear time trend, which resulted in an estimate of 2.7 for 

the income elasticity. A further point worth mentioning, is that the signs on the real exchange 

rate coefficients in both, the IS and the BP relations confirm the validity of the Marshall-Lerner 

condition. 

2.5.7 Vector Error Correction Model 

Table 2.11 summarises the estimates, the descriptive and diagnostic statistics for the estimated 

VECM, where the error-correction terms are identified according to ROV2. All equations appear 

to have a reasonably good fit with the exception of zet. This result is not surprising in the light 

of a quite voluminous literature that demonstrates the quite insignificant role of fundamentals 

in exchange rate determination. The exchange rate does not seem to be driven by any of the 

equilibrium relations under consideration and, in fact, the only significant coefficient is the 

one on i et_i. Real money supply appears to respond to deviations from the LM equilibrium. 

Output and the domestic short-term interest rate are found to be driven by the BP and PPP 

equilibria. The long-term interest rate is responsive to deviations from all four equilibrium 

conditions, while domestic prices relative to oil prices seem to respond only to the IS relation. 

However, what is of particular interest is the fact that all four error-correction terms appear 

to be significant in the foreign interest rate equation. The Wald statistic for the hypothesis 

of joint significance of the error-correction terms is 15.99 with a 95% critical value of just 
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9.49. This result strongly supports the decision in section 6.2 to include this variable in the 

endogenous vector. 

One particularly problematic feature is the presence of serial correlation in the ORt equa- 

tion. Increasing the order of the VAR to p=3 does resolve the problem in ARt but creates more 

serious problems elsewhere, in particular in the 0 (pt - pt) equation. Inspection of the autocor- 

relation function and the employment of Lagrange Multiplier tests indicate serially correlated 

residuals of orders greater than 2, suggesting that the problem could be caused by imperfections 

in the seasonal adjustment of the series. Attempts to account for this using seasonal dummies 

proved futile. A possible cause for the presence of serial correlation in the ORt equation might 

be the distorting effect of the fixed exchange rate periods. During such periods interest rate 

differentials are viable and this could have a weakening effect on the UIP condition, which is 

the link between ORt and the BP relation. 

For the remaining equations serial correlation does not appear to be an issue, however, there 

is a general rejection of residual normality indicating the presence of big outliers due to, mainly, 

the oil-price shocks within the sample period. 

2.6 Bootstrapped Critical Values 

The aim of the previous sections was to identify and test three long-run relationships derived 

from a dynamic version of the Mundell-Fleming model and a further long-run equilibrium 

derived from the modified version of PPP in Garratt et al (1998). The econometric framework 

that was adopted for the empirical investigation of the model allowed for a two-stage testing 

procedure. First, it was investigated whether the data supported the existence of four long- 
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run equilibria and second, given the presence of the four cointegrating relations, it was tested 

to what extent these take the form predicted by theory. Adjusted statistics were employed 

in a preliminary effort to control for the well-documented small-sample bias associated with 

asymptotic inference. 14 However, due to the limitations associated with the use of scaling 

factors, identified in previous sections, it was decided to complement finite-sample inference 

with a bootstrap exercise. This section employs the parametric and non-parametric bootstrap 

methods elaborated in Chapter 1, sections 1.6.2-1.6.4, in order to generate model-specific critical 

values for the cointegrating rank tests and the tests of over-identifying restrictions. 15 Gauss 

386i was used throughout. The programs utilise Y. Shin's procedures for the computation of 

the cointegration rank tests and modified versions of K. C. Lee's data generating routines. 

2.6.1 Bootstrapped Cointegration Rank Tests 

This section employs the parametric and non-parametric methods discussed in Chapter 1, sec- 

tion 1.6.3, in order to generate 10,000 pseudo-data sets under the null hypotheses r=0,..., 6. 

The weakly exogenous vector, xt, is treated as a stochastic process, given by the peripheral 

model in (2.45) and the data-generating process follows (1.65)-(1.70). The maximum eigen- 

value and A-trace statistics have been computed for each of the simulated data sets and the 

resulting bootstrap distributions can be found in Figures 2.3-2.6. 

The corresponding 95% and 90% critical values are reported in Table 2.8b. Not surprisingly, 

the bootstrapped critical values are found to be higher than their asymptotic counterparts in 

Table 2.8a, which is in accordance with the existing literature. Both, the parametric and non- 

"See Chapter 1, section 1.6. 
151t is appreciated that the reliability of these methods may be compromised by the possible presence of serial 

correlation in the equation for ORc (see Table 11). 
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parametric versions give very similar results, although, the critical values obtained from the 

latter are generally smaller. The maximum eigenvalue 95% critical values in both versions are 

found to be high enough to maintain the hypothesis of no cointegration, which can only be 

rejected at the 10% level. The same is also true for the hypothesis r<1, but there is no 

evidence with which to reject r<2, even at the 10% level. The bootstrapped A-trace critical 

values, however, indicate a comfortable rejection of the null hypotheses r=0, r<1 and r<2 

at the 5% for the non-parametric version, while in the parametric version r<2 is only rejected 

at the 10% level. 

These findings clearly suggest that the earlier estimate of r=4, with the use of the adjusted 

statistics, may have been too high and it appears that the number of long-run relations probably 

lies in the region 2-3, instead. This is not surprising, since the Reinsel and Ahn scaling factor 

is known to only partially account for the small-sample bias. 16 It should also be noted that in 

the general absence of residual normality, more weight should be placed on the non-parametric 

results and, in particular, on the A-trace statistic. 

2.6.2 Bootstrapped LR Tests of Over-Identifying Restrictions 

As discussed previously with reference to Table 2.9, the full set of over-identifying restrictions 

in (2.46), denoted ROV2, is asymptotically rejected at the 5% level by a relatively small margin. 

A preliminary effort to control for sample size with the use of the ALR statistic lead to non- 

rejection at the 5% but not at the 10% level. Considering the evidence in Gredenhoff and 

Jacobson (1998), Fachin (2000) and Jacobson et at (2001), 17 however, it seems very likely that 

"For more details see the discussion on the findings of Cheung and Lai (1993) in Chapter 1, section 1.6.1. 
"Based on bootstrap techniques, these studies find a very substantial small-sample bias associated with as- 

ymptotic inference on the cointegrating parameters. The extent of this bias is found to be close to, or even 
exceed 100%. 
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the ALR corrects only a very small part of the finite-sample bias and a bootstrap experiment 

is anticipated to provide much stronger support in favour of ROV2. 

In contrast to the earlier work of Fachin (2000) and Jacobson et al (2001), who only consider 

over-identification schemes that fully specify all cointegrating parameters, in this study, the 

over-identified cointegrating matrix in (2.46) involves 11 freely estimated parameters, namely 

ß11, ß12, d11, ß21, ß22, ß23,031,032,833, d13 and 841" As discussed in Chapter 1, section 

1.6.4, this creates convergence problems in the maximisation of the restricted log-likelihood for 

each of the simulated data sets with the use of conventional optimization algorithms. In this 

" Chapter it is not attempted to deal with this problem directly and a possible solution will be 

considered in the Chapters that follow. The approach taken here follows Garratt et al (1998) 

and was denoted in Chapter 1, section 1.6.4, as bootstrap 1. 

In this case this is effectively a bootstrap test of the hypothesis 

H0,1 :ß (EX) = ß. (ROV2), (2.47) 

instead of the actual hypothesis of interest which is 

Ho : Q. (EX) _ f3 (Rov2)º (2.48) 

where p�(EX) is any exactly identified, trend-augmented cointegrating matrix18, /. 3, (Rov2) is 

the over-identified cointegrating matrix in (2.46) with ß, (R 2) being its estimate reported in 

"'In principle, the r2 exactly identifying restrictions in the long-run structural VAR approach are a subset of 
the full set of restrictions suggested by theory, in this case ROV2. For the purpose of this bootstrap experiment, 
however, Johansen's (1988) procedure was found to be computationally more convenient. This has no real 
significance, as the value of the log-likelihood in the exactly identified model is the same for any set of r2 
restrictions. 
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Table 2.10. For the original data set, the LR statistic for testing (2.48) and (2.47) takes the 

value 24.93, with the asymptotic 95% critical value being 22.36 in the first instance and 36.42 

in the second. As pointed out in Chapter 1, section 1.6.4, the application of bootstrap 1 can 

only provide conclusive results concerning (2.48) if it leads to a rejection of (2.47). In this case, 

this is clearly not possible, as the latter hypothesis is not rejected asymptotically. The mere 

purpose of this bootstrap exercise is, therefore, to simply demonstrate the magnitude of the 

small-sample bias in the current settings. 

Ten thousand data sets were simulated under (2.47) using (1.65)-(1.70). The non-parametric 

version follows Fachin (2000), denoted as version (b) in Chapter 1, section 1.6.2. The statistic 

LR = 2{LL[%3; (EX)] - LL[fß*(ROV2)}, j=1, ... , 10,000, has been computed for each of the 

simulated data sets and the resulting bootstrap distributions can be found in Figure 2.2. The 

application of the parametric bootstrap resulted in the 95% and 90% critical values of 54.86 

and 49.76, while the corresponding values in the non-parametric version were found to be 62.86 

and 57.96, respectively. Keeping in mind that the non-parametric results should probably be 

considered more reliable in the general absence of residual normality, the small-sample bias 

associated with the test of (2.47) appears to be approximately 73%. To the extent that the test 

of (2.48) is subject to an equally large bias, the 95% finite-sample critical value can be expected 

to be close to 38.59, which comfortably exceeds the test statistic 24.93. 
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2.7 Investigation of the Dynamic Properties of the Model 

This section looks at the dynamic behaviour of the estimated long-run structural VAR model 

by evaluating both the response of individual variables to shocks in a given equation, as well 

as the dynamic adjustment of the estimated structural error-correction terms in response to 

system-wide shocks. The tools employed are the Generalised Impulse Responses (GIR), and 

the Persistence Profiles (PP) discussed in Chapter 1, section 1.7.19 These measures have been 

computed for the underlying, symmetric system in (2.43). The parameters of (2.43) can be 

computed according to the relations below (2.45) using the estimates from the marginal and 

conditional models in (2.45) and (2.44), respectively. 20 

In order to examine the effects of an oil price shock similar to Garratt et al (1998,2001), 

the model has also been estimated with oil prices as 

a+ Zt 1 P-1 I'iz 

uzt = eO+ + oß di 
J+ 

Uzi {+ et 9 (2.49) 

L Oa t i=1 O, y 

where zt = [yt, xt, pt ]', r z, i= 19---, P - 1, are nx n+ coefficient matrices, p=2, n _ 

dim[zt ]=n+1, and 0a, Op and 0. y are blocks of zeros with dimensions (n., + 1) x r, rx1 

and 1x n+, respectively. The combination of weak exogeneity of pi, indicated by 0a, with the 

block of zeros O. y renders zt non Granger-causal for pt. The hypothesis that the terms Az, ;, 

i=1, ... ,p-1, do not enter the last row of (2.49) has been tested, given weak exogeneity 

of p=, within the marginal model for [xt, p']'. The corresponding Wald statistic was found to 

19 Confidence intervals for the PPs and the GIRs have not been computed in this study and, as a consequence, 
all the results must be interpreted with caution. 

20See also Chapter 1, section 1.6.3. 
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be 12.9 with an asymptotic 95% critical value of 18.31, indicating that zt does, indeed, not 

Granger-cause pt 21 The model in (2.49) allows for a direct comparison with the analysis of an 

oil price shock in Garratt et al (1998) and to a lesser extent with that in Garratt et al (2001), 

as the latter impose also a number of orthogonality restrictions. 

2.7.1 Persistence Profiles 

The Persistence Profiles (PP), advanced by Lee and Pesaran (1993a) and Pesaran and Shin 

(1996), are used to examine the effect of system-wide shocks on the cointegrating relations, 

thus, avoiding the controversies associated with the analysis of variable-specific innovations. 

Furthermore, they are unique, as they are invariant to any linear transformation vt = Aoet of 

the reduced-form shocks et in (2.43). 22 

The scaled PPs, given by (1.105), have been computed for the estimated LM, IS, BP and 

PPP relations within (2.43) and are plotted in Figure 2.7. All PPs converge towards zero, thus, 

confirming the stationary nature of the estimated cointegrating relations. Equilibrium appears 

to be restored more rapidly in the money market, as indicated by the PP for the LM relation. 

The rate of adjustment is initially very rapid, with 70 per cent of the adjustment process 

being completed within the first year. Thereafter, the pace slows down with 80 per cent of the 

adjustment taking place after 2.5 years and 95 per cent of the equilibrium being restored after 

approximately 4 years. Garratt et al (1998,2001) obtain very similar results for their respective 

Real Money Balances (RMB) and Money Market Equilibrium (MME) relations, which are 

effectively LM relations with unitary income elasticity. Garratt et al (1998; pp. 23) justify 

2' The restriction that zt does not Granger-cause pt* is not crucial for the outcome of the GIRs. It was imposed 
here in order to facilitate a direct comparison with the oil price shock considered in Garratt et at (1998). 

22See Chapter 1, end of section 1.7.6. 
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the 4-5 year long adjustment process by "the prolonged and persistent effect of technological 

innovations in financial markets that have taken place, particularly over the past two decades". 

The PP for the IS relation appears to be monotonic but the adjustment process is found 

to be slower than for the LM, thus, reflecting the relative rigidity in the prices of goods and 

services compared to the more flexible prices of financial assets. After the course of one year, 

equilibrium in the goods market is restored by 45 per cent, 80 per cent of the adjustment has 

been completed after 13 quarters and 95 per cent within approximately 6 years. 

In contrast to the IS relation, long-run equilibrium in the BP and PPP relations is not 

achieved in a monotonic manner. During the first quarter after the disequilibriating shock, the 

deviation from the long-run steady state is increasing for both, BP and PPP. For the BP relation 

this leads to only 20 per cent of the adjustment being completed after one year. However, the 

rate of adjustment is fast enough for the BP to catch up with the IS, with 80 per cent of the 

adjustment being completed after 13 quarters and 95 per cent within 6 years. 

Not surprisingly, PPP is restored at a slower rate with less than one per cent of the ad- 

justment being completed within the first year, 80 per cent within 4 years and 95 per cent in 

approximately 7 years. The initial "overshooting" in the profile of the PPP is a typical finding 

in studies of the UK economy like Pesaran and Shin (1996), Garratt et at (2001) and to a 

lesser extent, Garratt et at (1998). The rate of convergence to PPP equilibrium appears to be 

slower than in Garratt et at (1998), who report the adjustment process to last approximately 

5 years, instead of 7-8 years reported here. However, the kind of persistence of system-wide 

shocks on PPP found in this study is more consistent with Pesaran and Shin (1996), who report 

an adjustment process of approximately 6 years, and with the more recent evidence in Garratt 

104 



et at (2001), who estimate that it takes approximately 8 years for a 95 per cent adjustment. 23 

These variations in the estimated persistence of PPP disequilibria for the UK can be attributed 

to the quite wide confidence intervals that have been simulated in Pesaran and Shin (1996) 

and Garratt et al (2001). The sluggish rate of convergence towards PPP may also explain the 

frequent rejection of the PPP hypothesis with the use of standard regression methods. 

2.7.2 Generalised Impulse Responses 

The GIR approach, Koop et at (1996) and Pesaran and Shin (1998), was primarily developed 

as an alternative to the conventional Orthogonalised Impulse Responses (OIR) proposed by 

Sims (1980). Rather than relying on the controversial assumption of orthogonality for the 

identification of "structural" innovations, the GIRs can be applied to evaluate the effects of 

realistic shocks in a given equation. As discussed in more detail in Chapter 1, section 1.7.5, this 

is achieved by taking into account the contemporaneous correlation typically observed between 

24 the shocks of different equations, given by the estimate of the system variance matrix n. This 

section computes the GIR functions in (1.98) in order to evaluate the effects on the levels of the 

variables of such a realistic shock in the foreign interest rate, R; and in oil prices, pt. In the 

first case, the GIRs have been computed for the underlying, symmetric model in (2.43), and in 

the second, for the oil price-augmented model in (2.49). 

23The published version of Garratt et al (2001) discusses only the persistence of specific rather than system- 
wide shocks. The evidence on system-wide shocks were kindly made available by K. C. Lee. 

24Pesaran and Shin (1998) show that OIRs and GIRs coincide only when considering shocks in the first variable 
or when 11 is diagonal. 
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Foreign Interest Rate Shock 

Figure 2.8 illustrates the effects of the foreign interest rate shock [a shock in the 4th equation of 

(2.43)], where the size of the shock is scaled to be equal to X44 = 0.0011. Unlike the PPs, the 

GIRs converge to a non-zero value, reflecting the I(1) properties of zt. The one standard error 

shock translates to an increase by 48 basis points in R; 
. 
2' The foreign interest rate continues 

to rise, reaching a maximum at +74 basis points after 11 quarters and thereafter decreases 

steadily until it stabilises at +68 basis points. A similar, though, quantitatively smaller effect 

is observed for the domestic short and long-term interest rates, Rt and LIt. On impact, Rt 

rises by 25 basis points and reaches a peak at 44 basis points in the third quarter, when it 

starts to steadily decline to its long-run level at approximately +12 basis points. The effect on 

LIt is even smaller, with an increase of 5.2 basis points on impact, a peak at +16 basis points 

in the eighth quarter and a long-run effect of +1 basis point. Domestic prices relative to oil 

prices, pt - pt, are decreased on impact by 0.65 per cent and continue to fall until the third 

quarter, when they start to steadily climb to their long-run value at approximately +0.27 per 

cent. The observed gap between Rt and LIt, combined with the overall increase in pt - p=, 

could be suggesting the presence of an interest rate arbitrage condition of the form of (2.34), 

although, such a relation has not been explicitly modelled here for the reasons mentioned in 

section 2.3.2. 

The impact effect of the shock on domestic output is to increase it by 0.28 per cent. However, 

this positive effect becomes negative by the sixth quarter and the overall outcome is a one per 

cent reduction. Real money balances are also increased on impact by 0.20 per cent, but the 

In order to facilitate comparison with Garratt et al (1998), all quarterly rates have been converted to 
percentage annual rates through multiplication by 400. 
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effect immediately turns negative in the second quarter and the overall outcome is a reduction 

by 6.3 per cent. The shock has a positive effect on the effective exchange rate, which rises by 

0.96 per cent on impact. After some oscillation during the first two years it eventually climbs 

to its long-run value at +2.8 per cent. 

These results are quite similar to Garratt et al (1998) with the only marked difference 

being the persistent gap between Rt and Rt. This gap is eventually eliminated in Garratt 

et al (1998) through the UIP condition. In this study, however, UIP is not modelled as an 

independent cointegrating relation but it appears, instead, in a weaker form as part of the BP 

relation, thus, allowing for a protracted gap between domestic and foreign interest rates. 

Oil Price Shock 

This sub-section considers the effects of an oil price shock, that is, a (realistic) shock in the 10th 

equation of (2.49). As before, the size of the shock is scaled to be equal to one standard error 

of ep, which is equal to Fo-t-, 
io = 0.1646. The respective values in Garratt et al (1998,2001) 

are almost identical (0.1676 and 0.16485, respectively) which makes a quantitative comparison 

possible. The GIRs illustrating the effect of this shock on the levels of the variables are plotted 

in Figure 2.9. For a direct comparison with Garratt et al (1998) the results are also presented 

in the form of Figures 2.10a and 2.10b. 

The one standard error shock translates to a 65.4% increase in oil prices. As illustrated in 

Figure 2.10a, the most striking effect of such a shock is domestic and foreign stagflation, which 

is consistent with the actual experience from the first oil price shock in 1973/1974. On impact 

domestic output falls by 1.17% and continues to drop until it stabilises at -3.5%. Domestic 

prices are increased by 0.8% per annum on impact and keep rising at a decreasing rate. In the 
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long run prices have increased by 6.9%. The implied long-run elasticities of domestic output 

and prices with respect to oil prices are, therefore, -3.5/65.4 = -0.05 and 6.9/65.4 = 0.11, 

respectively. 26 The effect on foreign output and prices appears to be quantitatively milder. 

Foreign output drops by 0.26% on impact and in the long-run stabilises at -1.5%. The impact 

effect on foreign prices is an increase of 2.45%, which is larger than the domestic price effect. 

However, the long-run effect turns out to be smaller with an overall increase of 6%. 

The increase in oil prices is found to strengthen the pound, as it leads to a reduction in the 

nominal effective exchange rate, et. The impact effect of the shock is to reduce et (appreciate 

the pound) by 1.56%. The long-run effect is a reduction in et by 2.37% and it is achieved 

through an early overshooting in the third quarter, in the tradition of the famous Dornbusch 

"overshooting" model. The real exchange rate, et - pt + pt , is marginally increased on impact 

by 0.04%, due to the dominant impact effect on foreign prices. In the long run, however, as the 

effect on domestic prices exceeds that on foreign prices, the real exchange rate is reduced by 

3.26% after having overshot its long-run value in the sixth quarter. As pointed out in Garratt 

et al (1998), this value is comparable with the actual depreciation of the UK real exchange rate 

by an average annual rate of 5.4% during the period 1974g1-1981g1. 

The effects on Rt, R;, Apt and the inverse narrow money velocity, mt - pt - yt, are illustrated 

in Figure 2.10b. Although on impact, both the domestic and foreign short-term interest rates are 

increased on impact by 0.9 and 0.6 basis points, respectively, the long-run effect is a reduction 

by 1 basis point in Rt and an increase by 1.2 basis points in Rt. Domestic inflation rises by 0.8% 

on impact, reaches a peak at +0.96% in the first quarter and thereafter declines until the effect 

eventually dies out. On impact rrtt - pt - yt is increased (narrow money velocity is reduced) by 

2"The respective quantities in Garratt et al (1998) are estimated at -0.04 and 0.14. 
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0.38% but the effect quickly turns negative in the following quarter and continues to drop to 

its long-run value of -3.27%. The effect on the domestic long-term interest rate is illustrated in 

Figure 2.9 and indicates a positive impact effect of +0.8 basis points and a long-run effect of 

+2 basis points, associated with a mild overshooting in the third quarter. 

Most of these effects are found to be very similar to Garratt et al (1998), both qualitatively 

and quantitatively. The only marked difference is that the model considered here allows for 

persistent gaps between yt and yt, on the one hand and Rt and Rt on the other. The first is 

eventually eliminated in Garratt et al (1998) through their "output gap" cointegrating relation, 

which effectively pegs domestic output to foreign output in the long run. The difference between 

the domestic and foreign interest rate is allowed in this model to persist due to the weaker form 

of UIP discussed above. The stronger version adopted by Garratt et al (1998) eventually 

eliminates the interest rate differential. 

2.8 Conclusions 

The aim of this chapter was to identify and test the validity of the modified version of IS. 

LM presented in section 2.2 within a long-run structural cointegrating VAR framework. The 

underlying economic theory suggested the presence of five long-run equilibrium relationships 

between the variables under consideration. In section 2.3.2, however, it was argued that the use 

of the domestic price variable might be problematic and it was decided to use the transformed 

variable pt - pt instead. The use of this variable rendered the arbitrage condition between short 

and long-term interest rates intractable and as a consequence the empirical analysis focused on 

the remaining four equilibrium relations, LM, IS, BP and PPP. 
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Testing the validity of the underlying theory within the chosen econometric framework 

is essentially an attempt to answer the following two questions. Do the data support the 

presence of four cointegrating vectors, and if so, does the structure of these vectors conform to 

the theory? Unfortunately, in practice these questions cannot be answered in this order, nor 

are they independent of each other. The reason is that the cointegrating rank hypothesis is 

formulated conditionally on the intercept/trend specification of the model. In this case, the LM 

and the BP relations required that two of the cointegrating vectors be trend stationary which 

implied that the use of a VAR model with restricted trend coefficients would be appropriate. 

Clearly, the imposition of such restrictions does not only have implications on the general 

structure of the cointegrating vectors, but will also affect the computation of the cointegration 

rank tests. The LR tests in section 2.5.3 indicated a rejection of the trend restrictions in the 

presence of four cointegrating vectors. However, it is not straightforward to argue that these 

tests constitute a rejection of the theory for two reasons. First, the finite sample bias of these 

tests is in favour of rejection of the null and the rejection margin in this case appears to be quite 

small. Second, including an unrestricted deterministic trend causes the levels of the variables 

to exhibit quadratic deterministic trends, which is not characteristic of macroeconomic time 

series. 

Under the restricted trend specification the cointegration rank tests were not particularly 

informative as to the number of cointegrating vectors supported by the data. In the light of 

the findings of Cheung and Lai (1993), it seemed more reasonable to rely on the A-trace which 

indicated four or five cointegrating vectors. The Reinsel and Ahn (1992) adjusted A-trace 

appeared to give further support to the hypothesis of four long run equilibria. However, the 

bootstrap exercise in section 2.6.1 indicated that r is more likely to lie in the region 2-3. In as 
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far as this result is reliable, it signifies a rejection of the theory27. 

Given the presence of four cointegrating vectors, the restrictions imposed by theory are being 

rejected by a relatively small margin when the corresponding LR statistic is compared to the 

asymptotic 95% critical value. The bootstrap experiment in section 2.6.2, however, indicates 

that the finite-sample bias of these tests is substantially larger than this rejection margin. It 

would, therefore, appear reasonably safe to argue that, provided that the appropriate VAR 

model is one with restricted trends and unrestricted intercepts and, in the case that the true 

number of cointegrating relations is four, the structure imposed by the theoretical model can 

be expected to be supported by the data, having accounted for sample size. It does appear, 

though, that the evidence presented in this study are at best inconclusive regarding the validity 

of these assumptions. 

The coefficients in the estimated cointegrating vectors, discussed in section 2.5.6, appear 

to be sensible and bear the anticipated signs. One interesting feature is the magnitude of 

the income elasticity of money demand which is found to be 2.71. This estimate appears to 

be large compared to previous work on VAR models with no trend coefficients entering the 

cointegrating vectors, e. g. King et al (1991). It is quite likely that the income elasticity of 

money demand in such studies may be negatively biased due to the steady decline in money 

demand for transactions purposes, resulting from the gradual increase in non-cash transactions. 

As illustrated in section 2.2.1, this study, as in Garratt et al (1998), attempted to capture this 

tendency with a linear time trend which resulted in the higher estimate of the income elasticity. 

One encouraging feature, however, is that despite the uncertainty regarding the presence 

2lSection 2.6, footnote 15, pointed towards the potentially problematic application of the ordinary bootstrap 
in this case due to the suspected presence of serial correlation in the equation for ORo. 
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of four cointegrating relations and the imprecision in the estimation of the IS and the BP, the 

dynamic behaviour of the estimated model appears to be consistent with existing research. The 

application of the Persistence Profiles indicated adjustment processes of reasonable duration 

that clearly illustrate the mean-reverting properties of the over-identified cointegrating vectors. 

The model also appears to capture most of the standardised effects of an oil price shock, such 

as domestic and foreign stagflation and depreciation of the real exchange rate. Furthermore, 

the magnitude of these effects is particularly similar to those reported in Garratt et al (1998), 

despite a number of significant differences in model specification, such as the number and form 

of the cointegrating relations and the inclusion of the additional variable, LIt. 

Based on the lessons from this first empirical exercise, the following chapter attempts to deal 

with the following two issues. The first issue is the presence of different exchange rate regimes 

and their possible implications on the long run relations. This will be addressed by allowing 

for structural breaks within the cointegrating vectors with the use of restricted intervention 

dummies. Additionally, the bootstrap method for testing over-identifying restrictions will be 

developed, in order to escape the compromising solution of bootstrapl. 
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Chapter 3 

Structural Change and 

Small-Sample Inference in a 

Long-Run Structural VAR Model of 

UK Aggregate Demand 
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3.1 Introduction 

This Chapter focuses on the IS, LM and BP relations discussed in Chapter 2, section 2.2. 

Identification and testing of these relations is generally based on the methodology adopted in 

the previous chapter, but involves two innovations. First, the presence of structural breaks is 

allowed in the cointegrating vectors in an attempt to capture the possible long-run effects of 

the different exchange rate regimes covered by the sample period 1965g1-1998g2. Second, the 

bootstrap techniques applied to the tests of over-identifying restrictions in the cointegrating 

matrix, 0 are improved. This is done by utilising the Simulated Annealing (SA) algorithm 

developed in Goffe et al (1994) and adapted to Gauss by E. G. Tsionas (1995). Unlike the 

modified version of the Newton-Raphson algorithm utilised in Chapter 2, the SA can be easily 

applied in order to maximise the log-likelihood function with respect to the free parameters 

in the over-identified 0 -matrix for every bootstrap sample and may, therefore, provide more 

accurate finite-sample critical values for inference on the cointegrating parameters. 

The possible long-run effects of the different exchange rate regimes is taken into account 

following Hansen (2000) and Johansen, Mosconi and Nielsen (2000), by allowing for piece-wise 

time-varying cointegrating vectors. The time-varying element is introduced in the intercept of 

the cointegrating relations with the use of two 0/1 intervention dummies, pre73t and ERMt, 

which take the value of one during the fixed exchange rate periods. This allows for long-run 

IS, LM and BP to have different intercepts according to the exchange rate regime in operation, 

while all other parameters are assumed to be constant. 

Even though the empirical analysis will allow for structural change in the deterministic 

component of all three cointegrating relations, it is anticipated that changes in the exchange 
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rate regime are most likely to have an impact on the BP vector. As illustrated in Chapter 

2, sections 2.2.3 and 2.3, the observed BP disequilibria, e3, t, are directly related to errors in 

exchange rate expectations, 77e, t+l, via the UIP condition. It is quite likely that the collapse 

of the Bretton Woods system in the early 1970's and the subsequent transition from fixed to 

flexible exchange rates had a direct effect on both the UIP and, of course, the exchange rate 

expectations formation. Such an effect has been reported, for example, by Johansen, Mosconi 

and Nielsen (2000) in their study of the UIP between the Italian lira and the Deutschemark, 

although, the break in that study is set in 1979. 

Chapter 3 is organised as follows. The following section illustrates how the IS, LM and BP 

equilibrium relationships may be embedded within a long-run structural VAR model that allows 

for the presence of structural change of the type discussed above. Section 3.3 focuses on the 

empirical investigation of the IS, LM and BP relations, discusses the various choices that have 

been made in the specification of the econometric model and presents the estimates. Section 3.4 

looks at the short-run dynamics of the estimated system by considering the Persistence Profiles 

of the piece-wise time-varying IS, LM and BP vectors, as well as the Generalised Impulse 

Responses of the variables to shocks equivalent to the ones discussed in Chapter 2. Section 3.5 

summarises the results and concludes. 

3.2 Econometric Formulation of the Model 

In this chapter an attempt is made to account for the possibility of structural change in the long- 

run IS, LM and BP relations considered in Chapter 2, due to the different exchange rate regimes 

covered by the data set. The structural change takes the form of a time-varying intercept in 
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the cointegrating relations, which may be modelled with the inclusion of the dummies pre73t 

and ERMt. These take the value 1 during the fixed exchange rate periods. More specifically, 

pre73t takes the value of one for t< 1973g1 and zero otherwise and ERMt takes the value of 

one for 1990g4 <t< 1992q3 and zero otherwise. Therefore, the stationary deviations from the 

LM, IS and BP equilibria derived in Chapter 2, section 2.2, will now take the form of 

el, t = d01 + (mt - pt) - ßnYt + Qi2Rt + dlit + d2, ii(pre73t) + d2,12(ERMt), 

E2, t = d02 + yt + 821LIt - 022 het - Pt + pit -1323Y + d2,21(pre73t) + 

+d2,22(ERMt), 

E3, t = d03 - , 
631yt + Rt - Rt + IQ32 (et - Pt + Pt)+ Q33yt + d13t + (2,31 (pr873t) + 

+d2,32 (ERMt), 

where ej, t = TIj, t, i =1,2 and e3, t = 773, t + ie, t+1 + Det+1. 

Lagging by one period and using matrix notation results in 

et_, = do + dl (t - 1) + d2Dt_1 + /3'zt_1, 

d2,11 

where et = [-'lt, -2, t, e3, t]', do = [dol, d02,4311, d1 = [dll, 0, d13]', d2 = d2,21 

d2,31 
Dt = [pre73t, ERMt]', zt = lint - pt, yt, Rt, R;, LIt, et - Pt + pt , V; ]' and 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

d2,12 

d2,22 

d2,32 
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1 -011 
012 0 

0 p'= oi0 
0 -031 1 -1 

o00 
021 -ß22 -023 

0 032 lß33 

The temporary disequilibria £t_1 may be embedded in a VAR(p) model of zt as 

P-1 
OZt = no + aet-1 + riL zt-i + et, 

i=1 

or alternatively 

P-1 
Azt = ao + at + a2Dt-1 + aß'zt-1 +E riAzt-i + et, 

i=1 

where ao = no + a(do - di) and aj = adi, i=1,2. RA-writing this last expression as 

P-1 

Ozt = ao + a/. 3: z*t-1 + ri0zt-i + et, 
i=1 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

where 0= [/3', di, d2] and z, *t_i = [z't, 
-l, 

t, Dt_11', reveals that the structural relations (3.1)- 

(3.3) may be studied within a cointegrating VAR(p) with deterministic components treated 

according to Case Nd, that is al = -II7 and a2 = -116.1 

As will be argued in the empirical section, the variables et - pt + pt and yt may be treated 

as weakly exogenous. In this case zt can be partitioned as zt = [yt, xt]', where yt = [mt - 

Pt, yt, Rt, Rt#, LIt]' and xt = [et -pt +pt, yt ]' and similarly the matrices ai = [as,, au', i=0,1,2, 

ri = [rsy, rtx]', i=1, ..., p-1, a= [a', a'' I' and the disturbance vector et = [, t, e'' I' with 

'For more details on the treatment of the deterministic components according to Case IVd see Chapter 1, 

section 1.4.1. 
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variance matrix ft 
Stay 52yx 

=. Therefore, under condition (1.44), the conditional model 
clxv Ilxx 

for Dyt given ixt and the marginal model for Axt are given by 

P-1 

Ayt = Co + ayp*z*t-1 +E `f i4zt-i + Thxt + Ut, (3.9) 
i=1 

P-1 

Axt = aox +E rixOzt_i + ext, (3.10) 
i=1 

where ci = a, "y -Tax, i=0,1,2, Wj = I'iy -T rix, i=1, ..., p-1, ut = eyt - Text and 

T= 11y. 11-1. The restrictions on the deterministic terms in (3.9) take the form ci = -IIy^y 

and c2 = -H, 6, where IIy Estimation of (3.9) will yield estimates for ay, /3, dl, d2i 

co, the short-run dynamic coefficients Ti, i=1,... p - 1, and the disturbances ut with their 

associated covariance matrix SZuu. The constants do may be retrieved according to Appendix 

A. 

Statistical inference on rank[IIy] will indicate the extent to which the data support the 

presence of three long-run relations among the variables in zt. Provided that the cointegrating 

rank is three, there will be need for 9 exactly-identifying restrictions on p,. The relations 

(3.1)-(3.3), however, impose a total of 14 restrictions on 0*, which leaves 5 over-identifying 

restrictions to be tested. Furthermore, a test of the restrictions c2 = -IIyb can indicate the 

extent to which the different exchange rate regimes introduce a time-varying element in the 

long-run relations in the form of Dt. 
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3.3 Estimation Results 

The employment of standard ADF and Phillips-Perron (1988) unit root tests in Chapter 2, 

Tables 2.1 and 2.2, indicated that all variables in zt = [mt - pt, pt, Rt, R;, LIt, et - pt +pt`, yt ]' 

can be reasonably assumed to be at most I(1) within the sample period under consideration. 

These results indicate that identification and testing of the long-run equilibrium relationships 

(3.1)-(3.3) may safely be carried out within a cointegrating VAR model over the period 1965g1- 

1998g2. Gauss 386i is used throughout with the exception of some of the diagnostic statistics 

in the VECM which are obtained from Microfit 4.0. 

3.3.1 Determination of the Order of the VAR 

Following Johansen (1995), Garratt et at (1998) and others, the determination of the lag-length 

of the model, p, was investigated within an unrestricted VAR(4) in the level of zt = [mt - pt, 

pt, Rt, Rt*, LIt, et - pt + pi, yt ]' with an intercept, a linear trend and the dummies pre73t 

and ERMt. Table 3.1 reports the Adjusted Likelihood Ratio (ALR) statistics for testing the 

hypotheses p=0,1,2,3 as well as the values of the AIC and SBC. The ALR rejects p=0 

and p=1 at the 5% level but provides no evidence with which to reject p=2. The AIC also 

picks out p=2, while the SBC selects p=1. Despite the fact that the AIC is known to 

be inconsistent2, it was considered more sensible to opt for the unanimous choice of the ALR 

and the AIC and set p=2, instead of p=1 favoured by the SBC. This choice is primarily 

driven by the argument in Kilian (1997) that the consequences of over-estimating the order of 

the VAR are much less serious than under-estimating it. Empirically, it was found that p=2 

2See Pesaran and Smith (1998, footnote 25) for the inconsistency of the AIC when determining the lag length. 
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is sufficiently long to remove any serial correlation. 

3.3.2 Determination of the Weakly Exogenous Vector 

Working with a cointegrating VAR conditional on weakly exogenous I(1) variables is attractive 

on both statistical and economic grounds. The econometric framework laid out in Pesaran, Shin 

and Smith (2000) provides the opportunity to effectively reduce the dimensions of the system, 

by escaping the explicit modelling of a subset of zt. At the same time, economic theory gives a 

tempting excuse to treat the foreign variables as long-run forcing with respect to the domestic 

variables. This section addresses formally the question of whether a subset of zt may be treated 

as weakly exogenous by testing condition (1.44) within both the symmetric system according 

to Johansen (1992) and the partial systems according to Pesaran, Shin and Smith (2000). 3 

The obvious candidate for weak exogeneity is the following vector involving all foreign 

variables, xt+ = [Rti*, et - Pt + pt , yt ]'. However, both tests clearly reject the weak exogeneity 

condition (1.44) for xi . The J-test of condition (1.44) takes the value 31.2 which leads to a 

comfortable rejection as the asymptotic 95% critical value is 12.59. The PSS-test, reported in 

Table 3.2a, further supports this result as it clearly indicates the presence of a cointegrating 

relation in the marginal model for xt+, using either cointegration rank statistic. This implies 

that at least one foreign variable will have to be treated as endogenous, which even though is 

not problematic could be thought as counter-intuitive. The evidence reported in Chapter 2, 

indicated that it is probably the foreign interest rate, Rt*, which is most likely to respond to 

deviations from the domestic long-run equilibria. This is also in agreement with Pesaran, Shin 

3The former will be denoted as J-test and the latter as PSS-test. The decision to employ both methods is 
driven by the fact the PSS approach may only provide conclusive evidence against weak exogeneity in the form 
of cointegrating relations in the marginal model. For more details on the two approaches see Chapter 1, section 
1.5.1. 
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and Smith (2000), who justify their treatment of the foreign interest rate as endogenous to the 

UK by the importance of the country's position in the world financial markets 4 The Johansen 

test statistic indeed rejects weak exogeneity of Rt, taking the value of 20.6 with the 95% and 

90% asymptotic critical values being 7.81 and 6.25, respectively. 5 

As a consequence, the search for weak exogeneity is limited to the vector xt = [et - pt + 

Pi*' yt ]'. The J-test statistic for testing the weak exogeneity condition (1.44) for xt is found to 

be 10.6, which is safely below the 95% and 90% asymptotic critical values of 12.59 and 10.65, 

respectively. The PSS-tests, reported in Table 3.2b, appear to produce only very weak evidence 

against weak exogeneity of xt in the form of cointegrating relations in the marginal model for 

this vector at the 10% level. However, since neither cointegrating rank statistic provides any 

evidence with which to reject the null of no cointegration at the 5% level, and keeping in mind 

the plethora of evidence in the literature that these tests tend to over-reject the null in finite 

samples, the rejection of no cointegration at the 10% level does not raise any concern. 

Further support for the weak exogeneity of xt = [et - Pt + pt , 7/t*]' within the PSS framework 

is obtained by testing for the joint significance of the estimated error correction terms ýQ; z*t_l 

[presented in section 3.3.6] in the marginal model of xt. Insignificance of these terms cannot be 

rejected only at the 5% level as the LR statistic is found to be 11.94 with the asymptotic 95% 

and 90% critical values being 12.59 and 10.65, respectively. Again, the asymptotic rejection at 

the 10% level does not raise any concern as the finite-sample bias of the test is in favour of 

rejection of the null. These results are interpreted as reasonable evidence in favour of treating 

4See also Chapter 2, section 2.5.2. 
'The PSS-test is not defined in this case as dim[xt] =1. 
6See, for example, Reimers (1992), Cheung and Lai (1993), Mantalos and Shukur (1998) and Greenslade et 

a! (2002). 
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xt = [et - pt + pt, yt ]' as weakly exogenous with respect to yt = [mt - pt, yt, Rt, Rt', LIt]'. 

3.3.3 Treatment of the Deterministic Terms 

In section 3.1 it was shown that the piece-wise time-varying IS, LM and BP relations may be 

modelled within the cointegrating VAR(p) given by (3.9). This modelling framework imposes 

a number of restrictions on both the trend coefficients and the coefficients on the dummy 

vector Dt. Specifically, the trend coefficients, cl, are restricted according to cl = -H. -y and 

the coefficients on the dummies, C2, satisfy the condition c2 = -II, 6. The set of restrictions 

on cl reflects the fact that deviations from the LM and BP equilibria should be modelled 

as trend stationary processes according to the underlying theory in Chapter 2, section 2.2. 

Furthermore, as illustrated in Chapter 1, section 1.4, it ensures that the trending behaviour 

of yt is independent of r. The restrictions on c2 allow for the dummy vector Dt to enter 

the cointegrating relations, thus, introducing a time-varying intercept in the IS, LM and BP 

equilibria. 

Table 3.3 reports the LR statistics for testing the restrictions on cl and c2i conditionally on 

there being three cointegrating relations, 7 as well as the small-sample critical values obtained 

from both a parametric and non-parametric bootstrap with 10,000 simulations. 8 Histograms of 

the simulated distributions can be found in Figures 3.1 and 3.2. LR1 is the test of restricting 

the trend coefficients according to cl = -Hy7 and was found to be 5.17. Provided that r=3, 

this value is low enough to avoid asymptotic rejection at the 5% level but not at the 10% 

level. The small-sample critical values, however, were found to be significantly larger than their 

'The validity of this assumption will be investigated separately in section 3.3.5. 
8The non-parametric version should probably be considered more reliable, as residual normality is rejected in 

three out of the five equations in the estimated system. 
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asymptotic counterparts, indicating more clearly that the trend restrictions are not significant 

even at the 10% level. This provides clear evidence that deviations from the long-run equilibria 

can be modelled as trend stationary processes in accordance with the theory. 

Not having been able to reject the restrictions on the deterministic trends, the next test was 

concerned with whether there is evidence for restricting the coefficients on the dummy variables 

according to c2 = -II, 6, given the trend restrictions. The relevant statistic is LR2 and was 

found to be 6.12. The finite-sample 95% and 90% critical values were found to be 9.37 and 5.83 

in the parametric case and 9.38 and 5.84 in the non-parametric, indicating that in the presence 

of three trend-stationary long-run equilibria, the null of there being a structural break in the 

cointegrating vectors cannot be rejected. 

3.3.4 Multivariate ADF Tests 

The preceding discussion on weak exogeneity and the treatment of the deterministic terms 

provided reasonable evidence in favour of the specification of the empirical model according to 

(3.9). Based on the ADF and PP tests in section 2.3.2 it has been assumed throughout that the 

elements of zt are at most I(1). As in Chapter 2, the question of stationarity of the variables 

in zt is investigated further with the application of multivariate ADF tests. These have been 

computed here within the conditional VAR in (3.9) for p=2 and the results are summarised 

in Table 3.4. The null of stationarity is generally rejected for all values of r with the exception 

of the domestic long-term interest rate, which is found to be stationary for r=4. However, the 

cointegrating rank tests discussed in the following section tend to give support to the fact that 

this result is more likely to be a reflection of an over-estimated choice of r. 
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3.3.5 Determination of the Cointegrating Rank 

The problem of determining the number of cointegrating relations in the context of the con- 

ditional cointegrating VAR given by (3.9) is essentially a question of determining the rank of 

Hy, = a, /3' , where /3; = [/3', dl, d2]. As illustrated in Chapter 1, section 1.4.2, this problem 

can be reduced to testing for the number of significantly non-zero eigenvalues of Hy,, using 

modified versions of the Pesaran, Shin and Smith (2000) cointegration rank statistics. How- 

ever, as shown in Johansen and Nielsen (1994) and Johansen, Mosconi and Nielsen (2000), 

due to the presence of the 0/1 dummies the asymptotic distribution of the tests is not only 

model, but also variable-specific, since it depends on the timing of the breaks. Due to the 

computational intensity of the simulation of the asymptotic distributions and in the light of the 

well-documented finite-sample bias of cointegration rank tests, it was decided to move directly 

to the investigation of the small-sample distributions. The finite-sample distributions of the 

(appropriately reformulated) A-trace and maximum eigenvalue statistics was investigated using 

the parametric and non-parametric bootstrap methods illustrated in Chapter 1, section 1.6.3. 

Ten thousand pseudo-data sets were simulated in each version under the null hypotheses 

r=0, ..., ny - 1. The weakly exogenous vector, xt, was treated as a stochastic process, given 

by the marginal model in (3.10) and the data-generating process follows (1.65)-(1.70). The 

maximum eigenvalue and A-trace statistics have been computed for each of the simulated data 

sets and the resulting bootstrap distributions can be found in Figures 3.4-3.7. The corresponding 

critical values are presented in Table 3.5. Both, the parametric and non-parametric versions 

give very similar results. The A- trace statistic rejects the hypotheses r=0,1,2, but fails to 

reject r=3 at the 5% level, which is in agreement with the economic priors. The maximal 
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eigenvalue, however, gives a very different picture. In both versions it only manages to reject 

the null of no cointegration in favour of there being one cointegrating relation but clearly fails 

to reject r=1 in favour of r=2. Being confronted with these two very contrasting results, it 

was decided to put more weight on the A-trace statistic and choose r=3. This decision was 

made in the light of the evidence brought forward by Cheung and Lai (1993), who argue that 

the A-trace is more reliable than the maximal eigenvalue statistic in the absence of residual 

normality, which as will be discussed later, seems to apply in three of the five equations of the 

estimated system. 

3.3.6 Over-Identification 

As illustrated in section 3.2, the inclusion of the long run relations (3.1)-(3.3) within the coin- 

tegrating VAR framework of (3.9) imposes the following structure on the trend and dummies.. 

augmented cointegrating matrixf3 : 

1 -ß11 ß12 

A: =o10 
0 -ß31 1 

0000 

0/ 21 -022 -023 

-1 0 ß32 ß33 

d11 d2,11 d2,12 

0 d2,21 d2,22 

d13 d2,31 d2,32 

(3.11) 

where the first row corresponds to the stationary deviations from the long-run LM equilibrium, 

the second row corresponds to temporary departures from the long-run IS relation and the third 

row represents the BP disequilibria. This structure subjects the cointegrating matrix to a total 

of 14 restrictions, of which r2 =9 are exactly identifying, leaving 5 over-identifying restrictions 

to be tested. This set of over-identifying restrictions will be denoted as Rpy. 

As discussed in more detail in Chapter 1, section 1.6, asymptotic inference on the cointe- 
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grating parameters is generally found to be seriously biased in favour of rejection. This was also 

verified in Chapter 2, section 2.6.2, where the simulated finite-sample critical values were found 

to be approximately 73% higher than their asymptotic counterparts. However, these results 

were obtained using simulation methods designed for the case when the restricted cointegrating 

matrix does not involve free parameters. This approach was termed in Chapter 1, section 1.6.4, 

as "bootstrap 1" and its application in the presence of free parameters in the over-identified 

)3-matrix will inevitably exaggerate the simulated critical values. This section introduces the 

use of the Simulated Annealing (SA) algorithm, discussed in Goffe et al (1994) and adapted 

to Gauss by E. G. Tsionas (1995), in order to carry out a true bootstrap test of Roy, denoted 

"bootstrap 2". 

Table 3.6 reports the LR statistic for the test of the 5 over-identifying restrictions, as well as 

the asymptotic and finite-sample critical values obtained from bootstrap 1 and 2. Plots of the 

simulated finite-sample distributions can be found in Figure 3.3. Both bootstrap experiments 

have been carried out using parametric and non-parametric methods and are based on 10,000 

simulations. The weakly exogenous vector, xt, was treated as a stochastic process, given by 

the marginal model in (3.10) and the data-generating process follows (1.65)-(1.70). The test 

statistic is 18.36 and it easily rejects the null when compared with the asymptotic critical 

values. However, both bootstrap experiments indicate a very substantial small-sample bias, 

as the finite-sample critical values are found to be approximately five times greater than their 

asymptotic counterparts. The 95% and 90% critical values obtained from bootstrap 2 are 

50.41 and 45.77 in the parametric version and 51.12 and 46.11 in the non-parametric. They all 

exceed very comfortably the LR statistic, indicating that when allowing for the sample size, the 

restriction of the cointegrating matrix according to (3.11) cannot be rejected. As anticipated, 
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the critical values from bootstrap 2 are found to be smaller than those from bootstrap 1 which 

is indicative of the fact that the SA algorithm has improved on the value of the restricted 

likelihood function obtained by bootstrap 1. The correction of bootstrap 2 over bootstrap 1 

appears to be in the region of 2-5 per cent in this case. 

The estimates of the over-identified cointegrating vectors are reported in Table 3.7. All 

coefficients carry the sign predicted by theory and the estimates are in general agreement with 

the existing literature and Chapter 2. However, the cointegrating vectors, with the exception 

of the IS relation, appear to be estimated relatively imprecisely as indicated by the presence 

of some very low t-ratios. The dummy pre73t appears to be significant at the 10% level in the 

BP relation and ERMt is significant again at the 10% level in the IS relation. This suggests 

that the long-run position of the IS and the BP is directly related to the exchange rate regime 

in operation. 

It seems, though, that the type of structural change considered here is more profound in 

the BP relation. Figure 3.8 plots the estimated stationary deviations from the LM, IS and 

BP relations with a time-varying intercept and compares them with the estimates obtained 

in Chapter 2 under the assumption of constant intercepts. The LM and the IS disequilibria 

appear to be very similar, indicating that the type of structural change considered here is of very 

limited importance in these two relations. The estimated BP disequilibria, however, appear to 

be much less noisy than in Chapter 2. This reduction in the variance of the disequilibrium terms 

indicates that the introduction of a time-varying intercept clearly improves the mean-reverting 

properties of the BP cointegrating relation .9 It, thus, appears that this long-run relation is 

indeed subject to structural change, which could have been brought about by the collapse of 

°This is more formally illustrated in subsequent sections with the use of Persistence Profiles. 
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the Bretton Woods system of fixed exchange rates in 1973. 

Johansen, Mosconi and Nielsen (2000) suggest two plausible interpretations for the signif- 

icantly positive coefficient on pre73t in the BP relation. The first is that it may represent 

a reduced risk premium in the UIP condition for the pre-1973 period. The strong economic 

performance of the UK during the 60's, combined with the stability of exchange rates, could 

have reduced the risk associated with UK denominated assets, so that the deviations from the 

UIP condition in (2.22) are described by 

1luIP, t = Rt - Rc - Et[Det+i] - Pt, (3.12) 

where pt = C03 - d2,31(pre73t) is a time-varying risk premium, the value of which is lower in the 

pre-1973 period of exchange rate stability. Alternatively, the positive estimate of d2,31 in the 

BP relation could be a reflection of the fact that the predictability of exchange rate movements 

before 1973 did not prepare economic agents for the sharp devaluation of the pound in the mid 

1970s, illustrated in Figure 2.3. In other words, d2,31 could represent a systematic negative bias 

in exchange rate expectations in (2.25), so that 

Et [et+i] = et+l +'7 
, t+i - d2,31 (pre73t). (3.13) 

This would be consistent with the view that the devaluation of the pound in the mid 70's was 

largely unanticipated. io 

lo Johansen, Mosconi and Nielsen (2000) have similar results in the pre-79 period for the UIP condition between 
Italy and Germany. In their case, however, the possibility of a negative risk premium is dismissed as unrealistic 
and the positive coefficient on the dummy for the pre-79 period is interpreted as a systematic bias in exchange 
rate expectations, associated with the sharp devaluation of the lira in the 70's. 
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3.3.7 Vector Error Correction Model 

The estimates of the error correction model are reported in Table 3.8. As in Chapter 2, all error 

correction terms are found to be strongly significant in the equation for AR;, indicating that 

the foreign interest rate should, indeed, be treated as endogenous to the UK. This reinforces the 

view expressed in Pesaran, Shin and Smith (2000) concerning the importance of the UK in the 

financial markets, which was mentioned earlier as a theoretical justification for the treatment 

of Rt as an endogenous variable. The explanatory power of all equations appears to be sensible 

and there are no signs of serial correlation, which does justice to the chosen lag length p=2. 

Furthermore, this has made it possible to use the ordinary bootstrap for small-sample inference, 

instead of some serial correlation-consistent but low power method like the stationary bootstrap 

of Politis and Romano (1994). The diagnostics for normality indicate strong rejection in three 

out of the five equations, namely in the equations for Dyt, ORt and AR;, indicating the presence 

of large outliers, possibly due to the oil-price shocks in the 1970s. In the light of the evidence 

presented in Cheung and Lai (1993) regarding the relative performance of the cointegrating rank 

statistics in the presence of skewness and excess kurtosis in the estimated residuals, this result 

justifies the preference for the A- trace over the maximum eigenvalue in section 3.3.5. Also, 

non-normality of the residuals inevitably suggests great caution when interpreting the results 

of the parametric bootstrap and justifies complementing in all cases the parametric findings 

with non-parametric results. 
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3.4 Investigation of the Dynamic Properties of the Model 

This section looks at the dynamic behaviour of the estimated long-run structural VAR model 

by evaluating both the response of individual variables to shocks in a given equation, as well 

as the dynamic adjustment of the estimated structural error-correction terms in response to 

system-wide shocks. As in Chapter 2, the tools employed are the Generalised Impulse Responses 

(GIR), and the Persistence Profiles (PP) discussed in Chapter 1, section 1.7.11 These measures 

have been computed for the underlying, symmetric system in (3.8). The parameters of (3.8) can 

be computed according to the relations below (3.10) using the estimates from the conditional 

and marginal models in (3.9) and (3.10), respectively. 

In order to examine the effects of an oil price shock similar to Chapter 2 and Garratt et al 

(1998,2001), the model has also been estimated with oil prices as 

zt-1 

Oz+ _ ++ aý 
+1 

r" 
Az+ +e+ (3.14) t ao 

Iß 
Op dl d2, t i-ý t 

oa {=1 0 7 

where zt = [yt, 34, pt ]', r i+,, i=1, ... ?p-1, are nx n+ coefficient matrices, p=2, n+ _ 

dim[zt ]=n+1, and Oa, Op and Oy are blocks of zeros with dimensions (nx + 1) x r, rx1 

and 1x n+, respectively. The combination of weak exogeneity of pt, indicated by 0a, with the 

block of zeros Oy renders zt non Granger-causal for pt*. The hypothesis that the terms Azt ,, 

i= 1'... 'p - 1, do not enter the last row of (3.14) has been tested, given weak exogeneity 

of pz, within the marginal model for [xt, pt]'. The corresponding Wald statistic was found to 

Il Confidence intervals for the PPs and the GIRs have not been computed in this study and, as a consequence, 
all the results must be interpreted with caution. 
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be 10.5 with an asymptotic 95% critical value of 15.51, indicating that zt does, indeed, not 

Granger-cause pt . 
12 The model in (3.14) allows for a direct comparison with the analysis of 

an oil price shock in Chapter 2 and Garratt et al (1998) and to a lesser extent with that in 

Garratt et al (2001), as the latter impose also a number of orthogonality restrictions. 

3.4.1 Persistence Profiles 

The scaled PPs, given by (1.105), have been computed for the estimated LM, IS and BP relations 

within (3.8) and are plotted in Figure 3.9. All PPs converge towards zero, thus, confirming the 

stationary nature of the estimated cointegrating relations. The profiles for the LM and the IS 

relations are found to be very similar to the ones reported in Chapter 2. They indicate that 95 

per cent of the adjustment process is completed, in both cases, within approximately 5 years, 

which is also consistent with the findings in Garratt et al (1998,2001). 

However, a striking feature of the PPs considered here is the marked reduction in the 

persistence of BP disequilibria, compared to Chapter 2. Approximately 95 per cent of the 

adjustment process is found here to take place in less than 10 quarters, compared to 6 years 

reported in Chapter 2. This dramatic reduction in the duration of BP disequilibria indicates 

that the introduction of a time-varying intercept in the BP relation does, indeed, improve 

its mean-reverting properties. This reinforces the empirical evidence discussed earlier, which 

indicated that the exchange rate regime in operation has a significant long-run impact on the 

BP equilibrium condition. 

12The restriction that zt does not Granger-cause pt is not crucial for the outcome of the GIlls. It was imposed 
here in order to facilitate a direct comparison with the oil price shock considered in Garratt et at (1998). 
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3.4.2 Generalised Impulse Responses 

This section computes the GIR functions in (1.98) in order to evaluate the effects on the levels 

of the variables of such a typical shock in the foreign interest rate, Rt and in oil prices, pt o. In 

the first case, the GIRs have been computed for the underlying, symmetric model in (3.8), and 

in the second, for the oil price-augmented model in (3.14). 

Foreign Interest Rate Shock 

Figure 3.10 illustrates the effects of the foreign interest rate shock (a shock in the 4th equation 

of (3.8)], where the size of the shock is scaled to be equal to 555 = 0.00109. Unlike the PPs, 

the GIRs converge to a non-zero value, reflecting the I(1) properties of zt. A casual inspection 

of Figure 3.10 reveals that the responses of the variables are very similar to the GIRs reported 

in Chapter 2, Figure 2.20, both qualitatively and quantitatively. 13 

The one standard error shock translates to an increase by 43 basis points in R. The foreign 

interest rate continues to rise, reaching a maximum at +74 basis points after 11 quarters 

and thereafter decreases steadily until it stabilises at +70 basis points. A similar, though, 

quantitatively smaller effect is observed for the domestic short and long-term interest rates, Rt 

and LIt. On impact, Rt rises by 25 basis points and reaches a peak at 45 basis points in the 

fourth quarter, when it starts to steadily decline to its long-run level at approximately +16 

basis points. The impact effect on LIt is an increase of 6.4 basis points. The long-term rate 

reaches its peak at +27 basis points in the tenth quarter and thereafter falls to its long-run 

value of +21 basis points. 

'3As in Chapter 2, all quarterly rates have been converted to percentage annual rates through multiplication 
by 400. 
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The impact effect of the shock on domestic output is to increase it by 0.41 per cent. However, 

this positive effect becomes negative by the sixth quarter and the overall outcome is a reduction 

by 1.26 per cent. Foreign output rises by 0.55 per cent on impact, reaches a peak at +0.8 per 

cent in the third quarter and in the long run stabilises at +0.4 per cent. Real money balances 

are increased on impact by 0.4 per cent, but the effect immediately turns negative in the second 

quarter and the overall outcome is a reduction by 5 per cent. The shock has a positive effect 

on the real effective exchange rate, which rises by 0.4 per cent on impact. After some rather 

intense oscillation during the first two years, it eventually stabilises at its long-run value at 

+1.1 per cent. 

To the extent that the variables considered here permit a comparison with Garratt et al 

(1998), the results are roughly similar. The only marked difference is the persistent gaps 

observed here between R; and Rt and between yt and yt. The former is eventually eliminated 

in Garratt et al (1998) through the UIP condition. In this study, however, as in Chapter 2, 

UIP is not modelled as an independent cointegrating relation but it appears, instead, in a 

weaker form as part of the BP relation, thus, allowing for a protracted gap between domestic 

and foreign interest rates. The gap between yi and yt is eventually eliminated in Garratt et al 

(1998) through their "output gap" cointegrating relation, which is not included in the model 

considered here. 

Oil Price Shock 

This sub-section considers the effects of an oil price shock, that is, a typical shock by historical 

standards in the 8th equation of (3.14). As before, the size of the shock is scaled to be equal 

to one standard error of e8+, which is equal to 
,8=0.1659. 

This value is very similar to 
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Chapter 2 and Garratt et al (1998,2001), which allows for a quantitative comparison. The 

GIRs illustrating the effect of this shock on the levels of the variables are plotted in Figure 3.11. 

There are a number of differences as well as similarities with the effects reported in Chapter 

2, Figures 2.22a and 2.22b and the two studies by Garratt et at (1998,2001). The similarities 

can be found in the general behaviour of domestic and foreign output, the real exchange rate 

and real money supply, while the differences concern the effects on the domestic and foreign 

short-term rates and the domestic long-term rate. 

The one standard error shock translates to a 66.4% increase in oil prices. As illustrated in 

the first panel of Figure 3.11, the impact effect of such a shock is to reduce domestic and foreign 

output by 1.1% and 0.3%, respectively. The long-run effect, however, although still negative, 

is smaller in magnitude with domestic output falling by 0.4% and foreign output by 0.18%. 

Although, the impact effect on both these variables is comparable with the findings in Chapter 

2, the long-run effect is found here to be a lot smaller. In particular, the implied long-run 

elasticities of domestic and foreign output with respect to oil prices are here -0.4/66.4 = -0.006 

and -0.18/66.4 = -0.003, which are approximately 10 times smaller in absolute value than the 

respective values reported in Chapter 2 and Garratt et al (1998). The most likely cause for this 

is that in the current framework prices are not modelled explicitly, but only implicitly through 

the real exchange rate and the real money supply. 

The effects of the oil price shock on the real exchange rate, et - pt + pt , and the real 

money supply, mt - pt, are illustrated in the third panel of Figure 3.11 and are found to be 

quite similar to Chapter 2 and Garratt et al (1998) in the long run. On impact, et - pt + pt 

falls only marginally by 0.6%, but is more dramatically reduced over the next two quarters by 

2.8%. In the long run the real exchange rate stabilises at -3%. As pointed out in Garratt et 
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al (1998), this value is comparable with the actual depreciation of the UK real exchange rate 

by an average annual rate of 5.4% during the period 1974g1-1981g1. The real money supply is 

reduced on impact by 0.98%. In the second quarter it overshoots its long-run value by reaching 

-2.3% and gradually recovers until it eventually stabilises at -0.89%. Combining the effect on 

the real money supply with the effect on domestic output, discussed above, has the following 

implications on the inverse narrow money velocity, mt - pt - yt. As in Chapter 2 and Garratt 

et al (1998), mt - pt - yt is increased on impact (narrow money velocity is reduced) by 0.1% 

but the effect quickly turns negative in the following quarter. The long-run effect is a reduction 

by 0.5%, which is approximately 6 times smaller than in Chapter 2 and Garratt et al (1998). 

The effects on Rt, Rt and LIt are illustrated in the second panel of Figure 3.11 and are 

found to be different from Chapter 2 in the long-run, although quite comparable on impact. 

The immediate effect of the increase in oil prices is to raise Rt, R; and LIt by 0.2,0.12 and 

0.12 basis points, respectively. This effect, though, is quickly reversed. By the third quarter 

Rt has been reduced by 0.64 basis points, but then starts to climb until it returns back to its 

impact value of +0.2 basis points. This recovery is not observed in R' and LIt, both of which 

are reduced in the long run by 0.48 basis points. 

As in the case of the foreign interest rate shock, discussed above, the GIßs considered here 

also give rise to persistent gaps between yt and Vt and Rt and R;, in contrast to Garratt et al 

(1998). As mentioned earlier, these are caused by the absence of an output gap relation and 

the weaker version of UIP considered here. 
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3.5 Conclusions 

The aims of this chapter were to test the empirical validity of the three long run equilibria 

derived from an IS-LM-BP view of aggregate demand and account for the possible effects of the 

different exchange rate regimes on these long-run equilibria. In the light of the well-documented 

small-sample bias associated with asymptotic inference in a multivariate cointegration analy- 

sis, parametric and non-parametric bootstrap methods have been applied in order to simulate 

the finite-sample distributions of the test statistics of interest. In doing so, the use of the 

SA algorithm has been introduced as a means for overcoming the convergence problems typi- 

cally encountered by conventional algorithms in bootstrapping the LR tests of over-identifying 

restrictions imposed on the cointegrating matrix. 

The general findings are that, having accounted for the sample size, there is no evidence 

with which to reject the inclusion of the dummies pre73t and ERMt inside the cointegrating 

relations, the cointegrating rank can reasonably be assumed to be three and the over-identifying 

restrictions suggested by theory cannot be rejected. The employment of the SA algorithm for 

bootstrapping the LR tests of over-identifying restrictions imposed on the cointegrating matrix 

does significantly improve on the estimated small-sample critical values obtained from the trivial 

bootstrap 1. In this case the positive bias of bootstrap 1 was found to be in the region of 2-5 

per cent. 

The time-varying intercept introduced in the cointegrating relations appears to have a neg- 

ligible effect on the LM and the IS relations. However, as in Johansen, Mosconi and Nielsen 

(2000), there is evidence in favour of a significantly lower mean in the BP relation during the 

pre-1973 period. This may represent a reduced risk premium in the UIP condition, associated 
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with the reduced uncertainty regarding exchange rate behaviour before 1973. Alternatively, it 

could be a reflection of the fact that the predictability of exchange rate movements before 1973 

did not prepare economic agents for the sharp devaluation of the pound in the mid 1970s. Tak- 

ing account of this time-varying intercept was found to significantly improve the mean-reverting 

properties of the BP relation. In particular, the Persistence Profiles indicated that deviations 

from the break-accommodating BP are eliminated approximately 3 times faster, with 95% of 

the adjustment process being completed within 10 quarters. 

The application of GIRs illustrated that the estimated model possesses reasonable dynamic 

properties, which in many cases are similar to the model in Chapter 2 and Garratt et al (1998, 

2001). The analysis of the oil price shock, however, revealed some differences which can probably 

be attributed to the fact that prices are not modelled explicitly in the current framework. 

The approach taken here with regard to the different exchange rate regimes was shown to 

be a useful extension, especially with regard to the BP relation. However, it is in some respects 

over-simplified and rather limited in scope. Structural change need not be limited to a shift 

in the mean of the cointegrating relations and could also concern the remaining cointegrating 

parameters. Furthermore, the different regimes are almost certain to have an effect on the way 

that variables adjust to departures from the long-run equilibria, which suggests time varying 

long-run adjustment coefficients, a, and highlights the need for further research in this direction. 
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Chapter 4 

A Long Run Structural VAR Model 

of the UK Labour Market 
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4.1 Introduction 

The focus of the last two empirical chapters was on the identification, estimation and testing of 

long-run equilibrium relations derived from a Mundell-Fleming-type view of Aggregate Demand. 

This chapter looks at the Aggregate Supply-side of the economy by considering the behaviour 

of the labour market. The application of time series methods to the analysis of labour markets 

has a venerable history, e. g. Phillips (1958), Lipsey and Parkin (1970), Sargan (1980), Layard 

and Nickell (1985), while more recent examples within a multivariate framework can be found in 

Davidson and Hall (1991), Greenslade et al (2002) and Lee and Papaikonomou (2002) [hereafter 

LPAP]. 

The view of the labour market considered here is the sectoral, union-based, "competing- 

claims" model developed by Lee and Pesaran (1993b) [hereafter LP]. This is shown to give rise 

to two behavioural relations describing the forces that drive the demand and the supply for 

labour at the aggregate level. The first, is an "employment equation" that satisfies firms' profit 

maximisation condition and the second, is a "wage equation" satisfying unions' utility maximi- 

sation condition. These two relations have a natural interpretation as long-run equilibria. As 

such, they may be identified and tested within a long-run structural VAR, in a manner similar 

to Chapters 2 and 3.1 

The following section briefly presents the LP model and derives the two behavioural relay 

tions. Section 4.3 illustrates how these may be embedded within a cointegrating VAR model 

and section 4.4 provides an empirical analysis based on quarterly UK data over the period 

'A number of authors, e. g. Layard et al (1991), Bean (1994), and Manning (1993,1995), have argued that, 
even if such behavioural relations could be successfully formulated at the aggregate level, they would not satisfy 
the standard rank condition for identification. LPAP, however, provide a solution to the aggregation problem 
and illustrate that the rank criterion is irrelevant within a long-run structural VAR framework. 
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1972g1 - 2000g1. As in Chapters 2 and 3, the empirical section breaks down the sequence of 

decisions that need to be made when working with a cointegrating VAR model and discusses 

them in separate, clearly defined stages. Again, particular attention is paid on the finite-sample 

properties of the statistics involved with the use of parametric and non-parametric bootstrap 

methods. The dynamic properties of the model are investigated in section 4.5 with the use 

of persistence profiles and GIR functions. The latter are employed in order to illustrate the 

effects of a positive technological (productivity) shock. Section 4.6 summarises the results and 

concludes. 

4.2 The Lee and Pesaran (1993b) Model of the Labour Market 

The theoretical underpinning of the empirical analysis to follow is the union-based "competing- 

claims" model developed in LP. In this model, it is assumed: (i) that the production technology 

faced by the jth firm in the its' industry can be characterised by the production function 

Yet =N jtF(Kijt, Ait), j=1, ..., M;, i =1, ..., m, (4.1) 

where Y jt, Ni1t and K3 are the output, employment and capital stock in firm j, j=1,.., M{ 

in industry i, i=1,.., m at time t and where At represents the state of technological progress 

in industry i at time t; (ii) that there is a union that bargains with all firms in industry i and 

which is characterised by a utility function with a Stone-Geary functional form, so that 

utilitytt = 
[In (w Wit lPt )J [In (N)]l_O 

(4.2) 
std st 

(wit - wet (nit - nit)1-01, 
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where Wit is the nominal wage rate in sector i at time t, Pt is the aggregate price deflator, Wt 

is the real fallback wage, and lower case letters denote the logarithm of a variable; (iii) that 

the M; firms in the industry are identical (so that Yt = M=Yjt and so on); (iv) that firms are 

risk neutral, maximise expected profits, and believe that their output decisions do not induce 

any change in the output decisions of others; and (v) that unions set wage levels and employers 

set employment levels unilaterally (i. e. the `monopoly union' model). 

Under assumptions (i)-(v), there is an `industry-wide' production function of the form 

Yt = Nt`Mi -a{F l 
Mt, 

Ait) (4.3) 
\s 

=N t' D=t, 

where Dit is the `demand-shift term' which captures the influence of the capital and produc- 

tivity terms. Assuming that the wage and employment decisions are made before demand and 

productivity innovations are realised, profit maximisation by firms implies that the following 

relationship holds at the industry level: 

Wit =E 
[1'« (1- 

- r7it ONtt 
1l aYtI 

= aý 11- 
1) 

Ni{-'E [PitDit], (4.4) 
7/it 

where Pit is the industry Price , ritt =e NpY : ris 
the exogenously given price elasticity of demand i 

for the ith industry's output, and E[. ] is the expectations operator. Under the assumption 

that (log) aggregate productivity shocks and unanticipated demand shocks (across firms) are 
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normally distributed, i. e. (pst + dit) ^r N(E[ pit + dit], Ts ), this provides 

1 
nit = Cli (wit - Pit) +1 dot + ý1it' (4.5) 

1- ai 1 ---a 
i 

where cli = 1äi 
(ln(ai) + ln(1- 

, 
lti) + -rs) is an industry-specific constant and where Clit = 

(pit + d2)-E[ Pit + dit] are expectational errors. Maximisation of the utility function given in 

(4.2) by union i, subject to (4.5), provides the first order condition 

O 1+C3i 

Wit - C2i + wit + O't 1- 8(2 
(nit - nit) + C2itý (4.6) 

where ai =1- ai(1- , 
gis), C2i, and c3z are firm-specific parameters, and ý2at = wi-E[w`t1 is 

another expectational error. 

Under the (reasonable) assumptions that c3i 1 and 77; t is large, so that a; (1 + c31)/2 

(1- ai), the behavioural relations derived in (4.5) and (4.6) become 

nit = cii -1 a(w it -Pit) +1-1a=dit + 41it, (4.7) 

ci' 
Wit C2i + wit +1- 

ei 
(nit 

-nit) + S2it" 

The equations in (4.7) are the first order conditions from the firms' profit maximisation problem 

and the union's utility maximisation problem respectively. They form a simultaneous system, 

the joint outcome of which provides values for nit and wt. 2 

2See LPAP for a proof of the fact that this system is identifiable. 
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4.2.1 Identification of Aggregate Employment and Wage Equations 

The analysis, so far, has been concerned with sectoral wage and employment determination, 

as discussed in LP. There are, of course, important reasons why a sectorally disaggregated 

analysis of the labour market might be preferable to an aggregate one, some of which are 

elaborated in LP and LPAP. However, for the purposes of this chapter interest is placed on the 

investigation of labour market relationships at the aggregate level only. Despite the evidence 

provided in LP and in Lee et al (1990) on the pervasiveness of slope heterogeneity in wage 

and employment equations for the UK, it will be assumed here that there is approximate 

homogeneity of parameters across sectors. As a result, the aggregate relationships that will 

be considered are analogous to those derived at the sectoral level; i. e. the aggregate model 

corresponding to (4.7) is given by 

nt = cl -11 (4.8) 
a(wt-ý)+1-aý+fit, 

(1- a)9 
wt = C2 + Wt +1-0 (nt - nt) + e2t, 

where the absence of an i subscript indicates that these variables are (logarithms) of aggregate 

magnitudes. 

However, even if one is prepared to entertain the (possibly strong in the case of the UK) 

assumption of slope homogeneity across sectors, there still remains the issue of how to distin- 

guish between the aggregate wage, wt, and the aggregate fallback wage, wt*. The concept of the 

fallback wage represents wage opportunities available in the event of losing current employment. 

When working with the sectoral model in (4.7) it would, thus, be reasonable to proxy wt by 

the aggregate, economy-wide wage level wt. At the aggregate level, though, this is no longer 
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possible since wt*, appearing in the second row of (4.8), would coincide with wt, appearing in 

the first row of (4.7). LPAP propose the following solution to this problem. 

Aggregation and the fallback wage 

As discussed above, the fallback wage represents the wage opportunities available in the event 

of losing one's job. This event could either represent a move from one job to another with prob- 

ability Ht, or a move from employment to unemployment with probability 1 -IIt. Consequently, 

the fallback wage may be expressed as 

Wt = IItW1 + (1 - IIt)Bt, (4.9) 

or, equivalently, taking logarithms 

wt wt + ln(IIt) +1 flit -rt, (4.10) 

where li is the probability of re-employment, which is assumed to be a negative function of 

the general unemployment rate Ut, i. e. Ht = U(Ut) with HU < 0, Wt is the wage available 

in alternative employment, Bt is the level of unemployment benefit and rt is the (log of the) 

replacement ratio (Bt/Wt). 

The solution to the problem of distinguishing between aggregate wt and wt proposed by 

LPAP rests on the following assumption. Provided that there is some economy-wide wage 

distribution Ft(. ), it is assumed that wt is randomly located lower in Ft(. ) than wt. Thus, the 

aggregate fallback wage wt will not only be related to the aggregate wage level, but also to the 

first and second moments of the wage distribution Ft(. ). Using the logistic distribution as a 
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proxy for Ft(. ), LPAP derive an explicit expression for wt 3 This expression has been used here 

for the construction of the wt variable that is used in the empirical analysis .4 

The final form of the aggregate employment and wage equations to be studied in the em- 

pirical section is obtained from (4.8) by: 

a) using the assumption that the production function is Cobb-Douglas, so that Dt = 

AtKt -«, and 1 ads = 11aat + kt, and 

b) assuming further that the probability of re-employment IIt, appearing in (4.10), has the 

functional form Ut = cpUt 
022, where 0< cp <1 and 022 > 0. 

Under these assumptions, the temporary deviations ý1, t, ý2, t from the aggregate employment 

and wage equilibrium relations take the form 

ý1, t = cl + nt +, ß12('t - pt) - kt - Qi2at, (4.11) 

C2, t = E2 - ß21 + cwt - Pt) - (we *- Pt) + ß21ntt + ß22ut, (4.12) 

where wt** = w; - ln(IIt), 312 =i l«1 021 =1- 
e+ 

Cl = -cl and 62 = -[c2 + ln(SP)]. 

4.3 Econometric Formulation of the Model 

The stationary disequilibria in (4.11) and (4.12) were formulated in terms of the variables 

in zt = [nt, wt - pt, wi *- Pt, nt*, ut, kt, at]' and were shown to have the interpretation of 

temporary deviations from the aggregate employment and wage equations, respectively. This 

section illustrates how these terms may be embedded within a Cointegrating VAR(p) in the 

3 For more details see appendix A in LPAP. 
'See the data appendix B. 2 for details on the construction of all variables used in this chapter. 
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vector zt. The empirical counterpart of zt has been constructed according to Appendix B. 2 

and the employment of standard ADF and multivariate ADF tests in Tables 4.1a, 4.1b and 

4.2 indicate that all variables in zt can reasonably be considered to be I(1) g It is, therefore, 

possible to utilise the cointegrating VAR(p) framework, discussed in Chapter 1. This is based 

on the following VECM representation of zt 

P-1 
Azt = no + a2Dt + IIzt-i + ri0zt-i + et, (4.13) 

i=1 

where no is an nx1 vector of intercepts, n= dim[zt], De = [Dlt, 
..., Dtzd, t]', is an nd x1 vector 

of deterministic components, a2 is an nx nd coefficient matrix, r1, i=0,1, ..., p-1, are nxn 

coefficient matrices, et is an nx1 vector of iid disturbances with positive definite covariance 

matrix fl and rank[II] =r<n. 

The economic theory of the long run, summarised in (4.11) and (4.12), may be embedded 

within (4.13) by assuming that Hzt_1 takes the form 

IIzt_1 = aýt_i = a(c + ß'zt_i), (4.14) 

where Et = [ei, 
t9 6, t]', c= [El, CC2]' and 

F1 Q12 000 -1 -ßi2 ßý _ (4.15) 
-021 1 -1 021 022 00 

'Time plots of the variables can be found in Figure 4.1. 

146 



Thus, the VAR(p) model in (4.13) becomes 

P-1 

Azt = ao + a2Dt + aß'zt-i + riOzt-= + et, (4.16) 
s_i 

where as = no + ac. The model given by (4.16) maintains all the advantages of an unrestricted 

VAR in being able to capture complex dynamics, while at the same time incorporating a 

long-run structure with transparent economic interpretation, reflected in (4.15). 

In order to improve the model's ability to capture the short run dynamics, the deterministic 

vector Dt in (4.16) was chosen to have the form Dt = [d74glt, d74q2t]'. The dummies d74g1t, 

d74q2t take the value of one for the observations 1974g1 and 1974q2, respectively and zero 

otherwise. They aim to capture the effect of the industrial action by the miners and by power 

engineers in the final months of 1973, which resulted in the prohibition of space heating in 

industrial and commercial premises and a reduced working week through January and February 

of 1974. This is assumed to have a direct impact on labour dynamics in 1974g1 and, with the 

return to normality, in 1974q2.6 

In principle, all variables in the system may be treated symmetrically. However, in practice 

there might be certain advantages when treating one or more variables as weakly exogenous.? 

Some argue that technological progress is dependent on labour market experiences (through 

learning-by-doing for example) and that the labour and capital input decisions are made jointly. 

Nevertheless, it remains the case that both kt and at are regularly treated as exogenous in the 

It should be noted that, unlike Chapter 1, section 1.4.1 and Chapter 3, section 3.2, the vector Dt considered 
here does not contain intervention dummies which introduce structural change effects. The dummies considered 
here simply capture outliers, or one-off "blips" in the data. As a result, asymptotic inference on cointegration 
rank within (4.16) may be carried out using the standard critical values for models with unrestricted intercepts 
and no deterministic trends (Case III). 

7See Pesaran, Shin and Smith (2000), Pesaran and Smith (1998), as well as Chapter 1 of this thesis for more 
details. 
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analysis of labour markets -8 In this case zt would be partitioned as zt = [yt, xi]', where yt = [nt, 

Wt - Pt, wt* - Pt, ft, ut]', Xt = 
[kt, at]', and similarly aj = 

[a1 
, aix]', i=0,2, ri = [ry, viz, 

[ay, a']' and the disturbance vector et = Kt, eyt]' with variance matrix 

f_ 
nyy flyx 

Under the weak exogeneity condition (1.44), the conditional model for 

Sty, S2xx 

Lyt given Axt and the marginal model for Axt may be written as 

P-1 
'yt = CO + C2Dt - ayß'zt-i +r %Pi0zt-i + TOxt + ut, (4.17) 

i=1 

p-1 

Axt = aox + a2. Dt +E ri. Azt-i + eat, (4.18) 
i=1 

where T= SZy., Q- , ci = aiy-Taix, i=0,2, Tt = ray-Trix, i and ut = eyt-Text. 

4.4 Estimation Results 

Identification and testing of the long-run equilibrium relationships (4.11) and (4.12) was carried 

out both jointly within the conditional model (4.17), as well as within separate sub-systems, 

over the period 1972g1-2000g1. The following sections concentrate on the full model, although 

there is some reference to indicative results regarding the sub-systems. As in the previous 

empirical chapters, particular attention is paid to the finite-sample properties of the statistics 

involved with the use of the parametric and non-parametric bootstrap methods discussed in 

Chapter 1, section 1.6.2.9 All estimation was carried out in Gauss 386i with the exception of 

some of the diagnostics in the VECM which were obtained from Microfit 4.0. 

$The legitimacy of treating kt and at as weakly exogenous is formally tested in section 4.3. 
9A bootstrap experiment was not carried out only in cases where there cannot be a conflict between asymptotic 

and finite sample results (e. g. asymptotic non-rejection when the finite-sample bias is in favour of rejection). 
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4.4.1 Determination of the Order of the VAR 

Following Garratt et al (2001), Johansen (1995), Pesaran, Shin and Smith (2000) [hereafter 

PSS] and others, the lag-length, p, was determined within an unrestricted VAR(8) in the level 

of zt = [nt, wt - pt, wt** - pt, n;, ut, kt, at]' with an intercept, and the deterministic vector 

Dt = [d74qlt, d74g2t]'. io Table 4.3 reports the Adjusted Likelihood Ratio (ALR) statistics for 

testing the hypotheses p=0,7, as well as the values of the AIC and SBC. The ALR 

tests reject the hypothesis p=0 and p=1 at the 5% level but provide no evidence with which 

to reject p=2. The AIC picks out p=8, while the SBC selects p=1. Taking into account 

Pesaran and Smith's (1998) point regarding the inconsistency of the AIC 11, more emphasis 

was placed on the SBC and the Adjusted LR statistics. Empirically, it was found that p=2 

is sufficiently long to remove any serial correlation. 

4.4.2 Treatment of the Deterministic Terms 

Regarding the treatment of the intercepts and trends, it was decided to follow the general-to- 

specific methodology and start off with a generalised version of (4.16) that includes unrestricted 

intercepts and unrestricted trend coefficients given by 

P-1 
Azt = ao + alt + a2Dt + IIzi-1 +E riäzt-i + et, p=2. (4.19) 

i=1 

As illustrated in Chapter 1, section 1.4 and PSS, this specification in not characteristic of macro- 

economic time series as it implies that the level of zt exhibits quadratic trending behaviour. 

10The maximum order 8 was chosen a priori bearing in mind the number of variables in ze, the available 
sample size and the quarterly nature of the data. 

11 See Pesaran and Smith (1998, footnote 25) for the inconsistency of the AIC when determining the lag length. 
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Furthermore, the trending behaviour of zt would depend directly on the number of cointegrat- 

ing vectors, as the number of quadratic trends varies according to n-r. This unsatisfactory 

feature may be avoided by restricting the trend coefficients according to al = -III, where ry is 

an n-vector of unknown coefficients. The LR test for these restrictions is conditional on r and 

is asymptotically chi-squared with dim[zt] -r degrees of freedom in the case of a symmetric 

model, and dim[yt] -r in the case of a model conditional on weakly exogenous I(1) variables. 

Table 4.4 presents the results for both the symmetric VAR(2) in zt (upper panel) and a VAR(2) 

in Yt = [nt, wt - pt, wt' - pt, nt , ut]' conditional on the weakly exogenous vector xt = [kt, at]' 

(lower panel). In both cases there appears to be no evidence with which to reject the trend 

restrictions irrespective of the value of r. 12 

The restricted trends-specification gives rise to trend-stationary cointegrating relations since 

the error-correction terms may now be written as 0', z. t_l with and z. t-1 = 

[zt_1, t]'. However, as illustrated in section 4.3, embedding the two structural long-run relations 

(4.11) and (4.12) within the current econometric framework is consistent with ß'7 = 0, where 

ß' is given by (4.15). The restrictions 0'y =0 are also known as the co-trending hypothesis 

[Park (1992)]. The LR statistic for testing the co-trending hypothesis, given (4.15), was found 

to be 0.30 for the symmetric model and 0.21 for the conditional model. Both these statistics 

are very small, since the asymptotic 95% critical value is 5.99. Recalling that the small-sample 

bias of the test is in favour of rejection, this result provides very solid evidence in favour of the 

co-trendirig hypothesis, given the set of restrictions in (4.15). Thus, the sequence of tests for 

aZ = -II-y and ß'"y =0 provides ample evidence in favour of abandoning the general modelling 

12 The asymptotic non-rejection of the restrictions on the trend coefficients is a quite strong result, as these 
tests are known to be biased in favour of rejection in finite samples. 
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framework of (4.19) for the model with unrestricted intercepts and no deterministic trends given 

by (4.16). 

Weaker evidence in favour of excluding the trends is obtained when testing al =0 directly 

within (4.19). For r=2, the relevant statistic was found to be 22.07 which leads to a rejection 

when compared to the asymptotic 95% critical value of 11.07. However, an approximation of the 

small-sample distribution with the application of a non-parametric bootstrap with 20,000 sim- 

ulations provides the 95% critical value 22.26. Thus, after controlling for the well-documented 

small-sample bias present in LR tests within the current econometric framework, it is possible 

to maintain the null a2 = 0. 

The empirical findings presented in this section may be interpreted as reasonable evidence 

in favour of the theoretical prediction of co-trending and against the inclusion of linear trends. 

Therefore, the use of the symmetric system given by (4.16) appears to be supported by the 

data. 

4.4.3 Determination of the Weakly Exogenous Vector 

Although, in principle, all variables in zt may be treated symmetrically within (4.16), the econo- 

metric framework laid out in PSS provides the opportunity to effectively reduce the dimensions 

of the system, by escaping the explicit modelling of a subset of zr. This section addresses 

formally the question of whether xt = [kt, at]' may be treated as weakly exogenous. 

A test of weak exogeneity of xt is equivalent to testing condition (1.44). This may be tested 

directly within a symmetric framework according to Johansen (1992), although, PSS provide 

the statistical framework for testing the implications of (1.44) within the partial systems, in 

cases where the size of the symmetric model is prohibitive. The main drawback, however, of 
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the latter approach is that it may only provide conclusive evidence against weak exogeneity in 

the form of cointegrating relations among the elements of Xt. 13 Bearing this limitation in mind, 

and due to the manageable size of the symmetric system, it was decided to follow the approach 

in Johansen (1992) and carry out inference within the symmetric VAR given by (4.16). The 

statistic for testing the weak exogeneity assumption was found to be 5.20 which is safely below 

the asymptotic 95% and 90% critical values of 9.49 and 7.78 respectively. Recalling that the 

finite-sample bias of LR tests is in favour of rejection, this result renders a bootstrap experiment 

redundant. 

4.4.4 Determination of the Cointegrating Rank 

This section investigates the presence of two cointegrating relations among the variables in 

zt, as predicted by the economic theory in section 4.2. Due to the well documented small- 

sample bias haunting asymptotic inference, it was attempted in all cases to simulate the finite- 

sample distribution of the cointegration rank statistics using the parametric and non-parametric 

bootstrap procedures outlined in Chapter 1, section 1.6.2. The weakly exogenous variables are 

treated as stochastic processes and the data generating process follows (1.65)-(1.70). Twenty 

thousand simulations have been used throughout. 

At a first stage, the two long-run equilibria were investigated separately within self-contained 

sub-systems. First, it was tested whether one cointegrating relation exists within the sub-system 

describing the demand-side of the labour market. According to the evidence presented thus far 

"See also Chapter 1, section 1.5.1. 
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this sub-system is given by 

P-1 

Ayt = cö + c2Dt - ad zt 1+ ýY; Ozt + TdOxt + ut , 
(4.20) 

where zt = [yf, 41', yt = [nt, wt - pt]' and p=2. The results are reported in Table 4.5a and 

indicate an agreement between asymptotic and small-sample results, all of which are clearly in 

favour a single cointegrating relation using either statistic at the 5% level. In a similar fashion, 

the same hypothesis has been tested within the sub-system describing the supply-side of the 

labour market, given by 

P-1 

Azt = aö + a2Dt - &f? 'zt-i + I'; Uzi-i + et', (4.21) 
i=1 

where zt = [nt, wt - pt, wt** - pt, nt, ut]' and p=2. As illustrated in Table 4.5b, again there is 

total agreement between asymptotic and small-sample results, all of which clearly indicate that 

at the 5% level r=1 using either cointegrating rank statistic. 14 

Having obtained a solid body of empirical evidence supporting the presence of two cointe- 

grating relations independently (one in each sub-system), the cointegration rank tests were next 

applied to the full model given by (4.17). The simulated finite-sample distributions are plotted 

in Figures 4.2-4.5 and the corresponding critical values are reported along with the cointegra- 

tion rank statistics in Table 4.6. The test results provide further support to the theoretical 

prediction that the variables in zt = [nt, wt - pt, wt** - pt, n*, ut, kt, at]' cointegrate with r=2. 

This result is obtained from the employment of both, parametric and non-parametric bootstrap 

14 The presence of a cointegrating relation in each of the two separate sub-systems was found to be quite robust 
to different measures of wt, wi', nc and ni, all of which are described in detail in the data appendix B. 2. 
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experiments, using either statistic at the 10% level. Asymptotically, the A- trace gives r=2 

at the 5% level, while the maximal eigenvalue indicates r=3. Recalling that the finite-sample 

bias of cointegration rank tests is in favour of rejection, these results may be considered as con- 

vincing evidence in favour of r=2. The asymptotic result concerning the maximal eigenvalue 

does not require any further attention for the additional reason that, according to Cheung and 

Lai (1993) the maximal eigenvalue is less reliable in the absence of residual normality, which 

seems to apply in two of the five equations of the estimated system. 15 

4.4.5 Over-Identification 

Having found reasonable empirical support for the presence of two cointegrating relations in 

the previous section, it was next tested to what extent these may be identified as the aggregate 

employment and wage equations derived in section 4.2.1. As illustrated in section 4.3, the 

inclusion of the long-run relations (4.11) and (4.12) within the cointegrating VAR framework 

of (4.17) imposes the following structure on the cointegrating matrix ß: 

1 012 000 -1 -ßi2 

-ß21 i -1 0621 0622 00 

where the first row corresponds to the stationary deviations from the aggregate employment 

relation (4.11) and the second row corresponds to temporary departures from the aggregate wage 

relation (4.12). This structure subjects the cointegrating matrix to a total of 11 restrictions, 

of which r2 =4 are exactly identifying, leaving 7 over-identifying restrictions to be tested. 

One additional restriction arises from the assumption that was made in the construction of the 

"Very similar findings are obtained with the use of a symmetric VAR(2). 
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variable at16, namely, that the structural parameter a appearing in (4.11) and (4.12) takes the 

value 0.56. Since ß12 = la, this implies a value of 012 = 2.2727. The set of 11 restrictions 

will hereafter be denoted as Rovi and the full set of 12 restrictions as ROV2. As in the case of 

the cointegrating rank, both sets of restrictions have been tested separately within the demand 

and supply sub-systems, and jointly within the full model. This section, however, discusses 

analytically only the results obtained from the full model given by (4.17). 

The results are summarized in Table 4.7. Both sets of restrictions receive strong empirical 

support as they comfortably avoid asymptotic rejection even at the 10% level. Denoting the 

statistic for testing Rovi by LR1, and similarly the statistic corresponding to ROy2 by LR2, 

then LR2 - LR1 is a test of the assumption a=0.56 (that implies 612 = 2.2727), given Rpv1. 

The value of this statistic can be found to be 0.10 which again leads to a very comfortable 

non-rejection, even asymptotically, since x 95[11 = 3.84. These results constitute a particularly 

solid piece of evidence for the validity of Raul and Rove, bearing in mind that in finite samples 

the test is biased in favour of rejection. 

In order to illustrate the extent of this bias, the small-sample distributions of the tests were 

approximated using parametric and non-parametric versions of bootstrap experiments 1 and 2 

(discussed in detail in Chapter 1, section 1.6.4) with 10,000 simulations. Plots of the simulated 

distributions are presented in Figure 4.6, and the corresponding 95% and 90% critical values 

are reported in Table 4.7. As anticipated, the critical values from bootstrap2 are found to be 

smaller than those from bootstrap1 which is indicative of the fact that the SA algorithm has been 

improving on the likelihood value obtained from bootstrapl. As explained in Chapter 1, section 

1.6.4, the difference between bootstrapl and bootsrap2 results from the fact that the former 

16See the data appendix B. 2 for details. 
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is not maximising the restricted log-likelihood with respect to the free parameters in the over- 

identified ß-matrix, which biases the critical values upwards. 17 However, even the application 

of the more accurate bootstrap 2 reveals a very significant small-sample bias ranging from 76% 

in the parametric version, to 99% in the non-parametric. 18 This result strongly supports the 

already substantial body of literature that emphasizes the need to control for sample size when 

using chi-squared tests within the current econometric framework. 

The estimates of the over-identified cointegrating vectors under both sets of over-identifying 

restrictions are reported in Table 4.8. In both cases all coefficients are found to be significant 

and bear the sign predicted by theory. The value of ß22 is estimated at 0.0085 under both sets 

of over-identifying restrictions. Recalling that -1ß22 is the elasticity of Ht (the probability of 

re-employment) with respect to unemployment, this estimate implies that a 1% rise in unem- 

ployment reduces the probability of re-employment by 0.0085% at the aggregate level. Under 

Rove the estimate for 012 is found to be equal to 2.21, which implies a value of 0.55 for the 

structural parameter a. This estimate justifies the very clear non-rejection of the restriction 

a=0.56 discussed above. The estimate of ß21 is found to be -0.0126 under Rpvl and -0.0127 

under ROV2 which suggests a value of approximately 0.03 for the structural parameter 0. Re- 

calling that 0 and 1-0 are the weights placed by unions on the wage and employment gaps 

respectively, this estimate appears to be rather small, as it suggests that the ratio of the relative 

importance of internal and external influences on wage setting is 1/32.19 

The very small magnitude of the difference observed in this case, is the consequence of the fact that there 
are very few parameters to be estimated, three in Rove and two in Rove. In the case of the 16-parameters in 
Chapter 3 the reported bias reached 5 per cent. 

"The non-parametric version should probably be considered more reliable, as residual normality Is rejected In 
two out of the five estimated equations. 

19LP and others, using more standard regression analysis of wage setting behaviour, typically find this ratio 
to be closer to 1/3. However, the estimate reported here was found to be very robust to different measures of .. wt and r;. 
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4.4.6 Vector Error Correction Model 

The corresponding estimated error correction models of Ant, 0(wt -Pt), 0(wt* -Pt), Ant and 

Dut under ROV2 are summarised in Table 4.920 The coefficients on the dummies included to 

capture the effects of the reduced working week in the first two quarters of 1974 show that these 

terms are important in capturing these influences. The terms on C1, t_1 and C2, t_1 demonstrate 

that there are significant feedbacks from these disequilibrium terms to employment, the fallback 

level of employment, real wages, real wt * and unemployment. The explanatory power of all 

equations appears to be sensible and there are no signs of serial correlation21, which does justice 

to the choice of the lag length p=2. Furthermore, this has made it possible to use the ordinary 

bootstrap for small-sample inference in previous sections, instead of some serial correlation- 

consistent but low power method like the stationary bootstrap of Politis and Romano (1994). 

The diagnostics for functional form are rejected only in the equation for Ant and there appear 

to be no traces of heteroscedasticity. 

The diagnostics for normality, however, indicate strong rejection in two out of the five 

equations, namely in the equations for Ant and Ant*. In the light of the evidence presented in 

Cheung and Lai (1993) regarding the relative performance of the cointegrating rank statistics in 

the presence of skewness and excess kurtosis in the estimated residuals, this result justifies the 

preference for the A-trace over the maximum eigenvalue in section 4.4.4. Rejection of normality, 

however, also causes some concern with regard to the reliability of the parametric bootstrap 

20The results discussed in this section are not affected when the error-correction terms are identified according 
to Rovi. 

2' Asymptotically, there seems to be a conflict between the chi-squared and the F-diagnostics in the case of 
An=. The first marginaly rejects the hypothesis of serially uncorelated errors at the 5% level, while the second 
does not. In the light of the clear absence of serial correlation indicated by the simulated finite-sample results 
(Table 4.10), the marginal asymptotic rejection of the chi-squared test does not appear to be alarming. 
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methods employed in previous sections, which justifies the persistence in complementing the 

parametric findings with non-parametric results. 

Most of the main findings were found to be largely unaffected by the use of different measures 

for nt and wt *. 22 Significance of the error-correction terms and dummies, as well as partial 

rejection of normality are constant elements in the various VECMs that have been estimated 

using various definitions for the fallback level of employment and real wage. 

4.5 Investigation of the Dynamic Properties of the Model 

As in the previous empirical chapters, this section looks at the dynamic behaviour of the 

estimated long-run structural VAR model with the use of Persistence Profiles and Generalised 

Impulse Responses. The former are used in order to study the speed of adjustment of the 

estimated employment and wage equations in response to system-wide shocks, while the latter 

are used to illustrate the effects of a typical (by historical standards) shock in productivity. 23 

4.5.1 Persistence Profiles 

The PPs for the estimated structural cointegrating relations are plotted in Figure 4.7. As 

anticipated, they are both found to converge to zero, thus, illustrating the temporary nature of 

departures from the employment and wage equations. In the case of the aggregate employment 

equation, the adjustment path to the long-run equilibrium is found to be almost monotonic. In 

response to a unitary, system-wide shock, 43% of the adjustment process has been completed 

within the first three quarters and approximately 94% within two years. The supply-side of 

22Details on the construction of the different measures are found in the data appendix B. 2. 23 Confidence intervals for the PPs and the GIRs have not been computed in this study and, as a consequence, 
all the results must be interpreted with caution. 
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the labour market, however, reacts strikingly slower. For more than a year after the shock, 

the deviation from the estimated wage-setting equilibrium increases. The magnitude of the 

disequilibriating distortion reaches its peak in the sixth quarter, being 6 times higher than on 

impact. After the sixth quarter starts a monotonic convergence to long-run equilibrium. It 

takes approximately 4 and a half years for 43% of the adjustment to take place and a further 

2 years for 95% of the path towards equilibrium to be completed. 

These profiles are consistent with the intuitive view of a labour market in which firms are 

quicker and more efficient in reacting to deviations from their decision rule, as illustrated by the 

relatively swift and monotonic adjustment path of the first PP. Unions on the other hand, take 

far longer to re-establish equilibrium according to their wage-setting relation. Given that the 

labour market adjustment is complete only after both equilibrium relations are re-established, 

Figure 4.7 puts into perspective the sluggish adjustment of the labour market. It demonstrates 

that it is difficult to evaluate the response of the labour market to shocks until a prolonged 

period has elapsed (in this case approximately seven years for a 99% adjustment), so that the 

full implications of the shock can be observed. 

4.5.2 Generalised Impulse Responses 

This section uses the GIR functions in (1.98) for the analysis of the system-wide impact of a one 

standard error shock in the equation of Dat. The GIRs have been computed for the underlying, 

symmetric model in (4.16), the parameters of which can be recovered from the estimates of 

(4.17) and (4.18), using the relations below (4.18). Figure 4.8 illustrates the effects of a positive 

productivity (or technological) shock [a shock in the 7th equation of (4.16)], where the size of 

the shock is scaled to be equal to = 0.00853. Unlike the PPs, the GIM converge to a 
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non-zero value, reflecting the I(1) properties of zt. 24 

The one standard error shock translates to a 3.4% rise in at. The impact effect is an increase 

in wages and fallback wages by 1.2% and 1.25%, respectively. This is associated with a 0.4% 

fall in employment and a 0.25% fall in alternative employment levels, while unemployment is 

reduced by 1.4%. The wage variables continue to move closely together following a generally 

upward course in the medium run. The long-term effect on the real wage and the fallback wage 

is an almost identical increase by 3.07% and 3.05%, respectively. Actual employment initially 

picks up but eventually stabilises at -1.03%, although, alternative employment appears to be 

rising steadily to its long-run value at +2.47%. In the medium run unemployment appears to 

be falling steadily and reaches a minimum at -20.68%, however, the long-run effect, though still 

negative, is found to be of more moderate size at -6.76%. 

The effects described in Figure 4.8 appear to be consistent with the conventional view that 

improvements in production technology (increases in productivity) can sustain both, higher real 

wages and lower levels of unemployment. 

4.6 Conclusions 

The primary aim of this chapter was to estimate a long-run structural VAR model of the UK 

labour market, in an attempt to provide an insight into some of the forces affecting the supply- 

side of the UK economy. The structure on the long-run behaviour of the model was provided 

by the union-based, competing-claims model developed by LP. This was shown to give rise to 

two behavioural relations describing long run equilibrium in labour market demand and supply, 

2'The GIR for unemployment is scaled by 0.25. 
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which may be identified as cointegrating relations in a VAR framework. 

The empirical analysis indicated that: 

i) The majority of asymptotic and small-sample results appear to unanimously support the 

theoretical prediction that there are two cointegrating relations among the variables in zt = [nt, 

wt - pt, wt** - Pt, ni , ut, kt, at]/. 

ii) The set of theory-imposed restrictions required for the identification of these relations 

as aggregate employment-setting and wage-setting long-run equilibria are insignificant, even 

asymptotically. 

iii) The bootstrap experiments have revealed a very substantial finite-sample bias, reaching 

99% in the tests of over-identification of ß. This result highlights the potentially misleading na- 

ture of asymptotic inference in relatively small samples and re-enforces an already rich literature 

that suggests the application of bootstrap methods instead. 

iv) The use of the SA algorithm and bootstrap2 in simulating the finite-sample distributions 

of tests of over-identification of /3 does appear to be improving on conventional bootstrapl. 

However, the extent of this improvement was found here to be markedly smaller than in Chapter 

3, possibly due to the much smaller number of free parameters responsible for the bias in 

bootstrap 1. 

v) Regarding the dynamics, the estimated model demonstrates that, while adjustment of 

employment decisions made by firms takes place relatively rapidly, wage adjustment is extremely 

sluggish, so that the full implications of labour market shocks can only be observed after 

approximately 7 years of adjustment. 

With these complex interactions and dynamics in mind, it is possible to explain without 

recourse to more sophisticated theoretical models of the labour market or to structural breaks, 
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the apparent anomalies of the mid-eighties, where strong real wage growth coincided with 

high unemployment, and the unexpectedly slow growth in real wages experienced in the early 

nineties. These experiences can be explained as the delayed response of firm and union behav- 

iour to the considerable shocks to the labour market experienced during the early eighties, and 

the prolonged and largely continual exposure to unemployment rates which remained high by 

historical standards. 
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Chapter 5 

A Long-Run Structural VAR Model 

of the UK Economy 
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5.1 Introduction 

The previous empirical chapters dealt separately with the empirical investigation of aggregate 

demand and supply for the UK. This chapter brings together the AD and AS sub-systems 

estimated in Chapters 3 and 4, in order to form a cointegrating VAR model with a complete 

AD-AS long-run structure. The empirical analysis of the complete AD-AS system will make it 

possible to assess the robustness of the findings obtained from the separate sub-systems, and 

could provide an interesting comparison with existing long-run structural macroeconometric 

models of the UK. 

However, as will become evident in the discussion of the empirical section, the quite large 

size of the complete AD-AS system appears to be undermining the performance of the boot- 

strap methods discussed in previous chapters. Recent evidence by Greenslade et al (2002), for 

example, suggests a negative relation between the power of the bootstrap cointegration rank 

tests and the dimension, n, of the VAR. Although a formal analytical relation remains to be 

established, the reliability of the simulation methods appears to be seriously compromised in 

a model of the size considered here. This inevitably reduces the extent to which the complete 

model may be used as a tool for assessing the findings of the separate sub-systems. In fact, 

in cases where the bootstrap results for the full system appear to be seriously distorted, e. g. 

cointegration rank tests, the evidence from the sub-systems can be a useful guide. ' 

As a result, the assessment of the findings in Chapters 3 and 4 will be limited to a comparison 

of the estimates for the AD and AS long-run relations and the dynamic properties with those 

of the complete model. A comparison of the Persistence Profiles (PPs) can, to some extent, 

'This approach is suggested in an early version of Garratt et al (2000), where inference within large systems 
is guided by the results obtained from smaller sub-systems. 
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indicate how the joint determination of AD and AS affects the speed with which long-run 

equilibrium is restored. The dynamic behaviour of the complete model will be further compared 

with Chapters 3 and 4, as well as with the models developed by Garratt et al (1998,2001), 

by considering the Generalised Impulse Responses (GIRs) of the variables to an oil price shock 

and a productivity shock. 

The rest of this chapter is organised as follows. Section 5.2 illustrates how the long-run 

LM, IS and BP equilibria of Chapter 3 and the aggregate employment and wage equations 

of Chapter 4 may be jointly studied within a cointegrating VAR(p). Section 5.3 presents the 

estimation results for the period 1965q3-1998q2, discussing in detail the various choices on 

model specification. Section 5.4 evaluates the dynamic behaviour of the estimated system with 

the use of PPs and GIRs and compares the findings with previous chapters and Garratt et al 

(1998,2001). Section 5.5 summarises the results and concludes. 

5.2 Econometric Formulation of the Complete AD-AS Model 

The complete AD-AS model is formulated in terms of the five long-run relations (3.1)-(3.3) and 

(4.11), (4.12), repeated here for convenience 

Ci, t = doi + (mt - Pt) - PllYt + Q12Rt + dllt + d2,11(pre73t) + d2,12(ERMt), 

S2, t = doe + yt +, 82, LIt - i322(et - Pt + P) - , 
323yt + d2,21(pre73t) + 

+d2,22 (ERMt), 

C3, t = do3 - /331yt + Rt - Rt* + Q32 (et - pt + pt)+ Q33yt + di3t + (5.1) 
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+d2,31(Pre73t) + d2,32 (ERMt), 

C4, 
t =d O4 + lt + Q41 (wt - Pt)- kt - Q41at, 

C5, t = d05 - ß51nt + (wt - pt) - (wi* - Pt) +, ß51ni + Qs2vt" 

For symmetry of exposition the following notation has been introduced: (it -e , t, 
i=1,2,3, 

(s, t ° ýj, t, do, = c"j, i=4,5, j=1,2. Thus, the terms Cj, t, i=1,2,3, are the stationary 

deviations from the LM, IS and BP relations in Chapter 3, respectively, characterising long-run 

aggregate demand. The terms Stet, i=4,5, are the deviations from the equilibrium conditions 

that characterise the supply-side of the economy in Chapter 4, where the ß-coefficients have 

been appropriately re-numbered. 

These five long-run relations are formulated in terms of the 14 variables in zt = ['mt - Pt I yt 9 

Rt, R;, LIt, nt, wt - Pt, wt' - Pt, nt , ut, et - pt +Pt , yt , kt, at]', which were shown in Chapters 

2,3 and 4 to be I(1) in the sample under consideration. As a result, zt may be modelled within 

a general cointegrating VAR(p) given by 

P-1 
1zt = no + alt + a2Dl, t + a3D2, t + IIzt-1 +E riAZt-t + et, (5.2) 

i=l 

where no is an nx1 vector of intercepts, n= dim[ztl, t is a linear trend with nx1 coefficients 

al, Di, t is an ndl x1 vector of intervention dummies (equivalent to Dt in Chapter 1, section 

1.4.1 and Chapter 3, section 3.2), D2, t is an no x1 vector of "outlier dummies" (equivalent to 

De in Chapter 4, section 4.3), a2 and a3 are nx ndi and nx nd2 coefficients, respectively, ri, 

i=0,1, ..., p-1, are nxn coefficient matrices, et is an nx1 vector of iid disturbances with 

positive definite covariance matrix SZ and rank[es] =r<n. 
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In order for the model in (5.2) to be consistent with the five long-run equilibria in (5.1) it 

would have to be the case that 

IIzt-i = «Ct-1 = a[ß'zt-i + (do - di) + d1t + d2Di, t-1J, (5.3) 

where a is an nx5, full column-rank matrix of long-run adjustment coefficients, (t = [Cu, t, C2, t, 

C3, t, C4, t, C5, t]', do = [doi, d029 dos, d04, d05]ß, di = [dii, 0, d1 
, 0,0]', D1, t = [pre73t, ERMt]', 

d2,11 d2,12 

d2,21 d2,22 

d2 = d2,31 d2,32 (5.4) 

00 

00 

and 

1 -ßll ß12 00 0 0 00 0 0 0 0 0 

01 0 0 021 0 0 00 0 -Q22 -ß23 0 0 

Qý =0 -ß31 1 -1 0 0 0 00 0 ß32 ß33 0 0 

00 0 00 1 ß41 00 0 0 0 -1 -p41 

00 0 00 -ß51 1 -1 ß51 ß52 0 0 0 0 
(5.5) 

or alternatively 

IIzt-1 = «(du - di) + ao'z. t-,, (5.6) 
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where /3* = [0', dl, d2], z*t-1 = [z't-1, t, Di, t-1]'. Thus, the VAR(p) in (5.2) becomes 

P-1 

Ozt = ao + a3D2, t + a/3, * z*t-i + riAzt-i + et, (5.7) 

where as = no + a(do - di) and the coefficients al and a2 on the linear trends and the 

intervention dummies are restricted according to Case IVd in Chapter 1, section 1.4.1, since 

al = ad, = -IIy and a2 = ade = -IIÖ, where y and 6 are unknown nx 1 and nxndl coefficient 

matrices, respectively. The symmetric model given by (5.7) maintains all the advantages of 

an unrestricted VAR in being able to capture complex dynamics, while at the same time 

incorporating a long-run structure with transparent economic interpretation, reflected in (5.6). 

In order to capture some extreme outliers in the data and improve the model's ability to 

describe the short-run dynamics, the vector D2, t was specified in the empirical analysis as 

D2, t = [d7lqlt, d7lq2t, d74qlt, d74q2t, d90g3t]'. These dummies take the value of one during 

the first and second quarters of 1971 and 1974 and the third quarter of 1990, respectively, and 

are equal to zero for all other observations. 

The separate study of AD in Chapter 3 and AS in Chapter 4 indicated that the null of weak 

exogeneity cannot be rejected for specific subsets of zt. In the case of the AD sub-system the 

weakly exogenous vector was found to be xtf = [et -Pt +pt , y=]' whereas for the AS sub-system it 

was x? = [kt, at]. In the empirical investigation of the complete AD-AS model it will be assumed 

that weak exogeneity holds for the joint set of xt = [xe', xts']', although this assumption is 

formally tested in section 5.3.1. Under this assumption it is possible to partition zt into a vector 

yt of ny endogenous variables and a vector xt of nx exogenous variables, zt = LVt, 4]', where 

yt =[ -pt, alt, Rt, Rt*, LIt, nt, wt-Pt, wi* -Pt, nt, pct]' and xt = [et -Pt+p , Ali, kt, at]' and 
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similarly the matrices ai = [aýy, a ]', i=0,1,2,3, r= [iyI ixýýý Z= 1ý 
... ý p- 1ý a= [ay, ayl f 

and the disturbance vector et = [ems, e, t]' with variance matrix SZ = 
nyy ývx 

. Thus, 
nxy fl 

provided that the weak exogeneity condition given by (1.44) holds, the conditional model for 

Ayt given Axt and the marginal model for ixt are given by 

P-1 

Ayt = co + c3D2, t + ayß; z. t-1 +E `Pi0zt-i + TOxt + ut, (5.8) 
i=1 

P-1 

Axt = aox + a3aD2, t + rixOZt-i + ext, (5.9) 
i=1 

where T= SZy,, 11- 
, C{ = aiy-Tai., i=0,1,2,3, W= riy-Try, i=i, ..., P-l, ut = eyt-Text 

and the restrictions on the coefficients on the linear trend and the intervention dummy variables 

take the form c1= aydl = --ayß'-y and c2 = ayd2 = -ay)Q'ö, respectively. 

5.3 Estimation of the Complete AD-AS Model 

The previous section illustrated that the five long-run equilibrium relations in (5.1), consistent 

with a simple AD-AS view of the UK economy, may be studied within the partial system given 

by (5.8). This model has been estimated over the period 1965g3-1998g2. As in the previous 

empirical chapters, statistical inference is mainly based on finite-sample results obtained with 

the use of the parametric and non-parametric bootstrap methods, discussed in Chapter 1, 

section 1.6.2.2 However, it should be noted that the relatively large size of the model considered 

here may have a deteriorating effect on the performance of bootstrap tests. Although a formal 

2A11 estimation was carried out in Gauss 3861 
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relation between the performance of bootstrap tests and the dimension, n, of the VAR has not 

yet been established, there has been some indication in the recent study by Greenslade et at 

(2002) that in large systems, the bootstrap cointegration rank tests, for example, have a high 

type II error (low power). In the light of the potentially distorting effect of the quite large size 

of the model considered here, inference will also be guided by the results obtained from the AD 

and AS sub-systems in Chapters 3 and 4, respectively. 

5.3.1 Determination of the Weakly Exogenous Vector 

The first priority in the empirical investigation of the relations (5.1) within a cointegrating VAR 

framework is the choice of weakly exogenous vector 3 It was considered crucial to determine 

the weakly exogenous variables at a very early stage, in order to avoid the significant difficulties 

that arise when working with a symmetric system of the size of (5.7). On the same grounds, 

it was decided to test for weak exogeneity following Pesaran, Shin and Smith (2000), (PSS), 

rather than Johansen (1992), as the latter requires the estimation of the symmetric system. 

As mentioned in section 5.2, combining the two sets of weakly exogenous variables considered 

in the separate analysis of AD in Chapter 3 and AS in Chapter 4, results in the vector xt = 

[et - pt + pt , yt , 
kt, at]'. In the context of a complete AD-AS model of the UK economy, the 

treatment of the real exchange rate and foreign output as long-run forcing may be justified, as 

in Chapter 3, by the small-open economy assumption. Productivity (technological progress) 

could be regarded as weakly exogenous to the macroeconomic aggregates in yt = [mt - Pt, alt, 

Rt, R;, LIt, nt, wt - pt, wt *- pt, nt , ut]' by assuming that it is primarily driven by factors 

3The empirical analysis will abstract from an explicit discussion on the choice of the lag-length, p, which was 
set equal to two in accordance with Chapters 3 and 4. 
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like work effort, R&D expenditure and investment in human capital. There could be legitimate 

doubts, however, on whether the capital stock is indeed unaffected by AD-disequilibria. 

Being agnostic at this stage regarding the treatment of the deterministic terms, the PSS 

test was applied to the general marginal model for xt with no restrictions on ail, i=0,1,2,3. 

The cointegration rank statistics are reported in Table 5.1 and clearly indicate the absence of 

any levels relations among the variables in xt. Although this result does not constitute direct 

evidence in favour of condition (1.44), it does not indicate that xt is an inappropriate choice 

for the weakly exogenous vector .4 The hypothesis that k may be treated as weakly exogenous 

has been further tested within the separate AD and AS models in Chapters 3 and 4. In both 

cases, the Johansen (1992) statistics indicate that this variable does not respond to the AD and 

AS disequilibria. In the case of the model in Chapter 3, the LR statistic was found to be 4.8 

with asymptotic critical value xo. oS [3] = 7.81, while for the model in Chapter 4 the value of the 

n test statistic was 2.6 with X2 0. o5[2] = 5.99. The asymptotic non-rejection in both cases renders 

a bootstrap experiment redundant, as the finite-sample bias is in favour of rejection. 

5.3.2 Treatment of the Deterministic Terms 

The previous discussion on weak exogeneity indicated that the use of a symmetric system 

like (5.7) may be abandoned in favour of a conditional model of the form of (5.8). However, as 

illustrated in section 5.2, the inclusion of the five structural relations in (5.1) within model (5.8) 

imposes a number of restrictions on the deterministic components. Specifically, the coefficients 

on the linear trend and the intervention dummies, D1, t, would have to be restricted according 

to Case Nd, so that cl = -c , ß'-y and c2 = -ay)3'ö. 

4For more details see the discussion in Chapter 1, section 1.5.1. 
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Table 5.2 summarises the results for testing the trend restrictions cl = -ayß'7 alone. 

These are clearly found to be insignificant, irrespective of the choice of r, indicating that, as 

in Chapters 3 and 4, the presence of quadratic trends in the level of yt is inconsistent with the 

data. Not having found evidence against the trend restrictions, it was tested next whether the 

coefficients on Dl, t take the form of c2 = -ay)9'ö. The LR statistic for this hypothesis for 

r=5 and given cl = -ayfi'ry and (5.5) was found to be 3.02, with a simulated 95% critical 

value of 22.01 in the parametric case and 23.22 in the non-parametric. Therefore, to the extent 

that there are five trend-stationary cointegrating relations with parameters satisfying (5.5), the 

restrictions on the intervention dummies appear to be insignificant. 

5.3.3 Determination of the Cointegrating Rank 

Based on the evidence presented in the subsections 5.3.1 and 5.3.2, the cointegrating rank has 

been investigated within the conditional model given by (5.8). As discussed in Chapter 1, section 

1.4.2 and Chapter 3, section 3.3.5, the presence of the intervention dummies Di, t renders the 

use of standard asymptotic critical values inappropriate in this context. For this reason it was 

decided to proceed directly to the simulation of the model-specific, finite-sample distributions, 

using the parametric and non-parametric bootstrap methods described in Chapter 1, section 

1.6.3. Ten thousand pseudo-data sets were simulated in each version under the null hypotheses 

r=0, ..., ny - 1. The weakly exogenous vector, xt, was treated as a stochastic process, given 

by the marginal model in (5.9) and the data-generating process follows (1.65)-(1.70). The 

maximum eigenvalue and A-trace statistics have been computed for each of the simulated data 

sets and the resulting bootstrap distributions can be found in Figures 5.1-5.4. 

Table 5.3 reports the statistics along with the simulated finite-sample critical values. In 
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the light of the evidence obtained from the analysis of the separate AD and AS sub-systems in 

Chapters 3 and 4, the tests appear to be under-estimating the number of cointegrating relations 

in the complete AD-AS model. In particular, the A-trace indicates that the cointegrating rank 

is not higher than 2, while the maximum eigenvalue statistic only finds evidence in favour of 

r=1, when one would expect to find at least five cointegrating relations. These results appear 

to be consistent with the evidence reported in Greenslade et al (2002; pp. 1524), who find that 

"... the small sample correction, for a large system such as this, is clearly making too large a 

correction and almost finds no cointegration at all". That is, in large systems, the bootstrap 

tests are most likely to have reduced power, as they do not reject a false null hypothesis 

frequently enough. Considering the fact that the size of the model in (5.8) is comparable to the 

eight-dimensional VAR(p), p=2,4,6,8, in Greenslade et at (2002), the loss in power can be 

expected to be equally significant here. 

In the light of this, it was decided to put more weight on the economic priors, supported 

by the combined evidence from Chapters 3 and 4, and proceed under the assumption of five 

cointegrating relations. 

5.3.4 Over-Identification 

Provided that there are five cointegrating vectors, their interpretation as the structural long- 

run equilibria in (5.1) requires that the trends and dummies-augmented cointegrating matrix 

in (5.8) is given by 

(5.10) ß* =1 ß' dl d2 
11 
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where dl = [dll, 0, d131 0,0]' and d2 and /3 are given by (5.4) and (5.5), respectively. The 

structure of dl, d2 and (3 imposes 67 restrictions on (3 
,, of which r2 = 25 are exactly identifying. 

This leaves 42 over-identifying restrictions to be tested. The finite-sample distribution for this 

test has been simulated with the use of parametric and non-parametric versions of bootstrap 1, 

discussed in Chapter 1, section 1.6.4.5 Ten thousand pseudo-samples were generated according 

to (1.65)-(1.70), and the resulting distributions can be found in Figure 5.5. 

Table 5.4 summarises the statistics and the asymptotic and finite-sample critical values. The 

LR statistic for testing the over-identifying restrictions was found to be 199.7, which clearly 

exceeds the asymptotic critical values at the conventional 5% and 10% levels. However, the 

simulated critical values are found to be 3-4 times higher than their asymptotic counterparts, 

revealing once again a very substantial small-sample bias. Despite this quite dramatic correc- 

tion, the restrictions are still found to be significant, although the rejection margin is a lot 

smaller in the non-parametric case which should be considered more reliable due to the wide- 

spread rejection of residual normality (in 5 out of the 10 estimated equations). Nevertheless, 

it should be reminded that the use of bootstrap 1 inevitably exaggerates the "true" extent of 

the finite-sample bias. The application of the more accurate bootstrap 2 would result in more 

moderate critical values and would, thus, also lead to a more comfortable rejection .6 

On the other hand, some recent evidence reported by Greenslade et al (2002) suggest that 

the frequency of non-rejection of a true set of over-identifying restrictions (the size of the test) 

is negatively related to the size of the model. In particular, these authors report a size of 

only 4% for asymptotic inference on the cointegrating parameters at conventional significance 

5Unfortunately, the computational demands of the more accurate bootstrap 2 within the current econometric 
setup exceed the computing facilities available to the author. 

6For more details see Chapter 1, section 1.6.4, as well as the application in Chapter 3, section 3.3.6. 
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levels within an eight-variable symmetric system. This is shown to increase to 60% when the 

dimensions of the model are reduced to five, upon conditioning on three weakly exogenous 

variables, and reaches 80% when the test is carried out within the conditional model with 

simplified short-run dynamics. The extent to which these results carry over to the bootstrap 

tests still remains unknown however. The clear non-rejection of the over-identifying restrictions 

in the separate analysis of the AD and AS sub-systems in Chapters 3 and 4, could be an 

indication that the size of the model is negatively related to the size of the bootstrap test. 

In the light of this, the results reported in Table 5.4 should probably be considered as 

inconclusive. As long as the relation between the performance of the bootstrap test and the 

size of the model remains unknown, it appears risky to reject the structure imposed on the 

cointegrating parameters by (5.10). For the rest of the analysis it will be assumed that this 

structure is valid, as indicated by the findings in Chapters 3 and 4. 

The estimates of the over-identified cointegrating vectors can be found in Table 5.5. All 

coefficients are signed according to the underlying theory and the estimates appear to be very 

similar to the ones obtained in Chapters 3 and 4, although the LM and the BP relations are 

estimated relatively imprecisely. The coefficient on the intervention dummy pre73t is again 

found to be significantly positive in the BP relation, thus, verifying the finding of Chapter 3, 

that the disequilibrium terms from this relation have, on average, been smaller in the fixed 

exchange rate period before 1973. The coefficients in the aggregate wage equation are all 

found to be very significant and almost identical to their estimates in Chapter 4, indicating the 

robustness of this relation. 
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5.3.5 Vector Error Correction Model 

The estimates of the error correction model are reported in Tables 5.6a and 5.6b. The explana- 

tory power of all equations appears to be sensible and the system seems to be reasonably well 

specified, as indicated by the diagnostics in the second panel of Tables 5.6a and 5.6b and in 

Table 5.7. When controlling for sample size (Table 5.7) there appear to be no signs of serial cor- 

relation, with the possible exception of the equation for OLIt. Despite the use of the generally 

significant outlier dummies in D2, t, the diagnostics for normality indicate an asymptotic rejec- 

tion in five out of the ten equations, which seems to be particularly strong in the case of Ant 

and Due. Non-normality of the residuals inevitably suggests great caution when interpreting 

the results of the parametric bootstrap and justifies the need in complementing the parametric 

findings with non-parametric results in all cases. 

The structural error correction terms C{, t-1, i=1, ... , 5, are generally significant, although 

the demand-side variables do not appear to be responding to the disequilibria in the labour 

market (4, t-1 and C5, t-i, with the exception of domestic output. In contrast, the long-run 

adjustment coefficients to the AD disequilibria are found to be significant in the supply-side 

variables nt, nt and ut. Perhaps the main difference between the complete AD-AS model 

considered here and the separate AD sub-system, analysed in Chapter 3, is the general insignif- 

icance of the demand-side error correction terms C1, t_1, C2, t-1 and C3, t_1 in the equation for 

A1q. In Chapter 3, the deviations from the domestic LM, IS and BP relations were found 

to be strongly significant in the AR; equation. This was interpreted as evidence in favour of 

the view expressed in Pesaran, Shin and Smith (2000) concerning the treatment of R; as an 

endogenous variable, due to the importance of the UK in financial markets. However, when 
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taking into account the supply side of the economy, it is only the deviations from the domestic 

LM relation that appear to be significant in the equation for ORt and only at the 10% level. 

5.4 Investigation of the Dynamic Properties of the Model 

This section illustrates the dynamic behaviour of the estimated model. As in the previous 

empirical Chapters, the dynamic adjustment of the estimated long-run relations in (5.1) to 

economy-wide shocks is examined with the use of the Persistence Profiles, while the response of 

individual variables to shocks in a single equation is illustrated with the use of the Generalised 

Impulse Responses. In order to facilitate a comparison with Chapters 2,3 and 4, as well as with 

the macroeconometric models in Garratt et al (1998,2001), the GIRs have been applied for the 

analysis of an oil price shock and a reduced-form shock in productivity, at. In the latter case, 

the GIRs have been computed for the underlying, symmetric system in (5.7), the parameters 

of which can be computed according to the relations below (5.9) using the estimates from the 

conditional and marginal models in (5.8) and (5.9), respectively. 

The effects of the oil price shock have been analysed within the following model 

Zt-1 

aý r »-1 
uzt= a+ + 3D2, t +I Q' OQ dl d2 

1t+Er 
Oz+ t+ ei , 

(5.11) 
Oa L {_l 

where P=2, zä = [y, xt, p ]', at is n+ x nd2, n+ = dim[zt ]= n+1, r, i=1,..., P-l, tyre 

n+ x n+ coefficient matrices and 0a and Op are blocks of zeros with dimensions (nx + 1) xr and 

rx1, respectively. The last row of (5.11), corresponding to the equation for Apt, was further 
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subject to the restrictions that the coefficients on d7lglt, d7lg2t and Ozt-i, i=1, ... $P - 1, 

are zero. The combination of these restrictions with weak exogeneity of p=, indicated by Oa, 

renders zt non Granger-causal for pt, which is modelled simply as a function of its own lagged 

values and the dummies d74g1t, d74q2t and d90g3t. 

The hypothesis that d7lqlt, d71g2t and Ozt_i, i=1,... ,p -1, do not enter the last row 

of (5.11) has been tested, given weak exogeneity of pt, within the marginal model for [xt, pf]'. 

The corresponding Wald statistic was found to be 5.28 with an asymptotic 95% critical value 

of 26.30, which provides very strong evidence in favour of these restrictions. The specification 

for the oil price equation used here is slightly different from the one in Chapters 2 and 3, and 

in Garratt et al (1998,2001), where the equation for Apt involved only an intercept. The 

hypothesis that all regressors apart from the intercept can be excluded from the last row of 

(5.11), however, is very strongly rejected as the respective statistic is 196.5 with an asymptotic 

95% critical value of 31.4. Thus, strictly speaking, the model in (5.11) does not allow for a 

direct comparison with the analysis of an oil price shock in Chapters 2 and 3 and Garratt et al 

(1998,2001), although, the responses are generally found to be very similar. 

5.4.1 Persistence Profiles 

Figures 5.6a and 5.6b plot the PPs for the five estimated long-run relations in (5.1), illustrating 

the speed with which a unitary deviation from these long-run equilibria is eliminated. As 

anticipated, they are all found to eventually converge to zero, thus, verifying the stationary 

nature of the over-identified cointegrating vectors. These profiles appear to be consistent with 

the general findings from the separate analysis of the AD and AS sub-systems in Chapters 2,3 

and 4. In the demand side of the economy, equilibrium is restored faster in the asset markets 
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than in the goods market, while the supply side returns to its long-run equilibrium strikingly 

slower, due to a profound sluggishness in wage setting. 

The joint analysis of AD and AS, though, results in slightly longer adjustment periods. The 

LM relation is restored by 95% within approximately 5 years, which is more or less consistent 

with the results in Chapters 2 and 3. However, it takes approximately 5.5 years for a 95% 

adjustment in the BP relation, which is faster than the 6 years reported in Chapter 2, but 

notably slower than the 2.5 years reported in Chapter 3. For the IS relation the same adjustment 

is found to take place in 7.5 years, compared to 6 years in Chapter 2 and 5 years in Chapter 3. 

The firms' employment setting rule (employment equation) is restored by 95% within 3.5 years, 

compared to 2 years in Chapter 4, while for the unions' wage setting rule (wage equation) the 

same adjustment is found to take place after 11.5 years, compared to 6.5 years in Chapter 4. 

The slower adjustment processes compared to the previous empirical Chapters, where the 

AD and AS long-run relations were investigated separately, could possibly be attributed to 

the increased complexity of the joint AD-AS model. A textbook analysis of AD and AS can 

provide a useful insight as to why the equilibrating process can take longer when AD and AS 

are jointly determined. However, given the typically substantial width of confidence intervals 

of Persistence Profiles, 7 it is quite possible that these differences are insignificant. 

5.4.2 Generalised Impulse Responses 

The GIR functions in (1.98) have been applied for the analysis of an oil price shock, similar to 

Chapters 2,3 and Garratt et al (1998,2001), and a reduced-form shock in productivity, at, as 

in Chapter 4. In the former case, the GIRs have been computed for the model in (5.11) and 

TSee, for example, Pesaran and Shin (1996) and Garratt et al (2001). 

179 



in the latter for the underlying, symmetric system in (5.7), the parameters of which can be 

computed according to the relations below (5.9) using the estimates from the conditional and 

marginal models in (5.8) and (5.9), respectively. 

Oil Price Shock 

This sub-section considers the effects of an oil price shock, that is, a typical shock by historical 

standards in the 15th equation of (5.11). The size of the shock is scaled to be equal to one 

standard error of e15, which is equal to F0-+j,, 
j5 = 0.1121. Although this value is similar to the 

one obtained in Chapters 2 and 3 and in Garratt et al (1998,2001), the nature of the shock 

is slightly different, due to the more dynamic specification of the oil-price equation in (5.11). 

On impact, the one standard error shock translates to a 44.8% increase in oil prices, which 

continue to rise over the next 5 quarters until they stabilise at +56.74%. The oil price equation 

considered in the previous chapters and the Garratt et al papers is a simple random walk with 

a drift and, thus, results in a comparable in magnitude but constant increase in oil prices over 

the full time horizon. Despite this difference, the responses are found to be very similar. 

Figure 5.7a plots the GIRs of the variables included in the AD sub-system. The first 

panel illustrates a familiar negative effect on both domestic and foreign output. Both variables 

are steadily reduced with the long-run effect being more negative in the case of Vt at -1.33%, 

compared to -0.7% in the case of yt . The second panel illustrates the effect on the three interest 

rate variables Rt, R; and LIt. All three are increased on impact with Rt rising by 15 basis 

points and R; and LIt by 7.6 and 4 basis points, respectively. After a short climb the domestic 

rate starts falling back to its pre-shock value and the long-run effect is found to be marginally 

negative at -1.2 basis point. The foreign rate continues to climb and eventually stabilises at 
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+23 basis points, while the domestic long-term rate remains fairly constant around its impact 

level of +4 basis points. The third panel plots the responses of the real money supply and the 

real exchange rate. On impact they are both reduced by approximately 0.5%. The real money 

supply continues to drop and stabilises at -2.74%, while the real exchange rate, having reached 

a low of -2.63% in the 9th quarter, starts recovering and stabilises at 0.004% above its pre-shock 

levels 

A comparison with the responses in Figures 2.9,2.10a, 2.10b and 3.11 reveals many simi- 

larities with Chapters 2 and 3, although the effects on the interest rate variables appear to be 

more consistent with Chapter 2 and Garratt et al (1998,2001) than with Chapter 3. As noted 

in Chapter 3, this is probably due to the absence of domestic prices from the AD sub-system 

considered in that chapter, which may, to some extent, be compensated here by the explicit 

modelling of the supply side. The inclusion of AS also appears to have increased (in absolute 

value) the long-run elasticity of yt with respect to oil prices from -0.006 in Chapter 3 to approx- 

imately -0.03. This value is much closer to -0.05, reported in Chapter 2 and -0.04 in Garratt 

et al (1998), where prices are explicitly modelled. The persistent gaps between yt and Vt and 

Rt and Rt*, though, are in contrast with the two studies by Garratt et at (1998,2001) and, as 

already mentioned in Chapters 2 and 3, are caused by the absence of an output gap relation 

and the weaker version of UIP considered here. 

Figure 5.7b plots the GIRs for the AS variables. On impact the oil price shock reduces 

the wage variables and employment by approximately 0.23%. The real wage and the fallback 

wage are further reduced in the medium term but quickly recover in the eighth quarter. They 

°This recovery of the real exchange rate is coincidential and should not be confused with stationarity associated 
with absolute PPP. Different types of shocks are more clearly found to have a persistent effect, as will be shown 
later. 
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continue to oscillate around zero and stabilise at around -0.008% and -0.010%, respectively. 

Employment on the other hand, despite a short-lived recovery in the second quarter, continues 

to drop and in the long run it is reduced by 1.4%. Alternative employment, nL , is reduced 

on impact by 0.08% and continues to drop to its long-run value of -2.93%. Unemployment is 

curiously found to fall on impact by 0.8% and continues to drop for a further three quarters, 

reaching a low of -5.9%. Thereafter, the negative effect is rapidly reduced, turning positive in 

the ninth quarter and eventually stabilising at +2.07%. 

The overall effects described in Figures 5.7a and 5.7b appear to be generally consistent with 

a period of stagflation, characterized by reduced levels of output and employment, increased 

unemployment and interest rates and a temporarily reduced competitiveness. The very small 

negative effect on the real wage could be a reflection of the historical resistance to below- 

inflation adjustments in nominal wage setting, while the fall in union membership, nt*, appears 

to be consistent with the view that, in periods of reduced economic activity, workers are more 

willing to sacrifice the benefits of union membership in exchange for a higher probability of 

employment. 

Productivity Shock 

As in Chapter 4, this section considers the effects of a reduced form shock in productivity, i. e. 

a shock in the 14th equation of (5.7). The size of the shock is again scaled to be equal to 

w1414 = 0.00821, which is very similar to the value reported in Chapter 4 (0.00853) and, 

thus, makes a quantitative comparison possible. 

Figure 5.8a illustrates the effects of the shock on the variables describing the AS sub- 
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system. 9 A comparison with Figure 4.8 in Chapter 4 immediately reveals strong similarities, 

even quantitatively. The one standard error shock translates to a 3.3% rise in at. The impact 

effect is an increase in wages and fallback wages by 1.04% and 1.07%, respectively. This is 

associated with a 0.6% fall in employment and a 0.4% fall in alternative employment levels, 

while unemployment is reduced by 0.08%. The wage variables continue to move closely together 

following a generally upward course in the medium run. The long-term effect on the real wage 

and the fallback wage is an almost identical increase by 2.78% and 2.72%, respectively. Actual 

employment quickly recovers from the negative impact effect and remains quite close to its pre- 

shock level, with a very small long-run increase of +0.01%. Alternative employment appears 

to be rising rather steadily to its long-run value at +0.4%. In the medium run unemployment 

appears to be falling steadily and reaches a minimum at -9.5%. However, the long-run effect is 

found to be a bit smaller at -8.7%. 

These effects appear to be very similar to the ones obtained in Chapter 4, indicating the 

robustness of the estimated AS sub-system. Again, the GIRs are found to be consistent with 

the intuitive view that improvements in production technology (increases in productivity) can 

sustain both higher real wages and lower levels of unemployment. Also, the rise in nt appears 

to be consistent with the view expressed in the discussion of the oil price shock above, namely 

that union membership tends to be negatively related to the unemployment rate. 

Figure 5.8b plots the GIRs for the variables describing the AD sub-system. In the first 

panel the positive productivity shock is shown to increase both domestic and foreign output. 

The impact effect is a rise by 2.96% for yt and a more moderate increase of 0.56% for yt , 

while the respective long-run effects are found to be +2.94% and +1.34%. The second panel 

9The GIR for unemployment is scaled by 0.25. 
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illustrates the effects on the interest rate variables. On impact, Rt and LIt are reduced by 

2 and 6 basis points respectively, while Rt* is marginally increased by 0.4 basis points. The 

foreign rate continues to rise in the medium run until it stabilises at +24 basis points. The 

domestic short-term rate initially drops by 16 points in the second quarter, but thereafter it 

starts to close the gap with the foreign rate. The effect turns positive in the fourth quarter 

and in the long-run it stabilises at +13 basis points. The domestic long-term rate LIt, on the 

other hand, is eventually reduced by 7 basis points, having reached a minimum at -13 basis 

points in the second quarter. The third panel depicts the effects on the real money supply 

and the real effective exchange rate. On impact both these variables are increased by 1% and 

1.5%, respectively. The real money supply continues to rise and stabilises at +2.14%, having 

overshot its long run value in the seventh quarter. The path of the real exchange rate is found 

to be more dramatic. After some oscillation between +0.05% and +2% during the first year, it 

eventually stabilises close to its impact value at +1.15%. 

The overall effects described in Figures 5.8a and 5.8b appear to be consistent with a boom- 

ing economy, characterized by increased output, real wages and competitiveness and reduced 

unemployment and long-term interest rates. 

5.5 Conclusions 

This chapter attempted to carry out a joint empirical investigation of the AD and AS long- 

run equilibria in (5.1) within a single cointegrating VAR(p), as a complement to the separate 

analysis of the AD and AS sub-systems in Chapters 3 and 4. The discussion in the empirical 

section highlighted some of the difficulties associated with statistical inference within a relatively 
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large system. In particular, the bootstrap cointegration rank tests appeared to be making too 

large a correction, which resulted in a very low estimate of r. Such limitations of bootstrap 

methods in large systems were recently discussed in Greenslade et al (2002), who strongly 

advise the reduction of the model's dimensions at an early stage by, e. g., conditioning on weakly 

exogenous variables. However, it appears that even the size of the conditional model considered 

here is large enough to seriously distort the performance of the tests.. As a consequence, 

statistical inference was in large part guided by the results obtained from the sub-systems in 

Chapters 3 and 4. 

To the extent that there are five cointegrating relations that satisfy the over-identifying 

restrictions imposed by the underlying theory, the estimates appear to be very similar to Chap- 

ters 3 and 4. All coefficients are found to carry the right sign, are of comparable magnitude to 

those in Chapters 3 and 4, and there is again evidence in favour of a reduced mean in the BP 

disequilibria during the pre-1973 period. 

The Persistence Profiles appear to be consistent with the general findings from the separate 

analysis of the AD and AS sub-systems in Chapters 2,3 and 4. In the demand side of the 

economy, equilibrium is restored faster in the asset markets than in the goods market, while the 

supply side returns to its long-run equilibrium strikingly slower, due to a profound sluggishness 

in wage setting. However, the adjustment processes were found here to last a bit longer, which 

could be due to the increased complexity of the model, or simply the consequence of the typically 

wide confidence bands of such profiles. 

Finally, the GIR analysis illustrated that the model possesses reasonable dynamic properties. 

The responses of the AD variables to an oil price shock were found to be quite similar to 

Garratt et al (1998,2001) and Chapter 2, indicating that the addition of a supply side to 
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the AD sub-system of Chapter 3 is, to some extent, compensating for the absence of prices. 

The overall effects of an oil price shock were found to be generally consistent with a period of 

stagflation, characterized by reduced levels of output and employment, increased unemployment 

and interest rates and a sustained period of reduced competitiveness. The responses of the AS 

variables to a productivity shock were found to be very similar to Chapter 4, indicating the 

robustness of the AS sub-system. The overall effects of the productivity shock are consistent 

with a booming economy, characterized by increased output, real wages and competitiveness 

and reduced unemployment and long-term interest rates. 
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Conclusions 

The primary aim of this thesis was to apply the Long-Run Structural Cointegrating 

VAR approach, developed within the ESRGCambridge research project Structural 

Modelling of the UK Economy within a VAR Framework using Quarterly and Monthly 

Data, in order to empirically investigate UK Aggregate Demand and Supply. This 

application was intended to complement the recently developed macro-econometric 

model of the UK in Garratt et al (1998,2001), by addressing the issue of structural 

change and the explicit modelling of the supply-side of the economy. It was further 

hoped to provide a practical solution to the convergence problems, typically encountered 

in the application of simulation methods for inference on the cointegrating parameters. 

Finally, it was intended to make an informal comparison of the estimated models with 

those in Garratt et al (1998,2001), using Persistence Profiles and Generalised Impulse 

Responses. 

The theoretical basis for the analysis of the demand-side of the UK economy was 

provided by a fairly standard version of the small-open-economy IS-LM model. For the 

reasons discussed in Chapter 2, the empirical analysis focused primarily on the 

identification and testing of the IS, LM and BP long-run equilibria. The evidence 

presented in Chapters 2,3 and 5 suggest that, having accounted for sample size, it can 

be reasonably argued that, in the long run, UK Aggregate Demand is consistent with the 

IS-LM-BP theory. 

Furthermore, the empirical analysis in Chapters 3 and 5 indicated that these 

relations, and in particular the BP, may not have been stable throughout the period 

1965g1-1998g2. The issue of structural change in the cointegrating relations was 

addressed by utilising the techniques proposed by Johansen and Nielsen (1994), Hansen 

(2000) and Johansen, Mosconi and Nielsen (2000). The analysis focused only on a 

specific type of structural change in the form of a time-varying mean in the cointegrating 

relations, caused by the different exchange rate regimes within the ' sample period. The 

evidence obtained from the analysis of both the AD sub-system in Chapter 3 and the 

187 



complete AD-AS model in Chapter 5 revealed a significantly lower mean in the BP 

relation during the pre-1973 period of fixed exchange rates. Such an effect could be 

consistent with a reduced risk premium in the UIP condition, or/and a reduced error in 

exchange rate expectations, resulting from 
. the relatively higher predictability of 

exchange rate movements before 1973. The importance of such an effect on the BP 

relation was illustrated in Chapter 3 with the use of Persistence Profiles. These indicated 

that taking account of this type of structural change leads to an improvement in the 

mean-reverting properties of the BP-relation. 

The empirical analysis of the supply-side of the UK economy was based on the 

Lee and Pesaran (1993b) sectoral model of the labour market. The aggregation and 

identification problems that arise when analysing this type of model using aggregate data 

were overcome following the approach in Lee and Papaikonomou (2002). The evidence 

obtained from the AS sub-system in Chapter 4, as well as the complete AD-AS model in 

Chapter 5, indicated that the long-run structure suggested by the underlying theory is 

consistent with the data. 

The empirical analysis has paid particular attention to the well-documented 

small-sample bias associated with asymptotic inference within the chosen econometric 

framework. This issue was addressed with the use of recently developed simulation 

methods suggested by, inter alia, van Giersbergen (1996), Mantalos and Shukur (1998), 

Gredenhoff and Jacobson (1998), Fachin (2000), Jacobson et al (2001) and Greenslade et 

al (2002). To the extent that these techniques are reliable, they reveal a substantial 

finite-sample bias comparable with existing research. This adds to the rich literature 

that illustrates the limitations of asymptotic inference in applied research and highlights 

the need for controlling for sample size. 

However, the application of these methods for finite-sample inference on the 

cointegrating parameters has frequently been compromised by convergence problems 

that -tend 
to arise when using conventional optimisation algorithms. Chapter 3 

introduced the use of the global optimisation algorithm Simulated Annealing (SA), 

discussed in Goffe et al (1994) and adapted to Gauss by Tsionas (1995), as a practical 
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means for overcoming these difficulties. The use of SA was shown to improve on the 

existing approach, in particular, when the over-identified cointegrating matrix involves a 

large number of free parameters. 

The application of simulation methods to the complete AD-AS model in Chapter 

5 also illustrated some of the limitations of these methods within large systems, recently 

discussed by Greenslade et a1 (2002). The empirical analysis indicated that inference 

within large systems should be guided by the more reliable evidence obtained from 

smaller sub-systems and the use of economic theory, as suggested in Garratt et al (2000). 

The dynamic properties of the estimated systems were illustrated with the use of 

Persistence Profiles and Generalised Impulse Responses. The former verified that 

equilibrium is restored faster in the demand-side of the economy, as the supply-side was 

found to suffer from the typical sluggishness of labour markets. Adjustment in the three 

components IS, LM and BP of Aggregate Demand was found to last between 2 and a 

half and 6 years, with equilibrium being restored faster in the financial markets than in 

the goods market. The introduction of structural change of the type considered in 

Chapter 3 was shown to increase the speed with which the BP relation is restored by a 

factor of 3. This illustrates the important role of this modification for the BP relation, 

although the IS and LM relations seem to be unaffected. 

In the AS sub-system, long-run equilibrium was found to be restored in 

approximately 7 years. This slow rate of adjustment was found to be due to the sluggish 

reaction of labour supply, which was reported to be approximately 3 times slower than 

the reaction of labour demand. 

The evidence from the joint analysis of AD and AS in Chapter 5 is generally 

supportive of the results obtained from the separate AD and AS sub-systems. However, 

adjustment periods are found to be longer, with equilibrium in AD and AS being 

restored in approximately 7 and 11 years, respectively. This strong persistence of 

disequilibriating shocks suggests great caution when evaluating economic policy, 

especially with regard to the labour market, as the full effects of such intervention can 

only be appreciated after long periods of adjustment. 
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The GIR analysis indicated that the estimated systems possess reasonable 

dynamic properties, consistent with mainstream economic theory. The estimated effects 

of foreign interest rate and oil-price shocks were shown to be similar to those reported in 

Garratt et a1 (1998,2001). These similarities were found to be stronger in Chapter 2, 

where prices were explicitly modelled, and Chapter 5 that possessed a complete AD-AS 

long-run structure. A positive oil-price shock was shown to result in stagflation, 

characterised by reduced levels of output and employment, increased unemployment and 

interest rates and a sustained period of reduced competitiveness. The analysis also 

considered the effects of a positive productivity shock. These were found to be consistent 

with a booming economy, characterised by increased output, real wages and 

competitiveness and reduced unemployment and long-term interest rates. 

This thesis also highlighted a number of areas that need to be further 

investigated. Although the approach taken in Chapter 3 regarding the effects of different 

exchange rate regimes was shown to be a useful extension, it is in many respects over- 

simplified and rather limited in scope. Structural change need not be limited to a shift in 

the mean of the cointegrating relations and could affect all cointegrating parameters, as 

well as the short-run dynamics. Hansen (2000), for example, provides the framework for 

identifying and controlling for such effects. 

The empirical analysis illustrated how simulation methods can provide a useful 

tool for obtaining model-specific critical values. However, several limitations were 
identified in the application of these methods within large systems. This indicates that 

they should not be treated as a panacea and suggests great caution in interpreting 

simulation-based results. Although Greenslade et a1 (2002), for example, present more 
formal evidence in favour of a negative relation between the performance of bootstrap 

tests and the size of the model, the details of this relation remain to be established. 
Persistence Profiles and Generalised Impulse Responses were used here in order 

to illustrate the dynamic behaviour of the estimated systems and compare them with 
those of the models in Garratt et al (1998,2001). However, this allowed only for an 
informal comparison. It would be worthwhile to pursue a more formal comparison in the 
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future using, for example, the non-nested testing techniques in Pesaran and Weeks 

(2001). In addition, the use of GIRs need not be restricted to the evaluation of 

exogenous shocks such as increases in oil-prices. Using an appropriate economic 

framework they may be further applied for policy evaluation, as in Garratt et al (2001). 
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Tables to Chapter 2 

Table 2.1a - ADF(k) Tests Applied to the Levels of the Variables: 1965g1-1998g2 

Variable ADF 0 ADF 1 ADF 2 ADF 3 ADF 4 95% c. v. 
Yt -2.1986s -2.2302 -2.4363 -3.0949'1, H -3.0440 -3.4437 
Y; -3.0648 -2.9324 S, H -2.9711 A -3.0107 -2.9876 -3.4437 
Pt 2.0075 -0.4412 AS" -0.5219 -0.7384 -0.7616 -3.4437 
pý 1.9045 0.1536 -0.2324 -0.7178 AsH -0.5884 -3.4437 

A0 -1.0083 As" -1.0618 -0.8915 -0.9816 -0.9483 -3.4437 

A -P ° -1.6707A5H -1.6719 -1.4473 -1.5179 -1.4459 -3.4437 

pA - p1 -1.3520'ßs" -1.3731 -1.1708 -1.2281 -1.1792 -3.4437 
el -1.0225 -1.5910AS" -1.4627 -1.4492 -1.5305 -3.4437 
M, -0.0702 -0.3955S -0.5416 -0.7128 -1.0774'ß-H -3.4437 
LI, -1.3864 -1.6825 ASH -1.5481 -1.6387 -1.5880 -2.8830 
Rr -2.3322s -2.6350A, H -2.7181 -2.4223 -2.5627 -2.8830 
4 -1.3379 -2.5241 s"H -2.3390 -2.8280 A -2.8052 -2.8830 
mt -P, -1.0077 -1.110i s -1.2140 A, H -1.2884 -1.3294 -2.8830 
e, - Pr + Pr -1.4856 

s 
-1.9201 

A. H -1.8909 -1.9854 -2.0469 -2.8830 

Notes: The ADF regressions include an intercept, a linear trend and k lagged first-differences of the 
dependent variable, with the exception of LI,, R1,4, m1- pt and e, -p, + pp , where the linear time trend 

was omitted. The superscripts A, S and H indicate the choice of the Akaike Information, the Schwarz 
Bayesian and the Hannan-Quinn criteria respectively. 

Table 2.1b - ADF(k) Tests Applied to the Differences of the Variables: 1965g1-1998g2 

Variable ADF 0 ADF 1 ADF 2 ADF 3 ADF 4 95% c. v. 
AY, -11.649 s. H -7.7905 -5.2403 A -5.0235 -4.6373 -2.8830 
Ay' -7.20585-H -5.2314A -4.3036 -4.0121 -4.0633 -2.8830 
Apt -3.2842 AsH -2.9834 -2.5525 -2.4540 -2.4142 -2.8830 
o2pt -13.0245 -10.201 A, H -8.0338 -6.7859 -6.9984 -2.8830 

r Apt -5.0132 -3.5513 -2.5571 ASH -2.6463 -2.6948 -2.8830 
-16.578 -13.02645H -8.5002 -6.8527 -6.8399 -2.8830 

npt -11.090 ASH -8.6976 -6.4450 -5.6448 -5.5210 -2.8830 
A(pt - p°) -11.508S -9.1265 A"H -6.7899 -6.0328 -5.9647 -2.8830 
0(pr - pt) -11.337 ASH -8.9827 -6.7336 -5.9049 -5.8058 -2.8830 
net -9.4357 ASH -7.6057 -6.3522 -5.3408 -5.2084 -2.8830 
Am, -8.6712 -6.0697 -4.6937 -3.4163 -2.5439'5" -2.8830 
AFMI -18.557 -13.602 -12.473 -11.527'5" -7.3596 -2.8830 
AL1, -9.5670'5" -8.0147 -6.1250 -5.5881 -5.5008 -2.8830 
AR, -10.395 ASH -7.6365 -7.3060 -5.8991 -6.1002 -2.8830 
Apt -7.0240'5" -6.5233 -4.9318 -4.6830 -4.3328 -2.8830 
A(mr - pl) -8.4194S -5.7496A, H -4.6776 -4.0858 -3.3887 -2.8830 
A(e, - pA + A) -9.9002 

ASH -7.6715 -6.2344 -5.3740 -5.6216 -2.8830 

Notes: The ADF regressions do not include a linear trend. 

193 



Tables to Chapter 2 

Table 2.2a - Phillips-Perron Unit Root Tests Applied to the Levels: 1965g1-1998g2 

Variable PP(O) PP(5) PP(i0) PP(i5) PP(20) 95% c. v. 
y, -2.0125 -1.9115 -2.1191 -2.3504 -2.4729 -3.4437 

y; -3.1487 -2.5197 -2.8776 -3.4576 -4.5355 -3.4437 

pt 2.4046 1.3177 1.2131 1.1976 1.1997 -3.4437 

p 2.2908 1.2600 1.1002 1.0561 1.0584 -3.4437 

pt -1.1497 -0.9209 -0.8981 -0.8913 -0.8979 -3.4437 

Pt -ho -2.0434 -1.5433 -1.4628 -1.4333 -1.4371 -3.4437 
p; _ pto -1.5269 -1.2071 -1.1782 -1.1694 -1.1795 -3.4437 

ei -0.9967 -0.8554 -0.8014 -0.8337 -0.8701 -3.4437 
-0.0731 -0.0501 -0.0442 -0.0452 -0.0492 -3.4437 

LI, -1.0903 -1.2094 -1.3320 -1.4764 -1.6651 -2.8830 
Rt -2.4537 -2.4243 -2.6147 -3.0443 -3.1199 -2.8830 
l -1.0214 -0.9888 -1.1045 -1.2441 -1.3741 -2.8830 

mi -pr -0.9619 -0.8054 -0.8178 -0.8249 -0.8377 -2.8830 
e, _ p, + p, -1.3962 -1.4286 -1.5531 -1.5211 -1.5143 -2.8830 

Notes: PP(t) denotes Phillips and Perron (1988) unit root statistic based on the Bartlett window of size 
f. The underlying DF regressions in the calculation of the PP statistics include an intercept and a linear 

time trend with the exception of LI,, R,, R, m1 _ pt and e, -A+A, where the linear time trend was 

omitted. 

Table 2.2b - Phillips-Perron Unit Root Tests Applied to the Differences: 1965g1-1998g2 

Variable Pp(o) PP(5) PP(1O) PP(15) PP(20) 95%c. v. 
eyl -8.5836 -8.5356 -9.6319 -9.6814 -9.6328 -2.8830 
Aye -5.9349 -6.5592 -6.9122 -6.9394 -7.0686 -2.8830 
Apt -2.4028 -3.3850 -4.1404 -3.9750 -4.3146 -2.8830 
A2A -10.586 -13.343 -12.747 -12.708 -12.356 -2.8830 
ßp0 -2.2306 -3.6747 -4.1455 -4.3850 -4.6276 -2.8830 
e2 -7.0465 -13.182 -15.721 -17.107 -17.769 -2.8830 
epo -8.6986 -8.5824 -8.4633 -8.5043 -8.8214 -2.8830 
A(Pr -Pro) -8.8082 -8.7135 -8.6284 -8.6643 -8.9342 -2.8830 
A(pl; -pt) -8.8867 -8.6854 -8.5456 -8.5640 -8.8362 -2.8830 

-8.8504 -12.523 -13.391 -14.496 -16.437 -2.8830 
Amt -6.1371 -6.0827 -5.3362 -4.9689 -4.7491 -2.8830 __ A2ml -13.334 -15.177 -14.264 -14.569 -16.287 -2.8830 
ALI, -7.4983 -8.3757 -8.4591 -8.9220 -9.5811 -2.8830 
ARI -10.707 -13.956 -15.181 -14.383 -14.817 -2.8830 
, &Rt -5.5813 -6.5222 -7.2244 -7.8973 -8.0793 -2.8830 
7&(Mt - pg) -6.1472 -5.7794 -5.1055 4.8621 4.6828 -2.8830 
A(e, - p, + P,; ) -9.1007 -12.490 -12.681 -13.309 -14.837 -2.8830 

Notes: The underlying DFregressions in the calculation of the PP statistics include only an intercept. 
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Tables to Chapter 2 

Table 23 - Adjusted Likelihood Ratio Tests and Model Selection Criteria for the Choice of the Lag- 
Length 

Adjusted Likelihood Rat io Tests 
Ho H, Statistic p-value 

p=0 p=4 2316.0 . 000 

=1 p=4 285.15 . 033 

=2 p=4 179.20 . 168 
=3 p=4 86.08 . 329 

AIC SBC Order 
2942.9 2916.8 P=O 
4279.3 4135.8 =1 s. A 
4272.2 4011.4 P=2 
4256.2 3878.0 
4235.3 3739.7 =4 

Notes: Based on an unrestricted VAR(4) with an intercept and a linear time trend in the level of 

z, =[m, - p� y,, R,, R, ', LI�e� p, - p, *, p, - p, ', y, ]' " 
The superscripts S and A indicate the choice of the 

Schwarz Bayesian Criterion (SBC') and the Akaike Information Criterion (AIC) respectively. 

Table 2.4a - Cointegration Rank Statistics for the Marginal Model in the Weakly Erogenous Vector 
x, = IR, 

, P, -p,, y, ]' 

Trace Max 
Ho Hl Statistic 95% cv 90% cv Statistic 95% cv 90% cv 

r-0 r =l 53.19 39.33 36.28 28.15 24.35 22.26 

r: 5 I r=2 25.04 23.83 21.23 16.00 18.33 16.28 

r52 r=3 9.04 11.54 9.75 9.04 11.54 9.75 

Notes: "Trace" and "Max" stand for the Pesaran Shin and Smith (2000) modified versions of Johansen's 
(1988) cointegrating rank statistics. Based on an unrestricted trend cointegrating VAR(2) in the vector x, 

augmented by one lagged difference of the vector y, = [m, - p,, y� R,, LI,, e� p, - p, y. 

Table 2.4b - Cointegration Rank Statistics for the Marginal Model in the Weakly Exogenous Vector 

xr = [P, -P Y10 ]' 
Trace Max 

Ho H, Statistic 95% cv 90% cv Statistic 95% cv 90% cv 
r=0 r =l 18.68 23.83 21.23 12.67 18.33 16.28 
r5 l r=2 6.01 11.54 9.75 6.01 11.54 9.75 

Notes: Based on an unrestricted trend cointegrating VAR(2) in the vector x, augmented by one lagged 

difference of the vector y, =[mr -P,, y,, R,, Rt, LI,, er, p, -Pr l' 

See also the Notes to Table 2.4a. 
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Table 2.5-Model Selection Criteria for Alternative Choices ofp, r and Trend/Intercept Specifications 

AIC SBC HC 
Case IV Case V Case IV Case V Case IV Case V 

p=1 r 
0 3569.9 3573.8 3539.4 3533.2 3557.5 3557.3 
1 3610.7 3610.7 3557.1 3548.4 3588.9 3585.4 
2 3639.8 3640.7 3565.9 3559.5 3609.8 3607.7 
3 3660.5 3660.8 3569.2 44 3563.7 3623.44- 3621.3 
4 3666.0 3666.9 3560.2 3556.8 3623.0 3622.2 
5 3667.6 3669.5 3550.3 3549.3 3619.9 3620.7 
6 3669.0 3670.4 3543.0 3542.9 3617.8 3618.5 
7 3670.7 3670.7 P 3538.8 3538.8 3617.1 3617.1 

p=2 r 
0 3610.7 3612.0 3489.0 3480.2 3561.2 3558.5 
1 3626.8 3628.0 3481.9 3474.5 3567.9 3565.6 
2 3642.2 3643.6 3477.0 3471.1 3575.1 3573.5 
3 3651.0 3653.0 3468.5 3464.6 3576.8 3576.4 
4 3657.9 3659.8 3460.9 3458.4 3577.8 3577.9 

L 

5 3664.2 3665.4 3455.5 3453.9 3579.4 3579.4 
6 3668.7 3668.1 3451.4 3449.3 3580.4 3579.2 
7 3670.1 3670.1 3447.0 3447.0 3579.4 3579.4 

p=3 r 
0 3583.8 3584.3 3370.9 3361.2 3497.3 3493.7 
1 3613.5 3614.8 3377.4 3369.9 3517.6 3515.3 
2 3625.0 3627.1 3368.5 3363.4 3520.8 3519.9 
3 3637.3 3638.7 3363.4 3359.1 3526.0 3525.1 
4 3645.6 3645.9 3357.3 3353.3 3528.4 3527.0 
5 3652.5 3651.2 3352.6 3348.4 3530.6 3528.2 
6 3656.5 3656.0 3347.9 3346.0 3531.1 3530.0 
7 3657.6 3657.6 3343.1 3343.1 3529.8 3529.8 

p=4 r 
0 3576.2 3575.6 3271.9 3261.2 3452.5 3447.9 
1 3604.4 3603.3 3276.9 3267.1 3471.3 3466.7 
2 3615.4 3614.5 3267.6 3259.6 3474.1 3470.3 
3 3623.1 3623.0 3258.0 3252.1 3474.8 3472.3 
4 3629.8 3628.6 3250.1 3244.6 3475.5 3472.6 
5 3635.2 3633.5 3244.0 3239.4 3476.3 3473.3 
6 3639.7 3638.9 3239.8 3237.5 3477.2 3475.8 
7 3639.3 3639.3 3233.6 3233.6 3474.4 3474.4 

Notes: Based on a cointegrating VAR(p) in y, p, , y', R, , R; , LI,, e,, pý - pý ' conditional on the 
weakly exogenous vector x, _ [p, - p, ", y, ]'. Case N stands for the unrestricted intercepts and restricted 
trends specification and Case V refers to the unrestricted intercepts and trends specification. Bold face 
indicates a maximum given p, and "+" indicates global maximum. 
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Table 2.6 - Likelihood Ratio and Adjusted Likelihood Ratio Tests for the Restriction of the Trend 

Coefficients According to c 1= -II,, y 

rank(II) 1 LR-Statistic ALR-Statistic X2 ,, o. os 
1 

r= 0 16.6 ** 14.990 ** 14.067 

r =1 14.4 ** 12.773 ** 12.592 

r=2 12.8** 11.176** 11.070 

r=3 12.0 ** 10.337 ** 9.488 

r=4 9.8 ** 8.348 ** 7.815 

r=5 6.4 ** 5.404 5.991 

r=6 0.8 0.671 3.841 

Notes: "**" and "*" indicate significance at the 5% and 10% levels, respectively. 

Table 2.7 - Likelihood Ratio Tests for the Presence of Unitary Cointegrating Vectors 

Variable Likelihood Ratio Statistic 
mr -Pt 55.32 50.00 34.03 26.92 23.64 18.11 

yt 47.42 45.28 29.96 22.71 19.79 15.28 
R1 37.70 34.31 24.94 17.18 15.39 15.38 

4 32.22 29.39 23.10 17.70 12.54 7.82 

LI, 40.63 37.23 21.54 17.01 14.54 10.65 

et 46.29 43.91 27.57 19.76 16.87 12.91 

A_ p0 46.21 41.59 27.83 20.78 17.13 12.70 

Pr -Pi 52.49 47.14 30.74 22.99 21.67 16.34 

Y; 47.79 44.86 29.10 21.80 19.29 15.77 

rank(II, ) r=1 r=2 r=3 r=4 r=5 r=6 

95% c. v. 16.92 15.51 14.07 12.59 11.07 9.49 

Notes: The null hypothesis is of stationarity and it is conditional on the number of cointegrating vectors, r. 
Statistics in italic signify failure to reject the null at the 5% level. 
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Table 2.8a - Adjusted and Non-Adjusted Cointegration Rank Statistics 

Trace Max 

Ho H, Statistic 95% cv 90% cv Statistic 95% cv 90% cv 

r= 0 r =1 
258.83 177.79 171.62 

64.24 
57 53 

55.83 52.69 
231.78s . s 

r51 r=2 
194.58 141.73 136.21 

58.84 
52 69 50.10 47.08 

174.25s . s 

r52 r=3 
135.74 108.90 103.71 41.59 

37 25 43.72 40.94 
121.56s s . 

r53 r=4 
94.15 
84.31 s 

81.20 76.68 
33.79 
30.26s 

37.85 35.04 

r54 r=5 
60.36 
54.06s 56.43 52.71 

28.56 
25.57s 31.68 29.00 

r55 r=6 
31.81 
2848s 

35.37 32.51 
21.12 
18.91 s 

24.88 22.53 

rS6 r=7 
10.57 

s 
18.08 15.82 69 10.57 

s 
18.08 15.82 

J' Notes: Based on a restricted trend cointegrating VAR(2) in y, p,, y, , R� Rý , LI1, e, 'PI-P. 

conditional on the weakly exogenous vector x, = [p, * - £V' , y, ']' " "s" denotes scaled according to the Reinsel 

and Ahn (1988,1992) scaling factor (T - ny p)/T. 

See also the Notes to Table 2. Sa. 

Table 2.8b - Cointegration Rank Statistics and Finite-Sample Critical Values 

Trace Mal 

Ho H, Statistic 95% cv 90% cv Statistic 95% cv 90% cv 

=0 r =1 258.83 
212.29 p 204.55 p 64.24 66.77 p 63.00 p 

r 211.75 n 203.93 n 66.10 n 62.48 n 

51 r=2 194.58 175.18 p 167.39 p 58 84 61.45 p 57.61 p 
r 170.19 n 163.73 n 59.43 n 56.11 n 

52 r= 3 135.74 
137.47 p 130.61 p 41.59 54.50 p 51.06 p 

r 132.29 n 126.35 n 51.84 n 48.80 n 

=4 15 94 106.61 p 10103 p 33 79 4839 p 45.13 p 
r53 . 99.54 n 94.81 n . 43.93 n 41.25 n 

54 

F 

60.36 70.38 p 66.48 p 28.56 37.53 p 34.94 p 
r 68.83 n 64.83 n 36.78 n 34.28 n 

81 31 42.27 p 39.63 p 21 12 29.13 p 26.71 p 
r55 . 42.48 n 39.48 n . 29.07 n 26.71 n 
-; -6 

r=7 10.69 22.00 p 19.76 p 10.69 22.00 p 19.76 p 
r 22.31 n 20.05 n 22.31 n 20.05 n 

Notes: The critical values are based on a bootstrap with 10,000 simulations. "p" and "n" denote parametric 
and non-parametric bootstrap, respectively. 
See also the Notes to Table 2.8a. 
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Table 2.9 - Likelihood Ratio and Adjusted Likelihood Ratio Tests for the Imposition of Over- 
Identifying Restrictions on the Cointegrating Parameters 

Restriction log-likelihood LR-statistic ALR-statistic 95% C. V. 90% c. v. 
RE 3793.90 

- - - - 
Rove 3781.50 24.79 [12] ** 21.54 [12] ** 21.03 18.55 

ROY2 3781.43 24.93 [13] ** 21.66 [13] * 22.36 19.81 

Notes: RE : Any set of r2 exactly identifying restrictions. 
Rovl : R0 

2 less the zero restriction on the trend coefficient in the PPP relation. 
ROV2 : The full set of the 13 over-identifying restrictions implied by theory. 

LR and ALR stand for Likelihood Ratio and Adjusted Likelihood Ratio respectively. Both tests are 
asymptotically chi-squared with degrees of freedom equal to the number of over-identifying restrictions 
given in square brackets. "**" and "*" indicate significance at the 5% and 10% levels, respectively. 

Table 2.10 - Estimated Cointegrating Vectors under Rove 

Variables LM IS BP ppp 
mý -Pt 1.00 

1-1 - - - 

yt -2.71 ** 1.00 -0.54 ** - 
-2.6 -2.25 

R, 28.20 ** - 1.00 
_ 4.44 

R t - - -1.00 
1-1 - 

LI, - 9.57 * 
- - 1.90 

e, - -0.09 0.43 1.00 
-0.21 1.52 

pl -p, - 0.09 -0.43 -1.00 0.21 -1.52 

Pr Pi - -0.09 0.43 0.94 ** 
-0.21 1.52 37.3 

yt - -0.83 ** 0.17 
- -19.8 1.19 

t 0.016 ** 0.002 ** _ 2.89 2.60 

Notes: t-ratios are given in square brackets. "*" and""" indicate significance at the 10% and 5% levels 
respectively. 
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Table 2.11 - Error Correction Specification 

Equation A M, -P) Ay, ARg 0R ALI, Ae, t(p, - P, ) 

A 038 ** -0 -0.010 -0.004 0.004 ** 0.004 ** -0.031 -0.0001 
E l, t-1 

. (-3.19) (3.25) (2.75) (-0.94) (-0.02) 

089 -0 0.033 -0.011 -0.019 ** -0.030** 0.212 0.075 ** 

E 2, t-1 
. (-1.42) (0.71) (-0.82) (-3.09) (-4 23) (1.20) (2.07) 

A -0.341 * 0.428 ** -0.117 ** -0.057 ** -0.086 ** 0.459 0.069 

E 3, t-1 (-1.88) (3.14) (-3. (04) (-3.27) (-4.24) (0.90) (0.67) 

A 0.147 * -0.152 0.047 ** 0.027 ** 0.041 ** -0.257 -0.005 
E 4,1-1 (1.80) (-2.49) (2.73) (3.50) (435) (-0.10) 

&(m -p -0.179 * 0.040 0.009 0.020 ** -0.004 0.164 0.110 ** 
08 2 , l , -1.95 0.58 0.47 (2.32) (-0.34) (0.63) . 

oy -0.042 -0.139 -0.057 ** -0.001 -0.022 -0.546 1 58 
-0.030 43) (-0 

l_1 (-0.34) (-1.51) (-2.19) (-0.10) . 1.64 . ) (- . 

ý 0.257 0.225 0.091 -0.120 ** 0.036 -1.472 0.371 
32 ý_1 0.52 (0.61) 0.87 (-2.56) (0.65) 4.06 1. 

" -2.388 ** 0.231 0.287 0.216 ** -0.018 3.618 -0.358 . 
t-1 -2.41 (0.31) (1.37) (2.28) -0.16 (1.30) (-0.63) 

ALI 0.886 0.515 -0.085 0.105 0.080 -2.788 -0.122 
-0 23 , _, 0.94 (0.73) (-0.43) 1.16 (0.76) -1.05 . 

I A- -0.045 -0.037 0.008 -0.001 0.001 0.314 ** 0.017 

-1.10 -1.21 0.91 (-0.33) (0.24) (2.73) (U. 13) 

-0.247 -0.125 -0.012 0.0002 -0.002 0.218 0.328 ** 

. 1.4g (-0.99) (-0.35) (0.02) (-0.13) (0.46) 3.41 

7) 0.010 0.016 ** -0.002 -0.001 -0.001 0.029 1.027 ** 
p 1.49 3.13 (-1.05) (-1.64) -1.65 (1.47) (258.1) 

) f_ ý 0.277 0.121 0.015 -. 000001 0.004 -0.227 -0.341 ý(p p ý 1.61 0.94 (0.40) (0.0003) (0.21) (-0.47) -3.45 

0 0.422 ** 0.709 ** 0.070 0.051 ** 0.035 -0.313 -0.283 ** 
, äyt 

(2.05) (4.59) (1.61) (2.56) 1.52 (-0.54) (. 2.40) 

" 0.363 -0.038 -0.032 0.050 ** 0.043 * 0.510 -0.160 Ayt-1 
1.58 (-0.22) -0.66 (2.26) (1.69) (0.79) (-1.21) 

jt2 0.446 0.306 0.168 0.377 0.224 0.021 0.998 

F. 
0.012 0.009 0.002 0.001 0.001 0.033 0.007 

6.28 0.40 11.96 ** 5.64 3.01 0.71 2.93 

X FF 
[1] 

2.54 0.80 0.82 2.72 * 0.15 0.45 0.10 

_ 
5.57 * 59.50 ** 29.04 ** 5.40 * 7.14 ** 24.18 ** 25.48 

_ ___ 
X, 2 

, 
[1] 

0.01 2.08 2.49 20.17 ** 0.01 0.030 0.27 

Notes: t-ratios are given in brackets. "*" and "**" indicate significance at the 10% and 5% levels 

respectively. X, [], i= SC, FF, N, N, stands for the chi-squared diagnostic for serial correlation (SC), 

functional form (FF), normality (N) and heteroscedasticity (H) with degrees of freedom in square brackets. 
A 

The estimated error correction terms Er, r-t, i=1,..., 4, correspond to LM, IS, BP, PPP, given in Table 2.10. 
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Table 3.1 - Adjusted Likelihood Ratio Tests and Model Selection Criteria for the Choice of the Lag- 
Length 

Adjusted Likelihood Ratio Tests 
Ho H, Statistic p-value 

p=0 p=4 1709.4 . 000 

p=l p=4 177.16 . 046 

p=2 p=4 100.71 . 406 
p=3 p=4 45.68 . 609 

AIC SBC Order 
2741.6 2701.1 P=O 
3699.1 3587.6 =1 s 
3700.3 3517.8 

=2A 
3687.5 3433.9 =3 
3668.5 3343.9 =4 

Notes: Based on an unrestricted VAR(4) in the level of z, = [m, - p1, yy, RR, )ý, LII, e, - p, + pý , yý ]' with an 
intercept, a linear time trend and the dummies pre73, and ERM . The superscripts S and A indicate the 

choice of the Schwarz Bayesian Criterion (SBC) and the Akaike Information Criterion (AIC. ) respectively. 

Table 3.2a - Cointegration Rank Statistics for the Marginal Model in the Weakly Exogenous Vector 
x, =[R:, e, -p, +Pr, Yr 

Trace Max 
Ho H, Statistic 95% cv 90% cv Statistic 95% cv 90% cv 
r=0 r =l 42.70 31.54 28.78 38.12 21.12 19.02 
r: 5 I r=2 4.58 17.86 15.75 4.55 14.88 12.98 

LL 52 r=3 0.03 8.07 6.50 0.03 8.07 6.50 

Notes: "Trace" and "Max" stand for the Pesaran Shin and Smith (2000) modified versions of Johansen's 
(1988) cointegrating rank statistics. Based on a cointegrating VAR(2) in the vector xr augmented by one 
lagged difference of the vector y, _ [m, - Pr , ',, R,, LI, ]' with unrestricted intercepts and no trends. 

Table 3.2b - Cointegration Rank Statistics for the Marginal Model in the Weakly Exogenous Vector 
x, = [e, - p, + p, 'Y: ]' 

Trace Max 
Ho H, Statistic 95% cv 90% cv Statistic 95% cv 90% cv 
r=0 r =l 17.47 17.86 15.75 14.00 14.88 12.98 
r: 5 I r=2 3.47 8.07 6.50 3.47 8.07 6.50 

Notes: Based on a cointegrating VAR(2) in the vector x, augmented by one lagged difference of the 
vector y, = [m, - p,, y,, R$, R, , LI, ]' with unrestricted intercepts and no trends. 
See also the Notes to Table 3.2a. 
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Table 3.3 - Tests for the Trends and Dummies Specification 

Test LR-statistic Asymptotic Critical Values Small-Sample Critical Values 
95% cv 90% cv 95% cv 90% cv 

LR 1 
5.169 [2] 5.991 4.605 8.234 p 

8.320 n 
6.310 p 
6.493 n 

LR2 6.122 9373 p 
9.382 n 

5.825 p 
5.840 n 

Notes: LRl stands for the likelihood ratio statistic for testing the trend restrictions only, while LR2 tests 
the restrictions on the dummies, given the trend restrictions. Both hypotheses are formulated conditionally 

on r=3 and p=2. LRl is asymptotically chi-squared with �r -r 
degrees of freedom given in square 

brackets. Small-sample results are based on a bootstrap with 10,000 simulations. "p" and "n" indicate 
parametric and non-parametric respectively. 

Table 3.4 - Likelihood Ratio Tests for the Presence of Unitary Cointegrating Vectors 

Variable Like lihood Ratio Statistic 
MI -Pt 55.17 38.77 33.13 25.13 
ye 49.35 35.29 28.42 21.49 
R, 42.87 28.27 23.87 17.82 

' 44.28 38.52 31.92 22.49 

LI, 42.39 24.13 18.19 10.41 

e, - p, +p 56.77 38.52 32.83 24.55 

Y1 49.58 35.05 28.11 22.26 

rank(II, ) r=1 r=2 r=3 r=4 
95% c. v. 16.92 15.51 14.07 12.59 

Notes: The null hypothesis is of stationarity and it is conditional on the number of cointegrating vectors, r. 
Statistics in italic signify failure to reject the null at the 5% level. 

Table 3.5 - Cointegration Rank Statistics and Small-Sample Critical Values 

Trace Max 
Ho Hi Statistic 95% cv 90% cv Statistic 95% cv 90% cv 

r= O r =l 189.18 149.36 p 
148.72 n 

142.36 p 
142.56 n 

63.52 57.27 p 
57.28 n 

53.69 p 
53.78 n 

rS1 r=2 125.66 114.79 p 
115.14 n 

109.09 p 
109.75 n 

41.91 50.27 p 
50.75 n 

47.27 p 
47.46 n 

r52 r=3 83.75 81.47 p 
81.23 n 

76.65 p 
76.58 n 

36.18 42.82 p 
43.05 n 

39.91 p 
39.96 n 

r53 r= 4 47.56 50.85 p 
50.94 n 

47.48 p 
47.37 n 

27.26 34.51 p 
34.17 n 

31.67 p 
31.58 n 

r54 r= 5 20.30 24.98 p 
25.77 n 

22.59 p 
23.28 n 

20.30 24.98 p 
25.77 n 

22.59 p 
23.28 n 

Notes: Based on a cointegrating VAR(2) in y, _ [m, - p, y, R, , R; , LI, ]' with restricted trends and 
dummies conditional on the weakly exogenous vector x, = [e, + p, - p,, y, ]' . Small-sample results are 
based on a bootstrap with 10,000 simulations. "p" and "n" indicate parametric and non-parametric 
respectively. 
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Table 3.6 - Small-Sample Critical Values for the Test of Over-Identifying Restrictions 

Restrictions LL LR-statistic Asym totic Bootstrap 1 Boots rap 2 
RE 2979.5 

- 
95% cv 90% cv 95% cv 90% cv 95% cv 90% cv 

R0V 2970.4 18.36 [5] 11.07 9.24 52.27 p 
52.28 n 

47.86 p 
47.14 n 

50.41 p 
51.12 n 

45.77 p 
46.11 n 

Notes: RE is a set of r2 exactly identifying restrictions, R0V is the set of r2 +5 over-identifying 

restrictions given by (3.11) in section 3.3.6, LL is the value of the maximised log-likelihood, LR stands for 
the Likelihood Ratio test statistic, which is asymptotically chi-squared with degrees of freedom equal to the 
number of over-identifying restrictions given in square brackets. Bootstrap I and Bootstrap 2 are defined in 
Chapter 1, section 1.6.4 and are based on 10,000 simulations. "p" and "n" indicate parametric and non- 
parametric respectively. 

Table 3.7 - Estimates of the Over-Identified Cointegrating Vectors 

Variables 
C1, t 63. t 

Mt -Pt 1.00 
- - 

Yr -1.16 1.00 -0.36 ** 
-1.19 -2.06 

R, 22.61** 
- 1.00 

4.60 

Rý - - -1.00 r-I 
LI, - 8.73 ** 

_ 4.51 

e, - P, +p - -0.22 ** 0.067 
-3.12 1.60 

Y; - -0.81 ** 0.034 
-16.8 0.43 

t 0.006 
- 0.002 

1.05 1.73 

pre73, -0.12 0.026 0.02 
1-1.171 0.93 1.80 

ERS 0.12 0.055 * -0.0056 [1.161 1.85 f-0.581 I 

Notes: EI 
.t, 

s2., , '0 3 ., 
correspond to the LM, IS and BP relations respectively. t-ratios 

are given in square brackets. "*" and indicate significance at the 10% and 5% levels 
respectively. 
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Table 3.8 - Estimated Vector Error Correction Model 

Equation O(m, -Pt) Ly LR, AR_ ALIr 

A -0.053 ** -0.020 -0.002 0.004 ** 0.004 ** 
61,1-1 (-4.30) (-0.22) (-0.83) (3.94) (3.72) 

A -0.0028 -0.061 -0.017 -0.019 ** -0.026 ** 
E 2, t-1 

(-0.05) (-1.50) (-1.57) (-3.61) (4.99) 

-0.366 ** 0.325 ** -0.125 ** -0.034 ** -0.057 ** 
E 3, t-1 

(-2.18) (2.75) (-4.09) (-2.28) (-3.70) 

A(m1-1 - Pr-1) -0.060 0.054 0.003 0.019 ** -0.006 
-0.71 (0.90) (0.19) 2.48 (-0.72) 

Ayl-1 0.037 -0.083 -0.031 0.0002 -0.010 
(. 30) (-0.94) (-1.34) (0.02) -0.86 

M, 
-1 

0.278 0.012 0.166 -0.104 ** 0.093 
(0.54) (0.03) (1.77) (-2.25) 1.98 

ý" -1.574 * 0.228 0.191 0.232 ** -0.031 I t -1.62 (0.33) (1.08) (2.65) -0.35 
0.097 0.983 0.027 0.116 0.117 
(0.10) (1.45) (0.15) 1.34 (1.32) 

* ) +p 0(e - -0.019 -0.029 -0.005 -0.005 -0.007 ** 
, -, t-, Pt-i 

-0.46 (-1.02) (-0.71) (-1.29) -1.95 

A l 0.393 * -0.169 -0.045 0.048 ** 0.031 
y (1.65) (-1.01) (-1.02) (2.22) (1.43) 

0(e _ +P, ) 0.025 0.067 ** 0.028 ** 0.001 0.018 ** 
, Pr (0.73) (2.77) (4.47) 0.36 5.83 

" ý 0.413 ** 0.733 ** 0.091 ** 0.059 ** 0.045 ** 
'yý 1.92 4.82 (2.32) (3.02) 2.29 

jl2 0.38 0.32 0.31 0.39 0.42 
A 
Q 0.012 0.009 0.002 0.001 0.001 

xc [4] 
2.378 1.443 4.389 2.951 5.922 

ZFF[I] 0.008 1.954 0.155 0.189 7.848 ** 

_N[21 ** ** 0.446 29.70 11.11 6.46 ** 1.070 

XH [11 
* 1.996 3.598 1.811 7.54 ** 1.263 

Notes: I-ratios are given in brackets. Z [] 
,t= SC, FF, N, H, stands for the chi-squared diagnostic for 

serial correlation (SC), functional form (FF), normality (N) and heteroscedasticity (If) with degrees of 

freedom in square brackets. The estimated error correction terms Er, r-t, i-1,2,3, are given in Table 3.7. 
"*" and "**" indicate significance at the 10% and 5% levels respectively. 
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Table 4.1a - ADF(k) Tests Applied to the Levels of the Variables: 1972g1-2000g1 

Variable ADF 0 ADF 1 ADF 2 ADF 3 ADF 4 95% c. v. 
n, -1.2016'x" -1.1348 -1.4149 -1.5317 -1.2621 -2.8870 

n, -4.6366 -3.3486 -3.2183 S. H -3.2666 A -3.3857 -3.4497 

w, -P, -4.6309 -3.6156 -3.5633S -4.0819 A, H -3.9904 -3.4497 

H,: ' _ p, -4.7313 -3.6921S -3.6111 -4.0699 A, H -3.9724 -3.4497 

u, -1.6263 -1.9870S"H -2.0232 -1.8559 -1.5110' -2.8870 
k, -3.7552 -2.7908 -2.8477S, H -2.8585 -3.0059A -3.4497 
a, -3.1176S, H -2.5592A -2.8071 -2.3993 -2.5703 -3.4497 

Notes: The ADF regressions include an intercept, a linear trend and k lagged first-differences of the 
dependent variable, with the exception of n, and u,, where the linear time trend was omitted. The 

superscripts A, S and H indicate the choice of the Akaike Information, the Schwarz Bayesian and the 
Hannan-Quinn criteria respectively. 

Table 4.1b - ADF(k) Tests Applied to the Differences of the Variables: 1972g1-2000g1 

Variable ADF 0 ADF 1 ADF 2 ADF 3 ADF 4 95% c. v. 
An -10.995'5" -6.6485 -5.4012 -5.5016 -4.6087 -2.8870 

, än" -5.1127 -3.2701s -2.5922'ß�H -2.2484 -2.1867 -2.8870 

A(w, - p, ) -15.543 S, H -9.0320 -5.4271 A -5.1086 -4.4763 -2.8870 

, i(wj' - p, ) -15.762s, H -9.1938 -5.5000A -5.1646 -4.4908 -2.8870 
Du, -3.46175 -3.2203 -3.7575 -4.5411'ß"y -4.2645 -2.8870 
Ok, -4.2806 -3.25265, " -3.0245 -2.5602' -2.4583 -2.8870 
Dog -13.083 ASH -7.6935 -7.3216 -5.7278 -5.5954 -2.8870 

Notes: The ADF regressions do not include a linear trend. 

Table 4.2 - Likelihood Ratio Tests for the Presence of Unitary Cointegrating Vectors 

Variable Like lihood Ratio Statistic 

n, 44.09 33.37 23.18 5.66 

w, -PI 52.44 38.42 27.00 5.53 

x,: ' - p, 52.52 38.46 27.03 5.50 

n, 52.33 36.00 26.01 5.34 

U, 16.96 16.82 15.67 0.94 
k, 51.41 36.89 25.31 5.53 

a, 52.07 36.68 25.31 5.44 
rank(II,, ) r=1 r-2 ra3 r-4 
95% c. v. 12.59 11.07 9.49 7.81 

Notes: The null hypothesis is of stationarity and it is conditional on the number of cointegrating vectors, r. 
Statistics in italic signify failure to reject the null at the 5% level. 
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Table 4.3 - Adjusted Likelihood Ratio Tests and Model Selection Criteria for the Choice of the Lag- 
Length 

Ad justed Likelihood Ratio Tests 
Ho H1 Statistic p-value 

P=O p=8 1903.6 . 000 

=1 P=8 420.4 . 003 
P=2 P=8 334.5 . 052 
p=3 p=8 289.0 . 028 

p=4 p=8 218.0 . 135 
p=5 =8 163.9 . 162 
p=6 p=8 108.8 . 213 
p=7 p=8 55.1 . 255 

AIC SBC Order 
1592.6 1564.0 P-0 
3095.4 2999.9 =1 s 
3136.3 2974.0 p=2 
3134.9 2905.8 p-3 
3160.2 2864.3 p-4 
3167.8 2805.1 

p=5 
3176.4 2746.8 =6 
3183.6 2687.3 .7 
3192.3 2629.1 a8A 

Notes: Based on an unrestricted VAR(8) in the level of z, = [n,, w1- p1, w, - - p,, n, *, u,, k1, a, ]' with the 
deterministic vector D, = [d74g1,, d74g2, ]'. The superscripts S and A indicate the choice of the Schwarz 
Bayesian Criterion (SBC) and the Akaike Information Criterion (AIC) respectively. 

Table 4.4 - Likelihood Ratio Tests for the Intercept/Trend Specification 

rank(II) LR-Statistic 2 Z7-r, 0.05 
2 x7-r, 0.1 

r0 11.0 14.07 12.02 
r =l 4.4 12.59 10.64 
r=2 4.0 11.07 9.24 
r=3 3.8 9.49 7.78 
r=4 2.0 7.82 6.25 
r=5 1.8 5.99 4.61 
r=6 1.8 3.84 2.71 

Notes: The unrestricted model is a symmetric VAR(2) in z, _ [n, 
, w, - P,. w~ - p,, n, *, u,, k, 

, a, ]' with 
the deterministic vector D, = [d74g1,, d74g2, ]' plus a linear trend. In the restricted model the trend 
coefficients are given by ny. 

rank(fl) LR-Statistic 2 XS-r, 0.05 
i Xs-r. 0.1 

r=0 6.8 11.07 9.24 
r =1 3.2 9.49 7.78 
r=2 3.2 7.82 6.25 
r=3 0.8 5.99 4.61 
r=4 0.2 3.84 2.71 

Notes: The unrestricted model is a VAR(2) in y, = [n,, w, - p, , w, - p, , n, ' , u, ]'conditional on the 
weakly exogenous vector xt = [k,, a, ]'with the deterministic vector D, = [d74g1�d74g2, ]' plus a linear 
trend. In the restricted model the trend coefficients are given by n 

yy and "*" signify rejection at the 
5% and 10% levels respectively. 

206 



Tables to Chapter 4 

Table 4. Sa - Cointegration Rank Statistics and Small-Sample Critical Values for the Sub-Model of 
the Demand Side of the Labour Market 

Trace ma= 

Ho H, Statistic 95% cv 90% cv Statistic 95% cv 90% cv 
28.42 a 25.63 a 21.07 a 18.78 a 

r=0 r=1 55.06 33.88p 30.69p 41.06 24.59p 22.13 p 
33.35 n 30.00 n 24.67 n 21.92 n 
14.35 a 12.27 a 14.35 a 12.27a 

r51 r=2 14.00 17.87 p 15.43 p 14.00 17.87 p 15.43p 
17.69n 15.34n 17.69n 15.34n 

Notes: "Trace" and "Max" stand for the modified versions of the Pesaran Shin and Smith (2000) 

cointegrating rank statistics. Based on a cointegrating VAR(2) with unrestricted intercepts and no trends in 

yt _ [n1, w, - p, ]' conditional on the weakly exogenous vector x, = [k,, a, ]' " The deterministic vector is 

D, _ [d74g1,, d74q2, ]' . Small-sample results are based on a bootstrap with 20,000 simulations. "p" and 

"n" indicate parametric and non-parametric respectively, while "a" indicates asymptotic critical value. 

Table 4.5b - Cointegration Rank Statistics and Small-Sample Critical Values for the Sub-Model of 
the Supply Side of the Labour Market 

Trace Max 

H= Hl Statistic 95% cv 90% cv Statistic 95% cv 90% cv 
F 

70.49 a 66.23 a 33.64 a 31.02 a 
0 r =l 97.75 81.69 p 76.95 p 52.39 39.63 p 36.52 p 

81.84 n 77.22 n 39.76 n 36.56 n 
48.88 a 45.70 a 27.42 a 24.99 a 

r: 5 I r=2 45.36 60.12 p 55.92 p 25.43 34.12 p 31.20 p 
57.77 n 53.79 n 32.75 n 30.08 n 
31.54a 28.78a 21.12a 19.02a 

r52 r=3 19.93 39.18 p 35.56 p 13.36 27.67 p 24.76p 
36.30 n 33.19 n 25.21 n 22.77 n 
17.86 a 15.75 a 14.88 a 12.98 a 

r53 r=4 6.57 19.40 p 16.93 p 6.56 17.73 p 15.46 p 
17.37n 15.38n 15.52n 13.78n 
8.07 a 6.50 a 8.07 a 6.50 a 

r54 r=5 0.01 10.72 p 8.48 p 0.01 10.72 p 8.48 p 
4.55n 3.22n 4.55n 322 n 

Notes: Based on a cointegrating VAR(2) with unrestricted intercepts and no trends in 

z, = [n,, w, - p,, w; ' - p,, n, *, u, ]I. The deterministic vector is D, = [d 74g1, ,d 74q2, ]'. Small-sample 

results are based on a bootstrap with 20,000 simulations. "p" and "n" indicate parametric and non- 
parametric respectively, while "a" indicates asymptotic critical value. 
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Table 4.6 - Cointegration Rank Statistics and Small-Sample Critical Values for the Conditional 
Model 

Trace Max 

Ho H, statistic 95% cv 90% cv Statistic 95% cv 90% cv 
92.42 a 87.93 a 39.85 a 37.15 a 

r= 0 r =l 142.64 107.41 p 101.55 p 58.25 48.79 p 45.25 p 
117.27n 111.52 n 50.06 n 46.53 n 
68.06 a 63.57 a 33.87 a 31.30 a 

r: 9 1 r=2 84.39 87.63 p 82.27 p 41.29 43.76 p 40.51 p 
87.33 n 82.25 n 42.83 n 39.74 n 
46.44 a 42.67 a 27.75 a 25.21 a 

r52 r=3 43.10 62.73 p 58.43 p 29.71 37.18p 34.07 p 
60.70 n 56.31 n 35.07 n 3233 n 
28.42 a 25.63 a 21.07 a 18.78 a 

rS3 r=4 13.39 39.99 p 36.52 p 7.09 2936 p 26.52 p 
36.74 n 33.51 n 26.48 n 24.19 n 
14.35 a 12.27 a 14.35 a 12.27 a 

r54 r=5 6.30 22.59 p . 19.75 p 6.30 22.59 p 19.75 p 
16.58n 14.80n 16.58n 14.80n 

Notes: Based on a cointegrating VAR(2) with unrestricted intercepts and no trends in 

yr = [n,, w, - p, ' w, *' - p, ' n, , u, ]' conditional on the weakly exogenous vector x, = [k� a, ]' . 
The deterministic vector is D, = [d74g1, ,d 74g2, ]' . Small-sample results are based on a bootstrap with 

20,000 simulations. "p" and "n" indicate parametric and non-parametric respectively, while "a" indicates 

asymptotic critical value. 

Table 4.7 -Asymptotic and Small-Sample Critical Values for the Likelihood Ratio Tests of Over- 
Identifying Restrictions in the Conditional Model 

Restrictions LL LR-statistic Asym ptotic Boots trap I Bootstrap 2 

R E 
2198.7 

- 
95% cv 90% cv 95% cv 90% cv 95% cv 90% cv 

R 2192.8 11.95 [7] 14.067 12.017 27.160 p 23.723 p 27.159 p 23.722 p 
ovt 31.075 n 27.339 n 30.820 n 27.178 n 

e R 2192.7 12.05 [8] 15.507 13.362 27.247 p 23.844 p 27.247 p 23.843 p 
ov 31.103 n 27.390 n 30.841 n 27.196 n 

Notes: RE is any set of r2 exactly identifying restrictions. 

11 
Rovi: ßQ'- 

1 
Rove. ß'- 

i621 

A2 000 -1 
1 -1 -Al 

P22 0 

2.2727 000 

-1 -Qii ß2 

-ß12 

U 

-1 - 2.2727 
0U 

Based on a cointegrating VAR(2) with unrestricted intercepts and no trends in 

y, _ [n,, w, - p,, w, - p,, n, , u, ]' conditional on the weakly exogenous vector x, = [k,, a, ]' . The 

deterministic vector is D, = [d74g1,, d74g2,11. LL is the value of the maximised log-likelihood. LR stands 

for the Likelihood Ratio test statistic, which is asymptotically chi-squared with degrees of freedom equal to 
the number of over-identifying restrictions given in square brackets. Bootstrap 1 and Bootstrap 2 arc 
defined in Chapter 1, section 1.6.4 and are based on 10,000 simulations. "p" and "n" indicate parametric 
and non-parametric respectively. 
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Table 4.8 - Estimates of the Over-Identified Cointegrating Vectors 

Restrictions: Rovt Rove 
Cointegrating 

ý ý it 
r 

i_ 
Vector: 1, s 2,1 ,t , 

00 1 -0.01259 ** 1.00 -0.01274 ** n . f-I -4.66 -4.77 

yyt - pt 2.21 1.00 2.27 1.00 
1-1 1-1 

"" -1.00 - -1.00 w1 -l P, 
" 0.01259 ** 0.01274 ** 

nf 4.66 [4.771 

0.00854 ** _ 0.00851 ** u _ r2.871 2.88 

kr -1.00 f-I - -1.00 1-1 - 

a -2.21 ** _ -2.27 
-11. s 

i 
Notes: Rovl. . ß'= . Qzt 

1 
Rove: Q1- 

#621 

f 
." 

and a ,ý. 
cc 

I'12 000 -1 -ß12 
1 -1 - ß21 %322 00 

2.2727 000 -1 - 2.2727 

1 -1 821 822 00 

, rrespond to the aggregate employment and wage relations respectively. t-ratios 

are given in square brackets. "*" and "**" indicate significance at the 10% and 5% levels 
respectively. 
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Table 4.9 - Error Correction Specification for the Conditional Model under Rove 

Equation Ant &(w, - Pt) A(w' - P, ) An ýr 

A -0.029-* -0.085 ** -0.083 ** -0.02 0.12 ** 
(-1.86) (-3.42) (-3.35) (-1.60) (2.09) 

0.81 ** -1.23 ** -1.20 ** -0.54 ** -0.75 
2, t-1 (3.73) (-3.47) (-3.42) (-3.27) (-0.90) 

An 0.20 ** 0.18 0.18 0.01 -1.43 ** 
t-1 1.98 1.09 1.11 0.1 -3.69 

, &(w _P ) -1.54 3.80 * 3.34 -0.66 5.09 
1 03 t-1 t-ý -1.19 1.81 (1.60) (-0.67) . 

ýýwý" _P ) 1.65 -3.86 * -3.40 0.62 -5.33 
0 ý t-ý 1.26 -1.82 (-1.61) (0.63) -1. 6 

" 0.22 -0.47 ** -0.47 ** 0.34 ** 0.30 
1.63 (-2.15) (-2.15) (3.32) (0.57) 

____ 
-0.003 0.06 ** 0.06 ** 0.01 0.58 
(-0.18) (2.20) (2.20) (0.85) (8.67) 

___ ý -0.30 2.21 2.23 * -0.95 -1.86 
l-1 (-0.36) (1.65) (1.68) (-1.53) 

1 
(-0.59) 

ý ' 
0.097 -0.17 -0.15 -0.004 -1.20 ** 

t- 1.07 (-1.17) 0.04 (-0.06) . 3.46 

Ak 2.85 ** -2.09 * -2.07 2.04 ** -4.91 
t (3.68) -1.66 -1.66 (3.50) (-1.65) 

Aa -0.096 0.33 ** 0.35 ** -0.05 -0.46 
, (. 1.13) (2.42) (2.53) (-0.80) -1.42 

d74g1t -0.06 ** 0.07 ** 0.07 ** -0.006 0.04 
(-7.92) (5.36) (5.44) (-1.02) (1.31) 

d74q2, 0.07 ** -0.04 ** -0.04 ** 0.005 -0.04 
(7.21) -2.54 (-2.52) (0.62) -1.07 
0.67 0.47 0.47 0.50 0.77 

R2 
A 0.007 0.01 0.01 0.006 0.03 

Q 
Z, 22 [4] 6.58 4.60 4.32 9.57 ** 4.95 

F, [4,95] 1.47 1.01 0.94 2.20 * 1.09 

. 2,2 [1] 10.1 ** 2.02 1.83 0.028 2.14 

FFF[1,98] 9.63 ** 1.78 1.62 0.024 1.89 

Z '[2] 16.3 ** 1.05 1.07 78.1 ** 4.52 

ß, 2i [1] 0.41 0.57 0.59 0.17 2.28 

FN [1,111] 0.40 0.57 0.58 0.16 2.28 

Notes: t-ratios are given in brackets. X, [1, i= SC, FF, N, H, and F1 [] 
,j- SC, FF, H, stand for the chi- 

squared and F diagnostics for serial correlation (SC), functional form (FF), normality (N) and 
heteroscedasticity (H) with degrees of freedom in square brackets. The estimated error correction terms 
A 

i=1,2, are given in Table 4.8. "*" and "**" indicate significance at the 10% and 5% levels 

respectively. 
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Table 4.10 - Asymptotic and Small-Sample Critical Values for the Serial Correlation Diagnostics in 
the Conditional Model 

xsc [4] Fsc[4,95] 
Equation Statistic 95% c. v. 90% C. V. Statistic 95% C. V. 90% c. v. 

9.49 a 7.78 a 2.47 a 2.00 a 
An, 6.58 10.99 p 9.00 p 1.47 2.56 p 2.06 p 

11.13n 9.34n 2.59n 2.14n 
9.49 a 7.78 a 2.47 a 2.00 a 

0(wß _ p') 4.60 10.51 p 8.78 p 1.01 2.44 p 2.00 p 
11.22n 9.30 n 2.62 n 2.13 n 
9.49 a 7.78 a 2.47 a 2.00 a 

O(w, *' _ pe ) 432 11.36 p 9.39 p 0.94 2.65 p 2.15 p 
11.22 n 9.29 n 2.62 n 2.13 n 
9.49 a 7.78 a 2.47 a 2.00 a 

A 9.57 11.10 p 9.26 p 2.20 2.59 p 2.12 p 
10.91 n 9.10 n 2.54 n 2.08n 
9.49 a 7.78 a 2.47 a 2.00 a 

Du ̀  
4.95 11.19 p 9.16 p 1.09 2.61 p 2.09 p 

11.05n 9.12n 2.58n 2.09n 

Notes: Zsc[], and Fsc[], stand for the chi-squared and F diagnostics for Serial Correlation with 
degrees of freedom in square brackets. Based on a cointegrating VAR(2) with unrestricted intercepts and no 
trends in y, = [n, , w, - p,, w, - p,, n; , u, ]' conditional on the weakly exogenous vector x, = [k,, a, ]' 
The deterministic vector is D, = [d74gl, ,d 74g2, ]' . Small-sample results are based on a bootstrap with 
10,000 simulations. "p" and "n" indicate parametric and non-parametric respectively, while "a" indicates 
asymptotic critical value. 
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Table 5.1 - Cointegration Rank Tests and Small-Sample Critical Values for the Marginal Model 

Trace Max 

Ho Hi Statistic 95% cv 90% cv Statistic 95% cv 90% cv 

r= O r =l 64 41 68.77 p 63.57 p 34.39 40.56 p 36.98 p 
. 68.21n 62.91n 41.01n 36.81n 

5I r=2 30.02 44.03 p 39.98 p 19.19 30.94 p 27.92 p 
r: 46.51 n 41.68 n 32.56 n 29.15 n 

S2 r=3 10 83 
23.48p 20.55p 10.28 20.55p 18.13p 

r . 23.82 n 20.57 n 20.99 n 18.07 n 

rS3 r=4 0.55 
8.85 p 6.68 p 0.55 8.85 p 6.68 p 
8.52 n 6.52 n 8.52 n 6.52 n 

Notes: Based on a cointegrating VAR(2) in x, = [et - p1 + p:, y:, k,, a, ]' with an intercept, the dummy 

vectors D,,, =[pre73,, ERM, ]' and DZ., =[d7lgl,, d71g2,, d74q11, d74q2,, d90q3, ]' plus a linear 

trend. Small-sample results are based on a bootstrap with 10,000 simulations. "p" and "n" indicate 

parametric and non-parametric, respectively. 

Table 5.2 - Likelihood Ratio Statistics and Small-Sample Critical Values for the Restrictions on the 
Linear Trends 

rank(II,, ) LR-Statistic 95% c. v. 90% C. V. 

r=0 29.02 82.00 p 77.43 p 
84.07 n 79.03 n 

r =l 17.69 25.72 p 22.24 p 
25.99 n 22.52 n 

r=2 16.40 24.65 p 21.08 p 
24.32 n 21.02 n 

r=3 14.26 22.79 p 19.49p 
22.20 n 19.24 n 

r=4 14.26 21.16p 17.97p 
20.15 n 17.12 n 

r=5 14.24 18.59 p 15.67 p 
17.67 n 14.96 n 

r=6 14.15 18.02p 15.05 p 
15.94 n 13.12 n 

r=7 10.04 16.65p 13.61 p 
14.73 n 11.97 n 

r=8 9.31 13.68p 10.67p 
11.71 n 9.11 n 

r=9 6.88 932 p 7.10 p 
9.81 n 7.17 n 

Notes: The unrestricted model is a VAR(2) in z, _[m1-P,, Y1, R1, R:, LI,. n,, w, -p,, w, -p,, n,, ur]' 
conditional on x, _ [e1- p, + p:, y, *, k# , a, ]' With an intercept, the dummy vectors 
DIS =[pre73,, ERM, ]' and Dz,, =td7lgl,, d71g2,, d74q1,, d74q2,, d90q3, ]' plus a linear trend. In the 

restricted model the trend coefficients are given by n,, y. . The small-sample critical values are based on a 
bootstrap with 10,000 simulations. "p" and "n" indicate parametric and non-parametric, respectively. 
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Table 53 - Cointegration Rank Tests and Small-Sample Critical Values for the Conditional Model 

--race i""°- 

Ho H, Statistic 95% cv 90% cv Statistic 95% cv 90% cv 

510.03 p 497.06 p 115 15 
116.96 p 112.20 p 

r=0 r=1 577.50 522.00n 507.74n . 118.74n 113.08n 

449.27 p 437.96 p 45 102 
111.17 p 106.08 p 

r: 5 1 r=2 462.35 448.51 n 436.66 n . 109.44 n 104.62 n 
392.16 p 380.48 p 80 65 

104.47 p 99.33 p 
r: 5 2 r=3 359.90 386.31 n 374.95 n . 101.44 n 96.93 n 

325.68 p 315.53 p 70 01 
95.04 p 90.60 p 

r5 3 r=4 

I 

279.25 320.13 n 310.38 n . 92.84 n 88.45 n 
276.05 p 266.95 p 19 50 

87.20 p 83.21 p 
r54 r= 5 209.24 258.91 n 249.64 n . 82.86 n 79.00 n 

217.35 p 208.95 p 47 70 75.58 p 72.06 p 
r55 r=6 6 159.04 203.29 n 195.29 n . 72.70 n 69.40 n 

169.98 p 163.04 p 37 26 
69.46 p 65.77 p 

r56 7 r= 111.34 153.33n 146.67n . 64.47n 61.13n 
116.19 p 110.75 p 29 32 56.22 p 53.07 p 

r57 r=8 74.09 111.18n 105.39n . 54.77n 51.72n 

69.27 p 65.05 p 23 86 43.05 p 40.49 p 
r58 r=9 41.80 71.63n 67.44 n . 45.77 n 42.99 n 

29.78 p 27.43 p 94 17 29.78 p 27.43 p 
r59 10 r= 17.94 34.58n 31.96n . 34.58 n 31.96n 

Notes: Based on a cointegrating VAR(2) in z, = [m, - p, , y, , R, " R, ", LI,, n,, w, - p,, w, " - p,, n, *, u, 

conditional on x, = [e, - p, + p, , Yr , k, , a, ]' with an intercept, the dummy vectors 

D1, =[pre73,, ERM, ]' and D2, =[d7lgl,, d71g2,, d74q1,, d74g2,, d90q3, ]' plus a linear trend. The 

coefficients on the linear trend and the intervention dummies DI,, are restricted to nrr and nr&' 

respectively. Small-sample results are based on a bootstrap with 10,000 simulations. "p" and "n" indicate 

parametric and non-parametric, respectively. 

Table 5.4 - Small-Sample Critical Values for the Test of Over-Identifying Restrictions 

Restrictions LL LR-statistic Asymptotic Bootstor I 

R 5852.4 95% cv 90% cv 95% cv 90% cv 

Roy 5752.5 199.7 [42] 58.12 54.09 161.12 p 
197.91 n 

152.29 p 
188.52 n 

Notes: RE is a set of r2 exactly identifying restrictions, Rov is the set of r2 + 42 over-identifying 

restrictions given by (5.10) in section 5.3.4, LL is the value of the maximised log-likelihood, LR stands for 

the Likelihood Ratio test statistic, which is asymptotically chi-squared with degrees of freedom equal to the 

number of over-identifying restrictions given in square brackets. Bootstrap 1 is defined in Chaptcr 1, 

section 1.6.4 and is based on 10,000 simulations. "p" and "n" indicate parametric and non-parametric 

respectively. 
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Table 5.5 - Estimates of the Over-Identified Cointegrating Vectors in the Complete AD-AS Model 

Variables A A A A A 

4-1,1 ý; 3, t 
44, 

t `/-; S. r 

mr_pr 1.00 - - - - 

23 -2 1.00 -0.35 - - Yr . 
-0.75 -0.42 
33.52 1.00 - - 
1.771 

Rt. - - -1.00 - - 

14 - 
17.66 ** - - - 
4.74 

1.00 -0.012 ** nr 
-3.08 

2.27 1.00 
xr pr - - - 

"" - -1.00 wr _r P, - - - r-I 

- - 
0.012 ** 

nr - 13.081 
0.007 ** 

u 2.73 

er - Pr + Pr - -0.61 0.62 - - 
-1.43 [0.971 

-0.70 0.31 ** - - Yý _ 
-3.40 2.02 

kr - - - -1.00 - 

ar - - - -2.27 
f-I 

t 0.012 - 
0.001 - 0.72 0.26 

pre 73 r -0.035 0.015 0.14 
-0.19 [0.161 2.33 

ERMr 0.073 0.019 -0.10 ** - - 0.43 0.36 -2.05 

Notes: ,,, 
correspond to the LM, IS and ßP relations respectively, while c and 

Ss are the temporary deviations from the equilibrium conditions derived for the fines' 

employment setting and the unions' wage setting decisions respectively. t-ratios are given in 

square brackets. "*" and "**" indicate significance at the 10% and 5% levels respectively. 
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Table 5.6a - Error Correction Specification for the Complete AD-AS Model 
(Equations 1-5) 

Equation A(mr - Pr) AY, AR, AR; OLI, 
A 

-0.04 ** -0.01 ** -. 005 ** . 0017 " . 0018 * 
4, 

I, r-1 
(-3.81) (-2.77) (-2.50) (1.71) (1.69) 

A 0.001 0.03 ** 0.01 * -0.001 -. 009 "* 

2,1-1 (0.03) (2.16) (1.78) (-0.23) (-2.50) 

A -0.07 ** 0.03 ** . 002 
. 0007 -0.003 c 

3,1-1 
(-2.09) (2.13) (0.32) (0.20) (-0.85) 

A 
-0.01 -0.01 -. 001 

. 0007 0.003 

4, t-1 
(-0.55) (-0.92) (-0.22) (0.28) (1.22) 

A 
-0.49 0.53 ** -0.08 -0.05 -0.005 

5, r-1 
(-1.24) (3.28) (-0.90) (-1.17) (-0.10) 

0 (m 
1_1 - p, -I) -0.05 -. 002 0.017 

. 016 * 0.006 
(-0.59) (-0.04) (0.90) (1.69) (0.65) 

eyl_, -0.55 * -0.40 ** -0.005 -0.016 -0.02 (-1.72) (-3.06) -0.0 (-0.45) -0.67 
AR, 

_, 
0.05 0.13 0.13 -0.072 0.10 * 

(0.10) (0.65) (1.17) (-1.37) (1.93) 
AR -1.67 ** 0.11 0.42 ** 0.25 ** 0.19 * 

(-1.93) (0.32) (2.21) (2.69) (1.93) 
0LI, 

_, -0.36 0.32 -0.13 0.06 0.01 
(-0.37) (0.80) (-0.60) (0.56) (0.11) 

An, 
-, 

0.41 * 0.29 ** 0.04 0.002 0.04 
(1.72) (2.96) (0.73) (0.06) 1.59 

A(w, 
-t - P, _1) 

2.26 -1.59 ** -0.08 0.16 0.29 
(1.16) (-2.00) (-0.19) (0.75) 1.34 

A(w,, - pý-1) -2.19 1.69 ** 0.11 -0.16 -0.28 
-1. ll (2.10) (0.25) -0.7 -1.30 

An*-, 0.08 0.05 0.02 -0.027 0.01 
(0.40) (0.59) (0.53) -1.19 (0.55) 

Au, 
_, -0.04 * . 004 -. 0004 -. 007 ** 0.02 

(-1.87) (0.44) (-0.07) (-2.86) (0.80) 
ARER 

- ý 0.03 0.02 -0.001 -0.005 -. 01 "" 0.65 (0.90) (-0.14) -1.12 (-2.04) 
Ay, 

-, 
0.45 " 0.06 -0.07 0.06 ** 0.01 
(1.81) (0.63) -1.30 (2.33) (0.34) 

Ak, 
-, 

0.91 0.47 -0.15 -0.04 -0.20 (0.73) (0.92) (-0.53) (-0.29) -1.43 -a, 
-, 

0.55 * 0.27 *+ -0.06 0.016 0.02 (1.64) (1.97) (-0.78) (0.43) (0.50) 
ABER, -0.02 0.01 0.03- 0.003 0.02 ** (-0.65) (0.73) (4.11) 0.88 (5.17) 
Ay; 0.34 0.44** 0.11*" 0.06"" 0.05" 

(1.53) 4.83 (2.32) 2.49 1.83 
Ok` -1.39 0.94 ** 0.25 -0.11 0.02 (-1.19) (1.96) (0.97) (-0.87) (0.01) 
Aa, 0.25 ** 0.83 ** -0.04 -0.011 -0.04 *" 1.98 (16.4) -1.37 -0.80 -2.54 d 71 q l, -0.02 -0.03 "* 0.002 -. 0003 

. 003 "" 
-1.29 -4.78 (0.72) -0.21 1,99 

d 7l q2$ -0.02 0.04 "+ 0.002 -. 0002 0.003 * 
-1.45 (5.70) (0.52) (-0.14) (1.93) 

d 74 q 1, 0.04 ** -0.01 "+ -. 0003 -. 002 " - 0001 (3.34) -2.05 (-0.11) (-1.93) . -00 
d74 q 2, -0.05 ** 0.001 -. 001 -. 003 " 

. 001 (-3.30) (0.25) -0.45 -1.76 0.77 
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Table 5.6a (continued) - Error Correction Specification for the Complete AD-AS Model 
(Equations 1-5) 

d90 q3, -. 003 -0.01 ** 0.001 -. 0004 . 0006 
(-0.24) -2.63 (0.57) (-0.32) 0.48 

R2 0.528 0.829 0.238 0.332 0353 

Q 0.010 0.004 0.002 0.001 0.001 

2 xsc 8.89 11.2** 11.8** 11.2" 15.4 

Fsc [4'99] 1.79 2.30 * 2.42 * 2.29 " 3.26 ** 

ZFF 0.08 12.5 ** 1.16 0.01 5.14 ** 
FFF [1'102] 

0.06 10.6 ** 0.91 0.01 4.13 ** 

2 xN [2] 
0.43 15.2 ** 16.5 ** 9.43 ** 0.51 

2 ZH [1] 
0.27 4.09 ** 1.36 7.12 ** 1.44 

FH [1,130] 0.26 4.04 ** 1.34 7.02 ** 1.42 

Notes: t-ratios are given in brackets. Z, 0, i= SC, FF, N, H, and Ff Q, j= SC, FF, H, stand for the chi. 

squared and F diagnostics for serial correlation (SC), functional form (FF), normality (N) and 
heteroscedasticity (H) with degrees of freedom in square brackets. The estimated error correction terms 
A 

I=1,2,3,4,5 are given in Table 5.5. RER, stands for the Real (effective) Exchange Rate, 

e, -p, +p;. "*" and "**" indicate significance at the 10% and 5% levels respectively. 
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Table 5.6b - Error Correction Specification for the Complete AD-AS Model 
(Equations 6-10) 

Equation enr e(w, - Pr) e(w* - P) r en 
r 

Au $ r 
A -0.01 * 0.006 . 007 0.002 -0.006 

i, r-1 
(-1.66) (0.56) (0.62) (0.48) (-0.19) 

A 0.02 0.03 0.02 0.03 *" 0.03 
C 

2, r-1 
(0.91) (0.69) (0.60) (2.51) (0.28) 

A 0.04 ** -0.03 -0.03 0.07 ** -0.19 
3,1-1 

(2.03) (-0.80) (-0.85) (5.56) (-1.91) 

A -. 0003 -0.08 ** -0.07 ** -0.02 ** 0.06 
4, r-1 

(-0.02) (-2.74) (-2.62) (-2.26) (0.73) 
1.03 ** -1.38 ** -1.34 ** -0.38 "" -3.2 ** 

b 5, r-1 
(4.41) (-2.96) (2.89) (-2.37) (-2.48) 

e(m'_1 - pr_1) 0.006 0.16 0.16 0.03 -0.52 (0.12) (1.52) (1.54) 0.71 (-1.85) 
eyr_I -0.03 -0.59 -0.57 0.23 * -0.53 (-0.13) 4.56 -1.51 (1.80) . 0.51 
AR, 

_, 
0.30 -0.62 -0.63 -0.27 -1.89 1.06 -1.09 -1.12 -1.40 . 1.21 

AR, *-, 0.54 -1.21 -1.16 . 0.26 -5.16 " 1.0 (-1.19) -1.15 -0.76 -1.85 eLjr_, 0.20 0.28 0.24 0.34 2.14 
(0.34) (0.24) (0.21) 0.87 0.68 

Anr-, 0.26 * 0.50 * 0.49 * 0.01 -0.95 (1.84) (1.77) (1.76) 0.10 -1.23 
e(tiy, 

_, pr-I) -2.54 ** 6.38 ** 5.91 ** -1.66 ** 9.52 
(-2.24) (2.80) (2.60) (-2.12) 1.51 

e(wr ýý - P: -. 
) 2.65 *" -6.54 "* -6.07 ** 1.70 ** -9.35 (2.31) (-2.83) -2.64 (2.14) -1.47 en' 0.04 0.005 0.004 0.22 "* 0.16 (0.31) (0.02) (0.02) (2.66) (0.24) 

Au, 
_, 

0.006 0.003 0.003 0.01 0.48 *" (0.49) (0.12) 0.11 1.18 (6.68) 
IRER 0.01 0.03 0.03 0.01 0.10 (0.41) (0.58) (0.55) (0.57) (0.76) 
Ay, *-, 0.17 -0.22 -0.22 -0.10 0.30 (1.19) 476 -0.77 . 1.05 (0.37) 
Ak, 

_1 -0.19 0.40 0.45" -1.13 ** 2 06 (-0.26) (0.28) (0.31) -2.25 
. 0 51 

ear-, -0.06 0.51 0.51 -038 
. 0 02 0.31 (1.31) (1.31) (-2.81) . (0 02) 

TRER r -0.04 0.06 0.06 0.008 . 
-0 08 

-0.18 (1.59) (1.55) 0.58 . 
-0.77 eye 0.49 ** -0.10 -0.10 0.44 ** -0.92 (3.74) -0.40 -0.39 (4.95) (-1.27) 

Ak! 1.62 ** -1.89 -1.86 0.88 * -0.79 (2.36) (-1.37) -1.35 1.85 -0.21 ear -0.26 ** 0.29 ** 0.30 ** -0.20 *" 0.16 
-3.55 (2.02) (2.09) -4.10 0.41 

d71 q1, -0.06 ** 0.07 ** 0.07 *" 0.002 0.03 
-7.44 (4.69) (4.74) 0.30 0.63 

d 71 q2r 0.07 ** -0.02 -0.02 0.004 -0 07 (8.19) -1.33 -1.31 (0.65) . 0.46 
d 74 q1 r -0.01 * -0.01 -0.01 -0.01 an - 24 ** 

-1.70 -0.95 -0.91 -2.60 
, 
-6.39 d 74 q 2, 1 -0.002 -0.006 -. 006 0.0006 0 *" 22 -0.20 -0.38 -0.36 (0.11) , 4.93 
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Table 5.6b (continued) - Error Correction Specification for the Complete AD-AS Model 
(Equations 6-10) 

d90 q 3, -0.02 ** 0.001 0.002 -0.03 ** 0.03 

-3.58 0.11 (0.12) -6.48 0.86 

R2 0.738 0.428 0.427 0.715 0.723 

Q 0.006 0.012 0.012 0.004 0.034 

2 Zsc[4] 10.5 11.1** 10.3 3.92 9.99"* 

Fsc [4,99] 
2.15 * 2.28 * 2.32 * 0.76 2.03 * 

%FF [1] 
9.37 ** 0.30 029 0.99 0.09 

102] [1 F 
, FF 779 ** 0.23 0.23 0.77 0.07 

2 
i_N[2] 31.7 0.13 0.16 1.13 73.0 

zH2 [1] 
0.29 0.26 0.26 0.04 1.07 

130] F [1 
H , 0.28 0.25 0.26 0.04 1.06 

Notes: t-ratios are given in brackets. Z2[], i= SC, FF, N, H, and F, [] 
,j= SC, FF, H, stand for the chi- 

squared and F diagnostics for serial correlation (SC), functional form (FF), normality (N) and 
heteroscedasticity (N) with degrees of freedom in square brackets. The estimated error correction terms 
A 

i=1,2,3,4,5 are given in Table 5.5. RER, stands for the Real (effective) Exchange Rate, 

e, -P, +P* . "*" and "**" indicate significance at the 10% and 5% levels respectively. 
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Table 5.7 - Asymptotic and Small-Sample Critical Values for the Serial Correlation Diagnostics 

x2sc[41 Fsc[4,99] 

Equation statistic 95% c. v. 90% C. V. Statistic 95% c. v. 90% cv. 
_ 9.49 a 7.78 a 2.46 a 2.00 a 

Ohm -PI) 8.89 14.73 p 12.37 p 1.79 3.11 p 2.56 p 
, 14.44n 12.01 n 3.04 n 2.48 n 

9.49 a 7.78 a 2.46 a 2.00 a 
Ay1 11.2 13.42 p 11.03 p 2.30 2.80 p 2.56 p 

14.59n 12.22n 3.07n 2.52n 
9.49 a 7.78 a 2.46 a 2.00 a 

AR 
` 

11.8 13.46 p 11.27 p 2.42 2.81 p 2.31 p 
13.54n 11.14n 2.83n 2.28n 
9.49 a 7.78 a 2.46 a 2.00 a 

AR * 11.2 13.72 p 11.39 p 2.29 2.87 p 2.34 p 
, 13.96n 11.71n 2.93n 2.41n 

9.49 a 7.78 a 2.46 a 2.00 a 
Au ` 

15.4 13.14 p 10.79 p 3.26 2.74 p 2.20 p 
13.73n 11.51n 2.87n 2.36n 
9.49 a 7.78 a 2.46 a 2.00 a 

` 
10.5 13.48 p 11.08 p 2.15 2.82 p 2.27 p 

14.30n 11.88n 3.01 n 2.45n 
9.49 a 7.78 a 2.46a 2.00 a 

Dew _ p, ) 11.1 12.82 p 10.64 p 2.28 2.66 p 2.17 p 
13.85 n 11.60 n 2.90 n 238 n 
9.49 a 7.78 a 2.46 a 2.00 a 

D(w, _P, ) 10.3 14.10p 11.77 p 2.32 2.96p 2.42p 
13.92n 11.59n 2.92n 238n 
9.49 a 7.78 a 2.46 a 2.00 a 

An, ' 3.92 13.55 p 11.40 p 0.76 2.83 p 2.34 p 
14.35 n 11.88n 3.02 n 2.45 n 
9.49 a 7.78 a 2.46 a 2.00 a 

` 
9.99 13.41 p 10.92 p 2.03 2.80 p 2.23 p 

13.91n 11.43n 2.91n 2.35n 

Notes: , SSC [1, and FSC [1, stand for the chi-squared and F diagnostics for Serial Correlation for the 

VECM in Table 5.6. The degrees of freedom are given in square brackets. Small-sample results are based 

on a bootstrap with 10,000 simulations. "p" and "n" indicate parametric and non-parametric respectively, 
while "a" indicates asymptotic critical value. 
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Figures to Chapter 2 

Figure 2.1: Time Plots of the Variables: 1963 q1-1998g2 
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Figures to Chapter 2 

Figure 2.1 (continued): Time Plots of the Variables 
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Figure 2.2: Small-Sample Distribution for the LR Test of Over-Identification of the Cointegrating 
Matrix. Based on Bootstrap 1 with 10,000 Simulations. 
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Figures to Chapter 2 

Figure 2.3: Small-Sample Distribution of the max-eigenvalue Cointegration Rank Statistic. 
Based on a Parametric Bootstrap with 10,000 Simulations. 
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Figures to Chapter 2 

Figure 2.4: Small-Sample Distribution of the . -trace Cointegration Rank Statistic. 
Based on a Parametric Bootstrap with 10,000 Simulations. 
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Figures to Chapter 2 

Figure 2.5: Small-Sample Distribution of the max-eigenvalue Cointegration Rank Statistic. 
Based on a Non-Parametric Bootstrap with 10,000 Simulations. 
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Figures to Chapter 2 

Figure 2.6: Small-Sample Distribution of the A-trace Cointegration Rank Statistic. 
Based on a Non-Parametric Bootstrap with 10,000 Simulations. 
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Figures to Chapter 2 

Figure 2.7: Persistence Profiles for the Estimated LM, IS, BP and PPP Relations 
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Figures to Chapter 2 

Figure 2.8: Generalised Impulse Responses to a One Standard Error Shock in the R: Equation 
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Figures to Chapter 2 

Figure 2.9: Generalised Impulse Responses to a One Standard Error Oil Price Shock 
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Figures to Chapter 2 

Figure 2.10a: Generalised Impulse Responses to a One Standard Error Oil Price Shock* 
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* Figure 2.1 Oa is the equivalent of Figures 3 and 4 in Garratt et al (1998). 
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Figure 2.10b: Generalised Impulse Responses to a One Standard Error Oil Price Shock* 
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Figures to Chapter 3 

Figure 3.1: Small-Sample Distribution of the LR Statistic for Restricting the Trend Coefficients According 
to c1 = _TI Y y. Based on a Bootstrap with 10,000 Simulations. 
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Figure 3.2: Small-Sample Distribution of the LR Statistic for Restricting the Dummy Coefficients 
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S, Given the Trend Restrictions. Based on a Bootstrap with 10,000 Simulations. 
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Figure 3.3: Small-Sample Distribution for the LR Test of Over-Identification of the Cointegrating Matrix. 
Based on 10,000 Simulations. 
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Figures to Chapter 3 

Figure 3.4: Small-Sample Distribution of the max-eigenvalue Cointegration Rank Statistic. 
Based on a Parametric Bootstrap with 10,000 Simulations. 
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Figures to Chapter 3 

Figure 3.5: Small-Sample Distribution of the A-trace Cointegration Rank Statistic. 
Based on a Parametric Bootstrap with 10,000 Simulations. 
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Figures to Chapter 3 

Figure 3.6: Small-Sample Distribution of the max-eigenvalue Cointegration Rank Statistic. 
Based on a Non-Parametric Bootstrap with 10,000 Simulations. 
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Figures to Chapter 3 

Figure 3.7: Small-Sample Distribution of the 2-trace Cointegration Rank Statistic. 
Based on a Non-Parametric Bootstrap with 10,000 Simulations. 
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Figures to Chapter 3 

Figure 3.8: Plots of the Estimated LM, IS and BP Relations in Chapters 2 and 3 
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Figures to Chapter 3 

Figure 3.9: Persistence Profiles for the Estimated LM, IS and BP Relations 

1.2 

0.8 
-LM 

0.6 IS 

BP 
0.4 

0.2 
ij 

r\rýr\n 0...,, ,,,,,,,,, r\r\r\n, r\rar\ýr\r\r\n, ný\nr\r\Rr\rý. 

147 10 13 16 19 22 25 28 31 34 37 40 43 46 49 

Horizon (quarters) 

Figure 3.10: Generalised Impulse Responses to a One Standard Error Shock in the R, Equation 
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Figure 3.11: Generalised Impulse Responses to a One Standard Error Oil Price Shock 
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Figures to Chapter 4 

Figure 4.1: Time Plots of the Variables: 1965g1-2000gl 
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Figures to Chapter 4 

Figure 4.2: Small-Sample Distribution of the max-eigenvalue Cointegration Rank Statistic for the 
Conditional Model. Based on a Parametric Bootstrap with 20,000 Simulations. 
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Figures to Chapter 4 

Figure 4.3: Small-Sample Distribution of the . 2. -trace Cointegration Rank Statistic for the Conditional 
Model. Based on a Parametric Bootstrap with 20,000 Simulations. 
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Figures to Chapter 4 

Figure 4.4: Small-Sample Distribution of the max-eigenvalue Cointegration Rank Statistic for the 
Conditional Model. Based on a Non-Parametric Bootstrap with 20,000 Simulations. 
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Figures to Chapter 4 

Figure 4.5: Small-Sample Distribution of the A-trace Cointegration Rank Statistic for the Conditional 
Model. Based on a Non-Parametric Bootstrap with 20,000 Simulations. 
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Figures to Chapter 4 

Figure 4.6: Small-Sample Distributions for the LR Tests of Over-Identification of the Cointegrating 
Matrix. Based on 10,000 Simulations. 
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Figures to Chapter 4 

Figure 4.7: Persistence Profiles for the Estimated Employment and Wage Relations 
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Figures to Chapter 5 

Figure 5.1: Small-Sample Distribution of the max-eigenvalue Cointegration Rank Statistic for the 
Conditional Model. Based on a Parametric Bootstrap with 10,000 Simulations. 
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Figures to Chapter 5 

Figure 5.1 (continued): Small-Sample Distribution of the max-eigenvalue Cointegration Rank Statistic for 
the Conditional Model. Based on a Parametric Bootstrap with 10,000 Simulations. 
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Figures to Chapter 5 

Figure 5.2: Small-Sample Distribution of the . 1-trace Cointegration Rank Statistic for the Conditional 
Model. Based on a Parametric Bootstrap with 10,000 Simulations. 
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Figures to Chapter 5 

Figure 5.2 (continued): Small-Sample Distribution of the i-trace Cointegration Rank Statistic for the 
Conditional Model. Based on a Parametric Bootstrap with 10,000 Simulations. 
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Figures to Chapter 5 

Figure 5.3: Small-Sample Distribution of the max-eigenvalue Cointegration Rank Statistic for the 
Conditional Model. Based on a Non-Parametric Bootstrap with 10,000 Simulations. 
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Figures to Chapter 5 

Figure 5.3 (continued): Small-Sample Distribution of the max-eigenvalue Cointegration Rank Statistic for 
the Conditional Model. Based on a Non-Parametric Bootstrap with 10,000 Simulations. 
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Figures to Chapter 5 

Figure 5.4: Small-Sample Distribution of the A-trace Cointegration Rank Statistic for the Conditional 
Model. Based on a Non-Parametric Bootstrap with 10,000 Simulations. 
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Figures to Chapter 5 

Figure 5.4 (continued): Small-Sample Distribution of the A-trace Cointegration Rank Statistic for the 
Conditional Model. Based on a Non-Parametric Bootstrap with 10,000 Simulations. 
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Figures to Chapter 5 

Figure 5.5: Small-Sample Distributions for the LR Tests of Over-Identification of the Cointegrating 
Matrix. Based on 10,000 Simulations. 
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Figure 5.6a: Persistence Profiles for the Estimated LM, IS and BP Relations 
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Figures to Chapter 5 

Figure 5.7a: Generalised Impulse Responses of the Demand-Side Variables to a One Standard Error Oil 
Price Shock 
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Figures to Chapter 5 

Figure 5.7b: Generalised Impulse Responses of the Supply-Side Variables to a One Standard Error Oil 
Price Shock 
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Figure 5.8a: Generalised Impulse Responses of the Supply-Side Variables to a One Standard Error Shock 
in Productivity 
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Figures to Chapter 5 

Figure 5.8b: Generalised Impulse Responses of the Demand-Side Variables to a One Standard Error Shock 
in Productivity 
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Appendix A: Recovering the Structural Constants in Chapter 2 

From the definitions of the structural relations (2.35)-(2.38) we have 

ei, t = 'i1, t, for i=1,2,4, and (Al) 

E3, t = '13, t + rle, t+1 + Let+l, (A2) 

where the structural disturbances 771, t, 172, t' 713, t and 714, t are defined in (2.7), (2.10), (2.18) and 

(2.28), respectively, while 71e, t+l is defined in (2.25). From (2.39) we have 

ei, t = d0i + /3*iz�t, for i =1,2,3,4, (A3) 

where ß' j is the i-th row of f3; = [13', dl] and z. t = [z't, t]'. Substituting (A3) in (Al) and (A2), 

taking expectations and solving for dam, i =1,2,3,4, yields 

do., = E[ris, t] - E[ß', iz�t], for i =1,2,4, and (A4) 

dD3 = E[r)3, t + 71e, t+i + Aet+i] - E[ß: 32*t1, (A5) 

where E[77 t] = 0, i=1,2,3,4, by definition. Therefore, using ý; from the estimation of (2.44) 

the structural constants dam, i=1,2,4, may be obtained as 

do, = -E[p* jz. t], for i =1,2,4. (A6) 

However, as can be seen from (A5), the retrieval of d further requires prior knowledge of 
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E[rie, t+ll " Under rational expectations E[rle, t+l] = 0, in which case d03 may be obtained as 

dos = E[Aet+i] - EP*3Z#t]. (A7) 

Appendix B: Data Appendix 

B. 1 Definition of the Demand-Side Variables 

This appendix defines the empirical counterparts of the variables mt, yt, Rt, R;, LIt, et, pt, 

pt, pi, yi, pre73t and ERMt. The choice of these variables is motivated by the modified IS-LM- 

BP model with a PPP condition outlined in section 2.2 of Chapter 2. They were constructed 

using the data set of Garratt et al (1998), which was kindly made available by Professor K. 

C. Lee. The data is quarterly, seasonally adjusted and extends over the period 1963g1-1998g2. 

Time plots of the variables are to be found in Figure 2.1. The variables are defined as follows: 

mt is the natural logarithm of the UK MO monetary aggregate measured at the end period 

in million pounds, 

yt is the natural logarithm of the UK GDP measured at 1995 market prices in million 

pounds, 

Rt is computed as Rt = 0.251n[1 + (art/100)], where art is the UK 90-day Treasury Bill 

average discount rate per annum, 

Rt* is computed as Rl = 0.25In[1 + (art /100)], where art is the weighted average of 90-day 

interest rates per annum in the United States, Germany, Japan and France. The weights are 

Special Drawing Right (SDR) weights of the IMF, rescaled so as to exclude the UK, 

LIt is computed as LIt = 0.251n[1 + (alit/100)], where alit is the annual return on long 

dated (20 years) UK government securities, 
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et is the natural logarithm of the UK effective exchange rate, measured as the domestic 

price of foreign currency, 

pt is the natural logarithm of the UK producer price index with 1990 as base year, 

pt is a weighted average of the natural logarithms of price indices with 1990 as base year 

of UK's 42 trading partners. The weights are chosen as the share of UK imports from these 

countries during the period 1985-1989, 

pt is the natural logarithm of the average crude oil price published by the IMF, 

yt is the natural logarithm of the total GDP volume index of all OECD member countries, 

pre73t is a dummy variable taking the value of one for t< 1973g1 and zero otherwise and 

ERMt is a dummy variable taking the value of one for 1990q4 <t< 1992q3 and zero 

otherwise. 

B. 2 Definition of the Supply-Side Variables 

This appendix defines the empirical counterparts of the variables nt, wt -pt, wt -pt, ni , kt, 

at. The choice of these variables is motivated by the Lee and Papaikonomou (2002) aggregation 

of the sectoral labour market model in Lee and Pesaran (1993b), briefly described in section 

4.2 of Chapter 4. The main data source is the ONS on-line data base accessed via the Data 

Archive, University of Essex, at http: //www. data-archive. ac. uk/findingData/ns. asp. The data 

are quarterly and cover the period 1965g1-2000g1. Time plots of the variables are to be found 

in Figure 4.1. The series were constructed as follows: 

nt = lnt = ln[(empt)(ahrst)] 

, where empt is the MGRZ series, Table FR1 from the ONS on-line database of Labour Market 
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Statistics (LMS) entitled "Employees in Employment in the UK, (ALL: aged 16+, seasonally 

adjusted)" and ahrst is the YBUV series, Table FR7 from the same source, entitled "Average 

Actual Weekly Hours of Work, (ALL workers in main and 2nd job, seasonally adjusted)". 

wt - pt = lrwet = ln(wbarat/YBGB) + tl 

where wbarat = LNMq 1.3-O. 3 nhrat 4, for ahrst > nhrst. LNMQ is found in Table FR. 15 
n rst+1.3 a rst-n rsi 

in the ONS on-line data base of LMS, entitled "Average Earnings Index (1995=100, whole 

economy, seasonally adjusted)". ehrst is the "Normal Basic Hours in Manufacturing" series 

from the LMS up to 1991g1 and spliced with the "Usual Weekly Hours of Work" produced 

by the Labour Force Survey thereafter. The latter series was transformed into hours using the 

formula uhrst = 
(10(YCDP +23 YCDS x-38 YCDV x-52 YCDY 

, where YCDP is employees working YCDP+YCDS+YCDV+YCDY 

6-15 hrs, YCDS is 16-30 hrs, YCDV=31-45 hrs and YCDY is >45 hrs. YBGB is found in Table 

1.1 in the ONS on-line data base of Economic Trends Annual Supplement (ETAS), entitled 

"Gross Domestic Product Deflator, (at market prices, seasonally adjusted)". tl is a measure of 

the "employment tax" borne by the firm suggested by Layard, Nickell and Jackman (1991) and 

is constructed as t1= ln(LNNL/LNNK), where LNNL is found in Table EG1 in the ONS on-line 

data base of Employment and Earnings (EG), entitled "Unit Labour Cost: Whole Economy, 

(1995=100, seasonally adjusted)" and LNNK is found in Table FR17 in the ONS on-line data 

base of LMS, entitled "Unit Wage Costs: Whole Economy, (1995=100, seasonally adjusted)". 

ahrst is defined above. 

wt' = lrwestar2t = wt +1 
Ilt (rhot/100) 

Ht 
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where wt = lrweat = lrwet + in(multt) with multt being the alternative wage scaling factor 

measured as multt =1- 6"St. This measure is based on the ideas expressed in Chapter 

4, section 2 and Appendix A in Lee and Papaikonomou (2002). St is the measure of sectoral 

wage dispersion computed as St =E 
wst The quarterly data on nominal sectoral wages, Wit, 

was constructed using the three-month average of the (smoothed)1° monthly "Average Earn- 

ings Index: All Employees: By Industry, Great Britain, 1990=100" and the data on "Average 

Gross Weekly Pay: by Industry, in pounds" for full-time employees on adult rates. The for- 

mer was obtained from various issues of Labour Market Trends (formerly Employment Gazette 

and Employment and Productivity Gazette) as well as from the May 2000 issue of the Monthly 

Digest of Statistics (MDS). The latter was collected from Table A5 in the April 2000 issue 

of the New Earnings Survey. The data was collected for the following 16 sectorsll: Food, 

Textiles, Chemicals, Metals (Metal Processing and Manufacturing), Metal Goods (Fabricated 

Metal Products), Mechanical Engineering (Machinery and Equipment), Electrical Engineering, 

Motor Vehicles (Transport Equipment), Electricity Gas & Water, Construction, Transport and 

Communication, Finance Insurance Banking (Financial Intermediation), Paper Printing & Pub- 

lishing, Retail Trade and Repairs (Distribution), Public Administration, Agriculture12. IIt, the 

of re-employment, is measured as IIt = -11.981n MGSX ioo where MGSX is found probability 1-11.98 M ioo 

in Table FR1 in the ONS on-line data base of LMS, entitled "Unemployment Rate, (% UK), 

(seasonally adjusted)". 13 rhos, the replacement ratio, is "% of Social Security Benefits out of 

Weekly Household Disposable Income", obtained from various issues of the Family Expenditure 

'°Using a 12-month Moving Average. 
11Every effort was made to maintain a meaningful, common classification of sectors throughout the sample 

period. 
12 After May 1996 the AEI data on Agriculture was obtained from various issues of the New Earnings Survey. 
13 Over the range of values of MGSX within the sample period, this specification for IIc is approximately equal 

to 0.98(MGSX)'° °°85. 
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Survey. 

nt = lestart = let +ln(udent/100) 

, where let = ln(empt) and udent was made quarterly through linear interpolation of the annual 

series on Union Density reported in Bain and Price's (1980) Profiles of Union Growth up to 

1974, the OECD's Employment Outlook up to 1989 and the "Union Density, (of employees, %)" 

series reported in Labour Market Trends, Vol. 107, July 1999, p. 345 and Vol. 108, July 2000, 

p. 333. 

at = yt - 0.44kt-1- 0.56nt 

This measure follows Holland and Scott (1998) and assumes a Cobb-Douglas production func- 

tion with constant returns to scale and an employment share a=0.56. yt is measured by 

yt = ln(YBHH), where YBHH is "GDP at factor cost, (1995 prices, seasonally adjusted)" ob- 

tained from Table 1.2 in the ONS on-line data base of ETAS. The quarterly series for the capital 

stock, kt, was constructed as in Holland and Scott (1998, p. 1073) using the annual series on 

"Gross Capital Stock, (1995 prices, seasonally adjusted)" reported as CIXX in Table 9.10 in 

the ONS on-line data base of the Blue Book and the quarterly flows of "Total Gross Fixed 

Capital Formation, (1995 prices, seasonally adjusted)" reported as NPQT in Table 1.8 of the 

ONS on-line data base of ETAS. The variable Ut was measured as Ut = ln(MGSX/100). 

Alternative versions of zt = [nt, wt - pt, wt - pt, nt , at, kt]' were used for robustness check, 

where nt is measured as let = ln(empt) or lht = ln[(empt) (ehrst)]. The real wage, wt - pt, has 
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alternatively been constructed as lrwnt = ln(LNMQI YBGB) +tl. A different measure for wi 

is obtained as lrwnat = lrwnt + ln(multt) and a different measure for wt** - pt as lrwnstar2t = 

lrwnat + ln(IIt) + (rhos/100). Alternative measures for the fallback level of employment, it'll 

nt*, have been constructed as lnstart = lnt + ln(udent/100) and lhstare = lht + ln(udent/100). 
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