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Abstract

Equations of chemical kinetics typically include several distinct time scales. There exist

many methods which allow to exclude fast variables and reduce equations to the slow

manifold. In this thesis, we start by studying the background of the quasi equilibrium

approximation, main approaches to this approximation, its consequences and other re-

lated topics.

We present the general formalism of the quasi equilibrium (QE) approximation with

the proof of the persistence of entropy production in the QE approximation. We demon-

strate how to apply this formalism to chemical kinetics and describe the difference be-

tween QE and quasi steady state (QSS) approximations. In 1913 Michaelis and Menten

used the QE assumption that all intermediate complexes are in fast equilibrium with

free substrates and enzymes. Similar approach was developed by Stuekelberg (1952)

for the Boltzmann kinetics. Following them, we combine the QE (fast equilibria) and

the QSS (small amounts) approaches and study the general kinetics with fast intermedi-

ates present in small amounts. We prove the representation of the rate of an elementary

reaction as a product of the Boltzmann factor (purely thermodynamic) and the kinetic

factor, and find the basic relations between kinetic factors. In the practice of modeling, a

kinetic model may initially not respect thermodynamic conditions. For these cases, we

solved a problem: is it possible to deform (linearly) the entropy and provide agree-

ment with the given kinetic model and deformed thermodynamics ?

We demonstrate how to modify the QE approximation for stiffness removal in an ex-

ample of the CO oxidation on Pt. QSSA was applied in order to get an approximation

to the One dimensional Invariant Grid for oxidation of CO over Pt. The method of

intrinsic low dimension manifold (ILDM) was implemented over the same exam-

ple (CO oxidation on Pt) in order to automate the process of reduction and provide

more accurate simplified mechanism (for one-dimension), yet at the cost of a signifi-

cantly more complicated implementation.

viii



CHAPTER 1

Thesis Outline

In this thesis, we discuss in detail the application of the quasiequilibrium (QE)and

quasi steady state (QSS) approximation in physical and chemical kinetics with

exposition of some new results.

Structure of the Thesis

The thesis is organized as follows:

• Chapter 2

The main ideas of slow (positively) invariant manifold (SIM), invariance

equation, invariant grid and thermodynamic projector are reviewed. Rel-

evant properties of the thermodynamic projector are discussed and the

method of invariant grid (MIG) illustrated in the form of the Newton

method with incomplete linearization. Considering an example of the

Michaelis Menten mechanism various approximations of one-dimensional

reduced description are constructed and refined by the Newton method.

We start with the formal description of the general idea of QE and its pos-

sible extensions. In Section 2.3, we briefly introduce main notations and

some general formulas for exclusion of fast variables by the QE approxi-

mation.

Section 2.6 clears the idea of QE and QSSA and describes these approxi-

mations for general kinetic systems.

Roughly speaking, this approximation states that any reaction goes through

1



CHAPTER 1. THESIS OUTLINE

the transformation of fast intermediate complexes (compounds), which

have two important properties:

– They are equilibrium with the correspondent input reagents.

– They exist in a very small amount compared to other components.

One of the most important benefits from this approach is the exclusion

of kinetics of compounds production: they are in fast equilibrium and

equilibrium is ruled by thermodynamics. For example, when Michaelis

and Menten discussed the production of the enzyme–substrate complex

ES from enzyme E and substrate S, they did not discuss reaction rates.

These rates may be unknown. They just assume that the reaction E+S
ES

is in equilibrium. Briggs and Haldane included this reaction into a kinetic

model. This approach is more general but for this new model we need

more information, not only equilibrium of E + S 
 ES but also reaction

rates and constants.

Transformation of compounds is a linear first order kinetics, there is no

need to include interactions between them because they are present in

very small amounts in the same volume, and their concentrations are also

small. (By the way, this argument is not always applicable to the hetero-

geneous catalytic reactions, because the intermediates there are in small

amounts but in a small volume as well, i.e. in the surface layer. The con-

centration of intermediates in this volume is not small, and their inter-

action does not vanish when their amount decreases [70]. Therefore, ki-

netics of intermediates in heterogeneous catalysis may be nonlinear and

demonstrate bifurcations, oscillations and other complex behavior.)

In 1952, Stückelberg [59] used similar approach in his seminal paper "H-

theorem and unitarity of the S-matrix". He studied elastic collisions of

particles as the quasi-chemical reactions

v + w→ v′ + w′

(v, w, v′, w′ are velocities of particles) and demonstrated that for the Boltz-

mann equation the linear Markov kinetics of the intermediate compounds

results in the special relations for the kinetic coefficients. These relations

are sufficient for the H theorem.

2
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• Chapter 3

Here we discuss the general idea of elementary reactions, stoichiometry

of the reaction, mass action law, principle of detail balance and thermody-

namic Lyapunov functions, to measure the behavior of chemical species

and model reduction (discussed in next chapters). The classical formula-

tion of the principle of detailed balance deals not with the thermodynamic

and global forms we use but just with equilibria: in equilibrium each pro-

cess must be equilibrated with its reverse process as explained it in next

chapter.

• Chapter 4

We present the role of thermodynamics, entropy maximum, stoichiometry

of complex’s and compounds, relations between the kinetic factors and

how to recover them during the entropy deformation. Later, these rela-

tions for the chemical mass action kinetics were called the complex balance

conditions [25, 50]. Also we generalize the Michaelis–Menten–Stückelberg

approach and study (Section 4.1) the general kinetics with fast intermedi-

ates present in small amount.

The result of the general kinetics of systems with intermediate compounds

can be used wider than this specific model of elementary reactions: the

intermediate complexes with fast equilibria and the Markov kinetics can

be considered as the "construction staging" for general kinetics. In Sec-

tion 4.2, we delete this construction staging and start from the general

forms of the obtained kinetic equations as from the basic laws.

For each reaction

∑
i

αρi Ai →∑
i

βρi Ai

a nonnegative quantity, reaction rate rρ is defined. It consists of two fac-

tors (4.2.2), the kinetic factor ϕρ > 0 and the Boltzmann factor exp(αρ, µ̌):

rρ = ϕρ exp(αρ, µ̌) ,

where (αρ, µ̌) = ∑i αρiµ̌i and µ̌i are (minus) partial derivatives of the

Kulback–Leubler entropy (i.e. chemical potentials µ w.r.t concentration

divided on RT).

3



CHAPTER 1. THESIS OUTLINE

We study relation between these forms and thermodynamics. For exam-

ple, two identities guarantee the entropy growth: the detailed balance

(4.2.15)

ϕ+
ρ = ϕ−ρ

for all ρ and the complex balance conditions (4.2.17),

∑
ρ

ϕρ exp(µ̌, αρ) = ∑
ρ

ϕρ exp(µ̌, βρ)

for all admissible values of µ̌ and given ϕρ which may vary indepen-

dently.

The Boltzmann factors exp(µ, ν) are independent for any set of different

vectors ν. Therefore, we can collect all terms with the same Boltzmann

factors together and simplify this condition (4.2.18).

We also develop another, less restrictive sufficient conditions for accor-

dance between thermodynamics and kinetics. For example, we demon-

strate that the G-inequality

∑
ρ

ϕρ exp(µ̌, αρ) ≥∑
ρ

ϕρ exp(µ̌, βρ)

is sufficient for the entropy growth and, at the same time, weaker than the

condition of complex balance.

Sometimes the kinetic equations may not respect thermodynamics from

the beginning. To repair this discrepancy, deformation of the entropy may

help. In Section 4.3 we solved the problem: when is it possible to deform

the entropy by adding a linear function in order to provide agreement

between given kinetic equations and the deformed thermodynamics ? As

a particular case, we obtain the "deficiency zero theorem" [50].

Section 4.3 confirms that for the general kinetic law the existence of a point

of detailed balance is equivalent to the existence of such linear deforma-

tion of the entropy that the global conditions (4.2.15) hold. Analogously,

the existence of a point of complex balance is equivalent to the global con-

dition of complex balance after some linear deformation of the entropy.

• Chapter 5

4
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Stiffness of equations often causes more problems than the large dimen-

sion of the space. The formalism of the QE approximation with all the

necessary notations and examples for chemical kinetics is presented in

Section 5.2. In Section 5.3 we reformulate the aim of the QE approxima-

tion. It can be used for removing the stiffness from the kinetic equations

instead of model reduction.

We develop the general formalism and give an example of its application

to the catalytic oxidation reaction.

We apply the methods of QE and QSS to a chemical kinetics (CO oxi-

dation over Pt) and construct an approximated one-dimension invariant

manifold. Using different parameters for testing and considering higher

dimensional cases.

• Chapter 6

Here we apply an Intrinsic Low-Dimensional Manifold (ILDM) over the

same system CO oxidation over Pt and obtain a slow trajectory of one-

dimensional ILDM. Comparison between different methods of model re-

duction are given along with stiffness measures. In contrast to the above

reduction methods i.e QSSA and partial equilibrium assumptions, the

ILDM method (introduced by Maas and Pope) automatically reduces the

reaction mechanisms.

• Chapter 7

We conclude with the overview of our results and literature review. Fur-

ther generalization, its implementation of the methods are discussed.

5
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CHAPTER 2

Slow Invariant Manifold for Kinetic

Equations

In kinetic theory the idea of slow invariant manifold is considered as a corner

stone for the discussion of micro to macro model reduction. In the physical and

in chemical problems, the problem of reduced description is considered as the

problem of constructing a Slow Invariant Manifold (SIM) for it.

The dissipative dynamical system whether finite or infinite dimensional arises

in many kinetics problems. Here we consider some methods and their appli-

cation, which are useful not only for dissipative systems but also for conserva-

tive systems. Non-equilibrium statistical physics gives a number of ideas and

methods how to construct the slow invariant manifold. There exist a number

of methods used to compute the slow invariant manifold but those considered

to be better approximations are discussed in detail. To make understanding of

the idea clearer it is implemented on a simple example with a setting of several

parameters 2.8.1.

2.1 Slow Invariant Manifold

In chemical kinetics, dissipative reaction while solving with respect to fast and

slow motion their solution trajectories in a phase space move fast toward the

lower dimensional manifold during the relaxation and after reaching a small

vicinity of this manifold they move slowly along it (Figure 2.1). We call such a

manifold SIM.

7



SLOW INVARIANT MANIFOLD

It is not difficult to find a slow manifold for the two variables in the ODE model

of a chemical reactions with a single equilibrium point, where the slow mani-

fold is a unique trajectory corresponding to slow relaxation of the system to-

wards the equilibrium point. More than two variables make the system com-

plex and need special approach (as in the case of fast relaxation of the interme-

diate in a chemical reactions).

There exist several methods used to calculate SIM

• Method of Invariant Manifolds (MIM) gives iterative process for SIM ap-

proximation.

• Method of Invariant Grids (MIG) gives iterative process for construction

of discrete approximation of SIM.

• Computational Singular Perturbation (CSP) gives iterative process for ap-

proximation of SIM and fast foliation.

• Intrinsic Low Dimensional Manifold (ILDM) gives promising first-order

approximation of SIM.

These methods are discussed in detail in [57]. Various methods can be used

to construct the SIM at non-trivial test-case [22], the most common of them are

essentially different iterative algorithms:

• MIG-approach (based on the Newton method), ([54],[55],[57]);

• MIG-approach (based on the relaxation method), ([54],[55],[57])

• CSP-approach ([61],[20]).

Each iterative procedure starts from an initial approximation that can be re-

fined through an iteration towards the solution. For that purpose one can take

different initial approximations methods :

• Quasi-Equilibrium-Manifold (QEM), ([54],[55]),

• Spectral-Quasi-Equilibrium-Manifold (SQEM),

• Intrinsic-Low-Dimensional-Manifold (ILDM) ([65],[67]),

• Symmetric-Entropic-Intrinsic-Low-Dimensional-Manifold

(SEILDM)([54], [55]).

8



SIM FOR KINETICS

Figure 2.1: Decomposition of motion into Fast-slow trajectories.

2.2 SIM for kinetics

Let Ωslow be the slow manifold such that trajectories of the system starting

at different initial condition converge to a small neighborhood of the mani-

fold(ansatz) and after that start to move along it. It is said to be a positive

invariant manifold if the trajectories starting on it never leave the manifold for

all t > t0, the fast motion can also be define in a neighborhood of the slow man-

ifold. Thermodynamics is useful for the model reduction in dissipative system.

The idea behind its application is [57] that during the fast motion the entropy

(or the correspondent free entropy, if the system is not isolated) should increase,

hence, the point of entropy maximum on the plane of rapid motion is not far

from the slow manifold, in the area where fast and slow motion have compa-

rable velocities (Figure 2.1, inside dashed circles). This implies that differential

of the entropy at points near the slow manifold almost annuls the planes of fast

motions (i.e. entropy gradient is almost orthogonal to these planes) discuss in

detail in Chapter 4. For sufficiently strong fast-slow time separation the fast in-

variant subspace of a Jacobian near the slow manifold approximates the plane

of fast motions, hence, this invariant subspace is also nearly orthogonal to the

entropy gradient.

The idea of the fast and slow decomposition becomes more clear by consid-

ering its motion toward and along the manifold in which fast construction is

selected in the transversal directions (in directions of projector kernel) and rel-

atively slow change of vector field tangent component along manifold. In our

9



CHEMICAL KINETICS

case, the slow invariant manifold is a stable fixed point which can be calculated

by the following processes:

If the Newton method with incomplete linearization converge the initial ap-

proximation, then it leads to the slow manifold in the usual sense, while the

standard Newton method does not. (This is very convenient because the stan-

dard method is also much more complicated). For sufficiently strong fast-slow

time separation, most of the numerous definitions of the slow invariant man-

ifold give the same result (exactly the same, or up to higher order terms, de-

pending on the required regularity of the manifolds).

There is another iterative procedure, relaxation method using to a film exten-

sion of dynamics [57], that is defined by the equation for immersed manifold

motion

F : W → D, F(W) = Ω with velocity J⊥(c), where J(c) = J⊥(c) + J||(c):

dF(y)
dt

= (1− P)J (2.2.1)

If we are able to approximate the slow invariant manifold Ωslow then the slow

reduced system is the system on the manifold Ω defined by the projected vector

space

ċ = PJ(c), (2.2.2)

Where c ∈ Ω and projector P : Rn → TcΩ depends both on the point c and

on the tangent space TcΩ. Because F is immersion, differential of F(y), DF(y),

is reversible on its image, TF(y)(Ω). Hence, reduced system ( 2.2.2) defines

dynamics in the parameter space:

ẏ = (DF(y))−1(PJ(F(y))). (2.2.3)

2.2.1 Chemical Kinetics

In this Section, we introduce the basic notations of the chemical kinetics formal-

ism. For more details see, for example, [70].

The list of components is a finite set of symbols A1, . . . , An.

A reaction mechanism is a finite set of stoichiometric equations of elementary

10
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reactions:

∑
i

αρi Ai →∑
i

βρi Ai , (2.2.4)

where ρ = 1, . . . , m is the reaction number and the stoichiometric coefficients

αρi, βρi are nonnegative integers.

A stoichiometric vector γρ of the reaction (2.2.4) is a n-dimensional vector with

coordinates

γρi = βρi − αρi , (2.2.5)

that is, ‘gain minus loss’ in the ρth elementary reaction.

A nonnegative extensive variable Ni, the amount of Ai, corresponds to each

component. We call the vector N with coordinates Ni ‘the composition vector’.

The concentration of Ai is an intensive variable ci = Ni/V, where V > 0 is the

volume, the vector c = N/V with coordinates ci is the vector of concentrations.

A non-negative intensive quantity, rρ, (or Wρ), the reaction rate, corresponds to

each reaction (2.2.4). The kinetic equations in the absence of external fluxes are

dN
dt

= V ∑
ρ

rργρ, or

Ṅ = V J(c), J(c) = ∑
ρ

γρWρ(c). (2.2.6)

If the volume is not constant then equations for concentrations include V̇ and

have different form (this is typical for the combustion reactions, for example).

How can we find the reaction rates ? For perfect systems and not very fast reac-

tions the reaction rates are functions of concentrations and temperature given

by the mass action law for the dependence on concentrations and by the gener-

alized Arrhenius equation for the dependence on temperature T.

The mass action law:

rρ(c, T) = kρ(T)∏
i

c
αρi
i , (2.2.7)

where kρ(T) is the reaction rate constant.

The generalized Arrhenius equation:

kρ(T) = Aρ

(
T
T0

) Saρ
R

exp
(
−

Eaρ

RT

)
, (2.2.8)

11



CHEMICAL KINETICS

where R = 8.314 472 J
K mol is the universal, or ideal gas constant, Eaρ is the

activation energy, Saρ is the activation entropy (i.e. Eaρ − TSaρ is the activation

free energy), Aρ is the constant pre-exponential factor. Some authors neglect

the Saρ term because it may be less important than the activation energy but it

is necessary to stress that without this term it may be impossible to reconcile

the kinetic equations with the classical thermodynamics.

In general, the constants for different reactions are not independent. They are

connected by various conditions that follow from thermodynamics (the second

law, the entropy growth for isolated systems) or microreversibility assumption

(the detailed balance and the Onsager reciprocal relations). In Section 4.2.2 we

discuss these conditions in more general settings.

For nonideal systems, a more general kinetic law is needed. In Section 4.1 we

produce such a general law following the ideas of the original Michaelis and

Menten paper (this is not the same as the famous “Michaelis–Menten kinetics").

For this work we need a general formalism of QE approximation for chemical

kinetics. The principle of detailed balance gives a relation between these quan-

tities:

W+
ρ (ceq) = W−ρ (ceq), ρ = 1...m. (2.2.9)

Where the positive vector ceq(T) is the equilibrium of the system ( 2.2.6). In

order to obtain a closed system of equations, one should supply an equation

for the volume V. For an isolated system the extra-equations are U, V = const

(where U is the internal energy), for an isochoric isothermal system we get V,T=

const, and so forth. For example, Eq.( 2.2.6) in the latter case simply takes the

form:

ċ = ∑
ρ

γρWρ(c) = J(c). (2.2.10)

Finally, also other linear constraints, related to the conservation of atoms, must

be considered. In general, such conservation laws can have the following form:

Dc = Const., (2.2.11)

Where l fixed and linearly independent vectors di are the rows of the l × n

matrix D, and Const is a constant vector. Once the thermodynamic features of

the system have been defined, equations ( 2.2.6) and ( 2.2.11) constitute the kind

12
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Figure 2.2: Φ′(t) = J(Φ), PJ(Φ) is the projection of the vector J(Φ) onto
tangent space TΦ, in order to measure the defect of invariance
∆ = (1− P)J(Φ).

of dissipative systems which we are interested in.

2.2.2 Invariant Manifold and Condition of Invariance

A manifold is said to be invariant in a phase space under some flow, if orbits

that start out in the manifold remain in it. The phase space of many dynami-

cal systems has embedded in them invariant manifolds whose dimensions are

smaller than the dimensions of the entire phase space. Let us consider a general

system of autonomous ordinary differential equations in a domain D

ċ = J(c). (2.2.12)

For the above system a sub manifold Ω ⊂ D is a positively invariant manifold

if , for any solution c(t) , inclusion c(t0) ∈ Ω implies that c(t) ∈ Ω for t > t0.

Such a set Ω is an invariant manifold. If TcΩ is a tangent space at a point c, then

gives a necessary differential condition of invariance.

J(c) ∈ TcΩ. (2.2.13)

To transform the condition into an equation, split the J(c) into two component

and proceed as follow:

13
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• take a complement to Tc in Rn , Rn = Tc ⊕ Ec ,

• split J(c) into two components:J(c) = J⊥(c) + J||(c),

J⊥(c) ∈ Ec , J||(c) ∈ Tc.

• write down an equation, J⊥(c) = 0.

Operator P called thermodynamic projector, clearly define this operation. If a

projector P on Tc is defined with image imP = Tc and kernel kerP = Ec, then

the differential condition of invariance will become

(1− P)J = 0. (2.2.14)

The component J⊥ represents the defect of invariance : J⊥ = (1 − P)J = ∆.

In the invariance equation ( 2.2.14) an unknown is the manifold Ω. This man-

ifold has to be represented in a parametric form, as an immersion F : W → D

of a domain W in the parameter space into the domain D; Ω is the image of

this immersion: Ω = F(W). There exists a natural method for projector field

P construction, if for any c a positive definite inner product 〈x, y〉c (a Rieman-

nian structure) is defined, then we can choose P as 〈 , 〉c -orthogonal projector,

and J(c) = J⊥(c) + J||(c) is h, orthogonal splitting. Careful analysis shows that

this idea is absolutely right and after some changes leads to the thermodynamic

projector [[53], [4]]. The relevant Riemannian structure is generated by the sec-

ond differential of the entropy. In a majority of applications, we are looking not

for an approximation to an invariant manifold that definitely exists, but rather

for an approximate invariant manifold with sufficiently small defect of invari-

ance ( ||∆|| � ||J||, for example). When the manifold is not invariant, it is not

able to satisfy the invariance condition so that

co : ∆ = [1− P]J(co) 6= 0, (2.2.15)

where ∆ is the defect of invariance

2.2.3 Thermodynamic Potential and Thermodynamic Projector

Due to the dissipative property of our system, it has a thermodynamic poten-

tial which is the Lyapunov function, and this function implements the 2nd law

14
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of thermodynamics: This means that during the motion from the initial to the

equilibrium state, the Lyapunov function must decrease monotonically. So if

G(c) is the Lyapunov function, ceq (equilibrium state) is its point of global min-

imum in the phase space. A simple example of a function G is given by the free

energy of perfect gas in a constant volume and at a constant temperature[22]:

G =
n

∑
i=1

ci[ln(ci/ceq
i )− 1]. (2.2.16)

When the function G is known, also its gradient∇G and the second derivatives

matrix, where

H = |∂2G/∂ci∂cj| (2.2.17)

so we introduce the thermodynamic scalar product as follows:

〈x, y〉 = (x, Hy), (2.2.18)

where ( , ) implies Euclidean scalar product. Thermodynamic projector is an

operator which projects the vector field at each point of the manifold into the

tangent space to give the induced vector field PJ(c) [53]. Now a differential of

G, is a linear functional

DG(x) = (∇G(c), x). (2.2.19)

The induced vector field respects the dissipation inequality:

DG(PJ) ≤ 0, f or all c ∈ Ω. (2.2.20)

Where the projector P respects the above condition if and only if :

ker(P) ⊂ ker(DG), f or all c ∈ Ω (2.2.21)

where ker denotes the null space of an operator. The thermodynamic projector

is also important to induce the dynamics on a given manifold and in construct-

ing corrections, where the projector participating in the invariance condition is

arbitrary. It is convenient to make use of this point where the thermodynamic

projector, which is also used in MIG procedure, depends on the concentration

point c and on the tangent space to the manifold Ω. After a reduced descrip-

tion form our SIM will be a q−dimensional SIM. Let g be a discrete subset of q
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dimensional parameter space and let F‖g be a mapping of g into the concentra-

tion space. If we select an approximation procedure to restore the smooth map

F from the discrete map F‖g (we need a very small part of F, derivatives of F

at the grid points only), then the derivatives fi = ∂F/∂yi are available, and for

each grid point the tangent space is:

Ty = Lin( fi), i = 1 · · · n. (2.2.22)

We assume that one the of points, y ∈ g, maps into equilibrium, and at other

points intersection of the manifold with G levels is transversal (i.e. (DG)F(y)(x)

6= 0 for some x ∈ Ty ). Let us consider the subspace T0y = Ty ∩ ker(DG).

In order to define the thermodynamic projector it is required, if T0y 6= Ty , to

introduce the vector ey which satisfies the following conditions

ey ∈ Ty, 〈ey, x〉 = 0 f or all x ∈ T0y DG(ey) = 1. (2.2.23)

Let P0 be the orthogonal projector on T0y with respect to the entropic scalar

product (2.2.18), then the thermodynamic projection of vector x is defined as:

T0y 6= Ty ⇒ Px + P0x + eyDG(x)

T0y = Ty ⇒ Px + P0x (2.2.24)

2.2.4 Newton method with incomplete linearization

There are several methods used to approximate the slow invariant manifolds.

The Newton method with incomplete linearization is one of them which is an

efficient method for the invariance equation. It is the basis of an iterative con-

struction of the manifolds of slow motions. We will try to obtain such a man-

ifold through the MIG method whose defect of invariance is small and, if Ω

is such a manifold, then initially Ω0 it can not satisfy the invariance equation.

Due to that reason we can change its position from c0 of Ω0 to a new position

(c0 + δc) with a lower defect of invariance4= [1- P]J(c0 + δc). If the initial node

is ’not far’ from the invariant manifold, a reasonable way to get the node correc-

tion δc is to solve the linearized invariance equation for which the vector field J
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is expanded to the first order and the projector P to the zeroth order

[1− P(c)][J(c) + L(c)δc] = 0. (2.2.25)

Where L (Jacobian matrix) is the matrix of first derivatives of J and the Newton

method with in-complete linearization consists of Eq.( 2.2.25) supplied by the

extra condition [53]:

Pδc = 0. (2.2.26)

The additional condition ( 2.2.26) and the atoms balances ( 2.2.11) automatically

can be taken into account choosing a basis bi in the subspace S = (kerP∩ kerD).

Let h = dim(S), then the correction can be cast in the form δc = ∑h
i=1 δibi , so that

the linearized invariance equation ( 2.2.25) becomes the linear algebraic system

in terms of δi:

h

∑
i=1

δi((1− P)Lbi, bk) = −((1− P)J, bk) k = 1, . . . , h (2.2.27)

In the case of the thermodynamic projector, it proves convenient to choose the

basis bi orthonormal with respect to the entropic scalar product ( 2.2.16) and

write the ( 2.2.27) as

h

∑
i=1

δi〈(1− P)Lbi, bk〉 = −〈(1− P)J, bk〉 k = 1, . . . , h (2.2.28)

The projector ( 2.2.22) is "almost" 〈 , 〉 -orthogonal (〈imP, kerP〉 ∼= 0) close to

the SIM Because of that special feature, Eq( 2.2.28) can be approximated and

simplified as follows:

h

∑
i=1

δi〈Lbi, bk〉 = −〈J, bk〉 k = 1, . . . , h (2.2.29)

The refinement carried out by Eq. ( 2.2.29) leaves a residual defect ( 2.2.15) in the

grid nodes which cannot be annihilated even if we continue to refine it through

iteration. Therefore, when a higher accuracy in the SIM description is required,

Eq.( 2.2.27) is recommended.
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2.3 Quasi Equilibrium Manifold

Let us consider a system in a domain U of a real vector space E given by differ-

ential equations
dx
dt

= F(x) . (2.3.1)

We assume that for any x0 ∈ U solution x(t; x0) to the initial problem x(0) = x0

for (2.3.1) exists for all t > 0 and belongs to U. Shifts in time, x0 7→ x(t; x0)

(t > 0), form a semigroup in U.

We do not specify the space E now. In general, it may be any Banach or even

more general space. For nonlinear operators we will use the Fréshet differen-

tials: for an operator Ψ(x) the differential at point x is a linear operator (DΨ)|x:

(DΨ)|xy =
dΨ(x + αy)

dy

∣∣∣∣
α=0

.

We use notation (DxΨ) when the choice of variables is not obvious.

The QE approximation for (2.3.1) uses two basic entities: entropy and slow

variables.

Entropy S is a concave Lyapunov functional for (2.3.1) which increases in time:

dS
dt
≥ 0 . (2.3.2)

In this approach, the only property of entropy that is exploited is its increase in

time (the Second Law in the form (2.3.2)).

Formally, any Lyapunov function may be used. Nevertheless, most of famous

entropies, like the Boltzmann–Gibbs–Shannon entropy, the Rényi entropy, the

Burg entropy, the Cressie–Read and the Tsallis entropies could be defined as

universal Lyapunov functionals for Markov chains which satisfy some natural

additivity conditions [31].

‘Universal’ means that they do not depend on kinetic coefficients directly but

only on the equilibrium point. The ‘natural additivity conditions’ require that

these entropies can be represented as sums (or integrals) over states, maybe

after some monotonic transformation of the entropy scale, and, at the same

time, are additive with respect to the joining of statistically independent sys-
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tems (maybe, after some monotonic rescaling as well).

Slow variables M are defined as some differentiable functions of variables x:

M = m(x). Selection of the slow variables implies a hypothesis about sepa-

ration of fast and slow motion. In its strongest form it consists of two assump-

tions: the slaving assumption and the assumption of small fast–slow projection.

The slaving assumption. For any admissible initial state x0 ∈ U after some

relatively small time τ (initial layer) solution x(t; x0) becomes a function of M

(up to a given accuracy ε) and can be represented in a slaving form:

x(t) = x∗M(t) + δ(t) f or t > τ, where M(t) = m(x(t)), ‖δ(t)‖ < ε . (2.3.3)

This means that everything is a function of slow variables, after some initial

time and up to a given accuracy.

The smallness of τ is essential. If there is no restriction on τ then every globally

stable system will satisfy this assumption because after some time it will arrive

into a small vicinity of equilibrium.

The second assumption requires that the slow variables (almost) do not change

during the fast motion: during the initial layer τ, the state x can change signifi-

cantly because of fast motion, but the changes in M = m(x) during τ are small

with τ: the assumption of small fast–slow projection.

The QE approximation defines the functions x∗M as solutions to the following

MaxEnt optimization problem:

S(x)→ max subject to m(x) = M . (2.3.4)

The reasoning behind this approximation is simple: during the fast initial layer

motion entropy increases and M almost does not change. Therefore, it is natural

to assume (and even to prove using smallness of τ and ε if the entropy gradient

in fast directions is separated from zero) that x∗M in (2.3.3) is close to the solution

to the MaxEnt optimization problem (2.3.4). Further, x∗M denotes a solution to

the MaxEnt problem.

Some additional conditions on m and S are needed for the regularity of the

dependence of x∗M on M. It is more convenient to discuss these conditions sep-

arately for more specific systems. In general settings, let us just assume that for

19



QUASI EQUILIBRIUM MANIFOLD

given S and m the dependence m(x) is differentiable.

A solution to (2.3.4), x∗M, is the QE state, the correspondent value of the entropy

S∗(M) = S(x∗M) (2.3.5)

is the QE entropy and the equation

dM
dt

= (Dm)|x∗M F(x∗M) (2.3.6)

represents the QE dynamics.

We use notation EM for the space of slow variables.

Remark. The strong form of the slaving assumption, ‘everything becomes a

function of the slow variables’, is too strong for practical needs. In practice,

we need just to have a good dependence on M for the time derivative dM/dt.

Moreover, the short-time fluctuations of dM/dt do not affect the dependence

M(t) too much, and only the average values

〈Ṁ〉θ(t) =
1
θ

∫ t+θ

t

dM
dt

for sufficiently small time scale θ are important.

Let Q be the concentration vectors satisfying the atom balance constraints de-

fine by the equation (2.2.11). In the defined Q space, we choose such points

which minimize the Lyapunov function G of the system that we are dealing

with. Such a manifold is called Quasi Equilibrium Manifold, which allows to

make a partition of spaces into L and L⊥ in order to decompose the system into

fast and slow motions i.e fast-towards the QEM and slow along the QEM. Let

us assume that we have n-chemical species and l atom balance constraints then

we are left with n− l degrees of freedom. If q < (n− l) is the dimension of

the QEM, then the variables of reduced description are ξ1...ξq, so that:

(m1, c) = ξ1, . . . , (mq, c) = ξq, (2.3.7)

where mi is an n-dimensional vector. The solution of the variation problem

G → min, under constraints ( 2.2.10) and ( 2.2.27), represents the QEM. We will

discuss this approach in detail by considering an example in Section 2.8 along
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with different parametric representations.

2.4 Quasi Equilibrium w.r.t Reactions and Chemical

Species

Here we are discussing the idea for the construction of Quasi-Equilibrium with

respect to reactions and species, for which first of all we have to decide the num-

ber of reactions to be equilibrated among all chemical reactions taken under

consideration. For convenience, give the reactions an index number of s1, ..., sk,

and, by law of mass action, if these reaction reach an equilibrium, then the

rates of forward and backward reactions become equal, so the quasi equilib-

rium manifold is define by the system of equations

W+
si

= W−si
, i = 1, ..., k. (2.4.1)

Let L be the space generated by these reactions (usually fast) i.e. L = lin{γs1 , ..., γsk}.
where γs are the stoichiometric vectors. In terms of conjugated variables say µ,

the quasi-equilibrium manifold forms a linear subspace L⊥ which is the orthog-

onal complement to the linear envelope of vectors L, i.e,

(Lsi, µ) = 0, i = 1, ..., k. (2.4.2)

gives a µ = ∇G.

In the case of chemical species the idea is similar but without selecting a subset

of reactions. Let Ai1 , ..., Aik be the numbers of chemical species, assuming fast

and to be a equilibrate. This means that the subspace L which is define by the

balance equation

(bi, c) = 0 (2.4.3)

is a k−dimensional subspace, the space of concentrations with the coordinates

ci1 , ..., cik . The conjugate variables defined for the quasi-equilibrium manifold,

L⊥ are given as,

µ ∈ L⊥, µ = µ1, ..., µn (2.4.4)

The same idea of quasi-equilibrium manifold can also be defined by fictitious
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reactions: Let g1, ..., gq be a basis in L. Then 2.4.4 can be rewritten as follows:

(gi, µ) = 0, i = 1, ..., q. (2.4.5)

Let us illustrate the above idea on an example of quasi equilibrium with re-

spect to reactions in the case of oxidation of CO over Pt: It involve a four step

chemical reaction discussed in detail in Chapter 5. The equilibrium conditions

are

k+1 cO2c2
Pt = k−1 c2

PtO

k+2 cCOcPt = k−2 cPtCO

k+3 cCOcPtO = k−3 cCO2cPt

k+4 cPtOcPtCO = k−4 cCO2c2
Pt (2.4.6)

Similarly, the quasi-equilibrium with respect to species for the same reaction

can be defined by assuming equilibrium over O2, CO, CO2, Pt, PtO, PtCO in a

sub domain of reaction conditions.

Subspace L is defined by the balance constraints, oxygen balance, carbon bal-

ance and platinum balance.

2cO2 + cCO + 2cCO2 + cPtO + cPtCO = 0,

cCO + cCO2 + cPtCO = 0,

cPt + cPtO + cPtCO = 0. (2.4.7)

Subspace L is three-dimensional. Its basis, {g1, g2, g3} in the coordinates

cO2 , cCO, cCO2 , cPt, cPtO, cPtCO, reads:

g1 = (1, 0, 0, 2,−2, 0),

g2 = (0, 1, 0, 1, 0,−1),

g3 = (0, 0, 1, 2,−1,−1). (2.4.8)
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The corresponding above equation(2.4.8) will become

µO2 + 2µPt = 2µPtO,

µCO + µPt = µPtCO,

µCO2 + 2µPt = µPtO + µPtCO. (2.4.9)

Similarly the general construction of the quasi-equilibrium manifold in the space

of construction can be defined by finding a subspace L which satisfies the bal-

ance constraints, i.e

(bi, L) ≡ 0. (2.4.10)

Thus the orthogonal complement of L in the space with coordinates µ = ∇G

defines the quasi equilibrium manifold ΩL.

2.5 Preservation of Entropy Production

The crucial property of the QE dynamics is the preservation of entropy production:

if we use (2.3.6) for the calculation of dS∗(M)/dt at point M, then we obtain

the same result as for entropy production dS(x)/dt at point x = x∗M due to the

initial system (2.3.1): symbolically, we can write

dS∗(M)

dt
=

dS(x)
dt

, (2.5.1)

where the left hand side is computed due to the QE approximation (2.3.6) and

the right hand side corresponds to the initial system (2.3.1).

To prove this identity let us mention that

dS∗(M)

dt
= (DS∗)|M

dM
dt

= (DS∗)|M ◦ (Dm)|x∗M F(x∗M) , (2.5.2)

where ◦ stands for superposition. On the other hand,

dS(x)/dt = (DS)|xF(x) . (2.5.3)
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To finalize the proof, we need an identity

(DS∗)|M ◦ (Dm)|x∗M = (DS)|x∗M . (2.5.4)

Let us use the Lagrange multipliers representation of the MaxEnt problem:

(DS)|x = ΛM ◦ (Dm)x , m(x) = M . (2.5.5)

This system of two equations has two unknowns: the vector of state x and the

linear functional ΛM on the space of slow variables (the Lagrange multiplier),

which depends on M as on a parameter.

By differentiation of the second equation m(x) = M, we get an identity

(Dm)|x∗M ◦ (Dx∗M)|M = idEM , (2.5.6)

where id is a unit operator.

Lagrange multiplier ΛM is the differential of the QE entropy:

(DS∗)|M = ΛM . (2.5.7)

Indeed, due to the chain rule, (DS∗)|M = (DS)x∗M ◦ (Dx∗M)|M, due to (2.5.5),

(DS)|x = ΛM(Dm)x and, finally,

(DS∗)|M =(DS)x∗M ◦ (Dx∗M)|M = ΛM ◦ (Dm)x ◦ (Dx∗M)|M
=ΛM ◦ idEM = ΛM .

Now we can prove the identity (2.5.4):

(DS∗)|M ◦ (Dm)|x∗M = ΛM ◦ (Dm)|x∗M = (DS)|x∗M

(here we use the Lagrange multiplier form (2.5.5) again).

The preservation of the entropy production leads to the preservation of the type

of dynamics: if for the initial system (2.3.1) entropy production is non-negative,

dS/dt ≥ 0 then for the QE approximation (2.3.6) the production of the QE

entropy is also non-negative, dS∗/dt ≥ 0.
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In addition, if for the initial system (dS/dt)|x = 0 if and only if F(x) = 0 then

the same property holds in the QE approximation.

2.6 The Classics and the Classical Confusion

2.6.1 The Asymptotic of Fast Reactions

It is difficult to find who introduced the QE approximation. It was impossible

before the works of Boltzmann and Gibbs, and it became very well known after

the works of Janes.

Chemical kinetics has been a source for model reduction ideas for decades. The

ideas of QE appear there very natural: fast reactions go to their equilibrium and,

after that, remain almost equilibrium all the time. The general formalization of

this idea looks as follows. The kinetic equation has the form

dN
dt

= Ksl(N) +
1
ε

K f s(N) (2.6.1)

Here N is the vector of composition with components Ni > 0, Ksl corresponds

to the slow reactions, K f s corresponds to fast reaction and ε > 0 is a small

number. The system of fast reactions has the linear conservation laws bl(N) =

∑j bl jNj: bl(K f s(N)) ≡ 0.

The fast subsystem
dN
dt

= K f s(N)

tends to a stable positive equilibrium N∗ for any positive initial state N(0)

and this equilibrium is a function of the values of the linear conservation laws

bl(N(0)). In the plane bl(N) = bl(N(0)) the equilibrium is asymptotically sta-

ble and exponentially attractive.

Vector b(N) = (bl(N)) is the vector of slow variables and the QE approximation

is
db
dt

= b(Ksl(N∗(b)) . (2.6.2)

In chemical kinetics, equilibria can be described by conditional entropy maxi-

mum (or conditional extremum of other thermodynamic potentials). Therefore,
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we have the direct application of the formalism from Section 2.3.

The QE approximation, the asymptotic of fast reactions, is well known in chem-

ical kinetics. Another very important approximation was invented in chem-

ical kinetics as well. It is the Quasi Steady State (QSS) approximation. QSS

was proposed in [6] and was elaborated into an important tool for analysis

of chemical reaction mechanisms and kinetics [58, 13, 36]. The classical QSS is

based on the relative smallness of concentrations of some of “active" reagents (radi-

cals, substrate-enzyme complexes or active components on the catalyst surface)

[1, 60]. In the enzyme kinetics, its invention was traditionally connected to the

so-called Michaelis–Menten kinetics.

2.6.2 QSS and the Briggs–Haldane Asymptotic

Perhaps the first very clear explanation of the QSS was done by Briggs and

Haldane in 1925 [7]. Briggs and Haldane consider the simplest enzyme reac-

tion S + E � SE → P + E and mention that the total concentration of enzyme

([E] + [SE]) is ‘negligibly small’ compared with the concentration of substrate

[S]. After that they conclude that ˙[SE] is ‘negligible compared with’ ˙[S] and
˙[P] and produce the now famous ‘Michaelis–Menten’ formula, which was un-

known to Michaelis and Menten: k1[E][S] = (k−1 + k+2 )[ES] or

[ES] =
[E][S]

KM + [S]
and ˙[P] = k+2 [ES] =

k2[E][S]
KM + [S]

, (2.6.3)

where the ‘Michaelis–Menten constant’ is

KM =
k−1 + k+2

k+1
.

There is plenty of misleading comments in later publications about QSS. Two

most important confusions are:

• Enzymes (or catalysts, or radicals) participate in fast reactions and, hence,

relax faster than substrates or stable components. This is obviously wrong

for many QSS systems: for example, in the Michaelis–Menten system all

reactions include both enzyme and either substrate or product, there are

no separate fast reactions for enzyme and slow reactions for substrate and
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product.

• Concentrations of intermediates are constant because in QSS we equate their

time derivatives to zero. In general case, this is also wrong: we equate the

kinetic expressions for some time derivatives to zero, indeed, but this just

exploits the fact that the time derivatives of intermediates concentrations

are small together with their values, but not obligatory zero. If we accept

QSS then these derivatives are not zero as well: to prove this we can just

differentiate the Michaelis–Menten formula (2.6.3) and find that [ES] in

QSS is almost constant when [S] � KM, this is an additional condition,

different from the Briggs–Haldane condition [E] + [AE] � [S] (for more

details see [60, 41, 70] and a simple detailed case study [8]).

After a simple transformation of variables the QSS smallness of concentration

transforms into a separation of time scales in a standard singular perturbation

form (see, for example [70, 32]). Let us demonstrate this on the traditional

Michaelis–Menten System:

d[S]
dt

= −k+1 [S][E] + k−1 [SE] ;

d[SE]
dt

= k+1 [S][E]− (k−1 + k+2 )[SE] ;

[E] + [SE] = e = const, [S] + [P] = s = const .

(2.6.4)

The Briggs–Haldane condition is e � s. Let us use dimensionless variables

x = [S]/s, ξ = [SE]/e:

s
e

dx
dt

= −sk+1 x(1− ξ) + k−1 ξ ;

dξ

dt
= sk+1 x(1− ξ)− (k−1 + k+2 )ξ .

(2.6.5)

To obtain the standard singularly perturbed system with the small parameter at

the derivative, we need to change the time scale. This means that when e → 0

the reaction goes proportionally slower and to study this limit properly we have
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to adjust the time scale: dτ = e
s dt:

dx
dτ

= −sk+1 x(1− ξ) + k−1 ξ ;

e
s

dξ

dτ
= sk+1 x(1− ξ)− (k−1 + k+2 )ξ .

(2.6.6)

For small e/s, the second equation is a fast subsystem. According to this fast

equation, for a given constant x, the variable ξ relaxes to

ξQSS =
sx

KM + sx

exponentially, as exp(−(sk+1 x + k−1 + k+2 )t). Therefore, the classical singular

perturbation theory based on the Tikhonov theorem [63, 66] can be applied to

the system in the form (2.6.6) and the QSS approximation is applicable even

on an infinite time interval [37]. This transformation of variables and introduc-

tion of slow time is a standard procedure for rigorous proof of QSS validity

in catalysis [70], enzyme kinetics [24] and other areas of kinetics and chemical

engineering [1].

It is worth to mention that the smallness of parameter e/s can be easily con-

trolled in experiments, whereas the time derivatives, transformation rates and

many other quantities just appear as a result of kinetics and cannot be con-

trolled directly.

2.6.3 The Michaelis and Menten Asymptotic

QSS is not QE but the classical work of Michaelis and Menten [47] was done on

the intersection of QSS and QE. After the brilliantly clear work of Briggs and

Haldane, the name ‘Michaelis–Menten’ was attached to the Briggs and Haldane

equation and the original work of Michaelis and Menten was considered as an

important particular case of this approach, an approximation with additional

and not necessary assumptions of QE. From our point of view, the Michaelis–

Menten work includes more and may give rise to an important general class of

kinetic models.

Michaelis and Menten studied ‘fermentative splitting of cane sugar’. They in-

troduced three ‘compounds’: sucrose–ferment combination, fructose–ferment
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combination and glucose–ferment combination. The fundamental assumption

of their work was ‘that the rate of breakdown at any moment is proportional to

the concentration of the sucrose–invertase compound’.

They started from the assumption that at any moment according to the mass

action law

[Si][E] = Ki[SiE] (2.6.7)

where [Si] is the concentration of the ith sugar (here, i = 0 for sucrose, 1 for

fructose and 2 for glucose), [E] is the concentration of free invertase and Ki is

the ith equilibrium constant.

For simplification, they use the assumption that the concentration of any sugar

in question in free state is practically equal to that of the total sugar in question.

Finally, they obtain

[S0E] =
e[S0]

K0(1 + q[P]) + [S0]
, (2.6.8)

where e = [E] + ∑i[SiE], [P] = [S1] = [S2] and q = 1
K+

1
+ 1

K+
2

.

Of course, this formula may be considered as a particular case of the Briggs–

Haldane formula (2.6.3) if we take k−1 � k+2 in (2.6.3) (i.e. the equilibration

S+ E � SE is much faster than the reaction SE→ P+ E) and assume that q = 0

in (2.6.8) (i.e. fructose–ferment combination and glucose–ferment combination

are practically absent).

This is the truth but may be not the complete truth. The Michaelis–Menten ap-

proach with many compounds which are present in small amounts and satisfy

the QE assumption (2.6.7) is a seed of the general kinetic theory for perfect and

non-perfect mixtures.

In the next section we discuss the invariant grid for the system based on a nu-

merical technique.

2.7 Method of Invariant Grids and Numerical Algo-

rithms

Method of Invariant Grids (MIG) is a model reduction numerical technique,

commonly used in a combustion system based on a slow invariant manifold
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Figure 2.3: Each grid node is being refine from initial c and moved it to a new
position c′ with lower defect of invariance ∆.

SIM where one can approximate the SIM by the notion of the quasi-equilibrium

manifold (QEM)for an initial approximation in order to find a set of nodes in the

concentration space. By considering the thermodynamic Lyapunov function

of the detailed kinetic system and then by refine it for the convergence this

grid based approximation allows to construct one and two dimensional discrete

approximations of the QEM (quasi-equilibrium grids). The main idea of MIG

is to find a mapping F : W → D of a finite-dimensional grid into the phase

space of a dynamic system [57]. For computational purpose the idea is given

in [54][55]. We consider a discrete subset g ⊂W. All the functions are in g and

the functions on the grid are denoted by F‖g and through approximation obtain

a smooth function F[F‖g]. The discrete set is then transformed into a smooth

function as

F‖g → F[F‖g]. (2.7.1)

The grid g is invariant, if for every node y belonging to g the image of the

differential Dy F
[
F‖g

]
(y), is a "tangent plane" to the discrete set [F‖g](g at a

point [F‖g](y), Ty = imDyF[F‖g](y)). We call [F‖g](g) an invariant grid, if it

satisfies the grid version of the invariance equation:

(1− P)J(F(y)) = 0 for y ∈ g, P : Rn → Ty. (2.7.2)
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The invariant grids tabulated here are used to integrate the reduced system.

The above grid differentiation formulas establish the tangent space Ty, and the

null space of the thermodynamic projector Py at each node. The equation ( 2.2.1)

also represents a motion in the defect of invariance direction (1− P)J(F(y)) in

its grid version. Newton method with incomplete linearization has the same

form as for continuous manifolds. The method based on invariant grid (sug-

gested recently) has a great importance for the construction of relatively low

dimension manifolds.

2.8 Simple example

In this section we consider a simple example provided by the catalytic reaction

under a constant volume and pressure [22] with three components Ã1, Ã3, Ã4

and one catalyst Ã2. Gives a two-step reaction:

Ã1 + Ã2 
 Ã3,

Ã3 
 Ã2 + Ã4 (2.8.1)

The function ( 2.2.16 ) define a global potential at here, while ( 2.2.16 ) is the ki-

netic equation for the four-component vector of concentrations c = (c1, c2, c3, c4)
T,

can be written as (2.2.6):

ċ = J(c) = γ1W1 + γ2W2 (2.8.2)

where 1,2 represent the first and second step of ( 2.8.1). Stoichiometric vectors

are given according to (2.2.5) and rates of reactions are defined by the law of

mass action (2.2.7).

γ1 = (−1,−1, 1, 0), W1 = W+
1 −W−1 = k+1 c1c2 − k−1 c3,

γ2 = (0, 1,−1, 1), W2 = W+
2 −W−2 = k+2 c3 − k−2 c2c4. (2.8.3)
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A 2× 4 Matrix Dc is obtained through the conservation law from the system

(2.2.11)

Dc = Const.⇒
[

1 0 1 1

0 1 1 0

] 
c1

c2

c3

c4

 =

[
Const1

Const2

]


ċ1

ċ2

ċ3

ċ4

 =


j1
j2
j3
j4

 =


k−1 c3 − k+1 c1c2

k−1 c3 − k+1 c1c2 + k+2 c3 − k−2 c2c4

k+1 c1c2 − k−1 c3 + k−2 c2c4 − k+2 c3

k+2 c3 − k+2 c2c4

 , (2.8.4)

and the Jacobian of the above matrix takes the form:

L =
[

∂ji
∂cj

]
⇒


−k−1 c2 −k+1 c1 k−1 0

k+1 c2 −k+1 c1 − k+2 c4 k−1 + k+2 −k−2 c2

k+1 c2 k+1 c1 + k+2 c4 −k−1 − k+2 k−2 c2

0 −k−2 c4 k+2 −k−2 c2

 (2.8.5)

∇G =


ln c1 − ln ceq

1

ln c2 − ln ceq
2

ln c3 − ln ceq
3

ln c4 − ln ceq
4

 , H =


1/c1 0 0 0

0 1/c2 0 0

0 0 1/c3 0

0 0 0 1/c4

 . (2.8.6)

Now, to find invariant manifold from the shown in Figure 2.4, which will be

our initial manifold, and by considering this initial manifold we apply method

of invariant grid procedure (as discuss above). For a first approximation we

take q =1 so that the four-dimensional vector m which gives us the reduced

description variable ξ will take the form m = (1, 0, 0, 0), and the QEM must

respect the following conditions:

G =
4

∑
i=1

ci[ln(ci/ceq
i )− 1]→ min

(m, c) = ξ

Dc = (const1, const2)
T. (2.8.7)

Normally the above equation can be minimized by the Lagrange multipliers
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Figure 2.4: Solution trajectories starting from different initial conditions (cir-
cles) approaching towards the equilibrium point (square) in the
c1 − c3 plane.

method, but the method fails if the number of constraints and variables in-

crease. Due to this reason we need a special procedure to handle the situation.

In that case the algorithm defined in [22], which is easy to implement in order

to get the discrete structure of the QEM in any dimension is applied and can

be further examined by the QEM geometrical construction. Here the following

parameters are defined for the case of the two step chemical reaction

k+1 = 1, k−1 = 0.5, k+2 = 0.4, k−2 = 1,

ceq
1 = 0.5, ceq

2 = 0.1 ceq
3 = 0.1, ceq

4 = 0.4,

const1 = 1, const2 = 0.2. (2.8.8)

2.8.1 QEM Algorithm using Matlab

Let us implement the MIG method, as discussed above in detail in a Matlab

program, where each steps is described for the proper understanding of the

method and how it works. Figure 2.5 shows refinement from the initial mani-

fold. The macroscopic parameter ξ in this example is the concentration of the

component Ã(ξ = c1). Let Ω be the solution of the system (2.8.7), and let φ
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be the relation between c3 and c1 on the QE-manifold, so that c3 = φ(ξ). The

system (2.8.7) takes the following explicit form:

c1 = ξ, c2 = const2 − φ(ξ)

c3 = φ(ξ), ; c4 = const1 − ξ − φ(ξ)

∂G(φ, ξ)

∂φ
= 0,

∂2G(φ, ξ)

∂φ2 > 0. (2.8.9)

The solution of the system (2.8.9) delivers a quadratic expression for φ(ξ):

φ(ξ) = ψ(ξ)−
√

ψ2(ξ)− const2(const1 − ξ),

where

ψ(ξ) = (const2(const1 − ceq
1 ) + ceq

3 (ceq
1 + ceq

3 − ξ))/(2ceq
3 )

The resulting manifold is quite far away from the invariant one so it needs to be

corrected through MIG procedure and can be refined after two iterations only.

Let us write the thermodynamic projector (2.2.24) for the case (2.8.4). Here the

tangent subspace Ty is a line spanned by the vector ey . If f is a vector parallel

to Ty and z = (z1, z2, z3, z4) a generic four-dimensional vector which must be

projected onto it, we can write:

ey = ω f , ω = 1/DG( f ),

Pz = DG(z)ey = (∇G, z)ey, (2.8.10)

so that the null space of P has the following equation:

(∇G, z) = g1z1 + g2z2 + g3z3 + g4z4 = 0, (2.8.11)

where ∇G = (g1, g2, g3, g4, ). The dimension of S = (kerP∩ kerD) is 1; let b1 be

a vector which spans S. When a set of concentration points is available (initial

approximation of SIM), in each point , the Newton method must provide a

correction (c = c0 + δc : δc = δ1b1). Here, Eq. (2.2.27) takes the simple form:

δ1 = − ((1− P)J, b1)

((1− P)Lb1, b1)
. (2.8.12)
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For 30 grid points we define the concentration spaces ci in vectorial form as

A = [c1, c2, c3, c4]
T, where T represent a transpose

for Thermodynamic scalar product we use

f = F/A , G1 = G/A , S1 = S/A , J1 = J/A

G(i, j) = log[A(i, j)− A(i, j− 1)] Gradient

F(i, j) = eG/‖eG‖ Tangent at each point

K(i, j) = F(i, j)/(G, f ) ( , )Euclidean scalar product

P(i, j) = G1(i, j)× K(i, j) Thermodynamic Projector

L(i, j) = ∂J(c)
∂ci

Jacobian Matrix o f kinetics J

S1 = null(P ∩ D) Spanning set b = S

Now the step size is defined as

delta1 = (ZJ,S1)
(ZLb,S1)

, Z = (1− P), with Euclidean scalar product.

Thus,

A1 = A + delta1. f irst re f inement.

Similarly, for the second refinement we proceed in the same manner but sepa-

rately(optional) to get

A2 = A1 + delta2. second re f inement.

The solution trajectories are shown in Figure 2.5. Our computations fully sup-

port the observation of [22] and prove that their computational experiments are

reproducible.

Now in the next section we apply the same procedure by changing its parame-

ter to see the line segment in the c1 − c3 plane.

QEM at different parameters

1st Observation: Let us change the parameters and consider the same system

(2.8.7) for which,

k+1 = 4, k−1 = 2, k+2 = 0.2, k−2 = 0.5,

ceq
1 = 0.5, ceq

2 = 0.1, ceq
3 = 0.1, ceq

4 = 0.4,
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Figure 2.5: Grid refinement at each point by two iterations applied on Quasi
Equilibrium Manifold composed of 30 grid-nodes.

Figure 2.6: 1st Observation: Newton method with incomplete linearization:
Two iterations starting from the QEM approximation for the refine-
ment of each initial grid point.
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Figure 2.7: 2nd Observation: Newton method with incomplete linearization:
Two iterations starting from the QEM approximation for the refine-
ment of each initial grid point.

const1 = 1, const2 = 0.2 (2.8.13)

If Ω is the solution trajectories obtained by defining the relation between c1 and

c3. Equation 2.8.9 gives the initially approximated manifold and then by the re-

finement through MIG we get the slow invariant manifold shown in Figure 2.6.

2nd Observation: Similarly for the next calculations we use the following set

of parameters.

k+1 = 1, k−1 = 1, k+2 = 1, k−2 = 1,

ceq
1 = 1, ceq

2 = 0.1 ceq
3 = 0.1, ceq

4 = 1,

const1 = 2.1, const2 = 0.2. (2.8.14)

Now again by obtaining the invariant manifold from the parameters defined by

(2.8.14) which gives initial manifold and need to be refined due to its variation

from the invariant one. Apply invariant grid procedure to find the SIM projec-

tion onto the c1 and c3 plane simply results in the line segment c3 = ceq = 0.1.

So we expect that methods of reduced description provide the manifold in

which we obtain the reduction of two dimensional kinetic system in order to
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into a one dimensional description. Using different initial conditions and pa-

rameters we calculated the QEM approximation after refining through an iter-

ative process, which shows the efficiently of the Newton method.
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CHAPTER 3

Chemical Reaction Stoichiometry

and Mass Action Law

In any chemical reaction the mass of reactants will equal the mass of the prod-

ucts, this is what the law of conservation of mass, of energy, etc says. The

rules of stoichiometric govern nearly all calculation related to chemical equa-

tion. Which are widely used in chemical engineering and metallurgy, we are

going to discuss in this chapter.

3.1 The idea of elementary reaction and stoichiomet-

ric equations

Vant’t Hoff define, if a reaction involves one molecule (reaction: A → B) it

will be classified as the 1st order or monomolecular and in the case when two

molecules take part (reaction: A + B → B, reaction : 2A → B) the reaction is of

the second order (bimolecular). Similarly with three molecules (reaction:3A →
B, reaction : 2A + B → C) the reaction is of the third order (three-molecular)

whereas more than three is considered to be improbable. In the case of an el-

ementary reaction its rate depends on concentrations specified in some simple

way whereas in case of more than one reaction or a sum of elementary reactions

as in the case of complex reactions, its steps consist of two elementary reactions

direct and inverse. A complex chemical system involves a number of steps of
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elementary reactions such as oxidation of hydrogen described

2H2 + O2 = 2H2O (3.1.1)

involve over thirty elementary reactions, as hydrogen oxidation takes place

through intermediate species such as O,H,OH. Although they are low in con-

centration, they are of essential important for the reaction. In the gas phase

catalyst reaction, the reactant on the one hand are gases and surface substances

on the other side later on the surface of solid catalysts. A catalyst reaction is

represented as
NA

∑
i

αi Ai +
NX

∑
i

α
′
iXi 


NB

∑
i

βiBi +
NY

∑
i

β
′
iYi (3.1.2)

where Ai, Bi are initial substances and products, αi, βi are their stoichiometric

coefficients Xi, Yi are the surface substances and α
′
i, β

′
i are their stoichiometric

coefficients. For simplicity α, β = 1 or 0, which means that the catalytic reaction

involves the participation of one molecule CH4 + Z 
 2CH2 + H2 of gas or no

molecules, such as ZCHOH 
 ZCO + H2. Thus we are left with

αA +
NX

∑
i

α
′
iXi 
 βB +

NY

∑
i

β
′
iYi (3.1.3)

αi, βi are usually 1,2,3 and ∑ α
′
i, ∑ β

′
i ≤ 3. Because of these number of elemen-

tary steps, the same substance can participate a number of times as an initial

substance and as a reaction product. Just as an example

H + H2 + S↔ 3H + S. (3.1.4)

where S is any other substrate. Such types of steps are called autocatalytic and

Non autocatalytic implies that at any value of S and i at least one of the values

αsi or βsi is zero. The stoichiometric coefficients will be considered only for

mono, bi, and tri molecular reactions. The coefficient αsi, βsi thus have values

of 0,1,2,3, such that

n

∑
i=1

αsi,
n

∑
i=1

βsi ≤ 3. (3.1.5)
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3.2 Stoichiometric Conservation Laws

Reaction rate in the case of an elementary reaction is defined as the number of

elementary acts in the chemical conversion per unit reaction volume or per unit

surface area for unit time. A chemical reaction can be written in general as

NA

∑
i

αi Ai 

NB

∑
i

βiBi (3.2.1)

where αi, βi are the stoichiometric coefficients which are always ≤ 3. Ai, Bi are

initial substances and products. NA and NB are the number of initial substances

and reaction products respectively. The law of conservation is independent of

what reactions take place between the species Ai because there exists a number

of linear laws of conservation satisfy the equation

dbj

dt
=

d
dt

n

∑
i=1

aijNi = 0 , bj = constant, (3.2.2)

or in a matrix form it can be written as

db
dt

= C
dN
dt

= 0 , b = CN = constant (3.2.3)

but their vectors are not always linearly independent. The simplest example

[55] is the reaction of butane isomerization. Let A1 be butene-1, A2 be iso

butene-2 and A3 be cis trans butene-2. They consist of two elements carbon

and hydrogen, and all Ai have the same composition, C4H8, The molecular ma-

trix is of the form

A =


4 8

4 8

4 8

 . (3.2.4)

and the laws of conservation

bC = 4(N1 + N2 + N3) = Constant,

bH = 8(N1 + N2 + N3) = Constant,

are linearly dependent such that 2bC = bH
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Now, in order to solve a set of linear equations defined by the chemical reaction

(3.1.2). It is better to apply matrix techniques of linear algebra and obtain a

set of linearly independent vectors to get its basis. In a matrix form AX = B,

and if B is zero, then the system is homogenous. The rank of the stoichiometric

matrix give us the key substance (linearly independent vector of the matrix). In

the case of oxidation of carbon monoxide over platinum the rank is three, given

by (O, C, Z). This means that in the O2, CO, CO2, Z, ZO, ZCO mixture there are

three key substances. The chemical composition of the substance in a chemical

reaction can be calculated from the molecular matrix A whose elements aij are

atomic number of jth element entering into ith reactant molecule, so in a matrix

form



O C Z︷ ︸︸ ︷

A = {

2 0 0

1 1 0

2 1 0

0 0 1

1 0 1

1 1 1

O2

CO

CO2

Z

ZO

ZCO


,

where the rows represent the substances and columns are the elements O, C, Z.

The molecular masses of the substances are determined by the equation

M = AMA, (3.2.5)

where M represent the molecular masses and MA is column vector of atomic

masses. Stoichiometric vectors γi = βi − αi are obtained from the stoichio-

metric matrix whose elements are the stoichiometric coefficients of the reacting

substances. In the same example (CO oxidation over Pt) it takes the form

Γ =


−1 0 0 −2 2 0

0 −1 0 −1 0 1

0 −1 1 1 −1 0

0 0 1 2 −1 −1

 (3.2.6)

Here rows correspond to reactions and columns represent the reacting sub-
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stances. It is necessary that the reaction steps must satisfy the mass conver-

sation law for atoms of the each type. This requirement can be written in the

form

ΓA = 0, (3.2.7)

which mean that if we have chosen the right stoichiometric matrix equations

then (3.2.7) must hold and we obtain

ΓAMA = ΓM = 0. (3.2.8)

which can be easily seen through the above equations.

3.3 Perfect system and mass action law for a catalytic

reaction

From the stoichiometric equation of chemical reactions (3.2.1) the rate of a chem-

ical reaction can be defined as a difference between the rates of direct and re-

verse reactions i.e,

w = w+
i − w−i . (3.3.1)

In the case of equilibrium w = 0, which means that

w+
i = w−i . (3.3.2)

The Law of Mass Action gives the dependence of the rate on the concentration

of the reactants

w+
i = k+i cα1

A1
cα2

A2
... = k+i

NA

∏
i=1

cαi
Ai

,

w−i = k−i cβ1
B1

cβ2
B2

... = k−i
NB

∏
i=1

cβi
Bi

, (3.3.3)

• where cAi , cBi are the concentration of initial and final(product) substances.

• k+i , k−i are the rate coefficients for the direct and reverse reactions.

• and there ratio k+i /k−i = keq represent equilibrium constants.
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ki fit the Arrhenius relationship and decreases exponentially with increase tem-

perature

k+ = k+0 exp(−E+/RT),

k− = k−0 exp(−E−/RT), (3.3.4)

where k+0 , k−0 are the pre-exponential factors, E+, E− are the activation energy

for the direct and reverse reaction, R,T are universal gas constants and absolute

temperature. Homogenous catalytic reaction satisfies the relationship

w = w+
i − w−i =

−1
αiV

dNAi

dt
=
−1
βiV

dNBi

dt
(3.3.5)

where NAi , NBiare concentrations of substances in the system, V is the volume

of the system. Similarly, for heterogenous catalyst reaction

w = w+
i − w−i =

−1
αiScat

dNAi

dt
=
−1

βiScat

dNBi

dt
(3.3.6)

Scat is the surface area of a catalyst for conversion. For those steps in which

there is no change in the number of moles, equation above will take a form

w = w+
i − w−i =

−1
αi

dcAi

dt
=
−1
βi

dcBi

dt
. (3.3.7)

3.4 Principle of Detailed Balance

In order to understand the dynamical property of the chemical kinetics system,

it is necessary to formulate the basic property of a closed system expressed by

the principle of detailed balance (PDB) rest point for a closed system is a point

of detailed balance where the rate of every step is equal to zero:

w+
s = w−s ,

ws = w+
s − w−s = 0, (3.4.1)

which implies ċ = Ṅ = 0.

Onsager in 1930 gave an idea of substituting and extending the principle of de-
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tailed balance to a wide range of chemical processes, where in the presence of

an external magmatic field it is possible that equilibrium is not detailed. Then

De Groot and Mazur made further modifications in this principle. A closed sys-

tem, on the one hand means that there is no in flow out flow of substance, but

also it is about equilibrium of the environment, which may be of several types:

isothermal with respect to heat, isobaric or isochoric with respect to pressure

and volume. Sometimes it is not easy to decide whether the system is in equi-

librium or in a steady state.

Actually the state of the system is not literally steady or stationary, but the con-

centrations of one or more species are approximately constant compared to the

other species changing much more rapidly. The rate of change of the concentra-

tion of one or more intermediates may be so close to zero that the steady state

approximation is useful in treating the kinetics of the reaction system.

In the case of chemical kinetics, the kinetic equation is derived in terms of the

law of mass/surface action, and it can be proved through above equation that

in such a system a positive equilibrium point is unique and stable. In the non

steady case the behavior of the closed system near this positive point of equilib-

rium is very simple, in that the positive point is a stable node. This means that

the PDB imposes limitation on the equilibrium constants i.e the ratio of direct

to reverse reaction rate constants which are

w+
s = w−s , k+s (T)

n

∏
i=1

c∗αi
i = k−s (T)

n

∏
i=1

c∗βi
i , (3.4.2)

where c∗i is an equilibrium concentration of Ai. Then after some transformation

and taking the logarithm we obtain

n

∑
i=1

(βsi − αsi) ln c∗i = ln(
k+s
k−s

) = ln ks (3.4.3)

where ks is the equilibrium rate constant for the s-th step. In order to obtain

explicit form for the condition on ks it is necessary to find all solutions for the

set of equations

∑
s

ysγsi = 0, i = 1, 2...n. (3.4.4)

where y is a row vector through which a complete set of solutions will be

obtained. Consider an example a system of 3-isomers (the isomerization of
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ENTROPY

butenes)

A1 
 A2

A2 
 A3

A3 
 A1 (3.4.5)

Γ =


−1 1 0

0 −1 1

1 0 −1

 , (3.4.6)

so that yΓ = 0 gives

−y1 + y3 = 0,

y1 − y2 = 0,

y2 − y3 = 0,

where above system is satisfied by the y1 = y2 = y3 constant coefficient say

y = (1, 1, 1) the respective condition of equilibrium constant is y ln k = 0, or

ln k1 + ln k2 + ln k3 = 0,

k1k2k3 = 1. (3.4.7)

3.5 Thermodynamic Lyapunov Functions: Entropy,

Free Energy, Free Entropy

Lyapunov considered analytical solutions of equations of invariance near a

fixed point [55]. He obtain the solutions in a form of the Taylor series expan-

sion and proved the convergence of the power series near the non-resonant

fixed point (the Lyapunov auxiliary theorem). For the construction of a slow

invariant manifold Gorban & Karlin proposed an idea in 1992 and for the re-

alization for generic dissipative system is discussed in 1994, famous in kinetic

theory based on the Boltzmann kinetic equation.

In case of isochoric and isothermal conditions a Lypunov function is related to
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ENTROPY

the Helmholtz energy given by

G = ∑ ci[ln(
ci

c∗i
)− 1].

where c∗ represents the steady state. There gradient and second derivative take

a simple form

∇G =
∂G
∂ci

∣∣∣∣
V,T

= ln(
ci

c∗i
), H(i, j) =

∂2G
∂ci∂cj

∣∣∣∣∣
V,T

= δij
1
ci

.

where δij denotes the Kronecher delta.

In the case of isobaric, isoenthalpic, and isolated system it is difficult to find

gradient and Hessian matrix explicitly because of its dependence on non-linear

relations, for detail see [23].

The entropy of the system does not depend on kinetic constants [54]. It is the

same for different details of kinetics and depends only on the equilibrium data.

In the Boltzmann equation there exists only one universal Lyapunov functional

[57]. It is the entropy (we do not distinguish functionals which are connected

by multiplication on a constant or adding a constant). For the Fokker Plank

Equation there exists a big family of universal Lyapunov functionals. For all

four classical conditions the thermodynamic Lyapunov functions G• for kinetic

equations are known [56]:

U, V = const, GU,V = −S/kB;

V, T = const, GV,T = F/kBT = U/kBT − S/kB,

H, P = const, GH,P = −S/kB;

P, T = const, GP,T = G/T = H/kBT − S/kB. (3.5.1)

where F = U−TS is the free energy (Helmholtz free energy), G = H−TS is the

free enthalpy (Gibbs free energy). In order to get the dimensionless coordinates

the thermodynamics Lyapunov function must be normalized. The function de-

crease while there derivatives ∂G•(const, N)/∂Ni are the same functions of c
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and T for all classical conditions can be represented as:

µ̌i(c, T) =
∂G•(const, N)

∂Ni

=
µchem

i (c, T)
kBT

where µchem
i (c, T) is the chemical potential of Ai.
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CHAPTER 4

Kinetic Model of Chemical Reaction

Chemical kinetics deals with the rates of chemical reactions and factors which

influence the rates and the explanation of the rates in terms of the reaction

mechanisms of chemical processes. On the other hand by knowing pressure,

temperature, medium, concentration, etc, of a reaction, one can measure the

rate of change of reactants or products with respect to time. In equilibrium, the

energy relations between the products and the reactants are calculated based

on thermodynamics without the evolvement of intermediates. Berzelius(1836)

observed that there exist such substances which increase the rate of a reaction

by loosening the bonds holding the atoms of the reacting molecules are now

call catalyst where as it is also shown in a number of experiments in which it

slow down the reaction so we can say that it can alter the rate of reaction while

keeping itself unchanged.

While in this slow and fast reactions the reaction stoichiometry (element mea-

sure) allows us to determine the amount of substance that is consumed or pro-

duced by a reaction. It was Richter (German chemist) who discovered that it is

possible to quantify the substance produced or consumed by a chemical reac-

tions, and normally its measurement can be taken in two parts: the first part is

how much of a reactant is consumed in a chemical reaction and the second is

its product formation.
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STOICHIOMETRY OF COMPLEXES

4.1 General Kinetics with Fast Intermediates Present

in Small Amount

4.1.1 Stoichiometry of Complexes

In this Section, we return to the very general reaction network.

Let us call all the formal sums that participate in the stoichiometric equations

(2.2.4), the complexes. The set of complexes for a given reaction mechanism

(2.2.4) is Θ1, . . . , Θq. The number of complexes q ≤ 2m(reaction number) and

it is possible that q < 2m because some complexes may coincide for different

reactions.

A complex Θi is a formal sum Θi = ∑n
j=1 νij Aj = (νi, A), where νi is a vector

with coordinates νij.

Each elementary reaction (2.2.4) may be represented in the form Θ−ρ → Θ+
ρ ,

where Θ±ρ are the complexes which correspond to the right and the left sides

(2.2.4). The whole mechanism is naturally represented as a digraph of transfor-

mation of complexes: vertices are complexes and edges are reaction.

Let us consider simple example: 18 elementary reactions (9 pairs of mutually

reverse reactions) from the hydrogen combustion mechanism (see, for example,

[49]).

(1)H + O2 
 O + OH; (2)O + H2 
 H + OH;

(3)OH + H2 
 H + H2O; (4)O + H2O 
 2OH;

(5)HO2 + H 
 H2 + O2; (6)HO2 + H 
 2OH;

(7)H + OH + M 
 H2O + M; (8)H + O2 + M 
 HO2 + M;

(9)H2O2 + H 
 H2 + HO2.

(4.1.1)
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STOICHIOMETRY OF COMPOUNDS

Figure 4.1: A 2n-tail scheme of an extended elementary reaction (4.1.3)
.

There are 15 different complexes here:

Θ1 = H + O2, Θ2 = O + OH, Θ3 = O + H2, Θ4 = OH + H2,

Θ5 = H + H2O, Θ6 = O + H2O, Θ7 = 2OH, Θ8 = HO2 + H,

Θ9 = H2 + O2, Θ10 = H + OH + M, Θ11 = H2O + M,

Θ12 = H + O2 + M, Θ13 = HO2 + M, Θ14 = H2O2 + H,

Θ15 = H2 + HO2 .

The reaction set (4.1.1) can be represented as

Θ1 
 Θ2 
 Θ3, Θ4 
 Θ5, Θ6 
 Θ7 
 Θ8 � Θ9,

Θ10 
 Θ11, Θ12 
 Θ13, Θ14 
 Θ15 .

We can see that this digraph of transformation of complexes has a very simple

structure: there is four isolated pairs of complexes, one connected group of

three complexes and one connected group of four complexes.

4.1.2 Stoichiometry of Compounds

For each complex Θj we introduce an additional component Bj, an intermediate

compound and B±ρ are those compounds Bj (1 ≤ j ≤ q), which correspond to

the right and left sides of (2.2.4).

We call these components “compounds" following the English translation of

the original Michaelis–Menten paper [47] and keep “complexes" for the formal
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STOICHIOMETRY OF COMPOUNDS

linear combinations Θj.

An extended reaction mechanism includes two type of reactions: equilibration

between a complex and its compound (q reactions, one for each complex)

Θj 
 Bj (4.1.2)

and transformation of compounds B−ρ → B+
ρ (m reactions, one for each elemen-

tary reaction from (2.2.4). So, instead of the reaction (2.2.4) we can write

∑
i

αρi Ai 
 B−ρ → B+
ρ 
 ∑

i
βρi Ai . (4.1.3)

Of course, if the input or output complexes coincide for two reactions then the

correspondent equilibration reactions also coincide. The extended list of com-

ponents includes n + q components: n initial species Ai and q compounds Bj.

The correspondent composition vector N⊕ is a direct sum of two vectors, the

composition vector for initial species, N, with coordinates Ni (i = 1, . . . , n) and

the composition vector for compounds, Υ, with coordinates Υj (j = 1, . . . , q):

N⊕ = N ⊕ Υ.

The space of composition vectors E is a direct sum of n-dimensional EA and

q-dimensional EB: E = EA ⊕ EB.

For concentrations of Ai we use the notation ci and for concentrations of Bj we

use ς j.

The stoichiometric vectors for reactions Θj 
 Bj (4.1.2) are direct sums: gj =

−νj ⊕ ej, where ej is the jth standard basis vector of the space Rq = EB, the

coordinates of ej are ejl = δjl:

gj = (−νj1,−νj2, . . . ,−νjn, 0, . . . , 0, 1︸ ︷︷ ︸
l

, 0, . . . , 0) (4.1.4)

The stoichiometric vectors of equilibration reactions (4.1.2) are linearly inde-

pendent because there exists exactly one vector for each l.

The stoichiometric vectors γjl of reactions Bj → Bl belong entirely to EB. They

have jth coordinate −1, lth coordinate +1 and other coordinates are zeros.

To exclude some degenerated cases a hypothesis of weak reversibility is accepted.
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Figure 4.2: A multichannel view of the complex transformation. The hidden
reactions between compounds are included in the oval S.

Let us consider a digraph with vertices Θi and arrow reactions from (2.2.4).

The system is weakly reversible if for any two vertices Θi, Θj existence of an

oriented path from Θi to Θj implies existence of oriented path from Θj to Θi.

Of course, this weak reversibility property is equivalent to weak reversibility of

the reaction network between compounds Bj.

4.1.3 Energy, Entropy and Equilibria of Compounds

In this section, we define the free energy of the system. The basic hypothesis

is that the amount of compounds Bj is much smaller than amount of initial

components Ai. Following this hypothesis, we neglect the energy of compound

interactions (which is quadratic in their concentrations), take the energy of their

interaction with Ai in the linear approximation, and use the perfect entropy for

Bi. These standard assumptions for a small admixtures give for the free energy:

F = V f (c, T) + VRT
q

∑
j=1

ς j

(
uj(c, T)

RT
+ ln ς j − 1

)
(4.1.5)
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Let us introduce a standard equilibrium concentration for Bj. Due to the Boltz-

mann distribution (exp(−u/RT)) and formula (4.1.5)

ς∗j (c, T) =
1
Z

exp
(
−

uj(c, T)
RT

)
, (4.1.6)

where 1/Z is the normalization factor. Let us select here the normalization

Z = 1 and write:

F = V f (c, T) + VRT
q

∑
j=1

ς j

(
ln

(
ς j

ς∗j (c, T)

)
− 1

)
. (4.1.7)

We assume that the standard equilibrium concentrations ς∗j (c, T) are much smaller

than the concentrations of Ai. It is always possible because functions uj are de-

fined up to an additive constant.

The formula for free energy is necessary to define the fast equilibria (4.1.2).

Such an equilibrium is the minimizer of the free energy on the straight line

parameterized by a: ci = c0
i − aνji, ς j = a.

If we neglect the products ς j∂ς∗j (c, T)/∂ci as the second order small quantities

then the minimizers have the very simple form:

ϑj = ∑
i

νji
µi(c, T)

RT
, (4.1.8)

or

ς j = ς∗j (c, T) exp
(

∑i νjiµi(c, T)
RT

)
, (4.1.9)

where

µi =
∂ f (c, T)

∂ci

is the chemical potential of Ai and

ϑj = ln

(
ς j

ς∗j

)

(RTϑj =
1
V

∂F
∂ς j

is the chemical potential of Bj).

The thermodynamic equilibrium of the system of reactions Bj → Bl that corre-

sponds to the reactions (4.1.3) is the free energy minimizer under given values
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of the conservation laws.

For the systems with fixed volume, the stoichiometric conservation laws of the

monomolecular system of reactions are sums of the concentrations of Bj which

belong to various connected components of the reaction graph. Under the hy-

pothesis of weak reversibility there is no other conservation law.

Let the graph of reactions Bj → Bl have d connected components Cs and let Vs

be the set of indexes of those Bj which belong to Cs: Bj ∈ Cs if and only if j ∈ Vs.

For each Cs there exists a stoichiometric conservation law

βs = ∑
j∈Vs

ς j . (4.1.10)

For any set of positive values of βs (s = 1, . . . , d) and given c, T there exists a

unique conditional maximizer ς
eq
j of the free energy (4.1.7): for the compound

Bj from the sth connected component (j ∈ Vs) this equilibrium concentration is

ς
eq
j = βs

ς∗j (c, T)

∑l∈Vs ς∗j (c, T)
(4.1.11)

Inverse, positive values of concentrations ς j are the equilibrium concentrations

(4.1.11) for some values of βs if and only if for any s = 1, . . . , d

ϑj = ϑl if j, l ∈ Vs (4.1.12)

(ϑj = ln(ς j/ς∗j )). This system of equations together with the equilibrium con-

ditions (4.1.9) constitute the equilibrium of the systems. All the equilibria form

a linear subspace in the space with coordinates µi/RT (i = 1, . . . , n) and ϑj

(j = 1, . . . , q).

Our expression for the free energy (4.1.7) does not assume anything special

about free energy of the mixture of Ai. The density of this free energy f (c, T)

may be arbitrary (later, we will add the standard assumption about convexity of

f (c, T) as a function of c). For the compounds Bi, we assume that this is a very

small addition to the mixture of Ai, neglect all quadratic terms in concentrations

of Bi and use the entropy of the perfect systems (p ln p) for this small admixture.

This approach results in the explicit expressions for the fast equilibria (4.1.9)
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and expression of the equilibrium compound concentrations through the values

of the stoichiometric conservation laws (4.1.11).

4.1.4 Markov Kinetics of Compounds

For the kinetics of compounds transformations Bj → Bl the same hypothesis

of the smallness of concentrations leads to the only reasonable assumption: the

linear (monomolecular) kinetics with the rate constant κl j > 0. This “constant"

is a function of c, T: κl j(c, T). The order of indexes at κ is inverse to the order of

them in reaction: κl j = κl←j.

The Master Equation for the concentration of Bj gives:

dς j

dt
= ∑

l, l 6=j

(
κjlςl − κl jς j

)
. (4.1.13)

The crucial question arises: when does this kinetics respect thermodynamics?

This means: when does the free energy decrease due to the system (4.1.13)?

The necessary and sufficient condition for matching the kinetics and thermo-

dynamics is: the standard equilibrium ς∗ (4.1.6) should be an equilibrium for

(4.1.13), that is, for every j = 1, . . . , q

∑
l, l 6=j

κjlς
∗
l = ∑

l, l 6=j
κl jς
∗
j . (4.1.14)

This condition is necessary because the standard equilibrium is the free energy

minimizer for given c, T and ∑j ς j = ∑j ς∗j . The sum ∑j ς j conserves due to

(4.1.13). Therefore, if we assume that F decreases monotonically due to (4.1.13)

then the point of conditional minimum of F on the plane ∑j ς j = const (under

given c, T) should be an equilibrium point for this kinetic system.

To prove the sufficiency of this condition, let us calculate the time derivative

dF/dt due to (4.1.13). For calculation of this derivative, another equivalent

form of (4.1.13) is convenient. Let us use the equilibrium condition (4.1.14) and

write

∑
l, l 6=j

κl jς j =

(
∑

l, l 6=j
κl jς
∗
j

)
ς j

ς∗j
= ∑

l, l 6=j
κjlς
∗
l

ς j

ς∗j
.

56



MARKOV KINETICS OF COMPOUNDS

Therefore, under condition (4.1.14) the Master Equation (4.1.13) has the equiv-

alent form:
dς j

dt
= ∑

l, l 6=j
κjlς
∗
l

(
ςl
ς∗l
−

ς j

ς∗j

)
. (4.1.15)

In this form, it is obvious that ς∗j is equilibrium for the kinetic equation.

To demonstrate negativity of dF/dt, we will present a bit more general ex-

pression. Let h(x) be a smooth convex function on the positive real axis. A

Csiszár–Morimoto function Hh(ς) is (see the review [31]):

Hh(ς) = ∑
l

ς∗l h
(

ςl
ς∗l

)
.

The time derivative of Hh(ς) due to (4.1.13) under condition (4.1.14) is:

dHh(ς)

dt

= ∑
l,j, j 6=l

h′
(

ς j

ς∗j

)
κjlς
∗
l

(
ςl
ς∗l
−

ς j

ς∗j

)

= ∑
l,j, j 6=l

κjlς
∗
l

[
h

(
ς j

ς∗j

)
− h

(
ςl
ς∗l

)
+ h′

(
ς j

ς∗j

)(
ςl
ς∗l
−

ς j

ς∗j

)]
≤ 0 .

(4.1.16)

To prove this formula for dH/dt it is necessary to mention that for any q num-

bers hi, ∑i,j, j 6=i κijς
∗
j (hj− hi) = 0. The last inequality in (4.1.16) holds because of

the convexity of h(x): h′(x)(y− x) ≤ h(y)− h(x) (Jensen’s inequality).

For the free energy (4.1.7) we should take the Csiszár–Morimoto function Hh(ς)

with h(x) = x(ln x− 1).

So, the condition (4.1.14) is necessary and sufficient for accordance between the

Markov kinetics of compounds (4.1.13) and the thermodynamics of them.

Remark: In the condition (4.1.14) any of equilibrium states ςeq (4.1.11) can be

used. Those conditions are equivalent. To prove this equivalence let us calcu-

late the difference between two “free energies": due to (4.1.11)

∑
j

ς j

(
ln

(
ς j

ς∗j

)
− 1

)
−∑

j
ς j

(
ln

(
ς j

ς
eq
j

)
− 1

)

= ∑
j

ς j ln

(
ς

eq
j

ς∗j

)
= ∑

s
βs(ς) ln

(
βs(ςeq)

βs(ς∗)

)
,

(4.1.17)
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where βs(ς) = ∑j∈Vs ς j (4.1.10) and Vs corresponds to the connected compo-

nents of the graph of compounds transformations. The result is constant in

time for the Master Equation, hence, these functionals are equivalent: they both

either are the Lyapunov functions for (4.1.13) or are not, simultaneously.

4.1.5 Thermodynamics and Kinetics of the Extended System

In this section, we consider the complete extended system, which consists of

species Ai (i = 1, . . . , n) and compounds Bj (j = 1, . . . , q) and includes reac-

tion of equilibration (4.1.2) and transformations of compounds Bj → Bl which

correspond to the reactions (4.1.3).

Thermodynamic properties of the system are summarized in the free energy

function (4.1.7). For kinetics of compounds we accept the Markov model (4.1.13)

with the equilibrium condition (4.1.14), which guarantees matching between

thermodynamics and kinetics.

For the equilibration reactions (4.1.2) we select a very general form of the kinetic

law. The only requirement is: this reaction should go to its equilibrium, which

is described as the conditional minimizer of free energy F (4.1.9). For each re-

action Θj 
 Bj (where the complex is a formal combination: Θj = ∑i νji Ai) we

introduce the reaction rate wj. This rate should be positive if

ϑj < ∑
i

νji
µi(c, T)

RT
(4.1.18)

and negative if

ϑj > ∑
i

νji
µi(c, T)

RT
. (4.1.19)

The general way to satisfy these requirement is to select q continuous function

of real variable wj(x), which are negative if x > 0 and positive if x < 0. For the

equilibration rates we take

wj = wj

(
ϑj −∑

i
νji

µi(c, T)
RT

)
. (4.1.20)

If several dynamical systems defined by equations ẋ = J1, ... ẋ = Jv on the
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same space have the same Lyapunov function F, then for any conic combination

J = ∑k ak Jk (ak ≥ 0, ∑k ak > 0) the dynamical system ẋ = J also has the

Lyapunov function F.

The free energy (4.1.7) decreases monotonically due to any reaction Θj 
 Bj

with reaction rate wj (4.1.20) and also due to the Markov kinetics (4.1.13) with

the equilibrium condition (4.1.14). Therefore, the free energy decreases mono-

tonically due to the following kinetic system:

dci

dt
= −

q

∑
j=1

νjiwj ;

dς j

dt
= wj + ∑

l, l 6=j

(
κjlςl − κl jς j

)
,

(4.1.21)

where the coefficients κjl satisfy the matching condition (4.1.14).

This general system (4.1.21) describes kinetics of extended system and satisfies

all the basic conditions (thermodynamics and smallness of compound concen-

trations). In the next Sections we will study the QE approximations to this

system and exclude the unknown functions wj from it.

4.1.6 QE Elimination of Compounds and the Complex Balance

Condition

In this section, we use the QE formalism developed for chemical kinetics in

Section 2.2.1 for simplification of the compound kinetics.

First of all, let us describe L⊥, where the space L is the subspace in the extended

concentration space spanned by the stoichiometric vectors of fast equilibration

reactions (4.1.2). The stoichiometric vector for the equilibration reactions have

a very special structure (4.1.4). Dimension of the space L is equal to the number

of complexes: dim L = q. Therefore, dimension of L⊥ is equal to the number

of components Ai: dim L⊥ = n. For each Ai we will find a vector bi ∈ L⊥ that

has the following first n coordinates: bik = δik for k = 1, . . . , n. The condition
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(bi, gj) = 0 gives immediately: bi,n+j = νji. Finally,

bi = (

n︷ ︸︸ ︷
0, . . . , 0, 1︸ ︷︷ ︸

i

, 0, . . . , 0, ν1i, ν2i, . . . , νqi) (4.1.22)

The correspondent slow variables are

bi(c, ς) = ci + ∑
j

ς jνji . (4.1.23)

In the QE approximation all wj = 0 and the kinetic equations (4.1.21) give in

this approximation
dbi

dt
= ∑

l j, l 6=j
(κjlςl − κl jς j)νji . (4.1.24)

In these equations, we have to use the dependence ς(b). Here we use the

QSS Michaelis and Menten assumption: the compounds are present in small

amounts,

ci � ς j .

In this case, we can take bi instead of ci (i.e. take µ(b, T) instead of µ(c, T)) in

the formulas for equilibria (4.1.9):

ς j = ς∗j (b, T) exp
(

∑i νjiµi(b, T)
RT

)
. (4.1.25)

In the final form of the QE kinetic equation there remain two “offprints" of the

compound kinetics: two sets of functions ς∗j (b, T) ≥ 0 and κjl(b, T) ≥ 0. These

functions are connected by the identity (4.1.14). The final form of the equations

is

dbi

dt
= ∑

l j, l 6=j

(
κjlς
∗
l (b, T) exp

(
∑i νliµi(b, T)

RT

)

−κl jς
∗
j (b, T) exp

(
∑i νjiµi(b, T)

RT

))
νji .

(4.1.26)

The identity (4.1.14), ∑l, l 6=j κjlς
∗
l = ∑l, l 6=j κl jς

∗
j , provides a sufficient condition

for decreasing of free energy due to the kinetic equations (4.1.26). This is a direct

consequence of the theorem about the preservation of entropy production in the
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QE approximations (see Section 2.5). In addition, in the next Section we give

the explicit formula for entropy production in (4.1.26) and direct proof of its

positivity.

Let us stress that the functions ς∗j (b, T) and κjl(b, T) participate in equations

(4.1.26) and in identity (4.1.14) in the form of the product. Below we use for this

product a special notation:

ϕjl(b, T) = κjl(b, T)ς∗l (b, T), (j 6= l). (4.1.27)

We call this function ϕjl(b, T) the kinetic factor. The identity (4.1.14) for the ki-

netic factor is

∑
l, l 6=j

ϕjl(b, T) = ∑
l, l 6=j

ϕl j(b, T) for all j 6= l. (4.1.28)

We call the thermodynamic factor (or the Boltzmann factor) the second multiplier

in the reaction rates,

Ωl(b, T) = exp
(

∑i νliµi(b, T)
RT

)
. (4.1.29)

In this notation, the kinetic equations (4.1.26) have a simple form

dbi

dt
= ∑

l j, l 6=j
(ϕjl(b, T)Ωl(b, T)− ϕl j(b, T)Ωj(b, T))νji . (4.1.30)

The general equations (4.1.30) have the form of “sum over complexes". Let us

return to the more usual “sum over reactions" form. An elementary reaction

corresponds to the pair of complexes Θl, Θj (4.1.3). It has the form Θl → Θj

and the reaction rate is r = ϕjlΩl. In the right hand side in (4.1.30) this reaction

appears two times: one time with sign ‘+’ and the vector coefficient νj and the

second time with sign ‘-’ and the vector coefficient νl. The stoichiometric vector

of this reaction is γ = νj − νl. Let us enumerate the elementary reactions by

index ρ, which corresponds to the pair (j, l). Finally, we transform (4.1.3) into
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the sum over reactions form

dbi

dt
= ∑

l j, l 6=j
ϕjl(b, T)Ωl(b, T)(νji − νli)

= ∑
ρ

ϕρ(b, T)Ωρ(b, T)γρi .
(4.1.31)

In the vector form it looks as follows:

db
dt

= ∑
ρ

ϕρ(b, T)Ωρ(b, T)γρ . (4.1.32)

Stueckelberg [59] introduced fast intermediates with Markov kinetics for the

Boltzmann equation, deducted the formula (4.1.28) for this case and demon-

strated that it implies the H-theorems without hypothesis about microreversibil-

ity. He used the language of S-matrix and channels and called the conservation

of probability “the unitarity of the S-matrix".

Horn and Jackson [25] found independently the analogue of the Stueckelberg

conditions (4.1.28) for the general mass action kinetics and called them the com-

plex balance condition.

4.1.7 The Big Michaelis–Menten–Stueckelberg Theorem

Let us summarize the results of our analysis in one statement.

Let us consider the reaction mechanism illustrated by Figure. 4.2 (4.1.3):

∑
i

αρi Ai 
 B−ρ → B+
ρ 
 ∑

i
βρi Ai

under the following assumptions:

1. Concentrations of the compounds Bρ are much smaller than the concen-

trations of the components Ai (ςρ < εci, ε� 1);

2. Concentrations of the compounds Bρ are close to their quasiequilibrium

values (4.1.25)

ςQE
j = ς∗j (b, T) exp

(
∑i νjiµi(b, T)

RT

)
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|ς j − ςQE
j | < εςQE

j , ε � 1 (this may be due to fast reversible reactions in

(4.1.3));

3. Kinetics of transitions between compounds is linear (Markov) kinetics.

Under these assumptions, kinetics of components Ai may be described with

accuracy O(1) by the reaction mechanism

∑
i

αρi Ai →∑
i

βρi Ai

with the reaction rates

rρ = ϕρ exp
(αρ, µ)

RT

where the kinetic factors ϕρ satisfy the condition (4.1.28):

∑
ρ, αρ=v

ϕρ ≡ ∑
ρ, βρ=v

ϕρ

for any vector v from the set of vectors {αρ, βρ}. This statement includes the

generalized mass action law for rρ and the balance identity for kinetic factors

that is sufficient for the entropy growth as it is shown in the next Section 4.2.

4.2 General Kinetics and Thermodynamics

4.2.1 General Formalism

To produce the general kinetic law and the complex balance conditions, we

use “construction staging": the intermediate complexes with fast equilibria, the

Markov kinetics and other important and interesting physical and chemical hy-

pothesis.

In this section, we delete these construction staging and start from the forms

(4.1.29), (4.1.32) as the basic laws. We use also the complex balance conditions

(4.1.28) as a hint for the general conditions which guarantee accordance be-

tween kinetics and thermodynamics.

Let us consider a domain U in n-dimensional real vector space E with coordi-

nates N1, . . . , Nn. For each Ni a symbol (component) Ai is given. A dimension-
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less entropy (or free entropy, for example, Massieu, Planck, or Massieu–Planck

potential which correspond to the selected conditions [14]) S(N) is defined in

U. ‘Dimensionless’ means that we use S/R instead of physical S. This choice of

units corresponds to the informational entropy (p ln p instead of kBp ln p).

The dual variables, potentials, are defined as the partial derivatives of S:

µ̌i = −
∂S
∂Ni

(4.2.1)

Warning: this definition differs from the chemical potentials (5.2.1) by the factor

1/RT: for constant volume the Massieu–Planck potential is −F/T and we, in

addition, divide it on R. On the other hand, we keep the same sign as for the

chemical potentials, and this differs from the standard Legendre transform for

S. (It is the Legendre transform for a function −S).

The reaction mechanism is defined by the stoichiometric equations (2.2.4)

∑
i

αρi Ai →∑
i

βρi Ai

(ρ = 1, . . . , m). In general, there is no need to assume that the stoichiometric

coefficients αρi, βρi are integers.

The assumption that they are nonnegative, αρi ≥ 0, βρi ≥ 0, may be needed to

prove that the kinetic equations preserve positivity of Ni. If Ni is the number of

particles then it is a natural assumption but we can use other extensive variables

instead, for example, we included energy in the list of variables to describe

the non-isothermal processes [9]. In this case, the coefficient αU for the energy

component AU in an exothermic reaction is negative.

So, for variables that are positive (bounded from below) by their physical sense,

we will use the inequalities αρi ≥ 0, βρi ≥ 0, when necessary, but in general,

for arbitrary extensive variables, we do not assume positivity of stoichiometric

coefficients. As it is usually, the stoichiometric vector of reaction is γρ = βρ− αρ

(the “gain minus loss" vector).

For each reaction, a nonnegative quantity, reaction rate rρ is defined. We assume

that this quantity has the following structure:

rρ = ϕρ exp(αρ, µ̌) . (4.2.2)
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where (αρ, µ̌) = ∑i αρiµ̌i.

In the standard formalism of chemical kinetics the reaction rates are intensive

variables and in kinetic equations for N an additional factor appears, the vol-

ume. For heterogeneous systems, there may be several ‘volumes’ (including

interphase surfaces).

Each reaction has it own ‘volume’, an extensive variable Vρ (some of them usu-

ally coincide), and we can write

dN
dt

= ∑
ρ

Vργρ ϕρ exp(αρ, µ̌) . (4.2.3)

In these notations, both the kinetic and the Boltzmann factors are intensive (and

local) characteristics of the system.

Let us, for simplicity of notations, consider a system with one volume, V and

write
dN
dt

= V ∑
ρ

γρ ϕρ exp(αρ, µ̌) . (4.2.4)

Below we use the form (4.2.4). All our results will hold also for the multi-

volume systems (4.2.3) under one important assumption: the elementary re-

action

∑
i

αρi Ai →∑
i

βρi Ai

goes in the same volume as the reverse reaction

∑
i

βρi Ai →∑
i

αρi Ai ,

or symbolically,

V+
ρ = V−ρ . (4.2.5)

If this condition (4.2.5) holds then the detailed balance conditions and the com-

plex balance conditions will hold separately in all volumes Vρ.

An important particular case of (4.2.4) gives us the Mass Action Law. Let us

take the perfect free entropy

S = −∑
i

Ni

(
ln
(

ci

c∗i

)
− 1
)

, (4.2.6)
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where ci = Ni/V ≥ 0 are concentrations and c∗i > 0 are the standard equilib-

rium concentrations. Under isochoric conditions, V = const, there is no differ-

ence between the choice of the main variables, N or c.

For the perfect function (4.2.6),

µ̌i = ln
(

ci

c∗i

)
, exp(αρ, µ̌) = ∏

i

(
ci

c∗i

)αρi

(4.2.7)

and for the reaction rate function (4.2.2) we get

rρ = ϕρ ∏
i

(
ci

c∗i

)αρi

. (4.2.8)

The standard assumption for the Mass Action Law in physics and chemistry is

that ϕ and c∗ are functions of temperature: ϕρ = ϕρ(T) and c∗i = c∗i (T). To

return to the kinetic constants notation (2.2.7) we should write:

ϕρ

∏i c∗i
αρi

= kρ

Equation (4.2.4) is the general form of the kinetic equation we would like to

study. In many senses, this form is too general before we impose restrictions on

the values of the kinetic factors. For physical and chemical systems, thermody-

namics is a source of restrictions:

1. The energy of the Universe is constant.

2. The entropy of the Universe tends to a maximum.

(R. Clausius, 1865 [15].)

The first sentence should be extended: the kinetic equations should respect sev-

eral conservation laws: energy, amount of atoms of each kind (if there is no nu-

clear reactions in the system) conservation of total probability and, sometimes,

some other conservation laws. All of them have the form of conservation of

values of some linear functionals: l(N) = const. If the input and output flows

are added to the system then

dl(N)

dt
= Vvinlin − voutl(N) ,
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where vin,out are the input and output fluxes per unite volume, lin are the in-

put densities (concentration). The standard requirement is that every reaction

respects all these conservation laws. The formal expression of this requirement

is:

l(γρ) = 0 for all ρ . (4.2.9)

There is a special term for these conservation laws: the stoichiometric conserva-

tion laws. All the main conservation laws are assumed to be the stoichiometric

ones.

Analysis of the stoichiometric conservation laws is a simple linear algebra task:

we have to find the linear functionals that annulate all the stoichiometric vec-

tors γρ. In contrast, entropy is not a linear function of N and analysis of entropy

production is not so simple.

In the next Subsection we discuss various conditions which guarantee the pos-

itivity of entropy production in kinetic equations (4.2.4).

4.2.2 Accordance Between Kinetics and Thermodynamics

General Entropy Production Formula

Let us calculate dS/dt due to equations (4.2.4):

dS
dt

= −V ∑
ρ

(γρ, µ̌)ϕρ exp(αρ, µ̌) . (4.2.10)

An auxiliary function θ(λ) of one variable λ ∈ [0, 1] is convenient for analysis

of dS/dt:

θ(λ) = ∑
ρ

ϕρ exp[(µ̌, (λαρ + (1− λ)βρ))] . (4.2.11)

With this function, the entropy production (4.2.10) has a very simple form:

dS
dt

= V
dθ(λ)

dλ

∣∣∣∣
λ=1

(4.2.12)

The auxiliary function θ(λ) allows the following interpretation. Let us intro-
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duce the deformed stoichiometric mechanism with the stoichiometric vectors

αρ(λ) = λαρ + (1− λ)βρ , βρ(λ) = λβρ + (1− λ)αρ .

For λ = 1, this is the initial mechanism, for λ = 0 this is an inverted mechanism

with interchange of α and β, for λ = 1/2 this is a trivial mechanism (the left and

right hand sides of the stoichiometric equations coincide).

For the deformed mechanism, let us take the same kinetic factors and calculate

the Boltzmann factors with αρ(λ):

rρ(λ) = ϕρ exp(αρ(λ), µ̌) .

In this notation, the auxiliary function θ(λ) is a sum of reaction rates for the

deformed reaction mechanism:

θ(λ) = ∑
ρ

rρ(λ) .

In particular, θ(1) = ∑ρ rρ, this is just the sum of reaction rates.

Function θ(λ) is convex. Indeed,

d2θ(λ)

dλ2 = ∑
ρ

ϕρ(γρ, µ̌)2 exp[(µ̌, (λαρ + (1− λ)βρ))] ≥ 0 .

This convexity gives the following necessary and sufficient condition for positivity

of entropy production:

dS
dt

> 0 if and only if θ(λ) < θ(1) for some λ < 1 .

In several next subsections we study various important particular sufficient

conditions for positivity of entropy production.

Detailed Balance

The most celebrated condition which gives the positivity of entropy production

is the principle of detailed balance. Boltzmann used this principle to prove his
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famous H-theorem [10].

Let us join elementary reactions in pairs:

∑
i

αρi Ai 
 ∑
i

βρi Ai . (4.2.13)

After this joining, the total amount of stoichiometric equations decreases. If

there is no reverse reaction then we can add it formally, with zero kinetic factor.

The reaction rates and kinetic factors for direct and inverse reactions we will

distinguish by the upper plus or minus:

r+ρ = ϕ+
ρ exp(αρ, µ̌) , r−ρ = ϕ−ρ exp(βρ, µ̌) , rρ = r+ρ − r−ρ .

dN
dt

= V ∑
ρ

γρrρ . (4.2.14)

In this notation, the principle of detailed balance is very simple: the thermody-

namic equilibrium in the direction γρ, given by the standard condition (γρ, µ̌) =

0, is equilibrium for the correspondent pair of mutually reverse reactions from

(4.2.13). For kinetic factors this transforms into the simple and beautiful condi-

tion:

ϕ+
ρ exp(αρ, µ̌) = ϕ−ρ exp(βρ, µ̌)⇔ (γρ, µ̌) = 0 ,

therefore

ϕ+
ρ = ϕ−ρ . (4.2.15)

For the systems with detailed balance we can take ϕρ = ϕ+
ρ = ϕ−ρ and write for

the reaction rate:

rρ = ϕρ(exp(αρ, µ̌)− exp(βρ, µ̌)) .

M. Feinberg called this kinetic law the “Marselin–De Donder" kinetics [48]. This

representation of the reaction rates gives for the auxiliary function θ(λ):

θ(λ) = ∑
ρ

ϕρ( exp[(µ̌, (λαρ + (1− λ)βρ))]

+ exp[(µ̌, (λβρ + (1− λ)αρ))]) .
(4.2.16)

Each term in this sum is symmetric with respect to change λ 7→ (1− λ). There-
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fore, θ(1) = θ(0) and, because of convexity of θ(λ), θ′(1) ≥ 0. This means

positivity of entropy production.

The principle of detailed balance is a sufficient but not a necessary condition of

the positivity of entropy production. This was clearly explained, for example,

by L. Onsager [44]. Interrelations between positivity of entropy production,

Onsager reciprocal relations and detailed balance were analyzed in detail by

N.G. van Kampen [52].

Complex Balance

The principle of detailed balance gives us θ(1) = θ(0) and this equality holds

for each pair of mutually reverse reactions.

Let us start now from the equality θ(1) = θ(0). We return to the initial stoi-

chiometric equations (2.2.4) without joining of direct and reverse reactions. The

equality reads

∑
ρ

ϕρ exp(µ̌, αρ) = ∑
ρ

ϕρ exp(µ̌, βρ) . (4.2.17)

Exponential functions exp(µ̌, y) form linearly independent family in the space

of functions of µ̌ for any finite set of pairwise different vectors y. Therefore, the

following approach is natural: let us equalize in (4.2.17) the terms with the same

Boltzmann–type factor exp(µ̌, y). Here we have to return to the complex–based

representation of reactions (see Section 4.1.1).

Let us consider the family of vectors {αρ, βρ} (ρ = 1, . . . , m). Usually, some of

these vectors coincide. Assume that there are q different vectors among them.

Let y1, . . . , yq be these vectors. For each j = 1, . . . , q we take

R+
j = {ρ | αρ = yj} , R−j = {ρ | βρ = yj} .

We can rewrite the equality (4.2.17) in the form

q

∑
j=1

exp(µ̌, yj)

 ∑
ρ∈R+

j

ϕρ − ∑
ρ∈R−j

ϕρ

 = 0 . (4.2.18)

The Boltzmann factors exp(µ̌, yj) form the linearly independent set. Therefore
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the natural way to meet these condition is: for any j = 1, . . . , q

∑
ρ∈R+

j

ϕρ − ∑
ρ∈R−j

ϕρ = 0 . (4.2.19)

This is the general complex balance condition. This condition is sufficient for en-

tropy growth, because it provides the equality θ(1) = θ(0).

If we assume that ϕρ are constants or, for chemical kinetics, depend only on

temperature, then the conditions (4.2.19) give the general solution to equation

(4.2.18).

Is the complex balance condition more general that the detailed balance? Yes,

and this is obvious: for the Master equation (4.1.13) the complex balance condi-

tion is trivially valid for all admissible constants. The first order kinetics always

satisfies the complex balance conditions. On the contrary, the class of the Mas-

ter equations with detailed balance is rather special. The class of all Master

equations has dimension n2 − n (constants for all transitions Ai → Aj are in-

dependent). For the time–reversible Markov chains (the Master equations with

detailed balance) there is only n(n + 1)/2− 1 independent constants: n− 1 for

equilibrium state and n(n − 1)/2 for transitions Ai → Aj (i > j), because for

reverse transitions the constant can be calculated through the detailed balance.

Is the complex balance condition necessary for entropy growth? In general, for

nonlinear reaction systems, it is not. In the next Section we will give a more gen-

eral condition and demonstrate that there are systems that violate the complex

balance condition, but satisfy this more general inequality.

G-Inequality

Gorban [30] proposed the following inequality for analysis of accordance be-

tween thermodynamics and kinetics: θ(1) ≥ θ(0). This means that for any

values of µ̌

∑
ρ

ϕρ exp(µ̌, αρ) ≥∑
ρ

ϕρ exp(µ̌, βρ) . (4.2.20)
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In the form of sum over complexes (similarly to (4.2.18)) it has the form

q

∑
j=1

exp(µ̌, yj)

 ∑
ρ∈R+

j

ϕρ − ∑
ρ∈R−j

ϕρ

 ≥ 0 . (4.2.21)

Let us call these inequalities, (4.2.20), (4.2.21), the G-inequalities.

Here, two remarks are needed. First, functions exp(µ̌, yj) are linearly indepen-

dent but this does not alow us to transform inequalities (4.2.21) similarly to

(4.2.19) even for constant kinetic factors: inequality between linear combina-

tions of independent functions may exist and the “simplified system",

∑
ρ∈R+

j

ϕρ − ∑
ρ∈R−j

ϕρ ≥ 0 for all j ,

is not equivalent to the G-inequality.

Second, this simplified inequality is equivalent to the complex balance condi-

tion (with equality instead of ≥). Indeed, for any ρ = 1, . . . , m there exist ex-

actly one j1 and one j2 6= j1 with properties: ρ ∈ R+
j1

, ρ ∈ R−j2 . Therefore, for any

reaction mechanism with reaction rates (4.2.2) the identity holds:

∑
ρ

 ∑
ρ∈R+

j

ϕρ − ∑
ρ∈R−j

ϕρ

 = 0 .

If all terms in this sum are non-negative then all of them are zeros.

Nevertheless, if at least one of the vectors yj is a convex combination of others,

∑
k, k 6=j

λkyk = yj for some λk ≥ 0, ∑
k, k 6=j

λk = 1 ,

then the G-inequality has more solutions than the condition of complex balance.

Let us take a very simple example with two components, A1 and A2, three

reactions and three complexes:

2A1 
 A1 + A2, 2A2 
 A1 + A2, 2A1 
 2A2 ,

y1 = (2, 0), y2 = (0, 2), y3 = (1, 1) ,
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R+
1 = {1, 3}, R+

2 = {2,−3}, R+
3 = {−1,−2},

R−1 = {−1,−3}, R−2 = {−2, 3}, R−3 = {1, 2}

The complex balance condition for this system is:

(ϕ1 − ϕ−1) + (ϕ3 − ϕ−3) = 0 ;

(ϕ2 − ϕ−2)− (ϕ3 − ϕ−3) = 0 .
(4.2.22)

The G-inequality for this system is

(ϕ1 + ϕ3 − ϕ−1 − ϕ−3)a2 + (ϕ2 + ϕ−3 − ϕ−2 − ϕ3)b2

+ (ϕ−1 + ϕ−2 − ϕ1 − ϕ2)ab ≥ 0 for all a, b > 0
(4.2.23)

(here, a, b stand for exp(µ̌1), exp(µ̌2)). Let us use for the coefficients at a2 and

b2 notations ψa and ψb. Coefficient at ab in (4.2.23) is −(ψa + ψb), linear com-

binations ψa and ψb are linearly independent and we get the following task: to

find all pairs ψa, ψb which satisfy the inequality

ψaa2 + ψbb2 ≥ (ψa + ψb)ab for all a, b > 0 .

Asymptotics a→ 0 and b→ 0 give ψa, ψb ≥ 0.

Let us use homogeneity of functions in (4.2.23), exclude one normalization fac-

tor from a, b and one factor from ψa, ψb and reduce the number of variables:

b = 1− a, ψa = 1− ψb: we have to find all such ψb ∈ [0, 1] that for all a ∈]0, 1[

a2(1− ψb) + (1− a)2ψb − a(1− a) ≥ 0

The minimizer of this quadratic function of a is amin = 1
4 +

1
2 ψb, amin ∈]0, 1[ for

all ψb ∈ [0, 1]. The minimal value is −2(1
2 ψb − 1

4)
2. It is nonegative if and only

if ψb = 1
2 . When we return to the nonnormalized variables ψa, ψb then we get

the general solution of the G-inequality for this example: ψa = ψb ≥ 0. For the

kinetic factors this means:

(ϕ1 − ϕ−1) + 2(ϕ3 − ϕ−3)− (ϕ2 − ϕ−2) = 0 ;

(ϕ1 − ϕ−1) + (ϕ3 − ϕ−3) ≥ 0 ;

(ϕ2 − ϕ−2)− (ϕ3 − ϕ−3) ≥ 0 .

(4.2.24)
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These conditions are wider (weaker) than the complex balance conditions for

this example (4.2.22).

In the Stueckelberg language [59], the microscopic reasons for the G-inequality

instead of the complex balance (4.1.28) can be explained as follows: some chan-

nels of the scattering are unknown (hidden), hence, instead of unitarity of S-

matrix (conservation of the microscopic probability) we have an inequality (the

microscopic probability does not increase).

We can use other values of λ0 ∈ [0, 1[ in inequality θ(1) ≥ θ(λ0) and produce

constructive sufficient conditions of accordance between thermodynamics and

kinetics. For example, condition θ(1) ≥ θ(1/2) is weaker than θ(1) ≥ θ(0)

because of convexity θ(λ).

One can ask a reasonable question: why we do not use directly positivity of

entropy production (θ′(1) ≥ 0) instead of this variety of sufficient conditions.

Of course, this is possible, but inequalities like θ(1) ≥ θ(0) or equations like

θ(1) = θ(0) include linear combinations of exponents of linear functions and

often can be transformed in algebraic equations or inequalities like in the ex-

ample above. Inequality θ′(1) ≥ 0 includes transcendent functions like f exp f

(where f is a linear function) which make its study more difficult.

4.3 Linear Deformation of Entropy

4.3.1 Kinetics Does not Respect Thermodynamics? Deforma-

tion of Entropy May Help

Kinetic equations in the general form (4.2.4) are very general, indeed. They can

be used for the approximation of any dynamical system in U [3]. In previous

sections we discussed a question: with the entropy is given, how to construct

the system in the form (4.2.4) with positivity of the entropy production? The

reverse question is also important: the system in the form (4.2.4) is given. Could

we find such a new entropy that this system guarantees positivity of this (new)

entropy production?

Existence of such an entropy is very useful for analysis of stability of the system.

For example, let us take an arbitrary Mass Action Law system (4.2.8). This is a
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rather general system with the polynomial right hand side. Is it stable or not?

May there occur bifurcations of steady states, oscillations and other interesting

effects of the dynamics, or does it monotonically approach equilibrium?

With the positivity of entropy productions these questions are much simpler,

and dynamics is monotonic, could not return to the vicinity of the starting point

and all the non-wandering points are steady states.

For the global analysis of an arbitrary system of differential equations it is de-

sirable either to construction a general Lyapunov function or to prove that it

does not exists. For the Lyapunov functions of the general form this task may

be quite difficult. Therefore, various finite–dimensional spaces of trial func-

tions are often in use. For example, quadratic polynomials of several variables

provide a very popular class of trial Lyapunov function.

In this Section, we discuss the n-parametric families of Lyapunov functions

which are produced by the addition of linear function to the entropy:

S(N) 7→ S∆µ̌(N) = S(N)−∑
i

∆µ̌iNi (4.3.1)

The change in potentials µ̌ is simply the addition of ∆µ̌: µ̌i 7→ µ̌i + ∆µ̌i.

Let us take a general kinetic equation (4.2.4). We do not like to change the

reaction rates. The Boltzmann factor Ωρ = exp(µ̌, αρ) transforms due to the

change of the entropy: Ωρ 7→ Ωρ exp(∆µ̌, αρ). Therefore, the transformation of

the kinetic factors should be ϕρ 7→ ϕρ exp(−∆µ̌, αρ) in order to keep the product

rρ = Ωρ ϕρ constant.

For the new entropy, S = S∆µ̌, with the new potential and kinetic factors the

entropy production is given by (4.3.2):

dS
dt

=−∑
ρ

(γρ, µ̌)ϕρ exp(αρ, µ̌)

=−∑
ρ

(γρ, µ̌old + ∆µ̌)ϕold
ρ exp(αρ, µ̌old)

=
dSold

dt
−∑

ρ

(γρ, ∆µ̌)ϕold
ρ exp(αρ, µ̌old) ,

(4.3.2)

where the superscript “old" corresponds to the non-deformed quantities.
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4.3.2 How to Restore Detailed Balance by Entropy Deforma-

tion?

It may be very useful to find such a vector ∆µ̌ that in new variables ϕ+
ρ = ϕ−ρ .

For the analysis of the detailed balance condition, we group reactions in pairs of

mutually inverse reactions (4.2.13). Let us consider an equation of the general

form (4.2.14) with rρ = r+ρ − r−ρ , ϕ±ρ > 0.

The problem is: to find such a vector ∆µ̌ that

ϕ+
ρ exp (−∆µ̌, αρ) = ϕ−ρ exp (−∆µ̌, βρ) , (4.3.3)

or, in the equivalent form of the linear equation

(−∆µ̌, γρ) = ln

(
ϕ+

ρ

ϕ−ρ

)
(4.3.4)

The necessary and sufficient conditions for the existence of such ∆µ̌ are known

from linear algebra: for every set of numbers aρ (ρ = 1, . . . , m)

∑
ρ

aργρ = 0⇒∑
ρ

aρ ln

(
ϕ+

ρ

ϕ−ρ

)
= 0 (4.3.5)

To check these conditions, it is sufficient to find a basis of solutions of the uni-

form systems of linear equations

∑
ρ

aργρi = 0 (i = 1, . . . , m)

(that is, to find a basis of coimΓ, Γ = (γρi)) and then check for these basis

vectors the condition ∑ρ aρ ln
(

ϕ+
ρ

ϕ−ρ

)
= 0 to prove or disprove that the vector

with coordinates ln
(

ϕ+
ρ

ϕ−ρ

)
belongs to imΓ.

For some of the reaction mechanisms it is possible to restore the detailed bal-

ance condition for the general kinetic equation unconditionally. For these reac-

tions, for any set of positive kinetic factors, there exists such a vector ∆µ̌ that

the detailed balance condition (4.3.4) is valid for the deformed entropy. Accord-

ing to (4.3.5) this means that there is no nonzero solution aρ for the equation
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∑ρ aργρ = 0. In other words, vectors γρ are independent.

4.3.3 How to Restore Complex Balance by Entropy Deforma-

tion?

The complex balance conditions (4.2.19) are, in general, weaker than the de-

tailed balance but they are still sufficient for the entropy growth.

Let us consider an equation of the general form (4.2.14). We need to find such

a vector ∆µ̌ that in new variables with the new entropy and kinetic factors the

complex balance conditions ∑ρ∈R+
j

ϕnew
ρ −∑ρ∈R−j

ϕnew
ρ = 0 hold.

For our purpose, it is convenient to return to the presentation of reactions as

transitions between complexes. The complexes, Θ1, . . . , Θq are the linear com-

binations, Θj = (yj, A).

Each elementary reaction (2.2.4) with the reaction number ρ may be represented

in the form Θj → Θl, where Θj = ∑ yj Aj, ρ ∈ R+
j (αρ = yj) and ρ ∈ R−j

(βρ = yl). For this reaction, let us use the notation ϕρ = ϕl j. We used this

notation in the analysis of kinetics of compounds (Section 4.1.6). The complex

balance conditions are

∑
j, j 6=l

(ϕl j − ϕjl) = 0 . (4.3.6)

To obtain these conditions after the entropy deformation, we have to find such

∆µ̌ that

∑
j, j 6=l

(ϕl j exp (−∆µ̌, yj)− ϕjl exp (−∆µ̌, yl)) = 0 . (4.3.7)

This is exactly the equation for equilibrium of a Markov chain with transition

coefficients ϕl j. Vector (−∆µ̌, yj) should be an equilibrium state for this chain

(without normalization to the unit sum of coordinates).

For this finite Markov chain a graph representation is useful: vertices are com-

plexes and oriented edges are reactions. To provide existence of a positive equi-

librium we assume weak reversibility of the chain: if there exists an oriented path

from Θj to Θl then there exists an oriented path from Θl to Θj.

Let us demonstrate how to transform this problem of entropy deformation into

a linear algebra problem. First of all, let us find any positive equilibrium of the
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chain, ς∗j > 0:

∑
j, j 6=l

(ϕl jς
∗
j − ϕjlς

∗
l ) = 0 . (4.3.8)

This is a system of linear equations. If we have already an arbitrary equilibrium

of the chain then other equilibria allow a very simple description. We already

found this description for kinetics of compounds (4.1.11)

Let us consider the Master equation for the Markov chain with coefficients ϕl j:

dς

dt
= ∑

j, j 6=l
(ϕl jς j − ϕjlςl) = 0 . (4.3.9)

Let the graph of complex transformations Θj → Θl have d connected compo-

nents Cs and let Vs be the set of indexes of those Θj which belong to Cs: Θj ∈ Cs

if and only if j ∈ Vs. For each Cs there exists a conservation law for the Master

equation (4.3.9)

ξs = ∑
j∈Vs

ς j = const . (4.3.10)

For any set of positive values of ξs (s = 1, . . . , q) there exists a unique equilib-

rium vector ςeq for (4.3.9) with this values ξs:

ς
eq
j = ξs

ς∗j (c, T)

∑l∈Vs ς∗l (c, T)
. (4.3.11)

The set of equilibria is a linear space with the natural coordinates ξs (s =

1, . . . , d). We are interested in the positive ortant of this space, ξs > 0. For

positive ξs, logarithms of ςeq form a d-dimensional linear manifold in Rq:

ln ς
eq
j = ln ξs + ln

(
ς∗j (c, T)

∑l∈Vs ς∗l (c, T)

)
. (4.3.12)

The natural coordinates on this manifold are ln ξs.

Let us notice that the vector ς◦ with coordinates

ς◦j =

(
ς∗j (c, T)

∑l∈Vs ς∗l (c, T)

)
for j ∈ Vs
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is also an equilibrium for (4.3.9). The equations for ∆µ̌ are

(−∆µ̌, yj)− ln ξs = ln ς◦j for j ∈ Vs . (4.3.13)

This is a system of linear equations with respect to n + d variables ∆µ̌i (i =

1, . . . , n) and ln ξs (s = 1, . . . , d). Let the coefficient matrix of this system be

denoted by M.

Analysis of solutions and solvability of such equations is one of the standard

linear algebra tasks. If this system has a solution then the complex balance in

the original system can be restored by the linear deformation of the entropy. If

this system is solvable for any right hand side, then for this reaction mechanism

we always can find the entropy, which provides the complex balance condition.

Unconditional solvability of (4.3.13) means that the right hand side matrix of

this system has rank q. Let us express this rank through two important charac-

teristics: it is rank{γ1, . . . , γm}+ d, where d is the number of connected compo-

nents in the graph of transformation of complexes.

To prove this formula, let us write down the matrix M of the system (4.3.13).

First, we change the enumeration of complexes. We group the complexes from

the same connected component together and arrange these groups in the or-

der of the connected component number. After this change of enumeration,

{1, . . . , |V1|} = V1, {|V1| + 1, . . . , |V1| + |V2|} = V2, ..., {|V1| + |V2| + . . . +

|Vd−1|+ 1, . . . , |V1|+ |V2|+ . . . + |Vd|} = Vd.

Let yj be here the row–vector. The matrix is

M =



y1 1 0 . . . 0
...

...
...

...
...

y|V1| 1 0 . . . 0

y|V1|+1 0 1 . . . 0
...

...
...

...
...

y|V1|+...+|Vd| 0 0 . . . 1


(4.3.14)

M consists of d blocks Ms, which correspond to connected components Cs of
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the graph of transformation of complexes:

Ms =


y|V1|+...+|Vs−1|+1 0 . . . 1 . . .
...

...
...

...
...

y|V1|+...+|Vs| 0 . . . 1 . . .

 (4.3.15)

The first n columns in this matrix are filled by the vectors yj of complexes, which

belong to the component Cs, then follow s− 1 columns of zeros, after that, there

is one column of units, and then again zeros. Here, in (4.3.14), (4.3.15) we mul-

tiplied the last d columns by−1. This operation does not change the rank of the

matrix.

Other elementary operations that do not change the rank, are: we can add to

any row (column) a linear combination of other rows(columns).

We will use these operations to simplify blocks (4.3.15) but first we have to

recall several properties of spanning trees [11]. Let us consider a connected,

undirected graph G with the set of vertices V and the set of edges E ⊂ V × V .

A spanning tree of G is a selection of edges of G that form a tree spanning every

vertex. For a connected graph with V vertices, any spanning tree has V − 1

edges. Let for each vertex Θj of G a n-dimensional vector yi is given. Then for

every edge (Θj, Θl) ∈ E a vector γjl = yj − yl is defined. We identify vectors γ

and −γ and the order of j, l is not important. Let us use ΓG for this set of γjl:

ΓG = {yj − yl | (Θj, Θl) ∈ E} .

For any spanning tree T of graph G we have the following property:

spanΓG = spanΓT , (4.3.16)

in particular, rankΓG = rankΓT.

For the digraphs of reactions between complexes, we create undirected graphs

just by neglecting the directions of edges. We keep for them the same notations

as for original digraphs. Let us select any spanning tree Ts for the connected

component Cs in the graph of transformation of complexes. In Ts we select

arbitrarily a root complex. After that, any other complex Θj in Cs has a unique

parent. This is the vertex connected to it on the path to the root. For the root
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complex of Cs we use special notation Θ◦s .

Now, we transform the block (4.3.15) without change of rank: for each non-root

complex we subtract from the correspondent row the row, which correspond to

its unique parent. After these transformations (and, maybe, some permutations

of rows), the block Ms get the following form:

γs
1 0 . . . 0 . . .

γs
2 0 . . . 0 . . .

...
...

...
...

...

γs
|V1|−1 0 . . . 0 . . .

y◦s 0 . . . 1 . . .


. (4.3.17)

Here, {γs
1, γs

2, . . . , γs
|V1|−1} is ΓTs for the spanning tree Ts and y◦s is the coefficient

vector for the root complex Θ◦s .

From the obtained structure of blocks we immediately find that the rank of the

rows with γ is rank{γ1, . . . , γm}+ d due to (4.3.16). Additional d rows with y◦s
are independent due to their last coordinates and add d to rank. Finally,

rankM = rank{γ1, . . . , γm}+ d (4.3.18)

Obviously, rankM ≤ q. If rankM = q then it is always possible to restore the

positivity of the entropy production by the linear deformation of the entropy.

Feinberg [50] called the difference q− rankM the deficiency of the reaction net-

work. For example, for the ‘Michaelis–Menten’ reaction mechanism E + S 


ES 
 P + S rank{γ1, γ2} = 2, d = 1, q = 3, rankM = 3 and deficiency is 0.

For the adsorption (the Langmuir–Hinshelwood) mechanism of CO oxidation

(5.2.17) rank{γ1, γ2, γ3} = 3, d = 3, q = 6, rankM = 6 and deficiency is 0. To

apply the results about the entropy deformation to this reaction mechanism, it

is necessary to introduce an inverse reaction to the third elementary reaction in

(5.2.17), PtO+PtCO→CO2+2Pt with an arbitrarily small but positive constant in

order to make the mechanism weakly reversible.

Let us consider the Langmuir–Hinshelwood mechanism for reduced list of com-

ponents. Let us assume that the gas concentrations are constant because of

control or time separation or just as a model ‘fast system’ and just include
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them in the reaction rate constants for intermediates. Then the mechanism is

2Pt
2PtO, Pt
PtCO, PtO+PtCO→2Pt. For this system, rank{γ1, γ2, γ3} = 2,

d = 2, q = 5, rankM = 4 and deficiency is 1. Bifurcations in this system are

known [70].

For the fragment of the reaction mechanism of the hydrogen combustion (4.1.1),

rank{γ1, . . . , γm} = 6, d = 6, q = 15, rankM = 12 and deficiency is 3.

4.3.4 Existence of Points of Detailed and Complex Balance

Our formulation of the conditions of detailed and complex balance is not stan-

dard: we formulate them as the identities (4.2.15) (4.2.17). These identities have

a global nature and describe the properties of reaction rates for all states.

The usual approach to the principle of detailed balance is based on equilibria.

The standard formulation is: in all equilibria every process is balanced with its re-

verse process. Without special forms of kinetic law this principle cannot have any

consequences for global dynamics. Nevertheless, if we fix the kinetic law then

the consequences may be very important. For example, if kinetics of elementary

reactions follow the Mass Action law then existence of a positive equilibrium

with detailed balance implies existence of the Lyapunov function in the form of

the perfect free entropy:

Y = −∑
i

ci

(
ln
(

ci

c∗i

)
− 1
)

,

where c∗i is that positive equilibrium with detailed balance (see, for example,

[70]).

In this Section we demonstrate that for the general kinetic law (4.2.2), which

gives the expression of reaction rates through the entropy gradient, if the ki-

netic factors are constant (or a function of temperature) then the existence of

the points of detailed (or complex) balance means that the linear deformation

of the entropy exists which restores the global detailed (or complex) balance

conditions (4.2.15) (or (4.2.17)).

The condition that the kinetic factors are constant means that for a given set

of values {ϕρ} a state with any admissible values of µ̌ is physically possible
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(admissible). This condition allows us to vary the potentials µ̌ independently

of {ϕρ}.

Let us assume that for the general kinetic system with the elementary reaction

rates given by (4.2.2) a point of detailed balance exists. This means that for some

value of µ̌ = µ̌∗ (the detailed balance point in the Legendre transform) and for

all ρ r+ρ = r−ρ :

ϕ+
ρ exp(αρ, µ̌∗) = ϕ−ρ exp(αρ, µ̌∗) .

This formula is exactly the condition (4.3.3) of existence of ∆µ̌ which allow us to

deform the entropy for restoring the detailed balance in the global form (4.2.15).

If we assume that the point of complex balance exists then there exists such a

value of µ̌ = µ̌∗ (a point of complex balance in the Legendre transform) that

∑
j, j 6=l

(ϕl j exp (µ̌∗, yj)− ϕjl exp (µ̌∗, yl)) = 0 .

This is exactly the deformation condition (4.3.7) with ∆µ̌ = −µ̌∗.

To prove these statements we used an additional condition about the possibility

to vary µ̌ under given {ϕρ}.

So, we demonstrated that for the general kinetic law (4.2.2) the existence of a

point of detailed balance is equivalent to the existence of such linear deforma-

tion of the entropy that the global condition (4.2.15) holds. Analogously, the

existence of a point of complex balance is equivalent to the global condition of

complex balance after some linear deformation of the entropy.

4.3.5 Why the Detailed Balance is More Popular than the Com-

plex Balance?

The complex balance conditions are mathematically nice and more general than

the principle of detailed balance. They are linked by Stueckelberg to the Markov

models (“S-matrix models") of microscopic kinetics. Many systems satisfy these

conditions (after linear deformation of the entropy) just because of the algebraic

structure of the reaction mechanism (see Section 4.3.3). Nevertheless, it is used

much less than the classical detailed balance. Why?
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The answer is simple: because the principle of detailed balance is valid for most

of physical and chemical systems. Onsager revealed the physical reason for

detailed balance [44]. This is microreversibility: the microscopic laws of motion

are invertible in time: if we observe the microscopic dynamics of particles in the

backward movie then we cannot find the difference from the real world. This

difference occurs in the macroscopic world.

In microphysics and the S-matrix theory this microreversibility property has

the name “T-invariance".

Let us demonstrate how T-invariance in micro-world implies detailed balance

in macro-world.

Following Gibbs, we accept the ensemble–based point of view on the macro-

scopic states: they are probability distributions in the space of detailed micro-

scopic states.

First of all, we assume that under given values of conservation laws equilibrium

state exists and is unique.

Second assumption is that the rates of elementary processes are microscopically

observable quantities. This means that somebody (a “demon"), who observes

all the events in the microscopical world can count the rates of elementary re-

actions.

T-invariance and uniqueness of equilibrium give together: equilibrium is T-

invariant: if we change all the microscopic time derivatives (velocities) v to −v

then nothing will change.

T-transformation changes all reactions to the reverse reactions, just by rever-

sion of arrows, but the number of the events remain the same: any reaction

transforms into its reverse reaction but does not change the reaction rate. This

can be formulated also as follows: T-transformation maps all r+ρ into the corre-

spondent r−ρ .

Hence, because of the T-invariance, the equilibrium rate of each reaction is

equal to the equilibrium rate of the reverse reaction.

How may the assumptions be violated? Existence of several equilibria in ther-

modynamics is quite unexpected for homogeneous systems but requires more

attention for the systems with phase separation. Nevertheless, if we assume
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that a multi-phase system consists of several homogeneous phases, and each of

these phases is in uniform equilibrium, then we return to the previous assump-

tion (with some white spots for non-uniform interfaces).

T-invariance may be violated if the microscopic description is not reversible in

time. Magnetic field and the Coriolis force are the classical examples for viola-

tion of the microscopic reversibility. In a linear approximation near equilibrium

the corresponding modification of the Onsager relations gives the Onsager–

Casimir relations [16]. Despite several attempts for nonlinear formulation of

the Onsager–Casimir relations (see [33]) the principle of detailed balance seems

still to be the best nonlinear version of the Onsager relations, and the conditions

of the complex balance seem to give the proper relations between kinetic coef-

ficients in the absence of the microscopic reversibility for nonlinear systems. It

is important to mention here that all these relations are used together with the

general kinetic law (4.2.2).

Observability of the rates of elementary reactions deserves a special study. Two

approaches to the reaction rate are possible. If we accept that the general kinetic

law (4.2.2) is valid then we can find the kinetic factors by observation of dc/dt

in several points because the Boltzmann factors are linearly independent. In

this sense, they are observable but one can claim the approximation point of

view and state that the general kinetic law (4.2.2) without additional conditions

on kinetic factors is very general and allows to approximate any dynamical

system. From this point of view, kinetic coefficients are just some numbers in

the approximation algorithm and are not observable. This means that there

is no such a microscopic thing as the rate of elementary reaction, and the set

of reactions serves just for the approximation of the right hand side of the ki-

netic equation. We cannot fully disprove this point of view but can just say

that in some cases the collision–based approach with physically distinguished

elementary reactions is based on the solid experimental and theoretical back-

ground. If the elementary reactions physically exist then the detailed balance

for T-invariant systems is proved.
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CHAPTER 5

Quasi Equilibrium and

Quasi-Steady State Approximation

Here we discuss in detail our case study of the oxidation of carbon monoxide

over platinum, the main mechanism along with its complexity and applying

the Quasi equilibrium (QE) and Quasi Steady State Approximation (QSSA) to

it. We measure its role and in the case of stiffness, how to get rid of it.

5.1 Oxidation of Carbon monoxide over Platinum

During the last decade the CO over Pt was commonly used for testing the latest

physical methods in order to study the structure and composition of catalysts

e.g low Energy Electron Diffraction (LEES), Auger Electron Spectroscopy (AES),

X-ray Photon Spectroscopy (XPS), molecular beam techniques etc. Here we

consider again a four step complex chemical reaction of CO oxidation over Pt.

For details see [35].

Although for its description, various steps are used from the mechanisms we

take the following ones for case study

O2 + 2Z 
 2ZO

CO + Z 
 ZCO

ZO + CO 
 CO2 + Z

ZO + ZCO 
 CO2 + 2Z (5.1.1)
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Figure 5.1: Balance Polyhedra for catalytic isomerization [35] (a) For gas (b) for
surface compounds

in the above equation ZO, ZCO, Z are adsorbed oxygen. The above mechanism

involve two different routes:

1. Impact: steps 1 to 4 Eley- Rideal (E-R).

2. Adsorption: steps 1 to 3 Langmuir-Hinshelwood (L-H).

(1) CO oxidation follows the adsorption mechanism (this viewpoint was re-

ported in the pioneering studies of Palmer, Smith and Malakhov) whose ki-

netic characteristics (reaction rate constants) depend significantly on the surface

composition, (2) alongside the adsorption mechanism, there is a contribution

from the interaction of adsorbed oxygen with CO in the pre-adsorption state

("precursor state"). Here we discuss in detail the various steps of this mecha-

nism as proceeding from the experimental data.

Adsorption-Desorption of O2

A molecular form of reactive oxygen at high pressure is obtained by the oxy-

gen adsorption over platinum metal. As a result, well ordered structure is often

formed on metal surfaces, which defuse into catalyst bulk under high temper-

ature and pressure. Due to this dissolved oxygen in a subsurface layer changes

the reaction rate constants. Often, under certain conditions oxygen adsorption
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Figure 5.2: Reaction Phase Patterns PO2 = 2.3× 10−7 and PCO = 2.2× 10−7

Torr [35] . (a) Unique steady state, T = 450K. (b) Three steady states T = 490K

can lead to surface reconstruction. Thus sticking coefficient of oxygen depends

on the surface composition.

Adsorption-Desorption of CO

CO is a monomolecular, its activation energy is particularly zero as is the case

of oxygen. But oxygen doesn’t inhibit CO adsorption. The sticking coefficient

is weakly dependent on the surface concentration of CO.

The CO2 formation step

After the modification in the previous results in 1970 it was shown through a

number of experimental results that if oxygen is preabsorbed over platinum

surface at (T > 263k) it reacts with CO immediately in a gas phase as a result

CO2 formed independent of temperature which agree with the impact mecha-

nism. On the other side there is a formation of CO2 by the interaction of CO

and O2 which implies the adsorption mechanism.

The two route mechanism was proposed by Winterbottom, where as Camp-

bell applied L-H mechanism to describe titration of adsorbed oxygen by carbon

monoxide gases and assumed that
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• Formation energy of CO2 depends on oxygen surface coverage.

• CO production is inhibited by oxygen at T > 529k.

• The parameter of CO2 formation changes sharply with reaction tempera-

ture.

Through numerical computation for the adsorption mechanism we define two

time scales:

• Fast scale for the initial segment.

• Slow scale characterizes motion to the steady state.

This seperation of time scale is due to sharp difference in parameters, i.e, tem-

perature as shown in Figure 5.2, where a unique steady state will be obtaineed

if T = 450K and three steady states in case of T = 490K. Slow reaction is dis-

tinctly observed: if the trajectory approaches the unstable steady state the sys-

tem rapidly enters its neighborhood (after one sec) and then relatively slowly

(during 100 sec) moves towards its stable steady state.

5.2 Formalism of QE Approximation for Chemical

Kinetics

In this Section, we describe the general formalism of the QE for chemical kinet-

ics following [32].

The general construction of the quasi-equilibrium manifold gives the following

procedure. First, let us consider the chemical reactions in a constant volume

under the isothermal conditions. The free energy F(N, T) = V f (c, T) should

decrease due to reactions. In the space of concentrations, one defines a subspace

of fast motions L. It should be spanned by the stoichiometric vectors of fast

reactions.

Slow coordinates are linear functions that annulate L. These functions form a

subspace in the space of linear functions on the concentration space. Dimension
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of this space is s = n− dim L. It is necessary to choose any basis in this sub-

space. We can use for this purpose a basis bj in L⊥, an orthogonal complement

to L and define the basic functionals as bj(N) = (bj, N).

The description of the QE manifold is very simple in the Legendre transform.

The chemical potentials are partial derivatives

µi =
∂F(N, T)

∂Ni
=

∂ f (c, T)
∂ci

. (5.2.1)

Let us use µi as new coordinates. In these new coordinates (the “conjugated

coordinates"), the QE manifold is just an orthogonal complement to L. This

subspace, L⊥, is defined by equations

∑
i

µiγi = 0 for any γ ∈ L. (5.2.2)

It is sufficient to take in (5.2.2) not all γ ∈ L but only elements from a basis in L.

In this case, we get the system of n− dim L linear equations of the form (5.2.2)

and their solution does not cause any difficulty. For the actual computations,

one requires the inversion from µ to c.

It is worth to mention that the problems of the selection of the slow variables

and of the description of the QE manifold in the conjugated variables can be

considered as the same problem of description of the orthogonal complement,

L⊥.

To finalize the construction of the QE approximation, we should find for any

given values of slow variables (and of conservation laws) bi the correspondent

point on the QE manifold. This means that we have to solve the system of

equations:

b(N) = b; (µ(c, T), γρ) = 0 , (5.2.3)

where b is the vector of slow variables, µ is the vector of chemical potentials

and vectors γρ form a basis in L. After that, we have the QE dependence cQE(b)

and for any admissible value of b can find all the reaction rates and calculate ḃ.

Unfortunately, the system (5.2.3) can be solved analytically only in some special

cases. In general case, we have to solve it numerically. For this purpose, it may

be convenient to keep the optimization statement of the problem: S → max
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subject to given b. There exists plenty of methods of convex optimization for

solution of this problem.

For the first example, let us return to the simplest enzyme reaction E + S 


ES→ P + S, the traditional Michaelis–Menten System (2.6.4) (it is simpler than

the system studied by Michaelis and Menten [47]). Let us assume that the re-

action E + S 
 ES is fast. This means that both k+1 and k−1 include large pa-

rameters: k+1 = 1
ε κ1, k−1 = 1

ε κ−1. For small ε, we will apply the QE approxima-

tion. Only three components participate in the fast reaction, A1 = S, A2 = E,

A3 = ES. For analysis of the QE manifold we do not need to involve other

components.

The stoichiometric vector of the fast reaction is γ = (−1,−1, 1). The space L is

one–dimensional and its basis is this vector γ. The space L⊥ is two–dimensional

and one of the convenient bases is b1 = (1, 0, 1), b2 = (0, 1, 1). The corre-

spondent slow variables are b1(N) = N1 + N3, b2(N) = N2 + N3. The first

slow variable is the sum of the free substrate and the substrate captured in the

enzyme–substrate complex. The second of them is the conserved quantity, the

total amount of enzyme.

The equation for the QE manifold is (2.6.7): k1c1c2 = k−1 c3 or c1
c∗1

c2
c∗2

= c3
c∗3

because

k1c∗1c∗2 = k−1 c∗3 , where c∗i = c∗i (T) > 0 are the so-called standard equilibrium

values and for perfect systems µi = RT ln(ci/c∗i ), F = RTV ∑i ci(ln(ci/c∗i )− 1).

Let us fix the slow variables and find c1,2,3. Equations (5.2.3) turn into

c1 + c3 = b1 , c2 + c3 = b2 , k1c1c2 = k−1 c3 .

Here we change dynamic variables from N to c because this is a homogeneous

system with constant volume.

If we use c1 = b1 − c3 and c2 = b2 − c3 then we obtain a quadratic equation for

c3:

k1c2
3 − (k1b1 + k1b2 + k−1 )c3 + k1b1b2 = 0 . (5.2.4)

Therefore,

c3(b1, b2) =
1
2

(
b1 + b2 +

k−1
k1

)
− 1

2

√√√√(b1 + b2 +
k−1
k1

)2

− 4b1b2 .
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The sign ‘−’ is selected to provide positivity of all ci. This choice provides also

the proper asymptotic: c3 → 0 if any of bi → 0. For other c1,2 we should use

c1 = b1 − c3 and c2 = b2 − c3.

The time derivatives of concentrations are:

ċ1 = −k1c1c2 + k−1 c3 + vincin
1 − voutc1 ,

ċ2 = −k1c1c2 + (k−1 + k2)c3 + vincin
2 − voutc2 ,

ċ3 = k1c1c2 − (k−1 + k2)c3 + vincin
3 − voutc3 ,

ċ4 = k2c3 + vincin
4 − voutc4 ,

(5.2.5)

where we added external flux with input and output velocities (per unite vol-

ume) vin and vout and input concentrations cin. This is done to stress that the

QE approximation holds also for a system with fluxes if the fast equilibrium

subsystem is fast enough.

The slow system is

ḃ1 = ċ1 + ċ3 = −k2c3 + vinbin
1 − voutb1 ,

ḃ2 = ċ2 + ċ3 = vinbin
2 − voutb2 ,

ċ4 = k2c3 + vincin
4 − voutc4 ,

(5.2.6)

where bin
1 = cin

1 + cin
3 , bin

2 = cin
2 + cin

3 .

Now, we should use the expression for c3(b1, b2):

ḃ1 =− k2
1
2

(b1 + b2 +
k−1
k1

)
− 1

2

√√√√(b1 + b2 +
k−1
k1

)2

− 4b1b2


+ vinbin

1 − voutb1 ,

ċ4 =k2
1
2

(b1 + b2 +
k−1
k1

)
− 1

2

√√√√(b1 + b2 +
k−1
k1

)2

− 4b1b2


+ vincin

4 − voutc4 ,

ḃ2 =vinbin
2 − voutb2 .

(5.2.7)

It is obvious here that in the reduced system (5.2.7) there exists one reaction

from the lumped component with concentration b1 (the total amount of sub-
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strate in free state and in the substrate–enzyme complex) into the component

(product) with concentration c4 the rate of this reaction is k2c(b1b2). The lumped

component with concentration b2 (the total amount of the enzyme in free state

and in the substrate–enzyme complex) affects the reaction rate but does not

change in the reaction.

Let us use for simplification of this system the assumption of the substrate ex-

cess (we follow the logic of the original Michaelis and Menten paper [47]):

[S]� [SE] , i.e. b1 � c3 . (5.2.8)

Under this assumption, the quadratic equation (5.2.4) transforms into(
1 +

b2

b1
+

k−1
k1b1

)
c3 = b2 + o

(
c3

b1

)
(5.2.9)

and in this approximation

c3 =
b2b1

b1 + b2 +
k−1
k1

(5.2.10)

(compare to (2.6.8) and (2.6.3): this equation includes an additional term b2 in

denominator because we did not assume formally anything about the smallness

of b2 in (5.2.8)).

After this simplification, the QE slow equations (5.2.6) take the form

ḃ1 = − k2b2b1

b1 + b2 +
k−1
k1

+ vinbin
1 − voutb1 ,

ḃ2 = vinbin
2 − voutb2 ,

ċ4 =
k2b2b1

b1 + b2 +
k−1
k1

+ vincin
4 − voutc4 .

(5.2.11)

This is the typical form in the reduced equations for catalytic reactions: nomi-

nator in the reaction rate corresponds to the “brutto reaction" S + E → P + E

[70].

For the second example, let us assume equilibrium with respect to adsorption
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in the CO on Pt oxidation:

CO+Pt
PtCO; O2+2Pt
2PtO

(for detailed discussion of the modeling of CO on Pt oxidation, this “Mona

Liza" of catalysis, we address readers to [70]). The list of components involved

in these 2 reactions is: A1 =CO, A2 =O2, A3 =Pt, A4 =PtO, A5 =PtCO (CO2

does not participate in the adsorption and may be excluded at this point).

Subspace L is two–dimensional, It is spanned by the stoichiometric vectors,

γ1 = (−1, 0,−1, 0, 1), γ2 = (0,−1,−2, 2, 0).

The orthogonal complement to L is a three–dimensional subspace spanned by

vectors (0, 2, 0, 1, 0), (1, 0, 0, 0, 1), (0, 0, 1, 1, 1). This basis is not orthonormal but

convenient because of integer coordinates.

The correspondent slow variables are

b1 = 2N2 + N4 = 2NO2 + NPtO ;

b2 = N1 + N5 = NCO + NPtCO ;

b3 = N3 + N4 + N5 = NPt + NPtO + NPtCO .

(5.2.12)

For heterogeneous systems, caution is needed in transition between N and c

variables because there are two “volumes" and we cannot put in (5.2.12) ci in-

stead of Ni: Ngas = Vgascgas but Nsurf = Vsurfcsurf, where Vgas is the volume of

gas, Vsurf is the area of surface.

There is a law of conservation of the catalyst: NPt + NPtO + NPtCO = b3 = const.

Therefore, we have two non-trivial dynamical slow variables, b1 and b2. They

have a very clear sense: b1 is the amount of atoms of oxygen accumulated in O2

and PtO and b2 is the amount of atoms of carbon accumulated in CO and PtCO.

The free energy for the perfect heterogeneous system has the form

F = VgasRT ∑
Ai gas

ci

(
ln
(

ci

c∗i

)
− 1
)
+ VsurfRT ∑

Ai surf
ci

(
ln
(

ci

c∗i

)
− 1
)

,

(5.2.13)

where ci are the correspondent concentrations and c∗i = c∗i (T) > 0 are the so-

called standard equilibrium values.
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From this expression (5.2.13) we get the chemical potentials of the perfect mix-

ture

µi = RT ln
(

ci

c∗i

)
. (5.2.14)

The QE manifold in the conjugated variables is given by equations:

−µ1 − µ3 + µ5 = 0 ; −µ2 − 2µ3 + 2µ4 = 0 .

It is trivial to resolve these equations with respect to µ3,4, for example:

µ4 =
1
2

µ2 + µ3 ; µ5 = µ1 + µ3

or with the standard equilibria:

c4

c∗4
=

c3

c∗3

√
c2

c∗2
,

c5

c∗5
=

c1

c∗1

c3

c∗3
,

or in the kinetic form (we assume that the kinetic constants are in accordance

with thermodynamics and all these forms are equivalent):

k1c1c3 = k−1 c5 , k2c2c2
3 = k−2 c2

4 . (5.2.15)

The next task is to solve the system of equations:

k1c1c3 = k−1 c5 , k2c2c2
3 = k−2 c2

4 , 2Vgasc2 + Vsurfc4 = b1 ,

Vgasc1 + Vsurfc5 = b2 , Vsurf(c3 + c4 + c5) = b3.
(5.2.16)

This is a system of five equations with respect to five unknown variables, c1,2,3,4,5.

We have to solve them and use the solution for calculation of reaction rates in

the QE equations for the slow variables. Let us construct these equations first,

and then return to (5.2.16).

We assume the adsorption (the Langmuir-Hinshelwood) mechanism of CO ox-

idation:

CO+Pt
PtCO (±1); O2+2Pt
2PtO (±2)

PtO+PtCO→CO2+2Pt (3)
(5.2.17)
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The kinetic equations for this system (including the flux in the gas phase) is

CO Ṅ1 = Vsurf(−k1c1c3 + k−1 c5) + Vgas(vincin
1 − voutc1) ,

O2 Ṅ2 = Vsurf(−k2c2c2
3 + k−2 c2

4) + Vgas(vincin
2 − voutc2) ,

Pt Ṅ3 = Vsurf(−k1c1c3 + k−1 c5 − 2k2c2c2
3 + 2k−2 c2

4

+2k3c4c5) , (5.2.18)

PtO Ṅ4 = Vsurf(2k2c2c2
3 − 2k−2 c2

4 − k3c4c5) ,

PtCO Ṅ5 = Vsurf(k1c1c3 − k−1 c5 − k3c4c5) ,

CO2 Ṅ6 = Vsurfk3c4c5 + Vgas(vincin
6 − voutc6) .

Here vin and vout are the fluxes rates (per unite volume).

For the slow variables this equation gives:

ḃ1 = 2Ṅ2 + Ṅ4 = −Vsurfk3c4c5 + 2Vgas(vincin
2 − voutc2)

ḃ2 = Ṅ1 + Ṅ5 = −Vsurfk3c4c5 + Vgas(vincin
1 − voutc1);

ḃ3 = Ṅ3 + Ṅ4 + Ṅ5 = 0

Ṅ6 = Vsurfk3c4c5 + Vgas(vincin
6 − voutc6)

(5.2.19)

This system looks quite simple. Only one reaction,

PtO+PtCO→CO2+2Pt , (5.2.20)

is visible. If we know expressions for c3,5(b) then this reaction rate is also

known. In addition, to work with the rates of fluxes, the expressions for c1,2(b)

are needed.

The system of equations (5.2.16) is explicitly solvable but the result is quite cum-

bersome. Therefore, let us consider its simplification without explicit analytic

solution. We assume the following smallness:

b1 � N4 b2 � N5 (5.2.21)
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Together with this smallness assumptions equations (5.2.16) give:

c3 =
b3

Vsurf

(
1 + k1

k−1

b2
Vgas

+

√
1
2

k2
k−2

b1
Vgas

) ,

c4 =

√
1
2

k2

k−2

b1

Vgas

b3

Vsurf

(
1 + k1

k−1

b2
Vgas

+

√
1
2

k2
k−2

b1
Vgas

) ,

c5 =
k1

k−1

b2

Vgas

b3

Vsurf

(
1 + k1

k−1

b2
Vgas

+

√
1
2

k2
k−2

b1
Vgas

) .

(5.2.22)

In this approximation, we have for the reaction (5.2.20) rate

r = k3c4c5 = k3
k1

k−1

√
1
2

k2

k−2

√
b1b2

V3/2
gas

b2
3

V2
surf

(
1 + k1

k−1

b2
Vgas

+

√
1
2

k2
k−2

b1
Vgas

)2 .

This expression gives the closure for the slow QE equations (5.2.19).

We finalize here the illustration of the general QE procedure for chemical kinet-

ics. As we can see, the simple analytic description of the QE approximation is

available, when the fast reactions have no joint reagents. In general case, we

need either a numerical solver for (5.2.3) or some additional hypotheses about

smallness. Michaelis and Menten used, in addition to the QE approach, the hy-

pothesis about smallness of the amount of intermediate complexes. This is the

typical QSS hypothesis.

Of course, validity of all the simplification hypotheses is a crucial question. For

example, for the CO oxidation, if we accept the hypothesis about the quasiequi-

librium adsorption then we get a simple dynamics which monotonically tends

to the steady state. The state of the surface is unambiguously presented as a

continuous function of the gas composition. The pure QSS hypothesis results

for the Langmuir-Hinshelwood reaction mechanism (5.2.17) without quasiequi-

librium adsorption in bifurcations and the multiplicity of steady states [70]. The

problem of validity of simplifications cannot be solved as a purely theoretical

question without the knowledge of kinetic constants or some additional exper-

imental data.
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Figure 5.3: Transport Phenomena: Time scales of physical and chemical pro-
cesses [40].

5.3 Transforming stiff to nonstiff

Removing Stiffness

Although there is no specific definition for stiffness, it is an important aspect

for the inial value problem of ordinary differential equations. One can say that

the problem is stiff if the eigenvalue of the Jacobian matrix has a real part which

is at all large and positive, and at least some component are very stable i.e one

eigenvalue has a negative large part, that the problem is stiff in some interval

and not in others parts or we can say that the solution is slowly varying with

respect to negative part of the eigenvalues, which means that the solution is

smooth and the norm of its derivative is much smaller than the norm of the

derivative of exponential. The areas of chemical engineering, nonlinear me-

chanics, biochemistry and life sciences are sources of stiff problems. In math-

ematical modeling of chemically reacting gas flows tens of chemical reactions

with quite different speeds are taken into account. Stiff systems are requiring

the development of the special difference scheme, with increased requirements

to the stability numerical results confirm the effectiveness, high accuracy and

suitability for stiff systems of these schemes. This means that one can examine
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the consequence of these two attributes(Accuracy, Tolerance) when solving stiff

problem by conventional explicit methods. The chemical model often takes the

form of non-linear ODE or PDE which most of the time are not possible to solve

analytically. So people proceed through by considering these chemical model to

mathematical model to be able to study the behavior of system including reac-

tant, product, and there intermediate which are taking place from milliseconds

to years and with the numerical help measures the behavior of each concen-

tration variable in a very small or infinitesimal time interval. There is a major

difference between physical and chemical time scale as shown in Figure 5.3.

With the help of model reduction the system becomes easier to handle but for

this the necessary thing is to know the interrelation (correlation) between the

different species and in the last few decades various model reduction methods

have been developed. Among them the most common and largely used ones

are Steady State Assumption and Quasi Equilibrium etc.

5.4 The Main Transformation of the Vector Field

QE approximation pretends to exclude the fast variables and reduce equations

to the slow manifold. This approximation to the slow manifold is given by a

system of nonlinear equations which, unfortunately, very often could not be ex-

plicitly resolved. In this Section, we demonstrate how the classical QE methods

could be modified to remove the stiffness. For most of the realistic chemical

kinetic systems the equations for the equilibrium surface could not be resolved

analytically. Nevertheless, this equilibrium surface is a stable invariant mani-

fold for a non-stiff system which we derive explicitly.

Let us return to the notation of Section (2.3): we consider a system in a domain

U of a real vector space E given by differential equations (2.3.1) dx/dt = F(x).

We assume that for any x0 ∈ U solution x(t; x0) to initial problem x(0) = x0 for

(2.3.1) exists for all t > 0 and belongs to U. A dependence M = m(x) is given.

In general, the QE approximation results in the nonlinear equation for the QE

manifold: Φ(x, M) = 0. The slaving assumption means that the solution to

(2.3.1) goes fast into a small vicinity of this manifold and then slowly moves

in such a vicinity. To create the explicit reduced system we need to solve the
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equation. Explicit form of this solution is usually unavailable, and we have

to use numerical methods. For the QE approximation with convex entropy,

the natural choice of this method is numerical conditional maximization of the

entropy (2.3.4).

A natural question appears: why is this model a reduction of the original model,

indeed, if we have to solve the multidimensional optimization problem at each

calculation of the right hand side for dM/dt? Among other problems, this ap-

proach restricts our ability to use implicit methods.

Here we propose to revise the problem statement. What is our main problem:

to reduce dimension or to remove stiffness? Of course, it is desirable to solve

both problems but if it is impossible then let us study the problem of stiffness

removal.

The problem of stiffness removal is one of the classical problems in numerical

methods [21]. It appears in various settings, from computational fluid dynam-

ics [38] to chemical kinetics and combustion [64]. Here we propose a particular

way of using the QE approximation for stiffness removal.

The QE approximation produces a differential–algebraic problem

Φ(x, M) = 0 ,
dM
dt

= (Dxm)F(x) . (5.4.1)

To use these equations, one has to solve first the algebraic equation, find x =

x(M), and then use it in the differential equation. There are many approaches

to combine the numerical methods for the solution of the reduced differential

equations with methods for the solution of the equations of the QE approxima-

tion.

The idea of using ODE methods for solving differential–algebraic systems di-

rectly was introduced by Gear in 1971 [17] and developed further in many

works [18]. We also use this idea and return from the system (5.4.1) to the dif-

ferential equations but with removing stiffness from the original system (2.3.1).

The idea is very simple. Let us differentiate the algebraic part of the QE system

(5.4.1):

(DxΦ)dx + (DMΦ)dM = 0 .
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According to this relation, let us take

(DxΦ)
dx
dt

= −(DMΦ)(Dxm)F(x) , M = m(x) . (5.4.2)

This is again the system of equations with two vector variables, x and M but

instead of nonlinear equation for x and differential equation for M we get a

linear equation for ẋ and explicit formula for M.

The first important property of (5.4.2) is that the QE manifold given by the

equation Φ(x, M) = 0 is a (positively) invariant manifold for (5.4.2): if for initial

conditions Φ(x(0), m(x(0)) = 0 then for t > 0 Φ(x(t), m(x(t)) = 0. Indeed, the

first equation in (5.4.2) can be read as a condition for the conservation in time

of the quantity Φ(x, m(x)). Therefore, the zero value is also preserved by the

dynamics.

If the slow variables M are slow indeed then the operator (Dxm) from the right

hand side of the differential equation in (5.4.2) should remove the fast dynamics

and the system (5.4.2) becomes non-stiff.

For example, let us consider the system of fast reactions. Like in (2.6.1), we have

a system

dN
dt

=Ksl(N) +
1
ε

K f s(N)

=Ksl(N) +
1
ε ∑

ρ

γf
ρrρ .

(5.4.3)

Under standard QE assumptions for chemical kinetics (including entropy growth

+ weak reversibility for MAL, for example), the fast system

Ṅ =
1
ε ∑

ρ

γf
ρrρ

has a stable positive equilibrium, which is unique for any set of values of the

linear conservation laws bl(N) = ∑i bl jNj: bl(γ
f
ρ) ≡ 0 for all l and ρ.

Let L = span{γf
ρ}, then vectors bl correspond to a basis in L⊥, and we should

take Ml = (bl, N). The fast part of the vector field (5.4.3) vanishes in projection

on the slow variables and the correspondent system (5.4.2) is not stiff.

Unfortunately, another problem may appear: the neutral stability instead of
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stiffness. The new system (5.4.2) may drift tangentially to the QE manifold. To

avoid this problem, we can add to this system the gradient flow of entropy in-

creasing in fast directions. This flow is simple, non-stiff and guaranties stability

of the QE manifold.

This stabilizing term is produced by orthogonal projection of gradS on ker Dm

(or, for chemical example, this is just an orthogonal projection of gradS on L =

span{γf
ρ}. Let P⊥ : E → ker Dm is this orthogonal projection. For a non-linear

m, this projector depends on x as a parameter.

The stabilized non-stiff dynamics for the QE approximation is:

(DxΦ)
dx
dt

= −(DMΦ)(Dxm)F(x) + a(DxΦ)P⊥gradS , M = m(x) . (5.4.4)

where a > 0 is the stabilization parameter.

The stabilization term aP⊥gradS has zero input in Ṁ (i.e. in the slow dynamics)

and does not violate invariance of the QE manifold with respect to (5.4.2).

5.5 Example: Catalytic Oxidation

Let us return to the heterogeneous catalysis example, the CO oxidation on Pt

[70]. The list of components is A1 =CO, A2 =O2, A3 =Pt, A4 =PtO, A5 =PtCO,

A6 =CO2. We assume a fast adsorption: the fast reactions are

CO+Pt
PtCO; O2+2Pt
2PtO

with the stoichiometric vectors

γ1 = (−1, 0,−1, 0, 1) , γ2 = (0,−1,−2, 2, 0) .

The subspace of fast motion is L = span{γ1, γ2}. The orthogonal complement

to L is

L⊥ = span{(0, 2, 0, 1, 0), (1, 0, 0, 0, 1), (0, 0, 1, 1, 1)} .
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The orthonormal basis of L⊥ is obtained by the Gram-Schmidt procedure:

e1 =
1√
5
(0, 2, 0, 1, 0) , e2 =

1√
2
(1, 0, 0, 0, 1) ,

e3 =
1√
230

(−5,−4, 10, 8, 5) .

We omit here the component A6 because it does not participate in the fast reac-

tions. In general, L⊥ has an additional basis vector (0, 0, 0, 0, 0, 1) and the sixth

coordinate of the vectors in L is zero.

The orthogonal projector on L⊥ is P⊥:

P⊥x = e1(e1, x) + e2(e2, x) + e3(e3, x)

or in the matrix form, P⊥ is

1
5



0 0 0 0 0

0 4 0 2 0

0 0 0 0 0

0 2 0 1 0

0 0 0 0 0


+

1
2



1 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 1


+

1
230



25 20 −50 −40 −25

20 16 −40 −32 −20

−50 −40 100 80 50

−40 −32 80 64 40

−25 −20 50 40 25


(5.5.1)

The slow variables M are represented by a 3D vector

M =


b1

b2

b3

 =


2N2 + N4

N1 + N5

N3 + N4 + N5

 =


2Vgasc2 + Vsurfc4

Vgasc1 + Vsurfc5

Vsurfc3 + Vsurfc4 + Vsurfc5

 (5.5.2)

We assume the adsorption (the Langmuir-Hinshelwood) mechanism of CO ox-

idation (5.2.17). For our purposes, it is convenient to write the equations for
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concentrations: instead of (5.2.18) we get

CO ċ1 =
Vsurf

Vgas
(−k1c1c3 + k−1 c5) + (vincin

1 − voutc1) ,

O2 ċ2 =
Vsurf

Vgas
(−k2c2c2

3 + k−2 c2
4) + (vincin

2 − voutc2) ,

Pt ċ3 = −k1c1c3 + k−1 c5 − 2k2c2c2
3 + 2k−2 c2

4 + 2k3c4c5 ,

PtO ċ4 = 2k2c2c2
3 − 2k−2 c2

4 − k3c4c5 , (5.5.3)

PtCO ċ5 = k1c1c3 − k−1 c5 − k3c4c5 ,

CO2 ċ6 =
Vsurf

Vgas
k3c4c5 + (vincin

6 − voutc6) .

Let us find the modified dynamical equation (5.4.2). For this purpose, we need

Φ(x, M), DxΦ(x, M), DMΦ(x, M) and m (where x = c and M = b). The vector

field F(x) is given by (5.5.3). The equation for the QE manifold (Φ(x, M) = 0)

is (5.2.16):

Φ(c, b) =



k1c1c3 − k−1 c5

k2c2c2
3 − k−2 c2

4

2Vgasc2 + Vsurfc4 − b1

Vgasc1 + Vsurfc5 − b2

Vsurf(c3 + c4 + c5)− b3


= 0 . (5.5.4)

For the differentials of Φ this equation gives

DcΦ(c, b) =

[
∂Φi(c, b)

∂cj

]
=



k1c3 0 k1c1 0 −k−1
0 k2c2

3 2k2c2c3 −2k−2 c4 0

0 2Vgas 0 Vsurf 0

Vgas 0 0 0 Vsurf

0 0 Vsurf Vsurf Vsurf


; (5.5.5)

DbΦ(c, b) =

[
∂Φi(c, b)

∂bj

]
=



0 0 0

0 0 0

−1 0 0

0 −1 0

0 0 −1


. (5.5.6)
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The matrix m is

m =


0 2Vgas 0 Vsurf 0

Vgas 0 0 0 Vsurf

0 0 Vsurf Vsurf Vsurf

 (5.5.7)

For linear operators m the term DMmF(x) in the right hand side of (5.4.2) is just

mF(x). For the vector field (5.5.3) and matrix (5.5.7) this term is

mF(c) =


−Vsurfk3c4c5 + 2Vgas(vincin

2 − voutc2)

−Vsurfk3c4c5 + Vgas(vincin
1 − voutc1)

0

 (5.5.8)

Let us calculate (DbΦ(c, b))mF(c):

(DbΦ(c, b))mF(c) =



0

0

Vsurfk3c4c5 − 2Vgas(vincin
2 − voutc2)

Vsurfk3c4c5 −Vgas(vincin
1 − voutc1)

0


(5.5.9)

Finally, the system (5.4.2) in our example is



k1c3 0 k1c1 0 −k−1
0 k2c2

3 2k2c2c3 −2k−2 c4 0

0 2Vgas 0 Vsurf 0

Vgas 0 0 0 Vsurf

0 0 Vsurf Vsurf Vsurf





ċ1

ċ2

ċ3

ċ4

ċ5



=



0

0

Vsurfk3c4c5 − 2Vgas(vincin
2 − voutc2)

Vsurfk3c4c5 −Vgas(vincin
1 − voutc1)

0



(5.5.10)

The dynamics of c6 has no feedback to the dynamics of c1−5 and may be con-
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sidered separately when the system for c1−5 is solved:

ċ6 = k3c4c5 −Vgas(vincin
6 − voutc6) .

For the stabilizing term, we use the thermodynamics function Y = − F
RT . Ac-

cording to (5.2.13),

Y = −∑
i

Ni

(
ln
(

Ni

N∗i

)
− 1
)

. (5.5.11)

Let us calculate P⊥gradY in variables N and then rescale this term to variables

c:

gradY = − ln
(

Ni

N∗i

)
= − ln

(
ci

c∗i

)
.

For this formula, operator P⊥ is given by (5.5.1)

For equations in variables c (5.5.10) the stabilizing term is

1
Vgas

0 0 0 0

0 1
Vgas

0 0 0

0 0 1
Vsurf

0 0

0 0 0 1
Vsurf

0

0 0 0 0 1
Vsurf


P⊥gradY (5.5.12)

5.6 Quasi Steady State Approximation

This is a working tool applied in many catalyst reactions which basically de-

fines an assumption for a fast subsystem. In the case of stepwise complex

reactions, the overall reaction rate is determined by the slowest step among

different fast (usually called other than the slow) steps of reactions. Various

intermediate or unstable species are produced in different steps. In a simple

procedure, the intermediates such as the atoms and free radicals, the concentra-

tions of which are necessarily low, are assumed to have a constant concentration

during the course of reaction.

QSSA basically split the species in two groups ([57]): The basic and the inter-

mediate (radicals etc). Then defining the concentration space as a direct sum of
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fast c f (intermediate species) and slow cs ( basic species) subspace i.e,

c = c f ⊕ cs.

where as a subsystem c f is the fast concentration at fixed values of cs. This

implies that fast subsystem relaxes to stationary state c f → c f
qss(cs), then the

assumption that c f = c f
qss(c) is precisely the QSS assumption. so J = Js + J f

ċ f = J f (cs ⊕ c f ), cs = const; c f → c f
qss(cs) (5.6.1)

ċs = Js(cs ⊕ c f
qss(cs)). (5.6.2)

When talking about the steady state approximation, we mean that there exist

a reactions which are very fast compared to the other reactions for that reason

we set their correspondence rate of change to be zero but it doesn’t means that

they are identically zero but we are comparing their role with respect to oth-

ers. According to SSA the rates of formation and consumption of the surface

intermediate are approximately equal, so the time derivative of the coverage of

intermediate is equal to zero or in other words it may be assumed that the rate

of formation of the intermediate is equal to its rate of disappearance.

In this way, simple expressions for the concentration of intermediates can be

obtained and hence an equation for the overall rate can be derived.

Consider the Michaelis-Menten mechanism:

A + Z 
 AZ 
 Z + P (5.6.3)

where Z is an enzyme (catalyst) A is a substrate, AZ is the enzyme substrate

intermediate complex and P is the product.

From the classical point of view enzymes are highly effective catalysts. There-

fore one can say that the production or formation of enzyme and product from

the enzyme substrate is a fast process. But how can we say it to be fast if it will

never be the rate of reaction because in a steady state the rate of formation and

degradation are approximately the same and also not be the rate constant be-

cause of having different units. So there may be another way of slowness. There

exist balances and also if we could get rid of the units we will be able to resolve
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this difficulty. Thus in case of catalytic reaction the smallness parameter is the

ratio of balances: Intermediate species include a catalyst, and their total amount

is simply significantly smaller than the amount of all the cis. which allows to

upgrade the QSS assumption to a singular perturbation theory rigorously [81].

The rate of the reaction for this mechanism is define as,

ċA = −k+1 cAcZ + k−1 cAZ,

ċZ = −k+1 cAcZ + k−1 cAZ + k+2 cAZ − k−2 cZcP,

ċAZ = k+1 cAcZ − k−1 cAZ − k+2 cAZ + k−2 cZcP,

ċP = k+2 cAZ − k−2 cZcP

(5.6.4)

Whereas the mass conservation law gives us two equations (balance equations).

BZ = cZ + cAZ,

BA = cA + cP + cAZ. (5.6.5)

Note that these balances also satisfy the above differential equations (rate equa-

tions). Whereas the main idea of the SSA is that the concentration of highly

reactive intermediate like AZ eventually goes to a rough balance between the

production and destruction i.e at that point the net change of AZ is compar-

atively very small. In order to give evidence of our arguments, we have to

choose new measuring scales for each of the variables (c•) such that each is

of unit magnitude or in other words we can say we have to define the new

variables (ζ•) by

ζA = cA/BA, ζP = cP/BA, ζZ = cZ/BZ, ζAZ = cAZ/BZ, (5.6.6)

due to the balancing terms

ζA + ζP +
BZ

BA
ζAZ = 1; ζZ + ζAZ = 1; ζ• ≥ 0.
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We are left with only,

ζ̇A = BZ[−k+1 ζAζZ +
k−1
BA

ζAZ],

ζ̇Z = BA[−k+1 ζAζZ +
k−1
BA

ζAZ − k−2 ζPζZ +
k+2
BA

ζAZ]. (5.6.7)

such that fast subsystem is regarded as a slow system for all the foregoing sub-

systems. For BZ < BA such that the catalyst is much smaller than the substrate

the slowness of ζA, ζP is evident from the above equation.

The idea of slowness is similar for the radicals in which the amount of radical is

less than the basic species. However, the calculation of this small parameter is

not through the balances but through the thermodynamical approach in which

the function G decreases in the course of a reaction, and we obtain the estimate

of concentrations of any species:

ci ≤ maxG(c)≤G(c(0))ci, (5.6.8)

where c(0) is the initial concentration. If the concentration of the radical re-

mains small initially as well as in equilibrium, then it is assumed that it re-

mains small at all times, and, as in the case of ideal gas system under constant

temperature and pressure, the following inequality is valid

cR[ln(cR(t)/ceq
R )− 1] ≤ G(c(0)). (5.6.9)

The above inequality gives the idea of the thermodynamic estimate of cR(t) in

terms of G(c(0)) and ceq
R uniformly for t > 0. A complete theory of thermo-

dynamic estimates of dynamics has been developed by Gorban (1984). One

can also do computations without a priori estimations, if one accepts the QSS

assumption as long as the values c f stay sufficiently small.

By knowing the pre estimate it is possible to normalize the value ci, and with

the help of the new variable, which takes the value from the unit segment [0,

1], i.e c̃i = ci/ci max, the system will take a form

dc̃i

dt
=

1
ci max

Ji(c). (5.6.10)
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Various realization of the QSS approximation are possible through the system of

dimension-less parameters εi = ci max/maxici max, which define a hierarchy of

relaxation times. The simplest version is the standard QSS assumption: Param-

eters εi are separated into two groups: the smaller ones and those of the order 1.

Accordingly, the concentration vector is split into cs ⊕ c f .Various hierarchical

QSS are possible. With this, the problem becomes more tractable analytically.

5.7 How to find Equilibrium

Let us consider a system of chemical reactions defined as

(αr, A)↔ (βr, A) (5.7.1)

where

(αr, A) = ∑
i

αri Ai, (βr, A) = ∑
i

βri Ai

i = 1...n, r is the reaction number, Ai are the chemical species and αr, βr are the

stoichiometric coefficients. The stoichiometric vector can be define as

γ = βr − αr.

The kinetic equation under isochoric conditions will become

ċi = J(c) , J(c) = ∑
r

γsWr (5.7.2)

where Wr is reaction rate of step r and the linear stoichiometric conservation

law is a system of linear function

b(c) = ∑
j

bjcj, j = 1, 2, ..., l (5.7.3)

that annuls all stoichiometric vectors for a given reaction mechanism

b(γr) = 0, ∀ r.
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Stoichiometric conservation law is strictly positive if all bi > 0. This assump-

tion plays an important role in Mass Action Law kinetics. Phase space V has

now dimension m = n − l in the given n−dimension space (5.7.1) due to the

l−dimensional (5.7.3) set of conservation laws

Thus we are left with a kinetic system in the form

˙cm = F(c, b). (5.7.4)

This reduced mechanism can be easily solved by any direct solver to get an

equilibrium of the system. Let us illustrate the above idea with the following

example.

5.8 Illustration

CO oxidation over Pt metal group(Pt,Pd,Ir,Ru,Rh) is a complex reaction. A

detailed mechanism is a combination of impact (Eley-Rideal) and adsorption

(Langmuir-Hinshelwood) mechanism and involves the following steps of the

reaction:

A1 + 2A4 
 2A5

A2 + A4 
 A6

A2 + A5 
 A3 + A4

A5 + A6 
 A3 + 2A4 (5.8.1)

These chemical species (substances) are defined as O2 = A1, CO = A2, CO2 =

A3, Pt = A4, PtO = A5, PtCO = A6, where oxygen, carbon monoxide and

carbon dioxide are gases, and platinum and its oxides are surfaces. Their stoi-

chiometric vectors can be defined step wise

γ
g
1 =


−1

0

0

 , γ
g
2 =


0

−1

0

 , γ
g
3 =


0

−1

1

 , γ
g
4 =


0

0

1

 , (5.8.2)
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γs
1 =


−2

2

0

 , γs
2 =


−1

0

1

 , γs
3 =


1

−1

0

 , γs
4 =


2

−1

−1

 , (5.8.3)

or we can write their stoichiometric vectors as

γ1 = (−1, 0, 0,−2, 2, 0),

γ2 = (0,−1, 0,−1, 0, 1),

γ3 = (0,−1, 1, 1,−1, 0),

γ4 = (0, 0, 1, 2,−1,−1). (5.8.4)

The kinetic equation of the six component vector for concentrations

c = (c1, c2, c3, c4, c5, c6)
T is given by the equation

ċ = J(c) = γ1W1 + γ2W2 + γ3W3 + γ4W4,

(5.8.5)

J(c) =
[

J1 J2 J3 J4 J5 J6

]T

and is in the form

ċg =
S
V
(γ

g
1W1 + γ

g
2W2 + γ

g
3W3 + γ

g
4W4) +

vincg
in

V
+

voutcg

V
.

ċs =
S
V
(γs

1W1 + γs
2W2 + γs

3W3 + γs
4W4). (5.8.6)

Or we can write it as

ċ1 =
S
V
(−W1) +

vinc1in

V
+

voutc1

V
,

ċ2 =
S
V
(−W2 −W3) +

vinc2in

V
+

voutc2

V
,

ċ3 =
S
V
(W3 + W4) +

vinc3in

V
+

voutc3

V
,

ċ4 = (−2W1 −W2 + W3 + 2W4),

ċ5 = (2W1 −W3 −W4),

ċ6 = (W2 −W4), (5.8.7)
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and an equation for vout is given as

vout = vin + S(W1V1 + W2V2 + W3V3 + W4V4)

V1 = −RT
P

, V2 = −RT
P

, V3 =
RT
P

, V4 = 0. (5.8.8)

Ultimately we have,

vout = vin +
SRT

P
(−W1 −W2 + W3) (5.8.9)

while their rate functions can be calculated through the law of mass action

given by the equations (3.3.1)

W1 = W+
1 −W−1 = k+1 c1c2

4 − k−1 c2
5.

W2 = W+
2 −W−2 = k+2 c2c4 − k−2 c6.

W3 = W+
3 −W−3 = k+3 c2c5 − k−3 c3c4.

W4 = W+
4 −W−4 = k+4 c5c6 − k−4 c3c2

4. (5.8.10)

The balances are obtained through the detailed balances (laws of conservation)

with respect to oxygen, carbon and platinum

Dc = Const.


2 1 2 0 1 1

0 1 1 0 0 1

0 0 0 1 1 1





c1

c2

c3

c4

c5

c6


=


const1

const2

const3

 (5.8.11)

where the const are balances of oxygen, carbon and platinum, i.e:

const1 = bO=oxygen = b1,

const2 = bC=carbon = b2 ,

const3 = bZ=platinum = b3.
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The above kinetic equation (5.8.5) can be written as

J(c) =



k−1 c5
2 − k1c1c4

2

k−2 c6 − k2c2c4 + k−3 c3c4 − k3c2c5

k3c2c5 − k−3 c3c4 + k4c5c6 − k−4 c3c4
2

2 k−1 c5
2 − 2 k1c1c4

2 + k−2 c6 − k2c2c4 + k3c2c5 − k−3 c3c4 + 2 k4c5c6 − 2 k−4 c3c4
2

−2 k−1 c5
2 + 2 k1c1c4

2 − k3c2c5 + k−3 c3c4 − k4c5c6 + k−4 c3c4
2

−k−2 c6 + k2c2c4 − k4c5c6 + k−4 c3c4
2


(5.8.12)

How to Calculate Equilibrium Numerically

Let us calculate an equilibrium for the system (5.8.1) involving six chemical

species for which the following set of parameters is defined

k+1 = 1, k+2 = 1, k+3 = 1, k+4 = 10,

ceq
1 = 0.01, ceq

2 = .02, ceq
3 = 0.97, ceq

4 = 0.97, ceq
5 = 0.01, ceq

6 = 0.02

Laws of conservation give 3-balances defined by oxygen, carbon,and platinum

(5.8.11),

bO=oxygen = 1.21,

bC=carbon = 1.01,

bZ=platinum = 0.21.

The system is reduced to 3-dimension, and by solving a new system of kinetic

equations we obtain a unique equilibrium point

c∗1 = 0.00000, c∗2 = 0.720503, c∗4 = 0.120496
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5.9 How to Calculate and Use the QE Manifold of

the System

Let us describe the procedure in two steps

• calculate the ‘initial layer’, also called the initial trajectories of the system.

• solve the slow system.

Consider a system of chemical reactions at constant volume and temperature.

Under these condition the free energy F(N, T) = V f (N, T) decreases.

Define a kinetics of n chemical species in the form

dN
dt

= ksl(N) +
1
ε

k f s(N). (5.9.1)

The initial layer, defined by the fast subspace L, is spanned by their stoichio-

metric vectors, whose equations are represented as

(αi, A)↔ (βi, A) i = 1...m. (5.9.2)

linear function form by the slow coordinates has dimension s = n− dimL which

can be chosen by any basis of the subspace here we take the orthogonal ones L⊥

define the basic function as bj(N) = (bj, N), j = 1...p along with the remaining

set of reactions are

(αl, A)↔ (βl, A) l = m + 1...m + q. (5.9.3)

Now when the subsystem defined by the fast species N f relaxes to the station-

ary states i.e,

N f (A)→ N f
qss(A)

During the initial layer the slow variables remain unchanged so the vector field

becomes

J = Js + J f ,

Ṅ f = J(Ns ⊕ N f ), Ns = const; N f → N f
qss(Ns)
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so,

Ṅs = ksl(N)

will be transformed into

Ṅs = Js(Ns ⊕ f
qss (Ns)). (5.9.4)

By careful analysis we come across (through an experiment) that when the sys-

tem of fast reactions reaches to an equilibrium i.e,

k+s (T)
n

∏
i=1

cαi
i = k−s (T)

n

∏
i=1

cβi, (5.9.5)

there arises an additional balance of slow variable such that

(b∗j , N) = Constants (5.9.6)

j = p + 1...p + v then by knowing all these balances(atomic + additional ones)

say M and through the equilibrium of fast reactions we can calculate the value

of c(bi) and the variation of slow variable b∗(t) obtained from the initial ki-

netics. In the next section we consider an example to clear the idea discussed

here.

5.10 One dimensional Invariant Grid for CO on Pt

oxidation (Implementing the idea)

Consider a complex chemical reaction (5.8.1) involving six chemical species

A1 = O2, A2 =CO ,A3 =CO2, A4 =Pt, A5 =PtO, A6 =PtCO . Among this

4-step chemical reactions let us assume the first pair of reactions to be fast (1st

case) i.e,

O2 + 2Z 
 2ZO

CO + Z 
 ZCO (5.10.1)

The subspace L, spanned by the stoichiometric vectors

γ1 = (−1, 0, 0,−2, 2, 0) , γ2 = (0,−1, 0,−1, 0, 1) .
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Figure 5.4: Initial layer defined by the fast system.

is two dimensional, whereas orthogonal complement to L⊥ is a three dimen-

sional subspace spanned by vectors (2, 1, 2, 0, 1, 1), (0, 1, 1, 0, 0, 1), (0, 0, 0, 1, 1, 1).

So the balance equations defined by the oxygen, carbon, and platinum balances

are

2N1 + N2 + 2N3 + N5 + N6 = b1,

N2 + N3 + N6 = b2,

N4 + N5 + N6 = b3. (5.10.2)

Consider a homogenous system. In this six dimensional system we still need

some additional terms to solve the problem, which are provided by the fast

subsystem (5.10.1). When it reaches to an equilibrium

k+1 c1c2
4 = k−1 c2

5,

k+2 c2c4 = k−2 c6, (5.10.3)

there arises an additional balance orthogonal to the fast system

2N1 + N5 = b4. (5.10.4)
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Figure 5.5: Slow system trajectory

Now we have four balances,

M =


b1

b2

b3

b4

 =


2N1 + N2 + 2N3 + N5 + N6

N2 + N3 + N6

N4 + N5 + N6

2N1 + N5

 . (5.10.5)

Note that

(M, γ) = 0.

Thus along with the fast kinetics, we solve the system and proceed with the

slow variables. But before that, let us discuss the initial trajectories defined by

the fast subsystem.

Initial Layer: Kinetic equation for the system is described in (5.2.18), The sys-

tem is decomposed into fast and slow motions. During the fast motion the

slow variable remains unchanged. Similarly during the slow motion fast vari-

able variation is negligible. We solve the kinetics for the CO and PtO to obtain

initial trajectories of the system, which can be seen in Figure 5.4 i.e, after a short

interval of time the system goes to its steady state. We used the following pa-

rameters:

k+1 = 1, k−2 = 1, k+3 = 1, k+4 = 10,
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STIFF-NON-STIFF TRANSFORMATION FOR SEVERAL SETTINGS

Figure 5.6: Initial layer trajectories of the fast system

ceq
1 = 0.01, ceq

2 = .02′ ceq
3 = 0.97, ceq

4 = 0.97, ceq
4 = 0.01, ceq

6 = 0.02

Slow variable trajectories: For the slow variables the equations are

ḃ1 = 2Ṅ1 + Ṅ2 + 2Ṅ3 + Ṅ5 + Ṅ6, ḃ2 = Ṅ2 + Ṅ3 + Ṅ6,

ḃ3 = Ṅ4 + Ṅ5 + Ṅ6, ḃ4 = 2Ṅ1 + Ṅ5
together with initial layer when reaches to steady state. The system of slow

variables can be solved in the same way under given parameters. Three dimen-

sional trajectory between CO, PtO and b4 is shown in Figure 5.5.

5.11 Stiff-non-stiff Transformation For Several Set-

tings

There are six possibilities of choosing a pair of reactions to be fast in this 4-step

chemical reaction (5.8.1). Here we consider a second pair of reactions as a fast

pair

CO + OZ 
 CO2 + Z,

COZ + OZ 
 CO2 + 2Z. (5.11.1)
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Figure 5.7: Slow trajectory of the system

A two dimensional subspace L is spanned by the stoichiometric vectors

γ1 = (0,−1, 1, 1,−1, 0) , γ2 = (0, 0, 1, 2,−1,−1) ,

while the balancing equations are defined by the orthognal complement L⊥,

which is 3-dimensional (5.10.2). Additional balance, N3 + N5 = b4, given by

the fast equilibria

k+3 c2c5 = k−3 c3c4,

k+4 c5c6 = k−4 c3c2
4, (5.11.2)

makes a system non-stiff and easy to solve. Proceeding in the same manner

as discussed in first case, we calculate its initial layer from the fast system de-

fined by CO2 and Pt variables as shown in Figure 5.6 and slow manifold w.r.t

b4,CO2, PtCO by choosing the same initial parameters we obtain a slow trajec-

tory shown in Figure 5.7.

5.12 Higher dimensional Case

More than one dimensional case makes the system easier to solve. While ana-

lyzing the system from beginning to initial equilibrium one can select from the

given number of reactions which one to be equilibrated. Just as we have cho-
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HIGHER DIMENSIONAL CASE

sen the adsorption reaction in a complex chemical reaction (oxidation of carbon

monoxide over platinum) as our first case and then the equilibrium manifold

is defined through this choice. Now, by considering the same system with only

one reaction to be fast among all (as a second case) i.e,

(α∗1 , A) 
 (β∗1, A), (5.12.1)

the remaining ones will form a slow system, i.e

(αi, A) 
 (βi, A), (5.12.2)

where i= 2...q + 1. In addition, balancing equation is given by the law of ther-

modynamics

(bj, N) = Constants, j = 1...p. (5.12.3)

plus additional balances arise, when the fast system reaches an equilibrium

state

(b∗j , N) = Constants, j = p + 1...p + v. (5.12.4)

An initial layer is obtained from the fast system (equation in that case) projected

onto the trajectory given by the slow variables. Same is the case for the high

dimensional problem for this case therefore we focussed on the 1-d case.
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CHAPTER 6

Intrinsic Low Dimensional

Manifold

Now a days, computational challenges are in every field of Science. In the field

of chemical kinetics, we deal with it in a detail transport, complex chemical

kinetics which can either be simplified by the simplified transport calculation

i.e, Naiver Stock’s Method for detail transport. In case of complex chemical

kinetics, it can be simplified by a number of ways discussed in Section 6.1. In

order to understand the behavior of chemical species (Ni, ci) in a system of

complex reactions, people are impelled to transform the chemical system into

mathematical form in order to express the interrelation among the species to

help monitor and control the system behavior.

This mathematical form of the system generally involves a nonlinear system

which cannot be solved analytically so the other way left is to solve it numeri-

cally by assuming an initial condition for each concentration variable and then

assuming small time interval δt to replace the infinitesimal dt to calculate con-

centration at the next time step.

This can be done with the help of modern computers but with certain limi-

tations. Alternatively we can apply a model reduction techniques for which

various methods have been developed so for.
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MODEL REDUCTION

6.1 Model Reduction

Different chemical species move with different time scales in a chemical reac-

tions, so time scales describe their rate of decay and characterize their solutions.

For numerical purpose and because of their dominant cause of variation of fast

time scale in their earliest time of reaction, small time scale is required near the

initial conditions. After some time the change in the solution due to their rate of

decay becomes zero and the values of dependent variable approach towards the

equilibrium state."The state where further increase in the independent variable

(fast ones) does not affect (too much) the dependent variables (slow variable)"

which requires a lot of computational work while moving from the initial to

equilibrium state.

There are several essentially different approaches to asymptotic and scale sep-

aration in kinetics and each of them has its own area of applicability. It is also

important to find a reduce system in such a ways that it may not affect the ac-

curacy and complete description of the solution of the system which can either

be achieved by quasi equilibrium method or by quasi steady state which are

discussed in detail in previous chapter (5).

These methods are quite important to understand which leads to lower dimen-

sion manifold in a composition space and are directly related with the rate of

some vectors vanishes in direction of composition space, just like in the case of

quasi equilibrium assumption. Similarly in the steady state assumption force,

it is the rate of production of some species to vanish. In reduce mechanism

method (RMM) the most common of them are: Quasi Equilibrium Approxima-

tion (QEA), Quasi Steady State Approximation (QSSA), Dynamic Dimension

Reduction (DDR) (including methods of invariant manifolds), Sensitivity Anal-

ysis (SA), method of Limiting Step (LS), Computational Singular Perturbation

(CSP), Intrinsic Low Dimension Manifold (ILDM).

Quasi Equilibrium Approximation

Most of the works on non equilibrium thermodynamics deal with the QE ap-

proximations and corrections to them, or with applications of these approxima-

tions (with or without corrections). There are two basic formulation of the QE
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approximation: the thermodynamic approach, based on entropy maximum, or

the kinetic formulation, based on selection of fast reversible reactions. The very

first use of the entropy maximization dates back to the classical work of Gibbs

[26], but it was first claimed for a principle of informational statistical thermo-

dynamics by Janes [39]. A very general discussion of the maximum entropy

principle with applications to dissipative kinetics is given in the review [5].

Corrections of QE approximation with applications to physical and chemical

kinetics were developed in [27, 28].

The basic assumption behind the quasi-equilibrium is the hypothesis of the de-

composition of motions into fast and slow. The quasi-equilibrium approxima-

tion itself describes slow motions. However, sometimes it becomes necessary

to restore the whole system, and to take into account the fast motions as well.

With this, it is desirable to keep intact one of the important advantages of the

quasi-equilibrium approximation - its independence of the rate constants of fast

reactions. For this purpose, the detailed fast kinetics is replaced by a model

equation (single relaxation time approximation)[22].

The QE approximation in a Chemical Kinetics implies that some intermediates

(enzymes or catalyst) rapidly establish equilibrium state after the start of reac-

tion and has no disturbing affect on the catalyzed reaction. QE is a common

technique used in enzyme kinetics and is usually applied for reversible chemi-

cal reactions. It has a combined character with steady state of the system but the

reason for its wide use is its simplicity in resulting the kinetics equations and

its easily derivation. It basically establishes a condition for the maintenance of

constant value of substrate and product concentration during the catalyzed re-

action by giving an idea that whether the reaction proceed or not if the ratio of

intermediate concentration is in equilibrium. And the result of all is that in the

equilibrium segment the intermediate concentration negligibly depends on the

catalyzed reaction proceed or not.

Quasi Steady State Approximation

QSS was proposed by Bodenstein in 1913 [6], and the important Michaelis and

Menten work [47] was published simultaneously. It appears that no kinetic

theory of catalysis is possible without QSS. This method was elaborated into
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an important tool for analysis of chemical reaction mechanism and kinetics

[58, 13, 36]. The classical QSS is based on the relative smallness of concentrations

of some of “active" reagents (radicals, substrate-enzyme complexes or active

components on the catalyst surface) [7, 1, 60].

QSSA is an important technique for mathematician, used to derive many of the

equations that describe enzyme kinetics. It states that after an initial transient

the concentration of a chemical specie will not change significantly with respect

to the remaining concentrations of the system. We indicate the general process

by working through a standard example (Michaelis-Menten mechanism):

E + S 
 C → E + P (6.1.1)

discussed in detail (5.2). Where as in this mechanism E is enzyme and S is

substrate C is enzyme substrate, intermediate complex and P is the product.

Chemical kinetics systems often have invariants [51]. These invariants express

mass conservation laws such as the one in the case (6.1.1). The advantage of

this method is that the dimensionality of the system is reduced through by the

conservation laws which basically leads to the more simplification by setting

the concentration with respect to time to zero, because of the assumption that it

is negligible. Applying the QSSA reduces the order of the system of differential

equations by an amount equal to the number of chemical species to which an

assumption is applied.

Dynamic Dimension Reduction

Reducing dimension of a system may cause a loss of useful information but

searching in multiple dimensions has been extensively researched in the database

and computational geometry literature. From the geometrical point of view, the

behavior of chemical species and their trajectories are attracted towards the sur-

face of increasingly lower dimension, that are usually called the slow invariant

manifold SIM. Although there exists several procedures for detecting the useful

data structures such as R-trees, hB-trees, SS-trees and SR-trees which are used in

fast searching in large multi-dimensional databases which are quite efficient for

small dimensional system (of order upto l-10). However, as the dimensionality
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of data increases, the query performance of these structures degrades rapidly.

Sensitivity Analysis

It deals with the principal component of the reaction, measured by normaliza-

tion of each reaction and separate the reaction which has little effect on overall

reaction mechanism or which has a low sensitivity. So left with only principal

component representing one way of getting reduced mechanism. For a number

of reasons, sensitivity analysis is useful in computer and mathematical model-

ing. In more general terms uncertainty and sensitivity analysis investigate the

robustness of a study when the system involves complexity. It supports deci-

sion making or the development of recommendations, making it more credible,

understandable, compelling or persuasive increased understanding or quantifi-

cation of the system (e.g. understanding relationships between input and out-

put variables) and model development (e.g. searching for errors in the model).

Lumping Procedure

In this technique, an assumption was made that the chemically similar species

behave at the same rate in chemical reactions. They are considered to be a single

compound rather than considering it to be separately. But in this procedure a

useful information of detail reaction has been lost by compromising the detail

mechanism with global mechanism.

Lumping analysis aims to combine reagents into “quasicomponents" for dimen-

sion reduction [68, 42, 43, 62].

Wei and Prater [69] demonstrated that for (pseudo) monomolecular systems,

there exist linear combinations of concentrations which evolve in time inde-

pendently. These linear combinations (quasicomponents) correspond to the left

eigenvectors of kinetic matrix: if lK = λl then d(l, c)/dt = (l, c)λ, where the

standard inner product (l, c) is concentration of a quasicomponent. They also

demonstrated how to find these quasicomponents in a properly organized ex-

periment.

This observation gave rise to a question: how to lump components into proper

quasicomponents to guarantee the autonomous dynamics of the quasicompo-
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nents with appropriate accuracy? Wei and Kuo studied conditions for exact [68]

and approximate [42] lumping in monomolecular and pseudomonomolecular

systems. They demonstrated that under certain conditions large monomolecu-

lar system could be well–modelled by lower–order system.

More recently, sensitivity analysis and Lie group approach were applied to

lumping analysis [43, 62], and more general nonlinear forms of lumped con-

centrations were used (for example, concentration of quasicomponents could

be rational function of c).

Lumping analysis was placed in the linear system theory and the relationships

between lumpability and the concepts of observability, controllability and min-

imal realization was demonstrated [12]. The lumping procedures were consid-

ered also as efficient techniques leading to nonstiff systems and demonstrated

efficiency of developed algorithm on kinetic models of atmospheric chemistry

[19]. An optimal lumping problem can be formulated in the framework of a

mixed integer nonlinear programming (MINLP) and can be efficiently solved

with a stochastic optimization method [45].

Limiting Step

The concept depending on limit simplification defines the behavior of whole

network of the system and behave as a single step. This is the most popular ap-

proach for model simplification in chemical kinetics and in many areas beyond

kinetics. In the form of a bottleneck approach, this approximation is very pop-

ular from traffic management to computer programming and communication

networks. Recently, the concept of the limiting step is extended to the asymp-

totically of multiscale reaction networks ([29, 2]).

Computational Singular Perturbation

An iterative method used to reduce the dimensionality of system of ordinary

differential equation with multiple time scale defined by fast and slow dynam-

ics of trajectories. Also common for clear understanding and analysis of com-

plex kinetics behavior. By reducing the number of dependent variables reduces

the resource required for the computational work, which make the system less
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stiff.

Intrinsic Low Dimension Manifold

Maas and Pope (1992) introduced a method which automatically applies the

steady-state and quasi equilibrium approximation over all possible thermo-

chemical states of system. Using the same fact, during a reaction a large number

of chemical processes are so fast that they are not rate limiting and can be de-

coupled. Then these decoupled n f fast reactions which are faster than the flow

time scales can be ignored while those with slow time scales are tracked using

progress variables. What ILDM method does is to identify attracting intrinsic

low dimensional manifolds in ns = n − n f dimensional state space with the

property that after a short time the thermodynamical state of the system has

relaxed onto the low-dimensional manifold ns. Since the ns progress variables

completely describe the system, only these variables must be calculated which

leads to a dramatic reduction of CPU time for solving the chemistry in a re-

acting flow calculation. Importance and further explanation of this method is

discussed in the next section.

6.2 Advantages and Disadvantages

There are a number of advantages and disadvantages related to each method

(discussed above) are hereby discussed in detail as a comparison. Although

these methods are easy to implement (RMM) but some drawbacks are also re-

lated with them, namely the explicitly imposed assumption:

• The major one is that even for a couple of reaction the number of dif-

ferential equations generated can be very high. Which requires a lot of

computational time, (QEM, QSSA, SA).

• Because of the lack of understanding of correlation between the chemical

species, the interpretation of simulation results are difficult, (QEM, QSSA,

SA).

• In order to understand and then implement the mechanism one must

need to do case to case study of each reaction, (QEM, LA, QSSA, SA).
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• Then according to the nature of the reaction their composition at different

temperature , different quasi equilibrium and quasi steady state have to

be specified.

• The species which are in quasi steady state in domain of composition

space , but might be improper outside the specified domain.

• RMM i.e, (QEM, QSSA, SA, LP, LS) works in a limited range. The reason

for it is that it depends greatly on physical conditions, change in reaction

path as combustion moves from fuel rich to fuel-lean conditions.

Therefore we need such a method which allows us to specify only the desired

dimension of the reaction subspace. Which does not depend upon the experi-

ence or intuition from the person applying it and describe the most essential

and interesting detail of the system. Such a system can be achieved which de-

pend upon the analysis of eigenvalue and eigenvectors obtained from the Jaco-

bian of their system equations such as in ILDM. For the combustion system it

was firstly introduced by Mass and Pope in 1992 but the idea about manifold

has been in the literature for much longer and has several advanteges.

• The ILDM used to describe reduce chemical kinetics in such a way to

extract automatically the required information from the full system.

• Most of the detail chemistry is maintained in this method ,still gives com-

putation speed up in chemical reaction.

• Depending on time scale, it reduces the effort made for simplifying the

reaction mechanism by eliminating reaction or species.

• Ignoring the fast time scale (yet depending in detail kinetics), gives the

opportunity to calculate only slow time scale.

• It is also important in a sense that it requires system and the desired di-

mension only for an initial input. It doesn’t depend on the rate and speed

of the reaction with which it moves to produce or to be consumed during

the reaction.

• More over as long as their exists an attracting stable manifold there is no

chance of this method to fail. which make it to be more reliable than the

others to be easily applicable and accurately calculated.
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Decoupling fast time scale

Separation of the chemical species according to their time scale gives a useful

information about the reaction’s. A large negative value indicates that the reac-

tion is governed by the fast chemical reaction and is in local equilibrium. Thus

the time scale τf low associated with each reacting flow based on a resolution of

the transport calculation and their frequency 1/τf low, shown in following table.

Eigenvalues Frequency eigenvectors eigenspace

Re(λi) > 1/τf low ei(λi) ∈ Slow Space

Re(λi) < 1/τf low ei(λi) ∈ Fast Space

Re(λi) = 0 conserved variables i.e pressure in

isoboric system

The eigenvectors belonging to fast subspace can be decoupled from the reaction

system and the remaining one (i.e which can not be decoupled) form a reduced

system. This is also common in laminar or turbulent combustion calculation.

6.3 Stiffness Measure

In a chemical combustion where each elementary reaction behaves differently

with respect to time. Therefore, in a system of ODE with time independent vari-

ables are characterized by local set of time scale. In order to capture their differ-

ent time scale (due to elementary reaction) the useful information is obtained

through the eigenvalue of the Jacobian of the system of ODEs. The reciprocal

of the real part of eigenvalue are the time scale for the system behavior near

the point and if there exists imaginary part of it then it describes the frequency

with which solution oscillates at a point.

The real part of the eigenvalue describes the exponential decay for stable sys-

tems or exponentially grow for unstable systems of the solution which defines

the time scale. It is also important to note that as the Jacobian of the system

changes with time, their time scale also evolves along it which are indicated

as J0 such that jacobian at a point 0. The reason for such a calculation is that

the concentration of chemical species are not same. Some species (chemical

species) evolve more quickly than the others in the initial period of time but as
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the time passes the other species (remaining ones) become dominant call the

slower time scale terms. By careful analysis, it has been observed that there is

specific range of time scale in the solution for the evolution of different species.

The stiffness of the system has been calculated through the ratio of fastest to

the slowest time scale of the species i.e, if λ1, λ2, ...., λn are the eigenvalues of

Jacobian J of the system, then stiffness S is given by

S =
‖Re(λ)‖max

‖Re(λ)‖min
. (6.3.1)

The larger value of S is the indication of stiffness in a system which can be

transformed into nonstiff system by adopting the certain techniques discussed

in detail in Chapter 5. Reduce the mechanism, as it done in the quasi equilib-

rium and quasi steady state technique or implement a method ILDM.

When the rates of fast to slow time scale differ by several order of magnitudes,

then the useful information can be obtained within the solution part of the slow-

est time scale which approaches towards the equilibrium for all initial condi-

tions. Slow time scales are important to describe the kinetics of the system for

the time of interest rather than the fast time scale variation which is assumed

to be in steady state without significant loss of the system kinetic description.

Here no assumptions were made about their specific behaviors.

6.4 Dimension of the Manifold

The dimension of the manifold is directly related to the amount of time passed

after the continuation of reaction and before the manifold is in a good descrip-

tion of the solution. The number of variables in the reduced set determine the

dimension of the manifold. The system can be defined dimensionally as

• Equilibrium point, zero dimension attracting manifold for the system in a

phase space, all the trajectories approach to one common point.

• The time when solution trajectories attract towards and away from the

equilibrium point to some other region within an infinitesimal period of

time, the slowest time scale term becomes dominant than all other terms

at each point. Then solution approaches to a one dimension path in a
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phase space representing one dimensional manifold, all trajectories ap-

proach to a common trajectory where only slow time scale governs the

chemical reaction.

• When the next slowest time scale term dominate all fast terms rather than

slowest time scale term, then the solution will move along the two dimen-

sional surface in phase space representing two dimension manifold for a

system.

Once a thermodynamic system is on the manifold it will never leave the sys-

tem until there exist any perturbation in a system, wether it is through phys-

ical process like molecular diffusion, heat convection and mixing or by any

other means. If the system is perturbed at a time scale slower than the fastest

time scale of the manifold, then it does not affect the dynamics of the sys-

tem. But if the perturbation happens at a time scale that is faster than the

existing manifold, a higher dimensional manifold should be employed (Blasen-

brey,et.al.1998). Similarly, other formulations can be defined for higher dimen-

sion manifold if there exists in a system, in order to capture a larger number of

time scales which simply means that more number of progress variables must

be added to the manifold.

6.5 Mathematical Model

In this section we discuss how to find invariant manifold by using an ILDM

technique. Let us consider an n-dimensional system of ordinary differential

equations represented as
dX
dt

= φ(X) (6.5.1)

Their function describes the rate of change of dependent variable with respect

to dependent variable and other constant parameter. To find the low dimension

manifold for the system, it is necessary to know the time scale associated with

the solution at each point in the solution space. If there are ns characteristic

time scales (the eigenvalue of their Jacobian) then there exists ns characteristic

direction (eigenvector) associated with it. Its Jacobian J at each point in the
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Figure 6.1: General idea of constructing 1D ILDM, starting near its equilibrium
c′ in the forward and backward direction.

solution space is represented as a

J =



∂φ1
∂x1

. . . ∂φ1
∂xn

. . . . .

. . . . .

. . . . .
∂φn
∂xn

. . . ∂φn
∂xn


0

. (6.5.2)

′0′ indicates the point where Jacobian is evaluated. Now the perturbed system

can easily be analyzed within these eigenspaces.

• Positive eigenvalues indicates the increasing perturbation in the direction

of the eigenvector.

• Negative eigenvalues indicates the relaxing perturbation at some point.

• Zero eigenvalue represents the conserved variables.

The manifolds in their state space can be defined by dividing their space into

two subgroups at each point of the system. Fast subspace and slow subspace.

Slow subspace arises from the fast one when the fast subspace represent the

steady state n f gives the slow manifold ns = n− n f .

max{Re[λi], i = 1, ...n f } � τ < min{Re[λi], i = n f + 1...n}, τ < 0. (6.5.3)
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The reason behind this partition is that, to eliminate the possibility that the so-

lution trajectories travel along the fast time scale direction or in other words

the low dimension manifold contains only the slow time scale term of the so-

lution. In order to eliminate the characteristic direction associated with the fast

time scale at each point this can be easily achieved by considering them to be in

orthogonal directions. Normally the eigenvectors we obtain through diagonal-

ization are not orthogonal, so the best way is to apply Schur decomposition on

Jacobian J at each point in a phase space. The Schur decomposition of a matrix

M whose elements are real number are represented as

J = QTTQ (6.5.4)

The transition matrix Q(X) from the local basis to a standard one obtained

through the eigenvector of Jacobian and its inverse Q(X)−1 can be represented

in a block matrix form as

Q = (Q f , Qs); Q−1 =

(
Q̃ f

Q̃s

)
.

(
Q̃ f

Q̃s

)
.(Q f , Qs) =

(
1 0

0 1

)
= I (6.5.5)

where as Q f represents a (n × n f ) Matrix of fast eigenvectors and Qs repre-

sents (n× nS) Matrix of slow eigenvectors, Q̃ f implies (n f × n) Matrix of fast

eigenvectors, Q̃s implies (ns × n) Matrix of slow eigenvectors.

Now Schur decomposition exists at every point in the solution space where the

system φ(X) is continuous and can be accurately calculated at each point of T

contain the eigenvalues of J in descending order of magnitude.

According to the Mass and Pope, the intrinsic low dimension manifold is de-

termined by an undetermined system of n f equation for n−variables

Q̃ f .φ(X) = 0, (6.5.6)

which vanishes the large part of Jacobian matrix corresponding to fast time

scale. Here Q̃ f denotes the (n f × n) matrix, whose rows partitioning are the
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transpose of Schur matrix.

6.6 The Scheme

The basic idea behind this scheme is to find a maximum number of points that

define the manifold at discrete location in the phase space. As the analytical

solution for the system of non-linear equation φ is not possible in the case.

Therefore the procedure adopted here is Schur decomposition applied on the

jacobian at each point for which, one must have to move to the point near to

the equilibrium point and then by making the correction through by an ILDM

proceed it further as shown in Figure 6.1. An approximate guess for the next

step on the manifold is obtain by moving a small distance along the tangent to

the manifold at that point.

xi
g = xi

p +4xi (6.6.1)

where p represent the previous point and g is the next guess made. Similarly

for the next points, an assumption can be made by solving this expression

QT(xi
g − xi

p) = 0 (6.6.2)

Once xg is found, the above equation can be solved by any of the iterative root

solver where as the iteration starts by using the xg as initial guess for the next

manifold point and continuous until the convergence can be achieved with in a

specified tolerance. Similarly adopting the same procedure before and after the

equilibrium point to get the attracting trajectory of one dimensional manifold.

6.7 One Dimensional ILDM for Oxidation of CO/Pt

In order to implement the idea discussed above we consider again a system

of our case study, Oxidation of CO/Pt. Consisting of four steps chemical re-

action involving six species O2 = A1, CO = A2, CO2 = A3, Pt = A4, PtO =
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A5, PtCO = A6.

A1 + 2A4 
 2A5,

A2 + A4 
 A6,

A2 + A5 
 A3 + A4,

A5 + A6 
 A3 + 2A4. (6.7.1)

The equations for the oxygen, carbon, platinum balance can be obtain through

conservation law is defined in 5.8.11. This time, there is no need to make a par-

tition of the system (as we did in our previous methods in previous chapters)

consider a whole mechanism. Our system is reduced to three dimensions due

to the balances and we are left with only two gas and one surface equation in

the form of

ċg =
S
V
(γ

g
1W1 + γ

g
2W2 + γ

g
3W3 + γ

g
4W4) +

vincg
in

V
+

voutcg

V
.

ċs =
S
V
(γs

1W1 + γs
2W2 + γs

3W3 + γs
4W4). (6.7.2)

Let us call this reduced system to be F(ci, bi) = φ(X) and introduce the follow-

ing parameters for it.

k+1 = 1, k+2 = 1, k+3 = 1, k+4 = 10,

ceq
1 = 0.1, ceq

2 = .40, ceq
3 = 0.40, ceq

4 = 0.40, ceq
5 = 0.34, ceq

6 = 0.21,

and by solving the reduced system of kinetic equations with respect to follow-

ing parameters, we obtain a unique equilibrium point for the system, i.e

c∗1 = 0.04518, c∗2 = 0.4098, c∗4 = 0.595.

The differential of the system gives Jacobian which is to be calculated at each

point, is represented as

Jp =
∂φ

∂xj
. (6.7.3)

where, j = 1, 2, 3 and Jp indicate Jacobian at a point p. The eigenspace spain

by the system is calculated at each defined time interval. By applying Schur

decomposition at each point and reducing the model, it is possible to solve it
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Figure 6.2: One dimensional intrinsic low dimension manifold, square repre-
sents equilibrium point.

analytically, or even by hand calculations in order to get the guesses for the next

manifold point xg. But for a large system the numerical solution is perfect. And

it is possible to get the whole solution of it which is then verified by comparing

them with the actual solution points. Also being a reduced system, it no longer

remains stiff and it is possible to get the whole solution for the system easily. It

is also important to verify that the point on the manifold represents an intrinsic

low-dimensional attractive manifold and are well described after being the fast

time scale of the solution have been decayed.

As shown in a Figure 6.2 this technique is applied on both the side of the equi-

librium point and moves along the tangent by correcting each term, indicates

that as the time passes the solution approaches to an equilibrium point. The

fast time scale part of the solution decays and solution approaches the mani-

fold, called the intrinsic low dimensional manifold.
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Conclusion and outlook

In this thesis we presented in detail the modern techniques of model reduction

in a complex chemical reaction. These model reduction techniques are based

on constructing accurate approximations of invariant manifolds for the system

of kinetic equations. Given the approximate slow invariant manifold of a dy-

namical system, the reaction is described as a slow motion along the manifold

and a fast motion towards the manifold.

The main ideas behind the construction of the slow invariant manifold (SIM),

are based on finding initial approximation using Quasi Equilibrium Manifold

(QEM) and Quasi Steady Steady State Approximation (QSSA) and finally the

Intrinsic Low Dimensional Manifold (ILDM) and then refining it by any of the

methods discussed in Chapter 2.

We present the general formalism of the Quasiequilibrium approximation (QE)

with the proof of the persistence of entropy production in the QE approxima-

tion (Section 2.3). We demonstrate how to apply this formalism to chemi-

cal kinetics, and give several examples for the Mass Action law kinetic equa-

tion. We discuss the difference between QE and QSS and analyze the classical

Michaelis−Menten and Briggs−Haldane model reduction approaches (Section

2.6). After that, we use ideas of Michaelis, Menten and Stueckelberg to cre-

ate a general approach to kinetics. The method of invariant grids is utilized

for reducing the kinetics of a simple two-dimensional system (Section 2.8) as

a first case in order to obtain an one-dimensional description (by refinement).

Different initial approximations have been calculated and refined.

What are the main results of our discussion? First of all, we believe that this
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is the finish of the Michaelis−Menten−Stueckelberg program. The approach

to modeling of the reaction kinetics proposed by Michaelis and Menten in 1913

[47] for enzyme reactions was independently in 1952 applied by Stueckelberg

[59] to the Boltzmann equation. Some consequences of the Stueckelberg ap-

proach were rediscovered for the Mass Action law kinetics by Horn and Jack-

son in 1972 [25] and supplemented by the ’zero deficiency theorem’ [50]. This

is the history.

In our work, we develop the Michaelis−Menten−Stueckelberg approach to

general kinetics. This is a combination of the QE (fast equilibria) and the QSS

(small amounts) approaches to the real or hypothetical intermediate states. These

intermediate states (compounds) are included in all elementary reactions (4.1.3)

as it is illustrated in Figure 4.2. Because of the small amount, the free energy

for these compounds Bi is perfect (4.1.5), the kinetic of compounds is the first

order Markov kinetics and satisfies the Master equation. After that, we use the

combination of QE and QSS approximations and exclude the concentrations of

compounds. For the general kinetics the main result of this approach is the

general kinetic law (4.2.2). Earlier, we just postulated this law because of its

convenient and natural form ([30],[9]), now we have the physical framework

where this law can be proved.

What is the most attractive feature of this approach to general non-ideal ki-

netics? We do not assume anything about reaction rates of the main reac-

tions (2.2.4). We use only thermodynamic equilibrium, the hypothesis about

fast equilibrium with compounds and the smallness of concentration of com-

pounds. This smallness implies the perfect entropy and the first order kinetics

for compounds. After that, we get the reaction rate functions from the qualita-

tive assumptions about compounds and the equilibrium thermodynamic data.

For example, if we relax the assumption about fast equilibrium and use just

smallness of compound concentrations (the Briggs-Haldane QSS approach) then

we immediately need the formulas for reaction rates of compound production.

Equilibrium data become insufficient. If we relax the assumption about the

smallness of concentrations then we lose the perfect entropy and the first order

Markov kinetics. So, only the combination QE + QSS gives the desired result.
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The general kinetic law has a simple form: for an elementary reaction,

∑
i

αi Ai →∑
i

βi Ai,

the reaction rate is r = ϕΩ, where Ω > 0 is the Boltzmann factor, Ω = exp(−Σiαiµi),

µi = ∂S/∂Ni is the chemical potential divided by RT, and ϕ ≥ 0 is the kinetic

factor. Kinetic factors for different reactions should satisfy some conditions.

Two of them are connected to the basic physics:

• The detailed balance: the kinetic factors for mutually reverse reaction

should coincide, ϕ+ = ϕ−. This identity is proven for systems with mi-

croreversibility (Section 4.3.5).

• The complex balance: the sum of kinetic factors for all elementary reac-

tions of the form ∑i αi Ai → ... is equal to the sum of kinetic factors for

all elementary reactions of the form ... → ∑i αi Ai (4.2.19). This identity

is proven for all systems under the Michaelis-Menten-Stueckelberg as-

sumptions about the existence of intermediate compounds which are in

fast equilibria with other components and are present in small amounts.

For the general kinetic law we studied several sufficient conditions of accor-

dance between thermodynamics and kinetics: detailed balance, complex bal-

ance and G-inequality. In the practice of modeling, a kinetic model may, ini-

tially, do not respect thermodynamic conditions. For these cases, we solved a

problem: is it possible to add a linear function to entropy in order to provide

agreement with the given kinetic model and deformed thermodynamics? The

answer is constructive (Section 4.3) and allows us to prove the general algebraic

conditions for the detailed and complex balance. In Section 5.3, we propose to

revise the model reduction problem statement. What is our main problem: to

reduce dimension or to remove stiffness? Of course, it is desirable to solve both

problems but if it is impossible then let us study the problem of stiffness re-

moval. We demonstrate how to use the QE approximation for stiffness removal

and give an example, the CO oxidation on Pt.

Thermodynamics play an important role for constructing an invariant manifold

in the case of QEM and QSSA, where we consider that the extensive parameters

in the absence of any internal constraints are those that maximize the entropy
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over the manifold of constrained equilibrium states. The entropy is continu-

ous and differentiable and is monotonically increasing function of the energy

and vanishes in the state where variation of energy w.r.t entropy is zero,(i.e

where temperature T = 0). This is known as the ’entropy maximum postulate’.

In open systems the concepts of thermodynamics and the quasi equilibrium

manifold are important for the cases of constructing slow invariant manifolds.

Thermodynamic projector plays an important role. It transforms an arbitrary

vector field equipped with a given Lyapunov function into a vector field with

a same Lyapunov function on any manifold which is not tangent to the level of

the Lyapunov function. The quasi chemical approximation is a very important

working tool for assembling the equations. It enables us to construct and study

wide classes of evolution equations with prescribed Lyapunov functions.

While in the final case the method used is ILDM which is independent of all

these measures (discussed above), and is fast in the sense of computation. De-

pending on eigenspace it determines the required dimensions of the manifold.

Thus we can say that it is possible to construct invariant manifolds. The prob-

lem of constructing invariant manifolds can be formulated as the invariance

equation, subject to additional conditions of slowness (stability). The Newton

method with incomplete linearization, relaxation methods, the method of nat-

ural projector, and the method of invariant grids enables well-read approxima-

tions to the slow invariant manifolds. These methods were tested on a recently

discovered class of exactly solvable reduction problems [54]-[56]. It becomes

further clearer at the present time that the constructive methods of invariant

manifold are useful for a wide range of subjects, spanning from applied hydro-

dynamics to physical and chemical kinetics [22].

There are a number of reasons for constructing slow invariant manifold that

is necessary for the model reduction. Specifically in the case of complex ki-

netic systems with a known detailed description of the system we normally

solve the initial value problem for the system. But the idea fails when we know

only small part of the interacting system (like in a complex chemical reaction

system). Finally, the modern technique we applied to calculate initial approxi-

mation of the system can be further used to find the SIM by using any method

discussed in chapter 2.
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   Appendix 1                                          

1 D  invariant manifold for CO oxidation over Pt

 Here we consider a 1st pair of reaction to be fast as discuss in section (One 
dimensional(1D)Invariant Grid for CO on Pt oxidation 
(Implementing the idea) O2 + 2Z # 2ZO, CO + Z # ZCO ) and
apply the Quasi Steady State Approximation (QSSA) on it in order to get 
rid of stiffness arises in the system.

where as  O
2
, CO, CO

2
, Z, ZO, ZCO  are ci = c1K 6  :

The model we have to solve consist of ,

  Φ c , b d 

k
1
C
$c

1
$c

4
K k

1
K
$c

5
2

k
2
C
$c

2
$c

4
K k

2
K
$c

6

2$V
g
$c

1
CV

g
$c

2
C2V

g
$c

3
CV

s
$c

5
CV

s
$c

6
Kb

1

V
g
$c

2
CV

g
$c

3
CV

s
$c

6
Kb

2

V
s
c

4
CV

s
c

5
CV

s
$c

6
Kb

3
,

2$V
g
$c

1
CV

s
$c

5
Kb

4

For simplification we transform the system into system of three nonlinear 
equations of the form,

F
1
d f c , b ;                           F

2
dg c , b ;                            F

3
dh c , b ; 

which can be solved implicitly , for which we can proceed as follow, 
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c
2
/
d

F
1 c5

$F
2 b4

KF
1 b4

$F
2 c5

F
1 c2

$F
2 c5

KF
1 c5

$F
2 c2

$F
3

:            where as F
x's

 are the 

differential of F
i
 w.r.t  c

i
's , b

i
's & k

i
=

k
i
K

k
i
C :

4 c5 b4 c2K4 c5 b1 c2C2 c2 b3 k2K8 b2 b3 c2K4 c2 b4 b1K8 c2
2 b2C4 c2

2 b3C4 
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2 b1C2 b4

2 c2Kb4
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2
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K4 c5 b3 k2K4 b1 b2 k2C24 c5 b2 c2K4 c2 b2 k2C2 c2
3
Cb3

3
K3 c5
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