
Quasichemical Models

of Multicomponent Nonlinear Diffusion

Thesis submitted for the degree of

Doctor of Philosophy

at the University of Leicester

by

Hafiz Abdul Wahab

Department of Mathematics

University of Leicester

United Kingdom

March 29, 2011



Abstract

Diffusion preserves positivity of concentrations, therefore, multicomponent
diffusion should be nonlinear if there exist non-diagonal terms. The vast
variety of nonlinear multicomponent diffusion equations should be ordered
and special tools are necessary to provide systematic construction of the
nonlinear diffusion equations for multicomponent mixtures with significant
interaction between components. We develop an approach to nonlinear
multicomponent diffusion based on the idea of reaction mechanism bor-
rowed from chemical kinetics.

Chemical kinetics gave rise to the very seminal tools for the modeling
of processes. This is the stoichiometric algebra supplemented by the simple
kinetic law. The results of this invention are now applied in may areas of
science, from particle physics to sociology. In our work we extend the area
of applications onto nonlinear multicomponent diffusion.

We demonstrate, how the mechanism based approach to multicompo-
nent diffusion can be included into the general thermodynamic framework,
and prove the corresponding dissipation inequalities. To satisfy the ther-
modynamic restrictions, the kinetic law of an elementary process cannot
have an arbitrary form. For the general kinetic law (the generalized Mass
Action Law), additional conditions are proved. The cell–jump formalism
gives an intuitively clear representation of the elementary transport pro-
cesses and, at the same time, produces kinetic finite elements, a tool for
numerical simulation
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Chapter 1

Introduction

Diffusion is the net spontaneous and random motion of the particles in a

fluid from a high concentration region to a region of lower concentration,

until a uniform concentration is achieved throughout. The difference between

these two concentration regions is called the concentration gradient. In such

phenomena, no mechanical mixing or stirring is involved. For instance, a

drop of ink added to water will diffuse down the concentration gradient until

evenly mixed. At high temperatures, diffusion occurs more rapidly across

high concentration gradient. In case of fluid flow, the motion of the particles

is not random and particles move along the same direction.

Diffusion plays an important role in the biological systems, for example

in the transport of molecules such as nutrients, respiratory gases like carbon

dioxide and oxygen, and neurotransmitters over short distances, for example

across cell membranes. It provides the means by which small molecules

pass into and out of individual cell and micro-organisms such as an amoeba

that possess no circulatory system. Plant and animal organs whose function
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depends on diffusion such as the lungs have a large surface area. Some of the

important processes which involve diffusion are the uptake of the products

of digestion from the gut, gas exchange in the lungs, and gas exchange in the

leaves of plants.

The classical phenomenological theory of diffusion is related to phenom-

ena of mass transfer in a homogeneous and isotropic environment. However

a great deal of research has been devoted to transport processes in hetero-

geneous environment [17]. Now the aim is to improve the techniques for the

study of phenomena of diffusion transport and to apply it to real systems. A

great research has been developed in the area of quantum theory of diffusion

and its applications. For example the influence of non equilibrium fluctua-

tions has been studied in the lattice vibrations which are excited under the

irradiation of crystals on the diffusion of impurity atoms [18, 19].

There is a fundamental role in various chemical transformations for the

study of diffusion in systems with chemical reactions which provide a valuable

information about the process of convective diffusion such as the diffusion

inside the porous catalyst grain [20]. One of the important phenomena is the

process of the phase separation which is determined by the properties of the

solid solution and the external conditions. Different works of the diffusion

equation for these processes have been rediscovered, but most of them are

limited to the linear approximation [21]. In [22], joint processes of diffusion

in condensed matter and the adsorption is studied without any assumptions

about the quasi-steady flow processes in the solid surface for the analysis of

the kinetics of adsorption of a joint chemical reaction.

The study of multi-component diffusion process and their properties has
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gained much attention for the researchers such as for the study of amorphous

solid solutions, chemical-technological systems etc. However, some difficul-

ties also arise when trying to attempt general equations of multi-component

diffusion to specific systems. For example, a seemingly simple question of

non-negative solutions for the equations of multi-component diffusion with

chemical reaction [23]. The study of non linear multi-component diffusion in

the solid solution is very relevant topic for the theoretical point of view. The

reason is that at present the theoretical scheme describing multicomponent

diffusion in systems where linear Fick’s Law is unfit, have a number of short-

comings like violating balance relationships. However, theoretical treatments

and their underlying problems in solving multi-component diffusion problems

have been summarized in the article [24].

The objective of this thesis is to develop a new formal phenomenological

kinetic approach to describe multicomponent nonlinear diffusion. The pro-

posed formalism can be applied to the description of nonlinear diffusion in

gas, solid and liquid mixtures.

In accordance with the goal of the thesis, we have addressed the following

main tasks;

• Development of an approach to nonlinear multicomponent diffusion

based on the idea of reaction mechanism borrowed from chemical ki-

netics

• To build a system of multicomponent nonlinear equations of diffusion

on random mechanism, which by construction has the property of pre-

serving the positivity of the solutions
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We show that the ratios between the coefficients of a nonlinear multicompo-

nent diffusion on an arbitrary mechanism, obtained as a result of microre-

versibility, are sufficient (but not necessary) condition for thermodynamic

behaviour of diffusion.

This thesis consists of an acknowledgement, a list of symbols three chap-

ters and the conclusion. The first chapter consists of the literature review,

assess the level of elaboration of this research, the allocation of the core

competencies of outstanding issues. We presented the main ideas for the

mechanisms as collections of elementary processes, and repeated the way of

chemical kinetics in application to the multicomponent diffusion to create a

comprehensive theory of mechanisms of diffusion. We consider our lattice

model as a semi discrete model for which the system of kinetic equations

describes the diffusion and the continuous limit of these equations gives us

the diffusion PDE. We described this idea through examples.

In the second chapter, we develop a new general formulism for the idea

of the nonlinear formalism for describing multicomponent diffusion, based

on the law of mass action. The starting point of the approach is a model

representation of the system into cells, a system represented as a chain of

cells of homogeneous composition and elementary transfer processes between

them, which allowed us to formulate the mechanisms of diffusion using two-

cell model and to adopt a formal kinetics of the scheme. We formulated

the principle of detailed balance based on mass action law along with the

condition of complex balance.

We presented the theorem about space symmetry and microreversibility

for the existence of a global Lyapunov function. We used the classical con-
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struction of thermodynamic Lyapunov functions for chemical kinetics for the

semi discrete cell-jump models and proved the corresponding dissipation in-

equalities which guarantee the thermodynamic behaviour of diffusion. The

general construction of the diffusion equations under various conditions is

given for general system with Markov kinetics which satisfies the complex

balance condition.

We constructed models of nonlinear multicomponent diffusion such as

mechanism of jumps to the free places, diffusion mechanism with attraction,

diffusion mechanism with repulsion and mechanism of exchange of position.

In the third chapter, we developed a general quasichemical approach to

describe the multicomponent nonlinear diffusion by introducing the thermo-

dynamic function as the rate of the elementary act of diffusion. We start from

chemical kinetic equations and then extend our approach to the transport

processes.

To satisfy the thermodynamic restrictions, the kinetic law of an elemen-

tary process cannot have an arbitrary form. For the general kinetic law (the

generalized Mass Action Law), additional conditions are proved. There are

two main sets of these conditions which are the condition of detailed bal-

ance, which follows from microreversibility and the second one and the more

general condition is the condition of “complex balance”.

We demonstrated some ideas of Michaelis and Menten and to the Stueck-

elberg analysis of the Boltzmann equation and represent the general kinetic

law for elementary processes. We formulated the detailed balance condition

for the generalized mass action law and proved the corresponding dissipation

inequalities. We also extended the generalized mass action law for non-
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isothermal processes and briefly discussed the coupling of the diffusion and

the thermal conductivity with fluid dynamics.

1.1 Linear Diffusion: from Graham and Fick

to Einstein, Onsager and Teorell

1.1.1 Fick’s Law

The first prominent equation of diffusion is the Fick’s Law derived by Adolf

Fick in 1858 and can be used to solve for the diffusion coefficient, D.

Steady-State Diffusion: Fick’s First Law

This relates the diffusive flux to the concentration field by postulating that

the flux goes from high concentration regions to low concentration regions.

The diffusion flux J along the direction x is proportional to the antigradient

of the concentration c:

J = −D∂c

∂x
, (1.1)

where the diffusion flux J measures the amount of substance that flows

through a small area during a small time interval, D is the diffusion co-

efficient or diffusivity and x is the position. In two or more dimensions, we

write:

J = −Dgradc . (1.2)

The minus sign in the equation means that the diffusion is down the concen-

tration gradient.
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Nonsteady-State Diffusion: Fick’s Second Law

This Law is used in non-steady state diffusion and predicts how diffusion

causes the concentration field to change with time:

∂c

∂t
= D

∂2c

∂x2
, (1.3)

where t is time. In the case of diffusion in two or more dimensions, Fick’s

Second law states that the time derivative of the concentration is the negative

of the divergence of the flux:

∂c

∂t
= −divJ = D∆c , (1.4)

where ∆ is the Laplace operator. If the diffusion coefficient D is not a con-

stant, but depends upon the coordinate and/or concentration, Fick’s second

law yields:

∂c

∂t
= ∇.(D∇c). (1.5)

The statement (1.4) is closely related to the Gauss–Ostrogradskii theorem

∫∫∫
V

(divJ) dV =

∫∫
S

⊂⊃ J · n dS . (1.6)

The left side is an integral over the volume V , the right side is the surface

integral over the boundary S of the volume V , S = ∂V , and n is the outward

pointing unit normal field of S (the expression dS is used as a shorthand

for ndS). The right-hand side represents the total flow across the boundary

“out of the volume V ”. The theorem was first discovered by J. L. Lagrange
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in 1762, then later independently rediscovered by C. F. Gauss in 1813, by

G. Green in 1825 and in 1831 by M. V. Ostrogradsky. According to this

theorem, the diffusion equation ∂tc = −divJ is just a conservation law: all

changes of concentration are caused by the flux only.

In his work on diffusion law, A. Fick used the conservation of matter and

the analogy between diffusion and Fourier’s law for heat conduction (1822),

or Ohm’s law for electricity (1827). Development of the fundamental law of

diffusion was inspired by the Graham’s investigations on the diffusion of salts

in water [3], in which he studied and compared the diffusibility of different

salts.

Before his study of diffusion in liquids, Graham studied diffusion in gases

(1833). In 1863, J. C. Maxwell calculated the diffusion coefficients in gases

from the Graham data. The results are amazing: “His coefficient of diffusion

of CO2 in air is accurate at ±5%. Isn’t it extraordinary?” [4].

Maxwell’s theory of diffusion was based on gas kinetics and mean free

path estimates.

1.1.2 Einstein’s Mobility

In his theory of Brownian motion, A. Einstein [8] developed the microscopic

theory of the diffusion coefficient for diluted particles in a liquid and com-

pared two processes: the motion of particles in a liquid under a constant

external force K, and diffusion. For a given K, each particle has the aver-

age velocity mK where the coefficient m characterizes mobility of particles.

(We use m for mobility and reserve µ for chemical potential.) For spherical
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particles in liquid,

m =
1

6πηr
, (1.7)

where η is the viscosity of the liquid, r is the radius of the particles, and 6πηr

is the Stokes friction force. This approach results in a very useful relation

for the diffusion coefficient:

D = m
RT

NA

= mkBT, (1.8)

where R is the gas constant, NA is the Avogadro constant, kB is the Boltz-

mann constant. The coefficient m is called mobility or the Einstein’s mobility.

Graham’s experimental research was extended to solids by W. C. Roberts-

Austen [5]. He used the Fick equation to determine the diffusion coefficient

[6]. In 1922, S. Dushman and I. Langmuir [7] proposed to use the Arrhenius

law for the diffusion coefficient:

D = D0 exp(−Q/kT ) , (1.9)

where Q is a constant, which we now recognize it as the activation Gibbs

energy of diffusion ∆G. More precisely, ∆G includes two terms: ∆G =

∆H − T∆S, where ∆H is the activation enthalpy and ∆S is the activation

entropy.

They checked this law by their own experiments with the diffusion of

thorium through tungsten and found the satisfactory agreement. Even better

agreement was found with the published results of W. C. Roberts-Austen’s

experiments.
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Figure 1.1: Teorell’s model [9]. A system of ideally dilute solutions in water of
binary univalent strong electrolytes DA, M ′B′, M ′′B′′,... is considered. The
boundary membrane is permeable for all ions (cations D, M ,... and anions
A, B,...) but the movement of water is prevented. The ionic concentrations
outside are kept constant. Also D+

i is maintained constant. Accordingly, DA
is a steadily diffusing electrolyte. No other electric field is present besides
that due to diffusion potential. No chemical reaction takes place. The steady
state of a system of this nature with a steady diffusion is characterized by a

constant ratio series:
M ′

i

M ′
o
=

M ′′
i

M ′′
o
= · · · = B′

i

B′
o
=

B′′
i

M ′′
o
= · · · .

1.1.3 Teorell Formula

The mobility–based approach was further applied by T. Teorell [9]. In 1935,

he studied the diffusion of ions through a membrane (Fig. 1.1). He considered

a system of an ideally dilute solution of binary univalent strong electrolysis

at the same temperature in water. The boundary is considered to be a

membrane with a strong electrolyte in the presence of water. The solutions

are assumed to be kept homogeneous on both sides of the membrane up to

the boundary by some form of convection. The ionic mobilities within the

membrane are assumed constant and may be different, and the membrane is

not permeable for water. Heat effects, special membrane effects are ignored

and no chemical reactions are taking place. Due to diffusion potential, there

is no other electric field present.

He formulated the essence of his approach in the formula:

Flux = mobility×concentration×force per gram ion.
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This is the so-called Teorell formula. The force consists of two parts:

• A Diffusion force caused by concentration gradient: −RT 1
c
dc
dx
.

• An Electrostatic force caused by electric potential gradient: q dφ
dx
.

Here R is the gas constant, T is the absolute temperature, c is the concen-

tration, q is the charge and φ is the electric potential.

In these notations, the Teorell formula for the flux J is

J = mc

(
−RT

c

dc

dx
+ q

dφ

dx

)
(1.10)

(m denotes mobility; here we slightly modernize notations). It may be worth-

while to introduce the reference equilibrium concentrations vector c∗ and

write the diffusion force in the form

−RT
c

dc

dx
= −RT d ln(c/c∗)

dx
. (1.11)

This expression allowed Teorell to find the concentration jump and the elec-

tric potential across the membrane caused by the joint action of diffusion

and the electric field, when mobilities of various components are different.

1.1.4 Onsager’s Linear Phenomenology

In 1931, L. Onsager [11, 12] included diffusion in the general context of linear

non-equilibrium thermodynamics. For multi-component diffusion,

Ji =
∑
j

LijXj , (1.12)
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where Ji is the flux of the ith component and Xj is the jth thermodynamic

force (for pure diffusion, this is the space antigradient of the jth chemical

potential divided by T ). After linearization near equilibrium, this approach

gives, for perfect systems (for which the chemical potential is RT ln(c/c∗)):

Xj = − 1

T
gradµj = −R

c∗j
gradcj;

Ji = −
∑
j

Lij
R

c∗j
gradcj;

∂ci
∂t

= −divJi = R
∑
j

Lij
∆cj
c∗j

,

(1.13)

where c∗j are equilibrium constants (c∗ is the point of linearization), deviations

of cj from c∗j are assumed to be small, ∆ is the Laplace operator, and Lij = Lji

is the matrix of the coefficients. Its symmetry follows from microreversibility.

The system (1.13) has one attractive property. Let us consider this system

in a bounded domain V with smooth boundary and with zero fluxes through

its boundary: (n, gradcj) = 0 at any point of ∂V at any time (n is the vector

of the outer normal). The positive quadratic functional

S2 =
1

2

∑
i

∫
V

(ci(x)− c∗i )
2

c∗i
dx (1.14)

is the second-order approximation to the relative entropy (or the so-called

Kulback-Leubler divergence, see the review paper [13])

SKL =
∑
i

∫
V

c(x) ln

(
ci(x)

c∗i

)
dx . (1.15)

Let us calculate the time derivative of S2 due to the system (1.13). Using
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the Gauss–Ostrogradskii formula (1.6) we get for the positive semidefinite

matrix L:

dS2

dt
= −R

∫
V

∑
ij

Lij

(
∇ci
c∗i

,
∇cj
c∗j

)
dx ≤ 0 , (1.16)

where
(
∇ci
c∗i
,
∇cj
c∗j

)
is the inner product of the space vectors.

Therefore, dS2

dt
≤ 0 if the symmetric coefficient matrix Lij is positive semidef-

inite, which means that for any vector ξ the following inequality holds:∑
ij

Lijξiξj ≥ 0).

The Onsager form of the diffusion equations is correct near the equilib-

rium but violates the obvious physical requirement: the diffusion flux of the

ith component is zero if its concentration has zero value: the flux vanishes

with the concentration. The Teorell formula satisfies this requirement. The

Fick law also satisfies this requirement in the following sense: if for positive

smooth c(x), the concentration vanishes then at these points the flux vanishes

too (because these points are minimizers of concentration and the gradient

vanishes there).

For isotropic non-perfect systems we have to use the generalized thermo-

dynamic forces in Onsager’s form of the diffusion law:

Xj = − ∂f

∂cj

∣∣∣∣
c=c∗

gradcj , (1.17)

where f(c, T ) is the free energy density.
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Let us denote Φij =
(

∂2f
∂ci∂cj

)∣∣∣
c=c∗

. In this notation,

Xj = −
∑
k

Φjkgradck; Ji =
∑
j

LijXj = −
∑
k

(∑
j

LijΦjk

)
gradck;

∂ci
∂t

= −divJi =
∑
k

(∑
j

LijΦjk

)
∆ck .

(1.18)

The quadratic form

F2 =
1

2

∫ ∑
jk

Φjk(cj − c∗j)(ck − c∗k) dx

is positive definite because F is convex. For positive definite L, F2 decreases

in time due to diffusion. Indeed, in a bounded domain V with a smooth

boundary and without fluxes through the boundary we get analogously to

(1.16):

dF2

dt
= −

∫
V

∑
ij

(∑
k

Φik∇ck

)
Lij

(∑
l

Φjl∇cl

)
dx ≤ 0 . (1.19)

For non-isotropic diffusion (for example, in crystals), the coefficients L have

two pairs of indexes: Liα jβ, where i, j correspond to components and α, β

correspond to the space coordinates. The forces and fluxes also have these

two indexes and

Jiα =
∑
jβ

Liα jβXjβ .

In all cases, the diffusion equations in Onsager’s form do not describe the

non-diagonal terms (the influence of gradients ci on fluxes of cj for i ̸= j)
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properly near zeros of concentrations. These equations are applicable near a

reference point c∗ > 0 only.

Non-diagonal diffusion must be non-linear. This simple remark is

so important that we will explain it in detail. Let diffusion be non-diagonal

and linear:

∂tci =
∑
j

Dij∆cj .

Assume that D12 ̸= 0 and consider the state with c2 = . . . = cn = 0. At this

state,

∂tc2 = D12∆c1 .

If D12∆c1(x) < 0 at some points then c2(x) becomes negative at these point

in a short time. Therefore, linear non-diagonal diffusion does not preserve

positivity of concentrations.

1.2 Mechanisms of Nonlinear Diffusion

1.2.1 Jumps on the Surface

In 1980, A.N, Gorban, V.I. Bykov and G.S. Yablonskii [14] proposed a model

for diffusion in monolayers of reagents on the surface of a catalyst, which is

based on the jumps of the reagents on the nearest free places. This model

was used for CO on Pt oxidation under low gas pressure.

The system includes several reagents A1, A2, . . . An on the surface. Their

surface concentrations are c1, c2, . . . cn. The surface is a lattice of the adsorp-

tion places. Each reagent molecule fills a place on the surface. Some of the
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places are free. We use Z = A0 for a free place and the concentration is

z = c0. The sum of all ci (including free places) is constant:

n∑
i=0

ci = b = const .

The jump model gives for the diffusion flux of Ai (i = 1, . . . , n):

Ji = −Di[z∇ci − ci∇z] . (1.20)

Therefore, the corresponding diffusion equation is:

∂ci
∂t

= −divJi = Di[z∆ci − ci∆z] . (1.21)

Due to the conservation law,

z = b−
n∑

i=1

ci ,

and we have the system of n diffusion equations:

Ji = −Di

[(
b−

n∑
i=1

ci

)
∇ci + ci∇

(
n∑

i=1

ci

)]
∂ci
∂t

= Di

[(
b−

n∑
i=1

ci

)
∆ci + ci∆

(
n∑

i=1

ci

)]
.

(1.22)

It is straightforward to check that when ci ≥ 0 for all x then ∂tci ≥ 0 for

ci = 0. This is a necessary condition for preservation of positivity.

If we assume that all particles can exchange their positions with their
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closest neighbours then a simple generalization of (1.20), (1.22) appears:

Ji = −
∑
j

Dij[cj∇ci − ci∇cj] ;

∂ci
∂t

=
∑
j

Dij[cj∆ci − ci∆cj] ,

(1.23)

where Dij = Dji ≥ 0 is a symmetric matrix of coefficients which characterize

the intensities of jumps.

The entropic Lyapunov functional for (1.22), (1.23) has a simple tradi-

tional form of perfect relative entropy: for any reference vector of concentra-

tions c∗ (c∗i ≥ 0)

SKL =

∫ ∑
i

ci ln

(
ci
c∗i

)
dx . (1.24)

Remark: the free place entropy should be obligatorily included into SKL.

Simple algebra gives that in a bounded domain V with smooth boundary

and without fluxes through boundaries

dSKL

dt
= −

∑
ij

Dij

∫
V

(
ci
cj
∇cj −

cj
ci
∇ci
)2

dx ≤ 0 . (1.25)

This inequality provides the Lyapunov stability of diffusion.

It is worth mentioning that the thermodynamic inequality (1.25) requires

only the non-negativity of coefficients Dij and does not imply any require-

ments on the matrix D as a whole (like positive definiteness). Another form

of the thermodynamic inequality makes the formula for entropy production
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more transparent:

dSKL

dt
= −

∑
ij

Dij

∫
V

(
ci∇ ln

(
cj
c∗j

)
− cj∇ ln

(
ci
c∗i

))2

dx ≤ 0 . (1.26)

This system of models was further developed by A.N. Gorban and H.P.

Sargsyan [15] and published in a book [16].

1.2.2 Diffusion in Solids as Reaction: from Frenkel to

Eyring

The physical idea of the quasi-chemical representation of diffusion in solids

belongs to Yakov Frenkel [25, 26]. He introduced both the vacancy and

the interstitial mechanisms of diffusion and found some rate constants from

experimental data.

Thirty years later, F. C. Frank and D. Turnbull developed the Frenkel

theory further [27]. They studied the diffusion of copper in germanium. This

diffusivity is very rapid. They proposed that the copper could be dissolved

in two states, interstitial and substitutional. For the interstitial state the

solubility of copper is two orders of magnitude less and the diffusivity many

orders of magnitude greater than in the substitutional state. The conversion

of these states is effected by lattice vacancies.

The quasi-chemical theory of diffusion and viscosity was developed also

by H. Eyring with co-authors [28]. Eyring developed the theory of absolute

reaction rates for chemical reactions in gases [29] and in condensed phase [30]

and then applied these ideas to transport phenomena.
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In this theory, the transport process is represented by an ensemble of ele-

mentary events. Each elementary event is represented by the creation or

disintegration of an activated complex. The rate of the elementary process

is given by the concentration of activated complexes, multiplied by the rate

at which they decompose.

The main constructive hypothesis is that it is possible to calculate the

concentration of activated complexes by equilibrium statistical thermody-

namics: the complex concentration is in quasi-equilibrium with the stable

components. Each complex has its “internal translational” degree of free-

dom. On the surface of potential energy this corresponds to the “reaction

path”. Complexes move along this path. The velocity of this motion is

assumed to be just a thermal velocity and is proportional to
√
T .

The additional reaction path degree of freedom has its own kinetic energy

and, therefore, increases the complex heat capacity. We have to take this into

account in the calculation of the equilibrium constant.

Collective models of diffusion were proposed too. One of the earliest

collective model is the Z. Jeffries “ring mechanism” with 4 or more atoms.

More on the history of solid-state diffusion is presented in the review [32]

and in a modern textbook [33].

On the surface, there are various mechanisms for collective diffusion [34]

as well. Elementary events for these mechanisms involve many atoms si-

multaneously. A dynamic description of nonlinear multicomponent diffusion

requires a unified framework that should satisfy basic physical principles.
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1.2.3 Ginzburg–Landau Free energy and Cahn–Hilliard

equation

The processes of phase separation has remained for a long time an impor-

tant source of problems and ideas for the theory of nonlinear diffusion. The

analogue for the Fick’s equation is the Cahn–Hilliard equation [35].

The Cahn–Hilliard equation in its simplest form has the standard Onsager

form, the flux is proportional to the force, the force is the gradient of the

chemical potential:

J = −D∇µ , ∂c
∂t

= −divJ = D∆µ . (1.27)

If we compare this equation to the Teorell formula then we immediately find

the missed factor c (concentration). We will return to the problem of the

proper prefactor in the Cahn-Hilliard equation later. The main specificity of

the Cahn-Hilliard equation is the form of the free energy and the chemical

potential [35, 36] (the Ginzburg–Landau form):

f = f c(c) + γ(∇c)2 , F =

∫
f dx , µ =

∂f c(c)

∂c
− γ∆c . (1.28)

The term γ(∇c)2 in the free energy penalizes over sharp gradients and, in

particular, models the interface energy.

According to (1.27) and (1.28), the Cahn–Hilliard equation reads

J = −D∇
(
∂f c(c)

∂c
− γ∆c

)
,
∂c

∂t
= D∆

(
∂f c(c)

∂c
− γ∆c

)
. (1.29)
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If the chemical part of the free energy, f c(c) is not convex then phase sep-

aration is possible. If at the point c this function is concave (spinodal)

then without the term with ∆2 the constant solution c(x) = c for the dif-

fusion equation becomes unstable to any perturbation (negative diffusion

coefficient). The term −γ∆2c in the right hand part of the Cahn–Hilliard

equation regularizes solutions and the existence theorem was proved for the

initial–boundary value problem given smooth initial data [39]. The proof

relies essentially on the existence of a Lyapunov functional F (1.28).

The time derivative of F in a domain V with a smooth boundary and

without external fluxes ((J, n) = 0 on the boundary, where n is the vector of

outer normal to the boundary) is

dF

dt
=

∫
V

µ∂tc dx = −
∫
V

µdivJ dx

= −
∫
V

(∇µ, J) dx = −D
∫
V

(∇µ)2 dx ≤ 0 .

(1.30)

If we correct the Cahn–Hilliard equation by the “Teorell” factor c then the

dissipation inequality Ḟ ≤ 0 (1.30) persists: Due to the Teorell formula

J = −mc∇µ = −mc∇
(
∂f c(c)

∂c
− γ∆c

)
,

∂c

∂t
= −divJ = m div

(
c grad

(
∂f c(c)

∂c
− γ∆c

))
.

(1.31)

Here, m is the Einstein mobility. This equation should be called “The Cahn–
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Hilliard–Teorell” equation. In accordance with (1.31),

dF

dt
=

∫
V

µ∂tc dx = −
∫
V

µdivJ dx

= −
∫
V

(∇µ, J) dx = −m

∫
V

c(∇µ)2 dx ≤ 0 .

(1.32)

This dissipation inequality allows us to transfer all the results about solutions

of the Cahn–Hilliard equation to the Cahn–Hilliard–Teorell equation.

1.2.4 Teorell Formula for Non-perfect Systems

It seems very natural that the flux is proportional to the concentration of

particles: the average velocity is proportional to the force and the total flux

is the product of the average velocity and the amount of moving particles.

This could be proved in the framework of non-equilibrium thermodynamics

and the theory of absolute reaction rates when the concentration of moving

particles is small. In perfect gases or in dilute solutions chemical potential

µ = RT ln c+ µ0 ,

where µ0 does not depend on c (it is a function of T and the state of the

environment). In this case, we neglect the interaction between moving par-

ticles and use the Teorell formula (exactly as Einstein did in his theory of

Brownian motion 30 years before Teorell [8]).

When the concentration of moving particles c is not small enough then

the formula for perfect chemical potential is no longer valid and in front of c

in the flux a special activity coefficient α appears.
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Such coefficients were introduced for diffusion by Eyring at al in 1941 [28]

and were used systematically for the theory of nonlinear diffusion by Gorban

at al in the 1980–1986 [16]. Roughly speaking, the activity

a = exp
( µ

RT

)

should substitute the concentration c in the Teorell formula with the proper

renormalization of the mobility coefficients:

J = m′a(−∇µ+ (external force per gram particle)) .

The renormalized coefficient m′ is defined by the condition: (m′a)/(mc) → 1

for c→ 0, ∇c→ 0. This means that

m′ = m exp
(
− µ0

RT

)
where µ0 = lim

c→0
(µ−RT ln c) ,

or we can write the Teorell formula for non-perfect systems using the usual

Einstein mobility m defined for small concentrations and the standard value

of chemical potential, µ0:

J = m exp

(
µ− µ0

RT

)
(−∇µ+ (external force per gram particle)) . (1.33)

This formula is the main analogue of the Fick law for monomolecular diffusion

in non-perfect media.

For the Cahn–Hilliard–Teorell equation (1.31), the Teorell formula for

non-perfect systems (1.33) significantly changes the diffusion coefficient: the
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regularizing gradient term should appear in the activity coefficient. More de-

tails about activity coefficients in thermodynamics can be found, for example,

in Chapter 9 of the classical book [41].

In the phase separation problem, the components are definitely non-

perfect and further correction of the Cahn–Hilliard–Teorell equation by the

activity coefficients is necessary.

The problem of the extension of the Cahn–Hilliard approach to multi-

component diffusion was discussed by various authors [42, 43]. Elastic forces

and plasticity are also taken into account [43, 44]. Nevertheless, the problem

of the proper equations of multicomponent nonlinear diffusion in highly non-

homogeneous condensed phases is still open. From our point of view, there is

no single “proper model” and the variety of possible models is very rich. In

our work, we attempt to formulate the proper language for the description

of the universe of these models similarly to chemical kinetics models.

1.3 Main Ideas

1.3.1 Mechanisms as Collections of Elementary Pro-

cesses

A complex process can be disassembled into several elementary processes.

The dependence of the process rate (the flux) on the state (concentrations,

chemical potentials and their gradients) is simple for elementary processes.

The model of the whole process is assembled from these elementary “details”.

This idea was developed in chemical kinetics. In 1862–1867, Guldberg and
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Waage proposed the mass action law for equilibrium. In 1879 they devel-

oped the mass action law for dynamics. This idea was developed further

by many researchers and after several dozen years it was transformed into a

technology for the representation of complex processes: A complex reaction

is represented as an ensemble of elementary reactions. The reaction rate has

a simple monomial dependence on concentration.

Van’t Hoff [45] called the reactions that satisfy the mass action law “nor-

mal transformations” and found that “normal transformations take place

very rarely”. Now we can say that most reactions are complex and interac-

tion of several elementary reactions causes non-trivial complex (“abnormal”)

behavior.

Van’t Hoff did not study complex reactions by disassembling them into

several elementary reactions. Therefore, he was disappointed with the mass

action law and finally wrote: “As a theoretical foundation I did not accept

the concept of mass action, I had to abandon this concept in the course of

my experiments...”. (“J’ai adopté pour la théorie, non la notion des masses

actives, notion que j’ai dû abandonner dans le cours de mes expériences, ...”

[45], p. 7.)

The set of elementary reactions which constitute a complex reactions is

called the reaction mechanism. A mechanic analogue is obvious: the elemen-

tary reactions are the details of the mechanism that represents the complex

reaction. This notion was, finally, introduced into chemistry in the 20th

century due to the efforts of M. Bodenstein.

M. Boudart described the “century of Bodenstein” in his paper [46]:

“First came the data, then the rate equation, and finally the fitting of the
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data into the rate equation by means of a hypothesized mechanism with rate

constants chosen for the best fit.”

The great success of this approach was the theory of chain reactions. N.N.

Semenov was awarded by Nobel prize for this theory [47]. The modern theory

of complex chemical reactions is based on the idea of the detailed reaction

mechanism and the simple kinetic law of elementary reactions [48].

Many authors proposed various particular mechanisms of nonlinear diffu-

sion. One of our goals in this work is to repeat the way of chemical kinetics

in application to multicomponent diffusion and to create a comprehensive

theory of the mechanisms of diffusion.

1.3.2 Discrete Kinetic Models and Lattice Automata

In the 1940s, S. Ulam and J. von Neumann proposed networks of intercon-

nected finite-state automata for modeling of complex systems. In the first

period of study, research was focused on the abilities of these networks and,

in particular, on the ability of self-reproduction [49].

The behavior of these cellular automata is so variable and surprising and

its complexity is so high that Ulam proposed the idea of a computational

experiment: we should regard our invention as a new sort of reality and

study it by the experimental approach, as physics or chemistry does.

Cellular automata were invented as an intellectual journey but soon were

recognized as an efficient tools for modeling [50].

Feynman’s attention to automata with local interactions as a tool for

simulating physics, attracted much attention to this area: “Therefore my
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question is, can physics be simulated by a universal computer? I would like

to have the elements of this computer locally interconnected, and therefore

sort of think about cellular automata as an example (but I don’t want to force

it). But I do want something involved with the locality of interaction. I would

not like to think of a very enormous computer with arbitrary interconnections

throughout the entire thing” [51].

The idea of modeling the natural world in terms of the behavior of sets

of rules that can be embodied in simple automata with local interactions is

now an important part of science. Sometimes it is called “the new science”

to distinguish this approach from classical modeling by equations [52].

For the modeling of transport processes the lattice gas automata [53, 54]

were invented and the lattice Boltzmann methods [55] became very popular:

they are flexible and efficient. At the same time, the lattice Boltzmann

methods are very simple for programming and parallelization.

The essence of the lattice Boltzmann methods was formulated by S. Succi

in the following maxim: “Nonlinearity is local, non-locality is linear” [88].

We should even strengthen this statement. Non-locality (a) is linear; (b) is

exactly and explicitly solvable for all time steps; (c) space discretization is

an exact operation.

The lattice Boltzmann method is a discrete velocity method. The finite

set of velocity vectors {vi} (i = 1, ...m) is selected, and a fluid is described

by associating, with each velocity vi, a single-particle distribution function

fi = fi(x, t) which is evolved by advection and interaction (collision) on a

fixed computational lattice. The values fi are named populations. If we look

at all lattice Boltzmann models, one finds that there are two steps: free flight
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for time δt and a local collision operation.

The free flight transformation for continuous space is

fi(x, t+ δt) = fi(x− viδt, t).

After the free flight step the collision step follows:

fi(x) 7→ Fi({fj(x)}), (1.34)

or in the vector form

f(x) 7→ F (f(x)).

Here, the collision operator F is the set of functions Fi({fj}) (i = 1, ...m).

Each function Fi depends on all fj (j = 1, ...m): new values of the popula-

tions fi at a point x are known functions of all previous population values at

the same point.

The lattice Boltzmann chain “free flight → collision → free flight → col-

lision · · · ” can be exactly restricted onto any space lattice which is invariant

with respect to space shifts of the vectors viδt (i = 1, . . . ,m). Indeed, free

flight transforms the population values at sites of the lattice into the popu-

lation values at sites of the same lattice. The collision operator (1.34) acts

pointwise at each lattice site separately. Much effort has been applied to an-

swer the questions: “how does the lattice Boltzmann chain approximate the

transport equation for the moments M?”, and “how does one construct the

lattice Boltzmann model for a given macroscopic transport phenomenon?”

(a review is presented in the book [55]).
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The lattice Boltzmann models should describe the macroscopic dynamic, i.e.,

the dynamic of macroscopic variables. The macroscopic variables Mℓ(x) are

some linear functions of the population values at the same point: Mℓ(x) =∑
i

mℓifi(x), or in the vector form, M(x) = m(f(x)). The macroscopic vari-

ables are invariants of collisions:

∑
i

mℓifi =
∑
i

mℓiFi({fj}) (or m(f) = m(F (f))).

The standard example of the macroscopic variables are hydrodynamic fields

(density–velocity–energy density): {n, u, E}(x) :=
∑
i

{1, vi, v2i /2}fi(x). But

this is not an obligatory choice. On the other hand, the athermal lattice

Boltzmann models with a shortened list of macroscopic variables {n, nu} are

very popular.

The quasiequilibrium is the positive fixed point of the collision operator

for the given macroscopic variables M . We assume that this point exists, is

unique and depends smoothly on M . For the quasiequilibrium population

vector for givenM we use the notation f ∗M , or simply f ∗, if the corresponding

value of M is obvious. We use Π∗ to denote the equilibration projection

operation of a distribution f into the corresponding quasiequilibrium state:

Π∗(f) = f ∗m(f).

Usually, collision operators are taken in the form:

F (f) := Π∗(f) + A(Π∗(f)− f), (1.35)
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where A is a linear operator whose spectrum belongs to the interior of the

unit circle. A special case of (1.35) is very popular, the lattice Bhatnagar–

Gross–Krook (LBGK) model:

F (f) := f + ω(Π∗(f)− f). (1.36)

In this brief introduction of LBM we follow the paper [56].

The simplest LBGK realization of the Fick law (in 1D) gives the follow-

ing system. The discrete velocity set includes two elements only, v and −v.

The time step is τ the corresponding grid step is h = vτ . The microscopic

variables, the populations, are: f− for velocity −v and f+ for v. The macro-

scopic variable, the density, is ρ = f− + f+. The corresponding equilibrium

is Π∗(f) = f ∗:

f ∗+ = f ∗− =
f− + f+

2
.

For the non-negative populations, the equilibrium distribution is the maxi-

mizer of the entropy S = −f− ln f− + f+ ln f+ under a given value of the

macroscopic variable ρ.

Let us take the LBGK collisions (1.36) with ω = 1, i.e.

F (f)± = Π∗(f)± =
f− + f+

2
. (1.37)

This particular case of the LBGK collision integral is an example of the so-

called Ehrenfests’ coarse-graining. The idea of artificial partial equilibration

steps was proposed by T. Ehrenfest and P. Ehrenfest for the foundation of

statistical physics [64] and further developed to a general formalism of the
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nonequlibrium thermodynamics [65, 66, 67].

A review and comparative analysis of different approaches to coarse-

graining was published in [68].

The LBGK chain for the collision integral (1.37) has a very simple form:

f+(nh, (m+ 1)τ) = f−(nh, (m+ 1)τ)

=
f+((n− 1)h,mτ) + f−((n+ 1)h,mτ)

2
.

(1.38)

Therefore, for the density ρ we get

ρ(nh, (m+ 1)τ) =
ρ((n− 1)h,mτ) + ρ((n+ 1)h,mτ)

2
. (1.39)

This appears to be the one of the most common explicit finite difference

methods for the Fick diffusion equation. The diffusion coefficient is D =

h2/(2τ) = v2τ/2, and depends explicitly on the lattice parameters. We can

decouple D and the lattice parameters if we use ω ∈ [1, 2] in the LBGK

collision integral (1.36). This lattice-gas scheme does not coincide with any

of the finite difference schemes. Nevertheless, it also models diffusion and,

to the first order in τ , D = v2τ 2−ω
2ω

[55, 68].

Now, the area of applications of the cellular and lattice Boltzmann au-

tomata is very wide and, in addition to classical fluid dynamics, includes

many areas of chemistry [69], models of phase separation [70], dynamics of

macromolecules and many other topics.

We use cellular automata and lattice models of nonlinear multicomponent

diffusion for two purposes:
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Figure 1.2: Cell Jump Model

• As a tool for model creation (after that, this model could be translated

into other languages, such as partial differential equations (PDE));

• As a tool for numerical simulation without the stage of PDE model.

Elliott and Stuart [73] used the cell model of diffusion to study semilinear

parabolic equations. They proved the existence of absorbing sets, bounded

independently of the mesh size for discrete models. Discrete Lyapunov func-

tions were constructed. We use the special quasichemical approach for the

generation of the cell models [16] that allowed us to construct the Lyapunov

functions for semi-discrete systems and to prove stabilization of the solution

in space and time under proper conditions.

A Simple Cell Jump Model

Let us consider our space divided into cells, a system represented as a chain

of cells of homogeneous composition and elementary transfer processes be-

tween them. It is sufficient for our purposes to discuss two cells (Fig 1.2).

Let us numerate these cells by the Roman numbers I and II and mark all

the components and quantities related to them by the upper index I or II,

correspondingly. The lists of the components for cells are different just by

the upper index: AI
1, . . . A

I
n, A

II
1 , . . . A

II
n .
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The mechanism of diffusion is defined as a list of elementary transitions be-

tween cells described by their stoichiometric equation. Since diffusion is a

sort of jumping reaction on the border, for these jumps the stoichiometric

equation is written as,

∑
i

αI
riA

I
i +
∑
i

αII
riA

II
i →

∑
i

βI
riA

I
i +
∑
i

βII
riA

II
i , (1.40)

where r is the number of processes, αI,II
ri , and βI,II

ri , are the stoichiometric

coefficients which indicate the number of particles in cells involved in the

process. The direction of changes in the elementary event (1.40) is defined

by two stoichiometric vectors

γIri = βI
ri − αI

ri ; γ
II
ri = βII

ri − αII
ri .

Examples of elementary acts are presented in Fig. 1.3. Elementary events

(1.40) should not include reactions. Therefore, for each i, the amount of Ai

in the system (AI
i + AII

i ) should not change. This means exactly that for all

i, r

γIri = −γIIri .

Let us use the notation

γri = γIri = −γIIri .

The composition of each cell is a vector N I,II. The components of this vec-

tor, N I,II
i are the amounts of Ai in the corresponding cell. We describe the

36



 

  

  

(a) Simple diffusion: a particle from the cell I jumps
into the cell II and inverse
 

  

  

  

  

(b) Jumps to free places: a particle from the cell I
jumps to the free place in cell II and inverse

 

  

  

 

 

(c) Jumps with clustering: two particle attract the
third one

Figure 1.3: Elementary acts of diffusion, examples.
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Figure 1.4: Cell Jump Model with first surroundings.

dynamics of the compositions of two cells by the equations:

dN I

dt
= −dN

II

dt
= S

∑
r

γrwr, (1.41)

where S is the area of the boundary between two cells and wr is the rate of

the process. For many cells the equations are the same, but with more pairs

of cells interacting, and therefore there are more terms.

The rates are intensive variables and should be defined as functions of

concentrations or chemical potentials. The crucial question is: how to de-

scribe function wr(c
I, cII), where cI,II are concentrations components in cells.

The real physics of diffusion may be more complicated. For example,

the intensity of jumps and the reaction rate wr(c
I, cII) may depend not only

on (cI, cII) but on the surrounding. For example, direct simulation of the

jumps on the surface [57] demonstrates that the influence of the surrounding

is crucial for structures and critical effects on the surface.

For each process (1.40) there is a space-inverted process that is defined
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just by change I to II and vice versa. We mark the quantities for the space-

inverted processes by ′. For example, γ′ = −γ. The detailed space-inversion

symmetry requires that the rate functions for them should differ just by the

transposition of the vectors of variables, cI, cII:

w′r(c
I, cII) = wr(c

II, cI) . (1.42)

This requirement of detailed space symmetry allows us, in particular, to ex-

clude various types of advection and transport driven by external force. Dif-

fusion, by its definition, is driven by the gradients of the concentrations (or,

in the thermodynamical approach, by the gradients of the chemical poten-

tials). This is not the only way for the formulate of pure diffusion equations

without advection. Another possibility gives us, for example, the diffusion

systems with complex balance (Section 2.6).

There are three ways to define the rate functions: from a phenomenologi-

cal law (like the mass action law), from thermodynamics (like the generalized

mass action law) or by direct stochastic simulation for particle jumps in cells

(like in the Gillespie’s approach [74, 75]).

In our research, we focus on the first two approaches. Therefore, we

consider our lattice model as a semi-discrete model (discrete in space and

continuous in time). For this semi-discrete model, the system of kinetic

equations (1.41) describes diffusion. The continuous limit of these equations

gives us the diffusion PDE. The discrete scheme by itself can serve as a

computational model.

A couple of simple examples can clarify our approach.
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Simple Diffusion

The simplest mechanism of diffusion between any two cells is the process of

jumping of particles from one cell to another neighbouing cell. This kind of

mutually inverted and mutually inverse process can be written as:

AI
i → AII

i

AII
i → AI

i ,

with the same rate constants (Fig. 1.3(a)). For perfect mixtures, wr =

kcIi, wr = kcIIi and in the continuous limit we get the Fick law (1.4) as the

first Taylor approximation. To get the continuous limit, we take cI = c(x),

cII = c(x + l) and use the Taylor expansion: c(x + l) = c(x) + l∂xc + o(l2).

We calculate the flux as,

J = k(cII − cII) = kl
(cII − cII)

l
= D∇c.

In this approximation, D = kl where l is the cell size.

Jumps to Free Places

The mechanism of jumping of particles from one cell to the free places

(Fig. 1.3(b)) is described by the following diffusion mechanisms:

AI
i + ZII → AII

i + ZI

AII
i + ZI → AI

i + ZII.
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According to the mass action law, the reaction rates are:

wr(c
I, cII) = kcIiz

II , w′r(c
I, cII) = kcIIi z

I,

where z is the concentration of free places. In the first Taylor approximation,

we calculate the flux as,

J = k(cIiz
II − cIIi z

I)

= k
[
cIiz

I + lcIi∇zI − cIiz
I − lzI∇cIi

]
= −kl

[
cIi∇zI − lzI∇cIi

]
,

and we get the model (1.20), (1.22).

If we consider a sequence of the cell representations of diffusion with

various l then, for the invariance of the first order, the scaling rule should be

implemented: D = kl does not change with the change of size, therefore, the

rate constant k depends upon l: k = D/l.

It is not always possible to keep to the first order only. If this approach

gives a negative diffusion coefficient then for regularity we have to keep the

higher derivatives. Let us take the following example.

Diffusion Mechanism with Attraction

The mechanism in which two particles attract the third one, represented in

Fig. 1.3(c) and described as:

AI
i + 2AII

i → 3AII
i . (1.43)
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The space-inverted process in this case does not coincide with the inverse

one. If we change the upper indexes (I to II and II to I) then we obtain:

2AI
i + AII

i → 3AI
i . (1.44)

The reaction rates are:

wr = krc
I
i(c

II
i )

2 , w′r = kr(c
I
i)

2cIIi .

The flux of Ai from the first cell to the second one is,

J = wr − w′r = krc
I
ic

II
i (c

II
i − cIi) = krlc

I
i(c

I
i + l∇c)∇c .

Therefore, to the first order we have,

J = klc2∇c = 1

3
kl
(
3c2∇c

)
=

1

3
kl∇c3.

The sign is opposite to standard diffusion. This flux goes in the direction of

gradients. The diffusion equation is

∂c

∂t
= −kldiv(c2∇c) = −kl1

3
∆c3 . (1.45)

Of course, if we take the mechanism (n > 1):

AI
i + nAII

i → (n+ 1)AII
i ,

nAI
i + AII

i → (n+ 1)AI
i;
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The reaction rates are: wr = krc
I
i(c

II
i )

n , w′r = kr(c
I
i)

ncIIi .

We calculate the flux to the first order of l as,

J = kr
[
cIi(c

II
i )

n − (cIi)
ncIIi
]
= klc2∇c(n−1) = klc2(n− 1)c(n−2)∇c

= kl(n− 1)cn∇c,

then we get the equation:

∂c

∂t
= −kl(n− 1)div(cn∇c) = −kl (n− 1)

(n+ 1)
div ((n+ 1)cn∇c)

= −kl (n− 1)

(n+ 1)
div
(
∇cn+1

)
= −kln− 1

n+ 1
∆cn+1

This diffusion process has two properties:

• first, it goes along gradients and all deviations from the uniform state

will increase.

• Second, this diffusion is slow for small concentrations (the diffusion

coefficient goes to 0 when c approaches 0) and accelerates with the

concentration growth.

The equation ∂tc = −D∆cn (n > 1) admits a family of self-similar solutions

with bounded support, which collapse in finite time. These solutions have

the form

c(τ) =
A

ρq
ϕ

(
r

ρ

)
,

where
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• τ is the time till collapse;

• r is the radial coordinate;

• q is the dimension of space (usually, q =1, 2 or 3);

• ρ is the radius of the sphere, outside of which the solution is zero

ρ = B(Dτ)
1

q(n−1)+2 ;

• ϕ(ϑ) = (1− ϑ2)
1

n−1 for ϑ < 1 and ϕ(ϑ) = 0 if ϑ ≥ 1;

• The constantsA,B depend on q, n and the total amountN =

∫
c(x) dx.

This is the so-called Barenblatt solution [76] for the equation of porous media

∂τc = +D∆cn. Such solutions were used in the analysis of an explosion which

starts from a singularity for equations ∂tc = +D∆cn (the classical review of

self-similar solutions was published by Barenblatt and Zeldovich [78]).

The cell model of diffusion with attraction (1.43) for a finite number of

cells of a given size l is a rather regular system of nonlinear ODE, but to the

first order of the Taylor expansion in l the PDE (1.45) produces a singularity

in an arbitrarily short time from smooth initial data. The second order

Taylor approximation adds nothing because the even terms in l cancel our if

we take into account both the left and right neighbors of the cell. The third

order Taylor expansion gives a regularized equation:

J = J = wr − w′r = klc2
∂

∂x

(
c+

l2

3

∂2c

∂x2

)
+ o(l3)
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∂c

∂t
= −kl ∂

∂x
c2
∂

∂x

(
c+

l2

3

∂2c

∂x2

)
.

This is an example of the Cahn–Hilliard type equation for spinodal decom-

position with the regularizing term −div(c2grad∆c). In this equation, the

cell size cannot be eliminated by scaling. The length l is the “regulariza-

tion length”. All inhomogeneities of size smaller than l are smoothed by the

biharmonic term.

As we can see, the mass action law and the cell representation of the

elementary acts of diffusion give the opportunity to model the Cahn–Hilliard

type phase separation. Nevertheless, the approach based on the non-perfect

thermodynamic potential (1.28) gives a better representation of the basic

physics and does not require complicated elementary processes. Just the

simplest Fick scheme,

AI
i → AII

i , A
II
i → AI

i

with the non-perfect Ginzburg–Landau free energy gives the Cahn–Hilliard

equation (Sec. 3.2).

The diffusion mechanism with attraction (1.43) (Fig. 1.3(c)) differs from

the elementary Fick’s mechanism (Fig. 1.3(c)) and from the mechanism of

jumps to free places (Fig. 1.3(b)). The dynamical difference is obvious, the

diffusion mechanism with attraction generates instabilities of the homoge-

neous state, clustering and singularities. On the other hand, the Fick’s law

and the mechanism of jumps to free places (Fig. 1.3(b)) allow a global Lya-

punov functional and, in the systems without external fluxes, lead to homo-

geneous equilibrium.
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These mechanisms have also a very important structural difference. If we

look at the direct and the space-inverted processes (Fig. 1.3) then we find

that for the first two mechanisms, the space-inverted processes coincide with

the inverse processes, which we get just by inversion of the arrow (or by the

exchange α and β coefficients in the stoichiometric equations (1.40). For the

elementary processes with attractions (Fig. 1.3(c)) the inverse processes are

processes with repulsion:

3AII
i → AI

i + 2AII
i , 3A

I
i → 2AI

i + AII
i . (1.46)

The diffusion processes for which space-inverted elementary processes coin-

cide with the inverse processes, have a fundamental property: entropy pro-

duction is positive for the corresponding mass action law diffusion equations.

Let us consider a complex diffusion process in a bounded domain with

smooth boundary and without external fluxes.

Theorem 2. Let a complex diffusion process consists of elementary

processes, which satisfy the following property: the space-inverted elemen-

tary process coincides with the inverse process. Then, for the mass action

law equation of diffusion (2.33), the principle of detailed balance is valid,

the global convex Lyapunov functional exists and the uniform distribution is

asymptotically stable.

This global Lyapunov functional may be selected in the form of the (mi-

nus) classical entropy, the sum of terms c ln c for all cells and components,
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or, for the continuous limit,

∑
i

∫
ci ln ci dx .

A particular case of the dissipation inequality for such processes is inequal-

ity (1.25) for the diffusion equations (1.23) that describe diffusion by the

exchange of positions. It is valid because the exchange mechanism satisfies

this fundamental property: the space-inverted elementary processes coincide

with the inverse processes.

1.3.3 Thermodynamics and Intermediate Complexes

Thermodynamics is not always a good leader, but it is always a good judge.

We cannot create nonlinear equations directly from thermodynamic princi-

ples, but we must always check whether our equations satisfy thermodynam-

ics. They should satisfy the thermodynamic restrictions if we do not want

to produce a perpetuum mobile in our theory.

We also include some other fundamental restrictions like micro-reversibility

in the thermodynamic requirements.

It is not always simple to coordinate lattice models with thermodynamics,

nevertheless it is possible [71, 72].

There are two main approaches for the introduction of thermodynamics

into kinetic models. First, we can start from general kinetic equations based

on the representation of a complex process as an ensemble of elementary

processes with a given simple kinetic law of elementary processes (for exam-

ple, the mass action law). After that, we will find that the rate constants
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of the elementary processes are not independent. They must be coordinated

to meet the thermodynamic requirements. Therefore, not all the possible

kinetic systems are allowed thermodynamically.

Another approach starts from the thermodynamic description of the sys-

tem. We should find thermodynamic potentials which describe the system

under given conditions. We have to know entropy, free energy (Helmholtz

energy), or free enthalpy (Gibbs energy) for the proper set of independent

variables [79]. After that, we define the rate of elementary process through

the thermodynamic functions but with some arbitrariness: some constants

remain free of thermodynamic restrictions. These constants are independent

for different elementary processes.

Which way is better? It is not a proper question: both are good for their

purposes. The first approach (we start from kinetics and then add thermo-

dynamics) is very flexible. In particular, it can be used when thermodynamic

restrictions are not needed. For example, when we consider subsystems of

open systems like the system of surface components in heterogeneous cataly-

sis, then the constants of elementary processes include additional dependen-

cies on some additional concentrations and are not the “proper” rate con-

stants. Therefore, they do not satisfy the thermodynamic restrictions, and a

subsystem may demonstrate non-thermodynamic behavior like non-decaying

oscillations or bifurcations.

The second approach is unavoidable for non-perfect systems. The kinetic

law of elementary processes depends on the thermodynamic potential. For

all perfect systems it is the same mass action law, but any deviation from

the perfect thermodynamic function requires its own deviation of the kinetic
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law from the mass action law [81]. This deviation may be reformulated as

the generalized mass action law with activities instead of concentrations but

the activities are defined through thermodynamic potentials.

In our work we follow both approaches: First, we formulate the mass

action law for diffusion and study this with and without the thermodynamic

restrictions. Secondly, we introduce the thermodynamic formalism for dif-

fusion in non-perfect systems. Ideas for both approaches for diffusion were

formulated in the early 1980s [15, 16]. The detailed analysis of the thermo-

dynamic restrictions on chemical kinetics was performed by Gorban in 1982

[80].

Our work was influenced by the works of N.G. Van Kampen [85], M.

Feinberg [86, 87] and Horn and Jackson [89]. In 1973, N.G. Van Kampen

proposed a general formulation for the rates of irreversible processes as a

combination of “unilateral transfer flows”. Each unilateral flow transfers

energy and particles in one direction. Van Kampen decomposed the total

into partial systems, each of which is in equilibrium and therefore possesses

a well-defined temperature, entropy, and other thermodynamic quantities.

Although the total system Y is not in equilibrium, it is still possible to

attribute an entropy to it. Then Van Kampen studied the unilateral fluxes

between subsystems.

We decompose the Van Kampen unilateral processes further and represent

them as a collection of essentially one-dimensional elementary processes with

simple kinetic mechanism, mass action law or generalized mass action law.

We start from a similar representation of the total system and supple-

ment it with the system of stoichiometric equations of elementary unilateral
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processes. To find the rate of the elementary processes we use an idea of in-

termediate complex (compound). This approach is borrowed from the theory

of absolute reaction rates but we do not use the special idealization of the

reaction pass and postulate the more general microscopic Markov kinetics

instead.

If the concentrations of compounds are small and the equilibrium between

intermediates and other components is fast (both assumptions are important)

then we approach the generalized mass action law, which is very similar to

the Marselin–de Donder kinetics and the generalized mass action law studied

by Feinberg, Horm and Jackson and other authors [86, 87, 89, 90].

This formalism is very convenient for implementation of the microre-

versibility consequences in the form of detailed balance conditions [100]. In

addition, if there is no microreversibility then the thermodynamic behavior

is also guaranteed by the special more general relations between kinetic con-

stants, which follow from the Markov kinetics of intermediate complexes.

First, the idea of such relations was proposed by Boltzmann as an an-

swer to the Lorentz objections against Boltzmann’s proof of the H-theorem.

Lorentz stated nonexistence of inverse collisions for polyatomic molecules.

Boltzmann did not object to this argument but proposed the “cyclic bal-

ance” condition, that means balancing in cycles of transitions between states

S1 → S2 → . . . → Sn → S1. Almost 100 years later, Cercignani and Lampis

[38] demonstrated that the Lorenz arguments are wrong and this Boltzmann

new relations are not needed for the polyatomic molecules under the microre-

versibility conditions. The detailed balance conditions should hold.

Nevertheless, this Boltzmann’s idea is very seminal. It was studied fur-
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Figure 1.5: A 2n-tail scheme of an extended elementary process (1.47).

ther by Heitler [58] and Coester [62] and the results are sometimes cited as

the “Heitler-Coestler theorem of semi-detailed balance”. In 1952 [91] proved

these conditions for the Boltzmann equation. For the micro-description he

used the S-matrix representation, which is in this case equivalent for the

Markov microkinetics (see also [63]). Later, this sort of relation was re-

discovered for chemical kinetics [87, 89]. The general proof for nonlinear

nonequlibrium processes was presented recently [92]. In our analysis of these

Boltzmann–...–Stueckelberg relations we follow the later.

We extend the usual stoichiometric equations by additional reactions: an

input linear combination of reagents joints into the corresponding compound,

this compound transforms into another compound that disintegrates into the

corresponding output linear combination of reagents:

∑
i

αρiAi 
 B−ρ → B+
ρ 


∑
i

βρiAi . (1.47)

Here ρ is the elementary reaction number.

It is useful to visualize the reaction scheme. In Fig. 1.5 we represent the

2n-tail scheme of an elementary reaction sequence (1.47). This scheme was
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proposed in [92].

We assume that the amount of each compound Bρ is small enough to ap-

ply the perfect entropy formula, and that the equilibrium between each com-

pound and the corresponding linear combinations of reagents is fast enough

to apply the quasiequilibrium approximation [92] (the detailed analysis of

this approximation was given in [93, 94, 95]).

The main difference from the Eyring approach [28] is in the model of the

hidden reaction of the “activated complexes”:

• Eyring used for each reaction one complex with a continuum of ener-

getic states along the “reaction path”, whereas we use two compounds

(or two states);

• Eyring modeled the reaction of the intermediate complex as a classical

motion along the additional coordinate and even added this degree of

freedom with classical kinetic energy of this motion to the free energy

calculation, whereas we follow the Stueckelberg approach and model

this reaction as a first order Markov kinetics, a Markov process with

two states.

The difference in the macroscopic consequences of these approaches seems to

be not very large because the result of the Eyring approach is one relaxation

time approximation for each reaction. From the dynamical point of view,

this result coincides with the two-state Markov model.

The main differences may arise in the hints which these approaches give

to the microscopic calculation of the macroscopic quantities. In our work,

we concentrate on the macroscopic dynamics.
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Chapter 2

Mass Action Law for Diffusion

2.1 Mass Action Law

Heat energy flows from a high temperature region to a low temperature

region. There is no net heat energy flow in the case when these two regions

are at the same temperature. For example a covered cup of tea will not

be colder than or warmer than the room temperature after it has been in

there for a few hours. This phenomena is known as equilibrium. Equilibrium

happens in phase transition.

The chemical equilibrium and the law of mass action are two central

concepts of classical chemical kinetics. In a chemical process, chemical equi-

librium is the state in which concentrations of the reactants and products

have no net change over time. The law of mass action is a mathematical

model that explains and predicts the behaviours of the solutions in dynamic

equilibrium. This law provides an expression for a constant for all reversible

reactions and concerns with the composition of reaction mixture at equilib-
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rium and the rate equations for elementary reactions. Guldberg and Waage

(1864-1879) showed that the chemical equilibrium is a dynamic process in

which rate of reactions for the forward reaction and backward reactions must

be equal [134]. For a chemical reaction, the law of mass action was first stated

as follows [134, 135, 136, 137]:

“When two reactants A and B react together at a given temperature in a sub-

stitution reaction, the affinity or chemical force between them is proportional

to the active masses [A] and [B] each raised to a particular power”

affinity = α[A]a[B]b. (2.1)

Here α, a and b were regarded as empirical constants to be determined. In

1867, the rate expressions were simplified as the chemical force was assumed

to be directly proportional to the product of the active masses of the reactants

[135],

affinity = α[A][B]. (2.2)

This assumption was explained in terms of collision theory in 1879 so that

the general condition for the equilibrium could be applied to any arbitrary

chemical equilibrium [135].

affinity = k[A]α[B]β (2.3)

The exponents α, β, σ and τ are explicitly defined as the “stoichiometric
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coefficients” for the reaction so that for a general reaction of the type,

αA+ βB . . . 
 σS + τT . . . (2.4)

forward reaction rate = k+[A]
α[B]β . . . (2.5)

backward reaction rate = k−[S]
σ[T ]τ . . . , (2.6)

where [A], [B], [S] and [T] are active masses and k+ and k− are called affinity

constants or rate constants. Since at equilibrium the affinities and reaction

rates for forward and backward reactions are equal, so

K =
k+
k−

=
[S]σ[T ]τ . . .

[A]α[B]β . . .
. (2.7)

The equilibrium constant K was obtained by setting the rates of forward and

backward reactions to be equal. The expression for the equilibrium constant

is derived by setting the chemical potential of forward and backward reactions

to be equal. The units of K depend on the units used for the concentrations.

If M is used for all concentrations, then K has the units “M (σ+τ)−(α+β)”. If

the system is not at equilibrium, the ratio is different from the equilibrium

constant. In such cases the ratio is called “reaction quotient” denoted by Q,

[C]σ[D]τ

[A]α[B]β
= Q. (2.8)

A system not at equilibrium tends to reach at equilibrium and any changes in

the system will cause changes in Q so that the value of the reaction quotient

approaches the value of the equilibrium constant K, i.e., Q→ K.
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2.1.1 Mass Action Law Kinetic Equations

This is an auxiliary subsection where we collect main definitions and results

about the Mass Action Law (MAL).

To construct a system of kinetic equations by MAL, one needs the fol-

lowing inputs:

1. A list of components;

2. A list of elementary reactions represented by their stoichiometric equa-

tions;

3. A set of reaction rate constants.

The list of components is just a set of symbols (the component names). We

usually assume that this set is finite, A1, A2, . . . , An.

Elementary reactions are given by their stoichiometric equations,

∑
i

αriAi →
∑
i

βriAi , (2.9)

where r is a reaction number, αri and βri are nonnegative numbers, the

stoichiometric coefficients. By default, they are assumed to be integer but,

sometimes, there occurs a need for nonnegative real coefficients.

For each elementary reaction (2.9), a stoichiometric vector is defined,

γri = βri − αri .

This is a “bookkeeping” vector, whose components are “gain minus loss” (or

“income minus outcome”). We will also use the income and outcome vectors
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of elementary reactions: αr with coordinates αri and βr with coordinates βri.

Of course,

γr = βr − αr .

The stoichiometric matrix Γ is the matrix with columns γi: Γij = γji, the

first index in Γij corresponds to component and the second index corresponds

to reaction. Reaction rate constants kr are non-negative numbers. They

should be defined for all elementary reactions. For each component Ai, a

real variable, concentration ci is defined. Vector of concentrations c has

coordinates ci.

Reaction rate for the elementary reaction (2.9) is the function of c,

wr = kr

n∏
i=1

cαri
i . (2.10)

The MAL kinetic equations are:

dc

dt
=
∑
r

γrwr. (2.11)

From the physical point of view, these equations describe isochoric isothermal

processes for perfect systems. For non-isochoric or non-isothermal processes

it is necessary to introduce the volume (together with pressure) and the

enthalpy (together with temperature) explicitly and describe their dynamics.

For a given reaction mechanism, a linear stoichiometric conservation law

is a linear functional b(c) =
∑
i

bici that annihilates all stoichiometric vectors:

b(γr) = 0 for all r .
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The stoichiometric conservation law is strictly positive, if all bi > 0. The as-

sumption about existence of a positive stoichiometric conservation law plays

important role in the MAL kinetics.

2.1.2 Existence and Uniqueness of Solutions

Let in the reaction mechanism all nonzero coordinates of the input vectors

be not less than 1:

αri ≥ 1 or αri = 0 .

This assumption is valid, for example, if all the stoichiometric coefficients

are nonnegative integers. Let us assume also that there exists a strictly

positive stoichiometric conservation law b. Then the following existence and

uniqueness theorem for the MAL equation holds.

Theorem 1. For any nonnegative initial data c(0) (ci(0) ≥ 0) there exists

a unique solution of (2.11) c(t) for all t > 0. This solution is nonnegative

(ci(t) ≥ 0) and satisfies the conservation law: b(c(t)) = b(c(0)).

This is a well known result (see, for example, [96]). The proof is quite

simple. First, of all, let us consider a bounded neighborhood U of the simplex

Σ0: ci ≥ 0, b(c) = b(c(0)). The right hand site of the MAL kinetic equations

(2.11) has continuous first derivatives and these derivatives are bounded in

U . Therefore, according to a standard existence and uniqueness theorem its

solution exists on some time interval t ∈ [0, T ] and this T is the same for a

compact set of initial data c(0) ∈ Σ0 b U . Secondly, let us mention that if

γri < 0 then αri ≥ 1 and the reaction rate wr (2.10) includes the factor cαri
i .
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Therefore, ∑
γri<0

γriwr = cig(c) ,

where g(c) is continuous function.

If ci → 0 then
∑
γri<0

γriwr → 0. If ci = 0 then ċi =
∑
r

γriwr ≥ 0.

Therefore, the simplex Σ0 is positively invariant with respect to equations

(2.11): the existent solutions c(t) do not leave this simplex for t > 0 if

c(0) ∈ Σ0. Finally, this implies global existence of solutions in Σ0.

Both conditions of existence of a strictly positive stoichiometric conser-

vation law b and of nonzero coordinates of the input vectors are significant.

Just for example, we can consider mechanisms that violate these conditions:

2A → 3A and 1
2
A → A. For the first mechanism, ċ = kc2 and there is no

global existence, for the second system, ċ = k
√
c and there is no uniqueness

of solution.

2.2 The Principle of Detailed Balance

In 1975, Mahan presented the idea of molecular collisions and the use of

partition functions where the concentrations of reactants as a function of

time were calculated for reaction systems that show the effects of detailed

balance on chemical kinetics [100]. This discussion of the principle of detailed

balance led to the principle of microscopic reversibility, a consequence of

the invariance of the equations of classical mechanics under time reversal.

For every type of interaction between particles, the exact reverse is also

possible. When time “t” occurring in an equation is changed by “− t”, then
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it does not invalidate the equation. It means that when a system observed

macroscopically at equilibrium, the forward rate of each step is equal to the

reverse rate of that step. This is the principle of detailed balance which is

one of the important aspects of the state of chemical equilibrium, and the

state of thermodynamic equilibrium. At equilibrium, the principal of detailed

balance requires that transition between any two states take place with equal

frequency in either direction.

The question is whether detailed balance can be applied to the systems

with steady states, not at equilibrium. The discussion of Lloyd and Pake

suggested a negative answer [83] and conclusion is that detailed balance can

only be applied at equilibrium, and that the cyclic process is essential for

maintenance of non-equilibrium steady states [83, 84].

The principle of detailed balance or microscopic reversibility is formu-

lated using the general thermodynamic theory of equilibrium fluctuations.

Onsager’s theory is based on the principle of detailed balance that is valid

for systems at equilibrium [82].

The principle of detailed balance is valid for the exchange of matter and

energy between any two volume elements of a system at equilibrium. The

amount of matter and energy transferred from volume element A to volume

element B, exactly balances the energy and matter transferred from volume

element B to volume element A (Fig. 2.1(c)). The expected behaviour of

a system of physical or chemical kinetics is simple in the absence of exter-

nal fluxes: everything goes to equilibrium. A Lyapunov function for this

relaxation is the correspond thermodynamic potential.

The MAL kinetics (2.11) do not assume any thermodynamic properties
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(a) The equilibrium between three inter-
converting compounds A, B and C as a
result of ”Detailed Balance” between each
pair of compounds.

(b) A conversion from one compound to
another can also produce concentrations
that remain constant in time, this is not
the equilibrium state

(c) More Generally, the exchange of matter or energy between any
two regions of a system is balanced in detail; the amount of matter
going from A to B is balanced by exactly the reverse process, etc.

Figure 2.1: The Principle of Detailed Balance

“from scratch”. Moreover, this class of kinetic equations is so rich that it

is dense in the class of all smooth semi-dynamical systems in Σ0 for a given

conservation law b [16]. Additional assumptions are needed to guarantee the

thermodynamic behavior.

The most celebrated sufficient condition for the thermodynamic behavior

of the MAL kinetics is the principle of detailed balance. This principle, as a

realization of microreversibility, was known for the Boltzmann equation [97]

(since his proof of the H-theorem in 1872) long before Onsager’s reciprocal

relations [11, 12]. A. Einstein used this principle for the linear kinetics of

emission and absorption of radiation [98]. In 1901, R. Wegscheider published

analysis of detailed balance for chemical kinetics [99].
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2.2.1 The Principle of Detailed Balance Based on Mass

Action Law Kinetics

To formulate the principle of detailed balance, it is convenient to join pairs

of direct and inverse elementary reactions in (2.9) and write

∑
i

αriAi 

∑
i

βriAi . (2.12)

If the inverse reaction does not exist in the original mechanism, we formally

add it but assume that its rate constant is zero. We mark quantities for the

direct and inverse reactions by the upper indexes + and − and write the MAL

reaction rate:

wr = w+
r − w−r ,

w+
r = k+r

n∏
i=1

cαri
i , w−r = k−r

n∏
i=1

cβri

i .
(2.13)

For the MAL kinetics the principle of detailed balance is: there exists a

strictly positive point of detailed balance; such a vector of concentration c∗

that c∗i > 0 and

w+
r (c

∗) = w−r (c
∗) (= w∗r > 0) . (2.14)

This means that at least at one positive point the direct elementary processes

are equilibrated by the inverse elementary processes.

Existence of one such point implies that all equilibria are also points

of detailed balance (2.14) and, moreover, there exists a global Lyapunov

function that has the form of relative entropy. This is precisely the analogue
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of the Boltzmann H-theorem for the MAL kinetics.

For the formulation, use and proof of this theorem, it is convenient to

rewrite the formulas for the direct and inverse reaction rates (2.13) using c∗,

w∗r and the detailed balance relations (2.14):

wr = w+
r − w−r ,

w+
r = w∗r

n∏
i=1

(
ci
c∗i

)αri

, w−r = w∗r

n∏
i=1

(
ci
c∗i

)βri

.
(2.15)

The Lyapunov function is:

G =
∑
i

ci

(
ln

(
ci
c∗i

)
− 1

)
+
∑
i

c∗i . (2.16)

Here, the last constant term is added to satisfy G(c∗) = 0.

The partial derivatives of G (the analogs of chemical potentials) are

∂G

∂ci
= ln

(
ci
c∗i

)
. (2.17)

Therefore, we have one more form for the MAL kinetics with detailed balance

(2.15):

wr = w+
r − w−r ,

w+
r = w∗r exp

(∑
i

αri
∂G

∂ci

)
= w∗r exp(αr,∇cG) ,

w−r = w∗r exp

(∑
i

βri
∂G

∂ci

)
= w∗r exp(βr,∇cG) .

(2.18)
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It is worth mentioning that

w+
r

w−r
= exp−(γr,∇cG) .

For the time derivative of G due to the MAL kinetics (2.11) with the detailed

balance, simple algebra gives the dissipation inequality:

dG

dt
=
∑
r

wr(γr,∇cG) = −
∑
r

(w+
r − w−r ) ln

(
w+

r

w−r

)
≤ 0 . (2.19)

The last inequality holds because lnx is a strictly monotone function and

lnx − ln y has the same sign as x − y has. Obviously, Ġ|c = 0 if and only

if c is a point of detailed balance. This equilibrium point may be different

from the point c∗, which was used for the definition. All the positive points

of detailed balance for the MAL system (2.15) form a smooth manifold with

dimension

n− rank{γ1, γ2, . . .} ,

where n is the number of components and rank{γ1, γ2, . . .} is the rank of the

system of the stoichiometric vectors for the given reaction mechanism.

If we fix values of all stoichiometric linear conservation laws then the

strictly positive point of detailed balance is unique for the given values. In-

deed, the dissipation inequality is valid for every pair of mutually inverse

reactions and all the terms wr(γr,∇cG) in Ġ (2.19) are non-positive. There-

fore, at any strictly positive equilibrium point ceq, (γr,∇cG) = 0 for all r.

This means that ceq is a critical point of G in ceq + span{γ1, γ2, . . .}. The

function G is strictly convex at any positive point: its Hessian is positive
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definite,

∂2G

∂ci∂cj
=

1

ci
δij ,

where δij is the Kronecker delta. Therefore, there may exist only one positive

critical point of G on a linear manifold.

Due to the logarithmic singularity of the gradients at the boundary of R+

(where some of ci = 0), G achieves its global minimum in

(ceq + span{γ1, γ2, . . .})
∩

Rn
+

at a positive point. This point is a positive point of detailed balance.

For any positive vector, c0, the polyhedron

V = (c0 + span{γ1, γ2, . . .})
∩

Rn
+

is positively invariant with respect to (2.11). For systems with detailed bal-

ance it includes one and only one positive point of detailed balance. This

was first demonstrated by Zeldovich in 1938 (reprinted in 1996 [101]). In our

analysis we mainly follow [96].

2.2.2 Complex Balance

In this subsection we consider the direct and inverse reactions separately as

we did it before in (2.9), (2.10). Detailed balance is a sufficient but not

necessary condition of the thermodynamic behavior. The simple example of

thermodynamic behavior gives any monomolecular (linear) reaction mecha-

nism, which consists of reactions Ai → Aj. Let us use notation kji for this
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reaction rate constant.

The MAL equations for a monomolecular reaction mechanism are

dci
dt

=
∑
j, j ̸=i

(kijcj − kjici) . (2.20)

Let c0 be a strictly positive steady state for these equations (not necessarily

a point of detailed balance):

∑
j, j ̸=i

kijc
0
j = c0i

∑
j, j ̸=i

kji .

With this c0 we can rewrite the second term in (2.20):

∑
j, j ̸=i

kji =
∑
j, j ̸=i

kij
c0j
c0i

;

∑
j, j ̸=i

kjici =
∑
j, j ̸=i

kijc
0
j

ci
c0i
.

Therefore, the kinetic equations (2.20) have the equivalent form for given c0:

dci
dt

=
∑
j, j ̸=i

kijc
0
j

(
cj
c0j

− ci
c0i

)
. (2.21)

Then we can define

G =
∑
i

ci

(
ln

(
ci
c0i

)
− 1

)
. (2.22)
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After simple transformations, we find that due to (2.21),

dG

dt
=
∑
i̸=j

kijc
0
j

[
ci
c0i

(
ln

(
ci
c0i

)
− 1

)
− cj
c0j

(
ln

(
cj
c0j

)
− 1

)
+ ln

(
ci
c0i

)(
cj
c0j

− ci
c0i

)]
≤ 0 .

(2.23)

To prove this formula, it is worth mentioning that for any n numbers fi,

∑
ij i ̸=j

kijc
0
j(fi − fj) = 0 .

This gives us the first two terms in the square brackets with

fi =
ci
c0i

(
ln

(
ci
c0i

)
− 1

)
.

The last term,

ln

(
ci
c0i

)(
cj
c0j

− ci
c0i

)
,

appears in the straightforward computation of the time derivative of G due

to kinetic equations (2.21).

The expressions in square brackets in (2.23) have the form

f(a)− f(b) + f ′(a)(b− a)

for the convex function f(x) = x(lnx − 1). This expression is always non-

positive because of Jensen’s inequality.

Linear MAL kinetics can obviously violate the principle of detailed bal-
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ance. For example, an irreversible cycle

A1 → A2 → . . .→ An → A1

has always a positive steady state but never has a positive point of detailed

balance if n > 2.

There is a nice generalization of the dissipation inequality (2.23) for the

nonlinear MAL equations under some algebraic conditions on kinetic con-

stants. These conditions are strictly weaker than the principle of detailed

balance. They were discovered for the Boltzmann equation by Stueckelberg

[91] in 1952 and called later the “complex balancing condition” for the general

MAL [89, 87].

To formulate this condition for the MAL kinetics, let us start from the

functionG (2.22) and look for conditions that guarantee the inequality Ġ ≤ 0.

For a given c0, we can rewrite the MAL reaction rate in the form

wr = φr exp(αr,∇cG) = φr

∏
i

(
ci
c0i

)αri

, (2.24)

where φr = kr
∏
i

(c0i )
αri = wr(c

0). It is convenient to express Ġ using an

auxiliary function θ of an auxiliary variable λ: for any concentration vector,

θ(λ) =
∑
r

φr exp[λ(αr,∇cG) + (1− λ)(βr,∇cG)] . (2.25)
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This function is convenient because

dθ(λ)

dλ
= −

∑
r

φr((βr−αr),∇cG) exp[λ(αr,∇cG)+(1−λ)(βr,∇cG)] . (2.26)

In this notation,

Ġ = −θ′(1) .

The function θ(λ) is a sum of exponents. It is convex (θ′′(λ) ≥ 0). Therefore,

if θ(0) = θ(1) then θ′(1) ≥ 0.

This condition, θ(0) = θ(1) (for all positive c) is called the complex bal-

ancing condition and it is sufficient for the dissipation inequality:

Ġ = −θ′(1) ≤ 0 .

The principle of detailed balance for the MAL equations has a form of exis-

tence of a special equilibrium point, a point of detailed balance. This exis-

tence implies important dynamical properties in the whole of Rn
+ because of

the very “rigid” monomial structure of MAL.

The complex balancing condition can also be formulated as existence of

a special “point of complex balance”. Let us reformulate it in this way.

Some vectors αr, βr for a given reaction mechanism may coincide. Let us

denote by {y1, . . . , yq} the set of all different vectors αr, βr. For each yi we

define R+
i = {r |αr = yi}, R−i = {r | βr = yi}. In this notation,
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θ(1) =
∑
i

∑
r∈R+

i

wr(c
0)

 exp(yi,∇cG) ,

θ(0) =
∑
i

∑
r∈R−

i

wr(c
0)

 exp(yi,∇cG) .

(2.27)

For any finite set of (different) vectors {y1, . . . , yq}, the corresponding func-

tions exp(yi,∇cG) of c ∈ Rn
+, are linearly independent because the Hessian

of G is strictly positive definite. Therefore, the condition θ(0) = θ(1) (for all

positive c) is equivalent to

∑
r∈R+

i

wr(c
0) =

∑
r∈R−

i

wr(c
0) . (2.28)

The point c0 that satisfies (2.28) is called the point of complex balance and the

complex balancing condition means that there exists such a strictly positive

point of complex balance. In this case, the dissipation inequality, Ġ ≤ 0,

with G defined by (2.22) holds for all positive points.

Of course, a point of detailed balance is a point of complex balance as

well. The reverse statement is not valid: for example, all the positive steady

states of linear MAL kinetics (2.20) are the points of complex balance but

they are not necessarily the points of detailed balance.

The microscopic background for detailed balance is microreversibility, i.e.

invariance of the microscopic classical or quantum equations with respect to

the time inversion.

The microscopic backgrounds for complex balance were formulated by
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Stueckelberg as unitarity of the S-matrix [91]. It is necessary to add that

the validity of the scattering (or Markov) model of elementary reactions is

also needed (see [92] and discussion in Chapter 3).

2.3 Mass Action Cell-Jump Formalism

2.3.1 Stoichiometry of Diffusion Jumps

We represent the physical space as a network of compartment. Each com-

partment is modeled as a cubic cell with an edge size l. The stoichiometric

equations of diffusion describe interaction of two neighboring cells. To dis-

tinguish the quantities related to these two cells we use the upper indexes I

and II (Fig. 1.2).

The general stoichiometric equation for an elementary event of diffusion

is defined by (1.40),

∑
i

αI
riA

I
i +
∑
i

αII
riA

II
i →

∑
i

βI
riA

I
i +
∑
i

βII
riA

II
i . (2.29)

Coefficients αI,II
ri , β

I,II
ri are nonnegative. Usually, we assume that they are

integers but in some situations real numbers are needed. Elementary events

(2.29) describe diffusion and do not include the transformation of components

(reactions). Therefore, the total amounts of each component Ai coincide in

the left and the right hand sides of (2.29):

αI
ri + αI

ri = βI
ri + βII

ri . (2.30)
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Each elementary process (2.29) has two input vectors, αI,II
r with coordinates

αI,II
ri and two output vectors, βI,II

r with coordinates βI,II
ri . Because of the

conservation of particles of all types (2.30), the stoichiometric vectors of

processes for the cells differ just by the sign of coordinates:

γr = γIr = γIIr = βI
r − αI

r .

We define here a mechanism of diffusion as a system of stoichiometric equa-

tions for elementary events. The simple and basic examples are:

• The Fick diffusion, AI
i → AII

i , A
II
i → AI

i;

• The exchange of particles, AI
i + AII

j → AII
i + AI

j;

• Clustering (diffusion with attraction), AI
i + sAII

i → (s + 1)AII
i , sA

I
i +

AII
i → (s+ 1)AI

i, s > 1;

• Diffusion with repulsion, (s+1)AI
i → sAI

i+A
II
i , (s+1)AI

i → AI
i+ sA

II
i ,

(s > 0).

Formally, diffusion with repulsion is the time-inverted process of diffusion

with attraction (the porous medium model) but for s = 1 diffusion with

attraction has no sense (the uniform state cannot produce the nonuniform

distribution). Therefore, the restrictions on s are different.

2.3.2 MAL Equations for Diffusion

Let us consider the system of stoichiometric equations (2.29) as a reaction

mechanism for MAL (2.9). If we apply MAL then the rate of the elementary
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diffusion process is

wr(c
I, cII) = kr

∏
i

(cIi)
αI
ri

∏
i

(cIIi )
αII
ri . (2.31)

For example, for the Fick diffusion, we have two elementary processes, AI
i →

AII
i and AII

i → AI
i. The corresponding reaction rates are k1c

I
i and k2c

II
i .

The composition of each cell is the vector N I,II. Components of this vector,

N I,II
i = V I,IIcI,IIi are amounts of Ai in the corresponding cell and V I,II are

volumes of cells. We describe the dynamics of the compositions of two cells

by the equations:

dN I

dt
= −dN

II

dt
= SI,II

∑
r

γrwr(c
I, cII) , (2.32)

where SI,II is the area of the boundary between cells I and II. If there are

many cells then

dN I

dt
=
∑
J

SI,J
∑
r

γrwr(c
I, cJ) , (2.33)

with summation through all interacting pairs (I,J).

For example, for the Fick diffusion, we have two elementary processes,

AI
i → AII

i and AII
i → AI

i. The corresponding reaction rates are k1c
I
i and k2c

II
i .

Equations (2.32) give

dN I
i

dt
= −SI,IIk1c

I
i + SI,IIk2c

II
i .

For several pairs, let us mention the symmetry in pairs: k1 = k2 = k (we

73



discuss this symmetry in more detail in the next subsection):

dN I
i

dt
=
∑
J

kSI,J(cJi − cIi) .

For example, on a straight line (two neighbors), this equation gives

dN I
i

dt
= kSI,J(cI+1

i + cI−1i − 2cIi) .

From this expression, the proper scaling of k with the cell size is obvious:

dcIi
dt

= k
SI,Jl2

V

(cI+1
i + cI−1i − 2cIi)

l2
,

where the fraction (cI+1
i + cI−1i − 2cIi)/l

2 approximates the second derivative

and, hence, kSI,Jl2/V = const. For a cubic cell, V = Sl and kl = const.

2.3.3 Space Symmetry and Time Symmetry

The system of elementary events should be symmetric with respect to space-

inversion. For each elementary process (2.29) a space-inverted process is

defined just by changing I to II and and vice versa. We mark the quantities

for the space-inverted processes by ′. For example,

γ′ = −γ .

Space inversion is an involution: if we apply it two times then we return

to the original process. The key condition is: the rate functions for the

space-inverted processes should differ just by the transposition of vectors of
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variables, cI, cII (1.42):

w′r(c
I, cII) = wr(c

II, cI) . (2.34)

For MAL this means that kr = k′r. The requirement of space symmetry

distinguishes diffusion from various types of advection and transport driven

by an external force. This condition is necessary for existence of diffusion

equations when the cell size l → 0 (see the next subsection).

Inversion in time differs, in general, from the inversion in space. For

example, for the elementary process 3AI → 2AI + AII, space inversion gives

2AII → AI + AII (we exchange the upper indexes, I→II and II→I), and the

inversion of elementary events (T -transformation) gives 2AI + AII → 3AI

(here, we change direction of arrow). We have to stress that inversion in

time assumes micro-reversion. At the macroscopic level it does not mean

change t to −t in the kinetic equations but the transformation of the direct

processes into reverse ones (inversion of collisions, for example).

Time symmetry (microreversibility) means that the principle of detailed

balance is valid. In this case, all the consequences of the principle of detailed

balance are applicable (Section 2.2), a global Lyapunov functional exists, and

every positive equilibrium is a point of detailed balance.

Microreversibility and symmetry of space are independent properties of

the system. Nevertheless, for some elementary processes, the space-inverted

process coincides with the reverse (the time-inverse) process. If a diffusion

mechanism is constructed from such processes then the symmetry in space

is equivalent to symmetry in time (to the principle of detailed balance).
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This specific class of diffusion mechanisms includes such mechanisms as the

Fick diffusion or the diffusion by exchange of particle positions.

Indeed, for the Fick diffusion, when we exchange the upper indexes in

an elementary process AI → AII (inversion in space) then we get the reverse

process as well, AII → AI (inversion of arrows). Analogously, for AI +BII →

AII + BI inversion of space gives the reverse process as well: AII + BI →

AI +BII.

This fundamental property is formulated in the following theorem.

Theorem 2. Let a complex diffusion process consists of elementary

processes, which satisfy the following property: the space-inverted elemen-

tary process coincides with the inverse process. Then, for the mass action

law equation of diffusion (2.33), the principle of detailed balance is valid,

the global convex Lyapunov functional exists and the uniform distribution is

asymptotically stable.

Indeed, due to space symmetry, a uniform distribution is in equilibrium

and each process is equilibrated at this state by its space-inverted process.

At the same time, this distribution is a point of detailed balance. Therefore,

the results about principle of detailed balance are applicable.

2.3.4 Arrested Diffusion and Boundary Equilibria

Existence of a uniform distribution, which is a point of detailed balance,

existence of the global Lyapunov function and asymptotic stability of the

uniform equilibrium distributions do not mean that there exist no nonuni-

form equilibria.
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The phenomenon of boundary equilibria is well known. For example, an au-

tocatalytic reversible reaction A + B 
 2A has two equilibria for a given

value of a stoichiometric conservation law, b = cA + cB =const. One equilib-

rium is strictly positive, with positive concentrations of A and B. Another is

a boundary equilibrium, cA = 0, cB = b. The positive equilibrium is asymp-

totically stable, the boundary equilibrium is unstable but if the initial state

is near the boundary (cA is close to zero) then slow relaxation occurs [102],

and the motion may be arrested for a long time near this state.

There are well known effects of arrested diffusion caused by the change

of temperature. The solid solutions show the effects of diffusion, which has

been arrested by chilling below a threshold temperature in a very short time

[103].

Kinetic effects of arrested diffusion are also possible. For example, let

us consider the diffusion mechanism by jumps to free places (Fig. 1.3(b)):

any distribution of components Ai for zero concentrations of free places Z is

stationary, and for a small concentration of free places diffusion is slow.

For effects of arrested diffusion, the average concentration of free places

should not be small. There may be, for example, a layer of particles with

low mobility between a dense island of particles with high mobility and an

island of free places. Formally, it is possible to construct many such situa-

tions. All of them may be characterized as follows: either a small change

of concentrations or a small change of constants (or both) leads the system

to a nonuniform equilibrium. At this nonuniform equilibrium some of the

concentrations in some cells take zero values and, therefore, some fluxes are

also zero. Because of the appearance of these zero concentrations, such an
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equilibrium is called a boundary equilibrium.

2.4 Continuous Diffusion Equation

2.4.1 MAL Diffusion Flux

Let us consider an elementary process together with its space-inverted process

∑
i

αI
riA

I
i +
∑
i

αII
riA

II
i →

∑
i

βI
riA

I
i +
∑
i

βII
riA

II
i ,∑

i

αI
riA

II
i +

∑
i

αII
riA

I
i →

∑
i

βI
riA

II
i +

∑
i

βII
riA

I
i .

(2.35)

The reaction rates are

wr(c
I, cII) = kr

∏
i

(cIi)
αI
ri

∏
i

(cIIi )
αII
ri ,

w′r(c
I, cII) = wr(c

II, cI) = kr
∏
i

(cIIi )
αI
ri

∏
i

(cIi)
αII
ri ,

(2.36)

where we take k′r = kr due to the symmetry in space.

To the first order in l, the flux vector for Ai in this process is

Jri = −γri[wr(c(x), c(x+ l))− wr(c(x+ l), c(x))]

= −lγri
∑
j

(
∂wr(c

I, cII)

∂cIIj

∣∣∣∣
cI=cII=c(x)

− ∂wr(c
I, cII)

∂cIj

∣∣∣∣
cI=cII=c(x)

)
∇cj(x)

= −lγriwr(c(x), c(x))
∑
j

αII
rj − αI

rj

cj
∇cj(x)

= −lkγri

(∏
q

c
αI
rq+αII

rq
q

)∑
j

αII
rj − αI

rj

cj
∇cj(x) .

(2.37)
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Here, γri = βI
ri − αI

ri (income minus outcome in the first cell); the minus in

front of the formula appears because the direction of flux from cell I to cell

II (from x to (x+ l)) is positive.

The factor 1/cj never leads to a singularity in the flux because cj enters

in the monomial
∏
q

c
αI
rq+αII

rq
q with the power αI

rj +αII
rj. This power is strictly

positive if the coefficient (αII
rj − αI

rj) is not zero.

The proper scaling of k for grid refinement or coarsening is kl = d = const

in order not to change the first order expression for flux (2.37).

According to (2.37), the matrix of diffusion coefficients for the elementary

process (2.35) (together with its space-inverted process) is

Dr
ij(c) = d

(∏
q

c
αI
rq+αII

rq
q

)
γri(α

II
rj − αI

rj)

cj
, (2.38)

where d = const(= kl).

The corresponding diffusion equations have the divergent form:

∂c

∂t
= div(D(c)∇c) , (2.39)

where c is the vector of concentrations and D is the matrix of diffusion

coefficients (2.38).

It might be useful to represent the flux (2.37) similar to the Teorell for-

mula (1.10). For this purpose, let us collect under ∇ the terms which repre-

sent the chemical potential in perfect media: µ = RT ln c + µ0. We assume
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that T and µ0 are constant in space. With these conditions,

Jri = − lk

RT
γri

(∏
q

c
αI
rq+αII

rq
q

)∑
j

(αII
rj − αI

rj)∇µj(x) . (2.40)

2.4.2 Examples

Let us illustrate application of formula (2.37) by several elementary examples.

Fick’s law

First of all, the Fick’s law: AI → AII and AII → AI. For this system, αI = 1,

αII = 0, βI = 0, βII = 1 and γ = −1. Formula (2.37) gives

J = lkc
−1

c
∇c = −lk∇c .

This is exactly the standard Fick law. The diffusion equation is ∂tc = d∆c.

Here and further in this subsection we use d for lk.

Mechanism of Exchange of positions

The simplest mechanism of diffusion with interaction of n different substances

of a multi-component system is given by stoichiometric equation of the form:

AI +BII → AII +BI

AII +BI → AI +BII (2.41)

The mechanism (2.41) can describe the diffusion for any number of sub-

stances. For example for binary solutions (When n = 2). If n > 2, then
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the mechanism (2.41) can described the mutual diffusion of any pair from

the list of substances of n-component solution in the approximation of pair

interaction of fluxes of substances under investigation.

The mechanism with the process of exchange of position together with

its space-inverted process, is the same as the reverse process.

For this case, αI
A = 1, αI

B = 0, αII
A = 0, αII

B = 1, βI
A = 0, βI

B = 1, βII
A = 1,

βII
B = 0, γA = βI

A − αI
A = −1, and γB = βI

B − αI
B = 1. Due to (2.37),

JA = −d(−1)cAcB

[
−1

cA
∇cA +

1

cB
∇cB

]
= −d(cB∇cA − cA∇cB) ,

JB = −dcAcB
[
−1

cA
∇cA +

1

cB
∇cB

]
= d(cB∇cA − cA∇cB) .

(2.42)

The diffusion equations are

∂tcA = d(cB∆cA − cA∆cB) , ∂tcB = d(cA∆cB − cB∆cA) .

Mechanism of Repulsion of components

Consider the mechanism of repulsion of components A and B (A is mobile),

AI +BI → AII +BI

AII +BII → AI +BII. (2.43)

The mechanism with the process of repulsion together with its space-inverted

process, does not coincide with the reverse process. For this mechanism,

αI
A = 1, αI

B = 1, αII
A = 0, αII

B = 0, βI
A = 0, βI

B = 1, βII
A = 1, βII

B = 0,
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γA = βI
A − αI

A = −1, and γB = βI
B − αI

B = 0. Formula (2.37) gives:

JA = −d(−1)cAcB

[
−1

cA
∇cA +

−1

cB
∇cB

]
= −d(cB∇cA + cA∇cB) = −d∇(cAcB) ,

JB = 0 .

(2.44)

We can see that B activates diffusion of A (the term cB∇cA) and, at the

same time, pushes A into the area with lower concentration of B (the term

cA∇cB). The diffusion equation is

∂tcA = d∆(cAcB) .

The no-flux steady states of these diffusion equations are given by the con-

dition: cAcB = const.

If we assume that B is also mobile by a similar mechanism then we get a

system of equations (with two different diffusion coefficients):

JA = −dA∇(cAcB) , JB = −dB∇(cAcB) , (2.45)

∂tcA = dA∆(cAcB) , ∂tcB = dB∆(cAcB) . (2.46)

Let us change variables:

c+ =
cA
dA

+
cB
dB
, c− =

cA
dA

− cB
dB

.

In these variables, cAcB = dAdB
4

(c2+ − c2−), ∂tc− = 0 and for c+ we have the
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porous media equation:

∂tc+ =
dAdB
2

∆c2+ .

2.5 Principle of Detailed Balance and Dissi-

pation Inequality

2.5.1 Detailed balance and Coupling of Direct and Re-

verse Processes

In this subsection, we formulate the principle of detailed balance for MAL

diffusion. Physically, it follows from microreversibility. For every elementary

process, ∑
i

αI
riA

I
i +
∑
i

αII
riA

II
i →

∑
i

βI
riA

I
i +
∑
i

βII
riA

II
i , (2.47)

the reverse process is (just invert arrows):

∑
i

βI
riA

I
i +
∑
i

βII
riA

II
i →

∑
i

αI
riA

I
i +
∑
i

αII
riA

II
i . (2.48)

Let us distinguish the quantities for the reverse and direct processes by the

upper indices ±. The simple algebraic relations hold:

αI,II∓
ri = βI,II±

ri and γI,II∓ri = −γI,II±ri .

Therefore,

αI+
ri + αII+

ri = βI−
ri + βII−

ri = αI−
ri + αII−

ri = βI+
ri + βII+

ri . (2.49)
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The reaction rates are

w+
r (c

I, cII) = k+r
∏
i

(cIi)
αI
ri

∏
i

(cIIi )
αII
ri ,

w−r (c
I, cII) = k−r

∏
i

(cIi)
βI
ri

∏
i

(cIIi )
βII
ri .

(2.50)

Let there exist a uniform strictly positive point of detailed balance: a strictly

positive vector c∗ such that for all r

w+
r (c

∗, c∗) = w−r (c
∗, c∗) .

This means that

k+r
∏
i

(c∗i )
αI
ri+αII

ri = k−r
∏
i

(c∗i )
βI
ri+βII

ri .

Let us use the relations αI
ri + αII

ri = βI
ri + βII

ri. Therefore, the principle of

detailed balance for MAL diffusion can be reformulated: for all r

k+r = k−r .
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Let us join processes (2.47), (2.48) and write the diffusion flux for these

processes, analogously to (2.37):

Jri = −γri[w+
r (c(x), c(x+ l))− w−r (c(x+ l), c(x))]

= −lγri
∑
j

(
∂w+

r (c
I, cII)

∂cIIj

∣∣∣∣
cI=cII=c(x)

− ∂w−r (c
I, cII)

∂cIj

∣∣∣∣
cI=cII=c(x)

)
∇cj(x)

= −lγriwr(c(x), c(x))
∑
j

γrj
cj

∇cj(x)

= −lkγri

(∏
q

c
αI
rq+αII

rq
q

)∑
j

γrj
cj

∇cj(x) .

(2.51)

According to this expression for the diffusion flux, (2.51), the matrix of dif-

fusion coefficients for the elementary process (2.47) (together with its reverse

process (2.48)) is

Dr
ij(c) = dr

(∏
q

c
αI
rq+αII

rq
q

)
γriγrj
cj

, (2.52)

where dr = const(= krl). This matrix is symmetric with respect to the inner

product

⟨a, b⟩c =
∑
i

aibi
ci

. (2.53)

This means that

⟨Da, b⟩c = ⟨a,Db⟩c,

or in coordinates ∑
ij

Dijajbi
ci

=
∑
ij

aiDijbj
ci

.
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Indeed, let w̃r = dr

(∏
q

c
αI
rq+αII

rq
q

)
. For two scalar products, ⟨Da, b⟩c and

⟨a,Db⟩c we get

⟨Da, b⟩c =
∑
ij

Dijajbi
ci

= w̃r

∑
ij

γriγrjajbi
cjci

and

⟨a,Db⟩c =
∑
ij

aiDijbj
ci

= w̃r

∑
ij

aiγriγrjbj
cicj

,

These two expressions differ only in the notation of dummy indexes, i and

j. Therefore, D is symmetric with respect to the inner product (2.53). D is

also positive semi-definite. Indeed, for any vector ξ,

⟨ξ,Dξ⟩ =
∑
i

ξiD
r
ijξj

ci
= w̃r⟨ξ, γ)2 ≥ 0⟩ .

This expression may be zero at a positive state (ci > 0) if and only if vector

ξ is orthogonal to vector γr in the inner product (2.53). If we summarize

diffusion coefficients for all pairs of mutually inverse elementary processes

then we get

Dij =
∑
r

Dr
ij(c) =

∑
r

w̃r
γriγrj
cj

. (2.54)

For this Dij, ∑ ξiDijξj
ci

≥ 0

and is zero if and only if vector ξ is orthogonal to all vectors γr in the inner

product (2.53). The corresponding diffusion equations have the divergent
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form:

∂c

∂t
= div(D(c)∇c) . (2.55)

It might be useful to represent the flux (2.51) similar to the Teorell formula

(1.10). For this purpose, let us collect under ∇ the terms which represent

the chemical potential in the perfect media: µ = RT ln c + µ0. We assume

that T and µ0 are constant in space. In these conditions,

Jri = − lk

RT
γri

(∏
q

c
αI
rq+αII

rq
q

)∑
j

γrj∇µj(x) . (2.56)

The difference from the MAL Teorell formula (2.40) is obvious: for the sys-

tems with detailed balance (2.56) the matrix of the coefficients in the Teorell

formula is symmetric for each elementary process together with its reverse

process because it is a product of a number (in square brackets) and the

symmetric matrix γriγrj:

[
lk

RT

(∏
q

c
αI
rq+αII

rq
q

)]
γriγrj . (2.57)

For the general MAL diffusion (with detailed symmetry in space) the ma-

trix of these coefficients for the elementary process together with its space-

inverted process is not symmetric in general: it is a scalar multiple of the

matrix

γri(α
II
rj − αI

rj) .

Its symmetry may be guaranteed if the space inversion of the elementary

process coincides with its inversion in time (i.e. αII
r coincides with βI

r).
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For MAL chemical kinetics, there is a sufficient algebraic condition for de-

tailed balance that is independent of the microreversibility and follows just

from the stoichiometric equations. Indeed, let us assume that all the reac-

tions are reversible and all the stoichiometric vectors γr in (2.15) are linearly

independent. Then, at the equilibrium, from the condition ċ =
∑
r

wrγr = 0

we get wr = 0 for all r. That is the detailed balance condition.

For MAL diffusion we have also a specific (“diffusion”) algebraic condi-

tion: if for all elementary processes the space-inverted reaction is the re-

verse reaction then the principle of detailed balance follows from the space

symmetry condition. For such systems, the coupling “process–space inverted

process” coincides with the coupling “process–reverse process” and equations

(2.51) coincide with (2.37).

For an elementary process, let the space-inverted process not coincide

with the reverse process. In this case, it is straightforward to check that for

the pair of elementary processes, the space-inverted process to (2.47) and the

reverse process to this space-inverted the diffusion equations and the diffusion

coefficient are the same. These two couples produce a flux that is twice as

large as (2.51).

2.5.2 The Dissipation Inequality and Detailed Balance

In this subsection, we construct the Lyapunov functional for the general

MAL diffusion models and calculate its time derivative due to the diffusion

equations.

Let us select any strictly positive reference concentration vector c∗ and
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take (2.16)

G =
∑
i

ci

(
ln

(
ci
c∗i

)
− 1

)
+
∑
i

c∗i .

Let us consider this system in a bounded domain V with smooth boundary

and with zero fluxes through its boundary: (n, J) = 0 at any point of ∂V

at any time (n is the vector of the outer normal). Due to the definition of

flux (2.37), it is sufficient that (n, gradcj) = 0 on ∂V for all j (but it is not

necessary).

The Lyapunov functional is

G =
∑
i

∫
V

[
ci

(
ln

(
ci
c∗i

)
− 1

)
+
∑
i

c∗i

]
dx . (2.58)

Due to the boundary conditions and the Gauss–Ostrogradskii theorem

dG

dt
= −

∑
i

∫
V

ln

(
ci
c∗i

)
divJi dx =

∑
i

∫
V

(
∇x

(
ln
ci
c∗i

)
, Ji

)
dx . (2.59)

Let us assume the principle of detailed balance and calculate Ġ (2.59) due

to diffusion equation with the matrix of diffusion coefficients (2.54):

dG

dt
=
∑
i

∫
V

(
∇x

(
ln
ci
c∗i

)
, Ji

)
dx

= −
∑
r

∫
V

w̃r

∑
ij

(∇x(ln ci), γriγrj∇x(ln cj)) dx

= −
∑
r

∫
V

w̃r

(
∇x

(∑
i

ln(γrici)

)
,∇x

(∑
j

ln(γrjcj)

))
dx

= −
∑
r

∫
V

w̃r(∇x(γr,∇cG))
2 dx ≤ 0 .

(2.60)

Here, ( , ) is the standard Euclidean inner product both in space and in the
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concentration space.

As we can see from this dissipation inequality, the only positive equilibria

for diffusion equations with detailed balance conditions satisfy the conditions

(γr,∇cG) = const for all r. Another form of these conditions is

∏
i

cγrii = const .

Inequality (2.60) demonstrates a significant difference between the two classes

of diffusion mechanism. If the stoichiometric vectors γr form a basis in the

concentration space then all the equilibria are uniform because in this case

the condition (γr,∇cG) = const (for all r) implies ∇cG = const, that is,

ln ci = const for all i, hence, ci = const for all i. Let us call this mechanism

the mechanism with mixing. The first example is the Fick mechanism: if the

diffusion constant is not zero for all components then all the equilibria of the

system are uniform.

If span{γr} does not coincide with the concentration space then there

exist the invariants of diffusion. They are given by the linear functionals

that annihilate all the vectors γr. For example, in diffusion by jumps on the

free places (Fig. 1.3(b)) the value of the sum cZ(x) +
∑
i

ci(x) is conserved

locally. In the mechanism, AI + BI → AII + BI, AII + BII → AI + BII,

concentration of B is conserved. These locally conserved quantities together

with the condition of positivity ci ≥ 0 define a convex body where the vector

of concentrations may be situated at a given point. This body depends on

the values of the conserved quantities, differs for different points, but does

not change in time.
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2.6 Complex Balance in MAL Diffusion

2.6.1 Complex Balance Conditions for MAL Diffusion

The complex balance condition does not assume any space or time symmetry.

The only microscopic assumption is the Markov fast microscopic kinetic with

a relatively small amount of active intermediate complexes [91, 92].

We discussed this condition for the MAL kinetics in Section 2.2.2, and

now let us transform it into a condition for the MAL diffusion equation. First

of all, we should abandon the symmetry conditions k′ = k (space symmetry)

and k+ = k− (microreversibility). Without these conditions, the zero-order

terms in the expression for fluxes will be annihilated by balance between the

elementary processes with given pair of vectors (αI
r, α

II
r ) and the processes

with the same pair (βI
r, β

II
r ) (2.28).

Let the stoichiometric mechanism of the diffusion be given:

∑
i

αI
riA

I
i +
∑
i

αII
riA

II
i →

∑
i

βI
riA

I
i +
∑
i

βII
riA

II
i , (2.61)

where all the elementary processes have different numbers r and the space-

inverted and reverse processes are represented separately. Let us consider

all pairs of vectors, (αI
r, α

II
r ) and (βI

r, β
II
r ). Let us enumerate all the different

pairs: y1, y2, . . ., yq = (yIq, y
II
q ) For each yq there are two sets of reactions, R+

q ,

R−q :

R+
q = {r | (αI

r, α
II
r ) = yq} , R−q = {r | (βI

r, β
II
r ) = yq} .

The complex balance condition is: there exists a strictly positive vector c∗
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such that ∑
r∈R+

q

wr(c
∗, c∗) =

∑
r∈R−

q

wr(c
∗, c∗) for all q . (2.62)

For MAL this means:

∑
r∈R+

q

kr
∏
i

(c∗i )
αI
r+αII

r =
∑
r∈R−

l

kq
∏
i

(c∗i )
αI
q+αII

q for all l . (2.63)

For r ∈ R+
q : αI

r + αII
r = yIq + yIIq .

For r ∈ R−l : βI
r + βII

r = yIq + yIIq .

Therefore, all the monomials coincide in the right and the left hand sides of

(2.63) for the given q and we can write the complex balance condition for

diffusion in the following form:

∑
r∈R+

q

kr =
∑
r∈R−

q

kr for all q . (2.64)

Let us calculate the flux

J =
∑
r

γrwr(c(x), c(x+ l))

to the first order in l. We group terms in this sum and each group will

corresponds to a pair yq. For each elementary process with number r there

are two q, qα(r) and qβ(r): r ∈ R+
qα(r)

and r ∈ R−qβ(r). We split the term

γrwr(c(x), c(x+ l)) in two terms:

γrwr(c(x), c(x+ l)) = βrwr(c(x), c(x+ l))− αrwr(c(x), c(x+ l)).
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We associate the first of them with yqβ(r) and the second with yqα(r). The

result is represented below:

J = −
∑
r

γrwr(c(x), c(x+ l))

=
∑
q

∑
r∈R+

q

αI
rwr(c(x), c(x+ l))−

∑
r∈R−

q

βI
rwr(c(x), c(x+ l))


=
∑
q

yIq

∑
r∈R+

q

wr(c(x), c(x+ l))−
∑
r∈R−

q

wr(c(x), c(x+ l))


=
∑
q

yIq
∏
i

c
yIq+yIIq
i

∑
r∈R+

q

kr −
∑
r∈R−

q

kr


+ l
∑
q

yIq
∏
i

c
yIq+yIIq
i

∑
r∈R+

q

kr
∑
j

αII
rj

cj
∇cj −

∑
r∈R−

q

kr
∑
j

αII
rj

cj
∇cj

+ o(l2)

(2.65)

The zero-order term is zero because of the complex balance condition (2.64).

Let us take into account that both for r ∈ R+
q and r ∈ R−q

αI + αII = yIq + yIIq .

Therefore, if for two yq, ys; R+
q

∩
R−s ̸= ∅,

then yIq + yIIq = yIq + yIIq .

For the set of all vectors yIq + yIIq we use the notation Z. For each z ∈ Z

Yz = {yq | yIq + yIIq = z}.

Let us group the terms with the same vectors z = yIq + yIIq ∈ Z together and
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write the expression for the flux to the first order in l:

J = l
∑
z∈Z

∏
i

czii J
z ,

Jz =
∑
yq∈Yz

yIq
∑
j

∑
r∈R+

q

kr
αII
rj

cj
−
∑
r∈R−

q

kr
αII
rj

cj

∇cj .
(2.66)

Let us study the expression for Jz for given z. First of all,

∑
yq∈Yz

∑
j

∑
r∈R+

q

kr
αII
rj

cj
−
∑
r∈R−

q

kr
αII
rj

cj

∇cj = 0

because each kr from this sum enters it twice, with the opposite signs, one

time as an element of R+
q for some yq ∈ Yz (with +) and the second time

(with −) as an element of R−s for another ys ∈ Yz with the same sum

yIs + yIIs = yIq + yIIq = z .

We note that yIq = z − yIIq for yq ∈ Yz in the sum (2.66). This allows us to

rewrite the expression for Jz:

Jz = −
∑
yq∈Yz

yIIq
∑
j

∑
r∈R+

q

kr
αII
rj

cj
−
∑
r∈R−

q

kr
αII
rj

cj

∇cj . (2.67)

2.6.2 The Dissipation Inequality and Complex Balance

for MAL Diffusion

We would like to demonstrate some similarity of the expression for Jz and

some formulas from the theory of Markov chains. For this, we briefly de-
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scribe some basing definitions from the theory of Markov chains. All these

definitions have been taken from Wikipedia [59, 60, 61]

A Markov chain, named for Andrey Markov, is a mathematical system

that transits from one state to another state out of a finite or countable

number of possible states in a chainlike manner. It is a discrete random

process with the Markov property. The Markov property states that the next

state depends only on the current state and not on the past.

A Markov chain is a sequence of random variables X1, X2, X3, ... with the

Markov property which states that the conditional probability distribution

for the system at the next step given its current state depends only on the

current state of the system, and not additionally on the state of the system

at previous steps. Mathematically,

P (Xn+1 = x|X1 = x1, X2 = x2, ..., Xn = xn) = P (Xn+1 = x|Xn = xn) .

The possible values of Xi form a countable set S called the state space of the

chain. Usually a Markov chain is defined for a discrete set of times, here we

use the terminology of continuous time Markove chains where time can also

take continuous values. Then the Markov property states that at any times

s > t > 0, the conditional probability distribution of the process at time s

given the whole history of the process up to and including time t, depends

only on the state of the process at time t. The state of the process at time s

is conditionally independent of the history of the process before time t, given

the state of the process at time t.
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The probability of going from state i to state j in n time steps is

p
(n)
ij = P (Xn = j|X0 = i) ,

and the single-step transition is

pij = P (X1 = j|X0 = i) .

A state i has a period k if any return to state i must occur in multiples of k

time steps. The period k of a state is defined as

k = gcd{n : P (Xn = i|X0 = i) > 0},

where “gcd” is the greatest common divisor. If k = 1, then the state is said

to be aperiodic, i.e., returns to state i can occur at irregular times. Otherwise

(k > 1), the state is said to be periodic with period k.

A state i is said to be transient if, given that we start in state i, there is a

non-zero probability that we will never return to i. Formally, let the random

variable Ti be the first return time to state i:

Ti = inf{n ≥ 1 : Xn = i|X0 = i}.

Then, state i is transient if and only if P (Ti = ∞) > 0. If a state i is not

transient, then it is said to be recurrent.

Let Mi be the expected return time, and Mi = E[Ti], then the state i is

called positive recurrent if Mi is finite.
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A state i is said to be ergodic if it is aperiodic and positive recurrent. If all

states in a Markov chain are ergodic, then the chain is said to be ergodic.

In view of all these definitions, we come the our goal. Consider the

vectors yq ∈ Yz enumerate the states. Elementary processes correspond to

transitions between states. Each nonzero constant kr corresponds to two

vectors yq, ys ∈ Yz: r ∈ R+
q and r ∈ R−s . We substitute the index r by two

indexes q, s and use notation ksq (or even ks←q). If there is no nonzero

constant for this pair q, s then we take ks←q = 0. In particular, kqq = 0. The

complex balance condition (2.64) reads:

∑
q

ksq =
∑
s

kqs . (2.68)

This means that the constants ksq describe a continuous time Markov chain

with the Master equation

π̇q =
∑
s

(kqsπs − ksqπq) (2.69)

and equidistribution in equilibrium. Here πq is the probability of finding the

system in the state q and kqsπs is the probability flux from the state s to the

state q. We can use the steady state condition (2.68) and rewrite the Master

equation (2.69):

π̇q =
∑
s

kqs(πs − πq) . (2.70)

From this form, it is easy to see that the functional

H =
1

2

∑
q

π2
q
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monotonically decreases due to the system dynamics, because

dH

dt
=
∑
q

πqπ̇q =
∑
sq

πqkqs(πs − πq) ≤ 0 . (2.71)

To prove (2.71), let us use the identity (conservation of the total probability,∑
q

π̇q = 0)

∑
q

π̇q =
∑
s

(kqsπs − ksqπq) =
∑
s

kqs(πs − πq) = 0 . (2.72)

This condition holds for all values of numbers πq (this is obvious for the

Master equation in the form (2.69)).

From (2.68), we have

∑
s

kqs −
∑
q

ksq = 0

This gives us

∑
s

kqsπ
2
q −

∑
q

ksqπ
2
q =

∑
s

kqsπ
2
q −

∑
s

kqsπ
2
s =

∑
s

kqs

(
1

2
π2
q −

1

2
π2
s

)
= 0 .

98



Let us add this expression to the right hand side of (2.71):

dH

dt
=

∑
sq

kqs

(
1

2
π2
q −

1

2
π2
s + πq(πs − πq

)
=

∑
sq

kqs

(
1

2
π2
q −

1

2
π2
s + πqπs − π2

q

)
=

∑
sq

kqs

(
−1

2
π2
q −

1

2
π2
s + πqπs

)
=

∑
sq

kqs

(
−1

2
(π2

q + π2
s − 2πqπs)

)
= −

∑
sq

kqs

(
1

2
(πq − πs)

2

)
≤ 0 (2.73)

Therefore, the following inequality have been proved for our set of coefficients

kqs (kqs ≥ 0):

∑
sq

πq(kqsπs − ksqπq) =
∑
sq

πqkqs(πs − πq) ≤ 0 (2.74)

for any set of numbers πq. This inequality means that dH/dt ≤ 0 (2.71). It

is zero if all πq coincide (πs = πq for all s, q).

For our purposes, it is important to know when the zero time derivative

of H (dH/dt = 0) is equivalent to the equidistribution (πs = πq for all s, q).

They are equivalent if the Markov chain (2.69) is ergodic. The conditions of

ergodicity are well known [104, 105]: the chain (2.69) is ergodic if for any

two s, q (s ̸= q) there exists an oriented path from s to q in the graph of the

network, that is such a sequence

r0, r1, . . . , rg that s = r0, q = rg and krj+1rj > 0 fo all j = 0, . . . , g .

This means that the graph of transitions of the Markov chain (2.69) is strongly
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connected.

To apply this inequality to the proof of the dissipation inequality, we have to

rewrite the expression for Jz (2.67) using these notations, kqs instead of kr:

Jz =
∑
yq∈Yz

yIIq
∑
j

∑
s

(kqsy
II
sj − ksqy

II
qj)∇x ln cj . (2.75)

Now we are in the position to prove the dissipation inequality for MAL dif-

fusion equation with complex balance. In a bounded domain V with smooth

boundary and without fluxes through boundary we have to estimate Ġ (2.58),

(2.59).

dG

dt
= −

∫
V

∑
j

ln

(
cj
c∗j

)
divJj dx

=

∫
V

∑
j

(∇x ln cj, Jj) dx

= l
∑
z∈Z

∫
V

∏
i

czii
∑
j

(∇x ln cj, J
z
j ) dx .

(2.76)

Due to the representation of Jz (2.75),

∑
j

(∇x ln cj, J
z
j ) =

∑
q s

(πq, (kqsπs − ksqπq)) ≤ 0 , (2.77)

where πq is a space vector: πq =
∑
i

yIIqi∇x ln ci and for yq, ys;

yIq,s + yIIq,s = z .
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This expression has exactly the form (2.74) for each space coordinate. Finally,

∑
j

(∇x ln cj, J
z
j ) ≤ 0 (2.78)

and it is zero if all πq =
∑
i

yIIqi∇x ln ci coincide.

The reverse statement,

all πq =
∑
i

yIIqi∇x ln ci coincide if
∑
j

(∇x ln cj, J
z
j ) = 0 ,

is true if the auxiliary Markov chain is ergodic for given z (i.e. the graph of

transitions is strongly connected). Let us assume this ergodicity. For every

z we can define a linear subspace Ez in the concentration space given by the

system of equation

Ez = {e | (yIIqi, e) coincide for all yq ∈ Yz} .

If ∩
z∈Z

Ez = {0}

then all the equilibria for this mechanism of diffusion are uniform. In partic-

ular, they are uniform if at least one yIIqi = 0.

2.7 Intermediate Summary

We presented the formal language of the stoichiometric mechanism for de-

scription of nonlinear diffusion (2.29), (2.35), (2.47), (2.48). The general
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construction of the diffusion equations under various conditions is given:

• For systems with symmetry with respect to inversion in space (kr = k′r)

(2.37), (2.38);

• For systems with microreversibility (k+r = kr−) (2.51), (2.52);

• For general systems with Markov microkinetics, which satisfy the com-

plex balance conditions (2.64), (2.66).

For systems with detailed balance (microreversibility) and with complex bal-

ance (Markov microkinetics) the explicit formula for the free energy–type

Lyapunov functional G (2.58) is

G =
∑
i

∫
V

[
ci

(
ln

(
ci
c∗i

)
− 1

)
+
∑
i

c∗i

]
dx .

We found that Ġ ≤ 0 for the systems with detailed or complex balance

(2.59), (2.76). These inequalities guarantee the thermodynamic behavior

of diffusion. The detailed symmetry with respect to the inversion in space

is insufficient for such an inequality and the diffusion collapse for them is

possible.

Mass Action Law by itself does not imply thermodynamics. In that

sense, it is too flexible and needs additional requirements to respect the

basic physics. This redundancy of MAL allows, at the same time, to use

them in many other areas. The famous Lotka and Volterra models in Math-

ematical ecology [106, 107] are implementations of MAL for description of

surviving and reproduction of animals, that is far from the initial area of

MAL applications. Creation of mathematical genetics [108] and analysis of
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dynamical aspects of biological evolution [109] also use MAL in their back-

grounds. Combination of MAL kinetics with nonlinear diffusion is very im-

portant for analysis of biological invasions and other phenomena in ecology

[110, 111, 112, 113]. The MAL for diffusion can also generate equations

that have no direct physical sense but may be used for modeling of some

phenomena of non-physical nature.

On the other hand, in this approach, we did not take into account some

basic physical properties, namely, the momentum and the center of mass

conservation. The diffusion transport should be coupled with the viscous

transport or elastic deformation (or both) because of two reasons:

• The mass average velocity of diffusion

u =

∑
imiJi∑
imi

,

where mi is the molecular mass of the Ai particles, is, in general, not

zero;

• The change of the mixture composition implies the change of pressure

and, hence, the viscous flux or the elastic deformation (or both).

The careful analysis of these effects should give, for example a theory of the

Kirkendall effect. In 1942, Kirkendall demonstrated experimentally that dif-

ferent atoms can migrate at different rates in an alloy, and this diffusion is

accompanied by measurable local volume change and displacement of inter-

faces [114, 115]. The kinetic theory of this effect is still under development

and there remain open problems and new ideas are needed [116].
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We return to the problem of correct description of the general transport

equation in Chapter 3.

The MAL formalism for diffusion is a flexible and effective tool for mod-

eling. The semi-discrete MAL model may be used for numerical modeling

directly as a sort of finite elements. Their coarse-graining and refinement

should follow the main rule kl = d where l is the cell size, k is a kinetic

constant for the finite elements, d is the invariant diffusion coefficient. For

unstable processes, these provide a biharmonic regularization. These kinetic

finite elements respect the basic physical properties like positivity of concen-

tration, conservation laws and the second law of thermodynamics (under the

relevant conditions of detailed or complex balance).
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Chapter 3

Generalized Mass Action Law

for Diffusion

3.1 Free Energy, Free Entropy, Chemical Po-

tentials, Activities, and Generalized Mass

Action Law

3.1.1 Thermodynamic Potentials

In this subsection, we present the thermodynamic approach to the generalized

MAL. Exactly as in Section 2.1 we start from the chemical kinetic equations

and then extend our approach to the transport processes.

In the thermodynamic approach, the kinetic description of the multicom-

ponent system requires the following inputs:

1. A list of components;

105



2. A thermodynamic potential;

3. A list of elementary reactions represented by their stoichiometric equa-

tions;

4. A set of reaction rate constants.

Exactly as it was in Section 2.1, the list of components is just a set of sym-

bols (the component names). We usually assume that this set is finite,

A1, A2, . . . , An. The definitions of stoichiometric equation and the corre-

sponding vectors αri, βri are also the same.

There are many thermodynamic potentials and they form two series: en-

ergy and free energies and, on the other hand, entropy and free entropies (the

Massieu–Planck functions). Each of them has its own “natural variables” and

if one of them is given in the natural variables then all other thermodynamic

functions can be produced.

The names and standard notations of variables are:

• Internal energy, U ;

• Entropy, S;

• Enthalpy, H;

• Temperature, T ;

• Volume, V ;

• Pressure, P ;
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• Number of particles (or moles) composing the ith component Ai, Ni

(N is vector with coordinates Ni, the vector of composition);

• Chemical potential of the ith component Ai, µi.

The first potential in the energetic series is the internal energy U(S, V,N) in

the natural coordinates S, V , N and

dU = TdS − PdV +
∑
i

µidNi .

The enthalpy, H(S, P,N) = U + PV has the natural coordinates S, P , N

and

dH = TdS + V dP +
∑
i

µidNi .

The free energy (the Helmholtz energy), F (T, V,N) = U − TS and

dF = −SdT − PdV +
∑
i

µidNi .

The free enthalpy (the Gibbs energy), G(T, P,N) = H − TS and

dG = −SdT + V dP +
∑
i

µidNi .

The grand potential, Ω(T, V, µ) = U − TS −
∑

i µiNi and

dΩ = −SdT − PdV −
∑
i

Nidµi .
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The entropic series starts from the entropy S(U, V,N) and

dS =
1

T
dU +

P

T
dV −

∑
i

µi

T
dNi .

Therefore, the main set of the intensive variables for the entropic series is

1

T
=
∂S(U, V,N)

∂U
,
P

T
=
∂S(U, V,N)

∂V
,−µi

T
=
∂S(U, V,N)

∂Ni

.

The Massieu function, Φ(T−1, V,N) = S − T−1U (= −F/T ) and

dΦ = −Ud
(
1

T

)
+
P

T
dV −

∑
i

µi

T
dNi .

The Planck function, Ξ(T−1, T−1P,N) = S − T−1U − T−1PV (= −G/T )

and

dΦ = −Ud
(
1

T

)
− V d

(
P

T

)
−
∑
i

µi

T
dNi .

All these functions are used for the definition of equilibrium. The main

definition for an isolated system is system follows the R. Clausius two main

laws formulated in 1865 [117]:

1. The energy of the Universe is constant.

2. The entropy of the Universe tends to a maximum.

More precisely, the entropy of the isolated system tends to a maximum under

given U, V and values of other conservation laws. Let the conservation laws

be given:

Bj =
∑
i

bjiNj ,
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then the equilibrium is the maximizer of the entropy under given values of

U , V and Bj:

S(U, V,N) → max subject to given U, V and {Bj} . (3.1)

Gibbs [118] paid much attention to the dual formulation of this condition:

U(S, V,N) → min subject to given S, V and {Bj} . (3.2)

Other definitions of the same equilibrium are available through the free en-

ergies and entropies. For the free energies this is condition of minimum.

Analogously to (3.2) we get

H(S, P,N) → min subject to given S, P and {Bj} ,

F (T, V,N) → min subject to given T, V and {Bj} ,

G(T, P,N) → min subject to given T, P and {Bj} .

(3.3)

For the free entropies the equilibrium should be the maximizer: in addition

to (3.1)

Φ

(
1

T
, V,N

)
→ max subject to given

1

T
, V and {Bj} ,

Ξ

(
1

T
,
P

T
,N

)
→ max subject to given

1

T
,
P

T
and {Bj} .

(3.4)

In extensive thermodynamics, V , U , S, and N are the extensive variables,

that is they are directly proportional to the system volume if we just join

several copies of the system with the proportional increase of the volume.
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Therefore, U(S, V,N) is a homogeneous function of the first order, and the

equation for dU can be easily integrated (this is the Euler theorem):

U = TS − PV +
∑
i

µiNi .

In this case,

H = U + PV = TS +
∑
i

µiNi ,

F = U − TS = −PV +
∑
i

µiNi ,

G = H − TS =
∑
i

µiNi ,

Ω = U − TS −
∑
i

µiNi = −PV ,

The free energies have a very important physical and technical sense. They

measure the available work under given conditions.

Free entropies coincide (up to some constant additions) with the entropies

of the minimal isolated system, which includes the system under considera-

tion. This statement was analyzed in detail in [80] but is still not very well

known. Therefore, let us prove it.

Physically, when we consider a system under an isothermal condition, this

means that the system is in contact with a large thermal bath. The state of

the thermal bath is characterized by two variables, UT and VT. The entropy

of a thermal bath is ST(UT, VT). The total entropy of the isolated system “a

system + the thermal bath” is

S̃(U, V,N, UT, VT) = S(U, V,N) + ST(UT, VT) .
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The equilibrium is the maximizer of the total entropy S̃ for given total energy

Ũ = U + UT, values of volumes V , VT and linear conservation laws {Bj}. In

particular,

∂[S(U, V,N) + ST(Ũ − U, VT)]

∂U
= 0 ,

∂S(U, V,N)

∂U
=
∂ST(UT, VT)

∂U

∣∣∣∣
UT=Ũ−U

.

(3.5)

This means that the temperatures of the thermal bath and the system are

equal, T = TT.

Let us take the conditional maximum function (under conditions U+UT =

Ũ , T = TT:

SΦ(Ũ , V,N, VT) = S(U, V,N) + ST(Ũ − U, VT)

= S(U, V,N) + VTST

(
Ũ − U

VT
, 1

)

= S(U, V,N) + VTST

(
Ũ

VT
, 1

)
− U

VT

= Φ+ VTST

(
Ũ

VT
, 1

)
+O(V −1T )

(3.6)

This function differs from the free entropy Φ by a constant ST(Ũ , VT) and

an infinitesimal O(V −1T ), which goes to zero when the bath increases.

Therefore, the free entropy Ψ (the Massieu function) is equal to the

entropy of the minimal isolated system, which includes the system under

consideration and the large thermal bath (up to a large constant and an

infinitesimal additions).

For the Planck function Ξ we have to consider a system under a constant
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pressure in the contact with the same large thermal bath. The only difference

is that instead of the internal energy of our system we have to take the

enthalpy. The enthalpy is the energy of the system plus the device, which

keeps the pressure constant (potential energy of a heavy piston of the given

weight). So, the total energy is the energy of the minimal isolated system

Ũ = H + UT and everything else is the same as for Φ: the free entropy

is the entropy of the minimal isolated system, which includes the system

under consideration, under condition of the partial equilibrium with auxiliary

systems and up to a constant summand.

For perfect systems, by definition,

U =
∑
i

Niui(T ) ,

PV = RT
∑
i

Ni ,

(3.7)

where ui(T ) is the energy of one mole of Ai at the temperature T .

Under this assumption, the entropy S is defined up to an arbitrary uni-

form function of first order S0(N):

S = RS0(N) +
∑
i

Ni

[
−R ln ci +

∫ T

T0

1

τ

dui(τ)

dτ
dτ

]
. (3.8)

If we assume that S0(N) is a linear function,

S0(N) =
∑
i

δiNi
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then

S =
∑
i

Ni

[
−R(ln ci − δi) +

∫ T

T0

1

τ

dui(τ)

dτ
dτ

]
, (3.9)

where ci = Ni/V is the concentration, T0 > 0 is a reference temperature (we

assume that on the interval [T0, T ] the system is perfect (3.7)).

It is necessary to stress that linearity of S0(N) does not follow from

the assumption (3.7) and is an additional hypothesis. For a general perfect

system (3.7) we can state that S0(N) is a uniform function of the first order

only.

Formulas (3.7), (3.9) allow us to express the free energy in the proper

variables, F (T, V,N):

F (T, V,N) = U − TS

=
∑
i

Niui(T ) +RT
∑
i

Ni

[
ln

(
Ni

V

)
− δi −

∫ T

T0

1

Rτ

dui(τ)

dτ
dτ

]
.

(3.10)

From this formula for F (T, V,N), all other thermodynamic functions can be

expressed locally:

S =
∂F

∂T
, U = F − T

∂F

∂T
, P = −∂F

∂V
, µi =

∂F

∂Ni

, . . .

Generalizations of the free energy for non-perfect systems are often produced

by transformations of (3.10). The first generalization describes a system of

small admixtures to a general system. Let the “background” system have

the extensive state variables M . Interaction of small admixtures is negligi-

ble and the formula PV = RT
∑
Ni describes the osmotic pressure of the
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admixtures. Then we can write, analogously to (3.10):

F (T, V,N,M) =F0(T, V,M) +
∑
i

Niui

(
T,
M

V

)

+RT
∑
i

Ni

[
ln

(
Ni

V

)
− δi

(
M

V

)
−
∫ T

T0

1

Rτ

dui
(
τ, M

V

)
dτ

dτ

]
.

(3.11)

Here, the energies ui and parameters δi are functions of densities M/V . For

each given value of these densities, this formula coincides with (3.10).

The first model of non-perfect gases is the van der Waals gas. To write

the free energy for this type of gas (or gas of admixtures) we have to take

into account two effects: the excluded volume per mole of particles Ai, vi,

and the energy of attraction for particles Ai, Aj with the energy density

ϵij = −aijcicj

(negative sign because this is the attraction). For the free energy these effects

give:

F (T, V,N) =
∑
i

Niui(T )− V
∑
ij

aij
Ni

V

Nj

V

+RT
∑
i

Ni

[
ln

(
Ni

V −
∑

i viNi

)
− δi −

∫ T

T0

1

Rτ

dui(τ)

dτ
dτ

]
.

(3.12)

For adsorbed particles on a surface, the model of an ideal adsorbed layer

implies a lattice of places, and a multicomponent gas with components A0 =

Z,A1, . . . , An where Z ia a free place and Ai are adsorbed particles on their
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places (each adsorbed particle occupies a place). There is a conservation law:

n∑
i=0

ci = θ = const ,

therefore, c0 = θ −
n∑

i=1

ci and the free energy has the form of the energy of

the Fermi-gas:

F (T, σ,N) =F0(T )σ +
n∑

i=1

Niui(T )

+RT

n∑
i=1

Ni

[
ln

(
Ni

σ

)
− δi −

∫ T

T0

1

Rτ

dui(τ)

dτ
dτ

]

+

(
σθ −

n∑
i=1

Ni

)(
ln

(
θ −

n∑
i=1

Ni

σ

)
− δ0

)
,

(3.13)

where σ is the surface area, F0(T )σ is the free energy of empty surface.

For the systems, distributed in space, the density of the free energy may

be expressed through the concentrations. For example, for the perfect system

(3.10)

f(T, c) =
F (T, V, cV )

V

=
∑
i

ciui(T ) +RT
∑
i

ci

[
ln ci − δi −

∫ T

T0

1

Rτ

dui(τ)

dτ
dτ

]
.

(3.14)

Therefore, for non-uniform system

F =

∫
V

f(T (x), c(x)) dx . (3.15)
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This formula is applicable if the space gradients are not too sharp. If f(T, c)

is a convex function of c then the minimizer of F (3.15) under given T , V and

N =

∫
V

c(x) dx (i.e. the equilibrium) is a uniform distribution and we should

not expect spontaneous appearance of singularities on the way to the equi-

librium. If f(T, c) is not a convex function of c then the minimizer of F may

be nonuniform, non-smooth and non-unique: phase transitions are possible.

In that case, the simple integral of the density f should be regularized by

additional terms. Now, the standard approach gives the Ginzburg–Landau

free energy:

F =

∫
V

ψ(T (x), c(x),∇c(x)) dx ,

ψ(T (x), c(x),∇c(x)) = f(T (x), c(x)) +
1

2

∑
i

λi(∇ci)2
(3.16)

More general dependencies of ∇c are also under consideration [119]. The

chemical potentials µi for the free energy (3.16) are defined as variational

derivatives of this functional,

µi =
δF

δci
=
∂f(T, c)

∂ci
− λi∆ci . (3.17)

Special analysis of the most general form of diffusion equations which provide

the proper decrease of the Ginzburg–Landau free energy (3.16) was provided

by Gurtin [119]. He introduced general nonlinear mobility matrices.

The kinetic laws should satisfy the thermodynamic restrictions. That

is, the dissipation should be positive. There are two physical forms of this

law: (i) the available work should decrease and (ii) the entropy of the mini-
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mal isolated system, which includes the system under consideration, should

increase. These two equivalent formulations correspond to two series of ther-

modynamic potentials: energetic or entropic series. There are several ap-

proaches to a general formalism, which pretend to describe all systems that

satisfy these monotonicity conditions [121, 122]. Such approaches form the

special discipline, nonequilibrium thermodynamics [123, 124, 125] or beyond

equilibrium thermodynamics [126].

Our goal is different: we construct a method for assembling of a complex

transport process from a mechanism combined by simple elementary pro-

cesses. This approach for physics should satisfy the basic thermodynamic

requirements.

3.1.2 Markovian Microkinetics and Generalized Mass

Action Law

To satisfy the thermodynamic restrictions the kinetic law of the elementary

reactions should have a special form, and the reaction rate constants for

different elementary reactions should be harmonized.

Let us start from a reaction mechanism given by the stoichiometric equa-

tions (2.9): ∑
i

αriAi →
∑
i

βriAi , (3.18)

where r is a reaction number, αri and βri are nonnegative numbers, the

stoichiometric coefficients.

In this subsection, we return to some ideas of Michaelis and Menten

[127] and to the Stueckelberg analysis of the Boltzmann equation [91] and
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represent the general kinetic law for elementary processes. Detailed analysis

was provided recently in [92].

This law could be proved under the following assumptions:

1. The elementary processes go through intermediate states (complexes

or compounds) 1.47 (Fig. 1.5):

∑
i

αriAi 
 B−r → B+
r 


∑
i

βriAi , (3.19)

where ρ is the elementary process number;

2. The amount of each compound Bρ is small enough to apply the perfect

free energy formula (3.11) for them;

3. The equilibrium between each compound and the corresponding linear

combinations of reagents is fast enough to apply the quasiequilibrium

approximation [92];

4. The transitions between compounds could be described by a contin-

uous time Markov chain (the Master equation or the monomolecular

kinetics).

The first three items of these assumptions correspond exactly to the cele-

brated Michaelis–Menten work [127]. Later, Briggs and Haldane [128] aban-

doned the assumption of fast equilibria and produced the so-called Michaelis

and Menten kinetic approximation. Original approach of Michaelis and

Menten (fast equilibria with intermediate compounds + small amounts of

compounds) was discovered again by Stueckelberg [91] almost 30 years later.
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It was applied not to the kinetics of catalytic reactions but to the collision

in the gas kinetics, as an alternative background of the Boltzmann equation.

Gorban and Shahzad [92] provided the detailed analysis of this approach to

the general kinetic equation.

Let the concentration of the intermediate compound Bρ (1.47) be ςρ.

The free energy (3.11) for the small admixture of compounds Bρ to the

components Ai may be represented in the form

F = V f(c, T ) + V RT

q∑
ρ=1

ςρ

(
ln

(
ςρ

ς∗ρ(c, T )

)
− 1

)
, (3.20)

where ς∗ρ be the standard equilibrium concentrations of Bρ. We assume that

the standard equilibrium concentrations ς∗ρ(c, T ) as well as the current con-

centrations ςρ are much smaller than the concentrations of Ai.

To formulate the results of Michaelis–Menten–Stueckelberg–Gorban–Sha-

hzad (MMSGS kinetics) we have to introduce the basic notions in more detail.

First of all, some of the formal linear combinations

(αr, A) =
∑
i

αriAi , (βr, A) =
∑
i

βriAi

may coincide. The same combination may be, simultaneously, the input

combination of several reactions and the output combination of several other

reactions.

We assume that a fast intermediate compound B··· corresponds not to

a reaction but to a formal complex of the form (αr, A) or (βr, A) and this

compound is the same for all reactions which include this complex. Let

119



us call the formal linear combinations of the form (αr, A) or (βr, A) the

complexes and enumerate them: Θ1, Θ2, ... , Θq. For each complex Θj, the

corresponding vector of coefficients (αr or βr) is yj: Θj = (yj, A).

The reaction mechanism (3.18) may be represented in the form Θj → Θs

for some pairs (j, s).

The additional component, the fast compound Bj, corresponds to each

complex Θj and the reaction mechanism Θj → Θs (for some pairs (j, s))

(3.18) is extended to

Θj 
 Bj → Bs 
 Θs for some pairs (j, s) . (3.21)

The fast equilibrium Θj 
 Bj gives

ϑj =
∑
i

yji
µi(c, T )

RT
, (3.22)

or

ςj = ς∗j (c, T ) exp

(∑
i yjiµi(c, T )

RT

)
, (3.23)

where

µi =
∂f(c, T )

∂ci

is the chemical potential of Ai and

ϑj = ln

(
ςj
ς∗j

)

(RTϑj = 1
V

∂F
∂ςj

is the chemical potential of Bj). For the systems with fixed

volume, the stoichiometric conservation laws of the monomolecular system
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of reaction between compounds are sums of the concentrations of Bj which

belong to various connected components of the reaction graph. Under the

hypothesis of weak reversibility there is no other conservation law.

Let the graph of reactions Bj → Bl have d connected components Cs and

let Vs be the set of indexes of those Bj which belong to Cs: Bj ∈ Cs if and

only if j ∈ Vs. For each Cs there exists a stoichiometric conservation law

βs =
∑
j∈Vs

ςj . (3.24)

For any set of positive values of βs (s = 1, . . . , d) and given c, T there exists

a unique conditional maximizer ςeqj of the free energy (3.20): for the com-

pound Bj, from the sth connected component (j ∈ Vs). This equilibrium

concentration is

ςeqj = βs
ς∗j (c, T )∑
l∈Vs

ς∗j (c, T )
(3.25)

Inversely, positive values of concentrations ςj are the equilibrium concentra-

tions (3.25) for some values of βs if and only if for any s = 1, . . . , d

ϑj = ϑl if j, l ∈ Vs (3.26)

(ϑj = ln(ςj/ς
∗
j )). This system of equations together with the equilibrium

conditions (3.23) constitute the equilibrium of the systems. All the equilibria

form a linear subspace in the space with coordinates µi/RT (i = 1, . . . , n)

and ϑj (j = 1, . . . , q).

Our expression for the free energy does not assume anything special about

the free energy of the mixture of Ai. For the compounds Bi, we assume that
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this is a very small addition to the mixture of Ai, neglect all quadratic terms

in concentrations of Bi and use the free energy of the perfect systems for this

small admixture. The Master Equation for the concentration of Bj gives:

dςj
dt

=
∑
l, l ̸=j

(κjlςl − κljςj) . (3.27)

This kinetic equation should respect thermodynamics. For the Master equa-

tion this means the equilibrium condition

∑
l, l ̸=j

κjlς
∗
l =

∑
l, l ̸=j

κljς
∗
j . (3.28)

Under this condition, the Master Equation (3.27) has the equivalent form:

dςj
dt

=
∑
l, l ̸=j

κjlς
∗
l

(
ςl
ς∗l

− ςj
ς∗j

)
. (3.29)

In this form, it is obvious that ς∗j is equilibrium for the kinetic equation.

All these expressions for concentrations of compounds and the Markov

reaction rates result in the following kinetic law:

1. The reaction rate of the reaction Θj → Θs is

wsj = ϕsj exp

(∑
i yjiµi(c, T )

RT

)
, (3.30)

where the quantity ϕsj ≥ 0 is a kinetic factor, in the Markov model it

corresponds to κsjς
∗
j ;
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2. The kinetic factors ϕsj satisfy the complex balance condition:

∑
s

ϕjs =
∑
s

ϕsj for all j , (3.31)

in the Markov model this identity corresponds to the equilibrium con-

dition (3.28).

This is the macroscopic MMSGS kinetics.

For this kinetics, the free energy decreases in time. To demonstrate this

dissipation inequality, let us formulate the macroscopic MMSGS kinetic equa-

tions in the original notations for the reaction mechanism (3.18). Formula

(3.30) for the reaction rate gives

wr = ϕr exp

(∑
i αriµi(c, T )

RT

)
, (3.32)

The kinetic equation under the isochoric conditions (the constant volume)

are

dc

dt
=
∑
r

γrwr , (3.33)

where the stoichiometric vector γr = βr − αr. According to this equation,

the dissipation rate is

dF

dt
= V

∑
r

(µ, γr)wr = V
∑
r

ϕr(µ, (βr − αr)) exp

(
(αr, µ)

RT

)
, (3.34)

where µi = ∂F/∂Ni is the chemical potential.
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Let us introduce an auxiliary function like we did it for MAL (2.25):

θ(λ) =
∑
r

ϕr exp

[
λ(αr, µ) + (1− λ)(βr, µ)

RT

]
. (3.35)

This function is convenient because

dθ(λ)

dλ
= −

∑
r

ϕr(µ, (βr − αr)) exp

[
λ(αr, µ) + (1− λ)(βr, µ)

RT

]
. (3.36)

Therefore, for the dissipation rate we get

dF

dt
= −V θ′(1). (3.37)

The function θ(λ) is a sum of exponents. It is convex (θ′′(λ) ≥ 0). Therefore,

if θ(0) = θ(1) then θ′(1) ≥ 0. This means that the identity

θ(0) ≡ θ(1) (3.38)

is a sufficient condition for the dissipation inequality

dF

dt
≤ 0 .

Some of vectors αr, βr may coincide. Let there be q different vectors among

them. We denote them by y1, . . . , yq. For each yi we define R+
i = {r |αr =
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yi}, R−i = {r | βr = yi}. The sufficient condition for the identity (3.38) is

∑
r∈R+

i

ϕr =
∑
r∈R−

i

ϕr for all i . (3.39)

This condition is also necessary if we can vary ϕr and µi independently and

the Jacobian |∂µi/∂cj| has the full rank. This condition is the complex balance

condition.

Of course, the important particular case of the complex balance conditions

is the detailed balance condition:

ϕ+
r = ϕ−r , (3.40)

where ϕ+
r , ϕ

−
r are the kinetic factors of the mutually reverse reactions: ϕ+

r

for (αr, A) → (βr, A) and ϕ
−
r for (βr, A) → (αr, A).

3.2 From Cell-Jump Models to Continuous

Diffusion Equations for Generalized Mass

Action Law

Let us start again from the stoichiometric mechanism of the diffusion:

∑
i

αI
riA

I
i +
∑
i

αII
riA

II
i →

∑
i

βI
riA

I
i +
∑
i

βII
riA

II
i . (3.41)

All the elementary processes have different numbers r and the space-inverted

and reverse processes are represented separately. Let us consider all pairs of
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vectors, (αI
r, α

II
r ) and (βI

r, β
II
r ) and numerate all the different pairs: y1, y2, . . .,

yq = (yIq, y
II
q ). For each yq there are two sets of reactions, R+

q , R
−
q :

R+
q = {r | (αI

r, α
II
r ) = yq} , R−q = {r | (βI

r, β
II
r ) = yq} .

The reaction rate for the elementary process (3.41) is (3.32):

wr = ϕr exp

(
(αI

r, µ(c
I, T )) + (αII

r , µ(c
II, T ))

RT

)
, (3.42)

The kinetic factors are functions of cI, cII and T . They should satisfy the

identity of complex balance (3.39). The cell–jump model gives us

J = −
∑
r

γrwr(c(x), c(x+ l))

=
∑
q

∑
r∈R+

q

αI
rwr(c(x), c(x+ l))−

∑
r∈R−

q

βI
rwr(c(x), c(x+ l))


=
∑
q

yIq

∑
r∈R+

q

wr(c(x), c(x+ l))−
∑
r∈R−

q

wr(c(x), c(x+ l))


(3.43)

The zero order term in l is

∑
q

yIq exp

(
(yIq + yIIq , µ)

RT

)∑
r∈R+

q

ϕr −
∑
r∈R−

q

ϕr

 = 0 .
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It vanishes because of the complex balance condition. The first order term

gives

J = l
∑
q

yIq exp

(
(yIq + yIIq , µ)

RT

)∑
r∈R+

q

ϕr

(
αII
r ,∇

( µ

RT

))

−
∑
r∈R−

q

ϕr

∑
j

(
αII
r ,∇

( µ

RT

)) .

(3.44)

Each term in this sum consists of the positive scalar pre-factor

l exp

(
(yIq + yIIq , µ)

RT

)

and the matrix

yIqi

∑
r∈R+

q

ϕrα
II
rj −

∑
r∈R−

q

ϕrα
II
rj


multiplied by

∇
( µj

RT

)
.

This structure of the formula for the flux is very similar to (2.65). Let us

follow the same logic as in Subsection 2.6 to find more convenient form of

the expression for the flux (3.44). First of all, let us group all terms with the

same pre-factor.

For the set of all vectors yIq + yIIq we use notation Z. For each z ∈ Z

Yz = {yq | yIq + yIIq = z} .

Analogously to (2.66) we get
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J = l
∑
z∈Z

l exp

(
(yIq + yIIq , µ)

RT

)
Jz ,

Jz =
∑
yq∈Yz

yIq
∑
j

∑
r∈R+

q

ϕrα
II
rj −

∑
r∈R−

q

ϕrα
II
rj

∇
( µj

RT

)
.

(3.45)

Let us analyze Jz for given z.

First of all,

∑
yq∈Yz

yIq
∑
j

∑
r∈R+

q

ϕrα
II
rj −

∑
r∈R−

q

ϕrα
II
rj

∇
( µj

RT

)
= 0

because each ϕr from this sum enters it twice, with the opposite signs, one

time as an element of the sum over R+
q for some yq ∈ Yz (with +) and the

second time (with −) as an element of the sum over R−s for another ys ∈ Yz

with the same sum

yIs + yIIs = yIq + yIIq = z .

(Let us recall that

αI
s + αII

s = βI
s + βII

s

for all s and, hence, if r ∈ R+
q and αI

r + αII
r = z then βI

s + βII
s = z and

(βI
s, β

II
s ) ∈ Yz.) Let us mention that yIq = z − yIIq . Therefore,

Jz = −
∑
yq∈Yz

yIIq
∑
j

∑
r∈R+

q

ϕrα
II
rj −

∑
r∈R−

q

ϕrα
II
rj

∇
( µj

RT

)
. (3.46)

In this formula, all the stoichiometric vectors are for the same cell, for the
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second one.

Let us demonstrate similarity of the expression (3.46) to some formulas

from the theory of Markov chains. Let us follow Subsection 2.6 and numerate

the states of the auxiliary Markov chain by vectors yq ∈ Yz. Elementary

processes correspond to transitions between states. Each nonzero kinetic

factor ϕr corresponds to two vectors yq, ys ∈ Yz: r ∈ R+
q and r ∈ R−s .

Let us substitute the index r by two indexes q, s and use notation ϕsq for

transitions yq → ys (i.e. for the case r ∈ R+
q and r ∈ R−s ).

The complex balance condition (3.39) reads:

∑
q

ϕsq =
∑
q

ϕqs . (3.47)

This is precisely the steady state condition for the Markov chain.

Inequality (2.74) holds for the kinetic factors:

∑
sq

πq(ϕqsπs − ϕsqπq) =
∑
sq

πqϕqs(πs − πq) ≤ 0 (3.48)

for any set of numbers πq.

For the proof of the dissipation inequality it is convenient to rewrite Jz

in these notations:

Jz =
∑
yq∈Yz

yIIq
∑
j

∑
s

(ϕqsy
II
sj − ϕsqy

II
qj)∇

( µj

RT

)
. (3.49)

Free energy in a domain V is

F =

∫
V

f(c, T ) dx .
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Let us estimate Ḟ in a bounded domain V with smooth boundary and without

fluxes through boundary for isothermal conditions.

dF

dt
= RT

∫
V

∑
j

(
∇x

( µj

RT

)
, Jj

)
dx

= l
∑
z∈Z

∫
V

exp

(
(yIq + yIIq , µ)

RT

)∑
j

(
∇x

( µj

RT

)
, Jz

j

)
dx .

(3.50)

Due to the representation of Jz (3.49),

∑
j

(
∇x

( µj

RT

)
, Jz

j

)
=
∑
q s

(πq, (ϕqsπs − ϕsqπq)) ≤ 0 , (3.51)

where πq is a space vector: πq =
∑
i

yIIqi∇x

( µj

RT

)
and for yq, ys

yIq,s + yIIq,s = z .

This expression has exactly the form (3.48) for each space coordinate. Finally,

∑
j

(
∇x

( µj

RT

)
, Jz

j

)
≤ 0 (3.52)

and it is zero if all πq =
∑
i

yIIqi∇ ln ci coincide. (The reverse statement is

correct if the auxiliary Markov chain with the transition coefficients ϕqs is

ergodic for given z.)

Therefore,

Ḟ ≤ 0
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for the generalized MAL (3.30) with the complex balance conditions (3.31).

3.3 Detailed Balance for Generalized Mass

Action Law and Dissipation Inequality

Systems with detailed balance form an important subclass of the generalized

MAL systems.

Let us join each elementary process with its reverse process and represent

the mechanism of diffusion by the pairs of mutually reverse processes:

∑
i

αI
riA

I
i +
∑
i

αII
riA

II
i 


∑
i

βI
riA

I
i +
∑
i

βII
riA

II
i . (3.53)

All the quantities for the direct process we mark by the upper index + and

for the reverse process by the upper index −. The simple algebraic relations

hold (see also (2.49)):

αI,II∓
ri = βI,II±

ri and γI,II∓ri = −γI,II±ri . (3.54)

Therefore,

αI+
ri + αII+

ri = βI−
ri + βII−

ri = αI−
ri + αII−

ri = βI+
ri + βII+

ri . (3.55)

Due to the principle of detailed balance,

ϕ+
r = ϕ−r = ϕr .
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The reaction rates are

w+
r (c

I, cII) = ϕr exp

(∑
i

αI
ri

µI
i

RT
+
∑
i

αII
ri

µII
i

RT

)
,

w+
r (c

I, cII) = ϕr exp

(∑
i

βI
ri

µI
i

RT
+
∑
i

βII
ri

µII
i

RT

)
,

(3.56)

The cell–jump model gives us (3.43)

J =
∑
r

Jr = −
∑
r

γr(w
+
r (c

I, cII)− w−r (c
I, cII))

=
∑
r

γrϕr

(
exp

(∑
i

αI
ri

µI
i

RT
+
∑
i

αII
ri

µII
i

RT

)

− exp

(∑
i

βI
ri

µI
i

RT
+
∑
i

βII
ri

µII
i

RT

))
.

(3.57)

In the first order, we get analogously to (2.51):

Jri = −lϕr exp

(∑
j

(αI
rj + αII

rj)
µII
j

RT

)∑
j

γriγrj∇

(
µII
j

RT

)
,

Jr = −lϕr exp

(
(αI

r + αII
r , µ)

RT

)
γr

(
γr,∇

( µ

RT

))
.

(3.58)

This expression for Jr has the form of the multicomponent Teorell formula

with the symmetric matrix of coefficients. This symmetry for nonlinear diffu-

sion gives us the generalization of the Onsager reciprocal symmetry [11, 12].

We represented the nonlinear multicomponent diffusion as a sum of elemen-

tary processes. For each elementary process

Jri = −dr
∑
j

γriγrj∇

(
µII
j

RT

)
, (3.59)
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where the scalar coefficient

dr = lϕr exp

(∑
j

(αI
rj + αII

rj)
µII
j

RT

)
> 0

is, from the thermodynamic point of view, an almost arbitrary positive quan-

tity (because it includes the kinetic factor ϕr). “Almost” here means that

some conditions of zero values (and the orders of these zeros) at the boundary

when some of ci = 0 are prescribed by the factor

exp

(∑
j

(αI
rj + αII

rj)
µII
j

RT

)

and the logarithmic singularity of µi when ci → 0.

The internal symmetry of this formula makes the dissipation inequality

obvious: in a bounded domain V with smooth boundary and without fluxes

through boundary for isothermal conditions

dF

dt
= RT

∫
V

∑
j

(
∇x

( µj

RT

)
, Jj

)
dx

= −l
∑
r

ϕr exp

(
(αI

r + αII
r , µ)

RT

)(
γr,∇

( µ

RT

))2
≤ 0 .

(3.60)

3.3.1 Generalization: Non-isothermal Processes

Extension of the generalized MAL (3.30) on the non-isothermal processes

is quite simple. Let us follow the paper [90] and include the “energetic

component” AU in the list of components. Instead of the stoichiometric
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equations (2.9), (3.18) we get:

∑
i

αriAi + αQAU →
∑
i

βriAi + βQAU , (3.61)

The corresponding macroscopic extensive variable for AU is the internal en-

ergy U with the density (“concentration”) u. To consider energy as the

additional extensive variable, we should take the main thermodynamic po-

tential for the isolated system from the entropic series. This is the entropy

S:

dS =
1

T
dU +

P

T
dV −

∑
i

µi

T
dNi .

Let us extend the formulas for the generalized kinetics by additional compo-

nent and take − 1
RT

instead of µi

RT
. All the formulas including the dissipation

inequalities remain the same.

In isolated (isochoric) systems, U̇ = 0 and

Ṅi =
∑
r

γriwr ,

where

wr = ϕr exp
[(
αr,

µ

RT

)
− αQ

RT

]
.

For transport processes, conservation of energy gives the following relations:

αI
Q + αII

Q = βI
Q + βII

Q .

The space gradient of − 1
RT

enters the multicomponent Teorell formula as an

additional force and the gradients of µi

RT
also enter the formulas for the heat
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flux. In particular, the simplest mechanism of transport,

αQA
I
U 
 αQA

II
U ,

generates the Fourier’s law:

JQ = −lαQϕ exp
(
− αQ

RT

)
∇
(
− 1

RT (x)

)
= −λ(T )∇T .

The thermodynamic consideration cannot produce the temperature depen-

dence of the thermal conductivity λ(T ) > 0. From the thermodynamic point

of view, ϕ here is an arbitrary positive quantity. The problem of tempera-

ture dependence of λ and its relations with other constants like diffusivity is

widely discussed from the kinetic point of view [129]. For computing thermal

conductivity various methods were developed including direct simulation and

the Green–Kubo approach [130]. These methods were compared in [131].

Thermodynamics may give the relations between different coefficients.

For example, the principle of detailed balance produces the multicomponent

Teorell formula with the symmetric matrix of coefficients (3.58). The nonlin-

ear reciprocal relations (3.59) could be automatically extended to the heat

flux: just use the heat flux JQ as additional flux and −1/RT instead µi/RT

for the component AU .

More relations we get for the specific mechanisms of transport. For ex-

ample, for the activation mechanism of diffusion

AI + αQA
I
U 
 AII + αQA

II
U (3.62)
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the fluxes are:

JA = −lϕ exp
(
µ− αQ

RT

)[
∇
( µ

RT

)
+ αQ∇

(
− 1

RT

)]
,

JQ = −lϕ exp
(
µ− αQ

RT

)[
αQ∇

( µ

RT

)
+ α2

Q∇
(
− 1

RT

)]
,

(3.63)

or in the matrix form JA

JQ

 = −lϕ exp
(
µ− αQ

RT

) 1 αQ

αQ α2
Q


 ∇

(
µ
RT

)
∇
(
− 1

RT

)
 . (3.64)

For the mechanism (3.62), the heat flux JQ is proportional to the diffusion

flux JA with the coefficient αQ, that is the activation heat. In this activation

mechanism, the activation heat travels with the particle from the cell I to

the cell II. We can, for example, assume different behavior of the activation

heat: let βQ distribute symmetrically after the diffusion jump:

AI + αQA
I
U 
 AII +

1

2
αQA

I
U +

1

2
αQA

II
U . (3.65)

For this mechanism, γU = −1
2
αU and

 JA

JQ

 = −lϕ exp
(
µ− αQ

RT

) 1 1
2
αQ

1
2
αQ

1
4
α2
Q


 ∇

(
µ
RT

)
∇
(
− 1

RT

)
 . (3.66)

The heat flux JQ should be supplemented by the heat transport together
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with particles,
∑
i

µiJi, [132]. The total heat flux is

q = JU = JQ +
∑
i

µiJi . (3.67)

To describe the energy balance properly we have to include the work of

various forces. The proper framework for modeling of the energy transport

gives continuum mechanics. In its simplest form, with fluid mechanics, we

present these equations in the next Section.

3.4 Momentum and Center of Mass Conser-

vation

In this subsection, we briefly discuss coupling of the diffusion and thermal

conductivity with fluid dynamics.

The heat and mass transfer should satisfy the general laws of mechanics

and, in particular, does not violate the Newton laws. The diffusion and heat

transfer equations do not present the complete theory and should be included

into the context of continuum mechanics.

First of all, let us introduce the mass average velocity. Letmi be the mass

of mole (gram-molecule) for the component Ai. For each diffusion flux Ji the

associated flux of mass is miJi. We introduced the fluxes Ji with respect to

a frame, which is connected to our cells. For continuum motion, this frame

should also move and we have to introduce the velocity of the frame, w. The

flux of Ai associated with w is ciw. The corresponding flux of mass is miciw.
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The total flux of Ai caused by diffusion and the frame motion is

J̌i = Ji + ciw .

The mass density is

ρ =
∑
i

mici ;

the momentum density is ∑
i

miJ̌i ;

the average mass velocity is

v =

∑
imiJ̌i∑
imici

= w +

∑
imiJi∑
imici

.

Both the frame velocity w and the average mass velocity v are unknown.

They are connected by the simple identity

v = w +

∑
imiJi∑
imici

,

where the individual diffusion fluxes Ji are given by the mechanism of diffu-

sion.

The standard definition of the diffusion fluxes includes fluxes in the local

center of mass frame where the average mass velocity is zero. Therefore, let

us introduce the “proper fluxes”:

Ji = J̌i − vci = J̌i − ci

∑
imiJ̌i∑
imici

= Ji − ci

∑
imiJi∑
imici

.
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These fluxes do not depend on the frame velocity. They are not independent

and are connected by the momentum conservation: the total momentum is

zero, ∑
miJi = 0 .

The heat flux in the local center of mass system is

JU =

(
JQ −

∑
imiJi∑
imici

u

)
+
∑
i

µiJi ,

where JQ is given by the transport processes mechanism.

For the energy flux, the standard approach [132] gives

v

(
ρv2

2
+ u+ P

)
+ JU + viscosity terms .

The conservation laws give:

∂tρ+ div(ρv) = 0 ,

∂t(ρv) + div(ρv ⊗ v) +∇P = divσ ,

∂t

(
ρv2

2
+ u

)
+ div

[
v

(
ρv2

2
+ u+ P

)
+ JU

]
= σ : ∇v ,

∂tci + div(vci + Ji) = 0 .

(3.68)

Here, σ is the viscous stress tensor and σ : ∇v =
∑
ij

σij(∂vi/∂xj). The

pressure P should be defined in accordance with thermodynamic properties

of the mixture, for example,

P = −∂F
∂V

=
∑
i

ci
∂f(c, T )

∂ci
− f(c, T ) ,
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where f(c, T ) is the density of the free energy.

The viscous stress tensor should be derived in (3.68) from the additional

closure assumption. For the Newtonian liquid,

σij = µ

(
∂vi
∂xj

+
∂vj
∂xi

)
+ δij

(
ζ − 2

3
µ

)
divv ,

where µ (here and only here) is the shear viscosity and ζ is the bulk viscosity.

The individual equations in (3.68) are not independent. For example, the

sum of the equations for conservation of Ni with coefficients mi gives us the

first equation, the conservation of mass.

The elastic energy and the various viscoelastic terms may be added to

this picture. This is necessary to do and it is in our future plans.

3.4.1 Mechanisms of Transport and the General Forms

of Macroscopic Equation

We developed a formalism of the mechanism of diffusion and heat conduc-

tion represented by the system of stoichiometric equations with the simple

kinetic law exp(α, µ/RT ) and the balance condition (complex balance for the

general Markov microscopic kinetics and detailed balance for systems with

microreversibility). This formalism produces equations which are particular

cases of the general nonequilibrium thermodynamic equations [123, 126]. It

is a very simple task to demonstrate that our transport equations are partic-

ular cases of the GENERIC formalism [121, 126]. Due to this two–generator

formalism, evolution of any smooth function A of the state variables x is
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given by

dA

dt
= {A,E}+ [A, S]

where E and S are the total energy and entropy, and {·, ·} and [·, ·] are

Poisson and dissipative brackets, respectively.

The formulas for fluxes produced in this section have the form of dissipa-

tive brackets:

[A, S] =
δA

δx
M
δS

δx
,

where M is a symmetric positively semidefinite operator, “the friction ma-

trix”.

The general form of the “dissipative brackets with constrains” in appli-

cation to multicomponent diffusion was produced very recently [133]. The

flux of the ith component Ji in that formalism was presented by formula (54)

[133]:

Ji = −
∑
j

Λc
ij

[
∇
(µj

T

)
+ Λ′j∇

(
− 1

T

)]
.

Our formulas belong to this type and give particular expressions for coeffi-

cients Λ.

In the paper [133], a precise comparison of this formula with the classical

expressions from [123] was presented and the equivalence of these general

forms was proved. Now, we can just refer to these results.

In addition to the general form, our approach gives the possibility to

build the model from elementary processes. This construction also satisfies

the “constrains” (conservation laws) of diffusion because these conservation

laws are implemented in the algebra of the stoichiometric coefficients (2.30).
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3.5 Conclusion

Chemical kinetics gave rise to the very seminal approach of the modeling of

processes. This is, the stoichiometric algebra supplemented by the simple

kinetic law. The results of this invention are now applied in many areas

of science, from particle physics to sociology. In our work we extend the

area of applications to nonlinear multicomponent diffusion. These results

are published in [1]

We demonstrated, how the mechanism based approach can be included

within the general thermodynamic networks and proved the corresponding

dissipation inequalities. To satisfy thermodynamic restrictions, the kinetic

law of an elementary process cannot have an arbitrary form. For the general

kinetic law ϕ exp(α, µ/RT ) (the generalized Mass Action Law), additional

condition on the set of kinetic factors ϕ are needed. There are two main sets

of these conditions. The historically first of them, the condition of detailed

balance, follows from the special property of the underlying microscopic dy-

namics, microreversibility. It was used by Boltzmann for his equation and

then by many researchers like Wegscheider [99], Einstein [98], and Onsager

[11]. The second and more general condition was discovered by Stueckelberg

in 1952 [91] in application to the Boltzmann equation. It received the name

“complex balance” ten years later in the works of Horn and Jackson [89]

and Feinberg [87]. Recently, it was demonstrated how this condition can be

deduced from the quasiequilibrium and quasi steady state approximations

from Markov kinetics [92].

Explicit formulas for nonlinear multicomponent diffusion combined from
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elementary processes can help in the practice of modelling (and already

helped [14]). The cell–jump formalism gives an intuitively clear represen-

tation of the elementary transport processes and, at the same time, produces

kinetic finite elements, a tool for numerical simulation.

There remain many questions for the future work:

• It is necessary to extend the experience of modeling of real systems;

• The analysis of diffusion in solids should be properly coupled with the

mechanics of solids. The detailed quantitative theory of the Kirkendall

effect may be a proper challenge here;

• The mechanism representation should be extended to viscosity and

viscoelasticity;

• The kinetic finite elements approach should be modified and extended

to include continuum mechanics, perhaps, by proper joining with the

lattice Boltzmann models approach;

• Possible stoichiometric mechanisms of anomalous diffusion should be

studied.
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[99] Wegscheider R., Über simultane Gleichgewichte und die Beziehungen

zwischen Thermodynamik und Reactionskinetik homogener Systeme,

Monatshefte für Chemie / Chemical Monthly 32 (8) (1911), 849–906.

[100] Mahan B.H., Microscopic Reversibility and Detailed Balance. An Anal-

ysis, J. Chem. Educ. 52 (1975), 299–302.

[101] Zeldovich Y.B., Proof of the uniqueness of the solution of the equations

of the law of mass action, In: Selected Works of Yakov Borisovich

Zeldovich; Volume 1, Ostriker, J.P., Ed.; Princeton University Press:

Princeton, NJ, USA, 1996; pp. 144–148.

[102] Gorban A.N., Singularities of Transition Processes in Dynamical

Systems: Qualitative Theory of Critical Delays, Electron. J. Diff.

155



Eqns., Monograph 05, 2004. E-print: http://arxiv.org/abs/chao-

dyn/9703010.

[103] Lyon R.J.P., Time aspects of geothermometry: Mining Eng. 11 (1959),

1145–1151.

[104] E. Seneta, Nonnegative Matrices and Markov Chains, Springer, New

York, 1981.

[105] P. Van Mieghem, Performance Analysis of Communications Networks

and Systems, Cambridge University Press, Cambridge, 2006.

[106] Lotka A.J., Elements of physical biology. Williams and Wilkins, Balti-

more, 1925.

[107] Volterra V., Variazioni e fluttuazioni del numero d’individui in specie

animali conviventi. Mem. R. Accad. Naz. dei Lincei 2(1926), 31–113.

[108] Fisher R.A., The genetical theory of natural selection, Oxford Univer-

sity Press, Oxford, 1930.

[109] Gause G.F., The struggle for existence, Williams &Wilkins, Baltimore,

1934.

[110] Gurney W.S.C, R.M. Nisbet, A note on nonlinear population transport.

J. Theor. Biol. 56 (1976), 249–251.

[111] Hengeveld R., Dynamics of Biological Invasions. Chapman and Hall,

London, 1989.

156



[112] Shigesada N., Kawasaki K., Biological Invasions: Theory and Practice.

Oxford University Press, Oxford, 1997.

[113] Petrovskii S.V., Li B. L., Exactly Solvable Models of Biological Inva-

sion, Chapman & Hall / CRC Press, Boca–Raton–London–New York–

Washington D.C., 2006.

[114] Kirkendall E.O., Diffusion of zinc in alpha brass, Trans. Am. Inst. Min.

Metall. Eng. 147 (1942), 104–110.

[115] Nakajima H., The discovery and acceptance of Kirkendall effect: The

result of a short research career, JOM 49 (1997), 15–19.

[116] Narasimhan T.N., Energetics of the Kirkendall effect, Current Science

93 (9) (2007), 1257–1264.
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