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Abstract

Automatic Classification of Neural Data

Juan Mart́ınez Gómez

In this thesis we present a new solution for an automatic classification of the
single-neuron activity. The study of the computational role of individual neurons
underlying different cognitive process is a gold standard in Neuroscience. This
type of analysis is done first, by recording the extracellular spikes of the neurons
near the tip of a microelectrode and second, by isolating the spikes of the recorded
cells based on the similarity of their shapes using a method called spike sorting.

In recent years, important advances in microelectrode technology allow us
now to perform massive parallel recordings using a high number of channels with
the possibility to study the activity of large ensembles of neurons at a time.
However, this fascinating opportunity introduces at the same time a challenge
for the efficient and fast analysis of this data.

In this research work, we address this problem by developing a new im-
plementation for unsupervised spike sorting that improves the performance of
a widely-used spike sorting algorithm, increasing the number of automatically
identified neurons. Moreover, we developed a new testing platform which gene-
rates simulations of extracellular recordings including challenging conditions such
as realistic noise, multi-unit activity -spikes of distant neurons impossible to be
identified as single units- or the presence of neurons with low firing rates.

In summary, the results presented here provide contributions to the deve-
lopment of automated and efficient quantitative frameworks for the analysis of
multiple-channel recordings that help us to understand single-neuron population
codes.
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Chapter 1

Motivation

One of the most attractive challenges in science is to understand how the brain

works. How do different performances of individual nerve cells give rise to percep-

tion, movement, learning or memory? How do patterns of connections between

neurons are related to behaviour? How are these neurons and their connections

modified by experience? A well established methodology to address these ques-

tions is to study the extracellular activity of the individual neurons underlying

cognitive processes.

Recording extracellularly from single cells, by positioning conductive mi-

croelectrodes near their cell body, permits us to see groups of neurons in action.

Single-cell recordings have been performed in different regions of the brain in

order to associate the role of individual neurons with specific mental processes

such as vision, perception, movement, memory or consciousness.

In the visual cortex, located in the occipital lobe, neurons were found to

encode basic image features such as local orientation at particular spatial loca-

tions (Hubel and Wiesel, 1962; Gallant et al., 1993), which contribute to the

understanding of the neural computations during the early stages of the visual

processing. Also, recordings in the inferior temporal lobe (IT) led to the discov-

ery of neurons that process more complex visual stimuli such as faces or objects

(Gross et al., 1969, 1972; Desimone et al., 1984; Logothetis et al., 1994; Tanaka,

1996), leading to the association of IT to the final stages of visual processing.

2



CHAPTER 1. MOTIVATION 3

Important advances in the study of movement have been made by means

of analysing the extracellular activity of individual neurons in different brain

regions. For example, recordings in the arm area of the motor cortex in mon-

keys had contributed to the understanding of how the neural coding underlying

movement direction (Georgopoulos et al., 1986) or the intention of movement

(Snyder et al., 1997). These findings had led to the development of exciting and

promising clinical applications that might help in the treatment of paralysed pa-

tients. This relatively new and popular discipline called Brain-machine interface,

studies the activity of large population of neurons in specific areas of the brain

related to motor action (e.g. motor cortex, posterior parietal cortex) to extract

optimal commands that make possible the control of prosthetic limbs (Nicolelis,

2001; Serruya et al., 2002; Andersen et al., 2004).

In the late seventies, extracellular recordings started to be done in the

human brain (Halgren et al., 1978) for clinical reasons. These studies showed that

high-level representation areas like medial temporal lobe (MTL) (Fried et al.,

1997), respond to different images of faces, animals, objects or scenes (Fried

et al., 1997; Kreiman et al., 2000). Recent investigations, also recording the

activity of single cells in the human MTL, showed neurons very selective activated

by pictures of given individuals, landmarks or even by letter strings with their

names, suggesting a role of MTL neurons in the transformation of complex visual

perceptions into long-term and more abstract memories (Quian Quiroga et al.,

2005).

The analysis of single-cell responses given a particular cognitive process,

such the ones described above is done by first isolating the observed action poten-

tials (spikes) into the responses of different putative neurons. The spike shapes

associated with each neuron depend mainly on its morphology and its spatial

location with respect to the recording electrode (Gold et al., 2006); therefore

an electrode will be able to record in principle different spike shapes for each

neuron in the surroundings. Spike shape features are extensively used for the

classification of single-cell activity. The grouping of spikes shapes into clusters
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based on the similarity of their features is called spike sorting (Lewicki, 1998;

Quian Quiroga, 2007).

As described by Buzsaki (2004) the number of sorted cells (up to 20) is much

smaller than the number of theoretically recordable neurons (∼ 1000). The re-

maining cells may be silent neurons (Shoham et al., 2006), which only fire when

very specific stimulus are presented, like images of individuals (Quian Quiroga

et al., 2005, 2008) or when an animal is in specific locations in an environment

(”place cells”) (O’Keefe, 1976, 1979; Brun et al., 2002). These neurons could also

be dead or damaged due to short and long term effects of electrode insertion on

surrounding tissue (Rousche and Normann, 1998; Claverol-Tinture and Nadasdy,

2004) or remain undetected due to limitations in the current spike sorting algo-

rithms (Pedreira et al., under revision). Improvements in electrode and spike

sorting technology are therefore an indispensable step for a rigorous study of the

role played by single neurons in different cognitive processes.

Advances in microelectrode technologies allow us now to analyse the acti-

vity of hundreds of neurons using extracellular multielectrode recordings (Nicolelis

and Ribeiro, 2002). This, together with the increasing storage capacity, gives the

opportunity to process massive amounts of data produced by large ensemble of

neurons during large periods of time. The tremendous capacity of these new tech-

nological platforms for the analysis of large-scale data sets will be fully optimised

with the use of unsupervised spike sorting algorithms. Automatic clustering will

definitely increase the speed of the detection and sorting of single-units and at

the same time will improve the outcome performance avoiding the errors due to

subjectivity in the manual intervention.

In recent years, significant improvements have been made in the deve-

lopment of spike sorting algorithms. One relevant example is Wave clus (Quian Quiroga

et al., 2004), a widely used method which has been proved to identify neurons

with very sparse activity in the human MTL (Quian Quiroga et al., 2005, 2008).

This algorithm does not depend on assumptions about the structure of the data

and has good performance even with few spikes per cluster, as in the case of
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sparse neurons. Although Wave clus provides a first unsupervised solution, some

neurons have been only identified by further intervention of an expert operator,

changing sometimes the quality of the data depending on which person performed

the analysis. In large-scale recordings using multiple electrodes, supervised spike

sorting turns to be a very time consuming task and at the same time increments

the human errors, decreasing the optimal performance of the spike separation

(Harris et al., 2000) with the number of channels. An efficient automatic spike

sorting algorithm is crucial for the analysis of large-scale population of neurons

contributing also to the development of optimal on-line spike sorting frameworks,

where manual intervention is not possible.

The development of robust tools for the analysis of extracellular recordings

strongly depends on the quality of the test and measurement platform used.

The development of simulation environments providing realistic and challenging

scenarios are crucial for the optimal design of spike sorting algorithms. Features

such as coloured background noise, multiunit activity, sparse single-unit activity

or electrode drifts are challenging components typically found in real extracellular

recordings. Synthetic data sets able to generate this type of features would

provide with very realistic frameworks in which develop robust unsupervised

spike sorting algorithms. Moreover, the combination of both simulations and

automated analysis tools might be used to create platforms that allow us to study

for example the effects of different recording conditions in neural population

coding (Quian Quiroga, 2009) or electrode designs (Robinson, 1968).

1.1 Organization of the Thesis

The organization of this thesis is as follows. In part I, I present the motivations

that lead to the development of this research and I introduce relevant matters to

this work. Part II is dedicated to expose the results obtained in this thesis. In

particular, In Chapter 3 I present the development of a new simulation platform

in which I tested a new solution for unsupervised sorting, described in Chapter
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4. Finally, in Part III I summarise the discussions of the corresponding findings

and I describe the suggestions for future work.



Chapter 2

Theoretical Background

In this chapter I introduce the theoretical background concerning the research

work described in this thesis. In this introduction, I cover some of the key areas

relevant to the automatic classification of the extracellular activity of single-cells.

I first present a brief overview of the most common techniques used to explore

the brain activity as well as some of their main characteristics and limitations.

I later focus on some of the key aspects of the extracellular potentials and their

role in the classification of single-cells as well as the technology used for recording

from individual neurons. Finally, I introduce the concept of spike sorting and I

describe the methodology as well as its crucial role in the analysis of the activity

of individual neurons.

2.1 Techniques to Study the Brain Activity

There are several methods to explore the brain activity. Each of the existing

techniques is characterised by a specific temporal and spatial resolution. In

experiments on a neuronal network level, the ideal smallest temporal resolution

would correspond to the time scale of an action potential which is in the order of

milliseconds. On the other hand, the desired spatial resolution depends on the

type of scientific question that one is interested to address.

At the moment, none of the current methods is capable of providing the

7
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optimal spatiotemporal resolution to study the brain at all topographical levels.

Therefore, different methods are used (or a combination of them) depending of

the level of resolution required in each study.

One of the most popular techniques used by Neuroscientists is the Elec-

troencephalography (EEG). This method measurers the electrical activity of the

brain by placing multiple electrodes on the scalp of the subject. Each EEG elec-

trode records the average extracellular activity of a cortical area on the order

of 10cm2 (Buzsaki, 2006). The spatial distribution of the electrodes, covering

all the areas of the cortical surface, together with its high temporal resolution

(within the millisecond scale) makes this technique very attractive to study the

simultaneous activation of different areas during the course of an experiment.

However, EEG recordings do not have enough spatial resolution to study what

single neurons do.

A similar technique, measuring in this case the magnetic fields of the brain

instead of its electrical activity, is the Magnetoencephalography (MEG). This

method records the activity of the brain from outside the skull and therefore, as

in the EEG, it is also a non-invasive technique although in this case, no electrodes

are placed on the scalp of the subject. Recording from the magnetic activity of

the brain provides a better spatial resolution (<1cm) than the obtained from the

electric fields since the magnetic signal is not scattered by the inhomogeneities of

the skull and the scalp (Hamalainen et al., 1993). The MEG has also the same

good temporal resolution as the EEG, offering in principle a better spatiotem-

poral compromise. However, despite of the good spatial resolution is still not

accurate enough to study brain computations at the single-neuron level.

Probably the most popular non-invasive technique to study the brain in a

cognitive level is the functional magnetic resonance imaging (fMRI). FMRI mea-

sures tissue perfusion, blood-volume changes and changes in the concentration

of oxygen in the brain. When neurons fire, the blood flow in the nearby re-

gions increases as a response to increments in their energy consumption. These

biophysical phenomena are used as an indirect technique to record from the neu-
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ronal activity. A widely used measure in fMRI to quantify this phenomenon is

the blood-oxygen-level dependence (BOLD) contrast mechanism (Ogawa et al.,

1990). Among the principal advantages of using the BOLD signal are its non-

invasive nature and the possibility to record from the activity of the entire neu-

ronal networks in different brain areas at relatively high spatial resolution. Stu-

dies in animals, reported resolutions as high as 0.25× 0.25 mm2 with a slice

thickness of 2 mm (Goense et al., 2007). However, using the fMRI signal presents

also some limitations which might be crucial depending on the type of research

question to be addressed. Recording from the BOLD signal, with peaks obtained

after a couple of seconds of the start of neuronal spiking activity (Logothetis,

2008), introduces important delays if one wants to study how information is

processed and propagated through the neuronal substrate. This limitation will

not allow the study of particular cognitive processes in which their temporal

resolution is lower than the response of the BOLD signal.

At this point, it is important to remark that methods such as EEG, MEG or

fMRI, despite of their particular spatiotemporal limitations, still provide a major

advantage: the non-invasive access to the human brain. This, of course, has great

relevance in a scientific level but also tremendous implications in clinical neuro-

science and medical diagnostic in areas such as epilepsy or autism. Although,

these techniques provide valuable insights about the local neural activity under-

lying different brain functions, they do not provide direct information about how

individual neurons and their collective behaviour give rise to cognitive process.

It is therefore necessary to use methods capable of measuring the spiking activity

of single cells such as optical imaging or extracellular recordings.

During recent years, optic methods have been increasingly used in neuro-

science. They provide the best spatial resolution, up to the micrometer scale,

while covering at the same time relative large areas of the cortical surface. With

this technique, the detection is done by sensing changes in the optical proper-

ties of the brain tissue using photon-detecting arrays (Denk et al., 1990). The

temporal resolution usually depends on the molecular transducer, used to trans-
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form changes in the membrane potentials into optical signals, and also on the

photodetection device. Up to date, the best optical technique is the recent two-

photon laser scanning microscopy (2-PLSM). The method uses a powerful laser

which is capable of recording signals from deeper layers into the neocortex using

a microscope that captures the photons generating an accurate three dimensional

image (Grinvald and Hildesheim, 2004). Despite its powerful spatiotemporal re-

solution, the 2-PLSM is still being developed to obtain a high enough temporal

resolution to identify single neurons. Moreover, the 2-PLSM signal, as in some of

the techniques mentioned earlier, does not provide a direct measure of the spik-

ing activity of the local neurons and in some cases it is difficult to interpret the

optical output and isolate its neuronal nature from other non-neuronal sources

of fluorescence.

Recording from individual neurons using intracellular electrophysiology all-

ows the analysis of neural activity with high spatiotemporal resolution. In this

method, the measurements are typically done in brain slices or anesthetized

animals. This method allows the study of the neural activity at different to-

pographical levels, from single cells to neuronal networks. Moreover, using this

technique it is possible to inject different drugs into a particular cell and study

the effects of different chemicals on the local neuronal circuits. Also, it is possible

to establish relationships between a type of cell (i.e. pyramidal, interneuron) and

its corresponding role in a particular neural computation. However, despite the

tremendous potential of this technique and extensive ongoing research, intrace-

llular electrophysiology only obtains signals from one cell at a time and usually

does not allow the study of the neural mechanisms of cognitive processes during

behaviour or connectivity with other areas of the brain.

To date, the most widely used method to record directly from groups of

individual neurons in action is with extracellular electrophysiology (Hubel and

Wiesel, 1962). Extracellular electrophysiology consists in sensing the action po-

tentials of neurons near their cell body by using a voltage-sensing microelectrode,

which consists of a microwire in the scale of micrometers insulated except in the
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tip (Hubel, 1957). This intracortical probe records an electrical signal with con-

tributions from mainly two different sources of neural activity: i) the Local Field

Potentials (LFPs) and ii) the spiking activity of neurons. LFPs are represented

by the slow fluctuations of the recorded signal, typically associated with the input

activity of neurons nearby the electrode (Buzsaki, 2006). On the other hand, the

action potentials represent the output activity of the cell. In the next sections

we describe in more detail the role of the extracellular signals for the study of

the brain activity.

2.2 Neuronal Action Potentials

Extracellular action potentials convey a great amount of information for the

study of neural computation by single-cells. The timing at which these extrace-

llular spikes occur, together with their frequencies of discharge (firing rate) form

the base of a numerous scientific discoveries about how populations of individual

neurons codify a specific cognitive process (Averbeck et al., 2006; Quian Quiroga

and Panzeri, 2009). Spike times are used to quantify how much information about

a certain stimuli is encoded by single-neurons (Rieke et al., 1997). Depending

on the type of coding, this information might be carried by a significant change

in the number of spikes fired within a particular time window, independently

of when they occur (Adrian, 1928; Rieke et al., 1997) or by a particular time

pattern of each spike train (Optican and Richmond, 1987; Victor and Purpura,

1996) or even by irregularity modulations in the firing rates (Softky and Koch,

1992; Shadlen and Newsome, 1998).

The precise timing or frequency of a spike train are essential for the analysis

of single-cell activity. Nevertheless, the waveform of these action potentials is at

the same time important for the identification of different units present during

an extracellular recording. It is assumed that, near the tip of an intracortical

microelectrode, each neuron exhibits action potentials whose waveforms differ

in amplitude and shape. These differences are mainly due to the position and
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geometry of the recording electrode and the spatial distributions of currents in

the neuron (Fee et al., 1996b; Gold et al., 2006).

If one considers a cell as a point of charge and the extracellular medium

as an isotropic volume conductor of resistivity ρ, the extracellular potential Φ

propagates with an inverse r-law following the Coulomb’s law

Φ =
ρI

4πr
(2.1)

where I is a point source of current and r is the distance from the cell to the

recording electrode (Plonsey, 1969; Holt and Koch, 1999; Gold et al., 2006).

However, at distances near the cell body, this amplitude-distance relationship

might not be consistent with the experimental results presented by Henze et al.

(2000) in which simultaneous intracellular and extracellular recordings showed a

rapid decrease in the spike amplitude with distance from the neuron. Moreover,

the basic theoretical approach mentioned earlier does not explain the waveform

shape variability also found in these types of experiments and it does not include

any knowledge about the morphology of the neuron or possible inhomogeneities

within the extracellular medium (Gold et al., 2006).

Following the existing knowledge about dendritic neurons (Ramon y Cajal,

1909), the effects of the cell morphology on the shape of extracellular poten-

tials were first studied by Rall (1962) using mathematical models to analyse the

distribution and interaction of currents in soma and dendrites.

Further works on the electrophysiological properties of extracellular po-

tentials, identified different sources of spike waveform variability, extrinsic and

intrinsic to the neuron (Fee et al., 1996b). Extrinsic variability is associated to

the background noise produced mainly by distant neurons and other sources of

high-frequency electrical activity such as fast synaptic currents (Farrant et al.,

1994). On the other hand, the sources of intrinsic variability are believed to be

associated for example to spatial distributions of currents in the soma and in the

dendritic tree of the particular cell, electrical interactions between nearby neu-
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a b

Figure 2.1: Examples of variability in the recorded spike shapes of a single neu-
ron. (a) Computational model of a dendritic pyramidal cell in which the extra-
cellular waveform generated in the soma has been computed at different locations
within the extracellular space (Gold et al., 2006). (b) Real extracellular record-
ings from the activity of a pyramidal cell showing the variability of the wave
shape in each one of the recording channels (Harris et al., 2000).

rons or burst firing activity (McCormick et al., 1985; Henze et al., 2000). These

electrophysiological phenomena were analysed by means of highly-detailed com-

putational models of dendritic neurons in order to study the origins of the extra-

cellular waveforms and its relation with the intracellular action potentials (Holt

and Koch, 1999; Gold et al., 2006). These powerful mathematical models al-

low the simulation of many types of neurons with different patterns of dendritic

branching. These synthetic neurons are typically enclosed on an extracellular

space, described as a purely ohmic conductor volume (Plonsey, 1969; Holt and

Koch, 1999) in which the action potential waveforms are computed on different

locations within this medium (Figure 2.1a).

2.3 Extracellular Recordings

In single-cell recording experiments, the intracortical electrode placed in the area

of interest, records the activity of all the spiking neurons in the vicinity of the

electrode tip. The electrode impedance is the main feature for single neuron

recordings and it is determined by the material of the electrode and its diameter.
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The smaller the diameter, the higher the impedance and the smaller the radius

of the cylinder from which the electrode can obtain recordable cells.

In some experiments when small electrodes are needed (i.e. to minimize

tissue injury during the insertion), to lower its impedance the tip has to be

plated with for example platinum black or gold (Robinson, 1968). In a typical

electrode with a diameter of approximately 12-25 µm, the activity of a single

neuron is recordable at distances up to 50 µm away from the tip (Buzsaki, 2004).

A sphere with such a radius contains approximately 140 neurons, which is the

upper theoretical limit of recordable neurons for a single electrode. From 50 up to

approximately 140 µm, the single-cell activity recorded by the electrode has low

levels of signal-to-noise ratio that makes it not possible to identify the differences

in the spike shapes of each individual neuron. These spikes are known as multi-

unit activity and also contain valuable information about local computations

(Stark and Abeles, 2007). 1

In recent years, the electrode technology has considerably improved, moving

more and more towards probes with multiple channels capable of performing

massive parallel recordings from large ensemble of neurons. One of the most

popular probes is the Utah Array, developed by Rousche and Normann (1998)

with 100 silicon microelectrodes. The distribution of the channels in a matrix of

10 × 10 makes this type of probe suitable for recording from neurons located in

a single layer, approximately up to 1.5 mm beneath the cerebral cortex. Another

popular multiarray of microelectrodes is the Michigan Probe (Drake et al., 1988;

Hetke et al., 1994). This electrode, with channels distributed lengthwise along

the shank allows the simultaneous recording of neurons within cortical columns.

This type of probe is able to record extracellular action potentials from different

parts of the same neuron to study, for instance, the relationship between the

recording sites and the spike waveform (Henze et al., 2000).

1Ison et al., (to be submitted) presented a quantitative approach to measure the differences
between single- and multi-unit activity comparing the classification performance of a set of
experimental recordings using several features including the first moments of the spike shape
amplitude distribution or the proportion of ISI smaller than 3ms.
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After an extracellular recording is performed, a second step, which includes

the separation of the single-cell activity from the background noise, has to be

done using spike sorting algorithms. As mentioned earlier, from the spike data,

those waveforms generated by far-away neurons will typically present a lower

signal-to-noise ratio and will be grouped as multi-unit.

2.4 Isolation of Single Neuron Activity

A crucial step in the analysis of spike trains is the correct isolation of the ac-

tivity of individual cells. Due to the arguments described in Section 2.2, the

characteristic spike shape of each neuron provides specific features that allow

their separation. These differences in the spike shapes are used by spike sorting

algorithms to classify the detected extracellular action potentials into groups and

identify the activity of the different putative neurons present during the exper-

iment (Quian Quiroga, 2007). Figure 2.2 shows an example of an extracellular

recording scenario (left) in which one multi-unit and two single units of simi-

lar amplitude, detected from the continuous data (right-top blue plot), present

differences in their spike shapes which are used by spike sorting algorithms for

classification.

Under some conditions, the variability of the spike shapes might turn into

a major cause of sorting errors since different recorded extracellular waveforms

might be generated by the same neuron. Some cells, during states of burst-

ing activity, may produce spikes with significant differences in their amplitudes

(McCormick et al., 1985; Henze et al., 2000). In some experiments especially

in chronic implants on freely behaving animals; possible electrode drifts might

place the recording channel on different locations within the same neuron. Si-

multaneous intracellular and extracellular recordings showed how extracellular

spikes generated by the same neuron may dramatically change, not only their

amplitude but also their shapes if recorded from different locations (Harris et al.,

2000; Henze et al., 2000). Figure 2.1b shows the differences between the spike
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Filtering

Spike detection 

Spike sorting

Multi-unit Single-unit 2Single-unit 1

Figure 2.2: After amplification and filtering, the extracellular recording shows
the spiking activity of single units on top of the background noise (right-top blue
plot). After detection, the multi- and single-unit activity is identified using spike
sorting (bottom).
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waveforms recorded on each one of the sites of a multichannel electrode placed

nearby a pyramidal cell (Harris et al., 2000).

Another frequent source of classification errors might occur when similar

neurons at similar distances from the recording electrode generate spike shapes

with very small differences. This might lead to grouping the activity of differ-

ent neurons as if generated by only one. This contaminated activity, containing

spikes from different neurons, might be solved by calculating the inter-spike-

intervals of the times of this cluster of spikes and looking for well-defined refrac-

tory periods. However, such measurements might not be optimal if, for example,

cells fire at low rates or in the presence of relatively high number of misses during

detection (Ison and Quian Quiroga, 2007).

A solution to reduce errors in the classification of single neurons is to record

the activity of the same cell from different locations simultaneously. The same

spike is recorded from different channels with amplitudes varying as a function of

distance from the cell. This relationship provides additional information about

the spatial location of the neurons (Blanche et al., 2003; Chelaru and Jog, 2005)

that helps spike sorting algorithms to obtain better identification results.

This multi-electrode approach was first adopted by McNaughton et al.

(1983), with the use of an electrode including two adjacent recording sites made

with two twisted wires called stereotrode. Following this approach, further im-

provements were made by Gray et al. (1995) introducing two more channels.

The new design named with the term tetrode (O’Keefe and Recce, 1993; Wilson

and McNaughton, 1993) reduced the classification errors to typically half those

obtained with single-wires Harris et al. (2000). Another way to extract benefit

from multi-electrodes, commonly known as polytrodes, is by building a polyspike

concatenating the spikes of each recording site. This new polyspike waveform

contains additional features that might be relevant for cluster separation when

used by spike sorting algorithms.
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2.5 The Spike Sorting Method

Spike sorting methods can be divided typically into four steps: filtering, spike

detection, feature extraction and clustering (Figure 2.3). Band-pass filters within

the range of 300-3000Hz are often used in order to eliminate low and high fre-

quency components of the background noise. The detection is commonly done

using amplitude thresholding, for example, estimating the standard deviation of

the noise and setting the threshold to a certain number of times over this level.

After spike storage (the number of sample points for a spike must be de-

cided) and alignment (every spike must have the point of maximum amplitude

in the same sample), the third step is to extract relevant features of the detected

spike shapes. The idea is to reduce the number of dimensions and take only those

features that best separate the spikes. The most popular features are the peak

amplitude, the spike width, the energy or a particular data point within the spike

shape. Although very basic and not optimal for spike separation, these features

are still widely used by several neurophysiology laboratories. A more advanced

technique is principal component analysis (PCA). This method selects the direc-

tions of maximum variation of the data, but these are not necessarily the ones

that give the best separation (Quian Quiroga, 2007). Other feature extraction

method is wavelets, which do signal decomposition in time and frequency (Mal-

lat, 1989). In this case, each spike shape is represented by a number of wavelet

coefficients that capture different frequency features of the spike localizable in

time. After wavelet analysis, one should eliminate those coefficients representing

noisy features and keep only those ones that best separate the signal (i.e. those

ones presenting multimodal distribution).

The last step is to group the features of the detected spikes into classes.

Clustering methods can be classified into supervised, semi-unsupervised or fully

unsupervised, depending on the degree of human intervention. In supervised clus-

tering, the operator selects the clusters by, for example, drawing ellipses which

enclose the data points on a multi-dimension feature map. In semi-unsupervised
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i)

ii)

iii)

iv)

Figure 2.3: Description of the four steps of a spike sorting method: i) filter-
ing; ii) spike detection; iii) feature extraction and iv) clustering. Adapted from
Quian Quiroga (2007).



CHAPTER 2. THEORETICAL BACKGROUND 20

approaches, the algorithm typically provides automatically a preliminary selec-

tion of clusters. This solution is further optimised by the operator who makes

the final decision by merging or rejecting clusters to obtain the optimal classes.

Finally, the third type of approach is the unsupervised selection of clusters in

which the algorithm does not assume any human intervention and provides a

fully automatic identification of the optimal classes (Quian Quiroga et al., 2004).

In recent years, the automatic classification of single-units is becoming an

essential part within the analysis of extracellular recordings. The new devel-

opments in multielectrode technology with an increasing number of recording

sites per probe provide nowadays scientists with the opportunity to record from

large-scale ensembles of neurons at a time (Nicolelis and Ribeiro, 2002; Csicsvari

et al., 2003). In such high-density recordings, the manual supervision of each

single channel might turn into a very time consuming task. Moreover, it is well

known that the subjectivity introduced by the human intervention creates an

additional source of sorting errors (Harris et al., 2000; Wood et al., 2004b) which

increases with the number of recorded channels. The use of unsupervised spike

sorting algorithms is therefore crucial to fully reach the potential of these ma-

ssive parallel recordings. Moreover, these techniques will considerably improve

the performance of on-line applications such as in the case of brain machine

interfaces (Nicolelis, 2001; Serruya et al., 2002; Musallam et al., 2004), where

manual intervention is not possible.

Many spike sorting algorithms have been developed (see Lewicki (1998) for

a review). Some of these methods are based on Bayesian statistical frameworks,

relaying in some cases on a Gaussian model of the distribution of the spike wave-

forms (Lewicki, 1994; Harris et al., 2000; Wood et al., 2004a). Although the am-

plitude of the background noise is mainly dominated by a Gaussian distribution,

the data clusters might not follow the same structure. Past studies, showing the

non-Gaussian variability of the spike shapes and the non-stationarity nature of

the extracellular recordings due for example to small electrode drifts (Fee et al.,

1996b; Snider and Bonds, 1998) or the presence of bursting cells (McCormick
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et al., 1985; Henze et al., 2000), have also motivated the development of different

classification algorithms taking in consideration more realistic models of clusters

(Shoham et al., 2003; Bar-Hillel et al., 2006; Wood and Black, 2008). Other

solutions are based on nonparametric approaches using classification techniques

based for example on nearest-neighbours interactions. One such a method is

Wave clus (Quian Quiroga et al., 2004), an unsupervised spike sorting algorithm

using wavelets and superparamagnetic clustering (SPC) (Blatt et al., 1996, 1997;

Domany, 1999).

2.6 Wave clus

Wave clus is a spike sorting method which includes the four main processing

blocks described above: filtering, detection, feature extraction and clustering.

Filtering is done by using a bandpass zero-phase forward and reverse ellip-

tic filter (second order) within the range of 300-3000 Hz. The detection is per-

formed by estimating the standard deviation of the noise based on the median

of the absolute value of the signal (Donoho and Johnstone, 1994), and setting

the threshold detection to five times the value of the noise estimate. The median

was used instead of the mean in order to reduce the influence of the spikes in the

estimation of the noise level. The threshold Thr used in Wave clus is as follows:

Thr = 5 · σn, (2.2)

σn = median

{
|x|

0.6745

}
(2.3)

where σn is an estimation of the standard deviation of the noise, and |x| the

absolute value of the bandpass filtered signal. After detection, 64 points (i.e. ∼

2.5ms) are stored after alignment for further analysis. Due to limitations in the

sampling frequency, it is possible to have misalignments between spikes, since

the maximum point can be located in different parts of the spike, introducing

distortions during the clustering process. In order to avoid this effect, the spike
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shapes are realigned after interpolating by a factor of 2 using cubic splines.

Feature extraction is done using a four-level multiresolution decomposition

with Haar wavelets, obtaining 64 wavelet coefficients for every spike shape. The

selection of the coefficients that best separate the different spikes is done by iden-

tifying those ones with distributions differing most from a normal distribution.

This quantification is done using a Kolmogorov-Smirnov (KS) test for normality

which compares the cumulative distribution function (CDF) of the wavelet coef-

ficients F (x) with a CDF of a normal distribution of the same mean and variance

G(x). For each coefficient its deviation from normality is quantified as

max(|F (x)−G(x)|) (2.4)

taking in this case the 10 coefficients with the highest deviation. After the

extraction and selection of the optimal features, an unsupervised selection of

clusters is done using superparamagnetic clustering (SPC).

The SPC is a nonparametric clustering algorithm based on the physical

properties of a magnetic system. In this method the data is modelled as a Potts

system (Wu, 1982) in which a spin state s = 1, 2, ..., q is assigned to each data

point xi with i = 1, 2, ...N . The spin-spin correlations between the K-nearest-

neighbours are measured using Monte Carlo simulations (Binder and Heermann,

1988; Wolf, 1989) and then used to group the points into clusters (Blatt et al.,

1996). In the first stage, the strength of the interactions between all pairs of

points 〈i, j〉 is computed as

Jij =


1
K

exp
(
−‖xi−xj‖

2

2a2

)
if xi is nearest neighbour of xj

0 else
(2.5)

where K is the number of nearest-neighbours and a represents the average

distance across all the neighbouring points. After calculating all the pair inter-

actions, an initial configuration is created by assigning random spin values from
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1 to q to each data point xi. Then, for each Monte Carlo iteration, a data point

is randomly selected and its spin state si is changed into a new state. The effect

of this new situation on the rest of data points is quantified by calculating the

probability that a change on si will also change the state of its nearest-neighbour

sj, computed as

pij = 1− exp

(
−Jij
T
δsi,sj

)
(2.6)

where δsi,sj is the spin-spin correlation between neighbouring points in each it-

eration and T is the temperature. Note that only neighbouring points with

the same spin sate and a high interaction strength will be able to change their

state together. Finally, after computing pij and δsi,sj for M Monte Carlo simu-

lations, the neighbouring points xi and xj will be grouped in the same cluster if

〈δsi,sj〉 ≥ θ. In this case, Wave clus uses θ = 0.5 as grouping threshold, N = 500

Monte Carlo iterations, q = 20 spin sates and K = 11 nearest-neighbours.

As it is possible to infer from Equation 2.6, the temperature T plays a cru-

cial role in how points are grouped into clusters. In this case, low temperatures

will make all the neighbouring points change their state together (ferromagnetic

phase) grouping them into a single cluster regardless the strength of their inter-

actions Jij. For high temperatures, the pair probabilities will decrease even for

points within high density regions. In this case, the data will be grouped into

many clusters including a very few number of points (paramagnetic phase). In

the middle, there is the superparamagnetic phase, in which only neighbouring

points within high density regions will be grouped in the same cluster.

In this case, the SPC algorithm spans a wide range of temperatures varying

from 0 to 0.2 in increments of 0.01. For each temperature, a different type of

data partition is generated with new clusters merging or breaking. The idea is

to find the optimal clusters appearing at the optimal temperature.

In Wave clus, clusters are automatically identified according to a thresh-

olding procedure based on their size. The algorithm looks for the highest tem-
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perature at which a cluster containing more than a certain number of points is

found. The rationale is that as the temperature increases one expects the exist-

ing clusters to break into smaller ones. The cluster size is relatively related to

the firing rate of the corresponding neuron and therefore, this threshold should

be selected based on the minimum firing rate that one wants to consider. In the

cluster assignment, with Ti = 0.01, 0.02, ...0.2 where i = 1, 2, ...20 is the number

of the partition, the selected temperature Tclus will be the highest temperature

at which

Ajclus − A
j
clus−1 ≥ a (2.7)

where Ajclus represents the size of the jth cluster at Tclus and a is the design

parameter representing the increment in the number of spikes allowed for cluster

assignment.

In Figure 2.4 we show a snapshot of the Wave clus graphical user interface

(GUI). In the top plot, a segment of the filtered extracellular signal is depicted.

The red line shows the detection threshold using the expression in equation

2.2. In the middle of the figure we see a series of plots representing from left

to right the projection into 2 (out of 10) wavelet coefficients and the clusters

identified by Wave clus in this particular case. In this example, one multi-unit

(spike shapes in blue) and two single-units (in red and green) were automatically

detected. The temperature diagram generated by SPC is depicted at the bottom-

left corner, which depicts the size of each cluster (Aji ) in which the data has

been partitioned (y axis) function of the temperature Ti (x axis). Setting the

cluster size threshold to 60 spikes, Wave clus selected automatically Tclus = 0.14,

identifying the partition in which the three clusters where found. Each coloured

dot represents the corresponding clusters depicted in the middle plots.

In some cases, the optimal clustering solution might be reached as a com-

bination of clusters appearing at different temperatures. In this situation, the

single-temperature approach of Wave clus is not able to select the optimal solu-
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Figure 2.4: GUI of Wave clus showing the outcome of the automatic spike sort-
ing.

tion and a user intervention to manually select the right clusters is needed. In

the GUI the operator can change the temperature, obtaining a different solution,

selecting or rejecting the appropriate clusters. In Figure 2.5 we show an example

of such scenario in which the user identified the single-units in red and green by

selecting the temperatures T = 0.03 and T = 0.12, respectively.

2.7 Summary of Chapter 2

In this chapter we reviewed different techniques to measure the activity of the

brain. Up to date, none of the current available methods is capable of providing

a full spatiotemporal scale that allows the study of the brain at all possible

resolutions.

Techniques such as EEG, MEG or fMRI, provide unprecedent information

about the neural activity underlying a number of cognitive process. However,

they are not able to give information on how this neural activity is created by

the collective behaviour of individual neurons. On the other hand, promising

methods such as optical imaging while having the best spatial resolution they do
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Figure 2.5: GUI of Wave clus showing the outcome of the manual spike sorting.

not provide a direct measurement of the spiking activity of neurons.

Direct access to action potentials of groups of individual neurons in vivo

is done using extracellular recordings. We described how extracellular activity

is used for the study of single-cells and we reviewed some important aspects

affecting the analysis of the extracellular signals such as the increasing advances

in electrode technology and the identification of single-unit activity using spike

sorting algorithms.

We emphasised the importance of using automatic methods for a fast and

optimal classification of single-units as well as realistic simulation platform for

testing these algorithms in order to take full advantage of the current powerful

technology for high-density recordings.

In Part II, dedicated to expose the results of this work, we propose solutions

that contribute to address the questions posed here. In Chapter 3 we present a

new simulation platform to test spike sorting algorithms under realistic condi-

tions. In Chapter 4 we make direct use of this synthetic data and we present a

new solution for automatic classification of single-unit activity.
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Chapter 3

Realistic Simulation of

Extracellular Recordings

3.1 Introduction

As described in Chapter 2 a well established methodology to study how mental

processes are encoded by neurons in the brain is to analyse the extracellular

activity of neurons using microelectrodes. In Section 2.5 we saw that this analysis

is done by first detecting the spiking activity from the background noise and then

grouping the recorded spikes into clusters based on the similarity of their shapes,

a procedure known as spike sorting (see Section 2.5).

The quality of the resulting data depends crucially on the particular detec-

tion and sorting technique used, whose performance is usually hard to establish

with real data. To quantify the performance of these methods, the use of syn-

thetic data in which we know the original spike labels provides an adequate

framework.

In principle, two different approaches might be taken to generate synthetic

extracellular recordings. On the one hand, one could generate simple simulations

by adding spikes to Gaussian noise (Lewicki, 1994). This approach is very fast

and easy to implement but it misses important features of the real recordings

that make spike sorting especially challenging. In particular, some characteristics

28
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such as the presence of non-Gaussian distribution of clusters, multi-unit activity,

and spectral similarity between noise and spikes might be critical issues to take

into account in the analysis. On the other hand, detailed models of extracel-

lular waveforms (Hines and Carnevale, 1997; Holt and Koch, 1999; Gold et al.,

2006) could be more accurate but computationally too intensive when simulating

extracellular recordings generated by a large number of neurons.

Here, we explored a compromise between both alternatives by developing

relatively easy simulations that reproduce relevant real features of extracellular

recordings for testing spike detection and sorting algorithms. In particular, our

simulations will replicate the amplitude and spectral distributions of the noise,

multi-unit and single-unit activity found in extracellular recordings. These simu-

lations follow the approach presented by Quian Quiroga et al. (2004), where real

spike shapes were used to create background noise and single-unit activity. Here,

we introduced several improvements. First, we propose a biophysical strategy for

generating the background noise. Second, we reproduced the multi-unit activity

that makes the synthetic data very similar to real recordings. Multi-unit activity

is commonly found in extracellular recordings and it represents the activity of

several distant neurons whose spikes can be detected but are not large enough to

be clustered because the difference in their shapes is masked by the background

noise. This situation typically produces clusters with high variance and low sig-

nal to noise ratio. Third, we replicated actual values found in real recordings

in terms of amplitude and power spectrum distributions. The resulting simula-

tions also allowed the study of the spike sorting performance with sparse firing

neurons (Hahnloser et al., 2002; Perez-Orive et al., 2002; Quian Quiroga et al.,

2005, 2006), which, due to their very low baseline firing rates, might be masked

by higher frequency firing neurons, making their identification particularly diffi-

cult. Our method also allowed an efficient generation of synthetic datasets, thus

providing a simple strategy to generate large number of realistic experimental

scenarios that are useful to quantify, for example, the performance and limits of

different spike sorting algorithms.
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3.2 Materials and Methods

We generated synthetic extracellular recordings that modelled the contribution of

the background noise, multi-unit and single-unit activity. The simulations were

created using a database with 594 different average spike shapes, taken from

real recordings in monkey neocortex and basal ganglia. In order to reproduce

conditions of real recordings -in which the peak of the spike might not occur

during a recording sample, thus introducing misalignments- we used the following

procedure: First, the data first simulated at a sampling frequency of 96 kHz.

Then, using interpolated waveforms of the original spike shapes, the spike times

were simulated to fall continuously between samples (Quian Quiroga et al., 2004).

Finally, the data was downsampled to 24 kHz.

Figure 3.1 shows a summarised description of the method. Considering a

recording electrode at the centre of the sphere, the extracellular recorded space

was divided into three major areas: 1) Background noise; 2) Multi-unit activity

and 3) Single-unit activity. The main idea of the method is to generate, in a

computationally-efficient way, the relevant features -such as amplitude distribu-

tion and power spectrum- that allow reproducing realistic extracellular recording

scenarios for the three zones described in the figure. The neurons in area 1 gen-

erate the background noise, whose activity was constructed based on the contri-

butions of many individual point-source neurons. This strategy avoids complex

models of single cells that might not have a relevant effect on the total signal at

large distances from the recording electrode. The activity of neurons located at

areas 2 and 3 was simulated using spike waveforms from the database and with

amplitude distributions that follow real multi-unit and single-unit peak ampli-

tude distributions, given that these values are accessible from real recordings.

To consider the fact that different recording conditions can vary the levels of the

background noise activity, we considered the amplitude values of the spikes of

areas 2 and 3 relative to the detection threshold, which was in turn determined

from an estimation of the standard deviation of the noise (see Equation 2.3).
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Figure 3.1: Overview of the simulation approach. Neurons in area 1 generate
the noise activity, which is given by the superimposition of their spikes si. Each
peak amplitude ai is modulated by its distance di to the recording electrode.
The activity of neurons in areas 2 and 3 (multi-unit and single-unit activity,
respectively) is created by adding spikes on top of the background noise, following
typical amplitude distributions ai measured for multi-unit and single unit spikes.

Finally, the synthetic extracellular recordings were generated by superimposing

the spikes corresponding to multi-unit and single-unit activity to the background

noise, as detailed below. For this we used different single-unit amplitude levels,

thus replicating the conditions of different signal-to-noise ratios.

3.2.1 Generation of Background Noise

The core of our approach to generate the noise activity was to simulate the con-

tribution of distant neurons, as given in real extracellular recordings. This gives

a hybrid simulation strategy, in which the characteristics of the noise activity,

such as its amplitude and frequency distribution, arise naturally from the re-

alistic biophysical process of its generation and it is not imposed beforehand.

Moreover, this approach reproduces real noise characteristics without modelling

the computationally expensive details of the contribution of each neuron. For
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this, the far-apart neural activity was modelled by superimposing a large num-

ber of spike shapes (one spike per sample of generated data) placed at uniformly

distributed random times. The amplitude distribution of all the waveforms was

obtained by first assuming that each neuron generates an action potential of peak

amplitude 1. These simulated neurons represent different point source charges

distributed uniformly within a sphere of radius 1 (in adimensional units). Only

far away spikes, at a distance larger than 0.5, were considered for generating the

background noise.

The activity of close-by neurons was considered to contribute to the multi-

unit and single unit activity (areas 2 and 3 in Figure 3.1), which was modelled

following the typical amplitude ranges found in real data as described in the

sections below. For a single spike shape si its peak amplitude ai at the recording

site (the centre of the sphere) was modelled to be equal to 1/di (di: distance of the

cell i from the centre), following Coulomb’s law (Rall, 1962). Alternatively, one

could consider the neuron as a dipole with the soma and one dendrite represented

by a negative and positive charge, respectively. In this case, the amplitude-

distance relationship should be modelled as 1/d2i . However, for large distances,

we did not observe significant differences in the amplitude distribution generated

by both approaches (data not published).

As mentioned above, this assumption leads to a large simplification in our

simulation of the extracellular recordings, since we do not consider specific mor-

phologies and physiological characteristics of distant neurons. The effect of other

possible sources of electrical activity that might contribute to the noise power

spectrum, such as electronic noise, axons, dendrites or synapse currents (Llinas,

1988; Farrant et al., 1994), was simulated by adding Gaussian noise to the noise

generated by the spikes. Note that these simulations were generated to test spike

detection and sorting algorithms, for which the extracellular signal is typically

highpass filtered with a cutoff frequency of 300Hz or larger, to visualize the spik-

ing activity. Therefore, we did not consider or try to reproduce sources of low

frequency activity - i.e. below 300Hz as the ones considered for simulations of
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local field potentials (Brunel and Wang, 2003; Bedard et al., 2006; Mazzoni et al.,

2008).

3.2.2 Generation of Multi-unit Activity

Multi-unit activity is produced by neurons located around 50 to 140 µm from the

electrode tip (Buzsaki, 2004). The amplitude of the recorded multi-unit activity

is close to the detection threshold. As shown by the blue spikes in Figure 3.1, the

noise masks any difference between the spikes of different neurons, making the

identification of single-units unfeasible. Spikes corresponding to multi-unit ac-

tivity tend to produce large and typically non-Gaussian clusters. This is because

clusters are created by the activity of more than one neuron and the amplitude

distribution is truncated by the detection threshold.

In our simulations, multi-unit activity was created by mixing the activity of

our whole database of 594 spike shapes using amplitudes uniformly distributed

between 0.5 and 1.5 times the level of the detection threshold. Following previous

criteria (Quian Quiroga et al., 2004) the detection threshold was set at 4 times

the estimation of the standard deviation of the generated noise (see Equation

2.3). These amplitude ranges were chosen to follow the distribution of amplitude

values for multi-unit activity found in real data (see Appendix A). For each

unit contributing to the multi-unit activity the spike times were generated using

a Poisson distribution with a mean firing rate of 20/N Hz (where N was the

number of different units used to create the multi-unit activity), which summed

up gives an overall multi-unit firing rate of 20 Hz.

3.2.3 Generation of Single-unit Activity

The single-unit activity (area 3 in Figure 3.1, spikes in green and red) was sim-

ulated using spikes of different shapes added to the background noise. The peak

spike amplitudes were assigned with values between 1.5 and 4 times level of the

detection threshold, that fall within the range of typical values found in real
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recordings (see Appendix A). For each single unit, the variability of the spike

amplitude was given by the background noise. The spike train of each single-unit

followed a Poisson process, with a mean firing rate randomly selected between

0.5 and 5 Hz. Spikes that fell within the 2 ms following a previous one were

removed -i.e. overlapping spikes were not considered.

3.2.4 Real Data

The real extracellular data presented here comes from a 30 minutes recording

from the human medial temporal lobe. The subject was a pharmacologically

intractable epileptic patient who was implanted with intracranial electrodes for

clinical reasons. Besides the intracranial EEG contacts, each probe had a total

of 9 micro-wires at its end, with 8 active recording channels and 1 reference to

record single-neuron activity (Fried et al., 1997). The differential signal from

the micro-wires was amplified and filtered between 300 and 3000 using a non-

causal filter (Quian Quiroga et al., 2004) to remove low frequency activity and

high frequency artifacts. After filtering, the data was sampled at 32 kHz. The

main features of this recording were similar to other 192 recordings from the

human medial temporal lobe, in terms of the power spectrum and amplitude

characteristics (see Figure A.1 in Appendix ).

3.2.5 Spike Detection and Sorting

The real and synthetic extracellular recordings were analysed using Wave clus

(see Section 2.6), an unsupervised spike detection and sorting algorithm (Quian Quiroga

et al., 2004). Spike detection was done using an amplitude threshold set to

Thr = 4 · σn for this data (see Equation 2.3 for details).
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Example
Number

Amplitude Firing rate (Hz) α r2

1 4 1 1 0.991
2 4 5 1.18 0.994
3 2 5 0.9 0.984
4 2 5 0.93 0.984
5 3 0.5 0.97 0.988

Table 3.1: Simulation and spectral features for the 5 simulated data sets. The
values of the amplitude are all relative to the detection threshold.

3.3 Results

We generated 5 sets of simulations of 2 minute length each with a sampling rate

of 24 kHz. Each simulation contained the activity of one multi-unit and two

single-units. The noise level σn was normalised to give a detection threshold of

28µV , as typically used for real data (see Figure A.1 in Appendix ). The peak

amplitudes of the spikes generating the multi-unit clusters were uniformly dis-

tributed between 0.5 and 1.5 times the detection threshold for all the simulations.

Each single-unit in examples 1 to 5 generated a spike train following a Poisson

distribution. The values of peak amplitude and mean firing rates are described

in Table 3.1. The different amplitudes (i.e. signal to noise ratios) and firing rates

simulate different recording conditions to test spike sorting algorithms in varying

regimes. The processing time to generate each example was around 9 minutes in

an Intel Core 2 PC with a clock frequency of 2.4 GHz.

3.3.1 Real Data

Figure 3.2a shows 30 seconds of the continuous real data, which contains spikes

with an amplitude between 30 and 130 µV . The estimation of the standard

deviation of the noise (see Equation 2.3) was in this case equal to 6.5 µV and the

threshold for spike detection was of 26 µV ; i.e. 4 times this value. For the same

data, in Figure 3.2b we show the amplitude distribution of the signal, which

followed a Gaussian distribution. Note that in the raw (band-pass filtered) data

as well as in the amplitude distribution of Figure 3.2b there is no clear distinction
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between the noise and the multi-unit activity (see inset), a typical challenging

feature of real extracellular recordings. The black trace in Figure 3.2c shows

the power density spectrum (PDS) of the data in Figure 3.2a (filtered between

300-3000Hz). For comparison, the curve in gray displays the non-filtered PDS.

Both PDS traces were smoothed with a 3-datapoints moving average. The inset

in Figure 3.2c depicts the log-log PDS within the red vertical lines. The plot

in the inset of Figure 3.2b suggests that the PDS falls off following a power law

distribution, with a 1/fα, α = 1.1 scaling dependence (r2 = 0.98). Analyses

performed on a large database of 192 channels of real recordings on the human

medial temporal lobe, revealed similar PDS with r2 equal to 0.98 ± 0.21 (mean

± SD) and a mean r2 coefficients equal to 0.992 ± 0.007 (see Appendix A).

From the full recording (of which the first 60 seconds are shown in Figure

3.2), three different clusters were automatically identified by using Wave clus

(see Section 3.2), as illustrated in Figure 3.3. The first cluster was classified

as a multi-unit and the other two as single-units. Note the high variance and

low amplitude observed in the multi-unit (left) as compared to the single unit

clusters, a typical attribute of extracellular recordings.

3.3.2 Simulation of the Background Noise Activity

The noise activity was obtained by superimposing a large number of spikes,

simulating the contribution of far-away neurons. For this, neurons were uniformly

distributed inside a sphere and their spike amplitudes were inversely proportional

to the distance to the centre of the sphere, which corresponds to the position of

the electrode (see Section 3.2).

3.3.3 Matching of the Noise Amplitude Distribution

For the noise activity we did not consider point-source charges from relatively

close distances di since the resulting amplitude of such spikes are in the range

of the multi-unit and single unit activity. To have a rough approximation of the
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Figure 3.2: (a) 30 seconds of a continuous recording from the human medial
temporal lobe. The voltage signal has been bandpass filtered between 300 and
3000 Hz. (b) Amplitude distribution of the voltage signal. The vertical red
line represents the threshold for spike detection. The inset shows a zoom of
the amplitude distribution around the detection threshold. (c) Power density
spectrum (PDS) of the data in (a) with (black) and without (gray) bandpass
filtering between 300-3000 Hz. The inset depicts the log-log PDS between the
two red vertical lines. The red line in the inset indicates a linear fit to the data,
which gave a slope α = 1.1 and a correlation coefficient r2 = 0.984.
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cutoff distance contributing to the noise, multi-unit, and single-unit activity, we

evaluated the amplitude distribution of the simulated noise for 3 different cutoff

distances (di = 0.01; 0.1 and 0.5, respectively). Figure 3.4 shows the simulated

noise and the amplitude distributions generated using these 3 cutoff distances

(Figure 3.4a - Figure 3.4c, respectively). We compared these simulations with

a real continuous recording that did not have any visible single- and multi-unit

activity (Figure 3.4d). As seen in Figure 3.4a, a low cutoff distance gives a noise

distribution that clearly differs from the one of real recording, with too many

large amplitude spikes. In fact, in this case there were n = 285 spikes crossing

the detection threshold (see Equation 2.2), many more than the ones crossing

the threshold for the real data (n = 1). On the other hand, considering only

far apart action potentials (Figure 3.4b and Figure 3.4c) we obtained a more

realistic representation of the continuous data and amplitude distribution of the

synthetic background noise with few events above the detection threshold (16

and 4, respectively). Given these results, we chose a cutoff distance of 0.5 for

simulating the noise activity. The processing time for creating these simulations

was for all the examples approximately five minutes using a standard PC with a

frequency of 2.4 GHz.



CHAPTER 3. SIMULATION OF EXTRACELLULAR RECORDINGS 39

n
C

o
u

ts
n

C
o

u
ts

A
m

p
lit

d
e

(m
V

)
u

 

b

a

c

Time (sec)
Amplitude (mV)

d

m
p

l t
d

e
(m

V
A

i u
 

)
m

p
l t

d
m

V
A

i u
e

 (
)

m
p

l t
d

m
V

A
i u

e
 (

)

o
n

t
C

u
s

C
o

u
n

ts
C

o
u

n
ts
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synthetic noise signals for different values of di (from top to bottom, di = 0.01;
0.1 and 0.5, respectively; see text for details). The horizontal red line represents
the detection threshold. (d) Noise from a real extracellular recording without
spiking activity. For low values of di, (a) the amplitude distribution of the
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3.3.4 Matching of the Noise Power Spectra

As mentioned before, a simple alternative to simulate the background noise of

extracellular recordings is to use Gaussian noise, following the amplitude distri-

bution discussed in the previous section. But, as shown in Figure 3.5a, after

bandpass filtering between 300-3000Hz (as done for the real recordings), the

power spectrum looks flat and clearly different to the spectrum found in real

recordings (see Figure 3.2c). On the contrary, the noise simulation described in

the previous section, based on a realistic simulation of the biophysical process

contributing to the noise activity, gives a frequency distribution very similar to

the one obtained in real recordings, as shown in Figure 3.2b. However, the value

of the slope of a linear fit of the log-log plot of the power spectra gave a value

of α = 1.8, with r2 = 0.94. The lower amounts of high frequency components

as shown in the power spectrum as compared with real data (Figure 3.2c) might

be because we are not taking in consideration other possible sources of electrical

activity such as electronic noise or fast synaptic currents (Farrant et al., 1994),

which could, in principle, be generated by an extra source of Gaussian noise, as

the one of Figure 3.5a. In order to generate a more realistic synthetic noise that

includes higher frequency components to reproduce the power law decay found

in real data, we decided to combine the two approaches described below, adding

to the noise of Figure 3.5b, in a proportion of 40% of Gaussian noise as the one

of Figure 3.5a. Figure 3.5c shows the resulting noise characteristics, which lead

to an increase in the high frequency activity, giving a PDS decay of 1/fα , with

α ∼ 1. Note that the voltage signal and amplitude distributions remained the

same in all cases.

Another factor that influences the power spectrum and the amplitude dis-

tribution is the number of neurons contributing to the background noise. If this

number is very low, the overall amplitude of the voltage signal generated by this

spike activity will significantly decrease, increasing as a consequence the compo-

nent of Gaussian noise. This, will also change the power spectrum, reducing the
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slope α and make the PDS look flat and different to the one of the real data.

In our model, we set the number of neurons contributing to the noise equal to

the number of generated data samples (with each neuron firing only one spike

during the simulation period). This level of neuronal activity gives a realistic

noise signal in which very few spikes cross the detection threshold (Figure 3.5b).

This, in combination with the gaussian noise, also generates a realistic PDS decay

(Figure 3.5c). Note that a decrement in the number of superimposed spikes will

modify the voltage signal, reducing the overall amplitude and standard deviation

of the signal (i.e., a decrement of 50% in the number of neurons would result

in a decrement of 25% in the standard deviation), increasing the spikes crossing

the detection threshold. If this activity is very low (i.e., 0.1% of the generated

samples) then, the power spectrum will be also seriously affected (α ∼ 0.5).

3.3.5 Addition of the Single-unit and Multi-unit Activity

Next, we added the single- and multi-unit spikes to the simulated noise. Note

that in this case, rather than assuming a biophysical generation process, as for

the noise, we experimentally have access to the amplitude and firing rate distri-

bution of the single- and multi-unit data. In the following sections, we describe

5 simulated datasets reproducing different recording conditions that can be used

as a platform to test spike sorting algorithms.

Figure 3.6 shows an example of one simulated data set with single-unit

peak amplitude equal to 4 and a firing rate of 1 Hz. Note in the continuous

recording showed in 3.6a the presence of small multi-unit spikes at the level of

the detection threshold, as also observed in the real recordings (see Figure 3.2a).

Moreover, in 3.6b there is a smooth transition between the background noise and

the multi-unit activity around the detection threshold (see inset), as observed

in the real recordings (see inset in Figure 3.2b). Figure 3.6c shows the PDS

of this simulation, with a frequency dependence similar to the one of the real

recording (3.2c). The values of α = 1 and r2 = 0.991 depicted in the figure (see
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Figure 3.5: Continuous data (left), amplitude distribution (centre) and power
density spectrum (PDS, right) of 3 synthetic noise realizations of 120 seconds
each (only the first 10 seconds are displayed). (a) Gaussian noise. (b) Noise
generated by the superimposition of spikes (see text for details). (c) Combination
of (a) and (b). Note that the amplitude and frequency characteristics of the noise
in (b) and (c) are very similar to the one of the real recording in Figure 3.2
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inset) show that the simulation is able to reproduce major frequency features and

also suggested a power-law distribution, as with the real extracellular recording

situation (see 3.2c and Appendix A).

3.3.6 Testing of the Spike Sorting Algorithm

The results of the unsupervised spike sorting of the synthetic data of Figure 3.6

using Wave clus are shown in Figure 3.7. As in the example with real data (Fig-

ure 3.3), the algorithm correctly identified all units generated in the simulation

(one multi-unit and two single-units). The multi-unit cluster (left plot) has a

wider spike shape due to the contribution of several units, as typically found in

real recordings (see leftmost spike in Figure 3.3). Furthermore, for this cluster

it is possible to see a non-uniform variance along the spike, which leads to non-

Gaussian clusters found in real recordings. The presence of such non-Gaussian

clusters are very challenging for many spike sorting algorithms that assume any

particular model for the clusters. The middle and right plots depict the single-

unit clusters, in which the amplitude variability is solely given by the background

noise activity.

Table 3.1 and Table 3.2 summarize the characteristics of the 5 generated

datasets and the performance of the unsupervised spike sorting on this data.

The number of misses as well as the amplitude, firing rate and number of spikes,

are referred to the simulated single-unit clusters. In Table 3.2, the number of

spikes refers to the number of detections by the algorithm. In examples 1, 2 and

5, all spikes were correctly detected and classified. For simulations using single

units of lower amplitudes, as in the cases of examples 3 and 4, the single-unit

spikes tended to overlap with the multi-unit cluster, leading to false positives

and misses. Note that in the case of example 3, where the spike shapes of the

two single-units are similar, the number of misses and false positives increased

due to some misclassifications. In Table 3.1, the last two columns represent the

scaling exponent α and the correlation factor r2 of the power spectrum for each
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Figure 3.6: Example of a 2 minute simulation of an extracellular recording in-
cluding background noise, multi-unit activity and two single-units. (a) First 30s
of continuous data filtered between 300 and 3000 Hz. (b) Amplitude distribution
of the voltage signal. The vertical red line represents the amplitude detection
threshold. The inset shows a zoom around the detection threshold. (c) Power
density spectrum (PDS) of the continuous data from 300 to 3000 Hz. The inset
depicts the log-log PDS between the two red vertical lines. The red line in the
inset shows a linear fit to the data, which gave a slope α = 1 and a correlation
coefficient r2 = 0.991.



CHAPTER 3. SIMULATION OF EXTRACELLULAR RECORDINGS 45

Si le-unit 1ng S l u t 2ing e- ni

m
p

itu
d

e
(m

A
l

 
V

)

Da apoin st t

Si le-unit 1ng S l u t 2ing e- niMulti-unit
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Example
number

Number of de-
tected spikes

Spike detection Spike sorting

Misses False
posi-
tives

Misses False
posi-
tives

1 236 0 0 0 0
2 1058 0 0 0 0
3 1163 5 80 31 106
4 1127 10 87 10 87
5 118 0 0 0 0

Table 3.2: Performance of the unsupervised spike sorting algorithm. All values
are referred to single-unit spikes. Values in the spike sorting section of the table
include cluster classification errors.

example.

3.4 Discussion

3.4.1 Hybrid Simulation Approach

In this chapter we showed the use of a hybrid two-fold strategy to character-

ize most salient features of real data to test spike sorting algorithms. The first

component of our approach was to simulate the background noise by adding

the contribution of many different far-away action potential point-sources, uni-

formly distributed around the electrode, where the amplitude of each of these
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action potentials was determined by their distance from the electrode following

Coulomb’s law. This simple and physiologically plausible model reproduced the

main characteristics of the noise activity in real recordings, avoiding the need

of simulating computationally expensive details of each of the far-away neurons.

Note that this strategy is not plausible for close-by neurons -which generate the

multi-unit and single unit activity- since in this case the particular physiological

details of the neurons and their relative positions and orientations with respect

to the recording site become relevant (Rall, 1962; Holt and Koch, 1999; Gold

et al., 2006; Harris et al., 2000). Therefore, the second component of our ap-

proach was to generate the single-unit and multi-unit activity by simply using

template spike shapes and the peak amplitude distributions available for a large

number of real recordings.

This simple two-fold strategy to generate the noise and the spiking activity

allowed the performance of relatively fast simulations -about 9 minutes for a sim-

ulation of a 2 minutes recording using an Intel Core 2 PC with a clock frequency

of 2.4 GHz with Matlab-, which reproduced the main features of extracellular

recordings, as detailed below.

3.4.2 Multi-unit Activity

The presence of multi-unit activity in extracellular recordings makes the pro-

cesses of spike detection and sorting particularly challenging, an issue that has

not been dealt in previous simulation studies (Lewicki, 1994; Quian Quiroga

et al., 2004; Smith and Mtetwa, 2007). This is mainly for two reasons. First, the

low signal-to-noise ratio and high amplitude variance of multi-unit clusters com-

plicates the detection of spikes because there is no clear separation between back-

ground noise and spikes. Second, multi-unit clusters are usually non-Gaussian,

which compromises the use of spike sorting algorithms assuming Gaussian clus-

ters or introducing a pre-whitening of the data (Pouzat et al., 2002; Lewicki,

1998). Third, multi-unit clusters can be relatively large compared to those of
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single-units, given that they are composed by the activity of several units (in

spite of the fact that a large proportion of spikes of these units may be not de-

tected). This can complicate the accurate sorting of single-units and even their

identification, since these can be easily merged within the large multi-unit clus-

ters. This issue becomes more problematic for the identification of sparse firing

neurons (Quian Quiroga et al., 2005; Quian Quiroga, 2007).

3.4.3 Background Noise

The characteristics of the background noise recorded from in-vivo extracellu-

lar recordings play a fundamental role in the identification and classification of

single- and multi-unit activity. In this respect our noise simulations, generated

by superimposing a large number of spikes from far-away neurons, reproduced

the amplitude and power spectra distribution of the real recordings. In this

study we did not systematically study up to which distance neurons contribute

to the single- and multi-unit activity and beyond that to the background noise.

Rather we used a heuristic minimum distance for the noise contribution that

could reproduce the amplitude distribution observed in real recordings and used

typical amplitude values observed in real data for the multi- and single-units.

For the noise generation, decreasing this heuristic distance gave a large number

of spikes crossing the detection threshold, in contrast to what we found in the

real data (see Figure 3.4). A more precise and systematic investigation of the

distance ranges giving rise to the noise, multi-and single-unit activity is ripe of

future investigation, but it would have also to consider other factors, such as the

impedance profile of the electrodes and more detailed characteristics of the neu-

rons nearby the recording site. These results could be then compared to those

obtained from real recordings, by retracting acutely implanted electrodes once a

neuron has been identified and observing at what distance the spikes of a single

neuron gets mixed with those of other neurons -in between 50 to 140 microns-

and at what distance are the spikes of the first neuron are no longer detected
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-at about more than 140 microns- (Gerstein and Clark, 1964; Henze et al., 2000;

Buzsaki, 2004).

It has to be noted that with this approach we did not try to replicate the

lower frequency activity of LFPs and the high frequency components generated

by single-cell currents (Llinas, 1988; Farrant et al., 1994) or by relatively lower

electronic noise from the recording system (Fee et al., 1996a). To replicate the

power law decay in the frequency spectrum observed in real data, high frequency

noise was introduced by superimposing Gaussian noise to the background activity

generated by the contribution of the spikes from far-away neurons. For this study

it was not necessary to model the contribution of LFPs, since their activity is

outside the frequency range considered for spike sorting, which is in fact typically

filtered to perform the spike detection.

Alternatively, it is in principle possible to obtain noise signals from real

recordings by eliminating the spiking activity (Pouzat et al., 2002). Then, the

identified spikes corresponding to different neurons can be added to the noise to

evaluate the performance of spike sorting algorithms. However, the difficulty of

such an approach is to eliminate the spiking activity because this depends on the

setting of the detection threshold, which leaves some of the (low amplitude) spikes

and removes part of the noise activity due to random crossings of the threshold.

To overcome these problems, one could still use real recordings without spiking

activity, as we used in Figure 3.4d to compare the amplitude distributions of

our noise simulations. However, the availability of such data is not guaranteed,

especially if one requires a large number of simulations.

The noise model presented here did not assume any particular distribution

of the data, as in the case of generation of white or coloured Gaussian noise

in which clusters have hyper-spheres or ellipse boundaries (Chandra and Op-

tican, 1997). It has to be noted that several experimental conditions, such as

electrode drifts, bursting activity, overlapping spikes, multi-unit activity or mis-

alignments during detection can produce non-Gaussian clusters (Quian Quiroga,

2007), which compromise the use of algorithms assuming clusters with a multi-
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dimensional Gaussian shape (Lewicki, 1994; Pouzat et al., 2002) and indicates

that the use of such algorithms might not be plausible in general.

In conclusion, we presented a method to generate simulations that repro-

duced the most salient characteristics of extracellular recordings, like the power

spectrum and amplitude distribution, which can be useful for testing spike detec-

tion and sorting algorithms. Moreover, these simulations might also be used to

quantify filter distortions in the spike shapes (Quian Quiroga, 2009), to simulate

recording conditions with different electrode designs (Robinson, 1968) or as a

platform to test effects of spike detection and sorting for inferring information

about, for example, time patterns and synchronised activity in a neural popula-

tion (Quian Quiroga and Panzeri, 2009). Our hybrid approach to generate the

synthetic data was able to provide several simplifications making this algorithm

simple and fast.

3.5 Summary of Chapter 3

In this chapter we presented a new approach to produce simulations of extracellu-

lar recordings. The generation of realistic noise and multi-unit activity together

with single-unit activity offers new opportunities for the development of more

efficient analytic tool. The possibility to generate realistic scenarios with for ex-

ample, neurons with high and low firing rates present during the same recording,

makes these results an optimal platform in which to compare the performance

between different spike sorting algorithms. In Chapter 4, we apply the method

presented here to develop a new solution for automatic spike sorting under real-

istic experimental conditions such as the ones mentioned earlier.



Chapter 4

Automatic Spike Sorting

4.1 Introduction

As described in Chapter 2, Wave clus provides a first unsupervised classification

of units based on the automatic selection of a single temperature. However, in

some cases is likely to find clusters appearing at different temperatures in which

further intervention of an expert operator is necessary to reach the optimal so-

lution (see Figure 2.5 in Chapter 2). This condition turns the method into a

semi-automatic approach, slowing the sorting process and introducing sometimes

changes in the solution depending on which person performed the analysis. Here,

we show a new approach to the automatic selection of clusters using SPC. Our

proposed solution introduces two major improvements that successfully overcome

the difficulty of identifying clusters of different densities and sizes by analysing

the data at different temperatures. First, we construct a threshold variable with

the temperature that successfully detects natural clusters and rejects overclus-

tering. Second, we simultaneously select clusters at different temperatures. We

quantified the performance of our algorithm using the simulation platform de-

scribed in the previous chapter. As a result, we developed a robust and fully

automatic spike sorting algorithm which significantly increases the number of

identified units without manual intervention.

50
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4.2 Materials and Methods

Our method follows the clustering approach of Wave clus in which SPC is used to

provide an unsupervised selection of clusters. As described in Section 2.6, SPC

is a nearest-neighbour algorithm in which the grouping of points into clusters

strongly depends on a parameter called the temperature T which controls the

level of correlation between neighbouring points. For low temperatures, the

correlation between neighbouring points increases and all the data points, even

located at far distances in the feature space, will be grouped as a single cluster.

For high temperatures, this correlation becomes very weak thus grouping the

data points into several clusters of small size. The optimal solution, in which

natural clusters appear, is expected to be found within a range of temperatures

between the lower and upper extremes.

Limitations of Wave clus

In extracellular recordings, the activity of neurons with different firing rates and

spike amplitudes might generate clusters that differ in their density and location

within the feature space. This condition increases the difficulty of the problem

in which clusters of different densities might appear at several temperatures.

Another complication is the fact that at the highest temperatures, high density

clusters are likely to split, resulting in an undesired partition of the data, called

overclustering. We show this scenario with an example of real data, in particular

an extracellular recording from the human medial temporal lobe of an epileptic

patient.

The purpose of this example is to illustrate two main complications in the

partition of the data arising from a typical recording: i) clusters appearing at

different temperatures and ii) overclustering. Figure 4.1a contains the tempera-

ture diagram generated by SPC and four different clusters identified at several

temperatures. At the lowest temperature T = 0 only the biggest cluster (BC)

appears (see the blue curve in the temperature diagram). At T = 0.02 from
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Figure 4.1: (a) Example of a real recording from the human medial temporal
lobe (approximately 30 min). Clusters were obtained after manual spike sorting
using the temperature diagram depicted in the figure. Clusters in green and cyan
represent the spike shapes of two single-units, appearing at temperatures T =
0.02 and T = 0.14, respectively. The multi-unit cluster (in blue) is represented by
the biggest cluster (BC) at T = 0.17. Cluster in red, also at T = 0.17, represents
an overclustering case of the multi-unit and should not be selected. (b) Similar
case reproduced with a simulation of 5 minutes duration, including one multi-
unit and two single-units. Note also here, 3 salient peaks in the temperature
diagram, with B1 and B2 representing good clusters and B3 appearing at a
spurious partition which should be avoided.
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BC we can separate cluster A1 (single-unit in cyan). As the temperature further

increases, the BC gives at T = 0.14 a new cluster A2 (single-unit in green) but

at this temperature the cluster A1 no longer exists. At a higher temperature

T = 0.17 a new partition is generated in which we obtain a new cluster A3 (in

red) of smaller size (64 spikes). However, cluster A3 seems to be an overclustering

of the BC at the clustering temperature T = 0.17 where their shapes overlap.

In neurophysiology, the new cluster A3 would be normally labeled as noise or a

small part of the BC (multi-unit activity). A simple way to solve this problem

would be for instance, to set a hard threshold to reject clusters with less than

∼60 points. However, this solution would not detect small clusters that might

represent in some cases the sparse activity of neurons that should be considered.

In Figure 4.1b we reproduced the same problem using synthetic data. We

included one multi-unit and the activity of two single-units with different spike

amplitudes and firing rates. As in the example depicted in Figure 4.1a, the data

broke into two simulated single-unit clusters in two different stages. In the first

one, the cluster B1 appeared at a low temperature (T = 0.04). At T = 0.14

the second partition occurs where from BC we extract B2. The simulation also

reproduced the overclustering case typically found in real data where in this case,

a further breaking of the BC at T = 0.17 generated a spurious cluster (B3).

The automatic selection of clusters used by Wave clus, based on a hard-

threshold approach applied on a single temperature, limits the method to deal

with challenging situations commonly found in extracellular recordings, as demon-

strated earlier on both real and synthetic data. The main limitations of Wave clus

are i) identification of clusters based on a single threshold for all temperatures

and ii) selection of clusters at a single temperature. When these complications

arise, the optimal clustering is reached by means of a supervised approach. In

this situation, the operator has the possibility of choosing the temperature (e.g.

T = 0.14 in Figure 4.1a and Figure 4.1b) and also selecting or rejecting clusters

at different temperatures. In the following section we describe a new criterion

for doing this automatically.
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4.2.1 Improvements

The aim of the new algorithm is to obtain an optimal unsupervised classifica-

tion of single-units using the several clustering partitions provided by SPC. Our

method overcomes the difficulties found in extracellular recordings arising from

clusters of different densities and sizes. In order to deal with this complicated sit-

uation, our strategy introduces two major improvements: i) Selection of optimal

clusters and rejection of overclustering cases of applying a variable threshold to

identify the optimal cluster size at each temperature and ii) simultaneous iden-

tification of clusters appearing of different temperatures by analysing the data

partitions at several temperatures.

Criterion 1

To identify optimal clusters of different sizes at all the data partitions, we define

a threshold as a function of the temperature, in contrast with the hard-threshold

approach based on a fix number of spikes used by the old algorithm (see equation

2.7). We know that in SPC, the probability of breaking clusters within high-

density regions increases with the temperature. At higher temperatures, this

phenomenon may lead to spurious partitions of the data (overclustering). As a

result, artificial clusters, may appear at high temperatures, leading to false posi-

tives if a threshold based on a fixed cluster size is adopted. On the other hand, in

partitions occurring at lower temperatures, the size of the natural clusters might

be smaller. Thus, an increment in the threshold level to avoid overclustering

at high temperatures might lead to misses at lower ones. Moreover, in systems

with phase transitions, the data partitions as temperature increases are related

to the decay of the size of the BC (Ison et al., 2002). Our strategy deals with

this complication by means of creating an adaptive threshold using the dynamics

of the BC across all partitions. We define the value of the threshold θi as

θi = b · BC0

BCi
(4.1)
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where b is an optimization parameter related to the size of the cluster to be

identified, equivalent to a used in the old algorithm (see equation 2.7 in Chapter

2). BC0 and BCi represent the size of the biggest cluster at T = 0 (i.e. the total

number of spikes) and Ti = 0.01, 0.02, ...0.2, respectively. The algorithm selects a

potential clustering at temperature Ti when Aji −A
j
i−1 ≥ θi, where Aji represents

the size of the jth cluster at Ti. Once the desired temperature is located we select

the fragments containing Aji spikes or more. With this criterion, the algorithm

becomes more conservative in the selection of clusters as temperature increases.

Criterion 2

In order to fully reach the potential of the SPC, we should analyse the data at all

partitions. For example, one cluster identified at a certain temperature T1, might

no longer appear at some other temperature T2 in which a new cluster might be

identified. Our second criterion deals with this complication, selecting clusters

at different temperatures simultaneously. This fact introduces the problem of

identifying whether two clusters appearing at different temperatures are the same

or not. To overcome this difficulty, we added a second condition to this criterion,

quantifying the overlapping of clusters.

Assuming that, in SPC, clusters break down as T increases, in the simple

case of having two data partitions at temperatures T1 and T2 (T1 < T2), three

possible scenarios might arise: a) points in the cluster A at T1 correspond to the

same cluster at T2; b) points in one single cluster A at T1 correspond to different

clusters, i.e. B and C, at T2 and c) points in different clusters, i.e. A and B, at

T1 correspond to different clusters, i.e. C and D, at T2. For all these possible

conditions, we want to know if the cluster A appearing at T1 has broken down

into different clusters B and C at T2, discarding cluster A if this situation occurs.

Then, we need to quantify if clusters at T1 and T2 are included in each other.

The Jaccard coefficient (Jaccard, 1901) measures similarity between clusters with

sizes A and B coming from different partitions. It is given by Cjaq = |A∩B|
|A∪B| . The

problem with this quantification is that if B is a small subset but completely
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included in A, Cjaq will be small. Instead, we proposed an overlapping coefficient

Cov defined as

Cov =
|A ∩B|

min(A,B)
(4.2)

with Cov ranging between 0, if they are completely different and 1 when they are

both the same (i.e they do not share any spike), or if one is a subset of the other.

4.2.2 Simulated Data

In order to quantify the performance of our spike sorting algorithm we used

realistic simulations of extracellular recordings. We generated these synthetic

data following the approach described in Chapter 3, a model that reproduces

the contribution of the background noise, multi- and single-unit activity. All the

simulations had a duration of 5 minutes with a sampling rate of 24 kHz and a

noise level based on its standard deviation (see equation 2.3 in Chapter 2) and

equal to 7µV . We included the activity of 1 multi-unit per simulation and 1 to

5 single-neurons. The amplitudes of the single-units were uniformly distributed

between 70 to 120µV and the firing rates between 0.1 to 2 Hz. This variability is

expected to generate clusters with different sizes and densities, creating difficult

problems for the spike sorting algorithm.

4.2.3 Algorithm Optimization and Validation

We trained and tested both the former and new clustering algorithms using

two datasets of 100 simulations each. As an optimization parameter for each

method, we varied the threshold for choosing a cluster, represented by a and b in

the the former and new algorithm, respectively (see equations 2.7 and 4.1). We

evaluated the outcome of the algorithms with values of a equal to 10, 30, 50 and

60 spikes and values of b equal to 5, 10, 15 and 20 spikes. The performance of

each algorithm was quantified by its number of hits, false positives and misses.

For single-units, an identified cluster was considered as hit when more than
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Optimization
parameter

Misses False
positves

Errors

a (Former) 10 165 158 323
30 58 14 70
50 51 5 56
70 57 2 59

b (New) 5 15 75 90
10 18 6 24
15 21 1 22
20 23 0 23

Table 4.1: Number of simulated units misses, false positives and errors for the
different optimization parameters a and b used in the former and new algorithm,
respectively. In this analysis a total number of 410 units were included

50% of its spikes come from more than the 50% of the spikes of the simulated

cluster. A selected cluster was defined as false alarm when it did not meet the hit

criterion. Missed clusters were calculated as the number of simulated units minus

the number of hits. For multi-units, a hit was considered when more than 50%

of its spikes came from the simulated multi-unit. Note that in this case, we do

not apply the same rule as in single-units; since, by design, a significant number

of the spikes included in the simulated multi-unit will not cross the detection

threshold (see Martinez et al. (2009) for details). We applied a paired T-Test to

quantify the significance in the differences resulting in the sorting errors of each

clustering algorithms for each one of the 100 simulations in the training and test

datasets.

4.3 Results

4.3.1 Optimization

We optimised the performance of the former and new clustering algorithms us-

ing a total of 100 simulations containing 410 clusters: 100 multi-units and 310

single-units. Table 4.1 shows the classification results in terms of misses, false

positives and errors, corresponding to the two methods for the different opti-

mization parameters a and b, respectively.
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Based on these analyses, we selected a and b at which each algorithm

provides the smaller number of classification errors. For the training dataset

used in this study, the optimal thresholds for the former and new methods were

50 and 15 with sorting errors of 13.7% (56/410) and 5.4% (22/410), respectively.

For both algorithms all the multi-unit clusters were correctly detected.

4.3.2 Example of Use of Criterion 1

In Figure 4.2 we show the benefits of using criterion 1. This example, includes

one multi-unit and two single-units with high firing rates and spike amplitudes.

Figure 4.2a depicts the cluster assignment using the former algorithm. In

this case, this simulation presents a significant increment in the number of spikes

at a high temperature due to overclustering. The automatic approach of the

former algorithm, based on a fixed threshold, selected this temperature, thus

giving a wrong partition. At this temperature (Tclus = 0.16), the partition

presents an overclustering of the data, imposing the breaking of the multi-unit

(blue cluster) into small spurious clusters (red and green clusters). In Figure 4.2b

we show how the variable threshold (see equation 4.1), becomes more conservative

at high temperatures, avoiding the overclustering made by the former algorithm.

Instead, this criterion selects the correct partition (Tclus = 0.02) at which three

natural clusters appear, corresponding to one multi-unit (blue) and two simulated

single-units (red and green).

4.3.3 Example of Use of Criterion 2

In the example of Figure 4.3 we show how the criterion 2 improves the clustering

results by analysing the data at different partitions. In Figure 4.3a, the former

algorithm, based on a single-temperature selection approach, looks for the highest

temperature at which the increment in the number of spikes crosses the threshold

a. In this case the cluster assignment is done at Tclus = 0.14, identifying one

multi-unit (blue) and one single-unit (red). In Figure 4.3b, we show how the
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Figure 4.2: Example of use of criterion 1. (a) Former criterion for the selection
of clusters based on a fixed threshold a at the highest temperature (see equation
2.7). Note how the partition at Tclus = 0.16 imposes the clusters red and green
to appear as an overclustering of the biggest fragment (in blue). (b) Criterion for
the selection of clusters used by the new algorithm. Note here how a threshold
variable with the temperature as in θi, dramatically improves the selection of
clusters, becoming more conservative as the temperature increases (see equation
4.1). In this case, the new solution selects the optimal partition at Tclus = 0.02
and at the same time avoids the potential overclustering at T = 0.16.
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new criterion, based on a multi-temperature selection of clusters, identifies two

more clusters appearing at Tclus1 = 0.03, corresponding to the activity of two

correctly classified single units (green and cyan). The new algorithm also allows

the selection of the clusters appearing at Tclus2 = 0.14. Note also the role of

the overlapping criterion, when selecting clusters from different partitions. The

overclustering coefficient Cov (see equation 4.2) between the BC at Tclus1 (black

dot) and the same cluster at Tclus2 (blue dot), prevented the first one from being

selected which further broke into a new one at Tclus2 (red dot).

4.3.4 General Results

Once both algorithms were optimised with the training dataset, we performed the

quantification of both the old and the new implementations, using the testing set

of 100 simulations with a total of 430 simulated clusters (100 multi-units and 330

single-units). In Figure 4.4 we present the outcome of both methods in terms of

number of misses, false positives and classification errors. In comparison with the

old algorithm, the new implementation significantly improves the spike sorting

results. The classification errors in the new algorithm (35/430), compared to

the old method (86/430) were significantly lower (p < 0.05). In terms of false

positives, the new implementation also outperformed the old one (4/430 and

8/430,respectively) although, these differences were not statistically significant

(p = 0.158). Both algorithms correctly identified all the multi-unit clusters.

In terms of computational speed, both algorithms present similar perfor-

mances. Note that the all the improvements are implemented after spike de-

tection, feature extraction and Monte Carlo simulations for the calculation of

the temperature diagram by the SPC algorithm, taking all these stages together

an overall processing time of approximately 60 seconds (for our test set). This

makes the implementation of the new automatic solution very efficient, since it

provides a significant improvement in terms of classification performance at a

low computational cost as compared to the former solution. In this case, the
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Figure 4.3: Example of use of criterion 2. (a) Former criterion for the selection of
clusters based on single-temperature selection of clusters. Note that looking only
at one partition, the former algorithm selected the highest temperature meeting
its threshold criterion, in this case Tclus = 0.14. (b) Identification of clusters
based on a multi-temperature analysis approach. Looking at several partitions,
the new algorithm is capable of selecting clusters appearing at different tempera-
tures (Tclus1 = 0.03 and Tclus2 = 0.14). Also, the overlapping coefficient prevents
the new clustering algorithm from selecting clusters containing the same group
of points (i.e. spikes in the BC at Tclus1 (black dot) appear also in the read and
blue cluster at Tclus2 as quantified by Cov (see equation 4.2) and therefore the
BC at Tclus1 should be discarded).
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Figure 4.4: Outcome of both algorithms in percentage of misses, false positives
and classification errors for a total of 430 clusters (100 multi-units and 330 single-
units) across 100 simulations.

new algorithm calculated the automatic solution in 0.22 ± 0.087 seconds (aver-

age ± SD across the test set) while the former algorithm obtained the results in

0.15± 0.038 seconds.

Figure 4.5 depicts a scatter plot showing the uniform distribution of am-

plitudes and firing rates of the simulated single-units (grey dots). The misses,

corresponding to the former and new implementations, are represented by black

circles and dots, respectively. Note that neurons with low amplitudes (i.e. <

80µV ) and low firing rates (i.e. < 0.5Hz) are less likely to be identified with

both methods. However, a number of units with both high levels of signal-to-

noise ratio and firing rates, easier in principle to be identified, were also missed

when using the former algorithm.

Figure 4.6a depicts the number of misses for each algorithm for different

firing rate bands (0.1-0.5, 0.5-1, 1-1.5 and 1.5-2 Hz). Note that with both algo-

rithms the performance was worst for neurons with very low firing rates (band
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Figure 4.5: Scatter plot of the uniformly distributed firing rates and peak ampli-
tudes across all the single-unit clusters (grey dots). Black circles represent the
missed clusters with the former algorithm (78) and black dots the missed clusters
using the new algorithm (31).

of 0.1-0.5Hz). However, under this challenging condition, the new implementa-

tion significantly decreased the number of misses (25/92) as compared with the

former one (49/92). In Figure 4.6b, we see the number of missed clusters for dif-

ferent ranges of spike amplitudes (70-80, 80-90, 90-100, 100-110 and 110-120µV ).

In this case, a relative large number of units within the lowest amplitude range

were not detected with the former method (20/72), while with the new imple-

mentation the performance was significantly better (3/72). In all these cases the

differences were statistically significant (p < 0.05).

4.4 Discussion

In the recent years many spike sorting techniques have been proposed (Lewicki,

1994; Fee et al., 1996a; Harris et al., 2000; Letelier and Weber, 2000; Hulata

et al., 2002; Pouzat et al., 2002; Quian Quiroga et al., 2004). However, most of

these methods have been designed to provide a semi-automatic solution assuming
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Figure 4.6: Percentage of misses with the former (grey) and new algorithm
(black) for different firing rates (b) and amplitude bands (b).
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in more or less proportion the intervention of a human operator. One of the

most widely used methods for spike sorting is Wave clus (Quian Quiroga et al.,

2004) and one of the few algorithms providing a fully unsupervised clustering

solution. In this case, Wave clus selects one optimal temperature identifying

automatically the corresponding optimal clusters. In a relatively high number of

recordings, this solution is optimal. However, the manner in which the system

changes depends on the structure in the data. Recordings including the activity

of neurons with different firing rates, amplitudes and spike shapes are likely

generate complex scenarios in which several clusters of many sizes might appear

at different temperatures.

In this chapter we presented a fully automatic clustering that significantly

improves the unsupervised performance of a previously developed and widely

used spike sorting algorithm. Our method successfully overcomes the problem

of identifying clusters of different densities and sizes appearing at different tem-

peratures while avoiding spurious clusters. To obtain these results we proposed

two criteria: we defined a variable clustering threshold following the dynamic of

the biggest cluster and we considered clusters at different temperatures. We also

included a measure that quantifies the degree of overlapping when clusters ap-

pear at different partitions. As with any automatic algorithm, its outcome might

result in some cases not correct for an expert operator, being apparently better

the use of a semi-unsupervised approach. However, the possibility of gathering

large data sets by recording from multiple channels and the need of tools for a

fast analysis of this data makes the use of unsupervised spike sorting algorithms

a very attractive method for the study of large populations of neurons in the

years to come.

4.5 Summary of Chapter 4

In Chapter 4 we presented a new solution for automatic spike sorting. The

method described here significantly improves the unsupervised outcome of a well
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known spike sorting algorithm by providing a more efficient solution when dealing

with clusters of different sizes and densities, typically found in real extracellular

recordings. The excellent results obtained in the automatic isolation of single-

neuron activity will to take full advantage of the increasing advances in multi-

channel electrode technology by reducing de errors and processing time during

manual intervention.
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Chapter 5

General Conclusions

The main goal of this thesis was the development of technology for the automatic

analysis of neural activity. We addressed this general problem with two specific

contributions: the development of realistic simulations of extracellular recordings

and improvements to an automatic spike sorting algorithm.

The quality of neural data depends crucially on the particular spike sorting

technique that is used to isolate the activity of each of the recorded neurons.

Furthermore, advances in multichannel electrodes provide the appropriate tech-

nology for recording from large-scale neuronal ensembles. However, this offers

a challenge for the development of efficient spike sorting methods, since man-

ual sorting becomes a very subjective and time consuming task and automatic

algorithms -which are in turn more difficult to develop- should be preferred.

For an optimal quantification of the performance of the different spike sort-

ing techniques we created a robust simulation framework in which the challenging

conditions of real extracellular recordings were reproduced.

The results obtained in both these areas contribute to the development

of automated and efficient quantitative platforms for the analysis of large-scale

population codes, thus contributing to a better understanding of how our brain

functions.

68
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5.1 Simulation of Extracellular Recordings

In chapter 3 we presented a method to generate simulations that reproduced

the most salient characteristics of extracellular recordings. Such theoretical plat-

forms play a crucial role in the development of optimal spike detection and sorting

algorithms.

A number of different algorithms for spike sorting have been proposed in

the past years (Lewicki, 1994; Fee et al., 1996a; Harris et al., 2000; Letelier and

Weber, 2000; Hulata et al., 2002; Pouzat et al., 2002; Quian Quiroga et al., 2004).

However, it is still very difficult to compare and evaluate the outcome of these

methods due to the lack of shared datasets that allow to unequivocally quantify

their performance. On the one hand, it is in general not possible to perform such

quantifications with real datasets because we do not have access to ’ground truth’,

i.e.: the original labels marking to which neuron belong each spike (but see Wehr

et al. (1999); Harris et al. (2000); Henze et al. (2000) for notable exceptions, in

which simultaneous intracellular and extracellular recordings provided labels to

each spike).

We presented a new platform based on a hybrid and computationally sim-

ple approach to generate synthetic datasets. Our method accurately reproduced

salient features of the background noise such as power spectrum and amplitude

distribution. The single-unit activity was simulated by adding spikes trains fol-

lowing a Poisson process on top of the background noise. We also generated

multi-unit activity as the contribution of many spike shapes with peak ampli-

tude distributions following those corresponding to real data.

In summary, we developed realistic simulations reproducing those features

of real recordings that are particularly challenging for any spike detection and

sorting algorithm. These results provide an adequate testing platform to de-

velop robust algorithms as well as a benchmark for quantifying the performance

between different spike detection and sorting techniques.
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5.2 Automatic Spike Sorting

In chapter 4 we presented a new implementation for automatic clustering that

significantly improved the unsupervised solution of a widely used spike sorting

algorithm.

Making use of the results presented in Chapter 3, we tested our method

using a set of simulations including multi-unit and single-unit activity with dif-

ferent levels of signal-to-noise ratio and firing rate as well as different number

of neurons. These synthetic data sets, reproduced several realistic situations

in which the correct classification of neural activity becomes very challenging

for an automatic clustering algorithm. For example, the activity of sparse neu-

rons (cells with low levels of activity) is very difficult to identify since is usually

masked by other clusters with high firing rates such as the multi-unit. Also, the

activity of neurons with low signal-to-noise ratio activity is usually mixed with

the multi-unit.

Under this challenging but also typical condition in extracellular recordings,

the previous solution for automatic sorting did not provide the expected results

in a considerable number of cases, being necessary the intervention of a human

operator to reach the optimal solution.

Our new solution for automatic clustering successfully dealt with the prob-

lem of detecting neurons with different levels of activity and signal-to-noise ratio

in the same recording, increasing the number of isolated units without man-

ual intervention. Moreover, the new method also improved the identification of

sparse neurons, commonly very difficult to identify using automatic spike sorting

algorithms.

The results presented in Chapter 4 will also contribute to the analysis of

large-scale recordings. New developments in the area of intracortical electrodes

(Drake et al., 1988; Hetke et al., 1994; Rousche and Normann, 1998) allow us to

record from multiple extracellular signals at a time by using a high number of

channels. This, together with the use of better invasive technology for optimal
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chronic implants, provides a new scenario in which it is increasingly common to

generate large datasets during the course of an experiment. The analysis of this

vast amount of data usually becomes a very time consuming process since, for

the reasons mentioned above, the operator usually needs to supervise dozens of

channels and manually classify the neural activity.

In summary, the results presented in this work contribute to the efficient

and fast automatic classification of single-unit activity, taking full advantage of

the new advances in the electrode technology and helping to understand how

cognitive process are encoded by individual neurons.



Chapter 6

Suggestions for Future Work

In this chapter we present suggestions for future work based on the results de-

scribed in Part II. The work presented here has made novel contributions on the

automatic analysis of neural data. In Chapter 4, we presented improvements

for an efficient unsupervised classification of single-units, that we tested using

a realistic simulation framework described in Chapter 3. These results opened

new questions that we address here.

6.1 Improvements on Simulation of Extracellu-

lar Recordings

In chapter 3 we presented a new method to generate efficient simulations of ex-

tracellular recordings. This method uses a hybrid and computationally simple

approach, where the features of the background noise arise naturally from its bio-

physical process of generation. We simulated the single-unit activity by adding

spikes on top of the background noise. Moreover, we simulated the multi-unit

activity as a contribution of many spikes of several shapes with amplitude distri-

butions matching the ones found in real recordings. This approach resulted in a

powerful method in which we tested the automatic spike sorting algorithm pre-

sented in chapter 4. However, the nature of the synthetic multi- and single-units

in which the amplitudes and shapes are predefined might limit the generation of
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more complex scenarios.

Simulations including phenomena such as the spike shape variability due

to neuronal morphology or to the orientation of the neuron with respect to

the recording electrode (see Chapter 2), might be used for example to create

more challenging conditions in which to test spike sorting algorithms. This new

approach would be addressed by developing simulations with a higher level of

complexity. Here, the spiking activity of both multi- and single-unit would be

generated by detailed computational models of neurons of different morphologies,

reproducing realistic spike shapes at different locations within the extracellular

space (Gold et al., 2006). This would also open the possibility to develop sim-

ulations of extracellular recordings in polytrodes for testing new spike sorting

algorithms. In this case, the variation on the spike amplitude and shape across

the different channels needs to be considered for the development of new analysis

techniques using polytrode data.

6.2 Spike Sorting on Multi-Electrode Data

In Chapter 2 we briefly described the powerful capabilities of using multi-electrode

probes for spike sorting. Recording from the same spike shape in different chan-

nels opens new ways of analysing single-neuron activity. One of the key aspects

when using multi-electrode probes is how to combine the information provided by

different channels for an optimal spike sorting. For example, we could concate-

nate the spikes shapes recorded from different channels to build a new polyspike

waveform that would be used further for sorting purposes.

Here, we suggest as a future line of work the study of analytical tools to

deal with multi-electrode data. For example, the extraction of optimal features

from the polyspike will be of great relevance for a better cluster isolation. As

in single-channel data, one could use a particular set of wavelet coefficients to

represent the most salient features of the spike shape. In this case, we suggest

the study of optimal wavelet coefficients as well as new features for separation of
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polyspike waveforms. Moreover, in recordings using a high number of electrodes,

we propose further studies for automatic selection of the best channels (i.e. the

ones with higher signal-to-noise ratio) for spike sorting. We also consider a

relevant question to study the advantages of using multi-electrodes over single-

channel probes (using the simulations of multi-electrode data proposed in the

previous section). It is of great interest to know the gain in the total number

of isolated units when using i) the combination of several channels or ii) each

channel individually. Finally, to create a fast and robust analytical framework

using multi-electrode probes we propose to study and quantify the performance

of the automatic clustering method described in Chapter 4 on polyspike data.



Part IV

Appendices
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Appendix A

Simulations

A.1 Extracellular Recordings

In our simulations of extracellular recordings we tried to replicate the main char-

acteristics observed in real data, as measured in the human medial temporal

lobe. These recordings were done in epileptic patients, refractory to medication

to localize the focus of the seizures and evaluate the possibility of a surgical re-

section. The basic features of a typical recording were described in Figure 3.2 of

Chapter 3.

Figure A.1 shows the histograms of the scaling exponents α corresponding

to the linear fits of the power density spectrum (PDS) and the relative peak

amplitude for multi- and single-unit spike shapes for 192 channels. The identifi-

cation of all the clusters was done using Wave clus as a spike sorting algorithm

(see Chapter 2). The labeling of the clusters as multi- and single-unit was done

by an expert operator, according to criteria defined elsewhere (Quian Quiroga

et al., 2005; Quian Quiroga, 2007). The scaling exponent α had a mean equal

to 0.98 ± 0.21 (mean ± SD) and the mean correlation coefficient r2 was 0.99 ±

0.007. Figure A.1b and Figure A.1c show the differences in peak amplitude for

multi- and single-unit activity. Note the lower peak amplitudes for multi-unit

spikes (Figure A.1b), about 1.5 times the detection threshold level (see Chap-

ter 3), compared to the single-unit normalised amplitudes, between 1.5 and 4
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(Figure A.1c).

A.2 Simulations for Testing the Spike Sorting

Algorithm

Five simulations of extracellular recordings of one multi-unit and two single-units

were generated using different firing rates and peak amplitudes (see Table 3.1

in Chapter 3 for a detailed description). Spike detection and sorting was done

using Wave clus. Figure A.2 shows the spike shapes automatically detected by

Wave clus for examples 2-5. The results corresponding to example 1 are shown

in Chapter 3.

Figure A.3 shows the PDS plots for the simulations of the previous figure,

after band-pass filtering between 300-3000 Hz. The amplitude of the power

spectrum was normalised by the total energy within the 300 - 3000 Hz frequency

range. The plots on the left side show the PDS and the ones on the right show

the log-log plots with their corresponding linear fits, the scaling exponent α, and

the correlation factor r2.

Figure A.4 discloses the amplitude distribution for the four simulations

of Figure A.2. The vertical red line represents the amplitude threshold used

for spike detection, set at 4 times the estimation of the standard deviation of

the noise (see Section 3.2). The plots on the right side show a detail of the

distribution around the detection threshold. Note the smooth transition between

the noise and the detected spikes, as typically seen in real recordings (see inset

in middle plot of Figure 3.2 in Section 3.3).
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