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Electron mobilities in supercritical and liquid helium were investigated as a function of the

density. The mobilities were derived from I(V) curves measured in a high-pressure cryogenic cell

using a corona discharge in point-plane electrode geometry for charge generation. The presented

data spans a wide pressure and temperature range due to the versatility of our experimental

set-up. Where data from previous investigations is available for comparison, very good agreement

is found. We present a semi-empirical model to calculate electron mobilities both in the liquid and

supercritical phase. This model requires the electron–helium scattering length and thermodynamic

state equations as the only input and circumvents any need to consider surface tension. Our

semi-empirical model reproduces experimental data very well, in particular towards lower

densities where transitions from localised to delocalised electron states were observed.

1. Introduction

Microscopic probes have always played an important role in

the exploration of the unique properties of liquid helium

(LHe). Examples of these are electrons. Electrons were used

to identify the rotation of helium in single vortex lines1,2 and

they were also used in early mobility measurements3 leading to

the discovery of negative charge localisation in large voids.4

This localisation and the establishment of spherical ‘cavities’

around electrons at a critical density and temperature is the

cause of a large drop in mobility of over more than four orders

of magnitude.5 An electron confined in a cavity gives rise to

quantised energy eigenstates and the existence of cavities was

later nicely demonstrated when these states were probed by

infrared spectroscopy.6,7

The formation of cavities has its origin in the predominantly

repulsive interactions of ground state helium atoms. Their size

results from the balance of forces of this repulsion and the

surface energy.8,9 Electron cavity radii are typically on the

order of 15 Å, but depend on the hydrostatic pressure.10 In

dense helium gas, cavities exist as well. There, like in the

normal liquid phase, the motion is governed by the laws of

hydrodynamical (Stokes) flow, whereas in the superfluid state

interactions with collective excitations (phonons, rotons and

vortices) become dominant.11 In all of these flow regimes the

radius of the spherical cavities determines the mobility. In the

gas phase at lower densities, cavities are not supported. In this

regime the mobility is governed by gas-kinetic type behaviour.

With decreasing temperature and increasing density a point is

reached where the mobility dramatically decreases. This point

can be interpreted as the onset of cavity formation. Low

temperatures assist the localisation process which is reflected

by a shift in the mobility transition region to higher densities

with increasing temperature.5 Cavity formation around

electrons in LHe has been studied extensively using various

methods12,13 including density function theory (DFT).14–17

DFT methods specially developed for LHe provide good

agreement with first principles methods for small helium

clusters,18 but have the disadvantage that they are restricted

to zero Kelvin. Despite all these efforts, the precise prediction

of the transition from gas-kinetic to hydrodynamic flow still

remains a challenge for theory. Presently available models

provide only limited accuracy in predicting electron mobilities,

even when far from the transition zone. Furthermore, mobility

data covering the transition density regime is rather sparse and

makes it difficult to test existing theory.

We have therefore undertaken a series of measurements for

liquid and supercritical helium using the method of corona

discharges for charge generation. We derived mobilities from

I(V) curves measured in a point-plane electrode arrangement.19

Furthermore, we have developed a semi-empirical model to

calculate mobilities and cavity radii. The precise determination

of mobilities requires knowledge of the surface energy.

Commonly, the surface tension of helium is employed, but

this is problematic.20,21 The surface tension deviates for curved

surfaces and is not defined for all hydrostatic pressures (P) and

temperatures (T), especially in low density regions of super-

critical gas. Adjusted values for the surface tension in LHe

have been employed17 but do not resolve the problem. Fig. 1

visualises the difference between measured and predicted

mobilities, using the popular ‘bubble’ model. The semi-

empirical thermodynamic model that we introduce in this

paper circumvents the use of surface tension. It is based on

the free-volume concept22,23 and employs the electron scattering

length and appropriate thermodynamic state equations as the

only input.

Despite its semi-empirical nature our approach represents

an important step towards a better understanding of the

electron localisation process as it predicts mobilities and cavity

radii with much greater precision than any other existing

theory. Furthermore, it will be valuable for the microscopic
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probing of the properties of LHe or helium droplets. Cavities

also exist around electronically excited helium atoms and

helium excimers in Rydberg states. Although these species

are neutral, their cavities are very similar to those around

electrons. For neutral Rydberg species, the void is created by

the repulsive interaction between the Rydberg-electron

orbiting around the positive core with the surrounding ground

state helium atoms. There are nevertheless differences in size

because the Rydberg-electron is still attracted by the positive

core. Neutral Rydberg-cavity systems are inaccessible to mobility

measurements, but they provide a rich source of spectroscopic

information as first demonstrated by Dennis and coworkers

for high-energy electron-beam-excited bulk LHe,24,25 Femto-

second laser-excited LHe26,27 and for helium droplets photo-

excited by synchrotron radiation.28–30 Recently, corona discharges

have been employed to excite supercritical and bulk LHe

and a rich fluorescence spectrum similar to that when using

electron beams and synchrotron radiation was observed.31,32

Rydberg-cavities are important as spectroscopic probes of

microscopic states of helium. The concept for deriving the size

of electron cavities is transferable to Rydberg cavities and will

be relevant for future investigations of LHe.

The electron mobilities presented in this paper were measured

in supercritical gas at 6, 7 and 10 K as well as in LHe at 4.2 K.

The advantage of using point-plane electrode geometry in a

corona discharge is that it naturally generates electrons and

that it provides for the establishment of very high pressures so

that a wide density range can be covered. Where data is

available in the literature, we find a good match with our

results. Our semi-emipirical model fits the measured electron

mobilities better than any other available model. The improve-

ment is particularly evident for supercritical helium.

2. Experiment

Mobility measurements were carried out in a high-pressure cell

that was attached to a bath cryostat using a corona discharge

to generate the charge carriers. Details of the set-up were

published in previous publications31–33 and here we give only a

brief description. Helium gas of purity level 99.9999%

was passed through a series of liquid nitrogen-cooled cold

traps and activated charcoal filters and introduced into the

high-pressure cell. The corona discharge was established in

point-plane geometry. For this geometry, previous workers

have found that the current is unipolar space charge-limited

and concentrated along the tip axis,34,35 both for gases and

liquids. In liquids, the current depends quadratically on the

voltage:

I ¼ Ctme
ðV � V0Þ2

d
ð1Þ

where I represents the current, d the distance between tip and

plane, Ct is a constant, m the mobility, e the dielectric constant
(e0er) and V and V0 the voltage and the threshold voltage.35

The mobility can be obtained from a linear fit of the square

root of the current plotted against the voltage. In this plot the

straight, asymtotic part of the
ffiffiffiffiffiffiffiffiffiffi
IðVÞ

p
graph is identical to the

mobility. Ct in eqn (1) is derived by comparison with experi-

ments using other methods such as the time of flight for the

derivation of the mobility. Taking Ct = 2 leads to a good

agreement with experiment36 as well as with theory.37

3. Results

I(V) curves were recorded for 4.2, 6, 7 and 10 K as a function

of the hydrostatic pressure and mobilities were derived using

eqn (1) according to the above procedure. Fig. 2 shows the

electron mobilities at 4.2 K alongside the mobilities as reported

in the literature.38,39 Also, the mobilities have been calculated

using the common bubble method, as well as our model.

Fig. 1 Electron mobilities in LHe measured at 2.2, 3 and 4.2 K as a

function of the normalised density N/Ncr, where Ncr relates to the

critical density. In this region in particular, the ‘bubble’-model com-

monly used shows significant deviations from the experimental data,

for instance, the maximum at N/Ncr = 2.2 cannot be reproduced. The

three vertical lines at Ns/Ncr refer to the ratio between the density at

saturated vapour pressureNs and the density at the critical pointNcr of

69.641 kg m�3.

Fig. 2 Pressure dependence of electron mobilities measured at 4.2 K

byMeyer et al.,38 Keshishev et al.39 and in this work. The pressures are

normalised to the saturated vapour pressure Ps = 0.9847 bar.
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The data shows that the mobilities increase with pressure, pass

through a maximum and decrease again. Our data covers

particularly the low pressure region (0.1–1 MPa) since electron

mobilities in this pressure range have only been sparsely

reported in the literature. Fig. 3 shows the mobilities in LHe

as a function of the normalised density.

We also investigated the effect of the tip size by using two

different tips with a radius of 0.45 and 2.5 mm, respectively, to

ascertain that the way we derive the mobilities from the I(V)

curves works. No difference was observed.

4. Discussion

In helium gas at low density the electron is free and its mobility

m0 is governed by the laws of gas-kinetics:

m0 ¼
4e

3Nqð2pmekbTÞ1=2
ð2Þ

where e and m are the electron charge and mass, respectively,

N the number density, q the momentum transfer cross-section

(constant for helium, q= 5� 10�20 m2) and kB the Boltzmann

constant.

At higher gas densities an electron can interact with several

atoms simultaneously40 and consequently the mobility m0
that was derived in eqn (2) on the assumption of single

atom-electron interactions does not fully match experimental

data. These deviations can be corrected using the following

expression:

m ¼ m0ð1�
ffiffiffi
p
p

meNqÞ ð3Þ

where m refers to the corrected mobility and leNq to the ratio

between the electron de Broglie wavelength le and the classical

mean free path length 1/Nq. Eqn (3) is only accurate for small

le (fast electrons) and as it takes only first order density

corrections into account it is only valid for moderate correc-

tions m/m0 4 0.3.

The mobilities m calculated in this way agree well with

experimental data up to densities N/Ncr D 0.15, where Ncr

refers to the critical density. At higher relative densities N/Ncr

a transition from a quasi-free to a localised state takes place

which is observed through an abrupt decrease of the electron

mobility from 100 cm2 V s�1 to 0.1 cm2 V s�1. In this region,

below 0.1 cm2 V s�1, the Knudsen number becomes lower than

1 and therefore a hydrodynamical analysis, similar to the one

proposed for LHe, can be used. Measurements of the mobility

in the transition region are afflicted with a very large error

because the changes are so rapid.

The physical process of electron-localisation can be explained

by the minimisation of the large interaction energy between

the electron and helium atoms leading to the self-trapping of

free electrons in a void. Schmidt et al. described the trapping

to proceed in multiple steps, the first step being the occasional

localisation of the excess electron in an unstable density

fluctuation of the liquid, and the second being stabilisation

via the formation of a larger cavity.41 The driving force in this

process is the Pauli repulsion between the excess electron and

the surrounding helium atoms, with both of their electrons

residing in the 1s2 state, due to the Pauli principle. The

electron pushes the helium atoms away thereby acting against

the restoring force of the surface tension s(P,T) until an

equilibrium cavity radius R is reached. In the first approxi-

mation, it is the increased geometric cross-section of this cavity

that gives rise to the comparatively low mobilities of electrons

in supercritical gas and LHe. From hydrodynamics we know

that for small velocities the viscous force Ff exerted on a sphere

follows Stokes law. Hence, the relation between mobility m and

cavity radius R is as follows:

eE � Ff ¼ 0! eE � 4pRZv ¼ 0

eE ¼ 4pRZmE ! m ¼ e

4pRZ

ð4Þ

Here, E is the electric field strength and Z(P,T) the dynamic

viscosity of the fluid. We note that for the ‘bubble model’ a

coefficient of 0.8 � 4p is commonly used12,42,43 because the

coefficient of 4p in the Stokes equation applies to bubbles

whereas the more familiar 6p is due to drops.44,45 It is reasonable

to assume a spherical shape of the ‘cavity’ since the interaction

between electron and helium atoms is isotropic and therefore

the radius R of a cavity can be derived from mobility data.

It is also possible to calculate the cavity radius from the

equilibrium of forces acting on the cavity. The most frequently

adopted approach calculates the equilibrium radius R by

minimising the electron excess free energy with respect to the

radius. The free energy is represented by the zero-point energy

of an electron in a square-well-potential, the surface energy

represented by the product of surface tension s (P,T) and

cavity surface and the volume displacement work of the

liquid.43

Ecavity ¼
h2

8mR2
þ 4pR2sþ 4

3
pR3P ð5Þ

Fig. 3 Density dependence of electron mobilities measured in LHe

at 4.2 K by Meyer et al.38 and by us (this work). The densities

are normalised to the critical density of helium of 0.0694 g cm�3.

The dashed line refers to calculated electron mobilities using the

established ‘bubble’-model and the solid line shows the results using

our model.
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Where h is Planck’s constant, m the electron mass, s the

surface tension and P the hydrostatic pressure.

The agreement of the mobilities calculated in this way with

experimental results is fair for high pressures (P4 1 MPa) but

with lower and lower pressures, deviations become apparent.

Particularly, the position of the maximum observed in Fig. 1

for low pressures or densities, respectively, cannot be reproduced

when using eqn (5). Furthermore, this model cannot reproduce

the variation in mobility as a function of pressure at different

temperatures. The reason for these deviations lies in the more

complicated structure than that of a simple ‘‘empty bubble’’

with a sharp interface. It is very reasonable to assume that the

thickness of the cavity–liquid interface is of similar order to

the liquid–vapor interface of LHe, which is 7 Å,46 and which is

not small compared to the cavity radius. Therefore, the use of

the concept of surface tension is not applicable here. A better

approach is to transform the surface energy into a volume

energy similar to that of the work against hydrostatic pressure

PV. A second reason for the deviations is that the surface

tension s(P,T) is used for P and T values where it is not

defined. The surface tension is only defined at gas–liquid

interface systems that are governed by the well-known

saturated vapour-pressure relationship between P and T, but

this relationship does not necessarily correspond to the con-

ditions at the interface between cavity and liquid.

In this section we demonstrate how mobilities can be

calculated more accurately. Essentially, we develop the thermo-

dynamic equation of state for excess electrons in helium in the

limit of low concentrations using the free-volume concept. The

mobilities calculated in this way show the pressure and tem-

perature dependence without the limitation imposed by using

the surface tension. In the past, the free-volume concept was

successfully used to predict the properties of liquids and solids,

such as the ionic conductivity.22,23 Our approach is more

generic than the cavity model as it predicts the volume of

cavities formed by the electrons regardless of its specific struc-

ture. The ingredients to calculate the size of the void that we use

are the scattering length a for electrons in helium to represent

the Pauli repulsion and an appropriate thermodynamic state

equation to represent attraction, i.e. the restoring forces similar

to that of surface tension. The advantage of our model is its

applicability to thermodynamic states in a much wider range, in

particular to states with low density. We will see that much

better agreement with experimental data can be achieved.

Our idea is based on the proportionality between the

volume of the object formed by excess electrons Ve and the

‘free-volume’ (V�b) of the object where the term ‘free volume’

refers to the notation of the van der Waals state equation. The

proportionality holds exact if the total volume is not changed

too much when foreign objects are introduced. For excess

electrons this condition is clearly fulfilled since their quantity is

negligible compared to the total number of helium atoms in

the discharge cell. We replace (V�b) by Vf and write for the

volume Ve of an electron cavity with arbitrary shape:

Ve ¼ C
Vf

N
ð6Þ

where C is a constant of proportionality which we obtain here

by fitting to the experimental data at 3 K (any other

temperature can be chosen as well) and N the number of

helium particles that are displaced by the foreign object. In this

notation a spherical cavity formed by the electron has the

volume Ve ¼ 4
3
pR3 and moves within the Stokes flow regime

giving rise to a mobility m related to R.

The free volume of LHe is a function of two independent

thermodynamic parameters: P and T. The relation between

these quantities can be expressed through the classical van der

Waals equation of state:

ðPþPLHeÞ
Vf

N
¼ kBT ð7Þ

where PLHe is the internal pressure. The internal pressure

represents the attractive forces in the system (i.e. long range

van der Waals interaction) and generally depends on the

temperature T and the particle density r.
Our aim is now to develop an expression for PLHe that

accounts best for the physical properties of our system. We

start with the following generic equation to describe the

dependence on local variations of the density:

PLHe = f1(T)r
2 + terms (8)

The extra terms in this equation account for the ‘local’ internal

pressure close to the foreign object where the attractive forces

are non-isotropic. In our model we have chosen the following

expression:

PLHe ¼
ar2 þ b exp g r

rs
� exp g

� �
T2

ð9Þ

where r/rs is the ratio between the density and the density of

the liquid for saturated vapor pressure at a given temperature

T and a = 0.007, b = 4, g = 4.9. We note that when r
approaches rs the second term vanishes and the equation for

the internal pressure assumes the van der Waals form.

For a supercritical gas eqn (9) has to be modified because

the only reference is the critical density. Therefore, it is

reasonable to assume a similarity between the parameter

PSupHe referring to the state equation in supercritical helium

and PLHe with the supercritical density rs replaced by the

critical density rc and without the factor eg. The state equation

for PSupHe assumes then the following form:

PSupHe ¼
ar2 þ b exp r

rc

T2
ð10Þ

with the parameter a = 0.007, b = 4 of the liquid.

To derive the radius R of the cavity we assume proportion-

ality with the scattering length a and exploit the inverse

proportionality with the free volume Vf. Hence, we find the

following empirical relation for the a and Vf dependence of the

cavity radius R:

R ¼ a
ðVref=Vf Þ3

1þ 0:09ðVref=Vf Þ3 exp �1:7
Vref=Vf

� � ð11Þ

Vf can be expressed through the state equation Vref=Vf ¼
4:5 pþP

T
and it is then possible to calculate the cavity radius as a

function of P and T by fitting the parameters in our empirical
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relation to the measured values of the radius derived from the

measured mobilites through the Stokes equation.

R ¼ a
4:5 PþP

T

� �3
1þ 0:09 4:5 PþP

T

� �3
exp �1:7

4:5PþPTð Þ

� � ð12Þ

In this equation expressions for the internal pressureP have to

be entered according to eqn (9) or (10) depending on whether

liquid or supercritical helium is considered. All pressures have

to be entered in units of bar; the scattering length a is 0.062 nm;

all constants are real constants and independent of the tempera-

ture. The behavior at the limits r- 0 isR-Ba and r-N is

R - B11 nm.

In the regime of supercritical gas densities where a hydro-

dynamical approach can be used (Knudsen number o 1) the

agreement with experimental data is very good (Fig. 3). Fig. 4

shows the measured and calculated electron mobilities for

liquid and supercritical helium over a wide range of densities.

The dashed line refers to the common bubble model. It can be

seen that our model produces very good fits in both the liquid

and the supercritical regime.

It is difficult to assign the true origin of the rapid change in

electron mobility in the transition region. Firstly, this region is

characterised by a cross-over from hydrodynamic to molecular

flow, but this transition should be a gradual change, much less

rapid than the observed change in mobility. Secondly, in the

framework of hydrodynamic flow there are two possibilities

to explain the increase of the electron mobility. On the one

hand, for decreasing density r- 0 the viscosity also decreases

Z - 0, but this decrease is relatively slow. On the other hand,

it is also possible that the cavity radius R increases. The

experimental values show that this decrease in R must be

more rapid than that of Z. The fact that the cavity shrinks is in

contradiction with the ‘bubble’ model commonly used in the

literature. In this model the force acting against the electron

repulsion is the surface tension which is expected to decrease

with decreasing density. Hence, one would expect the cavity to

increase in size which clearly contradicts the experimental

data. Up to now there is no satisfying explanation of why

the mobility changes are so dramatic and why they take place

particularly at N/Ncr D 0.15.

5. Conclusions

In summary, we have presented new data on electron mobilities

in supercritical and liquid helium. The new data allowed

us to elaborate the density dependence in a region which is

only sparsely covered in the existing literature. To cover the

widest possible density range we generated free electrons in a

corona discharge using point-plane electrode geometry. This

relatively simple and versatile set-up allowed us to establish

pressures of up to 100 bar and temperatures down to 4 K. The

mobilities were also simulated. We developed a new model for

the hydrodynamical flow regime that derives the electron

mobilities from the electron scattering length in helium a

representing repulsion and an appropriate thermodynamic

state equation where the internal pressure P accounts for

the attraction. This approach circumvents the use of the

surface tension as commonly used in the ‘bubble’ model.

The common ‘bubble’ model is an easy-to-understand concept,

but is has some shortcomings: (i) it predicts cavity growth for

low-densities which is contradictory to experimental data

and (ii) it employs surface tension values to thermodynamic

states where these are not defined. Our model overcomes

these shortcomings as it predicts the density-dependence

of the electron mobility correctly. Also, the accuracy is

unsurpassed by any other presently available model. Our

semi-empirical model makes use of parameters that are

adjusted to experimental data. This adjustment is made

only once and the resulting equation to calculate electron

mobilities or cavity sizes is universally applicable for all

thermodynamic states within the molecular flow region. In

addition to its practical use, our model may be useful to shed

more light on the microscopic properties of cavities in liquid

and supercritical helium. For instance, if a microscopic theory

of Stokes flow existed, more information on the cavity–liquid

interface could be obtained because our model makes no

assumption of the actual shape of the cavities. It just assigns

a hypothetical sphere of displaced helium atoms to the free

volume.
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Fig. 4 Density dependence of electron mobilities at 4.2, 6, 7 and

10 K. The figure shows measured data by Jahnke et al.,47 this work

and calculated data using the common bubble model (dashed green

line) and our approach (dashed-dotted red and violet solid lines). The

violet solid line refers to our calculation for supercritical helium.

Again, the densities are normalised to the critical density of helium

of 0.0694 g cm�3.
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