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Abstract

This thesis analyses fiscal policy in four models of economicgrowth.
The first model is a variant of Jones [61]; overlapping generations are in-
troduced and it is shown that the allocation is dynamically inefficient. As
in Diamond [42], a debt financed transfer to current generations can lead
to a Pareto improvement; interestingly, the improvement is achieved not
by discouraging capital accumulation but through a reallocation of labour
between sectors. The second is a two-sector model of growth with pub-
lic capital. It is shown that perpetual fiscal deficit cannot be sustained.
The first best allocation is examined and for the log-utilitycase an explicit
solution can be found. Implementation of the optimal allocation is dis-
cussed. The third model features disembodied technological progress as
in Solow [100], but it is assumed dependent on public investment. Con-
ditions under which perpetual deficits are sustainable are discussed. The
fourth and last model introduces excludable and congestible public ser-
vices. The optimal fiscal policy, including optimal user charges, is stud-
ied. It is shown that in the long-run the optimal income tax iszero and
that revenues from user charges is more than sufficient to finance public
investment in infrastructures.
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Introduction

This thesis is a contribution to the study of fiscal policy in dynamic general equi-

librium models of growing economies. The seminal work of Solow [100] and Ramsey

[87] has inspired a large literature on the determinants of economic growth and the

analysis of optimal intertemporal policies. Cass [28] and Koopmans [71] are two cru-

cial contributions on the latter. Understanding the determinants of growth is of obvious

importance: if sustained for decades, even small differences in growth rates lead to large

differences in output levels. Unsurprisingly, many economists have written on the de-

terminants of economic growth and on how policies impact on growth rates. This liter-

ature has received an additional impetus with the emergenceof the endogenous growth

models of Romer [92], [93], Lucas [74], Grossman and Helpman[59]and Aghion and

Howitt [2] just to name a few.

While all of these models are rather stylised descriptions of the evolution of any

real economy, their relative simplicity allow us to focus onsome important principles

that are important to help the design of good policies. We believe that this type of

analysis can be of practical interest to policy makers. The planning of fiscal policy

or the designing of fiscal rules such as the Growth and Stability pact in the Eurozone

and the Fiscal Framework in the UK require an understanding of the concepts of fiscal

sustainability and intergenerational fairness. The studyof aggregate but rigorously mi-

crofounded models of economic growth can help significantlythis discussion by taking

to the fore the interactions between decisions of governments and private sector agents

over time.
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This analysis requires a detailed description of savings and investment decisions.

Two main approaches are used in the literature: infinitely-lived agents and overlapping

generations. An example of a thorough analysis of the formeris Brock and Turnovsky

[23] while Diamond [42] is the seminal reference for the latter. Blanchard [21] sug-

gested an overlapping generations model of ”perpetual youth” that has the advantage of

tractability and admits the infinitely lived agents framework as a special case.

Some of the main themes highlighted by this literature are dynamic efficiency,

sustainability of fiscal deficits, and optimal investment and taxation policies. These

three themes are very closely related. Both dynamic efficiency and the sustainability

of perpetual fiscal deficit depend on the relative magnitude of the rate of growth to

the interest rate (See Cass [29], [30] on dynamic efficiency; most advanced macroeco-

nomics texts -e.g. Turnovsky [106]- on sustainability). Ithas been shown that when an

economy is dynamically inefficient, fiscal deficits are feasible and welfare improving

(Tirole [104]), although the converse is not necessarily true (Grossman and Yanagawa

[60]). On the other hand, an economy that invests optimally cannot suffer from dynamic

inefficiency.

The issue of dynamic efficiency has been investigated extensively in models of

exogenous growth and in fully endogenous growth models. To the best of our knowl-

edge, however, not in the semi-endogenous growth model of Jones [61]. This is an

important omission because, as pointed out by Solow [101] amongst others, endoge-

nous growth models rely on a ”knife-edge” assumption that may be unwarranted. In

the first chapter we fill this gap in the literature by analysing a model of growth through

R&D that is very close to that of Jones except for the assumption of overlapping genera-
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tionsà la Blanchard [21] instead of the infinitely-lived agent framework. We investigate

conditions under which fiscal policy can lead to a Pareto superior allocation.

However, the uncoordinated actions of economic agents is ensured to achieve an

efficient allocation of an existing stock of resources only under restrictive assumptions;

for example any form of externality and public goods may imply inefficiency. The

presence of these market failures justifies government intervention beyond the strictly

intergenerational redistributive policies justified by dynamic inefficiency. It becomes

then important to develop models that may inform the discussion on the main principles

that these policies should follow, without loosing sight ofthe dynamic aspects of the

problem. In this sense the literature on intertemporal optimal taxation pioneered by

Chamley [34] and Judd [66] is the offspring of the literatureon static optimal taxation

pioneered by Ramsey [86] and Diamond and Mirrlees [43], [44].

In the second chapter we introduce government spending on public goods. We

analyse a two-sector growth model with overlapping generationsà laSamuelson-Diamond

(Samuelson [97], Diamond [42]). On the production side the model is an extension of

the classic two-sector model of Uzawa [108]. In our version,firms benefit from public

services produced using infrastructures generated by the capital sector. We investigate

the sustainability of fiscal policy and we characterise the optimal intertemporal fiscal

policy.

The main theme of the third chapter is again fiscal policy sustainabilty in a frame-

work that analyses public investment explicitly. We present a one-sector model where

the rate of growth depends on accumulation of public infrastructures. We discuss con-

ditions under which the rate of economic growth may exceed the rate of interest, which

allows the government to run Ponzi-finance of public investment.
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The fourth chapter presents an analysis of public investment and optimal fiscal

policy in an intertemporal model with infinitely-lived agents. The main novelty is the

assumption that public services are excludable, which allows for an explicit analysis of

user fees. Some important properties of the optimal fiscal mix are discussed.



1 Semi-endogenous growth with finite life-
times

There is a vast literature that analyses the effects of different fiscal policies in

growing economies. One important question concerns dynamic efficiency. An econ-

omy is dynamically inefficient if, given the way available resources are allocated in a

given period, consumption can be increased in all period by modifying theintertempo-

ral allocation of resources.1 Cass [29],[30] showed that in a competitive economy, if an

equilibrium path is inefficient, asymptotically the rate ofinterest is below the growth

rate. It is well known that the Ramsey-Cass-Koopmans neoclassical growth model is

dynamically efficient (Shell [99], Blanchard and Fischer [22]), but when the model is

modified to allow an overlapping generations structure, dynamic inefficiency becomes

a possibility (Diamond [42], Blanchard [21], Cremers [37]).

In the one-sector neoclassical model with overlapping generations, it is shown

that dynamic inefficiency arises because the saving that households make for life-cycle

reasons may lead to an overaccumulation of capital. That is,the capital stock is so

large that the marginal product of capital is depressed to the point that it is below the

investment required for maintaining the marginal unit of capital; in this situation, were

the economy to save less, consumption in all periods could actually increase. This is

fundamentally a coordination problem. If all agents could coordinate their actions, they

would agree to save less; but in a competitive economy each individual responds to the

1 For many authors, static efficiency is a pre-requisite for dynamic efficiency. It seems to us that the
two sources of inefficiency are in general distinct and that even after having recognised the existence of
a static distortion the discussion of whether overaccumulation occurs is still of interest. In our model
we need to keep the two distinct as the monopolistic structure of the goods market implies that the static
allocation of resources is inefficient.
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incentives given by prices, and although from the social point of view there may be

overaccumulation, each households is optimising given theprices it faces.2

Once it is recognised that the economy may be dynamically inefficient, the next

natural question is whether fiscal policy may be used to improve the allocation. It is

known that with overlapping generations -whether with finite or infinite horizons- Ri-

cardian equivalence may fail, and government bonds are considered net wealth (Barro

[11], Weil [109], Buiter [25]). Under these circumstances,fiscal policy can indeed im-

prove the intertemporal allocation of resources. One possible way of doing so is to

finance lump-sum transfers to generations currently alive,with issuing of bonds that

are constantly rolled over. This ”Ponzi finance” is made feasible by the overlapping

demographic structure (O’Connel and Zeldes [81]). These transfers will make each

generation feel wealthier and induce them to consume more, resolving the coordination

problem. The scheme will induce a smaller accumulation of capital, increase the mar-

ginal product of capital and hence the interest rate. As longas the interest rate is not

pushed above the growth rate asymptotically, the scheme will be feasible (Tirole [104]).

With the explosion of the literature onendogenous growthin the 80s/90s, many

of the old questions analysed in the older economic growth literature have been re-

examined, including the dynamic efficiency. Saint-Paul [96] and Grossman and Yana-

gawa [60] show that the one-sector model with alearning-by-doingexternality à la

Romer [92] and overlapping generations is dynamically efficient. In fact because of the

externality, the interest rate does not reflect the social marginal product of capital, and

if anything the problem is one of capitalunder-not over-accumulation. While Ponzi

2 A solution to this coordination problem through Coasian bargaining is clearly not feasible, as it would
not only involve bargain between literally an infinity of individuals, but even between individuals who
can never meet because their lives do not overlap.
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finance is still feasible, it cannot be Pareto improving. In fact public debt would re-

duce savings and permanently reduce the growth rate, thus harming future generations.

King and Ferguson [69] clarified that the result that the economy is always dynamically

efficient, depends on the assumption that there is only one type of capital. With sev-

eral capital goods and externalities, the economy may be dynamically inefficient, but

the problem is not thescaleof the capital stock, but itscomposition. It does remain

true that Ponzi finance, as long as it affects the scale but notthe composition, cannot be

Pareto improving. Khan, Lim and Rhee [68] analyse an endogenous growth model with

human capital à la Lucas [74] and overlapping generations, and also find that dynamic

inefficiency is possible; but again the problem is one of the capital mix (too little human

capital is accumulated), and Ponzi finance only makes matters worse by permanently

decreasing the growth rate.

Another strand of models endogenises the growth rate by explicitly incorporating

R&D activities. These models typically assume imperfect competition, and hence the

equilibrium is not even statically efficient. However, it isstill interesting to ask whether,

given the way existing resources are allocated by the marketwithin any given period,

an intertemporalreallocation may be Pareto improving. In early versions of the model

(Romer [93], Grossman and Helpman [59], Aghion and Howit [2]), the decentralised

economy tends to underinvest in R&D, and therefore one wouldexpect the problem to

be again one ofunderaccumulation, and Ponzi finance to be counterproductive. Olivier

[82] introduces overlapping generations in a R&D model à la Romer [93] and confirms

this intuition. Interestingly, although the result is similar to that found by Saint-Paul

[96], Grossman and Yanagawa [60] and King and Ferguson [69],the mechanism is

different. In the former class of models, public debt crowdsout physical capital, without
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affecting the interest rate; in the latter instead, as agents feel wealthier, they spend

more, which increases the interest rate. As the interest rate increases future profits are

discounted more heavily, which discourages the allocationof labour to the R&D sector

thus permanently reducing the growth rate.3

Crucial for Olivier’s result is the fact that the long-run growth rate depends on the

share of labour allocated to R&D activity. As noted by Jones [61], this is a result that

depends crucially onknife-edgeassumptions on the R&D technology, and at odds with

empirical observations. Once diminishing social returns to labour in R&D are allowed,

the long-run growth rate is independent from the share of labour allocated to that sec-

tor. In this model, therefore, Ponzi finance cannot permanently depress the growth rate,

and one wonders whether it may be Pareto improving. In this chapter we confirm that

this may indeed be the case. We modify the model of Jones by introducing overlapping

generations. We show that long-run equilibria exist that are characterised by the inter-

est rate being asymptotically below the growth rate. We showthat Ponzi finance can

be Pareto improving. Our overlapping generations framework is identical to Olivier’s,

therefore any difference in results must be driven by the different assumptions on tech-

nology. We argue that the intuition is a mixture of the observations made above. In this

model there are two factors that are accumulated, physical capital and knowledge. It

is the mix of these two factors, rather than just the scale, that can be inefficient. The

mechanism through which Ponzi finance may improve the allocation is similar to that

in Olivier’s model. Here as there, the effect is through the increase in the interest rate,

which encourages a reallocation of labour from the R&D sector to the consumption sec-

tor. Only while in the Olivier-Romer model allocation to R&Dis always insufficiently

3 Interestingly, Olivier finds that a bubble on equity will have the opposite effect by encouraging R&D
activity.
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low, in the Jones model it can be too high. When this is the casethe issuing of debt ame-

liorates the physical capital-knowledge mix, without affecting long-run growth, and can

result in a Pareto improvement.

The next section describes the structure of the model. Section 1.2 shows that the

equilibrium is locally determined. Section 1.3 introducesfiscal policy and shows that

debt financed transfers may increase aggregate consumptionin all periods and thus be

Pareto improving. As the dynamics of the system are rather complicated, we resort to

numerical simulation to establish this result. Section 1.5summarises and concludes.

1.1 Model

We consider an economy that produces a single consumption good, which is taken

as the numeraire. Agents in this economy are overlapping generations of households

(dynasties), firms and a government.

1.1.1 Households

The demographic structure is as in Blanchard [21] and Buiter[25]. Each generation is

composed of a continuum of households. At any timet, β > 0 new households are born

(formed). Each household faces a constant probability of death (breaking)p > 0. We

assumeβ > p, that is positive population growth. Each household only cares about its

own consumption, and supply labour inelastically. Preferences of a household born at

times are represented by

Et

[∫ +∞

t

u (c (s, v)) eθ(t−v)dv

]
, θ > 0,
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whereθ is the discount factor; c (s, v) indicates consumption at timev of a household

born at times. The term in square brackets captures the idea thatas long as it survives

the households enjoys aflow of utility from consumptionu (c (s, v)); the parameterθ

measures how future utility is discounted, that is how impatient the household is. The

expectation sign is needed because the household does not know for how long it will

survive; in other words there is a chance that consumption planned in the future will not

be enjoyed because the household disappears in the meantime. The utility function is

assumed to be logarithmic

u (c (s, v)) = ln c (s, v) .

Over time, households accumulate financial assets. Uncertain lifetimes implies

that households may leave unintended bequests. However, although lifetimes are un-

certain from the point of view of the single households, on aggregate there is no uncer-

tainty on the number of deaths and births. It is then possibleand convenient to assume

that there is a competitive insurance market. It is easy to show that households will find

it convenient to stipulate the following contract: the insurance company pays the house-

hold p units of the consumption good at timet, to receive one unit of a financial asset

at the time of the household’s death.4 To avoid unintended bequests, households will

contract all of their wealth.

4 By stipulating this contract, the household recievesp in addition tor (t) in each period until death.
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Given the assumptions listed above, at timet, maximisation of the expected utility

is equivalent to maximisation of5

∫ +∞

t

ln c (s, t) e(θ+p)(t−v)dv. (1)

The household’s budget constraint is

ȧ (s, t) = (r (t) + p) a (s, t) + l (s, t)w (t)− c (s, t) . (2)

We add a condition, known in the literature asno Ponzi games condition,6,7 that con-

strains the growth of household’s debt to be below the interest rate asymptotically:

lim
v→+∞

e−
∫ v
t
(r(µ)+p)dµa (s, t) ≥ 0.

wherec (s, t) is consumption,l (s, t) is the endowment of labour,a (s, t) the stock of

financial assets owned,r (t) the real rate of return,w (t) the real wage per unit of labour

supplied. We assume that the endowment of labour decreases with age, according to

l (s, t) = l0e
−ε(t−s).

Call N (t) the mass of households alive at timet. At any time t, βN (t) new

households are born. Of the households born at timev, βN (v) e−p(t−v) are still alive at

time t. Population grows at the rateβ − p. NormalisingN (0) = 1, N (t) = e(β−p)t.

5 The probability of being alive at timev, conditional on being alive at timet, is e−p(v−t). Then

Et
[∫+∞
t

u (c (s, v)) eθ(t−v)dv
]

=
∫+∞
t

u (c (s, v)) eθ(t−v)e−p(v−t)dv

=
∫+∞
t

u (c (s, v)) e(θ+p)(t−v)dv.
6 Without this condition, the household would borrow as much as possible each period and use these
funds to finance consumption and interest payments on previous borrowing, without ever repaying neither
the principal nor interest. The condition takes its name from Charles Ponzi, who made a quick fortune in
the 1920s by using loans from new lenders to repay old lenders(Blanchard and Fischer[22]).
7 This is not innocuous; when a government can run a Ponzi scheme, a private agent could in principle
initiate one too. We follow much of the literature and disregard equilibria with households running such
schemes.
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The total labour supply at timet is

L (t) =

∫ t

−∞

l (s, t)βN (s) e−p(t−s)ds

=

∫ t

−∞

[
l0e

ε(s−t)
] [
βe(β−p)s

]
e−p(t−s)ds

=
l0β

β + ε
e(β−p)t.

Thusε affects the level but not the growth rate of the aggregate labour endowment.

Maximisation of (1) s.t. (2) implies8

c (s, t) = (θ + p) (a (s, t) + h (s, t)) , (3)

where

h (s, t) =

∫ +∞

t

l (s, v)w (v) e−
∫ v
t
(r(µ)+p)dµdv. (4)

is the human wealth of a household born ats. We can rewrite the expression for human

wealth as

h (s, t) =

∫ +∞

t

l0e
ε(s−v)w (v) e−

∫ v
t
(r(µ)+p)dµdv

= l0e
εs

∫ +∞

t

e−εvw (v) e−
∫ v
t
(r(µ)+p)dµdv

Note that the value of the last integral is identical for all households, independently of

their date of birth.

For any individual variablex (s, t), the corresponding aggregate is

X (t) = βe−pt

∫ t

−∞

x (s, t) eβsds.

8 Furthermore the following transversality condition must hold:

lim
t→+∞

e−(θ+p)t
a (s, t)

c (s, t)
= 0.
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Then we can write9 the aggregate human wealth as

H (t) = βe−pt
[∫ +∞

t
e−εvw (v) e−

∫ v
t
(r(µ)+p)dµdv

]
l0
∫ t

−∞
eεseβsds

= βe−pt
[∫ +∞

t
e−εvw (v) e−

∫ v
t
(r(µ)+p)dµdv

]
l0
∫ t

−∞
e(β+ε)sds

=
[∫ +∞

t
e−εvw (v) e−

∫ v
t
(r(µ)+p)dµdv

]
l0

β
β+ε

e(β−p+ε)t.

=
[∫ +∞

t
w (v) e−

∫ v
t
(r(µ)+p+ε)dµdv

]
L (t) .

(5)

Differentiating (5) with respect tot we have

Ḣ = (β + ε+ r (t))H (t)− w (t)L (t) . (6)

Aggregating, (3) and (2) can be written

C (t) = (θ + p) (A (t) +H (t)) , (7)

and

Ȧ (t) = r (t)A (t) + w (t)L (t)− C (t) , (8)

respectively. The equations (6)-(8) describe the aggregate behaviour of the households.

Differentiating (7) and eliminatingH (t), we can write more compactly:

Ċ (t) = (r (t)− θ + β − p+ ε)C (t)− (θ + p) (β + ε)A (t) . (9)

1.1.2 Corporate sector

The production side of the economy is very similar to Jones [61]. The final good, which

is taken as the numeraire, is produced with labour and a combination of intermediate

goods according to

Y (t) = Ly (t)
1−α

∫ m(t)

0

xi (t)
α di, (10)

9 It will be verified later that the last intergral converges. WhenH (t) converges,h (s, t) <∞ ∀s < t.
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whereLy (t) is the fraction of the aggregate labour endowment allocatedto the produc-

tion of final goods,xi (t) is the quantity of intermediate goodi used andm (t) is the

mass of available intermediate goods. Intermediate goods depreciate completely with

production.10

The production function (10) tries to capture the distinction between accumula-

tion of ideas and accumulation of objects (Romer [94]). In traditional growth theory,

all capital goods are aggregated together in a single capital stock,K. This seems rea-

sonable as long as the new object acquired are similar to those already in stock; but

the crucial feature of innovation is the introduction of newprocesses and activities and

new tools to carry them out. Typically technological progress involves a increasing de-

gree of specialisation, made possible by the invention of new techniques and machines.

Equation (10) is an attempt to formalise this.11,12

A look at (10) confirms that production of final goods is characterised by constant

returns to scale; we assume perfect competition in this sector. Ifνi (t) is the price of the

i-th intermediate good at timet, profits will beY (t)−w (t)Ly (t)−
∫ m(t)

0
νi (t)xi (t) di

and profit maximisation implies

Ly (t) =
(1− α)Y (t)

w (t)
, (11)

10 Alternatively one could work with the assumption that intermediates are durable goods, at the cost
of complicating the algebra slightly. In particular the equilibrium conditionK (t) = m (t)x (t) would
becomeK (t) = ṁ (t)x (t) +m (t) ẋ (t), which is more awkward to work with.

11 It applies the ”love for variety” models, introduced in consumer choice theory by Spence[102] and
Dixit and Stiglitz [46], to production. This was done first in a model of international trade by Ethier
[51], and in growth models by Romer[93] and Grossman and Helpman[59].

12 To see how the distinction between accumulation of objects and ideas is incorporated, assume that
xi is constant for alli (as it will be in equilibrium); then the production function will becomeY =

mL1−αy xα = (mLy)
1−α (mx)α = (mLy)

1−αKα.Thenmx measures the quantity of objects that the
economy has accumulated, whilem is a measure of ideas. Then it becomes clear that growth comesfrom
increasing physical inputs (Ly andK) and ideas (m). It is also clear from the equation above that for a
givenK,m measures labour productivity.
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and

xi (t) =

(
α

νi (t)

) 1
1−α

Ly (t) . (12)

Intermediate goods are produced using capital rented from households by firms

that have purchased a patent from the R&D sector at a pricePm (t). A patent gives the

exclusive right to produce a given variety, therefore each producer acts as a monopolist.

We assume for simplicity that one unit of capital is needed toproduce one unit of an

intermediate good and that capital does not depreciate. Calling r (t) the rental rate at

time t, intermediate goods producers solve

max
νi

νi (t) xi (t)− r (t) xi (t)

subject to (12). The inverse demand function for intermediate goodi is νi (t) =

αLy (t)
1−α xi (t)

α−1. Using this, the problem can be written

max
xi

αLy (t)
1−α xi (t)

α − r (t)xi (t) ,

the first order condition gives

xi (t) = x (t) =
(
α2/r (t)

)1/(1−α)
Ly (t) , (13)

and therefore

νi (t) = ν (t) =
r (t)

α
. (14)

Since capital is used only to produce intermediate goods, and in a one-to-one fashion,

we must have that the aggregate capital stock satisfies

K (t) =

∫ m(t)

0

xi (t) di = m (t) x (t) . (15)

Now, sincexi (t) = x (t) ∀t, using (15)Y (t) = Ly (t)
1−αm (t)x (t)α = (m (t)Ly (t))

1−αK (t)α.

ThenY (t) /K (t) = (Ly (t) /x (t))
1−α, and using (13) one obtains

r (t) = α2
Y (t)

K (t)
. (16)
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Callingπ (t) the profit for one existing intermediate goods firm (profits are iden-

tical for all existing firms),

π (t) = ν (t)x (t)− r (t)x (t) =

(
1− α

α

)
r (t)

(
α2

r (t)

) 1
1−α

Ly (t)

=

(
1− α

α

)
r (t)

(
α2

r (t)

) 1
1−α

x (t)

(
α2

r (t)

)− 1
1−α

(17)

=

(
1− α

α

)
α2

Y (t)

K (t)
x (t) = α (1− α)

(
Y (t)

K (t)

)
−

α
1−α

Ly (t)

=
α (1− α) Y (t)

m (t)
,

where we used (13) and (14) to derive the third equality.

The last activity to be considered is the invention of new varieties, the R&D sector.

As in Jones [61], we assume that the individual firm perceivesthat the labour required

to discover new innovations is given by

ṁ (t) = δ̄ (t)Lm (t) ,

whereLm (t) is the amount of labour allocated to R&D activity. However, there is a

spillover effect, so that̄δ (t) = δLm (t)
ψ−1m (t)φ, so effectively

ṁ (t) = δLm (t)
ψ m (t)φ . (18)

The termm (t)φ is meant to capture the spillover between research activities; in other

words, the body of research done previously (m (t)), makes the discovery of new ideas

easier. The parameterφ, measures the strength of this effect; Romer [93] assumes

φ = 1, which makes growth fully endogenous (but also explosive ina model with

population growth). Here we follow Jones [61] and assume0 < φ < 1. The term

Lm (t)
ψ−1 captures the idea that there may be duplications in researchactivities, so that

doubling the economy wide number of researchers may not double the research output.
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The parameter0 < ψ ≤ 1measures the strength of this effect. Whenψ = 1, duplication

is absent, whenψ < 1 it is present.

In equilibrium, an individual must be indifferent between working in the con-

sumption good sector (getting a wagew (t) per unit of labour supplied) , and devoting

their time to research (earning the value of the innovation produced). We must then

have13

w (t) = Pm (t) δ̄ (t) = Pm (t) δL
ψ−1
m m (t)φ . (19)

The maximum an intermediate producer will be willing to pay for a patent is the

present value of future profits,
∫ +∞
t

π (t) e−
∫ v
t

r(µ)dµdv. Competition between potential

producers will bid the price of a patent to that level, i.e.

Pm (t) =

∫ +∞

t

π (v) e−
∫ v
t

r(µ)dµdv. (20)

The ownership of the patent gives the exclusive right to produce the intermediate

good and thus allows the owner to obtain the stream of profitπ (t) as long as one retains

it. Furthermore the owner of the patent has always the optionto sell it. HencePm (t)

must obey the standard no arbitrage condition14:

r (t) =
Ṗm (t)

Pm (t)
+

π (t)

Pm (t)
, (21)

where the left-hand side is the instantaneous return of an alternative investment, the

right-hand side is the instantaneous return of a patent, given by the ”dividend”π/Pm

and the ”capital gain”Ṗm/Pm.

Assuming that capital is produced under perfect competition with a linear tech-

nology that transforms one unit of final good into one unit of capital, and that capital

13 Recall thatPm (t) is the price of a patent for a newly discovered variety. This equation can equiva-
lently be read as a free entry/zero profit condition for the R&D sector.

14 Obtained differentiating (20) w.r.t. time.
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does not depreciate, market clearing in the final goods sector requires

K̇ (t) = Y (t)− C (t) . (22)

The financial market clears ifA (t) = K (t), so (9) becomes

Ċ (t) = (r (t)− θ + β − p+ ε)C (t)− (θ + p) (β + ε) (K (t) + Pm (t)m (t)) (23)

The final equilibrium condition is that the labour market clears. This requires the sum

of employment in the R&D and final good sector to be equal to total labour supply:

Lm (t) + Ly (t) = L (t) . (24)

1.2 Dynamics

Arnold [3] studies the dynamics of the original model by Jones [61] with infinite life-

times andψ = 1. We study the dynamics allowing for finite lifetimes andψ ≤ 1. We

first show that the dynamics of the system can be represented by the evolution of four

suitably defined variables that are stationary in a balancedpath. The transformed system

is shown to always admit a steady-state. A full characterisation of stability is unfortu-

nately elusive, but we show with a combination of numerical exercises and a sufficient

condition that saddlepath stability obtains for a non-negligeable subset of possible pa-

rameter combinations. We then discuss under what circumstances the dynamics of the

transformed system determine a path for the original variables that can be sustained as

an equilibrium. Finally, we note that equilibria exist in which the growth rate of output

exceeds the interest rate.

First we prove that the dynamics of the economy can be described by a system

of four differential equations in suitably defined stationary variables. In particular we
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observe that the real interest rater (t) will be constant in the long run. This suggest

chosingρ (t) = (m (t)Ly (t) /K (t))1−α = Y (t) /K (t) = α2r (t) as one of the sta-

tionary variables. Similarly the observation that technological progress will be sta-

tionary suggest definingζ (t) = L (t)ψ /m (t)1−φ as another stationary variable; note

that ζ (t) = λ (t)ψ ṁ (t) /m (t). In a balanced growth path aggregate consumption

and aggregate physical capital stock will grow at the same rate, which suggests choos-

ing u (t) = C (t) /K (t). Looking at (19) one can guess that the ratio between out-

put and the value of production in the R&D sector will converge. Hence we define

q (t) = (Y (t) /Pm (t)m (t)). Finally as the share of labour emplyed in the consump-

tion sector must be constant in a balanced path, we defineλ (t) = Ly (t) /L (t).

Proposition 1.1 Let ρ (t) = (m (t)Ly (t) /K (t))1−α, ζ (t) = L (t)ψ /m (t)1−φ,

u (t) = C (t) /K (t), q (t) = (Y (t) /Pm (t)m (t)), λ (t) = Ly (t) /L (t). Then the dy-

namics of the economy are described by the following system of differential equations:

u̇ (t) =

[
u (t)−

(θ + p) (β + ε)

u (t)

(
1 +

ρ (t)

u (t)

)
−
(
1− α2

)
ρ (t) (25)

−θ + β − p+ ε]u (t) ,

ζ̇ (t) =
[
ψ (β − p)− (1− φ) δ (1− Λ (q (t) /ζ (t)))ψ ζ (t)

]
ζ (t) , (26)

q̇ (t) = {(1− α) (1− ψ) (β − p)− αu (t) + α (1− α) (q (t) + ρ (t)) (27)

+(1− α) (1− φ)
(1− λ (t))ψ+1

1− ψλ (t)
δζ (t)

}
q (t)

D (t)
,

ρ̇ (t) =

{
(1− α) (1− ψ)

1− ψλ (t)
(β − p) +

(
α + (1− α)

(
1− α2

)
E (t)

)
ρ (t) (28)

− (α + (1− α)E (t)) u (t) + α (1− α)2E (t) q (t)

−φ (1− α)
(1− λ (t))ψ+1

1− ψλ (t)
δζ (t)

}
ρ (t)

D (t)
,
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where

E (t) ≡
1− λ (t)

1− ψλ (t)
,

D (t) ≡ 1− (1− α)E (t) ,

andΛ (q (t) /ζ (t))is defined implicitly by

Λ (q (t) /ζ (t)) =
(1− α) q (t)

δζ (t)
(1− Λ (q (t) /ζ (t)))1−ψ .

Proof See section 1.6.

The following corollary shows that the system simplifies somewhat if one as-

sumesψ = 1.

Corollary 1.1 If ψ = 1, the system (25)-(28) simplifies to (25) and

ζ̇ (t)

ζ (t)
= (β − p)− (1− φ) (δζ (t)− (1− α) q (t)) ,

q̇ (t)

q (t)
= −u (t)−

(
1−

(1− α) (1− φ)

α

)
δζ (t)

+ ((1− α) (1− φ) + 2α)
(1− α)

α
q (t) + (1− α) ρ (t) ,

ρ̇ (t)

ρ (t)
=
(1− α)

α
[(1− φ) δζ (t)− (1− α)φq (t) + (1− α) ρ (t)] .

Proof If ψ = 1, then (38) in section 1.6 simplifies toλ (t) = [(1− α) q (t)] / [δζ (t)].

The expressions in the corollary are obtained substitutingthe latter andψ = 1 into (25)-

(28).

One important issue is the existence of a balanced path for the economy.
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Proposition 1.2 The system of differential equations (25)-(28) has a unique

steady-state withu, ζ, q, ρ > 0, λ ∈ (0, 1).

Proof See section 1.6.

Next we show that the converse of proposition 1.2 is also true, all convergent

solutions to (25)-(28) are equilibria for the economy.

Proposition 1.3 If the solution to the system (25)-(28) converges to a steadystate,

then the path{Y (t) ,K (t) , C (t) , Ly (t) , Lm (t) , x (t) ,m (t) , w (t) , p (t) , Pm (t)}
+∞
t=0

with

Ly (t) = λ (t)L (t) , Lm (t) = (1− λ (t))L (t) , r (t) = α2ρ (t) ,

p (t) = αρ (t) , x (t) = Ly (t) /ρ (t)
1/(1−α) , m (t) = L (t)ψ/(1−φ) /ζ (t)1/(1−φ) ,

Y (t) = m (t)Ly (t)
1−α x (t)α , w (t) = (1− α)m (t) (x (t) /Ly (t))

α ,

K (t) = m (t)x (t) , C (t) = u (t)K (t) , Pm = w (t)Lm (t)
1−ψ /

(
δm (t)φ

)
.

constitutes an equilibrium for the economy. In the balancedgrowth path,

Ċ (t)

C (t)
=

Ẏ (t)

Y (t)
=
K̇ (t)

K (t)
=

(
1 +

ψ

1− φ

)
(β − p) ,

ṁ (t)

m (t)
=

ψ

1− φ
(β − p) ,

Ṗm (t)

Pm (t)
=

ẋ (t)

x (t)
= β − p.

Proof The expressions for the various variable are obtained by working back from

the definitions ofu (t) , ζ (t), q (t), ρ (t), andλ (t). It is left to show thatH (t) < +∞,

this is done in section1.6.
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In the balanced path, aggregate final good production and consumption and the

aggregate capital stock all grow at the rate(1 + ψ/ (1− φ)) (β − p), in this sense growth

is semi-endogenous: the engine of growth is research activity, accumulation of ideas,

which is modelled explicitly; but in the long-run growth is limited by population growth,

an exogenous variable. Per capita variables grow at the rate(ψ/ (1− φ)) (β − p), but

one should be careful that whenε > 0, per capita and per worker variables are dif-

ferent in levels (although they grow at the same rate). And, of course, in this model

asset holding and therefore consumption varies across households, with wealthier older

households consuming more than younger ones.

So far we have shown that the dynamics of the economy can be studied by

analysing the behaviour of a system of four autonomous differential equations that ad-

mits a unique steady state. One would like to establish general conditions under which

the system is stable. Unfortunately the expressions for theJacobian (even in the slightly

simpler caseψ = 1) prove too complicated to find truly general conditions. We had

therefore to resort to numerical computations (as Eicher and Turnovsky [48]) and al-

ways found the Jacobian to have two stable and two explosive roots. We generally find

the stable roots to be complex, in the rest of the analysis we assume that the parame-

ters are such that this result holds. Of the four variablesu (t), ζ (t), q (t), andρ (t), one

is a state variable (ζ (t)), and three are jump variables (q (t), u (t) andρ (t)). However,

the market clearing equilibriumm (t)x (t) = K (t) gives a restriction between jump

variables:

Λ (q (t) /ζ (t))

ρ (t)1/(1−α)
=

K (t)

m (t)L (t)
. (29)
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We now show that the equilibrium is locally determined; that is, if the system starts

sufficiently close to the balanced path, there is a unique equilibrium path converging

there.

Denote the stable eigenvalues of the Jacobian of the system (calculated at the

steady state) withµ1 andµ2. We focus on the case that we found most common, where

µj are two complex conjugate numbers, sayµ± σi, whereµ indicates the real part and

σ the imaginary part ofµj, j = 1, 2. In the proximity of the steady-state, the solution to

(25)-(28) converging to the long-run equilibrium is approximated by15

u (t)− u = B1v11e
µ1t +B2v12e

µ2t,

ζ (t)− ζ = B1v21e
µ1t +B2v22e

µ2t,

q (t)− q = B1v31e
µ1t +B2v32e

µ2t,

ρ (t)− ρ = B1v41e
µ1t +B2v42e

µ2t,

where[v1j , v2j , v3j, v4j ] is the (complex) eigenvectors associated withµj, j = 1, 2; B1

andB2 are (complex) constants to be determined. It is computationally more convenient

to transform the complex numbers in trigonometric form and rewrite the system as16

u (t)− u = eµt
[
(D1cos (σt)−D2sin (σt)) v

r
11 − (D1sin (σt) +D2cos (σt)) v

im
11

]
,

ζ (t)− ζ = eµt
[
(D1cos (σt)−D2sin (σt)) v

r
21 − (D1sin (σt) +D2cos (σt)) v

im
21

]
,

q (t)− q = eµt
[
(D1cos (σt)−D2sin (σt)) v

r
31 − (D1sin (σt) +D2cos (σt)) v

im
31

]
,

ρ (t)− ρ = eµt
[
(D1cos (σt)−D2sin (σt)) v

r
41 − (D1sin (σt) +D2cos (σt)) v

im
41

]
,

where for any element of the a eigenvector,vkj, we indicated the real part withvrkj and

the imaginary part withvimkj , andDj = 2Bj, j = 1, 2. Settingt = 0, we find two

15 Using standard linearization methods. See, for example, dela Fuente[39] and Turnovsky[106].
16 Again, the proof can be found in de la Fuente[39].
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conditions that determine the arbitrary constant. The firstis given by the fact that the

initial value ofζ is given:

ζ (0)− ζ = D1v
r
21 −D2v

im
21 ,

The second condition is given by the restriction between jump variables (29) evaluated

at time0:

Λ (q (0) /ζ (0))m (0)L (0) = K (0) ρ (0)1/(1−α) ,

whereq (0) andρ (0) are functions ofD1 andD2. The above is a non-linear system of

two equations in two unknowns, so it may have one unique, multiple or no solutions. In

the case of no solution one would have to conclude that the steady-state is not stable. In

the case of multiple solutions one would have multiple equilibrium paths converging to

the steady state. Numerical simulations suggest that for plausible parameter values the

system admits a solution.

Example

Assumeα = 0.33, φ = 0.6, ψ = 1, δ = 1, θ = 0.02, β = 0.233, p = 0.0133,

ε = 0.05. Then computations show that the eigenvalues of the Jacobian at the steady-

state are approximately[0.14803942,−0.031984309 + 0.053778338i,

−0.031984309− 0.053778338i, 0.019592400], thus the system is saddlepath stable.

Furthermore, on the balanced pathĊ/C = 0.025, andr = 0.015. Note that these

parameters imply a rate of growth of 2.5%, an (riskless) interest rate of 1.5%, a rate

of population growth of 1% and life expectancy of about 75 years. Thus, although this

choice of parameters is purely for illustration, they do come reasonably close to stylised

facts for the US economy.17 We emphasise, though, that these parameters are chosen

17 We emphasise, though, that these parameters are chosen simply to illustrate the possible dynamics in
this model (and in the next section the possibility of dynamic inefficiency), we do not claim that there
is any strong evidence that these are empirically sound.” Atleast some of the parameters, though, are
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simply to illustrate the possible dynamics in this model (and in the next section the pos-

sibility of dynamic inefficiency), we do not claim that thereis any strong evidence that

these are empirically sound.

To illustrate the dynamics along convergence towards the steady state, we assume

that at time0 the stock of ideas is at a level compatible with balanced growth, but the

capital stock is 10% lower. We compute the path of the stationary variablesu (t), ζ (t),

q (t) andρ (t), and the implied path for the aggregate variables. Figure 1.1 shows the

growth rates for per capita consumption and capital stock and for the stock of ideas,

m (t). Initially, a larger proportion of the labour force is allocated to the final good

sector than in the LR which allows the economy to accumulate capital faster, at the

expenses of a lower accumulation of ideas. Over time though,the growth rates of all

variables converge to the long-run values, although with damped oscillations.

The careful reader will have noticed that in the exampleĊ/C = Ẏ /Y > r. This

proves the following proposition.

Proposition 1.4 There exist equilibria that converge to a balanced growth path

characterised byĊ/C = Ẏ /Y > r.

While the search for restriction on parameters that ensuresthe equilibrium is dy-

namically inefficient has proven fruitless, some intuitiveremarks can be offered. In the

long run,Ċ/C = (1 + ψ/ (1− φ)) (β − p). An increase in the rate at which individ-

reasonable, to explain our choice further we added the following footnote in the same page: ”In particular
we have chosen a value ofα = 0.33 in order to replicate the well known fact that the ratio of wage earning
to GDP is approximately2/3. The values ofβ andp are chosen to replicate population growth and life
expectancy in the US. The choice ofθ = 0.02 is fairly standard in this type of exercise in the literature.
For the remaining parameters we could not find reliable estimates and therefore we chose the values
arbitrarily.
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ual labour supply declines,ε, increase the life cycle motive for saving, which tends to

decrease the interest rate, and thus makes it more likely that Ċ/C > r.

As discussed in the introduction, in perfectly competitivemodels, when asymp-

totically Ċ/C > r, the economy isdynamically inefficient(Cass [29], [30]). In this

case, the government can use public debt to achieve a Pareto improvement (Diamond

[42], Tirole [104]). It is well known that in AK models, such policies are feasible, but

not Pareto improving (King and Ferguson [69], Saint-Paul [96]). In the next section we

analyse the effect of introducing debt in the model presented in this chapter.

1.3 Fiscal policy

In this section we analyse the effects of a simple type of fiscal policy. Let us assume

that the government finances lump-sum transfers to households alive a timet, T (s, t),

by issuing bonds,B (t) ,offering an instantaneous rate of returnr (t). New bonds issued

must equal interest payment on old bonds plus the aggregate transfer. The government

budget constraint is

Ḃ (t) = r (t)B + T (t) , (30)

where the aggregate transferT (t) is T (t) = βe−pt
∫ t

−∞
T (s, t) eβsds.

We will assume that the government aims at maintaining a fixeddebt to capital

ratio18: B (t) /K (t) = b ≥ 0. The presence of transfers changes the household’s budget

constraint to

ȧ (s, t) = (r (t) + p) a (s, t) + l (s, t)w (t)− c (s, t) + T (s, t) ,

18 We choose this policy because it is consistent with a balanced growth path and it is relatively simple
to analyse.
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and the solution still implies (3) provided that households’ human wealthh (s, t) is

redefined as

h (s, t) =

∫ +∞

t

[l (s, v)w (v) + T (s, v)] e−
∫ v
t
[r(µ)+p]dµdv

to include the present value of government transfers. Repeating the same steps as in

section 1.1.1, one establishes that (9) holds, whereas (8) becomes

Ȧ (t) = r (t)A (t) + w (t)L (t) + T (t)− C (t) . (31)

The transferT (s, t) has the effect of increasing an individual’s human wealth. How-

ever, since all individuals have the same marginal propensity to consume out of wealth,

(θ + p), the way the aggregate transfer is distributed has no consequence for the evolu-

tion of aggregate variables, although it matters for welfare.

There are now two types of assets in our economy, capital stock, K and public

bondsB. The financial market clears ifA (t) = K (t) + B (t), hence we can write (9)

as

Ċ (t)

C (t)
= (r (t)− θ + β − p+ ε)− (θ + p) (β + ε)

(
K (t)

C (t)
+
B (t)

C (t)

)
.

Just repeating the same line of proof as for proposition 1.1 and lemma 1.2, one obtains

the following results.

Proposition 1.5 The dynamics of the economy are described by the of differential

equations given by

u̇ (t) =

[
α2ρ (t)− θ + β − p+ ε−

(θ + p) (β + ε)

u (t)

(
1 + b+

ρ (t)

q (t)

)
− ρ (t) + u (t)

]
u (t) ,

(32)

and (26)-(28), where the variables are defined as in proposition 1.1.

Proof See section 1.6.
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Again, the existence of a unique balanced path can be proven.

Proposition 1.6 The system (32), (26)-(28) always admits a unique steady state

with γ, λ, z, ν > 0.

Proof See section 1.6.

Remark. Whenβ = ε = 0, that is when no new households are ever formed,

equation (32) is identical to (25) whatever the value ofb, the debt to capital ratio. As

one would expect, fiscal policy has no effect on the equilibrium allocation, Ricardian

equivalence holds (cf Buiter [25]). Note also that any valueof b is sustainable; but

high values ofb will be associated with negative transfers. Manipulation of (30) gives

T (t) /B (t) =
(
K̇ (t) /K (t)

)
−r (t) in a balanced growth path. It will be shown below

that asb increases, the long-run value ofr increases, whereas the growth rate of capital

is unaffected, so eventually the long-run value of the transfer will be negative.

1.3.1 The effect of an increase inb.

We now wish to analyse the impact of an increase inb. Let us assume that the economy

is initially in a balanced growth path, and that the government suddenly and unexpect-

edly increasesb marginally. By continuity the old steady-state will be in the neighbour-

hood of the new one. To simplify expressions, assume the policy change occurs at time

t = 0.

Proposition 1.7 The effect of an increase inb is to increaseu, ζ, q, ρ andλ. In

particular

∂u

∂b
=

(θ + p) (β + ε)

α2u2 + (θ + p) (p+ ε) (1 + b)
> 0,
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∂ρ

∂b
=
∂u

∂b
> 0,

∂q

∂b
=

α

1− α

∂ρ

∂b
> 0,

∂λ

∂b
=

(1− φ) (1− α)

(1− φ) (1− α) q + ψ (β − p)

∂q

∂b
> 0,

∂ζ

∂b
=

ψ (β − p)

(1− φ) δ (1− λ)ψ+1
∂λ

∂b
=

ζ

1− λ

∂λ

∂b
> 0.

Proof. Following the steps in the proof of proposition 1.6 it can easily

be established that an increase inb increasesu, which in turn causes all other variables

to increase. The first equality is established by implicit differentiation of (45); the

following ones by differentiation of (46), (38) and (48).

Sinceρ = Y/K, andu = C/K, u/ρ = C/Y . Then one can easily see19 that

d (u/ρ) /db is proportional to(ρ− u) > 0: an increase inb causes the saving ratio to

fall.

According to proposition 1.7, the long run effect of an increase in public debt is

to increaseρ and hence the interest rate (remember thatr = α2ρ, see section 1.6) andλ.

The intuition for this is that as the interest rate increases, future profits are discounted

more heavily, which reduce the value of an innovation (see equation (20)). There-

fore less of the workforce is allocated to R&D; although this does not affect the long

run growthof labour productivity (̇m/m → (β − p) / (1− φ)), it will affect the level,

which will be lower. The overall effect on consumption goodsproduction is ambigu-

ous, as, on one hand, the level of labour productivity is lower, but on the other hand,

a larger share of the workforce is allocated to that sector. We show with a numerical

example that aggregate output and consumption can increase.

19 d (u/ρ) /du = [ρdu− udρ] /ρ2 = (ρ− u) du/ρ2, sincedρ = du.



1.3 Fiscal policy 30

We assume the same parameter values as in the example of section 1.2, and we

consider the effect of going fromb = 0 to b = 0.1. We computed the long-run values

for u, ζ, q andρ for both values ofb. We started by assuming that the economy would

be on a balanced path withb = 0 and computed the evolution20 of C (t) andK (t) if

the government keptb at 0. We then computed the adjustment that would ensue an an-

nouncement thatb is to be raised once and for all tob = 0.1. Figures 1.2 to 1.5 show

the evolution of the transformed stationary variables. What can be noted is that con-

vergence is relatively slow, and characterised by overshooting and damped oscillations

(as one would expect given that the eigenvalues are complex). But of course the im-

portant question is what these dynamics imply for aggregatevariables. We computed

the evolution ofC (t) andK (t) under the two scenarios, indicating with a prime the

values of a variable after the policy change. Figure 1.6 shows the evolution of the ra-

tio C ′ (t) /C (t). As it can be observed, consumption immediately jumps up as the new

policy is announced and implemented, keeps on growing much faster for a long period,

so that the ratio overshoots considerably its long run variable, and then converges with

damped oscillations. Remarkably, the ratio always stays above 1, indicating that ag-

gregate consumption under the policy change scenario is always larger than along the

initial balanced path. Figure 1.7 is also remarkable. It shows the ratio between the cap-

ital stock after the policy change and what it would have beenalong the initial balanced

path. Somewhat surprisingly, the capital stock after the policy change is always higher

than what it would otherwise have been. This observation emphasises how the Pareto

improvement arises not from the crowding out of the capital stock, as in Diamond [42],

but through the reallocation of labour, similarly to Olivier [82].

20 Given an arbitrary value forL(0) (1 in our example), the balanced path restrictions determine the
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1.3.2 Intuition

What is the intuition behind the numerical experiment? Imagine we are on an initial

balanced growth path without debt andr < Ċ/C. If the government announces a se-

ries of transfers for today and the future to be financed by debt, households currently

alive will feel wealthier and desire to consume more. In the short-run this is only pos-

sible if more labour is allocated to final good consumption, i.e.Ly increases. Since the

initial stocks of capital and ideas are given, the reallocation requires wages to fall and

the interest rate to increase. The first increases labour demand in the consumption sec-

tor, the second depresses the value of innovation because future profits are discounted

more heavily, thus lowering labour demand (or equivalentlyentry) in the R&D sector.

Both the decrease in the wage rate and the increase in the interest rate tend to depress

the value of human wealth,h (t); however, at least on average, this must be more than

compensated by the increase due to the transfer, since consumption has increased. In

the short-run the lower share of labour employed in R&D reduces the rate of techno-

logical progress, som (t) is lower than it would have been. However this is more than

compensated by the increase in the amount of labour, so that output is always larger.

This allows consumption to be permanently higher. In the long run the growth of labour

productivity returns to(β − p) / (1− φ), although the level is permanently lower.

We have thus shown that transfers perpetually financed with issuing bonds can

increase aggregate consumption, as in Diamond [42]; however, there are important dif-

ferences. Whereas in Diamond’s model the fundamental problem is one of overaccu-

mulation of capital, and the policy works by lowering the capital stock per capita, here,

despite higher consumption, the per capita capital stock isactuallyincreasedby the pol-

initial values forK andm.
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icy change. There are here two types of capital, physical capital, K (t) and the stock of

ideas,m (t). The decrease in the saving rate affect not only the accumulation of physi-

cal capital, but through its effect on the allocation of labour, it affects the accumulation

of ideas. In other words, there is a composition effects as well as a size effect. As

observed by King and Ferguson [69], economies with several capital goods may be in-

efficient not only or even not at all because their capital stock is too large, but because

of its composition. But in the types of model analysed by Kingand Ferguson, policies

that affect the saving rate would affect the size but not the composition of the capital

stock, and hence cannot increase aggregate consumption. Inthe model examined here,

however, compositionis affected, and aggregate consumption can be larger. Clearlythis

is true for most R&D based models exhibiting scale effects, but in those model the al-

location of labour affects the long-run growth rate; there the improvement in aggregate

consumption cannot be sustained, as it will affect negatively the long-run growth rate,

which will eventually offset the gains coming from allocating more labour to consump-

tion goods production, as in Olivier [82]. In non-scale models as ours, the long-run

growth rate is not affected, and a sustained increased in aggregate consumption can be

achieved through Ponzi finance.

1.4 Tax on profits

In the previous section we argued that the Pareto improvement occurs to the reallocation

of labour. One may therefore expect that other policies thatinduce a reallocation of

labour will have similar effects. One example that confirm this intuition is a tax on

profits. In our model the only sector that makes positive profits is the intermediate
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goods sector, which is -as it will be recalled- assumed monopolistically competitive.

Let then assume that the government imposes a taxτ on profits and rebates the proceeds

lump-sum to households. Then the maximum a producer will nowbe willing to pay for

a patent (and therefore the patent’s price) is

Pm (t) =

∫ +∞

t

(1− τ ) π (v) e−
∫ v
t

r(µ)dµdv,

which should be compared with (20). Then the no-arbitrage condition (21) becomes

r (t) =
Ṗm (t)

Pm (t)
+
(1− τ ) π (t)

Pm (t)
.

Assuming a balanced budget, the aggregate transfer must be

T (t) = τπ (t)m (t)

Following the same steps as in section 1.2, we find that the dynamics of the econ-

omy could be studied by studying the system of differential equations (25), (26),

q̇ (t) = {(1− α) (1− ψ) (β − p)− αu (t) + α (1− α) ((1− τ ) q (t) + ρ (t))

+ (1− α) (1− φ)
(1− λ (t))ψ+1

1− ψλ (t)
δζ (t)

}
q (t)

D (t)
,

and

ρ̇ (t) =

{
(1− α) (1− ψ)

1− ψλ (t)
(β − p) +

(
α + (1− α)

(
1− α2

)
E (t)

)
ρ (t)

− (α + (1− α)E (t)) u (t) + α (1− α)2E (t) (1− τ) q (t)

−φ (1− α)
(1− λ (t))ψ+1

1− ψλ (t)
δζ (t)

}
ρ (t)

D (t)
;

note the appearance of(1− τ ) next toq (t). Using the same initial numerical example

as before, we studied numerically the effect of the introduction of a tax. The result-

ing dynamics were very similar, with both aggregate consumption and capital stock
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increasing at all time when compared with the original balanced path without policy

change.

We think that similar forces are at play here and in the example discussed in the

previous section. Here the tax reduces future profits and hence the value of patents. As

a consequence labour demand in the R&D sector falls. The current and future transfers

make household feel richer, and hence increases their demand for consumption and

capital goods. The increase demand for final goods is met by increasing the labour

force in that sector.

As an alternative policy, one may think of taxing the output of the R&D sector.

Suppose the government imposed a tax proportional to the value of the R&D output.

Then R&D firms would earn(1− τ )Pm (t)m (t). Then equation (19) that gave us the

labour demand in the R&D sector would become

w (t) = Pm (t) (1− τ) δLψ−1
m m (t)φ .

Therefore the effect of introducing the tax is similar to theeffect of a reduction in the

technological parameterδ. However thelong runvalue ofλ is independent ofδ, as it

can be verified from the derivation of equation (47) in the proof of propositions 1.2 and

1.6.21 In fact the long run share of labour allocated to R&D is independent fromδ in

the original model by Jones [61]. Therefore in terms of the transformed variables, the

policy has only transitionary effects; in term of the original variables, the economy will

converge to a balanced path with a lower labour productivitylevel (i.e. a lowerm, due to

the lower labour force in R&D during the transition). Again we found that introducing

a tax can increase consumption at all times, although quantitatively the magnitudes are

smaller, due to the fact that the reallocation of labour is only temporary.

21 The parameterδ does not appear in any of the equations used to derive (19).
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1.5 Conclusions

In this chapter we modified the model of Jones [61] by introducing overlapping gener-

ation of households as in Blanchard [21] and Buiter [25]. We proved that a balanced

path exists, and showed that the dynamics can be representedby a system of 4 stationary

transformed variables. It was not possible to find general conditions that guarantee that

the equilibrium is locally determined, but numerical simulation confirmed that for plau-

sible parameters it is so. Those simulations also showed that convergence to steady-state

are generally characterised by damped oscillations. We also showed with numerical ex-

amples that the balanced path may be characterised by the interest rate being lower than

the growth rate. We then analysed the introduction of debt-financed lump sum transfers

and showed with a numerical example that it may induce higherconsumption in every

current and future period. In this case it is possible for thegovernment to devise a trans-

fer scheme that increases the consumption of all household every period. This shows

that the policy may be Pareto improving.

Crucial to our result is the fact that in this model Ricardianequivalence fails be-

cause of the overlapping generation of unconnected households, so that the debt policy

affects the saving behaviour of agents. As in the neoclassical exogenous growth litera-

ture and in contrast to endogenous growth models with learning-by-doing externalities,

the policy affects the long-run interest rate but not the long-run growth rate. However, in

sharp contrast with the exogenous growth literature, the Pareto improvement occurs not

through crowding out of physical capital but through the crowding out of ideas obtained

through a reallocation of labour caused by the change in factor prices. If the realloca-

tion of labour were to be prevented, for example by hypothesising that at each moment
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in time two type of workers are born, some with the ability to work in R&D and some

with the skills to work in the consumption sector, the model would become very sim-

ilar to a standard exogenous growth model.22 If the life-cycle motif for saving is high,

over-accumulation will occur, and a debt finance transfer can be Pareto improving as

in Diamond [42] and Blanchard [21]; in this case, though, the improvement would be

obtained by reducing physical capital accumulation, whileall the example above were

characterised by an increase in physical capital accumulation.

22 Growth would not be any more exogenous than in the present version, but preference parameters and
policy changes would not effect nor the level nor the growth of labour productivity, nor in the short nor
in the long run.
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1.6 Proofs of propositions in chapter 1

1.6.1 Proof of propositions 1.1 and 1.5

We prove proposition 1.5, the proof of proposition 1.1 is identical once one imposes

b = 0.

First note that in a symmetric equilibrium,

Y (t) = m (t)Ly (t)
1−α x (t)1−α = Kα (m (t)Ly (t))

1−α , (33)

which impliesY (t) /K (t) = (m (t)Ly (t) /K (t))1−α = ρ (t). Then using (16)

r (t) = α2ρ (t) . (34)

Then (23) becomes

Ċ (t)

C (t)
=
(
α2ρ (t)− θ + β − p+ ε

)
−
(θ + p) (β + ε) (1 + b)

u (t)
. (35)

The market clearing condition (22) can be written

K̇ (t)

K (t)
=

Y (t)

K (t)
−

C (t)

K (t)
= ρ (t)− u (t) , (36)

and so

u̇ (t)

u (t)
=
(
α2ρ (t)− θ + β − p+ ε

)
−
(θ + p) (β + ε) (1 + b)

u (t)
− ρ (t) + u (t) ,

which proves (25).

Next, the labour demand equations (11) and (19) yield

Ly (t) =
(1− α) Y (t)

w (t)
=
(1− α) Y (t)Lm (t)

1−ψ

δPm (t)m (t)m (t)
φ−1

=
(1− α) q (t)Lm (t)

1−ψ

δ
m (t)1−φ ,

or

Ly (t)

L (t)
=
(1− α) q (t)

δ

Lm (t)
1−ψ

L
m (t)1−φ . (37)
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The latter can be written using (24) and the definition ofλ (t) as

λ (t) =
(1− α) q (t)

δζ (t)
(1− λ (t))1−ψ . (38)

It can be easily shown that this last equation always has an unique solutionλ (t) ∈ [0, 1],

and thus it implicitly definesλ (t) as a function23 of q (t) /ζ (t). Let us indicate this

function with Λ (q (t) /ζ (t)). Then log-differentiating with respect tot the identity

λ (t) = Λ (q (t) /ζ (t)),

λ̇ (t)

λ (t)
=

[
Λ′ (q (t) /ζ (t))

Λ (q (t) /ζ (t))

q (t)

ζ (t)

](
q̇ (t)

q (t)
−
ζ̇ (t)

ζ (t)

)
.

Implicitly differentiating (38), we can show that the elasticity of Λ with respect toq/ζ

(the term in square brackets above) is

Λ′ (q (t) /ζ (t))

Λ (q (t) /ζ (t))

q (t)

ζ (t)
=

1− λ (t)

1− ψλ (t)
.

Therefore

λ̇ (t)

λ (t)
=

(
1− λ (t)

1− ψλ (t)

)(
q̇ (t)

q (t)
−
ζ̇ (t)

ζ (t)

)
. (39)

Next, with (18) and (24)

ṁ (t)

m (t)
=

δLm (t)
ψ

m (t)1−φ
=

δ (1− λ (t))ψ L (t)ψ

m (t)1−φ
= δ (1− λ (t))ψ ζ (t) , (40)

and since by the definition ofζ (t), ζ̇ (t) /ζ (t) = ψL̇ (t) /L (t)− (1− φ) ṁ (t) /m (t),

ζ̇ (t)

ζ (t)
= ψ (β − p)− (1− φ) δ (1− λ (t))ψ ζ (t) ,

which proves (26).

From (17)

π (t)

Pm (t)
= α (1− α)

Y (t)

Pm (t)m (t)
= α (1− α) q (t) .

23 It can be shown that this function is strictly increasing andstrictly convex.
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Then the no arbitrage condition (21) can be written (using (34))

Ṗm (t)

Pm (t)
= α2ρ (t)− α (1− α) q (t) . (41)

To prove (27) and (28) we note that from (10) we have

Ẏ (t)

Y (t)
=
ṁ (t)

m (t)
+ α

K̇ (t)

K (t)
+ (1− α)

[
λ̇ (t)

λ (t)
+
L̇ (t)

L (t)

]
. (42)

Fromρ (t) = Y (t) /K (t) we obtain

ρ̇ (t)

ρ (t)
=

Ẏ (t)

Y (t)
−
K̇ (t)

K (t)
. (43)

Finally, from the definition ofq (t)

q̇ (t)

q (t)
=
Ẏ (t)

Y (t)
−
Ṗm (t)

Pm (t)
−
ṁ (t)

m (t)
. (44)

Now, equations (39), (42), (43) and (44) constitute a systemof four equations that

can be solved foṙλ (t) /λ (t), Ẏ (t) /Y (t), ρ̇ (t) /ρ (t) and q̇ (t) /q (t) as functions of

K̇ (t) /K (t), ṁ (t) /m (t), ζ̇ (t) /ζ (t) andṖm (t) /Pm (t) for which we found expres-

sions above. In matrix form the system can be written




1 0 0 −E (t)
− (1− α) 1 0 0

0 −1 1 0
0 −1 0 1







λ̇ (t) /λ (t)

Ẏ (t) /Y (t)
ρ̇ (t) /ρ (t)
q̇ (t) /q (t)


 =




−E (t)
ṁ(t)
m(t)

+ α K̇(t)
K(t)

+ (1− α) (β − p)

−K̇ (t) /K (t)

− Ṗm(t)

Ṗm(t)
− ṁ(t)

m(t)


 ,

whereE (t) ≡ (1− λ (t)) / (1− ψλ (t)). Solving the system and rearranging we find

(27) and (28).

1.6.2 Proof of propositions 1.2 and 1.6

We prove proposition 1.6, the proof of proposition 1.2 is identical once one setsb = 0.
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First note that in a balanced path,ṁ/m = ψ (β − p) / (1− φ); to see this, call

gm (t) ≡ ṁ (t) /m (t), and use (18) to write

ġm (t)

gm (t)
= ψ

L̇m

Lm
− (1− φ)

ṁ

m
,

then the result follows from the facts that in a balanced paththe growth of the rate of

growth ofm is constant (i.e.ġm = 0) and employment in research grows at the same

rate as population.

Furthermore, in a balanced path,Ẏ /Y = K̇/K = Ċ/C. From (33),Ẏ /Y =

(1 + ψ/ (1− φ)) (β − p), which is the common long-run growth rate ofall aggregate

variables. Then (35) becomes

(
α2ρ− θ + β − p+ ε

)
−
(θ + p) (β + ε) (1 + b)

u
=

(
1 +

ψ

1− φ

)
(β − p) .

Similarly (36) gives

ρ =

(
1 +

ψ

1− φ

)
(β − p) + u.

The last two can be used to computeρ andu. Substitute the latter in the former:

α2u−
(θ + p) (β + ε) (1 + b)

u
=
(
1− α2

)(
1 +

ψ

1− φ

)
(β − p) + θ − (β − p)− ε.

(45)

Clearly the left-hand side is a continuous, strictly increasing function ofu, taking values

from−∞ to+∞ asu goes from0 to+∞, whereas the right hand side is a constant; a

uniqueu > 0 must exists that satisfies the equation. Onceu is found, one can compute

ρ, which will also be strictly positive.

Next, from the definition ofq, q̇/q = 0 implies

0 =
Ẏ

Y
−
Ṗm

Pm
−
ṁ

m
,
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which establishes

Ṗm

Pm
= β − p.

But then (41) reduces to

q =
α

1− α
ρ > 0. (46)

Next,ṁ/m = ψ (β − p) / (1− φ) and (38) yield

λ =
(1− φ) (1− α) q

(1− φ) (1− α) q + ψ (β − p)
, (47)

which gives the long-runλ ∈ (0, 1). Finally to findζ, setρ̇/ρ = 0 to find

δ (1− λ)ψ ζ − ρ+ u+ β − p = 0,

or

ζ =
ρ− u− (β − p)

δ (1− λ)ψ
=

ψ (β − p)

(1− φ) δ (1− λ)ψ
> 0, (48)

where we usedρ− u = K̇/K = (1 + ψ/ (1− φ)) (β − p) in the second equality.

1.6.3 Proof of proposition 1.3

By (11)

w (t) = (1− α) Y (t) /Ly (t) = (1− α) Y (t) / (λ (t)L (t))

The economy is assumed to converge to a path whereλ (t) is constant asymptotically.

Then the growth rate of wages converges to

ẇ (t)

w (t)
→

Ẏ (t)

Y (t)
− (β − p) =

ψ

1− φ
(β − p) ,

where we have used proposition 1.2. From the definition ofH (t), (5), it is clear that

convergence requires

ψ

1− φ
(β − p)− r − p− ε < 0.
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From proposition 1.2,̇C/C = (1 + ψ/ (1− φ)) (β − p), which using (35) can be writ-

ten, after rearranging, as

ψ

1− φ
(β − p)− r − p− ε = −θ − p−

(θ + p) (p+ ε) (1 + b)

u
< 0.

Hence convergence ofH (t) is always ensured.



2 Two-sector Model

In this chapter we develop and analyse an overlapping-generations competitive

general equilibrium two-sector model for a closed economy.The two sectors produce

consumption goods and capital goods. We first analyse conditions for existence and

uniqueness of a perfect foresight equilibrium. We then discuss arbitrary fiscal policy

with proportional tax rates and investigate whether sustained primary deficits are sus-

tainable. Finally we investigate optimal policies for the case of constant elasticity of

intertemporal substitution. We show that the fiscal instrument considered are sufficient

to decentralise the first-best optimum.

2.1 Introduction

It has been long recognized by economists that fiscal policy can have effects on growth

rates in the long-run. This is one of the main contribution ofthe endogenous growth

literature. An important part of this literature devotes its attention to the role of the

government in correcting, through a system of taxes and subsidies, inefficiencies due to

the presence of externalities (Romer, [92]).

Another widely investigated issue is the optimal structureof tax rates. Both in the

case of unproductive public expenditures and in the case of productive public expen-

ditures, attention has been devoted to establishing the optimal level of taxation and its

composition. When public spending is assumed to finance public consumption, most

papers argue that taxes are detrimental to growth and incometaxes more so than con-

sumption taxes. Jones and Manuelli [62] show that taxes not only reduce growth but
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can even prevent the possibility of sustained growth; Rebelo [88] also concludes that in-

come taxes reduce the growth rate whereas consumption taxeshave level but not growth

effects. Devereux and Love [41] also support the view that income taxes are detrimental

to growth, and so do King and Rebelo [70].

A different view is taken in model such as those in Barro [13] and Turnovsky

[105], where productive public expenditures are allowed. Barro establishes the exis-

tence of a sort of “Laffer” curve, with the effect of an increase in taxation on growth

being positive below a certain critical value and negative thereafter. In models with

congestion, the optimal capital income tax may be positive.This is because when con-

gestion is linked with the size of the private capital stock relative to the size of public

services, the tax on capital acts like an user fee and (at least partially) induces firms

to internalise the externality that their capital accumulation exercises on other firms

through congestion (Barro and Sala-i-Martin [14] and Turnovsky [105]).

Most models consider balanced budget policies only, rulingout deficit finance by

definition. Others, like Judd [67], allow for deficits; but in his paper, which assumes

a demographic structure with infinitely lived agents, the government cannot sustain a

policy with a positive net present value of the fiscal deficit.However in the case of

overlapping generations, it might be feasible for the government to sustain permanent

deficits. This means that in an overlapping generations model government fiscal policy

is not necessarily subject to the constraint that the present value of expenditures must

be equal to the present value of taxes. This leaves space not only for the possibility of a

continuous roll-over of the debt, but even to perpetual primary deficits.

The overlapping generation model of Diamond [42] has been animportant tool

for the analysis of fiscal policy- see for example Auerbach and Kotlikoff [7] - but has
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received far less attention by the endogenous growth literature, which focuses more

often on the infinitely lived representative agent. A noticeable exception is Saint-Paul

[96], who considers an AK model with overlapping generationin continuous time à la

Blanchard [21].

We believe that the more common infinitely lived agent framework limits the set

of feasible policies in an important way. In this setting thepresent value of expenditures

must equal the present value of taxes, “Ponzi schemes” are not feasible. With overlap-

ping generations they are at least in principle feasible. The sustainability in endogenous

growth models of a simple Ponzi scheme (a “Bubble” in the sense of Tirole, [104], and

O’Connell and Zeldes, [81]), has been investigated in Grossman and Yanagawa[60],

King and Ferguson [69] and Azariadis and Reichlin [10]. All these papers conclude

that although feasible, policies with a positive present value of debt are always growth

and welfare reducing. In all these papers, however, there isno public investment.

There has been growing interest in the issue of the desirability of imposing restric-

tions on government budget deficits. This is not surprising since, in reality, sustained

deficit policies are more the norm than the exception. Ghiglino and Shell [56] show

that even though such constraints do not matter if the government can use lump sum

taxation, they do reduce the set of feasible allocations if only proportional taxation is

allowed. Their paper however, considers an exchange economy without production,

and has nothing to say on long-run effects on growth. In the exogenous growth context,

Uhlig [107], Buiter and Kletzer [26] and Chalk [33] analysesthe sustainability of per-

petual primary deficits. None of these papers, though, consider endogenous growth and

productive public expenditures.
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We present a model in which the government supplies a public good, which af-

fects the productivity of private inputs. All markets are assumed competitive and there

are two sectors: the consumption sector produces the good that enters the utility func-

tion; the capital sector produces capital that can be used in production; we also assume,

for simplicity, that the government can costlessy transform private capital into public

capital.24 The public good acts as an externality in the latter sector, and it is assumed

to be subject to congestion. Both from the aggregate point ofview and the point of

view of the individual firm, the technology has constant returns to scale. The consump-

tion sector adopts a technology with the usual neoclassicalproperties. The assumptions

of the model guarantee that sustained growth is possible with a convex technology. In

this sense the model is closely related to Jones and Manuelli[62] and Rebelo [88], al-

though this way of introducing public capital in a two-sector model is -to the best of our

knowledge- novel.

We first analyse the dynamic equilibrium under arbitrary choice of the fiscal in-

struments. As long as the saving rate is not too responsive tothe interest rate, the

dynamic equilibrium is unique. There are no transitional dynamics, the economy set-

tles immediately on a balanced growth path. In this respect the dynamics of the model

resemble those of the model in Glomm and Ravikumar [57]. It isalso shown that in

this economy the interest rate exceeds the growth rate. Thiseliminates the possibility

of the government engaging in ”Ponzi finance” (O’Connel and Zeldes [81]); in this re-

spect our models differs sharply from most basic endogenousgrowth models, for which

24 Or in other words, we are implicitly assuming that public andprivate capital are not physically differ-
ent, it is where they are allocated that matters. This is clearly an oversimplification; one could introduce
in the model a technology to transform private into public capital; if this technology has also constant
returns to scale, most of qualitative results would not change much.
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it such schemes are typically possible (Saint-Paul [96], Grossman and Yanagawa [60]

and King and Ferguson [69]).

Next we examine the first best allocation and the optimal fiscal policy. For the

constant intertemporal elasticity of substitution utility function, we prove that an op-

timal allocation exists as long as the maximal growth rate isnot too high, and it is

characterised by a constant growth rate (i.e. again there are no transitional dynamics).

We then show how the first best can be decentralised. This implies maintaining an op-

timal ratio of public to private inputs in the capital sector. There is more than one set of

taxes and borrowing policies that decentralise the first best. We concentrate on the case

where the government use different proportional taxes on capital and wage income. We

show that -due to the overlapping generations framework- the optimal capital income

tax is not zero (analogously to Erosa and Gervais [50] and in contrast with Chamley

[34]).

In the next sections we describe the environment, the objectives and constraints of

the players and the equilibrium concept adopted. The players are: the firms in the two

sectors, the infinitely lived government and the individualconsumers. We show that if

the rate of saving is not too sensitive with respect to the real interest rate, then for a given

(stationary) fiscal policy, the equilibrium, exists, and itis unique. For more general

preferences, multiplicity of equilibria cannot be ruled out. Section 2.3 discusses the

sustainability of primary deficits in the long-run. Section2.4 analyses the intertemporal

allocation that would be chosen by an all powerful central planer. Section 2.5 shows

that the first best optimum can be decentrilised with appropriate tax/subsidies and public

debt. Finally section 2.6 concludes.
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2.2 The model

We consider a two-sector growth model with overlapping generations. Time is discrete

and indexed witht = {0, 1, ...}. There are two kinds of private goods: a consumption

good, which enters individuals’ utility function, and a capital good, that is not an argu-

ment of the utility function, but is necessary to produce theconsumption good. Except

for an initial generation that lives only one period and is born with an endowment of

capital and government bonds, agents are all identical and live for two periods. They

are endowed with one unit of labour -that they supply inelastically- in the first period of

their life and none in the second. Population grows at a constant raten ≥ 0. There is an

infinitely lived government that supplies a public good. This public good is produced

with capital goods and produces services that are essentialin the production of new

capital25; however these services are subject to congestion. The modeldoes not feature

increasing returns to scale in any of the sectors nor at the private, or social levels. The

technological set is convex.26 Public expenditures are financed with proportional taxes

and public debt.

There is no uncertainty in this model, and we assume that all actors have perfect

foresight.

2.2.1 Agents

We shall call the set of agents born at timet ≥ 1 asgenerationt. For time0, we need

to distinguish between the set of agents ’born young’ (i.e. who will be alive at time1)

who we will call generation0, and those ’born old’,generation -1.

25 To the best of our knowledge, public capital has never been introduced in a growth model in this
particular way.

26 In fact one can easily show that the production set is a convexcone.
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Except for generation -1, which is born old and is endowed with an initial amount

of capitalK0 > 0 and government bondsB0 ≥ 0, each individual is endowed with one

unit of labour when young, none when old. Each agent, then, supplies its endowment of

labour to firms, earns the competitively determined wage,wt, part of which is consumed

at the end of the period. The remaining is invested in bonds and capital. Consumption

in old age is financed from interest earnings from this investment. Generation -1 simply

consumes interest earning on its endowment.

We assume that the preferences of agents born at timet ≥ 0 are described by a

utility functionUt : ℜ
2
+ → ℜ

Ut ≡ u
(
cyt , c

o
t+1

)
, ∀t ≥ 0; (1)

except for generation−1, who has an utility functionU−1 : ℜ+ → ℜ

U−1 ≡ u−1 (c
o
0) ;

wherecji is consumption at timei of an agent of agej (j = y, o, wherey stands

for young,o stands for old). We assume thatu (., .) is an increasing, concave utility

function, with∂u/∂cj → −∞ for cj → 0, and∂u/∂cj → 0 for cj → +∞, j = y, o;

and thatcyt andcot+1 are normal goods. Similarly∂u−1/∂co0 → −∞ for co0 → 0, and

∂u−1/∂c
o
0 → 0 for co0 → +∞. The only further assumption we require is thatu (.)

is homothetic. Although it could be relaxed, this assumption greatly simplifies the

analysis of the dynamics of the model.

Let us indicate withRt the grossreal interest rate, withwt the real wage, with

τ t the labour income tax and withθt the interest income tax at timet. Then the budget
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constraint for individuals of generationt ≥ 0 is

cyt +
cot+1

(1− θt+1)Rt+1
≤ (1− τ t)wt, ∀t ≥ 0; (2)

whereas individuals from generation−1 face the constraint

co0 = (1− θ0) [R0B0 +R0 (K0 −G0)] /L−1, (3)

where(K0 −G0) /L−1 measures the capital endowment owned by a generation−1 in-

dividual: K0 is the aggregate capital stock at time0, of which G0 is owned by the

government; B0 is the initial stock of public debt, of which each individualholds a

fraction 1/L−1. Young agents will save as to maximizeUt subject to the above con-

straints. By the homotheticity assumption, the young generation’s saving rate depends

only on theafter taxreal interest rate.27 Callings ((1− θt+1)Rt+1) this saving rate, we

have

cyt = [1− s ((1− θt+1)Rt+1)] (1− τ t)wt,

cot+1 = (1− θt+1)Rt+1s ((1− θt+1)Rt+1) (1− τ t)wt.

For anyRt+1 > 0 the assumption that marginal utility goes to infinity as consumption

goes to zero ensures that the solutions to the agents’ problem is such thats ((1− θt+1)Rt+1)

∈ (0, 1) ∀Rt+1 > 0. Young agents demand assets to ensure positive consumptionin

their old age.

27 A sketch of the proof is as following. The first order condition for a max implies that the MRS between
cyt andcot+1 ought to be equal to(1− θt+1)Rt+1. Homotheticity implies that the MRS depends on the
cyt /c

o
t+1 ratio only. Then we obtaincot+1/c

y
t = f ((1− θt+1)Rt+1) for some functionf . Substituting in

the budget constraint we obtaincyt as a function of(1− θt+1)Rt+1 only, as desired.



2.2 The model 58

2.2.2 Firms

There is an indeterminate28 number of firms in both sectors. Firms in the consumption

good sector produce the final output combining capital and labour. Firms in the capi-

tal good sector need to employ directly only capital; however the level of public capital

supplied determines the level of total productivity. All markets are assumed perfectly

competitive. Young individuals supply labour inelastically, which means that the units

of labour supplied will always be equal to the number of individuals in the young gen-

eration. To simplify expressions, we also assume complete capital depreciation in both

sectors. We use the consumption good as numeraire. We now describe each sector in

turn.

Consumption good sector

The consumption good,Yt, is produced combining labour and capital. We assume a

Cobb-Douglas function.29

Yt = AHα
t L

1−α
t , (4)

whereHt is the amount of capital andLt the labour employed at timet; A ∈ (0,+∞)

andα ∈ (0, 1) are technological parameters. Firms maximize profits taking factor

prices as given. The price of a unit of capital isrt, the price of a unit of labour iswt.

Then profits areYt − rtHt − wtLt. Profit maximisation implies that firms will employ

capital and labour so that their price equals their marginalproducts

rt = αAHα−1
t L1−α

t , (5)

28 Because of the assumption of constant returns to scale. See below.
29 In fact an argument similar to the one in corollary 3.1 of Fisher [53] applies here, so the Cobb-
Douglas case is the only one compatible with long run growth from the class of CES function.
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wt = (1− α)AHα
t L

−α
t . (6)

Capital good sector

The only private input in capital good production is the capital good, indicated byXt.

The production function is assumed linear for simplicity30

Kt+1 =MXtgt, (7)

whereKt+1 is the capital produced, capital that can be used in the next period to produce

the consumption good or more capital.gt is theflow of service from the public good,

and is considered exogenous by producers.M ∈ (1,+∞) is a technological parameter.

Indicating withpt the price of capital in terms of the consumption good, profitsare

given byptMXtgt − rtXt. The profit maximization condition yields

rt = ptMgt. (8)

Equations (5) and (8), imply

pt =
αA

Mgt
Hα−1

t L1−α
t . (9)

The price of the capital good is proportional to theprivate marginal rate of transfor-

mation between the capital good and the consumption good. Itshould be noted that

the price of capital is inversely proportional to the capital/labour ratio in the consump-

tion sector; therefore as the economy grows the price of the capital good decreases.

This property of the model allows for sustained growth. In fact a feature of overlapping

30 It could be a more general functionF (Xt, Lt; gt); as Rebelo[88] and Fisher[53] showed, what
is necessary in order to obtain sustained growth is that the non-accumulated factor (labour here) is not
necessary in production, and that the marginal productivity never falls below the depreciation factor (that
we assume to be 1). That is what we need isF (Xt, 0; gt) > 0 andlimKt→∞

∂F/∂Kt > 1. To have
growth in per capita variables, one needslimKt→∞

∂F/∂Kt > 1 + n.
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generations models is that every period the whole capital stock must be purchased by

the young generation, whose only source of income is wage earning. If the production

function in the consumption good sector is concave, as the economy grows, the ratio

between wages and capital stock goes to zero. Unless the price of capital declines suf-

ficiently rapidly, there will be a point in which wage earnings are not sufficient to buy

the capital stock, thus putting a limit to growth. See Fisher[53] for a thorough discus-

sion of these issues. Note as well, that in this model, the price of capital is inversely

proportional to the stream of public services,g; this is because a higher level of public

provision increases the productivity of the capital good sector, thus decreasing the price

of its output.

As explained in the previous paragraph, sustained growth requires the price of

capital,pt, to decrease over time, i.e.pt/pt+1 > 1. Now, using (9)

pt
pt+1

=
gt+1
gt

[
(Ht+1/Ht)

1 + n

]1−α

, (10)

therefore the rate at which the price of the capital good falls depends proportionally on

the growth rates of public services and capital allocated tothe consumption sector and

inversely on the rate of population growth.

We now describe the government actions and constraints.

2.2.3 Government

The government provides a certain amount of public good,Gt. As already mentioned in

the previous section, this public good produces a stream of services,gt, which enter the

production function in the capital good sector. In this sense, our analysis differs from

the large part of the literature that consider public expenditures as a pure waste, i.e.

goods that do not enter either the production or the utility functions. It is also different



2.2 The model 61

from some more recent approaches that are also cast in multi-sector models. In those

models, for example Lin [72] or Judd [67], the capital good isinterpreted as human

capital, and it is inseparable from labour. This implies that the servicefrom human

capital is tradable, but not human capital itself. That analysis is interesting because

it does capture one activity that governments typically embark on, that is provision

of public education, but it is ill-suited to analyze different issues, as for example the

provision of infrastructures. In this case it seems more appropriate to assume that the

public expenditures benefit the production of market goods.

The public good is made out of capital good, and for simplicity we assume that

one unit of public good is produced with one unit of capital good; it would be possible to

consider a more general specification in which public capital is produced with a given

technology employing private capital and possibly labour; as long as this technology

has constant returns to scale, the results would not qualitatively change much.

We also assume that there is a certain degree of congestion, which we regard,

in general, as quite realistic an assumption. In most cases,the quality of the service

provided by public goods decreases with the degree of utilization (for example, one

generally travels slower the more congested a road is). We therefore assume thatgt =

(Gt/Xt)
β, with β ∈ [0, 1]. We shall indicate the ratio of public to private capital good

input,Gt/Xt, with µt. We can then write

gt = (Gt/Xt)
β = µβ

t (11)

The government needs to purchase capital goods to provide the public good. It

finances its expenditures with proportional taxes and debt.31 The government can issue

31 Of course this is an important assumption: most of the analysis depends on the set of fiscal instruments
available to the government. Things would be quite different, for example, if lump-sum taxation would
also be available. Buiter and Kletzer[26], for example, discuss how the feasibility of Ponzi finance
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bonds,Bt, every period; we assume that one bond costs one unit of consumption good

and promises to payRt+1 units of consumption good at the end of the next period, after

production has taken place. The budget constraint of the government is

Bt+1 + Tt = RtBt + ptGt+1, (12)

whereTt are tax revenues. Note that the timing forG refers to when it becomes effec-

tive, not when the transaction occurs; for each unit of public capital to be in use at time

t + 1, the government has to purchase one unit of private capital at time t; that is why

Gt+1 belongs to timet budget constraint.

Our justification for considering only proportional taxes is a common one: al-

though given the assumptions of the model there is nothing topreclude the government

from using it, lump sum taxation is generally thought to be politically infeasible while

proportional taxes constitute the principal instruments in actual tax systems. Having

said that, since labour is supplied inelastically, the proportional tax on wages is in effect

a lump-sum on the young.32 We believe that allowing for non-balanced budget policies

is interesting, because much of the existing literature on the link between public ex-

penditures and growth assumes away deficit finance, with the remarkable exception of

Judd [67] and Turnovsky [105]. Cavalcanti Ferreira [31] also departs from the balanced

budget hypothesis, but goes to the other extreme, with zero taxes.

Total tax revenues are given by

Tt = τ twtLt + θtrt (Xt +Ht) + θtRtBt. (13)

We can completely describe the fiscal policy with the triplet(τ t, θt, µt); in fact, for given

τ , θ andµ, the budget constraint uniquely determines the amount of new debt issues

depends on the constraints on taxation.
32 We will make some further comments on the choice of fiscal instruments at the end of section 2.5.
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necessary, given a sequence of interest rates. We make the reasonable assumption that

there are upper bounds on the government’s ability to tax.

Assumption 2.1 τ t, θt < 1 ∀t.

Definition 2.1 (Fiscal Policy ) A fiscal policy is a sequence{µt, θt, τ t}
+∞
t=0 of tax

rates and public/private capital ratio. A stationary fiscalpolicy is a fiscal policy such

that∀t ≥ 0, µt = µ, θt = θ andτ t = τ for some(τ , θ, µ).

Next we describe the equilibrium.

2.2.4 Equilibrium

An equilibrium for a policy{µt, θt, τ t}
+∞
t=0 and initial conditionsK0, B0, is a sequence

of quantities{Kt, Ht, Xt, Gt, Bt, c
y
t , c

o
t}
+∞
t=0 and a sequence of prices{Rt, rt, wt, pt}

+∞
t=0 ,

such that in every period all agents are solving their maximization problems, all markets

clear and all factors and goods have the same prices across markets. Formally, we have

the following definition.

Definition 2.2 (Equilibrium ) Given a fiscal policy{µt, θt, τ t}
+∞
t=0 , and an initial

amount of capitalK0 and debtB0, an equilibrium is a sequence{Kt, Ht, Xt, Gt, Bt, c
y
t , c

o
t}
+∞
t=0

of quantities, and a sequence{Rt, rt, wt, pt}
+∞
t=0 of prices, such that∀t ≥ 0,

1. Gt/Xt = µt;

2. Rt+1 = rt+1/pt if Bt+1 �= 0;

3. Xt +Ht +Gt = Kt;

4. Bt+1 = (1− θt)RtBt + ptGt+1 − τ twtLt − θtrt (Ht +Xt) ;

5. Lts ((1− θt+1)Rt+1) (1− τ t)wt = pt (Kt+1 −Gt+1) +Bt+1.
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6.
{
cyt , c

o
t+1

}
solve the maximization problems of generationst ≥ 0 individuals, i.e.

(
cyt , c

o
t+1

)
= argmaxUt s.t. (2); co0 solve generation−1’s maximization problem, i.e.

co0 = (1− θ0) [R0B0 +R0 (K0 −G0)] /L−1.

7. Ct ≡ Ltc
y
t + Lt−1c

o
t = Yt.

8. (Ht, Lt) = argmax
[
AHα

t L
1−α
t − rtHt − wtLt

]
andXt = argmax [ptMXtgt − rtXt].

The first condition in definition 2.2 simply states that the government provision of

the public good follows the fiscal policy over time. The second condition in definition

2.2 is an arbitrage condition.33 The intuition is simple: a young agent who has just

received his wage and wants to have positive consumption in the following period,

must decide how to invest her savings; if she buys bonds, for each unit of consumption

forgone, she will receive(1− θt+1)Rt+1 units of consumption next period; if she buys

capital, for any units of consumption foregone she will receive (1− θt+1) rt+1/pt units

from the firms. In an equilibrium with positive levels of debtand capital, the rates of

return of the two assets must be the same; this condition must be satisfied for agents

to be willing to hold both capital and bonds in their portfolios. A negative value of

Bt implies that the government owned part of theprivate capital stockXt; on this it

would earn the same return than a private agent would, hence the equality must still

hold. Only when there is no public debt, its rate of return is undefined. This condition

implies, using (8), (10) and (11)

Rt+1 =
pt+1
pt
Mµβ

t+1

=
[

1+n
(Ht+1/Ht)

]1−α

Mµβ
t .

(14)

33 The condition has this particularly simple form because of the assumption of complete depretiation.
In a more general case, with a rate of depreciationδ ∈ [0, 1], it would be the more familiarRt+1 =
pt+1(1−δ)+rt+1

pt
.
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The third condition in definition 2.2 imposes market clearing in the capital good market:

the total stock of capital in the economy,Kt, must be equal to the sum of its uses:

capital employed in the consumption sector, capital employed in the capital sector and

public capital. Note that the condition can be rewritten like (1 + µt)Xt + Ht = Kt.

Furthermore, it will be convenient to define a new variableut ≡ Ht/Kt, that is the

fraction of the capital stock devoted to consumption good production. Then we can

write

Ht = utKt,

and

Xt =
1− ut

1 + µt

Kt. (15)

The fourth condition in definition 2.2 states that the government budget constraint

is satisfied. Using the first order conditions (5), (6), (9) and the production functions

(4), (7), and the above definitions, the expression for tax revenues (13) becomes

Tt = [αθt + (1− α) τ t]Au
α
t K

α
t L

1−α
t + θtptKt+1.

Substituting this last expression in the government budgetconstraint (12) we obtain

Bt+1 − ptGt+1 = (1− θt)RtBt − [αθt + (1− α) τ t]Au
α
t K

α
t L

1−α
t − θtptKt+1. (16)

The fifth condition is the market clearing condition for the assets market. The de-

mand for assets is given by the aggregate savings of the currently young,s ((1− θt+1)Rt+1)

(1− τ t)wtLt; the supply is given by the value of capital goods not purchased by the

government plus the issue of government bonds,pt (Kt+1 −Gt+1) + Bt+1. The condi-

tion can be rearranged as

Bt+1 − ptGt+1 = s ((1− θt+1)Rt+1) (1− τ t) (1− α)Auα
t K

α
t L

1−α
t − ptKt+1. (17)
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Finally the sixth, seventh and eighth conditions in definition 2.2 requires all agents

to respond optimally to prevailing prices and the consumption goods market to clear.

In the next section we analyze the properties of equilibria; in particular we will

show that under certain conditions, associated to any stationary policy there is a unique

balanced growth equilibrium.

2.2.5 Properties of equilibria

First note that in an equilibrium, using (7), (11) and (15),

Kt+1

Kt
=
1− ut

1 + µt

Mµβ
t , (18)

and using (9), (11) and (18),

ptKt+1 =

(
1− ut

1 + µt

)
αAuα−1

t Kα
t L

1−α
t =

α

1 + µt

1− ut

ut

Yt. (19)

It is easier to describe the equilibrium in terms of ratios that do not grow un-

boundedly. A convenient way to analyse the model is to divideall quantities byptKt+1.

Call bt+1 ≡ Bt+1/ptKt+1. Then dividing both sides of the equations byptKt+1, we can

rewrite the equilibrium condition34 (16) as

bt+1 −
µt+1
1+µt+1

(1− ut+1) =
(1+µt)(1−θt)

1−ut
bt+

− [αθt + (1− α) τ t]
1+µt
α

ut
1−ut

− θt,
(20)

where we used the fact that35

RtBt

ptKt+1

= Rt
pt−1
pt

Kt

Kt+1

bt

=
(1 + µt)

(1− ut)
bt,

34 We use the fact thatptGt+1/ptKt+1 = (1− ut+1)µt+1/
(
1 + µt+1

)
.

35 The first equality is obtained multiplying and dividing bypt−1Kt; the second is obtained exploiting
(14) and (18).
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and that from (19)

Yt

ptKt+1

=
Auα

t K
α
t L

1−α
t

ptKt+1

=
1 + µt

α

ut

1− ut

.

Similarly we can write (17) as

bt+1−
µt+1

1 + µt+1

(1− ut+1) = s ((1− θt+1)Rt+1)
(1 + µt) (1− α) (1− τ t)

α

ut

1− ut
−1.

(21)

Combining (20) and (21) we obtain

bt =

[
s ((1− θt+1)Rt+1) (1− α) (1− τ t) + αθt + (1− α) τ t

α (1− θt)

]
ut −

1− ut

1 + µt

(22)

Substituting back into (21) we obtain

s ((1− θt+2)Rt+2) (1− τ t+1) (1− α) + τ t+1 (1− α) + θt+1α

(1− θt+1)
(23)

= (1− α) (1− τ t) s ((1− θt+1)Rt+1) (1 + µt)
ut

(1− ut) ut+1
.

But observing that (18) implies

Ht+1

Ht
=
ut+1

ut

Kt+1

Kt
=

Mµβ
t

1 + µt

(1− ut) ut+1

ut
,

from (14) we have

ut

ut+1 (1− ut)
=

R
1

1−α

t+1

(1 + n) (1 + µt)
(
Mµβ

t

) α
1−α

; (24)

therefore (23) becomes

s ((1− θt+2)Rt+2) (1− τ t+1) (1− α) + τ t+1 (1− α) + θt+1α

(1− θt+1)
(25)

=
(1− α) (1− τ t) s ((1− θt+1)Rt+1)R

1
1−α

t+1

(1 + n)
(
Mµβ

t

) α
1−α
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Stationary fiscal policies

Let us first look at equilibria withstationary policies. When the tax ratesτ andθ and

the public/private capital ratioµ are kept constant over time, (25) becomes

s ((1− θ)Rt+2) (1− τ ) (1− α) + τ (1− α) + θα

(1− θ)
(26)

=
(1− α) (1− τ) s ((1− θ)Rt+1)R

1
1−α

t+1

(1 + n) (Mµβ)
α

1−α

.

or

s ((1− θ)Rt+2) =
s ((1− θ)Rt+1)R

1
1−α

t+1

(1 + n) (1− θ) (Mµβ)
α

1−α

−
τ

1− τ
−

θα

(1− α) (1− τ)
.(27)

This equation gives a ”law of motion” forRt+1. In studying this dynamic equation, one

should keep in mind thatRt+1 is a price, so we cannot take its initial value as given. The

question then becomes what, if any, initial values are consistent with a perfect-foresight

rational equilibrium. The easiest case to analyse is the logarithmic utility case.

Constant saving rate

If the utility function is assumed to be

Ut = ln c
y
t + σ ln cot+1,

the saving rate isσ/ (1 + σ) ≡ s irrespective ofRt+1. Hence (27) simplifies further to

Rt+1 =

[(
s +

τ

(1− τ )
+

θα

(1− τ) (1− α)

)
(1 + n) (1− θ)

s

]1−α (
Mµβ

)α
, (28)

which is clearly constant over time. Hence in the case of stationary policy and log

utility, there is only one initial valueR0 consistent with a perfect foresight equilibrium;

this unique value is maintained for allt.
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Proposition 2.1 Assumes ((1− θ)Rt+1) = σ/ (1 + σ) ≡ s ∀Rt+1 > 0, and a

stationary fiscal policy such that

s (1 + µ)[
s+ τ

(1−τ)
+ θα

(1−τ)(1−α)

]
(1− θ)

< 1. (29)

Then there exists an unique non-trivial equilibrium. This equilibrium is characterised

by a constantRt:

R =

[(
s+

τ

(1− τ)
+

θα

(1− τ ) (1− α)

)
(1 + n) (1− θ)

s

]1−α (
Mµβ

)α
,

and constantut:

u = 1−
s (1 + µ)[

s+ τ
(1−τ)

+ θα
(1−τ)(1−α)

]
(1− θ)

.

Proof. The expression forR follows directly from (28), that foru by substituting

the result into (24). We must also make sure thatu > 0, hence the condition (29) in the

proposition.

Note that the non-trivial equilibrium is characterised by aconstant value ofu,

and therefore constant values ofb, growth factor for capital, and aggregate consump-

tion. Therefore there is no transitional dynamics: the economy starts in any of the two

equilibria, and stays there forever. We should emphasise that existence of a non-trivial

equilibrium does not mean that positive growth is assured. In fact if the resulting value

for u is too small36, the economy shrinks at a constant rate. It is interesting tonote that

the equilibrium values ofR andu are unaffected by the initial level of debt,B0. The

36 Positive growth of per capita consumption requires

Mµβ (1− u)

(1 + µ) (1 + n)
> 1.
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explanation is that at all times we must have (see (22))

b =

[
s (1− α) (1− τ ) + αθ + (1− α) τ

α (1− θ)

]
u−

1− u

1 + µ
.

At time zerob0 = B0/ (p0K0); B0 andK0 are predetermined, butp0 jumps to its long-

run value in consequence of the jump ofu0 to its long run value.

Finally, looking at (29), we note that an equilibrium will fail to exist whenµ is

too high or whenτ andθ are too small; in both cases the government is trying to run

excessively high deficits. We will return to this point in section 2.3.

Variable saving rate

When the saving rate varies with the interest rate, neither the existence nor the instability

of a non-zero steady-state for (27) can be established in general. This is reminiscent

of a general problem with overlapping generations models: standard assumptions on

preferences allow a very wide variety of behaviours of the saving function, which in turn

allows a large variety of qualitative dynamics to the economic system. (See Galor and

Ryder [55]). Numerical analysis of the specific case of constant intertemporal elasticity

of substitution, always confirmed the existence of an uniqueunstable steady-state for

the dynamic equation (27), and hence the existence of a unique equilibrium for the

economy. We also experimented with other arbitrary forms for the saving function, and

generally find a unique unstable steady-state for (27) when the saving rate function is

assumed monotonic (whether increasing or decreasing) inr. In fact as long as a steady-

state exists, a sufficient condition for uniqueness and instability is that the saving rate is

non decreasing in the after tax interest rate. To see this, implicit differentiation of (27)
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gives (at a steady state)

dRt+2

dRt+1
=

[
R

1
1−α

(1 + n) (1− θ) (Mµβ)
a

1−α

](
1 +

1

(1− α) εs

)
,

whereεs ≡ [ds (.) /d (1− θ)R] [(1− θ)R/s (.)] is the elasticity of the saving rate with

respect to the after tax gross interest rate. Using (24), thelast equation becomes

dRt+2

dRt+1
=

1 + µ

(1− θ) (1− u)

(
1 +

1

(1− α) εs

)
.

Then clearlyεs ≥ 0 is a sufficient condition for an unique unstable steady-state.37

However, counter examples are also easy to construct. We found cases where the

steady-state is still unique, but stable; then sincer0 is not given, there is a continuum

of possible initial values and correspondingly a continuumof intertemporal equilibria,

all converging to the balanced path. We found cases where more than one steady-state

exist, some stable some not. In conclusion, for a large set ofpreferences, technological

and policy parameters, an equilibrium exists and it is unique. However, robust cases of

multiplicity of equilibria can also be found.

2.3 The sustainability of fiscal deficits

In this section we investigate the sustainability of fiscal deficits, maintaining the as-

sumptions of stationary policy and unique equilibrium. We distinguish between pri-

mary deficits, which are shown to be unsustainable in the longrun, and conventional

deficits that may be sustainable. Primary deficits are definedas

Dp
t ≡ ptGt+1 − Tt,

37 Obviously the case of a logarithmic utility function is a special case withεs = 0.
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i.e. the difference between non-interest public spending and tax revenues. Conventional

deficits are defined as

Dt = RtBt + ptGt+1 − Tt,

that is the primary deficit plus interest spending.

Lemma 2.1 In an equilibrium the government cannot sustain positive primary

deficit unless it is a net creditor to the private sector.

Proof Call dpt ≡ Dp
t / (ptKt+1). From (16) we have

bt+1 =
RtBt

ptKt+1

+ dpt ;

we can write (see (20))

bt+1 =
1 + µ

1− u
bt + dpt .

In an equilibriumbt+1 = bt = b, anddpt = dp. Then we must have

b =
dp

1− 1+µ
1−u

. (30)

But 1+µ
1−u

> 1, sob anddp must be of opposite sign.

In fact ordinary fiscal deficits cannot be sustained either. Anecessary condition

for deficit finance is that the interest rate is smaller than the rate of growth of income

(O’Connel and Zeldes[81]); however this cannot happen in this model. To see this take

(24) and assume that a steady-state has been achieved. Re-arranging the equation we

get

R =

(
1− u

1 + µ
Mµβ

)α

(1 + n)α
1 + µ

1− u
.

But one can easily see that

Yt+1

Yt

=

(
1− u

1 + µ
Mµβ

)α

(1 + n)α ,
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and since(1 + µ) / (1− u) > 1, we must have

R− 1 >
Yt+1 − Yt

Yt

.

This results contrasts with results typically obtained in endogenous growth mod-

els with externalities in factor accumulation. In those models the interest rate reflects

the private marginal product of factors, while the growth rate is determined by the social

marginal product. The presence of the externality implies that the former is always be-

low the latter. This allow for the possibility that the growth rate exceeds the interest rate,

and thus opens the door to debt finance (Grossman and Yanagawa[60], Saint-Paul [96],

King and Ferguson [69]). In our model, though, this cannot happen; as shown above,

here the interest rate always exceeds the growth rate. Therefore sustained deficits are

only possible if the government is a net creditor.

2.4 Optimal allocation

In this section we try to answer the following question: whatis the optimal fiscal policy?

We start by looking at the solution that an all powerful central planner would choose,

and then show that this solution can be replicated by a government with the same policy

tools as the one analysed in the previous sections.

We shall concentrate exclusively on the case of constant intertemporal elasticity

of substitution utility function. It will be shown that in this case the optimal policy is

stationary. In the case of log utility, one can derive closedform solutions.

Let us assume that the utility function for any agent born at time t is

u
(
cyt , c

o
t+1

)
=
(cyt )

1−γ

1− γ
+ σ

(
cot+1

)1−γ

1− γ
, γ > 0, σ > 0,
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except for the generation that was ”born old”, whose utilityis given simply byσ (co0)
1−γ /

(1− γ).

We first need to specify the objective function of the planner; this is problem-

atic because in overlapping generations models, there is aninfinity of agents, and in-

escapable trade offs, therefore we must somehow judge how tovalue different distri-

butions. We assume that the planner would wish to maximise the discounted sum of

individual utilities:

W ≡
σ

δ

(co0)
1−γ

1− γ
+

+∞∑

t=0

δt

(
(cyt )

1−γ + σ
(
cot+1

)1−γ

1− γ

)
.

Note thatσ is the rate at which an individual discount the future, whereas δ is the

planner’s discount factor; the two may or may not be the same. The welfare function

W can be rewritten more conveniently putting contemporaneous terms together38

W =
+∞∑

t=0

δt

(
(cyt )

1−γ + σ
δ
(cot )

1−γ

1− γ

)
. (31)

The constraints the planner faces are

Ltc
y
t + Lt−1c

o
t ≤ Yt = AHα

t L
1−α, (32)

Kt+1 ≤MX1−β
t Gβ

t , (33)

Xt +Ht +Gt ≤ Kt, (34)

K0 given. (35)

38 This is only possible thank to the assumption that the individual utility functions are time separable.
It is still possible to analyse the social optimum if we relaxthis assumption, and the solution may present
more complicated dynamics, as demonstrated for a one-sector model by Michel and Venditti[78].
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Lemma 2.2 The functionW is maximised subject to (32)-(35) if and only

if the functionW̄ ≡
∑+∞

t=0 δ
t (Yt/Lt)

1−γ / (1− γ) is maximised subject to the same

constraints, and

cyt =
(Yt/Lt)

1 + (1 + n)
1−γ
γ

(
σ
δ

) 1
γ

, (36)

cot =
(1 + n)

1−γ
γ

(
σ
δ

) 1
γ

1 + (1 + n)
1−γ
γ

(
σ
δ

) 1
γ

(Yt/Lt−1) . (37)

Proof It is immediately apparent that the planning problem can be split in two

subproblems. The first one is how to allocate inputs across the two sectors, the second

is how to allocate the consumption sector output between thegenerations alive. The

second problem can be easily solved: the first-order conditions can be rearranged to

give

σ

δ

(
cot
cyt

)
−γ

= 1 + n,

which has a straightforward economic interpretation. The left hand side is the planner’s

marginal rate of substitution between consumption by the currently old and currently

young. One unit of consumption by the young can be converted into1 + n units of

consumption for the old, thus the right-hand side gives the planer’s marginal rate of

transformation. Optimality requires the two to be equal. Using this condition and (32),

we obtain the sharing rules (36) and (37). Substituting these rules back into (31) and

rearranging one obtains

W =
[
φ1−γ + (1− φ)1−γ (1 + n)1−γ]

+∞∑

t=0

δt
(Yt/Lt)

1−γ

1− γ
,

where

φ ≡

[
1 + (1 + n)

1−γ
γ

(σ
δ

) 1
γ

]−1
.
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Therefore, (31) is maximised if and only if

W̄ ≡
+∞∑

t=0

δt
(Yt/Lt)

1−γ

1− γ
(38)

is maximised.

A standard method of proof (see Lucas and Stokey [103]) establishes the follow-

ing lemma.

Lemma 2.3 Call µ∗ ≡ β/ (1− β) = argmax
µ

(
M µβ

1+µ
Xβ

t

)
. Assume

δ
(
Mµ∗β/ (1 + µ∗)

)α(1−γ)
(1 + n)(1−α)(1−γ) < 1.

A feasible path{Yt, Kt, Ht, Gt}
∞

t=0, i.e. a path that satisfies (32)-(35), maximisesW̄ if

and only if it satisfies the Bellman equation

W̄ ∗ (Kt) = max

{
(Yt/Lt)

1−γ

1− γ
+ δW̄ ∗ (Kt+1)

}
, s.t. (32)− (35), (39)

whereW̄ ∗ (Kτ ) = max
∑+∞

t=τ δ
t (Yt/Lt)

1−γ

1−γ
s.t. (32)-(33) andKτ = Kt.

Proof See section 2.7.

Equation (39) is the Bellman equation. Applying lemma 2.3, we find the optimal

solution, as summarised in the following proposition.

Proposition 2.2 For any γ > 0, the optimal plan is characterised byHt =

u∗Kt, Xt = (1− u∗)Kt/ (1 + µ∗), Gt = µ∗Xt, (36), (37), whereu∗ is a constant and

µ∗ = β/ (1− β). If γ = 1 (log utility), thenu∗ = 1− δ.

Proof The proposition is proved by guessing that thevalue functionW̄ ∗ (K)

belongs to the family of functionsF (Kt/Lt)
1−γ / (1− γ), whereF is a constant to be

determined. Using this guess to find the optimalpolicy functionfor anyF , and then use
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the method of undetermined coefficients to computeF . Then the policy function gives

the equations forHt, Xt, andGt. In the case of log utility, a closed form solution for

u can be found, forγ �= 1, we can only show that au∗ exists, but we cannot give an

explicit formula for it. The details of the proof are in section 2.7.

One can note thatµ, i.e. the allocation of capital stock devoted to the capitalsec-

tor betweenX andG, is always chosen in the way that maximises the output of the

capital sector. This is intuitive as any other allocation will result in less capital stock in

the future, thus reducing the production possibilities forthe next generations, without

any advantage for anyone currently alive. A second observation concerns the optimal

u∗; u determines the amount of capital devoted to the production of consumer goods. A

higherumeans higher consumption today, at the expenses of lower consumption tomor-

row. The optimalu depends on the marginal rates of transformation and substitution

between consumption at different points in time. The formerdepends on the produc-

tion functions in the two sectors and the growth of the laboursupply; the latter depends

on the elasticity of intertemporal substitution and the planner’s discount rate as well as

the growth rate of consumption. So in generalu depends on all parameters in the utility

and production functions as well as on population growth. Looking at (41), it is clear,

for example, that the effect onu of an increase inM depends on the sign of1− γ. The

intuition is that an increase in productivity has an income and a substitution effect. If

1− γ > 0 the income effect dominates, andvice versa. In the logarithmic case the two

effects cancel out exactly; then we obtain a very simple closed form solution that re-

lates the optimalu to the degree of impatience of the planner only. A similar result was

obtained by Radner [85]. One can also draw a comparison with the one-sector growth

model: with log-utility, Cobb-Douglas production function and full depreciation, it is
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well known39 that the optimal saving rate is equal to the product of the discount factor

and the output elasticity with respect to capital. In our model the elasticity with respect

to capital of the capital sector production function is unity. Thus since both the saving

rate in the one-sector model and1 − u in our model measure the fraction of consump-

tion forgone to allow future capital accumulation, there isa clear analogy between the

two results.

A final remark is that the allocation of capital between consumption and capital

sectors,u, is a function of the planner’s discount factorδ but not of the discount factor

of the households,σ. The latter does influence how the planner divide any given amount

of output between old and young agents (see the sharing rules(36) and (37)), but not the

intertemporal allocation of resources. For an analogous result, see Calvo and Obstfeld

[27] and De La Croix and Michel [38].

2.5 Implementation of the optimal policy

In this section we show that the fiscal instruments considered in section 2.2 are suffi-

cient to decentralise the optimal policy. More precisely, we show that given quantities

{Ht,Xt, Gt, c
y
t , c

o
t}
+∞
t=0 , there exist prices{wt, Rt, pt}

+∞
t=0 , tax rates40 {τ t, θt} and a se-

quence of debt stocks{Bt}
+∞
t=0 , that constitute an equilibrium. That is any feasible path

is decentralisable as a competitive equilibrium, including obviously the optimal path.

Firstly we observe that the factor prices must obey the firms’first order conditions

(5) and (6), so∀t ≥ 0

rt = αAHα−1
t L1−α

t ,

39 See for example Ljungqvist and Sargent[73] who attribute the result to Brock and Mirman[24].
40 It should be noted that we do not impose any limit on the size ofthe tax rates. The implied taxes may
turn out to be negative, in which case we interpret them as subsidies.
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wt = (1− α)AHα
t L

−α
t .

The price of capital must obey (9), so∀t ≥ 0

pt =
αAHα−1L1−α

t

MGβ
tX

−β
t

.

Then the arbitrage condition in definition 2.2 gives∀t ≥ 0

Rt+1 = rt+1/pt;

note that this leavesR0 still undetermined. The tax on capital earning can be derived

from the first order condition of a young household41, so∀t ≥ 0

θt+1 = 1−
uy

(
cyt , c

o
t+1

)

uo

(
cyt , c

o
t+1

)
Rt+1

,

whereuy

(
cyt , c

o
t+1

)
≡ ∂u

(
cyt , c

o
t+1

)
/∂cyt , uo

(
cyt , c

o
t+1

)
≡ ∂u

(
cyt , c

o
t+1

)
/∂cot+1. Note

that againθ0 is left undetermined. Then rearranging the household budget constraint,

we have∀t ≥ 0

τ t = 1−

[
cyt +

cot+1
(1− θt+1)Rt+1

]
1

wt
.

The sequence of debt stocks is then given by the government budget constraint

Bt+1 = (1− θt)RtBt + ptGt+1 − τ twtLt − θtrtKt.

As we noted,θ0 andR0 are undetermined, but we must have

co0 = (1− θ0) [r0K0 +R0B0] .

In conclusion we have shown that the fiscal instruments considered in the first

part of this chapter are sufficient to implement the first bestoptimum. We showed in

the previous section that the optimal allocation is characterised by constantµ andu,

41 That is
uo
(
cyt , c

o
t+1

)

uy
(
cyt , c

o
t+1

) = 1

(1− θt+1)Rt+1
.
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and therefore constant growth for all variables. It is easy to see from the preceding

derivations, that this implies constant tax ratesτ andθ.

For the specific case of log utility, we can derive closed formsolutions, which are

appealing because they allow us to highlight the economic intuition behind the optimal

policy more clearly. In this case from the sharing rules (36)and (37)

cot+1
cyt

=
(σ
δ

)
(Yt+1/Yt) =

(σ
δ

)(δMµ∗β

1 + µ∗

)α

(1 + n)1−α

or

R =
(
Mµ∗β

)α
(1 + µ∗)1−α

(
1 + n

δ

)1−α

.

Following the steps highlighted above, we find

1− τ =

(
δ

δ + σ

)(
1 + σ

1− α

)
,

θ = β;

Therefore the optimal labour income tax depends on the planner’s and households’

discount factors as well as the labour share in the consumption sector; One can note

that the optimal tax may be negative, i.e. implementation ofthe first best may require a

subsidy to labour income. The capital income tax, instead, is a function of the elasticity

with respect to public capital of the capital sector aggregate production function,β.42

In contrast with Jones and Manuelli [62], Rebelo [88], Devereux and Love [41]and

King and Rebelo [70], in this model the optimal level of capital income taxation is

strictly positive. The reason for this result has to do with the overlapping generations

structure. In fact one can show thatRt+1 equals the marginal rate at which society can

42 Remember that our assumptions imply that at the aggregate level the capital sector production func-
tion can be written:Kt+1 =MX1−β

t Gβt .



2.5 Implementation of the optimal policy 81

transform consumption at timet into consumption at timet + 1.43 So in this model

-in contrast with Barro [13] and Turnovsky [105]- the capital income tax is not needed

to equalise the social and marginal rates of transformations between consumption in

different time periods. But at the optimum the planner’s marginal rate of substitution

between consumption in different periods differs from thatof a given household; this

is a crucial difference between the overlapping generationsetup and the representative

agent framework of Chamley [34]. Hence in an overlapping generation model, a pos-

itive capital income tax is generally optimal (Erosa and Gervais [50], Mathieu-Bolh

[76]).

We conclude this section with two remarks. The ability to decentralise the first

best optimum depends on having a sufficient number of instruments. In turn, the number

of instruments needed depends on the number of margins to be controlled. For example,

if the labour supply were elastic, the wage income tax would have to be chosen to elicit

the optimal amount of labour and a further fiscal instrument would be needed to induce

the first best level of consumption (e.g. a tax on consumption).

The second remark is that in general the set of instruments that are sufficient to

decentralise the first best is not unique. For example, in an earlier version of this paper

we considered the case of different taxes in the two sectors rather than different taxes

43

dYt+1
dYt

=
∂Yt+1
∂Kt+1

dKt+1

dYt
= −MPKY t+1 (MPKKt/MPKY t) ,

whereMPK stands for marginal product of capital and the subscript indicates the sector and timeperiod.
Using (5), (9), (7), (11) and the no arbitrage condition 2 of definition 2.2 one indeed finds

Rt+1 = −
dYt+1
dYt

.
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on different sources of income; again we found that set of fiscal instruments sufficient

for the decentralisation of the first best.

2.6 Conclusions

The effect of different fiscal policies on long-run growth isan issue that has interested

both academics and policy makers for a very long time. Two aspects of this issue that

we feel are very important are: (i) whether a certain deficit policy is sustainable in the

long-run; (ii) whether allowing for deficit finance enlarges the set of feasible allocations.

We have presented an overlapping generations model in whichthe government

supplies a public good which acts as an externality in the capital sector, and it is subject

to congestion. The technology has constant returns to scale. We showed that the econ-

omy is capable of sustained endogenous growth. Given some simplifying assumptions,

in particular that both kind of capital depreciate completely in one period, there is no

transitional dynamics, the economy settles immediately onthe balanced path whenever

one exists.

Concerning the first question, therefore, we reached a negative answer: in this

model debt finance is possible only if the government is a net creditor. Clearly the

result depends crucially on the technological assumptions: we showed that our assump-

tions on technologies imply that the rate of return dominates the growth rate, making

it impossible for the government to sustain positive primary deficit in the long-run, un-

less it is a net creditor in the economy. In chapter 3 we present a model with the same

demographic structure but different technological assumptions and show that in that

framework positive primary deficit might be sustainable in the long-run.
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Concerning the second question, Ghiglino and Shell [56] showed in a pure ex-

change economy that imposing limits on the size of the deficitthe government can

maintain does not matter if the government can use lump-sum taxation, but would re-

duce the set of feasible allocation if only proportional taxation is allowed. But being

based on a pure exchange economy, their model has nothing to say on the effects on

growth. We have shown that any feasible allocation can be decentralised given the fis-

cal instruments we considered. It would not have been possible to establish this result if

we eliminated public debt.44 In fact the decentralisation of the first best requires a deter-

minate path of public debt. It should be emphasised, however, that there are alternative

fiscal tools that can also be used to decentralise the same allocation. For example in an

earlier version of this chapter we considered sector specific taxes and also showed that

all feasible allocations could be decentralised. In futureresearch we intend to investi-

gate these issues further.

44 Unless of course we give the government other instruments. We noted in the previous section that
there is more than one set of instruments that allow the decentralisation of the optimum. Debt can
undoubtedly be replaced with some other fiscal instrument, but unless we expand the set of available
taxes, it is necessary to decentralise the first best.
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2.7 Proofs of propositions in chapter 2

2.7.1 Proof of lemma 2.3

The method of proof is standard (see Lucas and Stokey [103] and De La Croix and

Michel [38]) and composed of 4 main steps. First we show that for all feasible allo-

cation
∑+∞

t=0 δ
t (Yt/Lt)

1−γ / (1− γ) ∈ ℜ ∪ {−∞}. Then we show that the function

V (K,Lt) = sup
{∑+∞

t=0 δ
t (Yt/Lt)

1−γ / (1− γ)
}

is defined and satisfiesV (Kt, Lt) =

sup
{
(Yt/Lt)

1−γ / (1− γ) + δV (Kt+1, Lt+1)
}

. The third step is to show that a given

path is optimal if and only ifV (K∗

t , Lt) =
{
(Yt/Lt)

1−γ / (1− γ) + δV
(
K∗

t+1, Lt+1

)}
.

The fourth and final step is to show that the supremum is reached, so we can substitute

max for sup.

Lemma 2.4 Call µ∗ ≡ β/ (1− β) = argmax
µ

(
M µβ

1+µ
Xβ

t

)
. If

δ
(
Mµ∗β/ (1 + µ∗)

)α(1−γ)
(1 + n)(1−α)(1−γ) < 1,

then for any feasible sequence{Yt,Kt, Ht, Xt, Gt}
+∞
t=0 ,

+∞∑

t=0

δt (Yt/Lt)
1−γ / (1− γ) < +∞.

Proof Let us indicate with{Kacc
t }+∞t=0 the path that satisfiesKacc

0 = K0, Kacc
t+1 =

M µ∗β

1+µ∗
Kacc

t ; we shall call this thepure accumulation path. This path gives an upper

bound forKt for any givent. Consider the sequence{Y acc
t /Lt}

+∞
t=0 obtained from

Y acc
t /Lt ≡ A (Kacc

t /Lt)
α. AsKacc

t = K0

(
Mµβ/ (1 + µ)

)t
,

Y acc
t = Y acc

0

(
Mµβ/ (1 + µ)

)αt
(1 + n)(1−α)t .
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For any feasible path,Yt ≤ Y acc
t with strict inequality for at least all but onet; hence

+∞∑

t=0

δt (Yt/Lt)
1−γ / (1− γ) <

+∞∑

t=0

δt (Y acc
t /Lt)

1−γ / (1− γ)

=

+∞∑

t=0

δt
(
Y acc
0

(
Mµ∗β/ (1 + µ∗)

)αt
(1 + n)(1−α)t /L0

)1−γ

/ (1− γ)

=
Y acc
0 /L0
1− γ

+∞∑

t=0

(
δ
(
Mµ∗β/ (1 + µ∗)

)α(1−γ)
(1 + n)(1−α)(1−γ)

)t

< +∞.

DefineV (K) the function defined byV (K) = sup
{∑+∞

t=0 δ
t (Yt/Lt)

1−γ / (1− γ)
}

,

where the supremum is taken over all sequences feasible fromK.

Lemma 2.5 The functionV (K) is defined for allK and satisfies

V (Kt, Lt) = sup
{
(Yt/Lt)

1−γ / (1− γ) + δV (Kt+1, Lt+1)
}
.

Proof First note that for allK steps similar to those taken in the previous

lemma show thatV (Kt, Lt) < +∞. FurthermoreV (Kt, Lt) > −∞, as one feasible

path can always be found by taking arbitrary and constantu andµ. These paths will

be characterised by positive consumption in all periods andgive a value to the social

objective function that is a real number. We next need to showthat for anyKt

V (Kt, Lt) ≥ (Yt/Lt)
1−γ / (1− γ) + δV (Kt+1, Lt+1)

for anyYt andKt+1 feasible fromKt. And that for anyε > 0

V (Kt, Lt) ≤ (Yt/Lt)
1−γ / (1− γ) + δV (Kt+1, Lt+1) + ε
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for someYt, Kt+1 feasible fromKt. To show the first, note that by the definition ofV ,

for anyε > 0 there exist
{
Y ′

τ ,K
′

τ+1

}+∞
τ=t+1

feasible fromKt+1,such that

+∞∑

τ=t+1

δτ (Y ′

τ/Lτ )
1−γ

/ (1− γ) ≥ V (Kt+1, Lt+1)− ε.

Hence

V (Kt, Lt) ≥ (Yt/Lt)
1−γ / (1− γ) + δ

+∞∑

τ=t+1

δτ (Y ′

τ/Lτ )
1−γ

/ (1− γ)

≥ (Yt/Lt)
1−γ / (1− γ) + δV (Kt+1, Lt+1)− δε,

and sinceε was arbitrary, we established thatV (Kt, Lt) ≥ (Yt/Lt)
1−γ / (1− γ) +

δV (Kt+1, Lt+1) as required. Next for anyKt and ε > 0, one can choose a path

{
Y ′′

τ , K
′′

τ+1

}+∞
τ=t

feasible fromKt such that

V (Kt, Lt) ≤
+∞∑

τ=t

δτ (Y ′′

τ /Lτ )
1−γ

/ (1− γ) + ε

= (Y ′′

t /Lt)
1−γ

/ (1− γ) + δ
+∞∑

τ=t+1

δτ (Y ′′

τ /Lτ )
1−γ

/ (1− γ) + ε.

But from the definition ofV , it follows that

V (Kt, Lt) ≥ (Y
′′

t /Lt)
1−γ

/ (1− γ) + δV
(
K ′′

t+1, Lt+1

)
+ ε,

which is what we wanted to show.

We have completed the first two steps of our proof. The third isaccomplished by

the next lemma.

Lemma 2.6 A feasible path{Y ∗

t ,H
∗

t , X
∗

t , G
∗

t , K
∗

t }
+∞
t=0 is optimal if an only if

for anyt

V (K∗

t , Lt) = (Y
∗

t /Lt)
1−γ / (1− γ) + δV

(
K∗

t+1, Lt+1

)
.
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Proof We first prove necessity. If{Y ∗

t ,H
∗

t , X
∗

t , G
∗

t , K
∗

t }
+∞
t=0 is optimal, then

V (K∗

t , Lt) =
+∞∑

τ=t

δτ (Y ∗

τ /Lτ )
1−γ / (1− γ) = (Y ∗

t /Lt)
1−γ / (1− γ)

+

+∞∑

τ=t+1

δτ (Y ∗

τ /Lτ )
1−γ / (1− γ)

= (Y ∗

t /Lt)
1−γ / (1− γ) + δV

(
K∗

t+1, Lt+1

)
.

To prove sufficiency, assume that{Y ∗

t ,H
∗

t , X
∗

t , G
∗

t , K
∗

t }
+∞
t=0 is such thatV (K∗

t , Lt) =

(Y ∗

t /Lt)
1−γ / (1− γ) + δV

(
K∗

t+1, Lt+1

)
for all t. By induction

V (K∗

t , Lt) =
T∑

t=0

δt (Y ∗

t /Lt)
1−γ / (1− γ) + δTV

(
K∗

T+1, LT+1

)
.

Taking the limit atT → +∞

V (K∗

t , Lt) =
∞∑

t=0

δt (Y ∗

t /Lt)
1−γ / (1− γ) + lim

T→∞
δTV

(
K∗

T+1, LT+1

)
.

We therefore need to show thatlim
T→∞

δTV
(
K∗

T+1, LT+1

)
= 0. To see this note that in

lemma 2.4 we showed that

V (Kt, Lt) ≤

(
AKα

t L
−α
t

)1−γ

1− γ

+∞∑

t=0

δt
((
Mµβ/ (1 + µ)

)α(1−γ)
(1 + n)(1−α)(1−γ)

)t

≡ J (Kt, Lt) < +∞.

But then

δtV (Kt, Lt) ≤ δtJ (Kt, Lt) ,

and clearlylimt→+∞δ
tV (Kt, Lt) = 0.

Finally, we prove that the supremum is achieved.

Lemma 2.7 There exists a feasible path{Y ∗

t ,H
∗

t , X
∗

t , G
∗

t , K
∗

t }
+∞
t=0 such that

+∞∑

t=0

δt (Y ∗

t /Lt)
1−γ / (1− γ) = V (K0, L0) ,

i.e. the supremum is achieved.
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Proof We first show that the feasible set is convex, and thatW̄ is concave

and therefore continuous. Then use Weierstrass theorem, toshow that the supremum is

attained. Take any two feasible paths{Y i
t ,H

i
t , X

i
t , G

i
t, K

i
t}
+∞
t=0 , i = 1, 2. ConsiderKλ

0 =

λK1
0 + (1− λ)K2

0 , λ ∈ [0, 1]. The allocationXλ
0 = λX1

0 + (1− λ)X2
0 , Hλ

0 = λH1
0 +

(1− λ)H2
0 , G

λ
0 = λG1

0+(1− λ)G2
0 is feasible and producesY λ

0 = λY 1
1 +(1− λ)Y 2

1 ,

andKλ
1 = λK1

1 +(1− λ)K2
1 . By induction, any

{
Y λ
t , H

λ
t ,X

λ
t , G

λ
t ,K

λ
t

}+∞
t=0

is feasible,

hence the set of all feasible path is a convex set.

Now from the definition ofW̄ , for any two feasible paths{Y i
t , H

i
t , X

i
t , G

i
t, K

i
t}
+∞
t=0 ,

i = 1, 2, we have

W̄
(
Kλ
0

)
=

+∞∑

t=0

δt
(
Y λ
t /Lt

)1−γ

1− γ
≥ λ

+∞∑

t=0

δt
(Y 1/Lt)

1−γ

1− γ
+ (1− λ)

+∞∑

t=0

δt
(Y 2

t /Lt)
1−γ

1− γ

= λW̄
(
K1
0

)
+ (1− λ) W̄

(
K2
0

)
.

that isW̄ is a concave function and therefore it is continuous. The setof all feasible

path is the product of closed, bounded sets, and therefore iscompact in the product

topology by Tychonov theorem. By Weierstrass theorem a continuous function defined

on a compact set attains its maximum in that set.

The lemmas in this section imply that a function̄W ∗ (Kt, Lt) exists such that

W̄ ∗ (Kt, Lt) = max
∑+∞

t=0 δ
t (Yt/Lt)

1−γ

1−γ
and it satisfies the Bellman equation (39). Fur-

thermore if a feasible path is such that

W̄ ∗ (Kt) =
(Yt/Lt)

1−γ

1− γ
+ δW̄ ∗ (Kt+1) ,

then the path is optimal. QED.
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2.7.2 Proof of proposition 2.2

We guess that the function that satisfies the Bellman equation (39) is of the form45

W̄ ∗ (Kt, Lt) =
F

1− γ

(
Kt

Lt

)α(1−γ)

.

Then the Bellman equation (39) is

F

1− γ

(
Kt

Lt

)α(1−γ)

= max

{(
Yt

Lt

)1−γ

+ δ
F

1− γ

(
Kt+1

Lt+1

)α(1−γ)
}

= max

{(
Auα

t K
α
t L

−α
t

)1−γ

1− γ
+ δ

F

1− γ

(
Mµβ (1− ut)

1 + µ

Kt

(1 + n)Lt

)α(1−γ)
}
.

Maximisation with respect toµt yields

µt =
β

1− β
= µ∗.

Maximisation with respect tout yields

ut =
(
1 + χF

1
1−α(1−γ)

)
−1

≡ u (F ) , (40)

where

χ ≡

[
δ

A1−γ

(
Mµ∗β

(1 + µ∗) (1 + n)

)α(1−γ)
] 1
1−α(1−γ)

.

Note thatu (F ) is a decreasing function, withu (0) = 1, u (+∞) = 0. Then substituting

back into the maximand, we find after simplifications

F = A1−γu (F ) +

(
Mµ∗β

(1 + µ∗) (1 + n)

)α(1−γ)

δF (1− u (F ))α(1−γ) . (41)

As functions ofF , the left-hand side is a straight line through the origin with unitary

slope. The right-hand side is a function that tends toA1−γ asFgoes to0 and tends to
(

Mµ∗β

(1+µ∗)(1+n)

)α(1−γ)

δF asF goes to infinity. Since we assume

δ
(
Mµβ/ (1 + µ)

)α(1−γ)
(1 + n)(1−α)(1−γ) < 1

45 The guess is obtained by conjecturing that the optimal policy is to keeput andµt costant over time
and then computing the implied value for̄W .
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andn ≥ 0, δ
(

Mµ∗β

(1+µ∗)(1+n)

)α(1−γ)

< 1. But then the right-hand side must eventually

be below the left-hand side, thus an intersection must exist. Therefore the equation can

in principle be solved forF , although an explicit solution cannot be found in general.

Substituting the value forF into (40) we find the candidate for a solution. Note that

by construction the candidate solution andW̄ ∗ satisfy (39) and thus by lemma 2.3 we

found the optimal policy.

In the case of log utility, we guess that the value function will be of the family

W̄ ∗ (Kt, Lt) = E + Fln

(
Kt

Lt

)α

,

for someE andF . Then the Bellman equation is

E + Fln

(
Kt

Lt

)α

= max

{
lnAuα

t K
α
t L

−α
t + δE + δF ln

(
Mµβ (1− ut)

(1 + µ) (1 + n)

Kt

Lt

)α}
.

Maximisation with respect toµ still yieldsµ∗. Maximisation with respect tout yields

u∗ =
1

1 + δF
.

Substituting back into the Bellman equation we find

F =
1

1− δ

and so

u∗ = 1− δ.



3 One-sector Model

It should not be too controversial that: (i) economic development needs adequate

infrastructures; (ii) in many developing countries, the government is severely limited

in its capability of borrowing from abroad. In this chapter we try to investigate the

interaction between these two obsrevations. We consider aneconomy in which the stock

of public capital (infrastructures) determines technological progress. The government

finances public expenditures through taxation and domesticborrowing. We, therefore,

abstract from seigniorage and external borrowing.

The seminal papers of Romer [92] and Lucas [74] on endogenousgrowth have

stimulated an impressive amount of new research on the causes of economic growth

and development. But whereas some undoubtedly interestingissues (such as, just to

give an example, the convergence-divergence debate) have been extensively investi-

gated both theoretically (Azariadis and Drazen, [9]) and empirically (Barro and Sala-

i-Martin, [16]), others have received far less attention that they deserve. For example,

one of the most important contribution of the endogenous growth theory is that it has

allowed the development of a theory in which government intervention can have effects

on growth rates in the long run as well as in the short run. However, whereas there is

a rich literature that analyses fiscal and monetary policiesin the context of exogenous

growth, endogenous growth models often assume balanced budget policy rules (there

are of course exceptions; recently there has been an increasing interest in debt finance,

as documented below).



3 One-sector Model 92

In an important line of research, endogenous growth is possible because public

capital enters the aggregate production function. However, with few exceptions (on

which more later), not enough attention has been devoted to the study of the mode in

which public investment is financed.

The contribution of public capital to development is an old theme, going back

at least to Rosenstein-Rodan [95]. More recent interest hasfollowed Murphy et al.

[79] and Barro’s [13] model of endogenous growth with government expenditures as an

input in production. Glomm and Ravikumar [58] is another recent important paper on

the topic.

On the other hand, the effects of public debt on growth is alsoan extensively stud-

ied topic. The obvious quotation is, of course, the Diamond [42] model of capital accu-

mulation and growth with overlapping generation. Tirole [104] helped clarifying some

interesting issues connected to the feasibility of Ponzi scheme; a theme re-examined in

the endogenous growth context by King and Ferguson [69] and Grossman and Yana-

gawa [60]. More recently, Chalk [33] showed that sustainability of a permanent deficit

requires more than simply the rate of interest to be less thanthe growth rate. Far less at-

tention has been devoted to the possibility that public investment could be financed (at

least in part) through domestic borrowing;46 Rioja [90] notes that in Latin America fis-

cal restraint in the mid-1980s (called for by stabilizationplans) was in part responsible

for the decline in public investment that has not yet recovered 1970s levels. Although

developing countries’ debt is mainly external debt, there are cases with significant level

of domestic indebtness (e.g. Mexico. See Agenor and Montiel, [1]).

46 In their seminal work, Arrow and Kurz[5] do consider this possibility.
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In none of the papers quoted in the previous paragraph, however, do public expen-

ditures enter the production function. We believe that thisomission is crucial; although

it is undeniable that part (maybe even a large part) of publicexpenditure are unproduc-

tive (being mere redistribution of income47 if not even purely wasted resources), at least

part of it is devoted to the creation, maintenance and updating of infrastructures. Cav-

alcanti Ferreira [31], presents a very similar model compared with ours. But there is

seigniorage, not debt, the financial resource for the government, and it is theflow, not

the stock of capital that matters; furthermore there is no taxation and the consequences

of an imposition of limits on the size of the fiscal deficit are not analysed.

Our analysis shows that when the rate of public investment issufficiently high,

there exist a steady-state in which the government runs perpetual primary deficits. For

any initial level of the capital stock, there is a unique level of public debt such that

the economy converges to that steady-state. Any bigger initial level of debt means

that the combination of income tax and public investment is not sustainable; for lower

levels the economy converges to a different steady state with primary surpluses. An

analogous point was made by Chalk [33] in an exogenous growthcontext. However in

our model some policy changes may have unexpected results. Specifically, if initially

we are at the steady-state with primary deficits, a tax increase will make the policy

combination unsustainable. There is no analogous result inChalk’s paper. We consider

this result unexpected as one would expect a reduction in thedeficit to imply that the

policy should be more sustainable, not less. What explain this result is that the steady

state we start from is characterised by a large level of debt.The tax increase reduces

47 One should note, however, that in certain frameworks a redistribution of income can have conse-
quences for long-run growth. Jones and Manuelli[63] argue that in a one-sector overlapping generations
model with convex technologies, sustained growth is possible only with an appropriate redistribution of
income.
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private capital accumulation. This tends to push up the marginal product of capital and

therefore the interest rate. This increases the government’s interest payment by more

than the increase tax reduces the primary deficit. Hence the overall fiscal position of the

government worsen rather than improve.

A crucial feature of the model we analyse is the way in which public investment

affects technological progress. An obvious alternative toour approach is to consider

public capital entering directly the production function.Chapter 2 analysed such a

model in a two-sector framework. There we showed that primary deficits could not

be sustained, hence none of the points made in the paragraph above are valid. In a

one-sector model à la Barro [13] things are likely to be different. If the government

maintains a constant public to private capital ratio, the marginal product of capital and

hence the interest rate will be constant and the interest payment effects we discussed in

the previous section will be absent. Therefore we conjecture that a tax increase should

have the expected effect of improving sustainability. A related analysis has been pro-

vided in a recent contribution by Yakita [111]. Given the contributions of Cazzavillan

[32] and Azariadis and Reichlin [10] one may also expect complex dynamics to arise.

3.1 The model

We consider an overlapping generation economy in which individuals live two periods,

supply labour inelastically in the first, and retire in the second. Assume, furthermore,

that the utility function of an individual born at time t is

Ut ≡ u
(
cyt , c

o
t+1

)
, (1)



3.1 The model 95

where the subscript indexes the time at which consumption occurs, the superscript the

age of the consumer. The intertemporal budget constraint is

cyt +
cot+1
Rt+1

≤ W̃t, (2)

whereW̃t is the after tax wage earned at timet, Rt+1 the after tax gross interest rate

between timet andt+ 1. For simplicity, we will assume that

Ut = ln c
y
t + β ln cot+1,

whereβ > 0 is the discount factor. This implies, of course, a considerable loss in gen-

erality, but on the other hand, the fact that then the saving rate is independent from the

interest rate48 makes the derivation of the results very simple. Although the assumption

of logarithmic function for utility is often defended on thegrounds that empirical stud-

ies found little evidence of sensitivity of saving rates to interest rate, we regard this as

a simplification useful to obtain a first approximation, but in later research a more gen-

eral functional form has to be allowed. With this assumption, however, the saving rate

is going to bes = β/ (1 + β).

Next we characterize the production side of the economy. We assume that the

production function can be written as

Yt = F (Kt, AtLt), (3)

whereY stands for output,Kt for the stock of private capital,At measures labour

productivity andLt the labour employed. Since labour is supplied inelastically, the

economy will be always in full employment. We will abstract from population growth,

thereforeLt = L, ∀t. We will assume thatF (., .) is homogeneous of degree 1, and in

48 This result depends on the assumption of log-utility and theassumption that households do not have
any source of income in old age except for the return on their young age savings.
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general has all the properties of a neoclassical productionfunction as summarized in

the following assumption.

Assumption 1. The production functionF : ℜ2+ → ℜ+ is concave and homoge-

neous of degree 1 in its arguments, and has the following properties:

F (0, AL) = F (K, 0) = 0;

FK ≡ ∂F (., .) /∂K ≥ 0∀K ≥ 0;

FL ≡ ∂F (., .) /∂L ≥ 0∀L ≥ 0;

FK (0, AL) = FL (K, 0) = +∞;

FK (+∞, AL) = FL (K,+∞) = 0;

Technological progress is not exogenous, but depends on thestock of publicly

provided infrastructures. In particular we assume thatAt+1 = Γ (Gt/AtLt)At; where

Gt is the stockof public capital. Assumptions regardingΓ are that it is a concave

function, increasing in the public capital stock in efficiency units.

Assumption 2.The functionΓ : ℜ+ → ℜ+, has the following properties:

Γ (0) = Γmin ≥ 0;

Γ (+∞) = Γmax > 1;

Γ′ (G/AL) ≡ dΓ(G/AL)/d(G/AL) > 0;

Γ′′ (G/AL) ≡ d2Γ(G/AL)/d(G/AL)2 < 0.

A brief discussion of the assumptions onΓ is necessary. That technological

progress should depend exclusively on public capital stockwill undoubtedly sound an
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odd assumption. A more realistic scenario would display some sort of complementarity

between private investment and public capital stock. Here,however, we are not trying

to give a theory of the sources of technological progress, but we focus on public policies

when public capital expenditures have direct consequencesfor the aggragate production

function. Perhaps, we could interpret the above assumptionas an environment in which

technological progress is exogenous, but new technologiescan be adopted only if the

country is supplied with adequate infrastructures.Γmin = 0, would mean that with no

infrastructure it would be impossible to have any production at all; allowing for aΓmin

positive but smaller than 1 implies that with no infrastructures some production is pos-

sible, but the economy shrinks over time. Finally, the function Γ could be bounded or

not, butΓmax has to be bigger than 1 for sustained growth to be possible. There are no

strong technical reasons to assume thatΓ is bounded, but boundedness could be a nat-

ural assumption, as it seems intuitive that there should be alimit to the rate of growth

that can be induced by public investment.

The role played byG in this model is different than that in Barro [13]; not only

because it is the stock, not theflow, of public capital that matters49, but because here

public capital is not directly an input in production, but itis something that makes possi-

ble or accelerates technological progress. The same assumption is taken by Cavalcanti

Ferreira [31], but there is again theflow, not the stock that matters. We assume that

the stock is what enters the functionΓ to add realism. As it should be clear from the

analysis of the dynamics below, none of the main results depend crucially on this as-

sumption.

49 The consequences of substituting stock toflow in the Barro model have already been analyzed in
Futagami et al.[54].
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We are saying that infrastructures allow adoption of more modern technologies.

As an example, building roads and railways allows the use of modern means of transport

(trucks and train). Similarly we think that there would be very little innovation in a

society without schools. And we are also saying -looking at the variables that enter as

argumentΓ- that as the technological level increases, a higher level of infrastructures

is needed to enhance further progress. That is the level of infrastructures per capita

that allowed an increased in productivity of, say, 2% yesterday, will allow a smaller

further increase today because we start from an already higher level. That is, to sustain

a certain growth in productivity, infrastructures need notonly to be maintained, but to

be continuously updated.

There are different possible reasons why the stock of infrastructures should influ-

ence the rate of increase of labour productivity. If we interpretAt as human capital, and

Gt as the stock of public investment in education -in a broad definition (schools, labs,

etc.)- then the interpretation could be that people trainedin better schools develop a bet-

ter ability to accumulate experiences and knowledge that allow them to increase their

productivity on the job.

Alternatively one could think of a country with better infrastructures as one in

which communication, travel and consequently the exchangeof information and expe-

riences is facilitated. Again, through this channel infrastructures contribute to faster

productivity growth.

The provision of public capitalG, must be financed somehow. We will assume

that public expenditures are financed through taxes on wage and capital earnings and

domestic borrowing; we abstract from seigniorage and external borrowing (we consider

a real closed economy). We also assume that the tax rates are fixed for all periods. Al-
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though this is clearly an oversimplification, it is also truethat in general modifying the

tax rate might be a more complicated matter than issuing bonds. Constraints on the tax

rate can be political, legal or ideological. Furthermore, often increases in the tax rate

can be pointless, as they are offset by increases in tax evasion. All these reasons and

others that we might have neglected, make tax rates quite stable; we make the extreme

assumption that the government tries to fix them once and for all. We then study the

combinations of tax and investment policies that are sustainable, i.e. mutually consis-

tent. If an arbitrarily chosen combination of policy is not sustainable it will have to be

changed sooner or later. In the final section we derive some interesting implications

from this observation.

Indicating byBt the stock of public debt,Dt the investment in public capital and

Xt investment in private capital, the evolution of the stocks of private and public capital

are given respectively by

Kt+1 = (1− δk)Kt +Xt, (4)

Gt+1 = (1− δg)Gt +Dt, (5)

whereδk, δg are the depreciation rates of private and public capital respectively. Fiscal

policy must satisfy the following budget constraint

Dt = Bt+1 − (1 + rt)Bt + τ (WtLt + rt (Kt +Bt)) . (6)

Hereτ is the tax rate on wages,Wt is the before tax wage rate at timet, andrt is the

net interest rate before tax. Note that the tax on capital earnings is proportional tor not

R, i.e. net rather than gross earnings are taxed; more importantly, this means that there

is a deduction for depreciation (as it will be clear below).50

50 This is not essential for the analysis, one could work with the alternative hypothesis that there is no
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Equilibrium requires all markets to clear. In this economy there are a labour

market, and a market for assets: bonds and private capital. Factor market equilibrium

requires

rt + δk = ∂F (Kt, AtL)/∂Kt, (7)

Wt = At∂F (Kt, AtL) /∂L. (8)

Asset market clearing imposes that the sum of private capital stock and the stock of debt

must equal saving:

Kt+1 +Bt+1 = s (1− τ)WtL. (9)

The behaviour of the system can be more easily illustrated expressing all vari-

able in efficiency units. We will employ the common convention of indicating with

lower case the value of a variable in efficiency units, that isfor any variableZt the

corresponding lowercase indicateszt ≡ Zt/AtL. We shall use also the abbreviation

Γt ≡ Γ (Gt/AtL) = Γ (gt).

Using the homogeneity property of the production function we can write

yt = f(kt), (10)

wheref (kt) ≡ F (Kt, AtL) /AtL = F (kt, 1); which in turn implies that (7) and (8)

can be written51

rt + δk = f ′ (kt) , (11)

wt = f (kt)− ktf
′ (kt) , (12)

depretiation allowance.
51 Apostrophes indicate derivatives. Sof ′ (k) ≡ ∂f (k) /∂k; f ′′ (k) ≡ ∂2f (k) /∂k.
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wherewt is the wage rate for effective unit of labour (Wt = Atwt). Furthermore, the

equations (4)-(6) become

Γtkt+1 = (1− δk) kt + xt, (13)

Γtgt+1 = (1− δg) gt + dt, (14)

dt = Γtbt+1 − (1 + (1− τ ) rt) bt + τwt + τrtkt. (15)

Equation (9) can be written

Γtkt+1 = s (1− τ )wt − Γtbt+1, (16)

while (14), (15) andwt + rtkt = f (kt) give

Γtgt+1 = (1− δg) gt + Γtbt+1 − (1 + (1− τ) rt) bt + τf (kt) . (17)

A look at (17) can already illustrate the effect of changing the composition of

finance, that is reducing (increasing) taxes and increasing(reducing) issues of new debt

maintaining the same level of public investmentdt (and therefore the samegtΓt+1).

A switch from taxes to borrowing that leave unchanged the level of public investment

must satisfy (from (17))

Γtdbt+1 + (f (kt) + rtkt) dτ = 0 (18)

that is

(f (kt) + rtkt) dτ = −Γtdbt+1. (19)

From (16) this implies

Γtdkt+1 = −Γtdbt+1 − swtdτ = (f (kt)− swt + τrtbt) dτ , (20)
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and therefore an increase in debt (a tax cut) reduces capitalaccumulation and vice

versa (crowding out effect).52 It is easy to verify that this conclusion does not depend

on the assumption of log-utility. It is also clear that the same conclusion will hold in

steady state (assuming that one exists). The above discussion seems to imply that the

government can choose the mix of tax and deficit finance freely. We will show below

that this is not always true, that is there are cases in which areduction of the long-run

level of deficit requires lower public investment levels.

3.2 Fixed public investment policy

In this section we analyse the equilibrium outcome under thehypothesis that the govern-

ment maintains fixed the rate of public investment in efficiency units,d. Then equations

(16), (14) and (15) become53

kt+1 = [s (1− τ)wt − Γtbt+1] /Γt, (21)

gt+1 = [(1− δg) gt + d] /Γt, (22)

bt+1 = [d+ (1 + (1− τ) f ′ (kt)) bt − τf (kt)] /Γt. (23)

First we want to establish whether this system admits a steady-state. A steady-state is

characterized bykt = k, gt = g andbt = b ∀t. Then the above system can be rewritten

52 In an exogenous growth model, crowding out can be welfare improving if the economy is dynamically
inefficient, which occurs when the growth rate is bigger thanthe interest rate. It will be shown below that
in this model there are equilibria characterized by a growthrate that is bigger than the interest rate. This
opens the question of whether crowding out is desirable in this setting.

53 Wherewt = f (kt)− ktf ′ (kt).
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as

k = [s (1− τ )w − Γb] /Γ, (24)

g = [(1− δg) g + d] /Γ, (25)

b = [d+ (1 + (1− τ ) f ′ (k)) b− τf (k)] /Γ. (26)

We can solve the last forb to find

b =
d− τf (k)

Γ−R
; (27)

whereR, it will be recalled, is1 + (1− τ) f ′ (k).

Equation (27) has an important and intuitive interpretation: steady-state debt will

be positive only if the sign of the primary deficit (the numerator) is the same as the

sign of the difference between the growth rate and the interest rate. In other words, if

the government is a net debtor, a sustained primary deficit can be positive only if the

interest rate is less than the growth rate. Conversely, if the interest rate exceeds the

growth rate, the only way to sustain a positive debt level is to have primary surplus.

Chalk [33] showed that this is a necessary but not sufficient condition; we will show

below that the same is true in our model.

3.2.1 Existence

To prove existence of a balanced path equilibrium we exploitthe recursive nature of the

dynamic system. Note that (22) depends ong andd but not onk. It certainly has a

unique fixed point, as proven in the following lemma.

Lemma 3.1 Under assumption 2, the difference equation (22) has a unique

steady-stateg, which is increasing ind.
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Proof Assumingg �= 0, we can rewrite (25) as

Γ = (1− δg) +
d

g
.

The left hand side is concave, increasing, starts fromΓmin, and approachingΓmax as

g → +∞; the right hand side is a decreasing, convex function, going to+∞ asg → 0,

and to(1− δg) asg → +∞; sinceΓmax > (1− δg) by assumption 2, there must be at

least one intersection; since one function is strictly increasing and the other is strictly

decreasing there will be only one intersection. Figure 3.1 illustrates. How does the fixed

point of (25) changes withd? By implicit differentiation we obtain

dg

dd
=

1

Γ′g + Γ− (1− δg)
> 0;

the above derivative is certainly positive because for anyg satisfying (25),Γ > (1− δg)

(see figure 3.1). IfΓmax = +∞, then asd → +∞ theng → +∞ andΓ → +∞.

Therefore an increase ind, results in an increase ing and thereforeΓ. In general, as

d→ +∞, g → +∞ andΓ→ Γmax.

g

Γ

(1-δg)+(d/g)

(1-δg)

3.1
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Once the steady-state value ofg has been found, we can look at the system formed

by (24) and (26). We can solve them both forb. From (24) we have

b =
s (1− τ )w − Γk

Γ
≡ ψπ (k) , (28)

from (26) we have

b =
d− τf (k)

Γ− R
≡ φπ (k) . (29)

Let us callk̄π the value ofk such thatR = Γ, and k̃π the value ofk, such thatd −

τf (k) = 0. It is clear thatφπ has a discontinuity at̄kπ. Note also thatφπ (+∞) = −∞.

If k̃π < k̄π
(
kπ > k̄π

)
, thenlimk→k̄− φπ (k) = +∞ (−∞). Furthermore ask → 0 the

numerator goes tod while the denominator goes to−∞; it follows thatφ (0) = 0 and

thatφ (k) < 0 in a right-neighbourhood of0. Differentiating with respect tok, we find

φ′ (k) ≡
dφ (k)

dk
=
−τf ′ (k) + φ (k) (1− τ ) f ′′ (k)

Γ−R
.

Note that whenφ (k) ≥ 0, sign (φ′ (k)) = −sign (Γ−R).

Figure 3.2 illustrates two possible shapes thatφπ (k) may have. The left-hand

side illustrate a case for which̃kπ < k̄π; we established that fork close enough to0,

φ (k) < 0. On the other handφ
(
k̄−π
)
= +∞. The intersection with the horizontal axes

at k̃π must be unique as thereφ′
(
k̃π
)
= −τf ′ (k) / (Γ− R) > 0, sinceφ

(
k̃π
)
= 0 by

definition andΓ−R < 0 for k < k̄π. Sinceφ
(
k̄+π
)
= φ (+∞) = −∞, φ (k)must have

a shape similar to that in the left and side of figure 3.2. The right-hand side of figure

3.2 illustrate the casẽkπ > k̄π. Clearly in this caseφ (0) = 0, φ (k) < 0 ∀k ∈
(
0, k̄
)
,

andφ
(
k̄−π
)
= −∞ as in the figure. Whileφ

(
k̄+π
)
= +∞, φ′ (k) < 0 ∀k

(
k̄π, k̃π

]

andφ (+∞) = −∞. Sinceφ′
(
k̃π

)
< 0, k̃π is again unique. Therefore the graph of

φ will looks as in the right-hand side of figure 3.2. When considering the figures one

should note that the second derivative ofφ depends in a rather complicated way on the
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k
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πφ
πφ
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first three derivative off ,54 therefore the concavity/convexity properties ofφ may differ

from the figure.

The above discussion has proved the following lemma.

Lemma 3.2 For a givenπ, callΦπ ⊂ ℜ+ the set ofk > 0 such thatφπ (k) ≥ 0;

then (i) if k̃π < k̄π thenΦπ =
[
k̃π, k̄π

)
;

(ii) if k̃π > k̄π thenΦπ =
(
k̄π, k̃π

]
.

(iii) if k̃π = k̄π thenΦπ = ∅.

54 One finds

φ′′ = −
f ′′

Γ−R
+ 2

φ (1− τ)2 (f ′′)2

(Γ−R)2
+
φ (1− τ) f ′′′

Γ−R
.
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Let us turn toψπ (k). Note thatψπ (0) = 0. Let us callψπ∞ ≡ ψπ (+∞); now

sincew = f (k)− kf ′ (k), we have

ψπ (k) =
s (1− τ) [f (k)− kf ′ (k)]− Γk

Γ

=
s (1− τ) f (k)− k [s (1− τ) f ′ + Γ]

Γ
.

The the assumption that the marginal product of capital tends to zero as the capital

stock goes to infinity (see assumption 1) gurantees thats (1− τ ) f (k)− Γk → −∞ as

k → +∞; that isψd∞ = −∞. Note also that

ψ′d (k) ≡ dψd (k) /dk = [(1− τ) s (dw/dk)− Γ] /Γ

=
(1− τ ) s (−kf ′′ (k))− Γ

Γ

can be positive or negative depending on the value off ′′ relative toΓ. If ψ′π (0) > 0

there is a right neighbourhood of0 such that for allk belonging to it,ψπ (k) > 0. When

Γ is so high thatψ′π (0) < 0 there cannot be any steady-state with a positive level of

public debt.

We need to establish when we will havek̃π > k̄π or k̃π < k̄π. The following

lemma prove that, for given tax rates, there is critical value for the investment rate,d0π

such that̃kπ < (>) k̄π for d < (>) d0π.

Lemma 3.3 For any tax rateτ ∈ (0, 1) there is ad0π such thatk̃π < k̄π if

d < d0π, and k̃π > k̄π if d > d0π.

Proof Sincek̃π is defined byd = τf
(
k̃π

)
, it is clear thatlimd→0 k̃π = 0 and

limd→+∞ k̃π = +∞. Furthermore by implicit differentiation∂k̃π/∂d = 1/τf ′
(
k̃π
)
>

0. That is k̃π increases monotonically withd from 0 to +∞. k̄π is defined byΓ −

(
1 + (1− τ ) f ′

(
k̄π
))
= 0. But Γ is an increasing function ofg which in turn was
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shown to be an increasing function ofd in lemma 3.1. There we have also shown that

limd→0 Γ = Γmin, and limd→+∞ Γ = Γmax. Then the limit ofk̄π for d → 0 is de-

fined implicitly byΓmin =
(
1 + (1− τ) f ′

(
k̄π
))

, while the limit of k̄π for d→ +∞ is

defined implicitly byΓmax =
(
1 + (1− τ) f ′

(
k̄π
))

. Furthermore by implicit differen-

tiation we have∂k̄π/∂d = (∂Γ/∂d) / (1− τ ) f ′′
(
k̄π
)
< 0. Thusk̄π is monotonically

decreasing. It follows that there can be only oned such that̃kπ = k̄π. Figure 3.3

illustrates.

d

k

kπ

kπ

d0
π

~

_
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3.3 TheΓ ≤ R case

We first look briefly at fiscal policies for whichd < d0π. Our treatment of this case is

kept brief because we are mostly interested in the analysis of adjustment from a situation
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of sustained primary deficits, but this is only possible whenthe growth rate exceeds the

interest rate.

Lemma 3.4 Supposed < d0π and callk∗π the value ofk such thats (1− τ )w =

Γk. A steady-state withb > 0 exists if and only ifψ′ (0) > 0 andk∗π >.k̃π.

Proof If d < d0π, φ (k) will look as in the left-hand side of figure 3.2. If an

intersection withψ (k) in the positive quadrant exists, it must be for ak ∈ Φπ. Figure

3.4 illustrates.

k
k*k

_
ψ

φ

Φπ

3.4

Next we examine the case whered = d0 and thereforẽkπ = k̄π. In this case a

unique steady-state exists, because from (26) we have

(Γ−R) b = 0 = d− τf (k) ,

which impliesk = k̃π. Then from (24) we have

b =
s (1− τ )

[
f
(
k̃π

)
− k̃πf

′

(
k̃π

)]
− Γk̃π

Γ
.
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Figure 3.5 illustrates. Point A in the figure is the unique steady-state. Note that the

figure illustrate the case for which the resultingb is positive, but ifk̃π > k∗ then the

intersection would be for a negativeb.
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3.4 TheΓ > R case

WhenΓ > R there is the possibility that the government can sustain positive deficits

in the long-run. Chalk [33] has shown, in an exogenous growthmodel, that even in

this favourable case, the fiscal policy of the government is not unlimited. Analogous

restrictions will hold in our set up as well, with additionalcomplications given by the

more general fiscal policy that we consider (Chalk abstractsfrom taxation), and, more

importantly, the endogeneity of the long-run growth rate. From the above discussion

we have that ford > d0π, if a steady state with positive public debt exists, it will be
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characterised byΓ > R. In this section we consider this case and study the existence

and dynamic properties of such a steady-state.

We argue that under fairly general conditions, for values ofd arbitrarily close to

d0π there are at least two steady-states, one of which characterized by a positive value

and the other with a negative value of public debt. Asd increases the two steady-

states get arbitrarily close in the following sense: the corresponding(k, b) converge

(coordinate-wise) to the same couple of values. There is a critical valuedcπ (which

depends on the tax rates), such that there is a unique steady-state (at this point we do

not know whether this is characterized by net indebtness of the government). For any

d > dcπ there is no steady-state. Formally, we will prove that the system undergoes a

saddle-node bifurcationat dcπ. We we also prove that of the two steady-states, one is

a saddle the other a sink. Graphically, we can represent the bifurcation diagram as in

figure 3.6 (note that in this figure we only considerd ∈ (d0π,+∞).

d

k

d0
π dc

π

3.6
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The above discussion is summarized in the following proposition (that we con-

sider the main result of this section).

Proposition 3.1 For each tax rateτ ∈ (0, 1) there exists adcπ such that

∀d ∈ (d0π, d
c
π) there are two distinct steady-state withk > k̄, one of which is a saddle,

the other is a sink; for d = dcπ there is a unique steady-state; ∀d > dcπ there is no

steady-state withk > k̄. Although the intuition behind proposition 1 can easily been

grasped form the diagrammatic exposition once one has understood the way the curves

move withd, the formal proof is rather tedious. We shall devote the restof this section

to proving proposition one; the reader more interested in the economic implication of

the proposition than the technicalities involved can safely skip the rest of this section in

a first reading.

We structure our proof as follows. We first prove the existence of a steady-state

for values ofd arbitrarily close tod0π. We then consider a reparameterisation of the fun-

damental equation such that the steady-state is fixed at(0, 0).55 We then prove that the

newly defined map undergoes a saddle-node bifurcation atdcπ. Because the two maps

are topologically conjugate, they will always have the samenumber of fixed points. Fi-

nally, we will use the Jacobian calculated at the two steady-states to establish which is

stable and which is a saddle.

d ≃ d0π

For values ofd bigger than but arbitrarily close tod0π there exists at least one

steady-state. That is because in this casek̃ is bigger but arbitrarily close tōk; it follows

55 Technically this involves constructing a topological conjugacy.
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thatφ (k) is arbitrarily close to the vertical line in figure 3.4. A steady-state in proximity

of point A must therefore exist.

Reparameterisation

Established the existence of a steady-state in the neighbourhood ofd0π, we now

want to establish how many there are and how they change withd. Call kss the steady-

state value fork if it exists. Clearlykss must satisfy the following equation

ψπ (kss)− φπ (kss) = 0; (30)

let us define the functionh : ℜ+ → ℜ+ as

hπ (x)− x ≡ ψπ (k)− φπ (k) ,

wherex = k − kss. We have obtained the desired reparameterisation. To everysteady-

state for the original parameterization corresponds a steady-state for the new one. In

fact whenk = kss, x = 0 so the equationx = hπ (x) is identically satisfied. Similarly

if there exists a valuek′ss �= kss such thatψπ (k
′

ss) − φπ (k
′

ss) = 0, then there exists a

x′ �= 0 such thatx′ = hπ (x
′).56 In fact the maph is topologically conjugate with the

map that describe the original system. What is left to to is toshow that the maphπ

undergoes a saddle-node bifurcation for a critical valuedcπ. To apply the saddle-node

bifurcation theorem, we need to show that there exists a critical value ford such that

the curvesφ andψ are tangent. This is done in the following lemma.

Lemma 3.5 There exists adcπ such that

h′ (0) ≡
dh

dx
|x=0 = 1.

56 This is always true by definition.
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Proof We need to show that there exists adcπ such that a steady-statekssexists and

h′ (0) = 1. Now,h′ (0) = 1 if and only if

ψ′π (kss)− φ′π (kss) = 0,

whereψ′ (.) ≡ ∂ψ/∂k, φ′ (.) ≡ ∂φ/∂k. Our proof is by contradiction. Assume that

dcπ does not exists, i.e. thatψ′π (kss) − φ′π (kss) �= 0 ∀d ∈ (d0π,+∞) ≡ ∆. Then

for all d ∈ ∆, the condition of the implicit function theorem are satisfied, and akss

that satisfies (30) exists and changes continuously withd. We now show that ford

sufficiently high there cannot be such a solution, which provide us the contradiction we

were looking for. We will then have to conclude that there must be a point in∆ where

the implicit function is not applicable. To show that a maximum sustainabled exists,

assume

d > max
k

{
Γmax − R

Γmax

s (1− τ)w + τf (k)− (Γmax −R) k

}
.

Then

d > max
k

{
Γmax − R

Γmax
s (1− τ)w + τf (k)− (Γmax −R) k

}

>
Γmax −R

Γmax

s (1− τ )w + τf (k)− (Γmax − R) k

>
Γ−R

Γ
s (1− τ)w + τf (k)− (Γ−R) k,

or

d− τf (k) >
Γ− R

Γ
s (1− τ)w − (Γ− R) k

If 0 < k < k̄ thenΓ < R. Then rearranging the last inequality

d− τf (k)

Γ−R
<
s (1− τ )w − Γk

Γ
,
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i.e.

φπ (k) < ψπ (k) .

If k > k̄ thenΓ > R, and we have

d− τf

Γ−R
>

s (1− τ)w − Γk

Γ
,

i.e.

φπ (k) > ψπ (k) .

Either way it is clear thatφπ (k) �= ψπ (k) ∀k.

We are now ready to apply the saddle-node bifurcation theorem.

Lemma 3.6 Call πc a fiscal policy such thath′πc (0) = 1, anddcπc the corre-

sponding value ford. Then, keeping fixedτ , there is a neighbourhood ofdcπc such that

(i) for d > dcπc there are no steady-state equilibria; (ii) for d = dcπc there is one unique

equilibrium; (iii) for d < dc there are two equilibria, one is a saddle, the other is a

sink.

Proof We have to show that the maphπ satisfies the conditions for the saddle-

node bifurcation theorem (Cfr. Devaney [40], theorem 12.6,p.88): (i) hπc (0) = 0;

(ii) h′πc (0) = 1; (iii) h′′πc (0) �= 0; (iv) ∂hπc/∂dc �= 0. (i) trivially holds by definition

(x = 0⇐⇒ k = kss).

(ii) by hypothesis.

(iii) h′′πc = ψ′′πc − φ′′πc �= 0.

(iv) ∂hπc/∂d = −
s(1−τ)w
Γ2

dΓ
dd
− 1

(Γ−R)2
+

φπc
Γ−R

dΓ
dd
�= 0.
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Thus all the conditions of the saddle-node bifurcation theorem are satisfied. The

stability-unstability result becomes from the observation that the eigenvalues of the

Jacobian are real, and from the fact that57 φ′ > ψ′ is a necessary and sufficient condition

for a saddle, andφ′ < ψ′ for a sink.

Figure 3.7 illustrates the result of proposition 1.

b

A

B

φ

ψ

3.7

The fundamental message of the proposition is that if there is a crossing between

φ andψ, in general there must be two of them. The steady-state with higherk is stable

whereas the other is unstable. As the public investment rateincreases (i.e.d increases),

φ moves in the north-east direction, whereasψ shrinks; the two steady-states get closer

until the point of tangency, after which there is no steady-state.

We next illustrates some examples that we find interesting.

57 Where all derivatives are calculate at the steady-state values.
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Examples

Suppose that the economy is at point A in figure 3.8, with zero primary deficit.

There is a positive amount of debt, but tax revenues are enough to cover public in-

vestment and interest payments. If the government tries to increase investment without

touching the tax rate, i.e. tries to run positive primary deficits,φ moves in the north-east

direction, whereasψ shrinks as illustrated in figure 3.8.

A

φ

ψ

A’

3.8

Even under the assumption that a new steady-state A’ exists,A will certainly not

lay into its basin of attraction. Actually A is, after the change in policy, in the unsus-

tainable area. This shows that even a small change can transform a sustainable policy

into an unsustainable one. One might object that of the two equilibria the saddle is

the most unlikely, since it requires special initial condition for the economy to con-

verge there. It can be argued, however, that if it was optimalfor the government to

converge there (given its preferences before the change), then the economy would have

converged there. The change then must be the result of an unforeseen shock for the
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planner. Alternatively, one could think of a situation in which the economy is not at A,

but in proximity of it, converging to the stable equilibriumbut still far away from it. If

the change in policy is big enough, a similar result would again hold: the economy was

on a sustainable path and now it is on a unsustainble one.

Clearly, if in the previous example the shift in policy is towards a decrease in

investment, the result would be that now the economy will start moving towards point B

as illustrated in figure 3.9. The lesson from this example is that even marginal changes

in the policy design can cause dramatic changes in the asymptotic behaviour of the

economy.

k

b

φ

A

A’

B

3.9

As a final example consider figure 3.10, but suppose that now inA, the govern-

ment is running a primary deficit. Again this policy is sustainable in the long-run by

definition, since we are in a steady-state. Suppose that now the government is forced

to eliminate or even slightly reduce the primary deficit by increasing taxation (in or-

der to join the common currency, for example, or because a constitutional bill has been
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passed as sometimes called for in the USA). The consequence is thatφ moves in the

south-west direction, whereasψ shrinks. As it should be cleared by the figure, A is

now in the non-sustainable area; this means that the government simply cannot main-

tain the same level of investment, but has to reduce it. Even though the initial policy

was sustainable, the supposedly ”virtuous” shift towards amore balanced budget nec-

essarily involves cutting down public investment, which inturn means slower growth in

the long-run.

k

b

φ

A

A’

3.10

The conclusions reached here depend on the assumption that all public expendi-

tures are treated as productive investment. In reality is clear that government spending

includes a share of consumption expenditures; if we would model public consumption

by imposing a fixed ratio between consumption and investment, the main conclusions

would be basically the same. If however we allowed the share to vary then we would

have two possibility: on one hand the reduction in deficit spending might induce the

government to reduce consumption and wasteful expenditures, which could counter bal-
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ance and even subvert our story. On the other hand, if the government has less control

on consumption than on investment (for example because of strong lobbying activity),

the point would emerge even more strongly.



4 A dynamic analysis of user charges and
public investment

As it has been mentioned in preceding chapters, there is a vast literature, both the-

oretical and empirical, on the effects of public investmenton the growth of an economy.

This literature has produced a number of interesting results on the effects of different

fiscal policies on the dynamics of an economy, and on the principles that should guide

the design of the optimal fiscal mix. This last chapter is a further contribution to this

literature. The aim is to introduce a characteristic that seems to be shared by most if

not all public inputs: rejectability. To illustrate, take the example of a road. It seems

plausible that a well developed road network is likely to have a positive impact on the

productive capability of an economy. But it seems also clearto us that the impact that

a given set of roads has will depend crucially on the extent towhich firms and house-

holds decide to exploit them. This for two reasons: on one hand, the construction of

a new road will bring little benefit to my firm if I decide not to use it. Similarly, the

construction of a lane for fast vehicles will have littledirect impact if I do not own a

fast vehicle and decide not to buy any. Secondly, the decisions of all potential users to

use the existing roads, and how intensively, will have effects on the degree of conges-

tion present and therefore on the benefit that each user can get from the existing stock

of infrastructures. So, returning to the creation of the fast lane, even if I do not plan to

use it, I mayindirectly benefit if enough other users switch to use it thus reducing con-

gestion on the slowest lanes too. This aspect of public inputs has received surprisingly

little attention in the literature on optimal intertemporal fiscal policy.58 While Arrow

58 There is a large literature concentrating on static analysis. See Berglas and Pines[20] and Cornes
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and Kurz [5], McMillan [77], Pestieu [84] Weitzman [110] andBarro [13] are all ex-

amples of intertemporal models with public inputs, a commonassumption is that public

goods are not rejectable. The only paper we are aware of that explicitly analyses re-

jectability in a dynamic setting is Ott and Turnovsky [83]. Our model, though, differs

from theirs in a number of important respects. First, Ott andTurnovsky assume that the

degree of congestion perceived by a firm is related to the ratio of its capital stock rela-

tive to the aggregate capital stock. This implies that the level of congestion will depend

on the number of firms. In contrast, we assume that congestionis given by the ratio of

aggregate usage relative to the existing stock of infrastructures as in much of the litera-

ture on congestible facilities. Second, they assume the number of firms is exogenously

given; we allow for free entry, so the number of firms is endogenouslydetermined.

As we shall see, in our model, in contrast with most of the literature on public invest-

ment and growth, the social and private returns to capital coincide, which has important

implications for the optimal fiscal mix, and in particular for the optimal income tax.

Much of the literature on optimal taxation argues that the optimal tax on capital

earning at least tends asymptotically to zero when it is not actually equal to zero after

an initial transitional period (Chamley [34], Judd [66],[67]; see Atkeson et Al. [6] for

a review). The reason for this is that a positive tax on the return from current savings

makes consumption in the future more expensive. In a steady-state or balanced growth

path, however, the elasticity of demand for consumption is constant; therefore having

a positive capital income tax violates the principle that tax rates should be inversely

proportional to demand elasticities (Ramsey [86], Baumol and Bradford [18]). There

are, however, important exceptions. For a start, positive optimal capital income taxes

and Sandler[35] for an overview.
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are generally found in models with overlapping generationsunless fairly restrictive as-

sumptions on preferences are made (Erosa and Gervais[50], Mathieu-Bolh [76]). The

reason is that in life-cycle models, individual consumption and leisure typically vary

over time even when the aggregate counterparts achieve a steady-state. But then the

elasticities are not in general constant over the lifetime of an individual and therefore

taxing his consumption differently over time may be optimal(Erosa and Gervais [49]).

Another exception is found in models with public capital with congestion (Turnovsky

[105]). In this case, the reason for the departure is that private investors neglect the

externality that their accumulation of capital exercises on others through increased con-

gestion. A positive capital income tax is required to internalise this externality. Similar

results follow if there are non-discretionary public expenditures linked to the current

level of output and/or a spillover externality from privatecapital accumulation (Mar-

rero and Novales [75]). The former would call for a positive tax on capital income in

order to reduce the crowding out of private consumption due to the increase in gov-

ernment consumption caused by economic growth. The latter may actually call for a

negative tax (a subsidy) to correct the externality when theexternality is positive (as,

for example, with learning-by-doing externalities as in Arrow [4] and Romer [92]).

Relative to the literature, the model developed in this chapter is closest to those in

Turnovsky [105] and Ott and Turnovsky [83].59 Like them, we look at a growth model

with congestion prone public infrastructures and we look atthe optimal pricing of public

services. While those two studies find that the optimal capital income tax in the long-

run is positive, we find it to be zero in the main specification of our model. Crucial to

this difference is how we model utilisation of public services. In Turnovsky [105] and

59 Although some important differences with the latter have already been noted at the end of the first
paragraph.
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Ott and Turnovsky [83], as in much of the literature60, congestion is proportional to the

capital stock of the firm. This is to a large extent realistic:if the capital stock is given

by the number of trucks owned by the firm, one would expect thatthe more trucks firms

buy, the more congestion we will see on the roads. However, for any given numbers of

trucks, the firms can still make choices that will determine how intensively it will use

the road network. For example the firm may decide to organise its delivery system so

to reduce the amount of miles its trucks have to run to pick up materials and deliver

goods. This would reduce the amount of congestion. We are notaware of any model

that tries to include these considerations in an otherwise standard model of economic

growth. We do this in this chapter. In our model, firms decide both how much capital

to employ in production and how intensively to use the stock of public infrastructures.

This assumption has an important consequence. Given that aggregate utilisation of the

public capital stock is not automatically proportional to the capital stock, the wedge

between the social and marginal product of private capital that is key in the result of

Turnovsky [105] and Ott and Turnovsky [83] depends on the user charge. When the

latter is chosen to obtain static efficiency, the optimal capital income tax, at least in the

long-run, is zero.

We see the main contributions of this chapter to the literature to be the follow-

ing. (i) A part from Ott and Turnovsky [83], we are not aware ofany analysis of re-

jectable public goods in an intertemporal contest; we consider this to be an important

gap in the existing literature. Our models differ in important ways from that of Ott and

Turnovsky, and a comparison between the two helps clarifying further the intuition be-

hind Chamley’s famous result. (ii) We assume that investment is irreversible and show

60 Starting from the seminal papers of Barro[13] and Barro and Sala-i-Martin[15] to Glomm and
Ravikumar[57] and Eicher and Turnovsky[47], just to cite a few.
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that this may have important consequences for the optimal fiscal policy. To the best of

our knowledge, this issues has not received attention in theexisting optimal taxation

literature.

4.1 The model

We first discuss the production side of the model. The next subsection offers the micro-

foundations for assuming that the aggregate production function is of the form

Y = f (K, V, V/G) ,

whereK is the private capital stock,V the aggregate utilisation of public services and

G the public capital stock. The termV/G is meant to capture a congestion externality

and it is often denote byΓ. The reader mostly interested in the result concerning the

policy implications and less with the technicalities of themodels may skim through the

following subsection and move quickly to the next section.

4.1.1 Microfoundations

On the production side of the model we have a continuum of identical firms indexed by

i ∈ [0,+∞). Firms use private capital and public services to produce anhomogenous

good. Their production set is indicated byΨ(Γ) and it is described by

Ψ(Γ) =
{
(yi, ki, vi) : ψ (ki, vi,Γ)− yi ≥ 0, ki ≥ k̄, vi ≥ 0

}
∪ {(0, 0, 0)} ,

whereyi is the level of output,ki the capital stock,̄k > 0 is a minimum capital re-

quirement in production,vi the level of usage of public services chosen by the firm and

Γ is the level of congestion. We assume thatψ (., ., .) is strictly increasing and strictly
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concave in its first two arguments, strictly decreasing in its third argument, and that

λψ (k, v,Γ) ≥ ψ (λk, λv,Γ) ∀λ ≥ 0 (decreasing returns to scale.)

The interpretation ofΨ(Γ) is the following. In order to produce a given level of

output, firms require capital and public infrastructure services. The latter are rejectable,

each firm can decide how intensively to use them; the level of utilisation is indicated by

vi. The contribution to production of utilisation of the public services depends inversely

on congestion, hence the assumptionψΓ (k, v,Γ) ≡ ∂ψ (k, v,Γ) /∂Γ < 0. We find it

also reasonable to assume that there is a limit to the degree of sustitutability between

private capital and public services. We capture this by assuming that forv large enough

the marginal product ofv becomes null. Formally, for anyk andΓ there is āv such that

ψv (k, v̄,Γ) ≡ ∂ψ (k, v̄,Γ) /∂v = 0.

We indicate withK ≡
∫
kidi the existing aggregate stock of private capital, with

G the existing stock of public capital and withV ≡
∫
vidi the aggregate utilisation

of public services. At the level of the individual firm the production set is not con-

vex due to the presence of the minimum capital requirementk̄. However one can show

that the aggregate production set, given by the integral of the correspondence that asso-

ciates to eachi the production set, is convex (Aumann [8]). Furthermore, since we have

assumed that alli’s have the same production set, the aggregate production set is a con-

vex cone (Novshek and Sonnenschein [80]); the aggregate production set is the convex

cone generated61 by Ψ(Γ). This convex cone can be regarded as the hypograph of a

concave, functionf (K, V ; Γ) homogenous in(K, V ). The following lemma describes

the relationship betweenf andψ.

61 The convex cone generated byΨ(Γ) is the set of all positive linear combinations of elements ofΨ(Γ)
(Rockafellar[91], p.14). It is the smallest convex cone that containsΨ(Γ).
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Lemma 4.1 Call k̂ (v,Γ) the function that satisfies62

ψ
(
k̂ (v,Γ) , v,Γ

)
= ψk

(
k̂ (v,Γ) , v,Γ

)
k̂ (v,Γ) + ψv

(
k̂ (v,Γ) , v,Γ

)
v.

For any given(k, v), call v̂ (k/v,Γ) the solution forv̂ to k/v = k̂ (v̂,Γ) /v̂. Then we

have

f (k, v,Γ) =
v

v̂ (k/v,Γ)
ψ
(
k̂ (v̂ (k/v,Γ) ,Γ) , v̂ (k/v,Γ) ,Γ

)
.

Proof See section 4.6.

So one could start from reasonable assumptions on the firms’ production set and

then derive the relevant properties of the aggregate production set. For example, if one

takes the following Cobb-Douglas specification

ψ (k, v,Γ) =
(
k − k̄

)α
vβ − Γv,

then applying lemma 4.1 one finds

f (k, v,Γ) =

(
α

1− α− β

)α k̄α

k̂1−β
k1−βvβ − Γv,

where63 k̂ = (1− β) k̄/ (1− α− β). A slight generalisation is given by assuming

ψ (k, v,Γ) = ψ̂ (k, v)− Γv,

whereψ̂ is concave. Then it can be shown that the aggregate production function will

be of the form

f (k, v,Γ) = f̂ (k, v)− Γv,

62 As explained in more detail in appendix 4.6, the functionk̂ (v,Γ) gives all the pairs(k, v) such that

at
(
k̂ (v,Γ) , v

)
, the straight line going through(0, 0, 0) and

(
k̂ (v,Γ) , v,Γ

)
is tangent to the production

set. Essentially it is the projection on the(k, v) plane of the points of contact between the boundaries of
the production set and the cone the latter generates.

63 In this particular casêk (.) turns out to be constant.
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wheref̂ is homogeneous and concave. It can then be easily verified64 that the function

Y = f (K, V, V/G)

is concave in(K, V,G). This fact is important because as we will discuss shortly, the

properties of this function are important to the study of theequilibria in the economy

and to characterise the optimal policy.

For more general specifications, though, it seems rather difficult to infer the prop-

erties off from ψ beyond concavity and homogeneity w.r.t.(k, v). We take a shortcut

instead, by making some assumptions directly onf . For any aggregate production

set, and therefore anyf (K, V,Γ), there will be a family of production setsΨ(Γ) (not

unique) that generates it. We therefore make the following assumptions:∀ (K, V,Γ)

fkv (K, V,Γ) ≡
∂2f (K, V,Γ)

∂K∂V
> 0, (1)

fkΓ (K, V,Γ) ≡
∂2f (K,V,Γ)

∂K∂Γ
< 0, (2)

fvΓ (K, V,Γ) ≡
∂2f (K, V,Γ)

∂V ∂Γ
< 0, (3)

fΓΓ (K, V,Γ) ≡
∂2f (K,V,Γ)

∂Γ2
≤ 0.

We next define astatic equilibriumand show that it can be related to the aggre-

gate production function. To understand the definition, oneshould think of the supplies

of private and public capital as given (by past investment),and the user charge as exoge-

nously given (chosen by the government); then we look for a price for capital,r, such

that the aggregate demand for capital equals supply; and a level of congestionΓ such

64 By checking the signs of the leading principal minors of the Hessian matrix.
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that if expected, firms would choose a level of utilisation that would result in exactly

that level of congestion.

Definition 4.1 (Static equilibrium ) A for a given pair of stocks(K,G) ∈ ℜ2++,

and a user chargep ∈ ℜ+, a static equilibrium is a price for capitalr ∈ ℜ+, a pair65

of firm’s decisions(k, v)ℜ2+, and a number of active firmsn ∈ ℜ+ such that

1. (Profit maximisation) Given(r, p), (k, v) = argmaxψ (k, v,Γ)− rk − pv.

2. (Market clearing)nk = K.

3. (Free entry)ψ (k, v,Γ)− rk − pv = 0

4. (Expected congestion = actual congestion)Γ = nv/G.

The static equilibrium can be characterised in terms of the aggregate production

functionf .

Lemma 4.2 If for given(K ′, G′, p′), the pair(r′, V ′) satisfies

fk (K
′, V ′, V ′/G′) ≡ ∂f (K ′, V ′, V ′/G′) /∂K = r′,

fv (K
′, V ′, V ′/G′) ≡ ∂f (K ′, V ′, V ′/G′) /∂V = p,

then there existn′, k′ andv′ such thatr′ and(n′, k′, v′) constitute a temporary equilib-

rium given(K ′, G′, p′).

Proof Consider the triple(Y ′, K ′, V ′), whereY ′ = F (K ′, V ′, V ′/G′). This

triple belongs to the boundary of the aggregate production set for Γ′ = V ′/G′. Since

65 We thus impose a high degree of symmetry: all active firms are assumed to choose the same plan.
This is clearly over restrictive and could be relaxed, but itsimplifies the analysis.
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the aggregate production set is the cone generated byΨ(V ′/G′) , there exists a triple,

(y′, k′, v′), such thaty′ = ψ (k′, v′, V ′/G′) and (n′y′, n′k′, n′v′) = (Y ′, K ′, V ′), for

somen′ > 0. Furthermore, since the aggregate production set is a cone,if (Y ′, K ′, V ′)

belongs to its boundary, so does(y′, k′, v′). So we must havey′ = f (k′, v′, V ′/G′).

Nowf andφ are both concave,f (., ., .) ≥ ψ (., ., .) andf (k′, v′, V ′/G′) = ψ (k′, v′, V ′/G′);

by lemma 1 in Benveniste and Scheinkman [19] their gradientsat (k′, v′, V ′/G′) must

coincide. Therefore we have

ψk (k
′, v′, V ′/G′) = fk (k

′, v′, V ′/G′) = fk (K
′, V ′, V ′/G′) = r′,

ψv (k
′, v′, V ′/G′) = fv (k

′, v′, V ′/G′) = fv (K
′, V ′, V ′/G′) = p′,

where the equalitiesfj (k′, v′, V ′/G′) = fj (K
′, V ′, V ′/G′) j = k, v follow from the

fact that if f is homogeneous of degree 1 in(K,V ), its derivatives are homogenous

of degree0. Then, given(r′, p′), the pair(k′, v′) satisfies the first order condition for

profit maximisation. Given the concavity ofψ, these conditions are sufficient for a

local maximum. The only other candidate for a global maximumis (0, 0, 0), which

yields zero profit. But so does(y′, k′, v′), since

n′ (y′ − r′k′ − p′v′) = Y ′ − r′K ′ − p′V ′

= f (K ′, V ′, V ′/G′)− fk (K
′, V ′, V ′/G′)K ′ − fv (k

′, v′, V ′/G′)V ′

= 0,

where the last equality follows from Euler’s theorem for homogenous functions.

Next we define a fiscal policy. This is a vector of functions of time,(Ig (t) , B (t) ,

τ (t) , p (t))+∞t=0 , whereIg (t) ≥ 0 is public investment which determines the evolution
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of the public capital stock according to

Ġ (t) = Ig (t) ;

B (t) is the stock of public bonds,0 ≤ τ (t) ≤ 1 is the income tax andp (t) the user

charge at timet.

The economy is inhabited by an infinitely-lived representative agent that choose

a path for consumption,c (t), and assets,A (t), so as to solve the problem

max

∫ +∞

0

c (t)1−γ − 1

1− γ
e−ρtdt (4)

subject to

Ȧ (t) = (1− τ (t)) r (t)A (t)− c (t) , (5)

A (0) given. (6)

We are now ready to define an intertemporal equilibrium.

Definition 4.2 (Intertemporal equilibrium ) An intertemporal equilibrium is a

vector of functions of time,(K (t) , G (t) , B (t) , V (t) , r (t) , p (t) , τ (t) , k (t) , v (t) , n (t))+∞t=0 ,

such that

1. (Static equilibrium)∀t (K (t) , G (t)), (r (t) , p (t)), (k (t) , v (t)) and n (t)

constitute a static equilibrium andV (t) = n (t) v (t).

2. (Utility maximisation)c (t) andA (t) solve (4) s.t. (5)-(6).

3. (Government budget constraint)∀t B (t) satisfies

Ḃ (t) = (1− τ (t)) r (t)B (t) + Ig (t)− τ (t) r (t)K (t)− p (t)V (t) . (7)
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4. (Public capital accumulation)∀t G (t) satisfies

Ġ (t) = Ig (t) ≥ 0. (8)

5. (Resource constraint)∀t K (t), G (t) andV (t) satisfy

K̇ (t) = f (K (t) , V (t) , V (t) /G (t))− Ig (t)− c (t) ≥ 0. (9)

6. (Asset market clearing)∀t we have

K (t) +B (t) = A (t) . (10)

In other words an intertemporal equilibrium is a sequence ofstatic equilibria such

that all markets clear, the representative agent maximise his welfare and the government

budget constraint is satisfied. The latter requires that newdebt,Ḃ (t), is issued to cover

the difference between expenses (that is interest paymentsand public investment) and

tax revenues (of course when revenues exceed expenses the stock of debt is falling).

Note that (4) and (5) in the definition introduce the assumption of irreversible in-

vestment. Without this assumption capital goods could be costlessly be transformed

into consumption goods, public capital could be converted into private capital andvice

versa. All this does not seem very realistic, we compel us to assumeirreversibility.

Having said that we emphasise that most result do not depend crucially on this assump-

tion. The exceptions are: (i) in proposition 4.1 the initialpublic to private capital ratio

will not matter anymore: since the planner can convert public into private capital and

vice versa, the optimal ratio is always chosen and then either there is growth in the

long run (if the marginal product of capital is high enough),or there is not, just as in

Barro [13]. (ii) Propositions 4.3 and 4.4 that deal with the cases where the irreversible

investment constraints bind would no longer make sense.
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Note also that we have assumed no depreciation. This is purely for simplicity,

nothing of substance depends on this. In fact one could always interpret the production

functions as giving output net of depreciation.

We have now fully described all the elements of the model. In the next sections

we will first look at the first best intertemporal allocation and then at the optimal fiscal

policy.

4.2 Command optimum

In this section we look at the allocation that a social planner with full control of the

economy’s resources would choose. The planner’s problem is

max

∫ +∞

0

c (t)1−γ − 1

1− γ
e−ρtdt (11)

subject to

K̇ (t) = f (K (t) , V (t) , V (t) /G (t))− c (t)− Ig (t) ≥ 0, (12)

Ġ (t) = Ig (t) ≥ 0, (13)

K (0) > 0, G (0) > 0 given. (14)

Before characterising the solution to this problem, it is useful to analyse the

problem of choosingV (t) to maximise aggregate output; one would expect the plan-

ner to do so at all times, and the following proposition will confirm that this is in-

deed optimal. But it will also allow us to define the ratioG/K to which the opti-

mal path will converge when there is sustained growth. Let usthen callf ∗ (K,G) =
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max
V (t)

f (K (t) , V (t) , V (t) /G (t)). Given thatf is homogenous of degree 1 in(K,V,G),

it can be shown66 that f ∗ is homogenous of degree 1 in(K,G). Then we can write

f ∗ (K,G) = f ∗ (1, G/K)K. We shall indicate withx∗ the solution tof ∗k (1, x
∗) =

f ∗g (1, x
∗). We shall refer tox∗ as the optimalG/K ratio, as a planner that could

transformK into G and vice versa costlessly, would always chooseG/K = x∗. In

generalx∗ needs not be unique. However, iff (K (t) , V (t) , V (t) /G (t)) is concave

in (K (t) , V (t) , G (t)), thenf ∗ (K (t) , G (t)) is also concave67 (Fiacco and Kypari-

sis [52]) In what follows we assume thatf ∗ (K (t) , G (t)) is strictly concave68 which

implies a uniquex∗.

Proposition 4.1 If (Kp (t) , V p (t) , Gp (t) , cp (t))+∞t=0 solve (11) s.t. (12)-(14)

andf ∗ (K (t) , G (t)) is concave in(K (t) , G (t)) then we have the following cases:

1. If max
{
f∗k (K (0) , G (0)) , f ∗g (K (0) , G (0))

}
≤ ρ, then∀t ċp (t) = K̇p (t) =

Ġp (t) = 0 andcp (t) = f∗ (K (0) , G (0)).

2. If f ∗k (K (0) , G (0)) > ρ > f ∗g (K (0) , G (0)) and f ∗k (1, x
∗) < ρ then

∀t Gp (t) = Gp (0), ċp (t) /cp (t) = [f∗k (K
p, G (0))− ρ] /γ, K̇p (t) =

66 f∗ (εK, εG) = max
V1

f (εK,V1, V1/ (εG)) = max
V2

f (εK, εV2, εV2/ (εG)) = max
V
εf (K,V, V/G) =

εmax
V
f (K,V, V/G) = εf∗ (K,G) . The first equality follows by definition; the second follows from

the fact that the two maximands are identical except that in the second we haveεV2 rather thanV1; then
clearly if V ∗1 andV ∗2 solve the first and second problems respectively, we will haveV ∗1 = εV ∗2 , but the
value of the maximand will be the same; the third equality follows from homogeneity off (., ., .); the
fourth is trivial and the last equality follows again from the definition off∗ (., .).

67 f∗ (λK1 + (1− λ)K2, λG1 + (1− λ)G2) = max
V
f (λK1 + (1− λ)K2, V, V/ (λG1 + (1− λ)G2)) =

max
V1,V2

f (λK1 + (1− λ)K2, λV1 + (1− λ)V2, λV1 + (1− λ)V2/ (λG+ (1− λ)G)) ≥

max
V1,V2

{λf (K1, V1, V1/G1) + (1− λ) f (K2, V2, V2/G2)} = λf∗ (K1, G1) + (1− λ) f
∗ (K2,G2).

The second equality follows from the fact that the maximand are identical except that in the second we
writeλV1+(1− λ)V2; so ifV ∗ solves the first problem, anyV ∗1 andV ∗2 such thatλV ∗1 +(1− λ)V

∗

2 =
V ∗ will be optimal for the second and achieve the same value for the maximand. Other equalities follow
by definition or from properties of concave functions,

68 The examples discussed in p. 127 generate a strictly concavef∗.
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f∗ (Kp (t) , Gp (0))−cp (t), and callingKp
∞
≡ lim

t→+∞
Kp (t), andcp

∞
≡ lim

t→+∞
cp (t),

we have

f ∗k (K
p
∞
, G (0)) = ρ,

cp
∞
= f∗ (Kp

∞
, G (0)) .

3. If f ∗g (K (0) , G (0)) > ρ>f∗k (K (0) , G (0)) then ∀t Kp (t) = K (0),

ċp (t) /cp (t) =
[
f ∗g (K

p (0) , Gp (t))− ρ
]
/γ, andĠp (t) = f∗ (Kp (0) , Gp (t))−

cp (t) and callingGp
∞
≡ lim

t→+∞
Gp (t), andcp

∞
≡ lim

t→+∞
cp (t), we have

f ∗g (K (0) , Gp
∞
) = ρ,

cp
∞
= f ∗ (K (0) , Gp

∞
) .

4. If f ∗k (K (0) , G (0)) > f ∗g (K (0) , G (0)) andf ∗k (1, x
∗) > ρ then∃T > 0 such

that ∀t ∈ [0, T ) Ġp (t) = 0, ċp (t) /cp (t) = [f∗k (K
p (t) , G∗ (0))− ρ] /γ, and

K̇p (t) = f ∗ (Kp (t) , Gp (0))− cp (t) . ∀t ≥ T

K̇p (t) /Kp (t) = Ġp (t) /Gp (t) = ċp (t) /cp (t) = [f ∗k (1, x
∗)− ρ] /γ

and

cp (T ) = f ∗ (Kp (T ) , Gp (T ))−
f ∗k (1, x

∗)− ρ

γ
(Kp (T ) +Gp (T )) .

5. If f ∗k (K (0) , G (0)) = f ∗g (K (0) , G (0)) > ρ, then69 ∀t

K̇p (t) /Kp (t) = Ġp (t) /Gp (t) = ċp (t) /cp (t) = [f ∗k (1, x
∗)− ρ] /γ

and

cp (0) = f∗ (K (0) , G (0))−
f ∗k (1, x

∗)− ρ

γ
(K (0) +G (0)) .

69 It may be useful to note thatf∗k = f∗g implies thatG/K = x∗. In this casef∗k (K (0) , G (0))
= f∗k (1, G (0) /K (0)) = f∗k (1, x

∗), where the first equality comes from the fact that if a finctionis
homogeneous of degree 1, its derivative is homogeneous of degree 0.
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6. If f ∗g (K (0) , G (0)) > f ∗k (K (0) , G (0)) andf ∗k (1, x
∗) > ρ then∃T > 0 such

that ∀t ∈ [0, T ) K̇p (t) = 0, ċp (t) /cp (t) =
[
f∗g (K (0) , Gp (t))− ρ

]
/γ, and

Ġp (t) = f ∗ (Kp (0) , Gp (t))− cp (t) . ∀t ≥ T

K̇p (t) /KP (t) = Ġp (t) /Gp (t) = ċp (t) /cp (t) = [f∗k (1, x
∗)− ρ] /γ

and

cp (T ) = f ∗ (Kp (T ) , Gp (T ))−
f ∗k (1, x

∗)− ρ

γ
(Kp (T ) +Gp (T )) .

Proof See section 4.6.

The intuition for this proposition is as follows. First of all, to maximise welfare

any investment should be channel to the type of capital the yields the higher return.

So investment is specialised except when the marginal products of the two types of

capital are equal. When they differ, the return to investment is the greater between the

two marginal product. Secondly, if a unit of output is not allocated to investment, it

is allocated to consumption. The return to consumption is70 ρ + γċ/c. Optimisation

requires the equality between the rates of return on investment and consumption, i.e.

ρ+ γ
ċ

c
= max

(
f∗k , f

∗

g

)
,

or rearranging

ċ

c
=
max

(
f∗k , f

∗

g

)
− ρ

γ
,

the Keynes-Ramsey rule. Intuitively the plan chosen by the planner depends on the

relative marginal productivities ofK andG and their relationship to the intertemporal

70 If we indicate withuc (t) the instantaneous marginal utility of consumption at timet, the utility rate
of return on consumption is

uc (t) e−βt − u (t+ dt) e−β(t+dt)

uc (t) e−βtdt
;

taking the limit fordt → 0, we obtainρ − u̇c/uc. But the last term is (with a CEIS utility function)
−γċ/c.
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discount factor. The six cases can then be understood with the help of figure 4.1. Since

f ∗ is constant returns to scale, the marginal products are determined by theG/K ratio.

As this ratio increases (falls)f∗k increases (falls) andf ∗g falls (increases). The curves

MM ′ andNN ′ represent two different loci for two different technologies. Case 1

occurs when the return on investment is below the return on consumption; if possible

the planner would like to convert some of the capital stock into consumption goods,

but the irreversibility constraints prevent this. The bestoption is therefore to have no

investment at all and consume all output every period and theeconomy stagnates. In

case 2 (3) the return on private (public) capital is initially high enough to induce the

planner to accumulate more of it. This however reduces (increases) its marginal product

and the economy moves down (up) theMM ′ locus until the return to investment equals

the discount factorρ at which point no further accumulation takes place. Case 4 (6)

is analogous except that in this case the economy converges to the optimalG/K ratio

and then keeps on growing on a balanced path with investment in both types of capital.

Finally, case 5 is the special case in which the initialG/K ratio happens to be the

optimal one and the economy grows on the balanced path from the beginning.

If one were to remove the irreversibility assumption, the planner would always

convert public capital into public capital orvice versato obtainG/K = x∗, therefore

we would always be on the 45◦ locus in the figure. Then depending on technology we

would have either stagnation (onMM ′) or balanced growth from the start (onNN ′).
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4.3 Optimal fiscal policy

In this section we infer some important properties of an optimal fiscal policy. By opti-

mal fiscal policy we mean a vector of functions of time{τ (t) , Ig (t) , p (t) , B (t)}
+∞
t=0

such that they can be part of an intertemporal equilibrium that maximises the represen-

tative agent’s utility. We find convenient to definer̄ (t) ≡ (1− τ (t)) r (t). As we shall

see presently, one can equivalently think of the governmentfixing the income taxτ or

the after tax return to capital̄r. The following lemma helps in formulating the problem.

Lemma 4.3 An intertemporal allocation{c (t) , K (t) , G (t) , V (t)}+∞t=0 is

decentralisable as an intertemporal equilibrium if and only if there are{r̄ (t) , Ig (t) ,
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p (t) , B (t) , λ (t)}+∞t=0 such that∀t

K̇ (t) = f (K (t) , V (t) , V (t) /G (t))− c (t)− Ig (t) ≥ 0, (15)

Ġ (t) = Ig (t) ≥ 0, (16)

c (t)−γ = λc (t) , (17)

λ̇c (t) = (ρ− r̄ (t))λc (t) , (18)

Ḃ (t) = r̄ (t) (B (t) +K (t)) + Ig (t)− f (K (t) , V (t) , V (t) /G (t)) , (19)

r̄ (t) ≥ 0, (20)

lim
t→+∞

λc (t) e
−ρtK (t) = lim

t→+∞
λc (t) e

−ρtB (t) = 0. (21)

Proof The details of the proof are in section 4.6, but essentially to be decen-

tralisable an allocation must satisfy the technological constraint (15) and (16); it must

be chosen optimally by the representative agents, hence it must satisfy (17) and (18)

(which together give the Keynes-Ramsey equation), as well as the trasversality condi-

tions (21); using the relationships between prices and marginal products and Euler’s

theorem for homogeneous functions, we can rewrite the government budget constraint

as (19).
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The the problem of identifying the optimal fiscal policy can be written as

max

∫ +∞

0

c (t)1−γ − 1

1− γ
e−ρtdt (22)

subject to (15)-(21) andK (0), G (0) given. Henceforth, to de-clutter the notation, we

stop indicating explicitly the dependence of variable on time when no confusion should

arise. To derive the first order conditions, define the Hamiltonian:

H
(
K,G, λc, B, c, Ig, V, λk, λg, φλc, µ

)
≡

c1−γ − 1

1− γ

+λk [f (K, V, V/G)− c− Ig] + λgIg + φλc (ρ− r̄)λc

+µ [r̄ (B +K) + Ig − f (K, V, V/G)] ,

and the Lagrangian

L
(
K,G, λc, B, c, Ig, V, λk, λg, φλc, µ, ηr̄, ηλc , ηk, ηg

)

≡ H + ηλc
[
c−γ − λc

]
+ ηr̄r̄ + ηk [f (K, V, V/G)− c− Ig] + ηgIg.

Lemma 4.4 If {cop, Kop, Gop, V op, Iopg }
+∞
t=0 are the solution to (22) subject

to (15)-(21) andK (0), G (0) given, then there are{λop
k , λop

g , φop
λc

, µop, ηopλc , η
op
r̄ , ηopk ,

ηopg }
+∞
t=0 such thatcop, V op, Iopg , r̄ maximiseH s.t. Ig ≥ 0 andf (K, V, V/G)− c− Ig ≥

0, r̄ ≥ 0.

(cop)−γ = λop
k + γηopλc (c

op)−γ−1 + ηopk , (23)

[λop
k − µop + ηopk ] [fv (K

op, V op, V op/Gop) + fΓ (K
op, V op, V op/Gop) /Gop] = 0, (24)

−φop
λc
λop
c + µop (Bop +Kop) + ηopr̄ = 0, (25)
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λop
g − λop

k + µop − ηopk + ηopg = 0, (26)

λ̇
op

k = ρλop
k − [λ

op
k − µop + ηopk ] fk (K

op, V op, V op/Gop)− µopr̄op, (27)

λ̇
op

g = ρλop
g + [λ

op
k − µop + ηopk ] fΓ (K

op, V op, V op/Gop)
V op

(Gop)2
(28)

φ̇
op

λc = ρφop
λc
− φop

λc
(ρ− r̄op) + ηopλc, (29)

µ̇op = µop [ρ− r̄op] . (30)

ηopk
[
f (Kop, V op, V op/Gop)− cop − Iopg

]
= 0, ηopk ≥ 0, (31)

ηopg I
op
g = 0, ηopg ≥ 0. (32)

Proof These first order conditions are standard results in optimalcontrol theory,

see Arrow and Kurz [5] and Seierstad and Sydsaeter [98].

First note thatλk, the shadow value of private capitalK, will be strictly positive

given non-satiation and the fact that the marginal product of capital is always positive.

If lump-sum taxes were allowed, the level of the stock of public debt could be altered

without the deadweight losses associated with distortionary taxation. The costate vari-

ableµop associated to the government budget constraint therefore measures the cost of

distortionary taxation, the so-calledmarginal excess burden of taxation, and is clearly

non-positive. Then using (24) we have
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fv (K
op, V op, V op/Gop) + fΓ (K

op, V op, V op/Gop) /Gop = 0.

Since in a static equilibrium we must havefv (K, V, V/G) = p, then the optimal fiscal

policy implies that the government chooses a user chargep that satisfies

p = −fΓ (K, V, V/G) /G. (33)

The interpretation of this result is straightforward: in choosingv, the individual

level of utilisation, each firm only considers the contribution that the marginal unit of

consumption of public services brings thus aligning the private benefit to the private

cost:ψv = fv = p; this way the social cost,created by the congestion externality is ne-

glected. The optimal pricing policy is to correct for this externality by imposing an user

fee that reflects the external diseconomy created by the marginal usage of public ser-

vices; the marginal unit of utilisation decreases aggregate output by fΓ/G,so this is its

social cost. The optimal user fee makes firms internalise this external effect. It follows

that the pricing of public services should reflect only static efficiency considerations,

not the need to finance investment in public infrastructures.71 In the notation of the pre-

vious section, we have just obtained the result that if the government adopts the optimal

fiscal policy, then∀t

f (Kop, V op, V op/Gop) = f ∗ (Kop, Gop) . (34)

Let us express the marginal burden of taxationµop in terms of consumption goods

by definingm = −µop/λop
c . Barro [12] argued that the optimal debt policy smooths out

the excess burden over time. The following lemma shows that this result remains valid

in our framework. An analogous result was established by Chamley [34] and Judd [67].

71 Batina[17] obtained a similar result in an overlapping generations model were current government
expenditures (not the stock) affects households’ utilities (not firms’ production sets).
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Lemma 4.5 m ≡ −µop/λop
c is constant over time.

Proof Equations (18) and (30) imply

µ̇op

µop
= ρ− r̄op =

λ̇
op

c

λop
c

,

i.e. µop/λop
c is constant.

The following proposition shows that the optimal income taxis zero along a bal-

anced growth path.

Proposition 4.2 Call Θop ≡
{
t : K̇op > 0, Ġop > 0

}
. Then for allt ∈ Θop we

have EITHER̄rop = fk (K
op, V op, V op/Gop) (or equivalentlyτ = 0) OR r̄op = 0 (or

equivalentlyτ op = 1). Furthermoret ∈ Θop only if G/K = x∗.

Proof See section 4.6.

So, as in the first best, positive investment in both types of capital occurs only if

their social marginal products coincide. If the economy converges to a balanced path,

therefore, it converges to one that has the sameG/K ratio as the first best, and -in virtue

of ċop/cop = (1/γ) [r̄op − ρ] = (1/γ) [f ∗k − ρ] = ċp/cp- the same growth rate. This does

not mean, however, that the first best can be replicated; the transitional dynamics will

in general72 be different, and therefore thelevelsof consumption and capital stocks will

in general be different as well. On a balanced path the incometax is either 100% or 0.

But since the growth rate is(1/γ) (r̄op − ρ), the optimal tax cannot be 100% unless we

have negative growth.

Once realised that the optimal user charge internalises thecongestion external-

ity and therefore thatf (K, V, V/G) = f ∗ (K,G), this ”zero tax” result is completely

72 One can show that the first best can be replicated if the initial level of the stock of debtB (0) has a
particular value, depending onK (0) andG (0).
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analogous to the result obtained by Chamley [34] and Judd [67]. Manipulating the ex-

pression in the proof of the proposition, one can easily showthat73

fk (K
op, V op, V op/Gop)− r̄op = −

m

Λ

d

dt
εMU ,

wherem -it will be recalled- is the marginal burden of taxation,Λ is the marginal social

value of government wealth holding private wealth constant74 andεMU is the elasticity

of the marginal utility of consumption.75 This formula, valid when̄r > 0, shows that

the optimal wedge betweenfk (the social return to investment) andr̄ (the private after

tax return) is proportional to the inverse of the elasticityof consumption demand,76

which corresponds to the inverse elasticity result found inthe static optimal taxation

literature (see for example Baumol and Bradford [18]). We have already shown thatm

is constant,εMU is always constant with the CIES utility function we have chosen77.

Before the reader discounts the result of the proposition astrivial, however, we

would like to emphasise that it might not have been entirely expected however. In fact

even Judd [67] to whom we owe this observation takes the case of congestion as one

example where departure from the zero tax rule is to be expected. And we have already

noted that Turnovsky [105] and Ott and Turnovsky [83] also find non-zero tax results

based on the presence of congestion. The latter is particularly remarkable given that

their model also have an user charge. We will expand on this insection 4.4.

73 An analogous expression was first derived by Judd[67].
74 See the proof ot the proposition for more detail.
75 I.e. εMU ≡ cucc/uc, with obvious meaning of the symbols.
76 From the household first order conditionsuc = λc. Then

dc

dλc

λc
c
=

uc
uccc

.

77 And must be constant in a steady-state, which is why Chamley could derive the result for more general
utility functions.
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Another feature of the optimal plan is worthy of being highlighted. Given that

pop = −fΓ (K
op, V op, V op/Gop) /Gop, we have

popV op = −fΓ (K
op, V op, V op/Gop)

V op

Gop
. (35)

On the other hand by (34) and the envelope theorem,

f ∗g (K
op, Gop) = −fΓ (K

op, V op, V op/Gop)
V op

(Gop)2
;

comparing this last equation with (35) we obtain

f∗g (K
op, Gop) =

popV op

Gop
,

or

f ∗g (K
op, Gop)Gop = popV op. (36)

In other words, through user charge revenues, the government appropriates a share of

total output just equal to the contribution of the stock of infrastructures provided. The

optimal policy essentially mimics the situation where we have both types of capital pro-

vided privately and competitively. This result is of interest because it indicates that the

same allocation could be decentralised in an equilibrium where public infrastructures

are privately owned but the user charge is administrativelyset equal topop by the gov-

ernment. Furthermore, this result can be used to demonstrate that if the optimal policy

converges to the balanced growth path, the government runs primary surpluses in the

long run. This is interesting, because for a broad class of models, one typically finds

that the optimal policy entails the government running large fiscal surplus in initial pe-

riods and then use the income stream from the accumulated wealth to finance fiscal

deficits in the long-run when taxes are kept low and the primary budget is in deficit

(Jones, Manuelli and Rossi [65]). The reason why things are different here is that in our
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model one element of the optimal policy mix, the optimal usercharge, creates aflow of

revenues that is more than sufficient to cover for the financing of public investment.

Corollary 4.2 If ∃T such thatt > T ⇒ t ∈ Θop (whereΘop is as defined in

proposition 4.2) anḋcop/cop = K̇op/K = Ġop/Gop, thenpopV op > Ġop = Ig.

Proof Convergence to a balanced growth path and the trasversalityconditions (21)

imply

f ∗k (K
op, Gop) = f∗g (K

op, Gop) >
f∗k (K

op, Gop)− ρ

γ
=

f ∗g (K
op, Gop)− ρ

γ
,

i.e. that the economy is dynamically efficient. Then

f ∗g (K
op, Gop)G >

f ∗g (K
op, Gop)− ρ

γ
Gop.

Balanced growth means

Ġop =
f ∗g (K

op, Gop)− ρ

γ
Gop.

Then using (36) and the last two equations, we have

popV op > Ġop = Ig.

QED.

So far we have concentrated on balanced growth. But the solution the first best

allocation problem showed that typically there will be periods where investment is spe-

cialised in one type of capital only. For these cases, we havethe following interesting

results.

Proposition 4.3 ∀t such thatK̇op > 0, Ġop = 0, we must have either̄rop = 0

or r̄op = f ∗k (K
op, Gop).



4.3 Optimal fiscal policy 147

Proof The proof is virtually identical to that of the first part of proposition 4.2.

Proposition 4.4 ∀t such thatK̇op = 0, Ġop > 0 we must have either̄rop = 0 or

r̄op = f ∗g (K
op, Gop).

Proof See section 4.6

These last two propositions deal with the transitional dynamics when the irre-

versibility constraints hold. The two are formally very similar, but while there is proba-

bly not much to notice in the first one, the second show that when the initialG/K ratio

is below the optimalx∗ the optimal tax is not zero when it is not 100% as in the previ-

ous two proposition. To see this note that sincer̄ = (1− τ) fk (K
op, V op, V op/Gop) and

fk (K
op, V op, V op/Gop) = f∗k (K

op, Gop) when the optimal user charge is set, we have

(1− τ ) f ∗k (K
op, Gop) = f∗g (K

op, Gop) ,

or

τ =
f∗k (K

op, Gop)− f ∗g (K
op, Gop)

f ∗k (K
op, Gop)

.

But since it is only optimal to specialise in public capital accumulation when its mar-

ginal product exceeds that of private capital, it follows that the optimal tax is negative,

i.e. a subsidy.

One way to understand this result is that in this second best scenario the govern-

ment does not control saving decision directly. If the government setτ = 0, the private

sector would takef ∗k as the return on investment, but from the social point of viewthe

rate of return isf∗g . It is clear that this divergence between the marginal product of

private and public capital can only occur when the irreversibility constraint on public

investment is present and binding. When the binding constraint is the irreversibility of
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private capital, there is no need to correct the rate of return perceived by the private

sector, because in this casef ∗k is also the correct rate of return from the social point of

view.

4.4 Non-optimal user charges and alternative congestion
function

In this section we discuss two modifications to the model. Thefirst is to impose non-

optimal user charges, the second is to consider an alternative modelling of congestion.

The purpose of this section is to clarify what drives the mainresults of the previous

section and to link our analysis to the existing literature.The zero capital tax result of

proposition 4.2 is driven by the fact that the optimal user charge acts as a Pigouvian

tax correcting the congestion externality. To show this we analyse how the optimal tax

would look like if the optimal user charge cannot be selected. We shall see that then

the optimal tax is generally different from zero, although it may be negative (should the

arbitrary user charge be too high). Next we consider an alternative congestion function;

in particular we shall follow Turnovsky [105] and Ott and Turnovsky [83] and assume

that congestion is a function of the private/public capitalstock ratio. In this case the

optimal tax is positive. This last conclusion is obviously amere re-statement of a result

of the afore mentioned papers, but it is reported here so thatputting it side by side with

the analysis in the previous section will clarify where the differences come from.
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4.4.1 Non-optimal user charges

Let us then arbitrarily fix78 the user charge at some levelp ≥ 0 for all t. For any pair of

capital stocks(K,G), we will have a static equilibrium as described in lemma 4.2; in

particular we will have

fv (K,V, V/G) = p,

which determinesV as a function of(K,G; p). Substituting this value ofV in the

aggregate production function we obtain the output produced. Let us then indicate79

f̂ (K, V ) ≡ f (K, V (K,G; p) , V (K,G; p) /G) .

One may usefully comparêf with f∗ defined at p. 134. The latter indicates the

maximum output achievable with given capital stocks(K,G); to achieve that level of

output the decentralised economy requiresp to be set optimally.̂f is the output obtained

when the user charge is arbitrarily set, and obviouslyf̂ ≤ f∗. It is easily verified that̂f

is homogenous of degree 1 in(K,G), and that

f̂k (K,G) = fk (K, V (K,G; p) , V (K,G; p) /G) + (37)

[fv (K,V (K,G; p) , V (K,G; p) /G)]Vk (K,G; p) (38)

+ [fΓ (K, V (K,G; p) , V (K,G; p) /G) /G]Vk (K,G; p) , (39)

where

Vk (K,G; p) ≡ ∂V (K,G; p) /∂K.

Furthermore

rK + pV = f̂ (K,G)

78 One can of course also consider an arbitrary but time varyinguser charge. Nothing of substance would
change except that the aggregate production function wouldbecome time-varying. We would therefore
have to invest in some more notation without much to gain in terms of intuition.

79 Since in this sectionp will be kept constant, we drop it as a term in̂f .
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remains valid. Then following the same steps as in lemma 4.3,we find that the optimal

fiscal policy can be derived from the solution to the following problem:

max

∫ +∞

0

c (t)1−γ

1− γ
e−ρtdt s.t.

K̇ (t) = f̂ (K (t)G (t))− c (t)− Ig (t) ≥ 0,

Ġ (t) = Ig (t) ≥ 0,

c (t)−γ = λc (t) , (40)

λ̇c (t) = (ρ− r̄ (t))λc (t) ,

Ḃ (t) = r̄ (t) (B (t) +K (t)) + Ig (t)− f̂ (K (t) , G (t)) ,

r̄ (t) ≥ 0,

lim
t→+∞

λc (t) e
−ρtK (t) = lim

t→+∞
λc (t) e

−ρtB (t) = 0.

Proposition 4.5 Assume that the government chooses an optimal fiscal policy

given the constraintp (t) = p ∀t. On a balanced growth path witḣK (t) > 0 and

Ġ (t) > 0 the optimal tax is

τ =
fk (K,V (K,G; p) , V (K,G; p) /G)− f̂k (K,G)

fk

Proof See section 4.6.

Using (37) and dropping the arguments to make the result moreeasily readable,

we have found that the optimal tax is

τ = −
(fv + fΓ/G)Vk

fk
.
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This formula is rather intuitive: when the user charge is insufficient to internalise the

congestion externality (i.e.fv + fΓ/G < 0) the income tax should be positive, and

vice versa. It follows that the optimal tax is zero either when the user charge is chosen

optimally (and thereforefv+fΓ/G = 0) or when an increase in the private capital stock

does not affect the choice ofV (i.e. whenVk = 0). This would happen if the production

function is such thatfv is independent ofK.

One can draw a parallel between this result and that in Correia [36]. The latter

finds that the Chamley result not to hold when the tax system isincomplete in the sense

that there is one factor of production that cannot be taxed; then unless there is a strong

separability between taxable and non taxable factors in theproduction function, the tax

is positive (negative) when factors are complements (substitute). In this section we have

established a similar result: it is only optimal to alter theintertemporal margin if there

are not enough instruments to correct all distortions at theintratemporal margins.

4.4.1 An alternative modelling of congestion

In this subsection we depart from the assumptions on technology that we have worked

with so far. The reason for doing so is to shed some further insight on the results

obtained and to link these results withe existing literature. Let us assume that the pro-

duction side of the economy is characterised by a single representative consumer acting

competitively, with production function

f (K,V,Γ) ,

where now

Γ = K/G,
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i.e. congestion depends on the private/public capital ratio rather than the aggregate

utilisation/public capital ratio.

Proposition 4.6 When congestion is a function ofK/G, the optimal user charge

is zero and the optimal tax on a balanced growth path is generally positive.

Proof See section 4.6

This result is hardly surprising at this point. We shown in section 4.3 that the opti-

mal user charge is chosen to force firms to internalise the congestion externality implied

by their choice of utilisation,v. However, in the model of this subsection the choice of

v has no effect on congestion, hence there is no need to correctthe private choice of

v. But now the private choice ofK does create a negative congestion externality; it

therefore becomes optimal to use the income tax to internalise it.

We conclude this sub-section with a comparison between our main model and

that in Ott and Turnovsky [83]. They assume that the economy is populated byn firms

with identical production functions:

y = f (k, Es) ,

wherek is the firm’s capital stock whileEs is theflow of public services.80 The latter is

given by

Es = E

(
k

K

)ε

,

whereE measures government expenditures andK = nk is the aggregate capital stock.

It is therefore assumed that each firms benefits from a given level of public expenditures

proportionally to it capital stock relative to the aggregate stock. The parameterε ∈

80 In fact Ott and Turnovsky formulation has two types of publicgoods, one excludable and one non-
excludable. We simplify by dropping the latter, since we have not included it in our analysis.
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[0, 1] measures the degree of congestion:ε = 0 means that any unit ofE affects all

firms independently from their number, i.e. there is no congestion; ε = 1 means that

Es = E/n, i.e. public services are essentially a private good.. Ott and Turnovsky make

the assumption that the user charge is chosen as to equate thedemand and supply of

government spending, i.e.p solves

p = fE
(
K/n,En−ε

)
n−ε.

They then show that when the optimal fiscal policy implies a positive tax. The reason

for this result is that the user charge in this case does not internalise the congestion

externality, and therefore in this model the private and social marginal product of capital

differ. The income tax is needed to correct this divergence.

4.5 Conclusions

We have analysed a model of endogenous economic growth driven by investment in

public infrastructures. To an otherwise relatively standard framework, we have added

two realistic features: that public services are excludable and rejectable and that invest-

ment is irreversible. We have analysed the first best allocation, that is the allocation

chosen by an all powerful and benevolent social planner. Thequalitative characteris-

tic of this allocation resemble those found in simpler models: investment is specialised

in the form of capital (private or public) with the highest marginal product. Static effi-

ciency is attained at all times.

We then analysed the optimal fiscal policy, i.e. the best allocation that can be

decentralised as a competitive equilibrium with distortionary taxes and public services

fees. We showed that in contrast with other existing models with congestion external-
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ities, the zero capital tax result typically found in modelswith infinitely lived agents

remains valid in ours.

There are many interesting directions for future research.First of all, we have

seen that when the social marginal product of public capitalexceed the social marginal

product of private capital, the qualitative differences between the first and second best

allocation appear sharper. It seems that the irreversibility of investment can have im-

portant effects on the design of the optimal fiscal policy. Wethink it will be interesting

to investigate this issue further probably with the aid of numerical computation.

We have not considered the possibility that households as well as firms may be

users of public services. One can easily verify that if usageof public services enter the

utility function in an additive way, most of the results found in the previous section still

hold although the optimal user charge will in general be different. In particular, the in-

come tax will still have the ”all or nothing” characteristicfound above. However, the

case in which the utilisation of public services affects themarginal utility of consump-

tion of the household is more complicated, but also potentially more interesting.

Recently Rioja [89] and Dioikitopoulos and Kalyvitis [45] have studied growth

models where the depreciation rate of public capital depends on maintenance expendi-

tures. It would be intersting to expand their analysis by allowing depreciation to depend

on utilisation of public services.

Finally, one major issue with our approach so far is that the representative agent

approach does not allow us to address the issue of equity. Particularly if households

are consumer of public services together with firms, the usercharge that maximise

aggregate output may cut off poorer household from public services altogether. We

conjecture that the optimal fiscal mix may look very differently in this set up.
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All these interesting avenues are left to be explored in future research.
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4.6 Proofs of propositions in chapter 4

4.6.1 Proof of lemma 4.1

The proof is constructive. We first look for all the points on the boundary ofΨ(Γ) such

that(0, 0, 0) belongs to the tangent hyperplane at that point.81 Then the union of all rays

going from(0, 0, 0) to this points gives us the boundary of the aggregate production set.

This fact is used to give the relationship betweenf andψ given in the lemma.

If y0 = ψ (k0, v0,Γ), then the tangent hyperplane has equation

y − y0 = ψk (k0, v0,Γ) (k − k0) + ψy (k0, v0,Γ) (v − v0) .

If (0, 0, 0) belongs to this hyperplane, we must then have

y0 = ψk (k0, v0,Γ) k0 + ψy (k0, v0,Γ) v0,

or

ψ (k0, v0,Γ) = ψk (k0, v0,Γ) k0 + ψy (k0, v0,Γ) v0.

Pairs(k, v) that satisfies this equation are therefore those for which the tangent hy-

perplane goes through(0, 0, 0) as wished, hence the definition ofk̂ (v) given in the

lemma. Now for an arbitrary(k, v), let us callξ ≡ k/v. The solution forv̂ to

ξv̂ = k̂ (v̂) gives the function̂v (k/v) as in the lemma. Now by construction the pair
(
k̂ (v̂ (k/v)) , v̂ (k/v)

)
is such that it belongs to the locus of tangency betweenf andψ

andk̂ (v̂ (k/v)) /v̂ (k/v) = ξ. At this point, then

ŷ ≡ ψ
(
k̂ (v̂ (k/v)) , v̂ (k/v)

)
= f

(
k̂ (v̂ (k/v)) , v̂ (k/v)

)
.

81 This is analogous to finding the point where the average and marginal product coincide for a function
of one variable.
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Given homogeneity off , if y = f (k, v,Γ), theny/ŷ = v/v̂. Then we can write

f (k, v,Γ) =
v

v̂ (k/v,Γ)
ψ
(
k̂ (v̂ (k/v,Γ) ,Γ) , v̂ (k/v,Γ) ,Γ

)
,

QED.

4.6.2 Proof of proposition 4.1

We apply theorem 1 p. 276 and theorem 5 p.287 of Seierstad and Sydsaeter [98].

These guarantee that(Kp (t) , V p (t) , Gp (t) , cp (t))+∞t=0 are a solution to the problem

if and only if there exist continuous and piecewise continuously differentiable functions

(
λp
k (t) , λ

p
g (t)

)+∞
t=0

and non-negative and piecewise continuous functions
(
ηpk (t) , η

p
g (t)

)+∞
t=0

such that calling

H
(
c (t) , V (t) , Ig (t) , K (t) , G (t) , λp

k (t) , λ
p
g (t)

)
≡

c (t)1−γ − 1

1− γ

+λp
k (t) [f (K (t) , V (t) , V (t) /G (t))− c (t)− Ig (t)] + λp

g (t) Ig (t) ,

we have that for any(c (t) , V (t) , Ig (t)) ≥ 0,

H
(
cp (t) , V p (t) , Ipg (t) , K

p (t) , Gp (t) , λp
k (t) , λ

p
g (t)

)
(41)

≥ H
(
c (t) , V (t) , Ig (t) , K

p (t) , Gp (t) , λp
k (t) , λ

p
g (t)

)
,

cp (t)−γ = λp
k (t) + ηpk (t) , (42)

fv (K
p (t) , V p (t) , V p (t) /Gp (t)) = −

fΓ (K
p (t) , V p (t) , V p (t) /Gp (t))

Gp (t)
, (43)

λp
g (t) + ηpg (t) = λp

k (t) + ηpk (t) , (44)
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λ̇
p

k (t) = ρλp
k (t)− (λ

p
k (t) + ηpk (t)) fk (K

p (t) , V p (t) , V p (t) /Gp (t)) , (45)

λ̇
p

g (t) = ρλp
g (t) + (λ

p
k (t) + ηpk (t)) fΓ (K

p (t) , V p (t) , V p (t) /Gp (t))
V p (t)

Gp (t)2
, (46)

ηpk (t)
[
f (Kp (t) , V p (t) , V p (t) /Gp (t))− cp (t)− Ipg (t)

]
= 0, (47)

ηpg (t) I
p
g (t) = 0, (48)

whereλp
k (t) is the costate variable associated withKp (t), λp

g (t) the costate variable

associated withGp (t), ηpk (t) the multiplier associated with the constraintK̇p (t) ≥ 0

andηpg (t) the multiplier associated witḣGp (t) ≥ 0.

Observe that (41) implies that the planner will choose

V (t) = argmax f (K (t) , V (t) , V (t) /G (t)) .

Therefore∀t we have

f (Kp (t) , V p (t) , V p (t) /Gp (t)) = f∗ (Kp (t) , Gp (t)) .

By the envelope theorem

fk (K
p (t) , V p (t) , V p (t) /Gp (t)) = f∗k (K

p (t) , Gp (t)) . (49)

and

−fΓ (K
p (t) , V p (t) , V p (t) /Gp (t))

V p (t)

Gp (t)2
= f ∗g (K

p (t) , Gp (t)) . (50)
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To prove part 1 of the proposition, consider the system

λp
k + ηpk − f ∗ (K (0) , G (0))−γ = 0,

λp
g + ηpg − λp

k − ηpk = 0,

(ρ− f ∗k (K (0) , G (0)))λp
k − ηpkf

∗

k (K (0) , G (0)) = 0,

ρλp
g (t)− λp

kf
∗

g (K (0) , G (0))− ηpkf
∗

g (K (0) , G (0)) = 0.

This is a linear system of 4 equations in 4 unknowns:λp
k, ηpk , λp

g andηpg. It can be

solved to yield

λp
k = f ∗ (K (0) , G (0))−γ f

∗

k (K (0) , G (0))

ρ
> 0,

ηpk = f ∗ (K (0) , G (0))−γ ρ− f ∗k (K (0) , G (0))

ρ
> 0,

λp
g = f ∗ (K (0) , G (0))−γ f

∗

g (K (0) , G (0))

ρ
> 0,

ηpg = f ∗ (K (0) , G (0))−γ ρ− f∗g (K (0) , G (0))

ρ
> 0.

Now if we chooseλp
k (t) = λp

k, ηpk (t) = ηpk, λp
g (t) = λp

g andηpg (t) = ηpg ∀t,

V p (t) = argmax f (K (0) , V p (t) , V p (t) /G (0)), cp (t) = f∗ (K (0) , G (0)), Ipg (t) =

0 ∀t, one can easily verify that the proposed control, state and costate variables satisfy

all of the necessary and sufficient conditions for an optimumand therefore constitute

an optimal plan.

For part 2, chooseηpk (t) = ηpg (t) = 0 ∀t,

λp
k (0) = λp

g (0) =

[
f∗ (K (0) , G (0))−

f ∗k (1, x
∗)− ρ

γ
(K (0) +G (0))

]
−γ

,

λp
j (t) = λp

j (0) e
[ρ−f∗

k
(1,x∗)]t ∀t j = k, g. Again it is straightforward to see that the

control, state and costate variables suggested satisfies all necessary and sufficient con-

ditions and therefore are optimal.
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For part 3, setηpk (t) = 0 ∀t. CallC (K) the solution to the following differential

equation82

dc

dK
=
[f∗k (K,G (0))− ρ] /γ

f ∗k (K,G (0))− c (K)
,

with boundary solution(cp
∞
,Kp

∞
). For Kp (t) choose the solution of the differen-

tial equationK̇p (t) = f ∗ (K (t) , G (0)) −c (Kp (t)) with initial conditionK (0). Set

λp
k (t) = c (Kp (t))−γ

; for λp
g (t) choose the solution to the differential equationλ̇

p

g (t) =

ρλp
g (t)− λp

k (t) f
∗

g (K
p (t) , G (0)) is

λp
g (t) = eρt

[
λp
g (0)−

∫ +∞

0

f ∗g (K (ξ) , G (0))λp
k (ξ) e

−ρ(t−ξ)dξ

]
.

If we chooseλp
g (0) =

∫ +∞
0

λp
kf

∗

g (K
p (t) , G (0)) e−ρtdt then the trasversality condition

lim
t→+∞

λp
g (t)G

p (t) e−ρt = 0

will be met; finally chooseηpg (t) = λp
k (t)− λp

g (t). Then the proposed path will satisfy

all necessary and sufficient conditions and it is therefore optimal.

For part 4, setηpk (t) = 0 ∀t. CallC (K) the solution to the following differential

equation

dc

dK
=
[f ∗k (K,G (0))− ρ] /γ

f ∗k (K,G (0))− c (K)

with boundary condition(c (T ) ,K (T )), whereK (T ) = G (0) /x∗, c (T ) = f∗ (K (T ) , G (0))

−
f∗
k
(1,x∗)−ρ

γ
(K (T ) +G (0)). ForKp (t) choose the solution of the differential equa-

tion K̇p (t) = f ∗ (K (t) , G (0)) −C (Kp (t)) with initial conditionK (0). Setλp
k (t) =

C (Kp (t))−γ
; for λp

g (t) choose the solution to the differential equationλ̇
p

g (t) = ρλp
g (t)

−λp
k (t) f

∗

g (K
p (t) , G (0)) with boundary conditionλp

g (T ) = λp
k (T ); finally choose

ηpg (t) = λp
g (t)− λp

k (t). Then the proposed path will satisfy all necessary and sufficient

conditions and it is therefore optimal.

82 The graph of the functionC (K) is the path converging to the steady-state in a(c,K) phase diagram.
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For part 5, setηpg (t) = 0 ∀t. CallC (G) the solution to the following differential

equation

dc

dG
=

[
f∗g (K (0) , G)− ρ

]
/γ

f ∗g (K (0) , G)− c (G)

with boundary condition(cp
∞
, Gp

∞
)SetGp (t) equal to the solution tȯGp (t) = f ∗ (K (0) , G (t))

−C (Gp (t)) with initial conditionG (0). SetIpg (t) = Ġp (t). Then chooseλp
k (t) =

cp (t)−γ, and forλp
g (t) the solution toλ̇

p

g (t) = ρλp
g (t)− λp

k (t) f
∗

g (K
p (t) , G (0)) with

initial condition λp
g (0) =

∫ +∞
0

λp
kf

∗

g (K
p (t) , G (0)) e−ρtdt; finally chooseηpg (t) =

λp
g (t) − λp

k (t). Then the proposed path will satisfy all necessary and sufficient con-

ditions and it is therefore optimal.

For part 6, setηpg (t) = 0 ∀t. CallC (G) the solution to the following differential

equation

dc

dG
=

[
f∗g (K (0) , G)− ρ

]
/γ

f ∗g (K (0) , G)− c (G)

with boundary condition(c (T ) , G (T ))whereG (T ) =K (0)x∗, c (T ) = f ∗ (K (0) , G (T ))

−
f∗
k
(1,x∗)−ρ

γ
(K (0) +G (T )). SetIpg (t) = f∗ (K (0) , G (t)) − C (Gp (t)). SetGp (t)

equal to the solution tȯGp (t) = f ∗ (K (0) , G (t)) − C (Gp (t)) with initial condition

G (0). Set Ipg (t) = Ġp (t). Then chooseλp
k (t) = cp (t)−γ, and forλp

g (t) the so-

lution to λ̇
p

g (t) = ρλp
g (t) − λp

k (t) f
∗

g (K
p (t) , G (0)) with initial condition λp

g (0) =

∫ +∞
0

λp
kf

∗

g (K
p (t) , G (0)) e−ρtdt; finally chooseηpg (t) = λp

g (t)− λp
k (t). Then the pro-

posed path will satisfy all necessary and sufficient conditions and it is therefore optimal.

4.6.3 Proof of lemma 4.3

We first show that if all the conditions in the lemma are satisfied, the allocation can

be decentralised as an intertemporal equilibrium. Equations (8) and (16) are identical,
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as are equations (9) and (15), so condition 4 and 5 of the definition of intertemporal

equilibrium are automatically satisfied. If we setr = fk (K, V, V/G), and setV such

that it solvesfv (K, V, V/G) = p, then by lemma 4.2, there aren, k andv such that

K, G, r, p, n, k, andv constitute a static equilibrium. Summing (15) to (19) and using

r̄ = (1− τ) r we obtain

K̇ + Ḃ = (1− τ) r (K +B)− c,

i.e. (5) (in view of (10)). Then interpretingλc as the costate variable in the household’s

utility maximisation problem, we see that (17), (18) and (21) are necessary and suffi-

cient conditions for a solution. Finally, chooseτ (t) such that̄r = (1− τ ) fk (K, V, V/G);

then from(19) we have

Ḃ = (1− τ ) rB + (1− τ) fk (K,V, V/G)K + Ig − f (K,V, V/G)

= (1− τ ) rB + Ig − τrK − [f (K, V, V/G)− fk (K, V, V/G)K]

= (1− τ ) rB + Ig − τrK − [fv (K,V, V/G)V ]

= (1− τ ) rB + Ig − τrK − pV,

i.e. (7); the third equality follows from Euler’s theorem for homogenous functions.

The converse is also easily established. If{c, K, G, V }+∞t=0 are part of an equilib-

rium, we must haver = fk (K,V, V/G), p = fv (K, V, V/G). (17), (18) and (21) are

deduced from the solution to the representative agent’s maximisation problem. Finally
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(19) is deduced from (7) as follows

Ḃ = (1− τ ) rB + Ig − τrK − pV

= r̄B + Ig − τfk (K, V, V/G)K − fv (K, V, V/G)V

+fk (K, V, V/G)K − fk (K, V, V/G)K

= r̄B + Ig + (1− τ) fk (K,V, V/G)K

−f (K, V, V/G)

= r̄ (B +K) + Ig − f (K,V, V/G) ,

where again we used Euler’s theorem for homogeneous functions.

4.6.4 Proof of proposition 4.2

First note thatK̇ > 0, Ġ > 0, then by (31)-(32),ηopk = ηopg = 0.

We first show that if̄rop > 0 thenr̄op = fk (K
op, V op, V op/Gop).

r̄op > 0 impliesηopr̄ = 0. Use (25) to write

φop
λc
= −m (Bop +Kop) . (51)

Differentiate this last equation w.r.t. time and use (15) and (19) to obtain

φ̇
op

λc (t) = −m
(
Ḃop + K̇op

)

= −m [r̄op (Bop +Kop)− cop] .

Then using (29),

−mr̄op (Bop +Kop) +mcop = ηopλc + φop
λc
r̄op;

which in light of (51) can be simplified to

mcop = ηopλc. (52)
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From (17) and (23)

cop = −
γηopλcλ

op
c

λop
k − λop

c

,

so

mcop =
γµopηopλc
λop
k − λop

c

.

Setting the right hand side of this last equation equal to theright hand side of (52) and

rearranging we obtain

λop
c − λop

k

µop
= γ,

or83

Λ =
λop
k − µop

λop
c

= 1 +m (γ + 1) .

SinceΛ is constant,

Λ̇ =
λ̇
op

k − µ̇op

λop
c

− Λ
λ̇
op

c

λop
c

= 0.

Using (27), (30) and (18) we get (after some simplifications)

Λ (ρ− fk (K
op, V op, V op/Gop)) = Λ (ρ− r̄op) ,

which given thatΛ > 0 implies

fk (K
op, V op, V op/Gop) = r̄op.

Next we show that -analogously to the first best optimum- the optimal policy

generates positive investment in both types of capital onlywhen their social marginal

products coincide, i.e. whenf ∗k (K
op, Gop) = f ∗g (K

op, Gop).

We can use (26) to write

λ̇
op

g = λ̇
op

k − µ̇op,

83 Judd[67] callsΛ themarginal social value of government wealth holding privatewealth constant.
Private wealth isK + B; if one increases the government wealth (or equivalently reduces the stock
of debt) by one unit, one must increase the stock of private capital by one unit to keep private wealth
constant. At the margin the overall effect is given byΛ. The constancy ofΛ is obviously a consequence
of the constancy ofm. Intuitively, if the excess burden of taxation has been smoothed out completely, an
increase in government wealth has the same effect irrespective of when it occurs.
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which using (27), (28) and (30) gives

ρλop
g + [λ

op
k − µop + ηopk ] fΓ (K

op, V op, V op/Gop)
V op

(Gop)2

= {ρλop
k − [λ

op
k − µop + ηopk ] fk (K

op, V op, V op/Gop)− µopr̄op} − µop [ρ− r̄op] .

After simplifications we have

ρ
(
λop
g − λop

k + µop
)

= − (λop
k − µop)

[
fk (K

op, V op, V op/Gop) + fΓ (K
op, V op, V op/Gop)

V op

G2

]
,

which given (26), the positivity ofλop
k and non-positivity ofµop yields

fk (K
op, V op, V op/Gop) = −fΓ (K

op, V op, V op/Gop)
V op

G2
.

There may be, however, intervals in which the government finds it optimal to tax

capital at the maximal rate.84

But given thatV op is chosen to maximisef (Kop, V op, V op/Gop) (see (34)), the

last equation is satisfied if and only ifGop/Kop = x∗.

4.6.5 Proof of proposition 4.4

The proof follows exactly the same steps as in the proof for proposition 4.2.

r̄op > 0 impliesηopr̄ = 0. Proceeding as before we can derive (52)

From (17) and (23)

cop = −
γηopλcλ

op
c

λop
k − λop

c + ηopk
,

so

mcop = −
γµopηopλc

λop
k − λop

c + ηopk
.

84 Chamley[34] and Jones et Al.[64] show that with assumptions typically encountered in growth
theory the optimal policy entails keeping the capital tax atits maximum for an initial period and switching
to zero capital taxation afterwards.
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Setting the right hand side of this last equation equal to theright hand side of (52) and

rearranging we obtain

λop
k − λop

c + ηopk
µop

= γ,

or

Λ̂ ≡
λop
k − µop + ηopk

λop
c

= 1 +m (1− γ) .

Differentiating with respect to time we obtain

.

Λ̂ =
λ̇
op

k − µ̇op + η̇opk
λop
c

− Λ̂
λ̇
op

c

λop
c

.

Differentiating (26) with respect to time, we haveλ̇
op

k − µ̇op + η̇opk = λ̇g, and hence

.

Λ̂ =
λ̇
op

g

λop
c

− Λ̂
λ̇
op

c

λop
c

.

Using (27), (30) and (18) we get (after some simplifications)

Λ̂
(
ρ+ fΓ (K

op, V op, V op/Gop)V op/ (Gop)2
)
= Λ̂ (ρ− r̄op) ,

which given thatΛ > 0 implies

−fΓ (K
op, V op, V op/Gop)V op/ (Gop)2 = r̄op,

which looking at (50) implies

f ∗g (K
op, Gop) = r̄op.

4.6.6 Proof of proposition 4.5

The first order conditions are virtually identical to those in lemma 4.4, specifically

(cop)−γ = λop
k + γηopλc (c

op)−γ−1 + ηopk , (53)
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−φop
λc
λop
c + µop (Bop +Kop) + ηopr̄ = 0, (54)

λop
g − λop

k + µop − ηopk + ηopg = 0, (55)

λ̇
op

k = ρλop
k − [λ

op
k − µop + ηopk ] f̂k (K

op, Gop)− µopr̄op, (56)

λ̇
op

g = ρλop
g − [λ

op
k − µop + ηopk ] f̂g (K

opGop) (57)

φ̇
op

λc = ρφop
λc
− φop

λc
(ρ− r̄op) + ηopλc, (58)

µ̇op = µop [ρ− r̄op] . (59)

ηopk

[
f̂ (Kop, Gop)− cop − Iopg

]
= 0, ηopk ≥ 0, (60)

ηopg I
op
g = 0, ηopg ≥ 0. (61)

In the proof of proposition 4.2 in section 4.6.4 we used equations (17), (23), (25),

(29) together withηopk = ηopg = 0 to establish

Λ ≡
λop
k − µop

λop
c

= 1 +m (γ + 1) .

and

Λ̇ =
λ̇
op

k − µ̇op

λop
c

− Λ
λ̇
op

c

λop
c

= 0.

Noting that the corresponding equations -(40) (53), (54), (58)- are formally identical, it

must follow that the two equations above are valid for the problem we are now looking
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at. Using (56) and (59) we have

λ̇
op

k − µ̇op

λop
c

=
(
ρ− f̂k (K,G)

) λop
k − µop

λc
=
(
ρ− f̂k (K,G)

)
Λ.

Equation (40) implies

λ̇
op

c

λop
c

= (ρ− r̄) .

Therefore combining the last three equations we get

(
ρ− f̂k (K,G)

)
Λ = (ρ− r̄) Λ,

and sinceΛ > 0,

f̂k (K,G) = r̄.

But r̄ = (1− τ) fk (K,V (K,G; p) , V (K,G; p) /G) while

f̂k (K,G) = fk (K, V (K,G; p) , V (K,G; p) /G) +

fv (K,V (K,G; p) , V (K,G; p) /G)
∂V (K,G; p)

∂K
+

fΓ (K, V (K,G; p) , V (K,G; p) /G) .
∂V (K,G; p)

∂K

In other words (droping the arguments of the functions)

τ = −
(fv + fΓ/G)Vk

fk
.

4.6.7 Proof of proposition 4.6

We first show that the optimal tax is generally positive. AssumeK̇ > 0, Ġ > 0. The

first order conditions imply yet again that

λ̇
op

k − µ̇op

λop
c

− Λ
λ̇
op

c

λop
c

= 0.
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However in this case85

λ̇
op

k = ρλop
k − [λ

op
k − µop + ηopk ] [fk (K

op, V op, Kop/Gop) + fΓ (K
op, V op, Kop/Gop) /Gop]

−µopr̄op.

Proceeding as usual we then find

fk (K
op, V op,Kop/Gop)+fΓ (K

op, V op, Kop/Gop) /Gop = (1− τ ) fk (K
op, V op,Kop/Gop) ,

i.e.

τ = −
fΓ (K

op, V op, Kop/Gop) /Gop

fk (Kop, V op,Kop/Gop)
≥ 0.

So the tax is positive unless on the balance growth path the marginal effect of congestion

is null.

Finally we show that the optimal user charge is zero. The analogous to (24) is

now

[λop
k − µop + ηopk ] fv (K

op, V op, Kop/Gop) = 0,

which implies

fv (K
op, V op, Kop/Gop) = 0.

The result the follows from the fact that in a competitive equilibrium

fv (K
op, V op, Kop/Gop) = p.

85 The reader will find it useful to compare this equation with (27).



Conclusions

In this thesis we attempted to contribute to the literature on fiscal policy in theo-

retical models of economic growth. There is no single model that can be said to incon-

trovertibly dominate all the others; there is therefore no alternative but analysing the

same issues in all plausible models, trying to gauge how robust a given result is. We

analysed four very different models and investigated the issues of dynamic efficiency,

debt sustainability and optimal design of fiscal policy.

The first model, presented in chapter 1, is a semi-endogenousgrowth model.

Here the engine of growth is investment in the accumulation of new ideas. Technologi-

cal progress is determined endogenously but, in stark contrast with earlier endogenous

growth models, it cannot be influenced by fiscal policy. Nevertheless, we have shown

that the allocation can be dynamically inefficient and that adebt policy can unambigu-

ously improve the allocation, as in the strictly exogenous growth model. We have also

emphasised an important difference, however. While in the neoclassical model the main

problem is one of overaccumulation of physical capital, here it is the allocation to in-

ventive activity that is the main issue. By allocating more workers to the consumption

sector, the economy achieves a better mix between the stock of physical capital and the

stock of knowledge (or human capital).

In chapter 2 we presented a two-sector model of economic growth. In this case,

growth is driven by investment in private and public capital. The crucial assumption

for the feasibility of sustained economic growth is that theaggregate capital goods pro-

duction function is linearly homogeneous in the two types ofcapital. This assumption

guarantees that the marginal productivities of the two inputs do not fall as the avail-
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able amounts of the inputs increase. At the same time, though, this implies that the

rate of interest does not fall either. It is shown that the rate of growth is always be-

low the rate of interest, i.e. the economy is dynamically efficient and perpetual fiscal

deficits are precluded. We then looked at the optimal allocation and showed that it can

be decentralised.

The dynamic efficiency result obtained in chapter 2 depends crucially on the as-

sumptions on technology. Chapter 3 introduces disembodied, labour-augmenting tech-

nological progress as in the basic exogenous growth model; but crucially, it is assumed

that productivity growth is dependent on public investmentrather than being purely ex-

ogenous. It then follows that fiscal policy can affect both the rate of growth through

public investment and the rate of interest through the financing policy. It is shown that

in this model perpetual deficits may be sustained when the rate of public investment

is high enough. It is also shown that what could be presumed tobe a ”virtuous” pol-

icy, such as an increase in taxation to reduce the fiscal deficit may have the paradoxical

effect of making unsustainable an investment policy that was initially sustainable.

The fourth and final chapter is a contribution to the literature on optimal intertem-

poral taxation. We presented a growth models in which firms benefit from congestible

public services, the provision of which requires building astock of public infrastruc-

tures. The main novelty is the assumption that public services are excludable, which

allows us to analyse explicitly user fees. We show that the optimal user fee policy fully

internalise the congestion externality. Furthermore, theoptimal long-run tax on capital

is zero, i.e. the famous Chamley-Judd result is valid in thismodel; this is in contrast

with most other models with congestible public capital.



Appendix A
Tables of Symbols

A.1 Chapter 1

Symbol Description Page
β Birth rate 9
p Probability of death 9
θ Discount factor 10
c (s, v) Consumption at timev of household born at times 10
l (s, t) = l0e

−ε(t−s) Labour endowment at timet of household born ats 11
ε Rate of decrease of household’s labour endowment11
a (s, t) Financial assets at timet of household born ats 11
r (t) Real rate of return 11
w (t) Real wage per unit of labour supplied 11
N (t) Mass of households alive at timet 11
L (t) Total labour supply at timet 12
h (, t) Human capital at timet of household born ats 13
H, C, A, etc. Aggregateh, c, a, etc. 12
Y (t) Aggregate production of consumption goods 13
1− α Elasticity w.r.t.Ly of the final goods prod fct. 13
Ly (t) Labour allocated to production ofY 14
xi (t) Quantity of varietyi of intermediate good 14
m (t) Number (mass) of existing intermediate goods 14
νi (t) Price ofi-th intermediate good 14
Pm (t) Price of a patent at timet 15

K (t)
∫ m(t)

0
xi (t) di = m (t)x (t), cap. in prod. of int. 15

Continues overleaf.
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Symbol Description Page
πi (t) Profit for the firm producingi-th variety 16
δ Total factor productivity in research 16
Lm (t) Labour allocated to research 16
ψ Elasticity of research prod fct w.r.t.Lm 16
φ Elasticity of research prod fct w.r.t.m 16
ρ (t) = (m (t)Ly (t) /K (t))1−α = Y (t) /K (t) 19
ζ (t) = L (t)ψ /m (t)1−φ = ṁ (t) /δm (t) 19
u (t) = C (t) /K (t) 19
q (t) = (Y (t) /Pm (t)m (t)) 19
λ (t) = Ly (t) /L (t) 19
T (s, v) Transfer at timev to households born ats 26
B (t) Stock of public bonds 26
T (t) Aggregate transfer 26
b = B (t) /K (t) 26
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A.2 Chapter 2

Symbol Description Page
n Population growth rate 55
Kt Aggregate private capital at timet 56
Bt Stock of public bonds at timet 56
wt Real wage after tax 56
u
(
cyt , c

o
t+1

)
Utility function 56

cyt Consumption of a young agent at timet 56
cot Consumption of an old agent at timet 56
Rt = 1 + rt 56
τ t Labour income tax at timet 56
θt Interest income tax at timet 56
s (.) Saving rate 57
Ht Capital employed in cons. sector 58
Lt Labour supply 58
A Total factor productivity cons. sect. 58
α Capital elasticity cons. sect. 58
Xt Capital employed in capital sect. 59
gt = (Gt/Xt)

β, flow of public services 59, 61
M Total factor productivity cap. sect. 59
pt Price of capital 59
β Elasticity of public services w.r.t.G/X 61
µt = Gt/Xt 61
Tt Tax revenues at timet 62
ut = Ht/Kt 65
bt+1 = Bt+1/ptKt+1 66
s Saving rate, logarithmic utility 68
γ Intertemporal elasticity of substitution 73
σ Households’ discount factor 73
δ Planner’s Discount factor 74
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A.3 Chapter 3

Symbol Description Page
cyt Consumption of a young agent at timet 94
cot Consumption of an old agent at timet 94
β Discount factor 95
s = β/ (1 + β), saving rate 95
Yt Aggregate output 95
Kt Capital stock 95
At Labour productivity 95
Lt Labour supply 95
F (., .) Aggregate production function 95
Gt Stock of public capital 96
Γ (.) Rate of technological progress 96
Bt Stock of public debt 99
Dt Investment in public capital 99
Xt Investment in private capital 99
δk, δg Depreciation rates of private and public capital99
τ Labour income tax 99
Wt Before tax real wage 99
rt, Rt Net and gross interest rates (Rt = 1 + rt) 99
yt, kt, gt, xt, dt, wt, bt Upper case variable in efficiency units 100
k̄π k for whichΓ = R 105
k̃π k for whichd = τf (k) 105
k∗ k for whichs (1− τ)w = Γk 105



A.4 Chapter 4 176

A.4 Chapter 4

Symbol Description Page
i Index for firms 125
Γ Congestion 125
Ψ(Γ) Firm i’s production set 125
ψ (k, v,Γ) Firm i’s production function 125
yi Firm i’s output 125
ki Firm i’s capital 125
k̄ Minimum capital for active firms 125
vi Firm i’s utilisation of public services 125
f (K,V,Γ) Aggregate production function 126
K Aggregate private capital stock 126
G Public capital stock 126
V Aggregate utilisation of public services 126
r Real rate of interest 129
p User fee 129
n Number of active firms 129
Ig Public investment 130
B Stock of public bonds 131
τ Income tax 131
c Consumption 131
A Representative agent’s total assets 131
f ∗ (K,G) f∗ (K,G) = max

V (t)
f (K (t) , V (t) , V (t) /G (t)) 134

x∗ OptimalG/K 134
Kp, Gp, etc. Variables from solution to planner’s problem 134

Continues overleaf.
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Symbol Description Page
r̄ (t) After tax return to capital 138
Kop, Gop, etc. Variables from solution to optimal fiscal policy problem 140
λop
k Shadow price ofK under optimal fiscal policy 140

λop
g Shadow price ofG under optimal fiscal policy 140

λop
c Marginal utility of consumption under opt. fisc. pol. 140

φop
λc

Costate variable associated with repr. agent’s Euler eq. 140
µop Costate variable associated with gov. budget costr. 140
ηopλc Lagrange multiplier forc−γ = λc 140
ηopr̄ Lagrange multiplier for̄r ≥ 0 140
ηopk Lagrange multiplier forK̇ ≥ 0 140
ηopg Lagrange multiplier forĠ ≥ 0 140
m −µop/λop

c , excess burden of taxation 142

Θop
{
∀t : K̇ (t) > 0, Ġ (t) > 0

}
143

Λ (λop
k − µ) /λop

c , marginal social value of government wealth164
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