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Abstract

This thesis analyses fiscal policy in four models of econognaavth.
The first model is a variant of Jones [6bJerlapping generations are in-
troduced and it is shown that the allocation is dynamicaifficient. As
in Diamond [42], a debt financed transfer to current genematcan lead
to a Pareto improvemeninterestingly, the improvement is achieved not
by discouraging capital accumulation but through a reatioa of labour
between sectors. The second is a two-sector model of growithparb-
lic capital. It is shown that perpetual fiscal deficit cannetdustained.
The first best allocation is examined and for the log-utiti#ge an explicit
solution can be found. Implementation of the optimal altmrais dis-
cussed. The third model features disembodied technologiiogress as
in Solow [100], but it is assumed dependent on public investmCon-
ditions under which perpetual deficits are sustainable s@igdsed. The
fourth and last model introduces excludable and congestibblic ser-
vices. The optimal fiscal policy, including optimal user gjes, is stud-
ied. It is shown that in the long-run the optimal income taxzeso and
that revenues from user charges is more than sufficient tadenpublic
investment in infrastructures.
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Introduction

This thesis is a contribution to the study of fiscal policy ymdmic general equi-
librium models of growing economies. The seminal work ofdo[100] and Ramsey
[87] has inspired a large literature on the determinantscohemic growth and the
analysis of optimal intertemporal policies. Cass [28] ambgmans [71] are two cru-
cial contributions on the latter. Understanding the deteamts of growth is of obvious
importance: if sustained for decades, even small differeicgrowth rates lead to large
differences in output levels. Unsurprisingly, many ecorstsnhave written on the de-
terminants of economic growth and on how policies impact @wh rates. This liter-
ature has received an additional impetus with the emergafitte endogenous growth
models of Romer [92], [93], Lucas [74], Grossman and Helpp&jand Aghion and
Howitt [2] just to name a few.

While all of these models are rather stylised descriptidrib® evolution of any
real economy, their relative simplicity allow us to focus syme important principles
that are important to help the design of good policies. Weebelthat this type of
analysis can be of practical interest to policy makers. Tlaarpng of fiscal policy
or the designing of fiscal rules such as the Growth and Stalpidict in the Eurozone
and the Fiscal Framework in the UK require an understandirigeoconcepts of fiscal
sustainability and intergenerational fairness. The stfdyggregate but rigorously mi-
crofounded models of economic growth can help significathily discussion by taking
to the fore the interactions between decisions of goverisraemd private sector agents

over time.
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This analysis requires a detailed description of savingsirestment decisions.
Two main approaches are used in the literature: infinitielyedl agents and overlapping
generations. An example of a thorough analysis of the foimBrock and Turnovsky
[23] while Diamond [42] is the seminal reference for thedattBlanchard [21] sug-
gested an overlapping generations model of "perpetuahyahat has the advantage of
tractability and admits the infinitely lived agents framelwas a special case.

Some of the main themes highlighted by this literature amadyic efficiency,
sustainability of fiscal deficits, and optimal investmentl daxation policies. These
three themes are very closely related. Both dynamic effigiemd the sustainability
of perpetual fiscal deficit depend on the relative magnituidtne rate of growth to
the interest rate (See Cass [29], [30] on dynamic efficienayst advanced macroeco-
nomics texts -e.g. Turnovsky [106]- on sustainability)ndis been shown that when an
economy is dynamically inefficient, fiscal deficits are feésiand welfare improving
(Tirole [104]), although the converse is not necessarilg {fGrossman and Yanagawa
[60]). On the other hand, an economy that invegitimally cannot suffer from dynamic
inefficiency.

The issue of dynamic efficiency has been investigated eixtdpsn models of
exogenous growth and in fully endogenous growth models.h&dest of our knowl-
edge, however, not in the semi-endogenous growth modelreds]f61]. This is an
important omission because, as pointed out by Solow [10-rgst others, endoge-
nous growth models rely on a "knife-edge” assumption thay & unwarranted. In
the first chapter we fill this gap in the literature by analgsamodel of growth through

R&D that is very close to that of Jones except for the asswnti overlapping genera-
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tionsa laBlanchard [21] instead of the infinitely-lived agent franwek We investigate
conditions under which fiscal policy can lead to a Pareto sapallocation.

However, the uncoordinated actions of economic agentssisred to achieve an
efficient allocation of an existing stock of resources omiger restrictive assumptions
for example any form of externality and public goods may inplefficiency. The
presence of these market failures justifies governmentviedion beyond the strictly
intergenerational redistributive policies justified byndynic inefficiency. It becomes
then important to develop models that may inform the disonssn the main principles
that these policies should follow, without loosing sighttieé dynamic aspects of the
problem. In this sense the literature on intertemporalnogkitaxation pioneered by
Chamley [34] and Judd [66] is the offspring of the literatorestatic optimal taxation
pioneered by Ramsey [86] and Diamond and Mirrlees [43],.[44]

In the second chapter we introduce government spending biicgoods. We
analyse a two-sector growth model with overlapping gerarah la Samuelson-Diamond
(Samuelson [97], Diamond [42]). On the production side tloelehis an extension of
the classic two-sector model of Uzawa [108]. In our versfoms benefit from public
services produced using infrastructures generated byabiéat sector. We investigate
the sustainability of fiscal policy and we characterise thgneal intertemporal fiscal
policy.

The main theme of the third chapter is again fiscal policyaoabilty in a frame-
work that analyses public investment explicitly. We preésenne-sector model where
the rate of growth depends on accumulation of public inftecstires. We discuss con-
ditions under which the rate of economic growth may exceeddte of interest, which

allows the government to run Ponzi-finance of public investm
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The fourth chapter presents an analysis of public investmed optimal fiscal
policy in an intertemporal model with infinitely-lived agsn The main novelty is the
assumption that public services are excludable, whiclvalfor an explicit analysis of

user fees. Some important properties of the optimal fiscalare discussed.



1 Semi-endogenous growth with finite life-
times

There is a vast literature that analyses the effects ofréifitefiscal policies in
growing economies. One important question concerns dynaifficiency. An econ-
omy is dynamically inefficient if, given the way availablesoairces are allocated in a
given period, consumption can be increased in all period bgifying theintertempo-
ral allocation of resourcesCass [29],[30] showed that in a competitive economy, if an
equilibrium path is inefficient, asymptotically the rateioferest is below the growth
rate. It is well known that the Ramsey-Cass-Koopmans nssicial growth model is
dynamically efficient (Shell [99], Blanchard and Fische2])2 but when the model is
modified to allow an overlapping generations structure attyic inefficiency becomes
a possibility (Diamond [42], Blanchard [21], Cremers [37])

In the one-sector neoclassical model with overlapping ggioms, it is shown
that dynamic inefficiency arises because the saving thaditmids make for life-cycle
reasons may lead to an overaccumulation of capital. Thdhésgcapital stock is so
large that the marginal product of capital is depressedeaqtint that it is below the
investment required for maintaining the marginal unit gbital; in this situation, were
the economy to save less, consumption in all periods coulthltg increase. This is
fundamentally a coordination problem. If all agents couwdrdinate their actions, they

would agree to save ledsut in a competitive economy each individual responds to the

1 For many authors, static efficiency is a pre-requisite faraigic efficiency. It seems to us that the
two sources of inefficiency are in general distinct and thaheafter having recognised the existence of
a static distortion the discussion of whether overaccutimniaoccurs is still of interest. In our model
we need to keep the two distinct as the monopolistic straatfithe goods market implies that the static
allocation of resources is inefficient.
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incentives given by prices, and although from the sociahipof view there may be

overaccumulation, each households is optimising givepthes it faces.

Once it is recognised that the economy may be dynamicalKicrent, the next
natural question is whether fiscal policy may be used to inmptbe allocation. It is
known that with overlapping generations -whether with &rot infinite horizons- Ri-
cardian equivalence may fail, and government bonds aradzmesl net wealth (Barro
[11], Weil [109], Buiter [25]). Under these circumstanciéscal policy can indeed im-
prove the intertemporal allocation of resources. One ptessvay of doing so is to
finance lump-sum transfers to generations currently aliwty issuing of bonds that
are constantly rolled over. This "Ponzi finance” is made itfdasby the overlapping
demographic structure (O’Connel and Zeldes [81]). Theaesters will make each
generation feel wealthier and induce them to consume meselving the coordination
problem. The scheme will induce a smaller accumulation pftah increase the mar-
ginal product of capital and hence the interest rate. As Emithe interest rate is not
pushed above the growth rate asymptotically, the schenhbaikasible (Tirole [104]).

With the explosion of the literature a@ndogenous growtim the 80s/90s, many
of the old questions analysed in the older economic groviénaiure have been re-
examined, including the dynamic efficiency. Saint-Paul @& Grossman and Yana-
gawa [60] show that the one-sector model witlhearning-by-doingexternality a la
Romer [92] and overlapping generations is dynamically ieffic In fact because of the
externality, the interest rate does ndfieet the social marginal product of capital, and

if anything the problem is one of capitahder-not overaccumulation. While Ponzi

2 Asolution to this coordination problem through Coasiargbaring is clearly not feasible, as it would
not only involve bargain between literally an infinity of imdluals, but even between individuals who
can never meet because their lives do not overlap.
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finance is still feasible, it cannot be Pareto improving. dntfpublic debt would re-
duce savings and permanently reduce the growth rate, tmosriafuture generations.
King and Ferguson [69] clarified that the result that the eoaypis always dynamically
efficient, depends on the assumption that there is only gme @y capital. With sev-
eral capital goods and externalities, the economy may bardigally inefficient, but
the problem is not thecaleof the capital stock, but itsomposition It does remain
true that Ponzi finance, as long as it affects the scale buheatomposition, cannot be
Pareto improving. Khan, Lim and Rhee [68] analyse an endmgegrowth model with
human capital a la Lucas [74] and overlapping generatiam agso find that dynamic
inefficiency is possiblgbut again the problem is one of the capital mix (too little laum
capital is accumulated), and Ponzi finance only makes nsatterse by permanently
decreasing the growth rate.

Another strand of models endogenises the growth rate byogtkplncorporating
R&D activities. These models typically assume imperfeechpetition, and hence the
equilibrium is not even statically efficient. However, istdl interesting to ask whether,
giventhe way existing resources are allocated by the maxiidin any given period,
anintertemporalreallocation may be Pareto improving. In early versionshefrnodel
(Romer [93], Grossman and Helpman [59], Aghion and Howi},[#}e decentralised
economy tends to underinvest in R&D, and therefore one wextebct the problem to
be again one aindelaccumulation, and Ponzi finance to be counterproductiveied|
[82] introduces overlapping generations in a R&D model adanr [93] and confirms
this intuition. Interestingly, although the result is dianito that found by Saint-Paul
[96], Grossman and Yanagawa [60] and King and Ferguson [&8]mechanism is

different. In the former class of models, public debt crowdsphysical capital, without
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affecting the interest ratdn the latter instead, as agents feel wealthier, they spend
more, which increases the interest rate. As the interestimateases future profits are
discounted more heavily, which discourages the allocaifdabour to the R&D sector
thus permanently reducing the growth rate.

Crucial for Olivier’s result is the fact that the long-rurogith rate depends on the
share of labour allocated to R&D activity. As noted by Jor@&H,[this is a result that
depends crucially oknife-edgeassumptions on the R&D technology, and at odds with
empirical observations. Once diminishing social retumigbour in R&D are allowed,
the long-run growth rate is independent from the share ajualallocated to that sec-
tor. In this model, therefore, Ponzi finance cannot permiydepress the growth rate,
and one wonders whether it may be Pareto improving. In traptEr we confirm that
this may indeed be the case. We modify the model of Jones fmdunting overlapping
generations. We show that long-run equilibria exist that@raracterised by the inter-
est rate being asymptotically below the growth rate. We stiat Ponzi finance can
be Pareto improving. Our overlapping generations framkwsrdentical to Olivier’s,
therefore any difference in results must be driven by thiediht assumptions on tech-
nology. We argue that the intuition is a mixture of the obagons made above. In this
model there are two factors that are accumulated, physaqatat and knowledge. It
is the mix of these two factors, rather than just the scak, ¢hn be inefficient. The
mechanism through which Ponzi finance may improve the dilmtas similar to that
in Olivier's model. Here as there, the effect is through theréase in the interest rate,
which encourages a reallocation of labour from the R&D sectthe consumption sec-

tor. Only while in the Olivier-Romer model allocation to R&B always insufficiently

3 Interestingly, Olivier finds that a bubble on equity will leethe opposite effect by encouraging R&D

activity.
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low, in the Jones model it can be too high. When this is the tasissuing of debt ame-
liorates the physical capital-knowledge mix, without affieg long-run growth, and can
result in a Pareto improvement.

The next section describes the structure of the model. @ettl shows that the
equilibrium is locally determined. Section 1.3 introdudssal policy and shows that
debt financed transfers may increase aggregate consunnptdirperiods and thus be
Pareto improving. As the dynamics of the system are rath@ptioated, we resort to

numerical simulation to establish this result. Sectionsufsmmarises and concludes.

1.1 Model

We consider an economy that produces a single consumptiod, gehich is taken
as the numeraire. Agents in this economy are overlappingrgéons of households

(dynasties), firms and a government.

1.1.1 Households

The demographic structure is as in Blanchard [21] and B{@&®}. Each generation is
composed of a continuum of households. At any time > 0 new households are born
(formed). Each household faces a constant probability attdéreakingy > 0. We
assumes > p, that is positive population growth. Each household onhgsabout its
own consumption, and supply labour inelastically. Prafees of a household born at

time s are represented by

+oo
E; [/ u(c(s,v))e’dv|, 6>0,
t



1.1 Model 10

whered is the discount factore (s, v) indicates consumption at timeof a household
born at times. The term in square brackets captures the ideaath&ing as it survives
the households enjoysfiow of utility from consumptionu (¢ (s, v)); the parametef
measures how future utility is discounted, that is how ingrdtthe household is. The
expectation sign is needed because the household doesawtf&nhow long it will
survive in other words there is a chance that consumption plannduifuture will not
be enjoyed because the household disappears in the meaftmaautility function is

assumed to be logarithmic

u(c(s,v)) =Inc(s,v).

Over time, households accumulate financial assets. Umtdifitimes implies
that households may leave unintended bequests. Howetresugh lifetimes are un-
certain from the point of view of the single households, ogragate there is no uncer-
tainty on the number of deaths and births. It is then possibteconvenient to assume
that there is a competitive insurance market. It is easydwshat households will find
it convenient to stipulate the following contract: the iremuce company pays the house-
hold p units of the consumption good at timgto receive one unit of a financial asset
at the time of the household’s dedtilo avoid unintended bequests, households will

contract all of their wealth.

4 By stipulating this contract, the household reciewérs addition tor (¢) in each period until death.
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Given the assumptions listed above, at tigy@aximisation of the expected utility

is equivalent to maximisation of
+o00
/ Inc(s,t) 0Py, (1)
t
The household’s budget constraint is
a(s,t) = (r(t)+p)als,t)+1(s,t)w(t) —c(s,t). 2)

We add a condition, known in the literature @s Ponzi games conditighf that con-

strains the growth of household’s debt to be below the isteate asymptotically:

lim e~ Je CW+P)deg (5 1) > 0,

v—+00

wherec (s, t) is consumption/ (s, t) is the endowment of labout, (s, t) the stock of
financial assets owned(t) the real rate of returny (¢) the real wage per unit of labour
supplied. We assume that the endowment of labour decreaeage, according to
[(s,t) = lge=(t=9),

Call N (t) the mass of households alive at tihe At any timet, SN (t) new
households are born. Of the households born at itV (v) e ¢—?) are still alive at

time t. Population grows at the rate— p. NormalisingN (0) = 1, N (t) = e(#=»)¥,

5 The probability of being alive at time, conditional on being alive at timg is e ?(*~%). Then
E, [f;oo u(c(s,v)) ee(t’”)dv}
= f;oo u(c(s,v)) e?t=ve=P=t) gy
= fjoo u(c(s,v)) e@FP)E=v) gy,
6 Without this condition, the household would borrow as musipassible each period and use these
funds to finance consumption and interest payments on puebiorrowing, without ever repaying neither

the principal nor interest. The condition takes its namenft@harles Ponzi, who made a quick fortune in
the 1920s by using loans from new lenders to repay old ler(@mschard and Fisch¢22]).

7 This is not innocuousvhen a government can run a Ponzi scheme, a private ageudtinqurinciple
initiate one too. We follow much of the literature and disrefequilibria with households running such
schemes.
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The total labour supply at timeis

L) = / " L(s.) BN (5) e P ds

—00

t
= / [ler(S*t)} [56(5770)8] e P(t=9) 15

— 0_56(6—10)3
b+e

Thuse affects the level but not the growth rate of the aggregatedabndowment.

Maximisation of (1) s.t. (2) impli€'s
c¢(s,t) = (0+p)(als,t)+h(s1)), (3)

where
400 v
h(s,t) = / I(s,v)w(v) e e rl+p)dug, (4)
t

is the human wealth of a household borm.atVe can rewrite the expression for human

wealth as

+o00
h (S’ t) = / loet?(sfv)w ('U) ei\l‘t (T(u)+p)dudv
t

+oo
= lpe” / e 'w(v)e” JE rw)+p)dn g,
t

Note that the value of the last integral is identical for alubeholds, independently of
their date of birth.
For any individual variable: (s, t), the corresponding aggregate is
t

X(t) = 66‘“/ z (s,t) e’ds.

—00

8 Furthermore the following transversality condition muslkch

lim e—(ﬂwﬁM —0.
t—o0 c(s,t)
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Then we can writethe aggregate human wealth as

H(t) = pe# [jjoo e " w (v) e*ft”(r(u)er)dudv} lo [1 eePds

t
—0o0

= [Be Pt [ftm e w (v) e ft”(r(u)+p)dudv} lo ﬁoo o(B+9)s 0
(5)
= |:\/’t+oo e—avw ('U) e~ ftv(T’(l")‘i‘p)dﬂdrU] loﬁe(ﬁ_p‘fﬂf)t'
- [ w (v) e f?’“"(“)*p*e)flﬂdv} L{(t).
Differentiating (5) with respect towe have
H=(B+e+rt)H({) —w(t)L(t). (6)
Aggregating, (3) and (2) can be written
C(t)=(0+p) (A1) +H(1), 7)
and
Aty =r(OAW) +w () L(t) - C ), (8)

respectively. The equations (6)-(8) describe the aggedgstiaviour of the households.

Differentiating (7) and eliminatind/ (¢), we can write more compactly:

CH)=@)=0+B8-p+e)C(t)—(@+p)(B+e)Al). (9)

1.1.2 Corporate sector

The production side of the economy is very similar to Jonég [6he final good, which
is taken as the numeraire, is produced with labour and a awtibn of intermediate

goods according to

vo=n,e [ aora (10

9 It will be verified later that the last intergral convergesh&¥ [ () convergesh (s, t) < oo Vs < t.
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whereL, (1) is the fraction of the aggregate labour endowment alloctatéite produc-
tion of final goodsz; () is the quantity of intermediate goadused andn (t) is the
mass of available intermediate goods. Intermediate goepeediate completely with
production'®

The production function (10) tries to capture the distioictbetween accumula-
tion of ideas and accumulation of objects (Romer [94]). &ditional growth theory,
all capital goods are aggregated together in a single d¢agbatek, K. This seems rea-
sonable as long as the new object acquired are similar t@ thlbsady in stockbut
the crucial feature of innovation is the introduction of ngsecesses and activities and
new tools to carry them out. Typically technological prag@wvolves a increasing de-
gree of specialisation, made possible by the invention wfteehniques and machines.
Equation (10) is an attempt to formalise this?

A look at (10) confirms that production of final goods is chéegsed by constant
returns to scaleve assume perfect competition in this sector; Ift) is the price of the
i-th intermediate good at time profits will beY (¢) —w (¢) L, (¢) —fom(t) vi (t)x; (t)di

and profit maximisation implies

Ly (t) =

(IL)?(O’ (11)

w (t

10 Alternatively one could work with the assumption that inmtediates are durable goods, at the cost
of complicating the algebra slightly. In particular the #iguium condition K (¢t) = m (¢) = (¢t) would
becomeX (t) = v () = (t) + m (¢) & (), which is more awkward to work with.

1 It applies the "love for variety” models, introduced in canser choice theory by Spenf202] and
Dixit and Stiglitz [46], to production. This was done first in a model of internatidrede by Ethier
[51], and in growth models by Ron{&3] and Grossman and Helpm§nO].

12° To see how the distinction between accumulation of objectsideas is incorporated, assume that
x; is constant for alk (as it will be in equilibrium) then the production function will becomé =
mLi=ez® = (mL,)'~® (mz)* = (mL,)'~® K Thenma measures the quantity of objects that the
economy has accumulated, whileis a measure of ideas. Then it becomes clear that growth cloames
increasing physical inputd(, and K') and ideasr). It is also clear from the equation above that for a
given K, m measures labour productivity.
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and

1

© )\ 12
()= — t).
)= (755) 1o 12)
Intermediate goods are produced using capital rented framsdholds by firms
that have purchased a patent from the R&D sector at a pticg). A patent gives the
exclusive right to produce a given variety, therefore eacdpcer acts as a monopolist.
We assume for simplicity that one unit of capital is needegdrtmuce one unit of an

intermediate good and that capital does not depreciatdinGal(¢) the rental rate at

time ¢, intermediate goods producers solve

max v; (t) x; (t) — r (t) z; (t)

subject to (12). The inverse demand function for intermed@ood: is v; (t) =

aL, (t)'™*z; (t)*". Using this, the problem can be written

max oL, ) (O —r ()i (1),

T

the first order condition gives

z () =2 (t)= (a/r )" L, (1), (13)
and therefore
vi () =v(t) = % (14)

Since capital is used only to produce intermediate goodsjraa one-to-one fashion,

we must have that the aggregate capital stock satisfies

m(t)
K (t) = /0 z; (t)di=m(t)x(t). (15)
Now, sincer; (t) = z (t) Vt, using (A15)Y (t) = L, ()" “m (t)x (t)* = (m (t) L, ()"~ K (t)*.
ThenY (t) /K (t) = (L, (t) /= (t))'~*, and using (13) one obtains

r(t) = agl(tt)). (16)
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Calling 7 (¢) the profit for one existing intermediate goods firm (profits @en-

tical for all existing firms),

0 = v0r@-r0s0- ()0 (25) T Lo

@) e e
Y

where we used (13) and (14) to derive the third equality.
The last activity to be considered is the invention of nevietaes, the R&D sector.
As in Jones [61], we assume that the individual firm percellkasthe labour required

to discover new innovations is given by

whereL,, (t) is the amount of labour allocated to R&D activity. Howevérere is a

spillover effect, so thak (¢) = 6 L., (t)*"" m (t)?, so effectively
1 (t) = 6 Ly (1) m (). (18)

The termm (¢)? is meant to capture the spillover between research aetiviti other
words, the body of research done previoushy(()), makes the discovery of new ideas
easier. The parameter, measures the strength of this effeBomer [93] assumes
¢ = 1, which makes growth fully endogenous (but also explosiva imodel with
population growth). Here we follow Jones [61] and assume ¢ < 1. The term
Ly, (W"1 captures the idea that there may be duplications in reseatiiities, so that

doubling the economy wide number of researchers may notledld research output.
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The parametdr < 1) < 1 measures the strength of this effect. Whies 1, duplication
is absent, whew < 1 itis present.

In equilibrium, an individual must be indifferent betweenking in the con-
sumption good sector (getting a waget) per unit of labour supplied) , and devoting
their time to research (earning the value of the innovatimdpced). We must then
havé?

w(t) = Py ()0 (t) = Py, (t) LY 'm ()° . (19)

The maximum an intermediate producer will be willing to pay & patent is the
present value of future profitg, ™ = () e~/ "W qy. Competition between potential

producers will bid the price of a patent to that level, i.e.
+o00 v
P, (t) = / 7w (v) e e Twdngy, (20)
t

The ownership of the patent gives the exclusive right to pcedhe intermediate
good and thus allows the owner to obtain the stream of prdfit as long as one retains
it. Furthermore the owner of the patent has always the opticzell it. HenceP,, ()

must obey the standard no arbitrage condition

()
ACREG) @D

where the left-hand side is the instantaneous return of tannakive investment, the
right-hand side is the instantaneous return of a patengnddy the "dividend’r/ P,
and the "capital gain’P,,/ P,,.

Assuming that capital is produced under perfect compatitvgh a linear tech-

nology that transforms one unit of final good into one unit apital, and that capital

13 Recall thatP,, (t) is the price of a patent for a newly discovered variety. Thjsation can equiva-

lently be read as a free entry/zero profit condition for theDR&ctor.
14 Obtained differentiating (20) w.r.t. time.
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does not depreciate, market clearing in the final goods sesjaires
K@) =Yt -C(t). (22)
The financial market clears 4 (t) = K (¢), so (9) becomes
Ct)=(r(t)=0+B8—-p+e)C ()~ (O+p)(B+e) (K (1) + Pu(t)m(t) (23)

The final equilibrium condition is that the labour marketacke This requires the sum

of employment in the R&D and final good sector to be equal tal tabour supply:

L () + L, (t) = L(t). (24)

1.2 Dynamics

Arnold [3] studies the dynamics of the original model by Joftl] with infinite life-
times andy = 1. We study the dynamics allowing for finite lifetimes and< 1. We
first show that the dynamics of the system can be represegtttelevolution of four
suitably defined variables that are stationary in a balape#d The transformed system
is shown to always admit a steady-state. A full characteosaf stability is unfortu-
nately elusive, but we show with a combination of numeric&reises and a sufficient
condition that saddlepath stability obtains for a non-igegible subset of possible pa-
rameter combinations. We then discuss under what circuntessathe dynamics of the
transformed system determine a path for the original viesathat can be sustained as
an equilibrium. Finally, we note that equilibria exist in h the growth rate of output
exceeds the interest rate.

First we prove that the dynamics of the economy can be desthly a system

of four differential equations in suitably defined statipnaariables. In particular we
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observe that the real interest raté&) will be constant in the long run. This suggest
chosingp (t) = (m (t) L, (t) /K (1)) = Y (t) /K (t) = o?r(t) as one of the sta-
tionary variables. Similarly the observation that teclogadal progress will be sta-
tionary suggest defining(¢) = L () /m (t)'~ as another stationary variableote
that¢ (t) = A ()" (t) /m(t). In a balanced growth path aggregate consumption
and aggregate physical capital stock will grow at the sanes vehich suggests choos-
ingu(t) = C(t)/K (t). Looking at (19) one can guess that the ratio between out-
put and the value of production in the R&D sector will conneergHence we define
q(t) = (Y (t) /Py, (t)m(t)). Finally as the share of labour emplyed in the consump-

tion sector must be constant in a balanced path, we d&fitle= L, (t) /L (1).

Proposition 1.1 Letp (t) = (m (t) L, (t) /K ()", ¢ (t) = L))" /m (t)"?
u(t) =C(t) /K@), q(t) = (t)/Pnt)m (), A(t) = Ly () /L (t). Then the dy-

namics of the economy are described by the following systelifferential equations:

W) = {u(t)—w*?g“) <1+p(t))—(1—oz2)p(t) (25)

—0+ 08 —p+elul(t),
W) = [0B-p-1-0s0-AG® /O CH]cH, @)
i) = {1—a)(1-9)(F-p)—aut)+al—a)@®)+p®) @D
+<1—a><1—¢>“L(”th)}M

Y0 g}
p0) = {0 G- p 4+ -0 (1) E0) () (28
(ot (- a) E@)u) +all—a? B q()
CEPY )i (t)} p()

1— A (t) D(t)’

—¢(1-a)
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where

1—=XA(t)
1—A(t)
Dt)y=1-(1—-«a)E(t),

andA (¢ (t) /¢ (t))is defined implicitly by

M /() = S 1 - A fc )

E(t) =

Proof See section 1.6H

The following corollary shows that the system simplifies sarhat if one as-

sumes) = 1.

Corollary 1.1 If ¢ = 1, the system (25)-(28) simplifies to (25) and

40|

0
i (-9
g = - (1- ) xe

H1 -0y -0)+20) gy 4 (- a) (o).

p(t)  (1-a)
0= e 1=9)80) ~ (1 =a)ég (1) + (1 —a)p ().

=(B-p)—(1=0)(¢C[1) - (1-a)q(t)),

Y

Proof  If ¢ = 1,then (38)in section 1.6 simplifies¥a(t) = [(1 — «) ¢ (¢)] / [0¢ (¢)].

The expressions in the corollary are obtained substitukiadatter and) = 1 into (25)-

(28). m

One important issue is the existence of a balanced pathdadbnomy.
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Proposition 1.2 The system of differential equations (25)-(28) has a unique

steady-state with, {, ¢,p > 0, A € (0,1).

Proof See section 1.6H
Next we show that the converse of proposition 1.2 is also, talleconvergent

solutions to (25)-(28) are equilibria for the economy.

Proposition 1.3 If the solution to the system (25)-(28) converges to a stetadgy,
thenthe patHY (¢), K (t), C (), Ly (), L (8) ;2 () ,m () ,w (£) ,p (£) , P (1)}, 55

with

Ly(t) = MOL(), Ln(t) = 1 =AX) L(t), r(t) = a®p(t),

p(t) = ap(t), x(t) =Ly () /oM m (1) = LY ()

C) _ Y _K@® _ ¥ _
o = TO=x@= (i) 6w,
m) v
i) 1_¢(ﬁ p),
Po(t) _ @) _
Pa® w07
Proof The expressions for the various variable are obtained bykimgrback from

the definitions ofu (¢), ¢ (¢), ¢ (t), p(t), and X (¢). Itis left to show thatd (¢) < +oo,

this is done in sectiot.6. W
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In the balanced path, aggregate final good production ansuoaption and the
aggregate capital stock all grow at the r@ter v/ (1 — ¢)) (8 — p), in this sense growth
is semi-endogenous: the engine of growth is research getadcumulation of ideas,
which is modelled explicitlybut in the long-run growth is limited by population growth,
an exogenous variable. Per capita variables grow at thedtél — ¢)) (6 — p), but
one should be careful that when> 0, per capita and per worker variables are dif-
ferent in levels (although they grow at the same rate). Ardoarse, in this model
asset holding and therefore consumption varies acros&holds, with wealthier older
households consuming more than younger ones.

So far we have shown that the dynamics of the economy can lokedtiy
analysing the behaviour of a system of four autonomousreffiigal equations that ad-
mits a unique steady state. One would like to establish génenditions under which
the system is stable. Unfortunately the expressions faldlebian (even in the slightly
simpler case) = 1) prove too complicated to find truly general conditions. Véel h
therefore to resort to numerical computations (as Eichdramnovsky [48]) and al-
ways found the Jacobian to have two stable and two explosots.rWe generally find
the stable roots to be complex, in the rest of the analysisssarae that the parame-
ters are such that this result holds. Of the four variables, ¢ (¢), ¢ (t), andp (t), one
is a state variable(((t)), and three are jump variableg(¢), « (¢) andp (t)). However,
the market clearing equilibrium (t) = (¢) = K (t) gives a restriction between jump

variables:

A

0= m () L(t)

z(t) ) K 29)
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We now show that the equilibrium is locally determinghat is, if the system starts
sufficiently close to the balanced path, there is a uniqudikequm path converging
there.

Denote the stable eigenvalues of the Jacobian of the syselculated at the
steady state) with, andu,. We focus on the case that we found most common, where
u; are two complex conjugate numbers, ga¥ oi, wherey, indicates the real part and
o the imaginary part ofi;, j = 1, 2. In the proximity of the steady-state, the solution to

(25)-(28) converging to the long-run equilibrium is approated by®
u (t) — U= Blvlle"lt + Bgvlge"zt,

C (t) = ¢ = Byvg1e"' + Bavget?',

q (t) — q = Bivs1€"’ + Byugge!?,

p(t) — p = Biug e + Byvge?',
where(vy;, va5, v35, v45] IS the (complex) eigenvectors associated withj = 1,2; B;
andB; are (complex) constants to be determined. It is computaliypmore convenient

to transform the complex numbers in trigonometric form aawlrite the system &s
u(t) —u = e" [(Dicos (at) — Dasin (at)) v]; — (Disin (at) + Dacos (ot)) viT] |

¢ (t) — ¢ = e [(Dicos (at) — Dysin (o)) vy — (Dysin (ot) + Dacos (ot)) vi7']

q(t) — q = e" [(Dycos (ot) — Dysin (at)) vy, — (Disin (at) + Dacos (ot)) vir']

p(t) — p = e [(Dicos (ot) — Dsin (at)) vy — (Disin (ot) + Dacos (ot)) viy] |
where for any element of the a eigenvectqy, we indicated the real part withf,; and

the imaginary part Witf’v};ﬂ, andD; = 2B, j = 1,2. Settingt = 0, we find two

15 Using standard linearization methods. See, for examplig Baentd39] and Turnovsky106].
16 Again, the proof can be found in de la Fuef89].
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conditions that determine the arbitrary constant. The irgiven by the fact that the

initial value of is given:
¢ (0) = ¢ = Divy, — Doy,

The second condition is given by the restriction betweerpjuariables (29) evaluated
at timeo:
A(q(0) /¢ (0))m (0) L(0) = K (0) p(0)"/" 7,

whereq (0) andp (0) are functions ofD; andD,. The above is a non-linear system of
two equations in two unknowns, so it may have one unique,iph@lor no solutions. In
the case of no solution one would have to conclude that tlaelgtstate is not stable. In
the case of multiple solutions one would have multiple elguim paths converging to
the steady state. Numerical simulations suggest that &ursble parameter values the
system admits a solution.

Example

Assumea = 0.33,¢ = 06,9 =1, = 1,6 = 0.02, B = 0.233, p = 0.0133,
¢ = 0.05. Then computations show that the eigenvalues of the Jatalithe steady-
state are approximate[§.14803942, —0.031984309 + 0.0537783381,
—0.031984309 — 0.053778338i,0.019592400], thus the system is saddlepath stable.
Furthermore, on the balanced pathC' = 0.025, andr = 0.015. Note that these
parameters imply a rate of growth of 2.5%, an (riskless)ragerate of 1.5%, a rate
of population growth of 1% and life expectancy of about 75rgedhus, although this
choice of parameters is purely for illustration, they do eaasonably close to stylised

facts for the US economly. We emphasise, though, that these parameters are chosen

17 We emphasise, though, that these parameters are choséy winfipstrate the possible dynamics in
this model (and in the next section the possibility of dymamefficiency), we do not claim that there
is any strong evidence that these are empirically sound.leddt some of the parameters, though, are
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simply to illustrate the possible dynamics in this model(anthe next section the pos-
sibility of dynamic inefficiency), we do not claim that thaseany strong evidence that
these are empirically sound.

To illustrate the dynamics along convergence towards treedgtstate, we assume

that at time0 the stock of ideas is at a level compatible with balanced trptaut the
capital stock is 10% lower. We compute the path of the statpmariables. (¢), ¢ (¢),
q (t) andp (t), and the implied path for the aggregate variables. Figureshows the
growth rates for per capita consumption and capital stockfanthe stock of ideas,
m (t). Initially, a larger proportion of the labour force is allged to the final good
sector than in the LR which allows the economy to accumulagetal faster, at the
expenses of a lower accumulation of ideas. Over time thotighgrowth rates of all
variables converge to the long-run values, although withgizd oscillations.

The careful reader will have noticed that in the exan@j& = Y /Y > r. This

proves the following proposition.

Proposition 1.4 There exist equilibria that converge to a balanced growtthpa

characterised by’ /C' =Y /Y > r.

While the search for restriction on parameters that engheeequilibrium is dy-
namically inefficient has proven fruitless, some intuitreenarks can be offered. In the

long run,C'/C = (1+v/ (1 —¢)) (8 — p). Anincrease in the rate at which individ-

reasonable, to explain our choice further we added theolipfootnote in the same page: "In particular
we have chosen a valueof= 0.33 in order to replicate the well known fact that the ratio of wagrning

to GDP is approximatel/3. The values of3 andp are chosen to replicate population growth and life
expectancy in the US. The choicetf= 0.02 is fairly standard in this type of exercise in the literature
For the remaining parameters we could not find reliable esémand therefore we chose the values
arbitrarily.
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ual labour supply declines, increase the life cycle motive for saving, which tends to
decrease the interest rate, and thus makes it more likely th@ > r.

As discussed in the introduction, in perfectly competitiredels, when asymp-
totically C'/C' > r, the economy islynamically inefficien{Cass [29], [30]). In this
case, the government can use public debt to achieve a Parptoviement (Diamond
[42], Tirole [104]). It is well known that in AK models, sucloficies are feasible, but
not Pareto improving (King and Ferguson [69], Saint-Pa@])9In the next section we

analyse the effect of introducing debt in the model preskim¢his chapter.

1.3 Fiscal policy

In this section we analyse the effects of a simple type of lfigobcy. Let us assume
that the government finances lump-sum transfers to houstehdive a time, 7' (s, t),

by issuing bondsB (t) ,offering an instantaneous rate of returft). New bonds issued
must equal interest payment on old bonds plus the aggregaisfer. The government

budget constraint is
B(t)=r(t)B+T(t), (30)

where the aggregate transtg(t) is T (t) = e [*_ T (s,t) *ds.
We will assume that the government aims at maintaining a fiedat to capital
ratio'®: B (t) /K (t) = b > 0. The presence of transfers changes the household’s budget

constraint to

a(s,t)=(r(t)+pa(st)+1(s,t)w(t)—c(st)+T(s1),

18 We choose this policy because it is consistent with a bathgo@wth path and it is relatively simple
to analyse.
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and the solution still implies (3) provided that househbhlisman wealthh (s, t) is

redefined as
+w v
h (Sv t) = / [l (5, U) w (U) + T (57 U)] e J; [T(H)er]dﬂdv
t

to include the present value of government transfers. Rigetne same steps as in

section 1.1.1, one establishes that (9) holds, wherea®@nhes
A)y=r®)At)+w@®)L{#)+T(t)—C(1). (31)

The transfefl (s, t) has the effect of increasing an individual’s human wealtlowH
ever, since all individuals have the same marginal propgtsconsume out of wealth,
(0 + p), the way the aggregate transfer is distributed has no coesee for the evolu-
tion of aggregate variables, although it matters for welfar

There are now two types of assets in our economy, capitak,sféand public
bondsB. The financial market clears # (t) = K (t) + B (t), hence we can write (9)
as

g—gg =(@rt)—0+B—p+te)—(0+p)(B+e) <g—((;))+g—g;) :

Just repeating the same line of proof as for proposition dadll@mma 1.2, one obtains

the following results.

Proposition 1.5 The dynamics of the economy are described by the of diffakent
equations given by

(0 +p)(B+e)
u(t)

(”“%) ‘p“”u(tﬂ ult),

w(t)=|a*p(t) —0+B—p+e—
(32)

and (26)-(28), where the variables are defined as in propwsit.1.

Proof See section 1.6M
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Again, the existence of a unique balanced path can be proven.

Proposition 1.6 The system (32), (26)-(28) always admits a unique steatly sta

with~v, A, z, v > 0.

Proof See section 1.6m

Remark. When = ¢ = 0, that is when no new households are ever formed,
equation (32) is identical to (25) whatever the valué,ahe debt to capital ratio. As
one would expect, fiscal policy has no effect on the equiliiriallocation, Ricardian
equivalence holds (cf Buiter [25]). Note also that any vabfié is sustainablebut
high values ob will be associated with negative transfers. Manipulatib30) gives
T(t)/B(t) = (K (t) /K (t)) —r (t) in a balanced growth path. It will be shown below
that ash increases, the long-run valueoincreases, whereas the growth rate of capital

is unaffected, so eventually the long-run value of the fiemsill be negative.

1.3.1 The effect of an increase in.

We now wish to analyse the impact of an increask ibet us assume that the economy
is initially in a balanced growth path, and that the governtsaiddenly and unexpect-
edly increases marginally. By continuity the old steady-state will be iretheighbour-
hood of the new one. To simplify expressions, assume theypdfiange occurs at time

t=0.

Proposition 1.7 The effect of an increase inis to increaseu, ¢, ¢, pand\. In

particular
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dp _ Ou

A

dg  « @

%_1—a8b>0’
N Q-ot-a) s
b (1-¢)(1-a)g+y(B—-padb "~
a¢ Y (8 —p) oA ¢ 3>\>0.

b (1—¢)s(1—N"Tab  1-1db

Proof. Following the steps in the proof of proposition 1.6 it canilyas
be established that an increaseé increases:, which in turn causes all other variables
to increase. The first equality is established by implicffedentiation of (45) the
following ones by differentiation of (46), (38) and (43R

Sincep = Y/K, andu = C/K, u/p = C/Y. Then one can easily séahat
d (u/p) /db is proportional to(p — u) > 0: an increase i causes the saving ratio to
fall.

According to proposition 1.7, the long run effect of an irage in public debt is
to increase and hence the interest rate (remember thata?p, see section 1.6) and
The intuition for this is that as the interest rate increafgsire profits are discounted
more heavily, which reduce the value of an innovation (sesaton (20)). There-
fore less of the workforce is allocated to R&BIthough this does not affect the long
run growth of labour productivity (o/m — (8 — p) / (1 — ¢)), it will affect the level
which will be lower. The overall effect on consumption goguieduction is ambigu-
ous, as, on one hand, the level of labour productivity is kpwat on the other hand,
a larger share of the workforce is allocated to that secta. st\ow with a numerical

example that aggregate output and consumption can increase

18 d(u/p) /du = [pdu — udp] /p* = (p — u) du/p?, sincedp = du.
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We assume the same parameter values as in the example ohsk@j and we
consider the effect of going from= 0 to b = 0.1. We computed the long-run values
for u, ¢, g andp for both values of.. We started by assuming that the economy would
be on a balanced path with= 0 and computed the evoluti¢hof C (¢) and K (¢) if
the government keptat0. We then computed the adjustment that would ensue an an-
nouncement thdt is to be raised once and for all fo= 0.1. Figures 1.2 to 1.5 show
the evolution of the transformed stationary variables. Wiaam be noted is that con-
vergence is relatively slow, and characterised by overtshgand damped oscillations
(as one would expect given that the eigenvalues are compBax) of course the im-
portant question is what these dynamics imply for aggregatiables. We computed
the evolution ofC' (¢t) and K (t) under the two scenarios, indicating with a prime the
values of a variable after the policy change. Figure 1.6 shibw evolution of the ra-
tio C' (t) /C (t). As it can be observed, consumption immediately jumps up@aséw
policy is announced and implemented, keeps on growing mastleiffor a long period,
so that the ratio overshoots considerably its long run égisand then converges with
damped oscillations. Remarkably, the ratio always stagsali, indicating that ag-
gregate consumption under the policy change scenario myalarger than along the
initial balanced path. Figure 1.7 is also remarkable. linghtihe ratio between the cap-
ital stock after the policy change and what it would have kseng the initial balanced
path. Somewhat surprisingly, the capital stock after tHeypahange is always higher
than what it would otherwise have been. This observationhasiges how the Pareto
improvement arises not from the crowding out of the capitadls as in Diamond [42],

but through the reallocation of labour, similarly to Oliv{82].

20 Given an arbitrary value fof(0) (1 in our example), the balanced path restrictions deterntige t
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1.3.2 Intuition

What is the intuition behind the numerical experiment? Imagve are on an initial
balanced growth path without debt and< C'/C. If the government announces a se-
ries of transfers for today and the future to be financed by, deluseholds currently
alive will feel wealthier and desire to consume more. In thersrun this is only pos-
sible if more labour is allocated to final good consumptias, i, increases. Since the
initial stocks of capital and ideas are given, the reallocatequires wages to fall and
the interest rate to increase. The first increases labouaxémn the consumption sec-
tor, the second depresses the value of innovation becatuse furofits are discounted
more heavily, thus lowering labour demand (or equivaleatiyry) in the R&D sector.
Both the decrease in the wage rate and the increase in tliesntate tend to depress
the value of human wealth, (¢); however, at least on average, this must be more than
compensated by the increase due to the transfer, sinceroptisn has increased. In
the short-run the lower share of labour employed in R&D redube rate of techno-
logical progress, so () is lower than it would have been. However this is more than
compensated by the increase in the amount of labour, so tiyatitois always larger.
This allows consumption to be permanently higher. In thglam the growth of labour
productivity returns tdg — p) / (1 — ¢), although the level is permanently lower.

We have thus shown that transfers perpetually financed waihing bonds can
increase aggregate consumption, as in Diamond [#&}ever, there are important dif-
ferences. Whereas in Diamond’s model the fundamental @nolid one of overaccu-
mulation of capital, and the policy works by lowering the italpstock per capita, here,

despite higher consumption, the per capita capital stoa&tisallyincreasedoy the pol-

initial values forK andm.
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icy change. There are here two types of capital, physicatala@ (¢) and the stock of
ideas,m (t). The decrease in the saving rate affect not only the accdionlef physi-
cal capital, but through its effect on the allocation of lahat affects the accumulation
of ideas. In other words, there is a composition effects dt agea size effect. As
observed by King and Ferguson [69], economies with sevegatal goods may be in-
efficient not only or even not at all because their capitatlsie too large, but because
of its composition. But in the types of model analysed by Kamgl Ferguson, policies
that affect the saving rate would affect the size but not taposition of the capital
stock, and hence cannot increase aggregate consumptitire tmodel examined here,
however, compositiors affected, and aggregate consumption can be larger. Ckbgsly
is true for most R&D based models exhibiting scale effeats il those model the al-
location of labour affects the long-run growth ratieere the improvement in aggregate
consumption cannot be sustained, as it will affect negigtithee long-run growth rate,
which will eventually offset the gains coming from allocggimore labour to consump-
tion goods production, as in Olivier [82]. In non-scale migdes ours, the long-run
growth rate is not affected, and a sustained increased ireggte consumption can be

achieved through Ponzi finance.

1.4 Tax on profits

In the previous section we argued that the Pareto improveatenrs to the reallocation
of labour. One may therefore expect that other policies ithiiice a reallocation of
labour will have similar effects. One example that confirns tintuition is a tax on

profits. In our model the only sector that makes positive [gaf the intermediate
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goods sector, which is -as it will be recalled- assumed molstally competitive.
Let then assume that the government imposes a taxprofits and rebates the proceeds
lump-sum to households. Then the maximum a producer will bewvilling to pay for

a patent (and therefore the patent’s price) is
+o0 v
P, (t) = / (1—7)m (v) e J rmdegy,
t

which should be compared with (20). Then the no-arbitragelitmn (21) becomes

r(t):P +(1 7')7r(t).

3

—~
~+

~—

Assuming a balanced budget, the aggregate transfer must be

T(t)=7m(t)m(t)

Following the same steps as in section 1.2, we find that thardigs of the econ-

omy could be studied by studying the system of differentipiagions (25), (26),

q(t) = {0-a)A=9)(B-p)—ou)+al—-a)(1-7)q(t)+p(t))

(1— ()" q(t)
+(1-a)(1-9) fo (t)} D)
and
p0 = (ST G- p @ - (1) E0) )

—(a+(1—a)E(t))u(t)+a(1—a)2E(t)(1—7')q(t)

(L= p (1)
—b(1 — ) — ZA7.
note the appearance Of — 7) next tog (¢). Using the same initial numerical example
as before, we studied numerically the effect of the intréidncof a tax. The result-

ing dynamics were very similar, with both aggregate condionpand capital stock
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increasing at all time when compared with the original be¢ahpath without policy
change.

We think that similar forces are at play here and in the exardcussed in the
previous section. Here the tax reduces future profits andeéhire value of patents. As
a consequence labour demand in the R&D sector falls. Theruand future transfers
make household feel richer, and hence increases their defoartonsumption and
capital goods. The increase demand for final goods is met drgasing the labour
force in that sector.

As an alternative policy, one may think of taxing the outputh® R&D sector.
Suppose the government imposed a tax proportional to thee\aflthe R&D output.
Then R&D firms would earril — 7) P, (t) m (t). Then equation (19) that gave us the

labour demand in the R&D sector would become
w(t) = Py, (t) (1 = 7) 6LY 'm (£)° .

Therefore the effect of introducing the tax is similar to #ffect of a reduction in the
technological parametér However thdong runvalue of \ is independent of, as it
can be verified from the derivation of equation (47) in thegbaf propositions 1.2 and
1.6% In fact the long run share of labour allocated to R&D is indegent fromd in
the original model by Jones [61]. Therefore in terms of tla@$formed variables, the
policy has only transitionary effects term of the original variables, the economy will
converge to a balanced path with a lower labour productigitgl (i.e. a lowern, due to
the lower labour force in R&D during the transition). Agairound that introducing
a tax can increase consumption at all times, although ga#wély the magnitudes are

smaller, due to the fact that the reallocation of labour iy temporary.

21 The parametef does not appear in any of the equations used to derive (19).
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1.5 Conclusions

In this chapter we modified the model of Jones [61] by intradgi©verlapping gener-
ation of households as in Blanchard [21] and Buiter [25]. Wavpd that a balanced
path exists, and showed that the dynamics can be repredsngesy/stem of 4 stationary
transformed variables. It was not possible to find genenaditimns that guarantee that
the equilibrium is locally determined, but numerical siatidn confirmed that for plau-
sible parametersitis so. Those simulations also showédanaergence to steady-state
are generally characterised by damped oscillations. VWeshiewed with numerical ex-
amples that the balanced path may be characterised by #neshtate being lower than
the growth rate. We then analysed the introduction of defataited lump sum transfers
and showed with a numerical example that it may induce highesumption in every
current and future period. In this case it is possible forgternment to devise a trans-
fer scheme that increases the consumption of all housekely eeriod. This shows
that the policy may be Pareto improving.

Crucial to our result is the fact that in this model Ricardeuivalence fails be-
cause of the overlapping generation of unconnected holgselsw that the debt policy
affects the saving behaviour of agents. As in the neoclalssxogenous growth litera-
ture and in contrast to endogenous growth models with legrhy-doing externalities,
the policy affects the long-run interest rate but not thglomn growth rate. However, in
sharp contrast with the exogenous growth literature, thetBamprovement occurs not
through crowding out of physical capital but through theastong out of ideas obtained
through a reallocation of labour caused by the change iifgeices. If the realloca-

tion of labour were to be prevented, for example by hypo#uegithat at each moment
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in time two type of workers are born, some with the ability torlwin R&D and some
with the skills to work in the consumption sector, the modelld become very sim-
ilar to a standard exogenous growth model the life-cycle motif for saving is high,
over-accumulation will occur, and a debt finance transferlwa Pareto improving as
in Diamond [42] and Blanchard [21in this case, though, the improvement would be
obtained by reducing physical capital accumulation, waliléhe example above were

characterised by an increase in physical capital accurnlat

22 Growth would not be any more exogenous than in the presesibveibut preference parameters and
policy changes would not effect nor the level nor the growfttabour productivity, nor in the short nor
in the long run.
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1.6 Proofs of propositions in chapter 1

1.6.1 Proof of propositions 1.1 and 1.5

We prove proposition 1.5, the proof of proposition 1.1 isniieal once one imposes
b=0.

First note that in a symmetric equilibrium,
Y () =m(t) Ly (1) “a ()" = K" (m(t) L, (t))"", (33)

which impliesy’ (1) /K (t) = (m (t) L, (t) /K (£))'~* = p (t). Then using (16)
r(t)=a’p(t). (34)

Then (23) becomes

Ct) _ (0+p)(B+e)(1+D)
C—(O—(ap(t)—9+5—p+€)— o) . (35)
The market clearing condition (22) can be written
K@) Y@t C@) _
K(t)—K(w—K(t)—p(t)—U(t), (36)
and so
B _ (a2p) =0+ p—p+e) - CERELIAED ) 4y,
u (t) u (t)
which proves (25).
Next, the labour demand equations (11) and (19) yield
_(1-aY () (1-a)YO) L. _ (1-a)g®Ln®™
Li="—, &) P.)m@)m@®)* 0 m{®
or
Lit) _ (=a)g®)Ln®)™ o -
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The latter can be written using (24) and the definitior\ 6f) as
t _
_—;1()(1—)\@))1 v (38)

It can be easily shown that this last equation always hasiguesolution\ (¢) € [0, 1],
and thus it implicitly defines\ (¢) as a functiof®? of ¢ (¢) /¢ (¢). Let us indicate this

function with A (¢ (¢) /¢ (t)). Then log-differentiating with respect tothe identity

A(t) = A(q(t) /C1)),

Implicitly differentiating (38), we can show that the elagy of A with respect tay/(

(the term in square brackets above) is

A(g(®)/¢(t)a)  1—-A(?)
Alg() /¢(8) (1) 1—wA(t)

A _ (1-20 ) (i Lo
6~ (=) <q<t> c@))' )

Next, with (18) and (24)

Therefore

— =5(1=X()"C@), (40)

and since by the definition @f(t), ¢ (t) /¢ (t) = WL (t) /L (t) — (1 — ¢) 1 () /m (1),

SO 8o — (1) 61— A
Co "V BP - =9 -am) ),

~—

which proves (26).

From (17)

7 (t)
B (1)

=a(l—a) =a(l—a)q(t).

23 It can be shown that this function is strictly increasing atrittly convex.
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Then the no arbitrage condition (21) can be written (usirh)(3

=a'p(t) —a(l—a)q(t). (41)

To prove (27) and (28) we note that from (10) we have

v _me Ko
v m@ wm Y

A) L)
oRs101k (42)

|

b0 _ VoK) 3

() () )

Now, equations (39), (42), (43) and (44) constitute a systérfour equations that
can be solved foh () /A (t), Y (t) /Y (t), p(t) /p(t) andq(t) /q (t) as functions of
K (t) /K (t), i (t) /m (t), { (t) /¢ (t) and P, (t) /P, (t) for which we found expres-
sions above. In matrix form the system can be written

—E (1)

1 0 0 —E(t) A(t) /(¢ o

—(1—=a) 1 0 0 YEt%Y((t)) _ %wﬁéﬂl—am—p)
0 -1 1 0 pt) /p(t) —K(t) /K (t)
o 10 1 q(t) /a(t) — ) —

whereE (t) = (1 —A(t)) /(1 —¥A(t)). Solving the system and rearranging we find

(27) and (28).m

1.6.2 Proof of propositions 1.2 and 1.6

We prove proposition 1.6, the proof of proposition 1.2 isiigal once one sets= 0.
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First note that in a balanced path,/m = ¢ (5 —p) / (1 — ¢); to see this, call

gm (t) = 1 (t) /m (t), and use (18) to write

gm (t) L m
—wL—m—(l—éﬁ)E,

Im (1)

then the result follows from the facts that in a balanced plaghgrowth of the rate of
growth of m is constant (i.eg,, = 0) and employment in research grows at the same
rate as population.

Furthermore, in a balanced paffi/Y = K/K = C/C. From (33),Y/Y =
(14+/(1—¢)) (B —p), which is the common long-run growth rate alf aggregate

variables. Then (35) becomes

(P’p—0+B—p+e)—

O+DE+0+Y (HT%) (5-7).

Similarly (36) gives

p= (1+%) (8—p)+u

The last two can be used to computandw. Substitute the latter in the former:

0+ + 1+0
u 1—9¢
(45)
Clearly the left-hand side is a continuous, strictly insiag function ofu, taking values
from —oo to +00 asu goes from) to +o0, whereas the right hand side is a constant
uniqueu > 0 must exists that satisfies the equation. Oncgfound, one can compute

p, which will also be strictly positive.

Next, from the definition of, ¢/q = 0 implies
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which establishes

But then (41) reduces to

q:Lp>O. (46)
11—«

Next,m/m =1 (8 —p) /(1 — ¢) and (38) yield

(1-0)(1-a)q

T a0t v G- “n
which gives the long-run € (0, 1). Finally to find¢, setp/p = 0 to find
S(1=N"¢—p+u+pB—p=0,
or
c=p=u=B-n __ ¥B=-p _, (48)

5(1—=A\)Y (1—¢)d(1—-N)"
where we used —u = K/K = (1+ /(1 — ¢)) (8 — p) in the second equalitym

1.6.3 Proof of proposition 1.3
By (11)

w(t)=1-a)Y([t)/Ly(t)=1—a)Y(t)/ (A1) L))
The economy is assumed to converge to a path whéteis constant asymptotically.
Then the growth rate of wages converges to

w(t) Y (t)

Y
w—(t)_)Y—(t)_(ﬁ_p):ﬂ(ﬁ_p)’

where we have used proposition 1.2. From the definitio®/dt), (5), it is clear that

convergence requires

(U
m(ﬁ—p)—r—p—€<0.
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From proposition 1.2('/C = (1 + v/ (1 — ¢)) (8 — p), which using (35) can be writ-

ten, after rearranging, as

O+p)(p+e)(A+0)

< 0.

£—¢(ﬁ—p)—r—p—€=—9—p—

Hence convergence @f (¢) is always ensuredl



2 Two-sector Model

In this chapter we develop and analyse an overlapping-géoes competitive
general equilibrium two-sector model for a closed econoifihe two sectors produce
consumption goods and capital goods. We first analyse ¢onglifor existence and
uniqueness of a perfect foresight equilibrium. We thenudisarbitrary fiscal policy
with proportional tax rates and investigate whether snsthprimary deficits are sus-
tainable. Finally we investigate optimal policies for these of constant elasticity of
intertemporal substitution. We show that the fiscal insentrconsidered are sufficient

to decentralise the first-best optimum.

2.1 Introduction

It has been long recognized by economists that fiscal poaayhave effects on growth
rates in the long-run. This is one of the main contributionth&f endogenous growth
literature. An important part of this literature devotes dtttention to the role of the
government in correcting, through a system of taxes anddiebsinefficiencies due to
the presence of externalities (Romer, [92]).

Another widely investigated issue is the optimal structfreax rates. Both in the
case of unproductive public expenditures and in the caseaafystive public expen-
ditures, attention has been devoted to establishing themablievel of taxation and its
composition. When public spending is assumed to financeguabhsumption, most
papers argue that taxes are detrimental to growth and intaxes more so than con-

sumption taxes. Jones and Manuelli [62] show that taxes migtreduce growth but
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can even prevent the possibility of sustained growtkbelo [88] also concludes that in-
come taxes reduce the growth rate whereas consumptionttaxesevel but not growth
effects. Devereux and Love [41] also support the view thatine taxes are detrimental
to growth, and so do King and Rebelo [70].

A different view is taken in model such as those in Barro [18¢l &urnovsky
[105], where productive public expenditures are allowedrr8 establishes the exis-
tence of a sort of “Laffer” curve, with the effect of an incseain taxation on growth
being positive below a certain critical value and negathergafter. In models with
congestion, the optimal capital income tax may be posifives is because when con-
gestion is linked with the size of the private capital stoelative to the size of public
services, the tax on capital acts like an user fee and (at peeBally) induces firms
to internalise the externality that their capital accurtialaexercises on other firms
through congestion (Barro and Sala-i-Martin [14] and Tusky [105]).

Most models consider balanced budget policies only, rudimigdeficit finance by
definition. Others, like Judd [67], allow for deficjtbut in his paper, which assumes
a demographic structure with infinitely lived agents, theegament cannot sustain a
policy with a positive net present value of the fiscal defi¢towever in the case of
overlapping generations, it might be feasible for the goresnt to sustain permanent
deficits. This means that in an overlapping generations hgmlernment fiscal policy
is not necessarily subject to the constraint that the ptesdune of expenditures must
be equal to the present value of taxes. This leaves spacalydbothe possibility of a
continuous roll-over of the debt, but even to perpetual prindeficits.

The overlapping generation model of Diamond [42] has beem@ortant tool

for the analysis of fiscal policy- see for example Auerbacth Katlikoff [7] - but has
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received far less attention by the endogenous growth fitegawhich focuses more
often on the infinitely lived representative agent. A nadigle exception is Saint-Paul
[96], who considers an AK model with overlapping generatiooontinuous time a la
Blanchard [21].

We believe that the more common infinitely lived agent framwimits the set
of feasible policies in an important way. In this setting pesent value of expenditures
must equal the present value of taxes, “Ponzi schemes” afeasible. With overlap-
ping generations they are at least in principle feasible Sustainability in endogenous
growth models of a simple Ponzi scheme (a “Bubble” in the s@fgirole, [104], and
O’Connell and Zeldes, [81]), has been investigated in Gnassand Yanagawal[60],
King and Ferguson [69] and Azariadis and Reichlin [10]. Alése papers conclude
that although feasible, policies with a positive presehie@f debt are always growth
and welfare reducing. In all these papers, however, thare @ublic investment.

There has been growing interest in the issue of the destyabiimposing restric-
tions on government budget deficits. This is not surprisinges in reality, sustained
deficit policies are more the norm than the exception. Gmignd Shell [56] show
that even though such constraints do not matter if the govent can use lump sum
taxation, they do reduce the set of feasible allocationsliy proportional taxation is
allowed. Their paper however, considers an exchange egpomathout production,
and has nothing to say on long-run effects on growth. In tlogerous growth context,
Uhlig [107], Buiter and Kletzer [26] and Chalk [33] analydbg sustainability of per-
petual primary deficits. None of these papers, though, dengindogenous growth and

productive public expenditures.
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We present a model in which the government supplies a pubbic gwhich af-
fects the productivity of private inputs. All markets ars@sed competitive and there
are two sectors: the consumption sector produces the gabeéiers the utility func-
tion; the capital sector produces capital that can be used in ptioduwe also assume,
for simplicity, that the government can costlessy transfgrivate capital into public
capital®* The public good acts as an externality in the latter sectut,iis assumed
to be subject to congestion. Both from the aggregate poiniest and the point of
view of the individual firm, the technology has constant nesuto scale. The consump-
tion sector adopts a technology with the usual neoclasgicglerties. The assumptions
of the model guarantee that sustained growth is possibleavitonvex technology. In
this sense the model is closely related to Jones and Mafé2]land Rebelo [88], al-
though this way of introducing public capital in a two-seatwdel is -to the best of our
knowledge- novel.

We first analyse the dynamic equilibrium under arbitraryicbf the fiscal in-
struments. As long as the saving rate is not too responsiteetonterest rate, the
dynamic equilibrium is unique. There are no transitionalayics, the economy set-
tles immediately on a balanced growth path. In this respexctiynamics of the model
resemble those of the model in Glomm and Ravikumar [57]. #l$® shown that in
this economy the interest rate exceeds the growth rate. elingnates the possibility
of the government engaging in "Ponzi finance” (O’Connel aett&s [81]) in this re-

spect our models differs sharply from most basic endogegrveth models, for which

24 Orin other words, we are implicitly assuming that public @niglate capital are not physically differ-
ent, it is where they are allocated that matters. This iglglea oversimplificationone could introduce
in the model a technology to transform private into publipita, if this technology has also constant
returns to scale, most of qualitative results would not geamuch.
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it such schemes are typically possible (Saint-Paul [96fs&man and Yanagawa [60]
and King and Ferguson [69]).

Next we examine the first best allocation and the optimal fisolicy. For the
constant intertemporal elasticity of substitution wilfinction, we prove that an op-
timal allocation exists as long as the maximal growth ratadastoo high, and it is
characterised by a constant growth rate (i.e. again thera@transitional dynamics).
We then show how the first best can be decentralised. Thisamplaintaining an op-
timal ratio of public to private inputs in the capital sectbhere is more than one set of
taxes and borrowing policies that decentralise the firdst bi#s concentrate on the case
where the government use different proportional taxes piialaand wage income. We
show that -due to the overlapping generations framewosk-offtimal capital income
tax is not zero (analogously to Erosa and Gervais [50] andirast with Chamley
[34]).

In the next sections we describe the environment, the abgscand constraints of
the players and the equilibrium concept adopted. The péagre: the firms in the two
sectors, the infinitely lived government and the individecahsumers. We show that if
the rate of saving is not too sensitive with respect to thEmézrest rate, then for a given
(stationary) fiscal policy, the equilibrium, exists, andsitunique. For more general
preferences, multiplicity of equilibria cannot be ruledt.oection 2.3 discusses the
sustainability of primary deficits in the long-run. Sectdd analyses the intertemporal
allocation that would be chosen by an all powerful centrahpk. Section 2.5 shows
that the first best optimum can be decentrilised with appatgtax/subsidies and public

debt. Finally section 2.6 concludes.
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2.2 The model

We consider a two-sector growth model with overlapping gatnens. Time is discrete
and indexed witht = {0, 1,...}. There are two kinds of private goods: a consumption
good, which enters individuals’ utility function, and a @apgood, that is not an argu-
ment of the utility function, but is necessary to producedbesumption good. Except
for an initial generation that lives only one period and isrbwith an endowment of
capital and government bonds, agents are all identicaligaddr two periods. They
are endowed with one unit of labour -that they supply ineta8ly- in the first period of
their life and none in the second. Population grows at a entnsaten > 0. There is an
infinitely lived government that supplies a public good. sThublic good is produced
with capital goods and produces services that are essamtibé production of new
capitaf®; however these services are subject to congestion. The rdodsInot feature
increasing returns to scale in any of the sectors nor at tlatpr or social levels. The
technological set is conveéX.Public expenditures are financed with proportional taxes
and public debt.

There is no uncertainty in this model, and we assume thatadrshave perfect

foresight.

2.2.1 Agents

We shall call the set of agents born at timg 1 asgenerationt. For time0, we need
to distinguish between the set of agents 'born young’ (i.eowvill be alive at timel)

who we will callgeneration), and those 'born old'generation -1

25 To the best of our knowledge, public capital has never betodaced in a growth model in this
particular way.

26 In fact one can easily show that the production set is a cooweg.
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Except for generation -1, which is born old and is endowed a4t initial amount
of capital K, > 0 and government bonds, > 0, each individual is endowed with one
unit of labour when young, none when old. Each agent, theapl&s its endowment of
labour to firms, earns the competitively determined wagepart of which is consumed
at the end of the period. The remaining is invested in bondscapital. Consumption
in old age is financed from interest earnings from this inwestt. Generation -1 simply
consumes interest earning on its endowment.

We assume that the preferences of agents born atttimé are described by a

utility function U; : R2 — R

U =u (Cty> Ct0+1) , VE>0; (1)

except for generation 1, who has an utility functiot/_; : R, — R

Uy =u_q(c]);

wherec{ is consumption at timeé of an agent of age (j = v, o0, wherey stands
for young, o stands for old). We assume that.,.) is an increasing, concave utility
function, withdu/d¢’ — —oo for ¢ — 0, anddu/dc’ — 0 for ¢ — +o0, j = y, 0
and thatc} and¢y,, are normal goods. Similarlgu_,/0c§ — —oo for ¢§ — 0, and
Ou_1/0c§ — 0 for ¢§ — +o0. The only further assumption we require is that)
is homothetic. Although it could be relaxed, this assumptpeatly simplifies the
analysis of the dynamics of the model.

Let us indicate withR; the grossreal interest rate, withw, the real wage, with

7+ the labour income tax and with the interest income tax at tinie Then the budget



2.2 The model 57

constraint for individuals of generati@gn> 0 is

)
c] + < (1—7¢)wy, Vt >0; 2
t (1 o 0t+1) Rt+1 ( t) t ( )

whereas individuals from generatierl face the constraint
g = (1 —00) [RoBo + Ro (Ko — Go)] /L1, 3)

where(K, — Gy) /L_, measures the capital endowment owned by a generatian-
dividual: K, is the aggregate capital stock at tiraeof which G is owned by the
government By is the initial stock of public debt, of which each individuablds a
fraction1/L_;. Young agents will save as to maximizg subject to the above con-
straints. By the homotheticity assumption, the young geier’s saving rate depends
only on theafter taxreal interest raté&. Calling s ((1 — 6;,1) R;+1) this saving rate, we

have

¢f =[1—=s((1=0u1) Re1)] (1 — 71) wy,

¢fo1 = (1= 0ps1) Regas (1 = Op41) Rega) (1 — 74) wy.

For anyR,.; > 0 the assumption that marginal utility goes to infinity as aonption
goes to zero ensures that the solutions to the agents’ pnoskeuch that ((1 — 6;.1) Ry41)
€ (0,1) YR, > 0. Young agents demand assets to ensure positive consuniption

their old age.

27 A sketch of the proof is as following. The first order conditfor a max implies that the MRS between
c¢{ andcf,; ought to be equal t01 — 0;,,) R;+,. Homotheticity implies that the MRS depends on the
cf /g, ratio only. Then we ot)_tain;’+1/c§ = f (1 = 0441) Riy1) for some functionf. Substituting in
the budget constraint we obtaifi as a function of 1 — ;1) R; 1 only, as desired.
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2.2.2 Firms

There is an indetermingfenumber of firms in both sectors. Firms in the consumption
good sector produce the final output combining capital abdda Firms in the capi-
tal good sector need to employ directly only capitedwever the level of public capital
supplied determines the level of total productivity. All rkats are assumed perfectly
competitive. Young individuals supply labour inelastigalvhich means that the units
of labour supplied will always be equal to the number of imdinals in the young gen-
eration. To simplify expressions, we also assume compégigat depreciation in both
sectors. We use the consumption good as numeraire. We nanlgesach sector in

turn.

Consumption good sector

The consumption goody;, is produced combining labour and capital. We assume a

Cobb-Douglas functiof?
Yy = AHP L, (4)

whereH, is the amount of capital anfl; the labour employed at time A € (0, +00)
anda € (0,1) are technological parameters. Firms maximize profits takactor
prices as given. The price of a unit of capital-jsthe price of a unit of labour is),.
Then profits ar&’; — r, H; — w; L;. Profit maximisation implies that firms will employ

capital and labour so that their price equals their marginadlucts

Ty = aAHf"ILfO‘, (5)

28 Because of the assumption of constant returns to scale.cs@e. b

29 In fact an argument similar to the one in corollary 3.1 of Eis[b3] applies here, so the Cobb-
Douglas case is the only one compatible with long run grongmfthe class of CES function.
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wy=(1—a)AH}L;“. (6)

Capital good sector

The only private input in capital good production is the talpgood, indicated byx;,.

The production function is assumed linear for simpli€ity
K1 = M X, g1, (7)

whereK,  is the capital produced, capital that can be used in the mexighto produce
the consumption good or more capitgl.is theflow of service from the public good,
and is considered exogenous by producéfsc (1, +o0) is a technological parameter.
Indicating with p; the price of capital in terms of the consumption good, praiies

given byp, M X;g; — r: X;. The profit maximization condition yields
re = peM gy (8)

Equations (5) and (8), imply

B aA
Mg,

P Hp 'L ©)

The price of the capital good is proportional to thievate marginal rate of transfor-
mation between the capital good and the consumption goosholald be noted that
the price of capital is inversely proportional to the caf@@our ratio in the consump-
tion sector therefore as the economy grows the price of the capital geodedses.

This property of the model allows for sustained growth. let &afeature of overlapping

30 It could be a more general functidfi (X, L¢; g;); as Rebeld88] and Fishe[53] showed, what
is necessary in order to obtain sustained growth is that dineaccumulated factor (labour here) is not
necessary in production, and that the marginal produgtigver falls below the depreciation factor (that
we assume to be 1). That is what we need'i6X;,0;¢g:) > 0 andlimg, ., OF/0K; > 1. To have
growth in per capita variables, one nedasy, ... OF/0K; > 1+ n.
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generations models is that every period the whole capibakstnust be purchased by
the young generation, whose only source of income is wageregarlf the production
function in the consumption good sector is concave, as thaauy grows, the ratio
between wages and capital stock goes to zero. Unless thegiraapital declines suf-
ficiently rapidly, there will be a point in which wage earningre not sufficient to buy
the capital stock, thus putting a limit to growth. See Figb&j for a thorough discus-
sion of these issues. Note as well, that in this model, theepof capital is inversely
proportional to the stream of public servicegsthis is because a higher level of public
provision increases the productivity of the capital gooct@e thus decreasing the price
of its output.

As explained in the previous paragraph, sustained growghires the price of

capital,p,, to decrease over time, i.e,/p; 1 > 1. Now, using (9)

Dt _ gt+1 {(Htﬂ/Ht)}la
Di+1 gt 1+n 7

(10)

therefore the rate at which the price of the capital good f@dipends proportionally on
the growth rates of public services and capital allocatetieaconsumption sector and
inversely on the rate of population growth.

We now describe the government actions and constraints.

2.2.3 Government

The government provides a certain amount of public gégdAs already mentioned in
the previous section, this public good produces a streamargices,g;, which enter the
production function in the capital good sector. In this semaur analysis differs from
the large part of the literature that consider public exjtenels as a pure waste, i.e.

goods that do not enter either the production or the utilityctions. It is also different
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from some more recent approaches that are also cast in seclior models. In those
models, for example Lin [72] or Judd [67], the capital goodni®rpreted as human
capital, and it is inseparable from labour. This impliest e servicefrom human
capital is tradable, but not human capital itself. That gsialis interesting because
it does capture one activity that governments typically arklon, that is provision
of public education, but it is ill-suited to analyze diffatassues, as for example the
provision of infrastructures. In this case it seems more@mmte to assume that the
public expenditures benefit the production of market goods.

The public good is made out of capital good, and for simpliere assume that
one unit of public good is produced with one unit of capitabdat would be possible to
consider a more general specification in which public catproduced with a given
technology employing private capital and possibly lab@s long as this technology
has constant returns to scale, the results would not gtinadityachange much.

We also assume that there is a certain degree of congestioah we regard,
in general, as quite realistic an assumption. In most cdkegjuality of the service
provided by public goods decreases with the degree of aiiiim (for example, one
generally travels slower the more congested a road is). Bfeftbre assume that =
(G¢/X,)?, with 5 € [0, 1]. We shall indicate the ratio of public to private capital doo

input, G/ X;, with 1,. We can then write
gt = (Gt/Xt)IB = Mtﬁ (11)

The government needs to purchase capital goods to prowdputiblic good. It

finances its expenditures with proportional taxes and #iebihe government can issue

31 Of course this is an important assumption: most of the arsadigpends on the set of fiscal instruments

available to the government. Things would be quite differéar example, if lump-sum taxation would
also be available. Buiter and Kletzf26], for example, discuss how the feasibility of Ponzi finance
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bonds,B;, every periogwe assume that one bond costs one unit of consumption good
and promises to pa,.; units of consumption good at the end of the next period, after

production has taken place. The budget constraint of thergavent is
Biy1 + Ty = Ry By + piGiy, (12)

whereT; are tax revenues. Note that the timing f@refers to when it becomes effec-
tive, not when the transaction occufsr each unit of public capital to be in use at time
t + 1, the government has to purchase one unit of private capitaha ¢; that is why
G,.1 belongs to timeé budget constraint.

Our justification for considering only proportional taxasa common one: al-
though given the assumptions of the model there is nothipgedude the government
from using it, lump sum taxation is generally thought to bétpally infeasible while
proportional taxes constitute the principal instrumentsctual tax systems. Having
said that, since labour is supplied inelastically, the propnal tax on wages is in effect
a lump-sum on the youn®.We believe that allowing for non-balanced budget policies
is interesting, because much of the existing literaturehanlink between public ex-
penditures and growth assumes away deficit finance, withetimankable exception of
Judd [67] and Turnovsky [105]. Cavalcanti Ferreira [31palgparts from the balanced
budget hypothesis, but goes to the other extreme, with aeest

Total tax revenues are given by
Tt = Tttht + Qtn (Xt + Ht) + QthBt. (13)

We can completely describe the fiscal policy with the triptetd,, 11, ); in fact, for given

7, # and y, the budget constraint uniquely determines the amount ofdebt issues

depends on the constraints on taxation.
32 \We will make some further comments on the choice of fiscatumsents at the end of section 2.5.
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necessary, given a sequence of interest rates. We makeafeneble assumption that

there are upper bounds on the government’s ability to tax.

Assumption 2.1 Ty, 0y < 1 V.

Definition 2.1  (Fiscal Policy) A fiscal policy is a sequendg.,, 0, rt}:“:°§ of tax
rates and public/private capital ratio. A stationary fisgadlicy is a fiscal policy such

thatVt > 0, u, = p, 6, = 6 andr, = 7 for some(r, 0, ).

Next we describe the equilibrium.

2.2.4 Equilibrium

An equilibrium for a policy{,, 0, Tt}jjg and initial conditionsKy, By, is a sequence
of quantities{ K, H;, Xy, Gy, By, ¢f, cg}j;g and a sequence of pricé&;, 1, w, p: }, 5,

such that in every period all agents are solving their mazatmon problems, all markets
clear and all factors and goods have the same prices acrokstmidormally, we have

the following definition.

Definition 2.2 (Equilibrium) Given a fiscal policy{ pi;, 01, 7¢}; 5, and an initial
amount of capital(, and debtBy, an equilibrium is a sequendes;, H;, X;, Gy, By, ¢}, cf};Og
of quantities, and a sequen¢&;, r;, wt,pt}j;g of prices, such thatt > 0,

1. G/ Xy = pg;

2. Riy1 = 141 /pe if Byt # 0;

3. X, + H + G, = Ky

4. By = (1 —0y) BBy + pGyyqg — Tyw Ly — 04y (Hy + X3) 5

5.Lis (1 = 0p41) Regr) (1 — 7¢) we = py (K1 — Grg1) + Biya.
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6. {ci’,cfﬂ} solve the maximization problems of generations 0 individuals, i.e.

(¢/,¢0,1) = argmax U, s.t. (2); ¢§ solve generation-1's maximization problem, i.e.

Cg (1 — 90) [R()Bo + Ry (Ko — Go)] /L_l.

7.C, = Lic} + Ly 12 =Y.

8. (Hy, Ly) = argmax [AH?L%’Q —rH, — tht} and X, = argmax [p,M X, g, — . Xy].

The first condition in definition 2.2 simply states that thegmment provision of
the public good follows the fiscal policy over time. The set@ondition in definition
2.2 is an arbitrage conditio. The intuition is simple: a young agent who has just
received his wage and wants to have positive consumptioharfdllowing period,
must decide how to invest her savingsshe buys bonds, for each unit of consumption
forgone, she will receivél — 6,, 1) R, units of consumption next period she buys
capital, for any units of consumption foregone she will ree¢1 — ;1) r,.1/p; units
from the firms. In an equilibrium with positive levels of dedtd capital, the rates of
return of the two assets must be the sathés condition must be satisfied for agents
to be willing to hold both capital and bonds in their portési A negative value of
B; implies that the government owned part of révate capital stockX;; on this it
would earn the same return than a private agent would, hdmceduality must still
hold. Only when there is no public debt, its rate of returnndefined. This condition

implies, using (8), (10) and (11)

(14)

33 The condition has this particularly simple form becausehefassumption of complete depretiation.

In a more general case, with a rate of depreciation [0, 1], it would be the more familiaR;.; =
pr41(1=0)+ri41
Pt '
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The third condition in definition 2.2 imposes market clegiimthe capital good market:
the total stock of capital in the economi;, must be equal to the sum of its uses:
capital employed in the consumption sector, capital emgaddy the capital sector and
public capital. Note that the condition can be rewrittere ik + ,) X; + H; = K.
Furthermore, it will be convenient to define a new variable= H,/K,, that is the

fraction of the capital stock devoted to consumption goaatipction. Then we can

write
Hy = w Ky,
and
1-— Ut
X = K. 15
1+ H t (15)

The fourth condition in definition 2.2 states that the goweent budget constraint
is satisfied. Using the first order conditions (5), (6), (99 @ime production functions

(4), (7), and the above definitions, the expression for tagmaes (13) becomes
T, = [ab; + (1 — @) 7] AuCKELE™ + 0,p Ky
Substituting this last expression in the government budgestraint (12) we obtain
Biy1 — piGir = (1 —0,) BBy — [0y + (1 — o) 7] AuC KL — 0,p Ky 41. (16)

The fifth condition is the market clearing condition for tresats market. The de-
mand for assets is given by the aggregate savings of thentiyryeung,s ((1 — 0;11) Ry11)
(1 — 7,) w Ly; the supply is given by the value of capital goods not purcthdsethe
government plus the issue of government bopd&K;.1 — G;.1) + B;11. The condi-

tion can be rearranged as

Bt+1 — pth+1 =S ((1 — 9t+1) Rt+1) (1 — Tt) (1 — Oé) AU?KtaL%_a — pth+1. (17)
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Finally the sixth, seventh and eighth conditions in defomt2.2 requires all agents
to respond optimally to prevailing prices and the consuampgioods market to clear.

In the next section we analyze the properties of equiljbrigoarticular we will
show that under certain conditions, associated to anystaty policy there is a unique

balanced growth equilibrium.

2.2.5 Properties of equilibria

First note that in an equilibrium, using (7), (11) and (15),

Ky . I —uy B

- M2, 18
K, 1+ 1, Hi (18)
and using (9), (11) and (18),
K = (2% qAue-tprie = 2 1=ty (19)
PR =\, N

It is easier to describe the equilibrium in terms of ratioatttlo not grow un-
boundedly. A convenient way to analyse the model is to digitlguantities by, K, . ;.
Call b1 = Bii1/p:K1. Then dividing both sides of the equationshy;, 1, we can

rewrite the equilibrium conditioti (16) as

biy1 — 11;1“ (1 —u1) = (H/?_)(ult_et)me (20)
— o + (1 — ) 74 HT“tl—ﬁuLt — 0,

where we used the fact tiat

R:B, - Rptfl K,
= t—— t
Pelipn pr K
(1 + ,Ut)

(1—w) "

3 We use the fact that, Gy 1 /pe Kir = (1 — weg1) prpr/ (1+ pga)-

35 The first equality is obtained multiplying and dividing py_, K;; the second is obtained exploiting
(14) and (18).
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and that from (19)

Y,  AWKPLy7Y 14p w
Pi i Pili a 1—wu

Similarly we can write (17) as

Atp)A=-a)A—-7) w

M g _ _ _
b1 T s (1 —wup1) =5 ((1 = Or11) Reya) o 1—u, L.
(21)
Combining (20) and (21) we obtain
. 5((1_9t+1)Rt+1) (1—0[) (1—7_t)+046t+(1—0[)’7_t 1—Ut
bt == t (22)
« (1 — 915) 14 My
Substituting back into (21) we obtain
S(A=0r2) Ryyo) A =1i)) L —a) + 14 (1 — @) + 00 (23)
(1= 0411)
Ut
= 1-a)1- 1-— 1 —
(1 —a) (1 =7¢)s((1 = Op1) Resr) (1 + 1) (=) e
But observing that (18) implies
Hi _ U Ky _ Mﬂtﬁ (1 - Ut) Ui41
Ht Ut Kt 14 My Ut ’
from (14) we have
i L (24)
(v — U 1—a
T () (1 ) (M)
therefore (23) becomes
S((L=b2) Repo) (1 =) 1 — ) + o1 (1 — @) + b (25)

(1 —0¢41)
(1—a)(1—74)s((1—0i41) Rer) Ry

[e3

(1) (M)
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Stationary fiscal policies

Let us first look at equilibria wittstationary policies When the tax rates andf and

the public/private capital ratip are kept constant over time, (25) becomes

s(1=0)Ry2)1—7)1—a)+7(1 —a)+ b

) (26)
_ (=) (1=7)s((1=0) Ru) RET
(L) (M)
or
(=) ) = OO Bed 7 o (a7)

(1+n)(1—0)(Mp#H)Ts 1-7 (1-a)(l-71)

This equation gives a "law of motion” fak,, ;. In studying this dynamic equation, one
should keep in mind thak; . ; is a price, so we cannot take its initial value as given. The
guestion then becomes what, if any, initial values are sbasi with a perfect-foresight

rational equilibrium. The easiest case to analyse is tharitbgnic utility case.

Constant saving rate

If the utility function is assumed to be
U=Inc¢/ +olnc),,

the saving rate is/ (1 + o) = s irrespective ofR, ;. Hence (27) simplifies further to

i = KS+ Tt (1—T§?1—a>) (1+n)8(1—9)}1‘°‘ (M), @9

which is clearly constant over time. Hence in the case ofastaty policy and log
utility, there is only one initial valug?, consistent with a perfect foresight equilibriyim

this unique value is maintained for all
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Proposition 2.1 Assumes ((1 —0) Ryi1) =0/ (1+0) =s VR > 0,and a

stationary fiscal policy such that

s(14 p)
T Oa
[5 + o T T (1-6)

< 1. (29)

Then there exists an unique non-trivial equilibrium. Thagidibrium is characterised

by a constant?;:

R:[(&+(T N Oa )(1+nﬂ1—m}kamﬂﬁf’

S

el su:m .
St T (177)(17(1)} (1-16)
Proof. The expression foR follows directly from (28), that for, by substituting

the result into (24). We must also make sure that 0, hence the condition (29) in the
proposition. ®

Note that the non-trivial equilibrium is characterised bganstant value of,

and therefore constant valuesiofgrowth factor for capital, and aggregate consump-

tion. Therefore there is no transitional dynamics: the eamnstarts in any of the two
equilibria, and stays there forever. We should emphaséaeettistence of a non-trivial
equilibrium does not mean that positive growth is assunedadt if the resulting value
for u is too smaft®, the economy shrinks at a constant rate. It is interestimgpte that

the equilibrium values oft andw are unaffected by the initial level of del,. The

36 Positive growth of per capita consumption requires

MpP (1 —u)

e R
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explanation is that at all times we must have (see (22))

sl—a)(l—7)+abd+(1—a)T 1—u

b= a(l—0) T

At time zeroby = By/ (poKo); By and K, are predetermined, bpg jumps to its long-
run value in consequence of the jumpugfto its long run value.

Finally, looking at (29), we note that an equilibrium williféo exist wheny is
too high or whenr and# are too smajlin both cases the government is trying to run

excessively high deficits. We will return to this point in 8en 2.3.

Variable saving rate

When the saving rate varies with the interest rate, neitieeexistence nor the instability
of a non-zero steady-state for (27) can be established iargenThis is reminiscent
of a general problem with overlapping generations modandard assumptions on
preferences allow a very wide variety of behaviours of tveggfunction, which in turn
allows a large variety of qualitative dynamics to the ecomosystem. (See Galor and
Ryder [55]). Numerical analysis of the specific case of camisntertemporal elasticity
of substitution, always confirmed the existence of an unigusable steady-state for
the dynamic equation (27), and hence the existence of a erequilibrium for the
economy. We also experimented with other arbitrary forngHe saving function, and
generally find a unique unstable steady-state for (27) whersaving rate function is
assumed monotonic (whether increasing or decreasing)limfact as long as a steady-
state exists, a sufficient condition for uniqueness andlildty is that the saving rate is

non decreasing in the after tax interest rate. To see th@idihdifferentiation of (27)



2.3 The sustainability of fiscal deficits 71

gives (at a steady state)

ARy
dRyiyq

Ri= 1
(1+n)(1—0) (Mw)ﬁ] (1 - a)es) ’
wheres; = [ds (.) /d (1 —6) R] [(1 — 0) R/s (.)] is the elasticity of the saving rate with

respect to the after tax gross interest rate. Using (24)asteequation becomes

th+2 . ].‘I‘M 14 1
dRiy1 (1 —0)(1 —u) (1-a)ey )"

Then clearlys, > 0 is a sufficient condition for an unigue unstable steadyestat
However, counter examples are also easy to construct. Wil foases where the
steady-state is still unique, but staptbeen sincery is not given, there is a continuum
of possible initial values and correspondingly a continwafrintertemporal equilibria,
all converging to the balanced path. We found cases where than one steady-state
exist, some stable some not. In conclusion, for a large sgtedérences, technological

and policy parameters, an equilibrium exists and it is uaidtiowever, robust cases of

multiplicity of equilibria can also be found.

2.3 The sustainability of fiscal deficits

In this section we investigate the sustainability of fiscaficlts, maintaining the as-
sumptions of stationary policy and unique equilibrium. Wstidguish between pri-
mary deficits, which are shown to be unsustainable in the tangand conventional

deficits that may be sustainable. Primary deficits are defised

Df =pGrp — Ty,

37 Obviously the case of a logarithmic utility function is a sja case withe, = 0.



2.3 The sustainability of fiscal deficits 72

i.e. the difference between non-interest public spendnatax revenues. Conventional

deficits are defined as
D, = RiB; + piGy 1 — Ty,

that is the primary deficit plus interest spending.

Lemma 2.1 In an equilibrium the government cannot sustain positivenpry

deficit unless it is a net creditor to the private sector.

Proof Calld? = DY/ (p;Ky41). From (16) we have

R By
by = + dv;
o Pl !
we can write (see (20))
1+
i1 = ,ubt +dy.
1—u

In an equilibriumb;,; = b; = b, andd? = d?. Then we must have

(30)

But }—f’i > 1, sob andd? must be of opposite sigrl

In fact ordinary fiscal deficits cannot be sustained eithenedessary condition
for deficit finance is that the interest rate is smaller thanrdte of growth of income
(O’'Connel and Zeldes[81]however this cannot happen in this model. To see this take
(24) and assume that a steady-state has been achievedraRghag the equation we

get

1—u “ 1+p
— Mu®) (1 “ :
R <1+u “) Len i,

But one can easily see that

Yi I—u “
= MuP) (1 *
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and sincg1 + p) / (1 — u) > 1, we must have

Yin — Y

R—1>
Y,

This results contrasts with results typically obtainednd@yenous growth mod-
els with externalities in factor accumulation. In those misdhe interest rate flects
the private marginal product of factors, while the growtieia determined by the social
marginal product. The presence of the externality imples the former is always be-
low the latter. This allow for the possibility that the grdwate exceeds the interest rate,
and thus opens the door to debt finance (Grossman and Yanf&@waaint-Paul [96],
King and Ferguson [69]). In our model, though, this canngipes as shown above,
here the interest rate always exceeds the growth rate. fonergustained deficits are

only possible if the government is a net creditor.

2.4 Optimal allocation

In this section we try to answer the following question: wisdhe optimal fiscal policy?
We start by looking at the solution that an all powerful cehplanner would choose,
and then show that this solution can be replicated by a govenbwith the same policy
tools as the one analysed in the previous sections.

We shall concentrate exclusively on the case of constagttérhporal elasticity
of substitution utility function. It will be shown that in it case the optimal policy is
stationary. In the case of log utility, one can derive cloeth solutions.

Let us assume that the utility function for any agent bormagt is

(), (dn)

= >0 >0
1_/7 1_/7 y , O )
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except for the generation that was "born old”, whose utitgiven simply by (cg)l_7 /
(1 =)

We first need to specify the objective function of the planrbis is problem-
atic because in overlapping generations models, there iifiaity of agents, and in-
escapable trade offs, therefore we must somehow judge healue different distri-
butions. We assume that the planner would wish to maximisalibicounted sum of

individual utilities:

W= +Z(5t< 7+0<Ct+1>1’y) .

olc
o1 1—~

Note thato is the rate at which an individual discount the future, whsr@is the
planner’s discount factpthe two may or may not be the same. The welfare function

W can be rewritten more conveniently putting contemporaséeums togethét

W— Zat((:tl”r ()1_7>. (31)

Y
The constraints the planner faces are

Ly} + Ly} <Y, = AHP L', (32)
Ky < MX}PGP, (33)

X+ H + G, < K, (34)

Ky given. (35)

38 This is only possible thank to the assumption that the iddial utility functions are time separable.
Itis still possible to analyse the social optimum if we reflais assumption, and the solution may present
more complicated dynamics, as demonstrated for a onersaotiel by Michel and Vendit(i78].
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Lemma 2.2 The functionlV is maximised subject to (32)-(35) if and only
if the functionW’ = >,/% 6" (Y;/L:)' " / (1 — v) is maximised subject to the same

constraints, and

g—— ) (36)
L (5)°
1 1
1 o gy
g T G ), @37)
1—y 1
1+(1+4+n)7 (9)
Proof It is immediately apparent that the planning problem cangdh¢ is two

subproblems. The first one is how to allocate inputs acrassib sectors, the second
is how to allocate the consumption sector output betweemyémerations alive. The

second problem can be easily solved: the first-order camditcan be rearranged to

o\ Y
o (c]
[ = -1
5(4) o

which has a straightforward economic interpretation. Hfieghland side is the planner’s

give

marginal rate of substitution between consumption by theecdly old and currently
young One unit of consumption by the young can be converted inton units of

consumption for the old, thus the right-hand side gives theg’s marginal rate of
transformation. Optimality requires the two to be equalingshis condition and (32),
we obtain the sharing rules (36) and (37). Substitutingehrates back into (31) and

rearranging one obtains

- - o = o (Yi/ L)'
W=[¢""+(1—-¢) """ (1+n) ]ga%

Y

where
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Therefore, (31) is maximised if and only if
- +00 Y,/L, 1—y
W= ; 5t% (38)
is maximised.®
A standard method of proof (see Lucas and Stokey [103]) ksit@s the follow-
ing lemma.

Lemma 2.3 Call u* = 8/ (1 — 3) = argmaz (M{%Xf). Assume

I

6 (Mp? ) (14 1)) (14 )70 <1,

A feasible patiY;, K, Hy, G}, i.e. a path that satisfies (32)-(35), maximi$&sif

and only if it satisfies the Bellman equation

W* (K, :max{( Yi/ L )7 + W™ (Kt+1)}, s.t. (32) — (35), (39)

wherelV* (K,) = max 3/ cstWLftV s.t. (32)-(33) andK, = K.

Proof See section 2.78
Equation (39) is the Bellman equation. Applying lemma 2.8,find the optimal

solution, as summarised in the following proposition.

Proposition 2.2 For any~ > 0, the optimal plan is characterised by, =
w Ky, Xy = (1 —u*) K/ (1+ p*), Gy = p* Xy, (36), (37), where* is a constant and

w = p/(1—p6). If v=1(log utility), thenu* =1 —§.

Proof The proposition is proved by guessing that tteue functioniV* (K)
belongs to the family of functions (K,/L;)' ™" / (1 — ~), whereF is a constant to be

determined. Using this guess to find the optipalicy functionfor any £, and then use
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the method of undetermined coefficients to compitd hen the policy function gives

the equations fof;, X;, andG;. In the case of log utility, a closed form solution for
u can be found, fory # 1, we can only show that a* exists, but we cannot give an
explicit formula for it. The details of the proof are in sexti2.7. &

One can note that, i.e. the allocation of capital stock devoted to the caysiéa-
tor betweenX and@, is always chosen in the way that maximises the output of the
capital sector. This is intuitive as any other allocatioll v@sult in less capital stock in
the future, thus reducing the production possibilitiestfar next generations, without
any advantage for anyone currently alive. A second observabncerns the optimal
u*; u determines the amount of capital devoted to the producficormsumer goods. A
higheru means higher consumption today, at the expenses of lowsuogstion tomor-
row. The optimal, depends on the marginal rates of transformation and sutistit
between consumption at different points in time. The foreepends on the produc-
tion functions in the two sectors and the growth of the latsuoply, the latter depends
on the elasticity of intertemporal substitution and thenpk’'s discount rate as well as
the growth rate of consumption. So in generaepends on all parameters in the utility
and production functions as well as on population growthoKilog at (41), it is clear,
for example, that the effect anof an increase id/ depends on the sign af— ~. The
intuition is that an increase in productivity has an incomd a substitution effect. If
1 —~ > 0the income effect dominates, ande versa In the logarithmic case the two
effects cancel out exactlyhen we obtain a very simple closed form solution that re-
lates the optimal to the degree of impatience of the planner only. A similauliesas
obtained by Radner [85]. One can also draw a comparison hétlohe-sector growth

model: with log-utility, Cobb-Douglas production funati@nd full depreciation, it is
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well knownr®® that the optimal saving rate is equal to the product of theadist factor
and the output elasticity with respect to capital. In our eldde elasticity with respect
to capital of the capital sector production function is ynikhus since both the saving
rate in the one-sector model ahd- « in our model measure the fraction of consump-
tion forgone to allow future capital accumulation, theraislear analogy between the
two results.

A final remark is that the allocation of capital between cangtion and capital
sectorsy, is a function of the planner’s discount factobut not of the discount factor
of the households;. The latter does ifluence how the planner divide any given amount
of output between old and young agents (see the sharing(B8gand (37)), but not the
intertemporal allocation of resources. For an analogosisittesee Calvo and Obstfeld

[27] and De La Croix and Michel [38].

2.5 Implementation of the optimal policy

In this section we show that the fiscal instruments consileresection 2.2 are suffi-
cient to decentralise the optimal policy. More preciselg stow that given quantities
{H;, X;, Gy, ¢!, 0}, there exist pricegwy, Ry, p: 1,55, tax rate® {r,,6,} and a se-
quence of debt stocksB; j;g, that constitute an equilibrium. That is any feasible path
is decentralisable as a competitive equilibrium, inclgditviously the optimal path.
Firstly we observe that the factor prices must obey the fifiret’order conditions

(5) and (6), sovt > 0

Ty = aAHtO‘*lLi*O‘,

39 See for example Ljungqvist and Sarggh8] who attribute the result to Brock and Mirm§ia4].

40 It should be noted that we do not impose any limit on the sizb@fax rates. The implied taxes may

turn out to be negative, in which case we interpret them asidials.
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w, = (1 —a) AHXL; .
The price of capital must obey (9), §6 > 0

QAH L

N V7e S o

Then the arbitrage condition in definition 2.2 givgs> 0
Ry = 7“t+1/pt§

note that this leaveg, still undetermined. The tax on capital earning can be ddrive

from the first order condition of a young housetldovt > 0

Uy (Cil‘fl> C?ﬂ)

Uo (Cty7 Cfﬂ) Ryt

9t+1 =1-

whereu, (cf,cf,,) = Ou(cf,cf,y) /O, uo (cf,cfyy) = Ou(c,cf,y) /0cg,,. Note
that agairy, is left undetermined. Then rearranging the household dudgestraint,

we havevt > 0

i1 1
(1 - ‘9t+1) Rt+1 Wy

The sequence of debt stocks is then given by the governmegebuaonstraint

Ti=1—|c +

Bii1 = (1 —=0,) RBy + pGryq — Tew Ly — 041 K.
As we notedf, and R, are undetermined, but we must have
08 = (1 — 90) [TQKQ + RQBQ] .

In conclusion we have shown that the fiscal instruments densd in the first
part of this chapter are sufficient to implement the first loggimum. We showed in

the previous section that the optimal allocation is char@s®d by constant andw,

41 Thatis
uo (¢, cti1) _ 1

uy (cf,egpy) (1= 0p1) Regy
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and therefore constant growth for all variables. It is easgde from the preceding
derivations, that this implies constant tax ratesndé.

For the specific case of log utility, we can derive closed feotutions, which are
appealing because they allow us to highlight the econontigtion behind the optimal

policy more clearly. In this case from the sharing rules @&J (37)

Lo (5) = (5) (BE2) em

¢/ 1+ p

or

N B 1_'_n l1—a
_ *3 x\1—a
R= (Mp?)" (1 + p*) ( 5 ) :

Following the steps highlighted above, we find

(72) (55)
1l—7= ,
d+o 1—«o

0= p;

Therefore the optimal labour income tax depends on the pkand households’
discount factors as well as the labour share in the consomgtctor One can note
that the optimal tax may be negative, i.e. implementatiotmeffirst best may require a
subsidy to labour income. The capital income tax, instesad function of the elasticity
with respect to public capital of the capital sector aggregaoduction function;.*?

In contrast with Jones and Manuelli [62], Rebelo [88], Deverand Love [41]and
King and Rebelo [70], in this model the optimal level of capihcome taxation is
strictly positive. The reason for this result has to do wite bverlapping generations

structure. In fact one can show that, ; equals the marginal rate at which society can

42 Remember that our assumptions imply that at the aggregagkthes capital sector production func-
tion can be written®,,; = M X, °GY.
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transform consumption at timeinto consumption at time + 1.** So in this model
-in contrast with Barro [13] and Turnovsky [105]- the capitecome tax is not needed
to equalise the social and marginal rates of transformatimiween consumption in
different time periods. But at the optimum the planner’s gimaal rate of substitution
between consumption in different periods differs from thla given householdhis

is a crucial difference between the overlapping generaanp and the representative
agent framework of Chamley [34]. Hence in an overlappingegation model, a pos-
itive capital income tax is generally optimal (Erosa andv@er [50], Mathieu-Bolh
[76]).

We conclude this section with two remarks. The ability toetdcalise the first
best optimum depends on having a sufficient number of ingnisn In turn, the number
of instruments needed depends on the number of margins tibed. For example,
if the labour supply were elastic, the wage income tax woaklktho be chosen to elicit
the optimal amount of labour and a further fiscal instrumentitel be needed to induce
the first best level of consumption (e.g. a tax on consumption

The second remark is that in general the set of instrumeatsatie sufficient to
decentralise the first best is not unique. For example, irediieeversion of this paper

we considered the case of different taxes in the two secavher than different taxes

43

dYipr  _ OVip dEip

ay; 0Ky dY;
—  _MPKy41 (MPKg/MPKy),

whereM P K stands for marginal product of capital and the subscriptatds the sector and timeperiod.
Using (5), (9), (7), (11) and the no arbitrage condition 2 gfimition 2.2 one indeed finds

dYii1
dy; -

Rt+1 = -
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on different sources of incomagain we found that set of fiscal instruments sufficient

for the decentralisation of the first best.

2.6 Conclusions

The effect of different fiscal policies on long-run growthais issue that has interested
both academics and policy makers for a very long time. Tweetspof this issue that
we feel are very important are: (i) whether a certain defioliqy is sustainable in the
long-run (ii) whether allowing for deficit finance enlarges the setazfdible allocations.

We have presented an overlapping generations model in whelyovernment
supplies a public good which acts as an externality in th@aagector, and it is subject
to congestion. The technology has constant returns to.sé&ehowed that the econ-
omy is capable of sustained endogenous growth. Given sanpifsiing assumptions,
in particular that both kind of capital depreciate compiete one period, there is no
transitional dynamics, the economy settles immediateltherbalanced path whenever
one exists.

Concerning the first question, therefore, we reached a negatswer: in this
model debt finance is possible only if the government is a naditor. Clearly the
result depends crucially on the technological assumptiesshowed that our assump-
tions on technologies imply that the rate of return domisdhe growth rate, making
it impossible for the government to sustain positive prigrm@eficit in the long-run, un-
less it is a net creditor in the economy. In chapter 3 we ptesemodel with the same
demographic structure but different technological asgionp and show that in that

framework positive primary deficit might be sustainableha tong-run.
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Concerning the second question, Ghiglino and Shell [56yv&ltbin a pure ex-
change economy that imposing limits on the size of the deh&@tgovernment can
maintain does not matter if the government can use lump-suation, but would re-
duce the set of feasible allocation if only proportionalatan is allowed. But being
based on a pure exchange economy, their model has nothiray tonsthe effects on
growth. We have shown that any feasible allocation can berdedised given the fis-
cal instruments we considered. It would not have been plessilestablish this result if
we eliminated public debft. In fact the decentralisation of the first best requires ardete
minate path of public debt. It should be emphasised, howévatrthere are alternative
fiscal tools that can also be used to decentralise the sactatdin. For example in an
earlier version of this chapter we considered sector spdeites and also showed that
all feasible allocations could be decentralised. In fureearch we intend to investi-

gate these issues further.

44 Unless of course we give the government other instrumentsndted in the previous section that
there is more than one set of instruments that allow the dedisation of the optimum. Debt can
undoubtedly be replaced with some other fiscal instrumaritubless we expand the set of available
taxes, it is necessary to decentralise the first best.
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2.7 Proofs of propositions in chapter 2

2.7.1 Proof of lemma 2.3

The method of proof is standard (see Lucas and Stokey [1a8]DenLa Croix and
Michel [38]) and composed of 4 main steps. First we show tbagfl feasible allo-
cation > "% 6" (Y;/L,)" 7 /(1 —~) € RU{—oc}. Then we show that the function
V (K, L) = sup {355 6" (Yi/L)' ™7 / (1 — )} is defined and satisfiés (i, L,) =
sup {(Ys/Le)' ™7 /(1 =) + 8V (K41, Lesa) }. The third step is to show that a given
path is optimal if and only it/ (K7, L) = {(Yi;/L,)' "/ (1 — ) + 0V (K}, L) }-
The fourth and final step is to show that the supremum is rehdtewe can substitute

max for sup.

Lemma 2.4 Call u* = 8/ (1 — ) = argmaz (M{;—MXE) If
n

6 (M (14 pt)) 77 (14 )70 <
then for any feasible sequent,, K, Hy, X,, G} F o

+oo
S8 (/L) (1= ) < +oo.

Proof Let us indicate with{ K2=},"% the path that satisfies ¢« = Ko, K% =
M{i—quCC we shall call this theoure accumulation pathThis path gives an upper

bound for K; for any givent. Consider the sequendg’*/L, j;g obtained from

Yoo /L = A (K L) As K = Ko (Mp? ) (14 ),

acc acc at -«
Yo = Yoo (Mp? ) (14 )™ (14 n)t "
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For any feasible pathy; < Y,** with strict inequality for at least all but ortehence

Zét(K/L 7/1_ <Z(5t Yacc/Lt)_’Y/( )

400 1—~y

= St (g (Mg () () L) (1)

t=0

Y5/ Ly~ 5 =) (1-a)1-7)'
e Z(é(M,u /(1 +p)) (1+n) )
t=0

< +o0o. 1

DefineV (K) the function defined by (K) = sup {3 7% 6" (Yi/L)" " /(1 =)},

where the supremum is taken over all sequences feasibleArom

Lemma 2.5 The functionV (K) is defined for allK” and satisfies

V (K, L) = sup { (Yi/ L)' "/ (1= ) + 6V (Kpya, Lia) }

Proof First note that for allX steps similar to those taken in the previous
lemma show thaV (K3, L;) < +oo. Furthermoré/ (K, L;) > —oo, as one feasible
path can always be found by taking arbitrary and consteand .. These paths will
be characterised by positive consumption in all periodsgiwel a value to the social

objective function that is a real number. We next need to shaifor anyk;
V (K, L) = (Yi/L)' ™ ) (1 =7) 4+ 0V (Kpia, Liga)
for anyY; and K, feasible fromK;. And that for anye > 0

V (K, L) < (Y/L)' ™" ) (1= 7) + 6V (Kpsr, Lest) + €
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for someY;, K, feasible fromkK;. To show the first, note that by the definitionof

for anye > 0 there exist{Y?, K4+1}j§+1 feasible fromkK,,such that

YT YL) T (L =7) 2V (Kiga, List) — e

T=t+1

Hence

+oo
V(K L) = (G/L)7 /L=y +6 Y 67 (/L) 7/ (1=7)

T=t+1

> (Yi/L)"7 /(L= 7) + 6V (Kisr, L) — e,

and sinces was arbitrary, we established thet(K,, L;) > (Y;/L)' " /(1 —7~) +
0V (K41, Liy1) as required. Next for any; ande > 0, one can choose a path

{yr K", ,} feasible fromk, such that
“+oo
V(KL L) < Y 67 (/L) (1=9) +e
T=t

= (/L) T/ (A=) 48 Y (/L) T (1 =9) te.

T=t+1

But from the definition ofl/, it follows that
V(Ky, L) > (VL) (U= ) + 0V (K, Lia) +e,

which is what we wanted to shovll
We have completed the first two steps of our proof. The thietmomplished by

the next lemma.

Lemma 2.6 A feasible path{Y*, H;, X;, G3, K;}, < is optimal if an only if

for anyt

V(KS L) = (Y /L) ) (1 =9) + 6V (K}, Lisa) -
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Proof We first prove necessity. Y;", H}, X;, G;, K;}, is optimal, then
400
* _ T * 1— _ * 1—v
VKT L) = Y 6 (/L) (=) = (VL) 77 /(1 =)
T=t

+oo
Y /L) T (=)

T=t+1

= (Y;t*/LQl_7 /(1 —=7)+0V (K:Jrlv Lt+1) .

To prove sufficiency, assume th@t,*, H;, X;, Gi, K;},= is such thal/ (K}, L,) =

(Y;/L)'"" /(1 =) + 6V (K},y, Leya) for all t. By induction
T
V(S L) =) 0 (VL) ™7 ) (1 =) + 6"V (Kfpys Lraa) -
t=0
Taking the limit atl’ — +o0
V(K; L) = Zat (Y /L) /(1 =~ )+115205TV (Kjyq. L) -

We therefore need to show thj@im TV (K. (K31, Lr41) = 0. To see this note that in

lemma 2.4 we showed that

AKSL7e 1-7 400 o .
V (K, L) ( i_tfy) Zat< (M (14 )7 (1 4 )0 7))
t=0
= J(K, L) < +o0
But then

oV (K, Ly) < 5tJ(Kt, L),
and clearlylim, ., .0'V (K;, L;) = 0. &

Finally, we prove that the supremum is achieved.

Lemma 2.7 There exists a feasible paffy,*, H;, X;, G¥, K}, such that

~+oo
S U6V /L) /(1 =5) = V (Ko, L),

i.e. the supremum is achieved.
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Proof We first show that the feasible set is convex, and tfvats concave
and therefore continuous. Then use Weierstrass theoreshpt that the supremum is
attained. Take any two feasible pafhs’, H, X7, G, K/}, i =1,2. ConsiderK =
MK+ (1= X)) K2, ) € [0,1]. The allocationXy = AX} + (1 — \) X2, H} = AH} +
(1= X) HE, Gy = MG} + (1 — \) G2 is feasible and producég® = A\Y! + (1 — \) Y7,
andk} = AK] + (1 — \) k7. By induction, any{ Y}, H}, X}, G}, K}, is feasible,
hence the set of all feasible path is a convex set.

Now from the definition of1/, for any two feasible path&}!, H}, X}, G¢, K} t iy

1=1,2, we have

~ +o0 Y)\L 1=y 1 1fy 2 1fy
W(Ké\) _ Zat /t >)\Z(5ty/Lt ZatY/Lt

- )‘W(Ko) ( —)\>W(K3)'

that isTV is a concave function and therefore it is continuous. The&atl feasible
path is the product of closed, bounded sets, and therefarenpact in the product
topology by Tychonov theorem. By Weierstrass theorem aimwootis function defined
on a compact set attains its maximum in that st.
The lemmas in this section imply that a functidh* (K;, L;) exists such that
1—y

W* (Ky, Ly) = mazx 3, 6" 2420 — and it satisfies the Bellman equation (39). Fur-

thermore if a feasible path is such that

(Yi/L)

W*(Kt): 1=

+ OW* (Kiy1)

then the path is optimal. QED.
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2.7.2 Proof of proposition 2.2

We guess that the function that satisfies the Bellman equéd®) is of the forrf?

B F K a(l-7)

Then the Bellman equation (39) is

F (Kt) a(l-y) (Y; ) 1—y s F (Kt+1 ) a(l-y)
— | = = mazx — —
L=\ L Ly =7\ Lin

aroT —«o 1— a(1, )
o (Aug KL ®) L F <Mu5(1 —u) K ) g |
L—7 L—~ ) Ly

Maximisation with respect tp, yields

*

p— L p—
Maximisation with respect ta; yields
1 —1
Uy = (1 + xF 1*a(1*7)> =u(F), (40)

where

1
1—a(1-7)

B R ( MIU*B )0‘(17)
A=\ T+ )@ +n)

Note thatu (F') is a decreasing function, with(0) = 1, u (+o00) = 0. Then substituting

back into the maximand, we find after simplifications

M 8
(1+p)(1+n

F=A*WMF%+( )Mkwﬂwl—u@wﬂlﬂ. (41)
)

As functions of F', the left-hand side is a straight line through the originhwihitary

slope. The right-hand side is a function that tendsito” as Figoes to0 and tends to

* a(l_’y) . .. .
(ﬁ%) §F asF goes to infinity. Since we assume

5 (Mp?) (14 )7 (14 n) 7200 <

45 The guess is obtained by conjecturing that the optimal padi¢o keepu; andy, costant over time
and then computing the implied value fidf.
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andn > 0,6 (%)a(lw < 1. But then the right-hand side must eventually
be below the left-hand side, thus an intersection must.ekisrefore the equation can
in principle be solved for, although an explicit solution cannot be found in general.
Substituting the value fof’ into (40) we find the candidate for a solution. Note that
by construction the candidate solution dnd satisfy (39) and thus by lemma 2.3 we

found the optimal policy.

In the case of log utility, we guess that the value functiot me of the family
_ K\*
W* (K, L;) = E + Fin (f’f) :
t

for someF andF. Then the Bellman equation is

K\* _ MpP (1 —u) K\
E+ Fl — = INAuWS KL+ 0FE + 0F1 — .
+ n(Lt) mam{n wp K Ly T+ + n((l—l—,u)(l—i—n)Lt

Maximisation with respect tp still yields p*. Maximisation with respect ta; yields

ut = 1
14 0F

Substituting back into the Bellman equation we find

1

F=—"
1-946

and so

wW=1—-0.1



3 One-sector Model

It should not be too controversial that: (i) economic depelent needs adequate
infrastructures (ii) in many developing countries, the government is sdydimited
in its capability of borrowing from abroad. In this chaptee Wy to investigate the
interaction between these two obsrevations. We considec@momy in which the stock
of public capital (infrastructures) determines technalabprogress. The government
finances public expenditures through taxation and dombstiomwing. We, therefore,
abstract from seigniorage and external borrowing.

The seminal papers of Romer [92] and Lucas [74] on endogegavgth have
stimulated an impressive amount of new research on the saissconomic growth
and development. But whereas some undoubtedly interestogs (such as, just to
give an example, the convergence-divergence debate) teare dxtensively investi-
gated both theoretically (Azariadis and Drazen, [9]) angieically (Barro and Sala-
i-Matrtin, [16]), others have received far less attentioat tthey deserve. For example,
one of the most important contribution of the endogenousvtiréheory is that it has
allowed the development of a theory in which governmenttetion can have effects
on growth rates in the long run as well as in the short run. Hewevhereas there is
a rich literature that analyses fiscal and monetary policigee context of exogenous
growth, endogenous growth models often assume balancepebpdlicy rules (there
are of course exceptiongecently there has been an increasing interest in debt fnanc

as documented below).
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In an important line of research, endogenous growth is ptessiecause public
capital enters the aggregate production function. Howewéh few exceptions (on
which more later), not enough attention has been devoteaketstudy of the mode in
which public investment is financed.

The contribution of public capital to development is an didrhe, going back
at least to Rosenstein-Rodan [95]. More recent interestfdlsved Murphy et al.
[79] and Barro’s [13] model of endogenous growth with goveemt expenditures as an
input in production. Glomm and Ravikumar [58] is anotherer#amportant paper on
the topic.

On the other hand, the effects of public debt on growth is atsextensively stud-
ied topic. The obvious quotation is, of course, the Diameat#] model of capital accu-
mulation and growth with overlapping generation. Tirol®4] helped clarifying some
interesting issues connected to the feasibility of Porzeste a theme re-examined in
the endogenous growth context by King and Ferguson [69] almd<Bhan and Yana-
gawa [60]. More recently, Chalk [33] showed that sustailitglof a permanent deficit
requires more than simply the rate of interest to be lesstti@growth rate. Far less at-
tention has been devoted to the possibility that publicshwment could be financed (at
least in part) through domestic borrowiffgRioja [90] notes that in Latin America fis-
cal restraint in the mid-1980s (called for by stabilizatmlans) was in part responsible
for the decline in public investment that has not yet receaet970s levels. Although
developing countries’ debt is mainly external debt, theeecases with significant level

of domestic indebtness (e.g. Mexico. See Agenor and Moftipl

46 In their seminal work, Arrow and Kurb] do consider this possibility.
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In none of the papers quoted in the previous paragraph, reowady public expen-
ditures enter the production function. We believe that¢imsssion is cruciglalthough
it is undeniable that part (maybe even a large part) of puedpmenditure are unproduc-
tive (being mere redistribution of incortief not even purely wasted resources), at least
part of it is devoted to the creation, maintenance and upglati infrastructures. Cav-
alcanti Ferreira [31], presents a very similar model coragawith ours. But there is

seigniorage, not debt, the financial resource for the gowemnt, and it is th€low, not

the stock of capital that mattersirthermore there is no taxation and the consequences

of an imposition of limits on the size of the fiscal deficit a analysed.

Our analysis shows that when the rate of public investmestifciently high,
there exist a steady-state in which the government runspepprimary deficits. For
any initial level of the capital stock, there is a unique levepublic debt such that
the economy converges to that steady-state. Any biggealim@vel of debt means
that the combination of income tax and public investmenbissustainablefor lower
levels the economy converges to a different steady state pvitnary surpluses. An
analogous point was made by Chalk [33] in an exogenous groaritext. However in
our model some policy changes may have unexpected resyleifi8ally, if initially
we are at the steady-state with primary deficits, a tax irseresill make the policy
combination unsustainable. There is no analogous resGlhatk’s paper. We consider
this result unexpected as one would expect a reduction idefeit to imply that the
policy should be more sustainable, not less. What explagrésult is that the steady

state we start from is characterised by a large level of d€be tax increase reduces

47 One should note, however, that in certain frameworks a trdalision of income can have conse-
quences for long-run growth. Jones and Many6iB] argue that in a one-sector overlapping generations
model with convex technologies, sustained growth is ptessibly with an appropriate redistribution of
income.
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private capital accumulation. This tends to push up the makgroduct of capital and
therefore the interest rate. This increases the goverrsnatgrest payment by more
than the increase tax reduces the primary deficit. Hencevitralbfiscal position of the
government worsen rather than improve.

A crucial feature of the model we analyse is the way in whichligunvestment
affects technological progress. An obvious alternativeuo approach is to consider
public capital entering directly the production functio@hapter 2 analysed such a
model in a two-sector framework. There we showed that pynaficits could not
be sustained, hence none of the points made in the paragbapk are valid. In a
one-sector model a la Barro [13] things are likely to be défdé. If the government
maintains a constant public to private capital ratio, thegimmal product of capital and
hence the interest rate will be constant and the intereshpayeffects we discussed in
the previous section will be absent. Therefore we conjedtat a tax increase should
have the expected effect of improving sustainability. Aatetl analysis has been pro-
vided in a recent contribution by Yakita [111]. Given the tdoutions of Cazzavillan

[32] and Azariadis and Reichlin [10] one may also expect demgdynamics to arise.

3.1 The model

We consider an overlapping generation economy in whiclviddals live two periods,
supply labour inelastically in the first, and retire in the@ad. Assume, furthermore,

that the utility function of an individual born at time tis

U=u(d, ), (1)
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where the subscript indexes the time at which consumpticnrsgthe superscript the

age of the consumer. The intertemporal budget constraint is

c? ~
of + = < W, (2)
Ryyq

whereWt is the after tax wage earned at timeR,,; the after tax gross interest rate

between time andt + 1. For simplicity, we will assume that
Uy=Inc¢) +FInc 4,

where > 0 is the discount factor. This implies, of course, a consioleréoss in gen-
erality, but on the other hand, the fact that then the sawatgis independent from the
interest rat€® makes the derivation of the results very simple. Althoughalsumption
of logarithmic function for utility is often defended on tigeounds that empirical stud-
ies found little evidence of sensitivity of saving ratesrterest rate, we regard this as
a simplification useful to obtain a first approximation, butater research a more gen-
eral functional form has to be allowed. With this assumptloowever, the saving rate
is going to bes = 3/ (1 + ).

Next we characterize the production side of the economy. ¥¥erae that the

production function can be written as
Y = F(Ky, AiLy), (3)

whereY stands for output/; for the stock of private capitald; measures labour
productivity andZ; the labour employed. Since labour is supplied inelastic#ftie
economy will be always in full employment. We will abstraati population growth,

thereforel, = L, Vt. We will assume that’ (., .) is homogeneous of degree 1, and in

48 This result depends on the assumption of log-utility andaseumption that households do not have
any source of income in old age except for the return on tlaing age savings.
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general has all the properties of a neoclassical produftioction as summarized in

the following assumption.

Assumption 1. The production functiod’ : & — R, is concave and homoge-

neous of degree 1 in its arguments, and has the followinggutigs:
F(0,AL) = F (K,0) = 0;

Fx =0F(.,.)JOK > OVK > 0;
F, =0F(.,.) JOL > OVL > 0;

Fy (400, AL) = F, (K, +00) = 0;

Technological progress is not exogenous, but depends ostabk of publicly
provided infrastructures. In particular we assume that = I' (G;/A;L;) A;; where
G, is the stockof public capital. Assumptions regardidgare that it is a concave

function, increasing in the public capital stock in effiaggrunits.

Assumption 2. The functiorl” : £, — R, has the following properties:

r (0) = Fmin > O;

['(4+00) =Thax > 1;
I"(G/AL) = dT'(G/AL)/d(G/AL) > 0;

I'"(G/AL) = d°T(G/AL)/d(G/AL)* < 0.

A brief discussion of the assumptions dnis necessary. That technological

progress should depend exclusively on public capital statkundoubtedly sound an
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odd assumption. A more realistic scenario would displayessart of complementarity
between private investment and public capital stock. Hepejever, we are not trying
to give a theory of the sources of technological progregsybdocus on public policies
when public capital expenditures have direct consequdncd®e aggragate production
function. Perhaps, we could interpret the above assump#@m environment in which
technological progress is exogenous, but new technolagiese adopted only if the
country is supplied with adequate infrastructurEs;, = 0, would mean that with no
infrastructure it would be impossible to have any producaoalt allowing for al',;;,
positive but smaller than 1 implies that with no infrastures some production is pos-
sible, but the economy shrinks over time. Finally, the fiorel” could be bounded or
not, butl',,... has to be bigger than 1 for sustained growth to be possibleteldre no
strong technical reasons to assume tha bounded, but boundedness could be a nat-
ural assumption, as it seems intuitive that there should lbeitto the rate of growth
that can be induced by public investment.

The role played by~ in this model is different than that in Barro [13jot only
because it is the stock, not tifiew, of public capital that matte% but because here
public capital is not directly an input in production, buisisomething that makes possi-
ble or accelerates technological progress. The same asisarigptaken by Cavalcanti
Ferreira [31], but there is again thi®w, not the stock that matters. We assume that
the stock is what enters the functidbnto add realism. As it should be clear from the
analysis of the dynamics below, none of the main results i peucially on this as-

sumption.

4 The consequences of substituting stockitev in the Barro model have already been analyzed in
Futagami et a]54].
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We are saying that infrastructures allow adoption of moreeno technologies.
As an example, building roads and railways allows the useaafern means of transport
(trucks and train). Similarly we think that there would beyéttle innovation in a
society without schools. And we are also saying -lookinghatvariables that enter as
argument- that as the technological level increases, a higher levilfastructures
is needed to enhance further progress. That is the levelfi@gfsinuctures per capita
that allowed an increased in productivity of, say, 2% yekter will allow a smaller
further increase today because we start from an alreadghighel. That is, to sustain
a certain growth in productivity, infrastructures need ooly to be maintained, but to
be continuously updated.

There are different possible reasons why the stock of itrfrasires should ifiu-
ence the rate of increase of labour productivity. If we iptet A, as human capital, and
G, as the stock of public investment in education -in a broachdefn (schools, labs,
etc.)- then the interpretation could be that people traindetter schools develop a bet-
ter ability to accumulate experiences and knowledge thatvahem to increase their
productivity on the job.

Alternatively one could think of a country with better infteuctures as one in
which communication, travel and consequently the exchahgdormation and expe-
riences is facilitated. Again, through this channel infinastures contribute to faster

productivity growth.

The provision of public capitals, must be financed somehow. We will assume
that public expenditures are financed through taxes on wageapital earnings and
domestic borrowingwe abstract from seigniorage and external borrowing (weicken

a real closed economy). We also assume that the tax rategedddr all periods. Al-
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though this is clearly an oversimplification, it is also tthat in general modifying the
tax rate might be a more complicated matter than issuing$adnstraints on the tax
rate can be political, legal or ideological. Furthermoriem increases in the tax rate
can be pointless, as they are offset by increases in taxaevasil these reasons and
others that we might have neglected, make tax rates quliestee make the extreme
assumption that the government tries to fix them once andlifoie then study the
combinations of tax and investment policies that are sugbde, i.e. mutually consis-
tent. If an arbitrarily chosen combination of policy is nasginable it will have to be
changed sooner or later. In the final section we derive someeeisting implications
from this observation.

Indicating by B, the stock of public debt), the investment in public capital and
X, investment in private capital, the evolution of the stockgrivate and public capital
are given respectively by

K= (1—0) K¢ + X3, (4)

Gi1 = (1-19y) Gy + Dy, (5)
wheredy, J, are the depreciation rates of private and public capitgleesvely. Fiscal

policy must satisfy the following budget constraint
Dt = Bt+1 - (]_ + Tt)Bt + T (WtLt + Tt (Kt + Bt)) . (6)

Herer is the tax rate on wagesl/; is the before tax wage rate at timeandr; is the
net interest rate before tax. Note that the tax on capitaliegs is proportional te not
R, i.e. net rather than gross earnings are taraare importantly, this means that there

is a deduction for depreciation (as it will be clear bel&W).

50 This is not essential for the analysis, one could work withalternative hypothesis that there is no
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Equilibrium requires all markets to clear. In this econorhgre are a labour
market, and a market for assets: bonds and private capaatoFmarket equilibrium

requires

Tt + (Sk = 3F(Kt, AtL>/aKt, (7)

W, = AOF (K,, AL) /OL. (8)
Asset market clearing imposes that the sum of private degddek and the stock of debt
must equal saving:
Ki1+ By = s(1—7)WiL. 9)
The behaviour of the system can be more easily illustrat@dessing all vari-
able in efficiency units. We will employ the common conventaf indicating with
lower case the value of a variable in efficiency units, thdbrsany variableZ,; the
corresponding lowercase indicates= 7;/A;L. We shall use also the abbreviation
Iy =T(Gy/AL) =T (g).

Using the homogeneity property of the production functiaaan write

ye = f(ke), (10)

wheref (k;) = F (K, A:L) JA:L = F (kt, 1); which in turn implies that (7) and (8)

can be writtept

e+ 0k = f (ki) (11)

wy = f (kt> - ktf/ (k?t) ) (12)

depretiation allowance.
51 Apostrophes indicate derivatives. $0(k) = of (k) /ok; f" (k) = 0*f (k) /Ok.
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wherew;, is the wage rate for effective unit of laboutf = A;w;). Furthermore, the

equations (4)-(6) become

ik = (1 — 0p) ke + a4, (13)
Ligiyr = (1 —64) g + dy, (14)
dt = Fth_l — (1 + (]_ — 7') T‘t) bt + Tw; + TT’tk’t. (15)

Equation (9) can be written
Lok =5 (1 — 7)w, — Dybyya, (16)
while (14), (15) andv; + rk; = f (k;) give
Ligir1=1—=6y) g +0ibpn — (L + A — 7)) by + 7f (k) (17)

A look at (17) can already illustrate the effect of changihg tomposition of
finance, that is reducing (increasing) taxes and incredsaugyicing) issues of new debt
maintaining the same level of public investmeht(and therefore the samgl’; ;).

A switch from taxes to borrowing that leave unchanged thellef public investment

must satisfy (from (17))
Lydbyyr + (f (ki) +riky) dr =0 (18)

that is

(f (ke) + reke) dr = —Didbpis. (19)

From (16) this implies

Ftdkt+1 = —Ftdbt+1 — S'LUtd’T = (f (kft) — sw; + TT’tbt) dT, (20)
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and therefore an increase in debt (a tax cut) reduces camtaimulation and vice
versa (crowding out effect¥. It is easy to verify that this conclusion does not depend
on the assumption of log-utility. It is also clear that thensaconclusion will hold in
steady state (assuming that one exists). The above disousseéms to imply that the
government can choose the mix of tax and deficit finance fradty will show below
that this is not always true, that is there are cases in whigdaction of the long-run

level of deficit requires lower public investment levels.

3.2 Fixed public investment policy

In this section we analyse the equilibrium outcome undehyip®thesis that the govern-
ment maintains fixed the rate of public investment in efficiennits,d. Then equations

(16), (14) and (15) becorrie

kt+1 = [8 (1 — ’7') Wy — Ptbt+1] /Pt, (21)
g1 = [(1—=36,) g +d] /T, (22)
byr = [d+ 1+ 1 =7)f (k) by —7f (k)] /T (23)

First we want to establish whether this system admits a gtetade. A steady-state is

characterized b¥; = k, g; = g andb; = b Vt. Then the above system can be rewritten

52 In an exogenous growth model, crowding out can be welfareamipg if the economy is dynamically

inefficient, which occurs when the growth rate is bigger ttheninterest rate. It will be shown below that
in this model there are equilibria characterized by a groath that is bigger than the interest rate. This
opens the question of whether crowding out is desirableignsittting.

53 Wherew; = f (k) — kef’ (kt).
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as

k= [s(1—71)w—Tb] /T, (24)
g = [(1=09)g+d/T, (25)
b= [d+ 1+ 1=7)f(k)b—7f(K)]/T. (26)

We can solve the last fdrto find

_d—T1f (k).
b=~ (27)

whereR, it will be recalled, isl + (1 — 7) f' (k).

Equation (27) has an important and intuitive interpretatsteady-state debt will
be positive only if the sign of the primary deficit (the nunterais the same as the
sign of the difference between the growth rate and the isteege. In other words, if
the government is a net debtor, a sustained primary definibegpositive only if the
interest rate is less than the growth rate. Conversely,eifititerest rate exceeds the
growth rate, the only way to sustain a positive debt levebitdave primary surplus.
Chalk [33] showed that this is a necessary but not sufficientltiory we will show

below that the same is true in our model.

3.2.1 Existence

To prove existence of a balanced path equilibrium we exgteirecursive nature of the
dynamic system. Note that (22) dependsgoandd but not onk. It certainly has a

unique fixed point, as proven in the following lemma.

Lemma 3.1 Under assumption 2, the difference equation (22) has a @niqu

steady-state, which is increasing inl.



3.2 Fixed public investment policy 104

Proof Assumingg # 0, we can rewrite (25) as
d
I'=(1-9,+ p

The left hand side is concave, increasing, starts figm, and approaching',,., as

g — +o0; the right hand side is a decreasing, convex function, gaingb asg — 0,
and to(1 — d,) asg — +oo; sincel'y,.x > (1 — d,) by assumption 2, there must be at
least one intersectigrsince one function is strictly increasing and the otherrigtbt
decreasing there will be only one intersection. FigurelBistrates. How does the fixed
point of (25) changes with? By implicit differentiation we obtain

dg 1
dd  T'g+T —(1-46,)

> 0;

the above derivative is certainly positive because for@satisfying (25)I' > (1 — d,)
(see figure 3.1). IT',.x = +oo, then asd — +oo theng — 400 andI’ — +o0.
Therefore an increase iy results in an increase nand thereford™. In general, as

d — +00,9g — +ooandl’ — I',.,. H

(1-5,)+(d/g)

(1-3,)

3.1
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Once the steady-state valuegdias been found, we can look at the system formed
by (24) and (26). We can solve them both foFrom (24) we have

_s(I—=7)w—-Tk

b= T = (b, (28)

from (26) we have

b= ). 29)
Let us callk, the value ofk such thatR = T, andk, the value ofk, such thatd —
7f (k) = 0. Itis clear thaty, has a discontinuity at,. Note also thap_ (+o00) = —cc.
If k, < k, (kr > kr), thenlim;,_z- ¢, (k) = +oo (—o0). Furthermore as — 0 the
numerator goes td while the denominator goes teoc; it follows that¢ (0) = 0 and

thato (k) < 0in a right-neighbourhood df. Differentiating with respect t&, we find

o (k) = d%f) _ (k) + cf;(fj)él —7) /" (k)

Note that whem (k) > 0, sign (¢’ (k)) = —sign (T — R).

Figure 3.2 illustrates two possible shapes thatk) may have. The left-hand
side illustrate a case for whioi*;r < k.; we established that fot close enough to,
¢ (k) < 0. On the other hand (k) = +oc. The intersection with the horizontal axes
atk, must be unique as theré (Eﬂ) =—71f'(k)/(I' = R) >0, since¢ (E) =0 by
definition andl’ — R < 0 for k < k. Sinceg (k) = ¢ (+o0) = —o0, ¢ (k) must have
a shape similar to that in the left and side of figure 3.2. Thhtrhand side of figure
3.2 illustrate the cask, > k,. Clearly in this case (0) = 0, ¢ (k) < 0 Yk € (0,k),
and¢ (k;) = —oo as in the figure. Whiles (k+) = +oo, ¢' (k) < 0 Vk (l%ﬂ,iéﬂ}
and¢ (+o00) = —oo. Since¢’ (7@}) <0, kyis again unique. Therefore the graph of
¢ will looks as in the right-hand side of figure 3.2. When coesildg the figures one

should note that the second derivativepalepends in a rather complicated way on the
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U/\'k

3.2

first three derivative of ,>* therefore the concavity/convexity propertiesiahay differ
from the figure.

The above discussion has proved the following lemma.

Lemma 3.2 For a givenr, call &, C R, the set ofk > 0 such thatp, (k) > 0;
then (i) if &y < k, thend, = [igﬁ, /‘gﬂ);
(i) if kp > k. thend, — (l_@r, %ﬂ]

(iii) if %, = k, then®, = @.

54 Onefinds
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Let us turn toy . (k). Note thaty (0) = 0. Let us cally, ., = v, (+00); now
sincew = f (k) — kf’ (k), we have

ooy = 20=7 [f(k>r— kS (k)] = Tk

s(—71)f(k)—k[s(1—7)f +T]
T .

The the assumption that the marginal product of capitalddgndzero as the capital
stock goes to infinity (see assumption 1) guranteessthiat- 7) f (k) — 'k — —oo as
k — +4o0; that isy ;. = —oo. Note also that

Yo (k) = diy (k) /dk = [(1—7)s(dw/dk) - T]/T

(1—7)s(=kf"(k)) =T
r

can be positive or negative depending on the valug”afelative tol". If ¢/ (0) > 0
there is a right neighbourhood @fuch that for alk belonging to ity (k) > 0. When
[ is so high that)’ (0) < 0 there cannot be any steady-state with a positive level of
public debt.

We need to establish when we will hawe > k, or k, < k,. The following
lemma prove that, for given tax rates, there is critical gdflr the investment rate?

such that, < (>) k, ford < (>) d°.

™

Lemma 3.3 For any tax rater € (0,1) there is ad? such thatk, < k, if

d < d®, andk, > ky if d > d°.

Proof Sincek; is defined byd = 7 f (l?:,r), it is clear thaflim, .o k, = 0 and
limg 40 kr = 400. Furthermore by implicit differentiatiofik, /dd = 1/7 f' (/?;W> >
0. That isk, increases monotonically with from 0 to +oco. k, is defined by’ —

(1+ (1 =7)f" (k:)) = 0. ButT is an increasing function of which in turn was
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shown to be an increasing function®fn lemma 3.1. There we have also shown that
limg_oT = Tin, @andlimy_, ;oo I' = Tyhee. Then the limit ofk, for d — 0 is de-
fined implicitly by I'yi, = (1 + (1 — 7) f' (kx)), while the limit of k. for d — +oc is
defined implicitly byl',,.. = (1 + (1 — 7) f’ (k-)). Furthermore by implicit differen-
tiation we havedk,/dd = (0r/dd) / (1 — 1) f" (k,) < 0. Thusk, is monotonically
decreasing. It follows that there can be only ehsuch that, = k.. Figure 3.3

illustrates. m

dO

3.3

3.3 Thel' < R case

We first look bridly at fiscal policies for whichl < d°. Our treatment of this case is

kept brief because we are mostly interested in the analfadjostment from a situation
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of sustained primary deficits, but this is only possible wttengrowth rate exceeds the

interest rate.

Lemma 3.4 Suppose < d2 and callk: the value ofk such thats (1 — 7) w =

I'k. A steady-state with > 0 exists if and only if)’ (0) > 0 andk* >.k,.

Proof If d < d°, ¢ (k) will look as in the left-hand side of figure 3.2. If an
intersection withy (k) in the positive quadrant exists, it must be fok & ®,.. Figure

3.4 illustrates.m

;\w\\\k*

3.4

v

Next we examine the case whete= d° and thereforé:, = k.. In this case a

unique steady-state exists, because from (26) we have
T —-—R)b=0=d—17f(k),

which impliesk = k. Then from (24) we have

-9 [r (R) - Eor ()] -

b —
r
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Figure 3.5 illustrates. Point A in the figure is the uniqueadiestate. Note that the
figure illustrate the case for which the resultihis positive, but if, > k* then the

intersection would be for a negative

(k)
A

Nk

~I

3.5

3.4 Thel' > R case

WhenI' > R there is the possibility that the government can sustaiitipesieficits

in the long-run. Chalk [33] has shown, in an exogenous grawtidel, that even in
this favourable case, the fiscal policy of the governmenbisumlimited. Analogous
restrictions will hold in our set up as well, with additior@mplications given by the
more general fiscal policy that we consider (Chalk abstfaota taxation), and, more
importantly, the endogeneity of the long-run growth rateork the above discussion

we have that ford > 2, if a steady state with positive public debt exists, it wid b
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characterised by > R. In this section we consider this case and study the existenc
and dynamic properties of such a steady-state.

We argue that under fairly general conditions, for valueg afbitrarily close to
d° there are at least two steady-states, one of which chaizeddny a positive value
and the other with a negative value of public debt. ABicreases the two steady-
states get arbitrarily close in the following sense: theegponding(k,b) converge
(coordinate-wise) to the same couple of values. There istigatrvalue d¢. (which
depends on the tax rates), such that there is a unique sttagy(at this point we do
not know whether this is characterized by net indebtneseefjbvernment). For any
d > d¢ there is no steady-state. Formally, we will prove that thetesy undergoes a
saddle-node bifurcatioat d.. We we also prove that of the two steady-states, one is
a saddle the other a sink. Graphically, we can representitine&tion diagram as in

figure 3.6 (note that in this figure we only consideg (d2, +oc0).

o, o > d

3.6
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The above discussion is summarized in the following prdposithat we con-

sider the main result of this section).

Proposition 3.1 For each tax rater € (0,1) there exists alS such that
Vd € (d°, d°) there are two distinct steady-state with> k, one of which is a saddle,

the other is a sinkfor d = d¢ there is a unique steady-statéd > d¢ there is no

steady-state wittk > k. Although the intuition behind proposition 1 can easily been

grasped form the diagrammatic exposition once one has staderthe way the curves
move withd, the formal proof is rather tedious. We shall devote the @é#tis section

to proving proposition onethe reader more interested in the economic implication of
the proposition than the technicalities involved can ses&lp the rest of this section in

a first reading.

We structure our proof as follows. We first prove the exiséeota steady-state
for values ofd arbitrarily close taf?. We then consider a reparameterisation of the fun-
damental equation such that the steady-state is fixé@ @}.>> We then prove that the
newly defined map undergoes a saddle-node bifurcatiafi.aBecause the two maps
are topologically conjugate, they will always have the sammmber of fixed points. Fi-
nally, we will use the Jacobian calculated at the two stestdies to establish which is

stable and which is a saddle.

d~d°

™

For values ofd bigger than but arbitrarily close td there exists at least one

steady-state. That is because in this d?a'sebigger but arbitrarily close t; it follows

% Technically this involves constructing a topological aaygcy.
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thato (k) is arbitrarily close to the vertical line in figure 3.4. A stiyastate in proximity

of point A must therefore exist.

Reparameterisation
Established the existence of a steady-state in the neighbod of d°, we now
want to establish how many there are and how they changedwiffall &, the steady-

state value fok if it exists. Clearlyk,, must satisfy the following equation

U, (kss) — ¢r (kss) = 0; (30)

let us define the functioh : R, — R, as

wherex = k — k,,. We have obtained the desired reparameterisation. To eteagy-
state for the original parameterization corresponds algtetate for the new one. In
fact whenk = k,,, = 0 so the equation = h, () is identically satisfied. Similarly
if there exists a valué’, # k such that), (k.,) — ¢, (k.,) = 0, then there exists a
x’ # 0 such thate’ = h, (2/).°® In fact the maph is topologically conjugate with the
map that describe the original system. What is left to to ishow that the map.,.
undergoes a saddle-node bifurcation for a critical valie To apply the saddle-node
bifurcation theorem, we need to show that there exists makialue ford such that

the curves) andq are tangent. This is done in the following lemma.

Lemma 3.5 There exists @ such that
dh
K (0)=—|,—0=1.
(0) =~ oo

5 This is always true by definition.
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Proof We need to show that there existg‘asuch that a steady-statg exists and

R’ (0) = 1. Now, i’ (0) = 1 if and only if

U (kss) = &7 (kss) =0,

wherey’ (\) = 0v/0k, ¢' (.) = d¢/dk. Our proof is by contradiction. Assume that
d¢ does not exists, i.e. that (k) — ¢ (k) # 0Vd € (d°,+o0) = A. Then
for all d € A, the condition of the implicit function theorem are satidfiand ak,,
that satisfies (30) exists and changes continuously witiWe now show that forl
sufficiently high there cannot be such a solution, which glews the contradiction we

were looking for. We will then have to conclude that there tingsa point inA where

the implicit function is not applicable. To show that a maxim sustainablé@ exists,

assume
d>mgx{%s(l—7)w+7f(k)—(Pmaz—R)k}.
Then
i > mgx{%s(l—T)wjtTf(k)—(Fmax—R)k}
> 222 = ()t 7f ()~ (T — )b
> P;Rs(l—T)w—l—Tf(k)—(P—R)k,
or

I'-R
r

d—r1f (k) > s(l—7)w—-(T-R)Ek

If 0 < k < k thenl” < R. Then rearranging the last inequality

d—1f(k) s(1—-7)w-Tk
T-R T ’
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ie.
Or (k) < thr (k).
If k£ > k thenl’ > R, and we have
d—r1f - s(1—=71)w—-Tk
I'-R r ’
ie.
Or (k) > b (k).

Either way it is clear thap,. (k) # ¢, (k) Vk. &

We are now ready to apply the saddle-node bifurcation tmeore

Lemma 3.6 Call 7. a fiscal policy such that!_(0) = 1, andd;_ the corre-
sponding value fotl. Then, keeping fixed, there is a neighbourhood of;._ such that

(i) for d > d;,_there are no steady-state equilibyigi) for d = d;,_there is one unique
equilibriunmy (iii) for d < d. there are two equilibria, one is a saddle, the other is a

sink.

Proof We have to show that the mdjp satisfies the conditions for the saddle-
node bifurcation theorem (Cfr. Devaney [40], theorem 1p.88): (i) h., (0) = 0;
(ii) 2, (0) = 1; (iii) A7 (0) # 0; (iv) Ohy, /0d. # 0. (i) trivially holds by definition
(z =0 <= k = k).

(i) by hypothesis.

(i) hy, =7, — o, #0.

i _ _s(-mwdr 1 P dl
(iv) Ohr, /0d = — =755 — T R? T T-Rd # 0.
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Thus all the conditions of the saddle-node bifurcation teeoare satisfied. The
stability-unstability result becomes from the observatibat the eigenvalues of the
Jacobian are real, and from the fact that > 1)’ is a necessary and sufficient condition

for a saddle, angd’ < ¢’ for a sink. B

Figure 3.7 illustrates the result of proposition 1.

L e

3.7

The fundamental message of the proposition is that if treegecrossing between
¢ andq, in general there must be two of them. The steady-state wgtheht is stable
whereas the other is unstable. As the public investmenineateases (i.ed increases),
¢ moves in the north-east direction, whergashrinks the two steady-states get closer
until the point of tangency, after which there is no steatdyes

We next illustrates some examples that we find interesting.

57 Where all derivatives are calculate at the steady-statesal
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Examples

Suppose that the economy is at point A in figure 3.8, with zenmgry deficit.
There is a positive amount of debt, but tax revenues are éntaugover public in-
vestment and interest payments. If the government triesctease investment without
touching the tax rate, i.e. tries to run positive primary defj ¢ moves in the north-east

direction, whereas shrinks as illustrated in figure 3.8.

3.8

Even under the assumption that a new steady-state A’ eRistgl] certainly not
lay into its basin of attraction. Actually A is, after the cigge in policy, in the unsus-
tainable area. This shows that even a small change candransfsustainable policy
into an unsustainable one. One might object that of the twolibga the saddle is
the most unlikely, since it requires special initial coraht for the economy to con-
verge there. It can be argued, however, that if it was optiimathe government to
converge there (given its preferences before the chargs) the economy would have

converged there. The change then must be the result of amesefn shock for the
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planner. Alternatively, one could think of a situation inialinthe economy is not at A,
but in proximity of it, converging to the stable equilibriuoat still far away from it. If
the change in policy is big enough, a similar result wouldmagald: the economy was
on a sustainable path and now it is on a unsustainble one.

Clearly, if in the previous example the shift in policy is tams a decrease in
investment, the result would be that now the economy wiit st@ving towards point B
as illustrated in figure 3.9. The lesson from this exampléas$ €éven marginal changes
in the policy design can cause dramatic changes in the asyimpiehaviour of the

economy.

» o

» k

3.9

As a final example consider figure 3.10, but suppose that no¥ the govern-
ment is running a primary deficit. Again this policy is sustble in the long-run by
definition, since we are in a steady-state. Suppose that Inewydvernment is forced
to eliminate or even slightly reduce the primary deficit bgremsing taxation (in or-

der to join the common currency, for example, or because stitotional bill has been
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passed as sometimes called for in the USA). The consequertbatiy moves in the
south-west direction, whereasshrinks. As it should be cleared by the figure, A is
now in the non-sustainable ardhis means that the government simply cannot main-
tain the same level of investment, but has to reduce it. ERreangh the initial policy
was sustainable, the supposedly "virtuous” shift towardsoae balanced budget nec-
essarily involves cutting down public investment, whiclium means slower growth in

the long-run.

» o

» k

3.10

The conclusions reached here depend on the assumptiorilthablc expendi-
tures are treated as productive investment. In realityeardhat government spending
includes a share of consumption expendituieae would model public consumption
by imposing a fixed ratio between consumption and investimbkatmain conclusions
would be basically the same. If however we allowed the sharaty then we would
have two possibility: on one hand the reduction in deficingjieg might induce the

government to reduce consumption and wasteful expendijtat@ch could counter bal-
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ance and even subvert our story. On the other hand, if therigaant has less control
on consumption than on investment (for example becauseafgstobbying activity),

the point would emerge even more strongly.



4 A dynamic analysis of user charges and
public investment

As it has been mentioned in preceding chapters, there i &teaature, both the-
oretical and empirical, on the effects of public investrmamthe growth of an economy.
This literature has produced a number of interesting resnitthe effects of different
fiscal policies on the dynamics of an economy, and on the iptesthat should guide
the design of the optimal fiscal mix. This last chapter is @htewr contribution to this
literature. The aim is to introduce a characteristic thanseto be shared by most if
not all public inputs: rejectability. To illustrate, takleet example of a road. It seems
plausible that a well developed road network is likely todawositive impact on the
productive capability of an economy. But it seems also dieas that the impact that
a given set of roads has will depend crucially on the extemttich firms and house-
holds decide to exploit them. This for two reasons: on onaelh#re construction of
a new road will bring little benefit to my firm if | decide not tse it. Similarly, the
construction of a lane for fast vehicles will have litdeect impact if | do not own a
fast vehicle and decide not to buy any. Secondly, the dewsid all potential users to
use the existing roads, and how intensively, will have ¢fen the degree of conges-
tion present and therefore on the benefit that each user ¢drogethe existing stock
of infrastructures. So, returning to the creation of the fase, even if | do not plan to
use it, | mayindirectly benefit if enough other users switch to use it thus reducimg co
gestion on the slowest lanes too. This aspect of public s\pas received surprisingly

little attention in the literature on optimal intertemplofiacal policy®® While Arrow

%8 There is a large literature concentrating on static armlySee Berglas and Ping20] and Cornes
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and Kurz [5], McMillan [77], Pestieu [84] Weitzman [110] afhrro [13] are all ex-
amples of intertemporal models with public inputs, a commssumption is that public
goods are not rejectable. The only paper we are aware of xpétidy analyses re-
jectability in a dynamic setting is Ott and Turnovsky [83]uiOnodel, though, differs
from theirs in a number of important respects. First, Ott @amchovsky assume that the
degree of congestion perceived by a firm is related to the odits capital stock rela-
tive to the aggregate capital stock. This implies that thellef congestion will depend
on the number of firms. In contrast, we assume that congeistigimen by the ratio of
aggregate usage relative to the existing stock of infragires as in much of the litera-
ture on congestible facilities. Second, they assume thébruof firms is exogenously
given, we allow for free entry, so the number of firms is endogenodsiiermined.
As we shall see, in our model, in contrast with most of theditiere on public invest-
ment and growth, the social and private returns to capitalbide, which has important
implications for the optimal fiscal mix, and in particular the optimal income tax.
Much of the literature on optimal taxation argues that thenogl tax on capital
earning at least tends asymptotically to zero when it is nataly equal to zero after
an initial transitional period (Chamley [34], Judd [66]/]6see Atkeson et Al. [6] for
a review). The reason for this is that a positive tax on therretrom current savings
makes consumption in the future more expensive. In a stetdg-or balanced growth
path, however, the elasticity of demand for consumptioroisstant therefore having
a positive capital income tax violates the principle that tates should be inversely
proportional to demand elasticities (Ramsey [86], Baunmal Bradford [18]). There

are, however, important exceptions. For a start, positpteral capital income taxes

and Sandle[35] for an overview.
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are generally found in models with overlapping generatiamisss fairly restrictive as-
sumptions on preferences are made (Erosa and Gervais[a@hied-Bolh [76]). The
reason is that in life-cycle models, individual consumptand leisure typically vary
over time even when the aggregate counterparts achievadysséate. But then the
elasticities are not in general constant over the lifetimharoindividual and therefore
taxing his consumption differently over time may be optirfiaiosa and Gervais [49]).
Another exception is found in models with public capitallwitongestion (Turnovsky
[105]). In this case, the reason for the departure is thaafwiinvestors neglect the
externality that their accumulation of capital exercise®thers through increased con-
gestion. A positive capital income tax is required to ing&ise this externality. Similar
results follow if there are non-discretionary public exgiémres linked to the current
level of output and/or a spillover externality from privatapital accumulation (Mar-
rero and Novales [75]). The former would call for a positie& bn capital income in
order to reduce the crowding out of private consumption @uth¢ increase in gov-
ernment consumption caused by economic growth. The latégr antually call for a
negative tax (a subsidy) to correct the externality whenetkternality is positive (as,
for example, with learning-by-doing externalities as indw [4] and Romer [92]).
Relative to the literature, the model developed in this téraip closest to those in
Turnovsky [105] and Ott and Turnovsky [83]Like them, we look at a growth model
with congestion prone public infrastructures and we lodkabptimal pricing of public
services. While those two studies find that the optimal ehpicome tax in the long-
run is positive, we find it to be zero in the main specificatiboar model. Crucial to

this difference is how we model utilisation of public seesc In Turnovsky [105] and

%9 Although some important differences with the latter haveady been noted at the end of the first
paragraph.
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Ott and Turnovsky [83], as in much of the literatiff&ongestion is proportional to the
capital stock of the firm. This is to a large extent realistiche capital stock is given
by the number of trucks owned by the firm, one would expectttie@tmore trucks firms
buy, the more congestion we will see on the roads. Howevearg given numbers of
trucks, the firms can still make choices that will determing/hntensively it will use
the road network. For example the firm may decide to orgatésgelivery system so
to reduce the amount of miles its trucks have to run to pick @penmls and deliver
goods. This would reduce the amount of congestion. We arawate of any model
that tries to include these considerations in an otherviesedsird model of economic
growth. We do this in this chapter. In our model, firms decidéhthow much capital
to employ in production and how intensively to use the stdgbublic infrastructures.
This assumption has an important consequence. Given thedgage utilisation of the
public capital stock is not automatically proportional ke tcapital stock, the wedge
between the social and marginal product of private capia is key in the result of
Turnovsky [105] and Ott and Turnovsky [83] depends on the akarge. When the
latter is chosen to obtain static efficiency, the optimaliteyncome tax, at least in the
long-run, is zero.

We see the main contributions of this chapter to the liteeata be the follow-
ing. (i) A part from Ott and Turnovsky [83], we are not awareanly analysis of re-
jectable public goods in an intertemporal contegt consider this to be an important
gap in the existing literature. Our models differ in impaitavays from that of Ott and
Turnovsky, and a comparison between the two helps clagffunther the intuition be-

hind Chamley’s famous result. (ii) We assume that investngeinreversible and show

60 Starting from the seminal papers of Bafb3] and Barro and Sala-i-MartifiLl5] to Glomm and
Ravikumar[57] and Eicher and TurnovsKy 7], just to cite a few.
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that this may have important consequences for the optingallflicy. To the best of
our knowledge, this issues has not received attention irexisting optimal taxation

literature.

4.1 The model

We first discuss the production side of the model. The nextestibn offers the micro-

foundations for assuming that the aggregate productioctifmis of the form
Y =f(K,V,V/G),

whereK is the private capital stock/ the aggregate utilisation of public services and
G the public capital stock. The terii/G is meant to capture a congestion externality
and it is often denote by. The reader mostly interested in the result concerning the
policy implications and less with the technicalities of thedels may skim through the

following subsection and move quickly to the next section.

4.1.1 Microfoundations

On the production side of the model we have a continuum oftid&lrfirms indexed by
€ [0, +00). Firms use private capital and public services to producecamogenous

good. Their production set is indicated y(I") and it is described by
\II (P> - {(y27klvvl> . ¢ (ki,'Ui,P) - yz 2 07 kz 2 ]%7 (% 2 0} U {(07070>}7

wherey; is the level of outputk; the capital stockk > 0 is a minimum capital re-
guirement in productiony; the level of usage of public services chosen by the firm and

' is the level of congestion. We assume tfidt, ., .) is strictly increasing and strictly
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concave in its first two arguments, strictly decreasing snthird argument, and that
A (k,v,T) > ¢ (Ak, v, ") VA > 0 (decreasing returns to scale.)

The interpretation ofv (") is the following. In order to produce a given level of
output, firms require capital and public infrastructurevemss. The latter are rejectable,
each firm can decide how intensively to use théme level of utilisation is indicated by
v;. The contribution to production of utilisation of the pubdiervices depends inversely
on congestion, hence the assumptign(k,v,I') = 0v (k,v,T") /OT' < 0. We find it
also reasonable to assume that there is a limit to the defestitutability between
private capital and public services. We capture this byragsgithat forv large enough
the marginal product af becomes null. Formally, for anfyandI" there is a such that
v, (k,0,T) =0y (k,0,T") JOv = 0.

We indicate withK' = [ k;di the existing aggregate stock of private capital, with
G the existing stock of public capital and with = [ v;di the aggregate utilisation
of public services. At the level of the individual firm the draction set is not con-
vex due to the presence of the minimum capital requirerhektowever one can show
that the aggregate production set, given by the integrdletorrespondence that asso-
ciates to eachthe production set, is convex (Aumann [8]). Furthermonecsiwe have
assumed that alls have the same production set, the aggregate productiemaeon-
vex cone (Novshek and Sonnenschein [80]¢ aggregate production set is the convex
cone generatétlby ¥ (T'"). This convex cone can be regarded as the hypograph of a
concave, functiorf (K, V;T") homogenous iti/, V). The following lemma describes

the relationship betweefiand.

61 The convex cone generated byI") is the set of all positive linear combinations of element® ¢f")
(Rockafella{91], p.14). It is the smallest convex cone that contamd).
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Lemma4.1 Call k (v, I") the function that satisfié%

w(/%(v,r),v,r) — o, (l%(v,r),v,r)/%(v,r)+wv (i%(v,r),v,r) .

For any given(k, v), call ¥ (k/v,T) the solution ford to k/v = k (9,T) /6. Then we

have
v N .
f(k,v,l“):mw< (v(k/v,F),F),v(k/v,F),F).
Proof See section 4.6H

So one could start from reasonable assumptions on the finrmduption set and
then derive the relevant properties of the aggregate ptimtuset. For example, if one

takes the following Cobb-Douglas specification
¥ (k,v,T) = (k— k)"0 =T,

then applying lemma 4.1 one finds

wheré® k = (1 — 8) k/ (1 — a — ). A slight generalisation is given by assuming
¢ (k,v,T) = (k,v) — To,

Where{p is concave. Then it can be shown that the aggregate producitnetion will

be of the form

fk,v,T) = f(k,v)—Tuv,

62 As explained in more detail in appendix 4.6, the functl?o(m I") gives all the pairgk, v) such that
at (k (v,T) ,v), the straight line going throug(®, 0, 0) and (k: (v,T), v, F) is tangent to the production

set. Essentially it is the projection on thie v) plane of the points of contact between the boundaries of
the production set and the cone the latter generates.

8 |n this particular casé (.) turns out to be constant.
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where f is homogeneous and concave. It can then be easily vétifteat the function
Y =f(K,V,V/G)

is concave iN K, V, G). This fact is important because as we will discuss shottly, t
properties of this function are important to the study of éggiilibria in the economy
and to characterise the optimal policy.

For more general specifications, though, it seems rathigsudifto infer the prop-
erties of f from ¢ beyond concavity and homogeneity w.fk, v). We take a shortcut
instead, by making some assumptions directly fonFor any aggregate production
set, and therefore anfy(K, V,T'), there will be a family of production set& (") (not

unique) that generates it. We therefore make the followssymptionsY (K, V,T")

_ (K, V.T)
_ Pf(K, VD)
ko (K, V, P> = W < 0, (2)
_ O f (K, V.T)
fUF(Ka‘/aF):W<Oa (3)
2
fer (v = LEED <

We next define atatic equilibriumand show that it can be related to the aggre-
gate production function. To understand the definition, simauld think of the supplies
of private and public capital as given (by past investmenty the user charge as exoge-
nously given (chosen by the governmerthen we look for a price for capitat, such

that the aggregate demand for capital equals su@nig a level of congestioh such

64 By checking the signs of the leading principal minors of thesslan matrix.
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that if expected, firms would choose a level of utilisatioatttvould result in exactly

that level of congestion.

Definition 4.1  (Static equilibrium) A for a given pair of stock&K, G) € R? |,
and a user charge € R, a static equilibrium is a price for capital € R, , a pair®

of firm’s decisiongk, v) 2, and a number of active firmse R such that
1. (Profit maximisation) Givefr, p), (k,v) = argmax (k,v,I") — rk — pv.
2. (Market clearingink = K.
3. (Freeentry)) (k,v,I') —rk —pv =0

4. (Expected congestion = actual congestidny:- nv/G.

The static equilibrium can be characterised in terms of fggegate production

function f.

Lemma 4.2 If for given (K’, G', p'), the pair (', V") satisfies
fe (K VIV G =of (K V!, V|G JOK =1,
fo (K VI VG =of (K, V! V' /G JOV = p,

then there exist/, £’ andv’ such that” and (n’, k', v") constitute a temporary equilib-

rium given(K’, G’ p').

Proof Consider the triplgY’, K’, V'), whereY’ = F(K',V',V'/G"). This

triple belongs to the boundary of the aggregate producebrics [' = V'/G’. Since

6 We thus impose a high degree of symmetry: all active firms sseraed to choose the same plan.
This is clearly over restrictive and could be relaxed, bairiplifies the analysis.
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the aggregate production set is the cone generateld %/ /G’) , there exists a triple,
(v, k', v"), such thaty = o (Ko, V'/G') and (n'y',n'K',n'v") = (Y, K', V"), for
somen’ > 0. Furthermore, since the aggregate production set is a dof}€, K', V")
belongs to its boundary, so doég, k’,v"). So we must havg’ = f (k',v,V'/G’).
Now f and¢ are both concavd, (., .,.) > ¢ (.,.,.)andf (K", o', V'/G") = (K',v', V' |]G");
by lemma 1 in Benveniste and Scheinkman [19] their gradiants’, v/, V' /G’) must

coincide. Therefore we have

wk (k‘/, U/7 V//G/) = fk (k/v U/v V//G/> = fk (K/v V/, V//G/> = Tlv

U, (K0 VG = fo (K0 VG = fu (K VLV /G =7,
where the equalitieg; (k',v',V'/G") = f; (K',V',V'/G") j = k,v follow from the
fact that if f is homogeneous of degree 1 (&, V), its derivatives are homogenous
of degreed. Then, given(r’,p’'), the pair(k’,v") satisfies the first order condition for
profit maximisation. Given the concavity of, these conditions are sufficient for a
local maximum. The only other candidate for a global maximar(0, 0,0), which

yields zero profit. But so dody’, k', v'), since

n' (y/ - p/U/) — Y /K’ _p/v/
= JEV VG = fi (K VOV GE) K = fo (K0, VGV

= 0,

where the last equality follows from Euler’'s theorem for legenous functionsll

Next we define a fiscal policy. This is a vector of functionsiofg, (1, () , B (),

7(t), p (1), wherel, (t) > 0 is public investment which determines the evolution
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of the public capital stock according to

B (t) is the stock of public bond$) < 7 (¢) < 1 is the income tax and (¢) the user
charge at time.
The economy is inhabited by an infinitely-lived represemaagent that choose

a path for consumptior,(t), and assetsd (¢), so as to solve the problem

e (t>1_7 -1 —pt
ma,x/o 1 5 e dt (4)
subject to
A) = (1 =7(®)r ) At) —c(t), (5)
A(0) given. (6)

We are now ready to define an intertemporal equilibrium.

Definition 4.2  (Intertemporal equilibrium) An intertemporal equilibrium is a
vector of functions of timéJ (), G (¢), B (t),V (t),7 (t),p (), 7 (t) k() ,v (t) ,n (1),

such that

1. (Static equilibrium)vt (K (t),G (t)), (r(t),p(t)), (k(t),v(t)) andn (t)

constitute a static equilibrium ant (t) = n () v (¢).
2. (Utility maximisation)c (t) and A (t) solve (4) s.t. (5)-(6).
3. (Government budget constraint) B (t) satisfies

Bit)y=(1-7)r)BM)+L{t)—m®)r KB -p®) V(). (7)
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4. (Public capital accumulationyt G (t) satisfies
G (t) =1, (t) > 0. (8)
5. (Resource constrainjt K (¢), G (t) andV (¢) satisfy
K (t) = f (K (8),V(8),V(8) /G (1)) = I, (t) = c(t) > 0. 9)
6. (Asset market clearing)t we have

K(t)+B(t)=A(t). (10)

In other words an intertemporal equilibrium is a sequencsatifc equilibria such
that all markets clear, the representative agent maxinssgdifare and the government
budget constraint is satisfied. The latter requires thataetoy, B (¢), is issued to cover
the difference between expenses (that is interest payraadtpublic investment) and
tax revenues (of course when revenues exceed expensesdketiebt is falling).

Note that (4) and (5) in the definition introduce the assuamptif irreversible in-
vestment. Without this assumption capital goods could Istlessly be transformed
into consumption goods, public capital could be conventtadl private capital andice
versa All this does not seem very realistic, we compel us to assuraeersibility.
Having said that we emphasise that most result do not depentalty on this assump-
tion. The exceptions are: (i) in proposition 4.1 the inipablic to private capital ratio
will not matter anymore: since the planner can convert publio private capital and
vice versathe optimal ratio is always chosen and then either thereawith in the
long run (if the marginal product of capital is high enougbr) there is not, just as in
Barro [13]. (ii) Propositions 4.3 and 4.4 that deal with tlases where the irreversible

investment constraints bind would no longer make sense.
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Note also that we have assumed no depreciation. This isyptamekimplicity,
nothing of substance depends on this. In fact one could alwdgrpret the production
functions as giving output net of depreciation.

We have now fully described all the elements of the modelhértext sections

we will first look at the first best intertemporal allocatiomdsthen at the optimal fiscal

policy.

4.2 Command optimum

In this section we look at the allocation that a social planmigh full control of the

economy’s resources would choose. The planner’s problem is

e ¢ (t>1_7 —1 —pt
ma,x/o —q > e Pdt (11)
subject to
K(t)=f(K(),V(1),V(t)/G(t) —e(t) =L (1) >0, (12)
G(t)=1,(t) >0, (13)
K (0) > 0, G(0) > 0 given. (14)

Before characterising the solution to this problem, it igfukto analyse the
problem of choosing’ (¢) to maximise aggregate outpwine would expect the plan-
ner to do so at all times, and the following proposition witinéirm that this is in-
deed optimal. But it will also allow us to define the rati¥y K’ to which the opti-

mal path will converge when there is sustained growth. Letes callf* (K,G) =
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r%_;cf (K (t),V(t),V (t)/G(t)). Giventhatf is homogenous of degree 1(f, V, ),

it can be showtt that f* is homogenous of degree 1 {i, G). Then we can write
*(K,G) = f*(1,G/K) K. We shall indicate withe* the solution tof; (1,z*) =
fy (1,2*). We shall refer tar* as the optimalG/K ratio, as a planner that could
transform K into G and vice versa costlessly, would always cho6s€< = z*. In
generalr* needs not be unique. However,fif K (t),V (t),V (t) /G (t)) is concave
in (K (t),V(t),G(t)), thenf* (K (t),G (t)) is also concav® (Fiacco and Kypari-
sis [52]) In what follows we assume thét (K (t),G (t)) is strictly concav® which

implies a uniquer*.

Proposition 4.1 If (KP(t),VP(t),GP (t),cP (t), 5 solve (11) s.t. (12)-(14)

and f* (K (t),G (t)) is concave i K (t), G (t)) then we have the following cases:

1. If max {f; (K (0),G(0)), £ (K (0),G(0))} < p, thenvt é? () = K? () =

g

Gr (t) = 0and e (t) = f* (K (0), G (0)).

2. If fr(K(0),G(0) > p > fy(K(0),G(0)) and f; (1,2*) < pthen

vt GP(t) = GP(0), ¢ (t) [er (1) = [fi (K7, G(0)) —p] /7, KP () =

66 f*(eK,eG) = max f (eK,V1,V1/ (e@)) = max f (eK,eVa,eVa/ (eG)) = maxe f (K,V,V/G) =
1 2
Em‘?xf (K,V,V/G) =ef* (K, G). The first equality follows by definitigrthe second follows from
the fact that the two maximands are identical except thdtérsecond we hawd/;, rather tharl/; ; then
clearly if V* and V5 solve the first and second problems respectively, we wilehgv = V5, but the
value of the maximand will be the santhe third equality follows from homogeneity ¢f(., ., .); the
fourth is trivial and the last equality follows again fronettefinition of f* (., .).
67 ']M< ()\Kl + (1 — /\) KQ,)\Gl + (1 — )\) Gz) = m&xf ()\Kl + (1 — /\) KQ,V,V/ ()\Gl + (1 — )\) GQ)) =
max f (K1 + (1= 2) K2, AVi+ (1= ) Vo, AV + (1 = A) 1o/ (AG + (1 = A) G)) =
1,V2
Imax (A (K1, Vi, Vi /Gr) + (1= A) f (K2, Vo, Va/G2)} = Af* (K1,Gr) + (1= A) f* (K2, Ga).
1,V2
The second equality follows from the fact that the maximaredidentical except that in the second we
write AV; + (1 — \) Va; so if V* solves the first problem, aryj* andV;* such that\Vi* + (1 — ) V' =
V* will be optimal for the second and achieve the same valughtontaximand. Other equalities follow
by definition or from properties of concave functions,

68  The examples discussed in p. 127 generate a strictly corf¢ave
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f*(KP(t),G?(0)) —cP (t), and calling K%, = tliin K? (t),andc®, = lim c? (1),

t—-+o00

we have
fi (KZ,,G(0)) = p,

ho = [" (KL, G (0)).

3. If fr(K(0),G(0) > p>fi (K (0),G(0) thenVt K?(t) = K (0),
& (t) Jer (t) = [f; (KP(0),GP (1)) — p] /7, andGP (t) = f* (KP (0),GP () —

c? (t) and callingG?, = lim GP (t),andc®, = lim c? (t), we have

t——+o00 t——+o00
fq (K(0),G%) = p,

o = 7 (K(0),GL,).

o0

4. If fi(K(0),G(0)) > f; (K (0),G(0)) and f (1,2*) > pthen3T > 0 such
thatVvt € [0,T) GP (t) = 0, ¢ (t) /cP (t) = [ff (KP(t),G*(0)) — p] /, and

KP(t) = f*(KP(t),G?(0)) — (1) .Vt > T
KP () /K (t) = GP () /G (t) = & (t) /¥ (t) = [fi (1,2%) — p] /v
and

& (T) = f* (K? (T) ,G? (T)) — W (P (T) + G? (T).

5. If f; (K (0),G(0)) = f (K (0),G (0)) > p, therf® vt

KP (1) /K (t) = G (1) /G” (t) = & (t) /e (t) = [fi (1, 2%) — p] /7
and

L) —p

¢ (0) = f* (K£(0), G (0)) 5

(K (0) +G(0).

% It may be useful to note thafy = f; implies thatG//K = z*. In this casef; (K (0),G (0))
= f¥(1,G(0) /K (0)) = f¥ (1,z*), where the first equality comes from the fact that if a finci®n
homogeneous of degree 1, its derivative is homogeneougoéel®.
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6. If f;(K(0),G(0) > fi (K(0),G(0)) and f; (1,2%) > p then3dT > 0 such
thatVvt € [0,7) K”(t) = 0, ¢ (t) /? (t) = [f: (K (0),G” (t)) — p] /1, and

g

GP (t) = f*(KP(0),GP (t)) — P (1) .Vt > T

KP (1) /K" (t) = GP (1) /GP (1) = é» () /e (1) = [f (1,2%) — p] [y
and

(1) = 1 (1 (). 6 (1) - BTV ZL e ) 4 6 ).

Proof See section 4.6H

The intuition for this proposition is as follows. First of,a@lo maximise welfare
any investment should be channel to the type of capital tellyithe higher return.
So investment is specialised except when the marginal ptedf the two types of
capital are equal. When they differ, the return to investnethe greater between the
two marginal product. Secondly, if a unit of output is nobalited to investment, it
is allocated to consumption. The return to consumptiéhzst v¢/c. Optimisation

requires the equality between the rates of return on invastaind consumption, i.e.
é * *
p+7 = max (fi, f),
or rearranging

¢ max(fi,f;) =,

- )

c g
the Keynes-Ramsey rule. Intuitively the plan chosen by thaner depends on the

relative marginal productivities ok and G and their relationship to the intertemporal

0 1f we indicate withu.. (t) the instantaneous marginal utility of consumption at timehe utility rate
of return on consumption is
U (t) e Pt —u (t + dt) e P+
ue (t) e=Ptdt ’
taking the limit fordt — 0, we obtainp — u./u.. But the last term is (with a CEIS utility function)
—é/c.
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discount factor. The six cases can then be understood vathelp of figure 4.1. Since
f* is constant returns to scale, the marginal products arerdieted by the(7/ K ratio.
As this ratio increases (fallg; increases (falls) and, falls (increases). The curves
MM’ and NN’ represent two different loci for two different technologlieCase 1
occurs when the return on investment is below the return eiswaption if possible
the planner would like to convert some of the capital stodk tonsumption goods,
but the irreversibility constraints prevent this. The bastion is therefore to have no
investment at all and consume all output every period anctiomomy stagnates. In
case 2 (3) the return on private (public) capital is initidligh enough to induce the
planner to accumulate more of it. This however reducesdas®s) its marginal product
and the economy moves down (up) the\/’ locus until the return to investment equals
the discount factop at which point no further accumulation takes place. Case)4 (6
is analogous except that in this case the economy converghe bptimalG/ K ratio
and then keeps on growing on a balanced path with investmdath types of capital.
Finally, case 5 is the special case in which the initi@lK ratio happens to be the
optimal one and the economy grows on the balanced path frereginning.

If one were to remove the irreversibility assumption, thenpler would always
convert public capital into public capital eice versato obtainG/K = x*, therefore
we would always be on the 4%ocus in the figure. Then depending on technology we

would have either stagnation (dd M’) or balanced growth from the start (&A/N”).
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4.3 Optimal fiscal policy

In this section we infer some important properties of anroptifiscal policy. By opti-
mal fiscal policy we mean a vector of functions of tifwe(t) , I, (t), p (t), B (1)},
such that they can be part of an intertemporal equilibriuat thaximises the represen-
tative agent’s utility. We find convenient to definé) = (1 — 7 (¢)) r (¢). As we shall

see presently, one can equivalently think of the governriveng the income tax- or

the after tax return to capital The following lemma helps in formulating the problem.

Lemma 4.3 An intertemporal allocation{c (¢), K (t), G (t), V (1)}, is

decentralisable as an intertemporal equilibrium if andiflthere are{7 (), I, (¢),
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p(t), B(t), A(t)}/,55 such thatvt

K(t)=f(K(t),V(1),V(t)/G(t) —c(t) —I(t) 20, (15)
G(t)=1,(t) >0, (16)
c(t) =X (1), (17)
Ac(t) = (p—T(8)) A (2), (18)
B(t)=7(t)(B()+ K1)+ 1, (t) = f(K({),V(1).V(#)/G®#),  (19)
7(t) >0, (20)
Jtim A () e K () = lim A () e "B (1) = 0. (21)
Proof The details of the proof are in section 4.6, but essentiallipe decen-

tralisable an allocation must satisfy the technologicalstaint (15) and (16)t must
be chosen optimally by the representative agents, hencast satisfy (17) and (18)
(which together give the Keynes-Ramsey equation), as welha trasversality condi-
tions (21) using the relationships between prices and marginal ptedutd Euler’s
theorem for homogeneous functions, we can rewrite the govent budget constraint

as (19).m
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The the problem of identifying the optimal fiscal policy camwritten as

+oo 1—y

—1

max/ Le””dt (22)
0 I—v

subject to (15)-(21) an& (0), G (0) given. Henceforth, to de-clutter the notation, we
stop indicating explicitly the dependence of variable ametiwhen no confusion should

arise. To derive the first order conditions, define the Hamién:

=7 —1
L=y

_'_)‘k [f (Kv V, V/G) —C—= Ig] + )‘QI!J + ¢)\c (p - 77) )‘c

H (KaGa )\caBaca Ig> V; >\ka )\gagbkca/t) =

+ul[r(B+ K)+ 1, — f(K,V,V/G)],
and the Lagrangian

L (K> G, )\ca B, C, Iga ‘/a )\ka )\ga ¢Ac> My My nAca Mk 779)

= H+ny, [¢7 =N +07+n,[f (K, V,V/G) = c— 1] + n,1,.

Lemma 4.4 If {cP, K°P, G°P, VP, ];p}j;g are the solution to (22) subject
to (15)-(21) andK (0), G (0) given, then there ar¢ \,”, \)”, o, u?, 03, 0, i,
n%}, 55 such thaic?, Vor, I, 7 maximised s.t. 1, > Oand f (K, V,V/G)—c— 1, >

0,7 >0.

()T = 2P+ ()T + (23)

AR = 1 il [fo (K, VP, VP [GP) + fr (K2, VP, VP [GP) [GP] =0, (24)

—OIAT o+ (B 4 K)ol =0, 25)
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AL = N A =+ =0, (26)
A= NP — NP = ) f (K7 VP VG — e, (27)
:op Vop
Ag = PAF A+ NE = p ] fo (K7, VP VP /G e (28)
Ox. = po — O (p— ) + 113!, (29)
% = o — 7). (30)
nzp [f (Kop’ Vor, Vop/Gop) — P Ig”} =0, nzp >0, (31)
eI =0, 1% > 0. (32)
Proof These first order conditions are standard results in optooadrol theory,

see Arrow and Kurz [5] and Seierstad and Sydsaeter [B8].

First note that\,, the shadow value of private capitél, will be strictly positive
given non-satiation and the fact that the marginal prodficapital is always positive.
If lump-sum taxes were allowed, the level of the stock of pubdebt could be altered
without the deadweight losses associated with distortiotexation. The costate vari-
able.°? associated to the government budget constraint therefeesunes the cost of
distortionary taxation, the so-calledarginal excess burden of taxatipand is clearly

non-positive. Then using (24) we have
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fo (K, V2, VP [GP) + fr (K7, VP, VP JG™) [GP = 0.
Since in a static equilibrium we must hayg(K, V,V/G) = p, then the optimal fiscal

policy implies that the government chooses a user chathat satisfies
p=—/r (K, V,V/G)/G. (33)

The interpretation of this result is straightforward: irookingv, the individual
level of utilisation, each firm only considers the contribatthat the marginal unit of
consumption of public services brings thus aligning thegia benefit to the private
cost:y, = f, = p; this way the social cost,created by the congestion exigrnsine-
glected. The optimal pricing policy is to correct for thidesnality by imposing an user
fee that r@lects the external diseconomy created by the marginal udggabtic ser-
vices the marginal unit of utilisation decreases aggregate altpuyr/G,so this is its
social cost. The optimal user fee makes firms internaliseakiernal effect. It follows
that the pricing of public services shouldieet only static efficiency considerations,
not the need to finance investment in public infrastructlrés the notation of the pre-
vious section, we have just obtained the result that if thegonent adopts the optimal

fiscal policy, thenvt
f(KP VP VPIGP) = f*(KP G?P). (34)

Let us express the marginal burden of taxagi¢hin terms of consumption goods
by definingm = —p°? /A% . Barro [12] argued that the optimal debt policy smooths out
the excess burden over time. The following lemma shows thatésult remains valid

in our framework. An analogous result was established byh@léna[34] and Judd [67].

L Batina[17] obtained a similar result in an overlapping generationsehagre current government
expenditures (not the stock) affects households’ utdli{iot firms’ production sets).
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Lemma 4.5 m = —u? /AP is constant over time.

Proof Equations (18) and (30) imply

j” A
= p —_ ,’70]) = ¢
0] op?
per c

i.e. u? /A is constant.l
The following proposition shows that the optimal income ixero along a bal-

anced growth path.

Proposition 4.2 Call @r = {t c K > 0,GP > O}. Then for allt € ©°? we
have EITHER? = f, (K, V°P VP /G) (or equivalentlyr = 0) OR7? = 0 (or

equivalentlyr®® = 1). Furthermoret € ©% only if G/K = z*.

Proof See section 4.6H

So, as in the first best, positive investment in both typesapital occurs only if
their social marginal products coincide. If the economyverges to a balanced path,
therefore, it converges to one that has the s&& ratio as the first best, and -in virtue
of ¢P/cP = (1/7) [F? — p| = (1)) [f¥ — p] = ¢?/cP- the same growth rate. This does
not mean, however, that the first best can be replicatedtransitional dynamics will
in general be different, and therefore thevelsof consumption and capital stocks will
in general be different as well. On a balanced path the indameés either 100% or 0.
But since the growth rate id /v) (7°? — p), the optimal tax cannot be 100% unless we
have negative growth.

Once realised that the optimal user charge internalisesdhgestion external-

ity and therefore that (K,V,V/G) = f* (K, G), this "zero tax” result is completely

2. One can show that the first best can be replicated if the litéti@l of the stock of debB (0) has a
particular value, depending dki (0) andG (0).
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analogous to the result obtained by Chamley [34] and Judd [@&nipulating the ex-

pression in the proof of the proposition, one can easily stiat?

_md
A dthUa

Ji (K VP VP GP) = 77 =
wherem -it will be recalled- is the marginal burden of taxatidnis the marginal social
value of government wealth holding private wealth constamde ,;;; is the elasticity
of the marginal utility of consumptioft. This formula, valid wherr > 0, shows that
the optimal wedge betweefy (the social return to investment) andthe private after
tax return) is proportional to the inverse of the elasti@fyconsumption deman@,
which corresponds to the inverse elasticity result fountha static optimal taxation
literature (see for example Baumol and Bradford [18]). Weeha@ready shown that
is constantg ;7 is always constant with the CIES utility function we have shid’.

Before the reader discounts the result of the propositiotmiaal, however, we
would like to emphasise that it might not have been entirgpeeted however. In fact
even Judd [67] to whom we owe this observation takes the dasengestion as one
example where departure from the zero tax rule is to be eggeéind we have already
noted that Turnovsky [105] and Ott and Turnovsky [83] alsdl fifon-zero tax results

based on the presence of congestion. The latter is paricuéanarkable given that

their model also have an user charge. We will expand on thgsation 4.4.

73 An analogous expression was first derived by Ji@id).
74 See the proof ot the proposition for more detail.
S le.epu = cuee/ue, With obvious meaning of the symbols.
76 From the household first order conditions= X.. Then

de Ao Ue

d\. ¢ - U

T And must be constant in a steady-state, which is why Chanoleldaerive the result for more general
utility functions.
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Another feature of the optimal plan is worthy of being highlied. Given that

P = i (K7 VP, VP [Go7) /G, we have

op
pPVoP = — fp (KPP, VP VP/GP) gop. (35)
On the other hand by (34) and the envelope theorem,
Vvep
* op op — op op op op .
fg(K 7G )_ fF(K 7V 7V /G >(G0p)27
comparing this last equation with (35) we obtain
* 0] o _ popvop
fg(vaGp>_ Gop )
or
fg (K?,GP) G = p*V*. (36)

In other words, through user charge revenues, the govertrep@nopriates a share of
total output just equal to the contribution of the stock dfastructures provided. The
optimal policy essentially mimics the situation where weéenboth types of capital pro-
vided privately and competitively. This result is of intsréecause it indicates that the
same allocation could be decentralised in an equilibriunere@tpublic infrastructures
are privately owned but the user charge is administratisetyequal tg°” by the gov-
ernment. Furthermore, this result can be used to demomashrait if the optimal policy
converges to the balanced growth path, the government mimgany surpluses in the
long run. This is interesting, because for a broad class afatso one typically finds
that the optimal policy entails the government runningésdfigcal surplus in initial pe-
riods and then use the income stream from the accumulatelthviedinance fiscal
deficits in the long-run when taxes are kept low and the piyniiaadget is in deficit

(Jones, Manuelli and Rossi [65]). The reason why things dfierent here is that in our
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model one element of the optimal policy mix, the optimal ud&rge, createsfiow of

revenues that is more than sufficient to cover for the finanofrpublic investment.

Corollary 4.2 If 37 such thatt > 7' = t € ©° (where©® is as defined in

proposition 4.2) and” /¢ = K /K = G /G, thenp®V? > G = [,

Proof Convergence to a balanced growth path and the trasversatitjitions (21)

imply

v v

. . . . . . * KOp,GOp _ f* (KOP,GOP)—p
fk(K”,G”>=fg(Kp,G”)>fk( J=p s

)

i.e. that the economy is dynamically efficient. Then

fg (K, G) = p
g

G”.

[ (K?,G7) G >

Balanced growth means

ALY,
v

G G.

Then using (36) and the last two equations, we have
PPV S G = T,

QED. m

So far we have concentrated on balanced growth. But thei@oltite first best
allocation problem showed that typically there will be pels where investment is spe-
cialised in one type of capital only. For these cases, we tieéollowing interesting

results.

Proposition 4.3 Vt such thatk” > 0, G = 0, we must have either? = 0

or 7P = fr (K, GP).



4.3 Optimal fiscal policy 147

Proof The proof is virtually identical to that of the first part ofgmosition 4.2.1

Proposition 4.4 Vt such thatk? = 0, G°? > (0 we must have eithet” = 0 or

PP = fr (Ko, GoP).

Proof See section 4.8

These last two propositions deal with the transitional ayica when the irre-
versibility constraints hold. The two are formally very dian, but while there is proba-
bly not much to notice in the first one, the second show thatwhe initial G/ K ratio
is below the optimak* the optimal tax is not zero when it is not 100% as in the previ-
ous two proposition. To see this note that sifce (1 — 7) fi, (K°?, VP, VP /G) and

fr (K, VP VP /GoP) = fi (K, G?) when the optimal user charge is set, we have
(1 =7) fg (K7, G) = fg (K7, G),
or

i G) — (£, G)
fi (K7, G)

But since it is only optimal to specialise in public capitatamulation when its mar-
ginal product exceeds that of private capital, it followattthe optimal tax is negative,
i.e. a subsidy.

One way to understand this result is that in this second loesiasio the govern-
ment does not control saving decision directly. If the gaveent set- = 0, the private
sector would takef; as the return on investment, but from the social point of \iesv
rate of return isf;. It is clear that this divergence between the marginal prodii
private and public capital can only occur when the irrexslisy constraint on public

investment is present and binding. When the binding comstisathe irreversibility of
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private capital, there is no need to correct the rate of nep@rceived by the private
sector, because in this caggis also the correct rate of return from the social point of

view.

4.4 Non-optimal user charges and alternative congestion
function

In this section we discuss two modifications to the model. flils¢is to impose non-
optimal user charges, the second is to consider an alteematdelling of congestion.
The purpose of this section is to clarify what drives the mrassults of the previous
section and to link our analysis to the existing literaturbe zero capital tax result of
proposition 4.2 is driven by the fact that the optimal useasrgke acts as a Pigouvian
tax correcting the congestion externality. To show this walygse how the optimal tax
would look like if the optimal user charge cannot be select& shall see that then
the optimal tax is generally different from zero, althougimay be negative (should the
arbitrary user charge be too high). Next we consider anraltse congestion functign
in particular we shall follow Turnovsky [105] and Ott and mowrsky [83] and assume
that congestion is a function of the private/public capstalck ratio. In this case the
optimal tax is positive. This last conclusion is obviousiymare re-statement of a result
of the afore mentioned papers, but it is reported here sqtltihg it side by side with

the analysis in the previous section will clarify where tliftedences come from.



4.4 Non-optimal user charges and alternative congestiactifon 149

4.4.1 Non-optimal user charges

Let us then arbitrarily fi¢ the user charge at some leyeb 0 for all ¢. For any pair of
capital stockg K, G), we will have a static equilibrium as described in lemma 2
particular we will have

fo (K, V. V/G) = p,
which determined/ as a function of( K, G;p). Substituting this value o¥ in the

aggregate production function we obtain the output produtet us then indicaté

~

FE V)= (K V(K Gp),V(K Gp)/G).

One may usefully comparg with f* defined at p. 134. The latter indicates the
maximum output achievable with given capital sto¢kS G); to achieve that level of
output the decentralised economy requjrés be set optimally/ is the output obtained
when the user charge is arbitrarily set, and obvioysty f*. It is easily verified thaf

is homogenous of degree 1(/, GG), and that

~

e (K.G) = fi(K,V(K,G;p),V (K, Gip) /G)+ (37)
[fo (K, V(K,G;p),V(K,G;p) /G)] Vi (K, G p) (38)
+[fr (K,V(K,G;p),V (K, G;p) /G) /G Vi (K, G;p), (39)
where
Vi (K,G;p) = 0V (K, G; p) JOK.
Furthermore

rK +pV = f(K,G)

78 One can of course also consider an arbitrary but time vanyseg charge. Nothing of substance would
change except that the aggregate production function wameddme time-varying. We would therefore
have to invest in some more notation without much to gainrimseof intuition.

7 Since in this sectiop will be kept constant, we drop it as a termﬁn
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remains valid. Then following the same steps as in lemmane3ind that the optimal

fiscal policy can be derived from the solution to the follog/problem:

+o0 1—y

t

max/ c(t) e Pldt  s.t.
0 I—7v

c(t) =X (1), (40)

7(t) >0,
. —pt o . —pt
tEI—Eloo A (t) e 7K (t) = tE+mm A (t)e”B(t)=0
Proposition 4.5 Assume that the government chooses an optimal fiscal policy

given the constrainp (t) = p Vt. On a balanced growth path with () > 0 and

G (t) > 0 the optimal tax is

fi (K, V (K, G;p),V (K,G;p) /G) — fi (K,G)
fr

T =

Proof See section 4.6H
Using (37) and dropping the arguments to make the result easgy readable,

we have found that the optimal tax is

— _(fv‘l'fF/G)V;c
Jr ’
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This formula is rather intuitive: when the user charge isiffisient to internalise the
congestion externality (i.ef, + fr/G < 0) the income tax should be positive, and
vice versa It follows that the optimal tax is zero either when the udsarge is chosen
optimally (and thereforg, + fr/G = 0) or when an increase in the private capital stock
does not affect the choice of (i.e. whenV}, = 0). This would happen if the production
function is such that, is independent of.

One can draw a parallel between this result and that in GofB&]. The latter
finds that the Chamley result not to hold when the tax systent@mplete in the sense
that there is one factor of production that cannot be tattezh unless there is a strong
separability between taxable and non taxable factors iptb@uction function, the tax
is positive (negative) when factors are complements (gubsk. In this section we have
established a similar result: it is only optimal to alter thiertemporal margin if there

are not enough instruments to correct all distortions atrttratemporal margins.

4.4.1 An alternative modelling of congestion

In this subsection we depart from the assumptions on teoggahat we have worked
with so far. The reason for doing so is to shed some furtheghton the results
obtained and to link these results withe existing literatdret us assume that the pro-
duction side of the economy is characterised by a singlesgmtative consumer acting

competitively, with production function

f (K, VL),

where now

I'=K/G,
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i.e. congestion depends on the private/public capitab natther than the aggregate

utilisation/public capital ratio.

Proposition 4.6 When congestion is a function &f/G, the optimal user charge

is zero and the optimal tax on a balanced growth path is gdhyepasitive.

Proof See section 4.4

This result is hardly surprising at this point. We shown ictem 4.3 that the opti-
mal user charge is chosen to force firms to internalise thgesiion externality implied
by their choice of utilisationy. However, in the model of this subsection the choice of
v has no effect on congestion, hence there is no need to conegrrivate choice of
v. But now the private choice ok does create a negative congestion externallity
therefore becomes optimal to use the income tax to intesxméli

We conclude this sub-section with a comparison between @in model and
that in Ott and Turnovsky [83]. They assume that the econapppulated by firms

with identical production functions:

y:f(kaEs)a

wherek is the firm’s capital stock whild’, is theflow of public service€® The latter is

k’ €
E,=E(—) ,
(%)

whereE measures government expenditures Angk nk is the aggregate capital stock.

given by

It is therefore assumed that each firms benefits from a giwvehdé public expenditures

proportionally to it capital stock relative to the aggregatock. The parameter €

80 In fact Ott and Turnovsky formulation has two types of pulgands, one excludable and one non-
excludable. We simplify by dropping the latter, since weéhawt included it in our analysis.
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[0, 1] measures the degree of congestien= 0 means that any unit of affects all

firms independently from their number, i.e. there is no cstigeg £ = 1 means that
Es = E/n, i.e. public services are essentially a private good.. @dtBurnovsky make
the assumption that the user charge is chosen as to equaterttesnd and supply of

government spending, i.p.solves
p=fg (K/n, En’s) n-°.

They then show that when the optimal fiscal policy implies aifpege tax. The reason
for this result is that the user charge in this case does netnalise the congestion
externality, and therefore in this model the private andedoearginal product of capital

differ. The income tax is needed to correct this divergence.

4.5 Conclusions

We have analysed a model of endogenous economic growthndoiyenvestment in
public infrastructures. To an otherwise relatively staddaamework, we have added
two realistic features: that public services are excluelalold rejectable and that invest-
ment is irreversible. We have analysed the first best allmtathat is the allocation
chosen by an all powerful and benevolent social planner. ditaditative characteris-
tic of this allocation resemble those found in simpler meda&lvestment is specialised
in the form of capital (private or public) with the highest miaal product. Static effi-
ciency is attained at all times.

We then analysed the optimal fiscal policy, i.e. the bestcation that can be
decentralised as a competitive equilibrium with distoréiny taxes and public services

fees. We showed that in contrast with other existing modéls eongestion external-
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ities, the zero capital tax result typically found in modeigh infinitely lived agents
remains valid in ours.

There are many interesting directions for future reseafébst of all, we have
seen that when the social marginal product of public capkaéed the social marginal
product of private capital, the qualitative differenceswmeen the first and second best
allocation appear sharper. It seems that the irrevetsitwfiinvestment can have im-
portant effects on the design of the optimal fiscal policy. thiak it will be interesting
to investigate this issue further probably with the aid afewical computation.

We have not considered the possibility that households dsawdirms may be
users of public services. One can easily verify that if usgfgaublic services enter the
utility function in an additive way, most of the results falim the previous section still
hold although the optimal user charge will in general beeddht. In particular, the in-
come tax will still have the "all or nothing” characterisficund above. However, the
case in which the utilisation of public services affectsitarginal utility of consump-
tion of the household is more complicated, but also pottytiaore interesting.

Recently Rioja [89] and Dioikitopoulos and Kalyvitis [45ave studied growth
models where the depreciation rate of public capital dep@mdmaintenance expendi-
tures. It would be intersting to expand their analysis byvaithg depreciation to depend
on utilisation of public services.

Finally, one major issue with our approach so far is that gpFesentative agent
approach does not allow us to address the issue of equityicttarly if households
are consumer of public services together with firms, the gharge that maximise
aggregate output may cut off poorer household from publiwises altogether. We

conjecture that the optimal fiscal mix may look very diffetgmn this set up.
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All these interesting avenues are left to be explored inrtutasearch.
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4.6 Proofs of propositions in chapter 4

4.6.1 Proofoflemma4.l

The proof is constructive. We first look for all the points i boundary off’ (I") such
that(0, 0, 0) belongs to the tangent hyperplane at that p8ifithen the union of all rays
going from(0, 0, 0) to this points gives us the boundary of the aggregate pranusét.
This fact is used to give the relationship betwegeand given in the lemma.

If yo = ¥ (ko, vo, '), then the tangent hyperplane has equation

Y — Yo = ¥y, (ko, vo, I') (k — ko) + v, (Ko, vo, ') (v — o) -

If (0,0,0) belongs to this hyperplane, we must then have

Yo = ¥y, (ko, vo, ') ko + ¥, (Ko, vo, ') vo,
or

Y (Ko, vo, I') = 9y, (Ko, vo, T') ko + 1, (Ko, vo, T') vo.
Pairs (k,v) that satisfies this equation are therefore those for whiehtaihgent hy-
perplane goes througf®, 0,0) as wished, hence the definition l%f(v) given in the
lemma. Now for an arbitraryk,v), let us callé = k/v. The solution foro to
€0 = k(9) gives the function (k/v) as in the lemma. Now by construction the pair
(l% (0(k/v)),v (k:/v)) is such that it belongs to the locus of tangency betwéandq)

andk (¢ (k/v)) /0 (k/v) = €. At this point, then

§= (k@ k/0),0(k/v) = £ (k0 k/v), 0 (k/v)).

81 This is analogous to finding the point where the average amgina product coincide for a function
of one variable.
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Given homogeneity of, if y = f (k,v, '), theny/y = v/v. Then we can write

v

HE D = ST

" (k (6 (k/v,T),T) o (k/v,T) ,r) ,

QED. m

4.6.2 Proof of proposition 4.1

We apply theorem 1 p. 276 and theorem 5 p.287 of Seierstad pish&ter [98].
These guarantee thak™ (t),V? (t),GP (t),c? (t)), 5 are a solution to the problem

if and only if there exist continuous and piecewise contislyp differentiable functions

+oo

t=0

(AR (t), X (t)):“:; and non-negative and piecewise continuous functigfi$t) , 7 (t))

such that calling

we have that for anyc (¢) ,V (t), I, (t)) > 0,

H (P (t),VP(t),IE (), KP (t) ,GP (t), X, (), A (1)) (41)

g

> H(c(t),V(t), 1, (1), K" (t) ,G¥ (t) , X, (), ] (1))

g

() = A () + i (1) (42)

Jo (K7 (1), VP (1), VP (1) /G (1))

£ (P (1) V7 (0), VP (8) 67 (1) = - G ,

(43)

Ng () + g () = N () + i (8) (44)
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AL () = pAL () — (XL (1) + 1 (0) fe (K7 (1) VP (), VP (1) /GP (1), (45)
500) = o0 0)-+ OQ.0) -+ () Je (K2 (1), V2 0, V2 (1) /P (1) (%L, (46)
W) [ (7 (0) VP (), V2 (1) /6P () - () — 2 ()] =0, (47)

W) 12 () =0, (48)

where )} (t) is the costate variable associated witFi (¢), \! (¢) the costate variable
associated with? (t), i (t) the multiplier associated with the constraiiit (t) > 0
andn? (t) the multiplier associated with” (t) > 0.

Observe that (41) implies that the planner will choose
V(t) = argmax f (K (t),V (¢) ,V (t) /G (1)) -

Thereforeyt we have

FEP (), VP (), VP (1) /GP (1) = f* (K" (1), G" (1))
By the envelope theorem

S (KP (), VP (@), VP () /GP (1) = fi (KP(t),G" (1)) (49)
and

VP (t)

e (K7 (0, V2 0, V7 (0) /67 (0) iy = J (K7 (0,67 (). (50)
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To prove part 1 of the proposition, consider the system
XNe+my = [T(K(0),G(0)) = 0,
Notmg—=XA—m = 0,
(p = fr (K(0),G(0)) Xy = mpfi (K (0),G(0)) = 0,
pAg (t) = X fg (K(0),G(0)) —nify (K (0),G(0)) = 0.

This is a linear system of 4 equations in 4 unknowng; ;. , Al and#?. It can be

solved to yield

= (5 (0,6 (0) 7 EECLEO)
= 1 (5 (0),6 o)) L SLERLERD
3= ), 6 o) HECREOL

Now if we choose\; (t) = Ay, m;, (t) = mg, Ao (t) = Ay andn? (1) = nb Vi,

0 Vt, one can easily verify that the proposed control, state asthte variables satisfy
all of the necessary and sufficient conditions for an optinand therefore constitute
an optimal plan.

For part 2, choose], (t) = 77 (t) = 0V,

L) —p o

X (0) = A5 (0) = | /7 (K (0),G(0)) (K(0)+G(0)]

I gl
X (t) = A (0) el 7))ty j = k. g, Again it is straightforward to see that the

control, state and costate variables suggested satidfiescaissary and sufficient con-

ditions and therefore are optimal.
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For part 3, sefy; (t) = 0 Vt. Call C (K) the solution to the following differential

equatio?

de _ [fi(K.G(0) ~ pl )y
K~ [{ (K.G(0) — c(K)

with boundary solutioncZ_, K?)). For K? (t) choose the solution of the differen-

tial equationk” (t) = f* (K (t),G (0)) —c (K7 (t)) with initial condition K (0). Set
A (t) = c (K7 (t))"7; for AP (t) choose the solution to the differential equatﬁcf;r(t) =

pAG (8) = A () f3 (K™ (1), G (0)) s

—+00

X (1) = e [Az O = [ (K €).00) N (e Oe]
If we choose\! (0) = +°° Moy (KP(t),G(0)) e~dt then the trasversality condition

lim AP (t) GP (t)e ™™ =0

t—-o0
will be met finally choosey? (t) = A, (t) — AY (¢). Then the proposed path will satisfy
all necessary and sufficient conditions and it is therefpteal.

For part 4, sety; (t) = 0 Vt. Call C' (K) the solution to the following differential

equation

de _ [fE(K.G(0) ~pl /0
K ~ f; (K.G(0) — c(K)

with boundary conditiottc (T") , K (T)), whereK (T') = G (0) /z*,c¢(T) = f* (K (T"),G (0))

—M (K (T)+ G (0)). For K?(t) choose the solution of the differential equa-
tion K? (t) = f* (K (t), G (0)) —C (K (t)) with initial condition K (0). Set\? (t) =

C (KP(t))""; for X (t) choose the solution to the differential equatﬁcgr(t) = pA} (t)
=y (t) fy (KP(t),G (0)) with boundary condition\} (T') = X; (T)); finally choose
nb (t) = Ab (t) — A} (t). Then the proposed path will satisfy all necessary and rfific

conditions and it is therefore optimal.

82 The graph of the functiot’ (K) is the path converging to the steady-state {n,d) phase diagram.
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For part 5, set)? (t) = 0 vt. Call C'(G) the solution to the following differential

equation

de [} (E©).6)- ] /r
iG ~ [ (K(0),G) — ¢(G)

with boundary conditioric?, , G.) SetG” (t) equal to the solution t6” (t) = f* (K (0), G (¢))

—C (G (t)) with initial condition GG (0). Setl? (t) = G? (t). Then choose\? (1) =
c? ()77, and for)\f () the solution toi\z (t) = pAb (t) — X, (1) fo (KP (1), G (0)) with
initial condition \? (0) = ["° M\ f* (K” (t), G (0)) e *'dt; finally choosen? (t) =
AP (t) — A; (t). Then the proposed path will satisfy all necessary and gerfficon-
ditions and it is therefore optimal.

For part 6, set? (t) = 0 vt. Call C (G) the solution to the following differential

equation

(K (0),G) = c(G)
with boundary conditiottc (T") , G (T)) whereG (T') = K (0) z*, ¢ (T) = f* (K (0) ,G (T"))

— IO (K (0) + G(T)). Setlz (1) = f* (K (0),G (1)) — C (G (t)). SetG? (1)
equal to the solution t6” (t) = f* (K (0),G (1)) — C (G” (t)) with initial condition
G (0). Setl?(t) = GP(t). Then choose\; (t) = c¢”(t)~7, and for \? () the so-
lution to ! () = pAZ (1) — A2 (¢) f3 (K™ (t), G (0)) with initial condition A? (0) =
JoTON f (K (1), G (0)) e*tdt; finally choosey? (t) = AP (t) — MY (t). Then the pro-

posed path will satisfy all necessary and sufficient coodgiand it is therefore optimal.

4.6.3 Proof oflemma 4.3

We first show that if all the conditions in the lemma are sa&dfithe allocation can

be decentralised as an intertemporal equilibrium. Equoat(8) and (16) are identical,
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as are equations (9) and (15), so condition 4 and 5 of the defirof intertemporal
equilibrium are automatically satisfied. If we set= f; (K,V,V/G), and setl” such
that it solvesfv (K,V,V/G) = p, then by lemma 4.2, there are & andv such that
K, G, r, p,n, k, andv constitute a static equilibrium. Summing (15) to (19) anthgs

7 = (1 —7)r we obtain

K+B=(1-7)r(K+B)—-c

i.e. (5) (in view of (10)). Then interpreting. as the costate variable in the household’s
utility maximisation problem, we see that (17), (18) and)(afe necessary and suffi-
cient conditions for a solution. Finally, choosé') suchthat = (1 — 7) f (K, V,V/G);

then from(19) we have

B = (1-7)rB+(1—1)fi(K,V,V/G)K + I, — f (K,V,V/G)
= (1—-7)rB+1I,— 1K — [f (K,V,V/G) — fi (K,V,V/G) K]
= (1—7)rB+1I,— 1K — [f,(K,V,V/G) V]

= (1—-7)rB+1,—71rK —pV,

i.e. (7} the third equality follows from Euler’s theorem for homogeis functions.
The converse is also easily established.dlfK, G, V}/5 are part of an equilib-
rium, we must have = f, (K,V,V/G),p = f, (K,V,V/G). (17), (18) and (21) are

deduced from the solution to the representative agent’srmsation problem. Finally
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(19) is deduced from (7) as follows

B = 1—7)rB+1I,— 7K —pV
= FB+1,—7f (K,V,V/G)K — f,(K,V,V/G)V
+/ (K, V,V/G) K — [, (K,V,V/G) K
= FB4+I,+(1—7)f(K,V,2V/G)K
—f (K, V,V/G)

= r(B+K)+1,— f(K,V,V/G),

where again we used Euler’s theorem for homogeneous funsctim

4.6.4 Proof of proposition 4.2

First note that’ > 0, G > 0, then by (31)-(32)y;” = % = 0.
We first show that if? > 0 then7P = f, (K, VP VP /GP).

7P > 0 impliesn¥ = 0. Use (25) to write
v =-—m(B?+K?). (51)
Differentiate this last equation w.r.t. time and use (15j €ID) to obtain

oy (t) = —m (BO” + KOP)

= —m[r? (B? 4+ K?) — ¢”].
Then using (29),
—mi? (B? + K) +mc” =y + o377,
which in light of (51) can be simplified to

mc” = n}. (52)
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From (17) and (23)

op yop
v — VA
- op op?
)\k - )\c
SO
op
eon — T,
TP op*
>\k: - )\c

Setting the right hand side of this last equation equal taitite hand side of (52) and

rearranging we obtain

AP — AP _
1107 75
ore
)\op __,,0p
A="k X’pﬂ =14+m(y+1).

SinceA is constant,

LM AT A

A= )\—gp —A AT =0.

Using (27), (30) and (18) we get (after some simplifications)
Alp = fe (K, VP VP /GP)) = A(p —T7),
which given that\ > 0 implies
fr (KP VP VP IGP) = 7P,
Next we show that -analogously to the first best optimum- thental policy
generates positive investment in both types of capital arilgn their social marginal

products coincide, i.e. whefy (K7, G?) = fr (K, G).

We can use (26) to write

P iop L op
)\g _)\k —u

83 Judd[67] calls A the marginal social value of government wealth holding privatalth constant
Private wealth isK' + B; if one increases the government wealth (or equivalentlyices the stock
of debt) by one unit, one must increase the stock of privapialaby one unit to keep private wealth
constant. At the margin the overall effect is given/kyThe constancy of is obviously a consequence
of the constancy ofn. Intuitively, if the excess burden of taxation has been dgimesout completely, an
increase in government wealth has the same effect irragpedttwhen it occurs.
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which using (27), (28) and (30) gives

O, O] O O] O] O] O] Vop
p)‘gp_l_[)‘kp_Mp+nkp]fF(Kp>Vp>Vp/Gp)W

= {pN = NP = u ) fi (K VP VP [GP) — p 7P} — p [p — 7).
After simplifications we have

PO = AP+
Vep

= = W =) | fu (B2, VP VP[GP) + fo (K, VP VP /GP) |

which given (26), the positivity ok;” and non-positivity of.*? yields

Vop

Ji (B VPV [GP) = i (K, V7V [G) -

There may be, however, intervals in which the governmensfindptimal to tax
capital at the maximal rafé.
But given thatV/°? is chosen to maximisg (K7, V° VP /G) (see (34)), the

last equation is satisfied if and onlyGf’? / K? = z*. &

4.6.5 Proof of proposition 4.4

The proof follows exactly the same steps as in the proof foppsition 4.2.
7P > 0 impliesn? = 0. Proceeding as before we can derive (52)

From (17) and (23)

op \ op
COp . ’777)\c )\c

TN AP

SO

)
A= AL+

mc? =

84 Chamley[34] and Jones et Al[64] show that with assumptions typically encountered in growth
theory the optimal policy entails keeping the capital taiksanaximum for an initial period and switching
to zero capital taxation afterwards.
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Setting the right hand side of this last equation equal taitite hand side of (52) and

rearranging we obtain
)\Zp _ Xc)p + nzp B
1P a

Y

or

A=
AP

A= =1+m(l—7).

Differentiating with respect to time we obtain
)‘\Zp . /lop + ,’-7210 A)'\Zp
AP O

A=

Differentiating (26) with respect to time, we hayg — 1 + 7% = A,, and hence

CA
A=35-A5

Using (27), (30) and (18) we get (after some simplifications)
Ap+ Jo (Ko, V2 V2 [G) Vo) (G)F) = Ao = 77).
which given that\ > 0 implies
I (K7, VP VRGP VO (G = 77,
which looking at (50) implies

fr (K, GP) = 7.

4.6.6 Proof of proposition 4.5

The first order conditions are virtually identical to thosdamma 4.4, specifically

()T = 2P+ ()T + (53)
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WD+ p? (B + KP) + 3 =0, (54)

AP = NP A+ p® =l 4P =0, (55)

N = pAE = NP = ™ + 0] fi (K7, GP) — pPF”, (56)
Ny = pA = N = ™+ ) fy (KPGP) (57)

On. = POT — &% (p— %) + 1%, (58)

= p [p— 7. (59)

e | f(K®,GP) =P = IP| =0, 1 >0, (60)
nPIP =0, 7% >0, (61)

In the proof of proposition 4.2 in section 4.6.4 we used equat(17), (23), (25),
(29) together withy,” = n?? = 0 to establish

)\Zp _ ,qu

A 7

=14+m(y+1).

and
)'\OP _ -op )'\Op
M THT pAe g

op B op
)\ C )\ C

Noting that the corresponding equations -(40) (53), (388){are formally identical, it

A=

must follow that the two equations above are valid for thebofgm we are now looking
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at. Using (56) and (59) we have

Y X
I (P—fk(K7G>> N <P—fk(K=G))A-
Equation (40) implies
AT )
op (p - T) :

C

Therefore combining the last three equations we get
(o= e (K.G)) A= (p =) A,

and since\ > 0,

A~

fr (K,G) =T.
Buti = (1—17) fx (K,V(K,G;p),V (K,G;p) /G) while

~

fe(K,G) = [ (K,V(K,G;p),V(K,G;p) /G) +

oKV (K, i) V (K, Gep) j0) DG
oV (K,G;p)

fr (K, V(K,G;p),V(K,G;p) /G). FT %

In other words (droping the arguments of the functions)

— _(fv‘l'fF/G)V;c
Jr ’

4.6.7 Proof of proposition 4.6

We first show that the optimal tax is generally positive. Assus > 0, G > 0. The
first order conditions imply yet again that

A= i A}‘Zp =0

op - op
A A
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However in this casé

AP = NP — P — 1 i) L (K, VP, K [G) + o (K, VP, K [G7) G

—/JOpfOp.
Proceeding as usual we then find

fr (KPP, VP KP/GP)+fr (KP, VP K?P/G?) ]G = (1 —T) fr (KP, VP K?P/G?),

B _fF (Kop’ Vop’ Kop/Gop> /GO;D S 0
o fi (Kop, Vor Kop/Gop) =

So the tax is positive unless on the balance growth path tihginadeffect of congestion
is null.
Finally we show that the optimal user charge is zero. Theaguals to (24) is

now
AP = 1P + 0] fo (KPP, VP KP/GP) =0,
which implies
Jo (KPP, VP KP/GP) = 0.

The result the follows from the fact that in a competitive igqrium

fo (KPP, VP KP/GP) = p.

8 The reader will find it useful to compare this equation witf)(2



Conclusions

In this thesis we attempted to contribute to the literaturdiscal policy in theo-
retical models of economic growth. There is no single modai tan be said to incon-
trovertibly dominate all the otherghere is therefore no alternative but analysing the
same issues in all plausible models, trying to gauge howstobgiven result is. We
analysed four very different models and investigated thedas of dynamic efficiency,
debt sustainability and optimal design of fiscal policy.

The first model, presented in chapter 1, is a semi-endogegiagh model.
Here the engine of growth is investment in the accumulatforew ideas. Technologi-
cal progress is determined endogenously but, in stark asintrith earlier endogenous
growth models, it cannot befimenced by fiscal policy. Nevertheless, we have shown
that the allocation can be dynamically inefficient and theeht policy can unambigu-
ously improve the allocation, as in the strictly exogenowsvgh model. We have also
emphasised an important difference, however. While in doelassical model the main
problem is one of overaccumulation of physical capitalghers the allocation to in-
ventive activity that is the main issue. By allocating morerkers to the consumption
sector, the economy achieves a better mix between the st@tlysical capital and the
stock of knowledge (or human capital).

In chapter 2 we presented a two-sector model of economictrow this case,
growth is driven by investment in private and public capit@he crucial assumption
for the feasibility of sustained economic growth is thatdiggregate capital goods pro-
duction function is linearly homogeneous in the two typesagital. This assumption

guarantees that the marginal productivities of the two iamlo not fall as the avail-



Conclusions 171

able amounts of the inputs increase. At the same time, thabghimplies that the
rate of interest does not fall either. It is shown that the i@t growth is always be-
low the rate of interest, i.e. the economy is dynamicallycedfit and perpetual fiscal
deficits are precluded. We then looked at the optimal allonand showed that it can
be decentralised.

The dynamic efficiency result obtained in chapter 2 depenasally on the as-
sumptions on technology. Chapter 3 introduces disembplibdur-augmenting tech-
nological progress as in the basic exogenous growth mbdectrucially, it is assumed
that productivity growth is dependent on public investnrather than being purely ex-
ogenous. It then follows that fiscal policy can affect bote thte of growth through
public investment and the rate of interest through the fimangolicy. It is shown that
in this model perpetual deficits may be sustained when tleeafapublic investment
is high enough. It is also shown that what could be presumdx ta "virtuous” pol-
icy, such as an increase in taxation to reduce the fiscal tefagi have the paradoxical
effect of making unsustainable an investment policy that ivdially sustainable.

The fourth and final chapter is a contribution to the literaton optimal intertem-
poral taxation. We presented a growth models in which firmmebefrom congestible
public services, the provision of which requires buildingtack of public infrastruc-
tures. The main novelty is the assumption that public sesvare excludable, which
allows us to analyse explicitly user fees. We show that thiere user fee policy fully
internalise the congestion externality. Furthermore giiggmal long-run tax on capital
is zero, i.e. the famous Chamley-Judd result is valid in theglel this is in contrast

with most other models with congestible public capital.
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Appendix A
Tables of Symbols

Symbol Description Page
6] Birth rate 9
D Probability of death 9
0 Discount factor 10
c(s,v) Consumption at time of household born at time | 10
1 (s,t) = lpe==(*=*) | Labour endowment at timeof household born at | 11
£ Rate of decrease of household’s labour endowmeht
a(s,t) Financial assets at timeof household born at 11
T (t) Real rate of return 11
w () Real wage per unit of labour supplied 11
N (t) Mass of households alive at time 11
L (t) Total labour supply at time 12
h(,t) Human capital at time of household born at 13
H,C, A, etc Aggregater, c, a, etc. 12
Y (t) Aggregate production of consumption goods 13
l—a Elasticity w.r.t. L, of the final goods prod fct. 13
L,(t) Labour allocated to production &f 14
x; (t) Quantity of variety: of intermediate good 14
m (t) Number (mass) of existing intermediate goods | 14
v (t) Price ofi-th intermediate good 14
P, (t) Price of a patent at time 15
K (1) [ 2, (t) di = m (t) z (t), cap. in prod. ofint. | 15

Continues overleaf.
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Symbol | Description Page
i (t) Profit for the firm producing-th variety | 16
4] Total factor productivity in research 16
L., (t) | Labour allocated to research 16
P Elasticity of research prod fct w.r.L,, 16
) Elasticity of research prod fct w.r.tn 16
pt) =@ L,O) /K@) =Y () /K({) |19
C(t) [=L®"/mt) =" =rm(t)/om(t) 19
u(t) =C(t)/K(t) 19
qt) | = () /B (t)m(t)) 19
A(t) | =Ly(t) /L) 19
T (s,v) | Transfer at time» to households born at | 26
B (t) Stock of public bonds 26
T (t) Aggregate transfer 26
b =B (t) /K (t) 26
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A.2 Chapter 2

Symbol Description Page
n Population growth rate 55
K Aggregate private capital at tinte 56
B; Stock of public bonds at time 56
Wy Real wage after tax 56
u (cf,cf,,) | Utility function 56
cf Consumption of a young agent at tirhe¢ 56
9 Consumption of an old agent at time | 56
R, =14+n 56
Ty Labour income tax at time 56
0, Interest income tax at time 56
s(.) Saving rate 57
H, Capital employed in cons. sector 58
Ly Labour supply 58
A Total factor productivity cons. sect. | 58
Q Capital elasticity cons. sect. 58
X Capital employed in capital sect. 59
g = (G,/X,)", flow of public services | 59, 61
M Total factor productivity cap. sect. 59
e Price of capital 59
6] Elasticity of public services w.r@&/X | 61
Ly =G/ Xy 61
T; Tax revenues at time 62
Uy = H,;/K, 65
be i1 = Bt+1/pth+1 66
s Saving rate, logarithmic utility 68
y Intertemporal elasticity of substitution| 73
o Households’ discount factor 73
4] Planner’s Discount factor 74
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A.3 Chapter 3

Symbol Description Page
cf Consumption of a young agent at tirhe 94
g Consumption of an old agent at time 94
1G] Discount factor 95
s = [/ (1 + pB), saving rate 95
Y, Aggregate output 95
K, Capital stock 95
Ay Labour productivity 95
L; Labour supply 95
F(,.) Aggregate production function 95
Gy Stock of public capital 96
r() Rate of technological progress 96
B; Stock of public debt 99
Dy Investment in public capital 99
X Investment in private capital 99
Ok, Og Depreciation rates of private and public capit&9
T Labour income tax 99
W, Before tax real wage 99
re, Ry Net and gross interest rateR,(= 1 + r) 99
Yer kiy g1y x4, diy wy, by | Upper case variable in efficiency units 100
kx k forwhichT' = R 105
ke k for whichd = 7 f (k 105
k* k forwhichs (1 — 7)w =Tk 105
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A.4 Chapter 4

Symbol Description Page
i Index for firms 125
r Congestion 125
v (I) Firm ¢’'s production set 125
Y (k,v,T") | Firm's production function 125
Yi Firm ¢’s output 125
ki Firm ¢’s capital 125
k Minimum capital for active firms 125
v; Firm ¢’s utilisation of public services 125
f(K,V,T") | Aggregate production function 126
K Aggregate private capital stock 126
G Public capital stock 126
Vv Aggregate utilisation of public services 126
r Real rate of interest 129
P User fee 129
n Number of active firms 129
I, Public investment 130
B Stock of public bonds 131
T Income tax 131
c Consumption 131
A Representative agent’s total assets 131
FHEG) | K G) = maxf (K1), V(5), V(1) /G (#) | 134
x* Optimal G/ K 134
KP?, GP, etc.| Variables from solution to planner’s problem| 134

Continues overleaf.
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Symbol Description Page
7 (t) After tax return to capital 138
K°P (G°P, etc.| Variables from solution to optimal fiscal policy problem | 140
A Shadow price of< under optimal fiscal policy 140
AS Shadow price ofy under optimal fiscal policy 140
AP Marginal utility of consumption under opt. fisc. pol. 140
ol Costate variable associated with repr. agent’s Euler eq.| 140
TR Costate variable associated with gov. budget costr. 140
n Lagrange multiplier for™ = \. 140
Ny Lagrange multiplier for > 0 140
Ny Lagrange multiplier for< > 0 140
Urd Lagrange multiplier foG > 0 140
m —pP /AP, excess burden of taxation 142
o {w K (1) > 0,G (1) > 0} 143
A (A — ) /A%, marginal social value of government wealti64
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