
Submitted to:
FAVO 2009

c© L. Bocchi & J.L. Fiadeiro & N.J. Rajper & S. Reiff-Marganiec
This work is licensed under the
Creative Commons Attribution License.

Structure and Behaviour of Virtual Organisation Breeding
Environments

Laura Bocchi, José Fiadeiro, Noor Rajper and Stephan Reiff-Marganiec
Department of Computer Science, University of Leicester

University Road, Leicester LE1 7RH, UK
{lb148,jose,nr76,srm13}@mcs.le.ac.uk

This paper provides an outline of a formal approach that we are developing for modelling Virtual Or-
ganisations (VOs) and their Breeding Environments (VBEs). We propose different levels of represen-
tation for the functional structures and processes that VBEs and VOs involve, which are independent
of the specificities of the infrastructures (organisational and technical) that support the functioning
of VBEs. This allows us to reason about properties of tasks performed within VBEs and services
provided through VOs without committing to the way in which they are implemented.

1 Introduction

This paper reports on on-going work towards a formal approach for modelling virtual organisations
(VOs) and their breeding environments (VBEs) in the sense of [10]. A VBE defines a base long-term
cooperation agreement among a number of participants (individuals or institutions) and characterizes
their interoperable infrastructure [9]. As such, a VBE represents the organisational context in which the
creation and operation of VOs takes place; VOs are seen as ensembles that are formed dynamically to
provide high-level functionalities, or services, by sharing a number of resources in a distributed way,
using the new connectivity environments that are being made available through Global [15] and Grid
Computing [14].

The purpose of developing a formal modelling approach echoes the challenge of building “Verifiable
VOs” as raised in [7]. This implies that our approach is unavoidably partial: as in any formal account of
the real world (which includes business), we need to operate on abstractions that are amenable to some
form of mathematical representation and analysis. Our approach defines different levels of representation
of VBEs, VOs and their activities, which are essential for supporting several forms of analysis, from the
properties of the coordination structures that are put in place through policies and workflows to the
management of the resources that are shared within a VBE and used by their VOs.

There are multiple levels of abstraction at which formal methods can operate. In this paper, we ab-
stract from the specificities of the infrastructures (organisational and technical, including IT) that support
the functioning of VBEs: we aim for an ‘infrastructure-agnostic’ account of the functional structures and
processes that VBEs and VOs involve. We concentrate on the functional and behavioural aspects in
which partners and resources are involved without committing to the way in which they are effectively
implemented. Therefore, we do not model the brokers (human or software) that procure services that
can be used to create business or the communication networks that support interconnectivity — what we
could call the VBE middleware.

We are also aware that the model that we present in this paper misses several aspects of VBEs. For
instance, we do not address at present the decision-making processes through which VOs are created
within a VBE or the actual business goals that preside to the creation of a VBE (see [11] for an overview
of some of the formal approaches that have been proposed to address these issues). However, we do

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Structure and Behaviour of Virtual Organisation Breeding Environments

intend that the formal models that we propose can be used to inform such processes, for instance by sup-
porting stochastic analysis on the usage that VOs can make on VBE resources or validation of functional
properties that VOs offer through services, something that we are leaving for future work.

Our approach supports the definition of a structural and behavioural model of a fixed VBE based on
three different levels of representation: (1) the definition of the persistent functionalities of the VBE;
(2) the definition of the transient functionalities of the VOs that are offered by the VBE at a specific
moment in time, what we call a business configuration of the VBE; and (3) the ensemble of components
(instances) and connectors that, at that time, deliver the services offered by the VOs present in the busi-
ness configuration, what we call a state configuration. These levels are not ‘architectural layers’: they
do not contain entities that interact with entities in other layers. Rather, they represent a hierarchy of
representations at a fixed time: the first level is invariant, i.e. it provides a representation of those aspects
of a VBE that will not change; the business configuration at the level below captures the way the VBE is
logically organised at that time in terms of VOs; the state configuration represents the actual ‘physical’
instances of the VOs that are currently operational, i.e. which specific services are currently being pro-
vided within the VBE. ‘Real’ entities are only represented in state configurations: the other levels deal
only with types of entities.

More specifically, the three levels of representation are modelled as follows:

• A VBE consist of (1) a collection of resources; (2) a consortium of (persistent) partners; (3) a
number of policies constraining the way resources can be shared and the partners agree to do
business together, including rules for the consortium to expand for establishing specific VOs; and
(4) a number of supporting tasks that operate processes (management or otherwise) that serve the
roles enacted within the VBE. These constituent elements are invariant, i.e. they are present in
every business configuration of the VBE (in the sense explained below).

• The current business configuration of a VBE, is understood as (1) the collection of additional
(non-permanent) partners, that we call associates, and resources that are part of the VBE; (2) the
tasks that support the roles of the new partners and their resources; (3) the VOs that the VBE
currently supports; and (4) the policies that apply to their instantiation and their coordination at
any given time. Tasks and VOs may rely on complementary, transient partners (which we call
‘associates’) that join the VBE to provide specific business services and remain in the VBE only
while those services are required. Associates can be fixed at VO-creation time or discovered on
the fly when needed, subject to service-level agreements, in order to be able to accommodate the
needs of specific clients.

• The current state configuration of a VBE consists of ‘components’, connected through ‘wires’,
that jointly operate the tasks and the services offered by the VOs that are running in the current
state. These components include the shared resources of the VBE as well as those that are brought
into the VBE by the associates. The topology of the configuration (the way components are wired
together) reflects the policies established at the level of the current business configuration. At
this level, one can determine levels of resource consumption or properties of a number of other
parameters, including measures of quality of service.

Part of the importance of distinguishing between these three levels is that we can account for two different
kinds of change (admitting that the VBE level is invariant, the creation of which we do not model at
present):

• Changes in the business configuration reflect the creation or deletion of tasks or VOs. Creating
a new VO may involve identifying associates or the criteria that will need to be observed for

L. Bocchi & J.L. Fiadeiro & N.J. Rajper & S. Reiff-Marganiec 3

discovering such associates on the fly, depending on the nature of the customers that procure the
service (in which case each service may involve different associates). Deleting a VO requires
that the current state configuration is in a quiescent state relative to that VO, i.e. that none of
the services offered by the VO is currently active. Changes at this level are triggered by business
concerns (which we do not model at present).

• Changes to the state configuration result from the launching of (instances of) tasks or of services
provided by one of the VOs present in the business configuration, which dynamically adds (or
removes) components or wires to (from) the current state configuration. Changes at this level
are triggered by the actions performed by or through the components and the communications
exchanged through the wires that connect them.

Given the way levels are organised, these changes take place in different ‘timebands’ in the sense of [8],
i.e. the levels induce different granularities of time: the state-configuration changes take place within a
fixed business configuration, meaning that business configurations induce a coarser time scale.

Given the limited space available, we focus only on the VBE and business configuration levels. In the
sequel, we outline the formalisms and methodology that we are proposing for each level of representation
and change, which we have adapted (and extended) from recent work on service-oriented modelling
[12, 13]. Essentially, we use graph-based representations to formalise and establish relationships between
the two levels — logic/process-based formalisms for the specification of activities and services.

2 A Model of Virtual Organisation Breeding Environments

As already mentioned, we see a VO as a dynamic ensemble of entities that operate over a communication
and collaboration network through which they can share resources to offer services. Some of those
entities and resources are provided by the VBE in which the VO was created; others are external to the
VBE and co-opted or procured to satisfy the business goal of that particular VO. We define a (formal
model of a) VBE to consist of:

• A collection of persistent partners, where a partner consists of:

– Its name (individual or organisation, virtual or not);
– A collection of attributes through which policies can be defined on the involvement of the

partner in business configurations.

• A collection of persistent resources where a resource consists of:

– Its identifier;
– A collection of attributes through which the usage of the identified resource can be monitored.

• A collection of policies expressed over partners and resources that apply to all business configura-
tions of the VBE.

• A collection of tasks that support the roles enacted within the VBE. A task is defined by a task-
module consisting of:

– Component specifications that are used in state configurations as interfaces to the partners
(in which they are called serves-interfaces) or resources (in which they are called uses-
interfaces) involved in the task;

– Specifications of components and wires that jointly orchestrate the task.

4 Structure and Behaviour of Virtual Organisation Breeding Environments

– Mappings from the serves-interfaces (resp. uses-interfaces) to the partners (resp. resources)
of the VBE complete the task definition.

Notice that we separate the task-module from the way it is used in the VBE. Effectively, task-modules
are design primitives that define patterns that can be reused in the definition of VBEs.

As an example, we use a very simple scenario: a group of hotels, a car rental company and a guided-
tour company decide to create a VBE — visitUs — to promote tourism in the local town.

• The partners of visitUs are the hotels (to make the example shorter, we model the case of two hotels,
grandHO and centralHO), the car rental agency carHI and the guided-tour company tourAG;

• The resources include two systems: registrationSY supporting management activities of visitUs
and a shared reservation system reservationSY supporting the business purpose (hotel bookings
and so on).

• The policies establish criteria for the admission of transient partners (e.g. they need to operate
within a given vicinity) and the use of the shared resources (e.g. the cost of maintaining the reser-
vation system), for which their interfaces need to include parameters that capture these properties.
The policies are expressed as first-order expression in the language of the parameters and the cor-
responding data types.

• The tasks include the process managerRO that supports the administrator role performed by grandHO,
which connects to the registration system, and the process memberRO that allows each partner to
use the reservation system. (Other roles might have been considered as discussed in [11].)

We use a graphical notation to depict task modules as illustrated in Figure 1 for the task managerRO
that supports the administrator of visitUs. The specification of the component MO that orchestrates the
task is Management Orchestrator and the wires are RM and MR. The specification of the serves-interface
MN used by grandHO - the partner who performs the managerial role - is Registry Manager, and the
specification of the uses-interface RE (which connects to registrationSY, the resource that supports the
task) is Registry.

Figure 1: The task module managerRO

We also use a graphical notation to depict VBEs, which is inspired by use-case diagrams (though our
usage of the notation is not necessarily faithful to its original purpose). As illustrated in Figure 2, we
use stereotypes to identify the actors that correspond to partners and resources of the VBE. Each task is
represented by a use-case.

L. Bocchi & J.L. Fiadeiro & N.J. Rajper & S. Reiff-Marganiec 5

Figure 2: VBE diagram for visitUS

3 Business Configurations

The current business configuration of a VBE defines the types of tasks and the VOs that the VBE supports
to meet its (current) business goals. The actual process through which a VBE decides on how to configure
itself is not part of our present model as it depends on a number of business or organisational concerns
that the formal methods that we are illustrating do not address. However, the kinds of qualitative and
quantitative analysis that our approach provides should be able to inform that process and corresponding
decisions, something that we plan to address in the future.

We define a VBE business configuration to consist of an extension of the VBE with:

• A collection of associates (transient partners), where an associate consists of:

– Its name (individual or organisation, virtual or not);
– A collection of attributes through which policies can be defined on the involvement of the

associate in the VBE.

• A collection of transient resources, each of which consists of:

– Its identifier;
– A collection of attributes through which the usage of the identified resource can be monitored.

• A collection of policies expressed over associates and their resources that apply to their involve-
ment in the VBE (e.g. the conditions that determine the cessation of their involvement).

• A collection of tasks that support the roles enacted by the associates within that business configu-
ration of the VBE.

• A collection of VOs that define the services that the VBE provides in that business configuration.
A VO is defined by a VO module consisting of:

6 Structure and Behaviour of Virtual Organisation Breeding Environments

– Component specifications that are used in state configurations as serves-interfaces to the
partners or associates, or uses-interfaces to resources involved in the VO; typically, one such
interface serves the coordinator of the VO.

– Component specifications that are used as requires-interfaces for external entities or as the
provides-interface for the customers of the VO. The specification of requires-interfaces iden-
tifies the behavioural properties that are expected of external parties to be eligible to be
chosen as service providers for the VO. The specification of the provides-interface identifies
the properties that customers can expect of the service offered by the module.

– Specifications of the components and wires that model the (possibly distributed) process that
orchestrates the services provided by the VO.

– An internal configuration policy, which identifies the triggers of the external service discov-
ery process as well as the initialization and termination conditions of the components and
wires.

– An external configuration policy, which consists of the variables and policies that determine
the quality profile to which the discovered services need to adhere.

– Mappings from the serves-interfaces (resp. uses-interfaces) to the partners or associates (resp.
resources) of the VBE complete the VO definition.

• A collection of external entities, each of which represents a partner that may need to be co-opted
to provide a service for one of the VOs that the VBE offers in that business configuration.

• A collection of customers, one for each of VO, each of which defines the interface (interactions
and functional properties) that the customer of the corresponding VO can expect.

As for tasks, VO-modules are design primitives that define patterns that can be reused in the definition of
multiple VBE business configurations. As an example, we consider a business configuration of visitUs in
which a travel booking service is offered through a VO named travelBK. An associate named travelAG is
admitted as a member of the VBE for managing that VO. Services offered through travelBK may require
an external flight agent to be discovered according to the criteria specified in flightAG. A specific agent is
not chosen as an associate in order to maximise customer satisfaction — each customer of the VO may
express service-level policies (e.g. preference for a particular airline, or minimum cost, or proximity)
that will be optimised when selecting the corresponding external partner.
We extend the diagrams used for VBEs to account for business configurations as illustrated in Figure 3.

We use a graphical notation similar to task-modules to depict VO-modules as illustrated in Figure 4
for travelBK. We use the symbol to indicate the internal configuration policy as it applies to compo-
nents and requires interfaces, and for the external configuration policy. The module consists of
a provides-interface TR for interactions with customers of the VO, a serves-interface for interactions with
the coordinator of the VO, a uses-interface for interactions with the reservations system, and a requires-
interface for the discovery of a flight agent.

A more formal definition follows where each node uniquely represents a specific interface of an
entity (e.g., institution, participant, etc.) in a business configuration rather than the entity itself. A task-
or VO-module M defines:

• A graph graph(M).

• A distinguished subset of nodes uses(M)⊆ nodes(M).

• A distinguished subset of nodes serves(M) ⊆ nodes(M) distinct from uses(M).

L. Bocchi & J.L. Fiadeiro & N.J. Rajper & S. Reiff-Marganiec 7

Figure 3: VBE business configuration for visitUS

Figure 4: The VO module travelBK

• In the case of a VO-module, a subset of nodes requires(M) ⊆ nodes(M) distinct from uses(M) and
serves(M).

• In the case of a VO-module, a node provides(M)∈ nodes(M) distinct from requires(M), serves(M)
and uses(M).

• A labelling function labelM such that:

– labelM(n) is a component specification.

– labelM (e : n↔ m) is a connector.

Component specifications and connectors are discussed in Section 4. In the case of a VO-module, we
denote by body(M) the (full) sub-graph of graph(M) that forgets the node provides(M), the nodes in
requires(M) and the edges that connect them to the rest of the graph. That is, body(M) consists of all the
elements that are internal to the VO.

8 Structure and Behaviour of Virtual Organisation Breeding Environments

A business configuration of a VBE also defines a labelled graph obtained by expanding its tasks
and VOs with the bodies of the labelled graphs that correspond to their modules. Having such a formal
representation for VBE configurations allows us to use graph transformations to formalise rules and
policies to evolve the configurations, for instance the creation of new VOs. In Figure 5, we depict a
business configuration that extends the one in Figure 3 with a new VO that offers arrangements for
weddings as a service.

Figure 5: Another VBE business configuration for VisitUS

4 Component Specifications and Connectors

In order to account for the behaviour that, in state configurations (referred to as level 3 in Section 1),
emerges from the interconnections established inside the ensembles that perform tasks or deliver services
through VOs, we need a uniform representation of the entities and resources involved, which in our
approach we do in terms of component and wire specifications. A component specification is a pair
〈signature, behaviour〉 where:
• Signature declares the interactions in which the component may be involved.

• Behaviour is a formal model of the behaviour of the entity that the component represents expressed
in terms of the interactions identified in the signature and a number of parameters that reflect
resource consumption or quality-of-service attributes.

Given the space available, we are not able to define in detail the formalisms that we use in component
specifications (these are similar to those that we have proposed for the service modelling language SRML
[12]). We discuss below the provides-interface of travelBK, which is of type Customer. This specifica-
tion is what we call a business protocol: it uses patterns of typical business conversations, which are
abbreviations of sentences of a temporal logic that we have adopted for service-oriented modelling [2].
The remaining specifications can be found in the Appendix.

L. Bocchi & J.L. Fiadeiro & N.J. Rajper & S. Reiff-Marganiec 9

In the formalism that we adopt, interactions can be either synchronous or asynchronous, one-way or
two-way (i.e. conversational):

• s&r/r&s — conversational asynchronous interaction where the initiating party expects a reply from
its co-party

• rcv/snd — one-way asynchronous receive/send

• ask/rpl — synchronization with the co-party to obtain/transmit data

• tll/prf — blocking requests to the co-party to perform an operation

In our example, the interface that travelBK offers to its customers specifies that the VO can engage in
the interaction bookTrip (initiated by the customer) and send payNotify and refund to the customer.

BUSINESS PROTOCOL Customer is

INTERACTIONS

r&s bookTrip
֠ from, to : airport, out, in : date
� fconf : fcode, hconf : hcode, amount : moneyvalue

snd payNotify
� status : bool

snd refund
� amount : moneyvalue

SLA VARIABLES

KD : [0..100],PERC : [0..100]
BEHAVIOUR

initiallyEnabled bookTrip ֠ ?
(bookTrip ∧bookTrip X?) ensures payNoti f y ֠ !
(payNoti f y ֠ !∧ payNoti f y.status) enables bookTrip� ? until today+KD < bookTrip.out
(bookTrip� ?∧ today+KD < bookTrip.out) ensures re f und ֠ !
re f und.amount > bookTrip.amount ∗PERC/100 after re f und ֠ !

Interactions of type r&s and s&r are conversational (in the sense of [4]), i.e. they involve a number
of events exchanged between the two parties:

interaction֠ The event of initiating interaction.
interaction� The reply-event of interaction.
interactionX The commit-event of interaction.
interaction8 The cancel-event of interaction.
interaction� The revoke-event of interaction.

The meaning of these events should be self-explanatory: the reply-event is sent by the co-party,
offering a deal or declining to offer one; in the first case, the party that initiated the conversation may
either commit to the deal or cancel the interaction; after committing, the party can still revoke the deal,
triggering a compensation mechanism. Events can have several parameters (for instance, the initiation
event bookTrip֠ carries data about airports and dates), and the corresponding reply event bookTrip�

carries reservation codes for the flight and the hotel as well as the total cost).
These events are used as atomic formulae in the language that we use to specify the properties that

a customer can expect from the service. For instance, the first property specifies that the VO is ready to
receive the initiation event of BookTrip. The second property says that a commit event received during
the validity period of the booking entitles the customer to receive a pay confirmation.

10 Structure and Behaviour of Virtual Organisation Breeding Environments

The declaration of the interactions in a signature is local to the component, i.e. all interaction names
are local. This implies that there are no implicit relationships between components that result from the
accidental of the same name: all interconnections are externalised instead in what we call ‘wires’. A
wire defines a connector through which two components can be interconnected so that they can interact.
More specifically, a connector [1, 18] is a triple 〈roleA,Glue,roleB〉 where roleA and roleB are signatures
and Glue defines the protocol that coordinates the interactions identified in roleA and roleB — this may
include routing events, superposing protocols for secure communication, or transforming sent data to the
format expected by the receiver, inter alia. A wire interconnects two components through the connector
by mapping roleA to one component and roleB to the other.

Service-level agreements are negotiated through policies using the c-semiring approach to constraint
satisfaction and optimisation [5]. An example of a policy is:

{TC.KD,TR.PERC}

def1(d,p) =

{
1 if d ∈ [0..100] and 1 ≤ d and p ≤ 90 and p≤50+5*d
0, otherwise

The policy expresses that percentage p of the cost that is refundable (transmitted to the customer
through the SLA variable TR.PERC) is bounded by the least of 90% and a linear function of the period
d during which the deal can be revoked, which is established by the VO coordinator through the variable
TC.KD.

5 Concluding Remarks and Further Work

In this paper, we have outlined a formal approach that we are defining for modelling structural and
behavioural aspects of VBEs and VOs. Several levels of representation are proposed for VBEs that
distinguish between (1) the persistent aspects of VBEs in terms of members, resources and tasks that
involve them, (2) the possible business configurations of VBEs characterised in terms of the VOs that it
creates to provide services and the additional (associate) members that are involved in the VOs, and (3)
the state configurations of VBEs, which result from the services (instants) offered by the VOs at a given
state.

From a formal point of view, these levels of representation are graphs whose nodes are component
specifications and the edges (wires) are connectors. Component specifications provide either interfaces
for partners and resources to be involved in tasks and services offered through VOs, or orchestrations of
those services, or requirements for external services, or properties offered to customers of VOs. Choosing
graphs as formal models allow us to use techniques that have been proposed for formalising architectural
aspects of system structure and evolution (e.g. [13, 17]) in order to account for the evolution of VBE
business configurations (as VOs are added, deleted or modified) and also their configuration states (as
new services are created and bound to customers).

As formalisms for specification, we are using those put forward for service-oriented modelling in the
SENSORIA project [1, 2, 12]. Together with the graph-based representation of business configurations,
these formalisms can be used for inferring emergent properties of VOs. Model-checking techniques
have been used for verifying properties offered by services [3], which we plan to extend to VOs. The
proposed formal model also supports forms of quantitative analysis using the stochastic analyser PEPA
[6, 16], which we intend to extend to VOs. Negotiation of service-level agreements is supported by
techniques for constraint optimisation [5], which again we plan to use for the discovery of services from
external partners that VOs may require.

L. Bocchi & J.L. Fiadeiro & N.J. Rajper & S. Reiff-Marganiec 11

References
[1] J. Abreu, L. Bocchi, J. L. Fiadeiro, A. Lopes (2007): Specifying and composing interaction proto-cols for

service-oriented system modelling. In: J. Derrick, J. Vain (eds) Formal Methods for Networked and Distributed
Systems. LNCS, vol 4574. Springer, pp. 358–373.

[2] J. Abreu, J. Fiadeiro (2008): A coordination model for service-oriented interactions. In: D Lea, G. Zavattaro
(eds) Coordination Languages and Models. LNCS, vol 5052. Springer, pp.1–16.

[3] J. Abreu, F. Mazzanti, J. Fiadeiro, S Gnesi (2009): A model-checking approach for service component archi-
tectures. In: D. Lee, A. Lopes, A. Poetzsch-Heffter (eds) FMOODS-FORTE’09. LNCS, vol 5522, Springer,
pp. 212–217.

[4] B. Benatallah, F. Casati, F. Toumani (2004): Web services conversation modeling: A cornerstone for e-
business automation. IEEE Internet Computing 8(1): pp. 46–54

[5] S. Bistarelli, U. Montanari, F. Rossi (1997): Semiring-based constraint satisfaction and optimization. Journal
of the ACM 44(2): pp. 201–236

[6] L. Bocchi, J. Fiadeiro, S. Gilmore, J. Abreu, M. Solanki, V. Vankayala (2009): A Formal Model for Timing
Aspects of Service-Oriented Systems. (Available from www.cs.le.ac.uk/jfiadeiro).

[7] J. Bryans, J. Fitzgerald (2008): The verifiable virtual organisation: a position paper. In: Proc. Formal Aspects
of Virtual Organisations 2008. Newcastle University CS-TR-1098.

[8] A. Burns, G. Baxter (2006): Time bands in systems structure. In: D. Besnard, C. Gacek, C. B. Jones (eds)
Structure for Dependability: Computer-Based Systems from an Interdisciplinary Perspective. Springer, pp.
74–88.

[9] L.Camarinha-Matos, H. Afsarmanesh (2004): The emerging discipline of collaborative networks. In: Proc.
Virtual Enterprises and Collaborative Networks 2004. Kluwer, pp. 3-16.

[10] L.Camarinha-Matos, H. Afsarmanesh (2003): Elements of a base VE infrastructure. Journal of Computers
in Industry 51(2): 139–163.

[11] L. Camarinha-Matos, H. Afsarmanesh (2007): A framework for virtual organization creation in a breeding
environment. Annual Reviews in Control 31: 119–135.

[12] J. L. Fiadeiro, A. Lopes, L. Bocchi (2006): A formal approach to service-oriented architecture. In: M.
Bravetti, M. Nunez, G. Zavattaro (eds) Web Services and Formal Methods. LNCS, vol 4184. Springer, pp.
193–213.

[13] J. L. Fiadeiro, A. Lopes, L. Bocchi (2008): An Abstract Semantics of Service Discovery and Binding.
Submitted. (Available from www.cs.le.ac.uk/jfiadeiro)

[14] I. Foster, C. Kesselman (eds) (2004): The Grid 2: Blueprint for a New Computing Infrastructure. Morgan
Kaufmann

[15] Global Computing Initiative, http://cordis.europa.eu/ist/fet/gc.htm
[16] J. Hillston (1996): A Compositional Approach to Performance Modelling. Cambridge University Press
[17] D. Hirsch, U. Montanari (2001): Two graph-based techniques for software architecture reconfiguration.

Electronic Notes in Theoretical Computer Science 51, pp. 177–190.
[18] M. Shaw, D. Garlan (1996): Software Architecture: Perspectives on an Emerging Discipline. Prentice Hall,

London

12 Structure and Behaviour of Virtual Organisation Breeding Environments

Appendix – The TravelBK VO-module

TRAVELBK consists of:
• TR – the provides-interface of the module, of type Customer;
• FA – a requires-interface (for a flight-booking service), of type FlightAgent;
• RO – the component that orchestrates the business process, of type TravelOrchestrator;
• RV – a uses-interface for a resource that provides a registration system, of type Reservations;
• TC – a serves-interface for the partner that plays the role of coordinator of the VO, of type

TravelCoordinator;
• TO, RB, RF, RT – wire-interfaces typed by connectors that establish the required interconnections.

VO TravelBK is

COMPONENTS

 RO: TravelOrchestrator
 intRO init: s=START ∧ hconf=NILL
 intRO term: s=END_UNBOOKED
 ∨ (s=CONFIRMED ∧ today≥bookTrip.out) ∨ s=END_COMPENSATED

PROVIDES

 TR: Customer

REQUIRES

 FA: FlightAgent
 intFA trigger: hconf=hcode

SERVES

 TC: TravelCoordinator

USES

 RV: Reservations

L. Bocchi & J.L. Fiadeiro & N.J. Rajper & S. Reiff-Marganiec 13

EXTERNAL POLICY (partial)

 SLA VARIABLES
 TC.KD, TR.PERC, FA.MAX, TR.KD
 CONSTRAINTS
 C1: {TC.getFlightCommission(FA.serviceId),FA.MAX}

 def1(d,p)=

 C2: {TC.KD,TR.PERC}

 def2(d,p)=

WIRES (partial)

TR
Customer

c1 TO d1
RO
TravelOrchestrator

s&r bookTrip
 from
 to
 out
 in
 traveller
 travcard
 fconf
 hconf
 amount

S1
i1
i2
i3
i4
i5
i6
o1
o2
o3

≡

R1
i1
i2
i3
i4
i5
i6
o1
o2
o3

r&s bookTrip
 from
 to
 out
 in
 traveller
 travcard
 fconf
 hconf
 amount

rcv refund
 amount

R1
i1

≡
S1
i1

snd ackRefundSnd
 amount

RO
TravelOrchestrator

c2

RF d2
FA
FlightAgent

s&r bookFlight
 from
 to
 out
 in
 traveller
 fconf
 amount

S1
i1
i2
i3
i4
i5
o1
o2

≡

R1
i1
i2
i3
i4
i5
o1
o2

r&s lockFlight
 from
 to
 out
 in
 traveller
 fconf
 amount

END MODULE

14 Structure and Behaviour of Virtual Organisation Breeding Environments

SPECIFICATIONS

LAYER PROTOCOL TravelCoordinator is

 INTERACTIONS
 rpl getFlightCommission(FAid:serviceId):moneyvalue

LAYER PROTOCOL Reservations is

 INTERACTIONS
 rpl availability(out,in:date):hcode

 prf book(hconf:hcode)
 prf cancel(hconf:hcode)

BUSINESS ROLE TravelOrchestrator is

 INTERACTIONS
 r&s bookTrip
 from,to:airport,
 out,in:date,
 traveller:usrdata
 travcard:paydata
 fconf:fcode,
 hconf:hcode,
 amount:moneyvalue
 ask findHotel(out,in:date):hcode
 tll bookHotel(hconf:hcode)
 tll cancelHotel(fconf:hcode)
 snd ackRefundSnd
 amount:moneyvalue
 s&r bookFlight
 from,to:airport,
 out,in:date,
 traveller:usrdata

 fconf:fcode
 amount:moneyvalue

ORCHESTRATION
local s:[START, QUERIED, FLIGHT_OK, CONFIRMED, END_UNBOOKED, END_COMPENSATED],

hconf:hcode

 transition Request
triggeredBy bookTrip
guardedBy s=START
effects
 hconf’=findHotel(bookTrip.in,bookTrip.out)
 ∧ hconf’≠NIL ⊃ s’=QUERIED
 ∧ hconf’=NIL ⊃ s’=END_UNBOOKED
sends hconf’≠NIL ⊃ bookFlight
 ∧ bookFlight.from=bookTrip.from
 ∧ bookFlight.to=bookTrip.to
 ∧ bookFlight.out=bookTrip.out
 ∧ bookFlight.in=bookTrip.in
 ∧ bookFlight.traveller=bookTrip.traveller
 ∧ hconf’=NIL ⊃ bookTrip ∧ bookTrip.Reply=False

 transition FlightAnswer
triggeredBy bookFlight
guardedBy s=QUERIED
effects bookFlight.Reply ⊃ s’=FLIGHT_OK
 ∧ ¬bookFlight.Reply ⊃ s’=END_UNBOOKED
sends bookFlight.Reply ⊃ bookTrip ∧ bookTrip.Reply=True
 ∧ ¬bookFlight.Reply ⊃ bookTrip ∧ bookTrip.Reply=False

 transition TripCommit
triggeredBy bookTrip
guardedBy s=FLIGHT_OK
effects s’=CONFIRMED ∧ bookHotel(hconf)
sends bookFlight ∧ payNotify

L. Bocchi & J.L. Fiadeiro & N.J. Rajper & S. Reiff-Marganiec 15

 transition TripCancel
triggeredBy bookTrip
guardedBy s=FLIGHT_OK
effects s’=END_UNBOOKED ∧ cancelHotel(hconf)
sends bookFlight

 transition TripCompensate
triggeredBy bookTrip
guardedBy s=CONFIRMED ∧ today<bookTrip.out
effects s’= END_COMPENSATED ∧ cancelHotel(hconf)
sends bookFlight ∧ ackRefundSnd
 ∧ ackRfundSnd.amount=bookTrip.amount*PERC/100

 transition ConfirmBookTripTimeOut
triggeredBy now≥bookTrip.UseBy
guardedBy s=FLIGHT_OK
effects s’=END_UNBOOKED ∧ cancelHotel(hconf)
sends bookFlight

BUSINESS PROTOCOL FlightAgent is

 INTERACTIONS
 r&s lockFlight

 from,to:airport,
 out,in:date,

 traveller:usrdata
 fconf:fcode

 amount:moneyvalue
 SLA VARIABLES

 KD:[0..100],PERC:[0..100], MAX:[0..100]
 BEHAVIOUR
 initiallyEnabled lockFlight?
 lockFlight? enables lockFlight?
 until today+KD ≥ bookTrip.out

BUSINESS PROTOCOL Customer is

 INTERACTIONS
 s&r bookTrip

 from,to:airport,
 out,in:date
 fconf:fcode,
 hconf:hcode,
 amount:moneyvalue
 rcv refund
 amount:moneyvalue
 SLA VARIABLES
 KD:[0..100], PERC:[0..100]
 BEHAVIOUR

 initiallyEnabled bookTrip?
 (bookTrip ∧ bookTrip?) enables bookTrip?

 until today+KD≥bookTrip.out
 (bookTrip? ∧ today+KD ≥ bookTrip.out) ensures refund!

 refund.amount=bookTrip.amount*PERC/100 after refund!

INTERACTION PROTOCOL Straight.I(d1) is

 ROLE A
 snd S1

 i1:d1
 ROLE B
 rcv R1

 i1:d1
 COORDINATION

 S1 ≡ R1
 S1.i1=R1.i1

 …

END SPECIFICATIONS

	Introduction
	A Model of Virtual Organisation Breeding Environments
	Business Configurations
	Component Specifications and Connectors
	Concluding Remarks and Further Work

