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Incorporation of meta-analyses of diagnostic test accuracy studies 

into a clinical/economic decision analytic framework 

Nicola Novielli, BSc, MSc 

Abstract 

An accurate diagnosis is a crucial part of an effective treatment. Diagnostic errors 
cause unwanted side effects for healthy individuals and witheld treatments for 
diseased patients. Meta-analysis techniques allow the accuracy of diagnostic tests 
to be estimated using all the available sources of evidence. The most common 
measures of diagnostic accuracy are sensitivity (true positive rate) and specificity 
(true negative rate).  

As part of this thesis, current methods developed for synthesising data from 
diagnostic test studies are reviewed and critiqued, and then applied to estimate the 
accuracy of the Ddimer test for diagnosing Deep Vein Thrombosis (DVT).  The 
fit of the different models is assessed via the Deviance Information Criterion and 
the Residual Deviance and the most complex synthesis models are found to 
provide the best fit to the data.  When covariates are added to these models, only 
the incorporation of study setting sensitivity is found to improve the fit of the 
model.  

Diagnostic tests are rarely used in isolation and consideration of multiple tests in 
combination may also require evaluation.  In this thesis, a multiple equations with 
shared parameters approach is proposed which estimated the accuracy of a 
combination of tests in two stages: i) estimate the conditional accuracy of the 
tests; and ii) estimate the accuracy of possible combinations of tests as functions 
of the conditional accuracies. Such a modeling approach allows the inclusion of 
different sources of evidence to be used simultaneously. The final part of the 
thesis evaluated the cost-effectiveness of different strategies for diagnosing DVT 
by incorporating the results from the aforementioned evidence synthesis models 
into an economic decision analytic model.  

In conclusion, the assumption of conditional independence can affect the analyses 
of the effectiveness and the cost-effectiveness of combinations of diagnostic tests, 
thus leading to potentially wrong decisions if the dependence is not explicitly 
modelled.  
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Chapter 1. Introduction 

1.1 Background 

Early diagnosis can lead to diseases being treated more successfully than if 

treatment were delayed. Therefore, the evaluation of test performance is crucial to 

improve patient outcomes and treatments’ effectiveness. Test performance is a 

multifaceted idea, where correct diagnoses are opposed to misdiagnoses. Correct 

diagnoses occur when diseased patients are positive to the test, and also when 

healthy patients are negative to the test. On the other hand, misdiagnosis occurs 

when i) a diseased patient is diagnosed as negative by a test (false negative) 

leading the appropriate care to not be delivered and the disease potentially 

evolving, or ii) a healthy patient is diagnosed positive by a test (false positive) and 

is exposed to potential side effects as a result of unneeded treatment.  

Unfortunately, misdiagnoses are unavoidable where the perfect test cannot be 

applied because it is invasive, not available, or more often does not exist. The 

effect of misdiagnosis can be observed directly on clinical outcomes. For 

example, Halfon et al (Halfon, Eggli et al. 2002) show that a proportion (5% in a 

hospital in Switzerland) of unforeseen (thus avoidable) hospital readmissions after 

1 month from hospital discharge is due to “missing or erroneous diagnosis or 

inappropriate treatment”.  

 



 19

Evaluation of the performance of diagnostic tests through systematic review and 

meta-analysis is less established than for interventions but is increasing rapidly. 

Presently, reviews are characterised by poor reporting and poor quality (only 56% 

of reviews for the accuracy of tests in cancer research reported sensitivity, 

specificity and sample size until 2006 (Mallett, Deeks et al. 2006)). Methods for 

synthesis of diagnostic test studies are more complicated than for healthcare 

intervention studies due to additional issues relating to threshold levels and 

dependence between sensitivity and specificity (until 2006, only 61% of reviews 

attempted to formally synthesise diagnostic accuracy data in cancer research 

(Mallett, Deeks et al. 2006)).  To date, at least five different synthesis methods 

have been developed ranging from the simplistic (i.e. assume independence of 

point estimates of sensitivity and specificity) to the most sophisticated (i.e. 

express test performance as an asymmetric summary Receiver Operating 

Characteristic (sROC) curve). 

 

Evaluating the performance of a diagnostic test is only the first step along the 

pathway to establishing its role in clinical practice. The impact of misdiagnosis in 

terms of patient outcomes needs to be considered as an important part of the 

evaluation. Therefore, of more direct relevance is establishing whether a test is 

beneficial in terms of clinical and economic outcomes. To date, there has been 

little work conducted integrating the synthesis models with the economic decision 

models to address policy questions such as, “At which threshold value is the test 
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most beneficial/cost-effective?” Furthermore, diagnostic tests are rarely used in 

isolation and consideration of other tests as alternatives or in combination may 

also require evaluation. Since it is prohibitively expensive and time-consuming to 

set up individual trials to answer complex questions of policy relevance related to 

diagnostic tests, often decision models are developed instead.   
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1.2 Aims of the thesis 

The main objectives of this PhD have been to: 

i) Review and critique methods currently developed for synthesising 

data from diagnostic test studies and assess the fit of the different 

synthesis models when applied to an example dataset (i.e. deep 

vein thrombosis (DVT) diagnosis and subsequent treatment for 

(suspected) pulmonary embolism);  

ii) Develop methodology for the incorporation of meta-analyses of 

diagnostic test accuracy studies into an economic decision 

modeling framework when evaluating the cost-effectiveness of 

either individual tests or combination of tests 

 

The modeling approaches used throughout this thesis do not aim to tune the 

threshold of a test to the best test accuracy although some of these approaches will 

account for variability into the threshold. 
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1.3 Example I: The diagnosis of Gastroesophageal Reflux 

Disease 

As a first example dataset, the diagnosis of GastroEsophageal Reflux Disease 

(GERD) will be considered. In the case of uncomplicated GERD, lifestyle 

modifications and acid suppressive medications are given. Short term treatment is 

often required given its symptoms (i.e.”heartburn”), and fast diagnosis techniques 

are preferred. The most common tests available are 24-hours pH monitoring, 

endoscopy, and structured symptom scoring system. The first two are very 

accurate, however endoscopy is quite invasive and 24-hours pH monitoring may 

be too expensive. Structured symptom scoring systems may not be very accurate 

to use as reference standards but are non-invasive and cheap to administer. In 

common practice, Proton-Pump Inhibitors (PPI) are often used as first therapy for 

GERD given they are very effective and considered as validation of a first 

symptomatic diagnosis. However, they are not officially validated as a test, and 

need diagnostic accuracy evaluations. 

This example will be used in Chapter 3 and Chapter 4. In Chapter 3 a single study 

of the accuracy of GERD will be used to explain the ideas of usefulness of a 

diagnostic test and to calculate the main measures of diagnostic accuracy. This 

study is part of an existing meta-analysis; such a meta-analysis dataset is used in 

Chapter 4 where the meta-analysis techniques presented are applied, assumptions 

behind each statistical models are discussed, and for comparison between 

statistical models.  
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The sensitivity of GERD is estimated at 68% (95% CrI 51% to 82%), and the 

specificity 57% (95% CrI 39% to 74%) form Bate et al (1999) (repeated in section 

3.3.8). 

 

 
Figure 1-1 Sensitivity and specificity for PPI test from studies identified in a 
previous meta-analysis. The width of the circles is proportional to the sample 
size of each study. The red circle corresponds to the study of Bate et al (1999) 
used in Chapter 3. 
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The GERD example has been selected because the meta-analysis dataset 

presented some important differences from DVT example, described in section 

1.4: firstly, the GERD dataset for meta-analysis is a smaller dataset than DVT, 

and secondly there is not much evidence of a diagnostic threshold effect and the 

implications of this characteristic will be discussed throughout section 4.5 where 

the different statistical models will be applied. 
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1.4 Example II: The diagnosis of Deep Vein Thrombosis 

The principal example used throughout this thesis is based on the accuracy of tests 

for the diagnosis of DVT. The medical term Venous Thromboembolism (VTE) is 

used to identify either the presence of DVT or Pulmonary Embolism (PE) or both. 

DVT is a blood clot in a deep vein (lower limb) that is usually treated with 

anticoagulants. It is well known that PE is very likely to originate by a non treated 

DVT in the lower limbs (i.e. in 90% of cases as reported by Hull (Hull, Raskob et 

al. 1986)). However, anticoagulants may have serious side effects (i.e. intracranial 

bleeding). The correct diagnosis of DVT is crucial to lower the mortality due to 

VTE related adverse events and to lower the impact of side effects from 

anticoagulant treatment given to healthy patients. A recent Health Technology 

Assessment (HTA) publication evaluated the clinical effectiveness and cost-

effectiveness of diagnostic tests for DVT when used singularly and in 

combination (Goodacre, Wailoo et al. 2006 ). They compared the accuracy and 

the cost effectiveness of a wide range of medical tests for DVT and evaluated the 

accuracy of 31 combinations of tests (diagnostic algorithms). Some reference tests 

are Ultrasound or Venography; however, several other tests exist that are less 

accurate but cheaper, quicker and less invasive, such as Ddimer test (DD) and 

Wells score (WS). DD measures the concentration of an enzyme in the blood, the 

higher the measurement the more likely DVT. WS is a checklist of symptoms and 

clinical history of the patients (Wells, Hirsh et al. 1995; Wells, Anderson et al. 

1997). A simplified and widely used version of WS categorises patients into low 

(score <1), moderate (score 1 or 2) and high (score >2) probability of DVT. 
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Goodacre et al found that i) DD and WS score were not accurate enough as stand-

alone diagnostic tools (see Table 1-1) and ii) there was evidence that algorithms 

containing WS and DD performed better. Figure 1-2 (a) and (b) represent the 

accuracy data for DD (at the threshold used within the original publications) and 

the accuracy of WS(for the two possible thresholds: low vs moderate-high; low-

moderate vs high) respectively. 

 

  

  

  

  

Table 1-1 Values of sensitivity and specificity of DD and WS as a result of the 
analysis performed by Goodacre et al. (2005). 

 

More information on DD dataset (i.e. covariates) will be given in section 5.2, and 

Chapter 8 will describe the dataset of the accuracy of DD and WS used in 

combination. 

The major limitation of the Goodacre at al. analysis of WS and DD in 

combination was the assumption of independence of the tests within the 

combinations, although potential correlation between DD and WS was 

acknowledged (the accuracy of DD given WS is analysed in Chapter 8). 

Further details of the DVT dataset specific for our meta-analysis example will be 

given in section 5.2. 
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                             a)  Ddimer                                             b)  Wells score 

Figure 1-2 Sensitivity and specificity for WS and DD test form studies 
identified in a previous meta-analysis. The width of the circles is proportional 
to the sample size of each study. 
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1.5 Outline of the thesis 

This thesis can be divided in two parts; each pursues one of the two main 

objectives of this PhD as listed above. The first part (Chapters 2, 3, 4, 5) is an 

introduction to the accuracy of diagnostic tests and an exploration of the 

methodology used for the synthesis of evidence of the accuracy of dichotomous 

diagnostic tests. Chapter 2 introduces and justifies the methodological framework 

used for the statistical analyses: Bayesian modeling. Chapter 3 describes the main 

characteristics of diagnostic tests and explores the most common measures of 

performance of diagnostic tests. Chapters 4 and 5 respectively explore and apply 

the currently proposed techniques used for the meta-analysis of diagnostic test 

data, to the DVT example. The choice of the correct approach is an important 

issue, therefore the usefulness of model choice statistics is also explored. 

The second part of the thesis (Chapters 6, 7, 8) explores the inclusion of evidence 

synthesis results of the accuracy of tests used individually or in combination into 

economic evaluations. Chapter 6 presents a systematic review of Health 

Technology Assessment (HTA) reports to identify which evidence synthesis 

methods have been used for diagnostic test accuracy and how the results from 

these analyses have been used to inform the economic decision model. Chapter 6 

also highlights the lack of evidence synthesis methods for the accuracy of 

combinations of diagnostic tests. Chapter 7 explores the main characteristics of 

combinations of diagnostic tests and their accuracy. Chapter 8 then describes the 

modeling framework that is proposed in this thesis for the meta-analysis of the 
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accuracy of combinations of diagnostic tests. Such a framework is also applied to 

the DVT example.  In addition to the HTA data on the diagnostic accuracy of WS 

and DD used individually described in section 1.4, conditional data of DD given 

WS is also identified via a systematic reiew of the literature. 

Finally, Chapter 9 concludes the thesis describing the major contributions and the 

limitations that characterised this research project. Some implications of our 

findings in the area of diagnostic test accuracy and directions for further work are 

also presented. 
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1.6 Overview of the content of the CD-ROM 

The WinBUGS code to implement the modeling approaches used throughout this 

thesis is given in the CD-ROM attached to this thesis. The content of the CD-

ROM has been listed at the end of the “Contents” section, under the heading 

“Contents of the CD-ROM”.  

The folder Chapter 2 - GERD 1 study contains a Bayesian model for the estimates 

of the accuracy parameters of PPI test for GERD using data from one single study 

and presented throughout chapter 2 (the GERD example is presented in section 

1.3). The folder Chapter 4 - GERD meta-analysis contains one single WinBUGS 

file with all the meta-analysis models for the accuracy of PPI test for GERD 

(illustrative example) and used to produce the results presented throughout 

Chatper 4. The folder Chapter 5 - meta-analysis of DD for DVT contains all the 

meta-analysis models for the accuracy of DD test for DVT presented in Chatper 5. 

Each model is given in three .txt files: one for the model, one for the data and one 

for the initial values. Also a file containing the list of covariates used for the 

model fitting exercise presented in section 5.3.2 is given. These files can be 

directly opened in WinBUGS or, alternatively, can be used to run WinBUGS 

through other softwares (i.e. R). Such files are also available on request for the 

publication attached in Appendix E. Finally, the folder Chapter 8 - combinations 

of WS and DD for DVT contains the models for the meta-analysis of the accuracy 

of DD and WS used in combination, assuming conditional dependence and 

conditional independence, presented in Chapter 8. Also the code for the decision 
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models is given in three files, one that contains the meta-analysis model that 

assumes conditional independence, one that contains the meta-analysis model that 

assumes conditional dependence and uses credible intervals to represent 

parameter uncertainty and one that contains the meta-analysis model that assumes 

conditional dependence and uses predictive intervals to represent parameter 

uncertainty  

 

  



 32

Chapter 2. Introduction to the Bayesian approach for 

statistical modeling 

2.1 Chapter overview 

The Bayesian approach to statistics is known for the explicit use of external 

information. For this reason, often objective and subjective statistics have been 

used as synonyms of Classical (Frequentist) and Bayesian statistics. For example, 

Blyth (Blyth 1972) comments on the use of Bayesian prior opinions saying “The 

publication of Bayesian prior and posterior probabilities would be the antithesis 

of scientific method”. However, during the last 20 years the Bayesian approach to 

statistics has gained in popularity, and the objectivity of these methods has been 

reviewed under the methodological perspective rather than on the mere use of 

external information in the statistical analysis (Lilford and Braunholtz 1996). 

This section aims to give a general introduction to the Bayes theorem and 

Bayesian modeling, which will form the basis of the analytical approaches to 

meta-analysis of diagnostic tests used throughout this thesis, and in particular in 

Chapter 4, Chapter 5 and Chapter 8. This chapter is divided into three main parts: 

Part 1 (section 2.2) introduces Bayes theorem for simple events and for simple 

problems of inference; Part 2 (section 2.3) describes the Bayesian approach to 

statistical modeling for more complex problems of inference, that require the use 

of Markov Chain Monte Carlo (MCMC) simulation methods; and Part 3 (section 

2.4) focuses on Bayesian model selection criteria implemented via MCMC. 
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2.2 Bayes theorem 

In 1763, a new theorem on probability was discovered by a Presbyterian minister 

named Thomas Bayes. In a letter published post mortem, Bayes described the law 

for reversing a conditional probability by means of marginal probabilities. Bayes 

had formulated the principles of a new approach to statistical inference. Since 

then, Bayes theorem has been used to update earlier understanding (beliefs) of a 

phenomenon by using data from current experiments (see section 2.3). One of the 

main innovations of the Bayesian approach is the use of external evidence in the 

form of prior distribution. Prior distributions can be also non informative, also 

called flat prior distributions. However, it is interesting to observe how results 

vary under different assumptions on the prior knowledge, representing alternative 

ideas, in a sensitivity analysis context. 

 

2.2.1 Formula for simple events 

Let  and  be two events, and their complements to be  and  , so that the 

probability       , similarly for . Also, let  be 

the conditional probability, for example, of the event B conditional to A; that is 

the probability of B accurring when A has been observed. Then the conditional 

probability  can be calculated using Bayes theorem: 
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Equation 2-1 

 

This can be interpreted as the probability of an event A, posterior to the 

knowledge of an event B.  is equal to the (prior) knowledge of the sole event 

A, the denominator at the right side of Equation 2-1 is  calculated as a 

function of the conditional probabilities ,  and the marginal 

probability  (i.e.     ).  

 

2.2.2 Bayes theorem for inference 

The theorem as in Equation 2-1 is also called Bayes theorem for complementary 

events. Equation 2-2 represents the application of Bayes theorem for inference of 

continuous or discrete data (Spiegelhalter DJ, Abrams et al. 2004):  

 


 
 

Equation 2-2 

Where f is called the posterior density function, L is the likelihood and g is the 

prior distribution. The formula above is valid for continuous parameters and either 

continuous or discrete data. For discrete parameters the integration becomes a 

summation. 
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In Equation 2-2, when the prior distribution  and the posterior distribution 

 belong to the same distributional family (Ntzoufras 2010) the analysis is a 

conjugate analysis. In this case the computation of the formula above is 

algebraically possible; the integral on the denominator has an algebraic solution; 

and the posterior distribution also belongs to the same distributional family. A 

conjugate analysis is possible the functional form of the prior distribution is 

proportional to the functional form of the likelihood (Spiegelhalter, Abrams et al. 

2004). Some common cases of conjugate prior distributions are: Normal-Normal, 

Gamma-Poisson, Beta-Binomial. 

For example, a Normal-Normal conjugate model of a continuous measurement 

can be described defining  as a sample of dimension  where   

is the likelihood function associated to this sample.   is the true mean of  that 

needs to be estimated, and  is the known variance. If there is some prior 

knowledge about the parameter of interest  (i.e. from a pilot experiment or an 

expert belief) this can be quantified using the assumption of normality with mean 

 and variance , and the model can be written as:  





 

 
 

Equation 2-3 

The prior distribution is conjugate to the likelihood because it has a similar 

algebraic form and the posterior distribution of  given the data can be calculated 

in closed form: 
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Equation 2-4  
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2.3 More complex modeling with Bayesian statistics 

2.3.1 The Markov Chain Monte Carlo and the Gibbs sampler 

The general problem of Bayesian inference can be represented by the estimation 

of the mean parameter using its posterior distribution  as in the equation 

below: 

   

Equation 2-5 

Where  is the parameter of interest and  is the data. 

The calculation of the integral in Equation 2-5  is not always algebraically 

possible in closed form, for example when likelihood and prior distribution are 

not conjugate. The techniques to estimate the parameters of interest for non-

conjugate models are briefly explored in this section. 

When the likelihood is not conjugated to the prior distribution, the solution to the 

integral in Equation 2-5 above can be obtained by numerical techniques but when 

the dimension of the parameter  exceeds 4, then standard quadrature-based 

methods are ruled out (Press 2002). Until a few years ago this was a big 

limitation. The development of powerful computers and ad-hoc software made 

possible the application of specific numerical algorithms to solve such integrals. 

Currently, the main and most developed method is the MCMC algorithm (Gilks, 

Richardson et al. 1996). 
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The MCMC algorithm transforms the problem of solving the integral in Equation 

2-5 by sampling adequately a number of  draws     directly 

from the posterior density function of . By the definition of a Markov process, 

the conditional density of any  depends only on the conditional density of 

. This conditional density, also called transition density, can be denoted as 

T(). In order to draw the first sample , an initial value  arbitrarily 

chosen is needed. The choice of the initial value  must not affect the 

convergence of T(.) to f(.); however, it may have a delaying effect on the 

convergence. Thus, the first N draws are discarded as a burn-in period, and the 

remaining M minus N  draws are considered as draws from the posterior 

density(Gilks, Richardson et al. 1996). The length of N and M depends on the 

MCMC algorithm. 

An MCMC chain can be constructed in different ways. The most common is the 

Metropolis-Hasting algorithm, and a special case of this is the Gibbs sampler. 

This algorithm simplifies the sampling by considering all the full conditional 

distributions of   
 

   
, i.e. 

 

 
 

   
. 

…………… 

 
 

   
 . 

Equation 2-6 
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The steps of the Gibbs algorithm are as follows (Gilks, Richardson et al. 1996): 

1. To specify a initial value for , i.e.   
 

   
 

2. For j=1,2 ..,N,…M;  generate 
 from   

 
 

3. Return values of  

 

Where 
 is the vector of parameters  excluding the element , N is the 

length of the burn-in period and MN is the number of samples used to build the 

posterior density. 

 

2.3.2 The software WinBUGS 

MCMC algorithm can be implemented using statistical and/or programming 

software. This requires that code specific to the model has to be developed and 

complex programming skills are required. The software WinBUGS simplifies this 

by offering a powerful platform for MCMC simulations (Lunn, Thomas et al. 

2000). WinBUGS allows the model to be implemented by the specification of the 

distributional relationship (stochastic nodes) and of the functional relationship 

(deterministic nodes) between parameters. When functional relationships between 

parameters are explicated by equations the uncertainty around the stochastic nodes 

propagates into the deterministic nodes, thus allowing different sources of 

evidence to be integrated within the same modeling framework (Ades and Sutton 
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2006). This property will be used in chapter 8, when a model for the accuracy of 

combinations of diagnostic tests will be presented.  

 

2.3.3 The choice of prior distributions 

The choice of prior distributions is a crucial and multifaceted aspect of Bayesian 

statistics. In fact, it is related both to the functional form of the prior distributions 

and to the information that is included in the analysis. A brief overview of prior 

distributions with respect to the type of information that is represented follows in 

this section. Finally, the approach to the choice of prior distributions adopted in 

this thesis and the strategy to sensitivity analyses will be presented. 

 

Prior distribution and prior information 

The prior information that is used in the analysis can be either substantial or weak.  

In the case of substantial information in favour of some parameter values, those 

values are assumed to have a higher probability a priori than others to be the true 

values, therefore the prior information will favour this values when combined 

with the data by means of the likelihood. Substantial information can derive from 

existing (e.g. published, such as from randomised clinical trials) evidence 

(Spiegelhalter, Abrams et al. 2004), can be elicited from domain experts who do 

not have a (psychological or material) personal stake from the results of the 

analysis (Khalil 2010) by means of ad-hoc techniques (O'Hagan, Buck et al. 
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2006), or ad-hoc prior distributions can be constructed to test the impact of a 

priori assumptions (e.g. scepticism or optimism on the effect of a new treatment 

compared to the standard care) on the posterior distribution (Spiegelhalter, 

Abrams et al. 2004). In some cases (e.g. evaluation of the effectiveness of 

interventions at the development stage), prior elicited information is the only 

information available to inform decision analysis (Cosh, Girling et al. 2007; 

McAteer, Cosh et al. 2007). 

Weak information does not greatly favour any parameter values and it is 

expressed by means of reference prior distributions. For these prior distributions, 

the meaning of very similar terminologies is still subject of debate, for example 

between “vague”, “non-informative” or “weakly informative” distributions (Kass 

and Wasserman 1996). The main reason why this debate has been active for a 

long time is that reference prior distributions do contain some information, and 

therefore may have an (unexpected/undesired) impact on posterior distributions. A 

simulation study has assessed that the use of vague prior distributions is not 

enough to assure the non-influence of the prior distributions themselves on the 

final posterior parameter estimates (Lambert, Sutton et al. 2005) particularily 

when there is little data in the context of hyper-parameters in hierarchical models. 

Although location parameters were always correctly estimated, the precision 

parameters were often badly estimated, especially when a few data points were 

available, consequently leading to bad predictions. More evidence on the 

unexpected impact of vague distributions on posterior distributions is also 
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available elsewhere (Gelman 2006). In section 3.3.8 an example of the impact of 

vague distribution on posterior distributions will be given. 

What is the best approach between using informative and reference prior 

distributions? Including the existing evidence in the analysis of the data is one of 

the main advantage of Bayesian statistics and reference prior distributions are 

useful benchmarks to assess the impact of informative prior distributions 

(Spiegelhalter, Abrams et al. 2004). Technical problems such as how the 

information (either vague or substantial) is implemented analytically should not 

represent barriers but stimuli to improve the existing techniques. 

For simplicity vague and non-informative prior distributions (that is, distributions 

that do not contribute with substantial information to the analysis) will be 

considered having equal meaning (Gelman, Carlin et al. 2003). Sensitivity 

analises are recommended in either case. 

Throughout this thesis non-informative prior distributions will be used. However, 

nothing would limit the use of informative prior distributions in the models that 

will be presented in the following chapters. The next section presents the strategy 

adopted in this thesis to check for sensitivity of the results to prior distributions.   

Sensitivity analysis to prior distributions 

As already mentioned above, vague prior distributions may unexpectedly have an 

impact on the posterior distribution. Therefore, sensitivity analyses should always 

be performed to assess the robustness of posterior distributions to the coice of 
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different prior distributions (Ntzoufras 2010). This can be done under two 

different perspectives: to assess the sensitivity to the information contained in the 

prior distribution (in this case all distributions are meant to be non informative, 

therefore sceptical and optimistic priors will not be included in the 

analyses)(Spiegelhalter, Abrams et al. 2004); to assess the sensitivity to the 

distributional form of the prior distribution (i.e. the same information can be 

represented with different distributions, either on the same parameter or on 

transformations of the parameter). 

Generally, the prior distribution of the means (i.e. logit-sensitivity) was normal 

with a very low precision, and sensitivity against different prior means and 

standard deviations was checked. This type of prior is also called weakly 

informative (Gelman 2009) because it gives slightly more relevance to plausible 

values of the parameters (i.e. it is locally vague on the interval of plausible 

values). 

Different prior distributions for heterogeneity parameters were used with respect 

to the shape of the distribution and to different parameterizations of the 

parameters (i.e. prior distributions on either precision or variance). 

The models that will be presented in this thesis have been tested against 

sensitivity on prior distributions and major agreement problems were not 

observed. Instead, models with more complex parameterizations presented issues 

with the choice of initial values (i.e. to get the model run), in these cases plausible 
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set of initial values have been suggested. This approach has already been used for 

meta-analysis models of diagnostic test data (Rutter and Gatsonis 2001). 

 

2.3.4 Assessment of convergence and length of chains 

Convergence is a crucial property of MCMC algorithms for Bayesian modeling. If 

an MCMC algorithm does not converge, then the algorithm is not sampling from 

the posterior distributions of the parameters which has obvious and serious 

implications. A“burn-in” period of the MCMC algorithm is required to ensure 

convergence of the sampler, but a key challenge is that the length of “burn-in” 

required is model specific and no methods exist for determining the length a 

priori.   Due to this, a number of convergence diagnostics have been developed 

and a brief overview is provided below. Convergence diagnostics of two types 

exist, those based on: 1) statistical tests; and 2) more advanced procedures based 

on checking the characteristics of the sampled chain (i.e. history plots, 

autocorrelation plots, MCMC error). 

The most common tests for convergence are: 

1. The Geweke test (Geweke 1992) is based on the comparison of the 

averages estimated from two different sub-samples of the MCMC 

chain for an individual parameters. Simply, if the algorithm converges 

(and the burn-in period is long enough) then the two averages should 

not be statistically different from each other. 
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2. The Gelman and Rubin test (Gelman and Rubin 1992) compares the 

running means of two (or more) parallel samples (i.e. different chains 

characterised by different initial values). 

3. The Raftery and Lewis test (Raftery and Lewis 1992; Raftery and 

Lewis 1995) focuses on the accuracy of specific quantiles of the 

sampled chain. Differently from the first to approaches, this is not 

based on the sampled means. 

4. The Heidelberger and Welch test (Heidelberger and Welch 1983) is 

used on univariate observations and requires one chain to be run. This 

test controls that stationarity of the MCMC chain (i.e. the chain is 

sampling from one posterior distribution) is achieved. If stationarity of 

the chain is not achieved, then the burn-in period is increased with the 

first 10% of the candidate posterior iterations. The hypothesis of 

stationarity, and therefore convergence, is rejected when more than 

50% of candidate posterior iterations are rejectet.  

The main shortcoming of these approaches is that they have to be repeated for all 

relevant parameters in case of multidimensional parameter space. Only the 

Gelman and Rubin statistic has been adapted for multidimensional parameter 

space (Brooks and Gelman 1997). Moreover, a personal opinion is that these 

statistics may be very useful as complementary tools in prespecified strategies but 

they try to give a simple answer to very complex problems when used 

individually. The risk is that the complexity of the problem is not appreciated. In 

fact, some authors suggest that these statistics all represent different aspects of the 
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problem of convergence and should be used simultaneously (Ntzoufras 2010). 

Also, they suggest that more advanced users should assess convergence by 

observing directly the characteristics of the MCMC sample. However, a standard 

procedure based on the characteristics of the chain does not exist. Below I 

describe the procedure used in this thesis to assess convergence step by step: 

1 Convergence and the length of the burn-in period was initially assessed 

by initalising the chain in different points of the space of parameters 

(i.e. different sets of plausible values of the parameters) (Racine-Poon 

and Wakefield 1996). History plots for multiple chains where used to 

check when the chains were converging by setting the burn-in period 

to zero (for every model presented in this thesis the algorithm started 

samping within the same range of values below 1000 iterations). 

Therefore, the burn-in period ( N ) was set between 4000 and 5000 

iterations. 

2 The length of the chain after the burn in period ( M-N ) that is used to 

build the posterior distribution was determined when the following two 

criteria where both met: 1) if s is a relatively small number of further 

iterations that can be run after the first M terations, then the posterior 

distributions (i.e. posterior means and standard deviations) considering  

did not change when considering (M+s)-N iterations; 2) the MC error 

was lower than 10E-4, where the MC error is a measure of variability 

in the estimates due to the sampling algorithm; the higher the number 

of iterations the lower the MC error (Ntzoufras 2010). 
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3 The length of MCMC chains also depends on the assumption of 

independence of an iteration at time  from the iterations at time , 

for     . Therefore, autocorrelation was checked via the 

autocorrelation plots available in WinBUGS. Where autocorrelation 

was observed the length of the chain was increased proportionally to 

the extent of autocorrelation (i.e. if the maximum lag was  on the 

autocorrelation plot, then the length of the chain was set to   ). 

  



 48

2.3.5 The representation of uncertainty in Bayesian modeling 
compared to Classical methods 

Parameter estimates are supposed to be robust estimates of the parameters true 

values. The quantification of uncertainty around these estimates depends on the 

data available, and on the type of prior distribution used. Measures of uncertainty 

depend on the precision of the estimates (i.e. the more the observations the more 

precise the estimate). 

In classical statistics, parameter estimates are followed by confidence intervals. 

Their interpretation is quite complex and needs the understanding of the terms 

confidence and significance. In statistical testing, significance is used to indicate 

the probability to reject a true null hypothesis (false positive result). Therefore, 

confidence is the probability to accept a true null hypothesis (true negative result).  

For the construction of confidence intervals, if an indefinite number of samples 

could be drawn each corresponding to a confidence interval, in 95% of such 

samples the interval would cover the true value of the parameter(Snedecor and 

Cochran 1967). Different approaches can be used to construct confidence 

intervals (e.g. deviance based, likelihood based, profile likelihood based, quasi-

likelihood based, score finction based (Hinkley, Reid et al. 1991)). In Bayesian 

statistics, the representation of uncertainty via Credible intervals simplifies their 

interpretation. Credible intervals are true probability statement on the variability 

of the parameter; that is the true parameter has 95% probability to lie within its 

credible interval (given the prior information). The interpretation seems to be 

simpler than in Classical analysis, and it is simpler and more interpretable by non 
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statistician. However, the description of prior distribution and their influence on 

the posterior distribution is important for a correct understanding of those 

intervals. 
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2.4 Model selection 

Some model selection techniques are shared and others are exclusively used in 

either the Classical or the Bayesian approach to statistics. For example, section 

2.4.1 describes a model selection statistic that is only valid when MCMC-

Bayesian models are used, and section 2.4.2 describes a model selection statistic 

that can be calculated for either approach. The application of a comparison 

between these statistics will be presented in Chapter 5, where an example of the 

choice between different models and the inclusion of covariates will be presented. 

 

2.4.1 Deviance information criterion as model choice criterion 

The DIC (Spiegelhalter, Best et al. 2002) is a compound measure of goodness of 

fit and complexity of the model, and can be used as a basis on which to choose 

between competing models. It is defined as  

                        DDp

pDDIC

D

D

ˆ−=

+=

             

Equation 2-7 

Where  is the posterior mean of the deviance taken as a Bayesian measure of 

fit(Spiegelhalter, Best et al. 2002), penalised by a measure of complexity  (the 

‘effective number of parameters’), where D̂  is the deviance evaluated at the 

posterior mean of the model parameters.  
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The posterior mean of the deviance can be obtained in WinBUGS by monitoring 

the node “deviance”, or alternatively the posterior distribution of the deviance can 

be computed manually by sampling within the model the sum of the individual 

contribution to the deviance (i.e.   , for observation , =1 to M indicates 

the MCMC iteration, iterations between N (burn-in period) and M will be used to 

build the posterior distribution of the eviance, see section 2.3.1). 

     


 

    
 for binomial likelihood, where  

may be the number of diseased (healthy) patients and  may be the number of 

true positive (negative) patients, and therefore  indicates the  MCMC sample 

of sensitivity (specificity) of the diagnostic test (true positives and true negatives 

are counts data, sensitivity and specificity are proportions, a detailed description 

of these quantities will be presented in chapter 3). is the estimated rate at 

iteration  of the MCMC algorithm. 

The DIC is a natural generalisation of the Akaike Information Criterion (AIC) 

(Akaike 1973). The DIC was developed to solve the problem of determining the 

‘effective’ number of parameters ( Dp ) in complex non-nested hierarchical models 

and is implemented in WinBUGS (i.e. penalisation for random effects is not 

available via the AIC which motivates, in part, the Bayesian approach taken 

throughout this paper).  The lower the value of DIC the better the model fits the 

data. It has been recommended that differences of 5 or more in the DIC between 

competing models may be considered as substantial (The BUGS project).  Note 
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that the DIC is only comparable across models with exactly the same observed 

data. Moreover, the version of DIC presented in this section is not ideal in the 

case of missing data (Celeux, Forbes et al. 2006). 

 

2.4.2 Residual deviance 

An alternative statistic for assessing model fit is inspired on the theory for 

generalised linear model and is based on the likelihood ratio statistic. Using a 

slightly different notation, the deviance can be represented as   (for 

example where  is a likelihood based estimate for the parameter  and     

represent the log-likelihood function). The posterior distribution of the deviance 

was defined in section 2.4.1 for binomial data by sampling via the MCMC 

algorithm  , where (.;.) indicates the (natural) logarithm of the 

likelihood function (log-likelihood) and  is the  sample of the MCMC 

algorithm for the  observation (samples between N and M-N are used to build 

the posterior distribution of the deviance). 

The residual deviance statistic can be defined as the difference between the 

deviance for the model currently being fitted and the deviance for the saturated 

model (i.e. a model that perfectly fits the data because it has as many parameters 

as there are values to be fitted) where the deviance measures the fit of the model 

to the data points using the likelihood function (Hinkley, Reid et al. 1991). The 

term “residual deviance” is due to an analogy with normal-theory models where 

the likelihood ratio statistic for comparing two models reduces to the difference 
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between the the respective residual sums of squares after fitting the models 

(Hinkley, Reid et al. 1991). 

The formula for residual deviance is: 

   


  
       

  

    




 

Equation 2-8 

 

As for section 2.4.1, if  is the number diseased patients and  is the number of 

true positive patients, then  indicates the posterior mean of sensitivity; similarly 

for specificity. The residual deviance is inversely proportional to the likelihood, 

the highest value of the likelihood function corresponds to the lowest value of the 

residual deviance, therefore the lower the residual deviance the better the model 

fits the data. 

If the deviance of the satureated model is defined as     

 


 





  






, the residual deviance (Equation 2-8) can be 

obtained as the difference between   and  . In this thesis the 

posterior distribution of the residual deviance will be calculated by using the  

MCMC sample for the parameter  instead of  (i.e.   instead of 

 ) and the posterior mean of the residual deviance will be used as model 

choice statistics. 
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Under the null hypothesis that the model provides an adequate fit to the data, it is 

expected that residual eviance would have a mean approximately equal to the 

number of unconstrained data points (this is exact if the data have a Normal 

likelihood (Dempster 1997)). For the models presented in this thesis, the residual 

deviance can be calculated by summing the residual deviance for sensitivity and 

the residual deviance for specificity. However, more research is needed into the 

properties of the posterior mean of the residual deviance, especially with respect 

to the shape of the posterior distribution of the parameter (e.g. asymmetric 

posterior distribution), and to the implementation of missing data models. 

 

2.4.3 Some considerations on the relationship between DIC and 
residual deviance 

Some considerations on the relationship between the residual deviance and the 

DIC can be helpful to interpret both statistics.  

The DIC has been defined as the sum of the posterior estimate of the deviance 

  and the effective number of parameters . Residual deviance has 

been defined as the difference between the posterior estimate of the deviance 

  and the deviance of the saturated model  : 
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Where    indicates the expected value of the statistic calculated 

from the respective posterior distribution. It is evident that the DIC will be higher 

than the posterior estimate of the deviance ( should assume positive values 

otherwise the model fit can be considered as poor (Spiegelhalter, Best et al. 

2002)). Similarly, the residual deviance will be lower than the posterior estimate 

of the deviance (  assumes negative values). Moreover,   

depends only on the data (i.e.   will be constant for all the models and for 

every MCMC iteration). Therefore, the lower the value of  compared to the 

posterior mean of the deviance, the more similar will be the comparison between 

models based on the two statistics. This will be the case of the model choice 

exercise presented in chapter 5. 

The reason why the DIC and the residual deviance were compared to each other 

relies in their interpretation. As for the frequentist AIC, also the DIC provides a 

relative measure of fit (Spiegelhalter, Best et al. 2002). Therefore it is useful to 

compare models but it does not provide the fit of the model in absolute terms. 

Alternatively, the residual deviance provides an absolute measure of fit. In chapter 

5 these two measures will be applied to an existing dataset for the selection 

between models for the meta-analysis of diagnostic test data. 
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2.5 Summary 

Bayesian models will be described in detail for the meta-analysis of diagnostic 

tests data in Chapter 4 and for the meta-analysis of combinations of diagnostic 

tests in Chapter 8. Applications and examples will be given in Chapter 4, Chapter 

5 and Chapter 8, where the results of a series of Bayesian models with shared 

equations for the meta-analysis of combinations of tests will be given. The use of 

Bayesian techniques will also allow economic evaluations that incorporate 

parameter uncertainty (see Chapter 4 for description of comprehensive decision 

modeling and Chapter 8 for an application to combinations of tests). The Bayesian 

approach to statistics will be at the basis of the statistical modeling throughout this 

thesis. 

For this reason, this chapter has been the first methodological chapter of the 

thesis, where Bayes theorem for inference, the most common techniques for 

parameter estimation and model selection, and some pros (interpretation of 

uncertainty, complexity of models) and cons (convergence, sensitivity of the 

model) of such an approach have been discussed.  

This chapter constitutes an important part of the technical background for the 

statistic techniques used in this thesis. Before the description of methodologies 

and examples specific to the accuracy of diagnostic tests, which would constitute 

the main body of the work behind this thesis, a description of the theory behind 

diagnostic tests needs to be explored as another important part of the technical 

background.  
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Chapter 3. Introduction to the accuracy of diagnostic 

tests 

3.1 Chapter overview 

This chapter aims to provide an overview of the relevant theory behind diagnostic 

tests and their accuracy, and is split into 3 parts. The first part contains a general 

description of the motivations behind diagnosis and explores the characteristics 

and roles of diagnostic tests (section 3.2). It includes a description of i) the types 

of tests according to their role in the diagnostic pathway (3.2.2) and the different 

types of data on accuracy that may be collected ( 3.2.3); and ii) the usefulness of a 

test (3.2.4). Finally, these ideas will be discussed and applied to an example 

dataset selected from the literature (3.2.5), which will also be used throughout 

Chapter 4. 

The second part of this chapter describes and discusses the most common 

measures for the accuracy of medical tests and the relations between these 

measures (section 3.3). 
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3.2 Diagnosis and accuracy of medical tests 

3.2.1 Motivations of diagnostic tests 

Diagnostic tests have clinical utility as they are used to detect diseases. However, 

different types of test can be used to explore the same set of symptoms which may 

be at the basis of a set of different diseases. This is often simplified saying that (a 

number of) diagnostic tests can be used to detect the presence or the absence of a 

disease. 

Measuring how well a diagnostic test performs has statistical and clinical 

relevance and diagnostic tests often need to be compared to each other. 

Sometimes, diagnostic tests can be used in conjunction with other tests and so 

these evaluations are even more complex. Zweig et al (Zweig and Campbell 1993) 

classified the motivations for the evaluation of diagnostic test accuracy into four 

categories: 

1. TEST VALUES: The case when one simply wants to know the test values 

in relation to the presence of the disease. 

2. REPLACEMENT: This case is to compare two tests to consider whether it 

is worth replacing the currently used test with a new one. 

3. COMPLETING: Adding a new test can make the clinical diagnosis of a 

disease (or a set of diseases) more accurate. When the symptoms relate to 

different possible diseases, the diagnostician may aim to exclude a disease 

rather than detect one.  
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4. ELIMINATION: Sometimes a test can perform so badly that it can be 

eliminated. Obviously, an evaluation of its accuracy is needed even 

without any comparison.  

 

3.2.2 Types of diagnostic tests 

The accuracy of a diagnostic test is usually obtained by comparison with a 

reference standard, regardless of the motivation of the evaluation as mentioned in 

section 3.2.1. A reference standard is a test that does (or it is supposed to) 

discriminate perfectly between the populations of the diseased and the healthy 

individuals. This standard, despite being perfect, is sometimes not used in current 

practice for different reasons (invasiveness, very expensive, availability, etc).  

In order to evaluate the accuracy of a new test it is very important to define its 

role. Beyond the explorative diagnostic test (i.e. one may want to classify 

individuals according to the value of a single test), three roles have been identified 

by Bossuyt (Bossuyt, Irwig et al. 2006). Identifying the role of a new test may 

help either to i) design a new study, ii) interpret the results of an existing one or 

iii) interpret meta-analytic results. A further test could be used also to screen for 

the false positives or the false negatives, which are the main drivers for the costs 

resulting from the treatment (Altman and Bland 1994). 

The following types of diagnostic tests can be identified according to their role in 

the diagnostic pathway: first, a new test can replace the existing one and it is 

called Replacement test; second, a new test can follow the existing test being 
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added-on to the existing pathway and it is called Add-on test; third, a new test can 

be positioned at the beginning of the pathway, and a certain result (positive or 

negative) can be the condition to continue with the existing test, this is called 

Triage test. The awareness of the possible roles of a test can help to reduce the 

waste of resources resulting from wrong decisions (i.e. money, time, human lives, 

etc). Thus, when a new test has to be evaluated, it is important to define whether it 

will replace the new test or not, and if not, how it will be used jointly in the 

diagnostic pathway. A complete exploration of the types of combinations of 

diagnostic test and their properties will be given in Chapter 7 and Chapter 8. 

 

3.2.3 Type of data 

A diagnostic test involves the measurements of a characteristic of the patient 

which is believed to be associated with the presence of the disease. These 

measurements can produce different types of data: 

1. Dichotomous data - positive or negative test results: For example in the 

case of a qualitative test which involves the observation of the change in 

the colour of a patch after the blood is mixed with an enzyme (usually 

called biomarkers), or the presence/absence of a symptom; 

2. Multiple discrete data: For example clinical scores can classify patients 

into more than two categories (i.e. low risk, moderate risk or high risk of 

having the disease), or imaging tests may lead to unclear results, thus the 

doctor who reads an x-ray may spot the condition (positive test), may 
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exclude the presence of the condition (negative test), or may consider the 

output of the x-ray unclear for a definitive classification;  

3. Continuous test data: For example, the level of a certain biomarker in the 

blood can be measured after a laboratory analysis (Glas, Lijmer et al. 

2003).  

 

While for the first class of results the classification of positive against negative 

results is obvious, for the multiple (ordinal) and continuous test results it may be 

necessary to choose a threshold (also called cut-off value) that makes a test value 

either positive or negative before taking the definitive decision of 

treating/discharging or further testing. Then, given the threshold, all the test 

results can be viewed as dichotomous. Such a threshold causes variability that will 

affect the accuracy of diagnostic test, and that will need to be accounted for in the 

statistical analyses. The statistical approaches presented in Chapter 4 and Chapter 

5 will refer to dichotomous or dichotomised test results, and some of these 

account for variability in threshold. 

 

3.2.4 Useful tests 

A number of different terms have been used to express the clinical performance of 

a diagnostic test; for example, efficiency, accuracy, utility, value, worth, 

effectiveness, usefulness, efficacy and diagnostic accuracy. All these terms may 

mean different things to different people or they may sometimes be used as 
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synonyms (Zweig and Campbell 1993). Throughout this thesis, diagnostic 

accuracy will be used to identify the ability of the test to discriminate between 

diseased and healthy individuals. Efficiency and usefulness will be used to 

identify the value of the test under an economic/decision perspective. Zweig and 

Campbell (1993) identified two criteria that aim to identify useful tests: the 

quality of information and the practical/clinical value of information. According 

to the quality of information, the accuracy of a generic test is its ability to 

distinguish between two different health states; the more accurate a test the better 

the quality of the information provided by the test. However, a good accuracy 

does not always correspond to a useful test. According to the practical clinical-

value of the information criteria, possible reasons for non-useful tests may be i) 

that they elevate costs (i.e. economic usefulness), ii) the intolerability to false 

results (i.e. clinical usefulness), and/or iii) limited availability of the test (scarce 

technical resources). Moreover, it may be so invasive or uncomfortable that it is 

unacceptable to patients. Thus, usefulness relates not only to the test itself, but it 

relates to environmental characteristics. 

Evaluating the performance of a diagnostic test is only the first step along the 

pathway to establishing its role in clinical practice. Of more direct relevance is 

establishing whether a test is beneficial/useful in terms of clinical and economic 

outcomes.  To evaluate the whole diagnostic-to-treatment pathway (including 

treatment strategies and possible consequences which may derive from a certain 

classification; for example, false positives may be given expensive treatments and 

unwanted side effects may occur), decision analytic models can be developed. 
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Such methods are briefly described in Chapter 4 and applied to assess the cost-

effectiveness of different strategies of diagnosing DVT in Chapter 8. 

 

3.2.5 GERD example – description of the study 

The general framework of the GERD example has been presented in section 1.3. 

This section presents a single study of the accuracy of PPI for GERD that is used 

throughout this chapter to represent the measures of accuracy described in section 

3.3. 

Bate, Riley et al (1999) conducted a study in the United Kingdom on 58 patients 

(55.1% men whose age was on average 47.4 years) to evaluate the clinical and 

economic effectiveness of PPI’s. 24h pH monitoring (pH <4 during at least 4% of 

monitoring time) was used as the gold standard. PPI’s therapy was considered 

successful (PPI test positive) when complete relief or at least 50% reduction in 

symptoms was achieved. This is a rare case where the diagnostic test is also a 

therapy and its clinical usefulness is given by the fact that it is also a therapy. 

However, given the possible side effects of PPI, if people without the disease are 

wrongly diagnosed as having GERD (false positives), the usefulness of PPI as a 

test may not be fully expressed. 

This dataset has been chosen here because it is small and simple to represent. A 

larger dataset (i.e. diagnosing DVT outlined in section 1.4), will be used in 

subsequent Chapter 5.  
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3.3 Measures of Diagnostic Accuracy 

3.3.1 The accuracy of diagnostic tests is not a univariate measure 

Diagnostic accuracy has been defined as the ability of the test to classify patients 

into one of two health states. Unfortunately, the possible alternative results of a 

test are not simply diseased or healthy (in which case the test would be perfectly 

accurate) but positive or negative with some uncertainty on the true disease status 

which is not known. Table 3-1 shows how patients may be classified in one of the 

following four categories given the disease status is known, which is a condition 

to measure the accuracy of a diagnostic test: 

1. positive and diseased (True Positive, TP)  

2. positive and healthy (False Positive, FP) 

3. negative and healthy (True Negative, TN)  

4. negative and diseased (False Negative, FN)  

where the total number of patients with the condition () is equal to TP+FN, and 

the number of patients without the condition () is equal to TN+FP. 

Figure 3-1 shows the assumptions behind the problem of diagnostic test accuracy. 

The populations of diseased and healthy are assumed to be normally distributed 

(Figure 1-1 a) over the test value. As the threshold varies, the probability of being 

true or false positive or negative changes. The conventional assumption of 

normality can be replaced by other distributional assumptions (Figure 1-1 b).  
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Table 3-1 Dichotomous classification of the results of a diagnostic test.  

 

 

Figure 3-1 Distribution of healthy and diseased patients over the test results 
under the assumption of (a) normality and (b) under an alternative 
distributional assumption, i.e. log-normal.  
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3.3.2 Sensitivity and Specificity 

By definition, sensitivity is the proportion of individuals classified as positive by 

the test, among those who are diseased. Conversely, specificity is the proportion 

of individuals classified as negative by the test, among those who are not 

diseased. 

      


  
 

      


  
 

Equation 3-1 

 

Specificity is also called the true negative rate, and its complement (1-Specificity) 

is called the false positive rate. This estimates the proportion of people without 

the condition who have a positive test result. Similarly, the false negative rate is 

equal to (1-Sensitivity), where Sensitivity is called the true positive rate. 

A measure of uncertainty and confidence intervals can be calculated using, for 

example, asymptotic methods (i.e. by assuming normality of the sampling 

distribution(Newcombe 1998)). Newcombe (1998) presents a comparison of 

methods for building confidence intervals for single proportions. Alternatively, 

the posterior distribution of sensitivity and specificity along with standard 

deviation and credible intervals can be calculated using a beta-binomial conjugate 

Bayesian model (Ntzoufras 2010). 
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Sensitivity and specificity can be represented as probabilities conditional to the 

disease status, for example the probability that the test is positive (negative) given 

the condition is present (absent) (Altman and Bland 1994) (see Equation 3-1). 

These measures are usually assumed to be independent to the prevalence of 

disease, although this is the subject of several controversies (Brenner and Gefeller 

1997). Here it is presented a personal interpretation of this variability that needs to 

be explored further. Both sensitivity and specificity and prevalence of disease may 

vary with the severity of disease; for example fewer people are affected by severe 

occurrence of the disease (i.e. lower prevalence for more severe occurrence of 

disease) and the test may be positively correlated with the severity of disease (i.e. 

the test is more sensitive when the disease is more severe). Therefore, sensitivity 

and specificity appear to vary with prevalence. 

 

3.3.3 Positive and Negative predictive values 

Analogously to sensitivity and specificity, Positive Predictive Value (PPV) is the 

proportion of patients with positive test results who are correctly diagnosed, and 

Negative Predictive Value (NPV) is the proportion of patients with negative 

results who are correctly diagnosed (Altman and Bland 1994). 
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Equation 3-2 

 

Equation 3-2 represents the predictive values in terms of probabilities and gives a 

better understanding of these numbers in terms of probabilities. It can be seen how 

the predictive values can be expressed as functions of sensitivity, specificity, and 

the prevalence of disease. Therefore, it is clear that the prevalence of disease 

directly affects the predictive values. Figure 3-2 shows how the PPV varies as the 

prevalence changes, given fixed values of sensitivity and specificity. It can also be 

seen that, even when sensitivity and specificity are very high, the PPV will be 

quite low if the prevalence is low (Altman and Bland 1994). Similarly for 

specificity (see Figure 3-3). 
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Figure 3-2 Graphical representation of the dependence between PPV and the 
prevalence of disease, for given levels of sensitivity and specificity (i.e. 
PPV[sensitivity;specificity]). 
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Figure 3-3 Graphical representation of the dependence between NPV and the 
prevalence of disease, for given levels of sensitivity and specificity (i.e. 
NPV[sensitivity;specificity]). 

 

 

Prevalence may be interpreted as the probability to observe the condition prior to 

the test; consequently, the PPV is the probability to observe the condition 

posterior to the test (i.e. P(D+|T+) ), when the test is positive. Similarly, 1-NPV is 

the prevalence of disease posterior to the test, when the test is negative. The 

difference between the prior prevalence and posterior prevalence (i.e. predictive 
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value) has been indicated as a possible measure of the clinical usefulness of the 

test (Altman and Bland 1994). 

Equation 3-3 shows how to calculate predictive values form the data in a 

contingency table as Table 3-1. 

 


  
 

 


  
 

Equation 3-3 

Similarly to sensitivity and specificity, predictive values are proportions and 

confidence or credible intervals can be calculated using analogous techniques. 

 

3.3.4 Likelihood ratios 

Other measures can be used to evaluate diagnostic accuracy. They are Likelihood 

Ratios (LR) and can be calculated in terms of sensitivity and specificity (see 

Equation 3-4). Deeks and Altman (2004) interpret these measures using the Bayes 

theorem. Given the interpretation of the prevalence as the pre-test probability of 

disease as mentioned in section 3.3.3 , it can be easily demonstrated that the post-

test odds of having disease is equal to the prior odds [prevalence/(1-prevalence)] 

multiplied by the positive likelihood ratio (LR+) [sensitivity/(1-specificity)]. 

Thus, when LR of a test is known, it can be used to transform the prevalence into 

predictive values for the positives and the negatives results to the test. If LR+>1 

the test result is associated with the presence of the disease. If LR+<1  the test 
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result is associated with the absence of the disease (Deeks and Altman 2004). The 

further away LR+ is from 1, the stronger the evidence of presence [>10] or 

absence [<0.01] (Deeks and Altman 2004).  

 




  
 




  
 

Equation 3-4 

 

where LR- is the negative likelihood ratio, LR+ is the positive likelihood ratio. 

Similarly as for relative risks, confidence intervals can be calculated assuming 

that the log(LR) is normally distributed (Deeks and Altman 2004). Credible 

intervals can be obtained fitting a conjugate beta-binomial model to the accuracy 

data to estimate sensitivity and specificity and then these can be used to calculate 

LR. Either model can be implemented using WinBUGS software for Bayesian 

statistics or analogous, LR can be expressed as functions of the estimated 

sensitivities and specificities and uncertainty will be propagated into the estimated 

LR. 
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3.3.5 Diagnostic Odds Ratio 

Although diagnostic accuracy is naturally bivariate, different attempts exist to use 

univariate measures. These would simplify the representation of the accuracy of 

diagnostic tests but, at the same time, may not be able to represent the whole 

information. The most common univariate measure is the Diagnostic Odd Ratio 

(DOR) (see Equation 3-5). 

 

 






  

  



 

 
 

Equation 3-5 

 

DOR may vary between 0 and plus infinity. Similar to odds ratios, Glas, Lijmer et 

al (2003) give DOR two possible interpretations: 

• how many times is a test more likely to find a positive result in diseased 

rather than in non diseased, 

• how many times is a test more likely to find diseased in those tested 

positive rather than in those tested negative 

As for sensitivity and specificity, DOR does not depend much on the prevalence 

of disease (Glas, Lijmer et al. 2003) but it is likely to depend on the spectrum 
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(severity) of disease (Glas, Lijmer et al. 2003). It cannot be used to evaluate a test 

error rate, at a particular prevalence.  

The main problem with this measure is that two tests with the same DOR can 

have very different sensitivities and specificities (Glas, Lijmer et al. 2003). 

Therefore, DOR can be useful but it is not very good for comparisons between 

tests, especially if the impact of false positive results is very different from the 

impact of false negative results. 

Confidence intervals can be calculated using the techniques used for Odds Ratios 

(Bland and Altman 2000), while credible intervals can be calculated using similar 

techniques to those introduced for likelihood ratios above. 

 

3.3.6 Receiver Operating Characteristic curves 

When the test gives positive/negative results (i.e. it is a dichotomous or 

dichotomised test), it is easy to use the measures of accuracy described above. But 

when a test gives results on a continuous or ordinal scale, there is not a clear cut-

off point (threshold), and the exploration of diagnostic accuracy over a range of 

thresholds is needed; Receiver Operating Characteristic (ROC) curves can be 

used.  

A ROC curve is a plot of all the sensitivities and the specificities as the diagnostic 

threshold varies (Zweig and Campbell 1993). Because sensitivity and specificity 

derive from two different populations which can be assumed independent (see 
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Figure 3-1), analogously, ROC curves are independent of the prevalence of 

disease. 

 

Figure 3-4 Example of ROC curve for a test with 4 possible thresholds. 

 

ROC curves can be used to compare two or more different tests. Only if the ROC 

curve of a test lies completely above the ROC curve of a second test, it can be said 

that the first test is better than the second. The best threshold at which the test 

should operate is called the Q point, which is the point on the ROC curve that lies 

on the diagonal where sensitivity equals specificity. This may be the best solution 

for an ROC curve derived from single study data. In Chapter 4 it will be discussed 

that this choice is more complex when a meta-analytical ROC curve is derived, 

and in Chapter 7 that the best threshold really depends on the aim of the test (i.e. a 

triage test would aim to exclude safely healthy patients).  
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Confidence or credible bands can be obtained based on the fact that an ROC curve 

is calculated in terms of sensitivity expressed as a function of specificity (or vice 

versa). 

 

3.3.7 Area under the ROC curve 

The ROC curve is a graphical statistic for diagnostic test accuracy. This curve can 

be used to generate another measure of accuracy: the Area Under the ROC Curve 

(AUC). This has different interpretations. Glas, Lijmer et al (2003) describes it as 

the probability that a test correctly ranks 2 individuals (one diseased and one non-

diseased). Alternatively, it is the average sensitivity across all possible 

specificities (Glas, Lijmer et al. 2003) or vice versa. Another interpretation given 

for diagnostic markers but that can be generalised to the other tests explains the 

AUC as the probability that the value of the test in the diseased group will be 

higher than the value of the test in the healthy group (Bamber 1975).  

AUC is strictly related to the DOR. In fact, when the DOR is constant for all 

possible thresholds values, the ROC is symmetric, and the  

AUC can be calculated as a function of the DOR (Glas, Lijmer et al. 2003): 

  


 





  





 

Equation 3-6 

where x=1-specificity 
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It can be seen that DOR and AUC are proportional to each other. Moreover, AUC 

and DOR have the same limitation: two tests with the same AUC may have 

different sensitivities and specificities.  

The discriminating ability of a test is not always proportional to AUC. Usually, 

“the greater the AUC the better the test” is valid when tests work on continuous 

scales, assuming a distribution for the populations of diseased and healthy patients 

(i.e. normal, log-normal, etc), and a decision rule similar to the following:  

- if test >=threshold then T+ (test positive), 

- else, T- (test negative).  

In this case AUC=0.5 gives a test with very bad discriminating ability, and AUC 

=1 perfect discrimination. Zhou at al (Zhou, McClish et al. 2002) gave an example 

of a perfectly discriminating test when AUC =0.5. Suppose the distribution of the 

‘well’ supports values between 80 and 120 (i.e. uniform, truncated normal), and 

the distribution of the ‘sick’ are halved symmetrically for test values below 80 and 

above 120, the resulting ROC curve will have AUC=0.5 despite perfect 

discrimination ability of the test. However, throughout this thesis the general 

assumption that higher values of a test are associated to the disease will be made. 

 

If the AUC is used, it should be kept in mind that there is not a functional 

relationship between AUC and a measure of accuracy. The function  
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does not exist because the inverse relationship is not monotone (i.e. Accuracy can 

be expressed in terms of sensitivity and specificity). For example, 2 different 

asymmetric ROC curves can give the same AUC. 

A simple way to calculate confidence or credible intervals for the AUC is by 

calculating the area under the bands of the ROC curve as introduced in section 

3.3.6.  

 

3.3.8 GERD example - accuracy measures 

The accuracy measures stated above will now be applied to the GERD dataset 

introduced in section 3.2.5. A ROC curve and relative AUC will not be given 

because this dataset provides data for one threshold. The accuracy measures have 

been obtained by modeling the accuracy data in WinBUGS by means of binomial 

likelihoods and uniform prior (i.e. conjugate model when the prior is espressed as 

a beta distribution with both parameters equal to 1, see section 2.2.2 for conjugate 

models), the code is available in the folder “Chapter 2 – GERD 1 study” 

contained in the CD-ROM attached to this thesis. 

Table 3-2 represents data from a study (Bate, Riley et al. 1999) of the accuracy of 

PPI therapy used for the diagnosis of GERD (see section 1.3 and 3.2.5 for more 

details on PPI and GERD)
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Table 3-2 GERD example single study data. 

 

Table 3-3 presents the parameter estimates for the accuracy of GERD dataset. The 

prevalence of GERD according to the gold standard is 0.55 (95% CrI 0.42 to 

0.68). Only 68% (95% CrI 51% to 82%) of individuals with GERD are correctly 

diagnosed (estimated sensitivity). Conversely, 57% (95% CrI 39% to 74%) of 

individuals who are not diseased are correctly diagnosed (estimated specificity). 

According to this study, the probability of suffering of GERD given a consistent 

symptomatic reduction (>50% reduction) is 66% (95% CrI 49% to 80%) 

(estimated Positive Predictive Value). The probability of not having the disease 

given a not consistent symptomatic reduction (<50% reduction) is 59% (95% CrI 

41% to 76%). Predictive values seem to be very informative for patients, which 

can quantify how much they can rely on their diagnosis. However, for statistical 

purposes, sensitivity and specificity are independent to disease prevalence.  
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The odds of having GERD given a consistent symptomatic reduction is 1.64 (95% 

CrI 1.00 to 2.68) (estimated positive likelihood ratio). The odds of having GERD 

given a non-consistent symptomatic reduction is 1.875 (95% CrI 1.004 to 3.324) 

(estimated negative likelihood ratio). Multiplying these two odds together the 

DOR can be calculated as 3.30 (95% CrI 1.01 to 8.03). The data available were 

not enough to plot a ROC curve. However, since no test comparisons were 

required and the threshold was well defined, there was no need to plot any ROC 

curve. Only in the case where one wants to explore the possibility of other 

thresholds, a ROC curve would also be plotted [i.e. 40% symptomatic reduction in 

favour of experimental test]. 



 

 

 

 

 

 

 

 

Table 3-3 Parameter estimated for the diagnostic accuracy of GERD dataset. 
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It may be noted that the estimates of sensitivity and specificity calculated via the 

Bayesian conjugate beta-binomial model slightly differ from the likelihood based 

estimates of sensitivity (0.69, standard error 0.08) and specificity (0.58, standard 

error 0.10) reported by Bate et al. Although this small difference (one percentage 

point in both cases) may be neither clinically significant (i.e. it would not change 

the decision on whether to give the test or not) nor economically significant (i.e. 

the trade-off between false negatives and false positives may not be affected by 

this difference), it was not expected after the use of a vague prior distribution. As 

already discussed by Lambert et al. (2005), the vagueness of prior distributions is 

relative to the amount of information that derives by the data. For the example 

presented in this section, the calculation of sensitivity and specificity is based on 

32 and 26 observed patients respectively; therefore, the prior distribution has a 

stronger influence on the estimated posterior rates than if more patients were 

observed.  
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3.4 Discussion: what is the most suitable measure to represent 

Diagnostic Accuracy? 

Which of these measures should be used is difficult to say. In general, this may 

depend on the type of test and on the individual who is going to use these 

measures. The individuals that may be interested to know about the accuracy of a 

diagnostic test are: 

• Patients, in order to interpret correctly a statement about their health 

status. In fact, this information can be helpful to patients to decide between 

different treatments where possible. This may involve some better 

representations (i.e. less mathematical) of diagnostic accuracy than the 

ones that have been mentioned in this chapter. Furthermore, often 

diagnosis is done by patients themselves (self-diagnosis), and they are 

asked to give a first interpretation or make a first inference based on a test 

result. For example, pregnancy tests are available in pharmacies. 

• Clinical staff or doctors. A clinician uses the results of a test to make 

choices that may seriously affect the conditions of a patient and his quality 

of life. Thus it is crucial to have in mind how likely the test is to be wrong, 

and what are the associated implications. 

• Policy makers. Policy makers not only take decisions on which tests must 

not be used, but often indicate the best way to use a test, or a pattern that 

maximizes its accuracy. 
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• Statisticians. Although policy makers are often statistical experts, in this 

category all the epidemiologists can be included that conduct their 

experiments often ignoring the effect of diagnostic accuracy. The appraisal 

of the efficacy of a treatment should not ignore the effect of wrong 

diagnosis. 

For each of these individuals a different way to represent diagnostic accuracy may 

be needed. And each of the accuracy measures presented above can be helpful to 

better understand the role of a test, to compare tests or to consider its usefulness or 

efficiency. 
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3.5 Summary 

In this chapter, characteristics of diagnostic tests and the most common measures 

used for diagnostic accuracy were described. Finally, a brief discussion tries to 

identify the most suitable diagnostic accuracy measure and concludes that 

different measures can be meaningful according to the purpose such measures are 

going to be used for. The most common accuracy measures and their graphical 

representation were illustrated using the results of a single study of the diagnosis 

of GERD (see section 1.3 for details on GERD example). The estimates of such 

accuracy measures were obtained via Bayesian modeling; the model is given in 

the CD-ROM within the folder Chapter 2 - GERD 1 study. In conclusion, the 

measures that have better statistical properties are sensitivities and specificities 

because they are not strongly affected by the prevalence of disease. Also, the 

other measures can be obtained in terms of sensitivity and specificity. 
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Chapter 4. Meta-Analysis of diagnostic test accuracy 

measures and principles of cost-effectiveness analysis 

4.1 Chapter overview 

This chapter describes the main parametric statistical techniques, and classifies 

and quantifies heterogeneity for meta-analysis of diagnostic test data. It also 

describes the methodology for economic decision modeling in brief.  

Meta-analysis for diagnostic test data can be considered a two stage process: 

firstly summary measures are derived for each trial/study as a result of a 

systematic review, and then pooled estimates are calculated (Egger, Smith et al. 

2001). An introduction to meta-analysis is given in section 4.2. 

As discussed in Chapter 3, diagnostic test data are naturally bivariate, and the 

diagnostic threshold represents a further source of heterogeneity along with 

differences between studies (i.e. design) and populations (i.e. baseline prevalence 

of disease). The fact that studies are conducted in randomized populations, a 

single number can still be inappropriate to summarize the study results in a meta-

analysis. How to quantify and interpret heterogeneity will be presented throughout 

the following section 4.4. 

Section 4.5 introduces the most common statistical model for the meta-analysis of 

dichotomised diagnostic test data, shows how to implement these in a Bayesian 

framework and how to explore heterogeneity via the inclusion of covariates. 
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Throughout section 4.5, the GERD example introduced in section 3.2.5 will be 

extended to the context of a meta-analysis (Numans, Lau et al. 2004) and be used 

to show the results and discuss some issues relative to each technique (see Table 

4-3 for GERD data). The code to implement these models in WinBUGS are 

available in the folder “Chapter 4 – GERD meta-analysis” contained in the CD-

ROM that is attached to this thesis. 

Although the models presented in this chapter are based on different assumptions, 

they are all attempts to synthesise the same type of data (i.e. dichotomous or 

dichotomised diagnostic test accuracy data from a number of studies). Section 4.3 

presents the data for meta-analysis of diagnostic test accuracy in tabular form. 

Section 4.7 describes the relationships between the different syntheses models 

described in section 4.5. 

Formulae to plot sROC curves are given throughout section 4.5; however, section 

4.6 gives a brief review to the approaches to summary ROC curves (Novielli, 

Cooper et al. 2010) and exploits the differences between these using similar 

formulae (sROC, i.e. as a result of a meta-analysis). 

Finally, an overview of the theory behind and methods used for economic 

evaluations and comprehensive cost-effectiveness analysis is given in section 4.8.  
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4.2 Introduction to meta-analysis 

Systematic reviews and, consequently, meta-analyses play the crucial role of key-

sources of evidence for medical research (Lau, Schmid et al. 1995; Mosteller and 

Colditz 1996; Wallace, Schmid et al. 2009). Meta-analysis is used to combine and 

summarise quantitative evidence from a number of articles. Some argue that a 

decision cannot be based on a single study any longer (Lau, Ioannidis et al. 1998; 

George, Oscar et al. 2009) and meta-analysis needs to be considered a high level 

statistical exercise rather than a mere procedure.  

Meta-analysis increases the statistical power of the single studies (Wallace, 

Schmid et al. 2009), thus allowing the detection of small effects for which single 

studies may be underpowered. Moreover, study specific characteristics can 

determine differences between study estimates, which cause problems in the 

choice of one of those studies either for decision making or for inference. 

Therefore, meta-analysis allows for the exploration of such systematic differences 

also called heterogeneity (Higgins, Thompson et al. 2009), and separate these 

from aleatoric uncertainty which is due by chance. Similarly, it allows for the 

detection and corrections of some forms of biases (i.e. publication bias). 
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4.3 Diagnostic data from multiple studies 

Diagnostic data from one study were represented in Table 3-1. Similarly, Table 

4-1 presents diagnostic data from one study that will be used in a meta-analysis, 

that is where the fact that the data come from a specific study is recorded by mean 

of the index .  is the number of True Positives for the  study. Similarly,  

is the number of False Positives,  is True Negative and  is False Negative. 

Diagnostic measures can be easily calculated for every study as shown in Chapter 

3. Usually true positive rates (i.e. sensitivity) and true negative rates (i.e. 

specificity) are considered to have better statistical properties than others (i.e. 

predictive values are strongly variable with prevalence, see 3.3.3 for details). 









   


  

    

  
 



Table 4-1. Aggregate study data, single study, i in 1 to N. 

 

Table 4-2 represents the data that can be collected as part of a systematic review, 

where  is the value of the study level covariates for study . These covariates can 

be used to explore the possible sources of heterogeneity (presented throughout 

section 4.5 for different approaches to meta-analysis of diagnostic test data).  
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Table 4-2 Example of meta-analysis data for diagnostic test. 

 

Sometimes, for rare diseases or small studies, zero count data may be extracted. 

Classical analysis usually uses continuity corrections in order to calculate 

diagnostic accuracy statistics (i.e. if    the DOR can not be calculated, 

therefore a small quantity  can be added to each cell of the 2 by 2 table, usually 

  ). However, the results may be sensitive to the correction depending on 

the number of patients observed and on the value of  (Sweeting, Sutton et al. 

2004). In this thesis, the use of Bayesian models as specified in Chapter 2 and 

implemented in the software for Bayesian meta-analysis WinBUGS (Lunn, 

Thomas et al. 2000) will allow the likelihoods for count data to be modelled 

directly using binomial distributions and continuity corrections will not be 

needed.  
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4.4 Classification and qualification of heterogeneity for meta-

analyses of diagnostic test data 

4.4.1 Statistical, clinical and diagnostic heterogeneity 

Egger et al. (2001) give a very clear explanation of the different motivations and 

purposes behind individual studies and meta-analysis studies. Individual studies 

test the effect of a treatment on a clinical situation (i.e. risk of death) given test 

regimen/protocol (i.e. duration) and a selected population (i.e. eligibility criteria). 

Meta-analysis studies estimate the extent to which a treatment (represented by a 

variety of study averages) influences the clinical situation, bringing a gain in 

objectivity, applicability of results, and precision from all available evidence. 

Similarly, for meta-analysis of diagnostic data, the subject is a diagnostic test, its 

effect is the classification in positives or negatives of a sample of the population 

of symptomatic patients, and the clinical effect can be measured in terms of 

accuracy of the diagnosis. Moreover, meta-analysis results can be more precise 

for the possibility to evaluate between studies variability (Statistical 

heterogeneity). Statistical heterogeneity is quantifiable (see next section) and the 

exploration of its sources gives the possibility to describe it qualitatively. Egger et 

al. (2001) described statistical heterogeneity as a result of: 

1. Clinical heterogeneity. Due to qualitative differences between studies (i.e. 

protocol, eligibility criteria, etc) 

2. Methodological heterogeneity. Due to different analytical strategies (i.e. 

study design: cohort study or case control study) 
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3. Residual heterogeneity. Due to unknown/unrecorded trial characteristics, 

which other authors simply call uncertainty (not explicable) (Briggs, 

Claxton et al. 2006) 

 

The following form of heterogeneity is specific to diagnostic data and is due to 

those factors that make the diagnostic threshold vary between studies: 

Diagnostic heterogeneity: Variability between studies can be due to three main 

factors (Littenberg and Moses 1993; Egger, Smith et al. 2001): 

1. By chance (as part of uncertainty which cannot be explained) 

2. By changes in diagnostic threshold. These variations can be either explicit 

or implicit (due to difference between observers, measurement techniques, 

laboratories protocols, precision of instruments, even the prevalence of 

disease can influence the choice of a different threshold). 

3. Other factors (different reference tests, different types of patients, different 

populations with different prevalence, different reference tests, different 

study methodologies, patient selection criteria/method, study design, etc), 

sometimes referred to as implicit threshold (Sterne 18 November 2009) 

 

When the change in threshold causes heterogeneity, the sensitivities and 

specificities plotted on the ROC plane lie along an underlying ROC curve, 
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deviations from this curve are caused by methodological/clinical heterogeneity, 

and uncertainty. 

 

4.4.2 Sources of variation and bias 

The classification of the sources of heterogeneity given above is essential for 

diagnostic data accuracy, and highlights the importance of investigating such 

sources. 

While diagnostic heterogeneity is quite a clear concept (since it is generated by 

different experimental tests, different standard test, different technologies, 

different observers, etc), methodological and clinical heterogeneity may be quite 

vague terms since the range of sources is very broad. Here it is distinguished 

between two main types of statistical (both diagnostic and methodological and 

clinical) heterogeneity that can be found in model fitting: variation and bias. 

Whiting et al performed a literature search in order to explore the main sources of 

variation and bias in diagnostic accuracy studies (Whiting, Rutjes et al. 2004). 

They identified many areas of bias and variation:  

Population: Differences in populations and demographic features affect 

diagnostic accuracy measures to different extents and directions. Also disease 

severity and prevalence were considered population characteristics able to affect 

accuracy;  
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Test protocol: Differences were found according to the degree of expertise 

required to perform the test;  

Reference standard: Strong evidence was found on the influence of verification 

procedures on accuracy results; inappropriate or inaccurate reference test may 

strongly bias the analysis, inflating the sensitivity (less false positive may be 

detected);  

Interpretation: Reading processes are related to interpretation; they were found 

to affect sensitivity. Also different observers may be element of bias/variation;  

Analysis: A few studies investigated the effect of different analysis strategies. 

This analysis may be carried out via sensitivity analyses, that are aimed to study 

the sensitivity of results to different approaches (i.e. or use of different model 

strategies or use of different prior distributions or multiple chains for Bayesian 

models);  

Study design (Lijmer, Mol et al. 1999): Study design related bias strongly affect 

study results. For example selection bias occurs when not all the people that meet 

the inclusion criteria are selected or this selection is not properly randomized. 

Verification bias and partial verification bias (or workup bias) occur when not all 

the studies were verified with a reference test (i.e. when it is too invasive, it may 

not be performed or it may be performed indirectly by follow up). Others are: 

Inappropriate blinding, Publication bias (encouraging results may give more 

chance of publishing). 
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The idea of bias is strictly linked to the idea of variation since the same source of 

variation (i.e. observer) may also be interpreted as a source of bias. Some of these 

sources of variation may also be study specific, and different phenomena are 

called by the same name or vice versa, making difficult any accurate qualitative or 

quantitative description of sources of variation. Nowadays, it is not always clear 

whether the word variation is more correct than the word bias in studies of 

diagnostic accuracy, it is difficult to generalize and study specific considerations 

are needed. 

Although diagnostic heterogeneity is qualitatively clear, it is difficult to 

distinguish diagnostic heterogeneity from other sources of heterogeneity when 

they are quantified. Similarly, the exploration of bias is very difficult (i.e. 

publication bias methods for meta-analysis of diagnostic accuracy are not 

established). 

 

4.4.3 The quantification of heterogeneity in meta-analysis 

Quantification of heterogeneity may be a mere calculation of an index or a more 

complex exploration of the causes of such variability. Since in diagnostic 

modeling the bivariate nature of the data reflects in multiple sources of 

heterogeneity, exploration of its sources becomes essential. Three main 

approaches to quantification and exploration of heterogeneity can be identified 

from the literature: the use of random effects; the use of ad-hoc indexes (based on 

random effects models); and the use of covariates or subgroup analysis. 
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Assumption of heterogeneity via random effect modeling 

When a meta-analysis is performed it is possible to estimate the precision of 

parameter estimates. Let one say LOR (Log Odds Ratio) is the estimated quantity, 

its precision (  ) is the inverse of the sum of a within study component 

() and a between study component (). If total consistency of single study 

estimates with the grand mean from the meta-analysis (i.e. homogeneity) is 

assumed, it is consequently assumed that    (Egger, Smith et al. 2001) which 

corresponds to the calculation of fixed effects estimates. Where it is assumed  

not necessarily equal to zero, random effect estimates are being calcualted. Thus, 

the inclusion of random effects such as  in hierarchical models allows for the 

quantification of residual heterogeneity (Sutton, Abrams et al. 2000). 

 

In the case of the estimation of LOR, it is assumed that study LORs are normally 

distributed with known variances. Sparse data may affect this assumption, thus a 

Bayesian modeling approach may be helpful as explained above. In this case, it 

would also be possible to consider precision in the estimate of  via credible 

intervals. 

 

Some shortcomings of  include (Higgins, Thompson et al. 2009): 

1. Aggregation bias (i.e. considering in the same estimate measures based on 

different popupations or different study designs) 
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2. It depends on the scale the effect is measured on (i.e. LOR on log scale, 

difficult to interpret, difficult to compare two effects on two different 

scales) 

3. Depends on the number of studies in the meta-analysis 

 

Q-test for diagnostic test data 

The issue of quantifying heterogeneity in meta-analysis is well known, and needs 

to be considered in diagnostic accuracy studies since they are subject to many 

sources of between study variability. This can be achieved by describing the 

between study variance via random effect models. Thus they are required to 

follow properties well described by Higgins and Thompson (2002). They need to 

be independent of the extent of heterogeneity (i.e. monotone as the heterogeneity 

varies), scale invariant and size invariant (i.e. independent of the number of 

studies). However, the measures they elaborate (  ) still depend on the 

between study variance term   , where  is the study specific 

estimated effect in the meta-analysis. Moreover, those measures fit well univariate 

meta-analyses, but cannot be easily generalised in case of multivariate meta-

analysis and existing methods need to be adapted and tested for diagnostic studies 

(Jackson, White et al. 2010).  
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Exploration of sources of heterogeneity and measuring the extent of 

heterogeneity: regression modeling and sub-group analysis 

The indexes presented above do not have enough power to detect small evidence 

of heterogeneity (Egger, Smith et al. 2001). Moreover, all the studies included in a 

meta-analysis can be considered heterogeneous according to clinical and 

methodological differences. Therefore, further exploration of heterogeneity, that 

is independent to the results of such tests, is necessary in order to find out its 

possible sources. Two approaches are possible at this stage: i) to explore the effect 

of covariates, and ii) to perform sub-groups analysis. 

 

Covariates. Two types of covariates exist according to whether they vary 

between or within studies. In both cases they can be included in a meta-

regression. In the first case they will participate directly to the explanation of 

heterogeneity while within studies covariates can be implemented only if 

Individual Patient Data (IPD) is available. When variables are strongly related, 

interpretation of results becomes more difficult (Egger, Smith et al. 2001). Thus, 

explorative analysis in this sense should be preformed.  

 

Subgroups. The availability of IPD, when either continuous or ordering variables 

are considered, makes possible an accurate subgroup analysis since subgroups 

difference across studies can be replicated. Even when there are no IPD available 
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it is possible to carry out a subgroup analysis in which a number of studies are 

considered in each group. 

 

4.4.4 Heterogeneity in GERD dataset 

Here some brief examples are given of the ideas described in section 4.4 applied 

to GERD dataset presented in Chapter 3. The GERD dataset for the meta-analysis 

is represented in Table 4-3 (Numans, Lau et al. 2004) and includes the study by 

Bate  et al already used in Chapter 3 to illustrate examples (Bate, Riley et al. 

1999). Note that study number 3 will need a continuity correction if classical 

approaches to meta-analysis are used as specified in section 4.3. Some possible 

sources of heterogeneity are introduced (i.e. study setting affects the methods for 

data collection, hence their precision). However, study settings may also produce 

diagnostic heterogeneity if a threshold is not well specified or the clinicians are 

not well trained to use the test. Another source of heterogeneity is the reference 

test. In this dataset the reference test was not unique. Either a symptomatic check 

(i.e. presence of esophagitis) or a pH measurement approach is used. This may 

introduce clinical heterogeneity, since the threshold does only depend on the 

experimental test. 

 

Random effects may be calculated to quantify heterogeneity. However, a random 

effect does depend on the model (i.e. model parameter, structure). In section 4.5 
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different approaches will be presented to the meta-analysis of diagnostic test data 

and applied then to this dataset. 
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4.5 Meta-analysis techniques for diagnostic accuracy studies 

Sensitivities and specificities are not the only accuracy measures for diagnostic 

data but they are recommended as the best measures for meta-analysis compared 

to predictive values and likelihood ratios. Predictive values are not usually meta-

analysed because they have been shown to be strongly dependent on the 

prevalence of disease (see Chapter 3). The meta-analysis of the likelihood ratio 

statistics can give impossible results of sensitivities and specificities when back-

transformed (Zwinderman and Bossuyt 2008). It has been recommended by other 

authors that sensitivities and specificities be used for meta-analysis (Egger, Smith 

et al. 2001), and then use these to obtain likelihood ratios, which could then be 

used to calculate posterior disease probabilities (predictive values). On the 

contrary, direct meta-analysis of likelihood ratios would not allow calculation of 

other accuracy measures. 

Recently, methods for the meta-analysis of diagnostic test data that aimed to 

select the optimal threshold have been published (Rucker and Schumacher 2010); 

however, the focus of this thesis is on methods for the meta-analysis of diagnostic 

accuracy data for tests evaluated at their operative threshold (i.e. the threshold 

used in practice such that recommended by the test producers). The most common 

methods for the meta-analysis of diagnostic test data for dichotomised tests 

evaluated at their operative threshold can be divided in three groups: 
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1. Independent estimates of diagnostic rates. The main assumption is 

independence between rates, which corresponds to no heterogeneity due to 

differences in diagnostic threshold (see section 4.5.1).  

2. Summary ROC (sROC). These are attempts to relax the assumption of 

independence between rates and capture variability due to differences in 

diagnostic threshold. Symmetric and asymmetric sROC curve approaches 

to the meta-analysis of diagnostic test data are considered in section 4.5.2. 

3. Bivariate estimates of diagnostic rates are considered in section 4.5.3. 

This allows direct estimation of correlation between diagnostic rates as a 

measure of heterogeneity due to variability in threshold. In the same 

section, Hierarchical ROC (HsROC) modeling is presented as an almost 

always equivalent modeling approach. 

 

Each technique will be presented in its classical form for general consideration. 

Also the Bayesian modeling to be implemented in WinBUGS will be given as 

published by Novielli, Cooper et al (2010). Models that are fit on sensitivity and 

specificity are equivalent to those that are fit on sensitivity and 1-specificity. The 

choice of one or the other will be made to facilitate the comparison between these 

approaches in section 4.7. 
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4.5.1 Meta-analysis approaches where independence between rates is 
assumed 

General framework 

A first step to the meta-analysis of diagnostic accuracy is to consider 

independently sensitivity and specificity. The main assumption is that the 

diagnostic threshold is the same among the studies, and this means assuming no 

correlation between sensitivities and specificities. If this assumption is not true 

then i. sensitivities and specificities appear correlated on the ROC plane (i.e. they 

do not look randomly scattered but lie along an underlying ROC curve, that is 

with a negative correlation); ii. the model can be improved to quantify diagnostic 

heterogeneity (i.e. due to variability in threshold, see section 4.4.1). This 

assumption can be verified either by graphical methods (i.e. see point i above) or 

by statistical methods (i.e. the chi-squared test can be used to check for the 

heterogeneity if there is enough data). The Spearman Rho can be used to check 

for independency between sensitivities and specificities. In the case of sparse data, 

chi-squared or Rho may not be used and it still remains an undetected variability 

that needs to be explored. If this assumption holds or if a first naive measure of 

diagnostic accuracy needs to be obtained, pooled estimates can be calculated with 

an approximation of the inverse variance approach (Egger, Smith et al. 2001): 
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Equation 4-1 

 

Standard errors can be calculated when the study sample sizes are large (i.e. >30). 

If they are not, bootstrapping methods can be used. In general, methods for 

proportions are well suited to summarize such data. 

  
  

 



 

  
  

 



 

Equation 4-2 

 

Bayesian model for independent sensitivities and specificities 

Bayesian modeling based on the MCMC algorithm offers a way to calculate 

pooled estimates. Models implemented in WinBUGS do not need continuity 

corrections in case of zero counts. Also, within study variability can be modelled 

directly using binomial distributions (Rutter and Gatsonis 1995; Hamza, van 

Houwelingen et al. 2008) and this structure will be common to all models. 
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Fixed effect         
  

 

Random effect       
 


 


 

Prior distribution on  and  

Model 4-1 Bayesian model for independent estimates of sensitivity and 
specificity, fixed and random effect, no covariate included. 

 

Model 4-1 shows both fixed effect and random effect models for independent 

estimates. () are study specific logit(sensitivity) (logit(1-specificities)) 

estimated directly by the model. Study specific logit transformations are 

calculated and assumed to be distributed normally (  ,  ). In the case of the 

fixed effect model, all studies are assumed to have the same effect for sensitivity 

() and for specificity (). In the case of random effect modeling, all the studies 

are considered exchangeable (Bernardo and Smith 1994). That is, study specific 

effect estimates are realizations from the same underlying distribution (i.e. 

normal) with mean  () and variance  (). Assuming the estimates to be 

independent, Model 4-1 is actually the synthesis of four different models that 
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could be fitted separately (i.e. different pieces of code): two for sensitivities (fixed 

and random effect) and two for 1-specificities (fixed and random effect). 

 

The inclusion of covariates. Since the inclusion of covariates may complicate the 

models, for clarity, their inclusion will be described separately for every model. 

 
 

 
 

   

   

Fixed effect           
    

 

Prior distribution on  and  

 

Random effect       
 


 


 

    ;    

Prior distribution on ,  and  

Model 4-2 Bayesian model for independent estimates of sensitivity and 
specificity, fixed and random effect, covariate included. 

 

Model 4-1 are based on well known logistic regression models for meta-analysis 

(Ntzoufras 2010). In case of fixed effect, the study specific effects (  ,) are 

associated to a linear predictor that is a regression equation rather than to a single 
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parameter. Thus,  is a vector of parameters describing the effect of the vector of 

covariates X.  is the intercept of the linear meta-regression line. In case of 

random effect modeling, study specific estimates are assumed as realizations   

of the same (normal) distributions, with between study variability term  , which 

measures the amount of heterogeneity remained unexplained (Higgins, Thompson 

et al. 2009). In both fixed and random effect estimate, normal priors can be put on 

the regression parameters. 

 

GERD example- independent estimates 

GERD data in Table 4-3 can be summarized in terms of single independent 

estimates in order to have a first estimation of diagnostic accuracy rates. 

Sensitivity is estimated at 0.694 (95%CI 0.657 to 0.732) and false positive rate is 

estimated at 0.523 (95%CI 0.484 to 0.562). Specificity can be obtained by 

subtracting the false positive rate from 1. In this case, I did not apply any 

continuity correction. A continuity correction would have lowered slightly this 

estimate. However there is no evidence on what is considered the right approach 

in this case of sparse data (Sweeting, Sutton et al. 2004). 
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Figure 4-1 Independent estimates model: (a) fixed effect, (b) random effect. 

 

When models are implemented in a Bayesian framework, estimated fixed effect 

sensitivity (0.695, 95%CrI 0.657 to 0.731) and false positive rate (FPR) (0.523, 

95%CrI 0.483 to 0.561) are very similar to those obtained by the classical 

approach (i.e. using non informative priors). Figure 4-1(a) shows pooled rates and 

confidence intervals on the ROC plane: two single and uncorrelated estimates 

crossing at the point on the ROC plane that represents the overall accuracy of the 

test. When random effects are considered as in Figure 4-1 (b), the estimate of 

sensitivity is slightly higher (0.744, 95%CrI 0.634 to 0.842), similarly specificity 

(1-specificity is 0.511, 95%CrI 0.403 to 0. 617). The estimated between-study 

standard deviations were  0.567 (95%CrI 0.280 to 1.03) and      0.770 

(95%CrI  0.368 to 1.55) respectively; these indicate an amount of unexplained 
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heterogeneity that needs to be investigated Since the heterogeneity detected above 

has to be explored when possible, the effect of study settings on accuracy 

estimates will be analysed. A meta-regression equation can be put on either the 

fixed effect or the random effect model. According to the fixed effect model, little 

difference in study settings on specificity is observed (FPRprimary 0.473 95%CrI  

0.472 to 0.592) and (FPRsecondary 0.510 95%CrI 0.461 to 0.559). Differences in 

settings seem to affect more the sensitivities: (TPRprimary 0.481, 95%CrI 0.349 to 

0.618) and (TPRsecondary 0.635 95%CrI 0.580 to 0.688). 

When random effect modeling is used, little difference are detected between 

specificities: (FPRprimary 0.4502, 95%CrI 0.1116 to 0.7878) and (FPRsecondary 

0.4829, 95%CrI 0.2832 to 0.6598); while higher is the effect of setting on the 

sensitivity: (TPRprimary 0.5514, 95%CrI 0.0973 to 0.9032) and (TPRsecondary 0.6695, 

95%CrI 0.4087 to 0.8552). Still estimated between-study standard errors may be 

observed: (   1 0.789, 95%CrI 0.344 to 1.655) and (   2 0.620, 95%CrI 0.230 

to 1.204). The inclusion of study setting does not resolve all the heterogeneity. 

This means that other sources could be explored. 

There was no evidence of sensitivity to prior distributions for this model. The 

prior distributions used for the logit rates parameters and the regression 

parameters where normal with mean close to zero (i.e. 0.5 or 1) and very low 

precision (i.e. 1.0E-6 in WinBUGS code corresponds to a standard deviation of 

1000). The heterogeneity parameter (i.e. the random effect) was given a prior 
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uniform on the range of its plausible values; for example  was assumed a priori 

uniform between 0 and 10. 

4.5.2 Meta-analysis approaches that pool summary ROC curves 

Meta-analysis of sensitivity and specificity assuming independence does not 

consider variability in threshold. This assumption of independence between the 

rates can be relaxed via the calculation of sROC curves, which, by definition, 

represent pairs of sensitivities and specificities at different threshold levels. ROC 

curves can be pooled considering the DOR (see Chapter 3). When DOR is 

considered i. it represents a unique measure of accuracy (although different 

couples of diagnostic rates can lead to the same DOR, see Chapter 3), and ii. 

sROC curves can be calculated. DOR can be assumed constant across studies and 

produce symmetric sROC curves. When this assumption is relaxed asymmetric 

sROC are produced. In both cases, a random effect approach for the quantification 

of the unexplained clinical and methodological heterogeneity is possible. 

 

Symmetric summary ROC curves 

A sROC curve symmetric around the line sensitivity=specificity on the ROC 

plane can be fitted if the DOR is assumed constant across studies (Leeflang, 

Deeks et al. 2008). This approach does not allow for a proper exploration of 

variability in threshold (i.e. quantification of diagnostic heterogeneity) but relaxes 

the assumption of independence between rates. 
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After a pooled DOR is calculated using standard meta-analytic methods, the 

symmetric sROC curve in terms of sensitivity as function of specificity (or vice 

versa) can be calculated using Equation 4-3. 

 


 



  


 

Equation 4-3 

 

Where, for example,   is a given set of values of specificity between 0 and 1 

(0.1,0.2,0.3,...,0.8,0.9). The more precise the plot of the sROC curve the less the 

space between these values. Thus, Area Under the sROC Curve (AUC) can be 

calculated by integrating the curve between zero and one (see Equation 4-4). 

  


 



  





 

Equation 4-4 

 

Bayesian model for symmetric ROC curves 

The implementation that is proposed for this model is based on the formulation of 

the log DOR as the difference between the two logit rates. In the case of the fixed 
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effect model, study specific log-DOR are assumed to be the same value, while in 

the case of the random effect model, study specific log-DOR are assumed 

normally distributed with mean  and between study variance . 

 

 
 

 
 

     

   

Fixed effect          

Prior distributions on  and  

Random effect        ) 

Prior distributions on ,  and . 

Model 4-3 Symmetric sROC model, without covariates. 

 

Some discussion is required on the interpretation of random effect models for the 

DOR. If there is heterogeneity in the pooled log-DOR it means either i. a fixed 

effect is not enough to estimate the constant DOR (inclusion of random effect or 

covariates is recommended) or ii. DOR cannot really be considered constant 

across studies (i.e. definition of source of heterogeneity as between studies 

differences). When the random effect model is used, different log-DOR for every 

study are calculated and assumed exchangeable. Graphically on the ROC plane it 

is similar to plot a family of parallel symmetric ROC curves. 
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The exploration of heterogeneity by adding covariates is straightforward and 

requires a little modification to the linear predictor of the model: 

 
 

 
 

     

   

Fixed effect            

Prior distributions on ,  and  

Random effect      
    
 


 

Prior distributions on , ,  and . 

Model 4-4 Symmetric sROC model, with covariates. 

 

where   and  are the intercept (baseline log-DOR) and the slope (incremental 

log-DOR). In case of random intercept model, a family of ROC curves (parallel 

lines on the logit scale) are estimated, with different slopes according to the value 

of the covariate. 

Asymmetric summary ROC curves 

In the previous section, a set of fixed effect and random effect methods are 

presented to estimate a common DOR between studies, assumed constant between 

studies. Littenberg and Moses (1993) relaxed this assumption of constant DOR 

allowing for a better account of diagnostic heterogeneity. This model accounts for 
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differences in the variances of the distributions of the diseased and the healthy 

patients over the test values.  

This method was conceived as a fixed effect model although an improved version 

of this model exists that allows for the inclusion of covariates, but still does not 

allow for a quantification of methodological and clinical heterogeneity. 

This modeling approach can be represented by the following three steps: 

1. To transform the vertical and horizontal axes of the ROC plane in S 

and D, where  

     
     

Equation 4-5 

 

2. To estimate the slope and intercept of the line 

     

Equation 4-6 

 

3. To reverse the transformation in order to find the corresponding sROC 

curve 

 

S can be interpreted as a measure of the threshold effect (i.e. S decreases as the 

threshold increases). S is related to how often the test is positive. In fact, P(T+) 
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rises as the threshold goes down. S may be interpreted as the attitude of the test in 

preferring positive or negative results. Reitsma, Glas et al (2005) suggest the 

relation between S and the diagnostic rates: 

- if TPR = 1!"FPR, then S = 0 

- if TPR < 1 !"FPR, then S < 0 

- if TPR > 1 !"FPR, then S > 0 

 

D is the logarithm of the DOR, that is a measure of how well the test 

discriminates the diseased from the healthy patients (i.e. depends especially on 

how distant the distributions of the healthy and diseased are).  

The regression parameter b is a measure of the variation of the diagnostic 

performance: 

1. if b equals 0, no variation of the diagnostic performance with the 

threshold. In this case the ROC curve is symmetric. 

2. If b significantly different from 0, a significant variation of the diagnostic 

performance with the threshold is detected. Studies are likely to be based 

on different thresholds (i.e. variability due to observers). More analyses 

are needed. 
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If difference in variances between the sick and the well populations is high, b 

tends to be different to 0 and the summary ROC is distorted (Asymmetrical -

(Littenberg and Moses 1993)). Littenberg and Moses (1993) also suggest the 

following rule: 

• If b #"(!0.5, +0.5), sROC is symmetrical 

• If b /#"(!0.5, +0.5), sROC is asymmetrical 

The AUC can be calculated by the following equation: 

  


 




 

  
 







 

Equation 4-7 

 

The bigger a, the closer to the left-upper corner the sROC curve is. It mainly 

represents the intercept of the transformed line and it measures the ability of the 

test to discriminate between healthy and diseased patients. The greater the 

distance between the average of the populations of the diseased and the healthy 

the greater is a. 

The sROC curve can be plotted by back-transforming the straight line on the ROC 

plane by the formula (Egger, Smith et al. 2001). 
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Equation 4-8 

 

The differences between an sROC and a single ROC curve can help to understand 

better what an sROC represents. A ROC curve describes how TPR and FPR vary 

as the threshold varies all else being constant. An sROC describes how TPR and 

FPR vary as the threshold varies and all the rest not being constant (what varies is 

not stated). It follows that an sROC comes from a set of independent populations 

and a ROC curve comes from a single population. 

 

Bayesian model for asymmetric ROC curves 

A limitation of this approach is that the uncertainty in the predictor variable (i.e. 

the sum of the logit) is ignored. The implementation of the asymmetric modeling 

approach in a Bayesian framework solves this problem and allows for random 

effects to be implemented (Novielli, Cooper et al. 2010). The third row of Model 

4-5 derives directly from equation Equation 4-6 and Equation 4-5. 
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Fixed effect        



 

Prior distributions on ,  and  

Model 4-5 Asymmetric FE sROC model, without covariates. 

Model 4-6 includes covariates using the same parameterization proposed in Model 

4-5. The result is a series of sROC curves, each defined by a different level of the 

covariate, which are parallel on the logit space. 

 

 
 

 
 

   

   

Fixed effect        



 

     

Prior distributions on ,  and  

Model 4-6 Asymmetric FE sROC model, with covariates. 
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Bayesian random intercept model for asymmetric sROC curves 

In this section, the random effect version of this model will be presented based on 

the same parameterisation of Model 4-5 (Hamza, Reitsma et al. 2008). This can be 

obtained by substituting Equation 4-6 with the following equation: 

          with               

Equation 4-9 

 

The following parameterization can be considered to implement such a model in a 

Bayesian framework (i.e. WinBUGS software for Bayesian data analysis). 

 
 

 
 

   

   

Fixed effect        



 

 
 

Prior distributions on ,  and  

Model 4-7 Asymmetric random intercept sROC model, without covariates. 

 

This allows a quantification of heterogeneity via the estimation of the parameter 


. This variance parameter represents between-study variability and identifies a 
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family of sROC that are parallel on the logit scale. The random intercept model 

can also be adapted to include covariates (see Model 4-8). 

 

 
 

 
 

   

   

Fixed effect        



 

    
 

 
 

Prior distributions on ,  and  

Model 4-8 Asymmetric RI sROC model, with covariates. 

 

Recently, a Bayesian random effect version of this model for meta-analysis and 

meta-regression has been modelled by putting a bivariate normal distribution 

directly on pairs of   (Verde 2010); see Equation 4-5 for a definition of  

and . However,  and  are two different functions of the same pair of 

parameters, which means that part of their correlation will be due to the fact that 

the same quantities are used to calculate  and  (i.e. the dependence between 

 and  is not due completely to variability in the threshold, this is also 

discussed in the section below “GERD example – summary ROC estimation”) 
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and this may be reflected in the variance and covariance matrix specified for this 

structure. 

 

GERD example - summary ROC estimation 

The estimated sROC curves in Figure 4-2 are symmetric sROC curves based on 

the estimation of the DOR for GERD dataset. Not all the points on the sROC 

represent the accuracy of PPI. In this case both a Q point can be extrapolated (i.e. 

point on the curve that crosses the line sensitivity=specificity) or an estimate of 

the area under the curve (AUC 0.65 95%CrI 0.61 to 0.69). This model assumes 

the same value of the DOR for every study of 2.53 (95%CrI 1.91 to 3.27). A little 

heterogeneity remains unexplained and needs to be explored ( 0.4898 95%CrI 

0.04063 to 1.218). This model allows the natural tension between rates to be 

considered although it does not allow for diagnostic heterogeneity to be fully 

considered in terms of asymmetries in the sROC curve.  
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Figure 4-2 Symmetric sROC estimates: (a) fixed effect, (b) random effect. 

 

Asymmetric curves overcome this characteristic of symmetric curves. In fact it 

estimates a threshold parameter (b -0.109, 95%CrI -0.3708 to 0.1383) and 

accuracy parameter (a 1.005, 95%CrI 0.6751 to 1.35). In this case the accuracy 

parameter does not tell us anything if it is not used for model or group 

comparison. There is no evidence of diagnostic heterogeneity (i.e. threshold 

parameter not significantly different from zero). Credible intervals are more 

precise where observations are recorded. 
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Figure 4-3 Asymmetric sROC estimates: (a) fixed effect, (b) random 
intercept. 
 

The random intercept model has been shown to be equivalent to the bivariate 

approach (see section 4.7.4). However, in a fully Bayesian framework, there is the 

suspect that this approach may have some shortcomings with small datasets like 

GERD. This is related to the values of b. In fact, this is the threshold parameter 

(also shape parameter), and it affects both the symmetry of the curve and its slope. 

The relation between b and the symmetry of the curve has already been shown 

above in this section; this is how the slope of the ROC curve varies as b varies in 

equation 5.9: 

• b < -1 : negative slope 

• b = -1 : null slope, horizontal curve 

• b > -1 : positive slope. 
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In small datasets such as the GERD dataset, failure in the convergence of b has 

been observed when vague prior distributions are used. This can be overcome 

using prior distributions on b restricted to its plausible values. Since it is known 

than there is negative tension between sensitivity and specificity due to the 

threshold effect and the type of test (i.e. values of the test higher for diseased than 

for healthy), then it has been used a uniform prior distribution between -1 and 

100. Also negative correlation in the chains has been measured between the 

values of b and a (i.e. -0.75). This may be due to the fact that S and D are affected 

by a sort of regression dilution bias (i.e. they are not independent to each other 

since they both are transformations of the same two parameters sensitivity and 

specificity). 

It should also be noted that the sROC curve in Figure 4-3 shows unusual values at 

the boundaries of the curve; for example, uncertainty is very large when the curve 

reaches the point (0,0) and (1,1) on the ROC plane. This may be due to the low 

number of studies and to the random intercept at the logit level, which both result 

in larger uncertainty around the sROC curve especially where there is not any 

observation. For this curve, the sROC curve has still sensitivity=0 where 

specificity=1 (and sensitivity=1 where specificity=0) in theory, but the curve has 

not been plotted all the way to the extremities (i.e. it has been plotted the interval 

between the observed points). Some authors suggest plotting sROC curves only in 

the range of the data (Leeflang, Deeks et al. 2008). 
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For these models also non informative prior distributions were used. Logit rates 

and regression parameters were given normal prior distributions with mean equal 

to zero and very low precision. For the asymmetric model, either fixed effect or 

random intercept version, the estimated proportion of false positives (fp) was 

given a uniform prior between 0 and 1. The standard deviation (heterogeneity) 

parameter for the symmetric random effect model was given a uniform 

distribution between 0 and 10. The precision (heterogeneity) parameter for the 

asymmetric model random intercept was given a gamma prior with parameters 

both equal to 0.0001.  

 

4.5.3 Bivariate estimates of sensitivity and specificity 

The modeling approaches described in this section are based either on the 

estimation of sensitivities and specificities (bivariate approach) or on the 

estimation of an accuracy and a threshold parameter (Hierarchical summary ROC 

- HsROC). These relax many of the assumptions that characterised the other 

simpler models and account explicitly for diagnostic heterogeneity.  Although 

different software have been suggested to estimate this model in either classical or 

Bayesian framework (Paul, Riebler et al. 2009), in this thesis WinBUGS software 

for Bayesian modeling (Lunn, Thomas et al. 2000) has been used also to estimate 

the bivariate models, as discussed in Chapter 3. 



126 

 

Bivariate model 

The most complex model proposed to date to meta-analyse individual estimates of 

sensitivity and specificity from multiple studies includes bivariate random effects 

(Van Houwelingen, Zwinderman et al. 1993) to allow for the correlation between 

sensitivity and specificity (Reitsma, Glas et al. 2005).  Following the notation 

used previously (Harbord, Deeks et al. 2007),   is defined as the 

logit(sensitivity) in study i = 1. . . . k, and  as the logit(specificity). The model 

is then written as 

 

 

    

    

   

   

                          






     with     


 

 

                     

Model 4-9 Bayesian specification of Bivariate RE sROC model, without 
covariates. 

 

where, TPi, FPi, TNi and FNi are the number of individuals who are true positive, 

false positive, true negative and false negative respectively in the ith study.  and 
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 are the mean logit-transformed sensitivity and logit-transformed specificity 

respectively and   is the associated variance-covariance matrix, with 

components  ,  and  for the between-study variance in sensitivity, 

specificity and covariance, respectively.  Using these estimates from the bivariate 

model, sROC curves and confidence and prediction regions (within which the 

results of a future study may be expected) can be constructed around the pooled 

sensitivity and specificity and plotted in ROC space (Reitsma, Glas et al. 2005). 

Full technical details on the construction of such intervals is available elsewhere 

(Reitsma, Glas et al. 2005; Harbord, Deeks et al. 2007).  

Briefly, the following formulae define the region:  

 

                                                                                          

       

Equation 4-10 

 

where  and  are the posterior estimates of  and  as given in equation 1, 

and  are the standard errors of the posterior distributions of  and , and   

is an estimate of the correlation between  and . The latter is estimated by 

calculating the correlation between the sampled values of  and those for  

across all iterations of the MCMC sampler.  is the boundary constant and is 
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calculated as   
 , where n is the number of studies and    is the level 

of credibility of the region, and   refers to the Chi-squared probability density 

function with 2 degrees of freedom.  takes values between 0 and 2π and the 

higher the number of data points calculated across this range, the higher the 

definition of the confidence region. The inverse logit of the pairs of values of  

and  can then be plotted on ROC space. The choice of c is not unique; 

Alexandersson (Alexandersson 2004) reviews some of the possible alternatives. 

Further, it is possible to plot the highest posterior density regions for the joint 

region for (logit) sensitivity and specificity. For example, this can be achieved by 

using the package hdrcde available in R (R Foundation for Statistical Computing 

2005) to plot non-parametric regions using the MCMC samples for the relevant 

posterior distributions directly. 

Predictive regions may be calculated in a similar manner to those above by 

substituting    and    for  and  respectively, where   and  are 

the random effect variances estimated within the bivariate model, and the 

correlation coefficient   is substituted by  

       
    
 .                                           

Equation 4-11 
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Covariates can be added to the bivariate model to explore residual heterogeneity 

(Hamza, van Houwelingen et al. 2009). A version of this model to be 

implemented in a Bayesian framework is described in Model 4-10. 

 

    

    

   

   





     



    

 

 

 

  


 















 





 

Prior distributions on  and ’s. 

Model 4-10 Bayesian specification of Bivariate RE sROC model, with 
covariates. 

 

where    is the vector of the intercepts;   

 is the jth couple of 

regression parameters;    is the jth covariate replicated for both rates 

(assume symmetric regression, same covariates on both parameters), where i 

indicates the study in the meta-analysis. 
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The bivariate model has also been adapted to explicitly adjust for dependence of 

sensitivity and specificity with the prevalence of disease (Chu, Nie et al. 2009) by 

mean of a trivariate random effect model. However, this model is more complex 

(no publications have been found that used this model) and its relationships to the 

other model approaches (in particular tot he HsROC model) have not been 

investigated. 

 

Hierarchical Summary ROC analysis (HsROC) 

The Hierarchical summary ROC (HsROC) modeling approach is based on a 

Bayesian hierarchical model with three levels (Rutter and Gatsonis 1995; Rutter 

and Gatsonis 2001). 

As for the other models presented before, within study variability is described via 

binomial distributions. Then, logit(sensitivity) and logit(specificity) are expressed 

as functions of an accuracy parameter (), a threshold parameter (), and a shape 

parameter () which is assumed constant. Xi,. indicates the presence (Xi,+) or the 

absence (Xi,!) of disease. This may take arbitrary values (i.e. 1 and 0). The authors 

suggest 0.5 and !0.5. 

 and  are assumed conditionally independent which is an underlying 

assumption of the ROC analysis (i.e. positivity threshold and accuracy are 

independent, and together impose tension between accuracy rates). 
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Covariates are easily included in the model through regression equations.  () 

models the systematic differences in positivity criteria (accuracy) across studies 

due to the covariate . This model is quite sensitive to prior distributions and the 

authors suggest a set of prior distributions which allow the parameters to be 

samples among plausible values and were set to be locally vague. 

 

 
 

   
 

        

        

   
   

 

       

 $"UNIF(1, 2);    $"UNIF(1, 2);   2 $"!1(1, 2) 

 $"UNIF(1, 2);    $"UNIF(1, 2);  2$"!1(1, 2) 

 $"UNIF(1, 2) 

Model 4-11 Hierarichical summmary ROC (HsROC) model 

GERD example - correlated estimates. 

 

The sROC curves produced by applying the bivariate approach and the HsROC 

approach to GERD data (see Figure 4-4 ) are not different from each other. The 
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equivalence of these approaches will be presented in section 4.6. Small 

differences may be due to different prior distributions and may be more evident 

for small dataset such as GERD. 

 

 

Figure 4-4 Correlated estimates of diagnostic rates : (a) bivariate model, (b) 
HsROC model. 

 

The bivariate approach allows the estimation of a correlation parameter between 

sensitivities and specificities which quantified the diagnostic heterogeneity          

( -0.34, 95%CrI -0.81 to 0.34). The fact that it is not significantly different from 

zero confirms what the results on threshold parameter from the asymmetric fixed 

effect model that there is weak evidence from the data for diagnostic 

heterogeneity. Standard errors (squared root of heterogeneity parameters) give 
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evidence of unexplained clinical and methodological heterogeneity that affects the 

data: (  0.74, 95%CrI 0.4189 to 1.293) and (  0.63, 95%CrI 0.38 to 1.04). 

 

HsROC approach does not estimate directly the correlation factor because it 

already incorporates a threshold parameter. Similarly to the asymmetric model, it 

estimates a threshold parameter and an accuracy parameter but it is not based on 

the DOR. Differently to the asymmetric random intercept model, it includes 

variability in both the accuracy and the threshold parameter through random 

effects. In this case, the threshold parameter is close to zero although still 

significantly positive ( 0.53, 95%CrI 0.05 to 1.07) and fair amount of 

unexplained heterogeneity is indicated by its random effects parameters (  0.69, 

95%CrI 0.46 to 1.06). This tells that this threshold parameter may be either i. 

more precise of other indicators of diagnostic heterogeneity, or ii. not correctly 

interpreted. Like in the asymmetric models, the accuracy parameter ( 0.91, 

95%CrI 0.24 to 1.638) is useful for model comparison. However, estimated 

between studies standard error (  0.75, 95%CrI 0.47 to 1.22) indicated some 

clinical-methodological heterogeneity to be explored (i.e. through variables 

inclusion). This model also estimates a scale parameter ( -0.26, 95%CrI -1.14 to 

0.57).  

Prior distributions for the logit rates of the bivariate model where normal with 

mean equal to 0 and very low precision. The matrix of variances and covariances 
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(heterogeneity parameters) was given a Wishart prior distribution with parameters 

 
 

. 
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4.6 Comparison and interpretation of summary ROC curves 

4.6.1 Approaches to construction of sROC curves 

In this section a summary for the techniques for the construction of sROC curves 

using the output of the different models described above is given (Novielli, 

Cooper et al. 2010). Note, it is not possible to plot sROC curves where 

independence between sensitivity and specificity is assumed. In this situation, the 

pooled sensitivity and specificity can be plotted on the ROC plane with their 

associated uncertainty.  

A symmetric sROC curve based on a pooled DOR is given by the equation below 

(Egger, Smith et al. 2001) 

 


 


  
  
 

 

Equation 4-12 

Graphical representations of sROC curves based on the output of the bivariate 

model have been presented previously (Reitsma, Glas et al. 2005; Arends, Hamza 

et al. 2008; Hamza, Arends et al. 2009). One approach is to estimate 

logit(sensitivities) for different values of logit(specificities) (Reitsma, Glas et al. 

2005) 
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Equation 4-13 

Where  is the logit-sensitivity calculated as a function of a given set of 

values of logit-specificity,   and  are the estimated logit(sensitivities) and 

logit(specificities) respectively from the bivariate model, and ,  are 

estimates of the variances and covariances matrix described in Model 4-9. 

Alternatively, using the same notation conventions as above, one can also 

calculate specificities for different values of sensitivities (Arends, Hamza et al. 

2008) 

 

   



   

Equation 4-14 

 

It is important to remember that sensitivity and specificity are correlated because 

of their common threshold within each study, and hence defining one as the 

outcome and the other as the predictor (measured with error) is inappropriate. 

Hence, the below equations can be considered more appropriate (and these will 

fall within the (extreme) bounds defined by Equation 4-13 and Equation 4-14).  

Considering the regression modeling approach for asymmetric sROC curves 

described in section 4.5.2, another sROC curve can be expressed using parameter 

estimates from Model 4-9 as follows (Arends, Hamza et al. 2008): 
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Equation 4-15 

This curve can be viewed as a sort of compromise between the regression of  

on  and the regression of  on , described above, since its slope lies in 

between these slopes. Rutter and Gatsonis (Rutter and Gatsonis 2001; Arends, 

Hamza et al. 2008) suggest another approach to the calculation of the slope of a 

sROC curve: 

   



   

Equation 4-16 

 

This sROC curve can also be viewed as a compromise between  

Equation 4-13 and Equation 4-14, since its slope is the geometric mean of the 

estimates from these approaches (Arends, Hamza et al. 2008). 

This list is not exhaustive, and further possibilities have been described elsewhere 

(Arends, Hamza et al. 2008). There is no overriding reason to select one of these 

alternative curves over the others as they all represent the accuracy of the test for 

different characterizations of the bivariate model (Arends, Hamza et al. 2008).  
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4.6.2 Interpretation of sROC curves 

In Chapter 3, ROC curves were described as means to represent diagnostic 

accuracy rates of a test with varying threshold form a single study. For meta-

analysis of diagnostic data, sROC curves are considered attempts to represent 

diagnostic rates of a test from multiple studies accounting for correlation between 

them. It is tempting to give sROC curves the same interpretation that it is given to 

ROC curves; however sROC curves are not pooled ROC curves. Although sROC 

curves are meant to be similar to ROC curves, they are different tools designed for 

different problems. The modeling approaches that can be used to produce sROC 

curves when dichotomous test data are available were presented in section 4.5 and 

a summary of the methods for plotting sROC curves has been presented in section 

4.6.1. In this section the differences between sROC and ROC curves will be 

discussed in relation to the different approaches to plot sROC curves.  

When diagnostic rates are assumed independent it is not possible to plot sROC 

curves. This does not necessarily mean that the same threshold has been used in 

the studies included in the meta-analysis, nor that individual studies had not 

reported ROC curves. This is the case when dichotomised data are considered for 

meta-analysis and correlation between study rates is assumed to be zero. 

Two groups of approaches have been presented to account for correlation between 

rates. These were introduced in the first part of section 4.5 and described as 

“summary ROC curves” and “Bivariate estimates of diagnostic rates”. It must be 

noted that correlation between rates may not be entirely due to variability in 
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diagnostic threshold, for example factors that may cause heterogeneity (i.e. 

differences between populations) may be a source of negative correlation between 

sensitivities and specificities included in the meta-analysis. 

The methods belonging to the first group are based on the meta-analysis of the 

DOR. In the simplest of these methods an ROC curve can be obtained by equation 

4-3. This equation represents the sensitivity as a function of specificity (the 

opposite is also possible) and the DOR, where specificity is fixed and the DOR is 

the output of the meta-analysis. In fact, these methods for meta-analyses do not 

pool directly ROC curves but use the pooled DOR to represent graphically a 

sROC curve. sROC curves are then plotted using the output of these models by 

using ad-hoc transformations of the equivalence sensitivity=sensitivity (i.e. in 

order to include in the equation specificity and the pooled DOR ). Moreover, as 

already mentioned above, the correlation between sensitivity and specificity may 

be due to causes other than variability in threshold. Finally, since the pooled DOR 

can be considered as an average between study specific DOR, the sROC curve has 

been interpreted as an average between ROC curves (Deeks 2001). However, this 

is true only if study specific DOR are consistent with each other (Deeks 2001). 

Unlike ROC curves, some authors believe that sROC curves from these methods 

have no clinical relevance(Deeks 2001). 
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More complex approaches build a regression line between study specific S 

(measure of accuracy, independent variable) and D (DOR, dependent variable). 

These are defined in section 4.5.2. The regression line is then back-transformed in 

the ROC space and a sROC curve is obtained. As it is also acknowledged by 

Littenber and Moses (1993), the output of these methods can be used to make 

considerations on the DOR (i.e. if slope is zero, then DOR is constant across 

studies; how the DOR varies with certain covariates). As these methods are based 

on regression approaches, the line that is fitted on the logistic space is the line that 

best fits the pairs the sensitivities and specificities obtained form a number of 

individual studies, where parameters can be estimated with ad-hoc techniques (i.e. 

least squares estimates). As before, these sROC curves are not pooled ROC 

curves, although for a decade they have been considered as the best means 

available to represent diagnostic accuracy form multiple studies. They are 

attempts to summarise diagnostic data accounting for correlation between 

sensitivities and specificities, however, such correlation may have multiple 

sources. The main drawback of these curves is that, in cases like the one 

represented in Figure 4-3(b) the sROC curve and its boundaries may not evidently 

join the points (0,0) and (1,1) of the ROC plane as it is expected from ROC 

curves. For this reason, the authors suggested to restrict the interval of a priori 

specificities on the interval of plausible values (i.e. observed form the 

data)(Moses, Shapiro et al. 1993). It must be also acknowledged that the problem 
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in Figure 4-3(b) may be simply due to computational issues; more research is 

needed. 

Recently, as mentioned in section 4.5.3, bivariate estimates of sensitivity and 

specificity is considered the ideal approach to pool diagnostic data from sROC 

curves. It has been shown in section 4.5.3 that sROC curves can be also obtained 

from these methods, although the natural graphical output of these methods is a 

pooled estimate of sensitivity and specificity and a confidence/credible region. 

Therefore, also in this case, sROC curves cannot be interpreted as ROC curves 

and have not clinical relevance. 

In conclusion, sROC curves are very different from ROC curves when 

dichotomised data are available. They can be interpreted as mean sensitivities for 

given values of specificities, and different approaches can be used to obtain them. 

The methods used to plot the sROC curves presented in section 4.5 and 4.6.1 are 

the most common approaches used in practice. The bivariate models allow the 

estimation of pooled rates and variability can be represented by regions, which are 

clinically more relevant and thus avoiding misleading interpretations of sROC 

curves as ROC curves. Methods for pooling ROC curves are available when 

studies report data from multiple thresholds (Hamza, Arends et al. 2009; Putter, 

Fiocco et al. 2009); these methods may be able to produce sROC curves that can 

be considered pooled ROC curves, therefore with more similar properties and 

interpretation.  



142 

 

4.7 Relationships between models 

4.7.1 Introduction to the section 

Harbord et al recently published an empirical comparison of methods for the 

meta-analysis of diagnostic data, including methods for pooling likelihood ratios 

and predictive values; they applied the methods to a number of published 

statistical datasets and concluded that bivariate and hierarchical summary ROC 

methods where ideal solutions for a thorough exploration of the diagnostic 

heterogeneity and to obtain robust results (Harbord, Whiting et al. 2008). In this 

section, the different meta-analysis of diagnostic test accuracy data approaches 

described above are theoretically revisited (section 4.5) and the mathematical 

relationships between them are shown by expressing all models in terms of 

logit(sensitivity) and logit(specificity), as first presented in our publications 

(Novielli, Cooper et al. 2010). This is an attempt to show that all the proposed 

methods can be viewed as either simplifications or special cases of the bivariate 

model (section 4.5.3). Considering the models in this manner provides insight into 

the assessment of goodness of fit of, and selection between, competing models of 

varying complexity. These aspects are explored in Chapter 5 where the different 

meta-analysis models are applied to the complete DVT dataset (introduced in 

section 1.4). Since this dataset is unusually large for a meta-analysis of diagnostic 

test data, the meta-analysis models have also been applied to a subset of the DVT 

dataset for comparison. 
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Throughout, it is assumed that the data available from each study to be meta-

analysed is a cross-tabulation of test result (positive or negative) and disease 

status (diseased or non-diseased) from which sensitivity and specificity can be 

derived (Egger, Smith et al. 2001) (as represented in Table 4-1). This assumption 

is also at the basis of the modeling approaches presented in section 4.5. 

 

4.7.2 Independent estimates of sensitivity and specificity 

Fixed effect 

As seen in section 4.5.1, the simplest meta-analysis model for diagnostic test 

accuracy data assumes there is no heterogeneity between study estimates, and that 

sensitivity and specificity are independent of one another (Egger, Smith et al. 

2001). This can be fitted by setting all terms of the variance-covariance matrix 

(  ,  and ) to 0 in the bivariate model given in Model 4-9. This in turn 

implies that all the study specific estimates are identical (i.e.  =  . . . . =   =  

 & .  =  . . . . =   =  ) returning us to Model 4-1 in section 4.5.1. This 

model is only appropriate if all studies use the same test threshold and there is no 

heterogeneity in study results (Egger, Smith et al. 2001). 

 

 



144 

 

Random effects 

Independent random effects estimates of sensitivity and specificity can be 

obtained if the covariance between them ( in Model 4-9 is set to 0. As with 

the fixed effect model above, this model assumes no correlation between 

sensitivity and specificity and hence is only appropriate if all studies use the same 

test threshold, although heterogeneity between sensitivity and specificity 

estimates is incorporated.  

4.7.3 Combining diagnostic odds ratios 

These models assume the diagnostic odds ratio (DOR), as defined below, is 

constant across studies (fixed effect approach) or exchangeable between studies 

(random effect approach) (Egger, Smith et al. 2001), see section 4.5.2. When the 

DORs are assumed exchangeable between studies, the study specific DORs are 

assumed to be drawn from the same (random effect) distribution for every study. 

 



  


  
 

 

Equation 4-17 

A constant DOR results in a combination of sensitivities and specificities which 

trace out an sROC (Leeflang, Deeks et al. 2008) which is symmetric around the 

line sensitivity = specificity. 
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Fixed effect 

The DOR model may also be specified as a special case of the bivariate model.  

For the fixed effect model, µBi is constrained to be equal to µAi + d, where d = 

underlying mean DOR, and all terms in the variance-covariance matrix, AB, are 

set to zero. 

 

Random effects 

The random effect DOR model can be derived from the bivariate model (Model 

4-9) by constraining µBi to equal µAi + di, where di ~ N(D, ) and D = underlying 

mean DOR and  its variance.  Thus,     




  
 


  

     with     
 
 

 

Equation 4-18 

Note that the logit(sensitivity) from each study (the µAi’s) are not assumed to be 

related to each other in this model for either the fixed or random effects 

formulations. 

 

4.7.4 Asymmetric sROC models 

Allowing the DOR to change with diagnostic threshold implies that the sROC can 

be asymmetrical. The original model described to do this was proposed by 
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Littenberg and Moses (Littenberg and Moses 1993), and is based on a simple 

regression of the difference (Di) of logit(sensitivity) and logit(1-specificity) on the 

sum (Si) of the two for each study ( see section 4.5.2 for details).  

 

Fixed effect 

Using the notation defined previously, noting  

     

    , 

the regression in Equation 4-6 is equivalent to  

 
    

  
 

Equation 4-19 

 

Hence, this can be viewed as a special case of the bivariate model in Model 4-9 in 

which  is set to zero and µAi and µBi are dependent on each other via the 

relationship outlined in Equation 4-19. 
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Random intercept 

While the original approach of Littenberg and Moses was a fixed effect model, its 

extension to include a random effect term on the intercept has recently been 

considered by others (Arends, Hamza et al. 2008), viz 

          with     

Equation 4-20 

 

Re-expressing Equation 4-20 to obtain a model in terms of logit(sensitivity) and 

logit(specificity) results in  

 
    

  





  
 

Equation 4-21 

 

4.7.5 Full bivariate random effect 

For completeness, it can be noted that if a full bivariate normal structure is placed 

on the data (as in section 4.5.3), then it is possible to derive estimates for the 

regression parameters for Equation 4-6 from Model 4-9 as described in detail 

elsewhere (Arends, Hamza et al. 2008) and given below using our formulation 

modeling logit(sensitivity) and logit(specificity).  
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Equation 4-22 

 

4.7.6 Hierarchical sROC (HsROC) model 

In a similar vein to the model considered in 4.7.4 above, Rutter and Gatsonis 

(2001) specify a hierarchical sROC model incorporating two random effects to 

accommodate between-study heterogeneity. They define this in terms of , 

where  is the sensitivity and  is 1 – specificity in study i: 
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Equation 4-23 

 

where Xij denotes the true disease status for a patient in study i with disease status 

j, i is the ‘positivity criteria’ parameter which measures the trade-off between 

sensitivity and specificity in the ith study (assumed to be sampled from a normal 

distribution with mean Θ and variance 2
θσ  ) with sensitivity and 1-specificity 
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increasing with the value of the parameter. i is the ‘accuracy parameter’ in the ith 

study (again, assumed to be sampled from a normal distribution with mean Λ and 

variance 2
ασ ) where a higher value indicates increased accuracy of the test.  is 

the ‘scale parameter’ or ‘shape parameter’ which models possible asymmetry in 

the ROC curve (in a similar way to the models described in section 4.7.4) .   

Harbord et al (Harbord, Deeks et al. 2007) have previously shown that this model 

is equivalent to the bivariate model (Model 4-9) with: 

 

    



                    




 


   

 






   
 





  

 




 

where b=exp(/2).  
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4.8 Economic decision modeling and cost-effectiveness analysis 

4.8.1 Introduction 

 

Economic perspective 

Economy originates from the scarcity of resources that need to be managed for the 

best satisfaction of community needs, and money is a tool at the service of 

economy to quantify and compare the values of resources. An economic 

evaluation does not account merely for the values of the resources used but also 

accounts for the implications derived by every action or event (NICE 2010). 

Formal decisions are commonly made using decision models. The simplest 

analysis aims to minimise costs (i.e. cost-minimisation), more sophisticated 

techniques also consider measure of quality of life to quantify the benefit related 

to each choice (i.e. cost-utility analysis).  

 

Decision making organizations in UK for Health 

NHS (National Health Service) and NICE (National Institute for Clinical 

Excellence), the major decisional organizations in UK for Health, use cost-

effectiveness analyses (CEA) as modus operandi for the evaluation of new 

technologies. In these evaluations, often decision analytic models are developed to 
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assess the cost-effectiveness of new technologies.  Such models integrate 

information on the effectiveness of the new technologies with information on 

natural history of the disease in question, adverse events, quality of life, costs and 

resource use, and the results are usually expressed as cost-effectiveness 

acceptability curves (see section 4.8.4). 

(http://www.nice.org.uk/aboutnice/whatwedo/niceandthenhs/nice_and_the_nhs.jsj

). 

 

4.8.2 Cost-effectiveness analysis 

 

Measuring health outcomes 

CEA can be assessed alongside trials or via decision analytic models.  Decision 

models provide a framework to combine data on effectiveness, resource use, 

costs, natural history and health outcomes (usually expressed as Quality Adjusted 

Life Years (QALYs)).  

QALY is a measure of the quality of life as a consequence of a certain health 

condition, weighted by the time lived in that condition. The quality of life can be 

elicited using different techniques. For example, EuroQol (EQ-5D) is one of the 

most common set of questionnaires that are used to elicit the quality of life (QoL). 

The QoL is assumed to be zero in case of death, and one in case of full health. For 
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certain gruesome conditions, the QoL can be assumed to be negative (i.e. from 

EQ-5D classification - health condition 33332; description: Confined to bed; 

unable to wash or dress self; unable to perform usual; QoL: -0.429 (Phillips and 

Thompson 1998)) 

For example, a certain condition A can lead to a QoL of 0.8 for 3 years, therefore 

involving 2.4 QALY for an individual experiencing A. Let suppose that a drug is 

developed to reduce the time in condition A to 2 years, and that the same drug 

also reliefs condition A to a mild state (i.e. QoL 0.9). In this case, the patient 

would experience 2.8 QALY (assuming the third year is lived at full health). 

Thus, the use of the drug leads to a gain of 0.4 QALY for each patient. In a 

population of 10,000 patients, with condition A and assuming the same drug has 

the same effect on all patients, there will be 400 QALY gained as a consequence 

of the drug. 

 

The cost-effectiveness threshold 

In order to compare costs and effects, it is necessary to bring these to the same 

scale. For example, it is necessary to express the effect in monetary terms, to 

allow the comparison with the costs or vice versa. This involves attributing a 

value to each unity of the effect (i.e. 1 QALY) and is commonly called cost-

effectiveness threshold. In other words, this represents the amount of money that 
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the system is willing to pay for a unity increase in health (i.e. 1 QALY). In UK 

this value is between 20,000£ and 30,000£. 

 

Cost-effectiveness analysis 

CEA aims to compare different interventions in terms of costs and effects via the 

definition of a cost-effectiveness threshold, as defined above. At this purpose, the 

Incremental Cost-effectiveness Ratio (ICER) can be defined as the cost of each 

individual unit of effect (usually QALY) gained as a result of the intervention 

(Briggs, Claxton et al. 2006). Therefore, ICER can be calculated as the ratio 

between the difference in costs () and the difference in effect () as 

may derive form the implementation of the intervention (see Equation 4-24) 

 



 

Equation 4-24 

 

As costs and effects vary for each patient i, then different values of ICER can be 

calculated as     , where it is assumed that an intervention A (i.e. 

new intervention) is compared with an intervention B (i.e. current standard), then 

     ; and 

    . 
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The geometrical interpretation of the ICER needs the definition of the cost-

effectiveness plane, which is the plane were individual patient differences in 

effects (x-axis) are plotted against differences in costs (y-axis) (Briggs, Claxton et 

al. 2006). As represented in Figure 4-5, the cost-effectiveness plane is divided in 4 

areas using, for example, the four main directions as defined on a compass: 

- NW (Nord West), where the intervention B is said dominant (less 

expensive and more effective) 

- NE (Nord East), in this case none of the intervention is dominant, a trade 

off between costs and effects is needed, for example, using the threshold 

as explained above.  

- SE (South East), where the intervention A is said dominant (less expensive 

and more effective) 

- SW (South West), same as NE.  

 

Thus, when none of the intervention is dominant (i.e. when none of the 

interventions is both cheaper and more effective than the other), the cost for a 

unity increase in health is compared to the cost-effectiveness threshold. This is the 

ICER as defined above, and on the cost-effectiveness plane it is represented, for 

each patient i, by the slope of the line passing through the origin of the axis and 

the point    .  
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Figure 4-5 The cost-effectiveness plane. 

 

Let’s suppose that the trade off between costs and effects for an intervention is 

expressed as the following: intervention A is cost-effective if   , where  

represents the willingness to pay of a funding body for a unit increase in health 

(i.e. the cost-effectiveness threshold as defined above). This is a comparison 

between slopes of lines in the NE quadrant of the cost-effectiveness plane; if the 

observed line (i.e. with slope equal to ICER) lies below the threshold line (i.e. 

with slope equal to ), then treatment A is cost-effectiveness (  ), 

otherwise intervention B is cost-effective (  ). Formally, the intervention 
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A is cost-effective if    , that is if      , where    is 

also called Net Monetary Benefit (NMB)(Briggs, Claxton et al. 2006). In other 

words, intervention A is cost effective if the associated Net Monetary Benefit, as 

calculated in Equation 4-25, is positive (Drummond, Sculpher et al. 2005). 

     

Equation 4-25 

 

Unfortunately, rarely one intervention will be dominant (i.e. the implementation 

of a new intervention usually involves more costs and has a better effect than the 

standard intervention); and, when a trade off between costs and effects needs to be 

made, individual patients ICERs rarely will all lie above or below the line with 

slope  (CE threshold). Thus, a better expression of economic decision models is 

probabilistic because it attempts to capture such variability between patients. In 

this case, cost-effectiveness acceptability curves (CEAC, see section 4.8.4), which 

are derived by the NMB when the decision model is probabilistic. 

 

The decision tree 

Decision trees are used to compare strategies (decisions) against each other. An 

example of decision tree to evaluate sequences of diagnostic tests is presented in 

Figure 4-6. In a decision tree lines connect different nodes. Some nodes are 
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deterministic (i.e. they represent decisions, indicated by squares), others are 

stochastic and therefore subject to uncertainty (i.e. they represent uncertain 

events, indicated by circles). Red triangles represent the end of the causal chain 

that needs to be evaluated in terms of costs and benefits. Uncertain events are 

associated to their probability to occur. The problem of combinations/sequences 

of tests will be explored in Chapter 7 and Chapter 8. 

When a decision is made between tests, Briggs, Claxton et at (2006) suggest to 

include two extreme options: 

- No test, treat all. This is the case when nobody is tested and all patients are 

directly treated, and answers the question “is it worth treating at all?”.  

- No teat, no treat. This is the case when no one is neither treated nor tested.  
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4.8.3 Probabilistic and Comprehensive decision modelling 

 

Motivations to probabilistic decision modeling 

Decision models aid the decision making process by transforming certain input 

parameters into a set of output parameters, which, subsequently, are associated 

with some decision rules. This transformation, for example , may not be a 

linear transformation, therefore it may be that      (Drummond, 

Sculpher et al. 2005). Consequently, the distribution of the output parameters 

obtained by applying probabilistic decision modeling techniques is useful to 

calculate correctly the expectation of the output parameter directly from its 

distribution and to capture parameter uncertainty (Briggs, Claxton et al. 2006). In 

fact, NICE recommends probabilistic decision models (Briggs, Claxton et al. 

2006). 

Probabilistic decision models can be implemented using simulation techniques. 

WinBUGS (software for Bayesian modeling via MCMC simulations, see Chapter 

2) allows the model of the data to be implemented along with the model of the 

decision in a comprehensive decision models. This is presented in the following 

section.  
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Comprehensive decision modeling 

Bayesian MCMC simulations (see Chapter 2) have recently been used to include 

all the available sources of evidence, the model of the data and the model of the 

decision in a “single coherent model” (Cooper, Sutton et al. 2004).  

Modeling in WinBUGS allows the same piece of code to i. produce an estimate of 

the parameters from the model of the data, and ii. use these estimates to evaluate 

the decision model and the uncertainty around these estimates is reflected into the 

decision model parameters. This approach is called comprehensive decision 

modeling and consists of 4 steps: 

1. Develop the decision model. The development of the decision model as 

first step avoids that this may depend on the information collected at the 

following stages.  

2. Systematic review of the relevant data and its meta-analysis.  

3. Estimation of all inputs parameters: 

a. Effectiveness.  

b. Transition probabilities 

c. Costs 

4. Evaluation of the model and sensitivity analyses for model, data 

specification, prior distributions (type of and initial values). 
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4.8.4 Cost-effectiveness Acceptability Curves 

Comprehensive decision modeling is a generalization of probabilistic decision 

modeling where parameter uncertainty derives directly from the available sources 

of evidence. In this case, the analysis of the data (meta-analysis) and the decision 

are evaluated in the same coherent model. If the costs and effects of the new 

intervention (i.e. intervention A) and the control intervention (i.e. intervention B) 

are known and do not vary, then the rules explained above can be applied to 

determine which intervention is cost-effective (i.e. NMB>0). However, costs and 

effects are characterised by a certain amount of uncertainty as explained above, 

which is quantified using probabilistic decision modeling. This involves the 

possibility of simulating a number of times the difference between costs and 

effects of the two interventions and represent them on the cost-effectiveness 

plane. For example, Figure 4-5 represents 100 simulations of the costs and effects 

of two hypothetical interventions. The straight line is associated to a cost-

effectiveness threshold of =30,000£ and all the simulations can be compared to 

this line: the simulation below the line are in favour of the intervention A when in 

the quadrant NE, in this case the NMB>0. The proportion of simulations that 

follow this rule represents an estimate of the probability of the intervention A 

being CE. 

However, the choice of the cost-effectiveness threshold presents some arbitraries. 

Thus, the probability of the new intervention A to be cost effective at different 

cost-effectiveness thresholds can be estimated by calculating the NMB at different 
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values of , and counting the number of simulations that respect the cost-

effectiveness rule as presented above (i.e. NMB>0). Those probabilities can be 

plotted against the respective thresholds to form the cost effectiveness 

acceptability curve (see Figure 4-8) 

 

Figure 4-7 Cost-effectiveness plane representing 100 simulations of 
differences in costs and effects between two interventions from a hypothetical 
probabilistic decision model. 
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Figure 4-8 Example of Cost-Effectiveness Acceptability Curve. 
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4.9 Summary 

Meta-analysis of diagnostic data is a complex statistical exercise and needs to be 

performed under the awareness of the main available techniques and the issues 

that can potentially affect its results. Before listing the existing techniques for the 

meta-analysis of dichotomous diagnostic test data, it has been necessary to 

describe the main types of heterogeneity, and distinguish clinical and 

methodological heterogeneity from diagnostic heterogeneity, where the last is due 

to variability in diagnostic threshold. A number of techniques exist for the Meta-

Analysis of dichotomous diagnostic test data, which have been classified in three 

groups: i) those assuming independence between rates; ii) those which attempt to 

relax this assumption by pooling ROC curves by means of the DOR, and 

implicitly consider correlation between sensitivities and specificities; and iii) 

those which explicitly consider correlation between sensitivities and specificities. 

The description of these techniques took a Bayesian perspective, which allowed 

some of these methods to be improved; especially those based on pooling 

asymmetric ROC curves. The main advantages of using Bayesian modeling 

techniques concern the interpretation of the parameter estimates (the uncertainty 

in posterior estimates can be used to build probability statement) and the 

possibility of fitting more complex models (i.e. the Bivariate model can be fit by 

using covariates either on sensitivity or specificity, or by fitting a better version of 

the asymmetric sROC curve model ). Finally, via a unification of the literature on 

the topic, it has been possible to present all models expressed in terms of the 
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bivariate model parameters and, where necessary, constraining some of the 

bivariate model parameters. In particular, formulae to convert the bivariate model 

parameters into the asymmetric RI model parameters have been given. However, 

although these formulae attest the mathematical equivalence of these two models, 

the complexity of the models and the use of different prior distributions may 

result in slightly different parameter values after the transformation. Also the 

inclusion of covariates does not assure that these relationships are maintained. In 

conclusion to the presentation of these techniques, the existing approaches to the 

construction of sROC curves were presented as from a review of the literature.  

While the relationships between models have been treated theoretically, all the 

other topics were applied to a small meta-analytical dataset GERD, for which, the 

clinical problem was introduced in Chapter 3. The decision of using this example 

throughout this chapter is justified because: i) it is a small dataset, quite typical for 

diagnostic tests; ii) there was small evidence of diagnostic heterogeneity, and this 

has been helpful  to explore the modeling techniques when the assumption of 

heterogeneity was weakly met; iii) this dataset permitted to discover possible 

problems of convergence for the slope parameter of the asymmetric RI modeling 

approach. In contrast, for the rest of the thesis a completely different diagnostic 

problem will be considered (introduce in section 1.4), for which systematic 

reviews would retrieve a large number of articles and a stronger evidence of 

diagnostic heterogeneity is detected. Finally, when the Bayesian bivariate model 
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has been presented, the procedure to plot credible and predictive regions as 

adaptation of the existing formulae was presented. 

Behind the choice of one of these techniques (see Chapter 5 for a practical 

example of model choice in a Bayesian framework) there is the need of taking a 

decision on the best model for the diagnosis of a certain condition. A decision can 

be taken under the clinical perspective simply considering the summary results 

from these models (i.e. comparing the sROC curves via the AUC), or it can be 

taken considering the costs and the benefits of each diagnostic test (economic 

perspective), for example via a cost-effective analysis. 

 

In conclusion, this chapter was a summary of the methodology for the meta-

analysis of diagnostic test presented along with some improvements that were 

achieved within the Bayesian modeling framework and a summary of principles 

for cost-effectiveness analysis. Methods for the meta-analysis of diagnostic tests 

well be applied in the next chapter for the estimate of the accuracy of DD for 

DVT.  
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Chapter 5. Application of methods for the meta-

analysis of diagnostic accuracy data: the diagnosis of 

Deep Vein Thrombosis using Ddimer test 

5.1 Chapter overview 

A number of statistical models for the Meta-Analysis of diagnostic test accuracy 

data have been explored in Chapter 4. Such analyses are more complex than for 

studies of therapeutic interventions due to additional issues relating to threshold 

levels, dependence between sensitivity and specificity, and substantial between-

study heterogeneity (Egger, Smith et al. 2001). Throughout Chapter 4, the 

example of Proto Pump Inhibitor for the diagnosis of Gastroesophageal Reflux 

Disease (GERD dataset) was used to describe and interpret model results (see 

section 1.3 for details on GERD example, also sections 3.2.5 and 3.3.8 for a single 

study of the accuracy of PPI therapy for GERD, also 4.4.4 for the heterogeneity in 

GERD dataset , and also 4.5.1, 4.5.2, and 4.5.3 for meta-analysis models of the 

accuracy of PPI therapy for GERD). GERD dataset was used because it was a 

small dataset without evidence of threshold effect. Very different from GERD 

dataset is Deep Vein Thrombosis (DVT) dataset, which will be used throughout 

this chapter. The DVT dataset, differently from GERD, is composed by a large 

number of publications as already explained in section 1.4. As a consequence, a 

large amount of unexplained heterogeneity is potentially detected by each method 
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and can be investigated by means of covariates which will be described in section 

5.2, or via the inclusion of random effects as described throughout section 4.5. 

In this chapter, the alternative meta-analysis models described in Chapter 4 are 

applied to the DVT dataset (section 5.3.1) and their results compared. The use of 

the Deviance Information Criteria (DIC) as well as residual deviance, to decide 

which model is the most appropriate, is considered, including the consideration of 

covariates, for a given dataset (Section5.3.2). Different assays are available for 

Ddimer (DD) test for DVT, which can be all performed using a small blood 

sample. Thus, often studies evaluate more than one assay. The bivariate model is 

adapted to adjust for those factors within a study that evaluate multiple assays, 

and the DIC is used to compare such adaptation to the other models (see section 

5.3.3). Models are then fitted to a subset of the data to examine the performance 

of the model selection approaches to a reduced dataset (see section 5.3.4). 

The code to implement the models used in this chapter are available in the folder 

“Chapter 5 - meta-analysis of DD for DVT” contained in the CD-ROM attached 

to this thesis. Files are in .txt format, and the model, initials and data are given in 

separate files; these files are the same that are made available on request for the 

publication presented in Appendix E. 
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5.2 The Accuracy of Ddimer for the diagnosis of Deep Vein 

Thrombosis 

As part of an assessment into the most cost-effective approach of diagnosing 

DVT, Goodacre et al (Goodacre, Sutton et al. 2005) performed a meta-analysis to 

evaluate the accuracy of DD as a test for DVT. The clinical problem of DVT and 

the meta-analysis dataset has already been described in section 1.4. This dataset 

consisted of diagnostic test performance information on 198 assays extracted from 

97 publications. In this chapter 196 of the 198 assays were selected (i.e. 2 of the 

198 assays were excluded) due to missing covariate data on two assays, which 

would have not allowed the inclusion of covariates as in section 5.3.2. Figure 5-1 

graphically presents the data in ROC space as specified below. (It also includes 

the results from the bivariate model which will be discussed in the section 5.3.1). 

In the original meta-analysis, meta-regression, assuming sensitivity and specificity 

as independent, was performed to explore the considerable between-study 

heterogeneity. They identified the study level covariates study setting and type of 

reference test to be statistically significant. Some of the most relevant covariates 

are described below.  

Study settings were retrieved from the original dataset in terms of place of 

measurement and rearranged in 4 levels: 1. in-patient only measurement (IPo), 15 

assays; 2. emergency department only (EDo), 28 assays; 3. in-clinic only 
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measurement (Co), 61 assays; 5. Mixed/Unclear (Mixed), 92 assays. This last 

included studies with either multiple or not recorded settings. 

 

Type of Experimental test was considered relevant for the exploration of 

diagnostic heterogeneity (i.e. variability due to changes in threshold). This 

variable was missing data for 2 assays. Such records were wholly excluded from 

the analysis resulting in the 196 assays. There were three main test types: ELISA 

(91 assays); LATEX (76 assays) and whole blood agglutination (WBA, 29 

assays). 

There were also data about past history of the patients recruited. In particular, the 

covariates that were considered were past history of DVT (ExDVT, binary 

covariate:Yes/No, 32 studies excluded patients with past history of DVT) and past 

history of anti-coagulants (ExAC, binary covariate:Yes/No, 71 studies excluded 

patients with past history of Anticoagulant). Table 5-1 shows that these two 

variables may be correlated because patients with past history of DVT (those 

included in studies where ExDVT=NO), have very likely been treated with 

anticoagulants (thus ExAC=NO).  

Year of publication (yop) was considered as the only continuous variable. This 

may be able to explain differences that occur over time due to improvement in 

technologies, in medical competencies, better understanding of the experimental 

test and disease. 
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Figure 5-1: Results from the bivariate model plotted on the ROC plane 
together with credible region (solid line) and predictive region (dashed line).  
Circles represent the diagnostic test accuracy data for DD from each of the 
196 assays included in the meta-analysis (The size of the circles are 
proportional to total number of patients in the study (i.e. true positives + true 
negatives + false positives + false negatives)). 
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Table 5-1 Ddimer Assays classified according to the variables “excluded 
patients with history of DVT (ExDVT)”  and “excluded patients who 
previously used Anti-Coagulant (ExAC)”. 
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5.3 Application to Ddimer test for Deep Vein Thrombosis 

All models are evaluated within a Bayesian framework using MCMC simulation 

and fitted in WinBUGS (Lunn, Thomas et al. 2000). For the purposes of these 

analyses, all prior distributions are intended to be vague.  The MCMC chains were 

run for 20,000 iterations after a ‘burn in’ of 5,000 iterations in order to ensure 

convergence of the MCMC sampler (these initial values were discarded)(Gilks, 

Richardson et al. 1996). 

For all models, posterior distributions of parameter were not sensitive to the type 

of prior distributions and initial values. A graphical check for convergence did not 

reveal convergence issues. 

 

5.3.1 Results of Bayesian meta-analysis models 

Table 5-2 presents the DICs and residual deviances for all the meta-analysis 

models for diagnostic test data when applied to the DD dataset. Based on the DIC, 

it can be observed that, in general, the more complex random-effects meta-

analysis models fit the data best, indicated by lower DIC values, with the 

independent sensitivity and specificity model providing the worst fit to the data 

(DIC = 5541.05).  
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Table 5-2. Model fit criteria results applied to the DD dataset. 

 

Overall, the model with the lowest DIC is the asymmetric sROC random effects 

intercept (2110.76).  However, the Bivariate / HsROC model fits almost as well 

(DIC=2112.88).  As guidance suggests that a difference in DIC of more than 5 is 

important (http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/dicpage.shtml#q9), there 

would appear to be little to choose between these two models.  I have chosen to 

further explore the Bivariate / HsROC model due to the recent interest in these 

models and the appealingly direct interpretation of the Bivariate model 

parameters. It should be acknowledged that it could be considered further 

exploration of the asymmetric sROC random effect intercept model to be equally 

valid although potential problems with the convergence of such a model with 

small datasets heve been observed in section 4.5.2, which is a reason in favour to 

the choice of the bivariate model. 

 



175 

 













 


   


   



   



   

     




  


       


       

Table 5-3: Model parameters and accuracy rates estimated using the 
bivariate model applied to DD dataset. 

 

The parameter estimates relating to the bivariate formulation of this model are 

presented in Table 5-3 and the corresponding graphical representation is presented 

in Figure 5-1. The ROC curve was derived following the original formulation by 

Reitsma et al (Reitsma, Glas et al. 2005) as described in Equation 4-13 in Chapter 

4.  In this figure, it can be seen that while the mean sensitivity and specificity are 

estimated precisely, there is considerable between-study heterogeneity which is 

reflected by the large predictive region. 

Based on the residual deviance (Table 5-2) all models containing random effects 

provide an adequate fit to the data compared to 392 unconstrained data points. In 

the majority of instances, the residual deviance is higher for specificity than 

sensitivity.  This can potentially be attributed to the observed greater variability in 

specificity values between studies clearly evident in Figure 5-1. 
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5.3.2 Inclusion of covariates 

In an attempt to further improve the fit of the model to the DD data, and reduce 

between study heterogeneity, consideration is given to study level covariates. It is 

natural to consider their inclusion in the best fitting model without covariates – 

i.e. the bivariate / HsROC model. Recall from Chapter 4 that it is possible to 

include covariates to influence either or both dimensions being modelled and that 

the bivariate and HsROC model are only equivalent when covariates are included 

in both dimensions. Therefore, I have fit covariates to both formulations of the 

model and compare the results in the following section. 

 




 

   

   

   

   

   

   

   

    


   

       

       

       

       

       

Table 5-4: Model parameters and accuracy rates estimated using the 
bivariate model with inclusion of the study setting covariate for sensitivity 
applied to the DD dataset. 
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Initially covariates were added individually to each dimension in each underlying 

model (i.e. bivariate or HsROC) to explore their effect and contribution to model 

fit (using the DIC statistic). Following this, a “best model” for each underlying 

model was constructed by sequentially considering covariates for either 

dimension, starting with the null model and then choosing those that improved 

model fit greatest when added stepwise to the model.  A covariate was retained in 

the model if it reduced the DIC by more than 5 (The BUGS project). 

Using this approach for the bivariate model, only study setting improved the fit of 

the model when added to sensitivity and no covariates improved the fit of the 

model when added to specificity (DIC 2100).  Thus, the specification of the final 

model is as follows: 

                 

   

 

Table 5-4 presents the parameters and accuracy rates estimated by the final 

bivariate model for DD data including this covariate. Also included are the 

heterogeneity parameters for sensitivity and specificity as well as the associated 

covariance term. It would appear that the inclusion of this covariate has had 

minimum impact on the (residual) between-study heterogeneity and thus the 

majority of variability remains unexplained.  The sROC curves corresponding to 

the different values of the study setting covariate are presented in Figure 5-2 
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 according to the formulation given by Equation 4-13 in Chapter 4. It can be 

concluded that the diagnostic accuracy of DD is greatest when the test is carried 

out in a clinic setting.  

 

Table 5-5: Model parameters and accuracy rates estimated using the HsROC 
model with the inclusion of the study setting covariate for the accuracy 
parameter applied to the DD dataset. 
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Using the same “step-forward” approach, but considering their effect on accuracy 

and threshold parameters form the HsROC model, only study settings improved 

the fit of the model when added to the accuracy parameter, and no covariates 

improved the fit when included on the threshold parameter. The final model for 

HsROC parameters is  

                  

   

 

Table 5-5 presents the parameters and accuracy rates estimated by the final 

HsROC model for DD data including the covariate. It can be seen that the effect 

of the covariate on the accuracy parameter () affects the estimates of both 

sensitivity and specificity and thus results in different estimates of test 

performance for the four patient subgroups as indicated by the accuracy rates in 

Table 5-4 and Table 5-5. The DIC for the ‘final’ bivariate (2100.00 pD 288) and 

HsROC (2099.65, pD 288) models including covariates are very similar 

suggesting the goodness of fit of both models is approximately equal.  
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[continued] 
(c) 

 
 

(d) 

 

Figure 5-2: Summary ROC curves (solid line), and 95% credible (solid 
eclipse) and predictive regions (dashed eclipse) for the best fitting model for 
the (full) D-dimer data. Settings categories are a) In Patient only, b) 
Mixed/Unclear c) Emergency department only, and d) Clinic only. 
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5.3.3 Random effect modeling for studies reporting results from 
multiple assays 

In the case of meta-analysis, studies may report the accuracy of a number of 

different assays of the same test. For our example dataset on the accuracy of DD 

for DVT, two different assays are either assays which are technically different 

(i.e. one is based on a qualitative assessment of the colour of a patch and the other 

requires the quantitative measurement of an enzyme in the blood) or technically 

similar but produced by different companies. Thus, the same study may report the 

accuracy of ELISA DD produced by A, ELISA DD produced by B, LATEX DD 

produced by C and so on, where A, B and C are three different 

companies/producers.  

Amongst the 96 publications included in our review, 57 evaluated the accuracy of 

a single assay and the remaining 39 evaluated the accuracy of 2 or more assays (2 

assays analysed in each of 18 publications, 3 assays in each of 9 publications, 4 

assays in each of 5 publications, 5 assays in 1 publication, 6 assays in each of 4 

publications, 7 assays in each of 2 publications and 13 assays in 1 publication). 

Accounting for multiple assays studies may be crucial when heterogeneity is 

explored. In fact, it may be assumed that the accuracy of the assays from the same 

studies are similar to each other because they are affected by some characteristics 

of the study itself (i.e. assays applied to the same population, similar inclusion 

criteria, same group of assessors, study design, etcetera).  
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Using the bivariate random effect model as in Model 4-9 in Chapter 4 it is 

possible to estimate the mean logit sensitivity and specificity, the standard 

deviations of their posterior distributions, and 3 heterogeneity parameters , 

and  . In a dataset where each study contributes with one record to the data, 

these would quantify the unexplained heterogeneity due to unobserved 

characteristics (clinical or methodological differences between studies) and 

variability due to differences in implicit and explicit threshold between studies. 

However, in our dataset, each study contributes to the data with one or more 

records (assay). Thus, a random effect to account for unexplained heterogeneity 

due to differences between studies (similarly, due to similarities between assays 

within the same study) has been added to the bivariate model following the 

formulation in Equation 5-1.  

    

    

     

     

 
  

 
  



 



     with     


 

 

        

Equation 5-1 
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Where  and   are the logit sensitivities and specificities for assay  in study 

 and  is the variances and covariances as defined for equation 1.  and   

are study specific random effects. 

According to the DIC this model fits the data better than the bivariate model (DIC 

2092.16). It is true that the more complex the model, the better one should expect 

the fit of the model. However, the DIC already incorporates a measure of 

complexity of the model (pD the estimated number of parameters). There is no 

doubt there is still a big amount of heterogeneity still to be explained in this 

dataset.  

The model fitting exercise in section 5.3.2 has been repeated with this new model. 

This means that the study random-effects first and then covariates are used to 

explore the residual heterogeneity. None of the covariates had a significant impact 

on the DIC. Apparently, after the random-effect had been set, there were not 

significant differences between settings (DIC 2092). 

However, Higgins et al (Higgins, Thompson et al. 2009) suggests that random 

effects should be used to explore heterogeneity that cannot be explained using 

covariates. In this case, it can be noted that the bivariate approach with study 

setting as covariate fitted in section 5.3.2 (DIC 2112) is fitting worse than the new 

random effect model when settings is still considered as explanatory of part of the 

heterogeneity on sensitivity (DIC 2092). 
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Thus, should study setting be considered as useful to explain part of the 

heterogeneity? The answer may be easy if it is considered that study setting is a 

study specific covariate. That means that all the assays from the same study have 

the same study setting. In this case it may be still very useful to consider this 

covariate into the model along with the study random effect. 

 

5.3.4 Analysis of a smaller dataset 

 

In patients only (15 studies) 

Deviance information 

criteria 
Residual deviance 

  DIC   pD Sensitivity Specificity Total 

Independent sensitivity and specificity – Fixed effect 360.30 1.99 41.74 120.83 162.57 

Independent sensitivity and specificity – Random effects 169.34 25.96 8.35 11.41 19.76 

Diagnostic Odds Ratio - Fixed effect 175.79 16.04 15.98 13.65 29.63 

Diagnostic Odds Ratio - Random effects 171.18 24.42 10.21 11.57 21.7

Asymmetric sROC – Fixed effect 176.93 16.36 16.81 13.55 30.36 

Asymmetric sROC - Random effects intercept 171.00 25.33 9.85 11.29 21.14 

Bivariate / Hierarchical sROC 169.14 24.31 9.19 11.93 21.15 

Table 5-6: Model fit criteria results applied to the sub-sample of 15 hospital 
in-patient only DD studies. 

 

The dataset presented above is rather atypical in that many meta-analyses will 

include a considerably smaller number of studies. I have repeated the analysis for 

the sub-set of 15 studies relating to hospital inpatient-only patients (Figure 5-3) to 

assess how well the DIC works for discriminating between models when less data 

is available. The model that accounts for studies reporting multiple assays was not 
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evaluated in this case. The differences between the DIC values for the different 

models (Table 5-6) is now much less pronounced, with only the fixed effect 

independent estimates of sensitivity and specificity standing out as being 

markedly worse than the other models. This highlights that although comparison 

between DIC values provides a helpful framework for choosing between models, 

its discriminatory ability is limited by the amount of data available.   

 

Figure 5-3: Observed accuracies and results from the bivariate model plotted 
on the ROC plane together with credible region (solid line) and predictive 
region (dashed line) for the sub-sample of 15 hospital in-patient only DD 
accuracy studies.  
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5.4 Summary 

Methods for meta-analysis of diagnostic accuracy data have evolved rapidly over 

recent years. The use of the DIC statistic has been considered for choosing 

between the models. Model selection methods have been somewhat overlooked in 

meta-analysis. This is probably as a result of a combination of factors including: i) 

the lack of measures to compare between (non-nested) hierarchical models until 

recently; ii) the fact that the majority of people who conduct meta-analyses are not 

statistical experts and view meta-analysis more as a “procedure” than a statistical 

model fitting exercise. However, this is not the first time the DIC and residual 

deviance statistics have been used to inform model choice in evidence synthesis, 

although their use has largely been reserved to applications using modeling 

approaches beyond “standard” meta-analysis models (Welton, Cooper et al. 2008; 

Cooper, Sutton et al. 2009). While such statistics could be used to compare the 

simplest meta-analysis models (e.g. deciding between the usual fixed and random 

effect models commonly applied to  randomised controlled trials) they are perhaps 

at their most useful in situations where many model specification options exist, 

such as is the case for diagnostic accuracy data. 

A recurring issue is that in modeling of the type of data presented in this paper, 

there can be many possible candidate models which mean assessing the fit of each 

one will often be impractical. What is required is a modeling strategy to overcome 

this. Here a two-stage approach has been used to select the best underlying model 

for the data and explore the effect of covariates afterwards. This seems sensible, 
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but, there is perhaps no guarantee that, if covariates had been added to an 

alternative underlying model, a better fitting model could not be identified. 

A further challenge in meta-analysis of diagnostic test data is a clinically 

meaningful presentation of the data with the construction of confidence regions 

and (multiple alternative) sROC curves possible from the same statistical model 

and thus model fit statistics do not inform such presentational issues. A recent 

paper (Chappell, Raab et al. 2009) presented an alternative strategy for deciding 

the most appropriate meta-analysis model for diagnostic test data and the most 

appropriate way to present the results of the resulting analysis. A specific aspect 

of this strategy was deciding when presenting a summary ROC curve is 

appropriate. It was suggested that this should be based on an assessment of the 

degree of heterogeneity for the true and false positive rates and the correlation 

between them. A study comparing the use of DIC with this alternative approach to 

model selection would be worthwhile. Further, there would be nothing to stop 

presentational decisions following the use of DIC to choose between models 

being informed by the ideas presented in this alternative approach. 

An increasingly important use of results of meta-analysis of diagnostic test 

accuracy data is to inform economic decision models (Sutton, Cooper et al. 2008). 

While differences in point estimates of sensitivity and specificity did not appear to 

change considerably between models in the application presented, the associated 

uncertainty and variability around these estimates did. Correct quantification of 

these is important when comparing alternative tests in a decision making context.  
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Such a framework also highlights the limitations in comparing tests using area 

under the sROC curve since relative test performance will change with test 

thresholds. 

 

I have focused on the situation where only one datapoint in ROC space is used 

from each study. Methods are emerging which relax this and allow for multiple 

data-points per study, and these should be utilised where possible to maximise the 

information used in the analysis (Dukic and Gatsonis 2003; Hamza, Arends et al. 

2009).  Further approaches exist for dealing with diagnostic data which 

categorises individuals into more than two categories (Bipat, Zwinderman et al. 

2007), or is based on the underlying distributions on the test scores (Hellmich, 

Abrams et al. 1999). It is important to note that data on test threshold are not 

included in any of the meta-analysis models and are not always presented in 

primary publications. This would seem an important limitation of all approaches 

considered here and an issue which is in need of further work. 

The next chapter investigates the use of the meta-analysis approaches presented in 

Chapter 4 and applied in chapter 4 (to the GERD dataset) and in this chapter (to 

the DVT dataset) with respect to the estimation of the diagnostic accuracy and to 

their use in economic decision models. 
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Chapter 6. A review of the evidence synthesis 

methods used to inform economic evaluations in NIHR 

- Health Technology Assessment publications 

6.1 Chapter overview 

The creation of structures in the UK (i.e. National Institute for Health and Clinical 

Excellence) and elsewhere to facilitate evidence-based health policy decision-

making has highlighted the role that systematic reviews including, where 

appropriate, meta-analysis, and economic evaluations have to play in the decision-

making process. These methodologies provide answers to fundamental questions 

such as: Does the technology work, for whom, at what cost, and how does it 

compare with alternatives (NICE 2008)? In the area of diagnostic test 

performance, such evidence-based evaluations are crucial to the decision making 

process as early diagnosis can lead to diseases being treated more successfully 

than if treatment were delayed.  

 

Previous chapters have explored all the different meta-analysis techniques 

developed for the accuracy of diagnostic test data and shown how the format of 

the results produced by each of the different meta-analysis models differs 

considerably (see Chapter 4 and Chapter 5). The challenge when evaluating the 

cost-effectiveness of diagnostic tests is how best to synthesise the available 
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evidence and then appropriately incorporate the results of the synthesis into an 

economic decision model. In this chapter, it is investigated how evidence on test 

accuracy is used to inform decision models developed to evaluate the cost-

effectiveness of diagnostic tests. In particular, the focus is on diagnostic tests 

evaluated as part of the NHS Research and Development Health Technology 

Assessment (HTA) programme since 1997 and investigate how the evidence on 

diagnostic test accuracy identified as part of the systematic review is used to 

inform the diagnostic test accuracy parameter(s) of the economic decision model. 

Where evidence synthesis methods have been applied to combine test accuracy 

data from a number of studies, the review focuses on the specific meta-analysis 

models adopted and how these pooled results are used in the economic evaluation, 

if at all.  

 

6.2 Methods 

All NHS Research & Development Health Technology Assessment (HTA) 

Programme reports listed on their website 

(http://www.ncchta.org/project/htapubs.asp) as published between 1997 and May 

2009 inclusively were reviewed by myself with the aim of identifying reports that 

evaluated the performance of diagnostic tests. First the HTA reports were 

categorised, based on their title, as: (i) Methodology, (ii) Treatments alone, or (iii) 
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Testing. Where classification was unclear from the title, abstracts followed by 

executive summary and then introduction were reviewed as necessary.  

The second step was to sub-divide those HTA reports classified as Testing into 

one of the following subgroups: i) Diagnosis, ii) Screening, iii) Prognosis and iv) 

Monitoring. Occasionally, a report could be classified into more than one 

subgroup. If a report contained diagnosis and prognosis, screening or monitoring 

then the report was classified as diagnosis. For all other combinations the report 

was classified according to its main objective established by reading the main text 

of the report. Where the purpose(s) of the testing was unclear, categorisation was 

established via consensus forming discussions with two of my supervisors (NJ 

Cooper & AJ Sutton, Department of Health Science, University of Leicester, 

Leicester).  

 

All reports evaluating diagnostic tests were reviewed to identify whether an 

economic decision model had been developed as part of the HTA. Those reports 

where economic models had been developed were examined further to establish 

whether they contained meta-analyses of diagnostic accuracy data in the clinical 

review section of the report. Those reports that had defined our sample of interest 

were scrutinised further. Specifically, data were extracted on: 

I. All meta-analysis methods used in the clinical review. 
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II. Whether any of the meta-analysis methods were used to derive estimates 

of test performance for the economic model. If yes, which method used. If 

no, the alternative method used to estimate diagnostic test accuracy 

parameters specifically for the economic model.  

III. Whether the economic model had considered pathways involving multiple 

test combinations, and if so, how test performance had been estimated for 

the combinations of tests. 

 



 

Figure 6-1: Flowchart of excluded and included studies

 



















: Flowchart of excluded and included studies. 
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6.3 Results 

Figure 6-1 shows our classifications of the 474 HTA reports published between 

1997 and May 2009 inclusively. 110 out of the 474 reports (23%) were classified 

as ‘Testing’ with 44 (40%) of these focusing on ‘Diagnosis’. Thirty-three out of 

the 44 ‘Diagnosis’ reports (75%) included an economic evaluation. Of these 33, 

14 (42%) included meta-analysis of diagnostic test accuracy in the clinical review 

section of the report and these 14 reports defined our sample of interest (A 

numbered reference list (S1-14) for this sample is provided in Table 6-2, and 

online at: 

http://www.ispor.org/Publications/value/ViHsupplementary/ViH13i8_Cooper.asp

).  

In Table 6-1 the 14 reports that performed meta-analysis as part of the clinical 

review are listed chronologically together with the meta-analysis method(s) used 

(denoted by the letter R in the table). The methods are listed broadly in order of 

complexity and it can be observed that most reports used more than one meta-

analysis method. All of the reports except one (S9), included an independent 

meta-analyses on specificity and sensitivity thus assuming the two measures to be 

independent. One of these reports used individual participant data in their meta-

analysis rather than summary data (S13)). Two reviews adopted a strategy based 

on heterogeneity; that is, where evidence of heterogeneity existed the Littenberg 

and Moses regression approach was adopted otherwise independent pooled 

estimates of sensitivity and specificity were obtained. (S1, S6)  The most 
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sophisticated methods of bivariate and hierarchical summary receiver operating 

characteristic curve were only applied by 2 of the reviews. (S9, S10)  Five of the 

reports considered study-level covariates in their analyses (S4, S5, S9, S14, S15). 
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Table 6-2 Studies selected as a result of the systematic review. 

 

Table 6-1 also highlights which meta-analysis method (if any) is used to inform 

the test accuracy parameters in the economic decision model (denoted by the letter 

M in the table). Where the letters R and M appear in the same cell of the table, 

this indicates that one of the meta-analysis approaches used in the clinical review 

was also used to inform the economic decision model. Where the letter M appears 

in a cell on its own, this indicates that a different meta-analysis method was used 

specifically to inform the decision model. 

 

Eight out of 14 reports (57%) used independent pooled estimates of sensitivity 

and specificity obtained from meta-analyses performed in the clinical review as 

inputs into the decision model, 5 (36%) used study data identified by the clinical 

review but performed their own meta-analyses (3 out of 5 reports did independent 

meta-analyses on sensitivity and specificity, 1 out of 5 report did a bivariate meta-

analysis model, and 1 out of 5 report obtained negative predictive values and ratio 

of test positive to test negative), and 1 report used sources external to the clinical 

review plus consensus opinion.   Overall, the majority of reports (10 out of 14 

(71%)) used pooled estimates of sensitivity and specificity obtained from the 
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simplest meta-analysis method, that assumes the two measures are independent of 

one another, as inputs into the economic decision model.  Only two economic 

decision models used estimates of sensitivity and specificity from meta-analyses 

that allowed for the correlation between the two quantities attributed to test 

thresholds varying between studies (i.e. a bivariate model). None of the models 

used a meta-analysis method that derives an sROC (i.e. Diagnostic odds ratio, 

Littenberg and Moses regression method, HsROC curve). Ten out of the 14 

models reviewed (77%) incorporated the uncertainty associated with pooled 

estimates to perform a probabilistic cost-effectiveness evaluation.  

 

6.3.1 Evaluation of a combination of diagnostic tests 

Six out of the 14 (43%) reports listed in Table 6-1 considered a combination of 

diagnostic tests in the economic decision modeling. Two of these (S8, S13) 

assumed the tests to perform independently of one another and thus input the 

pooled estimates of sensitivity and specificity obtained  for each test direct from 

the meta-analyses. Two reports (S3, S14) assumed the second test to have 100% 

sensitivity and 100% specificity (i.e. a perfect test). Only one report (S5) clearly 

stated that the specificity of a second test (d-dimer) depended on the result 

obtained from the first test (Wells criteria). This was possible due to the data 

available; that is, a number of studies reported the sensitivity and specificity of the 

d-dimer stratified by the Wells score  (Test performance was assumed 

independent for all other test combinations evaluated in this report (S5)). The 
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remaining report (S12) provided no details about how the combination of tests 

was evaluated.  

 

6.4 Discussion 

The focus of this review has been to assess how evidence on test accuracy is 

synthesised and used to inform economic decision models evaluating diagnostic 

pathways. The 14 HTA reports reviewed here were all published in the last 7 of 

the 12 year period considered suggesting that economic evaluation of diagnostic 

tests via decision models is in its infancy. Due to this it is perhaps not surprising 

that little has been written on the associated methodology (Sutton, Cooper et al. 

2008).  

Many of the reports used a range of different meta-analysis methods to synthesise 

the test performance data. This in itself can be problematic since virtually all the 

methods make different assumptions, and therefore, theoretically cannot 

simultaneously be appropriate for a given dataset. Ideally, authors should assess 

how well each of the proposed models fits the data to identify the ‘best’ fitting 

model and thus facilitate interpretation regarding the most appropriate summary 

of test performance (Novielli, Cooper et al. 2010). Multiple methods were used in 

many of the clinical reviews but, despite this, the majority of the reports applied 

the simple meta-analytic approach of assuming sensitivity and specificity to be 

independent for informing the decision model. This goes against recent guidance 

from the Cochrane Diagnostic Test Accuracy Group which advises reviewers to 
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use the hierarchical sROC or the bivariate model for synthesising diagnostic test 

data as both of these methods overcome the limitations of symmetric and 

asymmetric sROC curve methods. The Group discredits the Meta-Analysis of 

independent sensitivities and specificities because such an approach may identify 

a summary point that is not representative of the paired sensitivity and specificity 

data (that is, a point that does not lie on the sROC curve). Deeks et al (Egger, 

Smith et al. 2001) established that when the independent model is used 

inappropriately (i.e. the primary studies evaluate tests at different thresholds) the 

resulting point estimate underestimates true test performance (i.e. it lies below the 

sROC curve that would be produced by an analysis that takes threshold into 

account). Additionally, if a probabilistic modeling approach is used, this approach 

will estimate the uncertainty incorrectly.  

 

Although half the reports calculated pooled likelihood ratios for test performance, 

none went on to use these estimates to inform the decision model. This is 

understandable since it is not as straightforward to use likelihood ratios compared 

to estimates of sensitivity and specificity to estimate the number of true positives, 

true negatives, false positives and false negatives required by the typical 

parameterisation of decision models evaluating diagnostic tests. Similarly, 

although methods that estimate an sROC curve (i.e. diagnostic odds ratios & the 

regression method of Littenberg and Moses) were conducted quite frequently, the 

output from these analyses was never used to inform the decision model. Again, 
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this may well be because it is not obvious how to parameterise output in the form 

of a sROC curve in the decision model. Indeed, one report (S13) stated that meta-

analyses were performed on sensitivity and specificity separately, rather than 

calculating an sROC curve, to obtain the parameters needed for the economic 

decision model. An sROC curve describes how test performance varies with 

changing test threshold, therefore it would be possible to consider the cost 

effectiveness of a diagnostic strategy as a function of test threshold. This could be 

achieved most simply by running a series of decision models using estimates of 

sensitivity and specificity for the test(s) at different locations on the sROC curve. 

In this way, it is possible to identify the optimum threshold – in terms of cost-

effectiveness – to use a test at (although it should be acknowledged that, in 

practice, specifying an exact threshold may or may not be achievable). To our 

knowledge, this approach has only been attempted once in the published literature 

(Sutton, Cooper et al. 2008). 

 

A bivariate model, which accounts for the correlation between sensitivity and 

specificity, was used in two of the reports. There would appear to be growing 

consensus in the statistical literature that this is the most appropriate model for 

meta-analysing test performance data (Harbord, Deeks et al. 2007; Arends, 

Hamza et al. 2008). Therefore, this finding could be interpreted as disappointing. 

However, it is important to remember that this approach to meta-analysis of 

diagnostic test data was only described in the literature in 2005 (Reitsma, Glas et 



 205

al. 2005) with custom software appearing even more recently (e.g. a macro for 

Stata (Harbord and Whitting 2009)). It is important to appreciate that it is likely 

that the research for the HTA reports reviewed here was undertaken prior to the 

publication of this key paper (Reitsma, Glas et al. 2005) in the majority cases.  

 

Even once the parameter estimates for the bivariate model have been obtained, for 

a probabilistic decision model, it will be necessary to specify a multivariate 

normal distribution or a re-parameterisation or approximation to it that is non-

trivial (i.e. one of the papers stated using Cholesky Decomposition for this (S14)). 

Alternatively, it is possible to use a one-stage comprehensive approach to the 

decision modeling where the meta-analyses are carried out simultaneously in the 

same computer program that evaluates the decision model. This has been 

described elsewhere (Sutton, Cooper et al. 2008) using the WinBUGS software 

(Spiegelhalter, Thomas et al. 2003) which implements MCMC simulation 

methods, and perhaps provides the most elegant approach available to date.  

 

Despite the above, it is important to note that the bivariate approach should not be 

used uncritically for the following reason. The method estimates a 95% 

confidence region for the average sensitivities and specificities observed in the 

primary studies. Therefore, it is implicit that all the studies are representative of 

how the test will be used in routine practice. If for example, particular studies use 

test thresholds which are not representative of routine practice / a particular 
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threshold being considered, then such an analysis would seem inappropriate. In 

such cases, exploring cost-effectiveness as a function of an sROC curve, or at one 

particular point on the curve, would seem more appropriate (although, study level 

data relating to test threshold is not routinely included in the meta-analysis models 

and therefore it is not obvious which point on an sROC curve relates to a 

particular threshold). Given this, further research is required to establish the 

optimal approach in different situations and this is ongoing.  

 

To add further confusion to this already complex area, it was recently established 

that the bivariate model and the hierarchical sROC approach are actually re-

parameterisations of the same model (Harbord, Deeks et al. 2007) although the 

two parameterisations lead naturally to different model summaries (i.e. a 

confidence region in ROC space and an sROC curve respectively, see section 

4.7.6 for a discussion of this relationship). Thus, owing to this re-

parameterisation, it is possible to obtain an sROC curve from the bivariate 

analysis and therefore the discussion relating to sROC curves above is also 

pertinent for this model leading to even more possibilities of how diagnostic test 

data may be used to inform decision models. 

 

How the application of the different synthesis methods would affect the 

conclusions in any particular decision problem is difficult to predict since multiple 

tests may be compared in an economic decision model, and the synthesis 
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estimates of test performance may be deficient in similar ways (i.e. due to the 

problems highlighted above). In a previous paper (Sutton, Cooper et al. 2008) the 

application of the different synthesis methods to a particular decision problem 

(which incidentally is reference S5 in Table 6-2 and included in the review) is 

explored. Here the initial HTA assumed independent fixed estimates of sensitivity 

and specificity but alternative approaches were compared to this. In this example, 

only relatively small changes in the cost-effectiveness acceptability curves 

(CEACs) were observed and the decision would not change for most willingness 

to pay thresholds, but the impact may be considerably greater in other contexts; 

for example, where the accuracy (and costs) of the competing test strategies are 

more similar than Ddimer and ultrasound are in this example. 

 

Six of the models reviewed considered diagnostic pathways using multiple tests in 

combination. The use of combinations of tests is common in clinical practice, e.g. 

a cheap or non-invasive test may initially be used which has poor specificity and 

those diagnosed as diseased may go on to receive a more expensive / more 

invasive test with superior test performance. The main concern is that estimation 

of accuracy of test combinations was dealt with too simplistically in these reviews 

(i.e. assuming tests to be independent or the second test to be perfect). Crucially, 

this is perhaps a limitation of the available data as much as the modeling per se as 

many primary studies estimating test performance only consider a single test so 

results of tests conditional on the results of other tests are rarely available. A 
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concern is that if the strong assumption of test independence is violated, this could 

lead to misleading conclusions. Further work is needed to establish ways of 

estimating such correlations. The following Chapter 7 and Chapter 8 respectively 

describe the characteristics of combinations of tests and their correlation, and 

develop a modeling approach for the meta-analysis of the accuracy of 

combinations of tests. Even if they are estimated with considerable uncertainty, 

including them in the modeling allows the possibility of using value of 

information methods (Claxton 1999; Ades, Lu et al. 2004) to demonstrate the 

importance of conducting primary studies to estimate them more accurately. 

 

In conclusion, meta-analytic methods for diagnostic test accuracy data have 

developed rapidly in recent years. Decision modellers need to be aware of the 

recent developments in this area and appreciate the limitations of simplistic 

approaches used commonly in the past. However, more research is needed to 

refine and develop synthesis methods in this context for the purpose of decision 

modeling. 
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Chapter 7. Introduction to the accuracy of 

combinations of diagnostic tests 

7.1 Chapter overview 

As discussed in Chapter 3, Chapter 4 and Chapter 5, medical tests are used in 

routine practice to diagnose patients for the presence or absence of a disease and 

the measures used to quantify the performance of a dichotomous diagnostic test 

were also explored. Although the reference test is, if not perfect, more accurate 

than the index test, it may still be preferable not to perform it as a first choice in 

clinical practice. For example, it may be invasive, or very expensive, or simply 

rare or unavailable. For this reason the assessment of the accuracy of an index test 

is still of great interest. In fact, the index test may have either i) a very high 

sensitivity, and/or ii) a very high specificity, or iii) neither high sensitivity nor 

high specificity. In the first case it may be very helpful to exclude healthy 

patients. In the second case, the positives will be very likely to be diseased, thus 

can be safely treated. In the third case, it may not be very helpful if used alone. 

However, it can still be part of a combination (i.e. combined with another, or 

several other, tests) testing strategy, and the combination itself may be as in case 

(i) (highly sensitive) or case (ii) (highly specific) above and thus of diagnostic 

value. 

Several meta-analytic approaches to the evaluation of dichotomized diagnostic 

tests have been developed in the last decades. A review and application of 
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methods is presented in Chapter 4 and Chapter 5 respectively (Novielli, Cooper et 

al. 2010). They have also been integrated into a comprehensive decision modeling 

framework (Sutton, Cooper et al. 2008). However, while at an individual level 

diagnosis may be eventually based on a single test, at a population level there is 

always a proportion of patients whose diagnosis is based on a combination of test 

results (Zweig and Campbell 1993). For example, individuals who undertake only 

one test may be those who exit the diagnostic pathway at the first stage, whilst 

other individuals continue to have more tests. The accuracy of combinations of 

tests needs to be correctly evaluated before any diagnostic strategy is 

implemented on a large scale. A challenge in doing this is that tests may not be 

independent which complicates the evaluation. Section 7.2 presents an overview 

of statistical approaches to conditional dependence of tests (dependence 

conditional to the disease status); this includes approaches to testing for 

conditional independence and approaches to determine and evaluate the best 

combination of tests. 

The exploration of the accuracy of combinations of diagnostic tests presented in 

section 7.3 will be at the basis of the modeling approach for meta-analysis 

proposed in Chapter 8. 
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7.2 Narrative methodological review of the literature for 

combinations of medical tests 

Approaches to the estimation of the accuracy of combinations of tests are not new, 

although they are rare in the literature. In this section a brief overview of the 

different approaches will be given. 

 

7.2.1 Methods relating to or inspired by the case of imperfect gold 
standard 

 

Conditional covariances 

Some authors have tried to adjust for the absence of a gold standard by accounting 

for the dependence between the index test and the reference tests (Hui and Walter 

1980; Vacek 1985; Enoe, Georgiadis et al. 2000; Dendukuri and Lawrence 2001). 

However, their estimates of the probability that the two tests are both positive for 

a diseased patient, and of the probability that the two tests are both negative for a 

healthy patient, are calculated as the product of the probabilities of the two events 

(as if these were independent) plus a term which represent the covariance between 

the tests (i.e. if this term was zero then the tests would have been independent). 

For discordant test results conditional to the disease status, covariances had 

negative sign. Such covariances represent the differences between the expected 

and the observed proportions that populate the 2 by 2 tables of the joint results of 
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the tests, conditional to the disease status. A similar model has been used for the 

case where the disease status is known; that is, in the field of veterinary science to 

test the hypothesis that tests are conditionally dependent by means of the methods 

used for hypothesis testing on null hypothesis on Odds Ratios (Gardner, Stryhn et 

al. 2000). Other authors have developed a test for the hypothesis of conditional 

independence (null hypothesis) that is based on the calculation of the correlation 

between two tests (Shen, Wu et al. 2001). Such correlation was calculated as a 

component of the covariance between the tests as defined above, and there was no 

evidence of dependence between the tests if the correlation coefficient was not 

significantly different from zero. 

 

The case where a gold standard is not available (or similarly unknown false 

positive/negative rates) is not our focus here. However, these techniques are 

sometimes based on the assumption of conditional dependence between tests and 

make use of the conditional covariances. The latent variable model is reviewed 

below. 

 

Latent variable models 

Some authors have used latent variable models for the case where a perfect gold 

standard is absent; such methods have been adapted to allow for a number of tests 

to be used simultaneously in order to adjust for the dependence between test 
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results (Joseph, Gyorkos et al. 1995; Dendukuri, Hadgu et al. 2009; Principato, 

Vullo et al. 2010). However, this model is based on the assumption that the values 

of a number of tests are available for a number of patients and can be used when 

the true disease status is not available. If the disease status were available then a 

latent class model would not be required, but conditional covariances or 

conditional accuracy rates could be directly estimated. Moreover, such models are 

based on quantitative measurements and therefore imaging or dichotomous tests 

would be excluded form this methods. 

Moreover, such latent class models model the accuracy of multiple tests based on 

the assumption of conditional independence of the test accuracy a priori (Joseph, 

Gyorkos et al. 1995). The effect of this assumption has not been explored. 

 

7.2.2 Methods to build or evaluate the best combination 

Combination schemes and conditional accuracy 

Initially, the problem of conditional dependence has been explored under the 

perspective of the use of the Bayes theorem for transforming sensitivities and 

specificities into predictive values. In particular, the effect of conditional 

dependence on such application of the Bayes theorem has been explored (Fryback 

1978), and the need to consider conditional accuracy rates has been highlighted. 

The author concludes that assuming conditional independence brings more 

“degradation of the model” as more “variables” (tests) are considered.  
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Once the role of conditional accuracy was made clear, the ways of combining 

tests in sequences must be clear. Thompson (Thompson 2003) describes the two 

possible schemes for couples of diagnostic tests: i) believe the negative and ii) 

believe the positive result (see sections below). The latter scheme, also described 

as a between tests positivity criteria (see section 7.2.2) means that in the sequence 

only patients negative to the first test will be further tested. Zou et al. (Zou, 

Bhagwat et al. 2006) then generalises these criteria to a number of tests (>2) ,and 

identifies a third combination scheme called Majority (i.e. if the majority of tests 

are positive then the combination is positive) which is more indicated if the same 

test is repeated a number of times in a period of time. 

 

Linear discriminant procedures 

Various procedures are based on linear discriminant procedures, which select the 

best combination of tests according to some maximising function (Su and Liu 

1993; Liu, Schisterman et al. 2005; Qin and Zhang 2010). However, these are 

based on assumptions that sometimes can be implausible or difficult to test. For 

example, the bivariate normality of the test populations of diseased and healthy 

over the test values, restrictions on the variance-covariance matrices, and the 

sensitivity must be the highest for every level of specificity. This would be the 

case of selecting the combination with the ROC curve above all the others (i.e. 

maximise the AUC) but in section 2 it has been discussed that ROC curves often 

are asymmetrical and the assumption above is not met. Moreover, this class of 



 215

methods can be used only for tests giving numerical measurements (i.e. 

biomarkers), therefore they cannot be used for imaging techniques and other 

qualitative tests (i.e. simply red ELISA Ddimer test, as presented in Chapter 5). 

Similar approaches based on distribution free statistics are also available (Su and 

Liu 1993; Pepe and Thompson 2000; Huang, Qin et al. 2010). For the 

implementation of linear discriminant procedures to determine the best 

combinations of tests, these were compared for the cases where likelihood ratio 

functions and logistic regression functions were used alternatively (McIntosh and 

Pepe 2002; Jin and Lu 2008).  

The problem of choosing the best combination of tests by comparing different 

alternatives via the measurement of the trade-off between true and false results –

for either diseased in case of believe the positive combination scheme, or healthy 

for believe the negative combination schemes- has also been considered 

(Macaskill, Walter et al. 2002). 

 

Probability modifying plot 

Another approach that aims to build the best sequence of tests is that based on the 

probability modifying plot, which is a plot that represents each sequence as a 

decision tree where tests are applied at each stage (i.e. non scaled horizontal axis), 

and at each stage the prevalence of disease after each test is represented (i.e. 

vertical axis) (Severens, de Vries Robbé et al. 1999). These methods used a 

treatment threshold to decide which sequence of tests is best. Such a threshold is 
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compared with the prevalence of disease posterior to the test (i.e. negative or 

positive predictive values). For example, if the positive predictive value after a 

test is higher than such a threshold (say 80%), then it is worth considering such 

test in the sequence. Such methods required that tests are applied to the same 

population of patients and have not been adapted to other cases (i.e. multiple 

studies). 

 

Meta-analysis techniques 

The meta-analysis of the accuracy of combinations of tests has been considered 

under a few different perspectives. The first, and most common approach, 

assumes conditional independence between tests (as mentioned in Chapter 6) even 

when there is not evidence of independence between the tests; for example, when 

two tests are applied on the same population of patients (i.e. test values reported 

on the same paper, tests are likely to be correlated). A first modeling attempt to 

model test accuracy data allowing for conditional dependence between tests was 

based on repeated measures modeling (Siadaty, Philbrick et al. 2004). This 

modeling approach was a generalization of the asymmetric sROC fixed effect 

model proposed by Littenberg and Moses (1993) (see Chapter 4 for asymmetric 

sROC model) and therefore was based on the meta-analysis of the DOR (see 

Chapter 3 for Diagnostic Odds Ratio). However, such modeling approach aimed 

to produce accuracy estimates that were adjusted for conditional dependence 

rather than to measure the accuracy of combinations of such tests. Moreover, this 
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approach was mainly fixed effects; random effects versions have been presented 

for some types of data (i.e. “multilayer cluster structure” of the data). Also, it 

seemed that the structure of the data, indexed by paper ID () and test ID (), used 

the test ID as a proxy for the time when the measure was repeated, therefore 

assuming that the test sequence followed the order of the index , which is usually 

not true. They have not investigated the robustness of the results of their modeling 

approaches for different permutations of the index test where possible 

(combinations of data reported rather than sequences). 

 

Economic evaluations 

Some authors have used economic criteria to select the best combination of tests. 

The rationale of using costs to compare combinations of tests was that of 

minimization of costs in order to reduce the waste of resources that may occur if 

all tests were given to all patients (Rhea, DeLuca et al. 1982). However, the total 

cost of a combination of tests needs to consider the cost of the tests, and the 

expected costs of the consequences of the diagnosis (i.e. as a result of false 

diagnosis); in this case costs can be used to compare very different quantities 

(adverse events, treatment effects, cost of testing) using the same measure and a 

cost minimization analysis can be used to choose the best combination (Henschke 

and Whalen 1994).  

Also, in the review of HTA publications presented in Chapter 6, when economic 

decisions models have been used to compare combinations of tests, the accuracy 
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of each combination was calculated based on the assumption of independence 

between tests. If this assumption was not true, then both the meta-analysis (for the 

estimates of the accuracy rates) and the economic evaluation (informed by the 

meta-analysis results) are likely to give misleading conclusions. 

 

7.2.3 Summary of the methodological review 

According to the aim of this thesis stated in section 1.2, the methods reviewed in 

this section are not ideal for incorporation of meta-analysis techniques into 

economic decision framework. In fact, the majority of these techniques are not 

meta-analyses.  

Moreover, the assumptions of the methods based on the estimation of the 

covariance term have already been discussed in section 7.2. These do not produce 

results suitable for economic decision modeling. For example, the covariace term 

indicates the difference between the accuracy of the combination when 

conditional dependence is assumed instead of independence. In fact, it does not 

measure how many patients are being tested by the second test (i.e. conditional 

accuracy rate). At this purpose, the estimation of such conditional rates needs to 

consider the combination schemes described in section 7.2.2 (“Combination 

schemes and conditional accuracy”). 

Also, techniques based on the estimation of the covariance term and methods 

based on linear discriminant analysis are more suitable for tests based on 
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quantitative measurements. Imaging and more generally qualitative tests are 

excluded from this class of methods. 

The method that can be based on the direct estimation of conditional accuracies is 

the probability modifying plot. However, it is not clear what the post-test 

prevalence threshold should be to choose between combinations and it offers only 

a methods to compare combinations rather than to inform economic decision 

models. However, it is not excluded that the probability modifying plot can be 

used to represent graphically the effect of adding a new test on the accuracy of the 

combination.  

Also, the meta-analysis methods described are either based on the assumption of 

conditional independence of tests, or they produce estimates of the accuracy of the 

tests adjusted for the conditional independence. On the contrary, for our aim it 

would be more useful to have the conditional accuracy rates based on the 

assumption of dependence instead of accuracy estimates adjusted for conditional 

dependence. 

 

When economic techniques were used, a simplistic cost minimization analysis 

was used to select the best combination. This only considers the cost implications 

of testing and ignores the effect of tests on the quality of life of patients. Cost-

effectiveness analysis would consider these effects but were informed by meta-

analysis that assumed conditional independence. 
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The next section will describe the conditional accuracy of two dichotomised tests 

with respect to the combination schemes presented above. In Chapter 8, a cost-

effectiveness analysis informed by a meta-analysis model that accounts for 

dependence between tests will be proposed as an alternative approach to the 

evaluation/choice of the best combination of tests. 

 

7.3 Combination of diagnostic tests 

In this section the words combination and sequence have been used with the same 

meaning. Other expressions have been used almost as synonyms. The expressions 

diagnostic algorithm or diagnostic strategy have been used interchangeably to 

indicate either combinations or sequences of tests. However, it must be noted that 

these words are very generic, and an algorithm/strategy may easily be defined by 

one single test, and not necessarily involve more than one test unless specified. 

For clarity, in the next section the difference between a combination and a 

sequence will be explained, and these words will be used with these precise 

meanings throughout the chapter. Diagnostic strategy will be used generically to 

define one or more tests combined for diagnosis. 
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7.3.1 From combinations to sequences of two dichotomised diagnostic 
tests 

Defining a combination of a number of dichotomous tests is not a simple task and 

it becomes more complex as the number of tests increases. I will focus and 

describe combinations of two dichotomous tests and their properties.  

The simplest combination involves only two tests which are performed on a given 

set of symptomatic patients. For simplicity, let’s refer to two generic tests T1 and 

T2, where each test gives either a positive or a negative answer to the question 

“does the subject present the condition of interest?” As discussed in Chapter 3, 

even in case of continuous test results these can be dichotomised by means of a 

threshold and represented as in Table 3-1. 

Initially, the two tests will be assumed to be given simultaneously to each patient. 

This is equivalent to the use of both tests independently to each other on the same 

patient (i.e. the result of one test does not influence whether the second test is 

undertaken), and then interpret their results simultaneously. However, if a 

diagnostician wants to use both tests, he clearly needs to choose a positivity 

criterion. When a single test is used, the positivity criterion is built into the test as 

described by the diagnostic threshold. The diagnostic threshold is a within test 

positivity criterion because it defines the positivity of the test (see Chapter 3, 

Chapter 4 and Chapter 5). In the case of two (or more) tests used simultaneously, 

another positivity criterion is needed to combine test results; hence, a between test 

positivity criterion is required. Combination schemes have already been 

mentioned in section 7.2.2; a detailed representation will be given in this section. 
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It may usually be decided that patients found to be positive to both tests must be 

classified as positive, and patients found to be negative to both tests must be 

classified as negative. The challenge comes for discordant tests results. Table 7-1 

shows all the possible combination of results using T1 and T2. The logic operator 

for combining single test results is always and; the problem is how to classify a 

patient that was positive to T1 and negative to T2, or vice versa. 

Thus, in case of discordant tests results, the diagnostician has the following 

options: 

1. Not taking any decision for discordant test results. This is not a sensible 

and ethical choice. Moreover, delaying the decision corresponds to 

classifying everyone as negative (test ignored, no treat), or as positive (test 

ignored and treat all);  

2. Believe one of the two tests as in combination 1 in Table 7-1, this strategy 

actually makes worthless the execution of the other test. As a matter of 

fact, the overall accuracy of the combination will be exactly the accuracy 

of the believed test, but sometimes that will be T1 and sometimes that will 

be T2 so that combinations still will have defined characteristics. This 

choice will break down the strategy into a single test diagnosis; 

3. Finally, a diagnostician may either believe the positive (combination 2) or 

believe the negative (combination 3) test results from either of the two 

tests (see Table 7-1 and Table 7-2) (Thompson 2003). As it will be shown 

later in this chapter, this choice depends on the objective of the strategy. 
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An alternative is to believe a third test, which may be a gold standard or another 

index test. However, this would still require the estimation of the conditional 

accuracy of the third test. At the moment only combinations of two tests will be 

considered. 

It may be noted that the between test positivity criteria in the third point of the list 

above are the only ones that make sense in this case. Believe the negative criterion 

states that if one of the two tests is negative also the strategy is negative. Believe 

the positive (BP) criterion states that if one of the two tests is positive then the 

strategy is positive. 

In case of believe the negative criterion, every time a patient is negative to one 

test, the diagnostician may ignore the other test result. Therefore, if the two tests 

are not performed simultaneously but one after the other, he may give the second 

test only to the proportion of patients that were positive to the first test (T1). This 

will lower the overall cost of the combination strategy since a lower number of 

tests will be given, and its accuracy will remain unvaried. In case of 

uncomfortable tests (i.e. invasive tests, tests that involve travelling to a hospital, 

time consuming tests, etc) there may also be advantage in the quality of life 

impact and safety of the testing procedure. A similar argument exists for the 

believe the positives strategy.  
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In the following section, all the possible combinations/sequences of two 

dichotomised diagnostic tests and issues related to the calculation of their 

accuracy (i.e. dependence between tests) will be explored.  

 

 

 

Table 7-1 Possible combinations of test results from two dichotomised 
diagnostic tests. 

 

 

 

 

T1  + + - - 

Logic operator for the combination and and and and 

T2 + - + - 

Combination 1: Believe test 1 + + - - 

Combination 2: Believe the positive + + + - 

Combination 3: Believe the negative + - - - 
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 Between tests positivity Criterion 

Diagnostic 

strategy 

output 

Believe the 

Negative 

Believe the 

positive 

Positive T1+ and T2+ T1+ or T2+ 

Negative T1- or T2- T1- and T2- 

Table 7-2 How to combine test results when one of the two positivity criteria 
is used. 

 

7.3.2 Sequences of two diagnostic tests 

As already discussed in the previous section, a diagnostic strategy of two tests is a 

combination of tests where one is given after the other according to a between 

tests positivity criterion, for example believe the negative. Thus, the words 

sequence or combination of two tests may be used interchangeably if a between 

test positivity criterion is specified to complete the description of the combination 

and therefore the definition of the sequence. 

Given a between test positivity criteria, the overall accuracy of a sequence 

remains unchanged regardless of which test is used first (Thompson 2003). Thus, 

the order of a sequence of tests should only involve considerations about 

economics and quality if life. Hence, in this section T1 will usually be referred to 

as the first test and T2 the second test in the strategy. Table 7-3 shows the two 
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sequences using two generic tests T1 and T2 with believe the negative between 

tests negativity criterion. The following notation will be used: (T1 and T2)BN to 

identify the sequence where T1 is given first and T2 after, and are combined 

believing the negative test result (Table 7-3 A). The accuracy of this strategy is 

equivalent to the accuracy of (T2 and T1)BN (Table 7-3 B). In both cases, the 

sensitivity of the sequence will be equal to         

      . Since the number of diseased and non diseased people per study 

does not change,        and, therefore,       . Similarly, the 

specificity of the sequence will be           

        . Table 7-3 shows that, although the overall accuracy does not 

change, part of the conditional accuracy of the second test in the sequence does 

change. For example, 

           

 

           

 

These conditional probabilities will be at the basis of Chapter 8 for the economic 

evaluations of combinations/sequences of tests; for example to choose which of 

the two equivalent strategies is better. When a between test positivity criteria is 

used to combine two tests in a sequence where T1 is applied after T2, the sequence 

obtained by applying T2 after T1 has equivalent accuracy.  
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Table 7-3 Classification of patients by two sequences with equivalent 
accuracy of T1 and T2 when the negatives are believed.  
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Sensitivity and specificity of either of two strategies with equivalent accuracy (i.e. 

(T1 and T2)BN) is further described in the rest of this section. Similar results may 

be derived for the case of believe the positives positivity criterion. 

The following formulae define the sensitivity (specificity) as a function of the 

sensitivity (specificity) of a test and the conditional sensitivity (specificity) of the 

other test given the first test (Thompson 2003): 

 

 

     

 

         

; 

 

 

    

 

           

Equations 7-1 

 

For simplicity, specificity was obtained through the calculation of its complement, 

the false positive rate (1- specificity). Since probabilities are, by definition, 

numbers between zero and one, the multiplication between a pair of probabilities 

will be a number smaller than each factor. Consequently, the sensitivity of the 
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sequence will be lower that the conditional sensitivities of either test used in 

Equations 7-1 (i.e. the sensitivity of T1 and the sensitivity of T2|T1 are both higher 

than the sensitivity of ), conversely, the specificity will be higher 

(i.e. the specificity of T1 and T2|T1 will be both lower than the specificity of 

). It can be said that under the assumptions presented in chapter 3 

(diseased and healthy are normally distributed over the test results and diseased 

patients tend to have higher values of the tests), one can believe the negatives to 

increase the sensitivity (and decrease the specificity), or can believe the positives 

to increase the specificity (and decrease the sensitivity) (Pepe 2003). As generally 

happens with diagnostic individual tests (considered in Chapter 3), for sequences 

of tests, an increase in one accuracy parameter (i.e. sensitivity) will result in a 

penalization of the other one (i.e. specificity). 

It has been mentioned above that the conditional accuracies of the tests involved 

in the sequence are important for the (economic) evaluation of the strategy. Let’s 

consider the sensitivity of T2 conditional to T1 as in Equations 7-1: 

     If T1 and T2 have different costs, as it is likely in a 

real evaluation, this conditional accuracy would be useful for the evaluation of the 

overall cost of T2 given after T1 when applied to a population, that will differ from 

the cost of T1 given after T2. This is due to i) the cost and qualitative implication 

of the single tests may be different, and ii) the number of patients who take the 

second test.  
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Equation 7-2 gives an application of the Bayes theorem to calculate the 

conditional sensitivity of T2 conditional to T1 being positive given the sensitivity 

of T1 conditional to T2 being positive and the sensitivities of T1 and T2 

individually. In the case where T1 is cheaper and less invasive than T2, then the 

strategy where T1 is performed first is dominant compared to the strategy where 

T1 is performed after. If this is not the case, the sensitivity calculated in Equation 

7-2 facilitates the economic evaluation of the sequence where T2 is given first in 

the case where this was not directly evaluated (i.e. there is not data to estimate the 

accuracy of T1|T2+). Similar equations can be obtained for specificity, or 

conditional to the second test being negative. 

   



 

Equation 7-2 

 

In terms of probabilities, Equation 7-2 can be rewritten as: 
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As a consequence, applying some rule of probabilities, the relation between 

unconditional and conditional accuracies is described by the following formula: 

 

 

 

   

 

         

 

     

 

     

 

         

Equation 7-3 

 

The formula above shows that the accuracy of the second test may be calculated 

as the sum of the accuracies conditional to the first test results, weighted by the 

accuracy of the first test. This formula will be adapted to the clinical problem 

presented in Chapter 8 and will be crucial for the development of the model, to 

allow the inclusion of different types of data into the same modeling framework. 
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It should be clear that the dependence of the tests is conditional to the disease 

status (conditional dependence) as indicated in section 7.2. 

 

7.3.3 Clinical Scores 

A clinical score is a combination of tests (often individually of weak 

discriminating value) often derived using regression analysis from datasets 

including individual characteristics. For example, every predictor may be given a 

score of 1 if present (positive) and 0 if absent (negative). In this case a test may 

also be the presence or absence of a condition (symptom). It may also happen that 

different values are given to different test/questions (i.e. if an alternative diagnosis 

is possible, the score may be penalised). In this case the score by each test adds up 

to an overall score, and the overall combination is considered positive if the 

overall score is above a certain threshold. This is the case where the tests are 

combined in a combination, not in a sequence. This is the case of very weak tests 

(i.e. those that are part of the score), which may be observing the 

presence/absence of a symptom. One of these is the Wells score (Wells, Owen et 

al. 2006). This test has already been described in section 1.4 and will be described 

in more detail in next section. 

Finally, it is possible to combine clinical scores with other tests although clinical 

scores can already be thought of as combinations of a number of tests where the 

accuracy of each component is not directly measured. For example, in a clinical 

score the individual tests are combined according to the scheme Majority (see 
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section 7.2.2 under “Combination schemes and conditional accuracy” for details 

on this combination scheme). For example, Wells score is a clinical score where 

the Majority scheme is applied (if WS>2 then positive).  
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7.4 Summary 

This chapter has explored the characteristics of combinations of dichotomised 

diagnostic tests and the basic algebra behind the accuracy of diagnostic sequences. 

This exploration has been very useful to understand the issues behind 

combinations of diagnostic tools and has produced some algebra that will be used 

in the next chapter when a synthesis model to estimate the accuracy of 

combinations/sequences of tests will be developed. 

When two dichotomous tests are considered, it is possible to build only 2 pairs of 

clinically relevant diagnostic strategies in which both tests are used 

simultaneously regardless of which test is used first. Given the tests to combine 

and the between tests positivity criterion, the issue of which test is used first 

concerns more the economic evaluation of the diagnosis, since the two 

permutations of the tests into the strategy are characterised by the same overall 

accuracy of the strategy. When three or more tests are used the evaluation 

becomes much more complex because of the number and types of combinations 

that can be obtained. 

It is assumed that test results are dichotomised into positive and negative in case 

of continuous tests, which are usually reported as such and data for meta-analysis 

are often in this format. The case of naturally dichotomous tests is very rare, but it 

is very common to report test results at a given threshold. In fact, although a true 

threshold does not exist, variation in the implicit threshold still causes correlation 

between accuracy rates (Whiting 2008). The possibility of considering changes in 



 235

the threshold in either test exists but it is not considered here; tests are considered 

at their operative thresholds (i.e. threshold suggested by the producer) and the aim 

is not to find the best threshold but to evaluate tests at their operative threshold. 

In conclusion, considerations about test strategies with more than two tests are not 

much different than considering two-test strategies, although the extent of 

difficulty is much higher as the number of tests increases. According to the 

objective of the strategy (i.e. to have the best sensitivity, or specificity, to have a 

non expensive and non invasive specific test, etc), the first step would be to 

choose the first test according to its characteristics, then add a second test in order 

to maximise the sensitivity (or specificity) of the strategy. After the best second 

test has been placed into the strategy, eventually, a best third test may be placed 

into the strategy in the best position. For this reason, sequencing should be 

regarded as the best way of combining tests (Pepe 2003) with the exception of 

building clinical scores (i.e. very low accuracy tests which borrow strength from 

each other under the combination scheme Majority). The next chapter will present 

the methodological development and practical application of meta-analysis 

techniques to the accuracy of combinations of Wells score and Ddimer for DVT. 
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Chapter 8. Meta-analysis and cost effectiveness 

analysis of the diagnostic accuracy of sequences of tests 

accounting for dependency between tests 

8.1 Chapter overview 

The review of HTA reports presented in Chapter 6 (Novielli, Cooper et al. 2010), 

identified that few reports evaluated combinations of diagnostic tests and, those 

that did, assumed independence between the tests. This review provided the 

motivation for this chapter, to develop statistical models to correctly evaluate the 

accuracy of a combination of tests (i.e. allowing for the correlation between the 

tests). Chapter 7 introduced some important features of combinations of 

diagnostic tests and of their accuracy and provided the basis for the statistical 

modeling approach developed in this chapter. This  approach was developed 

within a Bayesian framework and incorporated multiple components  (Ades and 

Cliffe 2002) to evaluate the accuracy of combinations of tests. The approach is 

applied to estimate the accuracy of Ddimer (DD) and Wells score (WS) in 

combination for Deep Vein Thrombosis (DVT – see section 1.4 for an 

introduction to this example) and the cost-effectiveness assessed by incorporating 

the results into an existing comprehensive decision analytic model (Sutton, 

Cooper et al. 2008). The results of this analysis (i.e. allowing for correlations 

between the tests) are compared with those obtained when independence between 

tests is assumed. 



 237

This chapter starts with a systematic review to identify studies reporting the 

accuracy of DD and WS for DVT in combination (sections 8.2, 8.3 and 8.4). 

These studies are then classified according to the types of data extractable from 

the studies (section 8.4). The data also include the accuracy of WS and DD used 

individually, which have been taken from two recent systematic reviews (section 

8.4). The modeling approach used to meta-analyse these data, and the relation 

between the parameters estimated directly from the data and those representing 

the accuracy of different combinations of the two tests are presented (section 8.7). 

Finally, the results and the implications of such a modeling approach are 

described (section 8.8). 
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8.2 Systematic review of the conditional accuracy of DD given 

WS 

The estimation of the accuracy of a combination of tests is based on the estimation 

of the conditional accuracy of either test given the other. Therefore, a systematic 

review of the literature must be conducted to identify those publications reporting 

such accuracy data. In this chapter, the focus is on the accuracy of DD and WS 

used in combinations. The data for the accuracy of DD and WS used individually 

were also used and were available from two recent systematic reviews; data are 

presented in section 8.4. First, relevant publications were identified from the 

Goodacre et al HTA report (Goodacre, Sampson et al. 2005; Goodacre, Sutton et 

al. 2005); that is, publications that provided data for both DD and WS were 

scrutinised for relevant data on the accuracy of combinations of DD and WS. 

These publications were then used to develop, test and improve the search 

strategy described below. One of the main problems when developing the search 

strategy was how to define WS which has been described using a number of very 

generic terms (i.e. clinical probability score, clinical assessment, etc) which may 

be attributed to a number of other meanings. 

The final search strategy used for the accuracy of DD and WS used in 

combinations is provided in details in Appendix A. The search strategy had to be 

organised around the intersection of four different domains (see Figure 8-2): 

• The disease: Deep vein thrombosis 

• The first test: WS 
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• The second test: DD 

• The objective of the study: Evaluation of the accuracy of 

diagnostic tests 

One-thousand and twenty articles were identified as potentially relevant to the 

review via the search engine OVID XP, excluding review papers and before 

applying the inclusion and exclusion criteria. 

The data of the accuracy of DD and WS used individually were also included into 

the analysis. Normally, the systematic review should have been set to retrieve the 

publications reporting also the accuracy of DD and WS used individually. 

Because the focus of this chapter is more methodological than clinical, such 

accuracy data were extracted from two existing systematic reviews for WS 

(Goodacre, Sutton et al. 2005) (updated with study T33 in Appendix B) and DD 

(Goodacre, Sampson et al. 2005) respectively. More details are given in section 

8.4 and Figure 8-1, and references are given in Appendix B. 
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8.3 Reasons for exclusion and inclusion criteria of studies 

Eight hundred and sixty-nine out of 1020 articles were excluded after a review of 

their titles/abstract because they were irrelevant to our analysis (e.g. mainly 

because they were presenting evaluations of the efficacy of clinical interventions, 

or the disease of interest was not DVT). Thus, the remaining 152 articles focused 

on the diagnosis of DVT (Figure 8-1). A further 125 articles were also excluded 

based on titles and abstracts for the following reasons:  

• 39 were reviews not excluded by the filter  

• 14  were guidelines or methodological publications 

• 25 were not considering either WS score or DD test in their analysis. 

• 26 were impossible to extract data  

• Others as listed below Figure 8-1. 

A complete account of the reasons for exclusions is given in Figure 8-1. This left 

only 26 studies evaluating the accuracy of DD given WS. Five of these studies 

dichotomised WS into: 

• likely if WS>=2  

• Unlikely if WS <=1. 

As this is an uncommon representation of WS, these 5 studies were excluded from 

the review leaving a final sample of 21 studies.  



 241

After the exclusion of non relevant studies a total of 21 were potentially included 

in the analysis. These remaining 21 studies all considered a threefold 

categorization of WS: 

• low pre test probability of DVT if WS<1 

• moderate pre test probability of DVT if WS = 1 or 2 

• high pre test probability of DVT if WS>2 

 

The final inclusion criteria were: i) the publications reported the accuracy of DD 

and WS when used simultaneously on the same population of symptomatic 

patients; ii) the accuracy data was reported either in terms of count data (number 

of true positives, false negatives and/or number of true negatives and false 

positives) or in terms of proportions and a measure of statistical error (i.e. 

standard error or variance); iii) the aim of the publication was not to maximize the 

accuracy of DD by determining the best diagnostic threshold (i.e. the aim was to 

measure the accuracy of DD at the operative threshold as suggested by the 

manufacturer).  

One study was excluded because the reporting of the data presented some 

incoherence (i.e. the data reported in the result section did not correspond to the 

data reported in the tables; it was classified as type I - see Appendix C). Two 

studies were also excluded because they reported the accuracy of DD at the 

threshold maximising the sensitivity; classified as type F, G and H in Appendix C 

(section 8.4 for further details). 
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A total of 18 studies were finally included in the meta-analysis (they are described 

in detail in section 8.4 and are classified as type A, B and C). The meta-analysis 

included also data on the accuracy of WS (classified as type D) and DD (classified 

as type E) used individually which were taken from systematic reviews recently 

conducted from other authors (see section 4.8 for more details). 
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Figure 8-1 Flow chart of the studies excluded/included in the systematic 
review and meta-analysis.  

1020 studies 
from wide search strategy (reviews partly excluded 

into the search strategy) 

869 out of 1020 studies excluded 
were non pertinent  because of other 

disaseses considered (PE, VTE, others), 
other tests or strategies,  focus on 

treatment 151 out of 1020 studies 
about diagnosis of Deep Vein Thrombosis 

125 out of 151 studies  
excluded, of which: 

39 reviews (13 philosophical of 
prophylaxis of  DVT) 
14  Guidelines / methodological  
25 were not considering either Wells 
Score or DD test in their analysis. 
26 were impossible to extract data; 
21  Other reasons * 
*see other reasons below 26 out of 125 studies 

reporting the conditional accuracy of DD 
given WS 

21  out of 26 studies  
included (in the systematic review) 

gave the accuracy of DD conditional to WS as 
low-moderate-high categories 

5 out of 26 studies 
excluded (from the systematic review) 
gave the accuracy of DD conditional to 

WS as  likely-unlikely category 

3 out of 21 studies 
excluded (from the meta-

analysis) 
Data types: 
- F (1 study, 3 assays): did not 
report a measure of error along 
with sensitivity and specificity 
- G (1 study, 1 assay): aimed to 
maximise the accuracy by means 
of the diagnostic threshold 
- H (1 study, 6 assays): aimed to 
maximise the accuracy by means 
of the diagnostic threshold 
 
- I (1 study, 1 assay): 
incoherence in reporting of data 
 
See Table 8.1 and Appendix C 
for more details 

18 out of 21 studies 
Included (in the meta-analysis) 

gave the accuracy of Ddimer conditional to Wells Score as  
likely-unlikely category 

Data types: 
- A (11 studies, 11 assays): 
 
- B (3 studies, 3 assays): 
 
- C (4 studies, 4 assays): 

See also Table 8.1 for details and Appendix B for references 
---------------------------------------------------------------------------- 
Also included in the meta-analysis from external systematic 
reviews: 
- D (94 studies, 195 assays): 

- E (20 studies, 20 assays): 
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[continued] 

(*Other reasons: 

3 studies analysed the agreement between DD assays; 1 study was based on a 

single observation; 3 were commentaries to other studies; 5 were a duplicate 

already retrieved, One of these was actually using a subset of data used in another 

article (Anderson, Wells et al. 2000); 2 based on different populations than 

symptomatic patients (colorectal cancer patients, long air-travellers);1 unclear 

threshold for WS (if WS<2 then negative; if WS>=3 then positive; if WS=2 then 

?); 1 reanalysed data from another study; 1 the WS was part of the GS; 1 multiple 

threshold, difficult to chose one; 1 analysed 398 legs of 343 patients, our analysis 

is based on the number of patients diagnosed, rather than on the number of legs 

examined; 1 performed a health economic evaluation and the accuracy data 

derived from another study; 1 analysed the accuracy of WS given DD negative.) 
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8.4 Description of the data available from the systematic review 

and data on the accuracy of WS and DD used alone 

Different types of data were extracted from the systematic review, each informing 

a different set of parameters among those described in sections 8.5 and 8.6. The 

modeling approach that will be developed is a multi-component model. The main 

advantage of using a multi-component model is the use of all data through the 

definition of different likelihoods (components). The data can be represented in 

three different categories: 

- Data on the accuracy of WS and DD when used together (from the 

systematic review presented in section 8.2 and 8.3).  

- Data on the accuracy of WS when used individually (Update of an existing 

review (Goodacre, Sutton et al. 2005)) 

- Data on the accuracy of DD when used individually (An existing 

review(Goodacre, Sampson et al. 2005)) 

The types of data collected by the systematic review are described in Table 8-1. 

This data could be divided into nine different groups according to the type (counts 

or proportions), the aim (analyse the accuracy of the test at the usual threshold or 

maximizing the accuracy via an optimum threshold), level of missing information. 

Data A (Table 8-2), B and C (Table 8-3) measure the accuracy of WS and DD|WS 

and have been included in the analysis; these are 18 of the 21 potentially included 

studies indicated in Figure 8-1, that also met the three final inclusion criteria 

specified in section 8.3. Type D and E (Appendix B for list of references) measure 
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the accuracy of WS alone (T19 to T36 in Appendix B) and DD alone (T37 to 

T133 in Appendix B) respectively. Type F, G and H were excluded from the 

systematic review because did not meet the three final inclusion criteria specified 

in section 8.3. One study (type I) was excluded for poor quality of reporting of the 

data (i.e. data reported in the main body of the article were inconsistent with data 

reported in the table). The description of the included data form the systematic 

review (type A, B and C), of the data on the tests used alone (type D and E) and 

the reasons for exclusion of data F, G, H and I are explained in detail below 

(references for the latter are available in Appendix C, and accuracy data are 

presented in Table E1 Table E2 in Appendix C). 
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Table 8-1 Classification and description of the types of data, and inclusion 
exclusion criteria (in bold). Main reasons for exclusion are indicated in bold. 
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Type A: Complete count data of the conditional accuracy of DD given WS (i.e. 

, , ,   from study  and WS category ), and complete count data 

for all categories of WS (i.e. number of diseased  and healthy  patients in 

each category, where for example      and     ). This 

data is the best data that could be extracted: It is complete (no missing bits of 

information) and gives full information on the accuracy of WS (intermediate 

parameters  and  as will be specified in section 8.6 and 8.7), of the accuracy 

of DD given a category of WS (intermediate parameters  and  ) 

and therefore of DD alone. Table 8-2 lists this data type and full references are 

available in Appendix B. 

Type B: Complete count data of the conditional accuracy of DD given WS for one 

or two categories of WS (, , ,   for some ), and complete count 

data for all categories of WS (number of diseased and healthy  patients for 

some categories of WS ). This data contributes to the estimation of the accuracy 

of DD given WS but not for all categories (i.e.  and  

cannot be estimated if data are available only for WS high and moderate), and to 

the estimation of the accuracy of WS in terms of the proportion of 

diseased/healthy per some WS category ( and  for all ). Table 8-3 lists data 

type B and full references are available in Appendix B 

Type C: Complete count data of the conditional accuracy of DD given WS for 

one or two categories of WS (, , ,   for some ), and, for the 

same categories, count data for the proportion of diseased and healthy patients 



 249

(number of diseased and healthy  patients for the same ’s). This data 

contributes to the estimation of  and  and  and . for some 

’s . Table 8-3 also lists data type C and references are available in Appendix B.  

Type D: Complete data for the accuracy of WS alone. Since this project is 

methodological and aims to create a modeling framework that achieves the 

inclusion of all data available, a systematic review on the accuracy WS has not 

been performed directly, instead data from a recent existing systematic reviews 

has been used (Goodacre, Sutton et al. 2005) and an updated version of the dataset 

was obtained from the authors (Appendix B, study T33 has been added to the 

original set of articles). Twenty-three publications were included in our dataset in 

order to inform the accuracy of WS (i.e. contribute to the estimation of  and 

 for all ). Among these 23 studies, 3 have been already considered in the 

systematic review of the conditional accuracy of DD given WS presented in 

section 8.2 (i.e. are already considered among data type A, B). Therefore, they 

have been excluded from this dataset in order not to avoid duplication of the data.  

Type E: Complete data for the unconditional accuracy of DD. The data presented 

and already analysed in Chapter 5 were included (Goodacre, Sampson et al. 

2005), however this time all 198 assays have been used since covariate effect is 

not considered in this chapter. This data would concur indirectly to the estimation 

of the accuracy of DD conditional on WS level. Via the definition of the 

functional relation between the unconditional accuracy of DD and the accuracies 

of WS and DD|WS, the information contained in this data should contribute to the 



 250

estimation of the final parameters. For the same reason as for WS data type D, 

three studies have been excluded because they contain type A data. Thus, 195 

assays extracted from 94 studies giving data on the accuracy of DD alone were 

included in our analysis.  

Type F: conditional sensitivity and specificity of DD given WS for one or two 

categories of WS, and, for the same categories, complete count data for the 

accuracy of WS. This data come from one single study that evaluated, in 

particular, the accuracy of DD given moderate WS. This have not been included 

into the analysis because: i) When trying to calculate , , ,  for 

this study the results were not exact (i.e. 20.45, the rounding was not clear), ii) 

they did not report the standard error of the estimated sensitivity and specificity. 

Type G: Same as type F, but the accuracy of DD|WS was maximised by choosing 

an ad hoc threshold rather than using the threshold suggested by the 

manufacturer. This study was excluded for the reasons (i) and (ii) explained above 

and also because the accuracy given an ad-hoc threshold would have inflated one 

accuracy rate and deflated the other (iii). The main focus was on operative 

thresholds (i.e. used in real practice as those recommended by the manufacturer). 

Type H: Conditional sensitivity and specificity and confidence intervals of DD (at 

the best threshold to maximise sensitivity) given WS for all categories of WS, and 

number or people in each category of Wells per diseased and healthy. Potentially, 

this study could be included by calculating the number of , , ,   

for each assay, however it was excluded for the same reason (iii) explained above 
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(DD assays in this study are evaluated on the basis of an ad-hoc threshold to 

maximise sensitivity). 

Type I: Complete count data of the conditional accuracy of DD given WS for one 

or two categories of WS (, , ,   for some ), and, for the same 

categories, count data for the proportion of diseased and healthy patients 

(number of diseased and healthy  patients for the same ’s). This data was 

relatifve to one study (T136, reference and data in Table E2 available in appendic 

C) and was excluded for poor and incoherent reporting. Moreover, it was not clear 

why diseased patients were not reported. This data was considered poor and 

unclear. This data would have been categorised as type C in the case it was not 

excluded.  
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Table 8-2 Data extracted by the systematic review of WS and DD used in 
combination; type A (complete data for both tests).  
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Table 8-3 Data extracted by the systematic review of WS and DD used in 
combination; type B (partial data for DD), type C (partial data for DD and 
WS).  
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In total, 233 assays extracted from 132 studies were included in the analysis. It is 

quite a large number of studies for a meta-analysis. Studies maximising accuracy 

via ad hoc threshold selection, if included in the analysis, could inflate the 

sensitivity (or specificity) of DD. 

 

  



 

 

 

Figure 8-2. The search strategy to detect the studies for the accuracy of DD 
and WS in combination 

 

 







. The search strategy to detect the studies for the accuracy of DD 
and WS in combination consisted of four overlapping domains. 
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. The search strategy to detect the studies for the accuracy of DD 
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8.5 Diagnostic strategies under evaluation 

The review highlighted that WS has always been used as a pre-test probability 

score. WS can be considered as a “proper”diagnostic test (i.e. used to diagnose 

rather than to stratify patients into groups with more homogeneous prevalence of 

disease) with two thresholds: i) low vs moderate/high (i.e. a patient is negative if 

low WS, positive if moderate or high), and ii) low/moderate vs high (i.e. a patient 

is negative if low or moderate WS, positive if high). Although some diagnostic 

algorithms described above use WS as a “proper” test, these strategies have never 

been implemented in practice. Thus, the final parameters which are the focus of 

the analysis are sensitivity and specificity of the possible diagnostic strategies 

including WS and DD. All 8 options are described below. 

 

• Strategy 1: WS at threshold 1 (low vs moderate/high), believe the 

negatives 

 

     

L 

MH 

Wells 
score 

+ 

- 

+ 

- 

Ddimer 
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• Strategy 2:WS at threshold 1 (low vs moderate/high), believe the positives 

 

       

     

 

• Strategy 3:WS at threshold 2 (low/moderate vs high), believe the negatives 

     

       

L 

MH 

Wells 
score 

+ 

- Ddimer 

+ 

- 

+ 

- 

Ddimer 

LM 

H 

Wells 
score 

+ 

- 
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• Strategy 4:WS at threshold 2 (low/moderate vs high), believe the positives 

       

     

These need then to be compared to the tests when used alone, they are: 

• Strategy 5:DD when used alone 

 

     

     

 

• Strategy 6: WS used alone at the first threshold (low vs moderate/high) 

LM 

H 

Wells 
score 

+ 

- Ddimer 

+ 

- 

Ddimer 

+ 

- 
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• Strategy 7: WS used alone at the second threshold (low/moderate vs high) 

 

   

   

 

• Strategy 8: WS to every patient, if high then treat, if low then discharge, if 

moderate then further test with DD. This is not the only further option to 

combine the two tests, others can be identified. However, the sequences 

presented above represent coherent and sufficient choices to maximize 

either sensitivity or specificity (Pepe 2003) and this combination, included 

L 

MH 

Wells 
score 

+ 

- 

LM 

H 

Wells 
score 

+ 

- 
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as an example, is not expected to be more accurate in both parameters nor 

economically better (see section 8.9). 
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Ddimer 
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8.6 Parameters to be estimated by the models 

The accuracy of each strategy described above can be calculated as a function of 

the accuracy of WS and the conditional accuracy of DD|WS. Thus, the parameters 

of interest are: 

i. the accuracy rates of the four sequences (i.e. , 

,  ,  and  

, , , 

),  

ii. the accuracy rates of the tests used alone (,, 

and ,,,) 

iii.  the accuracy of the combination described as strategy 8 in section 

8.5above ( and ). 

According to Equation 7-3 in Chapter 7, these will be calculated as a function of 

WS accuracy parameters ( proportion of diseased patients in category () 

1=low, 2=moderate, 3=high; and  proportion of healthy patients in WS 

category () 1=low, 2=moderate, 3=high) and DD conditional on WS accuracy 

parameters (, , ,  and ,  , and  as defined in 

Figure 8-3). 

The process used to describe these relations has been used in the past by Ades et 

al (Ades and Cliffe 2002) for the assessment of the effectiveness of an 

intervention for HIV. This approach is also called a shared component model as it 
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contains equations with shared parameters, where two models (one for the 

accuracy of WS data and the other for the accuracy of DD|WS data) are linked by 

using separate equations but using parameters in common (Knorr-Held and Best 

1999). Figure 8-3  shows this process for our example. The data are collected in 

order to estimate the values of the parameters of interest (final parameters). 

However the model does not estimate them directly, but these are expressed as 

functions of intermediate parameters. These intermediate parameters are directly 

estimated by the model, and the uncertainty in their estimates is propagated into 

the final parameters. Thus, the relationship between the data and the final 

parameters is explained in two stages, first the relation between the data and the 

intermediate parameters is presented via the description of the likelihoods, then, 

the relation between the intermediate parameters and the final parameters is given 

via the description of the formulae used to transform intermediate parameters into 

final parameters. 
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8.7 Description of the model 

In this section, the WS and DD relative components of the multi-component 

model will be described starting from the likelihoods used for each type of 

included data (type A, B, C, D and E). For WS, a multinomial random effect logit-

model for the estimation of the proportion of diseased and healthy per each 

category has been used. For DD, the model component is based on the bivariate 

random effect approach (Model 4.9) presented in Chapter 4 and Chapter 5. These 

two models are linked together via equations that allow the missing bits of 

information on either test to be estimated and all types of data to be used 

simultaneously. 

The proposed modeling approach has two types of component that interact 

together, one for the intermediate accuracy parameters of WS (see Table 8-4) and 

one of the accuracy intermediate parameters of DD|WS (see Table 8-5). The next 

section 8.7.1 describes how the data are linked to the intermediate parameters via 

the specification of the likelihoods. The model as implemented in WinBUGS is 

available in the folder “Chapter 8 - combinations of WS and DD for DVT”, 

contained in the CD-ROM attached to this thesis, in the WinBUGS file “model of 

data A B C D E - conditional accuracy and sequences.odc”. In the same folder the 

code for the implementation of the model that assumes independence between 

tests is given in the file “model that assumes independence.odc”. 
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8.7.1 Definition of the first part of the model for the estimate of the 
intermediate parameters 

A clear representation of the data by means of tables 

Table 8-4 and Table 8-5 represent a generic complete data that can hypothetically 

be extracted for WS and DD respectively. Symbols are used instead of numbers in 

order to establish the relationships between the data in the two tables. The same 

symbols will be used throughout this chapter to describe the formulae that define 

the model (following in this section 8.7).  

    

    

        

Table 8-4 Complete data that would be extracted for the accuracy of Wells 
score. 

 

 

   

 










  




 










  




               

        



Table 8-5 Complete data that would be extracted for the conditional 
accuracy of Ddimer. 
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In Table 8-4,  and  indicate the number of diseased and non diseased 

respectively, within WS level  (1=low, 2=moderate and 3=high) for study ;  

and  are the total number of diseased and non diseased for study . Table 8-5 

represents the data for the conditional and overall accuracy of DD:  is the 

number of diseased patients that are correctly classified as positive by DD, 

conditional to the  level of WS and for study  (true positive);  is the 

number of non diseased patients that are correctly classified as negative by DD, 

conditional to the  level of WS and for study  (true negative);  and  are 

already defined in Table 8-4 and represent the denominator of the fractions used 

to define sensitivity and specificity; the last column of Table 8-5 represents the 

overall sensitivity and specificity of DD as a function of the data on the left, it is 

clear that the overall accuracy of DD and WS is the sum of the numerators 

divided by the sum of the denominators of the conditional accuracies. This last 

relation will then lead to the formulation of the overall accuracy of DD as the sum 

of the accuracies of DD conditional to WS, weighted by the proportion of 

diseased/non diseased patients into WS categories (see Equation 8-10). 

The different data types A, B, C, D and E can all be expressed by the symbols 

presented in the tables above. The number of studies will be indicated as 

      for data kinds A, B, C, D and E respectively. 
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Multinomial random effect logistic model for the meta-analysis of WS data 

Given the multinomial nature of WS data, the multinomial logistic model should 

allow the threshold effect to be implicitly considered because the accuracy of WS 

is estimated for each of its two possible thresholds. However, meta-analyses are 

often characterised by a residual amount of unexplained heterogeneity, which is 

usually accounted for either using random effects or covariates where possible 

(Higgins, Thompson et al. 2009). Therefore, I have adapted the Bayesian fixed 

effect multinomial logistic model presented by Ntzoufras (Ntzoufras 2010) and 

obtained a Bayesian random effect multinomial logistic model. 

 

For WS types A, B and D data, the likelihood is specified via multinomial 

distributions (see Equation 8.1) with parameters  (for diseased) and  (for 

healthy patients) for study  and WS level () 1=low, 2=moderate and 3=high. The order 

of the multinomial is the sum of diseased/healthy (   
  and    

  

as defined in Table 8-4).  

     

     

   

            

Equation 8-1 
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Type C data is incomplete for WS; thus, multinomial likelihoods cannot be used 

because the order of the multinomial would not be available (i.e. studies only 

reported the number of patients classified in some but not all levels of WS). This 

data does not contain information to estimate the parameters  or  , 

because the total number of diseased and non diseased is not available. However, 

type C studies give important information on the accuracy of DD given the 

reported levels of WS. Thus, WS category specific data can be included into the 

modeling approach by using a combination of binomial likelihoods as substitutive 

of the multinomial likelihoods by means of a constraint on the parameters (see 

Equations 8-2), and the assumption of exchangeability between studies (Bernardo 

and Smith 1994) which allows the model itself to inform the estimate of the 

missing data via the indirect estimation of the parameter for which there is not 

information.  

 

For example, let’s consider the case where only the number of diseased/healthy 

patients for low or moderate WS is available (, and ,, see Equations 

8-2(a)). The proportion of patients in such categories will be estimated by the 

model by means of Equation 8-1 based on the assumption of exchangeability 

between studies. This estimation will be based on the total number of diseased and 

healthy patients for type C studies that can be also estimated from the model via 

the assumption of exchangeability, for example,      and     

 . Using these formulae, all the missing information for WS will be 
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estimated by the model and type C data will influence neither the estimate of the 

intermediate parameters nor the estimate of the final parameters for WS, but type 

C data for the conditional accuracy of DD will still be considered. 

WS high (=3) is missing WS moderate(=2) is missing WS low (=1) is missing 

(a) 

 

 

 

 

       

       



 

 

 

 

       

       

(c) 

 

 

 

 

      

       

Equations 8-2

 

(The binomial likelihoods model with constraint on one proportion presented in 

Equation 8-2, as used for type C data, can actually be used on type A, B and D 

data, with the difference that for these the total number of diseased and non 

diseased is known, however resulting in more lines of code when implemented in 

WinBUGS.) 
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The multinomial logistic model is then completed by the specification of the 

between study variability structure and the logit transformations as specified in 

Equation 8-3. 

 


 


   

 


 


   

  

  

       

      

Equation 8-3 

 

 

 

The parameters estimated by this meta-analytical model are the overall proportion 

of patients in each WS category for diseased and healthy patients, expressed in a 

multinomial logit scale in Equation 8-3 as  and , for WS level () 1=low, 

2=moderate and 3=high. These need to be back-transformed to obtain the overall 

proportions using Equation 8-4: 
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Equation 8-4 

 

Where 
 

 
 is the vector of the pooled proportions (across 

studies) of diseased patients for WS equal to 1=low, 2=moderate and 3=high, 

where the study specific proportions that have been pooled have been estimated in 

Equation 8-1and Equations 8-2. Similarly 
 

 
 represents 

the vector of pooled proportions of healthy patients. 

Such parameters refer to the generic data represented in Table 8-4 which 

represents study specific data. A similar table can also be used to represent such 

estimates (see Table 8-6). 

 

 



 272

   

 
 

 
 

 
 

 
 

Table 8-6  Generic pooled estimates of the proportions of diseased and health 
patients for WS categories. 

 

Bivariate random effect logistic models for the meta-analysis of DD|WS data 

Data on the conditional accuracy of DD given WS has been identified as type A, 

B and C. These also contain information on WS and have been meta-analysed in 

the last section. Type C has been included in the meta-analytic model of WS data 

although it does not contribute to the accuracy of WS but because of its potential 

contribution to the accuracy of DD.  

Unconditional DD data have already been analysed in Chapter 5 by using the 

bivariate model. This model can be indicated as the best one given the 

interpretability and the explicit account for the correlation of sensitivity and 

specificity (as discussed throughout Chapter 4 and Chapter 5). Therefore, the 

bivariate approach will be used also for the conditional accuracy of DD. 

Type A (DD) data is easily added to the model through the implementation of 

three “independent” bivariate random effect models (the models are independent, 

although the data clearly refer to the accuracy of the same test and they are 

correlated through the thresholds of the tests). For type B data, the missing 
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information on the accuracy of DD is estimated by the model based on the 

assumption of exchangeability. 

  

  

   

   



     


    

 
 

 

      

       

Equation 8-5 

Where the correlation for sensitivity and specificity within WS level  is  




. 

For type C data, the missing total number of diseased () and healthy () is 

estimated by the model for the meta-analysis of WS data specified above in this 

section. The accuracy of DD conditional to WS, where not reported in the data, is 

estimated by the model as specified in Equation 8-5 based on the assumption of 

exchangeability (i.e. if for study   and  are not available, then these 

are estimated by the model by mean of   and ).  

It needs to be noted at this point that type D data only contributes to the estimate 

of the accuracy parameters of WS, and therefore no model exists for the accuracy 

of DD conditional to WS. Rather, if the model in Equation 8-5 is applied to type 
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D data (i.e.        ), then based 

on the assumption of exchangeability that characterise all the meta-analytical 

modeling framework, a predictive estimate of the sensitivity () and specificity 

() for type D studies (            ) will be 

sampled by the model (i.e. what would the sensitivity and specificity of DD 

conditional to WS likely to be if DD was performed in these studies?). 

 

The pooled estimates of sensitivity and specificity of DD conditional to WS can 

be calculated from the parameters estimated in Equation 8-5 and are presented in 

Table 8-7, which is similar to Table 8-5 that was used to describe the conditional 

DD data above in this section. 

 

   


 

  



  




  



 

  



  




  


Table 8-7 Formulae to calculate the pooled estimates of the conditional 
accuracy of DD given WS levels. 
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Inclusion of data type E, count data for unconditional accuracy of DD 

The last data that can be added to the model refers to the overall accuracy of DD 

(type E). The assumption at the basis of the inclusion of this data is that the 

overall accuracy of DD can be expressed as a function of the proportion of 

diseased and healthy in each WS category and the accuracy of DD conditional to 

WS. In studies reporting data of type E, the proportion of diseased/healthy 

patients per WS category and the conditional accuracy data of DD are missing but 

their sums across WS levels is reported. The model is fit to the data based on this 

relationship, on the data structure proposed in Table 8-4 and Table 8-5 and 

analysed via the multinomial logit model for WS and the bivariate models for 

conditional DD, and using the overall DD accuracy data to constrain the 

parameters. 

Step 1: The first step is to set up the bivariate logit model for the meta-analysis of 

the unconditional accuracy of DD: 

  

  

   

   



     


    

 
 

 

                 

Equation 8-6 
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Where  number of true positive,  number of true negative,  number 

of diseased and  number of healthy. 

Step 2: The second step is to replicate the conditional structure of the data also for 

type E data using the multinomial logit model and the three bivariate models for 

the conditional accuracy of DD to estimate, under the assumption of 

exchangeability, the proportion of diseased and healthy in every WS category 

(Equation 8-7), and the sensitivity and specificity for DD|WS (Equation 8-8)  

 
 
 

 
 

 
 

 


 



 

 


 



 

                 

       

Equation 8-7 
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Equation 8-8 

 

Step 3: The third step is to link the parameters estimated in step 1 with the 

parameters simulated in step 2 using a generalisation of Equation 7-3 in Chapter 7 

where the first test is not dichotomous but has three categories (Equation 8-9). 

Here, the unconditional accuracy parameters of DD (left side of Equation 8-9) 

will influence the estimate of the parameters for the conditional accuracy of WS 

and DD|WS (right side of Equation 8-9) which are estimated from the data types 

A, B, C and D. Based on the assumption of exchangeability, the parameters at the 

right side of Equation 8-9 will affect the overall estimates of the accuracy of WS 

and WS|DD when these are allowed to be part of Equation 8-3 and Equation 8-5. 
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Equation 8-9 

 

Where  and  are the unconditional sensitivity and specificity of DD, 

and these are expressed as functions of the conditional sensitivity and specificity 

of DD given WS -  and  respectively – and the accuracy parameters 

for WS -.  and .  respectively-. 

The demonstration of the relationships above is obtained from the formulation of 

the sensitivity (and specificity) expressed in the last column of Table 8-5: 

 



    


























 
























    



 

Where 


  and 


 . Similarly for specificity. 
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8.7.2 Linking of intermediate to final parameters (transformations) 

 

Accuracy of DD for intersections of WS categories 

This section will discuss how to calculate the accuracy of DD for patients 

classified as either moderate or high WS (similarly for either low or moderate, or 

for either low or high). This will be very useful to simplify the formulae for the 

accuracy of the strategies in the next section. 

In the modeling approach described in the last section, variability in threshold for 

WS is considered by estimating the proportion of diseased/healthy patients for 

each WS category. Then, the (conditional) accuracy of DD is estimated given 

each WS category. Now the problem is, given these estimates, can the accuracy of 

DD for patients classified low or high be estimated?  

The parameters estimated in the multinomial logit model are, for WS low and 

diseased:  



, similarly for WS moderate or high, and healthy. 

The overall sensitivity of DD is 

  


  
   


 


      .  
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Similarly, the overall specificity of DD is  

 


 


    

 






    




  


 

Equation 8-10 

 

Where  and  are the weights of the weighted average of the conditional 

sensitivities and specificities of DD given WS level. The formulae above are a 

generalization of Equation 7-3 in the case when the first test is not dichotomised 

but categorical. Similarly, if one wants to calculate the sensitivity and specificity 

of DD only for patients categorised either moderate or high WS, similar formulae 

can be derived: 

 
  
  




  



  








  







  

        

 
  
  




  



  








  







  

        

Equation 8-11 
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Where  



 and  




,  



 and  




. 

Multiplying numerator and denominator of the weights for diseased by the total 

number of diseased , and the numerator and denominator of the weights for 

healthy by , the weights can be expressed in terms of proportions: 

 



 and   


,   


 and   


 

 

Accuracy of the diagnostic strategies 

The unconditional accuracy of DD (5th strategy in section 8.5) was not obtained 

from the multi-component model. Instead, data A for DD were aggregated over 

WS levels, and merged to type E data, and then analysed using a bivariate random 

effect logit model as presented in Chapter 4 and Chapter 5 (Model 4-9).  

The accuracy of WS considered as a single test with one of two possible 

thresholds can be derived using parameters estimates presented in Equation 8-4. 

In section 8.5, where all the relevant strategies including WS and DD are 

presented, WS with the first threshold (i.e. Low vs Moderate/High) is the 6th 

strategy and its accuracy is: 

     

   

Equation 8-12 
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WS with the second threshold (i.e. Low/Moderate vs High) is the 7th strategy and 

its accuracy is: 

   

     

Equation 8-13 

The accuracy of the four strategies characterised by sequences of WS and DD 

(strategies 1 to 4 in section 8.5 ) can be estimated considering the following 

equations: 

 

• Strategy 1: WS at threshold 1 (low vs moderate/high), believe the 

negatives 

     

           

Equation 8-14 

 

Where  is the sensitivity of DD for patients classified either moderate or 

high and can be calculated as a weighted average of the sensitivities of DD for 

WS moderate and high          , and the weights 

can be demonstrated to be equal to  



 and      




 

(see first subsection above). Similarly,  
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        .  

Where  is directly estimated by the model and does not need to be 

calculated.  

 

• Strategy 2:WS at threshold 1 (low vs moderate/high), believe the positives 

           

     

Equation 8-15 

 

 

• Strategy 3:WS at threshold 2 (low/moderate vs high), believe the negatives 

     

           

Equation 8-16 

 

• Strategy 4:WS at threshold 2 (low/moderate vs high), believe the positives 

           

     

Equation 8-17 
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Where, similarly to the 1st strategy,  and  are the sensitivity 

and specificity of DD given patients have been classified either WS low or 

moderate , which can be calculated as weighted averages of the sensitivities and 

specificities of DD given low and moderate WS as discussed in the last section.  

The 8th strategy has been included although it is expected that only sequences as 

the 1st to 4th make sense since they represent better ways of increasing either 

sensitivity or specificity, which is the main reason to combine tests together (Pepe 

2003). The accuracy of this strategy is expected to be in between the sensitivity 

maximising strategy (i.e. the 2nd) and the specificity maximising strategy (i.e. the 

3rd). However, beyond the clinical assessment of the strategy (i.e. in terms of 

solely sensitivity or specificity maximization) this strategy can be included in a 

cost effectiveness analysis to assess the overall performance (i.e. including costs 

and quality data) compared to the other options. 

The sensitivity of this combination is the probability that either of the two 

following events occur: 1. a diseased patient who scored moderate to WS is also 

positive to DD; or 2. a diseased patient scores high to WS, that is equal to  

   . 

Similarly, specificity is the probability that either 1. a diseased patient scores low 

to WS, or 2. a diseased patients who scores moderate to WS also scores negative 

to DD, that is equal to 

  . 
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Therefore the accuracy of the 8th strategy is represented in Equation 8-18 

       

       

Equation 8-18 

 

Since this modeling framework aims to account for dependence between tests and 

the accuracy of DD alone is not affected by this issue, the accuracy of DD alone 

was calculated by a separate bivariate model, using data type E and data type A 

aggregated across WS levels (i.e.  

 
      

    ). 
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8.8 Results of the data analysis 

This section presents the results obtained from the modeling approach developed 

throughout this chapter where all the available data types are used, and either 

independence or dependence between the two different tests in the strategy were 

assumed for comparison. When independence is assumed, the accuracy strategies 

were calculated i) running models for WS and DD separately and ii) using the 

formulae presented in section 8.7.2 (from Equation 8-12 to Equation 8-18) but 

substituting the unconditional accuracy of DD to the conditional accuracy rates 

for DD.  

sROC curves and credible or predictive ellipses were calculated adapting the 

formulae presented in Chapter 4 (Equation 4-10). 

 

8.8.1 MCMC Diagnostics 

The model developed in this chapter needs to be checked against the problems 

that may potentially affect MCMC chains: length of the burn-in period, 

convergence of the chains, sensitivity to initial priors and sensitivity to prior 

distributions. 

The length of the burn-in period has been safely set at 5000 iterations. This has 

been graphically assessed by setting two different chains and using the history 

tool available in WinBUGS, which plots the sampled values for both chains for 
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every parameter. All couples of chains (for every parameter) overlap before 1000 

iterations.  

The convergence and sensitivity to initial values of the algorithm have been 

assessed, as before, by visualising the two chains via the history tool after the 

burn-in period. Using a sample of 20,000 iterations, the chains overlap after the 

burn-in period, although the chains sometimes appear waving rather than 

completely over-impose. However, such waves do not correspond to poor 

convergence but they correspond to a high degree of autocorrelation, confirmed 

by the autocorrelation plots available via WinBUGS. For this reason, the length of 

the sample has been set to 100,000. The parameter estimates do not vary if the 

length of the sample is set to 20,000 iterations, indicating that the model generates 

parameter estimated that are robust to autocorrelation problems (i.e. 

autocorrelation was not too high).  

Although there was no evidence that the model results were sensitive to the initial 

values, such initial values needed to be chosen carefully to get the model run (i.e. 

perform successfully the first simulation) with respect to the prior distributions of 

the multinomial random effect logit model. Since a non linear transformation links 

the proportions estimated at the likelihood level and the logit transformations, it is 

quite easy to initialise these parameters with implausible values. For our model 

such parameters are initialised to -4, which ensure that the model updates. For 

complex models, suggesting initial values and restricting prior distributions to 
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plausible range of the parameter values has been done before (i.e. for the HsROC 

model (Rutter and Gatsonis 2001)). 

Position parameters were usually associated with normal prior distributions with 

mean 0 and very low precision (non informative prior distributions). 

Heterogeneity parameters for the multinomial logit model (i.e. standard 

deviations) were given a half normal (i.e. on the positive side, the mean of the 

normal distribution was set to 0) prior distribution with low precision. The 

heterogeneity parameters of the bivariate model for the conditional accuracy of 

DD (i.e. the matrix of variances and covariances) were given a Wishart prior 

distribution with parameters   
 

 The model results were not sensitive 

to different values of the parameters of the Wishart prior distribution   
 

; 

i.e. only small differences were observed in the mean values of the scale 

parameters and the boundaries of the credible intervals, which were mainly 

overlapping. 
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8.8.2 Estimates of the intermediate parameters 

The modeling approach developed in the last section accounts for correlation 

between tests by estimating the conditional accuracies of the tests. Figure 8-4 (a) 

represents the unconditional accuracy of DD compared with the conditional 

accuracy of DD given WS when all data types are included into the modeling 

approach. It is clear that if the assumption of independence between WS and DD 

was true then the four sROC curves would be overlaid on top of each other. 

Demonstrating this rule is not difficult: first, consider that sROC curves are 

couples of sensitivities and specificities; second, Equation 8-19 shows that the 

conditional and unconditional sensitivity are equal if tests are independent; third, 

the same rule applies for specificities; finally, if Equation 8-19 is applied for all 

sensitivities that compose the sROC curve (and similarly for all specificities), then 

the sROC curves for conditional and unconditional accuracy would overlap if the 

tests are conditionally independent. For example, type A data can be considered 

which report full data on the overall and conditional accuracy of DD; Figure 8-4 

(b) compares the accuracy of DD and DD given WS for this data. It is important 

to note that when all data are considered, the only worst fitting curve for DD is 

related to WS moderate, while when type A data are considered, the sROC curves 

relating to DD given WS is high also indicates low accuracy. 

        

Equation 8-19 
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                              a)                                                                b) 

Figure 8-4 a)Roc curves for the accuracy of DD and DD|WS based on data 
types A,B,C,D and E.  b) sROC curves for the accuracy of DD and DD|WS 
based on data type A. 

 

Table 8-8 presents and compares the estimates of the intermediate parameters for 

the model when each data type is added to the model (sequentially A, B, C, D, E) 

and credible intervals at a credibility level of 95%. Also, the estimates of the same 

parameters are reported when independence is assumed for comparison; in this 

case the data types that could be used to inform the multinomial logistic 

regression for WS and the bivariate mode for DD are type A, B and D (for WS) 

and type A and E (for DD) respectively. It can be seen that parameter estimates 

change as different data types are reported, and, equally important, they are 

different from the estimates obtained by assuming independence. Therefore, the 

impact of the assumption of independence and the inclusion of part of the 

available evidence directly reflect on these parameter estimates. In fact, the 

estimated proportions of diseased patients per WS category does not change much 
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when the assumption of independence is relaxed and all data are used, however, 

the conditional accuracy of DD given WS is very different: sensitivity 0.930 

(0.919 to 0.941) and specificity 0.552 (0.522 to 0.583) when independence is 

assumed; when dependence is accounted for then sensitivity varies between 0.930 

(0.863 to 0.981) for WS low, and 0.960 (0.933 to 0.982) for WS high, while 

specificity is estimated at 0.390 (0.212 to 0.561) for WS moderate and at 0.699 

(0.598 to 0.797) for WS high. When assuming independence, an amount of 

unexplained heterogeneity is estimated for both WS and DD (see estimates of , 

 in Table 8-8). However, when dependence is accounted for, such unexplained 

heterogeneity (see estimates of ,  for the different data type) i) is larger than 

assuming independence ii) it is much larger when data type E is included into the 

model (which is not surprising since data type E involves the estimates of the 

conditional accuracy parameters via predicting them for the 198 record of data 

type E), and iii) it is very large for DD given moderate WS, confirming that 

considering the strategy number 8 in section 8.6 may be a sensible choice. 

However, this suggests that such heterogeneity may be explored, for example by 

adding covariate, which has not been the focus of this chapter but is an issue to 

explore in the future. Finally, the assumption of independence would be 

misleading in this case leading to wrong conclusions and badly supported clinical 

and economic decisions.  
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[continued] 










 









 








 
 




 










 








 








 








 








 


















 









 








 
 




 










 








 








 








 








 


















 









 








 
 




 










 








 








 








 








 








Table 8-8 Estimates of intermediate parameters (and 95% credible intervals 
in brackets) when assuming independence between tests (IND) and when 
assuming dependence between tests (DEP) for different data types included 
in the model amongst the available A, B, C, D and E.  
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The use of different sources of data is very important where these data can add 

value to the estimate with their contribution to the overall information. Whether 

the contribution to the information is worth or not the effort of the inclusion of 

each data into the model can be evaluated only after the data itself is included. For 

example, the inclusion of type D data to the model influences the estimates of WS 

accuracy parameters to some extent. Whether this contribution is significant or not 

(i.e. overlapping credible intervals across data types) may not be the right point of 

view, since a number of small changes in the parameter estimated can result in a 

bigger change when these data are then combined together. Moreover, this model 

can be used or adapted for other diagnostic problems, where the contribution of 

each data type can be more evident.  

This issue is even more evident when data type E is included into the model. The 

contribution of type E data is very small because it is an indirect contribution (i.e. 

the sum of three terms influences the single terms of the sum). However, some 

parameters can be more influenced than others from this type of data (i.e. the 

estimate of ). However, the inclusion of such data influences majorly the 

estimates of the heterogeneity parameters, which consequently will have a 

different impact when predictions are calculated. 
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8.8.3 Estimates of the final parameters 

 

Graphical comparison of combinations 

Formulae used to combine intermediate parameters in order to obtain the accuracy 

of the possible combinations of DD and WS have been given in section 8.7.2. The 

same formulae can be used to calculate the accuracy of combinations of these two 

tests if the unconditional accuracy of DD is used instead of the conditional 

accuracy of DD given WS. Table 8-9  presents the results of the strategies of WS 

and DD; for example, these are the final parameters that can be used in a cost 

effectiveness analysis (section 8.9) that aims to compare combinations of WS and 

DD.  

 

Figure 8-5 shows the confidence ellipses when either independence (dashed lines) 

or dependence (plain lines) between tests is assumed. When independence is 

assumed, the credible regions for the 4 sequences seem to lie on an underlying 

ROC curve where the threshold variability is due to differences in between tests 

positivity criteria (i.e. when believe the negative the accuracy corresponds to a 

higher specificity and a lower sensitivity) and WS threshold (given the between 

tests positivity criteria, where WS is dichotomised according to the first threshold, 

the sensitivity is higher and specificity is lower than sequences where WS is 

dichotomised according to the second threshold). Credible regions already 

account for threshold variability for DD. The reason because credible regions are 
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used instead of sROC curve is that these allow the variability in thresholds to be 

disentangles as described above. However, when the assumption of independence 

is relaxed, the credible regions look different. That is, solid regions look wider 

although more studies have been used (type C studies could not be included into 

the model when independence was assumed), especially the region relative to the 

sequence . It needs to be noted that the assumption of either 

dependence or independence also influences the data that will be included into the 

model; for example, when dependence is assumed the proposed modeling 

approach allows the inclusion of all data types, when independence is assumed 

than data types A, B and D are used for WS and data types A and E are included 

for DD. 
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                                                (a)       

 

                                                 (b)                   

 

Figure 8-5 Credible ellipses for the four sequences of DD and WS assuming 
independence and dependence compared on the same ROC curve (plain line 
for dependence; dashed line for independence). 
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Confidence regions can be plotted for all the diagnostic strategies evaluated into 

the model. Figure 8-6 compares the credible regions of all the diagnostic 

strategies including WS and DD. It is evident that DD does not add much to the 

accuracy of WS when this is dichotomised according to the second threshold and 

negatives are believed (region 3 and 7 on Figure 8-6). Sequence 

 has the highest sensitivity and the lowest specificity (region 2 

on Figure 8-6), and sequence  has the highest specificity and 

the lowest sensitivity (region 3 on Figure 8-6).   

The choice of one of these is not straightforward. According to a common rule 

used for sROC curves and that is also applied to regions (Egger, Smith et al. 

2001) the best combination of sensitivity and specificity could be that 

corresponding to the region closer to the upper left corner of the plot (the point 

with sensitivity and specificity both equal to 1). In this case, either DD alone or 

 seem to be candidate to the best combination. Sensitivity and 

specificity of the sequence  are both around 80% and may not 

be good compared to other tests (i.e. in a cost effectiveness analysis). Other 

criteria can be used to choose the best combination as already mentioned in 

Chapter 7. For example, one may be looking for a triage test to exclude safely as 

many healthy patients as possible, given that the other tests have side effects (i.e. 

Venography) or given the treatments side effects (i.e. anticoagulants may cause 

intracranial bleeding). Under this perspective, sequence  may be 

the best, because it corresponds to the highest sensitivity (i.e. highest negative 

predictive value). Oppositely, if one wants to capture as many diseased patients as 
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possible (i.e. need to treat quickly because the disease evolves quickly), sequence 

 maximizes the positive predictive values and may result the 

best choice. The trade off in terms of costs and effects between false positive and 

false negative results will be considered in the next section 8.9. Combinations will 

be evaluated as final decision gates rather than triage strategies where, for 

examples, more tests can be used after. This implies that positives to the 

combination are treated and negatives are discharged. 

 

Figure 8-6 Credible ellipses for all the considered strategies of DD and WS 
assuming dependence between tests.  
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Predictive variability 

Predictions allow the unexplained heterogeneity to be considered as part of the 

uncertainty in parameter estimates; for example it can be included into a decision 

analysis (Higgins, Thompson et al. 2009). WinBUGS allows the calculation of the 

predictive variability of the intermediate parameters to propagate into the 

predictive distribution of the final parameters; therefore, although no distribution 

is directly available for the final parameters still their predictive distributions can 

be obtained. Figure 8-7 shows such predictive regions in the case of independence 

(plot b) and dependence (plot a). When independence is assumed, the prediction 

areas overlap to a much greater extent.  
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(a) 

 

(b) 

 

Figure 8-7 Predictive regions for the 4 sequences of DD and WS assuming 
either independence (b) or dependence (a) between tests.  
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Sensitivities and specificities of combinations 

Table 8-9 presents the estimates of sensitivity and specificity for the final 

combinations of WS and DD described in section 8.6 and listed in the right box of 

Figure 8-3. It is difficult to compare the strategies on the basis of the sole numbers 

presented in this table, especially because of the negative correlation between 

sensitivity and specificity (when a higher sensitivity will be achieved, a lower 

specificity is likely to be estimated). Graphical methods have been proposed 

above (credible regions), and a cost-effectiveness analysis will be proposed in the 

next section 8.9. However, it can be observed how the accuracy varies when i) the 

assumption of dependence is used instead of the assumption of independence, and 

ii) when more data (from type A to type E) are included into the model.  

When dependence is accounted for, the estimates of sensitivity and specificity are 

not much different for the tests used on their own (i.e. ,  and ); 

however, the differences may be larger for the other combinations (i.e. for 

) the larger difference is observed, sensitivity when independence 

is assumed is 0.968 (0.961 to 0.974), while when dependence is assumed 

sensitivity is 0.790 (0.754 to 0.823) ). 

Generally, smaller credible intervals are obtained as more data are included into 

the model. Also the estimated sensitivities and specificities vary, although the 

inclusion of data type E does not lead to large differences compared to the rest of 

data (A, B, C and D). 
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[continued] 
   


  


  













   

  

  

  

  

   

  




 













   

  

  

  

  
   


  




 













   

  

  

  

  

   

  




 













   

  

  

  

  

Table 8-9 Estimates of the accuracy (sensitivity and specificity) and number 
of studies (n) for the final combinations of DD and WS.  
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8.8.4 The best combination of DD and WS: the clinical perspective 

As discussed in section 8.8.3, sensitivities and specificities were not sufficient to 

choose between the available diagnostic strategies even when represented on an 

ROC plane with credible regions or sROC curves. An alternative approach to an 

effective choice under the clinical perspective is to change the general objective of 

the strategy as already mentioned in Chapter 7. This means that the objective of a 

diagnostic strategy is no more to correctly diagnose the presence or absence of a 

condition, which does not consider the bivariate nature of diagnosis: in the 

majority of cases a better sensitivity does not correspond to a better specificity. 

Two possible objectives that better would address the role of diagnostic tests are 

(Pepe 2003): 

- To identify and exclude as many healthy patients as possible in order to 

avoid the consequences of a non treated and diseased patient. This can be 

achieved by using a highly sensitive test, that corresponds to a high 

negative predictive value for a given level of the prevalence (see chapter 3 

for relation between predictive values and prevalence).  

- To identify and treat as many diseased as possible in order to avoid the 

effect potentially harmful treatments. This corresponds to having a high 

specificity (i.e. high positive predictive value). 

Finally, under a clinical perspective, none of the diagnostic strategies that can be 

identified are likely to be clinically dominant, where a dominant strategy has both 

diagnostic rates higher than any of the other strategies for all the plausible levels 

of prevalence, especially because the consequences of testing are not considered 
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(i.e. invasiveness, eventual side effects). Moreover, none of these choices fully 

considers the trade-off between false negatives and false positives in terms of 

future consequences of a misdiagnosis. Then the inclusion of more information 

like the effects and costs as consequences of each diagnostic strategy can be used 

to choose the best strategy. 
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8.9 Cost-effectiveness analysis of combinations of Ddimer and 

Wells score for DVT 

The meta-analytical model developed and applied in this chapter allows for the 

comparison of combinations of tests and accounts for dependence between the 

tests in each combination. However, none of the combinations seems to be 

sensibly better than the others (i.e. both sensitivity and specificity very high) 

considering that the aim proposed to combine tests is to increase either sensitivity 

(to exclude safely negative patients) or specificity (to treat early as many diseased 

as possible). Combinations that maximize either sensitivity (region 2 on Figure 

8-6) or specificity (region 3 on Figure 8-6) have been found. However, such 

methodology does not consider the trade off between false positives and false 

negatives in terms of costs of the diagnostic procedures and consequent treatment 

regimes, the costs and the effects derived by the occurrence of clinical events (i.e. 

bleeding). Such meta-analytical approach can be used to inform an economic 

decision framework that considers such factors and leads to a more informed 

decision. Under this perspective, the best strategy after the cost-effectiveness 

analysis is likely to be very different form the strategy that it could be selected 

according to the clinical perspective. 

 

8.9.1 Structure and parameters of the decision model 

This section presents an application of the modeling techniques developed in the 

previous chapter to inform a comprehensive decision model. Such model is an 
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adaptation of an existing cost effectiveness analysis, presented by Sutton at al 

(Sutton, Cooper et al. 2008), for the accuracy of diagnostic strategies for the 

diagnosis of DVT. The diagnostic strategies in the original article were composed 

by single tests or by no tests at all: Ddimer, Ultrasound, discharge without test, 

treat without test. The last two represents the extreme diagnostic choices, that is 

assuming that every patient is negative (i..e discharge without test) or that every 

patient is positive (treat without test). Such decision modeling framework is 

adapted in order to compare the diagnostic strategies described in section 8.6. 

Such economic evaluation considers a simplified diagnosis-to-treatment pathway 

for DVT. It assumes that positive patients are treated with anticoagulants, which 

potentially may cause armful side effects such as bleeding at different intensities 

(i.e. false and true positive patients may be subject to non fatal bleeding, fatal 

intracranial bleeding, non fatal intracranial bleeding or no bleeding when treated 

with anticoagulant). Of course, true positive patients which do not suffer any 

bleeding may still develop pulmonary embolism as a consequence of the 

thrombosis. 

The structure or the model is a decision tree described in Sutton et al (Sutton, 

Cooper et al. 2008) and adapted for combinations of tests (Figure 8-8). Accuracy 

parameters are informed by the meta-analysis model developed and presented 

above in this chapter, parameters other than those for the diagnostic accuracy (i.e. 

prevalence of DVT, risk of pulmonary embolism, quality of life adjusted life years 
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per each possible health status, etc) have been described in Goodacre et al 

(Goodacre, Wailoo et al. 2006 ). 

 

 

Figure 8-8 Decision tree for the economic decision model, adapted for the 
inclusion of a combination of a couple of diagnostic tests (i.e. in this case the 
“believe the negatives” combination scheme is used, similarly the tree can be 
adapted for the other schemes). 
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8.9.2 The best combination of DD and WS: the cost-effectiveness 
analysis 

As mentioned in Chapter 4, comprehensive decision modeling consists of 4 steps: 

1. Develop the decision model. A framework for comprehensive cost-

effectiveness analysis for the accuracy of diagnostic tests has been recently 

presented by Sutton at al. (Sutton, Cooper et al. 2008). 

2. Systematic review of the relevant data and its meta-analysis. This stage 

has been exhaustively described in this chapter for the accuracy of DD and 

WS for the diagnosis of DVT. 

3. Estimation of all others inputs parameters: 

a. Effectiveness of the treatments considered in the evaluation;  

b. Transition probabilities from a health status to another; 

c. Costs and quality of life relative to different health stata. 

Measures of the effects (QALY), costs and transition probabilities as a 

consequence of the different diagnostic outputs are already given in the 

reference paper (Goodacre, Wailoo et al. 2006 ). 

4. Evaluation of the (comprehensive decision) model in one coherent piece of 

code implemented in the software WinBUGS and sensitivity analyses. 

 

Figure 8-9 represents the Cost Effectiveness Acceptability Curves (CEAC) for 

each diagnostic strategy identified in section 8.5 when their accuracy is estimated 
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assuming dependence between tests, independence between tests, and uncertainty 

around the accuracy estimates is explained by predictive intervals. 

Many strategies under different assumptions do not result cost-effective for any 

values of the cost-effectiveness threshold (i.e. their CEAC are mostly overlaid on 

top of the the x-axis – Figure 8-9). When independence is assumed (lower-left 

CEAC plot in Figure 8-9), strategy 1  seems to be likely to be 

the most cost-effective at a cost-effectiveness threshold between 20,000£ and 

30,000£, with a probability of circa 80%. However, when the model accounts for 

dependence (upper-left CEAC plot in Figure 8-9), the best strategy seems to be 

DD alone (strategy 5), with a probability of about 40% which highlights that there 

is much more uncertainty around this decision. This result leads to a much 

different decision compared to the assumption of independence, which shows the 

importance of our new modeling approach. Given the great amount of uncertainty 

when dependence is allowed for, an alternative decision may be to invest more 

resources in producing more information to inform this decision, for example 

running a larger trial for the accuracy of DD and WS in combination. 

The use of predictions allows the unexplained heterogeneity to be included as part 

of the uncertainty into parameter estimation, this means that such variability 

propagates into the decision models and is reflected into the CEACs. In fact, when 

predictions are considered, the CEAC appear in the same order of importance, but 

the probability associated to each strategy results deflated as a consequence of the 

greater uncertainty that characterises the parameter estimates. 
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8.10 Discussion of model results 

The Bayesian modeling framework described in section 8.7 produces results at 2 

levels. First, the estimates of the intermediate parameters and their random effect 

parameters relatively, which refer to the conditional accuracy of WS and DD. 

Second, the accuracy of the combinations of WS and DD; these are calculated as 

functions of the intermediate parameters and uncertainty propagates to the final 

parameters. Random effect parameters are not directly estimated for the final 

parameters but they can be included in the final parameter uncertainty if 

predictions are calculated. 

The inclusion of more data sometimes has changed the parameters estimates (in 

both cases of intermediate and final parameters). This is a very important 

characteristic of this modeling framework.  

The best strategy is not always possible to be identified as the most accurate. In 

fact, when tests are combined, higher sensitivity corresponds to lower specificity. 

Therefore, the inclusion of economic information into the economic decision 

model can be helpful to consider the trade-off between false positives and false 

negatives. The CEAC plot points to DD alone as the best strategy, however with 

only 40% chance of being the best strategy, indicating that i) further information 

may be considered into the decision model, and ii) more single studies are needed 

to investigate the conditional accuracy of DD and WS. 
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The assumption of independence has produced very different cost-effectiveness 

results, which lead to the question whether it is worth assuming independence at 

all, even when conditional accuracy data are not available. In this case, perhaps a 

study for the evaluation of the conditional accuracy may lead to more correct 

conclusions. 

 

As this thesis does not aim to find the best solution to the problem of the diagnosis 

of DVT, but offers a methodological basis for the choice of sequences of tests 

accounting for the dependence of the tests in the combination, there is one 

assumption that needs to be clarified. It is assumed that the list of strategies is 

exhaustive (I am not considering all the possible and/or plausible combinations of 

the existing tests) and the strategies are complete (positives are treated and 

negatives are discharged). In fact, the strategies considered are not necessarily 

complete. They may be better considered as triage strategies, that is further testing 

can be considered according to the objective as explained above (i.e. a strategy 

which aims to exclude as many healthy patients as possible produces a low 

positive predictive value; thus, positive patients can be further tested with a highly 

specific test to improve the overall accuracy of the sequence). Overall, this 

strategy represents the best trade-off between the consequences of being a false 

positive or a false negative. 
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A remark on the quality of the studies included in the analysis needs to be done. 

Only a crude quality assessment on the quality of reporting of data has been done.  
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8.11 Summary 

The problem of a correct estimate of the accuracy of sequences of diagnostic tests 

is widely undervalued in the evidence synthesis context. Independence is usually 

assumed between tests but this assumption can be heavily misleading. This 

chapter represents one of the first attempts to allow for dependence between tests 

in meta-analysis. Systematic reviews on the use of a number of tests 

simultaneously are not available, thus this chapter initiated with an ad-hoc 

systematic review for the assumption of DD and WS for DVT.  

An important distinction has been specified for the parameter directly informed by 

the data (intermediate) and the parameter of interest (final). The intermediate 

parameters have been estimated by fitting to the data a multiple component model 

with shared parameters. The result produced within this modeling framework lead 

to different conclusions than those that can be produced by assuming 

independence between tests. 

In the majority of cases, it is impossible to identify the clinically dominant 

strategy. Therefore, the trade-off between sensitivity and specificity (or 

equivalently between predictive values) needs to be evaluated considering all the 

chain of clinical and potentially economic consequences that derives from the 

choice of a particular diagnostic strategy. This can be achieved via decision 

modelling techniques. Recently, comprehensive cost-effectiveness analysis has 

been proposed as the ideal tool for modelling a decision in these circumstances. 
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The same decision model has been adapted to the choice of the best combination 

of DD and WS.  

The code for the meta-analysys models and for the cost-effectiveness analysis, 

assuming either independence or dependence between tests, is included in the 

folder “Chapter 8 - combinations of WS and DD for DVT” contained in the CD-

ROM attached to this thesis. 
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Chapter 9. Discussion and directions for further 

development 

9.1 Overview of the thesis 

This thesis reviews and where appropriate improves methods for the meta-

analysis of diagnostic accuracy for dichotomised test results, and develops a 

framework for the meta-analysis of accuracy data from combinations of tests for 

their inclusion into a comprehensive decision model framework. 

All models where implemented in WinBUGS (Lunn, Thomas et al. 2000) 

software for Bayesian statistical analysis and, where needed, checked for 

convergence and sensitivity to prior assumptions which may bias the results of 

MCMC based models. 

The focus of this thesis is mainly methodological and an overview of the 

methodology is given in section 9.1.1. 

 

9.1.1 Overview of the methodology 

The most used models for the accuracy of dichotomised diagnostic test data have 

been presented in the first part of this thesis and were compared when 

implemented in a Bayesian data analysis framework. Although every model is 

based on a different set of assumptions, they have been related to each other in 
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Chapter 4 and all resulted as either equivalent or special cases of the bivariate 

model. Which model should be used cannot be established a priori: the 

assumption behind the model must be met by the data. However, a systematic 

review of these methods used for meta-analysis and to inform decision models in 

Chapter 6 found that simple methods are more likely to be used. To date, testing 

the assumptions behind the model is not always straightforward for the meta-

analysis of diagnostic tests for the bivariate nature of the data; moreover, models 

are fitted on different parameterizations of the data, which complicates the 

comparison between them, especially when covariates are used to explore residual 

heterogeneity. Therefore, Chapter 5 has proposed the use of the Bayesian model 

choice statistics DIC (described in Chapter 2) as compared to residual deviance to 

chose the best fitting model and to the inclusion of covariates. 

 

A further finding of the systematic review presented in Chapter 6 concerns the 

assumptions behind the estimates of the accuracy of combinations of tests: rarely 

combinations are considered, and, when they are considered, independence 

between tests is assumed in a systematic review meta-analysis context (i.e. 

individual studies may have considered dependence between tests). Therefore, 

Chapter 7 and Chapter 8 are dedicated to the exploration of the accuracy of 

combinations of two diagnostic tests and to the development of a meta-analytic 

framework for their accuracy. Such a modelling framework is based firstly on the 

estimates of the conditional accuracies that characterise the combination of the 
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test (intermediate parameters), and secondly on the estimates of the accuracy of 

different types of combinations expressed as a functions of the intermediate 

parameters. Such modelling framework is based on multiple equations (for 

different kinds of data and for the different tests at different levels in the 

combination) with shared parameters. 

 

9.2 Contributions to knowledge 

This thesis contains a number of contributions to knowledge, some of which 

directly resulted from the direction taken for the main investigation, and some that 

were results of the application of the methodologies explored herein. 

 

Firstly, the direction of research was to explore the meta-analytical approaches to 

dichotomised diagnostic data. Although some of these methods were initially built 

in a Bayesian framework, their implementation in such a framework has been 

explored (WinBUGS code made available) for the first time with respect to the 

relationships between such models.   Also, for the first time the use of the DIC 

was proposed to choose between meta-analytical models of the accuracy of 

diagnostic tests. The asymmetric sROC model initially developed by Littenberg 

and Moses (see section 4.5.2) has been criticised for not considering uncertainty 

in both parameters S and D; a parameterization that overcomes this inconvenience 
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is proposed. It is also described how to plot credible and predictive regions for 

when such models are implemented in WinBUGS. 

The second direction for investigation was not clear from the beginning, and 

resulted from the systematic review of HTA reports of diagnostic accuracy 

presented in Chapter 6. Briefly, the major finding of this systematic review was 

that simplistic methods to the meta-analysis of diagnostic data are used more often 

to inform economic evaluations. Another finding that was secondary to the 

chatper but important to this thesis, was that tests are rarely considered in 

combination, and in the case they were considered in combinations the 

assumption of independence between tests was usually made.  

 

Consequently, the second direction for research was to develop a modelling 

framework to the meta-analysis of combination of diagnostic tests. Probably for 

the first time it has been presented a systematic review that specifically concerns 

the accuracy of a combination of two tests.   The meta-analysis of Wells score was 

performed using a multinomial logistic model as presented in Chapter 8. 

Finally, the major contribution to the knowledge resulting form this thesis is the 

modelling framework developed, applied and presented in Chapter 8. Also, it has 

been shown how to make predictions and how to apply this model into a 

comprehensive decision model.   
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9.3 Discussion and limitations 

The accuracy of diagnostic tests is crucial to maximize the efficacy of treatments. 

Meta-analysis techniques allow differences between different settings to be 

accounted for; however, a number of meta-analytical approaches exist that are 

based on a number of assumptions. The most of these methods allow sROC 

curves to be plotted on the ROC plane even where pairs of sensitivities and 

specificities have not been recorded. Graphical representations of such sROC 

curves can be constrained to the range of variation of the accuracy data. 

Alternatively, credible regions may be used to represent graphically the accuracy 

of diagnostic strategies; credible regions account for correlation between 

diagnostic rates due to variability in the diagnostic threshold and also represent 

the residual heterogeneity in the meta-analysis dataset. 

When tests are combined, the assumption of conditional independence between 

the tests may not hold, therefore meta-analysis methods need to allow for 

dependence between tests. The approach that is proposed also estimated the 

conditional accuracy of the tests. However, the evaluation may become very 

complicated and data may not be available. This highlights the need of studies that 

consider a number of the possible tests on the same population so that the 

assumption of independence can be relaxed without the need of a number of 

strong assumptions based on real data, especially if the tests being treated are 
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cheap and non invasive and their combination can be used as a triage diagnostic 

strategy (see section 3.2.2 for a definition of triage diagnostic strategy). 

Finally, the issue of imperfect reference test has not been investigated in this 

thesis where the reference test was assumed to be perfect for all examples. A 

simulation exercise may be helpful to investigate the impact of such an 

assumption. 

An important limitation that needs to be mentioned for the meta-analysis methods 

listed in section 4.5. Some of these approaches are based on assumptions which 

may not be necessarily true. For example, models based on an estimate of the 

pooled DOR assume that the log(DOR) is normally distributed; however, there is 

some evidence that the log(DOR) is not necessarily normally distributed but its 

distribution may be asymmetrical when its values are further away from zero due 

to small study effect (Sterne, Gavaghan et al. 2000). The fixed DOR is usually 

very distant form zero, being sensitivity usually much higher then 1-specificity. 

The Bayesian methods presented in Chapter 4 are flexible and other distributions 

may be used for the symmetric approach.  
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9.4 Directions for further development and Conclusions 

Individual Patient data (IPD) data for the accuracy of diagnostic tests has not been 

considered in the modelling approach developed in Chapter 8. Where IPD is 

available, this could be included into the modelling approach developed in 

Chapter 8 by means of Bernoulli likelihoods (Riley, Dodd et al. 2008). Reporting 

of IPD should be encouraged by means of guidelines. 

 

Diagnostic tests have clinical utility as they are used to detect diseases. However, 

different types of test can be used to explore the same set of symptoms which may 

be at the basis of a set of different diseases. Therefore, the methods to investigate 

meta-analytically the accuracy of a (single or combination of) test could be 

adapted to consider the range of diseases that that test may indicate. 

 

An assumption that is usually made in the field of diagnostic test is that presented 

in Chapter 3: the distributions of the test measurements for the diseased and the 

healthy patients are normally distributed and diseased patients usually are 

characterised by higher values of the test. This assumption is difficult to test 

unless individual patient test measurements are available (i.e. very difficult for 

qualitative or imaging tests). This assumption is currently impossible to test in 

case of qualitative diagnostic tests. The impact of this characteristic of the data on 

the meta-analysis modelling approaches should be investigated, for example via a 
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simulation study (i.e. what is the impact on the meta-analysis modelling 

approaches if patients are not normally distributed (for example, measurements of 

an enzyme in the blood may be right skewed) or if diseased patients are 

characterised by lower values of the test? Such simulation should consider a 

quantitative test, however results could than be generalised for imaging tests for 

which the populations of diseased and healthy are assumed to be normally 

distributed over the underlying threshold too. 

The meta-analytical model for the accuracy of combinations of tests presented in 

Chapter 8 could be generalised for more than two tests, although there may be 

very little, if any, data. Also, such approach can be generalised for publications 

reporting the accuracy of tests with a continuous thresholds at different levels of 

such threshold. Moreover, the use of covariates for the exploration of 

heterogeneity should be explored. 

 

In conclusion, the awareness that meta-analyses are important tools for the robust 

estimation of the diagnostic accuracy is increasing (Jones and Athanasiou 2009) 

and, more complex methods are indicated as more appropriate to capture the 

complexity behind the estimation of diagnostic accuracy. In fact, the estimation of 

accuracy of diagnostic strategies including more than one test via meta-analytic 

techniques needs to consider correlation between the tests included in the strategy. 

In the main example (DVT) used in this thesis, correlation between the tests WS 

and DD was evident and the unexplained heterogeneity large. Ignoring such 
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correlation would lead to biased accuracy estimates and wrong decisions based on 

economic evaluations. The use of random effect modelling allows for the 

quantification of the residual heterogeneity. The model that is developed in this 

thesis accounts for conditional dependence between the tests. The Bayesian 

framework gives the amount of flexibility needed to develop such types of 

modelling approaches. More work is needed to fully explore the potential and the 

properties of such modelling approach.  
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Appendix A. Search strategy of the systematic 
review of the accuracy of DDimer and Well 
score used in combination (Chapter 8) 

Database: EMBASE, Ovid MEDLINE(R) 
Period: since inception to 03/2011 
 

 Sub-Search Strategy for accuracy of diagnostic test studies: 
1     exp "Sensitivity and Specificity" 
2     exp diagnostic errors 
3     reference values.mp. [mp=ti, ab, sh, hw, tn, ot, dm, mf, nm, ui] 
4     reproducibility of results.mp. [mp=ti, ab, sh, hw, tn, ot, dm, mf, nm, ui] 
5     likelihood functions.mp. [mp=ti, ab, sh, hw, tn, ot, dm, mf, nm, ui] 
6     1 or 2 or 3 or 4 or 5  
7     specificity.af. 
8     sensitivity.af.  
9     false negative$.af. 
10     false positive$.af.  
11     true positive$.af. 
12     true negative$.af. 
13     predictive value$.af.  
14     reproducibility.af.  
15     ROC curve.af.  
16     diagnos$.ti.  
17     reference value$.af. 
18     likelihood function$.af.  
19     likelihood ratio$.af.  
20     11 or 7 or 9 or 17 or 12 or 15 or 14 or 8 or 18 or 19 or 16 or 10 or 13  
 

Sub-Search Strategy for Deep Vein Thrombosis: 
21     exp venous thrombosis 
22     exp deep vein thrombosis 
23     exp phlebothrombosis 
24     venous thrombosis.af.  
25     venous thromboembolism.af.  
26     deep venous thrombosis.af. 
27     DVT.af.  
28     26 or 24 or 21 or 27 or 23 or 25 or 22  
 
29     6 or 28 or 20  
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Sub-Search Strategy for diagnostic algorithms, combinations of test: 
30     algorithm$.af.  
31     clinical protocol$1.mp. [mp=ti, ab, sh, hw, tn, ot, dm, mf, nm, ui]  
32     algorithm$1.mp. [mp=ti, ab, sh, hw, tn, ot, dm, mf, nm, ui]  
33     protocol$.af.  
34     diagnostic strateg$3.mp. [mp=ti, ab, sh, hw, tn, ot, dm, mf, nm, ui]  
35     diagnostic combination$1.mp. [mp=ti, ab, sh, hw, tn, ot, dm, mf, nm, ui]  
36     combination$1 of test$1.mp. [mp=ti, ab, sh, hw, tn, ot, dm, mf, nm, ui]  
37     sequence$1 of test$1.mp. [mp=ti, ab, sh, hw, tn, ot, dm, mf, nm, ui]  
38     diagnostic sequence$1.mp. [mp=ti, ab, sh, hw, tn, ot, dm, mf, nm, ui]  
39     sequence$1 of diagnostic test$1.mp. [mp=ti, ab, sh, hw, tn, ot, dm, mf, nm, 
ui]  
40     combination$1 of diagnostic test$1.mp. [mp=ti, ab, sh, hw, tn, ot, dm, mf, 
nm, ui]  
41     sequence$3.mp. [mp=ti, ab, sh, hw, tn, ot, dm, mf, nm, ui]  
42     combination$1.mp. [mp=ti, ab, sh, hw, tn, ot, dm, mf, nm, ui]  
43     algorithm$1.mp. [mp=ti, ab, sh, hw, tn, ot, dm, mf, nm, ui]  
44     management.mp. [mp=ti, ab, sh, hw, tn, ot, dm, mf, nm, ui]  
45     35 or 33 or 32 or 39 or 40 or 36 or 41 or 42 or 38 or 34 or 30 or 37 or 43 or 
44 or 31  
 

Sub-Search Strategy for Ddimer test: 
46     d-dimer$.af.  
47     ddimer$.af.  
48     enzyme-linked immunosorbent assay$1.af.  
49     simplired.af.  
50     ELISA.af.  
51     LATEX.af.  
52     whole blood agglutination.af.  
53     vidas.af.  
54     vidas.af.  
55     turbidimeter.af.  
56     turbidimetric.af.  
57     50 or 53 or 51 or 48 or 47 or 52 or 56 or 46 or 49 or 55 or 54  
 

Sub-Search Strategy for Wells score: 
58     WELLS score.af.  
59     clinical probability.af.  
60     pre test probability.af.  
61     clinical probability model.af.  
62     pre test clinical probability.af.  
63     "WELLS test".mp. [mp=ti, ab, sh, hw, tn, ot, dm, mf, nm, ui]  
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64     "clinical score".mp. [mp=ti, ab, sh, hw, tn, ot, dm, mf, nm, ui]  
65     clinical assessment.af.  
66     clinical scoring system.af.  
67     clinical probability assessment.af.  
68     clinical assessment.af.  
69     standardized model.af.  
70     pretest probability.af.  
71     clinical model.af.  
72     clinical probability score.af.  
73     clinical evaluation$1.af. ( 
74     67 or 63 or 71 or 70 or 68 or 72 or 65 or 64 or 61 or 58 or 59 or 69 or 60 or 
66 or 73 or 62  

Final combination of results from the previous sub-search strategies: 
75     74 and 57 and 29  
76     remove duplicates from 75  
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Appendix B- References to the studies included 
in the meta-analysis, (Chapter 8 table 3) 

Type A 

T1. Shields, P., S. Turnipseed, E. Panacek, N. Melnikoff, R. Gosselin, and R. 
White. (2002). “Validation of the canadian clinical probability model for 
acute venous thrombosis.” Acad Emerg Med 9(6):561-566. 

T2. Lennox, A., K. Delis, S. S, Z. Zarka, S. Daskalopoulou, and A. Nicolaides. 
(1999). “Combination of a clinical risk assessment score and rapid whole 
blood d-dimer testing in the diagnosis of deep vein thrombosis in 
symptomatic patients.” Journal of vascular surgery 30:794-804. 

T3. Kearon, C., J. Ginsberg, J. Douketis, M. Crowther, P. Bill-Edwards, J. Wietz, 
and J. Hirsh (2001). “Management of suspected deep vein thrombosis in 
poutpatients by using clinical assessment and ddimer testing.” Annals of 
internals medicine 135 (2):108-111. 

T4. Ruiz-Gimenez, N., A. Friera, P. Artieda, P. Caballero, P. Sanchez Molini, M. 
Morales, and C. Suarez (2004). “Rapid d-dimertest combined a clinical 
model for Deep Vein Thrombosis.” Thrombosis and Haemostasis 
91:1237-1246. 

T5. Yamaki, T., M. Nozaki, H. Sakurai, M. Takeuchi, K. Soejima, and T. Kono 
(2005). “Prospective evaluation of a screening protocol to exclude deep 
vein thrombosis on the basis of a combination of quantitative d-dimer 
testing and pre-test clinical probability score.” journal of American college 
of surgeons 201:701-709. 

T6. Anderson, D., P. Wells, I. Stiell, B. MacLeod, M. Simms, L. Gray, K. 
Robinson, J. Bormanis, M. Mitchell, L. Bernard, and G. Flowerdew 
(2000). “Management of patients with suspected deep vein thrombosis in 
the emergency department: combining use of a clinical diagnosis model 
with d-dime testing”. The journal of emergency medicine 19 (3):225-230. 

T7. Anderson, D., M. Kovacs, G. Kovacs, I. Stiell, M. Mitchell, V. Khoury, J. 
Dryer, J. Ward, and P. Wells (2002). “Combined use of clinical 
assessment and D-dimer to improve the management of patients 
presenting to the emergency department with suspected deep vein 
thrombosis (the EDITED study).” Journal of Thrombosis and Haemostasis 
1:645-651. 

T8. Bates, S., C. Kearon, M. Crowther, L. Linkins, M. O'Donnell, J. Douketis, A. 
Lee, J. Weitz, M. Johnston, and J. Ginsberg (2003). “A diagnostic strategy 
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involving a quantitative latex D-dimer assay excludes deep vein 
thrombosis.” Annals of internal medicine 138:787-794. 

T9. Rio Solá, M., J. Gonzalez Fajardo, M. Martin Pedrosa, V. Gutierrez, S. 
Carrera, and C. Vaqueto Puerta (1999). “Evaluacion clinica del dimero-D 
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haematology 131:253-257. 

T11. Yamaki, T., M. Nozaki, H. Sakurai, Y. Kikuchi, K. Soejima, T. Kono, A. 
Hamahata, and K. Kim (2009). “Combined use of pre-test clinical 
probability score and latex agglutinatino d-dimer testing for excluding 
acute deep vein thrombosis.” journal of vascualr surgery 50:1099-1105. 

 

Type B 

T12. Borg (1997). “Rapid quantitative d-dimer assay and clinical evaluation fot 
the diagnosis of clinically suspected Deep Vein Thrombosis.” Thrombosis 
and Haemostasis 77(3):600-609. 

T13. Dewar, C., C. Selby, K. Jamieson, and S. Rogers (2008). “Emergency 
department nurse-based outpatients diagnosis of DVT using an evidence-
based protocol.” Journal of emergency medicine 25:441-416. 

T14. Elf, J., K. Strandberg, C. Nilsson, and P. Svensson (2009). “Clinical 
probability assessment and ddimer determination in patients with 
suspected deep vein thrombosis, a prospective multicenter management 
study.” Thrombosis research 123:612-616. 

 

Type C 

T15. Aguilar Franco, C., A. Martinez Benedicto, A. Martinez Santabarbara, C. del 
Rio Mayor, V. del Villar Sordo, M. Vazquez Salvado, and F. Rodriguez 
Recio (2002)a. “Valor diagnostico del dimero-D enpacientes con baja 
probabilidad clinical de thrombosis venosa profunda en miembros 
inferiores.” Med Clin (Barcelona) 118(14):539-542. 
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T16. Walsh, K., N. Kelaher, K. Long, and P. Cervi (2009). “An algorithm for the 
investigation and management of patients with suspected deep venous 
thrombosis at a district general hospital.” Postgrad Med J 78:742-745. 
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118:275-277. 
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with low clinical pre-test probability.” Thrombosis research 105:43-47. 
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Use of a clinical diagnosis model to safely avoid the need for urgent 
radiological investigation.” Archives of Internal Medicine. 159(5): 477-
482. 
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337-340. 
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T24. Constans, J., et al. (2001). “Clinical prediction of lower limb deep vein 
thrombosis in symptomatic hospitalized patients.” Thrombosis and 
Haemostasis, 86(4): 985-990. 
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the studies excluded from the meta-analysis in 
Chapter 8 
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Table E1 Data extracted by the systematic review of WS and DD used in 
combination; type F (partial proportions for DD), type G (partial 
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proportions for DD, accuracy at the best threshold), type H (complete 
proportions for DD, accuracy at the best threshold). 

 



  



    







      






     

     

     

Table E2 Data extracted by the systematic review of WS and DD used in 
combination; type I data excluded for poor reporting. 
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Appendix D - Publications, presentations, and 
posters produced during the PhD project 

This section contains al list of journals and scientific events where the findings of 

this PhD project were used for dissemination. 
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1. Novielli, N., N. Cooper, et al. (2010). "How Is Evidence on Test 

Performance Synthesized for Economic Decision Models of Diagnostic 
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2. Novielli, N., N. J. Cooper, et al. (2010). "Bayesian model selection for 

meta-analysis of diagnostic test accuracy data: Application to Ddimer for 

deep vein thrombosis." Res. Synth. Method: Article first published online: 

21 NOV 2010. 

 

A third paper has been drafted on the systematic review of the conditionl accuracy 

of DD given WS. Provisory title: The effect of Wells score test for clinical 

assessment on the diagnostic accuracy of Ddimer test for Deep Vein Thrombosis: 

a systematic review and meta-analysis. Journal: British Medical Journal 

A fourth paper is being written that presents the modelling framework developed 

in Chapter 8. Provisory title: A meta-analytic framework for the estimation of the 
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Appendix E – Published paper 1: based on 
Chapter 4 and Chapter 5 

 

 

  



 
The following published article is not available in the electronic version of this thesis 

due to copyright restrictions.  

 

Novielli, N., Cooper, N.J., Sutton, A.J. and Abrams, K.R., ‘Bayesian model 
selection for meta-analysis of diagnostic test accuracy data: Application to 

Ddimer for deep vein thrombosis’ in Research Synthesis Methods, 2010, 1 (3-
4), pp. 226-238.  DOI: 10.1002/jrsm.15. 

 

The full version can be consulted at the University of Leicester Library. 
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Appendix F – Published paper 2: based on 
Chapter 6 

 

 

  



 
The following published article is not available in the electronic version of this thesis 

due to copyright restrictions.  

 

Novielli, N., Cooper, N.J., Abrams, K.R. and Sutton, A.J., ‘How Is Evidence on 
Test Performance Synthesized for Economic Decision Models of Diagnostic 
Tests? A Systematic Appraisal of Health Technology Assessments in the UK 
Since 1997’ in Value in Health, 2010, 13 (8), pp. 952-957.  DOI: 10.1111/j.1524-

4733.2010.00762.x. 

 

The full version can be consulted at the University of Leicester Library. 
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