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Abstract 

 

The application and development of methods to combine and 
infer information from genetic epidemiological studies of 

cardiovascular and other complex traits. 

Nicholas Gareth Daniel Masca 

 

This thesis investigates methods to combine and infer information from genetic 
epidemiological studies.  Three issues are explored, each in a distinct and self-
contained chapter. 

Chapter 1 investigates how best to incorporate treatment information in genetic 
analyses of blood pressure.  Different approaches to adjusting for treatment are 
compared in a number of simulated scenarios, and the approaches that utilise 
all the observed data are generally shown to perform best.  One particular 
condition, however, causes these approaches to suffer bias.  This is where a 
genetic variant (or some other factor) interacts with treatment.  This chapter 
therefore urges caution in the interpretation of results from these studies, and 
suggests some possible approaches to identifying existing interactions with 
treatment. 

Chapter 2 concerns participant privacy in genome-wide association studies 
(GWAS).  Recent methods claim to be able to infer whether an individual 
participated in a study, using only aggregate statistics from the study such as 
allele frequencies.  In the past, these statistics have been freely published 
online.  This chapter explores the full implications of these methods, by 
investigating their true capabilities and limitations.  In addition, some 
modifications are proposed to one particular method, to demonstrate how it can 
be adapted for use in practice.  This work finds that participant identification is 
possible in ideal conditions, but common characteristics of real studies may 
prevent any reliable application of these methods in practice. 

Chapter 3 proposes a new approach to synthesising data between studies.   
This approach – named “DataSHIELD” – guarantees identical results to an 
individual-level meta-analysis, while offering greater flexibility than the study-
level meta-analysis.  DataSHIELD also potentially circumvents some of the laws 
that restrict data use, because it does not involve sharing any individual-level 
data between studies.  This chapter outlines the principles underpinning 
DataSHIELD, and demonstrates its use in a simulated data example. 
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Preface 

 

 

This thesis follows a general theme concerning the development and 

application of statistical methodology for combining and inferring information 

from genetic epidemiological studies of cardiovascular and other complex traits.  

Three chapters approach the issue from different angles and address the theme 

in different ways.  As such, each chapter is self-contained, and includes its own 

methods and results, as well as specific introductory and discussion sections. 

Chapter 1 explores an issue that is particularly apparent in genetic 

epidemiological analyses of blood pressure.  This chapter focuses on how to 

adjust an analysis when some observations are distorted by the use of 

treatment, and is an example of incorporating treatment information.  Different 

approaches to handling these observations – which may be considered to be 

“right censored” – are compared, with the aim of recommending the most 

appropriate methods to use in different settings.  This chapter forms the basis of 

a paper published in Statistics in Medicine (Masca et al., 2011). 

In Chapter 2 the issue of inferring information is addressed in the context of the 

publication and use of results from genome-wide association studies.  The 

release of results is a vital aspect of the research process; for example, it allows 
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for the verification of findings and it can inform further work.  However, recent 

assertions threaten to limit what can be published safely from these studies, in 

light of the ethico-legal requirements to guarantee the protection of participant 

confidentiality.  For instance, methods have been proposed that claim to be able 

to test probabilistically whether or not a given individual of interest participated 

in a particular study using only aggregate statistics from studies (such as allele 

frequencies).  These findings have had major implications on the data sharing 

practices in the field, but a number of issues have remained unclear.   As such, 

Chapter 2 explores the science behind these methods with the aim of clarifying 

their true capabilities and limitations.  A paper based on the findings in this 

chapter has been submitted to the International Journal of Epidemiology and is 

currently in press. 

Chapter 3 concerns the combining of data and results across studies.  Existing 

approaches to synthesising data, such as study level and individual level meta-

analysis, either lack flexibility or can infringe upon the ethico-legal stipulations 

that restrict data use.  A need for a more flexible approach that avoids 

contravening these data sharing laws therefore exists.  Chapter 3 outlines such 

an approach, which has been published in the International Journal of 

Epidemiology (Wolfson et al., 2010).  I am a co-author on that paper.  This 

approach involves the use of a dedicated IT infrastructure and specialised 

statistical algorithms to permit the pooling of results across studies without the 

need to share any individual-level data.  As such, it adheres to the strict data 

privacy standards required in the field, and allows improved flexibility to specify 

and execute analyses from a single research hub.  I contributed to this paper 

primarily in terms of the development of the mathematical models underpinning 
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the approach.  I also drafted the supplementary materials for the paper, which 

detail the mathematical algorithms and the programming code.   

The thesis concludes with a general discussion highlighting areas for further 

work and possible extensions.  The appendices contain supplementary 

material, where appropriate, including results tables, computer code, and 

mathematical proofs.  The Appendix is split into three sections: A, B, and C, 

which contain relevant information for chapters 1, 2 and 3 respectively. 

 

 



 

 

 

 

Chapter 1.  

Correcting for the Use of Antihypertensive Treatment in 

Genetic Analyses of Blood Pressure 

 

 

1.1. Introduction 

This chapter investigates a problem that occurs with analyses that focus on the 

aetiology of certain complex traits.  The problem arises in observational studies 

where a number of the participants use a form of treatment that directly impacts 

upon the observed outcome of interest.  Studies into cardiovascular traits for 

which treatment is widely prescribed - such as blood pressure and high or low-

density lipoprotein – are therefore particularly affected by this issue.  This 

chapter primarily investigates the issue in the context of studies of blood 

pressure (BP); however, it is important to note that the key findings generalise 

to the analysis of other traits that are mitigated by treatment. 

1.1.1 Background 

Hypertension (high BP) is a common condition estimated to affect over 25% of 

adults worldwide (Kearney et al., 2005).  Although hypertension itself is 

asymptomatic, it is a major contributor to the risk of cardiovascular disease, 
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which accounts for up to 30% of all deaths (Murray et al., 1997; Chobanian et 

al., 2003).  Even changes within the normal range BP are associated with risk of 

stroke and coronary heart disease (Lewington et al., 2002).  BP in its own right 

is therefore of major importance to public health.  

Lifestyle factors such as dietary salt intake, physical activity, smoking, and 

body-mass index (BMI) are all known to influence BP (Beilin, 1997; Pickering, 

1997), but BP also has a substantial heritable component (Havlik et al., 1979; 

Levy et al., 2000).  Identification of the genetic determinants of BP can offer 

insights into the biological pathways underpinning BP regulation (Lifton et al., 

2001), and, indeed, this has been a key aim of recent genetic association 

studies of BP. 

Paramount to the success of a genetic association study is a sufficient statistical 

power to detect the generally modest effects of common genetic variants (Wong 

et al., 2003; Burton et al., 2009).  In genome-wide association studies, hundreds 

of thousands or even millions of genetic variants are tested for association with 

the phenotype of interest, and an allowance for multiple testing must be made.  

As such, the threshold for genome-wide significance is usually currently defined 

as p< 5 x 10-8 (McCarthy et al., 2008).  A sufficiently large sample size is crucial 

to the provision of an adequate power to detect associations for BP at this 

threshold.  Recent breakthroughs in genome-wide association studies of BP 

have been achieved using large sample sizes (Levy et al., 2009; Newton-Cheh 

et al., 2009).  For instance, the Global BPgen Consortium (Newton-Cheh et al., 

2009) meta-analysed 17 cohorts consisting of a total of 34 433 participants, and 

the CHARGE Consortium (Levy et al., 2009) meta-analysed five cohorts 
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consisting of 29 136 participants.  The SNPs highlighted in these studies had 

reported effect sizes between approximately 0.5 and 1 mmHg per copy of the 

minor allele for systolic BP, and approximately 0.35 to 0.5 mmHg per copy of 

the minor allele for diastolic BP (typically about 1/40th to 1/15th of a standard 

deviation). 

Besides sample size, there are several other factors that may limit the statistical 

power of genetic association studies of BP.  For instance, it can be difficult to 

gain a reliable measure of an individual’s BP (Wong et al., 2003) because BP 

varies in different situations and at different time points throughout the day.  

Other measurement difficulties, such as an alerting (or “white-coat”) response, 

and observer bias (including “digit preference”, which entails rounding BP 

readings up or down) can also influence recordings of BP (Wilcox, 1961; Petrie 

et al., 1986).  Most importantly, investigations into the aetiology of BP are 

affected by the use of antihypertensive treatments by study participants.  Since 

hypertension is highly prevalent within western countries, drugs to lower BP – 

antihypertensives – are widely prescribed.  Population-based cohort studies 

therefore sometimes have up to a quarter of participants on antihypertensive 

treatment (or even more in studies of older populations) (Levy et al., 2009; 

Newton-Cheh et al., 2009).  For these treated participants, any BP 

measurements provided in a study will reflect “modified BP” values, as opposed 

to the “underlying BP” values that exist, in principle, in the absence of treatment. 

It has been shown that a failure to adequately correct analyses for the inclusion 

of modified BPs can distort the results (White et al., 1994; Cook, 1997; White et 

al., 2003; Tobin et al., 2005; McClelland et al., 2008).  Because 
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antihypertensive treatments lower BP, modified BPs will be lower than the 

unobserved, underlying BPs, and the results of an analysis may thus be 

misleading if no account is made for antihypertensive use.  A number of 

approaches have therefore been proposed to adjust for such bias.   The 

following section introduces these approaches. 

1.1.2 Approaches to correct for modified BPs 

Before describing the approaches to correct for modified BPs, I first introduce 

some notation, which shall be used throughout the chapter.  

For the ith subject (i = 1,…,n), Yi is the observed systolic blood pressure (SBP), 

and Zi is a latent variable representing the underlying SBP.  For subjects who 

use antihypertensive treatment, Zi cannot be observed, so it is estimated or 

imputed following an algorithm defined individually by each approach.  Imputed 

values of Zi are denoted by the variable Xi.  The indicator variable TREATi is 

used to denote whether the i’th subject receives treatment (TREATi = 1 if 

treated; TREATi = 0 otherwise).  Note that for all approaches and in all 

situations, if TREATi = 0 then Xi = Yi = Zi. 

Each of the approaches, unless stated otherwise, fits a linear regression model 

to Xi.  I consider the same model for each approach, consisting of an age effect; 

a sex effect; and a genetic factor.  The approaches therefore fit a model to the 

imputed values of the form: 

Equation 1 �� � 	
 � 	���� � 	����� � 	��� � ��, 
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where AGEi is a continuous covariate measured in years, SEXi is a binary 

covariate (SEXi = 1 denotes a male, SEXi = 0 denotes a female), and gi denotes 

the genotype for a diallelic locus (gi = 0, 1 or 2 copies of the minor allele).  The 

term �� represents random error, and ��~��0, ���.  Note that an additive genetic 

effect is fitted in the above model, where two copies of the minor allele produce 

twice the effect of one copy.   

Each of the approaches to correct for modified BPs relies on a set of 

assumptions, and there are common classes of assumption shared by the 

different approaches.  Table 1 below therefore lists the main assumption 

classes.  For convenience, I later refer back to these assumptions, where 

applicable, using the class numbers provided.  Note that all approaches that fit 

a linear regression model rely on Assumption (i), and I therefore shall not further 

allude to any reliance on this assumption further. 

Class Assumption 

(i) 
Assumptions linked to the type of model fitted.  For instance, any 
approach that fits a linear regression assumes that the error terms are 
independent and follow a normal distribution with constant variance. 

(ii) Assumption regarding the size/nature of the treatment effect. 

(iii) Assumption regarding the distribution of the underlying phenotype. 

(iv) 
Assumption regarding whether or not the modified phenotypes are 
informative of underlying patterns/phenotypes. 

Table 1: Common assumptions used for approaches to correct for modified phenotypes. 

 

(a) No Adjustment 

A common approach to analysis is simply to ignore the problem altogether.  

Hence, no correction for the use of treatment is implemented, and all the 
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observed BPs are analysed in a conventional way.  A model in the form of 

Equation 1 is therefore fitted, but where the estimates of the underlying 

phenotype, Xi, are simply equal to the observed phenotypes, Yi: 

Equation 2 �� ≡ �� � 	
 � 	���� � 	����� � 	��� � ��  

The No Adjustment approach assumes that modified BPs (i.e. the observed 

BPs for individuals on treatment) are informative of underlying patterns 

[Assumption (iv)].  This is an implicit assumption, because the approach actually 

ignores the problem completely. 

(b) Exclude 

The Exclude approach assumes that modified BPs are uninformative of the 

underlying BPs [Assumption (iv)], and omits any treated individuals from the 

analysis.  It therefore fits a model in the form of Equation 1 only to the remaining 

subjects, i.e. for which treati = 0. 

The Exclude approach is commonly used in practice (e.g. (Hsueh et al., 2000; 

Rice et al., 2000; Brand et al., 2003)).  It is inefficient, however, in that it 

typically suffers an inevitable loss of statistical power as a consequence of 

disregarding a possibly sizeable proportion of the data.   

The Exclude approach can alternatively be performed by omitting any 

individuals on treatment at the recruitment stage of a study.  In this situation, a 

target sample size is acquired and, hence, any power loss due to excluding 

data from treated subjects is avoided.  Even this strategy remains 
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unsatisfactory, however.  Such a recruitment strategy imposes a selection bias 

upon a study, in which the sample becomes biased towards individuals with 

lower underlying BPs.  Given that individuals on treatment tend to be those with 

high underlying BP – and that these are potentially “interesting” subjects – this 

alternative strategy can clearly be seen to be flawed. 

(c) Treatment as a Binary Covariate 

Another approach commonly used in practice is to adjust for treatment by 

modelling it as a binary covariate (e.g. (Yang et al., 2007; Vora et al., 2008)).  

This requires fitting a model in the form of Equation 2, with the additional term 

TREATi: 

Equation 3 �� ≡ �� � 	
 � 	���� � 	����� � 	��� !�� � 	"�� � �� 
Treatment as a Binary Covariate assumes that modified phenotypes are 

informative of underlying patterns as long as treatment is adjusted for in the 

model [Assumption (iv)].  Although this approach, at first, seems reasonable, as 

we shall see, on closer inspection it is actually flawed. 

Consider that the aim of a study of BP is to investigate the determinants of BP.  

Where an analysis adjusts for treatment by modelling it as a covariate, in effect, 

it explains away the differences in BP between subjects who use treatment and 

subjects who do not by attributing these differences to an apparent “treatment 

effect”.  This is an inappropriate strategy because the differences in BP 

between subjects are not caused by treatment at all (treatment actually reduces 

the differences between those with high and low BP).  Estimating the effects of 
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the factors that truly cause these differences should be the primary focus of the 

analysis.  Hence, attributing these differences to treatment explains away 

variation in the data and could mask any true effects. 

The problem with this analysis can further be explained by considering the role 

of treatment in this scenario.  Where conventional covariates are defined as 

“possible predictors” of the outcome of interest (Last, 2001), the use of 

treatment here not only predicts BP – but also is a consequence of having high 

BP.  Therefore, treatment is not a conventional covariate here, and should not 

be adjusted for in a regression in the usual way. 

(d) Binary Trait 

The Binary Trait approach classifies subjects either as affected or unaffected 

with regard to the condition of interest.  For a study of BP, a subject would be 

labelled hypertensive if he/she uses antihypertensive treatment or, following 

criteria outlined in the Seventh Report of the Joint National Committee (JNC VII) 

(Chobanian et al., 2003), for example, if he/she has SBP/DBP equal to or above 

140/90 mmHg.  All other subjects would be labelled “normotensive”. 

The binary outcome, hypertensioni (= 1 if hypertensive; = 0 if normotensive) is 

fitted in a logistic regression model of the form: 

Equation 4 

  logit	�)�� � 	
 � 	���� � 	����� � 	��� � *�  
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where pi is the probability that the i’th patient is hypertensive, and all other 

notation is as before. Model parameters are estimated in the form of log-odds 

ratios. 

Binary Trait assumes that any subject on treatment has the condition of interest 

[Assumption (iii)].  Hence, for BP, this approach assumes that anyone who uses 

antihypertensive medication has hypertension.  Any subjects on treatment that 

do not fit the conventional criteria for treatment can therefore pose problems.  

For example, individuals with diabetes are more susceptible to the risks 

associated with high BP and, hence, are often prescribed antihypertensives at a 

lower threshold than that for non-diabetics.  Similarly, antihypertensive 

medications are sometimes prescribed for conditions such as coronary heart 

disease (CHD), heart failure and migraine, rather than to treat hypertension.  

Clinically normotensive individuals, thus, may also use antihypertensives, and 

the Binary Trait approach, in effect, misclassifies these individuals.  This could 

be a source of bias.  Note that any possible misclassifications depend on the 

definition of hypertension.  Although the above definition is common, other 

definitions could also be used instead. 

A further limitation of the Binary Trait approach is that, typically, dichotomising a 

continuous outcome leads to a loss of statistical power (Altman et al., 2006).  

Binary Trait is therefore likely to make inefficient use of the quantitative BP 

measurements collected. 
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(e) Fixed Treatment Effect 

This approach is outlined by Cui et al. (Cui et al., 2002; Cui et al., 2003).  They 

suggest adding a fixed constant, c, to all modified BPs to adjust for the negative 

effect of treatment.  Cui et al. recommend that the choice of c is based on an 

average effect for the appropriate class of treatment, as portrayed in the 

medical literature.  For example, an average reduction in blood pressure 

attributed to antihypertensive medication is typically around 10 mmHg (Law et 

al., 2003). 

This approach therefore fits a model in the form of Equation 1, where: 

Equation 5 

�� � +�� � ,			if	./�.� � 1��											if	./�.� � 0 

Fixed Treatment Effect assumes a fixed distribution for the treatment effect 

[Assumption (ii)], and this is a potential weakness of the approach.  For 

instance, some patients could be treated more aggressively, with a higher 

dosage of a drug or with “combination therapy” (see Section 1.2.4).  In these 

situations, the above assumption will be violated.   

The Fixed Treatment Effect approach implicitly assumes that modified BPs are 

informative [Assumption (iv)].  It therefore uses the information in the original 

observations, and, hence, retains the original variability in the data. 
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(f) Fixed Substitution 

Hunt et al. (Hunt et al., 2002) propose an approach that substitutes all modified 

BPs for a fixed value, m.  They recommend setting m as the minimum threshold 

for the clinical diagnosis of the condition of interest.  According to the JNC VII 

(Chobanian et al., 2003), a diagnosis of hypertension is where systolic blood 

pressure (SBP) is greater than 140 mmHg, and/or diastolic blood pressure 

(DBP) is greater than 90 mmHg.  Hence, for a study of BP, the recommended 

value for m is 140/90 for SBP/DBP respectively. 

Fixed Substitution involves fitting a model in the form of Equation 1, where: 

Equation 6 

�� � +1		if	./�.� � 1��	if	./�.� � 0   

The Fixed Substitution approach assumes that any modified BP is 

uninformative of the underlying BP [Assumption (iv)].  It therefore substitutes 

modified BPs and, hence, removes any distortion due to treatment.  This 

removes the variability in the original data.  Fixed Substitution also implicitly 

assumes that individuals who use treatment have the condition of interest, i.e. 

hypertension in this case [Assumption (iii)].  As already described for (d) above, 

this assumption may not always hold in practice; for example, some subjects 

may be on antihypertensive medication for some reason other than to treat 

hypertension.  Thus, the reliance on this assumption could be problematic 

under some circumstances. 
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(g) Random Substitution 

As an alternative to (f), Hunt et al. (Hunt et al., 2002) also propose replacing 

modified BPs with randomly generated values from a pre-specified distribution.  

This distribution should be centred between the typical thresholds for the 

diagnosis of the condition of interest, and truncated at each end.  For instance, 

following the JNC VII (Chobanian et al., 2003), stage I hypertension is defined 

as SBP/DBP between 140/90 mmHg and 160/100 mmHg.  Hence, for BP, Hunt 

et al. recommend that Xi is generated randomly from a normal distribution with 

mean 150/95, standard deviation 5/2.5, and with truncation at 140/90 mmHg 

and 160/100 mmHg for SBP/DBP measures respectively. 

Hence, this approach fits a model of the form in Equation 1, where: 

Equation 7 

�� � + ~��150, 5��	if	�� !�� � 1��																							if	�� !�� � 0, 
and where Xi is truncated at 140 and 160 mmHg for subjects on treatment. 

Random Substitution relies on the same set of assumptions as (f).  Modified 

BPs are assumed to be uninformative of the underlying BPs [Assumption (iv)]; 

and any subjects who use treatment are assumed to be hypertensive 

[Assumption (iii)].  The same criticisms for (d) and (f) therefore also apply here.  

In situations where, for example, diabetics are included within a study, some 

treated subjects may not necessarily be hypertensive.  Assumption (iii) 

therefore may not be met in practice. 
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(h) Median Method 

The Median Method proposed by White et al. (White et al., 1994; White et al., 

2003) uses a quantile regression (Narula et al., 1999; Koenker, 2008), which 

models the median as the measure of location as opposed to the mean used in 

ordinary least squares regression.  The median is less influenced by extreme 

observations than the mean, and is therefore generally regarded as more 

robust.   

In contrast to ordinary least squares regression, where model residuals are 

assumed to be independent and normally distributed with a mean of zero and 

constant variance, quantile regression assumes only that the model residuals 

have a median of zero.  Furthermore, where ordinary least squares regression 

estimates model parameters by minimising the sum of the squared residuals, 

quantile regression estimates parameter coefficients by minimising the sum of 

absolute residuals.  This is a valid approach for estimating parameter 

coefficients because the value that minimises the sum of absolute residuals is 

the median. 

The Median Method is a sign-based approach that assumes all individuals 

receiving treatment have an underlying BP above the median.  It is claimed that 

where modified BPs are substituted with the constant, k (see below), then, as 

long as fewer than half the individuals in a study use treatment, the Median 

Method will recover the true median using quantile regression.  

The Median Method fits a quantile regression to Equation 1, where 
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Equation 8 

�� � +3											if	�� !�� � 1�� 											if	�� !�� � 0. 
The estimated parameter coefficients should be insensitive to the choice of k as 

long as less than 50% of the individuals in a sample are treated, and that k is 

greater than all fitted medians.  The authors recommend using a “clinically 

plausible value of k near the upper end of the distribution”, such as 160-

200mmHg for SBP (White et al., 2003).  This is because they suggest 

estimating standard errors via bootstrap methods, which are dependent on k.  

Specifically, the case-resampled (or random-x) bootstrapping approach is 

recommended for estimating the standard errors, as this approach allows for 

any possible heterogeneity in the model residuals. 

The Median Method assumes that modified BPs are uninformative [Assumption 

(iv)].  Also, as stated above, it assumes that individuals receiving treatment 

have an underlying BP above the median [Assumption (iii)].  This assumption 

could be violated in the situation described previously [see (d), (f) and (g)], 

where diabetics are prescribed antihypertensives at a different threshold to non-

diabetics.  Furthermore, because the underlying BP is unknown for subjects on 

treatment, in most situations Assumption (iii) cannot be validated. 

(i) Non-Parametric Adjustment 

Levy et al. (Levy et al., 2000) describe a non-parametric algorithm for adjusting 

modified BPs for the effect of treatment.  Raw residuals, ri, are obtained by 

fitting the null model to the observed values, i.e.: 
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�� � 	
 � /�. 
The raw residuals are then sorted into descending order, and the adjusted 

residuals, rk*, calculated by applying the algorithm 

Equation 9 /5∗ � /5�1 � ./�.5� � ./�.578/5 � ∑ /:∗:;5<�:;� = 3⁄ ?, 
where rk is the kth

 residual sorted in descending order, and treatk is 1 if the kth 

ordered residual relates to a treated patient, and 0 otherwise. 

For untreated individuals, the adjusted residual, rk
*, is simply equal to rk and, 

hence, the algorithm shown in Equation 9 adjusts observations only for 

individuals who receive treatment.  For treated individuals, the adjusted residual 

is an average of the current raw residual, rk, together with all greater adjusted 

residuals, ∑ /:∗:;5<�:;� .  The algorithm thus increases the size of the residual for 

any treated individual (with the exception of the individual with the greatest Yj, if 

this person is treated). 

Finally, an adjusted phenotype, Xk, is obtained for each individual by adding the 

difference between the raw and adjusted residuals, i.e. 

Equation 10 �5 � �5 � /5∗ � /5. 

A model in the form of Equation 1 is then fitted to the Xk. 
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Non-Parametric Adjustment assumes that modified phenotypes are informative 

of the underlying phenotype [Assumption (iv)], and the algorithm retains the 

original ordering of observations within each treatment group. 

(j) Censored Normal Regression 

Censored Normal Regression assumes that individuals receiving treatment are 

right-censored at the observed phenotype, Yi (Tobin et al., 2005).  It also 

assumes non-informative censoring, where, conditional upon covariates, the 

distribution of the underlying phenotype above the censoring threshold is the 

same for treated and untreated participants.  This allows a Tobit-type model to 

be fitted (Clayton et al., 1993). 

Based on the assumption that 

+ �� @ ��										if	�� !�� � 1�� � �� 											if	�� !�� � 0, 
Tobit models use maximum likelihood to estimate the marginal effects of the 

model parameters (Hayashi, 2000).  Hence, where the model in Equation 1 can 

be re-expressed as �� � 	
 � ���	� � ����	� � ��	� � �� � AB� � ��, i.e. where 

di denotes the covariates (or design matrix) and ��~��0, ���, the contribution to 

the likelihood is: 

C�D�|F�� � G1� ∅ID� � F�	� J ,									 if �� !�� � 0	�Note	that	this	is	the	normal	p.d.f.�
Ф I3� � F�	� J ,	  if �� !�� � 1,	and where	3�	is the censoring value ��. 

(This is the integrated normal p.d.f. to the 
right of the observation, Yi) 
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The log-likelihood for the i’th individual is therefore 

Equation 11 

log V�D� |F�� � �1 � �� !���. log W1� ∅ ID� � F�	� JX � �� !�Y. log WФ I3� � F�	� JX. 
Censored Normal Regression relates closely to the Non-Parametric Adjustment 

approach detailed previously.  For instance, where Non-Parametric Adjustment 

averages over the normal p.d.f. to the right of the observed value Yi, Censored 

Normal Regression integrates over this function.  The Censored Normal 

Regression approach therefore retains the assumption of normality throughout.  

This can be considered a distinct advantage of Censored Normal Regression, 

for the analysis of normally distributed traits such as blood pressure. 

This approach assumes that modified phenotypes are informative of the 

underlying phenotype [Assumption (iv)].  As stated earlier, Censored Normal 

Regression also assumes non-informative censoring [Assumption (iii)].  This 

latter assumption is unlikely to be true in reality, because, as subjects usually 

only receive antihypertensive treatment if they have high BP, the distribution of 

underlying BP above a particular threshold will be different for treated and 

untreated individuals.  Despite this, previous work suggests that this approach 

is relatively robust to this assumption. 

1.1.3 Alternative Approaches 

In addition to the above methods, a number of alternative approaches have 

been proposed that have been referred to as “Multiple Imputation” methods 

(Buuren et al., 1999; McClelland et al., 2008).  The Multiple Imputation 
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approaches require use of additional out-of-study or pre-treatment patient 

records for a proportion of the subjects on treatment (Cook, 1997; Cook, 2006; 

McClelland et al., 2008).  Where available, these pre-treatment measures of 

BP, Pi, are assumed either to be correlated with the underlying phenotype, Zi, 

(e.g. (Cook, 1997; Cook, 2006)) or to be equal to Zi itself (e.g. (McClelland et 

al., 2008)).  Hence, for a treated subject, Xi is either a function of Pi, or Xi equals 

Pi, while for non-treated subjects, Xi is simply equal to the observed phenotype, 

Yi.  

Typically, pre-treatment records are only available for a proportion of the 

subjects in a study, and these approaches use multiple imputation to estimate 

Pi where absent (Rubin, 1987).  For instance, the available pre-treatment 

measures, Pi, are fitted in a linear regression model, and covariates such as the 

post-treatment phenotype, medication type, dose, age, sex, and race are 

considered.  The final model is then used to predict Pi for each patient with only 

post-treatment phenotypic measures available. 

Although these approaches seem effective at adjusting for the use of treatment 

(Cook, 1997; Cook, 2006; McClelland et al., 2008), a major limitation to their 

use is that they can only be applied in situations where some pre-treatment 

measures are available.  Typically, pre-treatment measures are only available in 

longitudinal studies.  Many studies of BP – such as the Global BPgen 

consortium (Newton-Cheh et al., 2009) and the CHARGE Consortium (Levy et 

al., 2009) – have little or no longitudinal data and, hence, the Multiple 

Imputation approaches are often inapplicable.  The focus of this chapter is on 

approaches that can be applied in cross-sectional data alone.  I therefore do not 
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consider use of the Multiple Imputation approaches any further.  Note, however, 

that a number of the approaches described in Section 1.1.2 are basically 

imputation methods, because they impute BP for those measures distorted by 

treatment.  The approaches described in Section 1.1.2 should not be confused 

with the “Multiple Imputation” discussed here. 

1.1.4 Comparison of the Approaches 

A convenient way to compare the approaches to analysis is to classify them 

according to how they handle any modified BPs.  For instance, No Adjustment 

(a), Exclude (b), and Treatment as a Binary Covariate (c) employ either a 

simple correction for the use of treatment or no correction at all.  As such, these 

approaches have been referred to as “Naïve” approaches (McClelland et al., 

2008). 

Intuitively, each of the remaining approaches can be classified into one of two 

other groups.  Some of the approaches assume that any modified BPs are 

uninformative for the underlying BPs, and they therefore substitute modified 

BPs for alternative values.  These approaches, thus, can be described as 

“Substitution” approaches.  Naturally, Fixed Substitution (f), Random 

Substitution (g), and Median Method (h) all fall into this class.  In addition, I also 

classify Binary Trait (d) as a Substitution approach.  Although (d) does not 

necessarily assume that modified BPs are uninformative, as with (f), (g) and (h) 

it substitutes modified (as well as “un-modified”) BPs for an alternative (binary) 

measure.  Hence, even though (d) models a different trait to all other 

approaches, it is similar to the other approaches in this group.  The Substitution 

approaches generally assume that any participants on antihypertensive 
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medication are hypertensive, and, as such, handle all modified BPs in the same 

way.  Hence, these approaches could be susceptible to bias if any participants 

receive antihypertensive treatment for some other reason, such as due to 

diabetes, CHD or migraine. 

The approaches in the final group utilise all the observed data within an 

analysis, and apply a simple mathematical correction either to the modified BPs 

themselves (e.g. by adding a constant to any modified BP) or to the statistical 

likelihood function (e.g. by integrating over the normal probability density 

function to the right of any modified BP).  These approaches assume that 

modified BPs are informative, and I therefore label this group the “Informative 

BP” group.  The Informative BP approaches include: Fixed Treatment Effect (e), 

Non-Parametric Adjustment (i) and Censored Normal Regression (j). These 

approaches generally adjust for treatment in the same way for all individuals; 

thus, as we shall see in Section 1.3, they may be susceptible to bias if the effect 

of treatment varies between individuals. 

1.1.5 Existing Work & Proposed Extensions 

Previous work has compared and assessed the different approaches to correct 

analyses for the use of treatment either via simulation (Cook, 1997; Tobin et al., 

2005; McClelland et al., 2008) or numerically (White et al., 2003).  These 

studies have investigated how the approaches perform under a number of 

conditions that aim to reflect different characteristics of real studies.  For 

example, one such condition has been described as a non-differential 

intervention (White et al., 2003).  A non-differential intervention is where both 

the probability of receiving treatment and the effect of treatment depend only 
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upon the outcome of interest.  Hence, for a study of BP, the intervention is non-

differential if individuals only receive antihypertensives due to having high BP, 

and if the effects of any antihypertensive treatments depend only on BP.   

Simulations have shown that, in general scenarios in which there is a non-

differential intervention, all the approaches to analysis maintain approximately 

the correct levels of type I error (Tobin et al., 2005; McClelland et al., 2008).  

The approaches differ, however, in terms of how accurately they estimate the 

parameter coefficients, and in terms of the statistical powers obtained.  For 

instance, No Adjustment (a), Exclude (b), and Treatment as a Binary Covariate 

(c) tend to underestimate the parameter coefficients and, thus, suffer reduced 

powers.  Binary Trait (d) and Median Method (h) also appear to be low powered 

approaches.  Fixed Substitution (f) and Random Substitution (g) sometimes 

perform well – with a high power and small bias in the parameter estimates – 

but on other occasions they perform poorly, i.e. yielding a lower power and a 

larger degree of bias.  Fixed Treatment Effect (e), Non-Parametric Adjustment 

(i), and Censored Normal Regression (j) appear to be the best approaches; they 

typically yield a high power, and lead only to small degrees of bias in the 

estimates of the parameter coefficients.  Possible explanations as to why each 

approach performs as such have already been discussed in Section 1.1.2. 

A number of conditions have been tested in scenarios where the intervention is 

non-differential.  For example, an “unobserved” covariate has been tested by 

simulating a factor that has a strong effect on BP but which is left unaccounted 

for in the analyses.  A scenario in which some individuals without high blood 

pressure also receive treatment has also been tested.  Furthermore, scenarios 
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have been tested in which the treatment effect is implemented in different ways.  

For example, the treatment effect has been simulated from a fixed normal 

distribution; as a percentage reduction of underlying BP; and by targeting a 

specific threshold for the observed phenotype to lower to.  Generally, as 

reported in the literature (Tobin et al., 2005; McClelland et al., 2008), none of 

these conditions seems to result in any more than a small decrease in the 

statistical power for each approach, and a marginal increase in the bias of 

parameter estimates.  However, some of the approaches have not been tested 

under each condition, and some of the conditions have not been individually 

tested in separate scenarios.  As such, there remains a potential for further 

work in this area.  Further work should clarify how the different approaches 

perform under each condition, and provide results that are comparable between 

scenarios.  This is the focus of Section 1.2. 

In contrast to the condition described as a “non-differential” intervention, an 

intervention is “differential” if the probability of receiving treatment and/or the 

effect of treatment depends on another factor (other than the outcome itself).  

For example, a differential threshold for receiving treatment would occur if 

antihypertensive medications are systematically prescribed to some participants 

(such as those with diabetes) at a lower threshold of BP than others (Raskin, 

2003).  Furthermore, a differential treatment effect would occur, for example, if 

the efficacy of treatment varies depending on genotype for a particular genetic 

variant (this is a type of pharmacogenetic interaction) (Turner et al., 2001; 

Arnett et al., 2009).   
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Currently, only a limited amount of work has investigated how the different 

approaches perform when there is a differential intervention.  For instance, 

although White et al. (White et al., 2003) examined the effects of both a 

differential threshold for receiving treatment and a differential treatment effect, 

they tested only No Adjustment (a), Exclude (b), and Median Method (h).  

Similarly, in addition to testing (a) and (b), a more recent study also tested 

Treatment as a Binary Covariate (c) and Censored Normal Regression (j); 

however, they only examined the effects of a differential probability for receiving 

treatment (McClelland et al., 2008).  Both of these studies found that the 

approaches to analysis behave very differently to one another under a 

differential intervention.  Some of the approaches lead to bias under both 

conditions [e.g. (a)]; some of the approaches are only affected under one of the 

conditions [e.g. (b)]; and some seem to be unaffected in both conditions [e.g. 

(h)].  Where bias is obtained, this can impact upon both the power and type I 

error rate of an approach.   

Given these findings, at present there remains no conclusive advice as to which 

approach to analysis to use in practice.  Further work is therefore needed to 

clarify the most appropriate methods to use in different situations, such as the 

plausible scenario in which there is a differential intervention.  This is the 

primary aim of this chapter.  Section 1.2 focuses on investigating how the 

different approaches perform in different situations under a non-differential 

intervention.  Building upon this, Section 1.3 then investigates how the 

approaches perform under a differential intervention.  Each of the two 

subsequent sections performs a set of simulation studies focussing on cross-

sectional genetic-association studies of BP.  In particular, the aim of each 
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scenario is to assess the approaches described in Section 1.1.2 in terms of their 

ability to correct for the use of treatment, when the primary interest of each 

analysis is to estimate the marginal effect of a particular genetic variant (i.e. the 

effect of the variant unmitigated by treatment) on BP.   

1.2. Simulation Studies: Non-differential intervention 

This section assesses the approaches to correct for the use of treatment.  Each 

approach is tested via simulation, and its capability to detect and estimate the 

marginal effects of two genetic variants on systolic blood pressure (SBP) is 

observed.  As described below, one of these variants has a null effect and is 

used to estimate the type I error rate for each approach, while the other variant 

increases SBP, and is used to estimate power.  The approaches are tested 

under a non-differential intervention in this section, where, as described by 

White et al. (White et al., 2003), both the allocation of treatment and the effect 

of treatment depend solely on blood pressure. 

The approaches are first tested in the General Simulation Study, which is a 

“baseline” scenario in which no particular model assumptions are contravened 

(see Section 1.2.1).  This scenario, thus, demonstrates the potential levels of 

performance attainable by each approach.  The approaches are then tested in 

several further scenarios that reflect different characteristics of real studies 

(Section 1.2.2-1.2.5).  The General Simulation Study forms the basis of all 

subsequent scenarios, which are simulated by altering one or more of its 

properties.  Hence, Section 1.2.1 provides a full description of the simulation 
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method, while subsequent sections detail only those properties that differ from 

the General Simulation Study. 

Each scenario aims to estimate the marginal effect of a particular genetic 

variant on the underlying BP in the whole study population (i.e. the main effect 

of a SNP on the blood pressure that would have prevailed in the absence of 

antihypertensive treatment taken by a proportion of the population).  Monte 

Carlo estimates of the statistical power, the type I error rate, and the mean level 

of bias are derived with respect to a single nucleotide polymorphism (SNP) for 

each approach described in Section 1.1.2.  A SNP is a genetic variant that has 

one of two possible alleles on each of the two homologous chromosomes.  For 

any particular SNP, the allele with the lowest frequency within a given 

population is known as the minor allele.  Thus, for a particular SNP, an 

individual may have 0, 1 or 2 copies of the minor allele. 

1.2.1 General Simulation Study 

The General Simulation Study is designed to represent a population-based 

study of BP, consisting of 2,000 unrelated participants aged between 25 and 80 

years.  The following notation is consistent with that introduced in Section 1.1.2. 

1.2.1.1 Simulation Method 

For the ith participant (i = 1,…,2000), Zi denotes underlying SBP (in mmHg); 

AGEi denotes age (in years); SEXi denotes sex (1 = male; 0 = female); ); g1i and 

g2i denote the genotypes for two independent SNPs, which have allele 

frequencies of 0.3 and which are centred for comparability across different SNP 

effect sizes (= 0, 1 or 2 copies of the minor allele for each SNP); and �� denotes 



Chapter 1 

29 

 

a normally distributed random error.   AGEi is generated from a uniform 

distribution with parameters 25 and 80; SEXi is generated from a Bernoulli 

distribution with probability 0.5; and g1i and g2i are generated independently – 

each from two Bernoulli trials with probability 0.3. 

For each individual, the underlying SBP, Zi, is simulated from a linear 

regression model with an additive genetic effect (i.e. where 2 copies of the 

minor allele yields twice the effect of 1 copy): 

Equation 12 Z� � 	
 � 	���� � 	����� � 	���� � 	"��� � ��, 
where 	
 � 110, 	� � 0.4, 	� � 3, 	� � 2, 	" � 0, and ��~��0,18�.  Note, thus, 

that the SNPs g1 and g2 are generated to evaluate power and type I error 

respectively.  These simulation characteristics are chosen to generate a realistic 

distribution of SBP for a population-based genetic epidemiological study of 

blood pressure.  The simulated effect size of g1 is larger than would typically be 

expected, however, but is necessary here to ensure that the analysis models 

are adequately powered. 

A condition for allocating treatment is implemented next.  Following the 

definition outlined in the JNC VII (Chobanian et al., 2003), an individual with 

underlying SBP greater or equal to 140 mm Hg is labelled as “hypertensive”, 

and will possibly receive treatment.  In practice, not all hypertensive individuals 

receive antihypertensive medication; antihypertensives are therefore 

administered with probability 0.75.  The binary variable TREATi denotes treated 

status (1 = Yes; 0 = No), and is thus generated from a Bernoulli distribution with 
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probability 0.75.  In the General Simulation Study, only hypertensives are 

administered treatment and, hence, TREATi is always 0 if Zi < 140.  

For individual i, an observed SBP, Yi, is generated to represent the BP 

measurements typically obtained within studies.  For individuals who use 

antihypertensives, Yi is derived by subtracting a treatment effect from Zi.  The 

size of the treatment effect is denoted _�, and _� is generated randomly from a 

normal distribution with mean 15 mmHg and variance 42 [i.e. _�~��15, 4��].  To 

avoid any unrealistic cases where the treatment directly increases SBP, _� is 

truncated at 0. 

Table 2 below summarises the simulation properties for the General Simulation 

Study. 

Parameter 
General 

Simulation Study 

Sample Size: n 2000 

Intercept: β
 110 

Age: AGEi ; 	β� Uniform [25-80] ; 0.4 

Sex: SEXi ; β� Bernoulli (0.5) ; 3 

Gene: g1i   ; β� Bin(2, 0.3) ; 2 

Gene2: g2i ; β" Bin(2, 0.3) ; 0 

Random Error: ε� N(0, 18) 

Hypertensive Criterion: SBP ≥ 140 

P{TREATi=1|hypertensive}: 0.75 

Treatment Effect : γi N(15, 4
2
) 

Table 2: Simulation Properties for the General Simulation Study. 

 

The General Simulation Study comprises 1,000 simulated datasets on each of 

which every approach to analysis described in Section 1.1.2 is performed.  In 
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addition, a further approach is also performed – for comparison purposes – 

which analyses the underlying SBP for all subjects within each study.  Although, 

in practice, the underlying SBP is not observable for all participants due to the 

use of antihypertensive treatments, this analysis of the underlying SBP 

highlights the optimal level of performance reasonably attainable given the 

simulation characteristics (i.e. the simulated SNP effect size, the sample size, 

etc). 

For each approach, Monte-Carlo estimates of the effects of the model 

parameters AGE, SEX, g1 and g2 are derived, as well as estimates of coverage 

(i.e. number of times the 80% confidence interval around a parameter estimate 

contains the true value), and the power and type I error rates (with respect to 

the genetic variants g1 and g2 accordingly). 

Some of the approaches to analysis require particular values to be specified 

[such as the constant c for approach (e), and the constant m for approach (f)].  

Guidance for selecting these imputation values has typically been provided by 

the original proposers (e.g. in (White et al., 1994; Cui et al., 2002; Hunt et al., 

2002; Cui et al., 2003; White et al., 2003)), and depends on knowledge about 

the specific antihypertensive drugs under consideration.  A number of different 

values can potentially be used with each approach, however, and the 

simulations that follow use a range of illustrative parameter values.  Table 3 

overleaf provides a brief summary of each approach and lists the parameter 

values used in these simulation studies. 
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Methods Description Parameter Values 

Naïve:   

(a) No Adjustment Ignore use of treatment; analyse all observations in a linear 
regression model. 

 

(b) Exclude Exclude any participants who use antihypertensive medication from 
the analysis. 

 

(c) Treatment as a Binary 
Covariate 

Adjust for antihypertensive treatment use by fitting TREATi as a 
binary covariate. 

TREATi = 1 if individual i uses 
antihypertensive medication; 
TREATi = 0 otherwise. 

Substitution:   
(d) Binary Trait Define a binary “hypertension” outcome, and fit a logistic regression 

model to the data. 
hypertensioni = 1 if TREATi = 1 
or if Zi ≥ 140 mmHg; 
hypertensioni = 0 otherwise. 

(f) Fixed Substitution Substitute modified BPs with the constant m. m = 130 mmHg; and 140 
mmHg. 

(g) Random Substitution Substitute modified BPs with values generated randomly from a 
normal distribution. 

~ N(150, 52) truncated to 
[140,160] 

(h) Median Method Substitute modified BPs with the value k, and fit a quantile 
regression to the data. 

k = 140, 150, 160 in the 
General Simulation Study; k = 
160,180 and 200 in 
subsequent scenarios. 
 

Informative BP:   
(e) Fixed Treatment Effect Add the constant c to modified BPs.  c = 5; 10; and 15. 
(i) Non-parametric 

Adjustment 
Apply an algorithm to derive a set of adjusted residuals; adjust 
modified BPs by adding the difference between the current 
adjusted and raw residuals. 
 

 

(j) Censored Normal 
Regression 

Assume that modified BPs are right-censored; fit a Tobit-model to 
the data. 

 

Table 3: Summary of the analysis models with parameter values used in the simulated studies.  Shaded and non-shaded regions denote the 
three categories of approaches: Naïve, Substitution, and Informative BP. 



Chapter 1 

33 

 

Descriptive statistics for the General Simulation Study are presented in Table 4 

below.  Note that the mean proportion of individuals who receive 

antihypertensives within these studies is relatively high (27.87%).  This was 

deliberately simulated at a relatively high level in order to better illustrate the 

potential implications of failing to adequately handle modified BPs.  Note, 

however, that real examples of studies with a similar proportion of individuals on 

treatment do exist (such as in studies of older populations, e.g. (Wang et al., 

2007a)). 

Summary Statistics 
General Simulation 

Study 

Mean Underlying SBP (S.D.) 133.71 (19.2) 

for treated subjects 153.24 (10.4) 

for untreated subjects 126.17 (16.2) 

Mean Observed SBP (S.D.) 129.53 (16.0) 

for treated subjects 138.24 (11.2) 

for untreated subjects 126.17 (16.2) 

% SBP>140 38.17 

% SBP>150 19.83 

% SBP>160 8.56 

% Treated 27.87 

Mean Treatment Effect (SD) -15.00 (4.0) 
Table 4:  Descriptive Statistics for 1,000 datasets of the General Simulation Study. 

 

1.2.1.2 Results 

As noted earlier, the analyses focus on estimating the marginal effect of the 

genetic variants g1 and g2 on BP.  All approaches fit the model in Equation 1 

[except for Treatment as a Binary Covariate (c) and Binary Trait (d)]  by 

replacing the underlying SBP, Zi, with the values imputed according to each 

method (e.g. for No Adjustment (a), these would simply be the observed SBPs, 
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Yi, for all individuals).  For method (c), Equation 1 is fitted with the observed 

SBPs, Yi, as outcome and an additional binary covariate for treatment, TREATi, 

is included on the right hand side.  For method (d), a logistic regression model 

is fitted to the dichotomous outcome, hypertensioni (see Table 3). 

The full results for the General Simulation Study are presented in Table 33 in 

Appendix A, and a summary of the results is presented graphically in Figure 1 

below.  In Figure 1, the statistical power to detect the marginal effect of g1 and 

the type I error rate with respect to the null effect of g2 are shown on the left-

vertical axis (at the 5% level of significance).  The mean bias with respect to the 

estimated coefficient of g1 (only), with standard error, is also shown (in mmHg) 

– on the right-vertical axis.  Note that any references to mean bias in the 

following text refer to this estimated coefficient of g1.  Note, furthermore, that the 

measures of power, type I error and bias depend on factors such as the sample 

size, the minor allele frequency of the SNP of interest, the size of the SNP 

effect, the proportion of individuals treated within each study, and the magnitude 

of the treatment effect, etc.   

The approaches to analysis are arranged in classes across the x-axis, but, for 

reasons that will be demonstrated in Section 1.3, not necessarily in the order 

introduced in Section 1.1.2.  Results for the additional analysis of underlying 

SBP are also included on the far left of the plot. 
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Figure 1: Graphical representation of results for the General Simulation Study.  
Approaches are arranged here in categories (from left to right): naïve, substitution, 
informative phenotype.  Power [relative to the g1 coefficient, ��] and Type I Error (relative 
to the g2 coefficient,	�a) are evaluated on the left vertical axis, and mean bias/SE (with 
respect to ��) is evaluated on the right vertical axis. 

 

Focussing firstly on the analysis of underlying SBP, the power obtained for 

detecting the genetic variant g1 is 0.9.  This is the only approach unaffected by 

any bias due to the use of treatment and, hence, a power of 0.9 seems the 

maximum reasonably attainable by any approach.  Other aspects of the results 

for this analysis are consistent with those expected of a conventional and 

complete analysis (i.e. it yields approximately correct coverage and type I error 

rates, with only a small degree of bias).  As Table 33 in Appendix A shows, the 

coverage for this approach is also correct. 
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Results for the other approaches are most easily considered in terms of the 

three classes described in Section 1.1.4.  For the three Naïve approaches [No 

Adjustment (a), Exclude (b) and Treatment as a Binary Covariate (c)], estimates 

of the effects of all the covariates are shrunken towards the null (i.e. closer to 

the null effect of zero), and there are consequent losses of statistical power.  

For example, where the simulated β3 value is 2, the mean estimated values, 	b�, 
range between 1.27 and 1.57 (see Table 33, Appendix A), and the powers 

range between 0.65 and 0.85.  Hence, although the Naïve approaches retain 

the correct type I error rates, they are clearly suboptimal methods of analysis.  

With regards to the Substitution approaches [Binary Trait (d), Fixed Substitution 

(f), Random Substitution (g), and Median Method (h)], the results seem similarly 

unfavourable.  For instance, although the parameter coefficients for Binary Trait 

(d) cannot be compared to the other approaches because they are log-odds 

ratios (obtained by logistic regression), (d) has a very low statistical power (≈ 

70%).  Likewise, although Random Substitution (g) yields a reasonable power 

(≈ 87%), a comparison with the similar Fixed Substitution (f) approach (power ≈ 

70% - 83%) shows that (f) and (g) are highly sensitive to the “substitution 

values” used in place of any modified BPs.  In these simulations, the value of 

130 mmHg [i.e. which is used as a substitution value for (f)] is known to be 

below the threshold for initiating antihypertensive treatment; however, in 

practice, the relevant threshold is not always known and even when guidelines 

for treatment are widely available they are not always rigidly adhered to (Wolf-

Maier et al., 2003).  As the substitution value is increased from 130 mmHg to 

140 mmHg [with (f)] and to the mean value of 150 mmHg [with (g)], the mean 

bias decreases from -0.9 mmHg to -0.3 mmHg.  Hence, although (f) and (g) can 
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potentially perform reasonably, they are highly influenced by the choice of 

substitution value.   

The Median Method (h) also appears sensitive to its substitution parameter (i.e. 

the constant k).  When k is 140, the g1 effect is underestimated (mean bias ≈ -1 

mm Hg), and when k is 150 or 160, the g1 effect is overestimated (mean bias ≈ 

0.2 to 0.7 mmHg).  White et al. (White et al., 2003) state that (g) should actually 

be insensitive to k so long as the value chosen for k is sufficiently large.  

Subsequent sections therefore use greater values for k instead of the three 

values used here.  Nevertheless, in this scenario, with any of the three 

seemingly plausible values of k tested, (g) yields a low statistical power (≈ 47% 

- 60%) and a lower level of type I error than expected (≈ 1.5%), despite the fact 

that there were never more than 50% of individuals on treatment in any 

simulation run. 

The results that most closely resemble those of the analysis of underlying SBP 

are obtained by the Informative BP approaches [Fixed Treatment Effect (e), 

Non-parametric adjustment (i) and Censored Normal Regression (j)].  Each of 

the Informative BP approaches yields a high statistical power close to 90%, the 

expected type I error rate, and only a small magnitude of bias [mean bias ≈ -

0.25 to 0.2 mm Hg].  These analyses therefore seem reasonable approaches to 

correct for the use of antihypertensives.  For Fixed Treatment Effect (e), the 

results obtained are relatively stable with the different values of c tested (i.e. 

where c is the constant added to modified BPs to reverse the negative effect of 

treatment) – with decreasing levels of bias as c is closer to the simulated 

treatment effect.  In agreement with previous findings (Tobin et al., 2005), 
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approach (e) thus seems relatively insensitive to the different choices of c used 

here, and performs well even when c differs considerably from the simulated 

treatment effect. 

1.2.2 Scenario 1: Unobserved Covariate 

Scenario 1 aims to test the approaches under a condition where the simulation 

model is different from the model used in the analyses.  In reality, the true 

model is unknown, and factors may exist that influence the phenotype but are 

not measured during a study.  An additional covariate is therefore simulated in 

this scenario that is left unaccounted for in the analyses.  This is referred to as 

an “unobserved covariate”.  An unobserved covariate could represent factors 

such as dietary salt intake or the use of oral contraceptives, which may affect 

SBP but are not always recorded in real studies.  Although the simulated 

“random error” term might also account for these factors, the unobserved 

covariate implemented here asserts a more systematic influence upon BP. 

1.2.2.1 Simulation Method 

The unobserved covariate, ui, is implemented in the present scenario with a 

prevalence of 0.2 (1 = exposed; 0 = unexposed), and the simulation model is 

therefore 

Z� � 	
 � 	���� � 	����� � 	���� � 	"��� � 	cd� � ��, 
where 	
 � 108, 	c � 10, and all other properties are as before (see Section 

1.2.1.1).  The full simulation properties are summarised in Table 5 below.  

Because the constant value is adjusted in this scenario compared to the 
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General Simulation Study (i.e. 108 Vs 110 mmHg respectively), the unobserved 

covariate implemented here does not affect the simulated distribution of SBP.  

Hence, the descriptive statistics in this scenario are approximately the same as 

those from the General Simulation Study (shown in Table 4), and are not 

provided.  

Parameter Scenario One 

Sample Size: n 2000 

Intercept: β
 108 

Age: agei ; 	β� Uniform [25-80] ; 0.4 

Sex: sexi ; β� Bernoulli (0.5) ; 3 

Gene: g1i   ; β� Bin(2, 0.3) ; 2 

Gene2: g2i ; β" Bin(2, 0.3) ; 0 

Unobserved Covariate: ui ; βc Bernoulli (0.2); 10 

Random Error: ε� N(0, 18) 

Hypertensive Criterion: SBP≥140 

P{ TREATi =1|hypertensive}: 0.75 

Treatment Effect : γi N(15, 4
2
) 

Table 5: Simulation Properties for Scenario 1. 

 

1.2.2.2 Results 

Figure 2 below presents a graphical summary of the results for Scenario 1 and 

Table 34 in Appendix A shows the full table of results.  As can be seen, only 

small changes in the performance of the approaches are obtained here 

compared with in the General Simulation Study.  For instance, the analysis of 

underlying SBP yields a very small decrease in statistical power (power = 

0.886), and the other approaches therefore also reflect this. 
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Overall, the general pattern of results in this scenario is the same as in the 

General Simulation Study.  The Naïve approaches [No Adjustment (a), Exclude 

(b), and Treatment as a Binary Covariate (c)] perform poorly, with low powers 

(power ≈ 0.6 –0.85) and parameter estimates shrunken  to the null (mean 	b�≈ 

1.25 – 1.6).  Binary Trait (d) also yields a low statistical power (= 0.662), while 

Fixed Substitution (f) and Random Substitution (g) are sensitive to the 

substitution parameters [e.g. the constant m for (f)].  For the Median Method (h), 

greater values of k are now used (i.e. k = 160, 180 and 200 in this scenario), 

and the results approximately converge to the same mean parameter estimates 

irrespective of the three choices of k – as expected.  Nevertheless, (h) again 

yields a low statistical power with all values of k tested (power ≈ 0.50), as well 

as drastically overestimated parameter coefficients (e.g. mean 	b�≈ 2.61).   
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Figure 2: Graphical representation of the results for Scenario 1.  Approaches are arranged 
in the categories (from left to right): Naïve, Substitution, Informative BP.  Power (relative to the 
g1 coefficient , β�) and Type I Error (relative to the g2 coefficient, β�) are evaluated on the left 
vertical axis, and mean bias/SE (with respect to ��) is evaluated on the right vertical axis. 

 

The Informative BP approaches [Fixed Treatment Effect (e), Non-Parametric 

Adjustment (i), and Censored Normal Regression (j)] again perform best, with 

results closely resembling those obtained by the analysis on underlying SBP.  

The Informative BP approaches yield high powers (≈ 0.87-0.89), and again yield 

only small magnitudes of bias (e.g. mean 	b�ge�≈ 1.73 – 2.16).  It would thus 

seem that the most appropriate methods for analysis, in the case where an 

unobserved covariate is suspected, are the Informative BP approaches. 
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1.2.3 Scenario 2: Treated Normotensives 

Scenario 2 aims to simulate the usage of antihypertensives for other reasons 

than lowering blood pressure.  For instance, beta-blockers may be used to treat 

conditions such as migraine and glaucoma in addition to hypertension.  As 

such, the use of antihypertensives is not restricted just to individuals with high 

blood pressure.  Individuals with lower blood pressure can also be prescribed 

antihypertensive treatments, and this scenario investigates how the approaches 

perform when the simulated studies include a number of these individuals. 

1.2.3.1 Simulation Method 

This scenario allocates treatment to 60% of individuals with SBP of at least 

140mmHg (hypertensives), and additionally to 10% of individuals with SBP 

below 140mmHg (normotensives).   This is in contrast to the General Simulation 

Study, which allocates treatment to hypertensives only, with a probability of 

75%.  Nevertheless, as the allocation of treatment again solely depends on BP 

here, the intervention remains non-differential in this scenario. 

For consistency with other scenarios, all simulation properties other than the 

above condition (i.e. for allocating treatment), are the same in this scenario 

compared to the General Simulation Study.  The simulation properties for 

Scenario 2 are listed in Table 6 below.   
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Parameter Scenario Two 

Sample Size: n 2000 

Intercept: β
 110 

Age: agei ; 	β� Uniform [25-80] ; 0.4 

Sex: sexi ; β� Bernoulli (0.5) ; 3 

Gene: g1i   ; β� Bin(2, 0.3) ; 2 

Gene2: g2i ; β" Bin(2, 0.3) ; 0 

Random Error: ε� N(0, 18) 

Hypertensive Criterion: SBP ≥ 140 

P{TREATi=1|hypertensive}: 0.6 

P{ TREATi =1|normotensive}: 0.1 

Treatment Effect : γi N(15, 4
2
) 

Table 6: Simulation properties for Scenario 2. 

 

Table 7 below shows descriptive statistics for Scenario 2.  As can be seen, this 

scenario yields similar descriptive statistics to the General Simulation Study, 

with approximately the same overall percentage of individuals on treatment (≈ 

28%).  However, around 22% of the treated individuals are normotensive here, 

and, hence, the overall mean SBP (both underlying and observed) for treated 

individuals is lower (i.e. mean observed SBP for treated subjects = 131.38 

mmHg here Vs 138.24 mmHg in the General Simulation Study). 
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Summary Statistics Scenario Two 

Mean Underlying SBP (S.D.) 133.70 (19.2) 

for treated subjects 146.39 (16.9) 

for untreated subjects 128.63 (17.6) 

Mean Observed SBP (S.D.) 129.41 (17.6) 

for treated subjects 131.38 (17.4) 

for untreated subjects 128.63 (17.6) 

% SBP>140 37.17 

% SBP>150 19.80 

% SBP>160 8.55 

% Treated 28.00 

% Treated Individuals who are 
Normotensive 21.98 

Mean Treatment Effect (SD) -15.00 (4.0) 
Table 7: Descriptive statistics for Scenario 2 (based on 1,000 simulation runs). 

 

1.2.3.2 Results 

Figure 3 below summarises the results for Scenario 2 graphically, and Table 35 

in Appendix A shows the full table of results.  Before reflecting upon the results 

for this scenario, it is worthwhile to consider how the different classes of 

approach might be expected to perform here.  For instance, the Substitution 

approaches [Binary Phenotype (d), Fixed Substitution (f), Random Substitution 

(g), and Median Method (h)] assume that any individual who uses 

antihypertensive treatment is hypertensive, and they replace the BP 

measurements corresponding to these individuals with alternative values typical 

of hypertension.  As such, these approaches misclassify any treated 

normotensives in this scenario, and may be expected to be biased.  In contrast, 

neither the Naïve nor the Informative BP approaches make any specific 

assumptions regarding the use of treatment.  Hence, there is no reason to 
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suspect that these approaches will be adversely affected by the condition 

implemented in this scenario. 

 

Figure 3: Graphical representation of results for Scenario 2.  Approaches are arranged in 
the categories (from left to right): Naïve, Substitution, Informative BP.  Power (relative to 
the g1 coefficient, β�) and Type I Error (relative to the g2 coefficient, β�) are evaluated on 
the left vertical axis, and mean bias/SE (with respect to ��) is evaluated on the right 
vertical axis. 

 

As Figure 3 shows, the results obtained in this scenario reflect the predictions 

made.  For instance, the Substitution approaches all perform worse here than in 

the General Simulation Study.  The powers for these approaches are lower (≈ 

0.4 – 0.8), and the bias in the estimates of the parameter coefficients is 

increased [e.g. mean 	b�≈ 1.24 – 1.62 for (f) and (g)].  For the Informative BP 

approaches, the results closely resemble those in the General Simulation 
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Study.  Although (i) and (j) yield slightly lower powers (≈ 0.86), they yield no 

major increase in the bias of the parameter estimates (e.g. mean 	b�≈ 1.88 and 

2.11 respectively).   

For the Naïve approaches, Exclude (b) and Treatment as a Binary Covariate (c) 

actually perform better here than in the General Simulation Study, while No 

Adjustment (a) performs similarly.  Approaches (b) and (c) yield greater powers 

here compared with the General Simulation Study [power = 0.70 and 0.84 

respectively], and all three Naïve approaches yield smaller magnitudes of bias 

(e.g. mean 	b�≈ 1.69 – 1.74).  These improvements can be explained in one of 

two ways.  Firstly, as this scenario administers treatment to some 

normotensives in addition to a proportion of the hypertensives, any bias due to 

treatment becomes more balanced between those with high and those with low 

BP.  Secondly, the improvement for (c) may be explained by noting the 

magnitude of the difference in observed SBP between treated and untreated 

subjects here (i.e. mean difference ≈ 2.8 mmHg).  As this difference is small in 

this scenario, the act of adjusting for differences between treated and untreated 

subjects (i.e. by modelling treatment as a covariate) actually achieves very little.  

Treatment as a Binary Covariate (c) therefore behaves similarly to No 

Adjustment (a) in this scenario.   

Despite the Naïve approaches’ improved performance here, it should be noted 

that the Informative Phenotype approaches still perform better.  Similarly, the 

improvements observed here for the Naïve approaches will not necessarily 

replicate in other situations, which, for example, may have different distributions 

of SBP. 
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1.2.4 Scenario 3: Combination Therapy 

In practice, it is often necessary to prescribe more than one class of treatment 

(i.e. combination therapy) or a higher dosage of treatment to individuals with 

especially high blood pressure (BP).  The magnitude of BP lowering due to 

treatment is therefore increased for these individuals, in order to lower BP to a 

safer level.  This scenario simulates the use of combination therapy, with the 

aim of assessing how the approaches perform when the distribution of the 

treatment effect differs between individuals. 

1.2.4.1 Simulation Method 

Individuals initially allocated to receive treatment are administered a second 

treatment, if, after the first treatment, the observed SBP remains above 140 

mmHg.  The effect of the second treatment is implemented in the same way as 

the original treatment, i.e. it is generated randomly from a normal distribution 

with a mean of 15 and variance 4 (and truncated at zero).  

Table 8 below summarises the simulation properties for this scenario and Table 

9 presents the descriptive statistics.   
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Parameter Scenario Three 

Sample Size: n 2000 

Intercept: β
 110 

Age: agei ; 	β� Uniform [25-80] ; 0.4 

Sex: sexi ; β� Bernoulli (0.5) ; 3 

Gene: g1i   ; β� Bin(2, 0.3) ; 2 

Gene2: g2i ; β" Bin(2, 0.3) ; 0 

Random Error: ε� N(0, 18) 

Hypertensive Criterion: SBP ≥140 

P{TREATi=1|hypertensive}: 0.75 

 1
st
 Treatment Effect : γi N(15, 4

2
) 

Allocation to 2
nd

 Treatment 
If TREATi =1 & Observed 

SBP≥140 

2
nd

 Treatment Effect: γ2i N(15, 4
2
) 

Table 8: Simulation properties for Scenario 3. 

 

Table 9 shows that 37.5% of the participants originally allocated to receive 

treatment also receive a second treatment (approx. 10% of the subjects 

overall).  Subjects treated twice have a mean underlying SBP approximately 16 

mmHg greater than that for subjects treated just once (approx. 163 mmHg Vs 

147 mmHg), but the difference in the mean observed SBP between these two 

subgroups is only 4 mmHg (approx. 135 mmHg Vs 131 mmHg).  As before, the 

mean observed SBP for subjects not allocated to treatment (≈ 126 mmHg) is 

lower than the mean in both treatment groups, but the differences here between 

treated and untreated individuals are smaller, on average, than in the General 

Simulation Study. 
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Summary Statistics Scenario Three 

Mean Underlying SBP (S.D.) 133.68 (19.2) 

for untreated subjects 126.15 (16.2) 

for subjects treated once 147.04 (4.8) 

for subjects treated twice 163.57 (9.0) 

Mean Observed SBP (S.D.) 127.95 (14.6) 

for untreated subjects 126.15 (16.2) 

for subjects treated once 131.34 (5.1) 

for subjects treated twice 134.87 (9.4) 

% Treated 27.80 

% Treated Twice 10.45 

% Treated Twice | Treated 37.50 

Mean Treatment Effect for Subjects Treated Once 
(SD) -15.80 (3.8) 

Mean Treatment Effect for Subjects Treated Twice 
(SD) -28.67 (5.6) 

Mean Treatment Effect (SD) -20.56 (7.7) 

% SBP>140 37.09 

% SBP>150 19.78 

% SBP>160 8.53 
Table 9: Descriptive statistics for Scenario 3. 

 

1.2.4.2 Results 

Results for Scenario 3 are presented graphically in Figure 4 below, and the full 

results are shown in Table 36 in Appendix A.  Before consideration of the 

results, however, it should be noted that several of the approaches will not be 

affected here.  The Substitution approaches [i.e. Binary BP (d), Fixed 

Substitution (f), Random Substitution (g), and Median Method (h)] and Exclude 

(b) either disregard or substitute any observations corresponding to subjects on 

treatment, and therefore will not be influenced by any changes regarding the 

treatment.  These approaches, thus, should yield identical results in this 

scenario compared with in the General Simulation Study. 
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Figure 4: Graphical representation of results for Scenario 3.  Approaches are arranged in 
the categories (from left to right): naïve, substitution, informative phenotype.  Power 
(relative to the g1 coefficient, ��) and Type I Error (relative to the g2 coefficient, �a) are 
evaluated on the left vertical axis, and mean bias/SE (with respect to ��) is evaluated on 
the right vertical axis. 

 

As expected, (b), (d), (f), (g) and (h) all yield comparable results here compared 

to the General Simulation Study.  However, as noted in Section 1.2.1, none of 

these approaches seem favourable compared to the Informative BP 

approaches.  They generally have low powers to detect the genetic variant g1 

[e.g. power ≈ 0.50 – 0.70 for (b), (d), and (h)] and yield estimates of the 

parameter coefficients shrunken to the null [e.g. mean 	b� ≈ 1.1 – 1.7 for (b), (f) 

and (g), mean 	b�≈ 2.6 for (h)]. 
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With the exception of Treatment as a Covariate (c), the other approaches 

perform slightly worse in this scenario compared with the General Simulation 

Study.  The Informative BP approaches [Fixed Treatment Effect (e), Non-

Parametric Adjustment (i), and Censored Normal Regression (j)] and No 

Adjustment (a) yield small decreases in power here, and marginally greater 

increases in bias [e.g. meange�= 1.29 for (a), and meange�≈ 1.43 – 1.87 for (e), (i) 

and (j)].  For (e), it is relatively straightforward to see why these problems occur.  

For instance, (e) imputes a fixed size treatment effect, which is inappropriate for 

those subjects on combination therapy.  The mean treatment effect for 

individuals treated twice (-28.67mmHg) is greater than the three values of c 

tested, and the SBPs for these individuals are therefore underestimated.  The 

shrinkage bias obtained in this scenario for (i) and (j) can be explained similarly.  

Approaches (i) and (j) make no distinction in the analyses between individuals 

treated once and individuals treated twice, and both subgroups have similar 

mean observed SBP (approx. 135 mmHg Vs 131 mmHg).  The imputed SBPs, 

Xi, will therefore be similar for both subgroups despite large differences in the 

underlying SBP, on average, between individuals in the two subgroups (mean 

underlying SBP ≈ 163 mmHg Vs 147 mmHg).  Hence, Xi underestimates Zi for 

the individuals treated with “combination therapy”. 

1.2.5 Scenario 4: Proportional Treatment Effect 

Each of the scenarios so far has simulated the treatment effect by randomly 

sampling it from a fixed normal distribution.  However, previous work has also 

simulated a treatment effect as a proportional reduction of the underlying 

phenotype (McClelland et al., 2008).  This results in individuals with higher BP 
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facing a greater reduction in BP due to treatment, and those with less extreme 

BP facing smaller treatment effects.  This scenario assesses how the 

approaches perform when the treatment effect is applied as a proportional 

reduction of the underlying SBP.   

1.2.5.1 Simulation Method 

As in earlier scenarios, this scenario allocates treatment to hypertensives only, 

with a probability of 75%.  Where applicable, treatment effects are applied by 

reducing an individual’s underlying SBP by a proportion of the underlying SBP. 

The proportional reduction of SBP due to treatment varies between individuals, 

and, as in previous scenarios, is generated from a normal distribution.  Four 

“sub-scenarios” are tested, each using a different distribution for generating the 

proportional reduction of SBP due to treatment.  For instance, each sub-

scenario generates the treatment effect, γi, from the following normal 

distributions (mean, SD2): (0.05, 0.0252), (0.1, 0.0252), (0.15, 0.0252), and (0.2, 

0.0232) respectively.  Note that these distributions are chosen to maintain a 

similar variance for the treatment effect as in the General Simulation Study.  

Thus, the variance in the fourth sub-scenario differs from the others.  Note, also, 

that each distribution is truncated at zero to prevent the treatment from ever 

directly increasing SBP. 

Table 10 below lists the simulation properties for Scenario 4, which are identical 

to the General Simulation Study other than in terms of the implementation of the 

treatment effect.  
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Parameter Scenario Four 

Sample Size: n 2000 

Intercept: 	
 110 

Age: agei ; 	β� Uniform [25-80] ; 0.4 

Sex: sexi ; β� Bernoulli (0.5) ; 3 

Gene: g1i   ; β� Bin(2, 0.3) ; 2 

Gene2: g2i ; β" Bin(2, 0.3) ; 0 

Random Error: ε� N(0, 18) 

Hypertensive Criterion: SBP ≥140 

P{TREATi=1|hypertensive}: 0.75 

Treatment Effect 

(% Reduction of Underlying SBP) 

N(5, 2.5) 

N(10, 2.5) 

N(15, 2.5) 

N(20, 2.3) 
Table 10: Simulation Properties for Scenario 4. 

 

Table 11 presents the descriptive statistics for this scenario.  The only 

difference between the four sub-scenarios relates to the size of the treatment 

effect in each.  For example, the treatment effect, on average, ranges between 

approx. -7.5 mmHg and -30 mmHg across the four sub-scenarios.  The second 

sub-scenario – in which the mean proportional reduction in SBP due to 

treatment is 10% - is the most similar to previous scenarios, as the mean 

treatment effect here is -15.33 mmHg.  The fourth sub-scenario is the most 

extreme, with a mean treatment effect of -30.65 mmHg.  This sub-scenario is 

the only scenario simulated thus far in which the mean observed SBP for 

treated individuals is less than that for non-treated individuals. 
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Table 11: Descriptive statistics for Scenario 4. 

 

1.2.5.2 Results 

Figures 5 – 8 present the results for Scenario 4 graphically, while Appendix A 

contains the full tables of results in tables 37-40.   

As in Scenario 3, the Substitution approaches [Binary Trait (d), Fixed 

Substitution (f), Random Substitution (g), and Median Method (h)] and Exclude (b) will 

not be affected in this scenario.  These approaches either omit or substitute all 

observations corresponding to individuals on treatment and, hence, are 

uninfluenced by the changes to the treatment effect. 

For the other approaches, the results in the sub-scenario with a 10% reduction 

in SBP due to treatment (see Figure 6) are also highly characteristic of those 

obtained in the General Simulation Study.  The Informative Phenotype 

approaches [Fixed Treatment Effect (e), Non-Parametric Adjustment (i), and 

Summary Statistics 

Scenario Four 

Mean % Reduction of SBP Due to Treatment 

5 10 15 20 

Mean Underlying SBP (S.D.) 133.70 (19.2) 133.69 (19.2) 133.72 (19.2) 133.72 (19.2) 

for treated subjects 153.22 (10.4) 153.24 (10.5) 153.25 (10.5) 153.23 (10.4) 

for untreated subjects 126.16 (16.2) 126.15 (16.2) 126.18 (16.2) 126.17 (16.2) 

Mean Observed SBP (S.D.) 131.56 (17.2) 129.42 (15.7) 127.32 (14.8) 125.17 (14.7) 

for treated subjects 145.53 (10.6) 137.91 (10.1) 130.27 (9.7) 122.58 (9.1) 

for untreated subjects 126.16 (16.2) 126.15 (16.2) 126.18 (16.2) 126.17 (16.2) 

% SBP>140 37.13 37.13 37.19 37.19 

% SBP>150 19.78 19.81 19.85 19.82 

% SBP>160 8.52 8.55 8.58 8.54 

% Treated 27.86 27.84 27.86 27.91 

Mean Treatment Effect (SD) -7.69 (3.8) -15.33 (4.0) -22.98 (4.2) -30.65 (4.1) 
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Censored Normal Regression (j)] yield high powers (≈ 0.9) and only low levels 

of bias (e.g. mean 	b�≈ 1.7 – 2.1), while results for the Naïve approaches [No 

Adjustment (a), Exclude (b), and Treatment as a Binary Covariate (c)] yield 

lower powers (≈ 0.66 – 0.85) and greater magnitudes of bias (e.g. mean 	b� ≈ 

1.25 – 1.55).  As stated earlier, the descriptive characteristics for this sub-

scenario are very similar to those of the General Simulation Study.  Hence, 

these results suggest that the way the treatment effect is modelled (i.e. as a 

proportional reduction of SBP or as a randomly generated reduction in SBP) 

makes little difference to how the methods perform. 

In the other sub-scenarios, the performance of the approaches seems to 

depend on the magnitude of the treatment effect.  When the treatment effect 

reduces SBP by 5% (see Figure 5), the approaches perform similarly – in terms 

of power – to the General Simulation Study, but in the sub-scenarios with 

treatment effects of 15% and 20% reductions of SBP (Figure 7 and Figure 8 

respectively), the approaches generally yield lower powers than in the General 

Simulation Study.  The level of bias also very much depends on the magnitude 

of the treatment effect.  When the treatment effect is 5%, No Adjustment (a) 

actually yields only a small level of bias (mean 	b�= 1.78), while the Informative 

BP approaches tend to overestimate the effect of g1 [e.g. mean 	b�≈ 2.3 for (i) 

and (j)].  Approach (a) clearly performs better in this sub-scenario, as the bias 

due to treatment use is small because the treatment effect itself is small.  On 

the other hand, the Informative BP approaches tend to over-compensate for the 

use of treatment in this sub-scenario and, hence, end up overestimating the 

regression coefficient. 
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In the sub-scenarios with greater reductions of SBP due to treatment, all the 

approaches (other than the unaffected approaches listed above) tend to suffer 

from reduced powers and greater magnitudes of bias.  This is simply because 

the treatment effects, on average, are greater in these scenarios and, hence, 

the bias due to the use of treatment is also greater.  Although Non-parametric 

Adjustment (i) and Censored Normal Regression (j) still perform relatively well 

in these more extreme scenarios, Fixed Treatment Effect (e) suffers from an 

impaired performance.  For example, when the treatment reduces SBP by 20% 

(mean treatment effect ≈ -30mmHg) and when c = 5, (e) yields a reduced power 

of around 0.7 and drastically increased levels of bias (e.g. mean 	b�≈ 1.2).  

Although previous scenarios have suggested that (e) is relatively insensitive to 

the value c, these results show that the approach does, in fact, require a 

sensible value for c.  This conclusion, nonetheless, seems logical enough.  For 

example, when c = 5 here, the imputed treatment effects are only around 1/6th 

of the size of the true treatment effects.  The corrections to modified BPs 

imposed by this approach are therefore insufficient here.  This finding indicates 

that any use of approach (e) in practice should base the choice of the value c 

on external and expert knowledge in order to ensure that a suitable value be 

used. 
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Figure 5: Graphical representation of results for Scenario 4 with a proportional reduction 
of SBP of 5%.  Approaches are arranged in the categories (from left to right): naïve, 
substitution, informative phenotype.  Power (relative to the gene parameter, ��) and Type 
I Error (relative to the gene2 parameter, �a) are evaluated on the left vertical axis, and 
mean bias/SE (with respect to ��) is evaluated on the right vertical axis. 
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Figure 6: Graphical representation of results for Scenario 4 with a proportional reduction 
of SBP of 10%.  Approaches are arranged in the categories (from left to right): naïve, 
substitution, informative phenotype.  Power (relative to the gene parameter, ��) and Type 
I Error (relative to the gene2 parameter, �a) are evaluated on the left vertical axis, and 
mean bias/SE (with respect to ��) is evaluated on the right vertical axis. 
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Figure 7: Graphical representation of results for Scenario 4 with a proportional reduction 
of SBP of 15%.  Approaches are arranged in the categories (from left to right): naïve, 
substitution, informative phenotype.  Power (relative to the gene parameter, ��) and Type 
I Error (relative to the gene2 parameter, �a) are evaluated on the left vertical axis, and 
mean bias/SE (with respect to ��) is evaluated on the right vertical axis. 
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Figure 8: Graphical representation of results for Scenario 4 with a proportional reduction 
of SBP of 20%.  Approaches are arranged in the categories (from left to right): naïve, 
substitution, informative phenotype.  Power (relative to the gene parameter, ��) and Type 
I Error (relative to the gene2 parameter, �a) are evaluated on the left vertical axis, and 
mean bias/SE (with respect to ��) is evaluated on the right vertical axis. 

 

1.3. Simulation Studies: Differential intervention 

The previous section tests a number of scenarios under a non-differential 

intervention, i.e. where both the probability of receiving treatment and the effect 

of treatment depend only upon BP.  In contrast, this section focuses on testing 

how the approaches to analysis perform when the intervention is differential.  
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Scenarios 5 and 6 investigate the effects of differential treatment effects, while 

Scenario 7 investigates the effects of a differential probability for receiving 

treatment. 

1.3.1 Scenario 5: Pharmacogenetic Interaction 

This scenario aims to determine how the approaches perform when the effect of 

treatment depends on another factor other than BP.  This situation would occur, 

for example, if any interaction exists between a genetic variant and a treatment.  

Interactions between genes and treatments are known as pharmacogenetic 

interactions, and there is already evidence of the existence of pharmacogenetic 

interactions with antihypertensive treatments (Wang et al., 2007b).  Although 

the term “pharmacogenetic interaction” can imply an experience of differential 

side-effects to treatment or a differential response to treatment by genotype, 

only the latter case is relevant here.  This scenario therefore tests the 

approaches under a condition where a pharmacogenetic interaction influences 

the efficacy of treatment.   

1.3.1.1 Simulation Method 

Pharmacogenetic interactions that influence the magnitude of BP lowering due 

to treatment can occur in one of two possible directions: those with the minor 

allele for a particular genetic variant could be more sensitive or less sensitive to 

the treatment.  This scenario therefore simulates two sub-scenarios 

demonstrating the effects of a pharmacogenetic interaction in each direction.  

These sub-scenarios are referred to as scenarios 5a and 5b. 
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To remain consistent with earlier scenarios, this scenario broadly uses the 

same simulation method as the General Simulation Study (see Section 1.2.1).  

However, some properties must be altered to allow for the inclusion of a 

pharmacogenetic interaction.  For instance, the aim of these analyses is to 

evaluate the approaches in terms of their capabilities to detect and estimate the 

marginal effect of a single nucleotide polymorphism (SNP) on SBP – when that 

SNP interacts with treatment.  As such, both type I error and power must be 

evaluated with respect to this SNP.  Hence, in contrast to previous scenarios, 

which simulate two genetic variants to evaluate power and type I error 

respectively, this scenario simulates a single SNP only.  Power is evaluated by 

running the simulation 1,000 times with a SNP effect of +2 mmHg, and type I 

error is evaluated by running the simulation a further 1,000 times with a genetic 

effect of 0.  In addition, a third SNP effect of -2 mmHg is also tested in this 

scenario, in order to demonstrate the relationship between the sign of the SNP 

effect, the direction of the pharmacogenetic interaction, and the statistical 

power.  Therefore, the simulation is also performed 1,000 times with a 

simulated SNP effect of -2 mmHg. 

This scenario generates underlying SBP from a linear regression model similar 

to Equation 12, with the only difference being that a single genetic variant, g, is 

now included in the model instead of two variants (see Equation 13 below).  

Here Zi is the underlying SBP for the i’th individual (i = 1,…,2000); AGEi 

denotes age (25-80 years); SEXi denotes sex (1=male, 0=female); gi denotes 

genotype for a diallelic locus with an allele frequency of 0.3 (0, 1 or 2 copies of 

the minor allele); and εi denotes random error, the simulation model is therefore: 
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Equation 13 Z� � 	
 � 	�!f � � 	�g �� � 	��� � ��, 
where 	� � 0.4, 	� � 3, and ��~��0,18�.  Because the SNP effect, 	�, is either 

+2, -2 or 0, the constant term, 	
,  is adjusted accordingly to maintain a 

consistent distribution for Zi as in the General Simulation Study.  Hence, 	
 = 

110, 112.4, and 111.2 for 	� = +2, -2, and 0 respectively. 

As before, only hypertensives (i.e. those with underlying SBP ≥ 140 mmHg) 

receive treatment here.  Treatment is again allocated to these individuals with a 

probability of 0.75, while normotensives (i.e. those with underlying SBP < 140 

mmHg) receive treatment with a probability of 0.   

At this point, the pharmacogenetic interaction is introduced by varying the 

treatment effect by genotype for g.  In contrast to the General Simulation Study, 

which generates the treatment effect randomly for each individual from N(-15, 

42), this scenario generates the treatment effect from one of three distributions 

that correspond to each genotype for g.  For instance, an individual with no 

copies of the minor allele for g is drawn a treatment effect from distribution one; 

an individual with one copy of the minor allele is drawn a treatment effect from 

distribution two; and an individual with two copies of the minor allele is drawn a 

treatment effect from distribution three.  The magnitude of the treatment effect, 

thus, now depends on a subject’s genotype for g. 

To ensure consistency between the distributions of observed SBP generated in 

this scenario and the General Simulation Study, the treatment effects generated 

here have a mean of -15 mmHg over all individuals, i.e. the treatment effects 
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are centred at -15 mmHg.  Furthermore, each of the three distributions for the 

treatment effect used here have the same variance as the treatment effect 

simulated in the General Simulation Study (i.e. var = 42).  Scenario 5a simulates 

a pharmacogenetic interaction that reduces the efficacy of treatment in the 

presence of the minor allele, while Scenario 5b simulates a pharmacogenetic 

interaction that increases the efficacy of treatment in the presence of the minor 

allele.  Hence, in Scenario 5a the treatment effect, γi, is generated from N(18, 

42), N(13.43, 42) or N(9, 42) corresponding to whether the ith individual has 0, 1, 

or 2 copies of the minor allele respectively; and in Scenario 5b, γi is generated 

from N(12, 42), N(17.43, 42) or N(20, 42) respectively.   

Finally, the observed SBP, Yi, is derived – as in the General Simulation Study – 

by subtracting the treatment effect, _�, from Zi where applicable. 

Table 12 below lists the full simulation properties for Scenario 5.   
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Parameter Scenario 5a Scenario 5b 

Simulation Runs 1000 1000 

Sample Size 2000 2000 

Constant 110/112.4/111.2 110/112.4/111.2 

Age (years): agei ; 	β1 Uniform [25-80]; 0.4 Uniform [25-80]; 0.4 

Sex (Male/Female): sexi ; β2 Bernoulli (0.5); 3 Bernoulli (0.5); 3 

Gene: gi   ; β3 Bin(2, 0.3); +2/-2/0 Bin(2, 0.3); +2/-2/0 

Random Error ~ N (0, 18) ~ N (0, 18) 

Hypertension Criterion SBP≥140 SBP≥140 

P {treati=1 | Hypertensive} 0.75 0.75 

Mean Treatment Effect (mmHg)  15 15 

Pharmacogenetic 
Interaction  

(Treatment effect) 

If 0 copies 
minor-allele 

~N(18, 4
2
) ~N(12, 4

2
) 

If 1 copy 
minor-allele 

~N(13.43, 4
2
) ~N(17.43, 4

2
) 

If 2 copies 
minor-allele 

~N(9, 4
2
) ~N(20, 4

2
) 

Table 12: Simulation properties for Scenario 5. 

 

Note that as the treatment effects have been centred here, scenarios 5a and 5b 

yield similar descriptive statistics to one another.  Table 13 below therefore 

presents descriptive statistics for Scenario 5a only, based on 1,000 simulation 

runs.  Note also that due to the adjustment of the intercept parameter to 

account for the varying effect of the genetic variant, g, the descriptive statistics 

are stable for each of the three simulated effect sizes, and directly compare to 

the descriptive statistics presented for the General Simulation Study in Table 4. 
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Summary Statistic 
Scenario 5a 

Gene = 2 Gene = -2 Gene = 0 

Mean Underlying 
SBP (SD) (mm 

Hg) 

Overall: 133.68 (19.2) 133.70 (19.2) 133.70 (19.1) 

[Treati = 1]: 153.23 (10.4) 153.27 (10.5) 153.19 (10.4) 

[Treati = 0]: 126.13 (16.3) 126.15 (16.2) 126.17 (16.2) 

Mean Observed 
SBP (SD)  

(mm Hg) 

Overall: 129.48 (16.1) 129.39 (16.0) 129.45 (15.9) 

[Treati = 1]: 138.15 (11.7) 137.79 (11.5) 137.92 (11.5) 

[Treati = 0]: 126.13 (16.3) 126.15 (16.2) 126.17 (16.2) 

% SBP>140 37.17 37.16 37.14 

% SBP>150 19.81 19.84 19.75 

% SBP>160 8.51 8.55 8.49 

% Treated 27.87 27.85 27.86 

Mean Treatment Effect (SD) 

(mm Hg) 
15.08 (5.0) 15.48 (4.9) 15.27 (4.9) 

Table 13: Descriptive statistics for Scenario 5a (based on 1,000 simulation runs). 

 

1.3.1.2 Results 

As with the analyses reported in Section 1.2, the focus of these analyses is on 

estimating and detecting the marginal effect of the genetic variant g on BP.  

Each approach fits the model in Equation 13 to the estimates of the underlying 

SBP, Xi [with the exception of Treatment as a Binary Covariate (c) and Binary 

Trait (d) – see Section 1.2.1.2 for an explanation].  For a recap of the 

approaches, see Table 3 (Page 32). 

Results for scenarios 5a and 5b are summarised graphically in figures 9 and 10 

respectively.  As before, each figure shows the statistical power to detect the 

marginal effect of g and the type I error for each approach on the left-vertical 

axis (at the 5% level of significance).  The mean bias of the estimated 

coefficient of g (in mmHg), with standard error, is shown for each approach on 
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the right-vertical axis.  The figures show the statistical power relative to the 

simulated g effects of +2 mm Hg and -2 mm Hg per copy of the minor allele (i.e. 

β3 = 2 and β3 = -2 respectively), but the mean bias is displayed relative to β3 = 2 

only.  Results are based on 1,000 runs for each scenario.  The full tables of 

results are presented in tables 41-43 of Appendix A for Scenario 5a, and in 

tables 44-46 in Appendix A for Scenario 5b (for β3 = 2, -2, and 0 respectively). 

The approaches to analysis are arranged across the x-axis in group order: 

Naïve [No Adjustment (a), Exclude (b), and Treatment as a Covariate (c)], 

Substitution [Binary Trait (d), Fixed Substitution (f),Random Substitution (g), and 

the Median Method (h)], and Informative BP [Fixed Treatment Effect (e), Non-

parametric Adjustment (i), Censored Normal Regression (j)].  As with the figures 

in Section 1.2, the additional analysis of underlying SBP is also shown, for 

comparison purposes, on the far-left of the x-axis.  This scenario also reports 

results for a further additional analysis, which extends approach (c).  This 

additional analysis again models treatment as a binary covariate, but, in 

addition, it also explicitly includes the SNP-treatment interaction term.  Results 

for this additional analysis are therefore represented in figures 9 and 10 

adjacent to the results for (c). 
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Figure 9: Graphical representation of the results for Scenario 5a.  Approaches are 
arranged here in categories (from left to right): naïve, substitution, informative 
phenotype. Power to detect the genetic variant, g. when  β3 = 2  and β3 = -2  are denoted 
in dark blue and light blue diamonds respectively, and type I error relative to the genetic 
effect is denoted in red crosses.  Power and type I error are evaluated on the left vertical 
axis.  Mean bias/SE with respect to β3 = 2  is shown in green triangles, and is evaluated 
on the right vertical axis. 
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Figure 10: Graphical representation of the results for Scenario 5b.  Approaches are 
arranged here in categories (from left to right): naïve, substitution, informative 
phenotype. Power to detect the genetic variant, g. when  β3 = 2  and β3 = -2  are denoted 
in dark blue and light blue diamonds respectively, and type I error relative to the genetic 
effect is denoted in red crosses.  Power and type I error are evaluated on the left vertical 
axis.  Mean bias/SE with respect to β3 = 2  is shown in green triangles, and is evaluated 
on the right vertical axis. 

 

Inspection of the results shown in Figure 9 and Figure 10  reveals a clear divide 

between how the different classes of approaches perform when there is a 

differential response to treatment.  As in scenarios 3 and 4, the Substitution 

approaches and Exclude (b) all yield comparable results to the General 

Simulation Study here.  These approaches avoid the effects of the differential 

treatment effect because they replace modified BPs with alternative values 
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derived independently from the observed data [or, in the case of (b), it excludes 

any modified BPs from the analysis].  Hence, these approaches are unaffected 

by the pharmacogenetic interaction simulated with g.   

In contrast, the effects of the pharmacogenetic interaction upon the Informative 

BP approaches and No Adjustment (a) and Treatment as a Binary Covariate (c) 

are striking.  For instance, in Figure 9 each of these approaches markedly 

overestimates the marginal effect of g and in Figure 10 each of these 

approaches markedly underestimates g [mean bias ≈ 0.5 to 2 mmHg for (a) and 

(c); mean bias ≈ 0.5 to 1.5 mmHg for (e), (i) and (j)].  Consequently, the power 

and type I error rates for these approaches are also affected.  In Figure 9, when 

the simulated effect of the genetic variant g is 2 mmHg (β3 = 2), the power for 

each of these approaches is increased (≈100%), but when  the powers 

are reduced substantially [power ≈ 10% for (a) and (c); power ≈ 18% - 48% for 

(e), (i) and (j)].  The type I error rates for these approaches are also similarly 

affected.  In contrast to the General Simulation Study  – where each approach 

yields the correct level of type I error, the type I error rates here are highly 

elevated [type I error ≈ 0.7 for (a) and (b); type I error ≈ 0.3 – 0.6 for (e), (i) and 

(j)].   

Given that these approaches do not account for what is effectively a SNP-

treatment interaction, these patterns of results are not entirely surprising.  For 

example, in Scenario 5a, a reduced treatment effect is associated with the 

minor allele at g.  Hence, ignoring the true main effect of g, individuals 

homozygous for (i.e. possessing two copies of) the minor allele who receive 

antihypertensive treatment will be less responsive to the treatment and will, on 
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average, have greater modified BP than treated individuals who are 

homozygous for the major allele.  In contrast, Scenario 5b simulates a 

pharmacogenetic interaction that increases the efficacy of treatment in 

presence of the minor allele.  Thus, again ignoring the true effect of g, treated 

individuals homozygous for the minor allele will, on average, have lower 

modified BP than treated individuals without the minor allele.  Consequently, 

estimates of the marginal effect of g are biased upwards in Scenario 5a and 

biased downwards in Scenario 5b. 

There is a clear relationship here between the power of these affected 

approaches, the sign of the simulated g effect, and the direction of the 

pharmacogenetic interaction.  For instance, these approaches can yield either 

an increased or a decreased power in these settings, depending on whether the 

sign of the main effect of g agrees with or contradicts the direction of the 

interaction.  As described above, if a pharmacogenetic interaction reduces the 

efficacy of treatment, the marginal effect of g will always be overestimated.  

Hence, if the main effect of g is positive the power will be increased, but if the 

main effect of g is negative the power will be decreased.  If, on the other hand, 

the pharmacogenetic interaction increases the efficacy of treatment in presence 

of the minor allele, the marginal effect of g will be underestimated.  Thus, the 

opposite pattern of results to the above applies. 

Results for the additional analysis performed in this scenario, which models the 

SNP-treatment interaction term in addition to the treatment main effect, yields 

similar results here to Treatment as a Binary Covariate (c) in the General 

Simulation Study.  This approach is the only approach that utilises the modified 
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BPs and yet remains unaffected by the pharmacogenetic interaction.  

Nevertheless, despite yielding approximately the correct level of type I error 

here, a low statistical power (≈ 70%) is obtained and its estimates of the 

regression coefficients are, on average, shrunken to the null.  This approach 

avoids the problems of some of the other approaches in this scenario because it 

explicitly models the SNP-treatment interaction term.  This is actually the only 

approach that can account for potential SNP-treatment interactions in this way, 

because, in order to do this, the treatment main-effect must also be fitted.  For 

the reasons discussed in Section 1.1.2, adjusting for treatment by modelling the 

treatment term as a binary covariate is a flawed approach to the analysis of BP.  

Hence, this approach, too, is a suboptimal approach to analysis. 

In addition to the results described above, a further feature of the full tables of 

results shown in Appendix A concerns the estimates of the regression 

coefficients for the parameters not involved in the pharmacogenetic interactions, 

i.e. AGE and SEX.  For the Informative BP approaches [i.e. (e), (i) and (j)], 

which perform well in previous scenarios but yield biased estimates of the main 

effect of the genetic variant, g, here, estimates of the effects of the other 

regression coefficients are unperturbed.  This observation, hence, demonstrates 

that only estimates of the effects of parameters involved in interactions with 

treatment are biased in these situations.  The implication of this is that, even if a 

pharmacogenetic interaction exists, the Informative BP approaches should 

provide reasonable estimates of any genetic variants or other explanatory 

variables of interest that are not involved in the interaction.  An additional 

scenario was simulated to confirm these observations (results not provided), in 

which estimates of the power and type I error were derived with respect to an 
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alternative genetic variant to the one involved in the pharmacogenetic 

interaction.  The Informative BP approaches (as well as every other approach) 

produced similar results in this additional scenario to those obtained in the 

General Simulation Study.  Hence, these results support the above conclusions. 

1.3.2 Scenario 6: Pharmacogenetic Interaction with One Class 

of Treatment 

The pharmacogenetic interaction implemented in the previous scenario 

implicates all subjects on treatment.  Given that different classes of 

antihypertensive medication exist, and that these act upon different biological 

pathways, it is probably unrealistic to assume that a given genetic variant will 

interact with all treatment types.  Hence, because, in reality, different subjects 

will use different classes of treatment, the influence of the pharmacogenetic 

interaction simulated in Scenario 5 is likely to be more extreme than that of a 

real pharmacogenetic interaction in a real genetic association study of BP.  This 

scenario therefore simulates two different classes of treatment, of which only 

one interacts with the genetic variant, g.   

1.3.2.1 Simulation Method 

The simulation method used for this scenario is based on that used in Scenario 

5.  As before, the underlying SBP, Zi, is generated from the model in Equation 

13, and hypertensive individuals are allocated treatment with probability 0.75.  

In this scenario, however, two classes of treatment are simulated.  Participants 

selected to receive treatment are subsequently randomised either to receive 

Treatment A or Treatment B, with the probabilities 0.33 and 0.67 respectively.  
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Treatment A represents angiotensin-converting enzyme (ACE) inhibitors, a 

common class of antihypertensive medication (Wang et al., 2007b), and 

Treatment B represents usage of any other antihypertensives (pooled together).  

For Treatment A, the treatment effect depends on the genetic variant, g, and a 

pharmacogenetic interaction is implemented in the same way as that 

implemented in Scenario 2.  Hence, for individuals on Treatment A, _� , is 

generated from N(18, 42), N(13.43, 42), or N(9,42) corresponding to whether the 

ith individual has 0, 1, or 2 copies of the minor allele respectively; for individuals 

on Treatment B, the treatment effect is independent of g, and is thus generated 

as in the General Simulation Study [i.e. γi ~ N(15, 42)].  All treatment effects are 

again truncated at zero. 

As in Scenario 5, a pharmacogenetic interaction is simulated in both directions, 

and effect sizes of +2, -2 and 0 are tested for the genetic variant, g.  Scenario 

6a refers to the situation where the pharmacogenetic interaction reduces the 

magnitude of SBP lowering due to Treatment A, and Scenario 6b refers to the 

situation where the pharmacogenetic interaction increases the efficacy of 

Treatment A.  As before, the additional analysis that extends Treatment as a 

Binary Covariate (c) by modelling the SNP-treatment interaction term is also 

performed here. 

Table 14 lists the simulation properties for Scenario 6. 
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Parameter Scenario 6a Scenario 6b 

Simulation Runs 1000 1000 

Sample Size 2000 2000 

Constant 110/112.4/111.2 110/112.4/111.2 

Age (years): agei ; 	β� Uniform [25-80]; 0.4 Uniform [25-80]; 0.4 

Sex (Male/Female): sexi ; 	β�2 Bernoulli (0.5); 3 Bernoulli (0.5); 3 

Gene: gi   ; 	β�3 Bin(2, 0.3); +2/-2/0 Bin(2, 0.3); +2/-2/0 

Random Error ~ N (0, 18) ~ N (0, 18) 

Hypertension Criterion SBP≥140 SBP≥140 

P {treati=1 | Hypertensive} 0.75 0.75 

P {Treatment A | treati=1} 0.33 0.33 

P{Treatment B | treati=1} 0.67 0.67 

Mean Effect Treatment A (mmHg) 15 15 

Pharmacogenetic 
Interaction  

(Treatment A Effect) 

[mmHg] 

If 0 copies 
minor-allele 

~N(18, 4
2
) ~N(12, 4

2
) 

If 1 copy 
minor-allele 

~N(13.43, 4
2
) ~N(17.43, 4

2
) 

If 2 copies 
minor-allele 

~N(9, 4
2
) ~N(20, 4

2
) 

Treatment B Effect (mmHg) ~ N (15, 4
2
) ~ N (15, 4

2
) 

Table 14: Simulation Properties for Scenario 6. 

 

The descriptive statistics for Scenario 6a are summarised in Table 15 below.  

As the treatment effects are again centred in this scenario, Scenario 6b yields 

similar descriptive statistics and, hence, these are not provided. 
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Summary Statistic 
Scenario 6a 

Gene = 2 Gene = 0 Gene = - 2 

Mean 
Underlying 
SBP (SD) 
(mmHg) 

Overall: 133.72 (19.2) 133.67 (19.2) 133.70 (19.1) 

Subjects on Treatment A: 153.24 (10.4) 153.27 (10.4) 153.20 (10.4) 

Subjects on Treatment B: 153.26 (10.4) 153.24 (10.5) 153.24 (10.4) 

Untreated subjects: 131.71 (18.8) 131.66 (18.8) 131.71 (18.7) 

Mean 
Observed 
SBP (SD) 
(mmHg) 

Overall: 129.52 (16.0) 129.46 (16.0) 129.50 (15.9) 

Subjects on Treatment A: 138.19 (11.7) 137.81 (11.4) 137.93 (11.5) 

Subjects on Treatment B: 138.25 (11.2) 138.25 (11.2) 138.24 (11.2) 

Untreated subjects: 128.63 (16.1) 128.60 (16.1) 128.64 (16.1) 

% SBP>140 37.17 37.11 37.10 

% SBP>150 19.87 19.81 19.77 

% SBP>160 8.57 8.55 8.52 

% Treatment A 9.33 9.30 9.27 

% Treatment B 18.58 18.52 18.56 

Mean Treatment A Effect (SD) (mmHg) 15.06 (5.0) 15.46 (4.9) 15.27 (4.95) 

Mean Treatment B Effect (SD)(mmHg) 15.01 (4.0) 14.99 (4.0) 15.00 (4.0) 
Table 15: Descriptive statistics for Scenario 6a. 

 

1.3.2.2 Results 

Figures 11 and 12 present the results in graphical form for scenarios 6a and 6b 

respectively, while the full tables of results are presented in Appendix A (tables 

47-49 for Scenario 6a; tables 50-52 for Scenario 6b). 

As discussed above, the pharmacogenetic interactions implemented in this 

scenario affect only the participants on Treatment A, and, thus, have more 

moderate effects than the extreme pharmacogenetic interactions simulated in 

Scenario 5.  For instance, No Adjustment (a), Treatment as a Binary Covariate 

(c), and the Informative BP approaches [Fixed Treatment Effect (e), Non-

Parametric Adjustment (i) and Censored Normal Regression (j)] generally yield 



Chapter 1 

77 

 

less bias in this scenario than in Scenario 5, and, consequently, the statistical 

powers and type error rates are less badly affected.  Nevertheless, the type I 

error rates for these approaches remain above 5% (≈ 8% - 13%), and, when the 

direction of the pharmacogenetic interaction conflicts with the sign of the effect 

of the genetic variant, g, the statistical powers remain substantially lower than 

those obtained in the General Simulation Study (≈ 40% - 80%). 

As in the previous scenario, the Substitution approaches [Binary Trait (d), Fixed 

Substitution (f), Random Substitution (g) and Median Method (h)] and Exclude 

(b) remain completely unaffected by the pharmacogenetic interaction here, and 

perform the same as in the General Simulation Study.  The additional analysis 

that models the SNP-treatment interaction is also unaffected, and again yields 

similar results here to (c) in the General Simulation Study. 

This scenario is fundamentally based on the same simulation method as in 

Scenario 5 and, as such, the results can be explained in the same way.  The 

Informative BP approaches and (a) and (c) are affected here because they 

utilise all the observed data and apply the same correction for treatment (where 

applicable) to all participants, regardless of their genotype or treatment class.  

Because the genetic variant of interest, g, interacts with Treatment A, estimates 

of the effect of g on BP – over both treated and non-treated subjects – are 

biased away from its true (i.e. marginal) effect. 
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Figure 11: Graphical representation of the results for Scenario 6a.  Approaches are 
arranged here in categories (from left to right): naïve, substitution, informative phenotype. 
Power to detect the genetic variant, g. when  β3 = 2  and β3 = -2  are denoted in dark blue and 
light blue diamonds respectively, and type I error relative to the genetic effect is denoted in red 
crosses.  Power and type I error are evaluated on the left vertical axis.  Mean bias/SE with 
respect to β3 = 2 is shown in green triangles, and is evaluated on the right vertical axis. 
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Figure 12: Graphical representation of the results for Scenario 6b.  Approaches are 
arranged here in categories (from left to right): naïve, substitution, informative 
phenotype. Power to detect the genetic variant, g. when  β3 = 2  and β3 = -2  are denoted 
in dark blue and light blue diamonds respectively, and type I error relative to the genetic 
effect is denoted in red crosses.  Power and type I error are evaluated on the left vertical 
axis.  Mean bias/SE with respect to β3 = 2  is shown in green triangles, and is evaluated 
on the right vertical axis. 

 

1.3.3 Scenario 7: Differential Probability of Receiving 

Treatment 

In contrast to the previous two scenarios, which evaluate how the approaches 

perform when the treatment effect is differential, this scenario investigates the 
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treatment depends on another factor other than the outcome of interest.  As 

with the previous scenarios, this scenario also appears particularly relevant to 

studies of BP, because antihypertensives tend to be administered to individuals 

with diabetes at a lower threshold than to non-diabetics (Raum et al., 2008).  As 

such, a differential probability of receiving antihypertensive medication is known 

to occur in practice, and could affect real studies of BP. 

Previous work has already assessed some of the approaches to analysis under 

a differential probability of treatment (as described in Section 1.1.5) (McClelland 

et al., 2008).  Although that paper finds that several of the approaches are 

impaired under this condition, the reported analyses focus on testing the 

approaches with respect to estimating the effect of the “differentiating factor” 

itself (in this case, diabetes).  In the context of this work, a more realistic aim of 

the analysis is to identify possible genetic and/or lifestyle determinants of blood 

pressure (or other phenotypes), which will often be unlikely to directly affect the 

probability of receiving treatment themselves.  The primary concern of these 

analyses, thus, is to detect the effects of “non-differentiating” factors.  A more 

pertinent question of concern for the present work is therefore whether a 

differential probability of receiving treatment with one factor has knock-on 

effects on the estimates of any other factors.  This scenario assesses the 

approaches under a condition where the threshold for receiving treatment 

depends on diabetes, but where the focus of the analyses is on estimating the 

effect of a genetic variant on BP. 
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1.3.3.1 Simulation Method 

This scenario simulates a differential probability of receiving treatment by 

exposure to diabetes.  Following the simulation procedure used for the General 

Simulation Study, underlying SBP is first generated from the linear regression 

model shown in Equation 12.  Hence, each subject is generated an age (25-80), 

sex (male or female), and genotype for two independent diallelic loci with allele 

frequencies of 0.3 (for each genetic variant, a subject has 0, 1 or 2 copies of the 

minor allele).  As before, one of the genetic variants assesses power and has 

an effect of +2 mmHg, while the other variant assesses type I error and has a 

null effect.  For each individual, an indicator of diabetes is also generated.  

Diabetes is imposed randomly to subjects within each study with a prevalence 

of 20%.  It has no effect on SBP. 

This scenario allocates treatment in one of two possible ways.  For 

hypertensives (i.e. those with an underlying SBP of at least 140 mmHg), 

treatment is allocated with a probability of 0.75 in the usual way.  In addition, if 

an individual has diabetes and an SBP of at least 130 mmHg, treatment is 

allocated with a probability of 0.9.  For those individuals allocated to receive 

treatment – by either means – a treatment effect is generated in the usual way, 

i.e. from the distribution used in the General Simulation Study.  Hence, the 

treatment effect, γY~N�15, 4��. 
Table 16 presents the full simulation properties for Scenario 7. 
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Parameter Scenario 7 

Simulation Runs 1000 

Sample Size: n 2000 

Intercept: β0 110 

Age (Years): agei; β1 Uniform [25-80]; 0.4 

Sex (M/F): sexi; β2 Bernoulli (0.5); 3 

Genetic Variant: g1i; β3  Bin(2, 0.3); +2 

Genetic Variant 2: g2i; β4 Bin (2, 0.3); 0 

Diabetes (Y/N): diabetesi; β5 Bernoulli (0.2); 0 

Random Error ~ N (0, 18) 

Hypertension Criterion SBP≥@140 

P {Treated | Hypertensive} 0.75 

Hypertension with Diabetes Criterion SBP≥@130 

P{Treated | Hypertensive Diabetic} 0.9 

Treatment Effect (mmHg) ~ N (-15, 4
2
) 

Table 16: Simulation Properties for Scenario 7. 

 

Table 17 summarises the descriptive statistics for Scenario 7.  As can be seen, 

a larger proportion of the sample is treated in this scenario compared with in the 

General Simulation Study (mean percentage treated = 33% here compared with 

around 28% in other scenarios).  Just over half of the individuals with diabetes 

receive treatment in these studies, but only around a third of the total number of 

individuals on treatment are diabetic. 
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Summary Statistic Scenario 7 

Mean Underlying 
SBP (SD) 

Overall: 133.70 (19.2) 

[Treati = 1]: 151.23 (11.4) 

[Treati = 0]: 125.00 (16.1) 

Mean Observed 
SBP (SD) 

Overall: 127.72 (15.8) 

[Treati = 1]: 136.23 (12.1) 

[Treati = 0]: 125.00 (16.1) 

% SBP>140 37.14 

% SBP>150 19.82 

% SBP>160 8.53 

% Individuals on Treatment 33.18 

% Diabetics who Receive Treatment 54.52 

% Non-diabetics who Receive 
Treatment 

27.81 

% Treated Individuals who are Diabetic 32.59 

Mean Treatment Effect (SD) 15.00 (4.0) 
Table 17: Descriptive Statistics for Scenario 7. 

 

1.3.3.2 Results 

Figure 13 below presents the results for Scenario 7 graphically, while the full 

table of results are shown in Table 53 of Appendix A.  As can be seen, most 

approaches provide similar results in this scenario to those obtained in the 

General Simulation Study.  The Informative BP approaches [Fixed Treatment 

Effect (e), Non-Parametric Adjustment (i), and Censored Normal Regression (j)] 

therefore perform well, with high powers (≈ 0.9) and generally accurate 

estimates of the parameter coefficients [e.g. mean 	b�= 2.08 – 2.23 for (i) and (j); 

mean 	b�=  1.68 – 2.0 for (e), when c = 5, 10 and 15]. 
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Figure 13: Graphical representation of the results for Scenario 7.  Approaches are 
arranged here in categories (from left to right): Naïve, Substitution, Informative 
Phenotype.  Power to detect the genetic variant g1 (i.e. β3=2) is denoted in blue 
diamonds, and type I error relative to the genetic variant g2 (i.e. β4=0) is denoted in red 
crosses.  Both power and type I error are evaluated on the left vertical axis.  Mean 
bias/SE with respect to β3=2 is denoted in green triangles, and is evaluated on the right 
vertical axis. 
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individual on treatment is hypertensive and, hence, could be expected to 

perform poorly here due to the allocation of treatment to some diabetics who 

are “normotensive”.  With the exception of (h), which yields a small reduction of 

power here compared to other scenarios (≈ 0.4-0.5 here Vs around 0.5 

elsewhere), none of the other Substitution approaches seems adversely 

affected here at all.  A possible reason for this observation is that these 

approaches actually misclassify relatively few individuals in this scenario – 

despite the additional probability of receiving treatment for individuals with 

diabetes.  For example, the only “misclassified” individuals here are diabetics 

with SBP between 130 mmHg and 140 mmHg.  This represents, on average, 

only around 3.5% of the total sample.  These “misclassified” individuals, 

furthermore, have relatively high BP, and the degree of misclassification 

imposed by the Substitution approaches can therefore be considered mild. 

Nevertheless, despite the fact that these approaches avoid suffering additional 

bias here, they remain sub-optimal approaches to analysis. 

In support of previous findings (McClelland et al., 2008), the full table of results 

(Table 53, Appendix A) shows that most of the approaches yield massively 

impaired estimates of the diabetes effect here.  For example, diabetes has a 

null effect in this scenario, but estimates of its effect vary from approx. -7 mmHg 

[for (b) and (c)] to approx. 48 mmHg (!) [for (h)], often with high statistical 

significance (p-values not provided).   The best approaches in terms of 

estimating the true effect of diabetes on SBP seem to be Fixed Substitution (f) 

and the Informative BP approaches [(e), (i) and (j)].  Nevertheless, in line with 

previous scenarios, (f) seems highly sensitive to its substitution parameter, m.  

Similarly, although (i) and (j) look acceptable here in comparison to other 
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approaches, they yield relatively high magnitudes of bias around the diabetes 

effect [e.g. mean bias ≈ 1.65-1.85].  The only approach that truly performs well 

in terms of estimating the effect of diabetes is Fixed Treatment Effect (e).  

Assuming a fixed and appropriate size for the imputed treatment effect, this 

approach suitably adjusts for the use of treatment regardless of whether or not 

an individual is clinically hypertensive or normotensive.   

Despite the biased estimates of the diabetes effect generally observed in this 

scenario, as stated above, the focus of an analysis will typically be on “non-

differentiating” factors.  Therefore, as the Informative BP approaches perform 

well in terms of estimating the effects of unrelated, independent parameters, 

they again appear the most appropriate methods to use in practice. 

1.4. Discussion 

Rapid progress is being made identifying genetic variants associated with BP in 

large-scale genome-wide association studies (Levy et al., 2009; Newton-Cheh 

et al., 2009).  However, as yet unidentified genetic determinants of BP are likely 

to have even more modest effect sizes than those already discovered.  As such, 

approaches to maximising the statistical power remain important, and the need 

for an appropriate approach to analysis – which controls type I error – remains 

vital. 

1.4.1 Summary and Explanation of the Results  

The simulations in Section 1.2 show that when the intervention is non-

differential, the best approaches to analysis are clearly the Informative BP 

approaches [Fixed Treatment Effect (e), Non-Parametric Adjustment (i) and 
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Censored Normal Regression (j)].  The Informative BP approaches generally 

yield similar results to the optimal analysis of underlying BP in these settings, 

and, thus, appear to adequately control for the use of treatment.  This finding 

concurs with previous work (Tobin et al., 2005), which advises use of these 

approaches for analyses of BP.   

The Informative BP approaches seem to perform well here because they exploit 

all the observed data within each analysis, and they therefore maintain the 

natural variability between BP measurements between individuals.  The 

adjustments for treatment that they impose also seem appropriate for most 

realistic situations.  For instance, these approaches seem relatively robust to 

situations where the distribution of the treatment effect is fixed (e.g. in the 

General Simulation Study and scenarios 1 and 2) and where the treatment 

effects depend on BP (e.g. when some individuals use combination therapy or 

when the treatment effect is proportional to the underlying BP – such as in 

scenarios 3 and 4 respectively).  Conversely, the reason why the Informative 

BP approaches are affected by the differential treatment effects simulated in 

sections 1.3.1 and 1.3.2 is simply because they do not (and generally cannot) 

account for the SNP-treatment interaction.  As these approaches utilise all 

observed data, they provide biased estimates of the marginal effect of any 

genetic variant that interacts with treatment because of the differential reduction 

in BP – by genotype – due to treatment.  Although, in principle, Fixed Treatment 

Effect (e) could impose a simple adjustment for a pharmacogenetic interaction 

by imputing different treatment effects to different individuals (e.g. based on 

their genotypes), this would require prior knowledge of the interaction.  To date, 

although there is strong evidence of a genetic component to the variability of BP 
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responses to antihypertensives, findings identifying loci for specific 

pharmacogenetic interactions have not replicated (Turner et al., 2001; Arnett et 

al., 2005; Arnett et al., 2009).  Hence, no firm data on the existence of 

pharmacogenetic interactions with antihypertensive medications currently exist, 

and any attempts to adjust for a pharmacogenetic interaction with (e) would be 

speculative. 

In contrast to the Informative BP approaches, the Substitution approaches [i.e. 

Binary Trait (d), Fixed Substitution (f), Random Substitution (g) and Median 

Method (h)] and Exclude (b) are unaffected by the pharmacogenetic interactions 

implemented in scenarios 5 and 6.  However, these approaches consistently 

yield sub-optimal results and, where applicable, seem highly sensitive to the 

values of the “substitution parameters”.  Of the Substitution approaches, the 

Median Method (h) is particularly intriguing.  Approach (h) assumes that anyone 

receiving treatment has an underlying BP greater than the median and, so long 

as fewer than half the participants receive treatment, should yield unbiased 

estimates of the parameter coefficients when this condition holds (White et al., 

2003).  Nevertheless, neither of these conditions is ever violated in the majority 

of the scenarios tested in sections 1.2 and 1.3, yet (h) consistently 

overestimates the effects of the regression coefficients. 

Section 1.1.2 explains that each of the Naïve approaches [No Adjustment (a), 

Exclude (b), and Treatment as a Binary Covariate (c)] is fundamentally flawed, 

and the results throughout sections 1.2 and 1.3 demonstrate this.  The Naïve 

approaches consistently yield shrinkage bias in their estimates of all the 

regression coefficients, and, consequently, provide reduced statistical powers 
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compared to the Informative BP approaches.  Although (a) sometimes yields a 

relatively high power, this approach is not immune to any of the conditions that 

cause problems for the Informative BP approaches and, hence, should never be 

used in favour of these approaches.  

Related to the Naïve approaches, the additional analysis performed in 

scenarios 5 and 6 – which models the SNP-treatment interaction term – avoids 

the drastic biases due to pharmacogenetic interactions.  This is because it 

accounts for the differences in treatment efficacy between individuals by fitting 

the interaction term.  As stated earlier, this is the only approach that can easily 

account for a SNP-treatment interaction because it is the only model that 

includes treatment as a covariate.  Nevertheless, despite avoiding these biases 

due to the pharmacogenetic interactions, this approach suffers from shrinkage 

bias and it yields a suboptimal power.  It is now well established that modelling 

treatment as a binary covariate is a flawed approach to analyses of BP (Tobin 

et al., 2005).  For instance, because the use of antihypertensives in this setting 

both predicts BP and is a consequence of having high BP, treatment should not 

be handled as a conventional covariate.  Doing so explains away variation 

within the data, and attributes this variation to an apparent “treatment effect”.  

Including a treatment main effect term within an analysis model can thus mask 

true causal factors of BP – such as genetic variants – which are usually the 

main focus of a study. 

Given the above findings, there is no obvious choice of approach that can be 

expected to perform well in every situation.  However, some practical 

recommendations are now discussed. 
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1.4.2 Practical Recommendations 

It could be argued that because the Substitution approaches successfully 

control the type I error rates in all the scenarios performed in sections 1.2 and 

1.3, their use should generally be preferred to the Informative BP approaches.  

However, as has already been noted, these approaches are highly reliant on 

the choices of the substitution values.  Inappropriate choices of the substitution 

parameters could severely hamper an investigation in terms of its ability to 

detect any undiscovered genetic variants, which are suspected to have very 

small effect sizes.  Although guidance on the choice of the substitution 

parameters is available (e.g. (White et al., 1994; Hunt et al., 2002; White et al., 

2003)), different values for these will be better suited to different circumstances.  

In practice, it may be difficult to choose suitable values for the substitution 

parameters – and, indeed, it would be difficult to verify how suitable existing 

choices are.  A further limitation of the Substitution approaches is that they rely 

on the assumption that all individuals who use antihypertensives are 

hypertensive.  This is clearly a strong assumption, because antihypertensive 

medications are sometimes prescribed for conditions such as coronary heart 

disease (CHD), heart failure and migraine.  As the reason for their prescription 

may not be documented in a study, scenarios 2 and 7 specifically test for 

sensitivity to this assumption.  None of the approaches are badly impaired in 

Scenario 7 because any normotensive subjects administered treatment here 

have relatively high BP (i.e. SBP between 130 and 140 mmHg).  In contrast, 

Scenario 2 shows that the Substitution approaches perform poorly when the 

assumption is more seriously compromised, and this finding agrees with 
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previous work (Tobin et al., 2005).  For these reasons, I do not generally 

recommend use of the Substitution approaches for a primary analysis. 

In addition to the results explicitly shown in this chapter, an additional scenario 

was also performed to investigate the effects of a pharmacogenetic interaction 

when the focus of the analysis is on estimating the effect of a genetic variant 

that is independent of the interaction.  As has been shown in Section 1.3.1.2, 

estimates of the marginal effects of any independent genetic or non-genetic 

factors are unaffected if a pharmacogenetic interaction involves a different 

genetic variant.  Hence, although the Informative BP approaches are affected in 

the presence of a pharmacogenetic interaction with the genetic variant of 

interest, they appear to remain the best approaches to use to estimate the main 

effects of variables that are uninvolved in such interactions.  Scenario 7 also 

supports this observation.  Here, estimates of the effect of diabetes – which is 

assumed not to be of interest – are impaired, but the Informative BP 

approaches remain unaffected in terms of their estimates of the effects of all 

other regression terms.  Note, however, that these conclusions apply to 

estimates of the effects of independent variables only, and estimates of the 

effects of genetic variants that, for example, are correlated (i.e. in linkage 

disequilibrium) with a SNP involved in a pharmacogenetic interaction will also 

be affected using the Informative BP approaches.  Similarly, in Scenario 7, the 

Informative BP approaches could be expected to provide biased estimates of 

the effects of any variants that are associated with diabetes.  Further work is 

clearly required to investigate the possible extent of these biases on estimates 

of the effects of variables correlated with a “differentiating factor” in other 

realistic settings. 
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In an ideal world it would be possible to identify a priori those SNPs likely to be 

involved in differential treatment effects (for example, from published 

pharmacogenetic studies of BP).  Tests of the marginal effects of these 

particular SNPs could then be performed with an approach immune to the 

effects of a pharmacogenetic interaction (such as one of the Substitution 

approaches), while tests of all remaining, independent SNPs could use the 

Informative BP approaches.  As noted above, however, no firm knowledge 

about pharmacogenetic interactions with antihypertensives currently exists.  

Nonetheless, it seems reasonable to assume that only a small proportion of 

genetic variants across the human genome will alter the efficacy of 

antihypertensive treatments.  Given this assumption, a reasonable 

recommendation to make is that primary analyses of BP – which aim to detect 

genetic variants that have an effect on underlying BP – should be performed 

using the Informative BP approaches.  Any results require a critical 

interpretation, however, due to the lack of information about which regions of 

the genome have discernable effects on underlying BP and also alter the 

efficacy of antihypertensives.   

Pending further firm biological evidence about pharmacogenetic interactions, 

there may be exploratory analyses that could be undertaken with a dataset 

under study to provide insight about potential interactions with a genetic variant 

of interest. Although not recommended as a primary analysis, one approach to 

investigating the possible presence of a pharmacogenetic interaction for a  

variant of interest would be to use the extended analysis of Treatment as a 

Binary Covariate (c) [i.e. which models the SNP-treatment interaction term] to 

explicitly test for the interaction.  Interactions are generally detected at a lower 



Chapter 1 

93 

 

power than main-effects, however, and extensive follow-up work is required to 

clarify whether such an approach would be reliable.  A possible alternative 

approach to identifying a pharmacogenetic interaction could be to compare 

findings from an Informative BP approach and one of the Substitution [or 

Exclude (b)] approaches.  The latter approaches are unaffected by 

pharmacogenetic interactions.  If the results from the two analyses do not differ 

substantially, it may be reasonable to assume that no strong pharmacogenetic 

interaction is present.  However, further work is again required to illustrate how 

large a discrepancy between the findings of these different approaches might 

be expected for real situations, as evidence about the characteristics of variants 

(e.g. minor allele frequency, main effect and interaction effect sizes and 

directions) involved in pharmacogenetic interactions becomes available. 

1.4.3 Implications 

Section 1.3 shows that otherwise sensible approaches to the analysis of BP are 

affected when a genetic variant of interest influences treatment efficacy.  

Estimates of the marginal effects of genetic variants involved in 

pharmacogenetic interactions may therefore be biased – possibly leading to 

false-negative and false-positive findings.  Pharmacogenetic interactions can 

thus impact on the statistical power of a study and on the level of type I error. 

In principle, these results suggest that the reported findings from existing 

genetic association studies could contain errors as a result of pharmacogenetic 

interactions.  For instance, a genetic variant that influences treatment efficacy 

could yield spurious association with BP, or, conversely, a genetic variant that 

truly influences BP could be masked if it is also involved in a pharmacogenetic 
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interaction.  A secondary aim of this work could be to characterise such cases.  

Although analyses such as the Binary Trait approach (d) are low powered for a 

primary analysis, they could provide useful subsequent checks to help identify 

whether novel genetic associations could be driven by a pharmacogenetic 

effect.  For instance, all the genetic variants reported by Newton Cheh et al. 

(Newton-Cheh et al., 2009) were associated with dichotomous hypertension in 

addition to continuous SBP and DBP, and are therefore unlikely to be fallacious.  

The issue of type I error due to a pharmacogenetic interaction is thus unlikely to 

be a problem in this particular study.  However, the possibility of type II error 

remains.  In addition to the strength of the interaction and the number of 

individuals involved, type II error will also depend on the direction of the 

interaction in relation to the direction of the main effect. 

1.4.4 Applicability of the Findings 

This chapter solely uses simulation to demonstrate the potential influences of 

different realistic conditions because, in practice, the true model generating 

mechanism is unknown.  For instance, as yet, there is little known regarding the 

true nature and magnitude of pharmacogenetic interactions with 

antihypertensives.  The true influence of pharmacogenetic interactions in real 

analyses of BP is therefore difficult to determine.  If particular genetic variants 

interact with multiple classes of antihypertensive, there is a potential for serious 

distortions of the data (such as those shown in Scenario 5), but if 

pharmacogenetic interactions are specific to particular classes of 

antihypertensive, the implications could be less drastic (such as in Scenario 6). 



Chapter 1 

95 

 

Until now, this chapter has focussed solely on analyses of BP, but the findings 

are also relevant to the analysis of other traits.  For example, cholesterol-

lowering drugs are widely used within western countries, and the investigation 

of low-density lipoprotein (LDL) and high-density lipoprotein (HDL), thus, may 

also require one of the corrections for treatment described.  Notably, because a 

single class of treatment – statin therapy – is predominantly used to lower 

cholesterol, the findings from Scenario 5 may be especially relevant to these 

traits.  For instance, any pharmacogenetic interaction would most likely apply to 

the majority of subjects on treatment and, hence, the conditions simulated in 

Scenario 5 (which may be considered extreme for a study of BP) may be quite 

typical of a study of LDL/HDL. 

Ultimately, both forms of a differential intervention simulated in Section 1.3 lead 

to similar conclusions.  For instance, estimation of the parameter that modifies 

either the treatment effect or the threshold for receiving treatment is often 

distorted, but estimation of all other (independent) parameters is generally 

unaffected.  Hence, if the “differentiating parameter” itself is known but is not of 

interest, analyses may be performed without regard to these findings; however, 

when the modifying parameter needs to be estimated (and may or may not be 

unknown), difficulties may arise.  Although Section 1.4.2 suggests possible 

approaches to verifying results from genetic analyses of BP and to identifying 

potential pharmacogenetic interactions, further work is clearly required in these 

areas. 
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1.4.5 Conclusions 

Consistent with previous findings (Tobin et al., 2005), the work in this chapter 

suggests that the Informative BP approaches remain the most reasonable 

approaches to use for primary analyses of the main effects of SNPs in most 

settings.  Nevertheless, Section 1.3 demonstrates that caution is required in the 

interpretation of any associations obtained from these approaches.  If there is 

strong a priori evidence of a particular pharmacogenetic interaction – or of 

genetic variants associated with a factor that influences the probability of 

receiving treatment – it makes sense to consider the results of a different 

approach for the particular genetic variants involved.  As further evidence of the 

nature and magnitude of pharmacogenetic interactions with BP emerges, more 

detailed examination of the various approaches, their comparability, and 

possible methods for checking for these interactions will be warranted. 
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Chapter 2.  

Participant Identifiability in GWAS 

 

 

2.1. Introduction 

Data collected in genetic epidemiological studies are, by nature, extremely 

sensitive, and steps must be taken to ensure the protection of participant 

confidentiality.  As such, there are strict laws to govern the sharing of individual 

level genetic and non-genetic information (Lowrance et al., 2007).  Advances in 

genomic research are, however, informed and accelerated by the publication of 

results and summary information from genetic epidemiological studies 

(McCarthy et al., 2008), and, indeed, the sharing of these data has often been a 

condition demanded by funding bodies (Kaye et al., 2009).  But in 2008, a 

statistical method was published that potentially allows individuals to be 

identified in genome-wide association studies (GWAS) using only summary 

information (such as allele frequencies) often freely available on the Web 

(Homer et al., 2008).  In response to the publication of this method, the National 

Institutes of Health (NIH) and the Wellcome Trust were compelled to alter their 

guidelines on the release and publication of summary information from GWAS 

and, consequently, they withdrew summary data such as allele frequencies 

from the internet (see Appendix B.1) (Couzin, 2008).  Access to summary data 

from GWAS has since become restricted only to registered and approved 
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researchers.  Hence, rather than moving towards the scientific ideal of open, 

public access to genomic data (Smith, 2009), the culture of data sharing in 

genomics research is currently heading the opposite way.   

Since the publication of the above method, uncertainties surrounding its true 

implications have been rife.  For instance, there has been some debate as to 

whether or not the method (which shall be referred to here as the “Homer” 

method) can be used to identify any person, in any study, under any 

circumstances.  In order to cast light on such speculation, a full understanding 

of the science behind the method is required.  This work therefore aims to 

examine the Homer method in greater depth.   

There are two main perspectives from which to approach these investigations.  

The Homer method was originally proposed from a forensic perspective as a 

means by which to identify individuals from pooled DNA samples such as found 

at crime-scenes.  The forensic perspective therefore seeks to understand the 

Homer method in order to clarify how it can be used, in what circumstances it 

can be used, and what its limitations are.  In contrast, the genomics community 

aims to avoid the risk of participant identification.  Genomics researchers 

therefore want to know how to prevent participants from being identified, and 

what to do in spite of this threat to participant confidentiality posed by the 

Homer method.  This work aims to shed light on these issues by considering the 

problem from both perspectives. 

Section 2.2 introduces the Homer method and discusses some important 

practical considerations for its use.  A review of the relevant literature that has 
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been published since the Homer et al. (Homer et al., 2008) paper is provided in 

Section 2.3, detailing the implications of the method and some extensions to the 

approach.  I empirically test the Homer method – via simulation – in Section 2.4, 

to demonstrate how it potentially performs in practice.   

Subsequent sections then focus on a particular alternative approach to the 

Homer method, which can also potentially test for presence in GWAS using 

SNP allele frequencies.  Section 2.5 describes this alternative approach, before 

it is tested via simulation in Section 2.6.  Implications of the method’s use in real 

data are discussed in Section 2.7, and some further modifications to the test are 

proposed.  Section 2.8 investigates sensitivity of the method to its core 

assumption of co-ancestry (see Section 2.2.4).  Finally, Section 2.9 considers 

what can be published from GWAS given these findings, before a general 

discussion is provided in Section 2.10. 

2.2. The Homer Method 

I first  describe the Homer method in accordance with the original paper  

(Homer et al., 2008) in Section 2.2.1, before subsequent sections provide a 

critique.  In particular, Section 2.2.2 focuses on practical issues with its use, 

Section 2.2.3 explores its different possible applications, Section 2.2.4 

describes its assumptions, and Section 2.2.5 discusses any other important 

considerations for its use. 

2.2.1 Outline of the Method 

The Homer method (Homer et al., 2008) has been proposed as a means by 

which to identify whether a particular individual contributed to a mixture of DNA 
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(which is a genetic sample containing DNA from multiple individuals).  The 

method was originally proposed for use in a forensic setting, whereby the 

mixture would be a DNA sample obtained from a crime-scene and the individual 

of interest would be a suspect for the crime.  Summary statistics published from 

genetic epidemiological studies can also be considered to denote the 

characteristics of a mixture of DNA, however (see Section 2.2.3).  This section 

outlines the original method, before subsequent sections consider its application 

in the GWAS setting, in addition to the forensic context. 

For a particular single nucleotide polymorphism (SNP), the Homer method 

compares an individual’s scaled genotype (see next paragraph) to the allele 

frequency in the mixture and to the allele-frequency within some known 

reference population (which is to be described in Section 2.2.2).  Over many 

SNPs, it forms a “distance” metric, which determines probabilistically whether 

an individual is “closer” to the mixture or “closer” to the reference population.  If 

the individual of interest is statistically significantly closer to the mixture, then, in 

theory, presence of the individual within the mixture can be inferred due to the 

large number of SNPs typically involved.  The Homer method can be expressed 

as follows. 

For the ith individual of interest, Yij denotes the scaled genotype for the jth SNP (j 

= 1,…,s).  Typically, Yij has a scaled value of 0, 0.5 or 1 (representing 0, 1 or 2 

copies of the minor allele respectively), but, alternatively, Yij can be a measure 

of probe intensity taking a continuous value between 0 and 1.  Note that Yij is 

thus an observed allele frequency for individual i.  For a known reference 

population (to be discussed in Section 2.2.2), the minor allele frequency (MAF) 
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for the jth SNP is denoted Popj, and for the mixture, the MAF for the jth SNP is 

denoted Mj.  Assuming that the reference population and the mixture are 

ancestrally similar (i.e. they have similar allele frequencies across all SNPs), the 

distance measure, D(Yi,j), is defined as: 

Equation 14 i8��,:= � |��: � jk)l| � |��: �m:|  

Under the alternative hypothesis that the individual of interest is in the mixture 

(H1), the individual’s presence in the mixture drives the test and, hence, over s 

SNPs, mean D(Yi,j) will be greater than zero.  This is based on the principle that 

if an individual is part of a sample, his/her genotypes will be “closer” to the 

sample means – that is, to the allele frequencies in the mixture – than to the 

population means.  Under the null hypothesis that the individual is not in the 

mixture (H0), Homer et al. state that “a random individual should be equally 

distant from the mixture and the mixture’s reference population”.  Under H0, 

mean D(Yi,j) is thus assumed to be zero.  The validity of this assumption is 

examined in greater depth in the following section.   

To test mean D(Yi,j) for departure from zero and, hence, to test the null 

hypothesis in view of rejecting it in favour of the alternative hypothesis, the 

authors propose using a one-sample t-test.   A one-sample t-test is defined as 

n̅<pqr/√u~.u<�, 
where d is the sample standard deviation and n is the number of observations.  

The test-statistic, T(Yi), is therefore 
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Equation 15 

����� � ∑ vwxyz{|z}~ | <pq�Var�D8�yz=� �⁄ ~.�<�, 
where i, j and s are as before, and where �
 is assumed to be 0 (i.e. because 

under the null hypothesis a random individual is assumed to be equidistant to 

the mixture and the reference population).  The variance, Var[D(Yi,j)], is simply 

the sample variance: 

Var�D8��:=� � 1� � 1� �i8��:= � ∑ i8��:=�:;� � �� .�
:;�  

In the following sections, I examine some of the practical issues and some of 

the problems in using the Homer method as stipulated above. 

2.2.2 Practical Issues 

Before the Homer method can be applied in practice, there are a number of 

issues that first need to be considered. This section introduces these issues and 

discusses their possible implications. 

2.2.2.1 Reference Population 

As we have seen, the Homer method was originally proposed as a new forensic 

test to infer presence within a mixture of DNA using single nucleotide 

polymorphisms (SNPs).  In contrast, most existing forensic tests are based on a 

small number of short tandem repeats (STRs).  Because existing tests only ever 

use 13-15 well studied STR markers, population frequencies for these STRs are 

known with a good degree of certainty.  However, the Homer method suggests 
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that vast numbers of SNPs may be required; for instance, up to 500,000 SNPs 

or even more.  Due to the large number of SNPs required, and the fact that 

SNPs are not as well studied as forensic STRs, precise estimates of population 

allele frequencies are difficult to obtain.  Thus, population allele frequencies for 

SNPs (which are denoted Popj in Section 2.2.1 above) are not currently 

available, and, although they could become available in future, use of the 

Homer method in practice will require estimating them.  Realistically, this can 

only be achieved by sampling a “reference group” from the reference 

population, and using the allele frequencies in the reference group as estimates 

of Popj.  In practice, the Homer method is therefore really a two sample problem 

(i.e. which compares an individual of interest to a reference group and to a 

mixture) (Jacobs et al., 2009), rather than the one sample situation originally 

described (i.e. where the mixture is the only sample because true allele 

frequencies in the reference population are assumed).  Throughout this chapter 

I thus use the two terms “reference group” and “reference population”, and it is 

important to note that these are distinct. 

The original Homer et al. paper does not go into details on the reference 

population, but this two sample situation actually seems better suited to the 

proposed test statistic than the one sample situation originally proposed.  For 

instance, in the one sample situation, if the test individual is not in the mixture, 

he/she must be part of the reference population (assuming that the assumption 

of co-ancestry between the reference population, mixture, and the individual of 

interest applies – see Section 2.2.4).  Under the null hypothesis, the individual, 

thus, will be likely to be “closer” to the reference population than to the mixture 

and, hence, the test statistic, T(Yi), will be less than zero under the null 
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hypothesis, rather than equal to zero as assumed.  In the two sample situation 

the assumption that T(Yi)will be zero under the null hypothesis seems more 

reasonable.  For instance, if an individual is not in the mixture, then as long as 

he/she is not in the reference group either, it seems logical that he/she could be 

equidistant to both groups.  From here on, I will therefore focus on the two 

sample problem, but this issue will be discussed again in Section 2.4. ,  

2.2.2.2 Composite Hypotheses 

The use of the Homer method in a two sample setting has important 

implications for the hypothesis testing procedure.  A one sample test (i.e. which 

uses population allele frequencies) allows, in principle, an alternative hypothesis 

that an individual of interest is in the mixture to be tested against a null 

hypothesis that he/she is not in the mixture (and is, hence, a random member of 

the population).  In contrast, the two sample problem tests a different set of 

hypotheses.  Because two groups are compared, the Homer method can in 

theory determine whether an individual is in one group or the other (or, 

additionally, whether he/she is in neither group).  For instance, if T(Yi) is 

significantly greater than zero the test would imply that the individual is in the 

mixture, and if T(Yi) is significantly less than zero the test would imply that the 

individual is in the other group.  In the following section I describe some 

implications of this two-sample test in the context of a case-control GWAS.  The 

original purpose of the test, however, is in a forensic context, and from this 

perspective the interest is only ever to determine whether an individual is in the 

mixture or not.  Under the alternative hypothesis, T(Yi) must always be greater 

than zero to infer that the individual is in the mixture.  However, under the null 
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hypothesis (i.e. that the individual is not in the mixture), T(Yi) could be less than 

zero (to infer that he/she is in the reference group) or equal to zero (to infer that 

he/she is in neither group).  The null in this context is therefore a composite 

hypothesis, in which the distribution of the test statistic, T(Yi), is not properly 

specified.  The validity of composite hypotheses has been questioned; Sir 

Ronald Fisher, for instance, has stated that a null hypothesis “must be exact, 

that is free of vagueness and ambiguity, because it must supply the basis of the 

'problem of distribution,' of which the test of significance is the solution” (Fisher, 

1966).  By considering how frequentist “tests of significance” are derived, it is 

clear why composite hypotheses are problematic.  For example, p-values – 

which are typically used to denote the statistical significance of a test – are 

defined as: “the probability of obtaining a result at least as extreme as the 

observed result under the null hypothesis”.  Hence, if there is no exact definition 

of the distribution under the null hypothesis, p-values cannot be calculated in 

the usual way. 

Despite the above problems, it could be argued that the Homer test actually 

benefits from having a composite null.  For instance, the assumption that T(Yi) = 

0 under the null hypothesis represents a “worst-case” scenario because, as 

explained above, T(Yi) for an individual who is not in the mixture is actually 

expected to be less than zero.  Hence, under the null, the actual (or empirical) 

value of T(Yi) at any given quantile is expected to be less than the theoretical 

value (i.e. which is based on the standard normal distribution and which 

denotes the statistical significance of a test).  There will, thus, be less type I 

error than ordinarily expected.  Conversely, however, another implication of this 

composite hypothesis is that, under the alternative hypothesis, the power of the 
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test will be sub-optimal.  For instance, the distribution of T(Yi) is expected to be 

centred above zero under the alternative hypothesis, so the “distance” between 

this and the theoretical null distribution (centred at zero) will be less than the 

distance between this and the empirical null distribution (centred below zero).  

The power to discriminate between the alternative hypothesis and the 

theoretical null hypothesis is thus less than it would be to discriminate between 

the alternative and the empirical null distribution.  The composite hypothesis in 

this situation therefore leads to a conservative test: yielding less type I error at 

the expense of a lesser power.  The simulations in Section 2.4 further 

investigate the type I error rates and power of the Homer method, and 

demonstrate these relationships in graphical displays (e.g. see Figure 16 and 

Figure 17 on pages 137-139).  

We have so far seen that the Homer method, in practice, is a two sample test 

rather than the one sample problem originally stipulated, and that this has 

implications to the hypothesis testing procedure.  In the following section, I 

outline a number of possible applications of the test, and I discuss how the 

hypothesis testing procedure varies for each. 

2.2.3 Different Applications 

There are several potential applications of the Homer method.  This section 

describes what these different applications are and what effects they have, if 

any, upon the method’s testing procedure. 

(a) Forensic 



Chapter 2 

107 

 

The forensic application of the Homer method – whereby the mixture is a DNA 

sample obtained from a crime-scene and the individual of interest is a suspect 

for the crime – has already been discussed.  However, the method’s suitability 

for use in this situation is dependent on a number of factors.  Because the 

population frequencies for forensic STR markers are available, existing forensic 

tests are able to test the alternative hypothesis that the suspect is in the mixture 

against a null that specifically states that he/she is a random member of the 

population.  As population allele frequencies are not available for SNPs at 

present, it is debatable whether the Homer method can truly examine the same 

null hypothesis as other STR-based forensic tests.  For instance, although the 

Homer method may be able to conclude that an individual is not in the mixture, 

this is not necessarily the same as concluding that he/she is a random member 

of the population. 

(b)  GWAS Cohort 

Testing for presence in a GWAS cohort would involve a similar use of the 

Homer method as an application in forensics.  For example, where the forensic 

mixture is a DNA sample obtained from a crime, here, the mixture is a GWAS 

cohort and, instead, the DNA from an individual of interest may have been 

recovered from a crime.  Crucially, an implication of using a GWAS cohort 

rather than a forensic mixture is that, in GWAS, all individuals contribute equally 

to the allele frequencies, whereas this is not guaranteed in a forensic mixture. 

Use of the Homer method in this context would involve testing an individual 

against the allele frequencies from a GWAS cohort and against the allele 

frequencies in a reference group (compared to a genomic mixture and a 
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reference group in the forensic application).  A hypothesis test for this setting 

would ideally test a null that an individual is “not in the cohort” versus an 

alternative that he/she is “in the cohort”.  However, under this null hypothesis, 

the test statistic, T(Yi), has no specific distribution because an individual could 

be in the reference group or in neither of the two test groups if he/she is “not in 

the cohort”.  Acknowledging this issue, an application of the method in this 

context could test the hypotheses: 

H0: Neither group [T(Yi) = 0]; Vs 

H1: In the study [T(Yi) > 0], 

in a one-tailed test, assuming that a particular test individual would be unlikely 

to be in the reference group itself (and that this outcome would not be of interest 

anyway). 

The potential threat that the Homer method poses toward the identification of 

participants from GWAS is what prompted the NIH and the Wellcome Trust to 

remove GWAS allele frequency data from the Web (e.g. see Appendix B1).  For 

instance, any positive test result indicating that an individual participated in a 

particular study would breach most participant confidentiality agreements.  

Furthermore, if the DNA sample from the individual of interest had been 

recovered from a crime scene, a positive test result inferring that the individual 

participated in the study could lead to the authorities demanding the release of 

the full individual level data from the cohort.  This application of the Homer 

method is one of the main focuses of this work, and subsequent sections focus 

on this application of the method further. 
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(c)  Case-Control GWAS 

Another potential application of the Homer method is to utilise the published 

allele frequencies from a case-control GWAS in an attempt to identify an 

individual of interest.  In this context, a reference group would not be required 

because the case and control groups would instead be tested directly against 

one another.  The test in this setting would have three possible outcomes, 

because an individual of interest must be a case, a control, or neither.  In 

theory, however, statistical hypothesis testing can only ever discriminate 

between two hypotheses at a time.  It thus seems necessary to have to perform 

the test twice to discriminate between the three hypotheses (comparing one pair 

of hypotheses each time).  The test hypotheses must therefore be reformulated 

accordingly.  In principle, there are different ways in which to formulate the test 

hypotheses but, as we shall see, each formulation has particular limitations.   

The obvious way to formulate the test hypotheses is to simply test for presence 

in the case group first (using the controls as a reference), before testing for 

presence in the control group (using the cases as a reference).  However, 

formulating the hypotheses as: 

Test 1a: H0 not a case Vs H1 case; and 

Test 2a: H0 not a control Vs H1 control, 

involves testing composite null hypotheses.  For example, “not a case” implies 

that mean T(Yi)  ≤ 0. Hence, an alternative formulation of the test hypotheses 

that avoids the problem of a composite null could be: 
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Test 1b: H0 not in study Vs H1 case; and 

Test 2b: H0 not in study Vs H1 control. 

Potentially major problems with the above hypothesis formulation remain, 

however.  Classic frequentist statistics stipulate that the null hypothesis can 

never be accepted, because data or evidence are only ever deemed to be 

consistent (or inconsistent) with the null distribution.  Yet, in the above 

formulation of the test hypotheses, the conclusion that the individual of interest 

is not in the study cannot be reached without accepting the null hypothesis for 

both tests.  A further issue with the above hypothesis is that neither Test 1b nor 

Test 2b accounts for all eventualities.  For instance, the test of “not in study vs 

case” ignores the possibility that an individual could be a control, and the “not in 

study vs control” test ignores the possibility that an individual could be a case.  

Hence, one of the above tests will lead to an incorrect conclusion if the 

individual of interest is in the study regardless of whether or not the null 

hypothesis is rejected. 

To counter this problem, a better formulation of the test for case-control GWAS 

data involves a two-tailed hypothesis: 

Stage 1: H0: not in study [hence T(Yi)   = 0] Vs H1: in study [T(Yi) ≠ 0]. 

If the above null hypothesis is rejected, the evidence would suggest that the 

individual is present in the study.  Subsequently, a second test would have to be 

performed to ascertain which of the two groups the individual is in: 

Stage 2:  H0: control [T(Yi)  < 0] Vs H1: case [T(Yi) > 0]. 
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The difficulty in adopting this strategy concerns how to implement the Stage 2 

test, as each of the hypotheses in this test is composite (i.e. each involves a 

non-exact distribution).  Although it may be possible to estimate the expected 

distribution of T(Yi)  under each of these hypotheses (e.g. by simulation or by 

using an additional dataset) in view of performing a hypothesis test based on 

these specific distributions, this approach could also be problematic.  For 

example, for a given number of SNPs and for the particular sample sizes of the 

two test groups (which are both known in advance), a putative null distribution 

for an individual being a control might be estimated to have a non-central t-

distribution, for example, with a mean of -10 and a variance of 1.  Thus, 

hypothetically, if the observed test statistic is -5, the test would lead to the 

individual being inferred to be a case.  However, rejecting the null hypothesis 

here (and, hence, inferring the individual to be a case) is clearly nonsensical, 

because negative values of the test statistic actually imply that an individual is 

“closer” to the control group than to the cases.  This issue highlights a limitation 

of traditional statistical methods for the testing of composite hypotheses.  

Classical (or frequentist) hypothesis testing procedures may be inappropriate 

for this class of test, and a completely satisfactory formulation of the test 

hypotheses for the Homer method in case-control GWAS data is thus difficult to 

achieve.   

Out of each of the formulations of the test hypotheses stated above, the only 

completely satisfactory test is the two-tailed test of the null hypothesis that the 

individual is not in the study (Stage 1 above).  In practice, this therefore seems 

the most appropriate formulation of the test to use.  However, as already 

discussed, a subsequent test (i.e. to assess whether the individual is a case or 
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a control) cannot easily be performed formally.  Nevertheless, as the distribution 

of T(Yi)  is expected to be distinct for individuals in each study group, a possible 

way around this problem may be to avoid formally testing for case-control status 

altogether.  Instead, it may be possible to discriminate between case and 

control status based only on an informal check.  For instance, any individual in a 

case-control GWAS must either be a case or a control and, hence, if the two-

tailed test yields a significant result, the sign of T(Yi)  alone should be a reliable 

indicator of case-control status.  This strategy is investigated further in later 

sections (e.g. sections 2.4 and 6). 

A final formulation of the Homer test for case-control GWAS data could 

therefore test the following hypotheses: 

H0: Not in study [T(Yi) = 0]; Vs  

H1: In study [T(Yi) ≠ 0] 

where, if H0 is rejected, accept H1a: Case if T(Yi) > 0 or accept H1b: Control if 

T(Yi) < 0, acknowledging that discrimination between H1a and H1b does not 

require a formal test of significance when H0 is rejected. 
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(d)  Case or Control? 

A final application of the Homer method is to infer case or control status for an 

individual already known to have participated in a case-control GWAS.  This 

situation, thus, is similar to (c), but does not require a Stage 1 test, i.e. to test for 

presence in the study, because the individual of interest is already a known 

participant.  In this scenario, the null hypothesis would therefore assume that an 

individual is in one of the case or control groups, while, under the alternative 

hypothesis, the individual would be in the other group.   

This scenario would be unlikely to occur in practice but, nevertheless, its 

potential to breach participant confidentiality agreements in GWAS needs to be 

considered.  For example, if it were somehow known that an individual 

participated in a study, one could attempt to use the Homer method maliciously 

to ascertain whether the individual is a control or a case (and, hence, whether 

he/she has a particular disease associated with that group). 

As discussed in (c), a simple formulation of the hypotheses: 

H0: Control Vs H1: Case, 

is not straightforward to test because both hypotheses are composite.  It is thus 

difficult to formally define this test.  In practice, however, this test could simply 

be performed in the same way as the two-tailed test described in (c).  The one 

difference between the test here and in (c) would be in how to interpret non-

significant results: here, a failure to reject the null hypothesis would imply that 
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there is insufficient evidence to infer case-control status, while in (c), failure to 

reject H0 implies that the individual is not in the study. 

Although, as already stated, an application of the Homer method in this 

scenario is not particularly likely in practice, a possible extension of its use to a 

similar scenario could have potentially major future ramifications.  For instance, 

if a similar distance metric could be developed to infer disease status without 

necessarily requiring an individual to be present in the actual case or control 

groups used in the test, this would have major implications.  Similarly, a future 

test based on similar principles to the Homer method may be able to infer a test 

individual’s ethnicity if the two groups used in the test are of different ethnicities.  

In its present form, the Homer method is unlikely to have sufficient power to 

reach such conclusions for individuals in neither of the test groups; however, in 

future such tests may become tractable (e.g. with the sequencing and release 

of even larger proportions of the genome). 

2.2.4 Assumptions 

The Homer method assumes both explicitly and implicitly a number of 

conditions that may have important practical implications for its performance.  

For instance, a key, explicit assumption of the Homer method is that the 

reference population and the mixture are of similar ancestry.  Homer et al. 

(Homer et al., 2008) also state that it is “obvious” that the reference population 

must also be either “accurately matched in terms of ancestral composition to… 

the person of interest”, or “limited to analysis of SNPs with minimal (or known) 

bias towards ancestry”.  This shall be referred to throughout as the assumption 

of “co-ancestry” – meaning that all individuals are from the same population (or 
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gene-pool).  Co-ancestry between the individual of interest, the mixture, and the 

reference population is a required condition because it ensures that a test is 

only influenced by the individual’s presence in or absence from the mixture.  In 

GWAS, the ancestry of a particular cohort is usually well known, so choosing a 

well-matched reference group for a particular mixture should be relatively 

straightforward.  Similarly, the two groups of a case-control GWAS are usually 

well matched in terms of ancestry, so an application of the method in this 

respect may not be problematic.  Nevertheless, sometimes an individual of 

interest may have unknown ancestry or, in a forensic application of the test, the 

ancestry of the mixture may be unknown.  Therefore, in some situations it may 

be difficult to ensure that the co-ancestry assumption is upheld. 

Because the Homer method is based on a one-sample t-test, independent 

observations are assumed and the distance measures, D(Yi,j), must be 

independent across all s SNPs used in the test.  However, in practice, alleles for 

SNPs located closely to one another across the genome are more likely to be 

inherited together (this association is known as linkage disequilibrium).  Where 

many SNPs are used to perform the Homer method, linkage disequilibrium (LD) 

will be an issue because it will violate this assumption of independent 

observations.  However, if an adequate power can be achieved using fewer 

SNPs, it may be possible to only use SNPs that are widely dispersed across the 

genome (and, hence, which are not in linkage disequilibrium).  Correlated 

observations are problematic in many statistical tests because they are less 

informative than an equivalent number of independent observations.  The 

variance of a statistic based on observations that are correlated will thus be 

greater than one based on an equivalent number of independent observations.  
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Where the Homer method assumes independent observations, if the SNPs 

used in the test are, in fact, in  LD, the calculated variance of the distance 

metric will be biased downwards, and this could lead to false-positive findings. 

2.2.5 Other Important Characteristics 

A number of characteristics affect how the Homer method performs.  For 

example, the power of the test is influenced both by the number of 

(independent) SNPs available to use and the proportion of DNA contributed to 

the mixture by the individual of interest.  Homer et al. (Homer et al., 2008) report 

a simulation study investigating the trade-off in power between these two 

factors.  When the proportion of DNA contributed to the mixture by the individual 

of interest is 0.1, they report that approximately 1,000 SNPs are required to 

identify the individual at a p-value less than 10-6.  For proportions of 0.01 to 

0.001, approximately 10,000 to 25,000 SNPs are required (also at p-val < 10-6).   

In addition to its influence on the statistical power of the test, recent work by 

Egeland et al. (Egeland et al., 2010) suggests that the proportion of DNA 

contributed to the mixture by the individual of interest can also affect the error 

rate.  For instance, incorrect conclusions are reported when the proportion of 

DNA contributed to the mixture by each individual differs.  In GWAS, all 

participants contribute equally to the allele frequencies in a particular cohort, 

and the proportion of DNA contributed by the individual of interest to the mixture 

is simply equal to the inverse of the study size (which is known).  This finding, 

thus, is not applicable to GWAS applications of the method.  In forensics, 

however, the proportion of DNA contributed to the mixture by the individual of 

interest would be unknown.  Hence, the Homer method may be of limited use in 
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forensic applications, because the proportion of DNA contributed to the mixture 

by each individual cannot be guaranteed to be equal.  Although this finding 

seems to contradict the results reported by Homer et al. (i.e. shown above), the 

original paper is unclear about whether or not each individual contributes 

equally to the mixture of DNA.  Given the findings of Egeland et al., it is possible 

that Homer et al. only simulated mixtures in which all individuals contribute 

equally. 

The Homer et al. simulations also consider the effect of genotyping error on the 

performance of the method.  In large mixtures, high degrees of genotyping error 

result in a marginally reduced power to identify individuals, but genotyping error 

has negligible effect in smaller mixtures.  

Minor allele frequency (MAF) is another factor that can influence how the 

Homer method performs.  For instance, SNPs with an especially low MAF will 

usually contribute little information to the test and, as such, could result in the 

requirement of a greater number of SNPs.  Furthermore, genotyping error tends 

to be more common for SNPs with rare alleles.  Homer et al. therefore 

recommend substituting any SNPs with minor allele frequency less than 0.05 for 

other SNPs. 

A further factor that can influence the performance of the Homer method is 

whether any relatives of the individual of interest are included in either the 

reference group or the mixture.  Using real data, Homer et al. show that where a 

mixture contains a first-degree relative of the individual of interest, the individual 

can falsely be inferred as present in the mixture.  In this situation, the power of 

the test is typically reduced by half – which represents the proportion of alleles 
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shared, on average, between any individual and a first-degree relative (i.e. a 

parent, child or sibling).  In practice, it may thus be difficult to confirm whether a 

positive test result is a true positive (i.e. due to the presence of the suspect in 

the mixture) or, instead, whether it is due to the presence of a relative in the 

mixture.  

2.3. Response to the Homer Method 

In response to the Homer et al. paper (Homer et al., 2008), a number of other 

articles have been published to address the implications of participant 

identification in genome-wide association studies (GWAS).  The need to 

balance research productivity with participant privacy has been emphasised, 

and different opinions have been expressed regarding how best to manage 

genomic data (P3G Consortium et al., 2009; Thorisson et al., 2009).  One 

possible solution is to maintain restricted access to genomic data, but to simplify 

the procedure to apply for access by creating universal researcher IDs.  These 

IDs would potentially allow access to different genomic databases, and would 

thus prevent the need to apply separately for access to different related 

databases (as is the situation currently).  Another possible solution is to 

criminalise acts of identifying participants and breaching participant 

confidentiality in GWAS, for example, in much the same way that breaching 

patient confidentiality is a criminal offence for doctors.  Alternatively, a further 

solution proposed is to gain informed consent from participants to use genomic 

data without ever promising full confidentiality (Lunshof et al., 2008).   

Another possible solution to countering the problems posed by the Homer 

method involves developing alternative formats for the reporting of results from 
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GWAS (Little et al., 2009).  For example, it may be possible to avoid the risk of 

participant identification by publishing only summarised results, such as the 

distributions of p-values and effect sizes.  This issue is addressed in Section 

2.9, with the aim of clarifying precisely what information can and cannot be 

published safely from GWAS. 

Although the Homer et al. paper has provoked reaction both from governing 

bodies and prominent researchers in the field of genomics, concerns over the 

generalisability (or external validity) of the Homer method have been raised.  In 

sections 2.2.2  to 2.2.5 we considered some of the problems with the Homer 

method, such as its reliance on composite hypotheses, and issues regarding 

the reference population.  The reliability of the Homer method in practice is 

therefore questionable.  Recent publications explore the method’s performance 

in more detail, and extensions to the method are also proposed (e.g. in the form 

of new or adapted test statistics).  These publications are now outlined. 

2.3.1 Previous Findings 

In the context of GWAS data, Braun et al. (Braun et al., 2009) specifically 

examine the Homer method’s reliance on three assumptions: (1) that the 

mixture, reference group and individual of interest are all from the same 

underlying population; (2) the reference group and the mixture are similarly 

sized; and (3) the SNPs used in the test are independent.  Using data from the 

International HapMap Project (International HapMap Consortium, 2003), they 

find that the specificity of the test (i.e. the proportion of individuals who are not 

in the studies that are correctly inferred as absent from the studies) dramatically 

diminishes when the test individuals are of different ethnicity to the individuals 
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within hypothetical case-control studies (i.e. which represent the mixture and 

the reference group).  This finding is supported by Sampson and Zhao 

(Sampson et al., 2009) (see later), who show that the type I error rate of the 

Homer method can exceed the power when the reference group and the 

mixture are ancestrally unmatched.  The implications of the assumption of “co-

ancestry” are investigated further in Section 2.8. 

Braun et al. also show that the specificity of the test is again reduced when the 

SNPs used are in LD.  As predicted in Section 2.2.5, the test statistic has 

greater variance when correlated SNPs are used and, hence, the number of 

false-positive results increases.  Although Braun et al. do not explicitly test the 

influence of having different sizes for reference groups and mixtures, they argue 

that uneven sample sizes also affect how the test performs.  For instance, the 

allele frequencies in groups with greater sample sizes will be more 

representative of the allele frequencies in the underlying population and, hence, 

under the null hypothesis, an individual will be “closer”, on average, to the larger 

group than to the smaller sized group (assuming that the assumption of co-

ancestry applies).   

In addition to testing the assumptions of the Homer method, Braun et al. 

examine the accuracy of the Homer method in practice by calculating the 

positive predictive value (PPV).  The PPV is a Bayesian measure that provides 

the probability that a positive test result is a “true positive”.  Hence, for the 

Homer method, the PPV is the probability that an individual inferred as present 

within the mixture is actually present in the mixture.  In addition to the false-

positive and the true-positive rates, the PPV depends on the prior probability 
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that a test individual is in the mixture.  For the particular specificity (i.e. 1-false 

positive) and sensitivity (i.e. true positive) rates deduced for the Homer method, 

Braun et al. report that a PPV of 90% requires a prior probability of the test 

individual being in the mixture of at least 0.66.  Thus, the prior “suspicion” that a 

test individual is in the mixture must be at least 0.66 in order to be 90% certain 

that an individual identified within the mixture is actually in the mixture.  

Consequently, Braun et al. conclude that the Homer method would rarely be of 

use in practice due to the limited specificity of the test. 

2.3.2 Extensions of the Homer method 

As stated earlier, various extensions of the Homer method have aimed to 

develop a better and more reliable test for identifying participants from genomic 

mixtures using SNP allele frequencies.  This section outlines these alternative 

approaches. 

2.3.2.1 Jacobs et al. 

A test proposed by Jacobs et al. (Jacobs et al., 2009) specifically addresses the 

case-control situation [i.e. application (c) in Section 2.2.3], and, hence, is based 

on a two-sample problem.  The statistic proposed by Jacobs et al., Tgeno, 

compares genotype frequencies in the reference group and in the mixture for 

the genotypes of the individual of interest.  This contrasts to the Homer method, 

which compares the allele frequencies.  Where Xj, g and Yj, g represent the 

genotype frequencies for genotype g of the jth SNP in the reference group and 

the mixture respectively, and where Zj denotes the genotype for the individual of 

interest, the Jacobs et al. distance metric is: 
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d = ∑ log �:,�z � log�:,�z�:;� . 

A two-sided T-test is proposed to discriminate between the hypotheses that the 

individual of interest is in neither of the two test groups (H0); in the reference 

group (H1); or in the mixture (H2).  The authors also claim that the test can also 

assess a fourth hypothesis that the individual is in both groups (H3); however, 

although the distance metric has specific expectation under H3, it is not clear 

how the test could discriminate between this hypothesis and other hypotheses 

post-hoc. 

Consistent with the Homer method, the power of the test statistic Tgeno 

increases with the number of SNPs used, and is negatively correlated with the 

size of the mixture and the genotyping error rate.  In a simulation study, test 

groups of 1,000 individuals require between 50,000 and 70,000 SNPs to 

achieve a power close to 100% at p-val<10-6.  The number of SNPs required for 

this approach, thus, seems similar to the Homer method (although exact figures 

for the Homer method are not provided).  When the reference group is 

increased to 10,000 individuals, however, a similar power (97%) to infer 

presence in the mixture is achieved with only 25,000 SNPs (again at 10-6).  

Using case-control GWAS data, Jacobs et al. fit a series of logistic regression 

models to determine the strength of association between a number of SNPs 

and a phenotype of interest.  The SNPs are ranked by strength of association, 

and the sensitivity and specificity to infer presence in the case group are 

derived for various numbers of top associated SNPs.  For a mixture of 1,000 

cases (with 1,000 controls as the reference), the 1,000 top associated SNPs 

yield a sensitivity of 43% at a specificity of 95%, but the sensitivity approaches 
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zero at a specificity of 99.9% (i.e. a 1 in a 1,000 chance of obtaining a false-

positive result).  Again for a mixture of 1,000 cases (and with 1,000 controls), 

the 5,000 top associated SNPs yield a sensitivity of 90% at a specificity of 95%, 

and a sensitivity of 41% at a specificity of 99.9%.  For a mixture of 5,000 cases, 

the 20,000 top associated SNPs yield a sensitivity of approx. 65% at a 

specificity of 95%, and a sensitivity of approx. 10% at a specificity of 99.9%.  

The use of top associated SNPs therefore increases the power of the test 

compared with using randomly chosen SNPs, but many thousand top 

associated SNPs are still required to reliably infer presence in a mixture of 

1,000 or more individuals. 

In the Jacobs et al. paper, all empirical results are based on equal sample sizes 

for the two test groups used (i.e. the reference group and the mixture, or the 

case and control groups of a study).  Although the authors do not explicitly state 

whether their test statistic is influenced by differing sample sizes (as has been 

highlighted by Braun et al. (Braun et al., 2009) as important), they assume that 

the expectation of the statistic is approximately equal to zero under the null 

hypothesis.  Unequal sample sizes would be likely to cause small deviations of 

the test statistic from zero under the null, but the nature of these deviations, in 

effect, would be random (i.e. with mean zero).  The test statistic, thus, would not 

be systematically biased towards one group when the sample sizes are unequal 

(as is the case with the Homer method).  Furthermore, the estimated variance 

of the test statistic would not be biased if the two sample sizes differ because it 

is a function of the two sample sizes.  Hence, this test statistic appears to be 

robust to unequal sample sizes, although this was not specifically documented. 
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2.3.2.2 Visscher et al. 

Visscher et al. (Visscher et al., 2009) demonstrate two alternative approaches 

to testing for presence in a mixture of DNA:  a likelihood ratio approach, and a 

linear regression approach.  The likelihood-ratio statistic compares the 

probability that the individual of interest is in the mixture with the probability that 

he/she is “out” of the mixture.  For the linear regression approach, an outcome 

is derived by subtracting the allele frequencies in the reference group from the 

scaled genotypes for an individual of interest, and this outcome is regressed on 

an explanatory variable derived by subtracting the allele frequency in the 

reference group from the allele frequency in the mixture.  If the individual is in 

the mixture, the regression coefficient has an expected value of 1, but if he/she 

is not, it has an expected value of 0.  This linear regression approach is distinct 

from all the other approaches that have been proposed for this problem, and I 

examine this method in more depth in sections 2.5 to 2.7. 

Both test statistics proposed by Visscher et al. have similar properties to one 

another and to the statistics described previously.  For instance, the tests have 

power proportional to the number of SNPs used and inversely proportional to 

the size of the mixture; allele frequencies (i.e. rare or common) have little 

influence on the tests except at the extremes; and the tests have greater power 

using known allele frequencies for a reference population than using estimated 

allele frequencies from a reference group.  In their simulations, Visscher et al. 

compare the linear regression test statistic to the Homer method using 

simulated sets of independent SNPs.  The linear regression statistic generally 

has greater power than the Homer method, with the exception of when the size 



Chapter 2 

125 

 

of the reference group is smaller than the size of the mixture.  In this situation, 

the Homer method has the greater power – but this comes at the expense of a 

sometimes drastically elevated type I error.  The linear regression approach 

consistently yields acceptable type I error rates – even when the sample sizes 

of the two test groups are unequal. Visscher et al. state that a limitation of their 

test statistics is that the reference group, mixture, and the individual of interest 

are all assumed to be from the same population.  In fact, this has been 

assumed by all the approaches considered so far.  The next approach to be 

described, however, attempts to overcome the reliance on this assumption. 

2.3.2.3 Sampson & Zhao 

In an attempt to counter some  of the problems potentially posed by the 

assumption of co-ancestry, Sampson and Zhao (Sampson et al., 2009) propose 

a new test statistic that requires only that the reference group is matched to the 

individual of interest.  This is a clear advantage over the other methods for a 

forensic application of the test because, in practice, the ancestry (or ethnicity) of 

the mixture may be unknown, whereas the ethnicity of the individual of interest 

would be available.  The Sampson and Zhao test statistic is derived by 

calculating a distance metric for the individual of interest and, in addition, for 

each individual in the reference group.  This distance metric is similar to that 

derived for the Homer method, but, for each SNP, instead of taking absolute 

differences between a particular test individual’s scaled genotype and the allele 

frequency in the reference group and between the test individual’s scaled 

genotype and the allele frequency in the mixture, these differences are squared 
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(it is, thus, an L2 distance metric).  The Sampson and Zhao statistic can be 

expressed as follows. 

For the j’th SNP, the individual of interest has scaled genotype Yij (=0, 0.5 or 1), 

the allele frequency in the reference group is γRij (=0 to 1) and the allele 

frequency in the mixture is γMij (=0 to 1).  The distance metric, i��,:, is then: 

Equation 16 

i
,��,: � ���: � _�:�� � ���: � _�:�� 
In addition to deriving i
,��,:, a distance metric is also derived for each of the NR 

individuals in the reference group in the same way.  Hence, for the ith individual 

in the reference group, the distance metric is Di, L2, j (calculated as for D0, L2, j  in 

Equation 16 above).  Subsequently, this metric is averaged over each member 

of the reference group: 

i���,: ��i�,��,:��
�;�  

 For each SNP,  i���,:,  is then subtracted from the distance metric for the 

individual of interest, i
��,:: 
i��,: � i
,��,: � i���,:. 

Finally, as with the Homer method, i��,: is averaged over all SNPs, and a one-

sample t-test is performed.  Where i�� is 

i�� � ∑ ���,z|z}~�  , 
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and where: 

�e� � ∑ �i��,:�: � i����� � ∑∑ �i��,:~�:~�:� � i����i��,:� � i���� , 
the T-statistic, ���, is: 

Equation 17 

��� � ���∗√����v . 

In simulations, this test statistic demonstrates a higher power than the Homer 

method when the ancestries of the reference group, mixture and individual of 

interest are the same.  Although it is assumed that this new test statistic is 

robust to ancestral differences between the reference group and the mixture, no 

empirical tests are reported to show this.  Furthermore, because the test 

requires individual level data for the reference group, it is unsuitable for GWAS 

applications where such data are not always available. 

2.3.2.4 Clayton 

An alternative approach to test for presence within a mixture of DNA has been 

proposed by Clayton (Clayton, 2010) using a Bayesian framework.  A Bayes 

factor, P(Data|H1)/ P(Data|H0), is initially derived to test for presence in a 

mixture when the allele frequencies for a reference population are known.  

Assuming a bivariate normal distribution for the distance between an individual 

of interest and the mixture and the distance between the individual and the 

reference group, for a particular SNP, the individual has genotype x, the mixture 

has allele frequency �̅, and the reference population has allele frequency µ.  

The proposed Bayes factor is thus as follows: 
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log Bayes	Factor � �� log uu<�� �� � uu<� �� � �̅���� � �̅� � �� � ����� � ���, 
where s is the number of independent SNPs, and n is the sample size of the 

mixture.   

Extensions of the above Bayes factor are proposed for various situations, such 

as when the allele frequencies in the reference group are estimated (i.e. by use 

of a reference group) and when they are completely unknown.  If the allele 

frequencies in the reference population are known, the relationship between the 

number of SNPs required and the size of the mixture is approximately 

proportional to n; if no information is available for a reference population, the 

number of SNPs required is approximately proportional to n2; and if estimates of 

the allele frequencies for the reference population are available (i.e. by use of a 

reference group with sample size m), the number of SNPs required (assuming 

large m) is proportional to 
�� ��u � �u ¡�. 

Clayton also considers the situations where the ancestry of the two groups 

differs, and where there is LD.  Where the mixture and the reference group 

differ in ancestry, Clayton suggests adjusting the Bayes factor for Wright’s FST 

statistic (Wright, 1968), which measures the degree of genetic divergence 

between populations.  This adjustment requires the ancestry of the two test 

groups to be known (as well as the corresponding FST value) and, in effect, 

reduces the power of the test.  If the specified FST value is inaccurate, it can 

also perturb the results.  To account for linkage disequilibrium (LD), the inverse 

correlation matrix, Σ-1, needs to be estimated from a secondary dataset.  

However, Σ-1 will be very large and sparse (i.e. it has dimensions equal to the 
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number of SNPs used in the test), so Clayton suggests using least angle 

regressions (LAR) (Efron et al., 2004) to estimate its diagonal and near-

diagonal elements only.   

The method is illustrated in a real data example using a reference group of 

1,455 British individuals and a mixture of 145 Scottish individuals, and using 

4,743 SNPs on chromosome 20.  Hence, the SNPs used are likely to be in LD, 

and there may be differences in ancestry between the two test groups.  In 

general, the Bayes factor adequately discriminates between individuals present 

in the mixture and individuals absent from the mixture in these data.  After 

adjusting for LD, the variance of the Bayes factor is reduced and, hence, fewer 

false-positive results are obtained.  In these data it is shown that no adjustment 

for ancestry is actually required; nevertheless, an adjustment for a relatively 

extreme FST value merely leads to marginally more conservative test results. 

2.3.2.5 Sankararaman et al. 

A further test statistic – proposed by Sankararaman et al. (Sankararaman et al., 

2009) – aims to clarify the maximum number of SNPs that can be published 

safely for any given study.  This test uses a likelihood ratio to infer presence 

within a genomic mixture by specifying the joint distribution of the genotype for 

an individual of interest, x, and the allele frequency in the mixture, )̂, under the 

null and alternative hypotheses.  Sankararaman et al. claim that their test 

provides an upper bound on the maximum power achievable by any test by way 

of the Neyman-Pearson lemma, which guarantees that no test can achieve 

greater power than the likelihood ratio test.  Furthermore, they claim that the 

powers achieved in their simulation studies are optimal given that known allele 
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frequencies for a reference population are used in contrast to estimated 

population allele frequencies – which lead to a loss of efficiency. 

In a real data illustration of the method, an approximate likelihood ratio statistic 

(i.e. which uses estimated allele frequencies for the reference population) yields 

greater power than the Homer method.  As the number of SNPs is increased, 

the power of the approximate likelihood ratio statistic also appears to converge 

to the optimal power obtained for the exact likelihood ratio statistic (i.e. which 

uses known population frequencies).   

The relationship between the power, 1-β; the level of type I error, α; the number 

of SNPs, s; and the sample size of the mixture, n, is described in the following 

formula: 

£�<¤ � £¥ ¦ ���/§�, 
where z refers to respective values from the normal distribution.  This provides 

the theoretical power of the exact likelihood ratio statistic given a fixed sample 

size and number of SNPs, and a specified type I error rate.   

Based on the above formula, Sankararaman et al., have developed an online 

tool called “SecureGenome”, which calculates the number of top-ranked SNPs 

that can be published safely at different power and type I error thresholds (see 

Section 2.9.1).  Although this tool is potentially useful for quantifying the number 

of SNPs that can be released safely in ideal settings in which no model 

assumptions are breached, it may potentially be more restrictive than is really 

necessary.  Subsequent sections investigate how these types of methods 
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perform in different realistic scenarios, where their assumptions do not 

necessarily hold. 

2.4. Testing the Original Homer Method 

In order to understand the real risks implied by the methods described by 

Homer et al. (Homer et al., 2008), the behaviour of the tests needs to be 

quantified in terms of their reliance on the underlying assumptions, which are 

often violated in real data.  This section demonstrates how the Homer method 

performs with respect to some of the conditions and characteristics described in 

Section 2.2.2.  Simulation studies are conducted using different numbers of 

independent SNPs, and with various reference group and mixture sizes.  

However, I assume no violation of either of the two key assumptions (i.e. co-

ancestry and independent observations) here.  Note that a maximum of 50,000 

SNPs are used to illustrate the method, as this is the approximate number of 

independent SNPs in the human genome (Visscher et al., 2009).  The focus in 

these simulation studies is on applying the method in the context of GWAS – 

rather than in the forensic application. 

2.4.1 Simulation Method 

These simulation studies investigate how the Homer method performs with 

various numbers of SNPs, and with various mixture and reference group sizes.  

Figure 14 below illustrates the basic premise of the simulation method.  Allele 

frequencies for the underlying reference population are simulated first, before 

genotypes for individuals in the mixture, the reference group, and in neither 

group are generated from these. 
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Figure 14: Illustration showing the relationship between the individuals in the mixture, 
the reference group, and the test individuals who are in neither group. The individual of 
interest can be in any of these groups. 

 

For the jth SNP, the minor allele frequency (MAF) in the reference population, 

Popj, is generated randomly from a uniform distribution with parameters 0.05 

and 0.5 (j = 1,…, s).  This follows the real distribution of MAFs on chromosome 

1 in the Utah residents with central European ancestry (CEU individuals) in the 

International HapMap Project (International HapMap Consortium, 2003), but 

assumes independence.  Individuals in the reference group and the mixture, as 

well as test individuals in neither group, are then simulated as follows.  For the 

ith individual (i = 1,…,Nk) in the kth group (k = 1 for the reference group; k = 2 for 

the mixture; k = 3 otherwise), the jth genotype (j = 1,…, s), yijk, is generated 

randomly from a binomial distribution with p = Popj and n = 2 (yijk = 0, 1 or 2 

copies of the minor allele).  Each genotype is then divided by two and, hence, 

converted to a proportion (or observed allele frequency), Yijk (= 0, 0.5 or 1).  

MAFs for the reference group, Gj, and for the mixture, Mj, are derived by taking 

the mean genotype (in proportion form) of each SNP within the appropriate 

group (i.e. Gj = Y.j1; Mj = Y.j2).  Under the alternative hypothesis, each individual 

in the mixture is tested in turn for presence in the mixture.  Under the null 

hypothesis, the N3 individuals in neither group are tested in turn for presence in 

Mixture 

Reference Population 

Reference Neither  

Group 
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the mixture.  Hence, the test is performed N2 times under the alternative 

hypothesis and N3 times under the null hypothesis (in each run of the 

simulation), and the hypotheses tested in these scenarios are “not in the 

mixture” (H0) Vs “in the mixture” (H1).  Note that the additional situation where 

an individual is in the reference group is also tested later (see sections 2.6 and 

2.7).  

Scenario 1 simulates various numbers of independent SNPs (s) with reference 

groups of 1500 individuals (N1=1500) and mixtures of 500 individuals (N2 = 

500).  Since it is unclear in the original paper, I do not assume that equal 

sample sizes are required here.  Scenario 2 simulates 50,000 independent 

SNPs for various N1 and N2 values.  In both scenarios and in each simulation 

run, the number of individuals simulated in neither group (N3) is equal to N2.  

Each individual in the mixture and each individual in neither group is tested in 

turn for presence in the mixture, using the test hypotheses stated in (b) of 

Section 2.2.3 (i.e. I only test for presence in a particular GWAS cohort here).  

Hence, a null hypothesis that the individual is neither in the mixture nor the 

reference group is tested against an alternative hypothesis that (s)he is in the 

mixture.  Various numbers of simulation runs are performed depending on the 

values of N2 and N3, ensuring that a minimum of 20,000 tests are performed in 

each setting.  In each simulation run, a new set of MAFs for the reference 

population, Popj, are generated and, hence, new sets of individuals (i.e. who 

are in the mixture, the reference group, and in neither group) are also 

simulated. 
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2.4.2 Scenario 1: Number of SNPs 

In this scenario, Monte Carlo estimates of the sensitivity (i.e. the proportion of 

individuals in the mixture correctly inferred as present in the mixture) and 1-

specificity (i.e. the proportion of individuals in neither group incorrectly inferred 

as present in the mixture) are obtained for the Homer method.  Figure 15 

overleaf illustrates the results in Receiving Operating Characteristic (ROC) 

curves, using various numbers of SNPs (s) when N1 = 1500 and N2 = 500.  A 

reference group of 1,500 individuals is chosen here because it represents the 

approximate size of the Wellcome Trust Case-Control Consortium (WTCCC) 

element of the British 1958 Birth Cohort (Power et al., 2006), which is a 

representative sample of the UK population.  A mixture size of 500 individuals is 

chosen for computational convenience, and because this represents an 

approximate minimum size for cohorts that contribute to consortia of genome-

wide association study (GWAS).   

As can be seen, when fewer than 10,000 SNPs are used to test for presence in 

the mixture, a reasonable sensitivity (e.g. 80% or greater) is only obtained at 

low specificities (e.g. less than 90%).  Use of 10,000 or 20,000 independent 

SNPs yields reasonable sensitivity at a specificity of up to 99%, but the 

sensitivity diminishes rapidly at more stringent specificities.  A consistently high 

sensitivity close to 100% is obtained with the use of 50,000 independent SNPs, 

and this remains the case even at 99.999% specificity.  In this hypothetical 

scenario in which none of its model assumptions are breached, these findings 

concur with findings reported elsewhere (Homer et al., 2008; Jacobs et al., 

2009; Sankararaman et al., 2009), and indicate that the Homer method has 



Chapter 2 

135 

 

sufficient power to reliably infer presence in a mixture of DNA so long as a 

sufficient number of SNPs is available for use in the test.  Use of an insufficient 

number of SNPs, however, may result in inaccurate inferences regarding 

whether or not a particular individual of interest is present in any given mixture.  

Note that Section 2.7 considers further scenarios in which the model 

assumptions no longer hold. 

 

Figure 15: ROC curve showing the sensitivity and 1-specificity of the Homer method 
when various numbers of SNPs (s) are used.  A fixed reference group size (N1) of 1,500 
and a fixed mixture size (N2) of 500 are used. 
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2.4.3 Scenario 2: Reference Group and Mixture Size 

In this scenario, the effect of different reference group and mixture sizes (N1 

and N2 respectively) is illustrated using s = 50,000 SNPs.  Rather than showing 

the sensitivity and specificity, results are presented by plotting histograms of the 

Homer test statistic, T(Yi).  In all plots, the putative null distribution is shown in a 

dotted blue line. 

The influence of the size of the reference group is first illustrated (see Figure 

16).  Against a mixture of size 500, reference group sizes of N1 = 90, 500, 1500, 

and infinity are tested – noting that a reference group of infinite size is 

equivalent to knowing the population MAFs, which Homer et al. stipulate using 

in the original paper (Homer et al., 2008).  Under the alternative hypothesis it 

can be seen that the size of the reference group has no influence on the test 

statistic: the distribution of T(Yi) for individuals in the mixture is the same for 

each value of N1 tested (mean ≈ -6), and is distinct from both the putative null 

[i.e. which is approximately N(0,12) for large numbers of observations] and from 

the actual distribution of T(Yi) for individuals in neither group.  Importantly, 

however, under the null hypothesis, the distribution of the test statistic relates 

directly to the size of the reference group (N1) in relation to the size of the 

mixture (N2).  For instance, when N1 is greater than N2, the distribution of the 

test statistic is to the right of the putative null distribution, and when N1 is less 

than N2, the distribution of T(Yi) is to the left of the expected distribution.  Only 

when N1 equals N2 does the distribution of T(Yi) approximate to the putative 

null.  Hence, this confirms the statements of Braun et al. (Braun et al., 2009).  

The implications of having a mismatched empirical and putative null distribution 
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has been described in Section 2.2.2, and will be discussed again in Section 

2.4.4. 

 

Figure 16: Histograms of the test statistic under the alternative (blue) and null 
hypotheses (grey).  Various reference group sizes (N1) are tested when the mixture size 
(N2) is fixed at 500 and s = 50,000 SNPs are used.  The navy dotted line shows the 
expected distribution of T-statistic values under the null hypothesis. 

 

To illustrate how the size of the mixture influences the performance of the 

Homer method, histograms of the test statistic, T(Yi), are again provided (see 

Figure 17 overleaf).  In these simulations, the number of SNPs is again fixed at 

s = 50,000, and the reference group size (N1) is fixed at 1,500 individuals.  
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As can be seen, under the null hypothesis, the distribution of the test statistic, 

T(Yi), is again dependent on N1 relative to N2.  When N1 and N2 are both 1,500 

the distribution of the test statistic conforms to the theoretical (i.e. putative) null 

distribution, but when N2 is smaller than N1 the distribution of T(Yi) is shifted to 

the right of the putative null.  Under the alternative hypothesis, the influence of 

the mixture size is clear.  For large mixtures the distribution of the test statistic is 

located closer to the null distribution, while for smaller mixtures the test statistic 

is located away from the null distribution.  Hence, there is greater sensitivity (or 

power) to identify individuals in smaller mixtures.  This is logical, as it should be 

more difficult to identify an individual in a large group than in a small group. 
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Figure 17: Histograms of the test statistic under the alternative (blue) and null 
hypotheses (grey).  Various mixture sizes (N2) are tested when the reference group size 
(N1) is fixed at 1500 and s = 50,000 SNPs are used.  The navy dotted line shows the 
expected distribution of T-statistic values under the null hypothesis. 
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sample sizes for the reference group and the mixture are simulated, and it is 

shown that unless the sample sizes of the two groups are equal (i.e. N1 = N2) 

the distribution of the test statistic under the null hypothesis is moved away from 

the assumed, t-distribution (i.e. which can simply be considered as the standard 

normal distribution, due to the large number of observations required).  This 

finding can be understood by considering the allele frequencies in the reference 

group and in the mixture as estimates of the allele frequencies in the underlying, 

reference population.  When the sample sizes of the two groups are equal, the 

allele frequency estimates are equally precise, and an individual who is not in 

either group should, on average, be equidistant to both groups (assuming that 

the assumption of co-ancestry applies).  However, when one group is larger 

than the other, the allele frequencies in the larger group should be more 

representative of those in the reference population and, as a result, an 

individual will be “closer” to the larger group than to the smaller group under the 

null hypothesis. 

As described in Section 2.2.2.2, if the reference population allele frequencies 

are known, a one-sided test of the null hypothesis that mean D(Yij) = 0 is 

conservative because D(Yij) is actually expected to be less than or equal to zero 

(i.e. the assumed null value reflects the “worst-case” scenario).  Where a 

reference group is used, if the reference group has a greater sample size than 

the mixture, this principle again applies; the test will be conservative because 

mean D(Yij) is expected to be ≤ 0 under the null hypothesis.  When the sample 

size of the reference group is smaller than that of the mixture, however, 

individuals will tend to be closer to the mixture than to the reference group 

under the null hypothesis, and an increase in type I error would be expected 
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(i.e. where individuals are incorrectly inferred as present in the mixture).  This is 

an important observation, which was first pointed out by Braun et al. (Braun et 

al., 2009) but which has largely been ignored elsewhere in the literature.  

Although there is no doubt that having a larger sample size for the mixture than 

the reference group is problematic, it could be argued that the reverse situation 

(i.e. where the reference group is greater than the mixture) is desirable because 

it leads to a conservative test.  In many instances – such as when a sufficient 

power is available – a conservative test could be seen as desirable because it 

reduces the chance of obtaining a false-positive result.  However, as is quoted 

by Fisher in Section 2.2.2.2, the inexact specification of the null distribution in 

this situation is a problem because it prevents the accurate derivation of p-

values.  The Homer method yields biased p-values if the two test groups have 

unequal sample sizes and, hence, any conventional inference based on such a 

test will be flawed. 

The problem of unequal group sizes also has implications for an application of 

the Homer method in case-control GWAS data.  In this scenario, no reference 

group is required because the case and control groups can be tested directly 

against one another.  If the sample sizes of the two groups differ the test will be 

biased towards inferring presence in the larger of the two groups and, as such, 

it is apparent that the Homer method itself would be unsuitable for use in this 

context.  Thus, as the main focus of this work is on the GWAS applications of 

the test, it now seems sensible to focus on one of the alternative approaches to 

the Homer method instead of the Homer method itself.   
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As has been mentioned above, the effect of unequal sample sizes has largely 

been ignored in the other papers that propose extensions to the Homer method, 

and it is not obvious how most of the alternative approaches would be affected 

by unequal sample sizes.  Nevertheless, the paper by Visscher et al. (Visscher 

et al., 2009) includes results for simulation studies testing various samples sizes 

for the two test groups, and their linear regression approach yields the correct 

level of type I error in all scenarios.  This approach, thus, seems robust to 

differing sample sizes.  Noting that Braun et al. (Braun et al., 2009) suggest that 

the Homer method is of little use in practice due to the high prior probability 

required that an individual is in the mixture, a further strength of the Visscher et 

al. test is that it seems to outperform the Homer method in most simulation 

scenarios.  The Visscher et al. approach thus appears more suitable for the 

current problem than the Homer method.  From here, I therefore focus on 

assessing the capabilities of the Visscher et al. (Visscher et al., 2009) test in 

preference to the Homer method.  In keeping with the initial aims of this work, 

the subsequent sections focus on understanding the true implications of these 

methods with respect to their potential threat to participant confidentiality in 

GWAS. 

 

2.5. Visscher et al. Linear Regression 

As described in Section 2.3.2.2, Visscher et al. have proposed two alternatives 

to the Homer method: a likelihood ratio approach and a linear regression 

approach.  As will be discussed later, an advantage of these approaches in 
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comparison to the other approaches described in Section 2.3.2 is that the null 

hypotheses they test each has a fully specifiable distribution.  Hence, the 

Visscher et al. approaches should, in principle, yield the correct level of type I 

error regardless of the sample sizes of the groups compared in the test (i.e. the 

reference group and the mixture, or the case and control groups of a study).  It 

is predominantly for this reason that, from here, I consider the Visscher et al. 

approaches in favour of any of the other approaches proposed to identify 

individuals within genomic mixtures.  Note, however, that the approach 

proposed by Clayton (Clayton, 2010) also appears useful, because it can also 

handle differences in the sample sizes between the mixture and the reference 

group.  The framework proposed by Visscher et al. is more straightforward than 

the Clayton framework, however, and, as we will see in Section 2.7, it allows for 

some straightforward extensions that improve its performance in realistic 

situations.  

2.5.1 Overview 

Visscher et al. state that there is a strong and consistent relationship between 

their likelihood ratio and linear regression approaches.  For instance, the log-

likelihood ratio statistic they propose is approximately equal to half of the 

difference between the linear regression approach’s test statistic under the null 

and alternative hypotheses.  It therefore only seems necessary to focus on one 

of their two approaches here.  In this section I thus provide an overview of the 

linear regression approach only.  Note that some alternative notation will now 

be introduced, and that this new notation will be used from here on in 

preference to the Homer et al. notation used previously in this chapter. 
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For the j’th SNP (j = 1,…, s), the true, underlying population allele frequency is 

pj; the observed allele frequency in the mixture is ¨: ; and the individual of 

interest has genotype yij, which is in proportion form (= 0, 0.5 or 1 representing 

0, 1 or 2 copies of the minor allele respectively).  Where a reference group is 

used to estimate pj, the observed allele frequency in the reference group is rl.  
The mixture consists of Nmix individuals, and the reference group, where used, 

consists of Nref individuals.   

The linear regression approach is based on a regression of Yij on Xj, where Yij 

and Xj are deviations of the population frequency pj from yij and from qj 

respectively: 

Yij = b.Xj + єij, 

where Yij = yij – pj, and Xj = qj – pj; b is the regression coefficient; and єj is a 

normally distributed error term.  For known population allele frequencies, pj, the 

least squares estimate of b – assuming that the slope of the line is forced 

through the origin (i.e. there is no intercept term) – is: 

©ª � ∑ �«z<¬z�|z}~ �z<¬z�∑ �z<¬z��|z}~ . 

As is shown in Appendix B.2, the expectation of b is 1 if the individual of interest 

is in the mixture, and 0 if he/she is not.  If the individual of interest is in the 

mixture, b has variance: Var(b|in) = (Nmix - 1)/s; otherwise, b has variance: 

Var(b|out) = Nmix /s. 
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As discussed in Section 2.2.2.1, in practice, the population frequencies pj are 

not known, and from here I therefore focus on the two sample problem (e.g. in 

which a reference group is used).  Visscher et al. express an alternative version 

of the test for the two sample situation, which is based on the estimated 

population frequencies, )̂:.  Rather than directly using the allele frequencies in 

the reference group, rl, as estimates of )̂:, Visscher et al. recommend using a 

pooled average of the allele frequency in the mixture, qj, and the allele 

frequency in the reference group, rj, as an estimate of )̂:.  A combined sample 

of the Nmix and Nref individuals in the mixture and in the reference group is thus 

used to specify )̂:: 
Equation 18 

)̂: � ∑ D�:�mix �ref�;��mix��ref  

In this situation, pj is replaced in the regression by )̂:.  Hence, the regression is 

again Yij on Xj, but Yij is now (D�: � )̂:) and Xj is now (¨: � )̂:).  Based on the 

same principle as before, the estimate of the regression coefficient for this 

situation is: 

©ª � ∑ �«z<¬ez�|z}~ �z<¬ez�∑ �z<¬ez��|z}~ . 

If an individual is in the mixture, ©ª again has an expectation of 1.  Visscher et al. 

state that if an individual is not in the mixture, ©ª  has an expectation of 0.  

However, as is shown in Appendix 2, this is true only for individuals who are 

neither in the mixture nor in the reference group; if an individual is in the 
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reference group itself, ©ª  actually has an expectation of –Nmix/Nref.  This has 

implications to the hypothesis testing procedure to be used with this approach.  

As discussed in Section 2.2.3, the only appropriate formulation of a test for a 

two sample setting (i.e. where an individual could be in either of two test groups 

or in neither of the two groups) is based on a two-tailed hypothesis.  Visscher et 

al. have, however, proposed two one-tailed tests (outlined in Appendix 2), which 

both seem problematic.  Their first test compares a null hypothesis that b = 0 

(i.e. “not in mixture”) against an alternative hypothesis that b>0 (i.e. “in 

mixture”).  As noted earlier, the problem with this formulation of the test 

hypotheses is that it ignores the possibility that an individual could also be in the 

reference group [in which case E(b)<0].  Their second test compares the null 

hypothesis that an individual is in the mixture (b = 1) against an alternative 

hypothesis that he/she is not (b<1).  Although this formulation of the test is 

based on a null hypothesis with an exact distribution, it does not seem 

particularly useful in practice.  For instance, an underpowered analysis could 

easily lead to the fallacious conclusion that an individual is in the mixture when 

he/she is not, because the null hypothesis represents the outcome of interest.  

Furthermore, assuming that an individual is in the mixture under the null 

hypothesis seems an unclear and unsatisfactory way of testing for presence in 

the mixture.   

For these reasons, rather than using the chi-square tests stipulated by Visscher 

et al. (which are outlined in Appendix B.2), a Z-test is instead to be adopted to 

illustrate the method in this chapter: 
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Z � � � �
� � ©ª�¯/�©|out�~��0, 1��, 
where Var(b|out) = [Nmix/s]*[(Nmix + Nref)/Nref], and where “out” implies that an 

individual is in neither of the two test groups. 

If the null hypothesis (out) is rejected in the above, a further discriminatory 

analysis is required to ascertain which of the two groups the individual is in.  

Given that ©ª must either be significantly greater than zero or significantly less 

than zero for the null hypothesis to be rejected, an informal discriminatory 

analysis might involve simply checking ©ª for its sign (i.e. positive or negative) bª.  
This approach to performing a discriminatory analysis is examined in Section 

2.6. 

2.5.2 Assumptions and Practical Implications 

As with the other identification approaches, the Visscher et al. linear regression 

approach assumes co-ancestry between the mixture, the reference group, and 

the individual of interest (see Section 2.2.4).  The approach also assumes 

independent observations.  

In addition to the assumptions of co-ancestry and independent observations, 

the Visscher et al. linear regression approach also relies on the standard 

assumptions of any linear regression.  It thus assumes that the error terms are 

independent and identically distributed following a normal distribution with mean 

zero.  The assumption that the error terms have constant variance regardless of 
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the fitted value is known as the assumption of homoscedasticity, or 

homogeneity of variance. 

As has already been mentioned, an advantage of the Visscher et al. approach 

over some the other methods that have been proposed to infer presence within 

a mixture is that it is expected to be robust to differences in the sample sizes of 

the two groups compared in the test.  In a reported simulation study (Visscher et 

al., 2009), the linear regression approach yields the correct level of type I error 

for any sample size combination of the reference group and mixture.  When 

compared with the Homer method (Homer et al., 2008), the linear regression 

approach also yields a greater power in most scenarios.  However, if the 

sample size of the mixture is smaller than the size of the reference group, this 

test yields a lower power than the Homer method, i.e. because the Homer test 

has increased power in this situation at the expense of an increased type I error 

rate. 

As to be expected, the linear regression approach requires greater numbers of 

SNPs to infer the presence of an individual within larger mixtures because the 

power of the test is increased with the use of more SNPs.  For very large 

reference groups, Visscher et al. define the relationship between the number of 

SNPs required, the sample size of the mixture, and the power/type I error rate 

of the test as s/Nmix = (zα + z1-β)
2, i.e. where α is the significance level and 1- β is 

the power.  Note that this matches the power of the exact likelihood ratio 

statistic proposed by Sankararaman et al. (Sankararaman et al., 2009).  If the 

reference group and the mixture have equal sample sizes, however, the 
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Visscher et al. statistic requires twice this number of SNPs (i.e. relative to the 

size of the mixture) to achieve the same power, i.e. (zα + z1-β)
2 = 2*s/Nmix. 

Although the simulation studies reported by Visscher et al. (Visscher et al., 

2009) demonstrate that the approach is potentially useful in hypothetical 

situations in which none of the model assumptions is infringed, more work is 

required to clarify how well the method performs in more realistic scenarios.  In 

the following section I therefore test the Visscher et al. linear regression 

approach in a number of settings – using both simulated and real data – to 

determine how effective it really is in practice. 

2.6. Testing the Visscher et al. Method: Simulation 

Studies 

Before testing the linear regression approach in scenarios where its model 

assumptions are breached, this section illustrates how the method performs in 

simulation studies in which all individuals are simulated from the same 

population, and in which all the SNPs used in the test are independent.  This 

section, thus, aims to replicate the results reported by Visscher et al..  These 

simulation studies test the method in the context of a case-control GWAS, i.e. 

where an individual could be in either the case or the control group, or in neither 

group.  The focus of these analyses, thus, is on the two-sample application of 

the method.  Hence, where the Visscher et al. method is outlined in Section 

2.5.1 in terms of a mixture and a reference group, these groups should now be 

thought of as the case and the control groups of a study.   
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These simulations test the capability of the linear regression method to 

accurately infer the presence of an individual within a study as a whole (using a 

two-tailed hypothesis test).  When the null hypothesis is rejected, a 

discriminatory analysis is performed based solely on the sign of the regression 

coefficient, ©ª , to ascertain whether an individual of interest is a case or a 

control.  Initially, there are no systematic differences between individuals in the 

case group, the control group, and neither group; all individuals simulated are 

thus sampled into the test groups randomly (Scenario 1).  Subsequently, 

disease status for a hypothetical disease is simulated based on genotypes for 

various numbers of “causal SNPs”, and individuals are sampled into the case or 

control arms of a study according to disease status (Scenario 2).  Note that 

Scenario 1 is the equivalent of having zero causal SNPs in Scenario 2.   

2.6.1 Scenario One: Random Sampling 

Cases and controls are initially simulated using the same simulation method as 

reported in Section 2.4.  Population minor allele frequencies, pj, are simulated 

from a uniform distribution with limits 0.05 and 0.5 (j = 1,…,s).  From an 

identification point of view, rare alleles with frequency less than 0.05 could be 

useful, but due to the known problems with genotyping rare SNPs in practice, I 

do not assume use of SNPs with a rare allele frequency (this approach has also 

been used elsewhere, e.g. (Homer et al., 2008; Jacobs et al., 2009; Sampson et 

al., 2009; Visscher et al., 2009)).  Genotypes for Nca individuals in the case 

group; Ncon individuals in the control group; and Nneither individuals in neither 

group are then simulated from two calls to the binomial distribution (with p = pj).  

Each genotype is then divided by two and converted to a proportion of the total 
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possible number of copies of the minor allele, i.e. any individual can possess up 

to two copies of a particular minor allele (with the exception of those on the sex 

chromosomes, which I do not assume use of here at all), so the genotypes 0, 1 

or 2 are represented by 0, 0.5 or 1 in proportion format.  For each SNP, the 

minor allele frequency (MAF) in the case group, qj, is derived by calculating the 

mean genotype (in proportion form) of the Nca cases, and an estimate of the 

population MAF, )̂: , is derived by taking a pooled estimate of the allele 

frequencies in the case and control groups (see Equation 18).  In each 

simulation run, each individual in the case group, the control group, and in 

neither group is tested in turn for presence in the study using the linear 

regression approach.  Fifty thousand SNPs are simulated in each run, and 100 

runs are performed for each combination of Nca and Ncon.  In each simulation 

run, 1,000 individuals who are not in the study are tested in addition to the 

individuals in the case and control groups.  Results are presented in Table 18 

below. 
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Group N Mean (²³) Var(²³) 

Rejections of H0: Discriminatory 

Analysis  

(% correct) 
P<0.05 P<10-5 

Case 500 1 0.02 1 0.9938 100 

Control 500 -1 0.02 1 0.9944 100 

Neither 1000 0.0008 0.02 0.0628 0.00001
 

- 

Case 1000 1 0.06 0.9780 0.3745 100 

Control 500 -2 0.06 1 0.9998 100 

Neither 1000 0.0016 0.06 0.0638 0.00002 - 

Case 500 1 0.015 1 0.9998 100 

Control 1000 -0.5 0.015 0.9780 0.3745 100 

Neither 1000 -0.0008 0.015 0.0638 0.00002 - 

Case 1000 1 0.04 0.9980 0.7098 100 

Control 1000 -1 0.04 0.9981 0.7090 100 

Neither 1000 -0.0002 0.04 0.06223 0.00004 - 

Table 18: Results for 100 runs of Scenario One.  Every individual in each group is tested 
in turn for presence in the study.  The proportion of rejections of H0 represents the 
power to infer presence in the study for cases and controls, and it represents type I error 
for individuals in neither group.  If the null hypothesis is rejected (at the 5% level of 
significance), a discriminatory analysis is conducted to ascertain which group the 
individual is in.  Discriminatory analyses are not reported for individuals in neither group 
who are incorrectly inferred as present in the study. 

 

As can be seen in Table 18, estimates of the regression coefficient b are 

virtually unbiased, on average, for any combination of Nca and Ncon, and the 

type I error rates are all close to the nominal level (they do, however, seem 

consistently larger than 0.05; I consider this issue further in Section 2.7.2).  At 

the 5% level of significance, the approach has a near 100% power for any 

sample size combination.  At the p<10-5 level of significance (which is a more 

rigorous threshold that has also been used elsewhere (Homer et al., 2008; 

Braun et al., 2009; Jacobs et al., 2009)), the power again nears 100% when the 

sample sizes are both 500 and when a group of 500 individuals is tested 

against a group 1000 individuals.  When both groups have a sample size of 

1000 individuals, the power at p<10-5 is around 70%.  This reduction in power is 
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to be expected because, naturally, there will be less power to infer presence in 

a larger group.  When one group is smaller than the other, power to infer the 

presence of an individual in the larger group is impaired (e.g. power to infer 

presence in a group of 1000 individuals when the other group consists of 500 

individuals is approx. 37%).  These results show that, for a given number of 

SNPs, the sample sizes of the two groups are key in determining the power of 

the test.  Furthermore, they show that the ordering of the two groups (i.e. which 

allele frequencies are to be taken as qj, and which contribute only to )̂:) does 

not affect the outcome of the test.  Where the test correctly implies that an 

individual is in a study, the discriminatory analysis, which is based on the sign of 

©ª , has a perfect success rate for correctly inferring case or control status.  

Hence, the decision to adopt a two-tailed test for the problem at hand seems 

appropriate.  

These results support the simulations reported by Visscher et al., and show that 

the method performs well in this hypothetical situation where none of its 

assumptions are explicitly breached. 

2.6.2 Scenario Two: Sampling by Disease Status 

In this scenario, case and control subjects are sampled into a study according 

to disease status for a simulated disease.  The disease is randomly generated 

from a logistic regression model in which various numbers of causal SNPs 

influence the probability of contracting the disease.  Individuals with the disease 

are ascertained into the case group, and individuals without the disease are 

ascertained into the control group.  Two additional groups of individuals who are 

not in the study are also simulated: one for each disease state.  The individuals 
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within these two groups are also tested for presence in the study (under the null 

hypothesis). 

Population minor allele frequencies (MAFs) for a set of c independent causal 

SNPs are first simulated.  For the j’th causal SNP (j = 1,…,c), the population 

MAF, is generated from a uniform distribution with parameters 0.05 and 0.5.  

Genotypes for each causal SNP are then simulated for a large population of N 

individuals, where the j’th genotype for the i’th individual (i = 1,…, N), yij, is 

randomly generated from a binomial distribution with two trials with probability 

equal to the population MAF (yij = 0, 1 or 2 copies of the minor allele).  Next, an 

effect for each causal SNP, βj, is randomly generated.  The simulated SNP 

effects are log-odds ratios, which, for the j’th causal SNP, represent the 

increase in risk of having the disease of interest per copy of the minor allele. βj 

is generated randomly from a normal distribution with mean 0 and variance 0.42 

and, hence, approximately 95% of the odds-ratios are between 0.44 and 2.23.   

For the purpose of deriving the linear predictor, LPi, all genotypes for the causal 

SNPs are centred by subtracting the expected genotype for each SNP (i.e. 

which is equal to twice the population MAF of the corresponding causal SNP).  

For the i’th individual, LPi is derived using an additive genetic model, by 

multiplying the j’th genotype by the j’th SNP effect, and summing these terms 

over all c causal SNPs: 

Cj� � 	
 � 	��D�� � D́.�� � ⋯� 	�¶�D�¶ � D́.¶� 
where β0 is an intercept term (the magnitudes of which are presented in Table 

18:).  Next, a probability of disease, di, is derived for each individual using the 
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inverse-logistic (or expit) transformation, exp(LPi)/[1+exp(LPi)], before disease 

status, Di, is simulated by taking a random draw from a Bernoulli distribution 

with p = di (Di = 1 if individual has the disease of interest; Di = 0 otherwise).  For 

the values of β0,…,βc simulated, approximately 5-10% of the individuals in the 

population of size N are simulated with the disease of interest. 

Four groups of individuals are now randomly sampled from the population by 

disease status.  A group of n1 controls represents the control group in a case-

control GWAS study; n2 cases represent the case group in the same study; n3 

controls represent a group of control individuals who are not in this study; and 

n4 cases represent a group of case individuals who are not in the study.  All 

other individuals from the population (i.e. who are not sampled into one of these 

four groups) are now discarded.  Next, population MAFs for a set of (s - c) 

independent, non-causal SNPs, pj, are simulated in the usual way.  The j’th 

non-causal SNP (j = c+1,…, s), pj is thus randomly generated from a uniform 

distribution with parameters 0.05 and 0.5.  For each individual sampled into one 

of the four test groups, a genotype for each non-causal SNP is then simulated – 

again in the usual way.  For the i’th individual [i = 1,…,(n1 + n2 + n3 + n4)], the 

genotype for the j’th non-causal SNP (j = c+1,…, s) is generated randomly from 

a binomial distribution with p = pj and n = 2.  All genotypes [i.e. both for the c 

causal SNPs and for the (s-c) non-causal SNPs] are now converted to allele 

frequencies (i.e. between 0 and 1).  Each genotype, thus, is divided by two and 

converted from 0, 1 or 2 to a 0, 0.5 or 1 respectively.  For the j’th SNP, the 

mean genotype in the case group is taken as qj, and the mean genotype in the 

case and control groups combined is taken as )̂:.   
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In each simulation run, every individual within each of the four test groups is 

tested in turn for presence in the study.  Fifty thousand independent SNPs are 

simulated in total in each run, and each group consists of 500 individuals.  

Simulation characteristics for the present scenario are summarised in Table 19 

below.   

Property Value(s) 

Number of causal SNPs (c) 50; 250; 500; 1000. 

Total number of SNPs (s) 50,000 

Population allele frequencies ~Uniform (0.05, 0.5) 

Intercept term (β0) -3.5; -6; -8; -11. 

SNP effects (βj) ~Normal (0,0.4
2
) 

Population size (N) 20,000 

Number of controls (n1) 500 

Number of cases (n2) 500 

Number of test controls not in study (n3) 500 

Number of test cases not in study (n4) 500 
Table 19: Simulation characteristics for each simulated case-control GWAS. 

 

Results for this scenario are shown in Table 20 below. 
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Group 

No. 
Causal 
SNPs 

(c) 

Mean 

(²³) 
Var(²³) 

Rejections of H0: Discriminatory 
Analysis  

(% correct) P<0.05 P<10
-5 

Case 

50 

1 0.02 1 0.9943 100 

Control -1 0.02 1 0.9950 100 

Not in study - 
Case 

0.0097 0.02 0.0615 0.00002 - 

Not in study - 
Control 

-0.0106 0.02 0.0626 0.00002 - 

Case 

250 

1 0.02 1 0.9946 100 

Control -1 0.02 1 0.9941 100 

Not in study - 
Case 

0.0185 0.02 0.0617 0.00002 - 

Not in study - 
Control 

-0.0182 0.02 0.0628 0.00002 - 

Case 

500 

1 0.02 1 0.9945 100 

Control -1 0.02 1 0.9950 100 

Not in study - 
Case 

0.0198 0.02 0.0600 0.00002 - 

Not in study - 
Control 

-0.0212 0.02 0.0620 0 - 

Case 

1000 

1 0.02 1 0.9953 100 

Control -1 0.02 1 0.9942 100 

Not in study - 
Case 

0.0212 0.02 0.0610 0.00004 - 

Not in study - 
Control 

-0.0218 0.02 0.0632 0.00004 - 

Table 20: Results for 100 runs of Scenario Two.   Every individual in each group is tested 
in turn for presence in the study.  The number of rejections of H0 represents the power to 
infer presence in the study for cases and controls, and it represents type I error for 
individuals not in the study.  If the null hypothesis is rejected (at the 5% level of 
significance), a discriminatory analysis is conducted to ascertain which group the 
individual is in.  Discriminatory analyses are not reported for individuals in neither group, 
i.e. because these individuals are incorrectly inferred as present in the study. 

 

Regardless of the number of causal SNPs generated, the method yields 

approximately the correct level of type I error.   A consistently high power is also 

obtained, and the discriminatory analysis again has a perfect success rate.  

These findings support the results shown in the previous scenario and, 
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furthermore, demonstrate that the Visscher et al. method is capable of 

accurately inferring presence in or absence from a case-control GWAS even 

when the individuals within the two arms of a study are systematically different.  

Note, however, that despite the genotypic differences simulated here between 

individuals with and without the disease, the assumption of co-ancestry still 

applies (as well as the assumption of independent observations).  Note also that 

although the type I error rates are approximately correct here, as in Scenario 1, 

they are consistently slightly elevated. 

In addition to the results reported here, I also performed a set of more extreme 

simulation studies to test how the method performs when the cases and 

controls are more drastically different.  Applying the same simulation method as 

described above, even when up to 100% of the SNPs were designated as 

causal SNPs, and when the standard deviation of the log-odds of contracting 

the disease per copy of each minor allele was increased to 1, approximately the 

correct levels of type I error were retained.  Hence, these results suggest that, 

when simulated in this way, no matter how different two test groups are the 

method will perform appropriately.  Note, however, that the assumption of co-

ancestry was always upheld in these simulations.  The effects of a breach in co-

ancestry are explored in Section 2.8. 

Interestingly, although previous work claims that top-ranked SNPs, i.e. SNPs 

associated with a particular cohort and ordered by strength of association, 

provide greater power for participant identification (Jacobs et al., 2009; 

Sankararaman et al., 2009), no evidence of this has been found here.  For 

instance, the power in this scenario does not seem to increase when greater 



Chapter 2 

159 

 

numbers of causal SNPs are simulated and, similarly, the powers yielded in this 

scenario are approximately equal to the power yielded in Scenario 1 for the 

case-control GWAS with 500 participants in each arm.  Top-associated SNPs 

are likely to be more informative in these tests than SNPs with allele 

frequencies that do not differ significantly between two groups because, 

typically, they should contribute more to the test statistic.  Further testing is 

therefore required to confirm whether this principle also applies to the Visscher 

et al. approach. As the power in these simulated studies consistently 

approaches 100% (even at p<10-5), it is difficult to notice whether or not the 

power truly differs between scenarios.   

2.7. Real Data Illustrations & Extensions 

We have now seen that the Visscher et al. approach performs well in simulated 

data where neither of the two key assumptions of these methods (i.e. co-

ancestry and independent observations) is breached.  In practice, however, 

there is no guarantee that these assumptions will be upheld.  For instance, as 

outlined in Section 2.2.4, real data are likely to be correlated due to linkage 

disequilibrium (LD) between SNPs, and real studies may be subtly different in 

terms of ancestry even if they appear well matched.  Although simulation 

studies have been performed to assess the method up until now, the effects 

both of LD and of differences in ancestry are difficult to simulate realistically.  

For instance, real LD structures are extremely complex, and the true magnitude 

of the differences between ancestries is currently unknown.  Here, real data is 

therefore used to illustrate how the method performs in practice, and to examine 

the implications both of LD and of differences in ancestry.  Where possible, 
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these findings are supported by additional simulation studies, but the results 

from these simulations will not always be shown.  

2.7.1 1958 Birth Cohort 

Permission to access genotype data from the 1958 British Birth Cohort (Power 

et al., 2006) was granted by the WTCCC (2007).  The 1958 Birth Cohort 

(1958BC) consists of 1,504 unrelated participants who were all born in Great 

Britain in 1958.  The region of birth is recorded (i.e. one of twelve UK regions – 

including Scotland and Wales but excluding Northern Ireland), with similar 

numbers of participants recruited within each region (number of participants per 

region ranges between 75 and 160).  The genotypes used in these analyses are 

typed on the Affymetrix 500K chip and called in Chiamo – Oxford format (2007; 

Marchini et al., 2007).  Any genotypes called with a probability of less than 0.9 

are omitted from the dataset.  Following advice provided in exclusion files that 

accompany the data, 24 participants and 30,956 SNPs are also omitted 

completely (in all subjects). 

In the following analyses, hypothetical studies are to be simulated using the 

individual-level data from the 1958BC.  As in the simulation studies reported in 

Section 2.6, a number of simulation runs are to be performed in each scenario 

in order to obtain Monte Carlo estimates of the power (i.e. the proportion of 

individuals correctly inferred as present in the study) and type I error rate (i.e. 

the proportion of individuals incorrectly inferred as present in the study) for the 

Visscher & Hill linear regression approach.  In each simulation run, a set of real 

individuals is randomly sampled without replacement into the case and the 

control arms of a hypothetical case-control GWAS, and into a group (or into one 
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of two groups) of test individuals who are not in the study.  Every individual 

within each of the test groups is then tested in turn for presence in the study – 

as has been performed in all simulations so far.  Since the scaled genotype 

format is required to perform the Visscher et al. method, all genotype data from 

the 1958BC are converted from 0, 1 or 2 to 0, 0.5 or 1 respectively. 

2.7.2 Common Ancestry & No LD 

In this initial scenario, I aim to demonstrate how the Visscher et al. method 

performs in real data without explicitly violating the key assumptions of 

independent observations and co-ancestry.  As such, I attempt to avoid LD by 

using well spaced SNPs from across the genome, and I attempt to avoid 

differences in ancestry by only selecting individuals from southern UK regions 

(i.e. from London, southeast, southwest or south England).  SNPs are arranged 

by chromosome and by position, and every 20th SNP on chromosomes 1 to 10 

is initially selected for use in the test (giving 14,767 SNPs in total).  Given the 

reported findings (Visscher et al., 2009), this seems a reasonable number of 

SNPs to infer presence in a mixture of several hundred individuals.  There are 

461 individuals in total from the southern regions of the UK in the 1958BC data 

and, on average, each individual has 65 missing genotypes (number of missing 

genotypes ranges between 13 and 250).  In each simulation run, 100 individuals 

are randomly sampled without replacement into each arm of a hypothetical 

case-control GWAS, and 100 individuals are randomly sampled into a test 

group of individuals absent from the study (i.e. these are test individuals under 

the null hypothesis).  The rest of the simulation method is consistent with the 

notation and the procedure outlined in sections 2.5 and 2.6.  For the j’th SNP (j = 
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1,…,s), the allele frequency in the case group represents the allele frequency in 

the mixture and is denoted qj.  The combined allele frequency in the case and 

the control groups is used as an estimate of the population allele frequency pj, 

and is denoted )̂:.  Every individual within each of the test groups is tested in 

turn for presence in the study.  For a given individual of interest, if a genotype is 

missing at a particular SNP, that SNP is omitted from the present test only (i.e. 

of his/her presence within the study). 

The simulation is performed 1,000 times and Monte Carlo estimates of the 

power and type I error rate are obtained for the Visscher et al. approach.  As 

before, the mean estimate of the regression coefficient is also derived for each 

test group, and a measure of the accuracy of the discriminatory analysis 

(outlined in Section 2.6.1) is provided.  Results are summarised in Table 21 

below.   

Group N 

Mean 

(²³) 

Mean 

[Var(²³)] 

Rejections of H0: Discriminatory 

Analysis  

(% correct) 
P<0.05 P<10

-5 

Case 100 1 0.0152 1 0.9984 100 

Control 100 -0.9999 0.0152 1 0.9984 100 

Neither 100 0.0002 0.0152 0.1169 0.0005 - 

Table 21: Results for SNP spacing of 20, using individuals only from southern UK 
regions. 

 

As can be seen, the power of the study is near 100% at the 10-5% level of 

significance, and the discriminatory analysis has a perfect success rate.  
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Participants of the hypothetical studies are therefore correctly identified both as 

present in the studies – and in the correct arm of the studies – with high 

accuracy.  However, for the test group of individuals absent from the studies 

(i.e. individuals in neither group) the type I error rate is elevated above the 

expected rate; for instance, approximately 12% of these individuals are 

incorrectly inferred as present in the studies at the 5% level of significance.  

Because in Section 2.6 the Visscher et al. approach yields approximately the 

correct level of type I error in simulated data, one or more characteristics of this 

real dataset must be causing this increase in type I error.  As the regression 

coefficient is, on average, estimated without bias in this scenario, the elevated 

type I error here is likely to be due to a problem with the variance.  To 

investigate this, a histogram of the Z-test statistic under the null hypothesis is 

provided in Figure 18 below.   
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Figure 18: Histogram of the z-statistic under the null hypothesis.  Results are based on 
1,000 runs of a simulation using the individual level data from the 1958BC.  All 
individuals are sampled from southern regions of the UK, and every 20

th
 SNP is utilised 

from chromosomes 1 to 10.  The dotted blue curve shows the expected standard normal 
distribution of the test-statistic. 

 

Figure 18 shows that the observed z-statistic has greater variance than 

expected under the putative null distribution.  For instance, although the mean 

of the distribution is correct, the tails of the distribution are wider than the 

putative distribution, and the spike at the median is shorter.  This causes an 

increase in type I error because a greater number of observations lie in the tails 

of the distribution than expected – and a greater number of values therefore 

exceed the pre-specified “critical values”.  An obvious cause of this increase in 

the variance of the test statistic – as explained in Section 2.2.4 – would be LD.  

Individuals Absent from Study

Z-statistic

F
re

q
u
e
n
c
y

-6 -4 -2 0 2 4 6

0
.0

0
.1

0
.2

0
.3

0
.4



Chapter 2 

165 

 

For instance, if some of the SNPs used in the test are in LD, the variance of the 

test-statistic would be expected to be greater than assumed because correlated 

observations tend to be less informative than equivalent numbers of 

independent observations.  Although I attempted to avoid LD in the current 

analysis by spacing the SNPs across the genome, it is possible that some of the 

selected SNPs lie within regions of the genome with dense LD and, thus, are 

correlated with each other.  I now attempt to confirm whether the increased type 

I error obtained here is actually due to LD by increasing the SNP spacing and 

repeating the analyses. 

Table 22 below shows results for real data simulations where the SNP spacing 

is 20, 33 and 100 (spread across chromosomes 1 to 22).  With spacing of 100, 

only 4577 SNPs remain available for use in the test; hence, for consistency 

between the three analyses, the analyses with SNP spacing of 20 and 33 are 

limited to using the first 4577 SNPs.  As each of these analyses uses fewer 

SNPs in this scenario compared with the number of SNPs used in earlier 

scenarios, the powers yielded here are lower (e.g. approx. 0.53 at p<10-5).  

Nevertheless, the main focus of these analyses is on the type I error rates (i.e. 

the number of rejections of H0 for individuals in neither study group).  As can be 

seen, as the SNP spacing is increased the type I error rates decrease closer to 

the nominal rate.  For example, the type I error rate reduces from approx. 0.11 

with SNP spacing of 20 to approx. 0.08 with SNP spacing of 100 (at 5% level of 

sig.).  This suggests that LD is truly present in the datasets with SNP spacing of 

20 and 33, and that LD is causing an increase in the type I error rates.  

However, even when the SNP spacing is increased to 100, the type I error rate 

remains considerably greater than the nominal level.  Although further 



Chapter 2 

166 

 

increasing the SNP spacing might allow us to confirm whether or not LD is 

solely responsible for the elevated type I error rates obtained here, use of a set 

of SNPs with even greater spacing is impractical because too few SNPs would 

remain with which to adequately power the test.  A previous study has 

estimated that there are around 55,000 independent SNPs in the human 

genome, however (Purcell et al., 2009), and SNP spacing of 100 (for those 

SNPs assayed on the Affymetrix 500K chip)  already seems relatively wide.  I 

therefore suspect that the SNPs in this dataset are largely independent.  Noting 

that, even in simulated data, the type I error rates obtained for the linear 

regression approach are consistently higher than the expected level (e.g. in 

Section 2.6 the type I error rate is consistently around 0.06 at p<0.05), these 

findings lead me to suspect that a further characteristic of the data is also 

affecting the test.   
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SNP 

Spacing 
Group 

Mean 

(²³) 

Mean 

[Var(²³)] 

Rejections of H0: Discriminatory 

Analysis  

(% correct) 
P<0.05 P<10

-5 

Every 20
th
 

SNP 

Case 1 0.0494 0.9802 0.5276 100 

Control -0.9999 0.0494 0.9809 0.5272 100 

Neither -0.0002 0.0494 0.11383 0.0004 - 

Every 33
rd

 

SNP 

Case 1 0.0489 0.9864 0.5356 100 

Control -0.9999 0.0489 0.9858 0.5382 100 

Neither -0.0005 0.0489 0.0947 0.0001 - 

Every 

100
th
 SNP 

Case 1 0.0492 0.9886 0.5321 100 

Control -1 0.0492 0.9891 0.5318 100 

Neither -0.0002 0.0492 0.0840 0.0000 - 

Table 22: Results for the Visscher et al. linear regression approach applied to the 1958BC 
data with SNP spacing of 20, 33 and 100.  All groups consist of 100 individuals and all 
individuals are sampled from south UK regions.  All analyses use the first 4,577 equally 
spaced SNPs are selected from chromosomes 1 to 22. 

 

A violation of the co-ancestry assumption is unlikely to be responsible for the 

elevated type I error rates yielded here because all the participants selected for 

these analyses are from a similar region of the UK  (this conclusion is actually 

confirmed in Section 2.8).  A further, plausible explanation for these increases in 

type I error, thus, is that the model mis-specifies the variance function.  As 

stated in Section 2.5.2, heteroscedasticity occurs in a linear regression when a 

model’s residuals (or errors) do not share a common variance.  For example, it 

can occur when the error terms depend on the values of the explanatory 

variables, X (i.e. where xj = qj - )̂: in this setting) – or it can be unsystematic, 
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and follow no particular pattern (Martin, 2000).  For the data used in these 

analyses, the errors are actually likely to be heteroscedastic because, assuming 

Hardy-Weinberg equilibrium, the model outcome includes the genotypes, yij, 

which follow a binomial distribution.  The variance of the binomial distribution 

varies with the mean (i.e. the variance function is )�1 � )� 2⁄  in this case 

(McCullagh et al., 1991)) and, hence, any assumption of common variance will 

be violated. 

Heteroscedasticity typically biases estimates of the variance (although, under 

some circumstances, it can also bias estimates of the regression coefficients), 

and the pattern of results obtained here, thus, seems consistent with this 

explanation.  However, given that the genotypes simulated in Section 2.6 are 

generated as binomially distributed variables, the results for those studies 

should also be affected.  As the type I error rates reported in Section 2.6 are 

only marginally greater than the expected level, this issue was not initially 

recognised.  However, these reported error rates are consistently (if only 

slightly) higher than the expected rate and, in hindsight, they are likely to be a 

consequence of the mis-specified variance function.  Nonetheless, the issue of 

why the type I error rates shown in Table 22 above are higher than those 

obtained in Section 2.6 remains to be explained.  One possibility is that, even in 

the dataset with SNP spacing of 100, LD between some of the SNPs remains, 

and the corresponding correlation causes biased estimates of the variance.  

Another possibility – which is not mutually exclusive to the previous explanation 

– relates to the distribution of allele frequencies in the real data (see Figure 19 

below).  While the simulations in Section 2.6 generate minor allele frequencies 

(MAFs) from a uniform distribution bounded by 0.05 and 0.5, the analyses 
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reported in this section use allele frequencies between 0 and 1 – without 

omitting the SNPs with MAF<0.05.  Figure 19 below displays a histogram of the 

allele frequencies in the 1958BC dataset.  As can be seen, there is a sharp 

peak in the frequency of SNPs with MAFs below 0.05 or above 0.95, and this 

will impact on any estimates of the variance under assumed homoscedasticity.  

Because the allele frequencies for these SNPs have substantially lower 

variance than those for SNPs with greater MAFs (e.g. var = 0.02375 Vs 0.12 for 

a SNP with an MAF of 0.05 Vs 0.4 respectively), datasets skewed towards 

these values will underestimate the variance and, hence, there will be increases 

in type I error.  

 

Figure 19: Histogram of allele frequencies (AFs) for every 20
th

 SNP on chromosomes 1-
10. 

 

Histogram of AFs

Allele Frequency

F
re

q
u
e
n
c
y

0.0 0.2 0.4 0.6 0.8 1.0

0
5
0
0

1
0
0
0

1
5
0
0



Chapter 2 

170 

 

The following section attempts to extend the Visscher et al. linear regression 

approach to better handle the genotype data modelled here.  For instance, 

different approaches to specifying the variance function are proposed with the 

aim of deriving a model that yields the correct type I error rates in real data. 

2.7.3 Modelling the variance 

There are potentially numerous ways in which to adjust the Visscher et al. linear 

regression to more appropriately model the variance function, and this section 

outlines two such approaches.  The first approach reformulates the Visscher et 

al. linear regression approach to derive a logistic regression. As such, this 

approach will correctly model the variance function for binomially distributed 

data (McCullagh et al., 1991).  The second approach uses an independence 

estimating equation (Liang et al., 1986) – a type of generalised estimating 

equation (GEE) – and is similar to the original approach.  GEEs are usually 

used to allow for correlation without the need to be specific about the correlation 

structure.  I initially use a GEE approach here as a means to derive a robust 

estimate of the standard error of the regression coefficient.  Robust standard 

errors rely on fewer assumptions than conventional standard errors, and 

provide consistent estimates of parameter standard errors when observations 

are correlated (Zeger et al., 1986; Burton et al., 1998). 

2.7.3.1 Logistic Regression 

The original Visscher et al. approach regresses Yij on Xj in a linear model, 

where, using the same notation as before, Yij = yij - )̂: and Xj = qj - )̂:.  However, 

the genotypes, yij, are inherently binomial in nature – taking the values 0, 1 or 2 
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only (or the equivalent proportions: 0, 0.5 or 1 respectively), and a model in the 

binomial family therefore particularly suits these data.  Generalised linear 

models with a logistic link – often referred to as logistic regression models – are 

usually applied to binary (or binomial) outcome data, and predict the log odds of 

an event, Y, as a linear function of the explanatory variables, X (McCullagh et 

al., 1991).  This contrasts with linear models, which predict the change in Y for 

each unit (or level) change in X.  Linear models assume that the variance of 

each observation is independent of its mean value.  On the other hand, 

generalised linear models allow the variance to vary in a range of different 

ways.  For instance, logistic regression assumes that the variance is a known 

function of the predicted mean (see formula in Page 167)  (Dobson, 2002).  

Logistic regression, thus, does not assume homoscedasticity, and could be 

appropriate for the current problem.  This section describes a logistic regression 

approach based on the same principles as the Visscher et al. linear regression.   

The original Visscher et al. outcome, Yij, has variance that increases with the 

underlying, population allele frequency, pj, and the assumption of 

homoscedasticity, thus, is violated here.  In order to correctly model the 

variance function, Yij can be converted to the log-odds scale with the aim of 

fitting a logistic regression to the data.   

A log-odds transformation of the original outcome subtracts the log-odds of 

)̂:from the log-odds of yij [i.e. log I «yz�<«yzJ � log I ¬ez�<¬ezJ], but this outcome is not 

compatible with a logistic regression because it is not binomially distributed 

(only the yij term is).  An outcome that is compatible with a logistic regression 

can most straightforwardly be derived simply by dropping the log-odds of )̂: 
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from the left-hand side of the regression (and therefore regressing the log-odds 

of yij on Xj).  This outcome would depart from the original principles of the 

original statistic, however.  In keeping with these original principles, I wish to 

maintain the effects of the )̂:term here (see Section 2.7.3.3 for a discussion of 

why the )̂: term is important in these tests and for some results for a model that 

does not include this information).  Hence, rather than dropping the log-odds of 

)̂: from the left-hand side of the regression, I instead suggest offsetting the log-

odds of )̂: to the right-hand side of the regression.  In effect, this simply adds 

the log-odds of )̂: to each side of the regression equation.  Offset variables can 

be used to adjust analyses without impacting on the precision of other 

parameter estimates because they have a gradient fixed at one.  Offsetting the 

log-odds of )̂: in this situation, thus, allows a logistic regression to be fitted to the 

observed genotypes, yij, and maintains the original properties of the Visscher et 

al. regression (i.e. by adjusting for )̂: in the model).  Note, however, that this 

logistic regression is not equivalent to the original linear regression; it merely 

follows the same principles as the original approach. 

This logistic regression approach predicts the log-odds of having the genotype, 

yij (which is fitted as the integers 0, 1 or 2 rather than as their scaled equivalents 

– see below) given the log-odds of the estimated population allele frequency, 

)̂:, and given that the difference between the allele frequency in the mixture, qj, 

and )̂: is Xj (i.e. Xj = qj - )̂:): 
log I «yz�<«yzJ � log I ¬ez�<¬ezJ � ©. �:; error = binomial. 



Chapter 2 

173 

 

Although logistic regression models often deal with binary outcomes, they can 

also readily handle binomial outcomes such as the genotype data we have 

here.  For instance, if an outcome is binomial it is merely treated as a series of n 

independent binary (or Bernoulli) observations at a particular level of the 

covariates, X.  For genotype data, n is always 2 and, hence, a genotype of 2 (= 

2 copies of the minor allele) is handled as two “successes” at the same level of 

the covariates, Xj; a genotype of 1 (= 1 copy of the minor allele) is handled as 

one success and one “failure” at Xj; and a genotype of 0 (= 0 copies of the 

minor allele) implies two failures at Xj.  In order to specify the model in R, I use 

the glm() package. This requires that the number of successes (i.e. yij) and 

failures (i.e. 2 - yij) are specified in separate columns.  Alternatively, an 

equivalent way to specify the model would be to fit the genotype data, yij, as two 

separate binary observations, a1ij and a2ij (= 0 or 1 copy of the minor allele) - 

denoting the two alleles an individual of interest possesses at a particular SNP, 

j.   

2.7.3.2 GEE Independence Model 

Generalised estimating equations (GEEs) are often used to derive consistent 

estimates of regression coefficients and their standard errors in correlated data.  

They are particularly useful when the nature of the correlation itself is not of 

primary interest, as they do not require the correlation matrix to be correctly 

specified.  The GEE approach therefore seems particularly attractive for the 

handling of LD – which I consider in Section 2.7.4.  Here, however, I initially 

assume independence and focus on allowing for heteroscedasticity. 
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GEEs predict the marginal expectation of the observations as a linear function 

of the covariates, so the regression coefficients from GEE models are therefore 

interpreted as population-averaged effects (Zeger et al., 1986; Zeger et al., 

1988).  This contrasts with conventional regression methods, which typically 

model the expectation of the response variable conditional upon the covariates.  

For example, where the regression coefficients from a GEE model might 

represent a difference in the response between two groups averaged over any 

other covariates in the model, the regression coefficients in a conventional 

model represent the effect of changing between different levels of a covariate 

for a particular individual, i.e. at particular levels of the covariates.  Although this 

difference in the interpretation of the regression coefficients can be important, 

the two interpretations are actually the same for models with a normally 

distributed outcome and an identity link.  For the application of GEEs I consider 

here, the outcome proposed by Visscher et al. is used throughout (i.e. yij - )̂:).  
This will be handled as a normally distributed variable (even though it is 

constrained between -1 and 1) and, hence, no distinction between the two 

interpretations of the regression coefficients is required. 

GEE models derive estimates of the regression coefficients and the variance-

covariance matrix via an iterative process that ensures both are consistent as 

long as the mean structure is correctly defined.  This process involves first fitting 

a regression model to derive initial estimates of the parameter coefficients and 

the model residuals.  For a GEE extension of the Visscher et al. linear 

regression approach, this regression model is the same as the one outlined in 

Section 2.5.1, i.e.: 
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Equation 19 ·B¸ � ¹�¸ � ². �º¸ � ¹�¸� �	єB¸ 
The residuals, εij, are then used to estimate the correlation parameters (which 

have pre-specified structure), before the above model is refitted by applying an 

algorithm that incorporates the estimated correlation coefficients.  This 

procedure is then iterated until the algorithm converges, i.e. when the estimates 

stabilise (Burton et al., 1998). 

Although conventional standard errors can be used with GEEs, these tend to 

underestimate the variance in the presence of correlation (Dobson, 2002).  The 

robust standard error (SE) (White, 1982; Royall, 1986; Williams, 2000) is 

therefore more commonly preferred.  Robust SEs can account for the clustering 

of data, where, for example, related or correlated observations are ordered 

together, i.e. in clusters (see Section 2.7.4.1). 

The robust SE is sometimes known as the “sandwich” estimator because it 

“sandwiches” the score statistic, C, between the inverse of the “information” 

matrix, J (Hardin et al., 2007).  Where yi denotes the vector of observations for 

the ith cluster (i = 1,…, N), Xi denotes the design matrix for the ith cluster, and V³i 
denotes the variance-covariance matrix for the ith cluster,  the robust variance, 

VS is: 

VS = J-1. C. J-1, 

where 

J = ∑ �����;� ¼ª�<��� 
and 
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½ � ∑ �����;� ¼ª�<��D� � ��©ª��D� � ��©ª�¼ª�<���. 
The robust variance, thus, multiplies the components for each cluster separately 

before summing over all clusters to provide overall estimates of the variances. 

Robust SEs converge in probability to their true value (that is, they are 

consistent) even when the specified correlation structure is incorrect and when 

the correlation differs in different clusters of observations.  A GEE approach 

based on the robust SE, thus, potentially allows correction both for 

heteroscedasticity and for LD (see Section 2.7.4).  Nevertheless, the robust SE 

can only account for correlation within clusters, i.e. it assumes no between-

cluster correlation.  Moreover, an incorrect specification of the correlation 

structure will typically lead to a loss of efficiency. 

GEEs are fitted using an iterative procedure that handles each cluster of 

observations separately before summing over all clusters.  Following on from 

the above notation, the expected vector of observations for the ith cluster is E(yi) 

= µi; g(µi) = Xi.b, and Di is a matrix of the derivatives δµi/δb.  The score statistic, 

U, for Equation 19 is thus: 

¾ � ∑ i��¼�<��D� � ��� � 0��;� , 

where the matrix, Vi is defined as: 

¼� � !�~���!�~�ø. 

Here, Ai is a diagonal matrix containing the elements Var(yi) along the 

diagonals, Ri is a correlation matrix with pre-specified structure, and ø is a 

constant that allows for overdispersion. 
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The independence estimating equation described by Liang and Zeger (Liang et 

al., 1986) is a special case of the GEE approach, which assumes that repeated 

observations on the same individual (or in the same cluster – see Section 

2.7.4.1) are independent.  The specified correlation matrix for an independence 

estimating equation model, Ri, is thus the identity matrix.  In the case of the data 

we have here, all the observations in any given test correspond to one particular 

individual of interest, and this model assumes that each SNP is independent.  

This model, thus, is identical to the original Visscher et al. linear regression, but 

uses the robust (or sandwich) estimator of the variance. 

2.7.3.3 Testing the Models 

This section tests the approaches to adjusting for heteroscedasticity using the 

1958BC data as described in sections 2.7.1 and 2.7.2.  The dataset with SNP 

spacing of 100 is initially used in order to minimise the chances of selecting 

SNPs that are in LD.  Again, only individuals from the southern UK regions are 

sampled into the three test groups, to avoid breaching the assumption of co-

ancestry.  In total, a maximum of 4577 SNPs are thus available for use in the 

test, and a population of 461 individuals with southern UK ancestry is available 

from which to sample the test groups.  As before, in each simulation run a case-

control GWAS is sampled consisting of 100 participants in each arm, and a 

group of 100 individuals absent from the study is also sampled (i.e. to test under 

the null hypothesis).  Again, as before, genotypes for each individual are 

represented by yij, the allele frequency in the case group (or mixture) is qj, the 

underlying, population allele frequency is pj, and a pooled estimate of the allele 

frequencies in the case and control groups is )̂:.  Each individual from each of 
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the three groups is tested in turn for presence in the study, and Monte Carlo 

estimates of the power and the type I error rates are derived.  Four approaches 

are tested in total here: the original Visscher et al. linear regression approach, 

the logistic regression approach described in Section 2.7.3.1 with the log-odds 

of )̂: included as an offset, a logistic regression approach with no offset (i.e. 

simply the log-odds of yij regressed on Xj), and the independence estimating 

equation approach described in Section 2.7.3.2.  The statistical package R is 

used to perform all analyses.  The first three approaches are applied using the 

glm() package (using an identity link for the linear regression approach, and 

using a binomial link for the two logistic regression approaches), and the 

independence estimating equation approach is applied using the geepack() 

package (specifying an identity link and an independence correlation structure) 

(Yan et al., 2004; Halekoh et al., 2006). 

Results for these analyses are presented in Table 23 below.  For all individuals, 

the original linear regression approach and the independence estimating 

equation approach yield identical estimates of the regression coefficient,	©ª, but, 

as expected, they differ in terms of the estimates of the variance.  For instance, 

the variances from the original linear regression approach are around 0.05, but 

the robust variance estimates from the GEE independence model are around 

0.06.  The GEE independence model, consequently, has a marginally reduced 

power compared to the linear regression approach (i.e. power ≈ 0.980 Vs 0.988 

respectively) but, importantly, it also yields a lower level of type I error.  

Because heteroscedasticity is an issue in the problem we consider here, the 

GEE independence model thus seems a more appropriate choice of approach 

than the original Visscher et al. linear regression. 
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Analysis Group 

Mean 

(²³) 

Mean 

[Var(²³)] 

Reject. H0  

(5% level 

of sig.) 

Discriminatory 

Analysis  

(% correct) 

Linear 

Regression 

Case 1 0.0492 0.9885 100 

Control -1 0.0492 0.9875 100 

Neither 0.0006 0.0492 0.0837 - 

Logistic 

Regression 

w/out Offset 

Case 4.0955 1.2917 0.9363 100 

Control -3.9297 1.2909 0.9194 100 

Neither 0.0851 1.2838 0.0746 - 

Logistic 

Regression w/ 

Offset 

Case 5.2277 1.6833 0.9801 100 

Control -5.2267 1.6830 0.9798 100 

Neither 0.0031 1.6719 0.0528 - 

GEE 

Independence 

Model 

Case 1 0.0606 0.9809 100 

Control -1 0.0606 0.9800 100 

Neither 0.0006 0.0617 0.0526 - 

Table 23: Results for analyses of the 1958BC using SNP spacing of 100 and sampling 
only individuals with southern UK ancestry.  For individuals in the case or control groups 
the % rejections of H0 represent power for each approach; for individuals in “neither” 
group the % rejections of H0 represents the type I error rate for each approach. 

 

For the two logistic regression approaches, i.e. the model that includes the log-

odds of )̂: as an offset (the “offset” model), and the model without an offset (the 

“no offset” model), the results differ somewhat.  For example, offset has almost 

identical type I error rates and powers to the GEE independence model, while 

no offset yields around 5% lower power than the other approaches and an 
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elevated type I error rate (type I error ≈ 0.075).  Hence, although offset performs 

well, no offset does no better than the original linear regression approach 

despite the fact that both logistic regression approaches correctly model the 

variance function. 

A possible explanation for the discrepancy in performance between the two 

logistic regression models could be that )̂:  acts as a confounder in this 

situation.  Confounders are variables that are associated both with an outcome 

and with one or more explanatory variables.  The consequences of failing to 

adjust for confounding variables in a model are well known.  For instance, 

omitted confounders can lead to bias in the estimates of parameter coefficients 

and, hence, to both type I and type II errors (Negassa et al., 2007).  The )̂: term 

could be a confounder in this situation because, clearly, it relates strongly to the 

outcome, yij, but, also, it relates to – and is included within – the regression 

term, Xj (= qj - )̂:).  Although this explanation seems reasonable, results for an 

additional, linear regression approach – which I have not reported until now – 

cast some uncertainty on this matter.  This additional approach regresses yij on 

Xij in a linear regression and, thus, seems conceptually similar to the no offset 

logistic regression.  Although no offset generally performs worse than offset in 

the above analysis, this additional, linear model actually performs very similarly 

to the original linear regression.  The additional model, for example, has 

marginally increased estimates of the variance compared to the original model 

and, hence, slightly reduced power and type I error rates. Consequently, 

because the type I error rates for the original linear regression are generally 

above the expected level (see sections 2.6 and 2.7.2), this additional approach 
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actually yields type I error rates closer to the expected level.  Thus, in the 

logistic model, failing to adjust for the (potential) confounding effect of )̂: seems 

to impact on the approach in an expected way, but failing to adjust for )̂: in the 

linear model has little effect (and, if any, seems to improve the approach).  

These differences between the linear and logistic models could well be due to 

differences in the behaviour of linear and non-linear models; nevertheless, 

these findings make it difficult to conclude with certainty that )̂: definitely acts as 

a confounding variable in these circumstances. 

Table 24 below provides results for a repeat of these analyses on the 1958BC 

dataset with SNP spacing of 20.  As can be seen, the type I error rates for all 

approaches are now raised above the expected level and, hence, even though 

the logistic regression approach with an offset and the GEE independence 

model are both immune to heteroscedasticity, some characteristic of these data 

remains problematic.  This finding supports the conclusions from Section 2.7.2 

that LD is indeed a problem in these data.  For instance, in Table 23 – where 

LD is unlikely to be a problem because the dataset consists of SNPs that are 

widely spaced across the genome, the logistic regression approach with an 

offset and the GEE independence model both yield approximately correct type I 

error rates.  However, here – where the SNPs are more closely spaced – both 

of these approaches now yield an elevated type I error rate.   
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Analysis Group 

Mean 

(²³) 

Mean 

[Var(²³)] 

Reject. H0  

(5% level 

of sig.) 

Discriminatory 

Analysis  

(% correct) 

Linear 

Regression 

Case 1 0.0494 0.9809 100 

Control -1 0.0494 0.9788 100 

Neither -0.0015 0.0494 0.1129 - 

Logistic 

Regression 

w/out Offset 

Case 3.9792 1.2870 0.8978 100 

Control -4.0430 1.2872 0.9021 100 

Neither -0.0395 1.2796 0.1083 - 

Logistic 

Regression w/ 

Offset 

Case 5.1578 1.6560 0.9694 100 

Control -5.1572 1.6556 0.9675 100 

Neither -0.0079 1.6449 0.0763 - 

GEE 

Independence 

Model 

Case 1 0.0612 0.9701 100 

Control -1 0.0612 0.9679 100 

Neither -0.0015 0.0622 0.0764 - 

Table 24: Results for analyses of the 1958BC using SNP spacing of 20 and sampling only 
individuals with southern UK ancestry.  For individuals in the case or control groups the 
% rejections of H0 represent power for each approach; for individuals in “neither” group 
the % rejections of H0 represents the type I error rate for each approach. 

 

A further aspect of the results that implies that LD is present in this dataset 

concerns the estimates of the regression coefficient.  Estimates of the 

regression coefficient are consistent here with those presented in Table 23, so 

the elevated type I error rates must be due to a problem with the variance.  LD 

is likely to lead to underestimation of the variance of the regression coefficient 
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and, thus, these results (i.e. in Table 24) are consistent with the pattern of 

results that would be expected in the presence of LD.   

Given that LD is suspected in these data, the problems seen here should not be 

surprising, since all the approaches described so far assume independent 

observations.  The following section attempts to overcome the problems posed 

by LD by investigating whether an alternative specification of the correlation 

structure in a GEE model allows a sufficient correction for the correlation 

between SNPs.  A further GEE model is thus proposed, using a first-order 

autoregressive (AR-1) correlation structure. 

2.7.4 Adjusting for LD 

As seen in the previous section, where GEE models employ the robust variance 

estimate, they successfully adjust for the effects of heteroscedasticity.  

However, GEEs can also be used to provide consistent estimates of regression 

coefficients and their standard errors in correlated data.  Although GEEs do not 

generally require the correlation matrix to be accurately specified, the GEE 

independence model fitted in the previous section assumes that all observations 

are completely independent.  As Table 24 shows, this seems to be too strong 

an assumption to make in correlated data, because the model yields an 

elevated type I error rate when the data are suspected to be in LD.  In this 

section I attempt to better approximate the true correlation structure by 

specifying a first-order autoregressive (AR-1) correlation structure in a GEE 

model. 
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2.7.4.1 GEE Model with AR-1 Correlation Structure 

In the context of the SNP data used in these analyses, the AR-1 correlation 

structure specifies that SNPs that are in close proximity to one another within a 

cluster (see next paragraph) are more highly correlated with each other than 

more distantly located SNPs.  Within each cluster, the correlation between the 

j’th and the k’th SNP is λjk, and the AR-1 correlation structure specifies that λjk = 

λ
|j – k|.  Hence, neighbouring observations, i.e. that have distance, |j-k| = 1, have 

correlation λ, and the correlation between any other pairs of observations within 

the same cluster is λ to the power of |j-k|.  As with any GEE model, no between-

cluster correlation is assumed, so any pairs of observations in different clusters 

are assumed to be independent.   

For the independence estimating equation approach described in Section 

2.7.3.2, all the observations are ordered into individual clusters and there is no 

need to estimate any correlation parameters because the correlation matrix is 

an identity matrix.  However, alternative correlation structures require the 

structure of the observations to be specified and they require a correlation 

parameter (or a set of correlation parameters) – such as λ – to be estimated.  

The structure of the observations is specified by defining clusters.  Observations 

should be clustered in some orderly and logical way.  For example, a clinical 

trial taking multiple measurements on each patient would probably order repeat 

observations on the same individual together in a cluster – possibly in time 

order.  As the observations we consider here all relate to a single individual in 

any given test (i.e. of that individual’s presence within a mixture or study), there 

is no such obvious way in which to cluster the observations.  GEEs usually 



Chapter 2 

185 

 

require at least 50 clusters to reliably estimate the correlation parameters (and, 

hence, to provide good estimates of the parameter variances), however, and it 

is thus necessary to find some way to split the observations into clusters (Paik, 

1988; Yan et al., 2004).  As the correlation between SNPs tends to occur only 

within chromosomes, clustering the observations by chromosome (and by 

position on the chromosome) is the most logical approach.  However, as there 

are only 22 chromosomes (ignoring the sex chromosomes X and Y), this would 

provide too few clusters in which to adequately fit the GEE model.  The 

simulations that follow therefore do not adopt this approach.  Rather than 

forming 22 large clusters of observations – one for each chromosome – I 

instead create many smaller clusters of SNPs.  Each cluster consists of SNPs 

ordered by base position, so SNPs closer together within a cluster should be 

more highly correlated than SNPs further apart (if correlated at all).  Due to 

computational limitations – where larger size clusters require greater 

computation time – I initially create clusters of only 20 observations (greater 

cluster sizes are, however, tested in Section 2.7.4.3).  An implication of 

clustering the SNPs in this way is that some SNPs on the same chromosome – 

which may be in LD with each other – will be separated into different clusters; 

the assumption of between-cluster independence may thus be violated here.  

Despite this constraint, I assess how well the approach performs in Section 

2.7.4.2, and I examine the influence of cluster size in Section 2.7.4.3. 

2.7.4.2 Testing the GEE AR-1 Model 

The 1958BC data with SNP spacing of 20 is initially used to test the GEE model 

with an AR-1 correlation structure.  Given that the GEE independence model 
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and the logistic regression model with an offset both yield elevated type I error 

rates in these data, low to moderate levels of LD are suspected to be present in 

this dataset.  As with earlier scenarios, only individuals from southern UK 

regions are used in these analyses (i.e. to avoid violating the assumption of co-

ancestry), and only the first 4,577 SNPs from the dataset are used (i.e. so the 

results should be more comparable to those reported in sections 2.6 and 2.7). 

The simulation method applied here is the same as that used in Section 2.7.3.3.  

Hence, in each simulation run, 100 southern UK individuals from the 1958BC 

dataset are randomly sampled without replacement into both arms of a 

hypothetical case-control GWAS, and 100 individuals are randomly sampled 

into a test group of individuals under the null hypothesis.  The terms qj and )̂: 
are derived for each SNP as described previously (see Section 2.5.1).  In each 

simulation run, every individual within each of the three test groups is tested in 

turn for presence in the study.  One hundred simulation runs are performed in 

total. 

The GEE AR-1 model is applied here using cluster sizes of 20.  The first 20 

spaced SNPs form the first cluster; the next 20 SNPs form the second cluster; 

and so on, up until all of the SNPs to be used in the test are included within 

clusters.  Up to 229 clusters are therefore formed for each individual (although 

the precise number of clusters varies between individuals depending on the 

amount of missing data).  Such clustering allows for LD over a range of 400 

SNPs in the full, un-spaced dataset. 

Table 25 below shows results for the GEE model with an AR-1 correlation 

structure.  Since the AR-1 model can conveniently be compared to the other 
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approaches, results for the linear regression, logistic regression with )̂: included 

as an offset, and GEE Independence model approaches are also included, with 

respect to power and type I error.  For the AR-1 approach, although estimates 

of the regression coefficient are very similar (but not identical) to those of the 

linear regression and GEE independence approaches, the variance is, on 

average, substantially greater.  For instance, compared to the linear regression 

approach, the variance of the AR-1 approach is around 40% greater, and 

compared to the GEE independence model the variance of the AR-1 approach 

is around 20% greater.  Consequently, the GEE AR-1 model yields a marginally 

lower power than the GEE independence and the linear regression models (i.e. 

power ≈ 0.96 Vs 0.97 and 0.98 respectively) but, more importantly, the GEE 

AR-1 model also yields the correct level of type I error here (i.e. 5%).  As the 

GEE AR-1 model is the only approach so far that corrects the type I error rate in 

correlated data this is a distinct advantage over the other approaches.  

Moreover, even the (small) loss of statistical power it suffers over the other 

approaches can potentially be recuperated because this approach is able to 

utilise both independent SNPs and SNPs that are correlated (unlike the other 

approaches, which only perform adequately if the SNPs used are independent). 

Hence, many more SNPs are potentially available for use to this method. 
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Analysis Group 

Mean 

(²³) 

Mean 

[Var(²³)] 

Reject. H0  

(5% level of 

sig.) 

Discriminatory 

Analysis  

(% correct) 

Linear 

Regression 

Case 1 0.0493 0.9835 100 

Control -0.9999 0.0493 0.9817 100 

Neither -0.0092 0.0493 0.1106 - 

Logistic 

Regression w/ 

Offset 

Case 5.1532 1.6450 0.9716 100 

Control -5.1549 1.6460 0.9692 100 

Neither -0.0476 1.6344 0.0735 - 

GEE 

Independence  

Case 1 0.0609 0.9725 100 

Control -0.9999 0.0609 0.9706 100 

Neither -0.0092 0.0620 0.0732 - 

GEE AR-1  

Case 1 0.0725 0.9585 100 

Control -0.9998 0.0723 0.9562 100 

Neither -0.0093 0.0738 0.0507 - 

Table 25: Analyses of the 1958 Birth Cohort data with SNP spacing of 20.  Results are 
based on 100 simulation runs.  100 individuals with southern UK ancestry are sampled 
without replacement into the case and control groups of a simulated GWAS, and 100 
individuals are sampled into a group of individuals who are not in the study.  Linear 
Regression, Logistic Regression with an offset term, and the GEE Independence model 
are all performed in the usual way.  The GEE AR-1 model is performed using a cluster 
size of 20. 

 

To test how the GEE AR-1 approach performs both in weakly correlated and 

independent data the above analysis has been repeated using the 1958BC 

datasets with SNP spacing of 33 and 100, as well as a simulated dataset of 

truly independent SNPs based on the simulation method described in Section 
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2.6.1 (results not shown).  In each analysis the GEE AR-1 approach performs 

similarly to the above analysis of the 1958BC dataset with SNP spacing of 20.  

The correct type I error rates are obtained for all datasets, with only modest 

reductions in power compared to the other approaches.  GEE models with an 

AR-1 correlation structure thus perform well in this context regardless of 

whether or not LD is suspected, or whether there is heteroscedasticity.  

Furthermore, in these scenarios the approach performs well despite its 

assumption of between-cluster independence.  In the analyses of the 1958BC 

datasets with SNP spacing of 20 and 33 there is likely to be correlation between 

SNPs within different clusters, but the correct type I error rates are still obtained. 

These results are consistent with those reported by Clayton (Clayton, 2010), 

who also found that LD could be adjusted for without having to be precise about 

the specific nature of the correlation.  However, where Clayton proposes 

estimating the correlation structure using an additional sample of individuals, 

the GEE AR-1 approach does not require any additional data and is 

computationally far simpler, as no method for estimating large, sparse matrices 

is required.  Furthermore, although Clayton presents graphics showing that the 

variance of his Bayes factor can be controlled by adjusting for LD, the Bayes 

factor itself tends to be biased downward of its true value. 

2.7.4.3 Influence of Cluster Size 

In the previous section the GEE model with an AR-1 correlation structure 

performs well both in datasets with independent SNPs and in datasets with 

suspected low levels of LD.  Although the cluster size is fixed at 20 in the 

reported results, additional tests using increased cluster sizes of 50 
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observations were also performed (results not shown) and produced the same 

pattern of results.  The GEE approach, thus, seems relatively robust to the 

cluster size and to the precise nature of the specified correlation structure.  

Given that GEE approaches assume no between-cluster correlation it is 

perhaps surprising that the method performs so well in these data.  For 

instance, there is likely to be LD between SNPs in different clusters in these 

datasets, but GEE models can only account for the correlation within clusters.  

The specified correlation structure can therefore only be expected to account for 

a proportion of the overall correlation between SNPs and, hence, especially 

when the cluster size is small, the specified correlation structure is likely to be a 

poor approximation of the actual correlation between SNPs.  The datasets 

considered so far have consisted of relatively widely spaced SNPs, however, 

and any violations in the assumption of between-cluster independence are likely 

to have been minor.  This section aims to explore how well the GEE AR-1 

approach performs in a more extreme dataset where strong LD between SNPs 

is likely.  The 1958BC data is again used for these analyses, but instead of 

spacing SNPs across the genome, every typed SNP on a particular stretch of a 

chromosome is selected for use (see next paragraph).  The focus of these 

analyses is to determine how well the GEE AR-1 model performs when there is 

realistically strong LD and, in addition, whether performance can be improved (if 

necessary) using larger cluster sizes.  The AR-1 correlation structure is likely to 

be a poor representation of the true correlation structure in data with strong LD, 

but larger cluster sizes should better approximate the correlation, i.e. because 

each cluster accounts for the correlation between greater numbers of SNPs. 
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As with the simulations in sections 2.7.3.3 and 2.7.4.2, only individuals with 

southern UK ancestry are selected for these analyses.  Similarly, the analysis is 

limited to 5,000 SNPs (compared with around 4,600 SNPs previously).  In 

contrast to earlier scenarios, however, all of the SNPs selected here are from 

one chromosome: the analyses use the first 5,000 SNPs on chromosome 14 

and, hence, will be affected by strong LD.  As usual, in each simulation run 100 

individuals are randomly sampled without replacement into the case and the 

control arms of hypothetical case-control GWAS and, in addition, 200 of the 

remaining individuals are randomly sampled to be test individuals in neither 

group.  In each simulation run, every individual within each of the test groups is 

tested in turn for presence in the case-control GWAS using the original linear 

regression approach, the GEE independence model, and the GEE AR-1 model.  

The GEE AR-1 model is performed using cluster sizes of 20, 50, 100 and 200.  

Because the computation time is increased substantially when performing the 

analyses with larger cluster sizes, all simulations conducted in this section are 

based on only 10 simulation runs.  Monte Carlo estimates of the regression 

coefficient and its variance, and of the type I error and power, thus, should only 

be considered approximate in this section.  Results are summarised in Table 26 

below. 
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Approach 
Cluster 

Size 
Group 

Mean 

(²³) 

Mean 

[Var(²³)] 

Reject. H0  

(5% level of 

sig.) 

Linear 

Regression 

NA 

Case 1 0.0453 0.881 

Control -0.9936 0.0453 0.878 

Neither 0.0055 0.0453 0.4030 

GEE 

Independence 

Model 

NA 

Case 1 0.0611 0.854 

Control -0.9936 0.0611 0.848 

Neither 0.0055 0.0627 0.3195 

GEE AR-1 20 

Case 1.0012 0.1464 0.687 

Control -0.9895 0.1473 0.689 

Neither 0.0094 0.1500 0.1265 

GEE AR-1 50 

Case 0.9988 0.1841 0.633 

Control -0.9927 0.1842 0.618 

Neither -0.0103 0.1890 0.0890 

GEE AR-1 100 

Case 0.9955 0.2001 0.589 

Control -0.9921 0.1978 0.586 

Neither 0.0261 0.2039 0.0805 

GEE AR-1 200 

Case 0.9964 0.2016 0.593 

Control -0.9994 0.2012 0.606 

Neither 0.0007 0.2041 0.0765 

Table 26: Results for analyses of 1958BC data – chromosome 14.  Rejections of H0 
represents power for case and control individuals, but represents type I error for 
“neither” individuals. 

 

For the two approaches that assume independence, i.e. the linear regression 

and GEE independence approaches, the type I error rates here are vastly 

inflated above the nominal level (e.g. type I error = 0.4 and 0.32 respectively at 

the 5% level of significance).  Although these approaches yield the expected 
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mean estimates of the regression coefficient, they seemingly underestimate the 

variance of the regression coefficient.  For instance, in comparison to the GEE 

AR-1 approach, estimates of the variance are around 50% to 80% smaller for 

the approaches that assume independent observations (e.g. variance ≈ 0.045-

0.06 for the linear regression and GEE independence approaches respectively 

Vs 0.15-0.2 for the GEE AR-1 approach).  These results are to be expected in 

correlated data, where a failure to account for the correlation between SNPs will 

lead to biased estimates of the variance. 

For the GEE AR-1 approach the type I error rates are also elevated above the 

nominal level but, as predicted, there appears a clear relationship between the 

cluster size and the performance of the method.  For example, the type I error 

rate decreases from approx. 0.125 when the cluster size is 20, to approx. 0.075 

when the cluster size is 200.  Although estimates of the regression coefficient 

are very similar irrespective of the cluster size, the variance of the regression 

coefficient increases here with the cluster size and, consequently, the type I 

error rate decreases towards the nominal level with larger clusters.  This 

supports the prediction that larger cluster sizes provide better approximations of 

the true correlation structure in these models.  Nevertheless, as seen in Section 

2.7.4.2, when the data are only weakly correlated, the GEE AR-1 approach 

performs well even with small clusters.  Furthermore, even though none of the 

GEE AR-1 analyses performed here yield the correct type I error rates, all 

perform considerably better than the approaches that assume independent 

observations.   
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In addition to the results shown in Table 26, I also tested the GEE AR-1 model 

with even larger cluster sizes to investigate whether the correct type I error 

rates could eventually be attained in these data.  However, increasing the 

cluster sizes further greatly increased the computation time (e.g. a cluster size 

of 500 took at least 150 seconds to run per individual test on my desktop PC), 

and simulations testing numerous individuals tended to crash.  Thus, I managed 

to test only small numbers of simulations with these larger cluster sizes.  

Provisional results for a cluster size of 500 based on only two simulation runs 

(testing 200 individuals under the alternative hypothesis and 200 individuals 

under the null hypothesis in each run), shows no further improvement in 

lowering the type I error rate compared with the best analysis in Table 26 (i.e. 

which uses a cluster size of 200).  However, the analysis using a cluster size of 

500 forms only 10 clusters in total because the analysis is limited to using only 

5,000 SNPs.  It has been suggested that GEE approaches require at least 50 

clusters to adequately estimate correlation structures (Yan et al., 2004) and, 

hence, this analysis uses an insufficient number of clusters.  This may be the 

reason why this analysis performs no better than the analysis with a cluster size 

of 200, but it has not been possible to verify this explanation (e.g. by using a 

greater number of SNPs) due to the computational limitations.  Further 

investigation into the influence of cluster size would be useful, but this may have 

to be conducted in future when computational power has improved and when 

more efficient algorithms may be developed.  It is worth noting, nonetheless, 

that a real application of this method requires only a single or small number of 

individuals to be tested.  Hence, should further simulations definitively 

demonstrate the benefit of using large cluster sizes for these models, it may be 
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possible to use larger numbers of SNPs and larger cluster sizes, i.e. in the 

knowledge that the test need only be performed a few times. 

A key feature of the findings reported in this section concerns the assumption 

that the GEE AR-1 approach corrects analyses for the effects of LD by imposing 

an approximate correlation structure on the models.  In fact, in a further 

analysis, I performed a GEE model with an independence correlation structure, 

but where the observations were clustered in the same way as reported for the 

GEE AR-1 approach (i.e. in clusters of 20 observations).  The results for this 

analysis were somewhat surprising, because very similar results were obtained 

compared to the GEE AR-1 model with the same clustering.  This analysis, 

thus, implies that it is the clustering of observations that is actually key to 

allowing for correlation in these models, rather than the nature of the specified 

correlation structure itself.   

This finding actually supports the description of GEEs provided in sections 

2.7.3.2 and 2.7.4.1, in that GEEs should be robust to inaccurate specifications 

of the correlation structure.  Furthermore, although the results for this additional 

analysis markedly improve on the results from the GEE Independence model 

fitted prior to here (i.e. which uses clusters of single observations), the GEE AR-

1 approach remains marginally better in terms of efficiency (i.e. power).  The full 

implications of this finding, i.e. that the clustering of observations is so 

important, go beyond the scope of this project, but there may be interest in 

exploring this issue further in later work. 



Chapter 2 

196 

 

2.8. Ancestry 

We have so far seen that the Visscher et al. linear regression approach is 

dependent on compliance to the key assumptions of homoscedasticity (Section 

2.7.3) and independent observations (Section 2.7.4).  However, the 

straightforward extension of the method using a generalised estimating 

equation (GEE) with a first-order autoregressive correlation structure (AR-1) can 

handle violations in either of these conditions without any adverse effects.  In 

principle, these results thus imply that not only are SNP allele frequencies 

sufficiently informative to identify participants from genome-wide association 

studies (GWAS) but, furthermore, a reliable method to identify individuals using 

SNP data is tractable.  Until now, however, we have not considered the 

implications of the assumption of co-ancestry on these methods.   

Co-ancestry is an important prerequisite of these methods because it ensures 

that the two groups compared in a test are truly comparable and, hence, that a 

test is only influenced by an individual’s presence in or absence from a study.  

Although case-control GWAS are usually well matched in terms of ancestry, 

subtle differences between the two arms of a study would be difficult to detect 

(and, thus, difficult to avoid).  Visscher et al. (Visscher et al., 2009) 

acknowledge that the linear regression approach is sensitive to differences in 

ancestry, and they state a threshold – in terms of Wright’s FST statistic (Wright, 

1968) – at which population divergence is problematic.  Although they state that 

an FST value approaching 1/2Nmix will cause problems, they do not elaborate on 

this statement in any way.  Different methods of deriving FST exist (Cavalli-

Sforza et al., 1994; Balding, 2003), and inconsistent values of FST between 
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different real populations are reported in the literature (Cavalli-Sforza et al., 

1994; Pritchard et al., 2001; Cardon et al., 2003; Marchini et al., 2004; Heath et 

al., 2008).  As such, the true implications of differences in ancestry remain 

unclear. 

This section examines how sensitive these approaches are to realistic 

differences in ancestry, with the aim of determining whether even subtle 

differences in ancestry throw the methods, i.e. in terms of increased error rates. 

2.8.1 Previous Findings and Preliminary Results 

In the context of the Homer method (Homer et al., 2008), previous work 

indicates that differences in ancestry can have a major impact upon the type I 

error rate.  For example, in a simulation study (Sampson et al., 2009), the type I 

error rate approaches 100% when the two test groups differ in ancestry even 

when only a small percentage of SNPs (e.g. 1% or more) are “ancestry-

associated”.  Similarly, in the same paper an analysis using data from the 

International HapMap Project (2003) yields markedly increased type I error 

rates when a reference group includes even a single individual with different 

ancestry to the others.  These findings therefore suggest that even subtle 

differences in ancestry are sufficient to hinder methods to test for presence in 

GWAS using SNP allele frequencies.   

The above findings seem to cast serious doubt on the usefulness of these 

methods in practice, given that perfect co-ancestry is almost impossible to 

guarantee in real studies.  However, given that this may not be such an issue 

for case-control GWAS, which are often well matched in terms of ancestry, 
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these findings may not always be relevant.  Morevoer, the above analyses 

seem particularly extreme.  For instance, the analyses of data from HapMap 

create reference groups consisting of Utah residents with ancestry from 

northern and western Europe (CEU individuals) and at least one Tokyo resident 

with Japanese ancestry (JPT individuals).  Real case-control GWAS would be 

unlikely to include individuals from such distinct ancestries because of the well 

known analytical effects of population admixture (or population stratification), 

i.e. population stratification can lead to both false-positive and false-negative 

results (Marchini et al., 2004).  In the context of case-control GWAS, this is thus 

an extreme illustration of the effects of population admixture on the Homer 

method. 

The applicability of the simulation study described above can also be 

questioned.  As the authors – Sampson and Zhao (Sampson et al., 2009) – 

admit, the results from these simulations are likely to be extreme because the 

allele frequencies for the ancestry-associated SNPs are generated completely 

independently of one another between the two ancestries (i.e. for corresponding 

SNPs).  In reality, allele frequencies for SNPs that differ by ancestry – and, in 

particular, between similar ancestries – are likely to be correlated (Reiner et al., 

2005).  Hence, the findings from this study are likely to exaggerate the real 

effects of differing ancestry in case-control GWAS. 

In an attempt to investigate the validity of the findings from Sampson and Zhao 

(Sampson et al., 2009), I also conducted a set of simulation studies to 

investigate the effects of violating the co-ancestry assumption in more moderate 

(and, hence, realistic) scenarios.  I considered several different approaches to 
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simulating ancestry, and initially aimed to use real data to inform the simulation 

method.  For example, I simulated population allele frequencies for two different 

ancestries from the observed allele frequencies of different, real ancestries in 

the HapMap database (2003).  These analyses yielded extreme results.  High 

type I error rates were obtained, which seemed to indicate a strong sensitivity to 

ancestry even when the populations compared were similar.  Upon reflection of 

the results, however, I came to realise that these analyses were invalid.  

Because these analyses simulated population allele frequencies from real, 

observed allele frequencies, they, in effect, implicitly assumed that the observed 

allele frequencies were population frequencies, i.e. they assumed that the 

observed allele frequencies represented the true, underlying allele frequencies 

for the populations under study.  In truth, the observed allele frequencies are 

really estimates of the population allele frequencies and, hence, will be subject 

to random variation around the true population values.  As such, simulating two 

populations based on observed allele frequencies – as done in these 

simulations – leads to exaggerated differences between the two populations.  

The following section therefore further investigates the effects of violations in 

the co-ancestry assumption, by undertaking a subsequent simulation study 

using an alternative simulation approach. 

2.8.2 Simulation Study 

This simulation study simulates ancestries that differ to various extents, and 

measures the differences between ancestries using a formulation of Wright’s 

FST reported in the literature (see Equation 20 below). 
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Allele frequencies for the first population, p1j, are simulated in the usual way, i.e. 

by generating allele frequencies from a uniform distribution bounded by 0.05 

and 0.95.  The p1j are then converted to the log-odds scale, where	À�: � log[p1j/ 

(1-p1j)].  Subsequently, a value representing a hypothetical number of binomial 

trials is selected.  This value, which I shall refer to as “N.scale”, controls the 

degree of divergence between the two simulated populations, so, for instance, 

lower values of N.scale produce greater divergence between the simulated 

populations, and greater values of N.scale produce less divergence.  In these 

simulations, N.scale takes a fixed value in each scenario, and is varied between 

100 and 2000 in different scenarios. 

An expected number of “successes” for each SNP, rj, is generated by 

multiplying p1j by N.scale.  This allows the standard error of the log-odds of p1j 

to be derived, where SE8À�:= � �71//: � 1 8§. �,V� � /:=⁄ ?.  Finally, the log-odds 

of the allele frequency in the second hypothetical population, À�:, is generated 

by randomly sampling from a normal distribution with mean equal to À�:  and 

standard deviation equal to SE 8À�:=.  The raw allele frequency for population 2, 

p2j, is then derived using the inverse-logistic (or expit) transformation, i.e. 

)�: � exp	�À�:�1 � exp	�À�:�. 
Once the underlying allele frequencies have been derived for the two 

populations, 100 individuals are simulated into each arm of a hypothetical case-

control study, using the allele frequencies for one population to simulate the 

cases and the allele frequencies for the other population to simulate the 
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controls.  As usual, 100 individuals from each population are also simulated to 

test under the null hypothesis (i.e. as individuals absent from the study). 

As stated above, these simulations measure the divergence between simulated 

ancestries using FST.  As presented by Cavalli-Sforza (Cavalli-Sforza et al., 

1994), the formulation of FST I use for the jth SNP here is: 

Equation 20 

ÃÄ� � ¼/8):=)̅:�1 � )̅:�. 
In the context of the data we have here, )̅: � �)�: � )�:� 2⁄  and Var8):= �
8)�: � )̅:=� � 8)�: � )̅:=�.  An overall measure of FST can then be derived by 

taking the mean FST value over all s SNPs. 

Although Equation 20 uses the underlying allele frequencies, p1j and p2j, any 

derivation of FST, in practice, requires use of the estimated (or observed) allele 

frequencies, qj and rj (denoting the allele frequency in the mixture and reference 

group respectively).  Measures of FST will thus be sensitive to the sample sizes 

of the two groups used to estimate the allele frequencies unless the underlying 

allele frequencies are known. 

As already mentioned, Visscher et al. (Visscher et al., 2009) state that 

population divergence becomes a problem as FST approaches 1/2Nmix.  This 

formula ignores the influence of the sample size of the reference group, 

however, and is therefore ambiguous.  Furthermore, it is unclear whether this 

formula relates to a measure of FST based on underlying allele frequencies or 

observed allele frequencies.  Visscher et al. report a series of simulation studies 
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in their paper, and, thus, would have had access to the simulated underlying 

allele frequencies (even though, in practice, these would not be available).  

Further clarification of the relationship between FST and the performance of 

these tests is therefore required.  The following simulations investigate this 

relationship, and derive FST in each scenario based on both the underlying and 

the observed allele frequencies. 

Table 27 below presents the results for various scenarios based on 5,000 SNPs 

and 100 simulation runs.  As the case and control groups consist of 100 

individuals in the reported simulations, the critical value of FST stated by 

Visscher et al. is 1/(2*100) = 0.005 here. 

  



Chapter 2 

203 

 

N.scale 

FST based on: 

Approach Power 
Type I 

Error Underlying 

AFs 
Observed AFs 

2000 0.00025 0.0053 

Linear Regression 0.999 0.064 

GEE Independence 0.998 0.057 

GEE AR-1 0.998 0.058 

1000 0.0005 0.0055 

Linear Regression 0.999 0.075 

GEE Independence 0.999 0.073 

GEE AR-1 0.999 0.074 

500 0.001 0.006 

Linear Regression 0.999 0.122 

GEE Independence 0.999 0.138 

GEE AR-1 0.999 0.139 

300 0.0017 0.0067 

Linear Regression 0.999 0.219 

GEE Independence 0.999 0.277 

GEE AR-1 0.999 0.277 

100 0.0049 0.0099 

Linear Regression 1 0.769 

GEE Independence 1 0.919 

GEE AR-1 1 0.918 

Table 27: Results for the simulation study investigating the effects of population 
divergence.  The results show the relationship between the degree of population 
divergence – as measured by FST – and the error rates for the Linear Regression, GEE 
Independence (with cluster sizes of 1), and GEE AR-1 models.  Power and type I error 
rates are based on the 5% level of significance. 

 

The results demonstrate that the measures of FST based on the observed allele 

frequencies are consistently higher than those based on the underlying allele 

frequencies.  This is to be expected, as the observed allele frequencies are 

affected by sampling variation and, hence, should be more divergent than the 

underlying allele frequencies.   
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Table 27 also demonstrates that the relationship between FST and the error rate 

for the linear regression approach reported by Visscher et al. must assume use 

of the observed allele frequencies in each group.  For instance, in the scenario 

where N.scale is 2000, FST based on the observed allele frequencies is 

approximately equal to the critical value (i.e. FST.observed = 0.0053) and the type I 

error rates approach the nominal level.  On the other hand, FST based on the 

underlying allele frequencies is well below the critical value in this scenario 

(FST.underlying = 0.00025).  Thus, one would expect perfect type I error rates here 

if the formula reported by Visscher et al. were to relate to the underlying allele 

frequencies. 

Similarly, in the scenario where N.scale is 100, which relates to the most 

divergent groups simulated, FST based on the underlying allele frequencies 

approaches the critical value (i.e. FST.underlying = 0.0049) but the type I error rates 

are massively inflated (e.g. type I error for GEE AR-1 is 0.918).  In contrast, the 

FST value based on the observed allele frequencies is approx. 0.01 in this 

scenario (i.e. twice that of the critical value), so, assuming that the Visscher et 

al. formula applies to the observed frequencies, elevated type I error rates 

should be expected here. 

Further scenarios simulated with different sample sizes for the case-control 

studies also support the above findings (results not shown), i.e. that the formula 

provided by Visccher et al. relates to a measure of FST derived using the 

observed allele frequencies.  Nevertheless, all of the simulations reported so far 

use equal sample sizes for the case and control groups.  When unequal 

numbers of cases and controls were simulated, the formula reported by 
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Visscher et al. was seen to be inaccurate.  For instance, in a scenario with 100 

cases, 500 controls, and an FST value of 0.04, type I errors of around 25% were 

observed.  Hence, these findings suggest that the formula reported by Visscher 

et al. to relate the performance of the methods to FST only applies to equally 

sized reference and test samples. 

Focussing on the more general characteristics of the results shown in Table 27, 

it appears that the two GEE approaches perform better than Linear Regression 

when the population divergence is small (e.g. when N.scale is 2000) but worse 

when the populations are more divergent.  Moreover, the results highlight the 

importance of co-ancestry upon the approaches.  For instance, the type I error 

rates are substantially elevated in all scenarios reported in Table 27 other than 

when N.scale is at least 2000.  Hence, even fairly minor differences in ancestry 

may throw the methods.   

It is difficult to place the above results in the context of the divergence between 

real populations because FST values reported in the literature vary wildly.  For 

instance, the degree of divergence between European populations has been 

reported as varying between 0.01 to 0.05 (Cavalli-Sforza et al., 1994) and 

between 0.001 and 0.005 (Heath et al., 2008).  The reason for these 

inconsistencies is likely to be due to differences in the sample sizes used to 

estimate FST, and, as such, the more recent study reported by Heath et al. 

(Heath et al., 2008) is likely to be more accurate.  Even with these figures, 

however, it remains difficult to ascertain the true implications upon these 

methods – in the context of case-control GWAS data – because GWAS are 

usually well matched in terms of ancestry.  In the following sections I therefore 
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utilise real GWAS data to investigate how the approaches perform in the 

presence of realistic differences in ancestry. Section 2.8.3 constructs test 

groups from different regions of the UK (using the 1958BC data) and Section 

2.8.4 constructs groups using data from different GWAS cohorts. 

2.8.3 Comparing UK Regions 

In sections 2.7.2-2.7.4, real data from the 1958BC have been used to form 

hypothetical case-control GWAS consisting of individuals only from southern UK 

regions.  Here, the 1958BC data is again used, but the two test groups are 

formed with individuals from two different UK regions.  In this section, hence, I 

explore whether possible differences in ancestry between individuals from 

different regions of the UK are capable of hindering the methods. 

As in Section 2.7.2, individuals from each of the twelve sub-regions of the UK 

recorded in the 1958BC data are combined into one of three larger regions: 

South UK (consisting of London, Southeast, Southwest and South England), 

Central UK (consisting of East England, North Midlands, Midlands, and Wales) 

or North UK (consisting of Northwest England, North England, East & West 

Ridings of Yorkshire, and Scotland).  Three comparisons of regions are 

therefore made: South Vs Central UK; Central Vs North UK; and South Vs 

North UK.  In each simulation run, a hypothetical case-control GWAS is formed 

by randomly sampling 100 individuals from one region into one arm of the study 

and 100 individuals from another region into the other arm; 100 individuals from 

the same two regions are then also sampled as individuals to test under the null 

hypothesis.   As usual, each individual from each of the groups is tested in turn 

for presence in the study, and 100 simulation runs are performed for each 



Chapter 2 

207 

 

comparison of regions.  This analysis is based on the 1958BC dataset with SNP 

spacing of 20.  Because of the known issues with heteroscedasticity and LD in 

these data, only results for the GEE AR-1 approach (using a cluster size of 20) 

are shown.   

Table 28 below clearly shows that any differences in ancestry between 

individuals from different regions of the UK do not affect the GEE AR-1 model.  

The powers obtained are similar to those reported in Table 25, i.e. in which all 

individuals are sampled from South UK, and the levels of type I error are 

approximately correct.  Although the results for the other approaches (i.e. linear 

regression, logistic regression, and GEE independence) are not provided, the 

same pattern of results also applies; no further increases in the type I error rate 

are demonstrated here compared to the corresponding rates shown in Table 25.   
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Regions Group Mean (²³) 
Mean 

[Var(²³)] 

Reject. H0 

(5% level of 

sig.) 

South Vs Central 

In Study – South 1.0000 0.0667 0.9691 

In Study – Central -1.0002 0.0668 0.9664 

Not in  Study – 

South 
0.0052 0.0698 0.0518 

Not in  Study – 

Central 
-0.0078 0.0698 0.0557 

Central Vs North 

In Study – Central 1.0001 0.0660 0.9735 

In Study – North -0.9999 0.0661 0.9691 

Not in  Study – 

Central 
0.0129 0.0671 0.0516 

Not in  Study – North -0.0040 0.0671 0.0559 

South Vs North 

In Study – South 1.0002 0.0665 0.9742 

In Study – North -1.0004 0.0663 0.9718 

Not in  Study – 

South 
0.0144 0.0675 0.0495 

Not in  Study – North -0.0152 0.0676 0.0564 

Table 28: Comparison of regions in the 1958 Birth Cohort with SNP spacing of 20.  In 
each simulation run, 100 individuals from each region are randomly sampled into one 
arm of a hypothetical case-control GWAS, and another 100 individuals from each region 
are test individuals under the null hypothesis.  The proportion of rejections of H0 
represents power for the individuals in the simulated case-control GWAS, and type I 
error for individuals not in the study.  

 

To complement the results in Table 28, I derived sets of FST values comparing 

samples of individuals from each region of the UK in the 1958BC.  Recall that 

Visscher et al. state that population divergence becomes problematic as FST 

approaches 1/2Nmix (Visscher et al., 2009).  Generally, the FST values derived 

comparing the different regions approximately matched the critical value 

deduced from this formula.  Furthermore, deriving FST for individuals from the 

southern UK regions only also yielded similar values.  These results, thus, 

demonstrate that the 1958BC contains only individuals who are well matched in 
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terms of ancestry.  Furthermore, they show that the population divergence 

between participants from different UK regions is no greater than that between 

individuals from the same region.  The 1958BC is known to be a representative 

control group for UK individuals, however.  In order to further generalise the 

results, the following section compares individuals from different UK GWAS 

cohorts. 

2.8.4 Comparing Different UK Cohorts 

In this section, individuals from one of three real UK cohorts are sampled into 

different arms of hypothetical case-control GWAS.  This section thus 

investigates whether the findings from Section 2.8.3, i.e. that any differences 

between individuals of UK ancestry are insufficient to throw the methods, are 

applicable across studies.  Different studies have different recruitment 

procedures and could be subject to different biases; thus, even if the 

participants within each study appear well matched in ancestry, the subtly 

different characteristics of each study might perturb the methods. 

Permission was granted from the WTCCC to access the genotype data from the 

UK National Blood Service Controls (NBS) and the Coronary Artery Disease 

(CAD) cases.  As described in Section 2.7.1, the 1958BC consists of 1504 

unrelated participants from the UK.  Similarly, the NBS consists of 1500 

unrelated participants from the UK, and the CAD consists of 1988 unrelated, 

coronary artery disease patients also from the UK.  All genotypes used in these 

analyses are typed on the Affymetrix 500K chip and called in Chiamo-Oxford 

format.  Every 20th SNP on chromosomes 12 to 19 is selected for these 

analyses (giving 6097 SNPs in total), before 365 SNPs are omitted following 
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advice in the exclusion files that accompany the data.  Also following the advice 

in the exclusion files, 24 participants are excluded from the 1958BC dataset, 42 

individuals are excluded from the NBS dataset, and 62 individuals are omitted 

from the CAD dataset.  

In each simulation run, 100 individuals from a particular cohort are randomly 

sampled without replacement into one arm of a hypothetical case-control 

GWAS, and 100 individuals from another cohort are sampled into the other arm 

of the hypothetical study.  As usual, 100 individuals from the two cohorts are 

also sampled to test under the null hypothesis, i.e. to test individuals who are 

not in the hypothetical studies.  Three scenarios are tested in total comparing 

individuals from the 1958BC with a NBS group; the 1958BC with a CAD group; 

and the NBS with a CAD group.  One hundred simulation runs are performed in 

total, with each individual in each group tested in turn for presence in the study 

in each run.  Consistent with previous scenarios, the analyses are limited to the 

first 5000 SNPs in the datasets.  As in Section 2.8.3, results for the GEE AR-1 

approach are presented only, because of the known heteroscedasticity and LD 

in the data. 

Table 29 shows that the GEE AR-1 model performs consistently well in these 

data regardless of the cohorts compared.  The results shown here – and, in 

particular, the type I error rates – are comparable to those obtained in previous 

scenarios (e.g. in Section 2.7.4) and, hence, any differences in ancestry 

between participants in these cohorts do not affect the method.  Although 

results for the other approaches are not shown, they perform similarly.  For 

instance, although they yield elevated type I error rates, these are no greater 
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than in previous scenarios (e.g. in sections 2.7.2 and 2.7.3) and, as previously 

explained, are likely to be due to heteroscedasticity and/or LD. 

Cohorts Group Mean (²³) 
Mean 

[Var(²³)] 

Reject. H0 

(5% level of 

sig.) 

1958BC Vs NBS 

In Study – 1958BC 1.0000 0.0665 0.9677 

In Study – NBS -1.0006 0.0664 0.9694 

Not in Study – 1958BC 0.0095 0.0676 0.0539 

Not in Study – NBS -0.0111 0.0676 0.0573 

1958BC Vs CAD 

In Study – 1958BC 1.0001 0.0645 0.9733 

In Study – CAD -1.0006 0.0640 0.9728 

Not in Study – 1958BC 0.0276 0.0658 0.0549 

Not in Study - CAD -0.0320 0.0655 0.0571 

NBS Vs CAD 

In Study – NBS 1.0001 0.0643 0.9745 

In Study – CAD -1.0014 0.0649 0.9717 

Not in Study – NBS 0.0284 0.0658 0.0553 

Not in Study - CAD -0.0299 0.0665 0.0526 
Table 29: Comparison of Different UK Cohorts.  In each simulation run, 100 individuals 
from each study are randomly sampled into one arm of a hypothetical case-control 
GWAS, and another 100 individuals from each study are test individuals under the null 
hypothesis.  The number of rejections of H0 represents power for the individuals in the 
simulated case-control GWAS, and type I error for individuals not in the study. 

 

As with the results reported in Section 2.8.4, I derived FST values for samples of 

individuals in the above cohorts in order to deduce the degrees of population 

divergence.  Again, regardless of the pair of cohorts being compared, the FST 

values tended to approximately equal the critical value deduced from the 

formula reported by Visscher et al. (Visscher et al., 2009).  As Table 29 shows 

no major increases in type I error, these results, hence, support the formula 

provided by Visscher et al..  Furthermore, the results suggest that no major 

differences in ancestry exist between individuals in these UK cohorts. 
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2.9. What can be published? 

We have seen that under certain conditions it is possible to reliably infer 

presence within genomic mixtures such as GWAS.  The key issue underpinning 

this work is therefore to clarify what information can and cannot be published 

safely from GWAS.  There are two obvious approaches to avoiding identification 

in the release of summary data from GWAS: (1) release only a limited amount 

of data, which is insufficient to allow identification; or (2) release data only in 

forms that are non-identifiable.  These approaches are now discussed. 

2.9.1 Limiting the number of SNPs 

The SecureGenome software developed by Sankararaman et al. 

(Sankararaman et al., 2009) aims to quantify the amount of information that can 

be released safely from GWAS.  Rather than using the Homer method, 

SecureGenome employs a likelihood ratio test statistic because this – they 

claim – provides an upper bound on the maximum power achievable by any 

test.  SecureGenome requires the full genotypes to be input for individuals 

within a mixture (e.g. a GWAS cohort) and within a reference group.  It also 

requires a measure of rank to be input for each SNP (such as a p-value).  

Hence, it can only be used by study researchers who have access to these 

data. 

By implementing a procedure that omits SNPs that are adjudged to be in LD, a 

specific set of SNPs – chosen by rank, is output for which allele frequencies can 

be published at specifiable levels of type I error and power.  Using the 

SecureGenome software, it can thus be argued that the risk of participant 
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identification can already be sufficiently avoided by publishing only the set of 

SNPs deemed “safe”.  This approach is effectively an intermediate strategy 

between releasing full summary information (e.g. on a genome-wide basis) and 

releasing nothing at all.  However, the development of an alternative strategy to 

avoiding participant identification (e.g. which involves releasing only “non-

identifiable” data) may allow a full set of summary information to be released. 

2.9.2 Other types of summary information 

As an alternative to the release of allele frequencies from GWAS, other obvious 

forms of summary data that could be of use in genomics research include odds 

ratios, test statistics, and p-values (either exact p-values e.g. p=0.03; or binned 

p-values e.g. p<0.05).  In its present form, the Homer method cannot be applied 

using any of these summary measures; however, alternative tests based on a 

similar principle to the Homer method are likely to be tractable.   

One such test has already been proposed by Clayton (Clayton, 2010).  This test 

utilises z-score statistics to compare an individual of interest to the two groups 

of a case-control study and to a third reference group.  These z-scores are, in 

effect, a measure of association between each SNP and the phenotype of 

interest (i.e. the disease that defines the case-group).  For each SNP the z-

score is derived by subtracting the allele frequency in the case group, �̅�, from 

the allele frequency in the control group, �̅�, and then dividing this by the square 

root of 1 ��⁄ � 1 ��⁄  (where N1 and N2 are the sample sizes of the control group 

and the case group respectively).  The sign of z therefore conveys which group 

has the higher allele frequency (i.e. if �̅� is greater than	�̅�, z will be positive; if 

�̅�  is greater than 	�̅� , z will be negative), and the magnitude of z gives an 
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indication of the size of the difference between the allele frequencies in the two 

groups.  The Clayton test statistic is based on the following notation.  For a 

particular SNP, x denotes the genotype for an individual of interest (x = 0, 0.5 or 

1); µ denotes the minor allele frequency (MAF) in the reference group (0 ≤ µ ≤ 

0.5); and z denotes the z-score as described above.  The test statistic, T, is thus 

derived as T = (x – µ) z.  Under the null hypothesis, T is expected to be zero 

because there is no correlation between (x – µ) and z.  If the individual is closer 

to the control group, T will be positive, and if the individual is closer to the case 

group, T will be negative.  This can be explained as follows. 

Because µ is the MAF (which is always between 0 and 0.5), (x – µ) will be 

positive for individuals with one or two copies of the minor allele, and negative 

for individuals with no copies of the minor allele.  The test is therefore driven by 

two processes: (1) the sign of (x – µ) relative to the sign of z; and (2) the 

magnitude of (x – µ) relative to the magnitude of z.  The sign of (x – µ) with 

respect to the sign of z conveys which of the two groups the individual of 

interest is closer to.  For instance, an individual with no copies of the minor 

allele will be closer to the group with the lesser MAF, and an individual with one 

or two copies of the minor allele will be closer to the group with the greater 

MAF.  Hence, if the MAF is greater in the control group (i.e. z is positive), T will 

be positive for an individual with one or two copies of the minor allele, and T will 

be negative for an individual with no copies of the minor allele.  If the MAF is 

greater in the case group (i.e. z is negative), T will negative for an individual 

with one or two copies of the minor allele, and positive for an individual with no 

copies of the minor allele.  The magnitudes of z and (x – µ) convey the strength 

of the information obtained for a given SNP.  For instance, intuitively it is clear 
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that if there is little difference between the MAFs in the case group and the 

control group (i.e. z is small), a SNP will provide little information to the test.  

Conversely, if the difference in MAFs in the case and control groups is large, an 

individual could be significantly closer to one of the two groups than the other 

(depending on his/her genotype).  

Clayton suggests calculating two Bayes factors based on the above statistic to 

test for presence in a case-control study.  Although these Bayes factors are not 

shown, this work implies that test statistics – and, hence, p-values with 

appropriate directionality – are also identifiable.  It is also remarked, however, 

that the use of the chi-square statistic, z2, cannot be used in place of the z-

statistic because z2 is unsigned (i.e. z2 does not convey which group has the 

greater MAF).  The sign is crucial in the above tests because it is this that 

correlates with the individual of interest’s genotype when he/she is in one of two 

groups.  Without a sign, no correlation between an individual and his/her group 

would be possible, and it thus seems logical that summary measures which do 

not convey the sign should not be identifiable.  Appropriate summary measures 

– which are “un-signed” and which could therefore potentially be released – are 

to be discussed shortly.  Before this, I first aim to prove that merely the sign on 

its own is also sufficient to identify participants from DNA mixtures. 

2.9.3 Sign Test 

The simplest form of information that can be used to compare the allele 

frequencies in a case-control GWAS is the sign (i.e. of the difference in allele 

frequencies between the two groups).  This sign conveys which group has the 

greater allele frequency, but it is completely uninformative of the magnitude of 
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any difference in the allele frequencies.  To denote the sign for the j’th SNP, a 

variable, Signj, is created (Signj = 1 if the MAF is greater in the cases; Signj = 0 

if the MAF is greater in the controls).  Note that SNPs for which the MAFs in the 

two groups are equal are omitted from the analysis.  SNPs are also omitted if 

the allele with the lesser  frequency (i.e. the minor allele) differs between case 

and control groups. 

A test based on the sign of the difference in allele frequencies between the case 

and control groups of a GWAS involves creating a binary variable, Dj, to denote 

which group the individual of interest is “closer” to for each SNP (Dj = 1 if the 

individual is closer to the case group; Dj = 0 if the individual is closer to the 

control group).  As has been described in the previous section, if the MAF in the 

control group is greater than the MAF in the cases (i.e. Signj = 0), an individual 

with one or two copies of the minor allele will be closer to the controls than the 

cases (hence Dj = 0), and an individual with no copies of the minor allele will be 

closer to the cases than the controls (Dj = 1).  In the opposite situation where 

the MAF is greater in the cases, an individual with one or two copies of the 

minor allele will be closer to the cases (Dj = 1), and an individual with no copies 

of the minor allele will be closer to the controls (Dj = 0).  The distance of the 

individual of interest from each group is therefore dichotomised by the variable 

Dj. 

For a set of independent SNPs, and for two groups of similar size and similar 

ancestry, it seems reasonable to assume that, under the null hypothesis, mean 

Dj will be approximately 0.5.  This is because if an individual is in neither group, 

he/she would be expected to be “closer” to each group approximately the same 
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number of times.  If an individual is in the case group, mean Dj should be 

significantly greater than 0.5 because he/she will be closer to the case group 

more often than the control group.  If an individual is in the control group, mean 

Dj should be significantly less than 0.5 because he/she will be closer to the 

control group more often than the cases.  A two-tailed binomial test can thus be 

used to test the null hypothesis that Dj = 0.5.  Where W is the sum of all Dj, and 

M is the total number of SNPs for which the MAFs in the case and control 

groups are different, the test statistic, T, is therefore: 

T = W ~ Bin(M, p=0.5). 

Some simple simulations were conducted to evaluate the power and type I error 

rate for this sign-test.  Based on the simulation method in Section 2.4, 20,000 

SNPs were generated with population allele frequencies randomly sampled 

from a uniform (0.05, 0.5) distribution.  Case and control groups consisting of 

500 individuals were then simulated, with a further 500 individuals simulated in 

neither group.  Each individual from the case group was tested for presence in 

the cases, and each individual from the control group was tested for presence in 

the controls.  The individuals in neither group were each tested for presence in 

both the case and control groups. 

At the 5% level of significance, approximately the correct level of type I error 

was yielded (i.e. approx. 2.5% in each tail), with a power of approximately 80%.  

In comparison to the ROC curves presented in Section 2.4.2, it thus appears 

that this sign-test is only marginally less powerful than the original Homer 

method.  Although this test is also subject to the same set of assumptions and 
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constraints as the Homer method, it confirms that identification is possible when 

only the signs of differences in allele frequencies between two groups are 

published.  Hence, any statistic that conveys these signs – such as odds ratios, 

and even binned p-values – will also be identifying if the direction of effect is 

known. 

2.9.4 Implications 

As we have seen, these tests are driven by the correlation between the signs of 

differences in allele frequencies between two groups, and the genotypes of an 

individual of interest.  Any aggregated statistics that convey these signs are 

therefore potentially identifying.  By omitting details regarding the directionality 

of an effect, however, identification via these means can be prevented.  For 

example, odds ratios that do not state the allele that is associated with an 

outcome would be safe.  Similarly, two-sided p-values that hide this information 

would also be safe.  These “un-signed” statistics could still be informative to the 

genomics research community, and a shift back in practice towards publishing 

aggregate data would represent an improvement on the current demands for 

researcher disclosure.  Caution must remain in the publishing of these data, 

however.  Systematic coding of aggregate statistics – such as by always 

presenting associations between the minor allele and the disease group of a 

study, could allow the sign to be accurately guessed.  Furthermore, publishing 

additional information such as standard errors may allow raw allele frequency 

data to be derived by solving sets of simultaneous equations.  An additional 

concern is whether resources such as the HapMap Project could be used to 

infer signs or directions of effect.  It is not obvious how these resources could 
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be used to systematically infer, for example, whether a particular allele 

frequency is higher in a case group or a control group.  Any estimates based on 

current HapMap allele frequencies would also be relatively imprecise (i.e. 

because they would be based on no more than 90 subjects for each ethnicity).  

As increasingly advanced resources – such as HapMap 3 and the 1000 

Genomes project - become available over the coming years, more work will be 

needed to reassess the threat to participant confidentiality.  In light of these 

future developments, increasingly complex ways in which to breach participant 

anonymity may become possible. 

2.10. Discussion 

The findings in this chapter generally concur with results reported by others 

(Homer et al., 2008; Braun et al., 2009; Jacobs et al., 2009; Sampson et al., 

2009; Sankararaman et al., 2009; Visscher et al., 2009; Clayton, 2010).  The 

Homer et al. test (Homer et al., 2008), although dubious from a methodological 

point of view, raises important concerns regarding the privacy of data in genetic 

epidemiological studies.  Under certain conditions, SNP allele frequencies are 

informative of an individual’s presence in or absence from a study and, hence, 

at least to some extent, the reactions of the NIH and the Wellcome Trust to 

remove these data from the Web (see Appendix B.1) seem justified. 

As long as the key assumptions of co-ancestry and independent observations 

are upheld, it does seem possible to identify a participant in a GWAS cohort.  

Typically, several thousand SNPs are required to identify an individual in a 

study of one or two hundred participants.  Larger studies consisting of a few 
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hundred individuals generally require an order of ten thousand SNPs.  Even 

greater sized studies – for example, consisting of five hundred to a thousand 

subjects – would require several tens of thousands of SNPs.  It is important to 

note that the simulation results provided throughout this chapter are generally 

conservative for the sample sizes investigated, because relatively small 

numbers of SNPs have been simulated.  Practical use of these methods might 

allow use of many more SNPs and, hence, greater powers would potentially be 

achievable. Note, however, that increased sample sizes would require greater 

power. 

We have seen that use of these methods in practice requires a reference group 

as well as a test mixture (such as a GWAS cohort) and a genomic profile for an 

individual of interest.  The implication of this for the Homer test is that the 

specification of the null distribution is not always accurate, particularly when the 

sample sizes of the two groups differ.  In contrast, the framework introduced by 

Visscher et al. (Visscher et al., 2009) avoids problems regarding the sample 

sizes of the two groups compared in a test.  Visscher et al. propose a linear 

regression approach that – from a statistical point of view – is more coherent 

than the Homer method.  Furthermore, it also generally out-performs the Homer 

test.  As Section 2.6 shows, however, this linear regression approach 

consistently yields marginally elevated type I error rates. 

2.10.1 Heteroscedasticity 

The small elevations in type I error rates that are consistently observed for the 

linear regression approach are caused by heteroscedasticity in the model’s 

error terms.  This, in turn, is due to modelling genotype data, which is inherently 
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binomial in nature.   The linear regression approach, thus, has an incorrect 

variance function for these data.  Section 2.7 outlines straightforward 

extensions to the linear regression approach to allow for heteroscedasticity.  

The proposed logistic regression approach addresses the problem by correctly 

modelling the variance function (see Section 2.7.3.1), whereas the proposed 

GEE approach addresses the problem by using a robust estimate of the 

variance (see Section 2.7.3.2).  Both of these approaches seem to adequately 

deal with heteroscedasticity, and yield the correct type I error rates when no 

other model assumptions are breached. 

2.10.2 The implications of linkage disequilibrium (LD) 

A further characteristic of real datasets that impacts upon the approaches is LD.  

Section 2.7 demonstrates that LD is a problem in real data even when analyses 

use only every 20th or every 33rd SNP.  Only the dataset with SNP spacing of 

100 seems relatively free from LD and, hence, these findings indicate that LD 

can range over up to 100 SNPs in an Affymetrix 500K scan.  Any approach that 

assumes independent observations provides biased estimates of the variance 

in datasets containing SNPs in LD, and, consequently, yields elevated type I 

error rates. 

The GEE AR-1 approach introduced in Section 2.7.4 seems effective at 

allowing for low to moderate levels of LD.  This approach clusters neighbouring 

observations together and allows for correlation between observations within 

the same cluster.  In the datasets with SNP spacing of 20 and 33, the GEE AR-

1 approach corrects the type I error rate and yields only slight reductions in 

power over the other approaches.  When the SNPs are more densely located, 
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however, even this approach is affected.  Although it performs better than the 

other approaches in a dataset containing un-spaced (and, thus, highly 

correlated) SNPs, its type I error rate remains above the expected level.  This is 

likely to be due to the somewhat arbitrary clustering of the observations here, 

and the fact that GEE models assume no between-cluster correlation.  For 

example, if the cluster size is 100, although correlation between SNPs within 

each cluster is accounted for, any between cluster correlation, say, between 

SNPs 90 to 110 would only be partially accounted for, i.e. the correlation 

between SNPs 90 to 100 would be accounted for in one cluster, the correlation 

between SNPs 101 to 110 would be accounted for in another cluster, but any 

correlation between SNPs in the different clusters would not be taken into 

account. 

An extension of the work reported in this chapter could investigate better 

strategies for clustering the observations for the situation we consider here.  

The obvious approach would be to cluster the observations by chromosome 

and, hence, avoid between-cluster correlation by clustering any observations in 

LD with one another in the same clusters.  As has already been mentioned, 

however, GEE models typically require at least 50 clusters of observations (Yan 

et al., 2004) but humans have only 22 homologous chromosome pairs.  An 

alternative approach, therefore, could be to select SNPs from two or three 

distantly located regions in each chromosome, and to cluster the SNPs from 

each region together.  This approach would be likely to minimise any between-

cluster correlation, as all observations in different clusters would be located 

either on different chromosomes or in different regions of a chromosome.  

Alternatively, as has been used in sections 2.7 and 2.8, thinning the data by 
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only selecting SNPs spaced across the genome provides a means for avoiding 

LD partially or even altogether. 

As touched upon at the end of Section 2.7.4, the results from these analyses 

emphasise the importance of the clustering structure in a GEE model.  In the 

presence of correlation, the clustering structure seems to be far more important 

than the specification of the correlation structure.  In essence, this observation 

concurs with Clayton (Clayton, 2010), who also finds that correlation can be 

adjusted for without having to be precise about the exact nature of the 

correlation structure.  In contrast to the Clayton method, however, the GEE 

approach avoids having to estimate a large, sparse covariance matrix, and, 

hence, is computationally simpler. 

2.10.3 Ancestry 

The results in Section 2.8 show that even minor violations in the co-ancestry 

assumption can have a major impact upon the type I error rates of the 

approaches.  Nevertheless, the analyses based on real GWAS data suggest 

that case-control studies, which typically carefully match participants for 

ancestry, may often be sufficiently similar for the approaches to be unaffected. 

Visscher et al. (Visscher et al., 2009) provide a formula stating that the linear 

regression approach is not useful if Wright’s FST statistic (Wright, 1968) 

approaches 1/2Nmix.  The simulation results in Section 2.8 broadly support this 

formula; any scenarios in which FST (estimated from the observed allele 

frequencies in each group) exceeds this critical threshold do have elevated type 

I errors, and the scenarios in which FST approximately equals the threshold are 
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untroubled.  FST therefore seems to provide a reasonable means for assessing 

whether two equally sized groups are sufficiently similar to one another to allow 

a test for presence within the studies to be performed.  However, the present 

formula is inaccurate when the groups are of unequal size and, moreover, no 

obvious extension of the formula is available for this situation. 

2.10.4 Forensic use of the tests 

Although the primary focus of this work has been on the implications of these 

methods on the publication of data from GWAS, the original Homer et al. paper 

(Homer et al., 2008) was motivated by a forensic application.  A number of 

similarities between the two situations exist and, in some respects, they may be 

considered analogous.   However, one key discrepancy between the two 

situations is that, in GWAS, each individual contributes equally to the allele 

frequencies, whereas in the forensic mixture, the percentage of DNA 

contributed by each individual may vary.  As Egeland et al. (Egeland et al., 

2010) show, when different individuals contribute unequally to a mixture, the 

ability of the test to reliably infer presence within the mixture is undermined.  As 

such, the utility of these methods in the forensic application is ultimately 

compromised. 

2.10.5 Conclusions 

We have seen that a GEE extension to the Visscher et al. linear regression 

approach (Visscher et al., 2009) appears the most suitable method for inferring 

the presence of an individual in GWAS using SNP allele frequencies.  However, 

simple rules advising on precisely what can and cannot be published safely 
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from GWAS remain difficult to surmise.  For instance, the ability to reliably 

identify an individual in a study depends on a number of factors.  Clearly, the 

sample size of the test group is crucial; however, the sample size of the 

reference group is important too.  The extent of any correlation between the 

SNPs used in a test also affects the method – both in terms of the power and 

the type I error rate.  Furthermore, the degree of population divergence between 

the two test groups ultimately determines whether the method is even useful at 

all.  The information that can be made available is, thus, highly study 

dependent. 

As Section 2.9 shows, other types of information – such as odds ratios or p-

values – also appear identifying if they convey the sign of any effect.  

Conversely, although “unsigned” p-values appear safe, further analysis is 

required to establish whether there is a risk of being able to infer the signs (e.g. 

by using existing resources on the Web or in the literature).  Further dialogue is 

also required to determine whether this information would even be useful at all. 

Most of the results currently being published from GWAS stem from large-scale 

meta-analyses of – typically – tens of thousands of subjects.  Hence, publication 

of the results from these studies, at least for the time being, appears safe.  The 

number of SNPs required to identify an individual in studies of these sizes 

would be likely to run into the hundreds of thousands or even millions, and 

strong LD between the SNPs would therefore be inevitable.   At present, no 

approach has been shown to be capable of adequately dealing with major 

correlation between SNPs.  With future advances in computing, however, 

methods to allow for strong LD may be tractable; indeed, I suggest one such 
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approach in Section 2.7.4.3.  Nevertheless, a further characteristic of these 

meta-analyses may ultimately hinder any attempts to identify.  Meta-analyses 

typically include studies from a number of different countries, and may therefore 

include participants of numerous different ancestries.  The assumption of co-

ancestry, thus, may be impossible to uphold between any two, different meta-

analyses.  It therefore seems perfectly safe to publish at least the top several 

thousand SNP hits from these studies. 
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Chapter 3. 

A new approach to data synthesis: DataSHIELD 

 

 

3.1. Introduction 

Recent advances in genetic epidemiology have typically been achieved using 

huge numbers of participants (e.g. (Levy et al., 2009; Newton-Cheh et al., 2009; 

Stahl et al., 2010)) and the increasing complexity of genomic research will 

require even greater sample sizes (Burton et al., 2009).  Typically, rather than 

acquiring the required sample size in a single, large-scale study, consortia have 

been formed by teams of researchers representing several smaller studies (e.g. 

Global BPgen (Newton-Cheh et al., 2009) and CHARGE (Levy et al., 2009) 

consortia).  The required sample sizes have therefore been achieved by 

combining data from multiple resources.  Studies participating in these consortia 

are usually distinct from one another – both from a funding and a researcher 

perspective – and are often distributed across national borders and boundaries.  

Data synthesis techniques are therefore necessary to amalgamate the results 

from the different studies. 

Currently, the most common approach to synthesising data across studies in 

genomics is study-level meta-analysis (SLMA).  SLMA involves analysing each 
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study separately before combining the results in a weighted average (see 

Section 3.1.1.1).  Because SLMA requires all analyses to be specified a priori, it 

can be considered to be a restrictive approach to analysis.  A more flexible 

approach is individual-level meta-analysis (ILMA), which involves combining the 

individual (or patient) level data from each study to form a single, large dataset 

(see Section 3.1.1.2).  There are often ethical and legal constraints to the 

sharing of these data, however, and, for this reason, the use of ILMA is 

sometimes prohibited altogether (see Section 3.1.2). 

This chapter proposes a new approach to data synthesis that improves the 

flexibility of analyses, while potentially circumventing some of the ethical and 

legal restrictions typically associated with data sharing (Wolfson et al., 2010).  

Section 3.1.1 describes the existing approaches to data synthesis in more 

depth, before some of the ethical and legal issues involved in the sharing of 

data are discussed in Section 3.1.2.  Section 3.2 outlines a potential solution to 

the problem, which we call “DataSHIELD”, and Section 3.3 illustrates two 

different uses of DataSHIELD.  Finally, Section 3.4 presents a discussion of the 

key issues involved. 

3.1.1 Existing approaches to data synthesis 

The synthesis of results across different studies is predominantly performed by 

meta-analysis (Hedges et al., 1985; Sutton et al., 2000), and meta-analysis is 

broadly undertaken in one of two ways (Sutton et al., 2008).  As stated in the 

previous section, SLMA involves analysing each study separately and pooling 

the summary statistics (for example, regression coefficients and their standard 

errors) in a weighted average.  In contrast, ILMA involves pooling the individual-
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level data from each study together to form, in effect,  a single large dataset; 

this is then analysed using conventional statistical methodology (such as by 

fitting a linear or generalised linear model).   

Either approach to meta-analysis requires any participating studies to be 

sufficiently similar to one another (Fortier et al., 2010).  For example, it is 

usually only meaningful to pool data from studies that have measured both the 

outcome and any primary exposures of interest in the same (or very similar) 

ways (Borenstein et al., 2009; Wallace et al., 2009).  All participating studies 

must have a comparable estimate of the exposure effect sizes upon the 

outcome.  Studies that are similar in these respects are often referred to as 

being “harmonised”, and “harmonisation” is thus an important prerequisite of 

any meta-analysis (Burton et al., 2010).  The two approaches to meta-analysis 

are now described further. 

3.1.1.1 Study Level Meta Analysis 

SLMA is often performed retrospectively, where, for example, a comprehensive 

literature review is initially undertaken to identify any suitable studies, before the 

required summary statistics are collated from published literature.  In the 

context of genome-wide association studies (GWAS), however, a more 

prospective approach to SLMA is usually involved.  For instance, consortia of 

genetic epidemiological studies are typically led by one of the participating 

research groups.  This lead group decides upon the analyses to be performed 

(e.g. by specifying the models to be fitted) and communicates these 

requirements to each of the other participating groups in an “analysis plan”.  

Subsequently, each group analyses their own study data according to the 



Chapter 3 

230 

 

analysis plan, produces the required set of results, and then returns these to the 

lead group.  Once all summary statistics have been returned, the lead group 

then performs the “overall” analysis by taking a series of weighted averages 

(see Section 3.2.3). 

SLMA typically involves fitting one of two different types of model, and the 

choice of model to use is usually determined by assessing whether the effect 

sizes estimated from each study can be assumed to be homogeneous.  The 

effect sizes are described as homogeneous if the differences between them can 

be attributed solely to sampling error (otherwise known as random variation) 

(Sutton et al., 2000).  Different methods exist to assess whether this assumption 

is reasonable (e.g. (DerSimonian et al., 1986; Higgins et al., 2003)) and, if so, a 

fixed effect model may be used.  Fixed effect models assume that a single true 

effect size exists and, hence, that any differences between studies are due to 

sampling error (Borenstein et al., 2009).  If the effect sizes are inconsistent 

between studies – or, in other words, if there appears to be between-study 

heterogeneity – a random-effects model is usually preferred.  Random-effects 

models assume that the estimated effect sizes represent a random sample of 

the true effect sizes; in particular, they acknowledge that the true effect may be 

different in different studies but all effects have a common distribution.  In 

situations where there is between-study heterogeneity, one must remain 

cautious in the interpretation of the final results even where a random-effects 

model has been used.  This is because between-study heterogeneity can be 

indicative of differential bias between studies.  Alternatively, between-study 

heterogeneity can also indicate the possible presence of an underlying 

interaction with an exposure of interest.  Any such interaction with an exposure 
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is potentially important, and typically requires further investigation.  For 

instance, exploratory analyses may need to be performed (such as subgroup 

analysis (Gelber et al., 1987)), and additional models may need to be fitted to 

investigate an interaction (Riley, et al., 2010).  These analyses generally require 

deriving further summary statistics from each study or accessing the individual-

level data from each study and, hence, can be difficult to perform in an SLMA.  

In this sense, SLMA is thus an inflexible approach.  SLMA requires all analyses 

to be specified a priori, and provides little scope for conducting exploratory or 

follow-up analyses without repeating the process de novo.  As we shall see in 

sections 3.2 and 3.3, DataSHIELD specifically addresses these issues by better 

enabling the performance of exploratory analyses during data synthesis. 

For SLMAs of GWAS, the random effects model is generally recommended for 

use (Ioannidis et al., 2007; McCarthy et al., 2008).  By definition, GWAS involve 

testing a large number of genetic variants, and it is thus not feasible to assess 

each variant for homogeneity in its effect size across all participating studies.  

Random effects models tend to be more conservative than fixed effect models 

and, thus, can be considered the safer approach to analysis.  Similarly, 

heterogeneity between-studies may actually be expected in an SLMA of GWAS 

– particularly where studies are included from different countries – because of 

the possible effects of population stratification.  Hence, on this basis too, 

random effects models do seem the most appropriate choice of approach to 

synthesise data from different GWAS. 

Both fixed effect and random effects models take regression coefficients and 

their standard errors from each study and combine them in a weighted average.  
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The regression coefficients are weighted according to precision, so that the 

studies with greatest precision in their estimate of the effect size have greater 

weighting in the analysis.  The estimated effect size from each study, thus, is 

weighted by the inverse of its variance.  As precision is largely determined by 

sample size, larger studies tend to have greater weighting in an SLMA. 

3.1.1.2 Individual Level Meta Analysis 

In contrast to SLMA, an ILMA is performed by combining the individual-level 

data (sometimes known as individual patient data (Sutton et al., 2008)) from all 

the participating studies.  The resulting single, large dataset can then be 

analysed using conventional methodology (such as linear or logistic regression) 

as if it were data from a single study.  Crucially, between-study heterogeneity 

can be accounted for in an ILMA by including study-specific terms in the model 

(Riley, et al., 2010).  These terms can be handled either as fixed or random 

effects, depending upon the assumptions one wishes to make (Higgins et al., 

2001; Whitehead et al., 2001; Riley, et al., 2010).   

ILMA requires prior ethical and legal permission to share the raw, individual-

level data from any participating study.  Studies can usually only share these 

data if they have the full, informed consent to do so from all study participants.  

This, realistically, must be gained at the outset of a study and, hence, any 

studies that do not already have this consent can be restricted in terms of their 

ability to share.  Restrictions over the sharing of data can thus prohibit the 

performance of an ILMA altogether.  As sections 3.2 and 3.3 show, however, 

use of DataSHIELD potentially offers a means for benefiting from the properties 

of an ILMA without ever having to share any individual-level data.  . 
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3.1.1.3 Comparison of the approaches 

As we have seen, both SLMA and ILMA provide a means of synthesising data 

from multiple studies.  SLMA takes summary statistics from each study and 

combines them in a weighted average, whereas ILMA pools the individual-level 

data from each study and analyses the combined dataset.  Figure 20 below 

illustrates the two approaches schematically. 

 

Figure 20: Schematic representation of the ILMA (a) and SLMA (b) approaches.  Each 
diagram displays the outcome vector, Y, in light grey and the covariates – or design – 
matrix, X, in dark grey.  For ILMA, the combined dataset is analysed to provide overall 
estimates of the regression coefficients and their standard errors.  For SLMA, each 
distributed dataset is analysed separately to produce study-specific estimates of the 
regression coefficients and standard errors.  These are then pooled in a weighted 
average to provide the overall set of results.  This diagram is taken from the DataSHIELD 
paper (Wolfson et al., 2010). 
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Despite the differences in how they are executed, both approaches often 

perform very similarly to one another (Olkin et al., 1998; Sutton et al., 2008).  

For instance, the two approaches applied to fixed effect models of continuous, 

normally distributed data can potentially yield identical results, while models 

fitted to other data types (e.g. binary data) will produce similar (although not 

necessarily identical) results. 

The key advantage SLMA has over ILMA is that SLMA does not require sharing 

any of the raw, individual-level data from any participating studies.  Thus, as will 

be discussed further in the following section, there are fewer ethico-legal 

constraints to the use of SLMA compared to ILMA.  On the other hand, as we 

have already seen, the key advantage ILMA has over SLMA is greater flexibility 

(Riley, et al., 2010).  ILMA has instant access to the individual-level data from 

all participating studies, so exploratory analyses are quick and easy to perform.  

In the context of GWAS, specialist procedures such as haplotype analysis and 

genotype imputation require access to individual-level data and, thus, are also 

easier to perform with ILMA compared with SLMA (McCarthy et al., 2008).  To 

summarise, ILMA is the ideal approach to data synthesis but, as we shall now 

see, because it requires access to the individual-level data from any 

participating study it cannot always be used. 

3.1.2 Ethico-legal issues surrounding the sharing of data 

Funding bodies actively encourage the sharing of data in genomics (Foster et 

al., 2007), but research teams face both an ethical and legal obligation to 

protect the confidentiality of study participants (Kaye et al., 2009; Resnik, 2010).  

There is, hence, a conflict between the scientific goals of a study and the moral 
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and legal duty to ensure the protection of participant privacy.  Scientifically, 

researchers have a responsibility to gain as much insight from a given study as 

possible, which can often only be achieved by sharing and combining data with 

other research groups (Trinidad et al., 2010).  Yet any failure to adequately 

protect personal data faces potentially damaging ramifications.  In the UK, for 

instance, the Data Protection Act 1998 regulates the “processing” of personal 

data, and can severely punish any failure to take “reasonable” steps to prevent 

data loss.  Where data are shared, those originally responsible for protecting 

the data could find it difficult to maintain control of privacy standards.  A 

reluctance to share is therefore not unusual. 

In Chapter 2 we saw that participant confidentiality can be difficult to guarantee 

in GWAS even when aggregate data are only ever released.  Clearly, individual-

level genomic data is even more sensitive, and could directly allow the 

identification of study participants.  Individual-level data is therefore subject to 

strict regulation, and its use often restricted to the original researchers who 

carried out a study (Wallace et al., 2009).  Even in situations where the sharing 

of data, in principle, is allowed, the practicalities involved in actually doing so 

can be prohibitively long drawn.  For example, approval from both a scientific 

committee and an ethical review panel must be obtained (Malfroy et al., 2004; 

Eisenstein et al., 2009).  Similarly, the sharing of data across borders is often 

prohibited completely (Kaye, 2005), but, even when, in theory, it is allowed, the 

different legislation between different countries can severely hamper attempts to 

share (Zink et al., 2008). 
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In general, the value of sharing data and resources between different research 

groups does seem to be recognised by the wider public in addition to scientific 

communities (Trinidad et al., 2010).  However, the existing ethico-legal 

constraints reflect real dangers and concerns regarding the misuse of data and, 

as such, do not seem likely to be relaxed.  Attempts have therefore been made 

to address the need to share data in genomics in spite of these ethico-legal 

stipulations.  One idea that has been proposed is to introduce researcher IDs 

that, once approved, allow researchers access to a pre-specified set of 

databases (P3G Consortium et al., 2009; Resnik, 2010).  Data from any 

participating study could thus be synthesised by researchers who have 

permission to access all of the required datasets.  The main problem with this 

approach, however, is that it does not get around the need to obtain prior 

informed consent from study participants to share the data with researchers 

who may not have been part of the original research group (Greely, 2007).  As 

noted above, a number of studies do not have this permission and, hence, 

would not be able to participate in such a scheme.  Thus, although it may be 

possible to gain the required consent in future studies, this idea is of only limited 

use for existing studies that do not have this consent. 

The ethico-legal constraints on the sharing of data have generally prevented 

ILMA from being used to synthesise results from GWAS and, consequently, 

SLMA has been the favoured approach.  SLMA allows data from each study to 

be analysed only by the original researchers, and involves passing on only 

summary statistics from each dataset.  SLMA can thus be performed without 

infringing any of the legal stipulations that restrict data use.  As has been 

discussed in Section 3.1.1, however, SLMA is not an ideal approach to analysis 
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because it requires all analyses to be pre-specified.  Section 3.1.3 describes the 

characteristics required for an improved approach to synthesising data in 

genomics. 

3.1.3 What is needed? 

Any new approach to synthesising data across studies in genomics must 

address the scientific need for greater flexibility in analyses while taking account 

of the ethico-legal constraints on the sharing of individual-level data.  Ideally, 

analyses need to be both specified and executed from a single hub, to allow a 

lead group of researchers the flexibility to explore data as they reasonably see 

fit.  However, data privacy must be maintained by sharing only summary data 

from each study; any new approach must not permit access to individual-level 

data beyond the original research groups.  

The synthesis of results from different studies, as is the focus of this chapter, is 

analogous to a situation described in the technometrics literature as an analysis 

of “horizontally-partitioned” data (Karr et al., 2007).  As opposed to “vertical-

partitioning” of data, where different attributes relating to the same individuals 

are distributed among different databases, “horizontal-partitioning” is where 

different databases contain records for different individuals, with the same 

attributes measured on each individual.  Figure 20, shown earlier, illustrates 

how the “overall” or “pooled” dataset displayed on the left can be considered to 

be “horizontally-partitioned” when the data from each study resides in separate, 

distinct locations, as shown on the right.  Under some circumstances, analyses 

of horizontally-partitioned data can be performed to provide identical results to 

an analysis of the combined dataset without transporting or sharing data 
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beyond the original data sites (Karr et al., 2007).  Indeed, as described in 

Section 3.1.1.3, an SLMA fitted to continuous, normally distributed data can 

potentially do this.  However, the conventional SLMA lacks flexibility.  Producing 

the same result in an analysis of a horizontally-partitioned dataset to an analysis 

of the pooled dataset clearly seems desirable but is not always possible, and a 

more flexible approach than SLMA is required.  Subsequent sections introduce 

a new approach to data synthesis, which meets these requirements.  Crucially, 

this new approach also avoids sharing any individual-level data beyond the 

original research groups involved in each participating study.  The approach – 

called “DataSHIELD” – therefore addresses each of the needs of a new strategy 

to data synthesis described here.  

3.2. DataSHIELD 

Data Aggregation Through Anonymous Summary-statistics from Harmonised 

Individual levEL Databases – or “DataSHIELD” (Wolfson et al., 2010) – provides 

a flexible and secure means of synthesising data between studies.  As Section 

3.2.1 describes further, DataSHIELD involves executing analyses from a single 

hub – the “Analysis Computer” (AC) – which provides the power and flexibility to 

perform exploratory analyses as and when needed.  The analysis itself, 

however, is largely performed on separate “Data Computers” (DCs), which 

reside locally at the base of each study and hold the individual-level data for 

that study.  Each DC analyses the study data held locally and sends only a set 

of summary statistics to the AC.  Thus, no individual-level data is ever shared 

with anyone other than the authorised researchers in a given study group.  

Upon receiving summary statistics from all DCs, the AC synthesises the data to 
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provide an “overall” set of (possibly interim) results.  At no point is the AC 

required to physically access any of the individual-level data from any 

participating study (other than, perhaps, a study performed locally, which the 

researchers are already authorised to access).  DataSHIELD therefore allows 

analyses to be centrally controlled while, at least in principle, avoiding the 

violation of any of the ethico-legal stipulations regarding the sharing of data. 

3.2.1 What is DataSHIELD? 

DataSHIELD (Wolfson et al., 2010) is a new approach to synthesising data 

between studies that encompasses both a dedicated IT infrastructure and the 

use of specialist statistical algorithms.  This chapter outlines the core principles 

underpinning DataSHIELD.  Details of the algorithms required to perform two 

different statistical analyses in DataSHIELD are provided, and the fundamental 

characteristics of the IT system needed to implement DataSHIELD are 

described.  Work implementing DataSHIELD is ongoing, however, and the 

development of the software wrapper needed to control and automate the 

communications between the AC and the DCs, for example, remains in 

progress.  Specific details about the IT system are beyond the scope of this 

project and are not included in this chapter; nevertheless, Section 3.2.5 

describes the key features required in this system, and Section 3.4.2 includes a 

general discussion of the IT requirements. 

The fundamental premise of the DataSHIELD approach can most clearly be 

demonstrated diagrammatically.  Figure 21 below illustrates the required IT 

infrastructure and the processes involved in a hypothetical example.   
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Analyses begin from the centre of the network – the AC – which, in the context 

of a consortium of GWAS, would usually be controlled by the lead research 

group.  The AC specifies the analyses to be performed (for example, by 

specifying the model to be fitted), and transmits these requirements to each DC, 

in parallel, in a short block of computer code.  Each DC, which contains the 

individual-level data for a particular study, then runs the code and derives a set 

of summary statistics for that study, before returning these to the AC.  Once 

summary statistics for each study have been received, the AC amalgamates the 

results. 
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Figure 21: Illustration of the DataSHIELD IT infrastructure (taken from (Wolfson et al., 
2010)).  The arrows in the above illustration represent the flow of information between the 
AC and the DCs.  Analyses are specified at the Analysis Computer (AC) and transmitted 
to each Data Computer (DC).  Each DC then performs a set of slave processes (SPs), 
such as fitting a model to the particular dataset held locally, before returning a set of 
summary components to the AC.  Subsequently, the AC performs a set of master 
processes (MPs), which involve synthesising the summary components from each study.  
Where applicable, the AC then returns a set of update parameters to each DC to 
commence a subsequent iteration of the model fitting procedure. 

 

The way in which the AC synthesises the results from the participating studies 

depends upon the nature of the analysis being undertaken.  For example, 

simple descriptive statistics (such as the average percentage of individuals on 

antihypertensive treatment in each study) can typically be combined in a 

weighted average (see Section 3.2.2).  Similarly, summary statistics for a linear 

model are also combined in a weighted average following, in effect, the same 
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model fitting procedure as in a conventional SLMA (see Section 3.2.3).  For 

generalised linear models (GLMs), the model fitting procedure is more complex, 

because an iterative algorithm must be used.  GLMs are usually fitted using the 

Iteratively Reweighted Least Squares (IRLS) algorithm (McCullagh et al., 1991), 

which repeatedly refines estimates of the parameter coefficients and their 

standard errors until they stabilise.  As will be explained further in Section 3.2.4 

(and as will be demonstrated in Section 3.3.2), the IRLS algorithm can be fitted 

in DataSHIELD to guarantee identical results to an analysis of the pooled 

dataset – or ILMA – if such were possible.  

DataSHIELD can be described as a “parallelised” analysis, because it performs 

analyses on all DCs in parallel.  The key advantage of conducting analyses in 

this way is that it allows exploratory analyses to be fitted virtually 

instantaneously.  For instance, DataSHIELD involves sending only short blocks 

of computer code from the AC to each DC, and only summary statistics from the 

DCs to the AC.  Hence, utilising the speed of modern internet connections, the 

process can, in principle, be achieved with little lag compared to a conventional 

SLMA or ILMA.  Various exploratory analyses can therefore be performed from 

the AC almost as if it has full access to the individual-level data from each 

study.  Note, however, that the performance of some exploratory analyses will 

be problematic.  Some exploratory analyses could allow the retrieval or 

inference of individual-level data, which could lead to the identification of study 

participants.  For example, most simply, one could request to view a particular 

row of data from a study, which would provide individual-level information on a 

particular participant.  Alternatively, one could home in on an individual by 

restricting a summary to specific conditions; for instance, if the date of birth was 
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known for a known participant, it might be possible to extract the individual level 

data for this individual either directly (e.g. “print SBP for individuals with DoB = 

1/10/1983”) or indirectly (e.g. “print SBP for individuals with DoB <= 1/10/1983; 

then “print SBP for individuals with DoB < 1/10/1983”).  As such, certain 

safeguards need to be implemented in DataSHIELD to protect it against 

possible misuse and, ultimately, to retain the key benefits it potentially offers in 

terms of data privacy.  Some possible safeguards are discussed in Section 

3.2.5. 

An important prerequisite of DataSHIELD is that all participating studies are 

harmonised (Fortier et al., 2010; Wolfson et al., 2010), and that all datasets are 

coded in the same way.  For instance, to avoid errors, all variables must be 

coded with the same names in all datasets.  Similarly, the units used to 

measure any applicable variables must all be the same.  Section 3.2.5 

discusses other key requirements of DataSHIELD further.   

3.2.2 Deriving descriptive statistics in DataSHIELD 

Descriptive statistics can easily be obtained using DataSHIELD to summarise 

and explore the data from participating studies.  Usually this will involve a 

request from the AC to each DC to derive a particular summary statistic of 

interest for each study.  For example, the AC may wish to derive the overall 

mean number of participants receiving antihypertensive treatment in all the 

participating studies, or the mean percentage of participants with systolic blood 

pressure (SBP) greater than 140 mmHg.  Once a DC has derived a statistic, it 

transmits this back to the AC – which, upon receiving a result from all DCs, then 

derives an “overall” statistic by taking a weighted average.  For instance, for the 
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kth study (k=1,…,s), the weight, wk, is equal to the sample size in that study, nk, 

divided by the total sample size in all participating studies, N; and a descriptive 

statistic of interest (which, for example, could be a count or percentage 

measure) is pk.  The overall statistic, p, is then derived by multiplying pk by wk 

and summing over all studies: 

) ��)5 ∗ Å5�
5;�  

Note that a conventional SLMA would typically derive descriptive statistics in the 

same way, i.e. by using a weighted average. The only novel aspect of this 

particular procedure therefore relates to the IT infrastructure DataSHIELD uses.  

This IT system allows a lead research team the power to derive descriptive 

statistics from participating studies without delay and without having to rely on a 

researcher from each study manually providing the requested results.  It is 

therefore advantageous over conventional methods, which would experience 

this delay. 

3.2.3 Fitting a linear model in DataSHIELD 

As mentioned above, linear models can also be fitted in DataSHIELD by taking 

weighted averages.  In effect, DataSHIELD thus simply coordinates an SLMA 

from the AC for the fitting of linear models.  Nevertheless, the advantage that 

this provides over a conventional SLMA, as stated before, is that it allows 

different models to be fitted quickly.  DataSHIELD therefore provides a 

capability for conducting analyses quickly and easily from a single research 



Chapter 3 

245 

 

base, and it makes complex investigations into, for example, gene-gene and 

gene-environment interactions, tractable. 

The fitting of a linear model in DataSHIELD begins from the AC.  The AC 

specifies the model to be fitted and transmits this to each DC in the form of a 

short block of computer code.  This code contains instructions, in an appropriate 

programming language (such as “R”), to fit a linear model including the chosen 

regression terms.  Once the DCs receive these instructions they automatically 

run the code and, hence, fit the appropriate linear model to the study data held 

locally.  Subsequently, each DC transmits a matrix of results back to the AC, 

which simply contains estimates of the regression coefficients and their 

standard errors for the corresponding study.   

Once the AC has received the results from every DC, the overall analysis is 

conducted.  This firstly involves taking a weighted average of the regression 

coefficients following the same procedure as outlined in Section 3.2.2.  For 

example, using the same notation as introduced in Section 3.2.2, the overall 

estimate (or weighted average) of a particular regression coefficient of interest, 

©ª5, is derived by multiplying the weight for the kth study, wk (as shown in the 

example in Section 3.2.2 above), by the corresponding estimate of the 

regression coefficient for that study, ©ª5, and summing over all studies: 

©ª � ∑ ©ª5 ∗ Å5�5;� . 

The AC then pools the standard errors between the participating studies.  For a 

particular regression coefficient, the standard error (SE) for each study, SEk, is 

converted to a precision (or inverse variance) by squaring it and taking its 
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inverse.  The precisions are then summed over all studies to derive an “overall” 

precision, )̂: 

)̂ � ∑ 1 g 5�⁄�5;� . 

Finally, the overall precision is converted to an overall SE, g Æ , by inverting it 

and taking its square root: 

g Æ � 1 �)̂⁄ . 

Section 3.3.1 contains a simulated data example illustrating the use of 

DataSHIELD for a linear model as described above, and Appendix C1 provides 

R code for implementing the model in the example.  

3.2.4 Fitting a GLM in DataSHIELD 

As with a linear model, generalised linear models (GLMs) can also be fitted in 

DataSHIELD to produce the same set of results as an ILMA.  In order to 

guarantee this property, DataSHIELD involves a customised model fitting 

algorithm, which is based on the IRLS algorithm (see Section 3.2.4.1 below) but 

which allows for the horizontally-partitioned nature of the data.  Note, therefore, 

that a linear regression model, as demonstrated in the previous section, can 

also be fitted in DataSHIELD using this customised algorithm, by using an 

appropriate (i.e. identity) link function.  The full procedure and algorithm used to 

fit a GLM in DataSHIELD is outlined in Section 3.2.4.2. 

Fitting a GLM involves an iterative procedure that repeatedly refines estimates 

of the regression coefficients and the standard errors until they stabilise.  
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DataSHIELD therefore also requires use of an iterative procedure for the fitting 

of a GLM.  As with any DataSHIELD analysis, the procedure begins from the 

AC by specifying the model to be fitted.  As usual, the regression terms to be 

included in the model must be specified.  In addition, GLMs also require the link 

function of the model (e.g. a logistic link) to be specified, and they require 

specification of a set of initial values for the regression coefficients.  For most 

regular link functions, these initial coefficient values can simply be set to zero, 

however, so it seems reasonable to have these values set to zero by default 

(Venables et al., 2002).  

Once the model specifications are transmitted to the DCs, the first iteration of 

the model fitting algorithm is performed.  Each DC is instructed to derive an 

expected information matrix and a score vector (see Section 3.2.4.1) using the 

initial values of the regression coefficients and the study data held locally, 

before passing the two components back to the AC.  The AC then sums the 

components from each study – deriving an overall expected information matrix 

and an overall score vector – before it completes the first iteration by 

incorporating these in the IRLS algorithm equation (see Section 3.2.4.2).  This 

provides estimates both of the regression coefficients and the standard errors.  

Once these have been obtained, the AC performs a test for convergence (see 

equations 24 and 25 in Section 3.2.4.1 below).  If the algorithm converges, the 

regression coefficients can be said to have sufficiently stabilised and, hence, 

the current parameter estimates represent final estimates.  If the algorithm fails 

to converge, the entire procedure must be repeated, but using the current 

estimates of the regression coefficients in place of the initial values of the 

regression coefficients.  For instance, the AC passes the current coefficient 
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values to each DC, which derives an updated expected information matrix and 

an updated score vector using these values.  These are then passed back to 

the AC so the overall analysis can be performed, before the algorithm is again 

tested for convergence.  Typically, this procedure requires around four iterations 

to achieve convergence. 

3.2.4.1 The IRLS Algorithm 

The IRLS algorithm is an iterative method of maximum likelihood estimation for 

GLMs (Aitkin et al., 1989; McCullagh et al., 1991).  It relates closely to the 

Newton-Raphson procedure, but uses the expected information matrix to 

update the regression parameters at each iteration instead of the observed 

information matrix (which the Newton-Raphson procedure uses).  The general 

form of the IRLS algorithm for the rth iteration is: 

Equation 21 ²³Ç È � ²³Ç � É�²³Ç�<ÈÊ�²³Ç� 
where ²³Ë is the vector of estimated regression coefficients at the start of the 

current iteration, É�²³Ç� is the estimated expected information matrix, 	Ê�²³Ç� is 

the score vector and ²³Ë � is the updated vector of regression coefficients at the 

end of iteration r that provides the coefficient values to be used in the next 

iteration (r+1).  The inverse of the expected information matrix is the variance-

covariance matrix of parameter estimates.   

In the following example, each component of the IRLS algorithm is derived for a 

logistic regression model, i.e. to model a binary response. 
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In the first iteration, and for the ith subject, the linear predictor LPi is derived by 

multiplying out the model equation:  

Cj� � �²³� 
where X is the design matrix, i.e. the matrix consisting of a column of 1s 

followed by covariate values, and ²³� is the vector of initial values for the 

regression coefficients. 

Fitted probabilities )̂� are then obtained using the inverse logistic transformation, 

sometimes known as the expit transformation: 

¹�B � ÌÍ¹	�ÎÏB� �È � ÌÍ¹	�⁄ ÎÏB��. 
The expected information matrix É�²³È� is now estimated: 

Equation 22 É8²³È= � ��Ð��, 
where Wr (here W1) is a weight matrix (X is again the design matrix), and the 

superscript ‘T’ indicates matrix transposition.  The weight matrix is a diagonal 

matrix with diagonal elements wi, each equal to 

Å�<� � ¼�Ñ�Ò����Ó�, 
where g‘(µi) indicates the first derivative of the link function – here the logistic 

function – and Vi is the variance function for the ith subject. For a logistic 

regression model, �� �	 )̂�;  ¼� �	 )̂��1 � )̂��; and �Ò���� � 1 �)̂��1 � )̂���⁄ . At the 

rth iteration Wr is derived from the particular parameter values that pertain at that 
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iteration, and W1 is therefore based on the parameter values that apply in the 

first iteration. 

Finally, the score function Ê8²³È= is derived: 

Equation 23 Ê8²³È= � ��Ð�Ô�, 
where X and W1 are as before, and u1

 is a vector of subject-specific terms (ui), 

where dB � �D� � ����Ò����:  D� � 1 if subject i is a case; D� � 0 if subject i is a 

control. 

At the end of the first iteration, ²³� is derived from ²³� using É8²³È= and Ê8²³È= via 

Equation 21.  

The next iteration, r = 2, is then performed taking  ²³� as the vector of regression 

coefficients, generating  É8²³�= and Ê8²³�=, and using these via Equation 21 to 

update ²³�  to obtain ²³� . This whole process is repeated successively until 

convergence is achieved. 

In R, the glm() function has a convergence criterion that is a function of the 

residual deviance for the current model, Dr, and the residual deviance for the 

previous model, Dr -1.  For instance, the default convergence criterion for glm() 

satisfies the following condition: 

Equation 24 |Dr-Dr-1||Dr| � 0.1 Ö �, 
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where ε = 1e-8. 

The residual deviance must be calculated at each iteration: 

Dr � 2	�log C× � log CØ�, 
where log LF is the log-likelihood for the full (or “saturated”) model and log LC is 

the log-likelihood for the current model.  For a logistic regression model with 

binary (1,0) outcomes, as used in the current example, the log-likelihood for the 

current model is 

Equation 25 

log CØ ���D� log )̂� � �1 � D�� log�1 � )̂�� � ½�u
�;�  

where C is a constant, §� � 1, and all other parameters are as before.  As the 

log-likelihood for the full model is always 0 (Quinn et al., 2002), Dr = -2* log LC. 

3.2.4.2 Applying the IRLS algorithm to horizontally-partitioned 

data 

In order to replicate the results from a GLM analysis of a complete, pooled 

dataset in a horizontally-partitioned dataset, DataSHIELD applies the IRLS 

algorithm in steps.  Some of these steps are performed from the AC and some 

from the DCs.  As detailed above, the AC begins the analysis by transmitting 

the model specifications (i.e. the model terms, the model link, and the initial 

values of the regression coefficients) to each DC.  In the first iteration (r=1), the 

DC for the kth study then derives the expected information matrix, ÉÙ8²³Ç;È=, the 

score vector ÊÙ8²³Ç;È=, and the log-likelihood for the current model,  logLCr=1k, 
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using the locally held study data (all as shown in the previous section).  

Importantly, these are non-identifying, and do not, in themselves, disclose 

obvious individual-level information.  Subsequently, the summary components 

from each study are returned to the AC to complete the iteration.  To do this, the 

AC first sums the study-specific components across all studies, i.e. the overall 

information matrix is obtained as ∑ ÉÙ8²³Ç=�5;� , and overall score function as 

∑ ÊÙ8²³Ç=�5;� .  Following Equation 21, the inverse of the overall information 

matrix is then multiplied with the overall score vector, and the resulting vector 

added to the initial values of the regression coefficients to yield updated 

parameter estimates. 

In order to test for convergence, each DC must derive and transmit to the AC a 

study-specific log-likelihood for each iteration.  These are obtained locally 

following Equation 25.  Upon receiving the log-likelihood from all studies, the AC 

sums these, and derives the overall deviance by multiplying the resulting value 

by -2.  This allows the test for convergence shown in Equation 24 to be 

performed, such that it provides an identical result to an equivalent analysis of a 

pooled dataset. 

As stated above, if the algorithm converges, the current values of the regression 

coefficients are taken as the final parameter estimates; however, if the algorithm 

does not converge, the current values are taken as updated coefficient values 

and are used in place of the ²³� values in the next iteration. 

Figure 22 overleaf illustrates the procedures involved in fitting a GLM to 

horizontally-partitioned datasets using DataSHIELD. 
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R code for applying a GLM model using DataSHIELD is provided in Appendix 

C2, in the context of an analysis of a simulated data example described in 

Section 3.3.2. 

3.2.5 Key requirements 

This section describes the key requirements of DataSHIELD, largely focussing 

on the needs of the IT system.  Specific details regarding how to implement 

these requirements are not provided, however.  For instance, the low-level code 

needed to automate the various procedures involved in DataSHIELD will require 

expertise from specialist computer scientists, and the development of these 

scripts is therefore beyond the scope of this project.  Certain aspects of the 

implementation of DataSHIELD also require further thought and discussion 

Transmission to AC 

Transmission to DCs 

Step 1: AC specifies model to be 
fitted and initial values of the 

regression coefficients, ²³
. 

Step 2: Each DC derives ÉÙ8²³Ç=, ÊÙ8²³Ç=, and logLCrk. 

Step 3: AC conducts overall 

analysis and derives ²³�. 
Step 4: AC tests for convergence. If algorithm does not converge… 

Transmission to DCs 

If algorithm converges, end 
procedure. 

Figure 22: Flowchart representing the processes involved in fitting a GLM 
in DataSHIELD. 
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before the final IT system can be developed.  These features are highlighted in 

this section, but a more complete discussion of these needs is provided in 

Section 3.4. 

As has already been mentioned, a key requirement of DataSHIELD is that all 

the participating studies are harmonised, such that the outcome and any 

explanatory variables of interest are all measured and coded comparably.  

Therefore, the levels for any categorical variables must be encoded identically; 

the units for any continuous variables must be the same; and all variables must 

use the same labels.  Such standardisation is, in fact, a fundamental 

requirement of any meta-analysis, but it could be argued that DataSHIELD 

requires even more stringent standardisation controls than conventional 

approaches to data synthesis.  This is because DataSHIELD conducts analyses 

remotely, and prevents the lead researchers from ever accessing any 

individual-level data themselves.  Hence, any mistakes or inconsistencies in the 

coding of variables could be particularly difficult to identify.  Thorough prior 

consultation with all the participating research groups should therefore be held 

before undertaking any DataSHIELD analysis, to ensure the correct 

standardisation of the included datasets. 

DataSHIELD requires the creation of a customised IT infrastructure, which must 

incorporate several key specifications.  So as to maximise the flexibility and 

efficiency of DataSHIELD, once the initial analysis specifications (such as the 

type of model to be fitted and the terms to include) have been input, all other 

procedures involved need to be automated.  For instance, the DCs need to be 

programmed to automatically execute instructions received from the AC, and to 
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pass back any resulting summary statistics.  Similarly, the AC then needs to 

automatically synthesise the results upon receipt of the summary component(s) 

from each DC.  Where applicable, the AC also needs to automatically restart 

the model fitting procedure to commence any subsequent iteration (this would 

be required, for instance, in the fitting of a GLM). 

Related to the automating of the procedures involved in DataSHIELD is the 

software wrapper.  The precise features to be included in this require some 

thought, as there could be various strengths and weaknesses associated with 

the inclusion of different design features.  Software will need to be installed both 

on the AC and on all DCs, perhaps using a different version of the software on 

each computer type.  For the DCs, the software needs to be set up to receive 

instructions from the AC, and to securely send back results to the AC (see 

below).  The software may also include the code required to perform the various 

statistical functions of DataSHIELD, so that analysis specifications can be given 

without the need to transmit the full code for carrying out the analysis with every 

request. 

Essentially, the software for the AC must contain the code to perform the overall 

analyses for different analysis types, as described in sections 3.2.2 to 3.2.4, for 

example.  Some kind of user interface is also required, so the requirements of 

an analysis can be specified easily.  Furthermore, a facility for outputting the 

results is required.  Results could either be saved, for example, as an object in 

R, or they could be output as a report. 
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A key issue that needs to be considered regarding the software for the AC is 

how much freedom of use to provide to the lead researchers.  For instance, if 

no controls over the derivation of descriptive statistics are put into place, 

individual-level data could be requested, as described in the example in Section 

3.2.1, via the use of certain direct or indirect commands.  Some restrictions as 

to the nature of the commands that can be made from the AC will therefore be 

necessary.  In light of the findings from the previous chapter, it may also be 

necessary to mask the study-level data that arrives at the AC.  As we have seen 

in Chapter 2, in certain circumstances some study-level data can, in principle, 

be identifying.  Thus, particularly in the context of a GWAS, where large 

numbers of models are fitted and numerous results derived, perhaps only the 

“overall” results should ever be visible to the lead researchers.  

A straightforward way of discouraging potential misuse of the DataSHIELD 

system is to create a log of all the instructions ever requested from an AC.  

These could be paired with unique researcher IDs, so the perpetrator of any 

potential malicious use of DataSHIELD can be identified.  Other ways in which 

to uphold the security of DataSHIELD may include setting up a firewall around 

the DCs and the AC, and by encrypting the data shared between computer 

nodes. 

3.3. Simulation Studies 

This section illustrates the use of DataSHIELD in two different scenarios.  

Scenario 1 simulates a normally distributed outcome and demonstrates the 

fitting of a linear regression model in a DataSHIELD-type analysis – as outlined 
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in Section 3.2.3.  In contrast, Scenario 2 simulates case-control data, and 

demonstrates an ILMA analysis for a logistic regression model in DataSHIELD – 

as outlined in Section 3.2.4.  Note that this chapter demonstrates the validity of 

the mathematics behind DataSHIELD only.  As has already been stated, work 

on the required IT system remains ongoing, and it is therefore not possible, at 

present, to fully demonstrate use of DataSHIELD in a setting where the data are 

truly distributed in different locations.  The simulated data in the following 

examples are therefore held in a single location, and the procedures performed 

manually.  In effect, the DataSHIELD analysis performed in Section 1 is 

therefore analogous to a conventional SLMA, because no transmission of the 

analysis requirements from the AC to the DCs, and vice-versa for the study 

level summary statistics, is actually performed (note that it is these 

transmissions that will ultimately provide DataSHIELD with improved flexibility 

compared to a conventional SLMA; however, this advantage cannot be 

achieved until work on the IT system is complete).  In contrast, the procedure 

used in Scenario 2 cannot be considered a conventional SLMA, because it 

makes use of the DataSHIELD algorithm for fitting a GLM to distributed 

datasets.  The DataSHIELD analysis performed in Scenario 2, thus, should 

produce identical results to an ILMA, while a conventional SLMA using a GLM 

would not. 

This section is supported by Appendix C, which provides the corresponding R 

code and selected output from the fitting of the two illustrative models described 

here. 
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3.3.1 Scenario 1: Normally distributed data 

This scenario simulates a hypothetical consortium of six studies set up to 

investigate determinants of blood pressure.  The aim of the exercise is to 

demonstrate the use of DataSHIELD for an analysis using a linear model.  

Results are provided for two analyses: (1) an analysis of the complete, pooled 

dataset derived by combining the data from all studies (i.e. an ILMA); and (2) a 

DataSHIELD-type analysis (which, as stated above, is simply an SLMA here). 

3.3.1.1 Simulation method 

Six hypothetical studies are simulated to investigate the influence of age (AGE) 

and a single nucleotide polymorphism (SNP) on systolic blood pressure (SBP).  

The six studies consist of 1,000, 2,000, 3,000, 4,000, 2,500 and 2,500 

participants respectively, with all participants aged between 50 and 70 years.  

For the jth individual (j = 1,…,4,000) in the ith study (i = 1,…,6), AGEij is 

generated from a uniform distribution with bounding parameters 50 and 70, and 

centred by subtracting the mean (60 years).  SNPij is generated as the sum of 

two calls from a Bernoulli distribution with p = 0.2, corresponding to a minor-

allele frequency of 0.2. The three genotypes are coded 0 (= no copies of the 

minor-allele), 1 (= one copy of the minor-allele) or 2 (= two copies of the minor-

allele), reflecting an additive genetic model. 

The linear predictor for each individual, LPij, is generated as: 

Cj�: � Úintercept � ÚAGE ∗ !f �: � ÚSNP ∗ g�j�: , 
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where Úintercept � 125 , ÚAGE � 0.5 , and ÚSNP � 0.3 .  Subsequently, SBPij is 

generated (in mmHg) from a normal distribution with mean = LPij, and SD = 11. 

3.3.1.2 Approach to Analysis 

All analyses involve fitting the following linear regression model: 

Equation 26 gÚj�: � ©intercept � ©AGE ∗ !f �: � ©SNP ∗ g�j�: � 	*,																*	~	��0, �Þ�� 
Analysis 1 applies Equation 26 to a dataset formed by pooling the data from all 

six studies (ignoring the subscript i and where j = 1,…,15,000).  Analysis 2 fits 

Equation 26 to each study individually, before combining the results using a 

weighted average.  This analysis, hence, is analogous to the DataSHIELD 

analysis described in Section 3.2.3, in which each dataset is analysed on a 

separate DC before the AC synthesises the results by taking weighted 

averages.  The data here remain stored on a single PC, however, and no use of 

a DataSHIELD-type IT infrastructure is employed. 

Appendix C.1 contains the R code used to program the two analyses. 

3.3.1.3 Results 

Table 30 below presents the final results for both analyses, while interim results 

for the study-specific analyses (as performed for Analysis 2 only) are also listed 

in Appendix C.1.   
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Coefficient: 

Analysis 1 Analysis 2 

Estimate Standard 

Error 

Estimate Standard 

Error 

Intercept 125.1577 0.1094 125.1541 0.1094 

AGE 0.2594 0.0155 0.2595 0.0155 

SNP 0.4480 0.1581 0.4582 0.1580 

Table 30: Results for an ILMA analysis (Analysis 1) and a DataSHIELD SLMA analysis 
(Analysis 2) of the simulated SBP data. 

 

Table 30 shows that the two analyses yield almost identical results, both in 

terms of the regression coefficients and the standard errors.  This DataSHIELD 

analysis is simply an SLMA, but the IT infrastructure that will ultimately be 

involved in its application will, in future, provide improved flexibility compared to 

a conventional SLMA of distributed datasets.  

3.3.2 Scenario 2: Binary data 

Scenario 2 simulates case-control studies with the aim of demonstrating the use 

of a logistic regression model in DataSHIELD.  As before, two analyses are 

undertaken: (1) an ILMA of the combined dataset; and (2) a DataSHIELD-type 

analysis fitted to the distributed (or horizontally-partitioned) dataset.  

3.3.2.1 Simulation Method 

This scenario simulates six hypothetical case-control studies set up to 

investigate the relationship between the risk of acute myocardial infarction (MI), 

body mass index (BMI), and a single nucleotide polymorphism (SNP).  For the 
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jth individual in the ith study, BMIij is generated from a normal distribution with 

mean 23 kg/m2 and standard deviation 4 kg/m2, and then centred by subtracting 

the mean, 23 kg/m2, from each measurement.  A genotype for the SNP of 

interest, SNPij, is generated for each individual in a manner equivalent to the 

sum of two calls to a Bernoulli distribution with p = 0.3.  The minor-allele 

frequency is thus 0.3, and each genotype is either 0  

(= no copies of the minor-allele), 1 (= one copy of the minor-allele) or 2 (= two 

copies of the minor-allele).  Given the coding of the SNP variable, the simulated 

data reflect an additive genetic model. 

In addition to the regression coefficients for the intercept (bintercept) and two 

simulated covariates, ©BMI and ©SNP, the model also incorporates an interaction 

term, ©BMI.456, to allow for between-study heterogeneity in the magnitude of the 

effect of the BMI covariate on the log-odds of MI. The interaction covariate 

takes the value zero for individuals in studies 1, 2, and 3, and the BMI value for 

individuals in studies 4, 5, and 6, while the interaction coefficient ©BMI.456 implies 

that a one unit change in BMI in a subject in studies 4, 5 or 6 increases the log-

odds of MI by an amount ©BMI.456 higher than an equivalent change in a subject 

in studies 1, 2 or 3. 

The following model is thus used to generate the linear predictor: 

Cj�: � ©intercept � ©BMI ∗ Úmâ�: � ©BMI.456 ∗ Úmâ. 456�:�©SNP ∗ g�j�: , 
where ©intercept � �0.3, ©BMI � 0.02, ©BMI.456 � 0.04, and ©SNP � 0.5. 
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Probabilities for developing acute myocardial infarction, pij, are derived by taking 

the inverse logistic (expit) transformation of the linear-predictor: 

)�: � exp�Cj�:� �1 � exp�Cj�:�⁄ �. 
Case-control status, yij, is then generated for each individual by taking a random 

draw from a Bernoulli distribution with p = pij : 

D�:~Bernoulli8)�:=. 
If the sampled value of yij is 1, the subject is designated to be a case; if yij is 0 

the subject is designated a control. 

The simulation code for this example is provided in Appendix C2.  The case-

control composition of the six simulated studies is summarised in Table 31 

below. 

  



Chapter 3 

263 

 

Study Cases Controls Total 

1 962 1038 2000 

2 1486 1514 3000 

3 761 739 1500 

4 143 157 300 

5 1031 969 2000 

6 357 343 700 

Table 31: Numbers of cases and controls in the six simulated studies. 

 

In order to mimic the conditions of a real DataSHIELD analysis as closely as 

possible, each dataset is saved to a separate file and folder.  An additional, 

“AC” directory is also created in which a file containing current values of the 

regression coefficients is saved.  This is a “communal” folder, which is both 

accessible and writable in both the DC and the AC stages of the analysis (see 

following section). 

3.3.2.2 Approach to Analysis 

Analysis 1 fits the following logistic regression model to a pooled dataset 

containing the individual-level data from the six simulated case-control studies: 

Equation 27 

log � )�:1 � )�:� � ©intercept � ©BMI ∗ Úmâ�: � ©BMI.456 ∗ Úmâ. 456�: � ©SNP ∗ g�j�: . 
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In effect, the DataSHIELD analysis (Analysis 2) also fits the model in Equation 

27, but to the data from each of the six studies separately.  The data here can 

be considered to be horizontally-partitioned, however, and, hence, the algorithm 

described in Section 3.2.4.2 is used to perform the analysis. 

Analysis 2 is undertaken in stages, and the results from each stage are 

presented in Appendix C2.4.  Firstly, a “master process” (MP) is performed at 

the AC to save a vector of initial values for the regression coefficients into the 

“AC” directory.  In this case, this vector simply specifies each parameter 

coefficient to be zero, i.e. b1 = (0, 0, 0, 0).   

The first iteration of the analysis then commences by performing a set of “slave 

processes” (SPs) from each DC.  The initial values of the regression coefficients 

are used to derive the expected information matrix, ÉB8²³È=, the score vector, 

ÊB8²³È=, and the log-likelihood, logLC1i, for each study (following equations 22, 

23, and 25 respectively), before these components are saved to the AC 

directory as a distinct file for each study.   

A further MP is then performed at the AC to complete the first iteration.  The six 

files containing the summary components from each study are loaded and the 

respective components summed, before updated values for the regression 

coefficients and standard errors are derived following Equation 21.   

Finally, a test for convergence is undertaken by summing the six logLC1i values 

and following the procedure described in Section 3.2.4.2.  When the 

convergence criterion is not met, the current values of the regression 

coefficients, br=2, are written to the corresponding file in the “AC” directory, and, 
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as shown in Appendix C2.4, and the procedure is restarted.   These values are 

then used to derive ÉB8²³�=,	ÊB8²³�=,  and logLC2i, and so on until convergence is 

achieved.  Upon convergence, all useful output (i.e. final estimates of the 

regression coefficients and standard errors, and the model deviance) is saved 

to an “output” file in the AC directory. 

In addition to the step-by-step results for the above analyses, Appendix C2 also 

contains R code for performing these analyses. 

3.3.2.3 Results 

Results for Scenario 2 are shown in Table 32 below. 

Coefficient: 
Analysis 1: ILMA Analysis 2: DataSHIELD 

Estimate Std Error Estimate Std Error 

Intercept -0.32956 0.02838 -0.32960 0.02838 

BMI 0.02300 0.00621 0.02300 0.00621 

BMI.456 0.04126 0.01140 0.04126 0.01140 

SNP 0.55173 0.03295 0.55170 0.03295 

Table 32: Results for an ILMA analysis (Analysis 1) and a DataSHIELD analysis (Analysis 
2) of the six MI case-control studies. 

 

As can be seen, apart from rounding errors, the two analyses yield identical 

results.  DataSHIELD, thus, loses no information compared to an ILMA, despite 

pooling none of the individual-level data from the different studies.  These 

results, furthermore, demonstrate that between-study heterogeneity can also 

easily be accounted for in these analyses, simply by including study-specific 

interaction terms (in this case, the term BMI.456). 
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3.4. Discussion 

We have seen that DataSHIELD is a new approach to synthesising data 

between studies, comprising an infrastructure that allows for the central 

coordination and execution of analyses, while using statistical algorithms that 

ensure identical results to existing approaches.   

For the analysis of linear models, the DataSHIELD infrastructure enhances the 

flexibility of a conventional SLMA (see Scenario 1), and provides a means by 

which to easily perform exploratory analyses (such as the fitting of interactions 

terms).  For GLMs, DataSHIELD replicates the results of an ILMA (see Scenario 

2), which is often considered the “gold-standard” approach to data synthesis 

(Sutton et al., 2008; Riley, et al., 2010). 

Any analysis in DataSHIELD is performed in parallel on a network of DCs.  As 

such, descriptive statistics and models can be fitted quickly, with potentially little 

lag compared to an ILMA.  Each DC contains the individual-level data for a 

particular study, and shares only summary statistics with the AC.  In principle, 

DataSHIELD thus circumvents many of the ethico-legal stipulations that can 

restrict data use.   

3.4.1 Further ethico-legal issues 

Although the DataSHIELD approach avoids sharing any individual-level data 

beyond each DC, some ethico-legal issues surrounding its use remain.  For 

example, as has been mentioned in Section 3.2.5, it could be argued that 

because DataSHIELD provides a lead research group the capability to derive 
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descriptive statistics, its use could anyway be viewed as analogous to having 

full access to the individual-level data from each study. 

Related to this point, another key issue concerns how to implement safeguards 

in DataSHIELD to prevent its potential misuse, for example, by allowing a lead 

researcher to retrieve individual-level data from a participating study.  As 

demonstrated in Section 3.2.1, without appropriate restrictions to its use, 

someone in control of the AC would be capable of extracting individual-level 

data from a participating study simply by requesting particular summaries of the 

data.  Similarly, potentially sensitive information could be inferred from particular 

requests made using DataSHIELD, such as the dates of birth (or other 

potentially identifiable information) for all cases in a particular study. 

In order to gain ethico-legal approval for its use, a number of safeguards 

against the above issues will need to be implemented in DataSHIELD.  The IT 

system, thus, needs to be designed with these dangers in mind.  The following 

section discusses the potential requirements of this IT system further. 

3.4.2 The IT system 

The key benefit that DataSHIELD provides is that it allows data to be 

synthesised without sharing any individual-level data.  However, unless 

appropriate restrictions to its use can be put in place, this benefit could be lost 

completely, if it were to allow individual-level data to be requested from the AC.  

The software wrapper ultimately used to implement DataSHIELD must therefore 

restrict the execution of certain commands. 
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One way of restricting potential requests for individual-level data in 

DataSHIELD, as suggested in Section 3.2.5, is to allow the derivation only of 

“overall” statistics, e.g. those obtained from a weighted average of summary 

statistics from all participating studies.  This would be relatively straightforward 

to implement in the software wrapper by restricting the user interface to the 

performance only of pre-selected functions.  Although this would be restrictive 

to the researchers in charge of the AC, a number of “approved” functions could 

still be performed – such as the fitting of different models and the derivation of 

certain descriptive statistics – and the system would remain advantageous 

compared to a conventional SLMA. 

More sophisticated solutions to the problem could involve restricting the 

execution of particular commands only.  For example, study-specific requests – 

such as for a summary statistic from a particular study – could be restricted.  

Similarly, any requests that relate to a single individual could be blocked from 

returning user viewable output.  Alternatively, some variables could be masked 

completely (e.g. date of birth), or they could be converted to different, non-

identifiable forms (e.g. date of birth could be stored, but only age in years made 

visible).    

As suggested in Section 3.2.5, security around the DataSHIELD system should 

be upheld by the installation of firewalls around the DCs, and by the use of 

encryption around any data transmitted to and from the AC.  Technology to 

implement these guards already exists and, in principle, should be 

straightforward to incorporate into the DataSHIELD system. 
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3.4.3 Further developments 

Other than the IT system, further work is required to investigate the feasibility of 

using different model types in DataSHIELD.  For instance, the usage of mixed-

models is becoming increasingly common in science, so an extension of the 

mathematics underpinning DataSHIELD to fit a mixed-model would be of 

interest. 

An extension of the DataSHIELD approach to handling “vertically-partitioned” 

data (Karr et al., 2007), in which different attributes on the same individuals are 

distributed in different databases, would also be useful.  Although this scenario 

moves beyond the realm of synthesising data between GWAS, which is the 

original focus of this chapter, existing epidemiological studies such as ALSPAC 

(Golding, 1996) do have links to other protected databases.  As such, an 

extension of DataSHIELD to the synthesis of vertically-partitioned data could 

help to link these resources, which otherwise may not have the required 

permissions to share identifiable information beyond the approved staff at each 

site. 

3.4.4 Conclusions 

The view that DataSHIELD offers a feasible solution to the real issues regarding 

data sharing in genomics is supported by the existence of similar software that 

is already in use.  For example, the Economic and Social Research Council 

Secure Data Service (ESRC_Secure_Data_Service, 2009) provides an 

interface that allows users to request specific queries to a database, and to 

extract summary results only.  Thus, the main barrier to the successful 
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implementation of DataSHIELD will be finding ways around the ethico-legal 

issues concerning its use.  Eventually, should workable restrictions to the use of 

DataSHIELD be put into place, then, from an ethico-legal perspective, 

DataSHIELD might be viewed along the same lines as conventional SLMAs.  

From that point, DataSHIELD could then begin to be introduced as an 

alternative to SLMA for the synthesis of data between studies in genomics. 
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Conclusions and Further Work 

 

 

This thesis investigates methods for combining or inferring information from 

genetic epidemiological studies by considering three issues of current 

importance to the field.  Chapter 1 focuses on how to incorporate treatment 

information in observational studies of blood pressure (BP), and, thus, 

investigates approaches to make efficient use of study resources, i.e. by 

maximising the statistical power.  In contrast, Chapter 2 addresses the issue of 

participant privacy in GWAS.  This chapter examines the validity of a new class 

of statistical methodology that potentially allows inferences regarding participant 

presence within genome-wide association studies (GWAS) to be made.  

Building upon this, Chapter 3 introduces a novel approach to combining data 

between studies, which potentially avoids infringing the ethico-legal stipulations 

that restrict data use, while maintaining the security and privacy of study data.  

The key conclusions from each chapter are now summarised and some areas 

for further work discussed. 
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Chapter 1 

In Chapter 1, different approaches to handling data from individuals who use 

treatment are compared under different, realistic conditions, and 

recommendations are provided as to most appropriate approaches to use in 

practice.   

In general, the results from this chapter support previous findings (White et al., 

1994; White et al., 2003; Tobin et al., 2005; McClelland et al., 2008).  Under 

conditions in which the intervention is non-differential, i.e. where both the effect 

of treatment and the chance of receiving treatment depend only on BP, the best 

approaches to analysis are the “Informative BP” approaches.  These methods 

make use of all the observed information and apply simple corrections for 

treatment.  They therefore typically yield high powers and return the correct type 

I error rates.  When the intervention is differential, however, the Informative BP 

approaches may yield biased estimates of the effects of any parameters 

involved.  This can impact upon the type I error rates of the approaches and it 

can reduce the statistical power.  Real analyses therefore require caution in the 

interpretation of results – particularly because any particular genetic variants 

involved in a differential intervention will often be unknown. 

A logical extension of this work is to further investigate strategies for identifying 

any genetic variants possibly involved in a differential intervention.  For 

example, some of the approaches yield biased estimates in the presence of a 

differential treatment effect while other approaches are unaffected; it may thus 

be possible to infer possible variants that interact with treatment by cross-
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checking results between the different approaches.  Alternatively, although 

modelling treatment as a covariate is known to be inadvisable, it may be 

possible to explicitly test for pharmacogenetic interactions simply by modelling 

the SNP-treatment interaction term for a particular SNP.  Although provisional 

findings suggest these approaches may be useful, further follow-up work is 

required to assess how useful they really are. 

In order to better understand the full implications of this work, further work is 

also needed to clarify the effects of a differential intervention on variables that 

are either correlated or associated with a parameter that is directly involved.  

For instance, the assumption that individuals with diabetes receive 

antihypertensive medication at a lower threshold of BP than non-diabetics 

implies that the effect on BP of any genetic variant associated with diabetes is 

likely to be biased too.  Further work is required to quantify these potential 

biases in different realistic settings.  If the bias extends substantially to 

estimates of the effects of variables associated with or in linkage disequilibrium 

with a “differentiating parameter”, this may have implications for the 

interpretation of results from genome-wide association studies (GWAS).  For 

example, any SNPs associated with diabetes may have spurious association 

with BP; it may therefore be necessary in future to cross-check the results from 

GWAS of BP with those from GWAS of diabetes. 

Chapter 2 

Chapter 2 examines a set of statistical approaches recently proposed that claim 

to be able to use allele frequencies for a large number of SNPs to test 
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probabilistically whether a given individual contributed DNA to a genomic 

mixture.  Although the original “Homer” method (Homer et al., 2008) is 

ultimately shown to be of limited use in practice, alternative tests – such as 

those proposed by Visscher et al. (Visscher et al., 2009) – appear valid.  Hence, 

it does seem possible, under ideal conditions, to reliably infer presence within 

GWAS consisting of several hundred or even a thousand or more participants. 

Any attempts to identify are conditional upon adherence to the key assumption 

of co-ancestry.  In the context of case-control GWAS, this assumption appears 

reasonable, as case-control GWAS are usually well matched in ancestry.  

Correlation between SNPs – or LD – is another factor that can cause problems 

unless appropriately handled.  A GEE approach is proposed to adjust for LD, 

and, as long as only weak levels of LD are present, this seems to be effective.  

Nevertheless, highly correlated data pose further problems, because GEE 

approaches assume no between-“cluster” correlation.  Further work is required 

to investigate how best to handle highly correlated SNPs.  Although increasing 

the cluster size improves the ability to adjust for LD, the main problem seems to 

be dealing with any between-cluster correlation.  As such, different approaches 

to arranging the SNPs into clusters need to be trialled, so that any LD between 

SNPs in different clusters is avoided. 

If an appropriate strategy for handling highly correlated data can be found, huge 

numbers of SNPs (such as a million or more) could potentially be used in these 

tests.  In principle, this would provide sufficient power to identify individuals in 

much larger studies than those assessed in this work.  Many of the recent 

findings from GWAS have resulted from meta-analyses consisting of tens of 
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thousands of participants in total (e.g. (Zeggini et al., 2008; Levy et al., 2009; 

Newton-Cheh et al., 2009)).  Further work is required to investigate whether 

allele frequencies could also compromise participant identity in studies of this 

type.  In addition to the large sample sizes involved in these studies, a further 

complication is that, typically, these meta-analyses include studies from multiple 

countries.  The implications of these methods and, in particular, their reliance on 

the co-ancestry assumption therefore need further clarification for these 

situations. 

A further issue arising from this work concerns the general use of GEE models, 

and providing better guidelines for their use.  For example, fitting a GEE with an 

independence correlation structure with clusters containing single observations 

can provide markedly different estimates of the variance of the regression 

parameters to fitting a GEE model with an independence correlation structure 

and larger cluster sizes.  The clustering of the data is, thus, of paramount 

importance in the fitting a GEE model, and this probably needs to be 

emphasised.   Additional work must be undertaken to further investigate this 

issue, but this goes beyond the scope of this thesis. 

Chapter 3 

Chapter 3 proposes a new strategy to pooling data between studies – called 

DataSHIELD.  DataSHIELD encompasses an IT infrastructure that allows for 

the central coordination of analyses while avoiding the need to share any 

individual-level data beyond the original researchers involved in each study.  It, 

thus, provides a flexible approach to data synthesis that circumvents the ethico-
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legal restrictions to the sharing of data.  DataSHIELD, in addition, guarantees to 

produce identical results to an optimal “individual-level meta-analysis” for the 

class of statistical model known as generalised linear models. 

The simulation studies in Chapter 3 illustrate the use of DataSHIELD in two 

scenarios – demonstrating the performance of a linear and a logistic model.  A 

useful extension of this work, however, would be to investigate how to fit further 

classes of statistical models in DataSHIELD, such as random-effects and mixed 

models.  In principle, these models could be fitted relatively easily by adopting a 

coordinated SLMA procedure similar to that used for the analysis of the 

normally distributed outcome in Scenario 1.  However, this will not necessarily 

provide identical results to a corresponding ILMA fitted with each model type as 

we showed for the generalised linear model case.  It may not be straightforward 

to derive a set of statistical algorithms to guarantee identical results to an ILMA 

for other types of model, and extensive follow-up work would be required to 

investigate this.  In addition, further consideration of the nature of the 

information disclosed by different model types would be needed before 

implementing these models in DataSHIELD.  For instance, mixed models often 

involve large numbers of model parameters, which, in some circumstances, 

could become identifying in the same way that allele frequencies can potentially 

disclose an individual’s presence in a study (as seen in Chapter 2).  Further 

work would therefore be needed to decide how to handle the extra information 

that these models convey.   

Related to the above issue, further consideration is also needed to decide how 

to handle the data transmitted from each study to the analysis centre.  This 
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information may also be considered to be potentially “identifying” and, hence, 

must be handled securely.  It may be necessary to limit access to these data or 

possibly to prevent access to these data altogether (and, thus, output only the 

final, “overall” results to the users).   

The major area for further work on DataSHIELD concerns the development of 

the software wrapper.  In function, this needs to automate the derivation and 

transmission of the appropriate matrix components from each data centre (DC) 

to the analysis centre (AC), while preventing access to any individual-level data 

from the AC.  It also needs to ensure that any communications between centres 

remains secure, for example, by encrypting any data sent to and from the AC.  

While the above functions will require the expertise specifically of computer 

scientists or software engineers, more generally the software wrapper must also 

include restrictions to limit its use to the collection only of summary statistics 

from each study – rather than the acquittal of data that convey individual-level 

information.  Precisely how best to do this requires further thought, although 

perhaps a simple deterrent to the misuse of DataSHIELD would be to create a 

log of all requests from the DC, in addition to a user-identifier. 

Final Conclusions 

Due to the varied nature of the work in this thesis, the overall implications of this 

work must also be considered on a chapter-by-chapter basis.   

From Chapter 1, the findings can help to inform the strategy for analysis in 

future studies of BP.  Largely the results in Chapter 1 suggest maintaining the 

status-quo in the choice of approach to analysis.  However, some of the 
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problems highlighted in this chapter urge caution in the interpretation of 

particular results, and demonstrate conditions under which the results can 

become distorted. 

Chapter 2 helps clarify the dangers associated with the release of large 

numbers of aggregate statistics from GWAS, such as allele frequencies.  This 

work demonstrates that “signed” statistics can be informative of an individual’s 

presence in a study, and it advises on what can be published from GWAS in 

spite of these potential threats to participant confidentiality. 

Chapter 3 describes a practical solution to the real problems associated with 

pooling data between studies.  The mathematical properties of the algorithms 

used in DataSHIELD guarantee identical results to the ideal, individual-level 

meta-analysis, and the IT infrastructure involved offers clear advantages over 

the conventional study-level meta-analysis (SLMA).  As such, DataSHIELD will 

begin to be piloted in real studies over the coming months ahead, with the hope 

that one day its use may replace SLMA as the method of choice for the 

synthesis of results from GWAS.  
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Appendix A. 

The following pages present the full tables of results for the scenarios simulated 

in Chapter 1.  Each table shows the mean estimate, SE, and 80% coverage 

interval of the parameter coefficients for each approach, as well as Monte Carlo 

estimates of the statistical power and type I error rate.  Note that unless stated 

otherwise in the main text, the simulated values of the parameter coefficients 

are: Intercept = 110; AGE = 0.4; SEX = 3; g1 (shown as Gene in the tables) = 2; 

g2 (shown as Gene2 in the tables) = 0.  These values represent the values of 

the coefficients β0 – β4 respectively. 
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Int Age Age SE
Age 

Coverage
Sex Sex SE

Sex 

Coverage
Gene Gene SE

Gene 

Coverage
Gene2

Gene2 

SE

Gene2 

Coverage
Power

Type I 

Error

110.0592 0.3986 0.0254 0.792 3.0191 0.8059 0.782 2.0201 0.6220 0.801 0.0140 0.6217 0.801 0.900 0.058

(a) No Adjustment 111.1889 0.3090 0.0213 0.005 2.3478 0.6760 0.610 1.5707 0.5218 0.644 0.0159 0.5216 0.787 0.849 0.052

(b) Exclude 109.4370 0.2929 0.0261 0.004 2.2364 0.8186 0.604 1.5054 0.6371 0.664 0.0192 0.6313 0.808 0.652 0.043

(c) Treatment as binary covariate* 111.9432 0.2491 0.0209 0.000 1.8988 0.6480 0.340 1.2707 0.5000 0.423 0.0156 0.4993 0.799 0.708 0.054

(d) Binary Phenotype ** -2.7237 0.0362 0.0032 0.000 0.2779 0.0966 0.000 0.1845 0.0741 0.000 0.0007 0.0745 0.811 0.697 0.043

Fixed Treat Effect (c = 5) 110.8110 0.3389 0.0224 0.082 2.5721 0.7106 0.716 1.7204 0.5484 0.733 0.0160 0.5482 0.797 0.889 0.050

Fixed Treat Effect (c = 10) 110.4332 0.3688 0.0238 0.484 2.7963 0.7563 0.781 1.8700 0.5837 0.792 0.0162 0.5835 0.796 0.889 0.053

Fixed Treat Effect (c = 15) 110.0553 0.3987 0.0255 0.790 3.0206 0.8114 0.791 2.0197 0.6262 0.799 0.0164 0.6260 0.794 0.897 0.055

Fixed Substitution (m=130) 113.6856 0.2285 0.0189 0.000 1.7293 0.5987 0.215 1.1470 0.4620 0.284 0.0099 0.4619 0.805 0.694 0.045

Fixed Substitution (m=140) 112.9299 0.2883 0.0202 0.000 2.1778 0.6422 0.510 1.4463 0.4956 0.552 0.0102 0.4955 0.797 0.831 0.043

(g) Random Substitution 112.1833 0.3480 0.0235 0.170 2.6315 0.7458 0.722 1.7394 0.5756 0.756 0.0085 0.5754 0.789 0.865 0.042

(h) Median Method (k = 140) 115.9177 0.2922 0.0203 0.000 1.5066 0.6378 0.150 1.0158 0.4493 0.178 0.00932 0.45429 0.828 0.465 0.013

Median Method (k = 150) 107.5213 0.4545 0.0377 0.422 3.3657 1.1845 0.778 2.2193 0.8617 0.801 0.03429 0.8759 0.809 0.603 0.016

Median Method (k = 160) 105.6733 0.4875 0.0586 0.429 3.7950 1.3785 0.753 2.7111 1.0876 0.729 0.04578 1.04787 0.820 0.546 0.014

(i) Non-parametric Adjustment 110.2718 0.4065 0.0260 0.752 3.0756 0.8269 0.789 2.0529 0.6382 0.805 0.0142 0.6380 0.797 0.895 0.047

(j) Censored Normal Regression 108.4322 0.4244 0.0275 0.632 3.2247 0.8673 0.764 2.1659 0.6718 0.785 0.0190 0.6690 0.798 0.899 0.046

Analysis

Underlying SBP

(e)

(f)

 
Table 33: Results for 1,000 runs of the General Simulation Study. 
Included are mean parameter estimates and S.E.’s, coverage rates based on 80% C.I.’s, and power and type I error relative to gene and gene2 respectively 
(at the 5% level of sig.). 
* Approach (c)  also yields a mean treatment coefficient of 10.0154, with a mean standard error of 0.7404. 
** Parameter estimates for Approach (d) are log odds-ratios – and are therefore non-comparable to the other approaches. 
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Int Age Age SE
Age 

Coverage
Sex Sex SE

Sex 

Coverage
Gene Gene SE

Gene 

Coverage
Gene2

Gene2 

SE

Gene2 

Coverage
Power

Type I 

Error

109.9524 0.4008 0.0260 0.787 2.9796 0.8257 0.781 2.0143 0.6373 0.808 0.0051 0.6375 0.788 0.886 0.051

(a) No Adjustment 110.9948 0.3123 0.0218 0.004 2.3231 0.6938 0.610 1.5808 0.5355 0.668 -0.0061 0.5357 0.797 0.843 0.056

(b) Exclude 109.1820 0.2942 0.0267 0.005 2.1846 0.8378 0.606 1.4950 0.6520 0.669 0.0023 0.6466 0.789 0.632 0.055

(c) Treatment as binary covariate* 111.7326 0.2495 0.0213 0.000 1.8592 0.6627 0.321 1.2728 0.5113 0.429 -0.0117 0.5110 0.798 0.701 0.062

(d) Binary Phenotype ** -2.6672 0.0356 0.0031 0.000 0.2647 0.0964 0.000 0.1757 0.0739 0.000 0.0016 0.0743 0.813 0.662 0.048

Fixed Treat Effect (c = 5) 110.6474 0.3418 0.0230 0.114 2.5413 0.7294 0.702 1.7257 0.5629 0.741 -0.0037 0.5631 0.792 0.869 0.058

Fixed Treat Effect (c = 10) 110.3001 0.3713 0.0244 0.545 2.7595 0.7757 0.755 1.8706 0.5987 0.796 -0.0013 0.5989 0.785 0.881 0.055

Fixed Treat Effect (c = 15) 109.9528 0.4009 0.0262 0.782 2.9778 0.8311 0.776 2.0155 0.6414 0.810 0.0011 0.6417 0.791 0.889 0.051

Fixed Substitution (m=130) 113.4538 0.2304 0.0193 0.000 1.6989 0.6116 0.203 1.1445 0.4720 0.301 -0.0017 0.4722 0.784 0.688 0.059

Fixed Substitution (m=140) 112.7591 0.2895 0.0206 0.000 2.1354 0.6559 0.469 1.4343 0.5062 0.558 0.0031 0.5064 0.784 0.804 0.056

(g) Random Substitution 112.0609 0.3486 0.0239 0.196 2.5728 0.7591 0.727 1.7239 0.5859 0.760 0.0065 0.5861 0.786 0.828 0.054

(h) Median Method (k = 160) 105.6368 0.4866 0.0598 0.451 3.8194 1.3986 0.738 2.6094 1.1020 0.762 0.0692 1.0596 0.801 0.512 0.029

Median Method (k = 180) 105.6127 0.4870 0.0624 0.465 3.8232 1.4210 0.746 2.6162 1.1329 0.772 0.0701 1.0757 0.814 0.499 0.024

Median Method (k = 200) 105.6130 0.4870 0.0621 0.460 3.8234 1.4226 0.747 2.6163 1.1349 0.764 0.0694 1.0766 0.808 0.492 0.024

(i) Non-parametric Adjustment 110.1375 0.4124 0.0269 0.734 3.0553 0.8546 0.783 2.0627 0.6596 0.805 0.0047 0.6598 0.791 0.880 0.048

(j) Censored Normal Regression 108.2769 0.4291 0.0283 0.586 3.1960 0.8928 0.772 2.1674 0.6914 0.793 0.0083 0.6892 0.795 0.881 0.051

Analysis

Underlying SBP

(e)

(f)

 
Table 34: Results for 1,000 runs of Scenario 1. 
Included are mean parameter estimates and S.E.’s, coverage rates based on 80% C.I.’s, and power and type I error relative to gene and gene2 respectively 
(at the 5% level of sig.). 
* Approach (c) also yields a mean treatment coefficient of 10.6380, with a mean standard error of 0.7556. 
** Parameter estimates for Approach (d) are log odds-ratios – and are therefore non-comparable to the other approaches.
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Int Age Age SE
Age 

Coverage
Sex Sex SE

Sex 

Coverage
Gene Gene SE

Gene 

Coverage
Gene2

Gene2 

SE

Gene2 

Coverage
Power

Type I 

Error

109.9574 0.4014 0.0253 0.795 2.9908 0.8050 0.789 1.9898 0.6213 0.809 -0.0264 0.6208 0.805 0.896 0.057

(a) No Adjustment 109.2213 0.3411 0.0235 0.109 2.5489 0.7457 0.708 1.7087 0.5756 0.735 -0.0240 0.5751 0.805 0.844 0.052

(b) Exclude 108.8349 0.3432 0.0280 0.232 2.5444 0.8838 0.722 1.7417 0.6858 0.761 -0.0243 0.6817 0.812 0.704 0.047

(c) Treatment as binary covariate* 109.1751 0.3374 0.0237 0.095 2.5218 0.7460 0.699 1.6918 0.5757 0.724 -0.0234 0.5750 0.808 0.838 0.052

(d) Binary Phenotype ** -2.1039 0.0308 0.0030 0.000 0.2296 0.0933 0.000 0.1521 0.0718 0.000 -0.0030 0.0719 0.817 0.566 0.040

Fixed Treat Effect (c = 5) 109.4672 0.3612 0.0238 0.357 2.6952 0.7548 0.747 1.8033 0.5826 0.782 -0.0244 0.5821 0.804 0.876 0.055

Fixed Treat Effect (c = 10) 109.7130 0.3812 0.0244 0.670 2.8415 0.7768 0.770 1.8979 0.5996 0.799 -0.0248 0.5991 0.813 0.891 0.055

Fixed Treat Effect (c = 15) 109.9589 0.4013 0.0255 0.795 2.9878 0.8107 0.790 1.9925 0.6257 0.811 -0.0251 0.6252 0.809 0.895 0.052

Fixed Substitution (m=130) 114.3950 0.2473 0.0202 0.000 1.8263 0.6410 0.293 1.2363 0.4947 0.401 -0.0236 0.4943 0.816 0.699 0.050

Fixed Substitution (m=140) 114.8868 0.2874 0.0211 0.000 2.1189 0.6717 0.482 1.4255 0.5185 0.563 -0.0243 0.5180 0.827 0.777 0.045

(g) Random Substitution 115.3666 0.3277 0.0241 0.051 2.4123 0.7646 0.654 1.6195 0.5902 0.723 -0.0209 0.5897 0.821 0.790 0.048

(h) Median Method (k = 160) 107.4183 0.5107 0.0548 0.256 3.8260 1.5177 0.728 2.5947 1.1696 0.758 -0.0312 1.1554 0.818 0.460 0.023

Median Method (k = 180) 107.3029 0.5126 0.0592 0.273 3.8521 1.5531 0.734 2.6385 1.2408 0.769 -0.0270 1.1908 0.830 0.415 0.021

Median Method (k = 200) 107.3029 0.5127 0.0592 0.273 3.8506 1.5565 0.730 2.6389 1.2403 0.776 -0.0277 1.1918 0.822 0.427 0.022

(i) Non-parametric Adjustment 112.6618 0.3787 0.0249 0.631 2.8076 0.7916 0.776 1.8778 0.6110 0.800 -0.0274 0.6105 0.803 0.861 0.048

(j) Censored Normal Regression 109.7253 0.4215 0.0278 0.675 3.1346 0.8806 0.781 2.1051 0.6813 0.812 -0.0241 0.6791 0.811 0.862 0.049

Analysis

Underlying SBP

(e)

(f)

 
Table 35: Results for 1,000 runs of Scenario 2. 
Included are mean parameter estimates and S.E.’s, coverage rates based on 80% C.I.’s, and power and type I error relative to gene and gene2 respectively 
(at the 5% level of sig.). 
* Approach (c) also yields a mean treatment coefficient of 0.9271, with a mean standard error of 0.8344. 
** Parameter estimates for Approach (d) are log odds-ratios – and are therefore non-comparable to the other approaches.
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Int Age Age SE
Age 

Coverage
Sex Sex SE

Sex 

Coverage
Gene Gene SE

Gene 

Coverage
Gene2

Gene2 

SE

Gene2 

Coverage
Power

Type I 

Error

110.0195 0.4000 0.0253 0.805 2.9527 0.8052 0.797 1.9672 0.6213 0.796 -0.0013 0.6213 0.794 0.877 0.055

(a) No Adjustment 112.5897 0.2595 0.0197 0.000 1.9232 0.6246 0.326 1.2878 0.4819 0.427 0.0022 0.4819 0.796 0.757 0.063

(b) Exclude 109.4051 0.2939 0.0260 0.006 2.1888 0.8174 0.621 1.4849 0.6358 0.673 0.0097 0.6302 0.788 0.652 0.065

(c) Treatment as binary covariate* 112.9375 0.2321 0.0199 0.000 1.7263 0.6192 0.207 1.1581 0.4775 0.313 0.0034 0.4771 0.793 0.679 0.063

(d) Binary Phenotype ** -2.7395 0.0366 0.0032 0.000 0.2696 0.0967 0.000 0.1787 0.0742 0.000 -0.0010 0.0746 0.793 0.666 0.047

Fixed Treat Effect (c = 5) 112.2040 0.2897 0.0203 0.000 2.1396 0.6458 0.485 1.4309 0.4983 0.548 0.0007 0.4983 0.793 0.812 0.059

Fixed Treat Effect (c = 10) 111.8183 0.3198 0.0214 0.010 2.3560 0.6806 0.632 1.5739 0.5251 0.671 -0.0007 0.5251 0.785 0.848 0.050

Fixed Treat Effect (c = 15) 111.4326 0.3500 0.0229 0.172 2.5725 0.7269 0.740 1.7170 0.5608 0.752 -0.0022 0.5608 0.785 0.861 0.053

Fixed Substitution (m=130) 113.6216 0.2298 0.0188 0.000 1.6959 0.5983 0.172 1.1314 0.4616 0.270 0.0070 0.4616 0.787 0.700 0.056

Fixed Substitution (m=140) 112.8502 0.2901 0.0202 0.000 2.1288 0.6418 0.483 1.4175 0.4951 0.558 0.0041 0.4952 0.790 0.816 0.058

(g) Random Substitution 112.0779 0.3505 0.0235 0.194 2.5580 0.7450 0.733 1.7032 0.5748 0.744 0.0014 0.5748 0.793 0.838 0.058

(h) Median Method (k = 160) 105.7912 0.4853 0.0582 0.435 3.7862 1.3725 0.740 2.5839 1.0760 0.747 0.0156 1.0332 0.795 0.530 0.016

Median Method (k = 180) 105.7744 0.4856 0.0607 0.440 3.7886 1.3852 0.751 2.5912 1.1106 0.762 0.0145 1.0451 0.809 0.508 0.017

Median Method (k = 200) 105.7737 0.4856 0.0604 0.443 3.7894 1.3858 0.747 2.5916 1.1095 0.762 0.0146 1.0458 0.808 0.518 0.015

(i) Non-parametric Adjustment 111.6526 0.3417 0.0224 0.090 2.5122 0.7104 0.706 1.6755 0.5481 0.736 -0.0011 0.5481 0.787 0.863 0.054

(j) Censored Normal Regression 109.6128 0.3775 0.0251 0.635 2.7885 0.7897 0.785 1.8728 0.6118 0.786 0.0003 0.6091 0.797 0.864 0.051

Analysis

Underlying SBP

(e)

(f)

 
Table 36: Results for 1,000 runs of Scenario 3. 
Included are mean parameter estimates and S.E.’s, coverage rates based on 80% C.I.’s, and power and type I error relative to gene and gene2 respectively 
(at the 5% level of sig.). 
* Approach C also yields a mean treatment coefficient of 4.5565, with a mean standard error of 0.7082. 
** Parameter estimates for Approach D are log odds-ratios – and are therefore non-comparable to the other approaches.
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Int Age Age SE
Age 

Coverage
Sex Sex SE

Sex 

Coverage
Gene Gene SE

Gene 

Coverage
Gene2

Gene2 

SE

Gene2 

Coverage
Power

Type I 

Error

110.0402 0.3992 0.0253 0.794 2.9954 0.8052 0.811 2.0302 0.6209 0.822 -0.0218 0.6213 0.793 0.919 0.047

(a) No Adjustment 110.7321 0.3514 0.0228 0.202 2.6438 0.7254 0.741 1.7838 0.5594 0.787 -0.0272 0.5598 0.793 0.912 0.045

(b) Exclude 109.4729 0.2931 0.0260 0.002 2.2275 0.8177 0.622 1.4953 0.6362 0.666 -0.0552 0.6309 0.789 0.641 0.045

(c) Treatment as binary covariate* 112.0626 0.2475 0.0207 0.000 1.8827 0.6424 0.322 1.2613 0.4953 0.408 -0.0366 0.4951 0.789 0.721 0.049

(d) Binary Phenotype ** -2.7260 0.0363 0.0032 0.000 0.2721 0.0967 0.000 0.1854 0.0741 0.000 -0.0003 0.0745 0.788 0.704 0.039

Fixed Treat Effect (c = 5) 110.3472 0.3815 0.0244 0.681 2.8636 0.7760 0.794 1.9345 0.5984 0.818 -0.0245 0.5988 0.798 0.913 0.041

Fixed Treat Effect (c = 10) 109.9622 0.4115 0.0263 0.737 3.0833 0.8349 0.812 2.0853 0.6439 0.824 -0.0218 0.6443 0.808 0.915 0.039

Fixed Treat Effect (c = 15) 109.5773 0.4415 0.0283 0.425 3.3031 0.9007 0.777 2.2360 0.6946 0.795 -0.0191 0.6951 0.798 0.908 0.040

Fixed Substitution (m=130) 113.6965 0.2288 0.0188 0.000 1.7175 0.5981 0.191 1.1451 0.4612 0.268 -0.0424 0.4615 0.795 0.691 0.045

Fixed Substitution (m=140) 112.9266 0.2889 0.0202 0.000 2.1571 0.6417 0.481 1.4466 0.4948 0.549 -0.0371 0.4952 0.802 0.847 0.047

(g) Random Substitution 112.1550 0.3490 0.0234 0.195 2.5995 0.7451 0.749 1.7469 0.5746 0.767 -0.0325 0.5750 0.816 0.864 0.044

(h) Median Method (k = 160) 105.8509 0.4828 0.0582 0.481 3.8692 1.3629 0.724 2.6451 1.0819 0.734 0.0288 1.0424 0.817 0.543 0.017

Median Method (k = 180) 105.8316 0.4831 0.0603 0.481 3.8753 1.3825 0.729 2.6536 1.1108 0.745 0.0269 1.0496 0.826 0.522 0.014

Median Method (k = 200) 105.8309 0.4831 0.0604 0.481 3.8747 1.3791 0.730 2.6556 1.1141 0.748 0.0276 1.0518 0.826 0.519 0.015

(i) Non-parametric Adjustment 109.7879 0.4625 0.0302 0.231 3.4466 0.9595 0.755 2.3329 0.7400 0.772 -0.0183 0.7405 0.790 0.894 0.039

(j) Censored Normal Regression 108.0045 0.4656 0.0303 0.191 3.4940 0.9550 0.749 2.3716 0.7389 0.758 -0.0205 0.7369 0.802 0.905 0.040

Analysis

Underlying SBP

(e)

(f)

 

Table 37: Results for 1,000 runs of Scenario 4 with a proportional treatment effect of 5%. 
Included are mean parameter estimates and S.E.’s, coverage rates based on 80% C.I.’s, and power and type I error relative to gene and gene2 respectively 
(at the 5% level of sig.). 
* Approach C also yields a mean treatment coefficient of 17.3203, with a mean standard error of 0.7342. 
** Parameter estimates for Approach D are log odds-ratios – and are therefore non-comparable to the other approaches.
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Int Age Age SE
Age 

Coverage
Sex Sex SE

Sex 

Coverage
Gene Gene SE

Gene 

Coverage
Gene2

Gene2 

SE

Gene2 

Coverage
Power

Type I 

Error

109.9053 0.4016 0.0254 0.803 3.0045 0.8055 0.802 2.0101 0.6217 0.809 0.0026 0.6214 0.801 0.902 0.052

(a) No Adjustment 111.3061 0.3057 0.0210 0.001 2.2929 0.6658 0.588 1.5415 0.5138 0.629 0.0054 0.5136 0.801 0.856 0.050

(b) Exclude 109.3549 0.2943 0.0261 0.006 2.2222 0.8184 0.622 1.5112 0.6369 0.669 0.0191 0.6310 0.793 0.667 0.051

(c) Treatment as binary covariate* 112.0687 0.2470 0.0206 0.000 1.8610 0.6392 0.310 1.2560 0.4931 0.417 0.0094 0.4925 0.802 0.715 0.047

(d) Binary Phenotype ** -2.7406 0.0366 0.0032 0.000 0.2761 0.0967 0.000 0.1835 0.0742 0.000 -0.0031 0.0746 0.801 0.706 0.059

Fixed Treat Effect (c = 5) 110.9118 0.3359 0.0220 0.055 2.5154 0.6999 0.702 1.6888 0.5402 0.729 0.0037 0.5400 0.811 0.884 0.052

Fixed Treat Effect (c = 10) 110.5175 0.3662 0.0235 0.434 2.7379 0.7454 0.764 1.8360 0.5753 0.785 0.0020 0.5751 0.806 0.902 0.050

Fixed Treat Effect (c = 15) 110.1232 0.3964 0.0252 0.787 2.9605 0.8004 0.795 1.9832 0.6177 0.819 0.0003 0.6174 0.800 0.903 0.047

Fixed Substitution (m=130) 113.6087 0.2298 0.0188 0.000 1.7176 0.5987 0.190 1.1444 0.4621 0.281 0.0102 0.4619 0.788 0.693 0.051

Fixed Substitution (m=140) 112.8201 0.2903 0.0202 0.001 2.1627 0.6421 0.496 1.4389 0.4956 0.544 0.0068 0.4954 0.807 0.822 0.054

(g) Random Substitution 112.0276 0.3508 0.0235 0.211 2.6151 0.7453 0.733 1.7355 0.5752 0.753 0.0031 0.5750 0.807 0.847 0.055

(h) Median Method (k = 160) 105.5650 0.4892 0.0583 0.426 3.8893 1.3708 0.701 2.6374 1.0767 0.735 -0.0034 1.0364 0.796 0.543 0.021

Median Method (k = 180) 105.5377 0.4897 0.0607 0.426 3.8964 1.3879 0.707 2.6460 1.1100 0.753 -0.0046 1.0474 0.803 0.523 0.020

Median Method (k = 200) 105.5382 0.4897 0.0607 0.431 3.8947 1.3907 0.701 2.6469 1.1078 0.759 -0.0054 1.0469 0.800 0.525 0.025

(i) Non-parametric Adjustment 110.3519 0.4007 0.0255 0.783 2.9867 0.8092 0.793 1.9967 0.6245 0.801 -0.0003 0.6243 0.809 0.898 0.052

(j) Censored Normal Regression 108.4963 0.4211 0.0271 0.659 3.1564 0.8554 0.787 2.1241 0.6626 0.796 0.0036 0.6597 0.809 0.900 0.049

Analysis

Underlying SBP

(e)

(f)

 
 
Table 38: Results for 1,000 runs of Scenario 4 with a proportional treatment effect of 10%. 
Included are mean parameter estimates and S.E.’s, coverage rates based on 80% C.I.’s, and power and type I error relative to gene and gene2 respectively 
(at the 5% level of sig.). 
* Approach C also yields a mean treatment coefficient of 9.7036, with a mean standard error of 0.7309. 
** Parameter estimates for Approach D are log odds-ratios – and are therefore non-comparable to the other approaches.
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Int Age Age SE
Age 

Coverage
Sex Sex SE

Sex 

Coverage
Gene Gene SE

Gene 

Coverage
Gene2

Gene2 

SE

Gene2 

Coverage
Power

Type I 

Error

110.0000 0.4007 0.0254 0.801 3.0025 0.8059 0.805 1.9573 0.6214 0.817 -0.0054 0.6218 0.787 0.880 0.057

(a) No Adjustment 112.0746 0.2575 0.0200 0.000 1.9366 0.6360 0.345 1.2456 0.4904 0.409 0.0077 0.4907 0.801 0.697 0.056

(b) Exclude 109.4049 0.2945 0.0261 0.003 2.2084 0.8187 0.606 1.4359 0.6368 0.633 0.0315 0.6316 0.813 0.619 0.052

(c) Treatment as binary covariate* 112.2319 0.2451 0.0205 0.000 1.8447 0.6357 0.286 1.1844 0.4900 0.367 0.0095 0.4899 0.803 0.666 0.056

(d) Binary Phenotype ** -2.7376 0.0366 0.0032 0.000 0.2719 0.0967 0.000 0.1802 0.0741 0.000 -0.0012 0.0745 0.792 0.679 0.059

Fixed Treat Effect (c = 5) 111.6850 0.2876 0.0205 0.000 2.1594 0.6496 0.481 1.3948 0.5009 0.528 0.0048 0.5012 0.798 0.789 0.058

Fixed Treat Effect (c = 10) 111.2954 0.3178 0.0213 0.009 2.3821 0.6772 0.641 1.5440 0.5222 0.640 0.0020 0.5225 0.796 0.838 0.058

Fixed Treat Effect (c = 15) 110.9058 0.3479 0.0226 0.157 2.6048 0.7171 0.742 1.6931 0.5530 0.729 -0.0009 0.5534 0.802 0.862 0.063

Fixed Substitution (m=130) 113.6543 0.2297 0.0189 0.000 1.7077 0.5987 0.203 1.0971 0.4617 0.244 0.0160 0.4620 0.800 0.653 0.054

Fixed Substitution (m=140) 112.8751 0.2900 0.0202 0.000 2.1531 0.6421 0.468 1.3955 0.4951 0.519 0.0102 0.4955 0.795 0.809 0.058

(g) Random Substitution 112.0875 0.3503 0.0235 0.197 2.5984 0.7452 0.749 1.6963 0.5746 0.743 0.0092 0.5750 0.794 0.840 0.064

(h) Median Method (k = 160) 105.6804 0.4881 0.0585 0.407 3.8568 1.3686 0.733 2.5797 1.0806 0.745 0.0010 1.0410 0.812 0.520 0.027

Median Method (k = 180) 105.6631 0.4884 0.0608 0.417 3.8603 1.3891 0.735 2.5846 1.1108 0.761 0.0000 1.0522 0.815 0.488 0.025

Median Method (k = 200) 105.6624 0.4884 0.0609 0.416 3.8607 1.3893 0.730 2.5853 1.1149 0.771 -0.0002 1.0506 0.816 0.504 0.022

(i) Non-parametric Adjustment 111.2264 0.3443 0.0223 0.126 2.5734 0.7076 0.718 1.6746 0.5456 0.720 0.0009 0.5460 0.797 0.861 0.064

(j) Censored Normal Regression 109.0819 0.3800 0.0250 0.656 2.8501 0.7876 0.785 1.8657 0.6099 0.791 0.0079 0.6077 0.793 0.859 0.066

Analysis

Underlying SBP

(e)

(f)

Table 39: Results for 1,000 runs of Scenario 4 with a proportional treatment effect of 15%. 
Included are mean parameter estimates and S.E.’s, coverage rates based on 80% C.I.’s, and power and type I error relative to gene and gene2 respectively 
(at the 5% level of sig.). 
* Approach C also yields a mean treatment coefficient of 2.0654, with a mean standard error of 0.7266. 
** Parameter estimates for Approach D are log odds-ratios – and are therefore non-comparable to the other approaches.
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Int Age Age SE
Age 

Coverage
Sex Sex SE

Sex 

Coverage
Gene Gene SE

Gene 

Coverage
Gene2

Gene2 

SE

Gene2 

Coverage
Power

Type I 

Error

110.0681 0.3991 0.0254 0.786 3.0343 0.8053 0.790 1.9973 0.6215 0.837 -0.0114 0.6215 0.810 0.915 0.039

(a) No Adjustment 112.7637 0.2088 0.0201 0.000 1.5960 0.6384 0.188 1.0518 0.4927 0.260 0.0277 0.4927 0.794 0.569 0.044

(b) Exclude 109.4686 0.2925 0.0261 0.003 2.2354 0.8181 0.606 1.4898 0.6366 0.656 0.0195 0.6307 0.793 0.644 0.043

(c) Treatment as binary covariate* 112.3362 0.2424 0.0203 0.000 1.8492 0.6300 0.285 1.2182 0.4860 0.359 0.0209 0.4856 0.795 0.704 0.043

(d) Binary Phenotype ** -2.7220 0.0363 0.0032 0.000 0.2789 0.0966 0.000 0.1834 0.0741 0.000 -0.0050 0.0745 0.802 0.687 0.046

Fixed Treat Effect (c = 5) 112.3843 0.2388 0.0198 0.000 1.8224 0.6290 0.278 1.2005 0.4855 0.343 0.0215 0.4855 0.795 0.694 0.042

Fixed Treat Effect (c = 10) 112.0049 0.2689 0.0200 0.000 2.0487 0.6348 0.406 1.3493 0.4899 0.479 0.0153 0.4900 0.807 0.789 0.042

Fixed Treat Effect (c = 15) 111.6255 0.2989 0.0206 0.000 2.2751 0.6553 0.558 1.4980 0.5058 0.606 0.0092 0.5058 0.814 0.852 0.039

Fixed Substitution (m=130) 113.7086 0.2281 0.0188 0.000 1.7341 0.5979 0.202 1.1355 0.4615 0.275 0.0130 0.4615 0.797 0.697 0.042

Fixed Substitution (m=140) 112.9499 0.2882 0.0202 0.000 2.1868 0.6416 0.477 1.4330 0.4951 0.538 0.0006 0.4952 0.802 0.845 0.042

(g) Random Substitution 112.1887 0.3484 0.0235 0.183 2.6344 0.7451 0.732 1.7277 0.5751 0.768 -0.0124 0.5751 0.823 0.871 0.041

(h) Median Method (k = 160) 105.8662 0.4841 0.0581 0.411 3.9047 1.3694 0.716 2.6340 1.0758 0.740 -0.0358 1.0404 0.812 0.552 0.014

Median Method (k = 180) 105.8522 0.4843 0.0606 0.424 3.9094 1.3883 0.716 2.6370 1.1078 0.759 -0.0366 1.0524 0.826 0.525 0.010

Median Method (k = 200) 105.8517 0.4844 0.0605 0.434 3.9087 1.3856 0.717 2.6368 1.1075 0.759 -0.0371 1.0511 0.835 0.531 0.009

(i) Non-parametric Adjustment 112.0886 0.2968 0.0203 0.000 2.2576 0.6445 0.541 1.4860 0.4974 0.583 0.0056 0.4975 0.807 0.864 0.039

(j) Censored Normal Regression 109.4746 0.3458 0.0239 0.178 2.6391 0.7510 0.737 1.7508 0.5825 0.769 0.0046 0.5792 0.808 0.879 0.032

Analysis

Underlying SBP

(e)

(f)

 

Table 40: Results for 1,000 runs of Scenario 4 with a proportional treatment effect of 20%. 
Included are mean parameter estimates and S.E.’s, coverage rates based on 80% C.I.’s, and power and type I error relative to gene and gene2 respectively 
(at the 5% level of sig.). 
* Approach C also yields a mean treatment coefficient of -5.5901, with a mean standard error of 0.7196. 
** Parameter estimates for Approach D are log odds-ratios – and are therefore non-comparable to the other approaches.
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Table 41: Results for 1,000 runs of Scenario 5a when �� � �. 
Shown are mean parameter estimates/SEs, coverage rates based on 80% confidence intervals, and power relative to the genetic factor (at 5% level of sig.). 
*Approach C also yields a mean treatment coefficient of 13.5531, with a mean standard error of 0.7299. 
**Approach C with the gene-treatment interaction term yields a mean treatment coefficient of 10.5038 with mean standard error of 1.2686; and mean gene-
treatment interaction of 2.9862 with mean standard error of 1.0067. 
*** Parameter estimates for Approach D are log odds-ratios, and are non-comparable to the other approaches. 
  

Int Age Age SE
Age 

Coverage
Sex Sex SE

Sex 

Coverage
Gene Gene SE

Gene 

Coverage
Power

109.9075 0.4017 0.0254 0.792 3.0092 0.8058 0.805 1.9788 0.6219 0.812 0.895

(a) No Adjustment 110.3273 0.3101 0.0213 0.005 2.3384 0.6769 0.608 2.8487 0.5224 0.338 0.999

(b) Exclude 109.2942 0.2954 0.0261 0.009 2.2417 0.8186 0.628 1.4868 0.6369 0.679 0.661

Treatment as binary covariate* 111.0891 0.2506 0.0209 0.000 1.9052 0.6498 0.352 2.5618 0.5013 0.544 1.000

inc. Gene-Treat. Interaction** 111.8396 0.2495 0.0209 0.000 1.9281 0.6482 0.364 1.4557 0.5933 0.615 0.670

(d) Binary Phenotype *** -2.7346 0.0366 0.0032 . 0.2706 0.0967 . 0.1796 0.0741 . 0.692

Fixed Treat Effect (c = 5) 109.9404 0.3403 0.0224 0.089 2.5582 0.7110 0.732 2.9938 0.5487 0.285 0.999

Fixed Treat Effect (c = 10) 109.5535 0.3704 0.0238 0.493 2.7779 0.7563 0.787 3.1389 0.5837 0.247 0.999

Fixed Treat Effect (c = 15) 109.1667 0.4006 0.0255 0.794 2.9977 0.8110 0.809 3.2840 0.6259 0.223 0.999

Fixed Substitution (m=130) 113.5562 0.2308 0.0189 0.000 1.7261 0.5988 0.197 1.1306 0.4621 0.276 0.694

Fixed Substitution (m=140) 112.7824 0.2911 0.0202 0.001 2.1656 0.6424 0.484 1.4208 0.4958 0.557 0.823

(g) Random Substitution 112.0094 0.3513 0.0235 0.201 2.6058 0.7457 0.747 1.7111 0.5755 0.761 0.855

Median Method (k = 160) 105.5431 0.4897 0.0582 0.419 3.8747 1.3709 0.745 2.6067 1.0743 0.732 0.549

Median Method (k = 180) 105.5237 0.4900 0.0607 0.419 3.8798 1.3862 0.748 2.6128 1.1073 0.741 0.512

Median Method (k = 200) 105.5244 0.4900 0.0605 0.424 3.8773 1.3878 0.748 2.6132 1.1074 0.750 0.522

(i) Non-parametric Adjustment 109.5147 0.4102 0.0261 0.746 3.0583 0.8290 0.804 3.0543 0.6398 0.363 0.994

(j) Censored Normal Regression 107.7339 0.4272 0.0275 0.615 3.2068 0.8676 0.798 3.0555 0.6700 0.373 0.991

(h)

(c)

Analysis

Underlying SBP

(e)

(f)
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Table 42: Results for 1,000 runs of Scenario 5a when �� � ��. 
Shown are mean parameter estimates/SEs, coverage rates based on 80% confidence intervals, and power relative to the genetic factor (at 5% level of sig.). 
*Approach C also yields a mean treatment coefficient of 14.8123, with a mean standard error of 0.7885. 
**The additional analysis for (c) which includes the gene-treatment interaction term yields a mean treatment coefficient of 10.4919 with mean standard error of 
1.3038; and mean gene-treatment interaction of 4.5431with mean standard error of 1.0868. 
*** Parameter estimates for Approach D are log odds-ratios, and are non-comparable to the other approaches. 

Int Age Age SE
Age 

Coverage
Sex Sex SE

Sex 

Coverage
Gene Gene SE

Gene 

Coverage
Power

112.2823 0.4024 0.0254 0.800 2.9432 0.8060 0.811 -2.0083 0.6221 0.776 0.888

(a) No Adjustment 112.1878 0.3095 0.0213 0.002 2.2817 0.6773 0.587 -0.3456 0.5228 0.036 0.120

(b) Exclude 111.1042 0.2949 0.0261 0.002 2.1990 0.8182 0.601 -1.4669 0.6262 0.642 0.649

Treatment as binary covariate* 112.6031 0.2512 0.0210 0.000 1.8709 0.6516 0.322 -0.0576 0.5029 0.007 0.063

inc. Gene-Treat. Interaction** 113.5263 0.2495 0.0208 0.000 1.8995 0.6472 0.35 -1.4379 0.5829 0.596 0.681

(d) Binary Phenotype *** -2.5183 0.0366 0.0032 . 0.2665 0.0967 . -0.1876 0.0754 . 0.693

Fixed Treat Effect (c = 5) 111.9710 0.3398 0.0224 0.090 2.4956 0.7107 0.706 -0.4956 0.5485 0.085 0.162

Fixed Treat Effect (c = 10) 111.7541 0.3701 0.0238 0.503 2.7094 0.7554 0.785 -0.6457 0.5830 0.152 0.212

Fixed Treat Effect (c = 15) 111.5373 0.4004 0.0255 0.801 2.9232 0.8094 0.806 -0.7957 0.6247 0.262 0.256

Fixed Substitution (m=130) 114.9582 0.2303 0.0188 0.000 1.6968 0.5986 0.184 -1.1545 0.4620 0.288 0.705

Fixed Substitution (m=140) 114.5245 0.2909 0.0202 0.000 2.1244 0.6420 0.479 -1.4546 0.4955 0.570 0.817

(g) Random Substitution 114.0782 0.3517 0.0235 0.225 2.5463 0.7451 0.729 -1.7485 0.5751 0.741 0.851

Median Method (k = 160) 108.6090 0.4904 0.0587 0.407 3.7814 1.3806 0.737 -2.5348 1.0247 0.747 0.575

Median Method (k = 180) 108.6045 0.4905 0.0608 0.407 3.7836 1.3883 0.737 -2.5369 1.0351 0.752 0.557

Median Method (k = 200) 108.6037 0.4905 0.0607 0.426 3.7848 1.3848 0.748 -2.5364 1.0344 0.754 0.558

(i) Non-parametric Adjustment 111.9571 0.4081 0.0259 0.759 2.9680 0.8230 0.808 -1.0837 0.6352 0.429 0.397

(j) Censored Normal Regression 110.2580 0.4274 0.0275 0.587 3.1295 0.8659 0.796 -1.2686 0.6650 0.551 0.468

Analysis

Underlying SBP

(c)

(e)

(f)

(h)
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Table 43: Results for 1,000 runs of Scenario 5a when �� � �. 
Shown are mean parameter estimates/SEs, coverage rates based on 80% confidence intervals, and power relative to the genetic factor (at 5% level of sig.). 
*Approach C also yields a mean treatment coefficient of 14.2627, with a mean standard error of 0.7542. 
**Approach C, when a gene-treatment interaction is modelled, yields a mean treatment coefficient of 10.4963 with mean standard error of 1.2818; and mean 
gene-treatment interaction of 3.7649 with mean standard error of 1.0377. 
*** Parameter estimates for Approach D are log odds-ratios, and are non-comparable to the other approaches. 

Int Age Age SE
Age 

Coverage
Sex Sex SE

Sex 

Coverage
Gene Gene SE

Gene 

Coverage

Type I 

Error

111.9452 0.4010 0.0254 0.803 2.9813 0.8056 0.784 -0.0040 0.6215 0.797 0.054

(a) No Adjustment 111.9881 0.3075 0.0213 0.000 2.2899 0.6756 0.578 1.3047 0.5212 0.114 0.707

(b) Exclude 110.7932 0.2953 0.0263 0.003 2.2108 0.8259 0.605 0.0020 0.6369 0.823 0.041

Treatment as binary covariate* 112.5053 0.2493 0.0209 0.000 1.8644 0.6500 0.319 1.3019 0.5008 0.083 0.735

inc. Gene-Treat. Interaction** 112.2574 0.2488 0.0208 0.000 1.8768 0.6478 0.322 0.0053 0.5834 0.739 0.082

(d) Binary Phenotype *** -2.5510 0.0365 0.0031 0.000 0.2715 0.0958 0 0.0002 0.0739 0.791 0.071

Fixed Treat Effect (c = 5) 111.7150 0.3382 0.0224 0.064 2.5144 0.7096 0.688 1.3056 0.5474 0.142 0.664

Fixed Treat Effect (c = 10) 111.4419 0.3689 0.0238 0.483 2.7390 0.7552 0.771 1.3065 0.5826 0.175 0.611

Fixed Treat Effect (c = 15) 111.1688 0.3996 0.0255 0.800 2.9636 0.8104 0.79 1.3075 0.6251 0.214 0.546

Fixed Substitution (m=130) 115.0741 0.2242 0.0187 0.000 1.6639 0.5937 0.176 0.0005 0.4580 0.815 0.039

Fixed Substitution (m=140) 114.5279 0.2856 0.0200 0.000 2.1130 0.6358 0.442 0.0023 0.4904 0.810 0.052

(g) Random Substitution 113.9789 0.3470 0.0233 0.168 2.5648 0.7401 0.719 0.0065 0.5709 0.786 0.052

Median Method (k = 160) 106.7096 0.5177 0.0633 0.295 4.0900 1.4484 0.688 0.0374 1.0882 0.788 0.023

Median Method (k = 180) 106.7058 0.5178 0.0672 0.304 4.0942 1.4720 0.689 0.0361 1.1115 0.796 0.018

Median Method (k = 200) 106.7050 0.5178 0.0671 0.304 4.0926 1.4699 0.693 0.0370 1.1080 0.796 0.022

(i) Non-parametric Adjustment 111.6022 0.4097 0.0261 0.757 3.0342 0.8294 0.78 1.0247 0.6398 0.377 0.359

(j) Censored Normal Regression 109.6945 0.4300 0.0278 0.572 3.1997 0.8744 0.757 0.9335 0.6728 0.462 0.291

(f)

(h)

Analysis

Underlying SBP

(c)

(e)
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Table 44: Results for 1,000 runs of Scenario 5b when �� � �. 
Shown are mean parameter estimates/SEs, coverage rates based on 80% confidence intervals, and power relative to the genetic factor (at 5% level of sig.). 
*Approach C also yields a mean treatment coefficient of 1.9499, with a mean standard error of 0.7552. 
**Approach C, when a gene-treatment interaction is additionally modelled, yields a mean treatment coefficient of 10.4719 with mean standard error of 1.2941; 
and mean gene-treatment interaction of -8.2658 with mean standard error of 1.0273. 
*** Parameter estimates for Approach D are log odds-ratios, and are non-comparable to the other approaches.  

Int Age Age SE
Age 

Coverage
Sex Sex SE

Sex 

Coverage
Gene Gene SE

Gene 

Coverage
Power

110.0279 0.3991 0.0253 0.800 2.9904 0.8053 0.802 2.0085 0.6216 0.826 0.917

(a) No Adjustment 111.9443 0.3082 0.0214 0.001 2.3297 0.6784 0.598 0.2563 0.5236 0.021 0.068

(b) Exclude 109.4724 0.2919 0.0260 0.003 2.2222 0.8175 0.619 1.4945 0.6364 0.672 0.654

Treatment as binary covariate* 112.7115 0.2485 0.0210 0.000 1.8954 0.6512 0.329 -0.0353 0.5025 0.005 0.042

inc. Gene-Treat. Interaction** 111.8149 0.2491 0.0209 0.000 1.8972 0.6483 0.329 1.4935 0.5933 0.630 0.709

(d) Binary Phenotype *** -2.7298 0.0363 0.0032 . 0.2727 0.0967 . 0.1846 0.0741 . 0.718

Fixed Treat Effect (c = 5) 111.5545 0.3384 0.0224 0.072 2.5501 0.7125 0.715 0.4042 0.5499 0.047 0.110

Fixed Treat Effect (c = 10) 111.1647 0.3685 0.0239 0.488 2.7705 0.7577 0.782 0.5522 0.5849 0.106 0.143

Fixed Treat Effect (c = 15) 110.7749 0.3987 0.0256 0.806 2.9908 0.8123 0.798 0.7001 0.6270 0.190 0.173

Fixed Substitution (m=130) 113.6967 0.2280 0.0188 0.000 1.7170 0.5978 0.195 1.1397 0.4615 0.268 0.692

Fixed Substitution (m=140) 112.9172 0.2883 0.0202 0.000 2.1578 0.6414 0.489 1.4355 0.4951 0.536 0.838

(g) Random Substitution 112.1218 0.3489 0.0234 0.173 2.6041 0.7448 0.714 1.7344 0.5749 0.755 0.861

Median Method (k = 160) 105.8057 0.4834 0.0581 0.457 3.8695 1.3671 0.724 2.6461 1.0762 0.725 0.547

Median Method (k = 180) 105.7864 0.4837 0.0604 0.476 3.8745 1.3831 0.721 2.6532 1.1066 0.730 0.514

Median Method (k = 200) 105.7868 0.4837 0.0603 0.479 3.8753 1.3810 0.718 2.6536 1.1069 0.734 0.524

(i) Non-parametric Adjustment 110.8284 0.4069 0.0260 0.769 3.0438 0.8275 0.794 1.0165 0.6387 0.383 0.351

(j) Censored Normal Regression 108.9111 0.4253 0.0275 0.620 3.1967 0.8684 0.781 1.2279 0.6741 0.537 0.432

Analysis

Underlying SBP

(c)

(e)

(f)

(h)
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Table 45: Results for 1,000 runs of Scenario 5b, when �� � ��. 
Shown are mean parameter estimates/SEs, coverage rates based on 80% confidence intervals, and power relative to the genetic factor (at 5% level of sig.). 
*Approach C also yields a mean treatment coefficient of 4.4101, with a mean standard error of 0.8040. 
**The additional analysis for (c) which includes the gene-treatment interaction term yields a mean treatment coefficient of 10.4916 with mean standard error of 
1.3241; and mean gene-treatment interaction of -6.7010 with mean standard error of 1.1042. 
*** Parameter estimates for Approach D are log odds-ratios, and are non-comparable to the other approaches.

Int Age Age SE
Age 

Coverage
Sex Sex SE

Sex 

Coverage
Gene Gene SE

Gene 

Coverage
Power

112.3793 0.4004 0.0254 0.795 2.9634 0.8052 0.801 -1.9883 0.6213 0.817 0.900

(a) No Adjustment 113.8109 0.3099 0.0214 0.001 2.3221 0.6783 0.605 -2.7823 0.5234 0.403 1.000

(b) Exclude 111.2185 0.2930 0.0261 0.000 2.2287 0.8179 0.633 -1.4629 0.6259 0.637 0.629

Treatment as binary covariate* 114.2525 0.2485 0.0209 0.000 1.8851 0.6497 0.336 -2.4833 0.5011 0.599 0.998

inc. Gene-Treat. Interaction** 111.2185 0.2930 0.0261 0.000 2.2287 0.8179 0.633 -1.4629 0.6259 0.637 0.629

(d) Binary Phenotype *** -2.5199 0.0366 0.0032 . 0.2718 0.0967 . -0.1830 0.0753 . 0.667

Fixed Treat Effect (c = 5) 113.5915 0.3402 0.0224 0.082 2.5378 0.7131 0.691 -2.9295 0.5502 0.328 1.000

Fixed Treat Effect (c = 10) 113.3722 0.3705 0.0239 0.513 2.7535 0.7589 0.784 -3.0766 0.5855 0.275 1.000

Fixed Treat Effect (c = 15) 113.1528 0.4008 0.0256 0.787 2.9692 0.8139 0.81 -3.2238 0.6280 0.235 1.000

Fixed Substitution (m=130) 115.0384 0.2289 0.0188 0.000 1.7167 0.5983 0.187 -1.1451 0.4616 0.292 0.698

Fixed Substitution (m=140) 114.5996 0.2895 0.0202 0.000 2.1480 0.6417 0.485 -1.4394 0.4951 0.562 0.833

(g) Random Substitution 114.1583 0.3502 0.0235 0.188 2.5794 0.7452 0.739 -1.7350 0.5749 0.774 0.861

Median Method (k = 160) 108.7401 0.4877 0.0592 0.455 3.8452 1.3733 0.739 -2.5299 1.0210 0.745 0.566

Median Method (k = 180) 108.7317 0.4879 0.0610 0.458 3.8484 1.3821 0.742 -2.5321 1.0265 0.750 0.568

Median Method (k = 200) 108.7322 0.4879 0.0607 0.453 3.8494 1.3810 0.731 -2.5316 1.0257 0.753 0.566

(i) Non-parametric Adjustment 113.2257 0.4110 0.0262 0.735 3.0337 0.8330 0.802 -3.0084 0.6427 0.381 0.998

(j) Censored Normal Regression 111.4479 0.4273 0.0276 0.595 3.1761 0.8701 0.791 -2.9914 0.6699 0.407 0.993

Analysis

Underlying SBP

(c)

(e)

(f)

(h)
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Table 46: Results for 1,000 runs of Scenario 5b, when �� � �. 
Shown are mean parameter estimates/SEs, coverage rates based on 80% confidence intervals, and power relative to the genetic factor (at 5% level of sig.). 
*Approach C also yields a mean treatment coefficient of 3.0115, with a mean standard error of 0.7758. 
**Approach C, when a gene-treatment interaction is modelled, yields a mean treatment coefficient of 10.5020 with mean standard error of 1.2070; and mean 
gene-treatment interaction of -7.4913 with mean standard error of 1.0587. 
*** Parameter estimates for Approach D are log odds-ratios, and are non-comparable to the other approaches.

Int Age Age SE
Age 

Coverage
Sex Sex SE

Sex 

Coverage
Gene Gene SE

Gene 

Coverage

Type I 

Error

112.0534 0.3987 0.0253 0.813 3.0425 0.8054 0.799 0.0133 0.6216 0.810 0.047

(a) No Adjustment 113.6585 0.3067 0.0213 0.000 2.3559 0.6774 0.612 -1.3231 0.5229 0.107 0.719

(b) Exclude 110.8960 0.2931 0.0263 0.002 2.2740 0.8267 0.641 0.0086 0.6376 0.831 0.045

Treatment as binary covariate* 114.1789 0.2473 0.0209 0.000 1.9113 0.6506 0.366 -1.3261 0.5015 0.078 0.756

inc. Gene-Treat. Interaction** 112.2425 0.2494 0.0209 0.000 1.8729 0.6484 0.33 0.0023 0.5846 0.784 0.075

(d) Binary Phenotype *** -2.5436 0.0364 0.0031 . 0.2790 0.0958 . -0.0006 0.0739 . 0.048

Fixed Treat Effect (c = 5) 113.3884 0.3374 0.0224 0.065 2.5858 0.7119 0.733 -1.3211 0.5495 0.124 0.688

Fixed Treat Effect (c = 10) 113.1182 0.3681 0.0239 0.483 2.8157 0.7579 0.798 -1.3191 0.5850 0.153 0.620

Fixed Treat Effect (c = 15) 112.8480 0.3987 0.0256 0.807 3.0456 0.8134 0.791 -1.3171 0.6278 0.200 0.554

Fixed Substitution (m=130) 115.1668 0.2223 0.0187 0.000 1.7065 0.5939 0.194 0.0097 0.4584 0.833 0.044

Fixed Substitution (m=140) 114.6265 0.2836 0.0200 0.000 2.1663 0.6358 0.483 0.0137 0.4907 0.827 0.053

(g) Random Substitution 114.0910 0.3448 0.0233 0.135 2.6309 0.7402 0.73 0.0176 0.5713 0.823 0.046

Median Method (k = 160) 106.7914 0.5165 0.0635 0.299 4.1793 1.4381 0.653 0.0316 1.0838 0.804 0.023

Median Method (k = 180) 106.7702 0.5169 0.0674 0.302 4.1857 1.4683 0.663 0.0315 1.1048 0.806 0.020

Median Method (k = 200) 106.7715 0.5169 0.0675 0.302 4.1836 1.4654 0.663 0.0308 1.1028 0.803 0.021

(i) Non-parametric Adjustment 112.9358 0.4094 0.0262 0.771 3.1216 0.8337 0.789 -1.0152 0.6435 0.380 0.348

(j) Censored Normal Regression 110.9175 0.4292 0.0278 0.567 3.2879 0.8777 0.769 -0.9207 0.6784 0.463 0.261
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Table 47: Results for 1,000 runs of Scenario 6a, when �� � �. 
Shown are mean parameter estimates/SEs, coverage rates based on 80% confidence intervals, and power relative to the genetic factor (at 5% level of sig.). 
*Approach C also yields a mean treatment coefficient of 10.9792, with a mean standard error of 0.7331. 
**Approach C, when a gene-treatment interaction is additionally modelled, yields a mean treatment coefficient of 10.4981 with mean standard error of 1.2765; 
and mean gene-treatment interaction of 0.4665 with mean standard error of 1.0124. 
*** Parameter estimates for Approach D are log odds-ratios, and are non-comparable to the other approaches. 

Int Age Age SE
Age 

Coverage
Sex Sex SE

Sex 

Coverage
Gene Gene SE

Gene 

Coverage
Power

109.9856 0.3998 0.0254 0.814 3.0144 0.8059 0.791 2.0451 0.6220 0.788 0.905

(a) No Adjustment 110.8905 0.3093 0.0213 0.000 2.3489 0.6764 0.6 2.0284 0.5221 0.810 0.972

(b) Exclude 109.4190 0.2931 0.0261 0.002 2.2468 0.8183 0.615 1.5167 0.6368 0.685 0.660

Treatment as binary covariate* 111.6569 0.2494 0.0209 0.000 1.9083 0.6486 0.362 1.7252 0.5005 0.729 0.925

inc. Gene-Treat. Interaction** 111.7792 0.2495 0.0209 0.000 1.9081 0.6487 0.366 1.5087 0.5938 0.640 0.713

(d) Binary Phenotype *** -2.7321 0.0364 0.0032 . 0.2732 0.0966 . 0.1873 0.0741 . 0.722

Fixed Treat Effect (c = 5) 110.5047 0.3394 0.0224 0.059 2.5700 0.7108 0.701 2.1801 0.5487 0.784 0.978

Fixed Treat Effect (c = 10) 110.1189 0.3694 0.0238 0.503 2.7911 0.7565 0.776 2.3318 0.5839 0.735 0.980

Fixed Treat Effect (c = 15) 109.7331 0.3995 0.0255 0.807 3.0121 0.8114 0.796 2.4835 0.6263 0.680 0.981

Fixed Substitution (m=130) 113.6568 0.2288 0.0188 0.000 1.7404 0.5982 0.206 1.1552 0.4617 0.288 0.705

Fixed Substitution (m=140) 112.8852 0.2890 0.0202 0.000 2.1825 0.6418 0.496 1.4586 0.4954 0.567 0.827

(g) Random Substitution 112.1263 0.3488 0.0235 0.155 2.6320 0.7453 0.731 1.7606 0.5753 0.743 0.862

Median Method (k = 160) 105.7247 0.4849 0.0582 0.444 3.8833 1.3708 0.716 2.7231 1.0828 0.722 0.582

Median Method (k = 180) 105.7036 0.4853 0.0607 0.461 3.8869 1.3859 0.722 2.7299 1.1133 0.730 0.571

Median Method (k = 200) 105.7039 0.4852 0.0606 0.467 3.8856 1.3928 0.723 2.7310 1.1151 0.726 0.559

(i) Non-parametric Adjustment 109.9893 0.4083 0.0261 0.779 3.0722 0.8284 0.79 2.4297 0.6394 0.706 0.972

(j) Censored Normal Regression 108.1776 0.4255 0.0275 0.641 3.2164 0.8677 0.785 2.5065 0.6715 0.686 0.965
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Table 48: Results for 1,000 runs of Scenario 6a, when �� � ��. 
Shown are mean parameter estimates/SEs, coverage rates based on 80% confidence intervals, and power relative to the genetic factor (at 5% level of sig.). 
*Approach C also yields a mean treatment coefficient of 12.4370, with a mean standard error of 0.7897. 
**Approach C, when a gene-treatment interaction is additionally modelled, yields a mean treatment coefficient of 10.4751 with mean standard error of 1.3100; 
and mean gene-treatment interaction of 2.0499 with mean standard error of 1.0920. 
*** Parameter estimates for Approach D are log odds-ratios, and are non-comparable to the other approaches. 

Int Age Age SE
Age 

Coverage
Sex Sex SE

Sex 

Coverage
Gene Gene SE

Gene 

Coverage
Power

112.3728 0.3996 0.0254 0.814 2.9995 0.8067 0.803 -1.9818 0.6228 0.806 0.889

(a) No Adjustment 112.7608 0.3089 0.0213 0.001 2.3343 0.6776 0.589 -1.1489 0.5232 0.369 0.580

(b) Exclude 111.1979 0.2928 0.0261 0.004 2.2305 0.8189 0.609 -1.4739 0.6270 0.655 0.648

Treatment as binary covariate* 113.1840 0.2492 0.0209 0.000 1.8918 0.6503 0.331 -0.8640 0.5019 0.162 0.402

inc. Gene-Treat. Interaction** 113.5582 0.2492 0.0209 0.000 1.8899 0.6498 0.327 -1.4664 0.5849 0.609 0.686

(d) Binary Phenotype *** -2.5142 0.0364 0.0032 . 0.2728 0.0967 . -0.1808 0.0753 . 0.664

Fixed Treat Effect (c = 5) 112.5468 0.3389 0.0224 0.069 2.5569 0.7118 0.713 -1.2928 0.5496 0.486 0.638

Fixed Treat Effect (c = 10) 112.3328 0.3690 0.0238 0.494 2.7795 0.7572 0.785 -1.4367 0.5846 0.607 0.680

Fixed Treat Effect (c = 15) 112.1188 0.3991 0.0256 0.806 3.0022 0.8119 0.815 -1.5806 0.6268 0.693 0.707

Fixed Substitution (m=130) 115.0187 0.2289 0.0189 0.000 1.7248 0.5993 0.205 -1.1506 0.4627 0.306 0.687

Fixed Substitution (m=140) 114.5907 0.2890 0.0202 0.000 2.1700 0.6429 0.489 -1.4384 0.4964 0.552 0.818

(g) Random Substitution 114.1698 0.3491 0.0235 0.186 2.6105 0.7462 0.744 -1.7257 0.5761 0.746 0.844

Median Method (k = 160) 108.7664 0.4853 0.0592 0.439 3.9025 1.3758 0.693 -2.4886 1.0216 0.754 0.557

Median Method (k = 180) 108.7647 0.4854 0.0605 0.439 3.9028 1.3839 0.707 -2.4901 1.0288 0.759 0.559

Median Method (k = 200) 108.7630 0.4854 0.0606 0.443 3.9034 1.3889 0.709 -2.4899 1.0268 0.759 0.558

(i) Non-parametric Adjustment 112.4236 0.4069 0.0260 0.786 3.0553 0.8266 0.815 -1.6990 0.6382 0.748 0.758

(j) Censored Normal Regression 110.7164 0.4253 0.0275 0.623 3.2106 0.8679 0.782 -1.8210 0.6675 0.785 0.773
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Table 49: Results for 1,000 runs of Scenario 6a, when �� � �. 
Mean parameter estimates/SEs, coverage rates based on 80% confidence intervals, and type I error relative to the genetic factor (at 5% level of sig.) are 
shown. 
*Approach C also yields a mean treatment coefficient of 11.7474, with a mean standard error of 0.7560. 
**Approach C, when a gene-treatment interaction is additionally modelled, yields a mean treatment coefficient of 10.4527 with mean standard error of 1.2895; 
and mean gene-treatment interaction of 1.2935 with mean standard error of 1.0443. 
*** Parameter estimates for Approach D are log odds-ratios, and are non-comparable to the other approaches.

Int Age Age SE
Age 

Coverage
Sex Sex SE

Sex 

Coverage
Gene Gene SE

Gene 

Coverage

Type I 

Error

111.2457 0.3995 0.0254 0.824 2.9796 0.8061 0.816 0.0000 0.6218 0.793 0.050

(a) No Adjustment 111.8821 0.3089 0.0213 0.000 2.2996 0.6763 0.566 0.4257 0.5217 0.663 0.130

(b) Exclude 110.3291 0.2934 0.0260 0.001 2.1764 0.8172 0.59 0.0100 0.6301 0.794 0.040

Treatment as binary covariate* 112.4729 0.2490 0.0209 0.000 1.8496 0.6485 0.296 0.4282 0.4996 0.640 0.140

inc. Gene-Treat. Interaction** 112.7220 0.2490 0.0209 0.000 1.8496 0.6484 0.295 0.0083 0.5878 0.767 0.059

(d) Binary Phenotype *** -2.6183 0.0363 0.0032 . 0.2764 0.0965 . 0.0003 0.0744 . 0.042

Fixed Treat Effect (c = 5) 111.5849 0.3390 0.0224 0.068 2.5253 0.7108 0.703 0.4242 0.5483 0.671 0.126

Fixed Treat Effect (c = 10) 111.2877 0.3690 0.0238 0.488 2.7510 0.7565 0.783 0.4227 0.5836 0.691 0.111

Fixed Treat Effect (c = 15) 110.9905 0.3991 0.0255 0.827 2.9767 0.8114 0.824 0.4212 0.6259 0.705 0.105

Fixed Substitution (m=130) 114.3493 0.2294 0.0188 0.000 1.6878 0.5978 0.181 0.0055 0.4612 0.801 0.044

Fixed Substitution (m=140) 113.7549 0.2895 0.0202 0.000 2.1392 0.6417 0.462 0.0025 0.4951 0.806 0.047

(g) Random Substitution 113.1663 0.3495 0.0235 0.181 2.5913 0.7454 0.736 -0.0007 0.5750 0.792 0.050

Median Method (k = 160) 107.4695 0.4811 0.0596 0.484 3.8979 1.3709 0.739 -0.0189 1.0326 0.798 0.022

Median Method (k = 180) 107.4709 0.4811 0.0605 0.487 3.8953 1.3755 0.745 -0.0187 1.0381 0.800 0.020

Median Method (k = 200) 107.4691 0.4811 0.0606 0.486 3.8968 1.3752 0.746 -0.0192 1.0410 0.799 0.019

(i) Non-parametric Adjustment 111.2732 0.4071 0.0260 0.771 3.0315 0.8265 0.817 0.3319 0.6376 0.729 0.083

(j) Censored Normal Regression 109.5156 0.4251 0.0275 0.647 3.1799 0.8668 0.808 0.3037 0.6680 0.744 0.074
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Table 50: Results for 1,000 runs of Scenario 6b, when �� � �. 
Shown are mean parameter estimates/SEs, coverage rates based on 80% confidence intervals, and power relative to the genetic factor (at 5% level of sig.). 
*Approach C also yields a mean treatment coefficient of 7.1338, with a mean standard error of 0.7475. 
**Approach C, when a gene-treatment interaction is additionally modelled, yields a mean treatment coefficient of 10.5041 with mean standard error of 1.2974; 
and mean gene-treatment interaction of -3.2705 with mean standard error of 1.0300. 
*** Parameter estimates for Approach D are log odds-ratios, and are non-comparable to the other approaches.

Int Age Age SE
Age 

Coverage
Sex Sex SE

Sex 

Coverage
Gene Gene SE

Gene 

Coverage
Power

110.0888 0.3988 0.0254 0.795 2.9890 0.8054 0.802 2.0386 0.6214 0.772 0.893

(a) No Adjustment 111.4879 0.3085 0.0213 0.002 2.3330 0.6768 0.61 1.1407 0.5222 0.380 0.577

(b) Exclude 109.4781 0.2929 0.0261 0.001 2.2360 0.8187 0.625 1.4941 0.6373 0.648 0.647

Treatment as binary covariate* 112.2496 0.2487 0.0209 0.000 1.8970 0.6492 0.327 0.8347 0.5008 0.158 0.391

inc. Gene-Treat. Interaction** 111.8786 0.2485 0.0209 0.000 1.8972 0.6487 0.328 1.4862 0.5943 0.613 0.684

(d) Binary Phenotype *** -2.7240 0.0364 0.0032 . 0.2718 0.0966 . 0.1875 0.0741 . 0.719

Fixed Treat Effect (c = 5) 111.1037 0.3385 0.0224 0.072 2.5527 0.7112 0.725 1.2949 0.5488 0.492 0.652

Fixed Treat Effect (c = 10) 110.7195 0.3686 0.0238 0.491 2.7725 0.7567 0.782 1.4490 0.5839 0.621 0.684

Fixed Treat Effect (c = 15) 110.3353 0.3987 0.0256 0.795 2.9922 0.8116 0.809 1.6031 0.6262 0.693 0.716

Fixed Substitution (m=130) 113.7182 0.2284 0.0188 0.000 1.7209 0.5981 0.189 1.1396 0.4615 0.287 0.692

Fixed Substitution (m=140) 112.9498 0.2885 0.0202 0.000 2.1603 0.6417 0.478 1.4479 0.4951 0.546 0.822

(g) Random Substitution 112.1832 0.3487 0.0235 0.180 2.6008 0.7452 0.747 1.7548 0.5750 0.731 0.856

Median Method (k = 160) 105.7130 0.4864 0.0583 0.429 3.9317 1.3678 0.718 2.6935 1.0789 0.718 0.579

Median Method (k = 180) 105.6887 0.4868 0.0610 0.441 3.9377 1.3885 0.726 2.7008 1.1140 0.734 0.541

Median Method (k = 200) 105.6885 0.4868 0.0609 0.437 3.9371 1.3942 0.731 2.7023 1.1128 0.733 0.558

(i) Non-parametric Adjustment 110.4914 0.4068 0.0260 0.768 3.0476 0.8271 0.8 1.7330 0.6382 0.740 0.765

(j) Censored Normal Regression 108.6175 0.4251 0.0275 0.624 3.2008 0.8681 0.799 1.8785 0.6728 0.774 0.775
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Table 51: Results for 1,000 runs of Scenario 6b, when �� � ��. 
Shown are mean parameter estimates/SEs, coverage rates based on 80% confidence intervals, and power relative to the genetic factor (at 5% level of sig.). 
*Approach C also yields a mean treatment coefficient of 8.8731, with a mean standard error of 0.7985. 
**Approach C, when a gene-treatment interaction is additionally modelled, yields a mean treatment coefficient of 10.5177 with mean standard error of 1.3267; 
and mean gene-treatment interaction of -1.7162 with mean standard error of 1.1057. 
*** Parameter estimates for Approach D are log odds-ratios, and are non-comparable to the other approaches.

Int Age Age SE
Age 

Coverage
Sex Sex SE

Sex 

Coverage
Gene Gene SE

Gene 

Coverage
Power

112.5000 0.3985 0.0254 0.800 3.0021 0.8057 0.79 -1.9998 0.6217 0.786 0.888

(a) No Adjustment 113.3853 0.3085 0.0213 0.002 2.3347 0.6771 0.6 -1.9777 0.5225 0.781 0.966

(b) Exclude 111.2775 0.2925 0.0261 0.001 2.2261 0.8186 0.603 -1.4880 0.6267 0.668 0.664

Treatment as binary covariate* 113.8008 0.2481 0.0209 0.000 1.8900 0.6490 0.328 -1.6861 0.5006 0.697 0.919

inc. Gene-Treat. Interaction** 113.6677 0.2483 0.0209 0.000 1.8903 0.6491 0.334 -1.4801 0.5845 0.624 0.707

(d) Binary Phenotype *** -2.5083 0.0364 0.0032 . 0.2739 0.0966 . -0.1829 0.0753 . 0.688

Fixed Treat Effect (c = 5) 113.1774 0.3385 0.0224 0.067 2.5561 0.7117 0.709 -2.1226 0.5492 0.781 0.972

Fixed Treat Effect (c = 10) 112.9695 0.3686 0.0239 0.475 2.7776 0.7575 0.759 -2.2675 0.5845 0.757 0.970

Fixed Treat Effect (c = 15) 112.7615 0.3987 0.0256 0.805 2.9990 0.8125 0.785 -2.4124 0.6269 0.713 0.965

Fixed Substitution (m=130) 115.1055 0.2281 0.0188 0.000 1.7226 0.5984 0.204 -1.1636 0.4617 0.298 0.712

Fixed Substitution (m=140) 114.6896 0.2882 0.0202 0.000 2.1655 0.6419 0.485 -1.4534 0.4953 0.559 0.830

(g) Random Substitution 114.2685 0.3483 0.0235 0.181 2.6133 0.7452 0.73 -1.7380 0.5750 0.742 0.855

Median Method (k = 160) 108.9086 0.4842 0.0591 0.464 3.8712 1.3721 0.726 -2.4885 1.0208 0.756 0.548

Median Method (k = 180) 108.9060 0.4843 0.0606 0.472 3.8723 1.3779 0.73 -2.4902 1.0243 0.757 0.550

Median Method (k = 200) 108.9067 0.4843 0.0606 0.471 3.8720 1.3839 0.73 -2.4911 1.0261 0.759 0.547

(i) Non-parametric Adjustment 112.9524 0.4073 0.0261 0.775 3.0588 0.8290 0.786 -2.3619 0.6397 0.731 0.953

(j) Censored Normal Regression 111.2112 0.4249 0.0276 0.634 3.2029 0.8687 0.765 -2.4194 0.6684 0.713 0.948
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Table 52: Results for 1,000 runs of Scenario 6b, when �� � �. 
Mean parameter estimates/SEs, coverage rates based on 80% confidence intervals, and type I error relative to the genetic factor (at 5% level of sig.) are 
shown. 
*Approach C also yields a mean treatment coefficient of 8.0420, with a mean standard error of 0.7683. 
**Approach C, when a gene-treatment interaction is additionally modelled, yields a mean treatment coefficient of 10.5314 with mean standard error of 1.3087; 
and mean gene-treatment interaction of -2.4914 with mean standard error of 1.0607. 
*** Parameter estimates for Approach D are log odds-ratios, and are non-comparable to the other approaches. 

Int Age Age SE
Age 

Coverage
Sex Sex SE

Sex 

Coverage
Gene Gene SE

Gene 

Coverage

Type I 

Error

111.2692 0.3983 0.0254 0.779 3.0198 0.8059 0.811 0.0106 0.6216 0.795 0.048

(a) No Adjustment 112.4307 0.3079 0.0213 0.001 2.3528 0.6771 0.617 -0.4143 0.5223 0.669 0.122

(b) Exclude 110.3998 0.2914 0.0261 0.001 2.2420 0.8184 0.626 0.0199 0.6312 0.806 0.051

Treatment as binary covariate* 113.0436 0.2474 0.0209 0.000 1.9024 0.6490 0.331 -0.4143 0.5000 0.666 0.129

inc. Gene-Treat. Interaction** 112.7811 0.2474 0.0209 0.000 1.9012 0.6489 0.333 0.0210 0.5886 0.784 0.075

(d) Binary Phenotype *** -2.6175 0.0364 0.0032 . 0.2753 0.0965 . -0.0003 0.0744 . 0.053

Fixed Treat Effect (c = 5) 112.1252 0.3381 0.0224 0.085 2.5772 0.7117 0.738 -0.4142 0.5490 0.677 0.109

Fixed Treat Effect (c = 10) 111.8197 0.3683 0.0239 0.474 2.8016 0.7575 0.802 -0.4141 0.5843 0.691 0.109

Fixed Treat Effect (c = 15) 111.5142 0.3985 0.0256 0.783 3.0259 0.8125 0.81 -0.4140 0.6267 0.703 0.095

Fixed Substitution (m=130) 114.4100 0.2278 0.0188 0.000 1.7327 0.5983 0.205 0.0173 0.4615 0.807 0.052

Fixed Substitution (m=140) 113.7990 0.2882 0.0202 0.000 2.1815 0.6422 0.494 0.0176 0.4954 0.803 0.046

(g) Random Substitution 113.1865 0.3485 0.0235 0.187 2.6343 0.7459 0.748 0.0214 0.5754 0.803 0.051

Median Method (k = 160) 107.4135 0.4819 0.0596 0.478 3.8961 1.3720 0.722 0.0327 1.0440 0.823 0.021

Median Method (k = 180) 107.4128 0.4819 0.0606 0.483 3.8959 1.3778 0.722 0.0322 1.0476 0.817 0.022

Median Method (k = 200) 107.4133 0.4819 0.0607 0.491 3.8948 1.3798 0.724 0.0317 1.0451 0.821 0.020

(i) Non-parametric Adjustment 111.6799 0.4066 0.0261 0.745 3.0801 0.8278 0.816 -0.3201 0.6385 0.739 0.075

(j) Censored Normal Regression 109.8870 0.4245 0.0276 0.636 3.2327 0.8684 0.793 -0.2872 0.6701 0.764 0.069
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Table 53: Results for 1,000 runs of Scenario 7, when the probability of treatment is differential by exposure to diabetes. 
Mean parameter estimates/SEs, coverage rates based on 80% confidence intervals, and power and type I error relative to g1 and g2 respectively (at 5% level 
of sig.). 
*Approach C also yields a mean treatment coefficient of 10.3917, with a mean standard error of 0.7021. 
**Parameter estimates for Approach D are log odds-ratios, and are non-comparable to the other approaches. 

Int Age Age SE
Age 

Coverage
Sex Sex SE

Sex 

Coverage
Diabetes

Diabetes 

SE
Gene Gene SE

Gene 

Coverage
Gene2

Gene2 

SE

Gene2 

Coverage
Power

Type I 

Error

110.0215 0.3992 0.0254 0.782 3.0652 0.8060 0.792 -0.0417 1.0075 2.0011 0.6220 0.819 -0.0003 0.6222 0.807 0.904 0.055

(a) No Adjustment 111.5642 0.3028 0.0209 0.000 2.3365 0.6655 0.586 -4.0424 0.8319 1.5185 0.5136 0.623 -0.0044 0.5138 0.801 0.850 0.047

(b) Exclude 110.3096 0.2778 0.0265 0.000 2.1466 0.8292 0.589 -7.8638 1.2109 1.3953 0.6462 0.626 0.0159 0.6395 0.796 0.570 0.046

(c) Treatment as binary covariate* 112.6637 0.2341 0.0204 0.000 1.8196 0.6316 0.274 -6.8915 0.8108 1.1762 0.4872 0.343 -0.0085 0.4869 0.803 0.674 0.043

(d) Binary Phenotype ** -2.7255 0.0362 0.0031 . 0.2774 0.0962 . 0.8124 0.1188 0.1817 0.0739 . 0.0037 0.0742 . 0.700 0.057

Fixed Treat Effect (c = 5) 111.0485 0.3349 0.0221 0.054 2.5788 0.7039 0.708 -2.7073 0.8799 1.6790 0.5432 0.731 -0.0025 0.5434 0.808 0.882 0.051

Fixed Treat Effect (c = 10) 110.5329 0.3671 0.0237 0.457 2.8210 0.7536 0.776 -1.3722 0.9420 1.8394 0.5815 0.792 -0.0007 0.5817 0.813 0.893 0.056

Fixed Treat Effect (c = 15) 110.0172 0.3993 0.0256 0.778 3.0632 0.8126 0.792 -0.0371 1.0157 1.9999 0.6271 0.812 0.0012 0.6273 0.810 0.893 0.058

Fixed Substitution (m=130) 114.3115 0.2179 0.0180 0.000 1.6730 0.5722 0.153 -2.8843 0.7153 1.0735 0.4416 0.192 0.0116 0.4417 0.797 0.683 0.047

Fixed Substitution (m=140) 113.2802 0.2822 0.0199 0.000 2.1574 0.6334 0.478 -0.2142 0.7917 1.3944 0.4888 0.507 0.0154 0.4889 0.801 0.824 0.051

(g) Random Substitution 112.2401 0.3468 0.0237 0.177 2.6386 0.7549 0.73 2.4463 0.9436 1.7142 0.5826 0.763 0.0216 0.5828 0.806 0.856 0.052

Median Method (k = 160) 103.4481 0.5364 0.0686 0.273 3.8617 1.4385 0.726 11.5652 2.9848 2.5179 1.0748 0.762 0.0387 1.0460 0.813 0.522 0.016

Median Method (k = 180) 101.9367 0.5644 0.0901 0.291 4.1443 1.6394 0.727 29.5733 5.7008 2.7130 1.2463 0.767 0.0271 1.1595 0.831 0.435 0.011

Median Method (k = 200) 101.7877 0.5672 0.0931 0.293 4.1684 1.6669 0.729 48.6045 8.9549 2.7317 1.2722 0.769 0.0266 1.1765 0.824 0.395 0.010

(i) Non-parametric Adjustment 110.0851 0.4158 0.0267 0.694 3.1803 0.8474 0.783 1.8686 1.0593 2.0766 0.6540 0.807 0.0081 0.6542 0.807 0.898 0.057

(j) Censored Normal Regression 107.5264 0.4417 0.0287 0.420 3.3935 0.9040 0.746 1.6481 1.1991 2.2255 0.7006 0.781 0.0115 0.6976 0.805 0.894 0.059

(h)

Analysis

Underlying SBP

(e)

(f)
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Appendix B. 

B.1. NIH Background Fact Sheet on GWAS Policy 

Update  

August 28, 2008  

A research team, led by David W. Craig, Ph.D. at the Translational Genomics 
Research Institute (TGen) in Phoenix AZ, has developed a new bioinformatics 
method that allows the detection of a single person’s SNP profile in a mixture of 
1,000 or more individual DNA samples. In other words, bioinformatics 
techniques have progressed to the point that with enough genomic data on an 
individual from another source, it is now possible to determine whether that 
individual participated in a study by analyzing only the pooled summary data.  

SNP stands for single nucleotide polymorphism, which is a change in a genetic 
letter in a specific location on a DNA molecule when compared to other DNA 
molecules. SNPs are used to study human genetic variation and are a powerful 
way to investigate genetic predispositions to health or disease. Large-scale 
genomic studies of human variation – called genome-wide association studies 
or GWAS – have recently provided important clues to the genetic roots of 
numerous common diseases. Because of the power of this technology, many 
institutes and centers at the National Institutes of Health support or are involved 
in such studies to understand the genetics of common maladies.  

This new bioinformatics method is powerful, but it is still not simple to detect a 
specific individual’s SNP profile in a pooled dataset. To find a specific profile 
within a set, the inquirer would first need to already have a highly-dense 
genomic profile (currently at least 10,000 SNPs) from an individual. Then this 
SNP profile would need to be statistically compared against the study dataset to 
measure how similar or different it is. Prior expectations were that individual 
profiles would have to be compared one to one to confirm a match; however, 
this new statistical analysis can now be used to detect a profile even in pooled 
data.  

Although the technique has been demonstrated to work, the NIH is unaware 
that it has been used to compromise any information within NIH GWAS 
datasets. The technology to obtain the required genomic profile is not 
commonly used outside of the research community. And, even if an individual’s 
SNP profile was found within a pooled dataset, all that would be learned is that 
this profile was contained in the dataset and, thus, it could then be associated 
with the characteristics of that dataset (e.g., disease or control population). The 
NIH GWAS databases do not contain the names or other identifiable 
information about individual study participants, so there is no risk to an 
individual participant’s financial accounts or other personal information.  
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This discovery, however, has important policy implications for the way the 
scientific community shares such pooled sets of genetic data. For example, 
scientific journals have required researchers to make available aggregate data 
from GWAS studies when the results are published as a means to ensure the 
quality of the data. And, because use of these pooled datasets can speed up 
disease gene discovery, NIH – as well as other research institutions and 
individual laboratories – developed public databases that allow researchers to 
freely download the datasets into their computers for analysis.  

Because individual SNP profiles can now be detected within aggregate data, 
the NIH has moved quickly to assure continued protection of research 
participant privacy in genomics studies by controlling access to pooled datasets. 
For example, on Monday, Aug. 25, 2008, the NIH removed aggregate statistics 
files of individual GWAS studies from the public portion of the databases it 
manages, such as the Database of Genotypes and Phenotypes (dbGaP), 
operated by the National Center for Biotechnology Information, and the Cancer 
Genetic Markers of Susceptibility (CGEMS), operated by the National Cancer 
Institute. The data remains available for researcher use, but researchers must 
now apply for access to the data and agree to protect the confidentiality of the 
data in the same way that has been done all along for individual-level study 
data.  

In addition, NIH is aware that others operating databases with similar types of 
datasets, including the Wellcome Trust Case Control Consortium in England 
and the Broad Institute of MIT and Harvard in Boston, have removed aggregate 
data from public availability.  
 

NIH will continue to focus on this fast-moving field of research and on the 
development of policies to appropriately manage its databases and to promote 
policies that protect the confidentiality of all those who participate in NIH-
sponsored research studies. 
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B.2. Breakdown and Proof of the Visscher et al. Linear 

Regression Approach 

The following notation, which is consistent with that outlined in Section 2.5, is to 

be used throughout.  The j’th SNP (j = 1,…,s) has population allele frequency pj; 

the allele frequency in the mixture is denoted qj, and the allele frequency in the 

reference group is denoted rj.  The mixture consists of Nmix individuals, and the 

reference group consists of Nref individuals.  An estimate of pj – based on the 

combined samples of Nmix and Nref individuals – is denoted )̂:.  The individual of 

interest – individual i – has scaled genotype yij (= 0, 0.5 or 1). 

B.2.1 Population frequencies known: 

A regression of Yij on Xj is fitted, where Yij = yij – pj, and Xj = qj – pj.   

Visscher et al. state that the regression coefficient bi is estimated by  

©ª� � ��′��<��ÒD � ∑ �«yz<¬z�|z}~ �z<¬z�∑ �z<¬z��|z}~ . 

This is the least squares estimator for a general linear model with no intercept 

(i.e. where the design matrix, X, consists only of the explanatory variable Xj).  

Note, however, that including an intercept term in the model will have no 

tangible effect on b, and in my practical illustrations of the method, i.e. in 

sections 2.6 and 2.7, an intercept term is fitted. 

The genotype, yij, can be expressed as 
����:, where gij is the sum of the two 

alleles a1ij and a2ij (= 0 or 1 copy of the minor allele).  a1ij and a2ij are both 
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Bernoulli distributed with probability pj and variance pj(1-pj) and, thus, Yij has 

variance: 

 Var(Yij) = Var(yij – pj) = Varw����:{ � w��{� Var���:� 
� I12J� 7¼/8��:= � ¼/8��:=? � I12J� . 2. ):81 � ):= 
� ¬z8�<¬z=�   

Similarly, qj can be expressed as ∑ ���äyå ��:�äyå�;� , where gij is the sum of the two 

alleles, a1ij and a2ij, for the i’th individual in the mixture (i = 1,…,Nmix).  Hence, 

Var(Xj) = Var(qj – pj) �	∑ Var w ���äyå ��:{æçèéY;�  

� I 12�¡�nJ� 7¼/8��:= � ¼/8��:= � ⋯� ¼/8��äyå:= � ¼/8��äyå:=? 
� I 12�¡�nJ� . 2�¡�n. 7):81 � ):=? � ):81 � ):=2�¡�n  

If individual i is not in the mixture, Yij and Xj are independent and, hence, 

Cov(Yij, Xj|out) = 0. 

If individual i is in the mixture, Yij and Xj share the following elements: 

����: and 
���äyå ��: êor	 ë~yz ë�yz� 	and	 ë~yz ë�yz��äyå ì. 

Hence, the covariance between Yij and Xj, Cov(Yj, Xj|in) is: 
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Cov(Yj, Xj|in) = Cov(
����:,	 ���äyå ��:) 

� 12 ∗ 12�¡�n 7¼/8��:= � ¼/8��:=? � ):81 � ):=2�¡�n . 
Assuming many SNPs are to be used in the test, the expectation of bi can be 

defined by the expectation of the ratios: 

E(bi|in) = E Wíîï���:,ð:|�u�ñòó�ðz�	 X = 1, and 

E(bi|out) = E Wíîï���:,ð:|ôõö�ñòó�ðz�	 X  = 0 (i.e. by substituting in the corresponding 

elements outlined above). 

Hence, if the individual of interest is in the mixture, the regression coefficient bi 

has an expectation of 1, and if the individual of interest in not in the mixture, bi 

has an expectation of 0. 

The variance of bi is defined as: 

Var(bi) =	����Ò��<�, where �� is estimated by �e�.  
If individual i is not in the mixture, �e� = Var(Yij) = 

¬z8�<¬z=�  (derived above). 

If individual i is in the mixture, �e� = 
��äyå<���äyå . ¬z8�<¬z=� . 

Where	�Ò� � ∑ 8ql � pl=��l;� � s ∗ Var��:� � � ∗ ¬z8�<¬z=��äyå , 

the variance of bi for an individual not in the mixture is 
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Var(bi|out) =	�� �|out.	��Ò��<� � øzw~ùøz{��.øzw~ùøz{�úäyå
� �äyå� , 

and the variance of bi for an individual in the mixture is 

Var(bi|in) =		�� �|in.	��Ò��<� � 8úäyåù~=úäyå .øzw~ùøz{�
�.øzw~ùøz{�úäyå

� ��äyå<��� . 

 

B.2.2 Population frequencies estimated: 

In this scenario, the population frequencies, pj, are not assumed to be known 

and, thus, they are estimated.  These estimates of the population frequencies 

are denoted by )̂: , and 	 are obtained from a weighted average of the 

corresponding allele frequency in the mixture and in the reference group: 

)̂:
� ��: � ��: �⋯� �,�äyå,: � �,�äyå,: � �,��äyå ��,: � �,��äyå ��,: �⋯� �,��äyå ,�ûüý�,: � �,��äyå ,�ûüý�,:2��¡�n � �Ëþ��  

The regression here is again Yij on Xj, but Yij is now (D�: � )̂:) and Xj is now 

(¨: � )̂:).  As before, bi is thus estimated by: 

©ª� � ∑ 8D�: � )̂:=�:;� 8¨: � )̂:=∑ 8¨: � )̂:=��:;� . 
In this scenario, Var(yij) and Var(qj) are derived as before, but here, )̂: is also a 

random variable, and has variance: 
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Var()̂:) = ∑ Var ê ���æçèé æ������:ì�æçèé æ����Y;�  

� W 12�N�Y� � Nó���X� . 7Var8a11j=�Var8a21j=�…�Var8a1,	�Nmix�Nref�,	j=�Var8a2,	�Nmix�Nref�,	j=? 
� ê ���æçèé æ����ì� . 2�N�Y� � Nó���. ):81 � ):= � ¬z8�<¬z=��æçèé æ����. 

Visscher et al. state that if the individual of interest is not in the mixture, Cov(Yij, 

Xj|out) is again 0.  However, this ignores the possibility that an individual could 

be in the reference group; in this situation, the covariance, Cov(Yij, Xj|in ref) will 

be non-zero.  The stated covariance, Cov(Yij, Xj|out) = 0 thus applies only to 

individuals who are in neither of the two test groups.  In order to derive Cov(Yj, 

Xj|in mix) and Cov(Yj, Xj|in ref) it is first necessary to derive the variance 

components between yij and qj; yij and )̂:; and qj and )̂:: 
Cov (yij - )̂:, qj - )̂:) = Cov(aX + bY, cW + dV)  

= ac Cov(X,W) + ad Cov(X,V) + bc Cov(Y,W) + bd Cov (Y,V) 

= Cov(yij, qj) – Cov(yij, )̂:) – Cov(qj, )̂:) + Var()̂:)   (1) 

 

For an individual in the reference group, the covariance Cov(yij, qj |in ref) = 0. 

 (2a) 

For an individual in the mixture, yij and qj have the following shared elements:  
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	ë~yz ë�yz� 	and	 ë~yz ë�yz��äyå , 

and, hence, Cov(yij, qj|in mix) = 
�� . ���äyå . 7¼/8��:= � ¼/8��:=? � ¬z8�<¬z=��äyå . (2b) 

Regardless of whether the individual is in the mixture or the reference group, yij 

and )̂: have the following shared elements: 	ë~yz ë�yz� 	and	 ë~yz ë�yz��æçèé æ����. 

Hence, Cov(yij,	)̂:) = 
�� . ���æçèé æ���� . 7¼/8��:= � ¼/8��:=? � ¬z8�<¬z=��æçèé æ����. (3) 

Similarly, qj and )̂: have the following shared elements:  

	ë~~z ë�~z ⋯ ë~,�çèé,z ë�,�çèé,z�æçèé 	and	 ë~~z ë�~z ⋯ ë~,�çèé,z ë�,�çèé,z��æçèé æ���� . 

Thus, Cov(qj,	)̂:) =  

12�¡�n . 12�N�Y� � Nó��� . 7¼/8��:= � ¼/8��:= � ⋯� ¼/8�,æçèé,:=
� ¼/8�,æçèé,:=? 

� ¬z8�<¬z=��æçèé æ����    (4) 

From the previous page, Var()̂:) =	 ¬z8�<¬z=��æçèé æ����.  (5) 

Hence, using the formula given in (1), and using elements (2) – (5),  

Cov(Yj, Xj|in mix) = ê ���äyå � ���æçèé æ����� ���æçèé æ����� ���æçèé æ����ì . 7):�1 � ):�? 
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= 
�� ê ��äyå � ��æçèé æ����ì 7):�1 � ):�?, and 

Cov(Yj, Xj|in ref) = ê ���æçèé æ����� ���æçèé æ����� ���æçèé æ����ì . 7):�1 � ):�? 
= � �� ê ��æçèé æ����ì 7):�1 � ):�?. 
The variance of Xj can now also be derived using the above variance 

components: 

Var(Xj) = Var(qj) + Var(�)̂:) - 2.Cov(qj,�)̂:). 
As above, Var(qj) = 

¬z8�<¬z=��äyå ; Var(�)̂: ) is presented in equation (5); and 

Cov(qj,�)̂:) is presented in equation (4). 

Hence, Var(Xj) = ê ��äyå � ��æçèé æ����� ��æçèé æ����ì 7):�1 � ):�? 
=	�� ê ��äyå � ��æçèé æ����ì 7):�1 � ):�?.  (6) 

The expectation of bi can now be derived for individuals in the mixture (in mix.), 

in the reference group (in ref.), and for individuals in neither group (out): 

E(bi|in mix.) = E êíîï��:,ð:|�u�ñòó�ð:�	 ì = 1; 

E(bj|in ref.) = 
<~�W ~8�çèé�����=X7¬z��<¬z�?~�W ~úäyå< ~8�çèé�����=X7¬z��<¬z�? � � æçèéæ��� ; and 

E(bi|out) = 0. 
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In order to derive the variance of bi, the general formula Var(©ª� � ����Ò��<�	is 

again used. 

As before, �� is estimated by �e�, where 

�e�|out = Var8D�:= � ¬z8�<¬z=� ,	 
�e�|in mix. = 

��äyå<���äyå
¬z8�<¬z=� , and 

�e�|in ref. = 
��ûüý<���ûüý ¬z8�<¬z=�  

As before,	�Ò� � ∑ 8ql � pl=��l;� � s ∗ Var�:�. 
From (6), Var8:= � �� ê ��äyå � ��æçèé æ����ì 7):�1 � ):�?, 
Hence, �Ò� � �� ê ��äyå � ��æçèé æ����ì 7):�1 � ):�?. 
Thus, Var(©ª|out� � øzw~ùøz{�|�W ~úäyå< ~8�çèé�����=X7¬z��<¬z�? , 

which simplifies to  

Var(©ª|out� � �äyå� . �æçèé æ����æ��� , and 

Var(©ª|in	mix� =	 8úäyåù~=úäyå øzw~ùøz{�|�W ~úäyå< ~8�çèé�����=X7¬z8�<¬z=? � ��äyå<��� . �æçèé æ����æ��� . 
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B.2.3 Derivation of the Test Statistic: 

Visscher & Hill propose a statistic, T, to test the null hypothesis that the 

individual of interest is in the mixture [E(bi) = 1] against an alternative 

hypothesis that the individual is not in the mixture (b<1): 

� � �ð<pq���� � 8�ª<�=�
�ëË��|out�~���	d.f.. 

Alternatively, to test the null hypothesis that the individual of interest is not in the 

mixture [E(b=0)] against the alternative hypothesis that he/she is in the mixture 

(b>0), Visscher & Hill propose the statistic: 

� � 8©ª � 1=�¯/�©|out�~non-central	���	d.f.,� 
where � � wp�{� � ê �Var��ª|ôõö�ì� � �s Nmix⁄ ��Nref �Nmix�Nref�⁄ �. 
As Section 2.2.3 discusses, however, the situation where two groups are 

compared (such as in a case-control study) has three possible outcomes (e.g. 

case, control or neither group), and a two-tailed hypothesis test therefore seems 

more appropriate than the one-tailed tests outlined above.  Noting that the null 

hypothesis that an individual is not in a study will usually be more useful than its 

reverse (i.e. assuming that the individual is in the study under the null), a two-

tailed hypothesis test can be expressed as: 

Z � � � �
� � ©ª�¯/�©|out�~��0, 1��. 
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This Z test is used throughout in preference to the test statistics proposed by 

Visscher & Hill. 
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Appendix C. 

This section contains R code for simulating the datasets described in sections 

3.3.1.1 and 3.3.2.1, and for performing the analyses described in sections 3.3.1.2 

and 3.3.2.2.  All R code may be cut and pasted directly into R to replicate any of the 

procedures.  Model output is also provided to show both interim and overall results 

from each analysis. 

C.1. Scenario 1 

C.1.1  R code for simulating the data  

#set up data structure 

set.seed(18984) 

numsubs.study<-c(1000,2000,3000,4000,2500,2500) 

numsubs<-sum(numsubs.study) 

numstudies<-length(numsubs.study) 

study.id<-rep(1:numstudies,numsubs.study) 

 

#set up model structure and parameters 

numpara<-3 

beta0<-125 

betaAGE<-0.25 

betaSNP<-0.5 

MAF<-0.2 

 

#simulate data 

AGE<-runif(numsubs,50,70) - 60 

SNP.1<-rbinom(numsubs,1,MAF) 

SNP.2<-rbinom(numsubs,1,MAF) 

SNP<-SNP.1+SNP.2 

lp<-beta0+betaAGE*AGE+betaSNP*SNP 

SBP<-rnorm(numsubs,lp,11) 
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C.1.2 R Code & Output for Analysis 1 (ILMA): 

#Analyse all studies together 

model.overall<-lm(SBP~AGE+SNP) 

summary(model.overall) 

 

Abbreviated output from overall regression analysis: 

OVERALL ANALYSIS  

Call: 

lm(formula = SBP ~ AGE + SNP) 

 

Coefficients: 

             Estimate Std. Error  t value Pr(>|t|)     

(Intercept) 125.15770    0.10943 1143.724   <2e-16 

AGE           0.25937    0.01549   16.745   <2e-16 

SNP           0.44796    0.15806    2.834   0.0046  

--- 

C.1.3  R code & Output for Analysis 2 (DataSHIELD analysis): 

######################### 

# STUDY SPECIFIC ANALYSES # 

######################### 

 

#create empty results matrices 

beta.s<-matrix(NA,nrow=numpara,ncol=numstudies) 

se.s<-matrix(NA,nrow=numpara,ncol=numstudies) 

 

#work with each study one at a time 

for(k in 1:numstudies) 

{ 

SBP.s<-SBP[study.id==k] 

AGE.s<-AGE[study.id==k] 

SNP.s<-SNP[study.id==k] 
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model.study.specific<-lm(SBP.s~AGE.s+SNP.s) 

print(summary(model.study.specific)) 

beta.s[,k]<-summary(model.study.specific)$coefficients[,1] 

se.s[,k]<-summary(model.study.specific)$coefficients[,2] 

} 

 

Abbreviated output from study-specific analyses: 

STUDY 1  

Call: 

lm(formula = SBP.s ~ AGE.s + SNP.s) 

 

Coefficients: 

             Estimate Std. Error t value Pr(>|t|)     

(Intercept) 124.95070    0.43910 284.560  < 2e-16 

AGE.s         0.31155    0.06315   4.933 9.47e-07 

SNP.s         1.66853    0.67835   2.460   0.0141 

--- 

 

 

STUDY 2  

Call: 

lm(formula = SBP.s ~ AGE.s + SNP.s) 

 

Coefficients: 

             Estimate Std. Error t value Pr(>|t|)     

(Intercept) 125.29081    0.29894 419.119  < 2e-16 

AGE.s         0.22046    0.04265   5.169 2.59e-07 

SNP.s        -0.28092    0.42458  -0.662    0.508     

--- 

 

STUDY 3  

Call: 

lm(formula = SBP.s ~ AGE.s + SNP.s) 
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Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept) 125.1460     0.2467 507.308   <2e-16 

AGE.s         0.2990     0.0349   8.566   <2e-16 

SNP.s         0.8101     0.3483   2.326   0.0201   

--- 

 

STUDY 4  

Call: 

lm(formula = SBP.s ~ AGE.s + SNP.s) 

 

Coefficients: 

             Estimate Std. Error t value Pr(>|t|)     

(Intercept) 125.10805    0.21473 582.633   <2e-16 

AGE.s         0.27995    0.03003   9.321   <2e-16 

SNP.s         0.44297    0.30450   1.455    0.146     

--- 

 

STUDY 5  

Call: 

lm(formula = SBP.s ~ AGE.s + SNP.s) 

 

Coefficients: 

             Estimate Std. Error t value Pr(>|t|)     

(Intercept) 125.23344    0.26195 478.086  < 2e-16 

AGE.s         0.24625    0.03726   6.609  4.7e-11 

SNP.s         0.37170    0.38534   0.965    0.335 

--- 

STUDY 6 

Call: 

lm(formula = SBP.s ~ AGE.s + SNP.s) 
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Coefficients: 

             Estimate Std. Error t value Pr(>|t|)     

(Intercept) 125.12993    0.26289 475.974  < 2e-16 

AGE.s         0.20305    0.03727   5.448 5.59e-08 

SNP.s         0.25418    0.39068   0.651    0.515     

--- 

 

################# 

#  META-ANALYSIS   # 

################# 

#set up analysis weights 

analysis.wt<-numsubs.study/numsubs 

 

#set up a vector of 1s to use in summing precisions 

simple.sum<-rep(1,numstudies) 

#calculate mean of regression coefficients weighted for study sample sizes 

# “%*%” denotes vector multiplication  

beta.overall<-beta.s%*%analysis.wt 

#convert standard errors into precisions 

precision.s <-1/(se.s)^2 

#sum precisions across studies 

precision.overall<-precision.s%*%simple.sum 

 

#convert precisions back to standard errors 
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se.overall <-1/(precision.overall)^0.5  

 

#round outputs 

beta.overall<-round(beta.overall,digits=4) 

se.overall<-round(se.overall,digits=4) 

 

#create output results matrix 

meta.analysis.results<-cbind(beta.overall,se.overall) 

dimnames(meta.analysis.results)<-

list(c("Intercept","AGE","SNP"),c("Coefficients","SE")) 

 

#print output 

print(analysis.wt) 

print(meta.analysis.results) 

 

Output from meta-analysis: 

print(analysis.wt) 

[1] 0.06667 0.13333 0.20000 0.26667 0.16667 0.16667 

 

print(meta.analysis.results) 

> print(meta.analysis.results) 
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          Coefficients     SE 

Intercept     125.1541 0.1094 

AGE             0.2595 0.0155 

SNP             0.4582 0.1580 

 

C.2. Scenario 2 

C.2.1 R code for simulating the data 

############## 

#  SIMULATION  # 

############## 

 

#Start R code preparation 

#First maximise memory allocation 

memory.limit(4095) 

 

#For convenience, start by setting up file names ahead of time 

DC1.data.file<-"C:/DataSHIELD.Example/DC1/Study.1.csv" 

DC2.data.file<-"C:/DataSHIELD.Example/DC2/Study.2.csv" 

DC3.data.file<-"C:/DataSHIELD.Example/DC3/Study.3.csv" 

DC4.data.file<-"C:/DataSHIELD.Example/DC4/Study.4.csv" 

DC5.data.file<-"C:/DataSHIELD.Example/DC5/Study.5.csv" 

DC6.data.file<-"C:/DataSHIELD.Example/DC6/Study.6.csv" 

AC.beta.vector<-"C:/DataSHIELD.Example/AC/beta.vector.csv" 

ALL.data.file<-"C:/DataSHIELD.Example/Study.ALL.csv" 

 

#SET UP DATA STRUCTURE 

#Random number seed so results can be replicated 
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set.seed(1028) 

#Specify study sizes and generate IDs for studies and individuals 

numsubs.study<-c(2000,3000,1500,300,2000,700) 

numsubs<-sum(numsubs.study) 

numstudies<-length(numsubs.study) 

study.id<-rep(1:numstudies,numsubs.study) 

id<-c(1:numsubs.study[1], 1:numsubs.study[2], 1:numsubs.study[3], 

           1:numsubs.study[4], 1:numsubs.study[5], 1:numsubs.study[6]) 

 

#SET UP MODEL STRUCTURE AND PARAMETERS 

#Number of and values of regression coefficients 

numpara<-4 

beta0<--0.3 

beta.bmi<-0.02 

beta.bmi456<-0.04 

beta.snp<-0.5 

#Minor allele frequency 

MAF<-0.3 

 

#SIMULATE DATA 

#Generate covariates 
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bmi<- rnorm(numsubs,mean=23,sd=4)-23 

bmi456<-c(rep(0,6500),bmi[6501:9500]) 

snp<-rbinom(numsubs,2,MAF) 

#Generate linear predictor and equivalent probabilities of response 

lp<-beta0 + beta.bmi*bmi  +beta.bmi456*bmi456 + beta.snp*snp 

probresp<-exp(lp)/(1+exp(lp)) 

#Randomly sample case control status 

CC<-rbinom(numsubs,1,probresp) 

 

#ASSEMBLE AND WRITE OUT COMPLETE DATA SET 

all.data<-data.frame(study.id,id,CC,bmi,snp,bmi456) 

write.csv(all.data,file=ALL.data.file,row.names=FALSE) 

 

#PREPARE AND WRITE OUT DATA FILES FOR EACH STUDY INDIVIDUALLY 

Study<-list() 

Study[[1]]<-all.data[study.id==1,] 

write.csv(Study[[1]],file=DC1.data.file,row.names=FALSE) 

Study[[2]]<-all.data[study.id==2,] 

write.csv(Study[[2]],file=DC2.data.file,row.names=FALSE) 

Study[[3]]<-all.data[study.id==3,] 

write.csv(Study[[3]],file=DC3.data.file,row.names=FALSE) 
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Study[[4]]<-all.data[study.id==4,] 

write.csv(Study[[4]],file=DC4.data.file,row.names=FALSE) 

Study[[5]]<-all.data[study.id==5,] 

write.csv(Study[[5]],file=DC5.data.file,row.names=FALSE) 

Study[[6]]<-all.data[study.id==6,] 

write.csv(Study[[6]],file=DC6.data.file,row.names=FALSE) 

C.2.2 R Code & Output for Analysis 1 (ILMA): 

#Fit model on all data sets combined 

ALL.data.file<-"C:/DataSHIELD.Example/Study.ALL.csv" 

        ALL.data<-read.table(file=ALL.data.file, sep=",",header=T) 

 

summary(glm(CC~bmi+ bmi456 + snp,family=binomial(logit),data=ALL.data)) 
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Output from the overall analysis: 

Coefficients: 
     

 Estimate Std Error Z value Pr(>|z) 

(Intercept) -0.32956 0.02838 -11.612 <2e-16 *** 

BMI 0.02300 0.00621 3.703 0.00021

3 

*** 

BMI.456 0.04126 0.01140 3.620 0.00029

5 

*** 

SNP 0.55173 0.03295 16.746 < 2e-16 *** 

 Residual deviance: 12825 on 9496 degrees of freedom 

C.2.3 R Code to perform Analysis 2 (DataSHIELD analysis): 

########################## 

#  R CODE TO SET UP ANALYSIS  # 

########################### 

#Specify folder for storing objects on the AC 

AC.Directory<-"C:/DataSHIELD.Example/AC/" 

 

#Create initial vector of regression coefficients for first iteration 

beta.vect.next<-c(0,0,0,0) 

 

#Save to the folder where data computers can find it 

save(beta.vect.next,file=paste(AC.Directory,"beta.vect.next.RData",sep="")) 

 

#Iterations need to be counted. Start off with the count at 0 
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#and increment by 1 at each new iteration 

iteration.count<-0 

 

#Provide arbitrary starting value for deviance to enable subsequent calculation 

of the 

#change in deviance between iterations 

dev.old<-9.99e+99 

 

#Convergence state needs to be monitored. Start by allocating 

#a “convergence not met” status 

converge.state<-"NOT MET" 

 

#Define a convergence criterion. This value of epsilon corresponds to that used 

#by default for GLMs in R (see section S3 for details) 

epsilon<-1.0e-08 

 

################################################################# 

#  R CODE TO CARRY OUT A PARTITIONED IRLS FIT ONE ITERATION AT A 
TIME # 

#  RUN THIS WHOLE BLOCK OF CODE ONE ITERATION AT A TIME UNTIL THE     
# 

# MODEL OUTPUT INDICATES THAT CONVERGENCE HAS BEEN ACHIEVED 

################################################################# 

 

#Increment count of iterations 

iteration.count<-iteration.count+1 

 

 

#R CODE THAT WOULD RUN LOCALLY ON EACH OF THE REMOTE DATA 

COMPUTERS 

 

############# 

#START STUDY 1 

 

#Read in full data 

data.DC<-read.table(file=DC1.data.file, sep=",",header=T) 
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#Strip out the first column (which is a duplicate index column) 

data.DC<-data.DC[,-1] 

 

#Calculate number of subjects available in the current study 

#(by enumerating length of ID column) 

nsubs<-length(data.DC$id) 

#Define the design matrix (matrix of covariates) to contain BMI, SNP and the 

#interaction covariate and add a column of 1s at the start for the regression 

constant 

X.mat<-cbind(rep(1,nsubs),data.DC$bmi,data.DC$bmi456,data.DC$snp) 

 

#Load the current value of the beta vector (vector of regression coefficients) from 

its 

#location on the AC 

load(file=paste(AC.Directory,"beta.vect.next.RData",sep="")) 

 

# Use this current value of the beta vector to calculate elements from the current 

study 

beta.vect<-beta.vect.next 

 

 

# Calculate linear predictors from observed covariate values and elements of the 

# current beta vector 

lp.current<-beta.vect[1]+beta.vect[2]*X.mat[,2]+beta.vect[3]*X.mat[,3]+ 
beta.vect[4]*X.mat[,4] 

 

# Apply inverse logistic transformation 

mu.current<-exp(lp.current)/(1+exp(lp.current))      

# Derive variance function and diagonal elements for weight matrix (using 

squared 

# first differential of link function) 

var.i<-(mu.current*(1-mu.current)) 

g2.i<-(1/(mu.current*(1-mu.current)))^2 

W.mat<-diag(1/(var.i*g2.i)) 
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#Calculate information matrix 

info.matrix<-t(X.mat)%*%W.mat%*%X.mat 

 

#Derive u terms for score vector  

u.i<- (data.DC$CC-mu.current)* (1/(mu.current*(1-mu.current))) 

  

#Calculate score vector 

score.vect<-t(X.mat)%*%W.mat%*%u.i 

#Calculate log likelihood and deviance contribution for current study 

 

#For convenience, ignore the element of deviance that relates to the full saturated 

# model, because that will cancel out in calculating the change in deviance from 

one 

# iteration to the next (Dev.total – Dev.old [see below]) because the element 

relating 

# to the saturated model will be the same at every iteration).  

log.L<-sum(data.DC$CC*log(mu.current) + (1-data.DC$CC)*log(1-mu.current)) 

dev<- -2*log.L 

 

#Create study specific versions of all key model components 

info.matrix.1<-info.matrix 

score.vect.1<-score.vect 

dev.1<-dev 

nsubs.1<-nsubs 

 

#Send all the key model components from the current study to the AC  

save(info.matrix.1,file=paste(AC.Directory,"info.matrix.1.RData",sep="")) 

save(score.vect.1,file=paste(AC.Directory,"score.vect.1.RData",sep="")) 

save(dev.1,file=paste(AC.Directory,"dev.1.RData",sep="")) 

save(nsubs.1,file=paste(AC.Directory,"nsubs.1.RData",sep="")) 

 

#END STUDY 1 

########### 
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############# 

#START STUDY 2 

 

#Read in full data 

data.DC<-read.table(file=DC2.data.file, sep=",",header=T) 

 

#Strip out first column 

data.DC<-data.DC[,-1] 

 

 

#Calculate number of subjects available in the current study 

#(by enumerating length of ID column) 

nsubs<-length(data.DC$id) 

#Define design matrix (matrix of covariates) to contain BMI, SNP and the 

#interaction covariate and add a column of 1s at the start for the regression 

constant 

X.mat<-cbind(rep(1,nsubs),data.DC$bmi,data.DC$bmi456,data.DC$snp) 

 

#Load the current value of the beta vector (vector of regression coefficients) from 

its 

#location on the AC computer 

load(file=paste(AC.Directory,"beta.vect.next.RData",sep="")) 

 

# Use this current value of the beta vector to calculate elements from the current 

study 

beta.vect<-beta.vect.next 

 

# Calculate linear predictors from observed covariate values and elements of 

# current beta vector 

lp.current<-beta.vect[1]+beta.vect[2]*X.mat[,2]+beta.vect[3]*X.mat[,3]+ 
beta.vect[4]*X.mat[,4] 

 

# Apply inverse logistic transformation 

mu.current<-exp(lp.current)/(1+exp(lp.current))      
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# Derive variance function and diagonal elements for weight matrix (using 

squared 

# first differential of link function) 

var.i<-(mu.current*(1-mu.current)) 

g2.i<-(1/(mu.current*(1-mu.current)))^2 

W.mat<-diag(1/(var.i*g2.i)) 

 

#Calculate information matrix 

info.matrix<-t(X.mat)%*%W.mat%*%X.mat 

 

#Derive u terms for score vector  

u.i<- (data.DC$CC-mu.current)* (1/(mu.current*(1-mu.current))) 

  

#Calculate score vector 

score.vect<-t(X.mat)%*%W.mat%*%u.i 

  

#Calculate log likelihood and deviance contribution for current study 

 

#For convenience, ignore the element of deviance that relates to the full saturated 

# model, because that will cancel out in calculating the change in deviance from 

one 

# iteration to the next (Dev.total – Dev.old [see below]) because the element 

relating 

# to the saturated model will be the same at every iteration).  

log.L<-sum(data.DC$CC*log(mu.current) + (1-data.DC$CC)*log(1-mu.current)) 

dev<- -2*log.L 

 

#Create study specific versions of all key model components 

info.matrix.2<-info.matrix 

score.vect.2<-score.vect 

dev.2<-dev 

nsubs.2<-nsubs 

#Send all of the key model components from the current study to the AC  

save(info.matrix.2,file=paste(AC.Directory,"info.matrix.2.RData",sep="")) 

save(score.vect.2,file=paste(AC.Directory,"score.vect.2.RData",sep="")) 
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save(dev.2,file=paste(AC.Directory,"dev.2.RData",sep="")) 

save(nsubs.2,file=paste(AC.Directory,"nsubs.2.RData",sep="")) 

 

#END STUDY 2 

########### 

 

############# 

#START STUDY 3 

 

#Read in full data 

data.DC<-read.table(file=DC3.data.file, sep=",",header=T) 

 

#Strip out first column 

data.DC<-data.DC[,-1] 

 

#Calculate number of subjects available in the current study 

#(by enumerating length of ID column) 

nsubs<-length(data.DC$id) 

#Define design matrix (matrix of covariates) to contain BMI, SNP and the 

#interaction covariate and add a column of 1s at the start for the regression 

constant 

X.mat<-cbind(rep(1,nsubs),data.DC$bmi,data.DC$bmi456,data.DC$snp) 

 

#Load the current value of the beta vector (vector of regression coefficients) from 

its 

#location on the AC computer (stored during activation of block 2 of R code) 

load(file=paste(AC.Directory,"beta.vect.next.RData",sep="")) 

 

# Use this current value of the beta vector to calculate elements from the current 

study 

beta.vect<-beta.vect.next 

 

# Calculate linear predictors from observed covariate values and elements of 

# current beta vector 
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lp.current<-beta.vect[1]+beta.vect[2]*X.mat[,2]+beta.vect[3]*X.mat[,3]+ 
beta.vect[4]*X.mat[,4] 

 

# Apply inverse logistic transformation 

mu.current<-exp(lp.current)/(1+exp(lp.current))      

 

# Derive variance function and diagonal elements for weight matrix (using 

squared 

# first differential of link function) 

var.i<-(mu.current*(1-mu.current)) 

g2.i<-(1/(mu.current*(1-mu.current)))^2 

W.mat<-diag(1/(var.i*g2.i)) 

 

#Calculate information matrix 

info.matrix<-t(X.mat)%*%W.mat%*%X.mat 

 

 

#Derive u terms for score vector  

u.i<- (data.DC$CC-mu.current)* (1/(mu.current*(1-mu.current))) 

  

#Calculate score vector 

score.vect<-t(X.mat)%*%W.mat%*%u.i 

  

#Calculate log likelihood and deviance contribution for current study 

 

#For convenience, ignore the element of deviance that relates to the full saturated 

# model, because that will cancel out in calculating the change in deviance from 

one 

# iteration to the next (Dev.total – Dev.old [see below]) because the element 

relating 

# to the saturated model will be the same at every iteration).  

log.L<-sum(data.DC$CC*log(mu.current) + (1-data.DC$CC)*log(1-mu.current)) 

dev<- -2*log.L 

 

#Create study specific versions of all key model components 

info.matrix.3<-info.matrix 
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score.vect.3<-score.vect 

dev.3<-dev 

nsubs.3<-nsubs 

 

#Send all of the key model components from the current study to the AC  

save(info.matrix.3,file=paste(AC.Directory,"info.matrix.3.RData",sep="")) 

save(score.vect.3,file=paste(AC.Directory,"score.vect.3.RData",sep="")) 

save(dev.3,file=paste(AC.Directory,"dev.3.RData",sep="")) 

save(nsubs.3,file=paste(AC.Directory,"nsubs.3.RData",sep="")) 

 

#END STUDY 3 

########### 

 

 

############# 

#START STUDY 4 

 

#Read in full data 

data.DC<-read.table(file=DC4.data.file, sep=",",header=T) 

 

#Strip out first column 

data.DC<-data.DC[,-1] 

 

#Calculate number of subjects available in the current study 

#(by enumerating length of ID column) 

nsubs<-length(data.DC$id) 

#Define design matrix (matrix of covariates) to contain BMI, SNP and the 

#interaction covariate and add a column of 1s at the start for the regression 

constant 

X.mat<-cbind(rep(1,nsubs),data.DC$bmi,data.DC$bmi456,data.DC$snp) 

 

#Load the current value of the beta vector (vector of regression coefficients) from 

its 

#location on the AC computer 

load(file=paste(AC.Directory,"beta.vect.next.RData",sep="")) 
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# Use this current value of the beta vector to calculate elements from the current 

study 

beta.vect<-beta.vect.next 

 

# Calculate linear predictors from observed covariate values and elements of 

# current beta vector 

lp.current<-beta.vect[1]+beta.vect[2]*X.mat[,2]+beta.vect[3]*X.mat[,3]+ 
beta.vect[4]*X.mat[,4] 

 

# Apply inverse logistic transformation 

mu.current<-exp(lp.current)/(1+exp(lp.current))      

 

# Derive variance function and diagonal elements for weight matrix (using 

squared 

# first differential of link function) 

var.i<-(mu.current*(1-mu.current)) 

g2.i<-(1/(mu.current*(1-mu.current)))^2 

W.mat<-diag(1/(var.i*g2.i)) 

 

#Calculate information matrix 

info.matrix<-t(X.mat)%*%W.mat%*%X.mat 

 

#Derive u terms for score vector  

u.i<- (data.DC$CC-mu.current)* (1/(mu.current*(1-mu.current))) 

  

#Calculate score vector 

score.vect<-t(X.mat)%*%W.mat%*%u.i 

  

#Calculate log likelihood and deviance contribution for current study 

 

#For convenience, ignore the element of deviance that relates to the full saturated 

# model, because that will cancel out in calculating the change in deviance from 

one 

# iteration to the next (Dev.total – Dev.old [see below]) because the element 

relating 

# to the saturated model will be the same at every iteration).  
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log.L<-sum(data.DC$CC*log(mu.current) + (1-data.DC$CC)*log(1-mu.current)) 

dev<- -2*log.L 

 

#Create study specific versions of all key model components 

info.matrix.4<-info.matrix 

score.vect.4<-score.vect 

dev.4<-dev 

nsubs.4<-nsubs 

 

#Send all of the key model components from the current study to the AC  

save(info.matrix.4,file=paste(AC.Directory,"info.matrix.4.RData",sep="")) 

save(score.vect.4,file=paste(AC.Directory,"score.vect.4.RData",sep="")) 

save(dev.4,file=paste(AC.Directory,"dev.4.RData",sep="")) 

save(nsubs.4,file=paste(AC.Directory,"nsubs.4.RData",sep="")) 

 

#END STUDY 4 

###########  

 

############# 

#START STUDY 5 

 

#Read in full data 

data.DC<-read.table(file=DC5.data.file, sep=",",header=T) 

 

#Strip out first column 

data.DC<-data.DC[,-1] 

 

#Calculate number of subjects available in the current study 

#(by enumerating length of ID column) 

nsubs<-length(data.DC$id) 

#Define design matrix (matrix of covariates) to contain BMI, SNP and the 

#interaction covariate and add a column of 1s at the start for the regression 

constant 

X.mat<-cbind(rep(1,nsubs),data.DC$bmi,data.DC$bmi456,data.DC$snp) 
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#Load the current value of the beta vector (vector of regression coefficients) from 

its 

#location on the AC computer 

load(file=paste(AC.Directory,"beta.vect.next.RData",sep="")) 

 

# Use this current value of the beta vector to calculate elements from the current 

study 

beta.vect<-beta.vect.next 

 

# Calculate linear predictors from observed covariate values and elements of 

# current beta vector 

lp.current<-beta.vect[1]+beta.vect[2]*X.mat[,2]+beta.vect[3]*X.mat[,3]+ 
beta.vect[4]*X.mat[,4] 

 

# Apply inverse logistic transformation 

mu.current<-exp(lp.current)/(1+exp(lp.current))      

 

# Derive variance function and diagonal elements for weight matrix (using 

squared 

# first differential of link function) 

var.i<-(mu.current*(1-mu.current)) 

g2.i<-(1/(mu.current*(1-mu.current)))^2 

W.mat<-diag(1/(var.i*g2.i)) 

 

#Calculate information matrix 

info.matrix<-t(X.mat)%*%W.mat%*%X.mat 

 

#Derive u terms for score vector  

u.i<- (data.DC$CC-mu.current)* (1/(mu.current*(1-mu.current))) 

  

#Calculate score vector 

score.vect<-t(X.mat)%*%W.mat%*%u.i 

  

#Calculate log likelihood and deviance contribution for current study 

#For convenience, ignore the element of deviance that relates to the full saturated 
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# model, because that will cancel out in calculating the change in deviance from 

one 

# iteration to the next (Dev.total – Dev.old [see below]) because the element 

relating 

# to the saturated model will be the same at every iteration).  

log.L<-sum(data.DC$CC*log(mu.current) + (1-data.DC$CC)*log(1-mu.current)) 

dev<- -2*log.L 

 

#Create study specific versions of all key model components 

info.matrix.5<-info.matrix 

score.vect.5<-score.vect 

dev.5<-dev 

nsubs.5<-nsubs 

 

#Send all of the key model components from the current study to the AC  

save(info.matrix.5,file=paste(AC.Directory,"info.matrix.5.RData",sep="")) 

save(score.vect.5,file=paste(AC.Directory,"score.vect.5.RData",sep="")) 

save(dev.5,file=paste(AC.Directory,"dev.5.RData",sep="")) 

save(nsubs.5,file=paste(AC.Directory,"nsubs.5.RData",sep="")) 

 

#END STUDY 5 

########### 

 

 

############# 

#START STUDY 6 

 

#Read in full data 

data.DC<-read.table(file=DC6.data.file, sep=",",header=T) 

 

#Strip out first column 

data.DC<-data.DC[,-1] 

 

#Calculate number of subjects available in the current study 

#(by enumerating length of ID column) 
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nsubs<-length(data.DC$id) 

#Define design matrix (matrix of covariates) to contain BMI, SNP and the 

#interaction covariate and add a column of 1s at the start for the regression 

constant 

X.mat<-cbind(rep(1,nsubs),data.DC$bmi,data.DC$bmi456,data.DC$snp) 

 

#Load the current value of the beta vector (vector of regression coefficients) from 

its 

#location on the AC computer (stored during activation of block 2 of R code) 

load(file=paste(AC.Directory,"beta.vect.next.RData",sep="")) 

 

# Use this current value of the beta vector to calculate elements from the current 

study 

beta.vect<-beta.vect.next 

 

# Calculate linear predictors from observed covariate values and elements of 

# current beta vector 

lp.current<-beta.vect[1]+beta.vect[2]*X.mat[,2]+beta.vect[3]*X.mat[,3]+ 
beta.vect[4]*X.mat[,4] 

# Apply inverse logistic transformation 

mu.current<-exp(lp.current)/(1+exp(lp.current))      

 

# Derive variance function and diagonal elements for weight matrix (using 

squared 

# first differential of link function) 

var.i<-(mu.current*(1-mu.current)) 

g2.i<-(1/(mu.current*(1-mu.current)))^2 

W.mat<-diag(1/(var.i*g2.i)) 

 

#Calculate information matrix 

info.matrix<-t(X.mat)%*%W.mat%*%X.mat 

 

#Derive u terms for score vector  

u.i<- (data.DC$CC-mu.current)* (1/(mu.current*(1-mu.current))) 

  

#Calculate score vector 
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score.vect<-t(X.mat)%*%W.mat%*%u.i 

  

#Calculate log likelihood and deviance contribution for current study 

 

#For convenience, ignore the element of deviance that relates to the full saturated 

# model, because that will cancel out in calculating the change in deviance from 

one 

# iteration to the next (Dev.total – Dev.old [see below]) because the element 

relating 

# to the saturated model will be the same at every iteration).  

log.L<-sum(data.DC$CC*log(mu.current) + (1-data.DC$CC)*log(1-mu.current)) 

dev<- -2*log.L 

 

#Create study specific versions of all key model components 

info.matrix.6<-info.matrix 

score.vect.6<-score.vect 

dev.6<-dev 

nsubs.6<-nsubs 

 

#Send all of the key model components from the current study to the AC  

save(info.matrix.6,file=paste(AC.Directory,"info.matrix.6.RData",sep="")) 

save(score.vect.6,file=paste(AC.Directory,"score.vect.6.RData",sep="")) 

save(dev.6,file=paste(AC.Directory,"dev.6.RData",sep="")) 

save(nsubs.6,file=paste(AC.Directory,"nsubs.6.RData",sep="")) 

 

#END STUDY 6 

########### 

 

########## 

#ITERATION ON ALL LOCAL COMPUTERS NOW COMPLETED 

# KEY MODEL ELEMENTS HAVE BEEN TRANSMITTED TO AC 

 

#AC WILL NOW USE THESE ELEMENTS TO GENERATE UPDATE TERMS 

#AND TEST FOR CONVERGENCE 
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#Read back into R, the key elements generated by the local data computers and 

#sent to the AC 

load(file=paste(AC.Directory,"info.matrix.1.RData",sep="")) 

load(file=paste(AC.Directory,"info.matrix.2.RData",sep="")) 

load(file=paste(AC.Directory,"info.matrix.3.RData",sep="")) 

load(file=paste(AC.Directory,"info.matrix.4.RData",sep="")) 

load(file=paste(AC.Directory,"info.matrix.5.RData",sep="")) 

load(file=paste(AC.Directory,"info.matrix.6.RData",sep="")) 

 

load(file=paste(AC.Directory,"score.vect.1.RData",sep="")) 

load(file=paste(AC.Directory,"score.vect.2.RData",sep="")) 

load(file=paste(AC.Directory,"score.vect.3.RData",sep="")) 

load(file=paste(AC.Directory,"score.vect.4.RData",sep="")) 

load(file=paste(AC.Directory,"score.vect.5.RData",sep="")) 

load(file=paste(AC.Directory,"score.vect.6.RData",sep="")) 

 

load(file=paste(AC.Directory,"dev.1.RData",sep="")) 

load(file=paste(AC.Directory,"dev.2.RData",sep="")) 

load(file=paste(AC.Directory,"dev.3.RData",sep="")) 

load(file=paste(AC.Directory,"dev.4.RData",sep="")) 

load(file=paste(AC.Directory,"dev.5.RData",sep="")) 

load(file=paste(AC.Directory,"dev.6.RData",sep="")) 

 

load(file=paste(AC.Directory,"nsubs.1.RData",sep="")) 

load(file=paste(AC.Directory,"nsubs.2.RData",sep="")) 

load(file=paste(AC.Directory,"nsubs.3.RData",sep="")) 

load(file=paste(AC.Directory,"nsubs.4.RData",sep="")) 

load(file=paste(AC.Directory,"nsubs.5.RData",sep="")) 

load(file=paste(AC.Directory,"nsubs.6.RData",sep="")) 

 

#Read in the current beta vector 

load(file=paste(AC.Directory,"beta.vect.next.RData",sep="")) 

 

#Sum the key elements across all studies 
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info.matrix.total<-info.matrix.1+info.matrix.2+info.matrix.3+ 

                                   info.matrix.4+info.matrix.5+info.matrix.6 

 

score.vect.total<-score.vect.1+score.vect.2+score.vect.3+ 

                                 score.vect.4+score.vect.5+score.vect.6 

 

dev.total<-dev.1+dev.2+dev.3+dev.4+dev.5+dev.6 

 

nsubs.total<-nsubs.1+nsubs.2+nsubs.3+nsubs.4+nsubs.5+nsubs.6 

 

#Create variance covariance matrix as inverse of information matrix 

#(solve() denotes matrix inversion in R ) 

variance.covariance.matrix.total<-solve(info.matrix.total) 

 

#Create beta vector update terms 

beta.update.vect<-variance.covariance.matrix.total %*% score.vect.total 

 

#Add update terms to current beta vector to obtain new beta vector for next 

iteration 

beta.vect.next<-beta.vect.next+beta.update.vect 

 

#Calculate value of convergence statistic and test whether meets convergence 

criterion 

 

converge.value<-abs(dev.total-dev.old)/(abs(dev.total)+0.1) 

if(converge.value<=epsilon)converge.state<-"MET" 

if(converge.value>epsilon)dev.old<-dev.total 

 

 

#Now summarise model state after current iteration 

cat("\nSUMMARY OF MODEL STATE after iteration No",iteration.count, 

    "\n\nCurrent deviance",dev.total,"on", 

    (nsubs.total-length(beta.vect.next)), "degrees of freedom", 

    "\nConvergence criterion    ",converge.state,"\n\n") 
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cat("Information matrix overall\n") 

print(info.matrix.total) 

 

cat("Score vector overall\n") 

print(score.vect.total) 

 

#If convergence has been obtained, declare final (maximum likelihood) beta 

vector, 

#and calculate the corresponding standard errors, z scores and p values 

#(the latter two to be consistent with the output of a standard GLM analysis) 

#Then print out final model summary 

 

if(converge.value<=epsilon) 

{ 

beta.vect.final<-beta.vect.next 

se.vect.final<-sqrt(diag(variance.covariance.matrix.total)) 

z.vect.final<-beta.vect.final/se.vect.final 

pval.vect.final<-2*pnorm(-abs(z.vect.final)) 

 

model.parameters<-cbind(beta.vect.final,se.vect.final,z.vect.final,pval.vect.final) 

dimnames(model.parameters)<-
list(c("Intercept","BMI","SNP","BMI.456"),c("Coefficient","SE","z-value","p-value")) 

 

model.parameters<-signif(model.parameters,digits=4) 

 

 

#Print out final model summary 

cat("\n\nFINAL MODEL\n") 

 

print(model.parameters) 

 

cat("\nCurrent deviance",dev.total,"on",(nsubs.total-length(beta.vect.next)), "degrees of 
freedom","\nAfter iteration No",iteration.count,"\n") 

} 
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#Repeat summary of final model state 

cat("\nSUMMARY OF MODEL STATE after iteration No",iteration.count, 

    "\n\nCurrent deviance",dev.total,"on", 

    (nsubs.total-length(beta.vect.next)), "degrees of freedom", 

    "\nConvergence criterion    ",converge.state,"\n\n") 

 

#Update the stored value of the beta vector to reflect the current estimate – to set 

#up the next iteration 

save(beta.vect.next,file=paste(AC.Directory,"beta.vect.next.RData",sep="")) 

 

C.2.4 Output from Analysis 2: 

1st Iteration: 

 

All data computers use this coefficient vector for iteration 1 

------ 

Data Computer 1: 

 

â8©ª:;�,Ë;�= � 

 

g8©ª:;�,Ë;�= �  

i:;�,Ë;� � 2772.589 

0 0 0 0

500 -11.61089 0 294.75 

-11.61089 7972.37088 0 -25.55092 

0 0 0 0 

294.75 -25.55092 0 387.75 

-38 203.1316 0 87.5 
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------ 

Data Computer 2: 

 

â8©ª:;�,Ë;�= � 

 

 

g8©ª:;�,Ë;�= � 

i:;�,Ë;� � 4158.883 

------ 

Data Computer 3: 

â8©ª:;�,Ë;�= � 

 

 

 

 

g8©ª:;�,Ë;�= �  

i:;�,Ë;� � 2079.442 

------ 
  

750 -8.417491 0 443 

-8.417491 12492.689094 0 -11.777043 

0 0 0 0 

-14 370.8722 0 162 

443 -11.777043 0 578.5 

375 34.88511 0 226.75 

34.88511 6407.52995 0 -26.82820 

0 0 0 0 

226.75 -26.82820 0 293.75 

11 -14.2244 0 70.5 
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Data Computer 4: 

 

â8©ª:;",Ë;�= � 

 

 

 

g8©ª:;",Ë;�= �  

i:;",Ë;� � 415.8883 

------ 

Data Computer 5: 

â8©ª:;c,Ë;�= � 

 

 

g8©ª:;c,Ë;�= �  

i:;c,Ë;� � 2772.589 

------ 

  

75 16.13902 16.13902 47 

16.13902 1265.49746 1265.49746 -12.16424 

16.13902 1265.49746 1265.49746 -12.16424 

47 -12.16424 -12.16424 61.5 

-8 68.06208 68.06208 12 

500 70.56657 70.56657 297 

70.56657 7646.29164 7646.29164 65.39412 

70.56657 7646.29164 7646.29164 65.39412 

297 65.39412 65.39412 382 

36 487.2951 487.2951 149 
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Data Computer 6: 

â8©ª:;�,Ë;�= � 

 

 

g8©ª:;�,Ë;�= �  

i:;�,Ë;� � 970.406 

------ 

Information matrices and score vectors generated by each study are transmitted to 

AC. 

Central Summation at AC: 

 

� â8©ª:,Ë;�=�
:;� � 

 

�g8©ª:,Ë;�=�

:;� � 

� i:,Ë;��
:;� � 13169.80 

Convergence criterion tested: Not met. 

175 11.5221 11.5221 102.25 

11.5221 2864.847 2864.847 -28.50817 

11.5221 2864.847 2864.847 -28.50817 

102.25 -28.50817 -28.50817 132.25 

10 149.3701 149.3701 47.5 

2375 113.08442 98.22769 1410.75 

113.08442 38649.22602 11776.63610 39.43446 

98.22769 11776.63610 11776.63610 24.72170 

1410.75 -39.43446 24.72170 1835.75 

-3 1264.5067 704.7273 528.5 
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Derive update vector: 

 

É8²³Ç;È=<�Ê8²³Ç;È= 		� 

 

Add update vector to original coefficient vector to produce coefficient vector for second iteration: 

 

²³Ë;� � ²³Ë;� � É�²³Ç;È�<�Ê�²³Ç;È� =     

2nd Iteration: 

©ªË;� � 

Procedure used in iteration 1 repeated, all data computers use this coefficient vector 

for iteration 2 

For clarity, the information matrix, score vector, and deviance contributions from the 

individual data computers are omitted from the presentation of this iteration. 

Information matrices and score vectors are generated by each study and are 

transmitted to AC 

  

-0.32183281 0.02228647 0.03911561 0.53516954 

-0.32183281 0.02228647 0.03911561 0.53516954 

-0.32183281 0.02228647 0.03911561 0.53516954 
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Central Summation at AC: 

 

� â8©ª:,Ë;�=�
:;� � 

 

� g8©ª:,Ë;�=�
:;� � 

� i:,Ë;��
:;� � 12825.07 

Convergence Criterion: Not met. 

Derive update vector: 

 

É8²³Ç;�=<�Ê8²³Ç;�= 		� 

 

Add update vector to original coefficient vector to produce coefficient vector for third 

iteration: 

²³Ë;� � ²³Ë;� � É�²³Ç;��<�Ê�²³Ç;�� =     

  

2295.0536 115.0395 92.74410 1338.4 

115.0395 37006.6888 11006.04639 -160.8173 

92.7441 11006.0464 11006.04639 -48.61056 

1338.4 -160.8173 -48.61056 1707.81381 

4.679958 46.098158 29.761157 17.657043 

-0.0077096093 0.0007061835 0.0021357681 0.0165082231 

-0.32954242 0.02299265 0.04125137 0.55167776 
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3rd Iteration: 

©ªË;� � 

Procedure used in iteration 1 repeated, all data computers use this coefficient vector 

for iteration 3 

For clarity, the information matrix, score vector, and deviance contributions from the 

individual data computers are again omitted from the presentation of this iteration. 

Information matrices and score vectors are generated by each study and are 

transmitted to AC 

Central Summation at AC: 

 

� â8©ª:,Ë;�=�
:;� � 

 

� g8©ª:,Ë;�=�
:;� � 

� i:,Ë;��
:;� � 12824.72 

Convergence Criterion:   Not met. 

Derive update vector: 

-0.32954242 0.02299265 0.04125137 0.55167776 

2290.07166 114.04663 91.77508 1333.57918 

114.04663 36898.8956 10949.7004 -169.08819 

91.77508 10949.7004 10949.7004 -53.88901 

1333.57918 -169.0882 -53.88901 1699.55867 

0.02188718 0.16208605 0.11946433 0.05791435 



Appendix C. 

348 

 

É8²³Ç;�=<�Ê8²³Ç;�= 		� 

 

Add update vector to original coefficient vector to produce coefficient vector for third 

iteration: 

²³Ë;" � ²³Ë;� � É�²³Ç;��<�Ê�²³Ç;�� =     

4th Iteration: 

©ªË;" � 

Procedure used in iteration 1 repeated, all data computers use this coefficient vector 

for iteration 3 

For clarity, the information matrix, score vector, and deviance contributions from the 

individual data computers are omitted from the presentation of this iteration. 

 

Information matrices and score vectors are generated by each study and are 

transmitted to AC 

  

-2.089082e-10 1.660537e-11 1.390907e-10 5.496857e-10 

-0.32956275  0.02299454 0.04126082 0.55172828 

-0.32956275  0.02299454 0.04126082 0.55172828 
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Central Summation at AC: 

 

� â8©ª:,Ë;"=�
:;� � 

 

�g8©ª:,Ë;"=�

:;� � 

� i:,Ë;"�
:;� � 12824.72 

Convergence Criterion:   Met. 

Variance-covariance matrix now obtained by taking the inverse of the summed 

information matrix 

�� É8²³¸,Ç;�=�
¸;È �

<È � 

 

and standard errors are obtained by taking the square-root of the diagonal elements 

of this matrix. 

2290.05551 114.04125 91.77065 1333.56304 

114.04125 36898.5281 10949.48836 -169.11693 

91.77065 10949.48836 10949.48836 -53.90879 

1333.56304 -169.11693 -53.90879 1699.53140 

2.692875e-07 2.018901e-06 1.655988e-06 6.453095e-07 

8.054620e-04 -3.499749e-06 -6.365439e-06 -6.325681e-04 

-3.499749e-06 3.856388e-05 -3.850815e-05   5.362074e-06 

-6.365439e-06 -3.850815e-05   1.299160e-04   5.283779e-06 

-6.325681e-04 5.362074e-06 5.283779e-06 1.085453e-03 
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C.2.5 Final Results for Analysis 2: 

Coefficient Estimate Std Error 

Intercept -0.32960 0.02838 

BMI 0.02300 0.00621 

BMI.456 0.04126 0.01140 

SNP 0.55170 0.03295 

Residual deviance:   12824.7   on   9496   degrees of freedom 
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Appendum 

This section contains the three publications that support this thesis. 

The first paper (Masca et al., 2011) was published in Statistics in Medicine and 

concerns some of the work reported in Chapter 1. 

The second paper, Masca et al. (in press) has been accepted for publication in the 

International Journal of Epidemiology and concerns the work in Chapter 2. 

The third paper (Wolfson et al., 2010) outlines the work reported in Chapter 3, and 

was published in the International Journal of Epidemiology. 
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Pharmacogenetic interactions and their
potential effects on genetic analyses
of blood pressure
Nicholas Masca,∗† Nuala A. Sheehan and Martin D. Tobin

Background: In observational studies, analyses of blood pressure (BP) typically require some correction
for the use of antihypertensive medications by study participants. Different approaches to correcting for
treatment have been compared, but the impact of pharmacogenetic interactions that influence the efficacy
of antihypertensive treatments on estimates of genetic main effects has not been considered. This work
demonstrates the potential influence of pharmacogenetic interactions in genetic analyses of BP.

Methods: A simulation study is conducted to test the influence of pharmacogenetic interactions on
approaches to the analysis of BP. Results from three plausible scenarios are presented.

Results: Informative BP approaches (Fixed Treatment Effect, Non-parametric adjustment, Censored
Normal Regression) perform well when there is no pharmacogenetic interaction, but yield biased estimates
of the main effects of particular genetic variants when pharmacogenetic interactions exist. Substitution
approaches (Binary Trait, Fixed Substitution, Random Substitution, Median Method) are unaffected by
pharmacogenetic interactions, but consistently perform sub-optimally.

Conclusions: We recommend that the Informative BP approaches remain the most appropriate methods
to use in practice, but stress that caution is required in the interpretation of their results—especially when
an interaction between treatment and a genetic variant of interest is suspected. We make some suggestions
as to how to check for possible interactions and confirm the results from genetic analyses of BP, but warn
that these should be reviewed when data on real pharmacogenetic interactions become available. Copyright
© 2010 John Wiley & Sons, Ltd.

Keywords: blood pressure; genetic association; pharmacogenetics; treatment effects; imputation; bias

1. Introduction

Hypertension (high blood pressure (BP)) is a common condition estimated to affect over 25 per cent
of adults worldwide [1]. Although hypertension itself is asymptomatic, it is a major contributor to the
risk of cardiovascular disease, which accounts for up to 30 per cent of all deaths [2, 3]. Even changes
within the normal range of BP are associated with risk of stroke and coronary heart disease (CHD) [4].
BP in its own right is therefore of major importance to public health.

Lifestyle factors such as dietary salt intake, physical activity, smoking, and body-mass index (BMI) are
all known to influence BP [5, 6], but BP also has a substantial heritable component [7, 8]. Identification
of the genetic determinants of BP can offer insights into the biological pathways underpinning BP
regulation [9], and, indeed, this has been a key aim of recent genetic association studies of BP.

Paramount to the success of a genetic association study is a sufficient statistical power to detect
the generally modest effects of common genetic variants [10, 11]. In genome-wide association studies,
hundreds of thousands or even millions of genetic variants are tested for association with the phenotype
of interest, and an allowance for multiple testing must be made. The threshold for genome-wide
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significance is currently defined as p<5×10−8 [12]. A sufficiently large sample size is crucial to the
provision of an adequate power to detect associations for BP at this threshold. Recent breakthroughs
in genome-wide association studies of BP have been achieved using large sample sizes [13, 14].
For instance, the Global BPgen Consortium [13] meta-analysed 17 cohorts consisting of a total of
34 433 participants, and the CHARGE Consortium [14] meta-analysed five cohorts consisting of 29 136
participants. The single nucleotide polymorphisms (SNPs) highlighted in these studies had reported
effect sizes between approximately 0.5 and 1 mmHg per copy of the minor allele for systolic BP, and
approximately 0.35–0.5 mmHg per copy of the minor allele for diastolic BP (typically about 1

40 th to
1

15 th of a standard deviation).
Besides sample size, there are several other factors that may limit the statistical power of genetic

association studies of BP. For instance, it can be difficult to gain a reliable measure of an individual’s
BP [10] because BP varies in different situations and at different time points throughout the day. Other
measurement difficulties, such as an alerting (or ‘white-coat’) response and observer bias (including
‘digit preference’, which entails rounding BP up or down), can also influence recordings of BP [15, 16].
Moreover, investigations into the aetiology of BP are affected by the use of antihypertensive treatments
by study participants. Since hypertension is highly prevalent within western countries, drugs to lower
BP—antihypertensives—are widely prescribed. Population-based cohort studies therefore could have up
to a quarter of participants on antihypertensive treatment (or even more in studies of older populations)
[13, 14]. For these treated participants, any BP measurements provided within a study will reflect
‘modified BP’ values, as opposed to the ‘underlying BP’ values that exist, in principle, in the absence
of treatment. It has been shown that a failure to adequately correct for the inclusion of modified
BPs within an analysis can distort the results [17--21]. Because antihypertensive treatments lower BP,
modified BPs will be lower than the unobserved, underlying BPs, and the results from an analysis
may thus be misleading if no account is made for antihypertensive use. Previous work has compared
different approaches to correct analyses for the use of antihypertensive medications [20]. One approach
that was recommended and is particularly easy to use was proposed by Cui et al. (‘Fixed Treatment
Effect’—see Section 2) [22, 23], and was actually employed in both the Global BPgen and CHARGE
consortia [13, 14].

In studies of BP, a situation known as a ‘differential intervention’ occurs when either the threshold
for receiving treatment or the effect of treatment depends on another variable [19]. For example, a
differential threshold for receiving treatment occurs where antihypertensive medications are prescribed
to individuals with diabetes at a lower threshold of BP than to non-diabetics [24]. A differential
treatment effect would occur, for example, if the efficacy of treatment depends on genotype for a
particular genetic variant (a type of pharmacogenetic interaction) [25, 26].

White et al. [19] investigated how three different approaches to correct for the use of treatment
(‘No Adjustment’, ‘Exclude’ and ‘Median Method’—see Section 2) perform when there is a differential
intervention. They looked at both a differential threshold for receiving treatment and a differential
treatment effect and found that, in each situation, the approaches tested behaved very differently to
one another. Similarly, a more recent study, which tested a number of additional approaches under a
differential threshold for receiving treatment, found that several approaches led to biased estimates of
main effects of interest [21]. It thus appears that a differential intervention can affect the performance
of different approaches to correct for the use of treatment.

We aim to investigate the plausible scenario where a genetic variant leads to a differential treatment
effect (rather than a differential threshold for receiving treatment) in a cross-sectional genetic association
study of BP. In particular, we aim to assess how the different approaches to correct for the use of
treatment perform in such settings, when the primary interest of the analysis is in estimating the marginal
effect of a particular genetic variant on BP (i.e. the effect of the variant unmitigated by treatment). This
is an important issue; if the approaches to analysis that have been previously recommended [20] produce
biased estimates in the presence of a pharmacogenetic interaction involving a differential treatment
effect, it would be necessary to reconsider which method to use when such an interaction is suspected.

This paper demonstrates how the existence of pharmacogenetic interactions that influence the efficacy
of antihypertensives can exacerbate difficulties in analyses of BP when some participants are on
treatment. Because the precise genetic variants that alter the efficacy of antihypertensives are currently
unknown, there are, at present, no real data with which to test our findings. Such evidence will
eventually be forthcoming, however. In order to explore these issues, we consider a number of plausible
hypothetical situations in simulation studies.
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In Section 2, current approaches to the analysis of BP are outlined. Our simulation study is then
described in Section 3, and results are provided in Section 4. Recommendations are provided in
Section 5, along with a discussion of the implications and limitations of our work.

2. Approaches to analysis

‘Naïve’ approaches to the analysis of BP [21] include: (a) ignoring the problem of antihypertensive
use altogether and analysing all the observed BP data without regard to the use of treatment [No
Adjustment]; (b) adjusting for the use of antihypertensives during analysis by modelling treatment
as a binary covariate [Treatment as a Binary Covariate]; and (c) omitting any participant who uses
antihypertensives from analysis [Exclude]. Although these approaches have been widely used in practice
(e.g. [27--29]), previous work has shown that they often lead to biased results [18--21].

We classify a second group of approaches to the analysis of BP data as ‘Substitution’ approaches.
These approaches assume that any participants on antihypertensive treatment are hypertensive, and
they typically substitute modified BPs (i.e. BP measurements for participants on antihypertensives) for
alternative values. The Substitution approaches include: (d) dichotomising the quantitative measures of
BP and performing a logistic regression, using a dichotomous hypertension outcome (Yes=participant
uses antihypertensive medication or has SBP greater than or equal to some accepted threshold, such as
140 mmHg; No=otherwise) [Binary Trait]; (e) substituting modified BPs for a constant, b, which, for
example, is set to 140 mmHg—the minimum threshold of SBP for a clinical diagnosis of hypertension
[3] [Fixed Substitution [30]]; (f) substituting modified BPs for values generated randomly from a
distribution consistent with Stage 1 (mild) hypertension (such as a normal distribution with mean
150 mmHg and standard deviation 5, truncated at 140 and 160) [Random Substitution [30]]; and (g)
substituting modified BPs for some value k, and fitting a quantile regression to the data [31] (Median
Method [17, 19]). For (g), k is selected to be a value at the upper end of the realistic distribution of BP
(such as 160–200 mmHg for SBP), and, crucially, participants who use antihypertensives are assumed
to have underlying BP above the median.

We classify three remaining approaches as ‘Informative BP’ approaches. These approaches use all
the observed data in the analyses and apply a simple mathematical correction either to modified BPs
themselves or to the statistical likelihood function. The Informative BP approaches include: (h) adding
a fixed constant, c, to modified BPs, which is set to represent an average (negative) antihyperten-
sive treatment effect (Fixed Treatment Effect [22, 23]); (i) adjusting BP measurements by adding the
difference between a raw and an adjusted residual (see below) to each observation (Non-Parametric
Adjustment [8, 20]); and (j) assuming that modified BPs are right-censored, and fitting a tobit-type
model to the data (Censored Normal Regression). For (i), an algorithm is applied to each individual BP
reading in turn to derive a set of adjusted residuals from the raw residuals. To illustrate this approach
simply, we assume that the raw residuals are from a null regression model (including only an intercept
term without covariates); such an approach may also be used in practice where one wishes to retain
flexibility to adjust for covariates at a later stage of the analysis. For untreated individuals, the adjusted
residual is simply equal to the raw residual, but for treated individuals, the adjusted residual is an
average of the raw residual for that particular individual and any greater, adjusted residuals. Hence,
if an individual is treated the adjusted residual is greater than the raw residual (with the exception
of the individual with the highest BP—whose adjusted residual is equal to the raw residual), and
the observed SBP is adjusted upward. Approaches (i) and (j) are methodologically related; where
(i) averages over the probability density function to the right of any modified BPs, (j) integrates over
this area.

The approaches within the Substitution and Informative BP groups are basically imputation methods,
because they impute BP for those measures distorted by treatment. A further group of approaches,
however, have specifically been referred to as ‘Multiple Imputation’ approaches [21, 32]. These Multiple
Imputation approaches impute modified BPs by conditioning on out-of-study or pre-treatment measure-
ments [18, 21, 33], which are typically only available in longitudinal studies. Since many studies of BP
(for example, in the Global BPgen consortium [13], which is the type of application we have in mind)
have little or no longitudinal data, these approaches often cannot be applied. Our focus in this paper is
on approaches that can be applied in cross-sectional data; that is, our focus is on the approaches within
the Naïve, Substitution and Informative BP groups.

Copyright © 2010 John Wiley & Sons, Ltd. Statist. Med. 2011, 30 769--783
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Table I. Summary of the analysis models with parameter values used in the simulated studies. Shaded and
non-shaded regions denote the three categories of approaches: Naïve, Substitution, and Informative BP.

Methods Description Parameter values

Naïve
(a) No Adjustment Ignore use of treatment; analyse

all observations in a linear
regression model

(b) Treatment as Adjust for antihypertensive TREATi =1 if individual i uses
a Binary Covariate treatment use by fitting TREATi antihypertensive medication;

as a binary covariate TREATi =0 otherwise

(c) Exclude Exclude any participants who
use antihypertensive medication
from the analysis

Substitution
(d) Binary Trait Define a binary ‘hypertension’ hypertensioni =1 if TREATi =1 or

outcome, and fit a logistic if Zi�140mmHg; hypertensioni =0

regression model to the data otherwise

(e) Fixed Substitution Substitute modified BPs for the b=130 and 140 mmHg

constant b

(f) Random Substitution Substitute modified BPs for ∼N(150,52) truncated to [140,160]

values generated randomly from

a normal distribution

(g) Median Method Substitute modified BPs for the k =140, 150, 160 in Scenario 1;

value k, and fit a quantile k =160, 180 and 200 in

regression to the data subsequent scenarios
Informative BP
(h) Fixed Treatment Effect Add the constant c to modified c=5; 10; and 15

BPs
(i) Non-parametric Apply an algorithm to derive a

Adjustment set of adjusted residuals; adjust
modified BPs by adding the
difference between the current
adjusted and raw residuals

(j) Censored Normal Assume that modified BPs are
Regression right-censored; fit a tobit-model

to the data

Some of the Substitution and Informative BP approaches require specific values to be specified [such
as the constant b for approach (e), and the constant c for approach (h)]. Guidance for selecting these
imputation values has typically been provided by the original proposers (e.g. in [17, 19, 22, 23, 30]),
and depends on knowledge about the specific drugs under consideration. A number of different values
can potentially be used with each approach, however. In our simulations we use a range of illustrative
parameter values, which we outline in the following section. Table I provides a brief description of
each approach and lists the parameter values used for each in our simulations.

3. Simulation study

The aim in our simulation studies is to test how different, realistic scenarios impact upon the approaches
to correct for the use of antihypertensives. We are interested in estimating the marginal effect of a
particular genetic variant on the underlying BP in the whole study population (i.e. the main effect
of a SNP on the BP that would have prevailed in the absence of antihypertensive treatment taken
by a proportion of the population). Three scenarios are simulated and Monte Carlo estimates of the
statistical power, the type I error rate, and the mean level of bias are derived with respect to a SNP
for each approach. A SNP is a genetic variant that has one of two possible alleles on each of the two

772

Copyright © 2010 John Wiley & Sons, Ltd. Statist. Med. 2011, 30 769--783



N. MASCA, N. A. SHEEHAN AND M. D. TOBIN

homologous chromosomes. For any particular SNP, the allele that has the lowest frequency within a
given population is known as the minor allele. Thus, for a particular SNP, an individual may have zero,
one, or two copies of the minor allele.

In the first scenario, ‘Non-differential intervention’, the approaches are compared in a situation where
both the threshold for receiving treatment and the effect of treatment do not depend on any other factor.
This is a ‘baseline’ type scenario, which determines the potential levels of performance attainable by
each approach. The first scenario forms the basis of the subsequent scenarios, which are created by
altering one or more of its properties. A full description of Scenario 1 is thus provided below, while
for subsequent scenarios, only those properties that differ from Scenario 1 are described.

3.1. Scenario 1: non-differential intervention

Scenario 1 is designed to represent a population-based study of BP, consisting of 2000 unrelated partic-
ipants aged between 25 and 80 years. For the i th participant (i =1, . . . ,2000), Zi denotes underlying
SBP (in mmHg); AGEi denotes age (in years); SEXi denotes sex (1 = male; 0 = female); SNP1i
denotes genotype for a SNP with minor allele frequency 0.3 (zero, one, or two copies of the minor
allele)—which is centred for comparability across different SNP effect sizes; and �i denotes normally
distributed random error. AGEi is generated from a uniform distribution with parameters 25 and 80;
SEXi is generated from a Bernoulli distribution with probability 0.5; and SNP1i is generated from two
Bernoulli trials with probability 0.3. For any individual, the underlying SBP Zi is simulated from a
linear regression model with an additive genetic effect (i.e. where two copies of the minor allele yield
twice the effect of one copy):

Zi =�0 +�1AGEi +�2SEXi +�3SNP1i +�i (1)

where �0 =110 is an intercept coefficient, �1 =0.4, �2 =3, �3 =+2/−2/0, and �i ∼N(0,182). Note
that the simulation sample size of 2000 individuals is a realistic size for a cohort that would be part
of a larger consortium. However, the simulated effect size of SNP1 is larger than would typically be
expected, but is required here to ensure that the analysis models are adequately powered.

An individual with underlying SBP greater or equal to 140 mmHg is labelled as hypertensive [3], and
will possibly receive treatment. In practice, not all hypertensive individuals receive antihypertensive
medication; we therefore assume that antihypertensives are received with probability 0.75. Hence,
TREATi denotes treated status (1 = Yes; 0 = No), and is generated from a Bernoulli distribution with
probability 0.75. As treatment is only administered to hypertensives, TREATi is always 0 if Zi<140.

For individual i , an observed SBP, Yi , is generated to represent the BP measurements typically
obtained within studies. For individuals who use antihypertensives, Yi is derived by subtracting a
treatment effect from Zi . We shall refer to the size of the treatment effect as �i , and generate it from a
normal distribution with mean 15 mmHg and variance 42 [i.e. �i ∼N(15,42)]. To prevent any unrealistic
cases, in which the treatment directly increases SBP, �i is truncated at 0.

We simulate 1000 data sets under the null hypothesis of no SNP1 effect on BP (i.e. when �3 =0),
and under two alternative hypotheses (i.e. when �3 =2 and when �3 =−2). Monte Carlo estimates
of the type I error rate and the statistical power are derived for each approach with respect to the
marginal effect of SNP1 on SBP. Mean bias (in mmHg) is also calculated with respect to estimates
of the effect of SNP1, but we summarize the results by reporting mean bias when �3 =2 only. Note
that the measures of power, type I error, and bias will depend on factors such as the sample size, the
minor allele frequency of the SNP of interest, the size of the SNP effect, the proportion of individuals
treated within each study, the magnitude of the treatment effect, etc. Descriptive statistics for the studies
simulated in this scenario are presented in Table II. Note that the mean proportion of individuals who
receive antihypertensives within these studies is relatively high at 27.87 per cent. In order to illustrate
the potential implications of the interactions of interest we explore, this was deliberately simulated at
a relatively high level. Although there are examples of studies with a similar proportion of individuals
on treatment (such as studies of older populations [34]), we accept that this proportion is towards the
upper end of the scale.

Note that statistical power is assessed relative to the simulated SNP effect sizes of +2 (i.e. �3 =2)
and −2 (i.e. �3 =−2), and type I error is assessed relative to the simulated SNP effect of 0 (i.e. �3 =0).
As other authors have done [20, 35, 36], we chose parameter coefficients to generate data sets that were
realistic representations of many real epidemiological studies of BP (see Table II).

Copyright © 2010 John Wiley & Sons, Ltd. Statist. Med. 2011, 30 769--783
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Table II. Descriptive statistics for Scenario 1—non-differential intervention.

Summary statistics Scenario 1

Sample size 2000
Mean underlying SBP (SD) 133.71 (19.2)
For treated subjects 153.24 (10.4)
For untreated subjects 126.17 (16.2)
Mean observed SBP (SD) 129.53 (16.0)

For treated subjects 138.24 (11.2)
For untreated subjects 126.17 (16.2)

Percentage of individuals with SBP>140 38.17
Percentage of individuals treated 27.87
Mean treatment effect (SD) 15.00 (4.0)

3.2. Scenario 2: extreme pharmacogenetic interaction

In Scenario 2, a differential treatment effect is simulated, and the efficacy of treatment depends on
SNP1. A pharmacogenetic interaction is therefore implemented here. As with results reported by Turner
et al. [37], the pharmacogenetic interaction reduces the efficacy of treatment in the presence of the
minor allele.

As in Scenario 1, the underlying SBP, Zi , is simulated from equation (1), and treatment is allocated to
hypertensive individuals with probability 0.75. In contrast to Scenario 1, however, the distribution from
which a treatment effect is generated depends on the genotype for SNP1. Hence, the treatment effect,
�i , is generated from N(18,42), N(13.43,42), or N(9,42) corresponding to whether the i th individual
has zero, one, or two copies of the minor allele, respectively. These particular distributions for the
treatment effect are chosen such that the overall mean treatment effect remains equal to 15 mmHg. The
descriptive statistics generated in this scenario are therefore roughly the same as in Scenario 1 (and
thus, are not provided). All treatment effects are again truncated at zero.

3.3. Scenario 3: pharmacogenetic interaction with one class of antihypertensive

In the previous scenario, the simulated pharmacogenetic interaction is assumed to affect all individuals
receiving treatment. Given that different classes of antihypertensive medication are commonly used, and
that different classes of antihypertensives affect different biological pathways, it is probably unrealistic
to assume that a given genetic variant will interact with all treatment types. The influence of the
pharmacogenetic interaction represented in Scenario 2 is therefore likely to be more extreme than
that of a real pharmacogenetic interaction in a real genetic association study of BP. In Scenario 3,
two different classes of treatment are therefore simulated, and only one of these classes of treatment
interacts with SNP1.

As before, the underlying SBP, Zi , is generated from the model in equation (1), and hypertensive indi-
viduals are allocated treatment with probability 0.75. In this scenario, however, two classes of treatment
are simulated. Treated participants are randomized either to receive Treatment A or Treatment B with
the probabilities 0.33 and 0.67, respectively. Treatment A represents angiotensin-converting enzyme
(ACE) inhibitors, a common class of antihypertensive medication [36], and Treatment B represents
usage of any other antihypertensives (pooled together). For Treatment A, the treatment effect is depen-
dent on SNP1, and a pharmacogenetic interaction is implemented in the same way as that implemented
in Scenario 2. Hence, for individuals on Treatment A, �i , is generated from N(18,42), N(13.43,42), or
N(9,42) corresponding to whether the i th individual has zero, one, or two copies of the minor allele,
respectively; for individuals on Treatment B, the treatment effect is independent of SNP1, and is thus
generated as in Scenario 1 [i.e. �i ∼N(15,42)]. All treatment effects are again truncated at zero.

4. Results

As noted earlier, the focus of our analyses is on the marginal effect of the genetic variant SNP1 on
BP. The model in equation (1) is fitted for all approaches [except Treatment as a Binary Covariate (b)
and Binary Trait (d)] by replacing the underlying SBP, Zi , with the values imputed according to each
method (e.g. for No Adjustment (a), these would simply be the observed SBPs, Yi , for all individuals).
Since this model is as close as one can get to the true generating model in absence of knowledge
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Figure 1. Results of Scenario 1—‘Non-differential Intervention’. Approaches are arranged in categories (from
left to right): Naïve, Substitution, InformativeBP, and are highlighted by the shaded regions. The left-most
approach is the analysis of underlying SBP, which is included for comparison purposes. Power (with respect to
the simulated SNP1 effect of +2) is denoted in blue diamonds; type I error (with respect to the simulated SNP1
effect of 0) is denoted in red crosses. Powers and levels of type I error are evaluated on the left-vertical axis,
and lines joining the points are displayed for clarity. Mean bias (with SE) with respect to �3 =2 is displayed
in green triangles, and is evaluated on the right-vertical axis (in mmHg). Because (d) fits a logistic regression
and yields log-odds ratios, estimates of the effect of SNP1 are not comparable to the other approaches and are
omitted from the plot. Note that power with respect to the simulated SNP1 effect of −2 is not shown for this

scenario because it is no different than the power with respect to the simulated SNP1 effect of +2.

of a pharmacogenetic interaction, we note that this represents a ‘best-case’ scenario. For method (b),
equation (1) is fitted with the observed SBPs, Yi , as outcome and an additional binary covariate for
treatment, TREATi , is included on the right-hand side. For method (d), a logistic regression model is
fitted to the dichotomous outcome, hypertensioni (see Table I).

Results for Scenarios 1–3 are summarized graphically in Figures 1–3, respectively. In each figure
and for each approach, the statistical power to detect the marginal effect of SNP1 and the type I error
are shown on the left-vertical axis (at the 5 per cent level of significance), and the mean bias of the
estimated coefficient of SNP1 (in mmHg), with standard error, is shown on the right-vertical axis.
Because no pharmacogenetic interaction is simulated in Scenario 1, the statistical power in Figure 1
is shown with respect to the simulated SNP1 effect of +2 mmHg (i.e. �3 =2) per copy of the minor
allele only. In Figures 2 and 3, the statistical power is shown with respect to the simulated SNP1 effects
of both +2 and −2mmHg per copy of the minor allele (i.e. �3 =2 and �3 =−2, respectively). Mean
bias is displayed in all figures with respect to �3 =2. Figures 1–3 are based on 1000 simulation runs
for each scenario. This seems to be a sufficient number of runs, since we obtained similar results with
10 000 simulation runs (data are not shown here).

The approaches to analysis are arranged across the x-axis in group order: Naïve [approaches (a)–(c)],
Substitution [approaches (d)–(g)], and Informative BP [approaches (h)–(j)]. Results for an additional
analysis are also included in each figure, for comparison purposes, on the far-left of the x-axis. This is
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Figure 2. Results of Scenario 2—‘Extreme Pharmacogenetic Interaction’. Approaches are arranged in categories
(from left to right): Naïve, Substitution, Informative BP, highlighted by the shaded regions. The left-most
approach is the analysis of underlying SBP, which is included for comparison purposes. Power is denoted in
blue and light blue diamonds (with respect to the simulated SNP1 effects of +2 and −2, respectively); type I
error (with respect to the simulated SNP1 effect of 0) is denoted in red crosses. Powers and levels of type I
error are evaluated on the left-vertical axis, and lines joining the points are displayed for clarity. Mean bias
(with SE) with respect to �3 =2 is displayed in green triangles, and is evaluated on the right-vertical axis (in
mmHg). Because (d) fits a logistic regression and yields log-odds ratios, estimates of the effect of SNP1 are

not comparable to the other approaches and are omitted from the plot.

an analysis of the underlying SBP, which, in practice, would not be observable for all participants due
to the use of antihypertensive treatments. The analysis of underlying SBP demonstrates the maximum
level of performance reasonably attainable given the simulation characteristics (i.e. the simulated sample
size, the magnitude of the SNP effect, etc.). Because the analysis of underlying SBP is not affected
by the use of treatment, the results are the same in all three scenarios, as would be expected. In
Scenarios 2 and 3, a further additional analysis is also performed. This analysis is an extension of
approach (b), modelling treatment as a binary covariate, but with a SNP1-treatment interaction term
explicitly included too. Results for this additional analysis are therefore represented in Figures 2 and 3
adjacent to the results for (b).

Scenario 1 (Figure 1): The analysis of underlying SBP shows that, given the simulation characteristics,
the maximum statistical power reasonably attainable in these simulations is approximately 90 per cent.
The analysis of underlying SBP has the expected level of type I error (5 per cent), and, on average,
is unbiased for the (main) effect of SNP1. Results most closely resembling those yielded by the
analysis of underlying SBP are obtained by the Informative BP approaches [Fixed Treatment Effect
(h), Non-parametric adjustment (i) and Censored Normal Regression (j)]. Each of the Informative BP
approaches yields a high statistical power close to 90 per cent, the expected level of type I error, and
only a small magnitude of bias (mean bias ≈−0.25 to 0.2 mmHg). These analyses therefore seem
reasonable approaches to correct for the use of antihypertensives. For Fixed Treatment Effect (h), the
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Figure 3. Results of Scenario 3—‘Pharmacogenetic Interaction with One Class of Antihypertensive’.
Approaches are arranged in categories (from left to right): Naïve, Substitution, Informative BP, highlighted by
the shaded regions. The left-most approach is the analysis of underlying SBP, which is included for comparison
purposes. Power is denoted in blue and light blue diamonds (with respect to the simulated SNP1 effects of +2
and −2, respectively); type I error (with respect to the simulated SNP1 of 0) is denoted in red crosses. Powers
and levels of type I error are evaluated on the left vertical axis, and lines joining the points are displayed for
clarity. Mean bias (with SE) with respect to �3 =2 is displayed in green triangles, and is evaluated on the
right-vertical axis (in mmHg). Because (d) fits a logistic regression and yields log-odds ratios, estimates of the

effect of SNP1 are not comparable to the other approaches and are omitted from the plot.

results obtained are relatively stable with the different values of c tested (i.e. where c is the constant
added to modified BPs to reverse the negative effect of treatment)—with decreasing levels of bias as
c is closer to the simulated treatment effect. In agreement with previous findings, approach (h) thus
seems relatively insensitive to the different choices of c used here, and performs well even when c
differs considerably from the simulated treatment effect [20].

For the three Naïve approaches [No Adjustment (a), Treatment as a Binary Covariate (b), and
Exclude (c)], estimates of the effect of SNP1 are shrunken towards the null (i.e. are closer to the
null effect of zero), and there are consequent losses of statistical power. Hence, although the Naïve
approaches do retain the correct level of type I error, it is clear that they are suboptimal strategies for
analysis. With regard to the Substitution approaches [Binary Trait (d), Fixed Substitution (e), Random
Substitution (f), and Median Method (g)], none of the results seem favourable in comparison to those of
the Informative BP approaches. For instance, although the parameter coefficients for Binary Trait (d)
cannot be compared with the other approaches because they are log-odds ratios (obtained by logistic
regression), (d) has a very low statistical power (≈70 per cent). Likewise, although Random Substitution
(f) yields reasonable power (≈87 per cent), a comparison with the similar Fixed Substitution (e)
approach (power ≈70–83 per cent) shows that (e) and (f) are sensitive to the ‘substitution values’ used
to replace modified BPs. In our simulations, we know that the value of 130 mmHg is below the threshold
for initiating anthypertensive treatment. In practice, we will not always know the relevant threshold
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and even when guidelines for treatment are widely available they are not always rigidly adhered to
[38]. As the substitution value is increased from 130 to 140 mmHg [with (e)] and to the mean value of
150 mmHg [with (f)], the mean bias decreases from −0.9 to −0.3mmHg. Hence, although (e) and (f)
can potentially perform reasonably, they are highly influenced by the choice of substitution value. The
Median Method (g) also appears sensitive to a substitution parameter (i.e. to the constant k). When
k is 140, the SNP1 effect is underestimated (mean bias ≈−1mm Hg), and when k is 150 or 160,
SNP1 is overestimated (mean bias ≈0.2–0.7 mmHg). White et al. [19] state that (g) should actually
be insensitive to k so long as the value chosen for k is sufficiently large. In subsequent scenarios,
greater values for k are therefore chosen. Nevertheless, in this scenario, with any of the three values
of k tested, (g) yields a low statistical power (≈47–60 per cent) and a lower level of type I error than
expected (≈1.5 per cent), despite the fact that there were never more than 50 per cent of individuals
on treatment in any simulation run.

Scenario 2 (Figure 2): In this scenario an extreme pharmacogenetic interaction is implemented, and
the effects upon two of the Naïve approaches [No Adjustment (a) and Treatment as a Binary Covariate
(b)] and each of the Informative BP approaches [Fixed Treatment Effect (h), Non-parametric adjustment
(i) and Censored Normal Regression (j)] are striking. For instance, each of these approaches now
markedly overestimates the marginal effect of SNP1 [mean bias ≈0.5mmHg for (a) and (b); mean
bias ≈0.5 to 1 mmHg for (h), (i), and (j)], and the power and type I error rates of these approaches
are thus affected. When the simulated SNP1 effect is 2 mmHg (�3 =2), the power for each of these
approaches is increased (≈100 per cent), but when �3 =−2 the powers are reduced substantially [power
≈10 per cent for (a) and (b); power ≈18–48 per cent for (h), (i) and (j)]. The type I error rates for
these approaches are also similarly affected. In contrast to Scenario 1—where each approach yields
the correct level of type I error, the type I error rates in this scenario are highly elevated [type I error
≈0.7 for (a) and (b); type I error ≈0.3–0.6 for (h), (i), and (j)]. Given that these approaches do not
account for what is effectively a SNP1-treatment interaction, this pattern of results is not unexpected.
A reduced treatment effect is associated with the minor allele at SNP1. Ignoring the true effect of SNP1,
individuals homozygous for (possessing two copies of) the minor allele who receive antihypertensive
treatment will be less responsive to the treatment and will, on average, have greater modified BP than
treated individuals who are homozygous for the major allele. Hence, the estimates of the main effect
of SNP1 are biased upwards for these approaches in this scenario.

In contrast, Exclude (c) and the Substitution approaches [Binary Trait (d), Fixed Substitution (e),
Random Substitution (f), and Median Method (g)] perform similarly in this scenario as in Scenario 1.
These approaches avoid the effect of any differences in treatment efficacy between individuals because
they replace modified BPs with alternative values derived independently from the observed data [or,
in the case of (c), exclude any modified BPs from the analysis]. Hence, each of these approaches is
unaffected by the pharmacogenetic interaction simulated with SNP1. These approaches are criticized in
Scenario 1, however, and the same criticisms also apply here. For instance, (c) and (d) are low powered
approaches, whereas (e) and (f) seem highly sensitive to the substitution values used. For (g), although
the results are now stable with the different values of k implemented (because greater values of k are
used in this scenario compared with those used in Scenario 1), a low power is yielded and there is a
large magnitude of bias.

The additional analysis performed in this scenario, which models the SNP-treatment interaction term
in addition to the treatment main effect, yields similar results here to Treatment as a Binary Covariate
(b) in Scenario 1. Thus, although this approach is unaffected by the pharmacogenetic interaction, its
estimates of the marginal effect of SNP1 are, on average, shrunken to the null (i.e. closer to the null
effect) and it has a low statistical power (≈70 per cent). This approach avoids the problems of some of
the other approaches in this scenario because it explicitly models the SNP1-treatment interaction term.
This is actually the only approach that can account for potential SNP-treatment interactions in this way,
because, in order to do this, the treatment main-effect must first be fitted. For reasons that are to be
discussed later, adjusting for treatment use by modelling treatment as a binary covariate is a flawed
approach to the analysis of BP. This approach, thus, cannot be considered as an optimal approach to
analysis.

Scenario 3 (Figure 3): The pharmacogenetic interaction implemented in this scenario affects only
participants on Treatment A, and thus has a more moderate effect than the extreme pharmacogenetic
interaction in Scenario 2. Hence, for the Informative BP approaches [Fixed Treatment Effect (h), Non-
Parametric Adjustment (i), and Censored Normal Regression (j)] and two of the Naïve approaches [No
Adjustment (a) and Treatment as a Binary Covariate (b)], there is generally less bias in this scenario
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than in Scenario 2, and the statistical powers and type error rates are less badly affected. Type I error
rates remain above 5 per cent (≈8–13 per cent), however, and when �3 =−2, the statistical powers
remain substantially lower than those obtained in Scenario 1 (≈40–80 per cent).

As in the previous scenario, the Substitution approaches [Binary Trait (d), Fixed Substitution (e),
Random Substitution (f), and Median Method (g)] and Exclude (c) are again completely unaffected by
the pharmacogenetic interaction, and perform similarly here as in Scenario 1. The additional analysis
that models the SNP1-treatment interaction is also unaffected, and again yields similar results here to
(b) in Scenario 1.

5. Discussion

Rapid progress is being made identifying genetic variants associated with BP in large-scale genome-
wide association studies [13, 14]. However, as yet unidentified genetic determinants of BP are likely
to have even more modest effect sizes than those already discovered. Approaches to maximizing the
statistical power therefore remain important, and the need for an appropriate approach to analysis—
which controls type I error—remains vital.

5.1. Summary and explanation of the results

Our simulations show that when the intervention is non-differential (i.e. in Scenario 1), the best
approaches to analysis are clearly the Informative BP approaches [Fixed Treatment Effect (h), Non-
Parametric Adjustment (i), and Censored Normal Regression (j)]. The Informative BP approaches yield
similar results to the optimal analysis of underlying BP in this setting, and they thus appear to adequately
control for the use of treatment. This finding supports previous work [20], which recommended these
approaches for analyses of BP. The Informative BP approaches exploit all the observed data within
analyses, and they maintain the natural variability between BP measurements between individuals. It
is for this reason that they perform well in Scenario 1 but, conversely, this also explains why these
methods are badly affected when there is an interaction with treatment (such as in Scenarios 2 and 3).

Like the Informative BP approaches, the extension to Treatment as a Binary Covariate (b) that models
the SNP1-treatment interaction term also utilizes all the observed data within analyses. However, it
does not suffer from the bias yielded by the Informative BP approaches in Scenarios 2 and 3 because
it accounts for the differences in treatment efficacy between individuals by fitting the interaction term.
As stated earlier, this is the only approach that can easily account for a SNP-treatment interaction
because it is the only model that includes treatment as a covariate. It is well established, however, that
modelling treatment as a binary covariate is a flawed approach to analyses of BP [20]. For instance,
because the use of antihypertensives in this setting both predicts BP and is a consequence of having
high BP, treatment should not be handled as a conventional covariate. Doing so explains away variation
within the data, and attributes this variation to an apparent ‘treatment effect’. Including a treatment
main effect term within an analysis model can thus mask true causal factors of BP—such as genetic
variants—which are usually the main focus of a study.

The Substitution approaches [i.e. Binary Trait (d), Fixed Substitution (e), Random Substitution (f), and
Median Method (g)] and Exclude (c) are unaffected by the pharmacogenetic interactions implemented
in Scenarios 2 and 3, but yield sub-optimal results. They are also typically highly sensitive to the
values of the ‘substitution parameters’. Given these findings, there is no obvious choice of approach
that can be expected to perform well in all situations, but some practical recommendations will now
be discussed.

5.2. Practical recommendations

It could be argued that because the Substitution approaches successfully control the type I error rates
in all our simulations, their use should be preferred to the Informative BP approaches. However, as we
have already noted, inappropriate choices of the substitution values could severely limit an investigation
in terms of its ability to detect any undiscovered genetic variants, which are suspected to have very
small effect sizes. Although guidance on the choice of the substitution parameters is available (e.g.
[17, 19, 30]), different values for these parameters will be better suited to different circumstances. In
practice, it may be difficult to choose suitable values for these parameters—and, indeed, it would be
difficult to verify how suitable existing choices are. A further limitation of the Substitution approaches
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is that they rely on an assumption that all individuals who use antihypertensives are hypertensive. It is
known that antihypertensive medications are also prescribed for other conditions such as CHD, heart
failure and migraine; hence, this is clearly a strong assumption. Although this assumption was true in
our simulations, it has been shown that the Substitution approaches perform poorly when it is violated
[20]. For these reasons, we therefore do not generally recommend use of the Substitution approaches
for a primary analysis.

In addition to the scenarios reported in this paper, we have also tested another scenario in which a
pharmacogenetic interaction is simulated, where the focus of the analyses is on estimating the effect
of a SNP that is independent of the interaction. This scenario has shown that estimates of the marginal
effects of any independent genetic or non-genetic factors are unaffected if another SNP is involved
in a pharmacogenetic interaction. Thus, although performance of the Informative BP approaches is
affected in the presence of a pharmacogenetic interaction with the genetic variant of interest, they
would still appear to be the best approaches to use to estimate main effects in the absence of such
an interaction. Note that estimates of the effects of genetic variants that are correlated (i.e. in linkage
disequilibrium) with a SNP involved in a pharmacogenetic interaction will also be affected using these
approaches. In an ideal world, it would be possible to identify a priori (from published pharmacogenetic
studies of BP) those SNPs likely to be involved in differential treatment effects. Tests of the marginal
effects of these particular SNPs could then be performed with an approach immune to the effects
of a pharmacogenetic interaction (such as one of the Substitution approaches), whereas tests of all
remaining, independent SNPs could use the Informative BP approaches. To date, although there is
strong evidence of a genetic component to the variability of BP responses to antihypertensives, findings
identifying loci for specific pharmacogenetic interactions with antihypertensives have not replicated
[25, 26, 39]. Consistent published evidence for these effects is therefore currently lacking. Nevertheless,
it seems reasonable to assume that only a small proportion of genetic variants across the human genome
will alter the efficacy of antihypertensive treatments. Given this assumption, we therefore recommend
that primary analyses of BP—which aim to detect SNPs that have an effect on underlying BP—should
be performed using the Informative BP approaches. However, due to the lack of information about
which regions of the genome have discernable effects on underlying BP and also alter the efficacy of
antihypertensives, we would advise a critical interpretation of such results. In particular, pending further
firm biological evidence about pharmacogenetic interactions, there may be exploratory analyses that
could be undertaken with the data set under study to provide insight about potential interactions with
the SNP of interest. Although not recommended as a primary analysis, one option to investigate the
possible presence of a pharmacogenetic interaction for the SNP of interest would be to use the extended
analysis of Treatment as a Binary Covariate (b) [i.e. which models the SNP-treatment interaction
term]. Interactions are generally detected at a lower power than main-effects, however, and extensive
follow-up work will be required to clarify whether such an approach would be reliable. An alternative
would be to compare findings from an Informative BP approach and one of the Substitution [or Exclude
(c)] approaches. The latter approaches are unaffected by pharmacogenetic interactions. If the results
from the two analyses do not differ, it may be reasonable to assume that no strong pharmacogenetic
interaction is present. However, further work is required to illustrate how large a discrepancy between
the findings of these different approaches might be expected for real situations, as evidence about the
characteristics of variants (e.g. minor allele frequency, main effect and interaction effect sizes, and
directions) involved in pharmacogenetic interactions becomes available.

5.3. Implications

Our study shows that otherwise sensible approaches to the analysis of BP are affected when a genetic
variant of interest influences treatment efficacy. Estimates of the marginal effects of genetic variants
involved in pharmacogenetic interactions may therefore be biased—possibly leading to false-negative
and false-positive findings. Pharmacogenetic interactions can thus impact on the statistical power of a
study and on the level of type I error.

In principle, our results suggest that reported findings from existing genetic association studies could
contain errors as a result of pharmacogenetic interactions. For instance, a genetic variant that influences
treatment efficacy could yield spurious association with BP, or, conversely, a genetic variant that truly
influences BP could be masked if it is also involved in a pharmacogenetic interaction. A secondary aim
of this work could be to characterize such cases. Although analyses such as dichotomous hypertension
[Binary Trait approach (d)] are low powered for a primary analysis, they could provide useful subsequent
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checks to help identify whether novel genetic associations could be driven by a pharmacogenetic
effect. For instance, all the genetic variants reported by Newton Cheh et al. [13] were associated with
dichotomous hypertension in addition to continuous SBP and DBP, and are therefore unlikely to be
fallacious. The issue of type I error due to a pharmacogenetic interaction is thus unlikely to be a
problem in this particular study. However, the possibility of type II error remains. In addition to the
strength of the interaction and the number of individuals involved, type II error will also depend on
the direction of the interaction in relation to the direction of the main effect.

5.4. Applicability of our findings

We used simulation to demonstrate the potential influence of pharmacogenetic interactions in analyses
of BP because, in practice, the true model generating mechanism is unknown. Furthermore, as yet,
there is little known regarding the true nature and magnitude of pharmacogenetic interactions with
antihypertensives. The actual influence of pharmacogenetic interactions in real analyses of BP is
thus difficult to determine. For instance, if particular genetic variants interact with multiple classes
of antihypertensive, there is a potential for serious distortions of the data (such as those shown in
Scenario 2), but if pharmacogenetic interactions are specific to particular classes of antihypertensive,
the implications could be less drastic (such as in Scenario 3).

Until now, we have focussed only on the analysis of BP in this paper, but our findings are also
relevant to the analysis of other traits. For example, cholesterol-lowering drugs are widely used within
western countries, and the investigation of low-density lipoprotein (LDL) and high-density lipoprotein
(HDL) may thus also require one of the corrections for treatment described. Notably, because a single
class of treatment—statin therapy—is predominantly used to lower cholesterol, any pharmacogenetic
interaction would most likely apply to the majority of subjects on treatment. Hence, although the
situation we simulated in Scenario 2 could be considered extreme for a study of BP, it may, in fact, be
quite typical of a study of LDL/HDL.

In this paper we have focussed on the influence of a differential treatment effect, as this is the
most likely form of a differential intervention in genetic studies. However, we have also considered
(in unpublished work) the influence of a differential threshold for receiving treatment. Ultimately, both
forms of a differential intervention lead to similar conclusions. For instance, estimation of the parameter
that modifies either the treatment effect or the threshold for receiving treatment is often distorted, but
estimation of all other parameters is generally unaffected. Hence, if the ‘modifying parameter’ itself is
known but is not of interest, analyses may be performed without regard to our findings; however, when
the modifying parameter needs to be estimated (and may or may not be unknown), difficulties may
arise. Although we have suggested possible approaches to verifying results from genetic analyses of
BP and to identifying potential pharmacogenetic interactions, further work is clearly required in these
areas.

6. Conclusions

We suggest that the Informative BP approaches remain the most reasonable approaches to use for
primary analyses of the main effects of SNPs in most settings. Nevertheless, caution is required
in the interpretation of any associations obtained from these approaches. If there is strong a priori
evidence of a particular pharmacogenetic interaction, it makes sense to consider the results of a different
approach for the particular genetic variant involved. As further evidence of the nature and magnitude of
pharmacogenetic interactions with BP emerges, a more detailed examination of the various approaches,
their comparability, and possible methods for checking for these interactions will be warranted.
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Summary 

Background: In a recent paper (1), a method for detecting whether a given individual is a 

contributor to a particular genomic mixture was proposed. This prompted grave concern 

about the public dissemination of aggregate statistics from genome-wide association studies. 

It is of clear scientific importance that such data be shared widely, but the confidentiality of 

study participants must not be compromised. The issue of what summary genomic data can 

safely be posted on the web is only addressed satisfactorily when the theoretical 

underpinnings of the proposed method are clarified and its performance evaluated in terms of 

dependence on underlying assumptions.  

Methods: The original method raised a number of concerns and several alternatives have 

since been proposed including a simple linear regression approach. In our proposed 

generalised estimating equation (GEE) approach,  we maintain the simplicity of  the linear 

regression model but obtain inferences that are more robust to approximation of the 

variance/covariance structure and can accommodate linkage disequilibrium.  

Results: We affirm that, in principle, it is possible to determine that a ‘candidate’ individual 

has participated in a study, given a subset of aggregate statistics from that study.  However, 

the methods depend critically on a number of key factors including: the ancestry of 

participants in the study; the absolute and relative numbers of cases and controls; and the 

number of SNPs.  
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Conclusions: Simple guidelines for publication that are based on a single criterion are 

therefore unlikely to suffice. In particular, directed summary statistics should not be posted 

openly on the web but could be protected by an internet-based access check (2). 

Keywords:  identification, linear regression, generalised estimating equations, linkage 

disequilibrium, case-control genetic association studies. 
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Introduction 

Data collected in genetic epidemiological studies are, by nature, extremely sensitive and 

ensuring the protection of participant confidentiality is hence a matter of deep concern.  

Because of this, there are strict laws governing the sharing of individual-level genetic and 

non-genetic information (3). However, as advances in genomics research are informed and 

accelerated by the accessibility of results and summary information such as allele frequencies 

from genetic epidemiological studies, sharing of such aggregate data is often demanded by 

funding bodies (4, 5).  Until recently, summary data from genome-wide association studies 

(GWAS) were freely available on the Web.  However, in 2008, a statistical test was proposed 

that claimed to be able to detect an individual’s presence in a DNA mixture from a genetic 

profile such as is typically obtained from a high-density single nucleotide polymorphism 

(SNP) genotyping platform (1). This was originally proposed with a forensics context in mind 

where the aim is to resolve whether a particular individual contributed DNA to a genomic 

mixture recovered from a crime scene, for example. However, the implications for genetic 

Box 1: Key Messages 

1. We propose a more clearly justified method for participant identification in genetic studies. 

2. When model conditions are satisfied, we affirm that reliable inferences are possible. 

3. Our method is robust to correlation assumptions and does not require a specific model for LD. 

4. Identification methods are sensitive to model assumptions and are hence study dependent 
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association studies are obvious since the summary statistics of a study can be viewed as a 

mixture to which all participants contribute equally. Consequently, in view of the ethical and 

legal implications of even a potential violation of participant confidentiality, both the 

National Institute of Health and the Wellcome Trust felt compelled to alter their guidelines on 

the open web-based publication of summary information from genome-wide association 

studies (GWAS). The result is that aggregate data have been withdrawn from the internet and 

access has become restricted only to approved researchers (6).  While the issues of consent 

and publication arising from this “blurring of traditional boundaries between individual and 

aggregate data” are still being debated, a number of interim recommendations have been 

made. These include a recent suggestion that no more than 500 regression results from any 

genetic association study should be published so that useful information on new findings and 

replication results can be provided without compromising the anonymity of an individual 

study participant (7). However, the real risks implied by methods such as described by Homer 

et al (1) are highly context specific and so it is important that the quantitative implications of 

the behaviour of the test are clearly understood before formulating  any definitive 

recommendations.  This is difficult, not least because the method outlined by Homer et al (1), 

and important variants such as that described by Visscher and Hill (8), are based on models 

which invoke assumptions that are often violated in real data. 

This paper begins with a brief description of the test statistic originally proposed (1) and 

outlines some concerns about the theoretical underpinnings of that method. We then consider 

one particular alternative approach that has since been suggested (8) and examine some 

simple modifications that address the incorrect specification of the variance structure and the 

inevitable correlation due to linkage disequilibrium that exists in dense SNP data. We use 

simulations based on real data to assess how well our methods perform and how sensitive 

they are to the underlying assumptions. We conclude with a discussion of the implications of 
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our findings with regard to the inappropriate identification of subjects from case-control 

genetic association studies. 

Methods 

The Original Test Statistic 

For consistency, we will use the following notation throughout. We have m SNPs in total 

with pj denoting the true population minor allele frequency of the jth SNP. Our target is a 

DNA mixture or “test” sample from which we have obtained (minor) allele frequency 

estimates, 𝑝𝚥� , for each SNP. We also have a “reference” sample with corresponding (usually 

estimated) allele frequencies, 𝑝𝚥∗�. We have an individual, or proband, of particular interest 

(e.g. who could also be a suspect for a crime) for whom we have a full genetic profile. We 

want to know whether this individual is in our test sample. The called genotype for the 

proband at SNP j is denoted by 𝑔𝑗  where 𝑔𝑗 ∈ {0,1,2} depending on whether there are 0, 1 or 

2 copies of the minor allele at that SNP. Based on this single individual, the best estimate of 

the population minor allele frequency for the jth SNP is the observed frequency, 𝑦𝑗 =  𝑔𝑗
2

 ,  

𝑦𝑗 ∈ {0,0.5,1}.  Under the assumption that the proband, test and reference samples share co-

ancestry i.e. can be regarded as samples from the same overall population, we have that 

𝐸�𝑦𝑗� =  𝐸�𝑝𝚥� � =  𝐸�𝑝𝚥∗�� =  𝑝𝑗 .  

Note that the mixture, or test sample, frequencies, 𝑝𝚥� , could be based on probe intensity 

values for a mixed DNA stain taken from a crime scene, as envisaged for the original forensic 

application (1). However, in the context of genetic association studies, they will be derived 

simply from the called genotypes of the individuals in the test sample. Similarly, the 

reference sample could be a conventional reference database, as would be used in a forensic 

setting, but will typically be just another sample in our applications, as will be discussed later.  
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The method proposed by Homer et al. (1)  is defined on a SNP by SNP basis and is a simple 

comparison of two ‘statistical distances’: the distance between the individual of interest and 

the reference sample, and the distance between the individual and the test sample, or mixture. 

Thus for SNP j, the quantity of interest is given by 

𝐷𝑗 =  |𝑦𝑗 −  𝑝𝚥∗ | � −  |𝑦𝑗 −  𝑝𝚥� | .                         (Eq 1) 

The basic idea is that over a large number of SNPs, the proband’s presence in the mixture, or 

test sample, will cause the values 𝐷𝑗  to be positive, on average. Under the assumption of co-

ancestry, the authors reason that an individual’s absence from the test sample would cause 

him to appear to be equidistant from both test and reference samples i.e. 𝐸�𝐷𝑗� = 0 if absent.  

Assuming that 𝐷1, … .𝐷𝑚 can be regarded as independent observations from a normal 

distribution with constant variance, combining information from all m SNPs leads to the 

conventional one-sample t-test statistic 

𝑇 =  
∑ 𝐷𝑗𝑚
𝑗=1

�∑ (𝐷𝑗− 
∑𝐷𝑗
𝑚 )2𝑚

𝑗=1
𝑚−1

 .                                          (Eq 2) 

 

The proposed test of the null hypothesis that the proband  is not in the test sample is the one-

tailed test: 𝐻0:𝑇 = 0 versus 𝐻1: 𝑇 > 0 (1). The authors claim that 10,000 to 50,000 SNPs are 

generally sufficient to be able to identify trace amounts of DNA (as little as 0.1 %) from an 

individual’s contribution to a complex mixture. Indeed, they argue that the number of SNPs 

required could be reduced significantly by careful selection of those SNPs that do not vary 

much between populations.  

There was much confusion generated by the initial responses to this announcement and hence 

considerable uncertainty with regard to its implications for real data situations. This was 
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partly due to a rather heuristic exposition and lack of clarity in the original paper, both in the 

description and statistical underpinning of the proposed hypothesis test. Although the 

distributional assumptions assumed in (Eq 2) are never formally discussed, it would seem that 

the assumption of normality of the SNP distance measures, 𝐷𝑗 , for a given individual is not 

unreasonable. However, it is unlikely that the 𝐷𝑗s will be independent for real SNP data.  

There are other problems with the proposed test. For one thing, the assumption underlying the 

one-sample test that 𝐸�𝐷𝑗� = 0 under 𝐻0 is questionable. If the proband is not in the test 

sample then, assuming co-ancestry, he should look like a typical member of the general 

population.  Hence, under the null hypothesis and if the reference sample is reasonably 

representative of this population (as would be the case for frequencies derived from a 

reference database), his genetic profile will appear to be closer to the reference sample 

frequencies than to those of the test sample leading to an average negative mean distance, as 

can be deduced from (Eq 1). The original test thus has a composite null hypothesis under 

which the distribution of the test statistic (Eq 2) is not properly specified. This problem with 

the formulation of the null hypothesis is also discussed by Egeland et al (9) in their specific 

consideration of forensic mixtures. Moreover, the reference sample was only vaguely defined 

in the original paper and, indeed, the difference between the terms “sample” and “population” 

were altogether unclear (8, 10). Since population frequency estimates for genome-scan SNP 

data are unlikely to be reliable ─ or even available ─ it will be necessary to estimate these 

from another sample, in practice. The identification test is thus a two-sample problem where 

the proband can be in the test sample, the reference sample, or neither, and a two-tailed test is 

hence more appropriate. This point was also noted by Jacobs et al (11). 

The two sample setting provides SNP allele frequencies 𝑝𝚥�  and 𝑝𝚥∗� which are both estimates 

of the true population frequencies pj. These estimates will differ in precision if the sample 

sizes of the two groups differ (12). In particular, the allele frequencies in the larger group will 
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generally be more representative of the population allele frequencies than those in the smaller 

group and, consequently, under the null hypothesis of being in neither test nor reference 

sample, the proband will appear to be “closer” to the larger group. It has been recommended 

that the reference sample should be bigger than the test sample (8, 11, 13).  A one-tailed test 

would simply be conservative in this case whereas a two-tailed test would be biased towards 

inferring presence of the proband in the reference sample. A natural application of the 

method in a two-sample setting, and the focus of the rest of this paper, is a case-control 

genetic association study where the case and control groups can be regarded as deriving from 

one common population and can hence be tested directly against each other without the need 

for any additional reference sample (8, 10-12). However, since it is not reasonable to assume 

that case and control groups would always be equal in size, an approach to the identification 

problem that does not rely on this assumption is required. 

It has been shown recently that the test given in (Eq 2) does not perform as originally claimed 

for “unbalanced” forensic mixtures where contributors are not equally represented and that 

reliable inference is impossible in these applications (9). However, the basic idea of Homer et 

al. (1) that summary statistics, such as allele frequencies, can identify the presence of an 

individual, or a close relative, in a genetic association study where DNA contributions are 

equal by design, appears to be surprisingly sound and identifies a real problem that warrants 

closer scrutiny (8, 10-14). In order to fully understand the implications of the identification 

issue, we need to be confident in the proposed statistical model and its underlying 

assumptions and be able to verify that it performs well when these assumptions are met. Only 

then can we assess how it performs when the assumptions are violated, particularly when 

such violations are likely to occur in practice.  
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An Alternative Approach  

A more clearly motivated approach to the problem using linear regression was recently 

proposed which addresses some of the problems of the original test of Homer et al. while 

retaining the simplicity (8). We now outline the method and introduce some modifications to 

improve robustness to assumptions in realistic situations.  

Linear regression 

The question of interest is still whether the proband is in the mixture, or test sample. Instead 

of considering the two distance measures given by the absolute deviations between the 

proband’s observed frequency at a particular SNP and the frequencies estimated from the test 

and reference samples, respectively, as given in (Eq 1), the idea is to regress the proband 

frequencies on those of the test sample where each is expressed as a deviation from the 

estimated population allele frequencies. Specifically, the model is 

(𝑦𝑗 − 𝑝𝚥∗∗� ) =  𝛽�𝑝𝚥� − 𝑝𝚥∗∗� � + 𝜀𝑗                   (Eq 3) 

where the 𝜀𝑗 are assumed to be independent and normally distributed with a constant 

variance. To allow for the fact that the reference sample may not be as representative of the 

overall population as might have been envisaged for the original forensic application of the 

one sample test in the previous section, the authors suggest that a pooled estimate, 𝑝𝚥∗∗� , from 

both reference and test samples be used instead of the reference sample frequency, 𝑝𝚥∗�, itself. 

A (one-tailed) chi-squared test is proposed to compare the hypotheses: H0: not in the test 

sample vs H1: in the test sample which again ignores the two-sample nature of the problem. 

Noting that the regression co-efficient, 𝛽, takes the value 0 under the null hypothesis that the 

proband is in neither the test nor reference sample, the value 1 if the proband is in the test 

sample and the value  −𝑁𝑡𝑒𝑠𝑡 𝑁𝑟𝑒𝑓⁄  if the proband is in the reference sample where 𝑁𝑡𝑒𝑠𝑡 and 
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𝑁𝑟𝑒𝑓 are the sample sizes in the test and reference samples, respectively, we prefer the 

following two-tailed test 

𝑍 = 𝛽�

�𝑉𝑎𝑟(𝛽|𝑜𝑢𝑡)�
~𝑁(0,1)  .                         (Eq 4) 

Here 𝑉𝑎𝑟(𝛽|𝑜𝑢𝑡� ) = �𝑁𝑡𝑒𝑠𝑡
𝑚
� ∗ (𝑁𝑡𝑒𝑠𝑡+𝑁𝑟𝑒𝑓

𝑁𝑟𝑒𝑓
) and by “out” we mean that an individual is in 

neither of the two groups. Regression methods have also been used to estimate the proportion 

of DNA contributed by an individual to a genomic mixture (15). In this case, testing for non-

zero values of the appropriate regression co-efficient is a test for that individual’s presence in 

the mixture. 

The proposed regression approach (8) performed well in a reported simulation study using 

independent SNPs and generally out-performed the approach of Homer et al. in terms of type 

I error rates and power to correctly detect the proband’s presence in the test sample. 

Importantly, it yielded approximately correct type I error rates regardless of the sample sizes 

of the two test groups. Co-ancestry between the mixture, the reference group, and the 

individual of interest is still a required assumption, as is independence of observations with 

constant variance.  In practice, any of these assumptions could be violated.  For example, 

although case-control GWAS are usually well matched in terms of ancestry, subtle 

differences between the two arms of a study could easily arise and would be difficult to 

detect.  As for the test in (Eq 2), observations will often be correlated due to linkage 

disequilibrium (LD), and extracting a set of independent SNPS could lead to a substantial 

loss in power. Furthermore, the assumption about constant variances is unlikely to hold. This 

is easier to argue for the regression approach which is based on the scaled genotypes, 𝑦𝑗 =

 𝑔𝑗
2

, rather than the distance measures, 𝐷𝑗 , in (Eq 1).  Assuming Hardy-Weinberg equilibrium 

(HWE), the genotypes, 𝑔𝑗 , are binomial outcomes.  Since the variance of a binomial random 
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variable depends functionally on the mean, the normal error distribution for the model in (3) 

is unlikely to be correct despite the fact that the deviations, 𝑦𝑗 − 𝑝𝚥∗∗� , are not themselves 

discrete.  Note that Visscher and Hill (8) describe an alternative maximum likelihood 

approach which does model the error structure correctly under the stated assumptions but 

which also requires independent observations.  We now propose two modifications of the 

linear regression approach to address the practical issues, firstly with regard to the error 

distribution and secondly, to allow for LD. We defer consideration of the co-ancestry 

assumption until later. 

Modelling the variance 

We consider two simple adaptations to the regression approach in order to address the 

variance misspecification issue. In the first case, we consider a logistic regression which 

solves the problem by modelling the variance function correctly. However, this still requires 

independent observations and so will not be expected to perform well in the presence of LD. 

In the second case, we maintain the simple linear formulation in (Eq 3) but consider it as a 

generalised estimating equation (GEE) with an independence structure. The idea here is to 

provide a more robust estimate of the standard error of the regression coefficient making 

inferences less sensitive to the variance misspecification. The added advantage is that GEEs 

are well suited to dealing with correlated data as we will discuss below.  

Logistic Regression  

Recall that under HWE the proband genotype for the jth SNP, 𝑔𝑗  ∈ {0,1,2} can be thought of 

as the number of “successes” (i.e. the number of copies of the minor allele) in two Bernoulli 

trials since an individual carries two alleles at each SNP. Thus 

𝑔𝑗~𝐵𝑖𝑛�2,𝑝𝑗�, 𝑗 = 1, … . ,𝑚 
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where 𝑝𝑗 is the true, unknown, population minor allele frequency for SNP j.  From (Eq 3), 

our explanatory variable of interest is �𝑝𝚥� − 𝑝𝚥∗∗� � and so  𝑝𝑗 = 𝐸 �𝑔𝑗
2

 | (𝑝𝚥� − 𝑝𝚥∗∗� )� leading to 

the usual model for the log odds: 

log � 𝑝𝑗
1−𝑝𝑗

� = 𝛽 (𝑝𝚥� − 𝑝𝚥∗∗� ). 

We adapt this to mimic the spirit of the linear regression model in (Eq 3) by adjusting for the 

(pooled) estimated population frequencies 𝑝𝚥∗∗�  with an offset on the log-odds scale: 

log � 𝑝𝑗
1−𝑝𝑗

� = log �
𝑝𝚥∗∗�

1−𝑝𝚥∗∗�
� + 𝛽 (𝑝𝚥� − 𝑝𝚥∗∗� ).   (Eq 5) 

Since the offset variable has a fixed co-efficient of 1, it can be used to adjust analyses without 

affecting the precision of other parameter estimates and essentially plays the role of a random 

effect here.  

We fitted this model in R using the glm() package entering the outcome as two vectors: the 

first denoting the number of “successes” (i.e. 𝑔𝑗) and the second denoting the number of 

“failures” (i.e. 2 − 𝑔𝑗).  This is equivalent to fitting each genotype 𝑔𝑗 as the sum of two 

binary allele variables, a1j and a2j (each with 0 or 1 copies of the minor allele), at a particular 

level of the covariate (𝑝𝚥� − 𝑝𝚥∗∗� ).  

Generalised estimating equations 

GEEs are usually used to provide consistent estimates of regression coefficients and their 

standard errors in correlated data and require some coherent ordering of the observations into 

clusters (16). Crucially, GEEs derive robust estimates of the standard errors of regression 

coefficients using the sandwich estimator of the variance via an iterative procedure which is 

consistent as long as the basic regression relationship is correct and there is no between-
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cluster correlation in the responses (17). This holds even when the specified within-cluster 

correlation/covariance structure is incorrect. In this instance, we define the mean structure in 

the same way as the original linear regression model in  (Eq 3): 

(𝑦𝑗 − 𝑝𝚥∗∗� ) =  𝛽�𝑝𝚥� − 𝑝𝚥∗∗� � + 𝜀𝑗 . 

The model residuals, or estimated errors, 𝜀𝚥�, are then used to estimate the correlation 

parameters (given a pre-specified structure), before the model is refitted by applying an 

algorithm that incorporates these estimated correlation coefficients.  This procedure is then 

iterated until the algorithm converges, i.e. when the estimates stabilise.  The independence 

estimating equation is a special case where the correlation matrix is simply specified to be the 

identity matrix and a GEE model employed merely as a straightforward means by which to 

derive a robust estimate of the variance (18, 19).  Hence, when every observation is in its own 

cluster, the independence GEE is similar to the linear regression method in (3), but uses the 

robust (or sandwich) estimator of the variance instead of the conventional variance. We fitted 

our GEE models in R using the geepack() function (20). 

Accounting for linkage disequilibrium 

Real GWAS datasets will have SNPs that are in LD and this correlation will be an issue if not 

properly accounted for. GEEs are especially useful when the nature of the correlation itself is 

not of primary interest, as they do not require the correlation matrix to be correctly specified.  

They thus seem particularly suitable for the identification problem where the correlation 

between SNPs can be considered as a nuisance factor. 

 We propose a first-order autoregressive (AR-1) correlation structure for a GEE model with 

the same mean structure as given in (Eq 3). In our context, this assumes that SNPs are 

correlated with other SNPs within a cluster and correlation strengthens with proximity. 
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Specifically, the correlation between two SNPs with a cluster ordering of j and k, 

respectively, is modelled as 𝜌|𝑗−𝑘|. SNPs in one cluster are assumed to be uncorrelated with 

SNPs in a different cluster. An optimal choice for clustering SNP data would be to group 

SNPs by chromosome. However, at least 50 clusters are typically recommended (21), and 

there are computational limitations on the cluster size for simulations in which a new model 

is fitted for every test. For these reasons, we used clusters of size 20 here but acknowledge 

that the fitted correlation structure is only an approximation of the true LD structure between 

SNPs.  Crucially, the robustness provided by the sandwich estimator of the variance ensures 

that although the resulting coefficient estimates may be inefficient, they should be consistent. 

The impact from any misspecification of the within–cluster correlation structure should 

therefore be limited. The influence of cluster size is discussed further below. 

Results 

Simulations 

We begin with genotype data from the 1958 Birth Cohort (1958BC) (22) provided by the 

Wellcome Trust Case Control Consortium (WTCCC) (23).  The 1958BC consists of 1,504 

unrelated participants born in 1958 from twelve different regions of the UK, including 

Scotland and Wales but excluding Northern Ireland. Genotypes are typed on the Affymetrix 

500K chip and called in Chiamo–Oxford format.  For any individual’s record, genotypes 

called with a probability of less than 0.9 are omitted.  Furthermore, following advice in the 

exclusion files provided, 24 participants and 30,956 SNPs across all individuals were 

completely omitted. 

We simulated case-control genetic association study data using the individual-level data from 

the 1958BC.  In each simulation run, we randomly sampled (without replacement) one 
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hundred participants into each arm of a hypothetical study (i.e. the case and control groups) 

and another one hundred individuals into an additional group to test under the null hypothesis 

of “neither group”.  For the first three analyses, we only used individuals from the southern 

UK regions (i.e. London, southeast, southwest or south England) and would thus expect the 

co-ancestry assumption to hold. There are 461 participants in total from which to sample with 

this restriction. In the fourth analysis, we investigate sensitivity to the co-ancestry assumption 

by introducing regional differences between the two arms of the case-control study. The fifth 

analysis is also concerned with co-ancestry but here we consider the more extreme case 

where the cases are drawn from a completely different genetic association study than the 

controls. For this scenario, we also used genotype data from the UK National Blood Service 

(NBS) (23) and the Coronary Artery Disease (CAD) (24) studies as provided by the WTCCC. 

Since real case-control studies are usually well-matched ancestrally, we argue that 

discrepancies between two different UK studies would be a reasonable reflection of any 

differences likely to be encountered in practice. The NBS comprises 1500 unrelated 

participants from the UK, and the CAD comprises 1988 unrelated, coronary artery disease 

patients also from the UK.  As with the 1958BC data, all genotypes are typed on the 

Affymetrix 500K chip and called in Chiamo-Oxford format, and any genotypes called with a 

probability of less than 0.9 are omitted.  We again followed the advice provided in the 

exclusion files and omitted 42 individuals from the NBS study, and 62 individuals from the 

CAD study.  The same SNPs that were omitted from the 1958BC data were also omitted from 

these datasets. 

Since strongly correlated data would mask any other effects due to ancestry or variance 

misspecification, we attempted to at least reduce the effects of LD in all our analyses by 

selecting a subset of SNPs evenly spaced across the genome. The wider the SNP spacing, the 

weaker the LD and so we constructed three datasets for the 1958BC consisting of genotypes 
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for every 20th, every 33rd and every 100th SNP, in genomic order, across chromosomes 1 to 

22. For compatibility of findings, each analysis uses the same number of SNPs.  Thus, since 

we have 4577 SNPs in total for the sparsest SNP spacing of 100, we only used the first 4577 

SNPs (sorted by chromosome and position) for the other two spacings. Note that by ignoring 

so much data, we can expect to lose statistical power so all our results will be conservative.  

For our purposes, the case group is generally the mixture, or test sample, and the control 

group is the reference sample, but these can, of course, be reversed.  In every simulation run, 

we considered each individual from the case group, the control group, and from neither group 

in turn as a proband to be tested for presence in the overall genetic association study. We 

discuss results for a 5% significance level throughout since we do not have sufficient power 

to detect anything at genome-wide significance level with this number of SNPS. If a 

particular individual of interest has a genotype missing for a given SNP, that SNP is omitted 

from the corresponding test – although it may be included in other tests. We performed one 

thousand simulation runs for each analysis and derived mean estimates of the regression 

coefficient, 𝛽, and its variance, as well as Monte Carlo estimates of the power to detect the 

proband’s presence in the overall study (i.e. in either the case or control group) and the type I 

error rate. 

Analysis One – Linear regression Approach 

The focus of this first analysis was to investigate the performance of the original linear 

regression approach (section 3.1) on the three datasets with SNP spacings of 20, 33 and 100, 

respectively. Results in Table 1 indicate that, on average, the regression coefficient, 𝛽, is 

estimated virtually without bias. (Note that since our two samples are the same size, 𝛽 = −1 

if the proband is in the reference sample.) Moreover, the power to infer the proband’s 

presence in the study (i.e. the % rejections of H0 for cases or controls) is consistently over 
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98%. However, the type I error rates, given by the percentage of rejections of H0 for 

individuals who were in neither group, are all higher than the expected 5% level.  These 

decrease with increasing SNP spacing but remain unacceptably high (about 8%) even when 

the spacing is 100.  Since LD is unlikely to be a big problem when we take every 100th SNP, 

the elevated type I errors must be due to some other factor. An obvious candidate cause 

would be misspecification of the variance function. This is supported by the fact that when 

we simulated data with truly independent SNPs (not shown), the type I errors were still 

consistently slightly higher than expected at around 6%. This trend was also evident in the 

simulation results reported by Visscher and Hill (8) but was not explored there, presumably 

because the type I errors were much more stable than those for the test in (2) with which the 

method was being directly compared. We also noticed similar elevations in type I errors at 

the .0001 significance level for our own independent SNP scenario.  

Table 1 Here 

Analysis Two – Correcting the variance  

In order to eliminate the impact of LD as effectively as possible, we restricted attention to the 

dataset with a SNP spacing of 100 although we would generally not recommend the 

discarding of so much data. Since we are still using 1958BC individuals from the southern 

UK regions, we can also assume that the co-ancestry condition holds. If the elevated type I 

error rates obtained for the same dataset in the previous analysis were due principally to 

misspecification of the variance function, we would expect improved performance from both 

the GEE independence model (because it is robust to misspecification of the covariance 

structure) and from the logistic regression model (because the functional relationship between 

variance and mean is correct) by comparison with the linear regression model. 
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Table 2 compares linear regression with logistic regression and the GEE independence 

model, where the latter was fitted with a cluster size of 1 i.e. every observation is in its own 

cluster.  As can be seen, both alternative approaches perform very similarly in terms of type I 

error rate and power. Furthermore, as hypothesised, both exhibit a type I error rate that is 

much closer to nominal than that of the linear regression model. Moreover, the power 

remains high (≈ 98%) and is only marginally lower than that of the linear regression approach 

(~ 99%).  Although estimates of the regression coefficient for the logistic regression approach 

cannot be compared with the other approaches (i.e. because they are log-odds ratios), the 

GEE independence model estimates are identical to those of the linear regression model since 

the only difference is the robust estimate of the variance which is increased by about 20% on 

average (from ~0.49 to ~0.62).  For truly independent SNPS, type I error rates for the linear 

regression approach were consistently just over 6%, as noted earlier and in line with those 

reported in (8), whereas GEE independence and logistic regression models both yielded type 

I errors close to the nominal 5% level (simulation results not shown). 

Table 2 here 

Analysis Three – Accounting for linkage disequilibrium 

In order to introduce more LD, we now compare the different approaches using the 1958BC 

dataset with a SNP spacing of 20.  Despite the initial thinning out of the data, we have to 

allow for the fact that the observations are correlated. We used a GEE AR-1 model with a 

cluster size of 20. This allows for LD to prevail over a range of 400 SNPs in the full data set 

but we do not claim that this models LD ─ or, in particular,  the correlation structure within 

the 20 spaced SNPs ─ in any biologically realistic way: any correlation between SNPs in 

different clusters remains unaccounted for in these analyses. However, it is undoubtedly 

much better than ignoring the correlation altogether.  
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Table 3 shows that the three approaches that assume independence all have increased type I 

error rates in these data. Although the logistic regression and GEE independence models 

improve on the linear regression method, they still yield type I errors of around 7%. In 

contrast, the GEE AR-1 provides acceptable levels. We note that there is a trade-off, 

however, in that power to detect a proband’s presence in the study is a little lower, although 

still reasonable. The variance of the estimated regression co-efficient for the GEE AR-1 

approach (~0.73) is around 20% greater than that for the independence model with cluster 

size of 1 (~0.61) and around 40% greater than that for the linear regression model (~0.50), 

reflecting the added correlation. It is important to note that a GEE independence model with 

cluster size of 20 (i.e. fitting an identity matrix for the within-cluster correlation structure but 

specifying that the correlation structure applies to clusters of size 20 rather than 1) gave 

almost identical results to the GEE AR-1 model above implying that a fairly realistic model 

for the clustering is more important than the proposed correlation structure itself. This is not 

unexpected given the inherent robustness of the sandwich estimator of the variance to 

misspecification of the correlation structure within blocks (17), but not between blocks.  

Larger SNP spacings gave similar results, as might be predicted, with the GEE AR-1 model 

(or GEE models with clusters of 20) maintaining approximately correct levels of type I error. 

Table 3 here 

Analysis Four – Effect of differences in ancestry 

Because real case-control GWAS are usually well matched in ancestry, we now focus on the 

effects of possible, subtle differences in ancestry. Using the 1958BC we simulated 

hypothetical case and control groups of 100 individuals from different regions of the UK. In 

particular, our first analysis sampled cases from southern UK regions and controls from 

central UK regions (i.e. east, north midlands, midlands, and Wales); a second analysis 
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sampled cases from southern regions and controls from northern regions (i.e. northwest 

England, north England, east & west ridings of Yorkshire, and Scotland); and a third analysis 

sampled cases from central regions and controls from northern regions.  In addition, we also 

sampled a group of 100 individuals from each region to test under the null hypothesis.  We 

used the dataset with a SNP spacing of 20 in these analyses and, hence, because of the known 

LD in these data, we only show results for the GEE AR-1 approach using a cluster size of 20. 

Note, as before, that we obtained almost identical results for the GEE independence model 

with the same cluster size.  

Table 4 demonstrates that any differences in ancestry between participants from different 

regions of the UK in the 1958BC do not affect the power to detect the proband’s presence in 

the case-control study.  This is supported by the fact that, as with all previous analyses, the 

regression coefficient is estimated, on average, without bias in this scenario and the GEE AR-

1 approach yields acceptable levels of type I error and a high power which are comparable to 

those obtained in Analysis 3 (Table 3 above). These findings are consistent with those 

reported by Clayton (10). 

Table 4 here 

Analysis Five – Comparing Different Cohorts 

To further explore the effects of possible differences in ancestry in case-control GWAS,  

hypothetical case and control groups are simulated by sampling individuals from three real, 

UK studies.  Different studies have different target populations, different recruitment 

procedures, and could be subject to different biases. It is of interest to see whether any such 

between-study differences can cause problems for identification testing, even when the 

studies appear to be well matched in ancestry. As above, we simulated one hundred 

hypothetical case and control groups by sampling 100 individuals without replacement from 
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the 1958BC, NBS, and CAD studies, and an additional group of 100 individuals from each 

study to test under the null hypothesis.  We again used a SNP spacing of 20 for this analysis 

and again provide results for the GEE AR-1 approach only.  

Table 5 shows a similar pattern of results to those obtained for Analysis 4.  The regression 

coefficient is, on average, estimated without bias, and the type I error rates – where 

individuals not present in a case/control group are incorrectly inferred as being in that group 

– are all approximately correct.  This suggests that any subtle ancestral differences between 

individuals in different genetic association studies are not sufficient to make identification 

intractable.  The GEE AR-1 approach, thus, seems to perform well in case-control GWAS 

data, where none of its model assumptions are seriously compromised. We note that these 

findings are in line with the reported associational analyses from the WTCCC (23) which also 

used different studies for case and control groups and found that both these and the more 

modest regional differences had negligible effects on their results.  

Table 5 here 

More substantial differences, however, are likely to cause problems. Visscher and Hill (8) 

noted that violation of the co-ancestry assumption becomes an issue when the divergence 

between test and reference samples, as measured by Wright’s 𝐹𝑆𝑇 (25) gets close to a value of 

1/2𝑁𝑡𝑒𝑠𝑡. From this, we should expect impaired performances of our models for scenarios 

such as we simulated above, with 100 cases and 100 controls, when 𝐹𝑆𝑇 >  .005. Note that an 

𝐹𝑆𝑇 value of .005 is considered extreme for values typically observed between different 

European populations  (10, 26). There are various formulae for calculating 𝐹𝑆𝑇 (27, 28) and 

published 𝐹𝑆𝑇 values for real populations are not always consistent (26, 28-31). We used a 

version given by Cavalli-Sforza (28) and our results may hence differ slightly from those in 
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(8) if a different formulation was used. Specifically, divergence at the jth SNP between two 

populations, 1 and 2, with minor allele frequencies 𝑝1𝑗 and 𝑝2𝑗 respectively, is given by: 

𝐹𝑆𝑇 =  
𝑉𝑎𝑟(𝑝𝑗)
𝑝𝚥�  (1 − 𝑝𝚥� )

 

where 𝑝𝚥� = 1
2
�𝑝1𝑗 + 𝑝2𝑗� and 𝑉𝑎𝑟�𝑝𝑗� = �𝑝1𝑗 − 𝑝𝚥� �

2
+  �𝑝2𝑗 − 𝑝𝚥� �

2
. An overall measure of 

𝐹𝑆𝑇 is obtained by taking the mean 𝐹𝑆𝑇 values across all SNPs. Note that 𝐹𝑆𝑇, as given above, 

measures divergence between the two underlying populations as it involves the true 

population allele frequencies. In practice, of course, it has to be estimated from the sample 

frequencies and we would therefore expect it to be sensitive to both the actual and relative 

sizes of the two samples. 

We simulated 5,000 independent SNPs per individual for two populations with varying 

degrees of divergence and calculated detection power and type I error, as before, for the 

linear regression, GEE independence (with cluster size of 1) and the GEE AR1 (with clusters 

of 20) models. Table 6 shows some results for the situation when the case and control groups 

are equally sized with 100 individuals.  Since we know the “true” allele frequencies in this 

case, we have calculated 𝐹𝑆𝑇 using both the true and the observed allele frequencies in order 

to assess performance in situations where more representative samples may be available. 

Table 6 here 

Considering the more realistic setting where only the sample frequencies are available, we 

can see that while type I error levels are acceptable (i.e. very slightly elevated for the linear 

regression model and about the desired 5% for the two GEE models) at the suggested 

threshold value of .005, they start to increase very quickly with increasing 𝐹𝑆𝑇 and they are 

already quite bad at about .006 with type I error rates between 12% and  14%. When the true 
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frequencies are used, performance is degraded long before this threshold is attained and we 

observed type I error rates ranging from 77% to 92% when the 𝐹𝑆𝑇 value was .0049. This 

implies that relatively small changes in ancestry could have a considerable effect when 

“good” estimates of population allele frequencies are available. The GEE models were more 

adversely affected than the simple regression approach for high levels of FST but were better 

when the co-ancestry assumption was not seriously violated. Since the data are truly 

independent here, the two GEE models behaved similarly, as would have been expected. 

The threshold of 1/2𝑁𝑡𝑒𝑠𝑡 (based on observed frequencies), however, was not a good 

indicator when the test and reference samples were of different sizes. For a case group of 100 

and control group of 500, for instance, we observed type 1 errors at around 25% for an 𝐹𝑆𝑇 

value of .004. Not only is it difficult to “quantify the limits of identification in practical 

situations” (8) but it also seems difficult to provide a simple rule, such as a threshold based 

on 𝐹𝑆𝑇, to indicate when the reference sample is sufficiently different from the test sample as 

to render an identification test futile.   

The practical implications are that under ideal conditions,  “good” population cohorts such as 

the 1958BC and the NBS, which provide representative estimates of population allele 

frequencies, enable reliable inferences to be drawn  about a proband’s presence in the study 

using a full genetic profile.  This is entirely in agreement with Clayton’s clarification of the 

role of the reference frequencies (10).  However, the tests are extremely sensitive to the 

assumption of co-ancestry and estimated allele frequencies, in particular, will often not be 

good enough to raise serious concerns about identification. For extremely divergent test and 

reference samples, such as would be provided by the HapMap Yoruba and CEU populations 

with an 𝐹𝑆𝑇 of around 0.15-0.2 (26), our simulations indicate that inference is likely to be 

problematic however accurate the allele frequencies. 
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Discussion 

Our findings are entirely consistent with those reported elsewhere (1, 8, 10-14). Despite some 

problems with the theoretical justification, the idea behind the test proposed by Homer at al. 

(1) raises important issues that are undoubtedly pertinent to genetic association studies. 

Under certain conditions it is possible, given no more than the summary distribution of dense 

genotypes across a study, to infer whether a given individual (whose full genetic profile is 

known) did, or did not, participate in that study. We have shown here that this can be done 

with high power under ideal conditions with as few as 5,000 SNPs and summary statistics 

based on 100 individuals and indeed we concur with the overall finding in (1) that DNA 

contributions of as little as 0.1 % (corresponding to test sample sizes of 1000 in our 

applications) can be detected with about 50,000 SNPs (results not shown). We have argued 

that the mathematical model proposed by Visscher and Hill (8) is more coherent than that in 

the original paper and out-performs the original method. Importantly, it does not require that 

the test and reference samples be of equal size when the underlying assumptions are satisfied. 

However, the regression approach yields consistently elevated type I errors due to the 

inherent Binomial nature of genotype data and hence misspecification of the variance 

function and has further problems when the observations are correlated because of LD. The 

latter is also a problem for the original method and the various proposed alternatives but has 

only been briefly alluded to in the literature. Empirical distributions of unmodified test 

statistics in the presence of LD have been considered (1, 11) but it is clear that LD either has 

to modelled appropriately  (10) or otherwise accounted for, such as we suggest here. 

If we are to properly understand the implications of the Homer et al methods, and to 

determine what may or may not be ‘safe’ in terms of limited data release, it is critical that we 

fit models that are inferentially ‘well behaved’. Here, we have described models that can deal 

both with the variance misspecification and with the correlation. For (reasonably) 
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independent SNPS, the variance misspecification is satisfactorily addressed either by 

modelling it correctly using logistic regression or, more simply and with only a slight loss in 

power, by using the sandwich estimator of the variance - as in a GEE independence model – 

which renders regression parameters consistent even if the covariance is misspecified. The 

size of the clusters in the GEE approach was not important in this case and the model worked 

equally well with each observation in its own cluster.  Hence, it would seem that getting the 

variance right is not as important as allowing for the fact that it might be wrong. More 

densely spaced SNPs caused type I error problems for both models but a GEE AR-1 model 

with a cluster size of 20 performed well when the SNP spacing was 20 with only a slight 

reduction in power to infer the proband’s presence in the case-control study. Importantly, we 

obtained very similar results for the independence GEE model with the same cluster size. 

This implies that identifying the regions of LD is more important than modelling the nature 

of LD within these regions. We thus agree with Clayton (10) who also notes that LD cannot 

be ignored, but we would argue that it can actually be regarded as more of a nuisance factor 

and, in particular, we can avoid the added computational problem of using an external data 

set to model the correlation structure and then inverting a large sparse correlation matrix 

using least angle regression techniques (10). Since the data can never be assumed to be truly 

independent, we recommend that it is safer to use a GEE model and allow for LD by 

clustering the data and imposing a convenient correlation structure. We would also 

recommend that the data be thinned both to balance the trade-off between cluster size and 

losing data and to allow for the fact that LD can be quite far-ranging. Larger clusters were 

particularly problematic for our simulations due to the numbers of individuals we tested in 

each run. This would not be an issue in practice, of course, where there would only be one 

proband to test (rather than numerous probands as part of a large simulation exercise). 
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Recall that our reported results were all based on the first 4,577 of the 25,000 available SNPs 

at this spacing and are thus conservative.  However, it is important to note that large numbers 

of SNPs are not required for reliable inference from realistic sample sizes under ideal 

conditions. Indeed, Visscher and Hill (8) suggest that the SNP number to test sample size 

ratio is about 6 for a nominal type I error rate of 0.05 and 80% power, and is about 50 for a 

type I error rate of .0001 95% power.  Denser SNPs required larger cluster sizes for our GEE 

approach (results not shown) confirming that LD can range over several hundred SNPs in an 

Affymetrix 500K scan.  For instance, we considered un-thinned SNP data by taking all 

15,000 SNPs from chromosome 14 and obtained type I error rates of about 45% for the linear 

regression model compared with 23% for the GEE independence model with no clustering. 

However, with clusters of 400 we still had type I errors of between 8% and 9% for the GEE 

independence and AR1 models. Although the LD range is the same here as in the earlier case 

for clusters of size 20 on every 20th SNP, the degradation in performance is due to the fact 

that the increased LD from the denser spacing is creating greater dependence between the 

clusters.   In this case, we rectified the problem by taking every 10th SNP and using a cluster 

size of 100.  Note that our reported type I error rates are all slightly higher than the desired 

5% level so it is clear that the structure of our clusters is still not quite right. Ideally, we 

should cluster SNPs by chromosome but this falls short of the recommended number 

(typically 50) of clusters to fit a GEE model and is computationally more intensive.  One 

possibility is the use of an external data set, such as the HapMap, to inform our clustering by 

identifying regions of strong LD which should ideally be contained within a single cluster. 

More importantly, spacing between clusters is necessary as our methods are sensitive to 

violations of the assumption that there is no between-cluster correlation. 

Now that we have models that are behaving appropriately in realistic situations, we can begin 

to think about quantifying their behaviour when other basic assumptions are violated. The 
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assumption of co-ancestry is crucial to the original method [1] and to all proposed variants. 

We agree with Visscher and Hill (8) that the only relevant violation occurs when the 

ancestries of the test and reference samples differ. Indeed, from simulation studies of 

independent SNP data where hypothetical cases and controls were sampled by ‘disease’ 

status defined by arbitrarily chosen numbers of ‘causal’ SNPs, we found that, as long as the 

assumption of common ancestry was valid, our robust regression-type approaches were 

insensitive to other differences between the two groups, regardless of the number of such 

causal SNPs. We have verified that when ancestry is ‘good’, such as one would expect when 

case and control groups are taken from different regions within a representative UK cohort or 

from different such cohorts across the UK, strong inferences about a proband’s participation 

in the overall study can be drawn.  Thus, it would be possible to infer whether an individual 

suspected of a crime was in the study and in which group (case or control) in that study (thus 

providing information on disease status), using a genome-scan genetic profile of that 

individual and summary allele frequencies from the overall study or from both case and 

control groups, respectively. However, one has to be very confident about ancestry in order to 

make such inferences as even small differences between the test and reference samples can 

lead to greatly inflated type I errors and hence erroneous conclusions (see Table 6).  

There are important implications for what data can be made freely available, and this is 

highly study-dependent. The power to detect a proband’s presence in a study increases with 

decreasing test sample size and increasing reference sample size [12] and the number of 

SNPs required to be informative also depends on these sizes.  For example, when the case 

and control groups both were of size 100, we were able to detect that a proband was a case 

with high power from just 5,000 SNPs. Increasing the control group to 500 showed that just 

2000 SNPs sufficed (with power of ~93%). The smaller the test sample, the easier it is to 

detect a single individual’s contribution but we are unlikely to get case-control studies with 
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fewer than 100 in either group. The important message is that simple rules such as “no more 

than X results” are almost certainly not sufficient to guarantee participant confidentiality. 

Given the two-sample nature of the testing problem, however, it is safe to say that any 

‘directed’ results ─ such as signed p-values indicating which alleles are associated with the 

outcome ─  are potentially informative and should probably not be published at all. On the 

other hand, unsigned  p-values could be released without risk (10) and as they can be of great 

value in a number of settings, we believe it would be helpful to exclude them from any 

embargo on aggregate statistics following the reaction to Homer et al [1].  

Finally, despite the theoretically strong underpinning of the basic conclusions of Homer et al, 

we would argue that the strong reliance of the methods on the underlying assumptions ─ 

particularly that of co-ancestry ─ renders the true level of forensic or ethical risk imposed on 

study participants rather small in many practical situations.  Thus, we would  support the 

suggestion (2) that directed study-wide summary statistics from genetic association studies 

could be protected in many cases by an internet-based access mechanism that simply checks 

that a potential user is a bona fide biomedical researcher in good standing, such as is 

achievable using contemporary technology (http://www.gen2phen.org). In particular, it would 

seem that the huge sample sizes that are currently being collected for genome-wide 

association analyses will render identification – from study-wide summary statistics alone - 

forensically unreliable (13). This is likely to be particularly true for the common situation 

where sample size is increased by pooling different studies and where the assumption of 

common ancestry will be less likely to hold.  However, the potential risk has to be carefully 

considered on a case by case basis.  This paper will hopefully become part of the information 

process by which  new policies can be constructed that aim to better balance the scientific 

value of sharing data with the assurances of confidentiality given to study participants before 

such methods were available and aid in the design of consent forms for future studies. 

http://www.gen2phen.org/�
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SNP 

Spacing 
Group Mean (𝜷�) 

Rejections of 

H0: 

P<0.05 

Every 20th 

SNP 

Case 1 0.9802 

Control -0.9999 0.9809 

Neither -0.0002 0.1138 

Every 33rd 

SNP 

Case 1 0.9864 

Control -0.9999 0.9858 

Neither -0.0005 0.0947 

Every 

100th SNP 

Case 1 0.9886 

Control -1 0.9891 

Neither -0.0002 0.0840 

Table 1: Results for the linear regression method.  One thousand simulations for each SNP 

spacing are performed generating hypothetical case-control GWAS consisting of 100 

individuals in each group.  The “Neither” group also consists of 100 individuals.  Each 

simulation run tests each individual within each of the three groups for presence in the 

hypothetical study.  Proportion of rejections of H0 represents power for individuals in the 

case and the control groups, and type I error for individuals in neither group. 
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Analysis Group 
Mean 

(𝜷�) 

Reject. H0 

(5% level 

of sig.) 

Linear  

Regression 

Case 1 0.9878 

Control -0.9999 0.9885 

Neither 0.0004 0.0814 

Logistic 

Regression 

Case 5.2266 0.9796 

Control -5.2262 0.9808 

Neither 0.0022 0.0511 

GEE 

Independence 

(cluster size = 1) 

Case 1 0.9802 

Control -0.9999 0.9813 

Neither 0.0004 0.0512 

Table 2: Results for the linear regression, logistic regression, and GEE independence (with 

cluster size of 1) approaches for the dataset with a SNP spacing of 100.  One thousand 

simulations are performed generating hypothetical case-control GWAS consisting of 100 

individuals in each group.  The “Neither” group also consists of 100 individuals.  Each 

simulation run tests each individual within each of the three groups for presence in the 

hypothetical study for each model.  Proportion of rejections of H0 represents power for 

individuals in the case and the control groups, and type I error for individuals in neither 

group.  
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Analysis Group 
Mean 

(𝜷�) 

Reject. H0 

(5% level of 

sig.) 

Linear Regression 

Case 1 0.9807 

Control -0.9999 0.9803 

Neither 0.0009 0.1120 

Logistic 

Regression w/ 

Offset 

Case 5.1539 0.9689 

Control -5.1530 0.9686 

Neither 0.0049 0.0751 

GEE 

Independence 

(cluster size = 1) 

Case 1 0.9698 

Control -0.9999 0.9693 

Neither 0.0009 0.0753 

GEE  Case 1 0.9558 

AR-1 Control -0.9999 0.9554 

 Neither 0.0009 0.0534 

Table 3: Results for linear regression, logistic regression, GEE independence (with cluster 

size of 1) and GEE AR-1 (with a cluster size of 20) on the dataset with a SNP spacing of 20.   

One thousand simulations are performed generating hypothetical case-control GWAS 

consisting of 100 individuals in each group.  The “Neither” group also consists of 100 

individuals.  Each simulation run tests each individual within each of the three groups for 

presence in the hypothetical study for each model.  Proportion of rejections of H0 represents 

power for individuals in the case and the control groups, and type I error for individuals in 

neither group. 

 



34 
 

Regions Group Mean (𝜷�) 

Reject. H0 

(5% level of 

sig.) 

South Vs Central 

In Study – South 1.0000 0.9691 

Not in  Study – 

South 
0.0052 0.0518 

In Study – Central -1.0002 0.9664 

Not in  Study – 

Central 
-0.0078 0.0557 

Central Vs North 

In Study – Central 1.0001 0.9735 

Not in  Study – 

Central 
0.0129 0.0516 

In Study – North -0.9999 0.9691 

Not in  Study – 

North 
-0.0040 0.0559 

South Vs North 

In Study – South 1.0002 0.9742 

Not in  Study – 

South 
0.0144 0.0495 

In Study – North -1.0004 0.9718 

Not in  Study – 

North 
-0.0152 0.0564 

Table 4: Results when cases and controls are drawn from different UK regions in the 1958 Birth Cohort.  In 

each simulation run, 100 individuals from each region are randomly sampled into one arm of a hypothetical 

case-control GWAS, and another 100 individuals from each region are test individuals under the null 

hypothesis.  The proportion of rejections of H0 represents power for the individuals in the simulated case-control 

GWAS, and type I error for individuals not in the study. One hundred simulation runs are performed. 
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Cohorts Group Mean (𝜷�) 

Reject. H0 

(5% level of 

sig.) 

1958BC Vs NBS 

In Study – 1958BC 1.0000 0.9677 

Not in Study – 1958BC 0.0095 0.0539 

In Study – NBS -1.0006 0.9694 

Not in Study – NBS -0.0111 0.0573 

1958BC Vs CAD 

In Study – 1958BC 1.0001 0.9733 

Not in Study – 1958BC 0.0276 0.0549 

In Study – CAD -1.0006 0.9728 

Not in Study - CAD -0.0320 0.0571 

NBS Vs CAD 

In Study – NBS 1.0001 0.9745 

Not in Study – NBS 0.0284 0.0553 

In Study – CAD -1.0014 0.9717 

Not in Study - CAD -0.0299 0.0526 

Table 5: Results from 100 simulations when 100  cases and 100 controls are drawn from 

completely different UK cohorts together with 100 individuals from each cohort who are 

neither cases nor controls. Only the GEE AR-1 model was considered here.   
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Mean (𝐹𝑆𝑇) based on: Approach Power Type I Error 

True: 𝑝1𝑗 , 𝑝2𝑗 Sample: 𝑝𝚥� , 𝑝𝚥∗� 

0.000005 0.005015 

Linear Regression 0.9982 0.0627 

GEE Independence 0.9972 0.0489 

GEE AR-1 0.9973 0.0508 

0.00005 0.005057 

Linear Regression 0.9975 0.062 

GEE Independence 0.9969 0.0497 

GEE AR-1 0.9971 0.0509 

0.00025 0.0053 

Linear Regression 0.9985 0.0643 

GEE Independence 0.9984 0.0565 

GEE AR-1 0.9982 0.0583 

0.0005 0.0055 

Linear Regression 0.9987 0.075 

GEE Independence 0.9987 0.0729 

GEE AR-1 0.9986 0.0739 

0.001 0.006 

Linear Regression 0.9993 0.1224 

GEE Independence 0.9995 0.1383 

GEE AR-1 0.9995 0.1401 

0.0049 0.0099 

Linear Regression 1 0.7687 

GEE Independence 1 0.9190 

GEE AR-1 1 0.9182 

0.0099 0.0148 

Linear Regression 1 0.9893 

GEE Independence 1 0.9999 

GEE AR-1 1 0.9999 

Table 6: Simulation results testing different values for 𝑭𝑺𝑻.  Results are based on 100 runs for each scenario, 

simulating 5,000 independent SNPs and case-control studies consisting of 100 cases and controls in 

each.  A further 100 individuals from each ancestry are also simulated in each simulation run to derive 

the measures of type I error.  The GEE Independence approach is fitted using a cluster size of 1; the 

GEE AR-1 approach is fitted using a cluster size of 20. 
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Background Contemporary bioscience sometimes demands vast sample sizes and
there is often then no choice but to synthesize data across several
studies and to undertake an appropriate pooled analysis. This same
need is also faced in health-services and socio-economic research.
When a pooled analysis is required, analytic efficiency and flexibil-
ity are often best served by combining the individual-level data
from all sources and analysing them as a single large data set.
But ethico-legal constraints, including the wording of consent
forms and privacy legislation, often prohibit or discourage the shar-
ing of individual-level data, particularly across national or other
jurisdictional boundaries. This leads to a fundamental conflict in
competing public goods: individual-level analysis is desirable from
a scientific perspective, but is prevented by ethico-legal consider-
ations that are entirely valid.

Methods Data aggregation through anonymous summary-statistics from
harmonized individual-level databases (DataSHIELD), provides a
simple approach to analysing pooled data that circumvents this
conflict. This is achieved via parallelized analysis and modern dis-
tributed computing and, in one key setting, takes advantage of the
properties of the updating algorithm for generalized linear models
(GLMs).

Results The conceptual use of DataSHIELD is illustrated in two different
settings.
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Conclusions As the study of the aetiological architecture of chronic diseases
advances to encompass more complex causal pathways—e.g. to in-
clude the joint effects of genes, lifestyle and environment—sample
size requirements will increase further and the analysis of pooled
individual-level data will become ever more important. An aim of
this conceptual article is to encourage others to address the chal-
lenges and opportunities that DataSHIELD presents, and to explore
potential extensions, for example to its use when different data
sources hold different data on the same individuals.

Keywords Pooling, analysis, meta-analysis, individual-level, study-level,
generalized linear model, GLM, ethico-legal, ELSI, identification,
disclosure, distributed computing, bioinformatics, information
technology, IT

Introduction
Most known associations between genetic variants
and chronic diseases reflect weak effects with typical
allelic odds ratios in the range 1.1–1.4.1–3 The reliable
identification of such effects demands vast data
sets.1–5 Case–control studies including thousands of
cases are required even when interest focuses on the
simplest situation: the detection of the direct effects
of single nucleotide polymorphism (SNP) variants.1–3

Furthermore, when, as is likely, scientific emphasis
starts to focus on the study of gene–environment
and gene–gene interactions and the exploration of
causal pathways more comprehensively, tens of thou-
sands of cases will often be required.1 Tens of thou-
sands of subjects can also be required to study a
quantitative phenotype (e.g. measured blood pres-
sure), because allelic effect sizes may be as small as
one-tenth of a standard deviation, or even less.6–8

To achieve sample sizes as large as this, it is often
necessary to pool data across multiple studies, and
large collaborative consortia have been responsible
for much of the recent progress in human population
genomics.6,8–16 Large-scale data pooling is equally im-
portant in other settings too: in mainstream epidemi-
ology17—particularly in the analysis of formal
networks of studies18,19—in public health and
health-services research, and in comparative interna-
tional analysis in the social sciences, including coor-
dinated economic surveillance.20,21 Such pooling not
only supports the attainment of large sample sizes but
can also be used to reduce bias arising from access to
a restricted subset of data. But, regardless of its pur-
pose, the sharing of data always raises important
ethico-legal issues even when the analysis is mutually
agreed. Data privacy, for example, is a hot topic in
genomic epidemiology,22,23 as well as being a concern
for government, industry,24,25 the media and even the
general public.26 Biomedical science has responded
cautiously to these concerns, ensuring that all
ethico-legal stipulations are met and that new issues
are dealt with carefully, as and when they arise.23,27

Given this caution, it is perhaps surprising that there
has been such striking recent progress in detecting
genetic associations with complex diseases:3,28 ‘in
the past three years genome-wide association studies
(GWAS). . .. have reproducibly identified hundreds of
associations of common genetic variants with over
80 diseases and traits (http://www.genome.gov/
gwastudies)’.9 But, in one sense, genomic epidemi-
ology has been fortunate. The class of pooled analysis
that has underpinned many of the recent suc-
cesses,6,8–16 just happens to be consistent with the
ethico-legal frameworks that large-scale bioclinical
studies have had in place over many years. That is,
most such studies are permitted to take part in col-
laborative GWAS based on study-level meta-analysis
(SLMA).29,30 Here, investigators from each study per-
form a separate GWAS, and then share the associ-
ation statistics for each SNP with a designated
analysis centre (AC); but the raw data encoding
SNP and disease status are not shared.6,7,11 The AC
then performs a meta-analysis to estimate the genetic
associations across the consortium as a whole. But,
bioscience will inevitably move on from its current
focus on simple associations between genetic variants
and disease-related traits, to explore causal pathways
more thoroughly: e.g. by incorporating gene–environ-
ment interactions. This will increase sample size
requirements further,1 making data pooling yet more
essential. In addition, data analysis will become
increasingly unpredictable and, therefore, exploratory.
For example, in a conventional meta-analysis-
based GWAS it is clear a priori that each study
must generate summary statistics to reflect the
association of the disease of interest with each of a
large number of designated SNPs (e.g. 1 million).
This is onerous but it can be pre-specified ahead of
time. The required set of summary statistics is
far more difficult to predefine if the analysis is to
involve gene–environment interactions; environ-
mental and lifestyle factors may be parameterized
in many different ways, and identification of the
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appropriate parameterization often demands initial
exploratory analysis.

Analytic and ethico-legal considerations
Large-scale statistical pooling is typically achieved in
one of two ways.29,30 First, the individual level data
from each of the original data sources can be aggre-
gated to produce one combined data set. This is
then analysed as if it were generated by a single
study, though study-to-study heterogeneity may ne-
cessitate the inclusion of study-specific model terms.
This approach may be called individual-level meta-
analysis (ILMA). Secondly, appropriate summary stat-
istics can be generated from separate analyses carried
out on each independent study, and these then pooled
in an SLMA. SLMA is quick and convenient when
based on summary statistics that already exist or
can be easily derived de novo. It is therefore the ap-
proach to meta-analysis that is often adopted in
public health research, the meta-analysis of rando-
mized controlled trials and, recently, in the pooling
of GWAS studies.6–8,29–31 But, it has important limi-
tations. First, although it is very convenient to use
summary statistics that are already in the public
domain, it is important to recognize that they can
be biased by selective reporting dependent on find-
ings. In the field of genomic epidemiology this can
be particularly problematic.32 Secondly, even when
summary statistics are derived de novo, SLMA can be
restrictive.30 The analysis of all but the simplest of
biomedical problems demands a significant element
of exploration, but analysis in a conventional SLMA
is unavoidably restricted to questions that can be ad-
dressed using the particular set of summary statistics
that was initially requested.30 If an important new
question arises, it can only be answered if the inves-
tigators are all prepared to produce the new summary
statistics that are required. This can cause serious
delays.

In consequence, ILMA would often be preferred to
SLMA. But, ILMA raises major ethico-legal chal-
lenges. Most notably the sharing of individual level
data, sometimes termed ‘microdata’,24 may be pro-
hibited in law. In many jurisdictions, individual-
level data are treated as being fundamentally different
to aggregate data, and some individual-level data
cannot cross certain national boundaries.33 Even
when sharing is legal, it may be proscribed by the
consents and ethical approvals under which the data
were initially collected.34 And, even when—in
principle—microdata can be shared, that sharing can
demand protracted applications for access via scien-
tific oversight committees and ethical review
boards.35,36 But these barriers are there for a good
reason; the relevant ethico-legal considerations reflect
important values held by many societies. Individual-
level data can disclose identity,24 they may be highly
sensitive24 and they may yield unexpected scientific
knowledge of great practical or theoretical value,

which the original investigators, funders, national
governments and even study participants might feel
wary about passing on to a third party.23 The funda-
mental importance of these issues is indicated by the
fact that they are addressed by the ethico-legal and
governance provisions of almost all major bioclinical
studies. To illustrate, Box 1 provides exemplar lan-
guage37 from the ethico-legal documentation of a
number of international biobanks and cohort studies,
and from the Model Consent Form prepared by the
Public Population Project in Genomics (P3G).38 The
quotes are not ascribed to particular studies because
anonymity was guaranteed as part of the formal
agreement under which this ethico-legal documenta-
tion was originally shared with P3G.

Resolving a real conflict between
‘competing public goods’
Although ILMA offers many advantages in terms
of analytic flexibility,29,30 it is therefore clear that
ethico-legal restrictions on the transfer of individual-
level data to third parties mean that a conventional
ILMA approach is often impractical. Since this conflict
in ‘competing public goods’ was identified, it has been
discussed extensively by the international bio-
banking community; for example, in forums provided
by P3G, Promoting Harmonization of Epidemiological
Biobanks in Europe (PHOEBE) and Biobanking and
Bio-molecular Resources Research Infrastructure
(BBMRI). These discussions have led to the rapid evo-
lution of a novel approach to analysis that could, in
theory, circumvent the conflict identified. The pro-
posed approach is named DataSHIELD (Data aggrega-
tion through anonymous summary-statistics from
harmonized individual level databases). This concep-
tual article describes the approach proposed, demon-
strates that it works in theory, explores its potential
uses and extensions, and discusses some of the
challenges to be faced in implementing it. It is
our hope that by sharing the concept with the
broader research community, we will encourage
others to work with us in undertaking a pilot
implementation.

Methods
The conceptual underpinning of DataSHIELD is
straightforward. Modern distributed computing is
used to realize the full benefits of ILMA without
physically sharing any individual-level data. All data
remain on the local computers at their studies of
origin and the role of the AC is to coordinate a par-
allelized analysis of the individual-level data on all of
those local computers simultaneously. Critically, the
parallelized analysis is so framed that the only infor-
mation passing back and forth between computers
consists of short blocks of computer code specifying
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the next analysis required, and low-dimensional
summary statistics used in estimating the mathemat-
ical parameters of the model (e.g. means or regres-
sion coefficients). These items disclose neither the
identity, nor the characteristics, of individual study
participants.

Figure 1 provides a schematic representation of the
class of analytic problems that DataSHIELD is aimed
at addressing; here, data are distributed across six
sources. The aim is to estimate the statistical param-
eters that characterize the relationship between an
outcome variable Y and one or more explanatory vari-
ables X. Here the data are horizontally partitioned:25

i.e. each data set includes all of the variables (X and
Y) but on different sets of individuals. A classical
ILMA would involve stacking the data matrices
from each study to produce one large data matrix
(Figure 1a). Under DataSHIELD (Figure 1b), on the
other hand, a series of parallel analyses are underta-
ken simultaneously—using Xj and Yj in the jth
study—and these analyses are synthesized in an ap-
propriate manner to generate estimates pertaining to
all six studies simultaneously.

Figure 2 provides a schematic representation of the
type of IT infrastructure that might typically be

Box 1 Examples of language used in relevant ethico-legal documentation including consent forms and
information leaflets

Examples of language used in the ethico-legal documentation of selected international biobanks
and cohort studies

(1) Language restricting the scope of data sharing

Use of data restricted to researchers participating in the original study

(a) ‘All research data are confidential. . . they will only be used in medical research and [will] remain
in the sole use of the participating researchers.’

Use of data restricted to researchers in one country

(b) ‘Blood and DNA samples may. . .be distributed to laboratories. . .around [country] for further
research.’

(c) ‘Research using the anonymous samples will be done by [researchers] . . .throughout [country].’

(2) Language ensuring data de-identification

(a) ‘[Project] will give researchers restricted access to. . . anonymous samples to conduct [research]. . .’
(b) ‘Researchers authorised by [Project] will have access to . . . coded information. . .’
(c) ‘[Project] researchers or their collaborators at other research institutions. . . may be allowed access

to your DNA sample and medical information, but they will not get. . . links to your identity.’

Examples of language used in the P3G ’Model Consent form’

(1) The need to obtain both scientific and ethical approval

(a) ‘The [Project] gives approved researchers access to data and samples. . . All researchers will only
have access to coded data or samples, in order to protect your privacy. They also have to obtain
prior scientific and ethical approval as described above, and their research must fit the purpose of
the resource/biobank.’

(b) ‘The [Project] expects to receive requests and, if approved, provide access to data’.

Figure 1 Schematic representation of structure of scientific
problems that DataSHIELD is designed to address. (a) One
file: all individual-level data pooled together in one large
data file. (b) Partitioned: individual-level data held in six
separate data files, one for each study
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required to undertake a DataSHIELD analysis. The
computers on which the individual-level data reside
at each of the six centres are depicted as lightly
shaded circles. One centre is designated the AC and
it is a computer (the heavily shaded circle) at that
centre that is used to coordinate and execute the
analysis. Often, the AC will be one of the studies
that are contributing data to the analysis. The analysis
software/middleware in DataSHIELD will require two
primary components: (i) a master process (MP) that
resides on the coordinating computer at the AC; and
(ii) a series of slave processes (SPs), each residing on
the local data computers. This structure will enable
analytic subroutines to be written by the AC, and
then transmitted and activated in a suitable software
environment (e.g. in ‘R’39) on each of the data com-
puters. As an analytic session proceeds, the analysis
will evolve and the algorithm that is active on each SP
will therefore change. It is the MP at the AC that will
control which algorithms are running on which com-
puters at which point in time.

Example 1
Using DataSHIELD to enhance the
flexibility of SLMA
Perhaps the simplest application of DataSHIELD
might entail the replication of a conventional SLMA.
To illustrate this setting, data have been simulated
for six hypothetical studies (for details see Supple-
mentary Data: S1 available at IJE online) that have
assessed peripheral systolic blood pressure (SBP in
mmHg�1) as a quantitative outcome variable and
two explanatory covariates: AGE (years, centralized
by subtracting the mean of 60 years); and an SNP
(coded 0, 1 or 2, to reflect the number of copies of
a minor allele). An illustrative analysis might involve
fitting a multiple linear regression model to estimate a
regression intercept (bintercept) and regression coeffi-
cients bAGE and bSNP associated with the two covari-
ates. Scientific interest might focus on bSNP to provide
an age-adjusted estimate of the increase in SBP asso-
ciated with each additional copy of the minor allele.

Figure 2 Schematic representation of the structure of DataSHIELD. The computer controlling analysis (heavily shaded
circle) is sited at the analysis centre (MP: master process). The data computers (lightly shaded circles) are each sited at one
of the study centres involved in the collaborative analysis (SP: slave process). The arrows indicate the flow of analytic
instructions and summary statistics. All potentially disclosive individual-level data are secured on the local data computers
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If the parallelized analyses are to be undertaken in
‘R’,39 the statistician at the AC might type the two
lines of code at the top of Box 2. Using an appropriate
scripting language such as Perl40 this code could be
packaged and transmitted to each of the SPs where it
could be piped to R to fit the required regression
model on the local data set. This will generate a
results matrix (three rows, two columns) comprising
an estimate and standard error for each regression
coefficient (bottom of Box 2). Additional scripting
instructions will then command each study to trans-
mit its results matrix back to the AC. There, the
study-specific results can be pooled using an appro-
priate form of SLMA, to produce parameter estimates
and standard errors for all six studies combined. This
analysis is detailed in Supplementary Data: S1 (avail-
able at IJE online).

This DataSHIELD analysis, as outlined, is mathem-
atically equivalent to a conventional SLMA, and all
individual-level data remain secure on their com-
puters of origin. But, the first stage (estimation of
regression coefficients and standard errors) is con-
trolled remotely by the AC, rather than being carried
out by the investigators at each study independently,
at the request of the AC. This difference is crucial,
because it means that once the initial regression
model (Box 2) has been fitted, it is easy to fit a dif-
ferent model that may contain terms for which sum-
mary statistics might not, originally, have been
requested; for example, one containing an interaction
between the AGE and SNP covariates. This would be
impossible in a conventional SLMA unless this sup-
plementary analysis had explicitly been pre-specified.
This demonstrates that, in principle, DataSHIELD
permits SLMA to be undertaken more flexibly. But
it offers far more than this. Perhaps most crucially,
it allows researchers to make efficient use of an im-
portant and versatile class of mathematical models
in a manner that is mathematically identical to a
full ILMA.

Example 2
Using DataSHIELD to undertake ILMA
without sharing the data
Many important analyses in contemporary bio-
population science can be framed as generalized
linear models (GLMs).41 This broad class of models
incorporates many forms of regression—e.g. multiple
linear regression, logistic regression, Poisson regres-
sion and many types of survival analysis. It also sub-
sumes numerous other analytic procedures including
t-tests, analysis of variance and estimation based on
contingency tables.41 GLMs are usually fitted itera-
tively using the iteratively reweighted least squares
(IRLS) algorithm.42 An initial guess at the required
regression coefficients is progressively refined, over a
number of iterations, until maximum likelihood esti-
mates are obtained. Conveniently, in the present con-
text, updating the coefficient estimates at any given
iteration depends solely on an information matrix
and a score vector, both of which can be obtained
by fitting a single iteration of the same GLM to the
individual-level data from each of the collaborating
studies one at a time, and by summing them in the
AC. The two sums may then be used to update the
regression coefficients at that iteration42 (for details
see Box 3 and Supplementary Data: S2, available at
IJE online). The regression coefficients and standard
errors that are obtained in this manner are identical to
those that would be obtained by fitting the same GLM
to the pooled individual data from all studies com-
bined, but the AC never has access to the
individual-level data.

Results
The mathematics underpinning the IRLS algorithm
guarantee that the DataSHIELD approach, as imple-
mented in Example 2, will produce the same results
as fitting the equivalent GLM to the individual-level
data from all studies combined (for details, see
Supplementary Data S2 and S4 at IJE online). Box 3
provides a concrete example to confirm this claim. It
outlines the analysis of a second simulated data set
consisting of six hypothetical studies set up to inves-
tigate the relationship between the risk of acute myo-
cardial infarction, body mass index (BMI) and an
SNP. Full details of the simulation, analysis, computer
code and results are provided in Supplementary Data:
S3–S6 at IJE online). In contrast to the simple model
used in Example 1, this GLM incorporates an inter-
action term to reflect heterogeneity in the magnitude
of the increase in risk of myocardial infarction for a
given increase in BMI.

As proof of principle, the estimated regression coef-
ficients and standard errors reported at the bottom of
Box 3 are precisely the same, rounding error aside, as
those derived from a conventional logistic regression
model fitted to a single data set comprising the

Box 2 Exemplar code and output for Scenario 1

The statistician types:

regression.model<-lm(SBP�AGEþSNP)

results.matrix<-summary(regression.model)$coefficients[,1:2]

Thereby producing a results matrix for each studya:
for example,

Estimate Std. Errorb

(Intercept) 125.130 0.2629

AGE 0.203 0.0373

SNP 0.254 0.3907

aHere, the results shown are for simulated study 6
bStandard Error
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Box 3 Simulated data example
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individual level data from all six studies combined
(Box 4). But (see Box 3 and Supplementary Data:
S3–S5 at IJE online), information flow between the
data sources and the AC is restricted to: (i) repeated
instructions from the AC to the data computers to
execute each new iteration of the GLM; (ii)
non-disclosive summary statistics (one matrix and
one vector) passed back from each data computer to
the AC at the end of each iteration; (iii) the updated
vector of regression coefficients—again
non-disclosive—passed from the AC to the data com-
puters at the start of each new iteration. None of
these items is disclosive of identity or of sensitive
information.

Discussion
This article demonstrates that if all ethico-legal and
informatics challenges can be overcome then, in prin-
ciple, DataSHIELD should enable a full pooled ana-
lysis of individual-level data from multiple sources to
be undertaken, even when ethico-legal considerations
might otherwise obstruct the physical sharing of that
individual-level data. At present, DataSHIELD is no
more than a concept and there is a quantum leap
between proving that the mathematics work and
actually implementing the approach in practice. The
principal challenges are in developing the IT systems
required, in determining whether ethical review com-
mittees agree that there is a real problem to be solved
and that DataSHIELD provides a workable solution
to that problem, and in implementing the local infra-
structures at individual biobanks and cohort studies
(staff and equipment) to enable its use. These chal-
lenges are substantive and it might be argued that
publication should await successful implementation.
The European Union has recently awarded funding
under Framework 7 (the BioSHARE-EU project) to
enable preliminary work to develop and pilot the
required IT systems and to explore the relevant
ethico-legal and social issues. Given that the imple-
mentation work will now definitely take place, it is
critical to enrol studies, as pilot sites, to work with us
in implementing and trialling the method.

Furthermore, the preliminary work will include
exploring the fundamental problem with research
ethics committees and determining whether they
view DataSHIELD as a viable solution. We hope this
article will assist studies, biobanks and research ethics
committees to determine whether they wish to con-
tribute to such a project.

Development to date has been undertaken by an
international group that includes leading bioinforma-
ticians and ethico-legal experts. On the basis of active
discourse between these experts and the broader
international biobanking community (via P3G and
BBMRI), the prevailing viewpoint seems to be that
there is a real problem to be overcome and that the
fundamental challenges both in the IT and
ethico-legal domains can, in principle, be overcome.
For example, there is a broad consensus amongst
ethico-legal experts that the physical sharing of indi-
vidual level data between research groups must be
subject to appropriate governance and that it is an
inescapable fact that the formal documentation and
oversight systems in certain studies (see Box 1) pro-
scribes or discourages such sharing. The real chal-
lenge, therefore, is to explore whether DataSHIELD
provides a workable solution. Bioinformaticians
believe that the IT interface should be set up in a
manner that actively prevents the AC from tunnelling
into the local systems to extract data or other infor-
mation and/or from fitting models that reveal iden-
tifying or sensitive data either directly or by logical
deduction. It is therefore commonly argued that the
DataSHIELD interface should parse all incoming and
outgoing messages and then block and record any
request, or series of requests,43 that might, by acci-
dent or design, lead to the transmission of inappro-
priate information. Encouragingly, it seems to be the
view of most IT experts that an interface with these
characteristics can, in principle, be constructed, and
will be feasible to use in practice. This optimistic
viewpoint is supported by the fact that secure
single-site interfaces already exist allowing external
users to specify analyses and then to extract re-
sults—but, crucially, no more than results. For ex-
ample, such an interface is at the heart of the UK’s
Economic and Social Research Council Secure Data
Service.44 Provided this optimism proves to be well
founded, the majority view amongst ethico-legal and
biobanking experts with whom DataSHIELD has been
discussed seems to be that DataSHIELD might then
be seen as being equivalent to conventional SLMA.
This is because, in both settings, information flow
between data providers and the AC is restricted en-
tirely to analytic instructions and non-identifying
summary statistics. If research ethics committees
hold the same viewpoint, any study that is currently
able to contribute to a conventional SLMA-based
meta-analysis (including GWASs) should, in prin-
ciple, be permitted to make use of DataSHIELD, and
the formal ethical and governance requirements

Box 4 A conventional logistic regression analysis
[glm() in ‘R’] on pooled data from all six studies
combined

Estimate SE z-value Pr(4|z|)

Coefficients:

(Intercept) �0.32956 0.02838 �11.612 <2e-16

BMI 0.023 0.00621 3.703 0.000213

BMI.456 0.04126 0.0114 3.62 0.000295

SNP 0.55173 0.03295 16.746 <2e-16
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should be equivalent. Ultimately, however, the only
definitive proof that DataSHIELD will work and will
be accepted by ethics review boards is to implement it
for real—the publication of this conceptual article is
an important step towards that aim.

The mathematics underpinning DataSHIELD is
neither novel, nor difficult to implement.29,30,41,42

For example, the fitting of a GLM requires no more
than a partitioned modification of the conventional
IRLS algorithm41,42 (see Supplementary Data: S2–S5
at IJE online). Rather, the originality of the method
lies in the basic concept itself. Interestingly, a similar
idea has previously been floated in the technometrics
literature,25 and although this means that we cannot
claim precedence, it strengthens the academic foun-
dation of the proposal. Critically, the approach seems
not to have been noted by statisticians, bioinformati-
cians or ethicists working in the field of biomedical
research and it has neither been promoted nor applied
in this important domain. From a technical perspec-
tive, our implementation via GLMs might be viewed
as a special case of what the technometrics paper
refers to as ‘secure maximum likelihood estimation’.25

But, the maximum likelihood case is considered
only in broad generality in that paper, and there is
no specific focus on generalized linear models.25

Furthermore, our implementation via GLMs circum-
vents some of the ‘complications’ that the techno-
metrics authors note could arise in the more general
case.25 Our article therefore brings an exciting and
potentially important new concept to the attention
of the biomedical research community, and illustrates
the practical implementation of that approach via a
broad class of models (GLMs) that already has a wide
range of applications in bioscience.

The extensive discussion of DataSHIELD since its
initial proposal has resulted in a number of important
extensions to the concept. The first is to expand the
remit of the approach to work with data sets that are
vertically25 rather than horizontally partitioned. In
contrast to horizontal partitioning (Figure 1), under
vertical partitioning the different data sources contain
different data items on the same primary set of indi-
viduals. Such a scenario occurs commonly when a
major cohort study, such as ALSPAC (Avon
Longitudinal Study of Parents and Children), links
to secondary (often governmental) data sources to
enrich the information that are available for ana-
lysis.45 Critically, the data in such secondary sources
are often sensitive and can be protected against
misuse by prohibiting their physical release. This
same problem arises regularly in cross-jurisdictional
analyses being undertaken or overseen by, national
statistics agencies such as Statistics Canada or
Statistics UK. The mathematics underpinning the
solution to the problem of vertical partitioning is
‘substantially more complex’25 than that for horizontal
partitioning but, in principle, a solution does exist
in the form of an approach known as ‘secure matrix

products’.25 If this approach can successfully be imple-
mented, this will markedly enhance the utility of the
proposed DataSHIELD approach. The second exten-
sion that has been proposed is to take advantage of
the approach to help bioscience deal with the pooled
individual level analysis of data sets that cannot phys-
ically be shared, because of their vast physical size.
As illustrative examples, such sources may include
full genome sequence data or medical images on
large numbers of subjects. Finally, we note that
DataSHIELD can prove helpful in any meta-analytic
setting where analysis at the level of individual pa-
tient records would be scientifically desirable, but
ethico-legal considerations discourage ILMA. For
example, a reviewer has noted that ILMA permits
subgroups of subjects in a given study to be added
or removed, which might be valuable when exploring
the implications of an intention-to-treat analysis.
Although care would have to be taken to ensure
that such subgroups were not identified in a poten-
tially disclosive manner, DataSHIELD could address
this issue if the subgroups were appropriately flagged.

As an important aside, the genomics world is
still grappling with the implications of the work of
Homer et al.23 A question that is regularly asked of
DataSHIELD is whether it would protect against the
form of inferential disclosure24 described and explored
by Homer et al. The simple answer is ‘no’, because dis-
closure under Homer et al. is based on summary statis-
tics reflecting study-wide genotype distributions at
each of many SNPs and is therefore totally unrelated
to the third party release of individual-level data. This
implies that the specific concerns raised by Homer
et al.23 cannot be invoked as being part of the rationale
for controlling third party release of individual level
data and, as a corollary, that these problems cannot
be prevented by using DataSHIELD. But, this does
raise an obvious follow-up question: ‘Are there other
circumstances where summary parameters can become
identifying?’. This is relevant, because DataSHIELD
relies on the transmission of summary statistics that
are assumed to be non-disclosive. One recognized
form of inferential disclosure is termed residual disclos-
ure.43 Here, the differences between a series of closely
related summary statistics—that are themselves
non-disclosive—permit precise inferences to be drawn
about identity and attribute. It is therefore clear that
other scenarios do exist in which summary data can
become identifying and some of these may be, as yet,
unknown. This emphasises the importance of introdu-
cing DataSHIELD cautiously. Because the particular set
of summary statistics to be transmitted will vary from
one class of problem to another, the potential risk of
disclosure will require thorough investigation when-
ever a new class of models is introduced. Some types
of model, such as GLMs,41,42 are unlikely to be disclo-
sive, not least because they are of low dimension: they
typically have few parameters relative to the number of
study participants. But the same may not be true of
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other models, such as those containing large arrays of
random effects.46 This latter might restrict the fitting
of generalized linear mixed models46 (for example by
excluding models where there is a random effect for
any single subject). On the other hand, it may prove
possible to hold the random effects on the local data
computers, while transmitting non-disclosive param-
eters such as the local variance of the random effects.
This requires extensive methodological work, but is an
area that we believe would be of considerable theoret-
ical interest to many biostatistics research groups.

Regardless of how data pooling is to be approached,
two absolute criteria must always be fulfilled. First,
all ethico-legal stipulations must be met. This implies
that if it is unclear whether the governance rules of a
particular study permit DataSHIELD to be used, that
uncertainty must be resolved before DataSHIELD is
implemented on that study. Secondly, the data to be
amalgamated across studies must be sufficiently simi-
lar to allow them to be pooled. Two data sets may be
said to be harmonized for a given set of variables in a
particular scientific setting, if it is valid and feasible to
pool them in that setting. DataSHIELD should not be
used unless the studies to be pooled are harmonized.
This requires a formal judgement to be made, and
methods and tools exist to help scientists make this
judgement in relation to pre-existing studies: these
include the DataSHaPER (http://www.datashaper.
org) in population genomics and epidemiology, and
the methods advocated by the Luxembourg Income
Study (http://www.lisproject.org) in economics. In
addition, it is critical that IT systems are set up so
data can be worked on using DataSHIELD.

To finish, we reiterate that our aim in placing
DataSHIELD into the public domain at this juncture
is to further stimulate active discussion amongst
ethico-legal experts, bioscientists, epidemiologists,
biostatisticians, health services researchers, social sci-
entists, national statistical offices and IT profession-
als. It is our hope that interest generated by this
article will encourage others to work alongside us in
exploring the opportunities presented by this remark-
ably simple idea. If the key challenges can be identi-
fied and met—and there is no reason to believe that
they cannot—DataSHIELD can provide an invaluable
addition to the growing toolkit (http://www.P3G.org)
that is facilitating the large-scale pooled analyses that
are fundamental to current and future progress in
contemporary biomedical and social science.

Supplementary Data
Supplementary data are available at IJE online.
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