
Reengineering Software to Three-tier
Applications and Services

Thesis submitted for the degree of
Doctor of Philosophy

at the University of Leicester

by
Carlos Manuel Pinto de Matos

Department of Computer Science
University of Leicester

October 2011

Reengineering Software to Three-tier Applications and
Services

Carlos Manuel Pinto de Matos

Abstract

Driven by the need of a very demanding world, new technology arises as a
way to solve problems found in practice. In the context of software, this
occurs in the form of new programming paradigms, new application design
methodologies, new tool support and new architectural patterns.

Newly developed systems can take advantage of recent advances and choose
from a state-of-the-art portfolio of techniques, taking stock of an understanding
built across the years, learning from past, good and bad, experiences. However,
existing software was built in a completely different context.

Software engineering advances occur at a very fast pace, and applications are
quickly seen as legacy due to a number of reasons, including difficulties to
adapt to business needs, lack of integration capabilities with other systems, or
general maintenance issues.

There are various approaches to address these problems depending on the
requirements or major concerns. The solution can either be rewriting the
applications from scratch or evolving the existing systems.

This thesis presents a methodology for systematically addressing the evolution
of existing application into more modern architectures, including proposing
implementations to address several classes of modernisation, with particular
emphasis in reengineering towards tiered architectures and service-oriented
architectures.

The methodology is based on a combination of source code pattern detection
guiding the extraction of structural graph models, rule-based transformations
of these models, and the generation and execution of code-level refactoring
scripts to affect the actual changes to the software.

This dissertation presents the process, methodology, and tool support. Addi-
tionally, the proposed techniques are evaluated in the context of case studies,
in order to allow conclusions regarding applicability, scalability, and overall
benefits, both in terms of computational and human effort.

Acknowledgments

I would like to express my gratitude to Reiko Heckel. His supervision and

guidance enabled me to keep advancing and get to the current milestone. His

constant availability and fast responses allowed me to work at unconventional

times, and were essential for me to overcome all of the obstacles throughout

the years. I thank him for all his suggestions and pragmatism.

I also highly thank Rui Correia, who received me in Leicester and helped me

to settle in both the city and the department of Computer Science. Not only

that, we also worked together in the early stages of the methodology presented

in this dissertation. I thank him both from a human, and technical point of

view.

I thank Mohammad El-Ramly for his participation too. His expertise of the

software reengineering field contributed to this work.

I thank Artur Boronat for his suggestions regarding my work. I believe that

if it was not for me leaving Leicester shortly after he arrived, we could have

collaborated even more.

José Luiz Fiadeiro also provided invaluable assistance at many levels. I thank

him for his availability and assistance throughout the years.

I also thank Fer-Jan de Vries for his assistance in dealing with administrative

3

matters, and for his kindness.

Several other people, either through their kindness or friendship, also con-

tributed in some way along the route: Stephan Reiff-Marganiec, Laura Bocchi,

Karsten Ehrig, Hong Qing Yu “Harry”, Emilio Tuosto, Rick Thomas, Fawad

Qayum... I cannot recall a bad time at the department, so I must really thank

everyone from staff to students.

During the first and a half year of research, I participated in the Trans-

fer of Knowledge, Industry Academia Partnership Leg2Net (MTK1-CT-2004-

003169). This European project was the starting point for my PhD registra-

tion.

My participation in another European project, the IST-FET IP SENSORIA

(IST-2005-16004), also played an important part.

I also thank several colleagues at ATX Software. Some had direct participation

in some aspects of my work, as Georgios Koutsoukos, Lúıs Andrade, João

Gouveia and Bruno Conde. Others contributed in a different way, as Fernando

Ramalho (who saw me as a good fit for the Leg2Net project), Miguel Antunes

and Nuno Correia who both work directly with me on a day to day basis in

the area of Software Reengineering, Alberto Freitas da Silva (for receiving me

so well when I joined ATX in Lisbon).

Special thanks to my friend and colleague Stephen Gorton, with whom it has

been a pleasure working with, and has helped me immensely at many levels.

Finally, I thank my family for all their patience, love and support and, espe-

cially my sons for allowing me to balance work and play.

Thank you!

Contents

1 Introduction 11

1.1 Motivation . 11

1.2 Scope of research . 13

1.2.1 Separation of business logic from presentation 14

1.2.2 The loosely coupled relationship between services 16

1.2.3 The coarse-grained nature of services 16

1.3 Challenges . 18

1.4 Topic and Problem Statements 19

1.5 Research Strategy . 20

1.6 Publications . 21

1.7 Summary and Outline . 24

2 Background 26

2.1 Software Architecture . 26

2.2 Service-Oriented Architectures 28

Contents 5

2.3 Software Reengineering . 29

2.4 Graphs and Graph Transformation 30

3 Related Work 38

3.1 Reverse Engineering . 39

3.1.1 Program Slicing . 39

3.1.2 Software Reconnaissance 40

3.2 Transformation . 51

3.3 Forward Engineering . 54

3.4 Reengineering to SOA . 55

4 General Methodology 74

4.1 Business Context . 74

4.2 Reengineering Strategies . 79

4.3 Methodology . 80

5 Technological Dimension 86

5.1 Overview . 86

5.2 Type graph . 87

5.3 Code annotation . 89

5.4 Reverse engineering . 92

5.5 Redesign . 93

Contents 6

5.6 Forward engineering . 95

6 Functional Dimension 96

6.1 Overview . 96

6.2 Code annotation . 97

6.3 Reverse engineering . 103

6.4 Redesign . 103

6.5 Forward engineering . 104

7 Implementation 105

7.1 Process . 105

7.1.1 Metamodel definition . 106

7.1.2 Code annotation strategy, tools and artefacts 106

7.1.3 Transformation rules . 106

7.1.4 Target constraints . 107

7.1.5 Tool support . 107

7.2 Prototype . 107

7.2.1 Metamodel definition . 108

7.2.2 Code annotation . 110

7.2.3 Reverse engineering . 111

7.2.4 Redesign . 112

Contents 7

7.2.5 Forward engineering . 114

8 Case Studies and Evaluation 117

8.1 Basic Evaluation . 118

8.2 Proof-of-concept Sample . 120

8.3 Extended Rule Base . 122

8.4 Full Case Study . 123

8.5 Code Quality . 123

8.6 Threats to Validity . 124

8.7 Further Evaluation . 125

9 Conclusions 127

List of Figures

1.1 Java code tangling UI and non-UI concerns 15

1.2 Service granularity. 17

1.3 Document overview. 25

2.1 Three-tier architecture . 27

2.2 Diagrammatic view of the Horseshoe Model. 30

2.3 Type and instance graph (top) and transformation rule (bottom) 33

3.1 Service-Oriented Software Reengineering (SoSR) process. 62

3.2 Service-Oriented Migration and Reuse Technique (SMART) pro-

cess. 63

3.3 Service-Oriented Reengineering (SOR) process. 65

4.1 Tool development process . 76

4.2 Methodology for transformation-based reengineering 82

5.1 Type graph for the OO paradigm. 87

List of Figures 9

5.2 Move Method UI transformation rule. 94

5.3 Extract Method Data UI transformation rule. 94

6.1 Identification of operations . 101

6.2 Meet-in-the-middle approach for identification of operations . . 102

6.3 Move Method Operation transformation rule. 104

7.1 Code categories model for 3-tier architecture 108

7.2 CareStudio - an Eclipse plugin for code pattern matching -

showing one occurrence of an UI attribute declaration (rule

UI Attribute). 111

7.3 XML representation of graph obtained through the reverse en-

gineering step. 112

7.4 Logging aspect for retrieving information during graph trans-

formation execution. 114

7.5 Eclipse refactoring execution (general). 115

7.6 Prototype architecture. 116

8.1 Sample of target code. Several members were moved from orig-

inal class DepositMoney to DepositMoneyUI. 120

8.2 Q-CARE code certification tool 125

List of Tables

1.1 Research strategies in this work (Shaw terminology) 21

3.1 SOA migration approaches . 61

3.2 SOA-enabling approaches: advantages and disadvantages 72

8.1 Run times obtained while using the prototype on the example

banking application. Times in the centre columns are in seconds

(s) and minutes (min) . 119

Chapter 1

Introduction

1.1 Motivation

Advances in technology put pressure into software organisations or depart-

ments to use new methods and strategies for development. Change also arises

in response to business requirements as there is a growing need for functional

integration, system flexibility and fast time-to-market aspects. When creating

systems, software engineers can take full advantage of new developments in

academia and industry, such as the definition of new standards, new program-

ming paradigms or programming language versions, new application design

methodologies, improved tool support (e.g. integrated development environ-

ments (IDEs)) and new architectural patterns.

Nevertheless, organisations already have large bodies of software systems that,

whilst not immediately able to take advantage of all benefits of evolution, are

expected to perform at the highest level, especially when competing with newly

built systems.

The area of software evolution addresses these concerns, and as new advances

1.1. Motivation 12

arise, so does the demand for new methods to support this process, in particular

where the transition towards modern architectures is concerned.

This demand has been witnessed repeatedly over the past decades, putting

pressure on both academia and industry. Large scale examples include the

adoption of object-oriented programming languages [80, 31], the wide accep-

tance and use of Web technologies [103] and specifically Service-Oriented Ar-

chitectures (SOAs).

Adoption of SOA is steadily growing as a software engineering practice. In [6],

the technology market research firm Gartner reports that 50% of large, newly

developed applications and business processes designed during the year 2007

used service-oriented architectures to some extent, and in a more recent report

estimates that, by 2013, SOA will reach mainstream adoption [101]. Addition-

ally, SOA is the primary model for integrating cloud-based applications into

the existing system portfolio, which provides another vector for adoption.

However, experience also indicates that SOA implementation initiatives rarely

start from scratch. In the same report [101], Gartner states that legacy mod-

ernisation comes together with SOA to integrate legacy applications in support

of new deliverables. The implication is that existing applications will be at

least partly reengineered to participate in the context of service-oriented ar-

chitectures. This represents a significant effort on behalf of IT departments of

large organisations.

Even though software modernisation is of much interest to companies year

over year, lack of action in the past (mostly due to budget or personnel con-

straints) is creating a greater sense of urgency, as it has hampered the ability

of organizations to execute business processes efficiently and effectively [39].

With this growth in SOA adoption, and overall increase of software moderni-

1.2. Scope of research 13

sation urgency, the need for a systematic approach towards reengineering for

SOA becomes ever more pressing.

One of the concerns for undergoing a migration to SOA, is that principles of

service-orientation pose major challenges for such reengineering efforts. From

these, the technical ones are:

1. The separation of business logic from presentation logic;

2. The loosely coupled relationship between services;

3. The coarse-grained nature of services.

The large majority of existing systems were not built with these concerns in

mind and consequently considerable effort is necessary to comply to them.

Moreover, there is currently no specific end-to-end methodology that defines

how to transform existing source code with these properties in consideration.

1.2 Scope of research

Migration to modern architecture can impact several areas in organisations.

In particular, for evolution towards SOA, the issues that must be addressed

can have several natures:

• Organisational - where business processes may have to be more well

documented or adapted - typically pre-analysis activities ;

• Managerial - the methods for addressing SOA adoption regarding stake-

holder involvement and managing expectations;

1.2. Scope of research 14

• Technological - the process of achieving the transition of existing systems

to SOA compliance.

This dissertation focuses on the technological aspects.

In order to obtain three tier systems, it is necessary to separate business logic

and user interface aspects. Moreover, to achieve SOA compliant applications,

all three properties mentioned in the previous section have to be addressed.

These are analysed in more detail in the following paragraphs.

1.2.1 Separation of business logic from presentation

Existing systems, as they were developed across the years, some having their

lifetime spanning over different concerns for requirements and architectural as-

pects, frequently have characteristics that do not follow current best-practices

or de facto standards. An example of this, is that it is common to find, mixed

together in a kind of “architectural spaghetti”, code fragments concerned with

database access, business logic, presentation aspects and exception handling,

amongst others.

Interactive programs, a large class of applications, typically exhibit this type of

characteristic. They are generally state-machine based, interleaving dialogues

with user input and the logic of transactions triggered by their actions. This

is found in several patterns including:

• Command language - This style uses commands that must be entered

by the user in a syntactically correct form. For example, a text editor

following this interaction uses a command language for functions such as

”SAVE”, ”QUIT”, and other commands.

1.2. Scope of research 15

• Question / Response - This technique involves a question, usually from

the computer to the user, followed by a user response.

• Form filling - This is an extension of the question/response dialogue

pattern described above that allows several items of data to be requested

and entered in a paper form-filling style.

• Menu driven - The menu-driven technique presents the user with a list

of choices from which an action can be selected.

An overview of dialogue styles commonly found in COBOL programs is re-

ported in [95]. Similar coding practices are found in client-server applications

like those developed in Oracle Forms, Java-Swing or Visual Basic. Figure 1.1

shows an example of Java-Swing code that mixes presentation and data access

aspects.

public void operation () {

try {

// Data access
fis = new FileInputStream ("Bank.dat");

...

}

catch (Exception ex) {

total = rows;

if (total == 0) {

// UI actions
JOptionPane.showMessageDialog (null, "File is Empty.", "EmptyFile",

JOptionPane.PLAIN_MESSAGE);

btnEnable ();

}

else {

try {

// Data access
fis.close();

}

catch (Exception exp) {

...

}

}

}

}

Figure 1.1: Java code tangling UI and non-UI concerns

As it is not possible to derive services directly while business logic is tightly

coupled with presentation logic, an adequate decomposition of the code is

required such that “pure” business functions can then be isolated as candidate

1.2. Scope of research 16

services or service constituents. This technological dimension of reengineering

constitutes an architectural transformation towards a multi-tiered architecture,

and is a requirement for migrating towards SOA.

The concept of layered architectures is far from new, particularly three-tier

architectures [5]. However, it is not the case that even being well established,

these guarantee the desired level of separation. Hence, even tiered architecture

systems can require significant effort in ensuring such a separation.

1.2.2 The loosely coupled relationship between services

Finding the right modularisation for applications has been a concern since early

stages of software engineering [88], but it is a considerably difficult task. It is

common to find a complex network of dependencies between different function-

alities in existing systems. However, service-orientation principles state that

services must interact without tight, cross-service dependencies [36]. There-

fore, it is necessary to ensure a decomposition of different functionalities in

order to provide an appropriate degree of independence.

1.2.3 The coarse-grained nature of services

Typical legacy applications consist of fine-grained elements, such as compo-

nents with operations that represent logical units of work, like reading indi-

vidual items of data. Object-oriented class methods are an example of such

fine-grained operations. There is a fundamental mismatch between typical

legacy applications and services in terms of their granularity. The notion of

service, is of a different, more coarse-grained, nature. Services represent logi-

cal groupings of (possibly fine-grained) operations, work on top of larger data

1.3. Scope of research 17

Network
Barrier

Consuming
applications

Business
processes

(A) Coarse-grained
services (e.g. WS)

(B) Internal operations
 (mix of fine and
 coarse-grained)

(C) Fine-grained
operations

Figure 1.2: Service granularity.

sets, and in general expose a greater range of functionality. In other words,

services usually aggregate lower-level features, such as commonly found in the

object-oriented view, into business-level functions [87].

Concretely, the typical software service, which is consumed over a network,

must comply to this coarse-grained principle in order to limit time spent in

transit during requests and responses. The number of remote consumer to

provider roundtrips is minimised this way, also reducing the corresponding

processing cycles, as described in the context of enterprise application archi-

tecture, for instance in the pattern Remote Facade [41].

Fig. 1.2 presents a graphical representation of granularity across different ap-

plication tiers.

In a SOA context, legacy logical units of work have to be appropriately com-

posed and reengineered in order to form services of desired granularity and of

adequate support for multi-party business processes.

1.3. Challenges 18

1.3 Challenges

The lack of compliance by existing applications to the service-orientation prin-

ciples stated above presents considerable obstacles to modernisation. This is

valid both when the intended target for evolution is a service-oriented architec-

ture, but also when the goal is achieving a fully compliant n-tiered application

(especially for n > 2).

For the specific case of migrating towards SOA, there exist strategies based on

wrapping applications into web service interfaces, however, the result of these

does not bring some of the benefits that are expected when adopting a SOA,

such as flexibility in reuse and evolution [96]. It is possible to achieve platform-

independent access. However that comes with the cost of layering technology

adapters on top of legacy applications that already have issues in terms of

structuring, thus resulting in problems in runtime performance and software

maintenance. In order to fully achieve SOA compliance, and in particular

the properties this document focuses on, a deeper restructuring approach is

necessary, where existing applications are separated into components that can

then be exposed as services.

This research presents a methodology to address migration of existing soft-

ware to tiered architectures and SOA, complying with the above principles,

whilst allowing for a high degree of automation. Support is provided for the

full reengineering cycle, consisting of an instance of the Horseshoe model of

reengineering [61]. This is a conceptual model that distinguishes different lev-

els of reengineering while providing a foundation for transformations at each

level, with a focus on transformations at the architectural level. In order to

structure the process, an overall methodology is proposed, instantiated in two

dimensions to address both the technological and the functional evolution. The

1.4. Topic and Problem Statements 19

former is concerned with the technical purpose of the code while the latter fo-

cuses on its implementation of relevant business-level functionalities. The four

steps executed in each of these cycles are realised through a combination of

code pattern matching, graph transformation, and refactoring-like code trans-

formations.

Technological & Functional Dimensions

In the context of Leg2Net [69] and SENSORIA [99] projects, two dimensions

were derived from the properties mentioned above: the technological and the

functional dimensions. Architecture migration can involve different steps of de-

composition. Depending on the intended target architecture, these are made

along either the technological or functional dimensions, or both. The latter is

the case of SOAs. Technological decomposition is used in the layering of soft-

ware systems and may, for example, lead to a 3-tiered architecture, separating

logic, data, and user interface (UI). This addresses the first SOA property men-

tioned in section 1.2. Functional restructuring separates components which,

after having replaced their UI tier with an appropriate interface and being

grouped according to specific parameters, represent services. This decomposi-

tion, that can be designated as service identification and extraction, deals with

the two last SOA properties mentioned in section 1.2.

1.4 Topic and Problem Statements

The topic of this research focuses on migration towards SOA, with the goal of

developing a methodology to address both dimensions of architectural migra-

tion by providing a systematic approach and one instantiation for a particular

case. The research questions are:

1.5. Research Strategy 20

• What should be the general methodology that can address both techno-

logical and functional dimensions of architectural migration?

• How can presentation logic and business logic be separated?

• How can existing operations be identified and extracted from source code,

while complying to the loose coupling property?

• How can the operations in a given application be combined into mean-

ingful services from a service-oriented perspective?

• How can a methodology addressing the above three items be general

enough so it can be used for a variety of projects?

• What are the properties of coverage, reuse and scalability of a specific

instance of the above methodology ?

1.5 Research Strategy

The work presented in this dissertation has had several iterations, each follow-

ing a common pattern. Since the steps of the general reengineering method-

ology defined can be addressed separately, it was possible to approach each

through a process of: study of the state-of-the-art, methodological definition,

application in examples, and interpretation of the results. Finally, once all

steps were developed into a working prototype tool, it was possible to perform

an evaluation of the approach as a whole in regards to relevant aspects that

are described throughout this document.

In [100], Shaw describes various strategies for research in software engineering,

focusing on combinations of research questions, results and validations that

are accepted in the field.

1.6. Publications 21

Following the taxonomy used by Shaw, all except the last of the research ques-

tions presented in section 1.4 fall in the “method or means of development”

category, although in this context it is not development in its typical sense,

but reengineering. The last question belongs to the type “design, evaluation,

or analysis of a particular instance”. In terms of research results, the work

presented in this dissertation belongs to several categories, namely: “proce-

dure or technique” - due to the fact it describes a method to perform a task,

“descriptive model” - as it presents a structure for a problem area, “notation

or tool” - since a tool was implemented to embody the technique, and “answer

or judgement” - as it reports on evaluation. Regarding types of validations,

this research falls in the “example” type, since it presents example cases for

each part of the methodology, the “evaluation” type, as case studies were used

to gather data for several factors, and the “analysis” type due to the items

studied in the latter.

Shaw [100] focuses on research papers, which typically produce a single type of

result. This dissertation reports on PhD work and it has several result types,

matching three combinations from the ones generally considered as appropriate

by the software engineering community, as presented in table 1.1.

Question Result Validation
Development method Procedure Example/Evaluation
Development method Notation or tool Example/Evaluation
Evaluation of instance Answer Analysis

Table 1.1: Research strategies in this work (Shaw terminology)

1.6 Publications

In this subsection some of the relevant co-authored documents are listed. Ma-

terial from these publications has been used in this dissertation since it was

1.6. Publications 22

developed in the context of this PhD research.

Non-refereed:

• R. Correia, C. Matos, M. El-Ramly, R. Heckel, G. Koutsoukos, and L.

Andrade. Software reengineering at the architectural level: Transfor-

mation of legacy systems. Technical Report CS-06-014, Department of

Computer Science, School of Mathematics and Computer Science, Uni-

versity of Leicester, U.K., December 2006.

This report describes the state of the research as of October 2006. It

includes initial work developed jointly by the Leg2Net project team.

• R. Correia, C. Matos, M. El-Ramly, and R. Heckel. Rule-based model ex-

traction from source code. In S. Clarke, L. Moonen, and G. Ramalingam,

editors, Aspects For Legacy Applications, number 06302 in Dagstuhl Sem-

inar Proceedings. Internationales Begegnungs- und Forschungszentrum

fuer Informatik (IBFI), Schloss Dagstuhl, Germany, 2007.

This paper focuses on the code annotation part of the methodology as

defined by the Leg2Net project team.

Peer-reviewed:

• R. Correia, C. Matos, R. Heckel, M. El-Ramly. Architecture Migration

driven by Code Categorization. In F. Oquendo (ed.), Proc. of European

Conf. Software Architecture (ECSA). Lecture Notes in Computer Science

4758, pp. 115-122. Springer-Verlag, 2007.

This paper presents the general methodology and focuses on the code

annotation and redesign steps, representing joint work of the Leg2Net

project team.

1.7. Publications 23

• R. Heckel, R. Correia, C. Matos, M. El-Ramly, G. Koutsoukos and L.

Andrade. Software Evolution. Chapter Architectural Transformations:

From Legacy to Three-tier and Services, pp. 139-170. Springer-Verlag,

2008.

This book chapter describes the general methodology and implementa-

tion aspects for the technological dimension (status as of 2007).

• C. Matos. Service Extraction from Legacy Systems. In H. Ehrig, R.

Heckel, G. Rozenberg and G. Taentzer (eds.), Proc. International Con-

ference on Graph Transformation (ICGT 2008). Section: Doctoral Sym-

posium. Lecture Notes in Computer Science vol. 5214, pp. 505-507.

Springer-Verlag, 2008.

Summary of the work done by the author of this dissertation until Septem-

ber 2008.

• C. Matos, R. Heckel. Migrating Legacy Systems to Service-Oriented

Architectures. In A. Corradini, E. Tuosto (eds.), Post-proceedings of

the International Conference on Graph Transformation 2008 (ICGT 08).

Vol. 16. Electronic Communications of the EASST. 2009.

More detailed view of the PhD work up until early 2009.

• C. Matos, R. Heckel. Rigorous Software Engineering for Service-Oriented

Systems – Results of the SENSORIA project on Software Engineering

for Service-Oriented Computing. Chapter Legacy Transformations for

Extracting Service Components. Springer-Verlag, 2011.

This book chapter describes in detail the work done by the author of this

dissertation up until early 2010.

1.7. Summary and Outline 24

1.7 Summary and Outline

After this introduction to the theme, including the motivation for the work

presented here, the scope of the research, as well as an overview of how the

challenges are addressed, and the research strategy followed, this dissertation

is structured as follows. Chapter 2 discusses several areas of Computer Science

that are central to solutions presented in the remainder of the text. This is

not intended as a detailed introduction to all themes, but rather an overview.

Chapter 3 presents work previously done in related areas, mostly concentrating

in reverse engineering, transformation, forward engineering and migration to

SOA. The general reengineering methodology followed throughout the text is

described in chapter 4, whilst aspects of two of its instantiations are presented

in chapters 5, for the technological dimension, and 6, for the functional dimen-

sion. Chapter 7 introduces aspects of implementations for the general method-

ology, and also details a concrete development of a prototype tool to address

reengineering towards three-tiered applications and service-oriented architec-

tures. This is followed by a description of the application of this prototype in

the context of case studies, in chapter 8, where evaluation is presented. Fi-

nally, chapter 9 concludes on the work presented in this dissertation. Figure 1.3

depicts this structure.

1.7. Summary and Outline 25

Figure 1.3: Document overview.

Chapter 2

Background

This chapter presents some concepts that are central to this dissertation. Its

goal is to give a short introduction to the following relevant themes.

2.1 Software Architecture

Software architecture is a level of design concerned with the overall system

structure. This is beyond the algorithms and data structures of systems, and

includes the assignment of functionality to design elements, physical distribu-

tion, scaling and performance matters, amongst others [43]. A software system

architecture is the set of principal design decisions about the system, repre-

senting the structural and behavioural framework on which all other aspects

of the system depend. This is typically structured in terms of components,

connections, constraints, and rationale.

Architectural styles define families of architectural instances in terms of struc-

tural organisation. In more detail, architectural styles determine the compo-

nents and connectors that its instances follow, together with a set of constraints

2.2. Software Architecture 27

that specify how these can be combined.

These include client-server, pipes and filters, event-based, siloed applications,

layered architectures, and service-oriented architectures. The migration ap-

proach described in this dissertation is not specific to particular architectural

styles. However, two-tier client-server and siloed architectures are two inter-

esting cases. The former is a good candidate for being transformed to a 3-tier

architecture, a sub-category of the layered architecture style. A simple illus-

tration of these is presented in Figure 2.1. This allows for a finer separation of

concerns, with all the benefits it can bring regarding maintenance and flexibil-

ity. Siloed applications consist of systems where integration or consolidation

rarely occur, in which a transition to service-oriented architecture can be ben-

eficial to take advantage of reuse and interaction with other applications.

Presentation

Logic

Data Access

Figure 2.1: Three-tier architecture

This dissertation focuses on three tier architectures, and service-oriented ar-

chitectures as a target for reengineering. The latter are described in the next

section.

2.2. Service-Oriented Architectures 28

2.2 Service-Oriented Architectures

Service-oriented architecture is a software architecture style that encourages

individual units of logic to exist autonomously but not completely isolated from

each other. As stated in [36], “units of logic are still required to conform to a set

of principles that allow them to evolve independently, while still maintaining

a sufficient amount of commonality and standardization. Within SOA, these

units of logic are known as services.”

Service-oriented architectures combine ideas from component-based and dis-

tributed systems, adding the idea of services as loosely coupled components

that may be discovered and linked at runtime.

The OASIS Consortium (Organization for the Advancement of Structured In-

formation Standards) defines SOA as “(. . .) a paradigm for organizing and

utilizing distributed capabilities that may be under the control of different

ownership domains. (. . .) services are the mechanism by which needs and

capabilities are brought together. ” [86].

SOA is commonly described by the principles its instances should adhere

to [36]. The next section lists a selection of these.

SOA Principles

Reusability: Application logic is divided into services with the intention of

promoting reuse.

Composability: Services can be coordinated to form composite services.

Loose coupling: The relationship between services minimises dependencies,

allowing them to evolve independently.

2.3. Software Reengineering 29

Interoperability: Services should be developed following standards in order

to foster interoperability, thus enabling potential integration.

Abstraction: Beyond what is described in the service contract, services hide

logic from the outside world.

Autonomy: Services have control over the logic they encapsulate.

Discoverability: Services are designed to be outwardly descriptive so that

they can be found and assessed via available discovery mechanisms.

2.3 Software Reengineering

Reengineering consists of performing analysis and modifications over existing

systems [24], with several possible goals in consideration including: adding

functionality, restructuring applications, performing corrections in a system-

atic way. Reengineering typically involves both reverse engineering and for-

ward engineering techniques. Reverse engineering is often needed for software

maintenance tasks, as it is common that the software engineers that conceived

and implemented such systems originally are no longer available, and docu-

mentation is rarely up-to-date or with an adequate level of detail.

In [61], Kazman et al presented a metaphor for reengineering activities based

on a horseshoe. Its left-hand side is seen as the process of extracting facts

from existing software. The right-hand side represents development activities.

The bridge between both sides constitutes transformations from the old to the

new system. Figure 2.2 shows a block diagram representation of the horseshoe

model.

The work presented in this dissertation is based on the horseshoe model. The

methodology includes a reverse engineering step, followed by transformations

2.4. Graphs and Graph Transformation 30

Source code

Code structure

Functional level

Architecture

Source code

Code structure

Functional level

Architecture

R
ec

ov
er

y
Transformation

D
evelopm

ent

Figure 2.2: Diagrammatic view of the Horseshoe Model.

and forward engineering for obtaining the final code. These steps are preceded

by a preparation activity that consists of obtaining information which is rep-

resented by code annotations. Details of the approach are given in chapter 4.

2.4 Graphs and Graph Transformation

Visual representations have long been used in the software development pro-

cess [98, 63], from flowcharts to UML models. These notations produce models

that can be represented as graphs, hence graph transformations are present ei-

ther explicitly or implicitly when defining how models can be built or evolved [50].

Graphs provide a simple mathematical model for representing pairs of objects

connected by links. More formally, a graph consists of a set of vertices V and

a set of edges E, each edge having a source and a target vertex in V. Graphs

can be typed, allowing for the definition of meta-models that describe how

instances should be built. Additionally, in order to carry further information,

2.4. Graphs and Graph Transformation 31

it is possible to use attributes in graphs, storing values of pre-defined data

types.

Redesign by Graph Transformation

The following sections detail the formalism used to specify redesign transfor-

mations and discuss potential proof obligations for well-definedness of transfor-

mations in terms of their relevance, consequences, and support for verification.

Metamodelling with typed graphs Graphs are often used as abstract

representations of models. For example in the UML specification [85] a collec-

tion of object graphs is defined by means of a metamodel as abstract syntax

of UML models.

Formally, a graph consists of a set of vertices V and a set of edges E such

that each edge e in E has a source and a target vertex s(e) and t(e) in V ,

respectively. Advanced graph models use attributed graphs [73] whose vertices

and edges are decorated with textual or numerical information, as well as

inheritance between node types [33, 77, 79].

In metamodelling, graphs occur at two levels: the type level (representing the

metamodel) and the instance level (given by all valid object graphs). This

concept can be described more generally by the concept of typed graphs [27],

where a fixed type graph TG serves as abstract representation of the meta-

model. Its instances are graphs equipped with a structure-preserving mapping

to the type graph, formally expressed as a graph homomorphism. For example,

the graph on the top right of Figure 2.3 is an instance of the type graph on

the top left, with the mapping defined by type(o) = C for each instance node

o : C.

2.4. Graphs and Graph Transformation 32

In order to more precisely define the class of instance graphs, constraints can

be added to the type graph expressing, for example, cardinalities for in- or out-

going edges, or acyclicity. Formalizing this in a generic way, it is assumed for

each type graph TG a class of constraints Constr(TG) that could be imposed

on its instances. A metamodel is thus represented by a type graph TG plus

a set C ⊆ Constr(TG) of constraints over TG. The class of instance graphs

over TG is denoted by Inst(TG) while writing Inst(TG,C) for the subclass

satisfying the constraints C. Thus, if (TG,C) represents a metamodel with

constraints, an instance is an element of Inst(TG,C).

The transformations described in this document implement a mapping from

a general class of (potentially unstructured) systems into a more specific class

of three-tier applications. This restriction is captured by two levels of con-

straints, global constraints Cg interpreted as requirements for the larger class

of all input graphs, also serving as invariants throughout the transformation,

and target constraints Ct that are required to hold for the output graphs only.

Global constraints express basic well-formedness properties, like that every

code fragment is labelled by exactly one code category and part of exactly one

component. The corresponding target constraint would require that the com-

ponent containing the fragment is consistent with the code category.

Rule-based model transformations After having defined the objects of

transformation as instances of type graphs satisfying constraints, model trans-

formations can be specified in terms of graph transformation. A graph trans-

formation rule p : L→ R consists of a pair of TG-typed instance graphs L,R

such that the union L ∪ R is defined. (This means that, e.g., edges which

appear in both L and R are connected to the same vertices in both graphs, or

that vertices with the same name are required to have the same type.) The

left-hand side L represents the pre-conditions of the rule while the right-hand

2.4. Graphs and Graph Transformation 33

side R describes the post-conditions. Their intersection L ∩ R represents the

elements that are needed for the transformation to take place, but are not

deleted or modified.

A graph transformation from a pre-state G to a post-state H, denoted by

G
p(o)
=⇒ H, is given by a graph homomorphism o : L ∪ R → G ∪ H, called

occurrence, such that

• o(L) ⊆ G and o(R) ⊆ H, i.e., the left-hand side of the rule is embedded

into the pre-state and the right-hand side into the post-state, and

• o(L \ R) = G \ H and o(R \ L) = H \ G, i.e., precisely that part of G

is deleted which is matched by elements of L not belonging to R and,

symmetrically, that part of H is added which is matched by elements

new in R.

f:CodeFragment

c0:Component

c:CodeCategory

c1:Component

f:CodeFragment

c0:Component

c:CodeCategory

c1:Component

moveCode

CodeFragment

StructuralFeature
name: String

Component

Connector

CodeCategory
name: String

src tar
a:Connector

b:Connector

src

src

tar

tar

:CodeCategory
name = “UI”c1:Component :CodeCategory
name = “UI”c1:Component

c2:Component :CodeCategory
name = “BL”c2:Component :CodeCategory
name = “BL”

c3:Component :CodeCategory
name = “Data”c3:Component :CodeCategory
name = “Data”

TG Gtype

L R

Figure 2.3: Type and instance graph (top) and transformation rule (bottom)

Rule moveCode in the lower part of Figure 2.3 specifies the relocation of a code

2.4. Graphs and Graph Transformation 34

fragment (e.g. package, class, or method) from one component to another

one based on its code category. Operationally, the application of a graph

transformation rule is performed in three steps. First, find an occurrence of

the left-hand side L in the current object graph. Second, remove all the vertices

and edges which are matched by L \R. In the present example this applies to

the composition edge from c0:Component to f:CodeFragment. Third, extend

the resulting graph with R \L to obtain the derived graph, in this case adding

a composition edge from c1:Component to f:CodeFragment.

Altogether, a transformation system is specified by a four-tuple

T = (TG,Cg, Ct, P)

consisting of a type graph with global and target constraints, and a set of rules

P .

A sequence like s is consistent if all graphs Gi satisfy the global constraints

Cg. G
√

=⇒ H stands for a complete and consistent transformation sequence

from G to H in T .

Well-definedness and correctness of transformations Besides offering

a high level of abstraction and a visual notation for model transformations, one

advantage of graph transformations is their mathematical theory, which can

be used to formulate and verify properties of specifications. Given a trans-

formation system T = (TG,Cg, Ct, P) the following properties provide the

ingredients for the familiar notions of partial and total correctness.

Global Consistency. All rule applications preserve the global invariants

Cg, i.e., for every graph G ∈ Inst(TG,Cg) and rule p ∈ P , G
p(o)
=⇒ H implies

2.4. Graphs and Graph Transformation 35

that H ∈ Inst(TG,Cg).

Typical examples of global consistency conditions are cardinalities like each

Code Fragment is part of exactly one Structural Feature. While such basic con-

ditions can be verified statically [52], more complex ones like the (non-)existence

of certain paths or cycles may have to be checked at runtime. This is only re-

alistic if, like in the graph transformation language PROGRES [97], database

technology can be employed to monitor the validity of constraints in an in-

cremental fashion. Otherwise, runtime monitoring can be used during testing

and debugging to identify the causes of failures.

Partial Correctness. Terminating transformation sequences starting out

from graphs satisfying the global constraints should end in graphs satisfying

the target constraints. A transformation sequence s = (G0
p1(o1)
=⇒ · · · pn(on)=⇒ Gn)

in T is terminating if there is no transformation Gn
p(o)
=⇒ X extending it any

further. The system is partially correct if, for all Gs ∈ Inst(TG,Cg), Gs
∗

=⇒ Gt

terminating implies that Gt ∈ Inst(TG,Ct).

To verify partial correctness it is necessary to show that the target constraints

are satisfied when none of the rules is applicable anymore. In other words,

the conjunction of the negated preconditions of all rules in P and the global

constraints imply the target constraints Ct. The obvious target constraint with

respect to the single rule in Figure 2.3 should state that every Code Fragment

is part of a Component of the same Code Category as the Fragment, which is

obviously true if the rule is no longer applicable.

To verify such a requirement, theorem proving techniques are required which

are hard to automate and computationally expensive. On the other hand,

since it is only required on the target graphs of transformations, the condition

can be checked on a case-by-case basis. Checking these conditions is out of the

2.4. Graphs and Graph Transformation 36

scope of this dissertation, but a possibility for performing it would be the use

of OCL (Object Constraint Language [84]) tools.

Total Correctness. Assuming partial correctness, it remains to show termi-

nation, i.e., that that there are no infinite sequences G0
p1(o1)
=⇒ G1

p2(o2)
=⇒ G2) · · ·

starting out from graphs G0 ∈ Inst(TG,Cg) satisfying the global constraints.

Verifying termination typically requires the definition of a mapping of graphs

into some well-founded ordered set (like the natural numbers), so that the

mapping can be shown to be monotonously decreasing with the application

of rules. Such a progress measure is difficult to determine automatically. In

this simple example, it could be the number of Code Fragments in the graph

not being part of Components with the same Code Category. This number is

obviously decreasing with the application of rule moveCode, so that it would

eventually reach a minimum (zero in this case) where the rule is no longer

applicable. In [14], the subject of termination of complex transformations is

discussed, and an approach to address it was proposed.

Uniqueness. Terminating and globally consistent transformation sequences

starting from the same graph produce the same result, that is, for all G ∈

Inst(TG,Cg), G
√

=⇒ H1 and Gs

√
=⇒ H2 implies that H1 and H2 are equal up

to renaming of elements.

This is a property known by the name of confluence, which has been extensively

studied in term rewriting [105]. It is decidable under the condition that the

transformation system is terminating. The algorithm has been transferred to

graph transformation systems [89] and prototypical tool support is available

for part of this verification problem [104].

2.4. Graphs and Graph Transformation 37

It is worth noting that, like with all verification problems, a major part of the

effort is in the complete formal specification of the desirable properties, in this

case the set of global constraints Cg and the target constraints Ct.

Relying on existing editors or parsers it may not always be necessary (for the

execution of transformations) to check such conditions on input and output

graphs, so the full specification of such constraints may represent an additional

burden on the developer. On the other hand they provide an important and

more declarative specification of the requirements for model transformations,

which need to be understood (if not formalised) in order to implement them

correctly and can play a role in testing model transformations.

Chapter 3

Related Work

The area of software reengineering has extensive literature as it provides many

interesting problems for research and challenges for industry. Reengineering

can be divided, in its fundamental form, in three basic processes: reverse

engineering, transformation, and forward engineering. Another dimension of

reengineering is the level at which it is performed: source code, code rep-

resentation, design or architectural representation. For instance, the reverse

engineering process can extract a code representation that is transformed at

that level according with a certain goal, and then the final source code can be

generated. This general view of reengineering was the start of the literature

review process for this PhD. A summary of these reengineering concepts is pre-

sented in [61]. Next, a selection of the work studied during the literature review

phase is resumed. The first three sections correspond to the basic processes

of reengineering, as mentioned before. The last presents work concerning the

migration to SOA.

3.1. Reverse Engineering 39

3.1 Reverse Engineering

Regarding the area of source code representation and reverse engineering, there

are different kinds of developments:

Techniques for source code analysis, in particular feature location and concept

assignment, are related to the first step of the methodology described here.

There are several techniques for this purpose including the work of Marcus

et al [75] in applying latent semantic indexing (LSI) to concept location - a

technique introduced in [30] as an information retrieval method, the scenario-

based (SBP) feature location approach of Antoniol and Guéhéneuc [10] and

the work of Eisenbarth et al [34] involving both static and dynamic feature

location. These techniques are all candidates to be applied in the context of a

SOA migration project, considering the first step of the methodology presented

in this thesis. The following subsections describe in more detail some of these

approaches.

3.1.1 Program Slicing

Program slicing [111] is a technique for abstracting from programs by focusing

on selected points of interest. These are specified as a slicing criterion, usually

consisting of a set of variables and a program location. Program slicing is

the process of computing the set of program statements that affect the slicing

criterion. This set of statements is what constitutes the program slice. Slicing

can be used in several software engineering activities, including debugging,

reengineering, testing and program comprehension.

3.1. Reverse Engineering 40

3.1.2 Software Reconnaissance

Wilde et al developed a feature location technique called software reconnais-

sance [113, 114], which is based on dynamic analysis using carefully designed

test cases. This technique consists of: instrumenting and compiling the code,

executing a test suite that uses the feature that is intended to be located, ex-

ecuting a test suite that does not use that feature and comparing the traces.

This process allows to determine feature-specific code, distinguishing several

evels of involvement from code units. The technique’s main intention is to

provide a starting point for further analysis work.

Ibrahim et al report, in [55], on a very small case study of applying the RE-

CON2 code reconnaissance technique and tool [83]. The code is in C and has

only 450 lines of code. The main conclusions are that the choice of the test

cases for the positive and negative situation is very important and reconnais-

sance techniques are helpful in reducing the manual effort.

Formal Concept Analysis

The above mentioned work of Eisenbarth et al [34] describes a technique to

locate features (functionalities) in source code. The main notions used are

scenario, feature and computational unit. The first corresponds to a sequence

of inputs that lead to an observable result. The second is the implementa-

tion of a functional requirement of a system. In the context of this article,

non-functional requirements are out of scope. The last is an executable part

of a system. The technique is based on a combination of static and dynamic

analyses as well as user (expert) input. Thus, this is a semi-automatic process

to which several tools contribute. One of the most highlighted (by the au-

thors) characteristics of the technique is the usage of formal concept analysis

3.1. Reverse Engineering 41

(a mathematical technique for analysing binary relations [13]) to aid in the

mapping of scenarios to features.

Scenario-based probabilistic (SBP) feature location

In [10], the authors present a feature location scenario-based probabilistic

technique. This combines static and dynamic analysis and consists in: 1)

building a model of the program; 2) identification of features providing micro-

architectures (subsets of programs / similar to slices); 3) comparison between

features and micro-architectures to highlight the differences. The paper is

concerned with analysing C++ code. The first step is performed using a code

parser to generate a model in Abstract Object Language (AOL) and by using

the PADL meta-model. The second step is done by using trace collection ei-

ther by processor emulation or by statistical profiling. This results in a ranked

list using a probabilistic model to determine whether an event is related to a

feature or not. The third step is accomplished by using model transformation

techniques to highlight the differences among micro/architectures. Starting

from a ”source” micro-architecture, the model transformations necessary to

reach a ”target” micro-architecture is what is used to differentiate them.

The paper also refers to the limitations of other techniques such as the naive

approach (string search ”grep style”) and formal concept analysis as in Eisen-

barth et al (for example the inability to distinguish irrelevant but interleaved

events). This is also shown in a case study, using a version of Mozilla code

base, in which the three techniques are compared. The naive approach is

criticised for being difficult to find a search that will filter the results only

to the ones relevant and to not provide a relevance index. Formal concept

analysis is criticised for being very difficult to inspect the concept lattice when

the number of objects is high. However it is more selective and narrows the

3.1. Reverse Engineering 42

search better than the naive approach. The authors technique performs better

than the previous two since it filters even more and provides a ranking, with

a relevance index, of the elements that belong to a feature.

Considerations about the use of a processor emulator vs. a statistical profiler

state that while the former can increase the run time of the scenarios, the

latter is subject to the effect of under sampling, thus requiring a great number

of executions of the same scenario to avoid making invalid assumptions.

Combining LSI and SBP

Poshyvanyk et al, in [90], present a way to combine two feature location tech-

niques: LSI (static) and SBP (dynamic). This is done by combining both

rankings into one. The results of a case study presented by the authors sug-

gest that the combination is significantly more effective that any of the isolated

techniques.

Landmark Methods

In [110], Walkinshaw presents a technique for assisting a code inspector to focus

on source code elements that are relevant to a particular element of function-

ality. Slicing can assist in this process, however, slices in object-oriented code

tend to be large due to its inherent unpredictability, hence slicing alone is

not suitable. In order to provide more focused information, the concept of

“landmark methods” was introduced. These consist of code units that must

be invoked when the intended feature is executed. This concept allows a slice-

based code extraction approach that incorporates information about program

execution and expressive criteria.

3.1. Reverse Engineering 43

Other feature location techniques

In [23] the authors present a feature location technique based on dependence

graphs. From the source code of a program, an abstract dependence graph (a

higher level abstraction than that of the system dependence graph) is created.

The user will then interact with a tool that will assist him in the graph navi-

gation. First, a starting node is selected by the user. Then, the tool generates

the dependence graph and the user selects the next node to visit. This is added

to the search graph. If the user finds that the node is relevant to the feature

being searched, the graph will be expanded, else he/she will select a differ-

ent one for expanding and the current node will be removed from the search

graph. This is done until the goal state is reached. There are several strate-

gies for search graph expansion: top-down (from current function to the called

ones), bottom-up (from the current function to the ones that call it), back-

ward data flow (expand to the nodes (functions/global variables) that provide

specific values) and forward data flow (expand to the nodes (functions/global

variables) that use specific values). A case study using NCSA Mosaic is also

presented. For the selected scenarios, the user had to visit only 2% of the

program’s functions to map the features to the code.

In [60], the authors describe a data mining strategy towards program compre-

hension. In summary, the code is loaded into a model and placed in a database.

Then, charts are obtained showing clusters according to specific metrics such

as: number of children and coupling between objects. This allows a maintainer

to identify the places in the source code that are likely to be more complex to

maintain (or less).

The study presented in [66] was primarily about testing the feature location

technique of Eisenbarth et al [34] by changing the granularity from routine to

3.1. Reverse Engineering 44

basic block level. Another change was that test cases combining more than

one feature were also created to see if this does not yield additionally executed

units. The conclusions were:

- dynamic feature location based on concept analysis is limited due to the

combinatorial explosion of feature compositions - this will greatly increase the

number of test cases to be created and executed; the authors suggest that in

cases with a large number of feature compositions, a static technique should

be used;

- for a smaller set of features, one can apply concept analysis even at the basic

block level and this improves the information gathered due to situations where

different features are implemented by the same routines.

Hypotheses and Conclusions:

H1: Statement level profiling yields more detailed results at acceptable costs

C1: True

H2: The combination of features does not yield additionally executed units

C2: False

H3: The approach scales for large feature sets

C3: False

Work presented in [74] begins by explaining the types of existing static tech-

niques for concept location. The three identified strategies are: (textual) pat-

tern matching (e.g. grep), dependency graph browsing (e.g. manual, FEAT)

and information retrieval (e.g. LSI). The focus of the paper is the applicabil-

ity of these techniques in OO code both from the necessity and effectiveness

points of view. The conclusion is that OO does not dismiss concept location

3.1. Reverse Engineering 45

and, in general, does not make this task easier. From the case study presented

in the paper it seems that all three techniques are valid for addressing concept

location in OO code.

In [112], Wilde et al present work that compares three different techniques

of locating features: software reconnaissance (dynamic), dependence graph

search (static) and grep-type (static). All techniques were applied to a case

study that consisted of locating two features in a legacy Fortran 77 application.

The conclusions were that all three methods are valid and should be present in

the Software Engineers’ toolkit. Software reconnaissance proved to be a fast

technique that successfully located both features, however it did not help in the

code understanding for the feature that had the least locally comprehensible

code. Dependence graph search also successfully located the features but was

noticeably the most laborious technique. However, it had the big advantage

of providing the best understanding of the code. The grep-type method was

the faster but was not successful in locating one of the features. The authors

suggest that this method can be the first to be applied since it is very fast and,

if it fails, little time is lost. In the conclusion the authors also differentiate

between feature location and concept location including an example. Software

reconnaissance technique is only applicable to feature location.

A technique to identify use cases in source code is presented in [117]. This

technique is based in the concept of Branch-Reserving Call Graph (BRCG). It

consists of a call graph that includes branches. One of the assumptions in this

work is that branch statements are the only mechanism to distinguish between

different use cases in a procedural language. As the BRCG may be too large

for the maintainer to browse, a metric-based pruning strategy to get rid of

irrelevant branches in the graph is proposed. The graph is then used to get

the use cases by generating every possible execution trace from it. This is then

3.1. Reverse Engineering 46

analysed by the maintainer who can also change the result. The modelling of

the desired use cases from the set of use cases is also left to the maintainer

(actors, relations between use cases). Two case studies are reported, both sub-

jects are small systems written in ANSI C but that are very popular (namely

DC and GZIP). For the first example, the technique showed promising results

but for the second, some limitations arose. The main was that it was unable

to distinguish the compression operation from decompression in GZIP. The

authors attribute this to the fact that both functionalities are present in the

same procedure and relevant branches are pruned. By changing the pruning

configuration this can be fixed but at the cost of having a significantly big-

ger graph. This can make irrelevant branches appear and thus increasing the

manual weight of this approach.

Zhao et al [119] put forward a feature location method that intends to solve

this problem in a static and non-interactive fashion (named SNIAFL - Static

Non-Interactive Approach to Feature Location). The authors claim that this

reduces the human effort necessary for dynamic techniques and for traditional

static approaches. Dynamic techniques need a careful, and often complex,

test case selection in order for it to be effective. Traditional static techniques

require, somehow intensively, human interaction to guide the process. In their

work, Zhao et al propose SNIAFL, that is composed of the following steps:

1) acquire the initial specific connections between features and functions, by

using an information retrieval (IR) technique that uses the natural language

descriptions of features as queries; 2) Choose the initial specific function for

each feature; 3) acquire the relevant functions and possible execution traces

using a BRCG; analyse the functions to determine which are the final specific

functions.

A study, over a small application (GNU DC), is made to compare the effec-

3.1. Reverse Engineering 47

tiveness of SNIAFL against an IR-only technique and a dynamic approach.

From their data, SNIAFL obtains much better results than the others, with

the IR-only approach being by far the worse.

In the discussion, the authors emphasize the reduced manual weight of their

approach but concede that the maintainer has to describe and retrieve all

features before locating a specific one. An important drawback of SNIAFL,

which is also identified by its authors, is the lack of flexibility in the granularity.

It is not possible to define a lower granularity than that of functions and

there are circumstances where this is necessary. Another limitation is that

this approach is highly dependent on the quality of the identifier names in

the source code and on the distance between the terms used in the natural

language description of features and the naming used in the code.

Concept assignment

In [12], Biggerstaff et al present the concept assignment problem (also known

as concept location) and present several strategies to address it. The problem

is identified as a complex one that requires a collaboration between automatic

processes and human input. A key idea is that ”a parsing-oriented recognition

approach based on formal, predominantly structural patterns of programming

language features is necessary but not sufficient for solving the general concept

assignment problem”. This is due to the fact that ”the signatures of most

human-oriented concepts are not constrained in ways that are convenient to

parsing technologies”. The authors claim that two general tasks are required

when addressing concept assignment: 1. identify the entities and relations

that are most relevant in the program; 2. assign them to domain concepts and

relations. The former is generic while the latter relies in domain knowledge.

The authors then provide an example and explain how it can be tackled using

3.1. Reverse Engineering 48

three different strategies - all using the DESIRE tool suite for automated

support to analyse C language programs:

1. Suggestive data names as first clue

The user first identifies the mapping between some parts of the code to concepts

by its naming proximity. Then, by analysing the control flow, more code

blocks can be also identified. To complete this, slicing techniques can help in

identifying the concept’s remaining relevant code.

2. Patterns of relationships as first clue

Following this strategy, clusters of related functions and data are identified

forming an abstract architecture or framework of the program. This can be

achieved using generic rules, for example ”functions that are coupled by shared

global variables”. The clusters can then be assigned by the user to concepts.

3. Intelligent agent provides first clue

A tool can scan the code and provide a list of candidate concepts. This can

be based on a domain model database. DESIRE’s DM-TAO achieves this

by using a semantic/“connectionist” hybrid network in which each concept is

represented as a node and the relationships are explicit links. The nodes have

different types such as: concept node, feature node, and term node. The links

have weights that are used to give clues to the process. The user could then

start from a simplified stage in which he would correct the automated result

if necessary.

In [19], Carey and Gannod present a technique to filter class models from OO

systems to display only the ones relevant to concepts. The authors assume

that ”Object-oriented design suggests that we ignore the details of the imple-

mentation of a class, so we believe that analysing object-oriented software at

3.1. Reverse Engineering 49

the class level is a valid approach to solving the concept assignment problem”.

This is possibly an over-generalisation since many systems, even the ones that

are developed in the beginning following all OO best practices, end up mixing

concepts in one class. The methodology is based on the application of statis-

tical machine learning algorithms using OO metrics. A manual classification

is made, indicating for a set of classes which represent a concept and which

do not. The learning algorithm uses the manual information to propagate the

classification to the remaining classes. The results of the two test cases pre-

sented in the paper seem promising although several shortcomings are evident.

The lower granularity of the process being the class level makes it very limited

in situations where there are multiple concepts in the same class or where a

concept is scattered among multiple classes. Other limitations are related to

the statistical nature of the technique such as: errors in the statistical analysis

and overfitting of the data set (i.e. results do not generalise well to other data

sets).

Combining program slicing and concept assignment

In [44], Gold et al present a higher-level executable source code extraction

technique based on unifying program slicing and concept assignment. Its goal

is to overcome limitations of slicing, which requires low level criterion, and

concept assignment, which does not result in executable code.

In the above article, the authors describe four techniques of “concept slicing”

which differ in the way that program slicing and concept assignment are com-

bined and explain the contexts in which each is more beneficial. The presented

case studies shows a significant reduction of the amount of source code that

needs to be inspected for a code extraction task.

3.1. Reverse Engineering 50

Aspect mining

In [21], the authors present and compare three aspect mining techniques: fan-

in, identifier analysis and dynamic analysis. Fan-in is based in method call

count, identifier analysis uses the names of methods to perform formal con-

cept analysis and dynamic analysis uses traces of execution also to perform

concept analysis. A case study (with JHotDraw) showed that they are some-

what complementary. In a combination study trying to locate four crosscutting

concerns, the joint technique worked better to find three but worse in one.

Obtaining a higher-level representation

The Dagstuhl Middle Model (DMM) [70] was developed to solve interoper-

ability issues of reverse engineering tools. Like the approach presented in this

dissertation, it keeps traceability to the source code. The DMM is composed

by sub-hierarchies that include an abstract view of the program and a source

code model. The chosen way to relate these two is via a direct link. The

Fujaba (From UML to Java And Back Again) tool suite [59] provides design

pattern [42] recognition. The source code representation used for that process

is based on an Abstract Syntax Graph (ASG). Another representation is put

forward with the Columbus Schema for C++ [38]. Here an AST conforming

to the C++ model/schema is built, and a higher level semantic information is

derived from types. The work of Ramalingam et al, from IBM research, in [91],

addresses the reverse engineering of OO data models from programs written

in weakly-typed languages like COBOL. In their work, the links between the

model and the code are represented in a reference table. This table establishes

the link between each model element and the line of code having no intermedi-

ate representation. A major difference between the methodology presented in

3.2. Transformation 51

this dissertation and the above approaches is that it uses a categorisation step

that will make possible the automated transformation to a new architectural

style. The ARTISAn framework, described by Jakobac, Egyed and Medvi-

dovic in [57], categorises source code. It uses an iterative user-guided method

to achieve this. The code categories used are: “processing”, “data” and “com-

munication”. The approach differs from the one presented in this dissertation

in several aspects. Firstly, the goal of the framework is program understanding

and not the creation of a representation that is aimed to be used as input for

the transformation part of a reengineering methodology. Another important

difference is that in ARTISAn the categorisation process (called “labeling”) is

based in clues that result in the categorisation of classes only. For the approach

presented in this dissertation there is the need, and support, for the method

and code block granularity levels.

3.2 Transformation

Program transformation can occur at different levels of abstraction. The

source-to-source level of transformation is the most established one. There

are several approaches that led to successful industrial tools. Examples from

research include TXL [26] and ASF+SDF [107]. DMS from Semantic De-

signs [11] and Forms2Net from ATX Software [9] are program transformation

tools being successfully applied in the industry. Transformations at the de-

tailed design level, due to its applications as maintenance techniques, have an

increasing interest that is following the same path. Practices such as refac-

toring [40] are driving the implementation of functionalities that automate

detailed design level transformations. These are mainly integrated in develop-

ment environments as is the case of Eclipse [106] and IntelliJ [58]. However,

3.2. Transformation 52

there is still a lot of ongoing research in this area, for instance, in the deter-

mination of dependencies between transformations [78].

Work in the area of architecture transformation is broad and diverse. It in-

cludes a few works based on model transformation, automated code trans-

formation, or graph transformation and re-writing, which are closely related

to the work in this document. The approaches found in the literature vary

in three main aspects: first, the levels of abstraction used for describing the

system (architecture models only or interlinked architecture and implemen-

tation models), second, the way the architecture models are represented and

third, the method and tools used for representing and executing architecture

transformation rules. Available case studies are either only concerned with

the transformation of high level architecture representations or limited to very

specific source and target architectures and programming languages combina-

tions.

The use of graph transformation for reengineering software systems has been

previously suggested [28] in a different context (migrating mainframe COBOL

to client/server) with similarities to the technological dimension later discussed

in this document in chapter 5. One of the main differences is that the latter

focuses manual involvement in the initial step, which, amongst others, has the

advantages of limiting the type of necessary human activities (with a focus

on analysis and not in corrections to the results of various steps), and also of

scalability as detailed later in this dissertation. A model-based technique based

on graph transformation for a posteriori integration of legacy applications into

SOA is proposed in [48]. This focuses on generating wrappers and glue code,

rather than directly transforming the source code. Although the approach

presented in this dissertation makes use of models, other more model-centric,

MDE based approaches such as [115], mainly differ from it since it gives much

3.2. Transformation 53

focus at the code annotation step at a lower level of abstraction before moving

to the graph model level, in order to obtain the benefits mentioned in this

document.

Kong et al [64] developed an approach for software architecture verification

and transformation based on graph grammar. First, the approach requires

translating UML diagrams describing the system architecture (or acquiring a

description for it) to reserved graph grammar formalism (RGG). Then, the

properties of the RGG description can be checked automatically. Automatic

transformation can also be applied but only at the architecture description

level and not at the implementation level.

Ivkovic and Kontogiannis [56] proposed a framework for quality-driven soft-

ware architecture refactoring using model transformations and semantic an-

notations. In this method, first, a conceptual architecture view is represented

as a UML 2.0 profile with corresponding stereotypes. Second, instantiated

architecture models are annotated using elements of the refactoring context,

including soft-goals, metrics, and constraints. A generic refactoring context is

defined using UML 2.0 profiles that includes “semanticHead” stereotype for

denoting the semantic annotations. These semantic annotations are related

to system quality improvements. Finally, the actions that are most suitable

for the given refactoring context are applied after being selected from a set of

possible refactorings. Transformations in this method occur at the conceptual

architecture view level using Fowler [40] refactorings.

Fahmy et al [37] used graph rewriting to specify architectural transformations.

The authors used PROGRES tool [15] to formulate executable graph-rewriting

specifications for various architectural transformations. Architecture is repre-

sented using directed typed graphs that describe system hierarchy and com-

ponent interaction. The assumption is that the architecture is extracted using

3.3. Forward Engineering 54

some extraction tool. Their work is at the architecture description level and no

actual transformation is performed on the code, unlike the approach presented

in this thesis. In the latter, a graph is built such that it models the software

but also maps the code to target architectural elements. It is this information

that guides the redesign process, and allows for obtaining the target code.

Unlike the three previous works, the approach of Carrière et al [20] implements

architectural transformations at the code level using automated code transfor-

mation. Their first step is reconstructing the existing software architecture

by extracting architecturally important features from the code and aggregat-

ing the extracted (low-level) information into an architectural representation.

The next step is defining the required transformations. In this work, they were

interested in transforming the connectors of a client-server application to sep-

arate the client and server sides as much as possible and reduce their mutual

dependence. Next, the Reasoning SDK (formerly Refine/C), which provides

an environment for language definition, parsing and syntax tree querying and

transformation, is used to implement the required connector transformations

at code level on the AST of the source system. The major difference from the

work described in this dissertation relies on the fact that it uses code catego-

rization to relate the original source code to the intended target architecture.

Additionally, transformation is performed at model level allowing for describ-

ing transformations in a more intuitive way and adaptable to different targets,

while in the approach from [20] it occurs only at code level.

3.3 Forward Engineering

Regarding code generation, there is a significant number of research work and

tools available. A comprehensive list is too long to specify here, so only some of

3.4. Reengineering to SOA 55

the most commonly used ones are described. The already mentioned Fujaba

tool suite supports the generation of Java source code from the design in

UML resulting in an executable prototype. The Eclipse Modeling Framework

(EMF) [32] can generate Java code from models defined using the Ecore meta-

model. This has a number of possible uses such as to help develop an editor for

a specific type of model. UModel [8], from Altova, can generate C# and Java

source code from UML class or component diagrams. In the Code Generation

Network website there is a very extensive list of available tools [81].

3.4 Reengineering to SOA

Even before the advent of SOAs, approaches for reengineering business ap-

plications were proposed, based on the integration of legacy components after

separating application logic from presentation [62]. Work in the area of reengi-

neering to SOA primarily focuses on identifying and extracting services from

legacy code bases and then wrapping them for deployment on an SOA. A

key assumption in this area is that an evaluation of the legacy system will be

conducted to assess if there are valuable reusable and reliable functionalities

embedded that are meaningful and useful to be exposed in the service-oriented

environment and that are fairly maintainable. Some research focuses on service

identification only. For example, Del Grosso et al [45] proposed an approach

to identify, from database-oriented applications, pieces of functionality to be

potentially exported as services. The identification is performed by clustering

queries dynamically extracted by observing interactions between the applica-

tion and the database, through formal concept analysis. Unlike the above, the

methodology described in this dissertation consists of an end-to-end reengi-

neering process, and identification uses multiple sources.

3.4. Reengineering to SOA 56

The following sections describe several approaches to achieve SOA, including a

classification that assists in determining the relevant differences amongst them.

The approach presented in this document is different from other approaches,

in that its goal is not just to provide existing functionality as services, but

to do so whilst complying to the service-orientation principles described in

chapter 1.

General strategy

As in other reengineering strategies, migration to SOA is based on three basic

steps:

• Reverse engineering: analysis of existing system, identification of poten-

tial services;

• Transformation: restructuring to comply to service-oriented principles;

• Forward engineering: obtaining the original functionality as services.

Classification

Service-oriented architectures were introduced some years ago, but it is an

area where there is still intensive ongoing research. Although there are several

approaches to migrate to SOA, they differ in several aspects. These method-

ologies/strategies can be classified according to properties that assist in their

understanding and selection for a given purpose. A classification is presented

in this section. A systematic review of the field was reported in [94, 93], where

existing approaches were organised in families. These consist of groups that

are distinguished in terms of scope (coverage) regarding the three steps men-

3.4. Reengineering to SOA 57

tioned above, and the levels in which they operate: concept, composite design

element, basic design element and code. Whilst this classification is useful to

get an understanding of the available approaches, there are other important

aspects that are given emphasis in this dissertation. In this context, particu-

lar relevance is given to applicability in practice, adequacy to SOA principles

and scalability. The following paragraphs describe the aspects in which this

classification is applied.

Type

The current approaches of reengineering to SOA can be divided into four types:

• Methodology-only approaches - the output of the strategy is a set of

guidelines/procedures or other documentation to support the migration

project;

• Replacement - the existing applications are replaced by SOA compliant

ones;

• Code wrapping strategies - the existing code is wrapped to provide ser-

vices without too many internal changes;

• Code restructuring strategies - the existing code is changed to comply to

SOA properties.

Methodology-only approaches focus on high level definitions, which include

macro-plans, guidelines and documentation to organise the project, but require

the use of a concrete wrapping or restructuring approach in order to reach its

goal.

Replacement approaches represent the complete replacement of existing appli-

cations, or application modules, with SOA enabled ones. This can be achieved

3.4. Reengineering to SOA 58

either by redeveloping existing functionality from scratch or by acquiring, and

customizing, off-the-shelf packages when available. Both possibilities require

a deep knowledge of the current system, and involve significant investment in

re-documentation and testing in order to mitigate the risk of losing important

business rules.

Wrapping strategies use integration technology in order to act as a services

layer over existing applications. Current functionality is offered as services,

but the legacy code is typically left untouched. Consequently this leads to a

one-to-one mapping between existing operations, and published services. This

approach can be more elaborate, and involve writing new coordination code,

usually in a more modern programming language, which then interacts with

the legacy modules. However, this clearly diminishes benefits in terms of effort

and cost. Wrapping methods cannot comply to all the properties mentioned

earlier. In particular, a correct separation of presentation logic and business

logic is not usually achieved. It is also not possible to guarantee that resulting

services will be loosely coupled. Service granularity can be addressed to some

extent. These methods are usually seen as temporary solutions.

Restructuring strategies, also known as white-box or invasive reengineering,

take advantage of existing code, by restructuring it in order to enable its

usage in the context of a SOA. Restructuring can take place at several levels.

In the work presented in this dissertation, the requirements are to take into

consideration the service-orientation principles presented in chapter 1:

1. The separation of business logic from presentation logic;

2. The loosely coupled relationship between services;

3. The coarse-grained nature of services.

3.4. Reengineering to SOA 59

This allows for a high degree of control of the final services infrastructure,

as it enables a correct separation of application concerns, as well as the ade-

quate selection of operation granularity. Although it is not the focus of this

dissertation, restructuring also allows migration to a more modern technology.

Restructuring methods can address all the properties mentioned above. How-

ever, they are almost always more complex and time consuming.

Scope

Another classification can be done based on the scope of each strategy. While

some offer full coverage (i.e. from the original source code to the final one,

SOA compliant), others only address specific parts of the process.

Automation

The automation of the methodologies also varies. Steps can be fully auto-

mated, semi-automated or manual. There is no fully automated method to

reengineer systems to SOA.

Technology

Some methodologies are technology independent, whilst others focus on specific

programming languages or paradigms.

Existing approaches

This section classifies and summarises a number of existing SOA migration

approaches. The goal is not to be exhaustive, but to provide examples of

3.4. Reengineering to SOA 60

different types of approaches according to the above classification aspects.

Table 3.1 lists SOA migration approaches as referred above. Note that the last

approach on the table, there named “SENSORIA Reengineering Approach”

as it was presented in its early stages during the SENSORIA project, is the

one presented as the general approach for this thesis. Whilst initially launched

by several authors, including this thesis’ author, it was then carried forward

and developed by him, focussing in its refinement, further progressing the

technological dimension, defining the approach for the functional dimension,

developing the prototype, and performing the evaluation.

The indications given in the column “Scope & Automation” refer to each

reengineering step, and have the following meaning:

(Blank) - No support is given for the step;

M - Manual - The approach identifies how a step can be performed, but

provides no automation;

S - Semi-automated - Semi-automated support is used for the step;

A - Automated - Full (or quasi -full) automated support exists for the step.

Some of the approaches listed and classified in that table are detailed in this

section in order to provide representative examples of the various types. Ad-

ditionally, the approaches closest to the one presented in this dissertation are

also detailed for comparison. This similarity is determined in terms of the

satisfaction of the requirements discussed in this dissertation, which include

providing support to the full reengineering cycle, and code restructuring.

3.4. Reengineering to SOA 61

A
p
p
ro

a
ch

T
y
p
e

S
c
o
p
e
&

A
u
to

m
a
ti
o
n

T
e
ch

n
o
lo
g
y

R
E

T
R

F
W

S
er

v
ic

e-
O

ri
en

te
d

S
of

tw
ar

e
R

ee
n

gi
n

ee
ri

n
g:

S
oS

R
[2

5]
M

et
h

o
d

o
lo

g
y
-o

n
ly

M
M

In
d

ep
en

d
en

t
S

er
v
ic

e-
O

ri
en

te
d

M
ig

ra
ti

on
an

d
R

eu
se

T
ec

h
n

iq
u

e
(S

M
A

R
T

)
[7

1
]

M
et

h
o
d

o
lo

g
y
-o

n
ly

M
In

d
ep

en
d

en
t

C
om

p
os

it
io

n
an

d
C

u
st

om
iz

at
io

n
of

W
eb

S
er

v
ic

es
U

si
n

g
W

ra
p

p
er

s:
A

F
or

m
al

A
p

p
ro

ac
h

B
as

ed
on

C
S

P
[4

9]
M

et
h

o
d

o
lo

g
y
-o

n
ly

M
In

d
ep

en
d

en
t

E
x
tr

ac
ti

n
g

R
eu

sa
b

le
O

b
je

ct
-O

ri
en

te
d

L
eg

ac
y

C
o
d

e
S

eg
m

en
ts

w
it

h
C

om
b

in
ed

F
or

m
al

C
on

ce
p

t
A

n
al

y
si

s
an

d
S

li
ci

n
g

T
ec

h
n

iq
u

es
fo

r
S

er
v
ic

e
In

te
gr

at
io

n
[1

18
]

W
ra

p
p

in
g

S
M

O
b

je
ct

-o
ri

en
te

d

C
re

at
in

g
W

eb
S

er
v
ic

es
fr

om
L

eg
ac

y
H

os
t

P
ro

gr
am

s
[1

03
]

W
ra

p
p

in
g

M
S

S
ev

er
a
l

In
te

gr
at

in
g

le
ga

cy
S

of
tw

ar
e

in
to

a
S

er
v
ic

e
or

ie
n
te

d
A

rc
h

it
ec

-
tu

re
[1

02
]

W
ra

p
p

in
g

S
S

P
L

/
I,

C
O

B
O

L
,

a
n

d
C

/
C

+
+

.

M
ig

ra
ti

n
g

In
te

ra
ct

iv
e

L
eg

ac
y

S
y
st

em
s

T
o

W
eb

S
er

v
ic

es
[1

7,
1
8
]

W
ra

p
p

in
g

S
S

In
te

ra
ct

iv
e

sy
st

em
s

U
si

n
g

G
ri

d
T

ec
h

n
ol

og
ie

s
fo

r
W

eb
-E

n
ab

li
n

g
L

eg
ac

y
S

y
st

em
s

[1
6
]

W
ra

p
p

in
g

S
A

n
A

rc
h

it
ec

tu
re

M
o
d

el
fo

r
D

y
n

am
ic

al
ly

C
on

v
er

ti
n

g
C

om
p

o
n

en
ts

in
to

W
eb

S
er

v
ic

es
[6

8]
W

ra
p

p
in

g
S

J
av

a
a
n

d
C

+
+

A
B

la
ck

-B
ox

S
tr

at
eg

y
to

M
ig

ra
te

G
U

I-
B

as
ed

L
eg

ac
y

S
y
st

em
s

to
W

eb
S

er
v
ic

es
[1

16
]

W
ra

p
p

in
g

M
In

te
ra

ct
iv

e
sy

st
em

s

L
eg

ac
y

S
y
st

em
s

In
te

ra
ct

io
n

R
ee

n
gi

n
ee

ri
n

g
[3

5]
W

ra
p

p
in

g
S

S
G

U
I

b
a
se

d
sy

st
em

s
W

ra
p

p
in

g
C

li
en

t-
S

er
ve

r
A

p
p

li
ca

ti
on

to
W

eb
S

er
v
ic

es
fo

r
In

te
rn

et
C

om
p

u
ti

n
g

[4
7]

W
ra

p
p

in
g

S
S

.N
E

T
cl

ie
n
t-

se
rv

er

A
L

ig
h
tw

ei
gh

t
A

p
p

ro
ac

h
to

P
ar

ti
al

ly
R

eu
se

E
x
is

ti
n

g
C

om
p

o
n

en
t-

B
as

ed
S

y
st

em
in

S
er

v
ic

e-
O

ri
en

te
d

E
n
v
ir

on
m

en
t

[5
4]

W
ra

p
p

in
g

S
E

J
B

-b
a
se

d
a
p

p
li

ca
ti

o
n

s

W
eb

-b
as

ed
sp

ec
ifi

ca
ti

on
an

d
in

te
gr

at
io

n
of

le
ga

cy
se

rv
ic

es
[1

2
0
]

W
ra

p
p

in
g

S
C

+
+

F
ea

tu
re

A
n

al
y
si

s
fo

r
S

er
v
ic

e-
O

ri
en

te
d

R
ee

n
gi

n
ee

ri
n

g
[2

2]
W

ra
p

p
in

g
S

S
.N

E
T

R
ee

n
gi

n
ee

ri
n

g
L

eg
ac

y
S

y
st

em
s

w
it

h
R

E
S

T
fu

l
W

eb
S

er
v
ic

e
[7

2
]

W
ra

p
p

in
g

M
A

A
C

as
e

S
tu

d
y

on
S

of
tw

ar
e

E
vo

lu
ti

on
to

w
ar

d
s

S
er

v
ic

e-
O

ri
en

te
d

A
rc

h
it

ec
tu

re
[2

9]
R

es
tr

u
ct

u
ri

n
g

S
M

M
J
av

a

T
ow

ar
d

s
A

p
p

ly
in

g
M

o
d

el
-T

ra
n

sf
or

m
at

io
n

s
an

d
-Q

u
er

ie
s

fo
r

S
O

A
-

M
ig

ra
ti

on
[5

3]
R

es
tr

u
ct

u
ri

n
g

S
S

S
J
av

a

“S
E

N
S

O
R

IA
R

ee
n

gi
n

ee
ri

n
g

A
p

p
ro

ac
h

”
[5

1]
R

es
tr

u
ct

u
ri

n
g

S
A

A
In

d
ep

en
d

en
t

T
ab

le
3.

1:
S
O

A
m

ig
ra

ti
on

ap
p
ro

ac
h
es

3.4. Reengineering to SOA 62

Title Service-Oriented Software Reengineering (SoSR) [25]

Author(s) Chung, An, Davalos

Method Methodology-only

Coverage Full

Automated -

Semi-automated -

Manual Forward Engineering, Reverse Engineering

Technology Independent

SoSR is a methodological approach that provides a set of guidelines for the

reengineering to SOA process. It supports the distribution of tasks to roles in

the context of a migration project.

A summary of the process can be seen in the diagram presented in Figure 3.1.

Legacy System

Reverse
Engineering

Forward
Engineering

Modernization
Requirements

Visual Model for
Legacy System

Target SystemVisual Model for
Target System

Figure 3.1: Service-Oriented Software Reengineering (SoSR) process.

3.4. Reengineering to SOA 63

Title Service-Oriented Migration and Reuse Technique

(SMART) [71]

Author(s) Lewis, Morris, Smith, OBrien

Method Methodology-only

Coverage Reverse Engineering

Automated -

Semi-automated -

Manual Reverse Engineering

Technology Independent

SMART gathers a wide range of information about legacy components, the

target SOA, and potential services to produce a service migration strategy as

its primary product.

A summary of the process can be seen in Figure 3.2.

Establish
Stakeholder

Context

Describe Existing
Capability

Describe the
Target SOA

Analyse the Gap Develop Migration
Strategy

Figure 3.2: Service-Oriented Migration and Reuse Technique (SMART) pro-
cess.

3.4. Reengineering to SOA 64

Title Extracting Reusable Object-Oriented Legacy Code

Segments with Combined Formal Concept Analysis

and Slicing Techniques for Service Integration [118]

Author(s) Zhang, Yang, Chu

Method Wrapping

Coverage Full

Automated -

Semi-automated Reverse Engineering

Manual Forward Engineering (wrapping)

Technology OO

To identify the legacy code to be reused, two reverse engineering/program

comprehension techniques are used:

• Formal Concept Analysis (FCA);

• Slicing.

Formal concept analysis is a field of applied mathematics which deals with the

study of the relation between elements and element properties to identify con-

ceptual structures among data sets. FCA can be used in software engineering

to group code that has similar properties. Program slicing is a well known

code analysis technique that can be used to identify parts of the program that

are influenced by or influence a given set of program points.

Zhang et al [118] proposed an approach for extracting reusable object-oriented

legacy code segments with combined formal concept analysis and slicing tech-

niques for service integration. Firstly, an evaluation of legacy systems is per-

formed to confirm the applicability of this approach and to determine other

re-engineering activities. Secondly, the legacy system is decomposed into com-

3.4. Reengineering to SOA 65

ponent candidates via formal concept analysis. Static program slicing is ap-

plied to further understand these component candidates. Finally, component

candidates are extracted, refined and encapsulated.

A summary of the process can be seen in Figure 3.3.

Legacy OO Code Evaluation/
preparation

System
decomposition by

FCA

Code
understanding via

slicing

Reusable legacy
code segments

Encapsulation
and integration

Figure 3.3: Service-Oriented Reengineering (SOR) process.

Title Creating Web Services from Legacy Host Pro-

grams [103]

Author(s) Sneed (H.), Sneed (S.)

Method Wrapping

Coverage Full

Automated -

Semi-automated Forward Engineering (extracting+wrapping)

Manual Reverse Engineering

Technology Assembly, PL/I, C or COBOL server-side and Java

client-side

The process consists of seven steps:

3.4. Reengineering to SOA 66

1. Function mining: Functions to be reused are marked and extracted from

the existing program together with the data they use;

2. Wrapping: A new interface is created for each of the extracted functions;

3. XML generation: From the interface description in the original language

of the program, an XML subschema is generated;

4. Generation of the server stubs for parsing the incoming XML messages

and for marshalling the outgoing messages;

5. Client transformation: From the XML subschema the Java classes are

generated to send and receive the XML messages;

6. Server linking: The stubs are linked together with their server functions

on the host to create DLLs;

7. Client build: The generated Java classes are built into the Java interface

component for connecting the website to the web services on the host.

Title Integrating legacy Software into a Service oriented

Architecture [102]

Author(s) Sneed

Method Wrapping

Coverage Full

Automated -

Semi-automated Reverse Engineering, Forward Engineering

Manual -

Technology

Sneed [102] presents a tool supported method for wrapping legacy PL/I, COBOL,

and C/C++ code behind an XML shell which allows individual functions

within the programs to be offered as web services to any external user. The

3.4. Reengineering to SOA 67

first step consists of identifying candidate functionality for wrapping as a web

service. In the second step, the functionality’s code is located with the aid

of reverse engineering tools. In the third step, that code is extracted and re-

assembled it as a separate module with its own interface. This is done by

copying the impacted code units into a common framework and by placing all

of the data objects they refer to into a common data interface. In the fourth

step, extracted components are wrapped with a WSDL interface. The fifth and

final step consists of linking the web service to overlying business processes by

means of a proxy component.

Title Migrating Interactive Legacy Systems To Web Ser-

vices [17, 18]

Author(s) Canfora, Fasolino, Frattolillo, Tramontana

Method Wrapping

Coverage Full

Automated -

Semi-automated Reverse Engineering, Forward Engineering

Manual -

Technology Interactive systems

A lighter code-independent approach was developed by Canfora et al [17],

which wraps only the presentation layer of legacy form-based user interfaces

(and not the code) as services. In form-based user interfaces, the flow of data

between the system and the user is described by a sequence of query/response

interactions or forms with fixed screen organization. Their wrapper interacts

with the legacy system as though it were a user, with the help of a Finite

State Automata (FSA) that describes the interaction between the user and the

legacy system. Each use case of the legacy system is described by an FSA and is

reengineered to a web service. The FSA states correspond to the legacy screens

3.4. Reengineering to SOA 68

and the transitions correspond to the user actions performed on the screen to

move to another screen. The wrapper derives the execution of the uses cases on

the legacy system by providing it with the needed flow of data and commands

using the FSA of the relevant use case. Of particular relevance to the work

described in this dissertation is the service identification and extraction task,

which is closely related to the functional dimension presented in this document.

This task is essential for any code-wrapping approach to reengineering to SOA.

Title A Case Study on Software Evolution towards Service-

Oriented Architecture [29]

Author(s) Cuadrado, Garćıa, Dueñas, Parada

Method Restructuring

Coverage Full

Automated -

Semi-automated Reverse Engineering

Manual Transformation, Forward Engineering

Technology

This approach, also of the restructuring type as the one presented in this

dissertation, focuses on architecture recovery. The cited paper presents the

overall method in a high level fashion, and describes a case study. In the

latter, the migration of a small Java application, architecture recovery was

performed via: (1) information extraction (from documentation), (2) static

view extraction, (3) dynamic view extraction and (4) abstraction. Tasks (1)

and (4) were mostly performed manually, whilst (2) and (3) benefited of some

level of tool support. The subsequent steps to obtain the final result were

performed manually through iterative refactoring of the original application

to match the intended final architecture. The closest aspects with the work

presented in this thesis are the focus on gathering information, and the goals

3.4. Reengineering to SOA 69

of obtaining a final result that complies with the service-orientation principles.

The biggest differences are that the approach from this dissertation offers more

detail in terms of methodology, and defines support and automation for the

transformation and forward engineering steps.

Title Towards Applying Model-Transformations and -

Queries for SOA-Migration [53]

Author(s) Horn, Fuhr, Winter

Method Restructuring

Coverage Full

Automated -

Semi-automated Reverse Engineering, Transformation, Forward Engi-

neering

Manual -

Technology

In this approach, the source code is represented by means of a graph, in or-

der to enable graph querying and transformation techniques. This approach

is model-driven, and the final code is obtained through generation from the

graph. The approach allows selecting the code sets that have been identified as

belonging to specific functionalities, and its adaptation in order to fit service

specification can be done semi-automatically. This approach has several simi-

larities with the one presented in this dissertation, including usage of graphs,

and the goal of restructuring code in order to avoid the downsides of wrapping

techniques. However, there are significant differences too. Most notably, in the

methodology described in this thesis, the graphs are much more succinct due

to a preparatory analysis step, and also the transformations can act at a lower

level if necessary, leading to a deeper restructuring. In the case of Horn et al ’s

approach, the extraction uses the granularity of classes, whilst in the approach

3.4. Reengineering to SOA 70

from this dissertation the transformations occur also at the method and even

code fragment level.

Title “SENSORIA Reengineering Approach” [51]

Author(s) Matos, Correia, Heckel, El-Ramly, Koutsoukos, An-

drade

Method Restructuring

Coverage Full

Automated Transformation, Forward Engineering

Semi-automated Reverse Engineering

Manual -

Technology Independent

This approach is the one this dissertation is focused in. It performs transfor-

mations into four steps. The first step is a preparatory one, where code is

annotated. The following steps consist of deriving a graph model representing

the annotated code, applying changes to the model through graph transfor-

mations, and obtaining the final code via forward engineering.

This approach addresses SOA properties in two dimensions: the technological

dimension is concerned with the layering of the system architecture, providing

the needed separation between user interface and business logic; the functional

dimension addresses the extraction of services according to the loose coupling

and coarse-granularity properties.

To change source code to be SOA compliant, the restructuring along both di-

mensions is applied in sequence. These dimensions have some common points,

one of which is the general approach.

Details of this approach are not given in this section since they are the subject

of thorough discussion throughout the whole thesis report, particularly from

3.4. Reengineering to SOA 71

chapter 4 onwards.

Selecting an approach type

The decision of which approach to adopt for a given migration project deeply

depends upon its specific requirements, the nature of the system to migrate,

and the organisation’s global IT context. Also, it is possible to even select a

hybrid approach, using several of the methods presented above. This can be

done in parallel, having several subsystems being migrated following different

strategies, or a sequential arrangement. A typical example of the latter is

followed by organisations that require a quick move to service-orientation, thus

initially choosing wrapping as a temporary result, but want the benefits of a

deep restructuring, thus subsequently following this approach as a long-term

solution. A summary of advantages and disadvantages of each approach is

presented in Table 3.2, which is an adaptation from the one presented in [67].

Considerations

One of the goals of the approach described in this dissertation is to provide

means for application in practice, going all the way from the original source

code to the final one, and being possible to apply systematically. Methodology-

only approaches, by definition, do not provide enough details to guarantee

this. They are focused in setting best practices, and define procedures, usually

away from technical details. In order to fully realise a migration to SOA, they

require the use of a concrete wrapping or restructuring approach to support

the methodological side.

The previous section provides a differentiation between wrapping and restruc-

3.4. Reengineering to SOA 72

Approach Advantages Disadvantages

Replacement

- Good granularity
and reuse

- Maintenance, Performance,
Scalability problems

- Adoption of modern
technology

- Higher risk (e. g. loss of cru-
cial business knowledge or even
project failure)

Wrapping

- Fast - Poor reuse
- Lower cost - No long term agility
- Lower risk - Poor services granularity

- Maintenance, Performance,
Scalability problems

Restructuring

- Better maintainabil-
ity, scalability, perfor-
mance and long-term
agility

- More expensive than wrapping

- Service granularity
and reuse better that
wrapping

- Time consuming

- Real multi-party and
business process ori-
ented architecture

Table 3.2: SOA-enabling approaches: advantages and disadvantages

turing approaches, where it is possible to verify that the former do not satisfy

several of the requirements defined in this dissertation. Whilst they enable a

transition from existing applications to services, they do so without complying

to service-orientation principles. Without this, it is not possible to get all the

benefits of SOAs.

To achieve the requirements described in chapter 1, it is necessary to use a re-

structuring approach. In table 3.1, three of these were identified, including the

one described in this dissertation. Whilst similar to the approach presented in

this thesis in terms of the importance given to preparatory tasks of informa-

tion gathering, the work described by Cuadrado et al in [29] is very focused

on a particular case. Additionally, automation was only used for a few of the

tasks. The approach from this thesis includes a more detailed methodology,

and defines a higher level of support and automation for the transformation

3.4. Reengineering to SOA 73

and forward engineering steps. The approach described by Horn et al in [53]

bears more similarity with the one presented in this dissertation. This includes

usage of graphs, and code restructuring to allow SOA compliance. However,

the approach from this thesis, due to its preparatory analysis step, achieves

succinct graphs after the reverse engineering step, whilst in Horn et al ’s case,

all the applications language elements are represented in their graphs. In

the former, transformations can also act at a lower level if necessary. In the

case of Horn et al ’s approach, the extraction uses the granularity of classes,

whilst in the approach from this thesis the transformations occur also at the

method and even code fragment level. This allows for deeper restructuring,

enabling a finer control on characteristics such as the separation of concerns.

In addition, in Horn et al ’s approach, the transformation’s focus is facilitating

extraction, rather than closing the gap between the original application’s code

structure and SOA-compliance. In the approach described in this disserta-

tion, the transformational aspect is more differentiated, thus allowing further

possible specifications.

Chapter 4

General Methodology

This chapter presents the general reengineering methodology used in this dis-

sertation. It is based on the Horseshoe model, refining it to support automa-

tion and traceability. This is preceded by a discussion about different types of

strategies in order to set the context for the methodology.

4.1 Business Context

It is common for enterprises to maintain legacy applications for a large number

of years due to their core importance in business operations. However, in order

for these to keep up with new requirements, organisations incur high costs for

maintenance, and to replace or retain existing staff. The siloed nature of these

systems, where integration or consolidation rarely occurred, add to the lack of

flexibility which can impair business process efficiency.

In a very aggressive global economy, it is necessary for organisations to have

easily adaptable IT solutions. Only then is it possible to adjust to new market

needs, often a result of increasing competition. Other requirements that force

4.1. Business Context 75

companies to quickly change their systems is compliance to new legislation.

Given this context, there is a high pressure on organisations for modernising

their existing IT infrastructure, particularly in what can bring cost savings, or

a high degree of flexibility [39].

The work presented in this dissertation aims to provide a way of using ef-

fective techniques in modernisation projects, both by companies in need of

modernising their software infrastructure and by service providers specialized

in the reengineering arena. Automation takes a big role in this process in order

to enable a scalable approach. As discussed in [7], there are estimates from

technology research firm Gartner indicating that a well trained programmer

manually migrates 160 lines of code per day. For large scale projects, even

with a large team of developers, this translates into a typically undesirable

length.

To illustrate how the approach maps to a concrete business context, this chap-

ter draws parallels with the core business model of ATX Software, a company

with a focus on software modernisation products and services [1]. Its offer

in this area includes migration from COBOL or Oracle Forms to Java or Mi-

crosoft .NET. Its clients, from various regions of the world, span the main

industry sectors, including banking, public sector, health and insurance. The

process is not exclusive to ATX, being followed by multiple companies both in

the reengineering area and in general software engineering.

This dissertation’s author currently holds the post of senior consultant at ATX

Software, hence the use of this particular example. Furthermore, during the au-

thor’s participation in reengineering projects, he came to understand how the

work presented in this document adequately matches current business needs.

4.1. Business Context 76

Process

A typical reengineering project has three phases.

1. technical analysis and proof-of-concept / pilot

2. transformation

3. testing and transition

Whenever possible, the process starts from a point in which there is already an

implementation of the methodology for the general needs of a specific reengi-

neering project. This is the scenario that occurs when a set of tools and

methods were developed and accumulated throughout past projects. In cases

in which there was no similar prior work, there is the extra preparatory step of

creating an instantiation of the overall methodology, which can include com-

bining parts of other previously created, but not directly usable, instantiations.

This process is depicted in figure 4.1.

Previous tool
instantiation

Development of
a new tool

instantiation

1.
Technical Analysis
& Proof-of-concept

2.
Transformation

Tool improvements

Product creation

3.
Testing and

transition

Project(s)

Figure 4.1: Tool development process

Phase 1 includes two main tasks. The first is an analysis of the original applica-

tion. This is required in order to understand the application’s specificities and

4.1. Business Context 77

eventually identify improvement opportunities over the reengineering solution.

Following this task, and any changes driven by it, a subset of the application

is selected for a proof of concept. The size of this sample can vary according to

each project, and is sometimes subject to a negotiation between the involved

parties, but can amount to 10% of the entire system. When a larger subset of

the application is chosen, it might more appropriately be called a pilot for the

project. It is crucial that the selection of this sample adequately represents

the overall system.

For a typical project, it would be expected that using an existing solution 60-

80% of the code would be migrated automatically. This result is then improved

by a process of customisation, creating and adapting pattern matching and

transformation rules until the coverage reaches the desired level of 80-90% of

the system sample.

Phase 2 consists of applying the transformation to the full suite of applications.

This can occur in several stages, transforming subsets of the system separately.

As in phase 1, improvements can be made to the set of rules along the way.

Thus, core activities will be the automated application of the transformation

tool, followed by the manual confirmation or revision of any code fragments

the tool has designated as being less confident about. The latter will possibly

lead to the development of new rules.

Depending on external dependencies or the overall IT infrastructure, inte-

gration work may need to take place. When the transformed version of the

application is complete, it will run in parallel with the legacy version in re-

gression testing mode until there is confirmation that the two are functionally

equivalent (phase 3). The application can then be replaced by the new version.

For large scale migrations, this may involve an incremental replacement. The

4.1. Business Context 78

reengineering pattern Make a Bridge to the New Town can be used to address

data dependencies between the legacy and new system modules until the mi-

gration process is complete [31]. This is achieved by creating a data bridge that

will be used to incrementally transfer data from the old system to the new, as

more components are ready to take over from their legacy counterparts.

Sometimes parts of existing systems are only available in executable state, be-

cause the source code was lost, or never owned by the company. This scenario,

which is out of the scope of this work, typically involves replacing these mod-

ules by newly built ones, already using the intended target architecture for the

migration of the overall system. Alternatively, a service wrapping technique

can be used but this is not always viable [96], and does not allow the same

degree of flexibility.

As shown in figure 4.1, a tool chain evolves whilst being used in the context

of a project, or a set of projects. For service providers like ATX, this process

allows for such a concrete approach to mature from an internally used solution

to a commercially viable product that can be used by external parties.

Having developed a concrete instantiation of the methodology, this is added to

the portfolio of approaches that can be reused. This instantiation can be the

result of the fulfilment of a perceived need in the market and the subsequent

investment in the development of an individual type of transformation, or the

product of a specific projects requirement.

To summarise, the requirements that derive from the above process for a reengi-

neering tool (or set of tools) consist of:

• Reuse - In developing a new toolset, even to address a particular reengi-

neering scenario, it is important to ensure this is as general as possible

in order to allow use in multiple contexts.

4.2. Reengineering Strategies 79

• Flexibility - Each project has its own specificities, hence it is important

for a tool set to be capable of being incrementally developed, with each

usage contributing to its improvement.

• Scalability - For an approach to be applicable in real world scenarios, it

has to cater for several system sizes, particularly large-scale applications.

• Automation - In order to achieve consistent results whilst also reduce

the amount of effort for the complete process, it is necessary to provide

a high level of automation.

4.2 Reengineering Strategies

In reengineering, like in other areas of software engineering, it is possible to

follow a top-down, bottom-up or meet-in-the-middle (hybrid) strategy to ac-

complish the intended goals. These strategies are discussed next.

Top-down This approach begins with an analysis of the business domain

and can lead to business processes or enterprise architecture models using

frameworks such as [46]. From these it is possible to determine the necessary

software systems to implement the requirements. It is then necessary to map

these to existing applications, identifying where reengineering will be applied.

Bottom-up This is where reengineering opportunities are identified by analysing

the existing code and low-level documentation (e.g. identifying candidate ser-

vices). A number of techniques can be used for this purpose, including an

analysis of data consumption.

4.3. Methodology 80

Meet-in-the-middle This is a combination of the approaches, in which high

level models are merged with what is found in the existing system, leading to

changes at both ends: corrections in the business models with what is found

in reality and changes to what is needed to reengineer at the code level.

All of the above methods require code analysis and transformation. Whilst

these techniques could seem necessary only for the bottom-up and meet-in-

the-middle approaches, they are needed for the top-down approach to map the

high level requirements and processes to software modules. Given the typical

volume of applications considered for reengineering (e.g. migration to SOA),

both require automation. Analysis can be performed using a number of avail-

able techniques, the main one being code pattern detection. Transformations

need to be done in a consistent way, being uniformly applied, so to ensure both

the compliance to the requirements, but also to guarantee code that can be

adequately maintained.

4.3 Methodology

The general methodology for architectural migration developed in this research

began in the context of European projects Leg2Net and SENSORIA. In this

work, the methodology is instantiated to support both technological and func-

tional transformations, as described in chapters 5 and 6, but it is general

enough to be used in other circumstances, such as identifying and extracting

application code that can be moved to the database.

This methodology separates transformations into four steps. The starting

point is the original source code of the application. The first step is a prepara-

tory one, where code is annotated in order to provide critical information for

the remaining steps. Its result are the annotations, not necessarily in the form

4.3. Methodology 81

of actual changes to the code, but possibly in an external document that refers

to source code fragments. The following steps consist of deriving a model rep-

resenting the annotated code via a reverse engineering step, transforming it

through redesign techniques, and obtaining the final code via forward engi-

neering.

One of the goals of defining this methodology is to obtain a process to system-

atically address reengineering projects. Additionally, a high degree of automa-

tion is required. Supporting transformations for a wide range of applications

includes addressing large scale systems, which due to both temporal and fi-

nancial aspects, are extremely difficult to undertake with manual approaches.

This is one of the main reasons for the separation between the activities of

code annotation and reverse engineering. Such separation makes it possible to

concentrate manual work in the former, where due to work being done early in

the process, allows for most of the human effort to consist of analytical work,

rather than the repetitive tasks that are more adequately left for machines. It is

possible to achieve this since the manual effort focuses on finding patterns that

once generalised can be turned into code pattern matching rules. These can

then be detected in the complete system in an automated fashion. Hence, this

activity is a semi-automated process, since the pattern detection is performed

via a tool and there is the possibility of reusing a set of rules from an existing

portfolio built over previous projects (see section 4.1). As such, manual effort

can be further reduced. The remaining three steps of the methodology then

take advantage of the product of this step to maximise automation.

The methodology is illustrated in Figure 4.2 and its four steps are detailed

next:

4.3. Methodology 82

Annotated
Source Code

Source
Graph Model

R1

Annotated
Target Code

Target
Graph Model

Metamodel

3

4

2 4

Target
Constraints

R2 R3

Source Code 1

<<instantiates>> <<instantiates>> <<conforms­to>>

1. Code annotation
2. Reverse engineering
3. Redesign
4. Forward engineering

Figure 4.2: Methodology for transformation-based reengineering

1. Code Annotation. In this step, the source code is annotated by code

categories. These distinguish its constituents (packages, classes, methods, or

fragments thereof) with respect to their desired association to architectural

elements of the target system.

The annotation process is a combination of automated pattern matching rules

and input from a developer. Depending on how complete is the rule set, this

process can lead to an interleaving of automated and manual code annotations

or rule revisions. The amount of manual effort depends on the patterns found

in the original software, of which older systems, due to usually having had

different developers involved during many years, tend to have a broader variety.

The target architecture defines the code categories to be used for the annota-

tion process. These represent the architectural elements that code fragments

will be mapped into. When migrating to a 3-tier system, the categories to con-

sider are User Interface (UI), Logic and Data, as is described in this thesis for

the technological dimension. The categories for the functional dimension are

related to the contribution of source code to particular services (e.g. managing

accounts, customers and employees).

Reengineering tasks sometimes involve annotating code, typically in the form

of comments following a convention such as prefixing them with the initials

4.3. Methodology 83

of the developer that made the comments and the date. As described in the

pattern Tie Code and Questions this can assist in source code understanding

during reengineering activities [31]. In the case of this methodology, this is

translated into the goal of facilitating automated transformation through the

subsequent steps.

Annotation does not necessarily have to be applied, or even represented, at the

source code level. The pattern matching rules can be applied at a higher level

representation, and the resulting annotations can be defined by references to

the code.

2. Reverse Engineering. This step obtains a graph representation of the

code using the information gathered during the annotation process. The re-

sulting graph does not have a one-to-one mapping with the source code. Its

level of detail heavily depends on the result of the annotation. This is achieved

by controlling granularity such that structural elements that are annotated as

contributing to just one code category are represented by a single node in

the graph. If, instead, elements have fragments of several categories, each

of these has a separate representation in the model. Since, for example in

object-oriented systems, a method completely identified as belonging to the

user interface is represented by one node only, this allows the model to be

much more succinct than the code, leading to a highly scalable solution. The

ratio between the number of nodes of the abstract syntax tree vs. nodes of

the graph is discussed in chapter 8. Another benefit of a graph representation

is that it allows transformations to be described in an intuitive, visual way.

The relation R1 between the original (annotated) source code and the graph

model is kept to support traceability.

The resulting graph model is based on a metamodel (formally a type graph)

4.3. Methodology 84

that contains a representation of the code structure as well as of its categori-

sation and association to architectural elements. The metamodel is general

enough to accommodate both the source and target system, but also inter-

mediate stages of the redesign transformation. Additionally, it contains the

code categories that are derived by the code annotation step. An example of

metamodel (type graph) is presented in the next chapter.

3. Redesign. In this step, the source graph model is restructured to reflect

the association between code fragments and target architectural elements. This

transformation is driven by the code categories by which each node has been

annotated with, and is specified by graph transformation rules. The execution

of these rules enables producing the target architecture. This allows:

• abstracting (in large parts of the process) from the programming lan-

guages involved, as long as they belong to the same paradigm, being

based on similar concepts;

• describing transformations in a more intuitive and “semantic” way (com-

pared to code level transformations), making them easier to adapt to

different targets.

The rules conceptually extend the graph transformation suggested by Mens

et al in [77] to formalise refactoring [40]. The intended result is expressed by

an extra set of constraints over the metamodel, which are satisfied when the

transformation is complete. For instance, it is possible to specify a constraint

that ensures there are no direct edges from a code fragment of a specific cat-

egory to another of a specific different category. During the transformation,

the relation with the original source code is kept as R2 in order to support the

code generation in the next step.

4.3. Methodology 85

The code categorisation provides the control required to automate the trans-

formation process, limiting the need for user input to the code annotation

step. Rule components (left-hand side, right-hand side and negative applica-

tion conditions), as well as source, target and intermediate graphs are instances

of the metamodel. An example of graph transformation rule can be seen in

Figure 2.3. In the technological dimension the rules aim to re-organise the

model into a three-tier architecture, thus complying to the SOA principle of

separation of business logic from presentation (cf. Introduction). The rules for

the functional dimension restructure the model so that services comply to the

principles of loose coupling and course-grained nature.

4. Forward Engineering. The goal of the forward engineering step is to

obtain the target code. This is achieved by code level transformations that are

determined by the graph transformation rules which occurred at model level.

During the redesign stage, a log of all transformations is kept, identifying the

rules applied, as well as the graph element instances involved. This is used to

drive the forward engineering, which maps each model level transformation to

one or more code restructuring rules.

The result of this step, the annotated code keeping a relation with the graph

model, allows for several iterations of the four step cycle in this methodology,

enabling the creation of a chain of different types of transformations. This is

particularly relevant if the reengineering is directed towards service-oriented

systems. In this case the transformation has to address both the technological

and functional dimensions, e.g., transformation into a three-tier architecture

should be followed up by a decomposition into functional components.

Chapter 5

Technological Dimension

This chapter presents details of the instance of the general methodology for

the technological dimension.

5.1 Overview

The goal of this dimension is transforming applications into layered archi-

tectures. The source of this process can range from monolithic applications,

where modularity was not a concern when initially developed, to applications

which were already created whilst following a layering principle, but it was

not accurately followed. The reasons for the latter to happen include software

erosion [108]. In the context of this dissertation, the technological dimension

is focused on transformation towards three-tier architectures. These architec-

tures foster the development of systems that separate presentation aspects,

application logic and data access.

5.2. Type graph 87

5.2 Type graph

The class of applications that is addressed in more detail throughout this dis-

sertation is object-oriented (OO). With this context, a type graph was defined

in order to accommodate the source and target models, as well as the graph

transformation rules.

Figure 5.1: Type graph for the OO paradigm.

The model shown in Figure 5.1 has the goal of being flexible enough so it can

be instantiated by any OO application regardless of the specific technology.

This way there is a better chance that it can be reused for different instan-

5.2. Type graph 88

tiations of the methodology described in this thesis. The type graph is an

extension of the one presented by Mens et al in [78] in order to introduce

classification attributes and the notion of code blocks, needed because the

code categorisation requires a granularity lower than that of methods. Code-

Fragment elements are physical pieces of code which implies that they belong

only to one StructuralElement (component or connector). Additionally, the

concepts of Component and Connector were included in order to allow rep-

resenting the mapping between the programming language elements and the

architecture level. Note that the names for nodes ClassType and PackageType

were defined as such, instead of Class and Package, to avoid collisions with

Java reserved keywords, since Java code is generated from the model in this

implementation.

During a transformation, there may exist components and connectors that

belong either to the source or the target architecture. For instance, after

some transformation rules have been applied, components of the source and

target architectures may coexist in the model. The concept of Stage was

added to cope with those intermediate phases. Depending on which stage

node an StructuralElement is associated to, it is possible to determine whether

it belongs to the source or target architecture. This also allows the design of

transformation rules that make use of this information, for instance looking for

elements contained in source architecture components to be moved to target

ones.

Since it is necessary to keep traceability to the code in order to facilitate

the transformation / generation process, a way to associate it to the type

graph had to be considered. Given that it is desirable to be as language-

independent as possible, the type graph was not directly linked to the source

code. Instead, an attribute (ASTNodeID) was used to associate some of its

5.3. Code annotation 89

elements to the Abstract Syntax Tree (AST) of the program. ASTs are very

common representations of source code and, in this case, allow for a loose

integration between the model and the programming language.

Note that this type graph is used also in the functional dimension.

5.3 Code annotation

Given the architectural style, the goal of code annotation for the technological

dimension is to identify in the source code the code categories of user interface

(UI), logic and data access. This step of the technological dimension is based

on code pattern matching rules. These can be specific to a programming

language (e.g. annotating with UI all static method calls to classes known

to deal with presentation aspects), specific to a development paradigm (e.g.

assuming object-oriented code) or even technology independent (e.g. rules

based in matches from other rules).

These rule sets can be reused in multiple projects. Depending on the technolo-

gies involved, or the use of unusual coding patterns, there may be the need for

manual intervention or the creation of new detection rules.

Some code fragments can be considered to fall into more than one category,

such as the result of a UI method call being used directly in a Logic operation.

Since the annotation can be performed at the abstract syntax tree (AST) [65]

level, it is possible to separate the parts that belong to one category from

the others. In terms of transformation this example would lead to the direct

UI call being replaced by a Controller method call (in the context of a Model-

View-Controller pattern). Similar approaches are used for other kinds of mixed

category statements.

5.3. Code annotation 90

Next, some of the code pattern matching rules defined for the technological

dimension are presented. These were designed in an ATX reengineering en-

vironment called CareStudio. This is an Eclipse [106] plugin based on a tool

by ATX (L-CARE) that, amongst other code analysis and reengineering func-

tionalities, allows for the specification and execution of code pattern matching

rules and storing of the resulting markings/annotations in XML format. The

code patterns are defined over an XML representation of the abstract syntax

tree of the code. Rules for code pattern matching are defined as XPath queries

(XML query language [109]) as this is the querying language made available

in the CareStudio tool. These can range from simple expressions to a combi-

nation of an arbitrary number of expressions, using the output of expressions

(“parameter equation <identifier>”) as parameters for others. It is also pos-

sible to specify conditions (“condition <identifier>”) to the main expression

(“main <identifier>”).

One consideration that can take place when analysing these pattern matching

rules is that while some have to be programming language specific to some

extent, others can be very general as is the case in the second example. Rules

of the latter type have a large potential for reuse in multiple projects.

Additionally, there are many rules of a higher abstraction level, in the sense

that they make use of the result of applying others first (e.g. obtaining nodes

annotated by other rules by using a call to function “getMarkedNodes”). From

the following list, the third and fourth examples belong to this type of code

pattern matching rules.

With this type of sequential dependencies, it is necessary to ensure that rules

will be attempted to execute in the correct order. For this purpose, it is

possible to make dependencies explicit in CareStudio.

5.3. Code annotation 91

Some expressions were simplified for readability.

1. Attributes that belong to the user interface. Attributes of types that

are known a priori to belong to the UI code category can be directly

identified as such. The expression used to locate these cases is:

parameter equation UI_TYPES{getConst("uitypes")};

main equation ALL{//FieldDeclaration};

condition MAIN_EQ{$ALL[contains($UI_TYPES,

concat(";",Type/Name/@value,";"))]};

The first equation loads known UI types into variable UI TYPES, whilst

the second keeps a list of all field declarations in variable ALL. The third

line consists of a condition that will only be satisfied for field declarations

whose type is in the list of UI types previously obtained.

2. Comments in user interface context. Even comments can be identified

as belonging to a specific concern based on the context in which they

appear. The AST generated by CareStudio facilitates achieving this

since the comments are already associated to (non-comment) statements

to which they refer too. The following is an example of a UI comment

(the “(...)” were used to simplify the rule expression for this thesis):

main equation ALL{//Comment};

parameter equation UI_NODES{

getMarkedNodes("UI_Assignments")

| getMarkedNodes("UI_Blocks")

| getMarkedNodes("UI_LocalVars")

| getMarkedNodes("UI_StatementExpressions")

5.4. Reverse engineering 92

(...)};

condition COND{count($UI_NODES[$ALL/parent::node()/@ID

= @ID])};

The first equation keeps a list of all comments in variable MAIN, and

the second one gathers all AST nodes previously annotated by UI rules

(e.g. UI assignments). The third line consists of a condition that veri-

fies if comments are associated with UI nodes by testing if their parent

identifier (ID attribute in the rule) matches one of an UI node.

3. Data access methods. Methods in which all contents have already been

identified as belonging to the Data code category can be categorised as

belonging to it:

main equation METHODS{

getMarkedNodes("Data_Blocks")/parent::*

/parent::Method};

4. Calls to methods previously categorised as belonging to data access. Calls

to methods that were identified as belonging to the Data code category

by the previous rule can be themselves categorised also as Data:

main equation CALLS{//FunctionOp[Name/@value=

getMarkedNodes("Data_Methods")/Name/@value]

/parent::*};

5.4 Reverse engineering

Taking advantage of the information produced by the code annotation, the

reverse engineering step is fully automatic. Source code fragments were previ-

5.5. Redesign 93

ously identified as belonging to specific code categories, so what is needed at

this stage is to create elements in the graph model with the right granularity.

This graph is generated whilst complying to the specified metamodel.

There is no need to represent every code fragment in the graph. Considering

the code as represented by an AST, from a containment relation perspective,

only the elements that contain children of different categories, or those that

belong to a different category than their siblings, need to be represented as

nodes in the graph. This reduces the overall size of the graph to the absolute

necessary, and the redesign step can take advantage of this succinctness.

In this representation it is possible to see links between the different archi-

tectural concerns and have an overall feel on how the original application is

structured.

5.5 Redesign

The redesign step is achieved by executing a set of graph transformation rules

over the source graph model. The resulting model, which is achieved auto-

matically, will comply to the specified target constraints and reflect a correct

separation between the concerns UI, Logic and Data access. This guarantees,

for example, that there are no direct calls from the UI to the Data access layer

or calls from Data access to Logic.

An example of graph transformation rule can be seen in Figure 5.2, as de-

signed in the Tiger EMF Transformer tool [4]. Note that, for simplicity, node

attributes are not presented in the right-hand side as they were not modified.

The numbers prefixing each node name are indexes used to distinguish between

nodes, especially useful to differentiate elements of the same type. Negative

5.6. Redesign 94

Figure 5.2: Move Method UI transformation rule.

Figure 5.3: Extract Method Data UI transformation rule.

application conditions are not shown for simplicity. This consists of the Move

Method UI rule whose purpose is to move methods identified in the code an-

notation step as belonging to the UI code category from generic classes to UI

ones. This rule performs one of the necessary activities of the technological

dimension to achieve the SOA property of separating UI code from business

logic.

Another example of graph transformation rule is depicted in Figure 5.3. This

consists of the Extract Method Data UI rule whose purpose is to extract code

blocks that are present in the Data layer but belong to the UI. Each code

block found in these conditions becomes a method, and this is moved to the

UI layer. Additionally, a delegate method is created in the Logic layer.

5.6. Forward engineering 95

5.6 Forward engineering

The input for the final step of the process, the forward engineering, is the

log of transformation rules that were applied in the redesign step, the source

code, and the relationship between these (kept in the graph model). This

information is used to select and guide the code level transformations that are

necessary to execute. In the case of object-oriented applications, these consist

of refactorings.

Each model-level transformation is mapped to one or more refactorings. An

example of the former is transformation rule Move Method UI (cf. figure 5.2),

which is mapped directly to a Move Method code refactoring. More complex

graph transformations, as Extract Method Data UI rule (cf. figure 5.3), may

require several code level refactorings. For this example, three refactorings are

necessary:

1. Extract Method - Extracts the code block, resulting in a new method

still in the Data layer class;

2. Move Method - Moves the new method to the Logic layer;

3. Move Method - Moves the method from the Logic layer to the UI layer,

leaving a delegate in the former.

Chapter 6

Functional Dimension

This chapter describes the instance of the general methodology for the func-

tional dimension.

6.1 Overview

The goal of this dimension is the restructuring of existing applications such

that the resulting components, after having replaced their presentation tier,

represent services. As with the technological dimension, this process can have

different kinds of applications as input. These can be systems where modular-

ity was not considered from a functional standpoint, or where this separation

was broken by maintenance activities. The decomposition addresses the two

last service-oriented properties mentioned in section 1.2.

6.2. Code annotation 97

6.2 Code annotation

Compared to the technological dimension, the functional one presents more

challenges for the code annotation step. Whilst in the former it is possible

to find many similarities between different applications (especially if they are

based on the same technology or framework), the latter depends on application

functionality. This, and the different nature of the two dimensions, also has

an effect on the strategy of approach.

The functional code annotation phase consists of two tasks:

• operation identification

• grouping of operations into services

In this thesis, operation stands for a functionality that is likely to be at a

too low granularity to be considered as a service in a SOA context. The

categories used in this dimension are not known beforehand. It is during

the code annotation step that these will be extracted. The names drawn to

identify each category are based in the operation identifier, so depending on

the accuracy of the identifiers used it may be necessary to define the names of

code categories manually.

The identification of operations in source code is performed by first locating

their entry points. The techniques used for this purpose include the ones

described in the next paragraphs.

Code belonging to the Logic layer that is invoked by the UI

Even in systems where there is no actual separation between application lay-

ers such as UI and Logic, it is possible to find blocks of code that perform a

6.2. Code annotation 98

UI operation that triggers application logic. This kind of transition between

application concerns is a natural candidate to be inspected as there is a high

probability of the corresponding Logic layer code being the start of an opera-

tion that will be a service constituent (see Figure 6.1). To find this pattern in

source code it is necessary, first of all, to identify which blocks of code belong

to the UI or Logic. The process to reach such a goal, regardless of how well the

architectural layers are separated in the input code, is part of the role of the

technological dimension of the approach presented in this dissertation. The

output of that process can then be used to design this code pattern (following

the same notation as in chapter 5):

main equation CALLS{getMarkedNodes("UI_Methods")

//FunctionOp[Name/@value=getMarkedNodes("Logic_Methods")

/Name/@value]/parent::*};

In cases in which there are runtime frameworks that handle presentation re-

lated requests, these connections between UI and Logic may not always be

explicit. To address these scenarios, it is possible to define specific queries that

take that into consideration. For example, in a Swing-based Java application,

events trigger methods called “actionPerformed” in classes that implement

the “ActionListener” interface. A rule that takes that information in order to

identify UI to Logic calls can be created as the following:

main equation CALLS{//Class[Interfaces/Type

/Name/@value=’ActionListener’]

/Method[Name/@value=’actionPerformed’]};

6.2. Code annotation 99

External APIs

APIs that are published for external use refer to relevant features. A list of

operations that are available can be obtained using several techniques, e.g., by

parsing IDL (Interface Definition Language) files and identifying remote calls.

Typical patterns of control / data flow

There are many code patterns that can help to identify entry points to appli-

cation functionalities. The number of distinct calls that a method is subject to

(FAN-IN) gives an indication of how reused that method can be. In the case of

high FAN-IN, the method can be classified as an operation but this is subject

to a granularity analysis. It is necessary to distinguish between methods that

are called from several sources because: they provide common low level op-

erations such as reading data from a file or converting between different data

types; or they are of a higher granularity thus being more meaningful. Pattern

matching rules of this type are presented next:

• Methods with high FAN-IN. Methods that are called from a variety of

locations in source code are likely to have a significant role in an operation

(albeit potentially of too low granularity to be alone considered services).

A detailed discussion about this technique can be found in [76] where

it was used in the context of Aspect Mining. The expression used in

CareStudio to locate these situations is (variable N is a parameter for

the rule):

main equation METHOD{//Method};

condition METHODCALLS{count(

//FunctionOp[Name/@value=$METHOD/Name/@value]) > $N};

6.2. Code annotation 100

• Methods with high Fan-Out. Methods that call many other methods

are typically of a level that is meaningful enough to be considered as

candidates to be part of services (variable N is a parameter for the rule):

main equation METHOD{//Method};

condition METHODCALLS{$Method[count(

descendant::FunctionOp/DotOp) > $N]};

Known operations typically follow common patterns of control and data flow,

such as authentication, validation and exception handling, and can be identi-

fied using this strategy.

Analysing the Data Access Operations

Operations that involve access to a data source typically have relevant impor-

tance and thus are candidates to be part of a service. The different types of

access (Create, Read, Update, Delete) and the specific data that is involved

also gives information on how to group operations into services. To identify

the code that originates such data access calls, it is possible to use backward

slicing.

Code that is shared by several operations

Blocks of code that are used by several different application functions have

entry points that are likely to lead to relevant operations (given that this is a

very general approach, granularity of code blocks identified using it may vary

greatly). This is represented in the graphical example of Figure 6.1 as grey

triangles.

6.2. Code annotation 101

Code View

Logic

Data

UI
External
interface

Figure 6.1: Identification of operations

Feature location techniques

Known feature location techniques such as LSI [75], a static approach, SBP [10],

a dynamic technique or others as discussed in chapter 3. There are several

feature location techniques that have been tested in different environments,

typically to aid in software maintenance tasks, and that presented their effec-

tiveness.

The dependencies between each operation entry point and the remaining code

can be determined using slicing techniques. A list of candidate operations

can then be presented to the developer driving the process allowing human

intervention / input either for manual adaptations (supported, for example,

by feature location techniques LSI and SBP as mentioned above) or for a new

automated round of operation identification.

In the second step of service extraction operations previously obtained are

grouped into coherent services. This is an inherently semi-automated task

where operations related in some manner are grouped together. Automation

proposes ranked groupings of operations by using metrics based on several

aspects, including:

• overlapping between operations

6.2. Code annotation 102

<auto>
Provide list of

candidate operations

<manual>
User analyses list

<auto>
Provide model-level
view of operations

[OK] <manual>
User attempts to match

with actual workflow

<manual>
 User supplies
additional input [Not OK]

[OK]

[Not OK]

(A) (B)

(C)

(D) (E)

Figure 6.2: Meet-in-the-middle approach for identification of operations

• actors involved

• information about data accessed

• similarity measure (e.g. using LSI)

User input can then be given to decide which grouping to use, either by select-

ing one from the proposed automatically or by making manual assignments.

The result is the source code annotated according to the operations and ser-

vices that it will be mapped to, to produce the graph model and drive the

redesign process.

Meet-in-the-middle Approach

Whilst it is not explored in depth in this dissertation, it is possible to address

the first task of the code annotation step of functional dimension with a meet-

in-the-middle strategy as discussed in section 4.2. A possible approach is

depicted in the activity diagram in figure 6.2 and each activity is described in

the following paragraphs.

(A) The first data that will be presented to the user is a list of operations that

includes: names and parameters, order, and data access involved (obtained via

a bottom-up approach).

(B) The user analyses the list provided in the previous activity to check

whether it is correct or not.

6.4. Reverse engineering 103

(C) If necessary, the user supplies additional information such as operations

not to consider or more operations to include. This can be assisted with feature

location techniques previously mentioned (e.g. LSI and SBP).

(D) Once it is possible to proceed, a model-level view of the operations and

corresponding interactions/relations that resulted from the previous tasks is

produced and presented to the user.

(E) At this stage, the user can compare the outcome of the previous task to

the actual workflow(s) in which the software is used, possibly obtained from a

top-down approach. The user can either confirm what is presented or go back

and provide further feedback.

6.3 Reverse engineering

The reverse engineering step of the functional dimension has exactly the same

requirements as for the technological dimension. This makes it possible to use

the same implementation of this step for both.

6.4 Redesign

The graph transformation rules used in this dimension are designed so that

operations are grouped into meaningful services (as defined in the annotation

step) and so that services have loosely coupled relations, thus complying with

the last two SOA principles mentioned in the Introduction.

An example of graph transformation rule for the functional dimension is de-

6.5. Forward engineering 104

Figure 6.3: Move Method Operation transformation rule.

picted in Figure 6.3. This consists of the Move Method Operation rule whose

purpose is to move methods that are constituents of a given operation into the

class that was created to hold them. The latter is already present in a package

that belongs to the appropriate service.

Where in the technological dimension there are mainly rules for decomposing

code structures, here there are, additionally, rules that compose/group code

structures. The former are used to achieve loose coupling and the latter to

build the adequate granularity of services throughout the system.

6.5 Forward engineering

Despite the differences in the code annotation and redesign steps, the forward

engineering step of the functional dimension follows the same principles that

were defined for the technological dimension. Due to this fact, it is possible to

use the same implementation of this step for both cases.

Chapter 7

Implementation

This chapter starts by describing the process of creating an instantiation of the

general methodology presented in this document, and then proceeds further by

giving a concrete example that was mainly developed for evaluation purposes

but that can also be used as a reference implementation.

7.1 Process

The implementation of a toolset to give support for a particular use of the

general methodology presented in this document should start by taking into

consideration a set of aspects.

For the first-time definition of an instance of the general methodology presented

in this document, it is necessary to implement all of its building blocks (Figure

4.2). This has the prerequisite of both source and target architectural and

technology paradigms having been defined. This is essential early on, since that

information is necessary for specifying the reengineering process, in particular

the metamodel that will be used.

7.1. Process 106

7.1.1 Metamodel definition

The metamodel definition includes two tasks: determining the code categories

and creating the type graph.

These categories are used in all steps of the methodology. The set of code

categories are derived from the intended target architecture. Code categories

can differ in their types, from simple labels to combinations of these.

The other component of the metamodel is the type graph used for the source

model, target model and transformation rules. This needs to capture elements

from both source and target programming language paradigms, as well as

incorporate their relations to code categories.

7.1.2 Code annotation strategy, tools and artefacts

The code annotation strategy can differ according to the kind of transformation

that is required, as can be seen in the technological and functional dimensions’

discussions (in chapters 5 and 6). This definition task consists of detailing

the strategy that will be followed, and creating the artefacts needed. After

selecting the strategy, which can range from the usage of code pattern matching

to feature location techniques, it is necessary to define the tool(s) to support it.

With this, it is possible then to create the necessary artefacts, as code pattern

matching rules or input to feature location tools (e.g. search expressions).

7.1.3 Transformation rules

Another activity that depends on a good knowledge about the architectural

and technology paradigms for both source and target, is the definition of the

7.2. Prototype 107

graph transformation rules.

Rules have to be designed to move from a source graph representing the original

source code, and take advantage of the code annotation to reach a model

which complies to the intended target architecture. These rules can be defined

directly in the tool that will be chosen to execute them, so a choice of tool

should precede this activity.

7.1.4 Target constraints

Whilst not being absolutely necessary, having specified target constraints al-

lows for verifying whether the transformation occurred correctly, or even for

termination purposes.

7.1.5 Tool support

In order to guarantee scalability, it is necessary to use automation as much as

possible throughout the process. Selecting the right tools, or developing them

when no adequate ones exist, for the methodology steps of code annotation,

reverse engineering, redesign and forward engineering is crucial for the success

of an implementation.

7.2 Prototype

This section describes the definition and implementation of a prototype, that

can be both seen as a reference implementation of the methodology, but also

a means to evaluate the approach described in this document.

7.2. Prototype 108

An initial version was developed whilst using a small banking application in

Java as scenario. The prototype was then extended and also used in the context

of evaluating the results based on the above scenario and a larger real world

application.

This prototype has support for the full reengineering cycle but not 100% cov-

erage as this depends on each project requirements, and its main goal is to

evaluate the approach under several scenarios.

As mentioned above, the prototype supports the steps of code annotation, re-

verse engineering, redesign and forward engineering. This implementation has

as target the migration of Java applications but, as described in the previous

sections, following this methodology provides a great degree of independence

that is further explored throughout this section.

The following subsections summarise this implementation.

7.2.1 Metamodel definition

Code categories As stated in Section 7.1.1, code categories are derived

from the target architectural and technology paradigm. Different models can

be used for the categories. The chosen one is presented in Figure 7.1 and

explained next, together with the instantiation.

Figure 7.1: Code categories model for 3-tier architecture

7.2. Prototype 109

In the chosen model, code categories can be divided into two types:

• components consisting of a concern

• connectors representing links between components

Concerns are conceptual classifications of code fragments that derive from their

purpose, i.e., the tiers found in 3-tier architectures:

• User Interface (UI)

• Business Logic (BL)

• Data

The connectors are one-way (non-commutative) links between different con-

cerns and include:

• Control: UI to BL

• Control: BL to UI

• Control: BL to Data

• Control: Data to BL

This model is detailed enough to capture the distinctions required by the target

architecture for the technological dimension; other architectural paradigms

might require different categories and more complex ways to represent them (as

the introduction of a “Role” node as described in the paragraph below). In the

case of the functional dimension, the categories are specific to each application,

and consist of the names of functionalities. These can be represented using

only the concern part of the above model.

7.2. Prototype 110

It may be desirable in some situations to allow multiple categories for the

same element. In Figure 7.1, components and connectors are represented by

“ComponentType” and “ConnectorType”, respectively, in order not to use

the names attributed to architectural concepts. Both “ComponentType” and

“Concern” exist for reusability issues given that the first is likely to be ex-

tended for certain types of target architectures. For instance, if the goal was

to achieve a rich-client 2-tier architecture, then “ComponentType” would con-

tain also a “Role” concept whose values would be “Definition”, “Action” and

“Validation”.

Type graph The next metalevel activity consists of the definition of a model

for program representation which, like the categories, may be shared with other

instantiations of the methodology, either as source or target. In order to take

advantage of graph transformation rules in the transformation specification,

the model was developed in the form of a type graph. This consists of an EMF

representation of the type graph presented in chapter 5, in figure 5.1.

7.2.2 Code annotation

The code annotation step was implemented using CareStudio (Figure 7.2 pro-

vides a screenshot of the application). The code pattern matching rules were

developed in this tool as XPath queries, as already discussed in chapters 5

and 6.

Currently there exist around 40 code annotation rules in this prototype, most

of which are programming language independent (approximately two thirds).

Additionally, even rules that need to take specific language aspects into con-

sideration can be configured in such a way that they can be easily ported to

7.2. Prototype 111

Figure 7.2: CareStudio - an Eclipse plugin for code pattern matching - showing
one occurrence of an UI attribute declaration (rule UI Attribute).

another context. This is the case of the first rule presented in chapter 5, where

a number of programming language classes that are seen as belonging to the

UI are stored in a global variable called “uitypes”. This way, all rules that

depend on this aspect, can work in other contexts just by having a different

configuration file.

7.2.3 Reverse engineering

The main goals for this step are to achieve a more abstract representation

than the abstract syntax tree, allowing the description of transformations in

a more intuitive way and for these to be programming language independent.

Additionally, given that, in these graphs, only the elements required according

to the annotation are represented, the model to be transformed is simpler

and the transformation process has better performance. This is particularly

relevant when addressing the migration of large scale systems.

7.2. Prototype 112

Figure 7.3: XML representation of graph obtained through the reverse engi-
neering step.

Given that no tool existed that could take the output from CareStudio and

produce a result with the format needed for the next step, a new tool was

built specifically for this purpose. This was developed based in the above

requirements and, due to the choice of tool for the redesign step, the result is

a graph model represented in EMF [32].

The tool receives the code annotation (as produced by CareStudio) and the

original source code files and maps the information to graph elements as defined

in the graph metamodel, generating an XML file per Java class.

An example of graph generated by the reverse engineering tool can be seen in

Figure 7.3.

7.2.4 Redesign

The graph transformation rules were designed in the Tiger EMF Transformer

tool [4]. This is an Eclipse plugin application that allows the definition of

rules and generates Java code that is capable of executing them over a graph

represented in EMF and that complies to the specified type graph. The rule

7.2. Prototype 113

management features of this tool are graphical based, facilitating the rule

development. This plugin’s code has since been committed to the Henshin

Eclipse project [2]. The fact that this tool is Eclipse based, like CareStudio,

contributed to its selection.

This tool does not have support for fuzzy reasoning, but fulfils the need for

the transformations used for the work presented in this paper as the human

contribution is focused on the code annotation step. One of the main goals

is, to the extent possible, the reuse of the rules for multiple projects, so there

is an interest in investing in more precise rule design even if that means more

effort is spent in the first iteration, rather than using a smaller set of rules,

fuzzy based, that could have a faster turnaround for a particular use, but that

would require more effort to be spent considering multiple projects. However,

for particular instances of the methodology presented in this paper it may

make sense to use fuzzy reasoning to a certain level. Given the heuristic na-

ture of the pattern matching, an approach such as in [82] combining graphical

pattern matching with fuzzy reasoning could be used to define levels of confi-

dence below which user interaction may be required. The choice of matching

rules in XPath was motivated in part by the availability of the Eclipse-based

pattern matching engine of L-CARE used in the majority of ATX’s reengi-

neering projects. Also, according to the methodology, the pattern matching

occurs before the construction of the graph model, which is not a complete

representation of the source code but only captures its structure with links to

the actual code fragments.

The execution of the Java code generated by the tool produces a new graph,

after application of the previously specified rules. In order to facilitate the next

step, a logging aspect was also added to the generated code (with AspectJ),

reporting every transformation made in the model, in order to guide the final

7.2. Prototype 114

Figure 7.4: Logging aspect for retrieving information during graph transfor-
mation execution.

step. This is shown in figure 7.4.

7.2.5 Forward engineering

The log created by the redesign step includes information on the graph trans-

formation rules that were applied as well as their order and the nodes of the

graph that were affected. The way the forward engineering step works is to

map this log to a sequence of code refactorings that, after applied to the source

code, produce the final, transformed, target code.

In some simple cases, one graph transformation rule could be mapped to a

single refactoring, while in other cases, like the ones involving the extraction

of a code block into a new method (and placed in the correct class), it involved

more than one refactoring.

The Java application that was built for this purpose uses Eclipse’s built-in

7.2. Prototype 115

Figure 7.5: Eclipse refactoring execution (general).

refactorings so the work is mainly focused in mapping graph transformation

rules to the right refactorings and dealing with their parametrisation. In short,

the tool parses the log from the redesign step, for each executed graph trans-

formation rule identifies the refactoring, or group of refactorings, to be applied,

and executes the transformation (cf. figure 7.5).

The optimal result for this step is code that complies to the service orientation

principles discussed in the beginning of this report. However, in situations in

which not all necessary code annotation rules or graph transformation rules

were specified the result may be incomplete. By analysing this and then re-

viewing the process it is possible to extend support by, for example, adding

new rules.

All the tools used for the prototype were implemented in Eclipse and are used

as plugins to this IDE. The tools involved, as well as the artefacts of each step

of the process, are shown in figure 7.6.

7.2. Prototype 116

CareStudio

Reverse Eng.
Plugin

Transformation
Rules Plugin

Forward Eng.
Plugin

Source
Code

ASTAnnotations

Target
Code

Target
Graph

Source
Graph

Transf.
Log

Figure 7.6: Prototype architecture.

This prototype architecture supports the several steps of the methodology de-

scribed in chapter 4. Support for target constraints checking was not included

in the prototype, and can be part of future work. Summarising the defined

process, the starting point is the source code files. The code annotation step is

performed by CareStudio, producing both the ASTs and annotations. These

are the input for the reverse engineering plugin, which generates the source

graphs. The redesign step is performed via a plugin that executes the rules,

and generates both the target graphs and logs of the transformations. These,

together with the original source code, and the ASTs, are the input for the

forward engineering plugin, which through code level refactorings, produces

the target code.

Chapter 8

Case Studies and Evaluation

According to the process described in section 4.1, the evaluation consists of

several stages. As a preliminary step (1), a basic set of rules has been created

and evaluated on a small case study to test the technical validity of the ap-

proach. For the actual validation according to the process, a large case study

has been selected. Of this large case study, a subset of components was selected

as a proof-of-concept sample on which the basic set of rules was executed first

(2), followed by a period of extension of the rule set based on the analysis of

the sample. The extended set of rules was executed first on the sample (3)

and then on the entire case study (4).

Both case studies were selected as having Java as source, but with different

domains and being developed by different teams, as it allows the evaluation of

possible reuse between similar projects. Although Java is not one of the oldest

technologies available, and not the one most would think of when discussing

legacy applications, the first version of the language was released in January

1996, in which the context was different than nowadays. Java had a very fast

adoption, and as a consequence, there is a large body of applications that

were built in monolithic fashion, following patterns that, today, are considered

8.1. Basic Evaluation 118

legacy.

The following sections provide details on each of the case studies and the steps

(1-4) undertaken as well as the respective efforts involved.

8.1 Basic Evaluation

To validate the implementation of the prototype during its development, a

small example banking application (BankSystem) in Java with 21 classes was

used. Its GUI is written in Swing and GUI code is mixed up with both ap-

plication logic and data access code. Its data persistence is file based. Func-

tionally, this application allows common banking operations such as deposit

money, withdraw money and view customer details.

In order to determine basic performance and scalability, the prototype was

applied to this application and the time spent for each of its steps was recorded.

The results are recorded in Table 8.1. The table lists the applications addressed

and gives for each of them the number of lines of codes. It also states which of

the two sets of rules has been used in the particular experiment and details the

run time of the individual phases as well as the total time. Finally, the coverage

is given in percentage of the total lines of code, as measured by a small Eclipse

plugin counting the lines covered by code annotations. This is possible since

each annotation indicates the start and end position of the pattern match. It

is worth noting that the total time for this process was still under two minutes.

The redesign step was particularly fast which means that the contribution of

the reverse engineering step in producing the smallest graph model possible

may prove very valuable in larger scenarios.

It is worth noting that the time for the code annotation (90% of coverage

8.1. Basic Evaluation 119

A
p
p
li
ca

ti
on

(L
oC

)
R

u
le

S
et

(s
iz

e)
A

n
n
ot

at
e

A
b
st

ra
ct

R
ed

es
ig

n
T

ra
n
sf

or
m

T
ot

al
L

oC
C

ov
er

ed
B

an
k
S
y
st

em
(3

,2
59

)
b
as

ic
(5

0)
23

.5
0

s
53

.0
2

s
0.

92
s

35
.0

5
s

11
2.

49
s

90
%

R
ap

id
M

in
er

P
oC

(4
2,

20
0)

b
as

ic
(5

0)
5

m
in

12
m

in
1

m
in

10
m

in
28

m
in

70
%

R
ap

id
M

in
er

P
oC

(4
2,

20
0)

ex
te

n
d
ed

(6
0)

5
m

in
12

m
in

1
m

in
10

m
in

28
m

in
80

%
R

ap
id

M
in

er
F

u
ll

(3
70

,0
00

)
ex

te
n
d
ed

(6
0)

52
m

in
14

0
m

in
12

m
in

10
5

m
in

30
9

m
in

75
%

T
ab

le
8.

1:
R

u
n

ti
m

es
ob

ta
in

ed
w

h
il
e

u
si

n
g

th
e

p
ro

to
ty

p
e

on
th

e
ex

am
p
le

b
an

k
in

g
ap

p
li
ca

ti
on

.
T

im
es

in
th

e
ce

n
tr

e
co

lu
m

n
s

ar
e

in
se

co
n
d
s

(s
)

an
d

m
in

u
te

s
(m

in
)

8.2. Proof-of-concept Sample 120

Figure 8.1: Sample of target code. Several members were moved from original
class DepositMoney to DepositMoneyUI.

for this application) depends on the number of annotation rules, i.e., as more

annotation rules are added to complete the rule base, these times may increase.

Figure 8.1 shows sample code from the target of the prototype. Several mem-

bers, including fields, methods and inheritance of the original DepositMoney

class are now in class DepositMoneyUI, which only contains presentation as-

pects. The rule base resulting from this step includes 50 annotation rules

which are the input to the next step.

8.2 Proof-of-concept Sample

A larger, real world application was required as input to this stage. The cho-

sen one was RapidMiner, a leading open source tool for data mining offering a

range of functions for data integration, analytical ETL, data analysis and re-

porting. RapidMiner is available from sourceforge.net, the open source project

8.2. Proof-of-concept Sample 121

repository, at [92]. The application has a large user base, having been down-

loaded more than 520,000 times at the time of writing and version 5.0 consists

of more than 370,000 lines of code. Like the case study described in the previ-

ous subsection, this is a Java application and its GUI is written in Swing. The

choice was an application that is reasonably close in terms of the technology

used so that it would be possible to evaluate the reusability of the tools and

definitions in similar projects and estimate the extra effort involved. Having

said this, the application is not typical for the kind of application usually the

target of ATX’s reengineering efforts. However, an interesting application sce-

nario (outside the scope of this thesis) could be the offering of data mining

facilities as web services.

It was observed that the application has a better separation between user

interface and other concerns than the BankSystem, but is still not compliant

with the service-orientation principle. As a proof-of-concept sample, a subset

of RapidMiner was used, consisting of 337 out of the total 2505 Java files

contained in version 5.0 of the project.

This was done solely to allow a more in depth look at the achieved results, but

also goes in line with what is an industry practice of addressing the reengi-

neering of subsystems individually.

The code annotation step, which is where the strategy from this dissertation

is intended to concentrate the manual part of the process, achieved a lower

coverage (approximate average of 70%) than with the BankSystem applica-

tion. This was expected as different coding styles can have an impact on the

performance of the code annotation rules.

The steps of reverse engineering, redesign and forward engineering for Rapid-

Miner, executed in the same fashion as in BankSystem, give a good indication

8.3. Extended Rule Base 122

that this reengineering methodology and its implementation have good sup-

port for reuse in different projects. In order to determine the impact of a larger

code base (and also different programming practices) in the performance of the

prototype, the time spent for this application in each of its steps was recorded.

The details are again recorded in Table 8.1. Time is measured in minutes,

rather than seconds, but the breakdown for individual steps follow a similar

distribution as for the BankSystem application transformation.

The total time is good considering the number of files, and also that this

process, once validated, does not need to be repeated for the full source code.

Still, it is important to have a run time as low as possible, as it allows any

revision of the process, particularly in its early stages, to be tested as quickly

as possible.

8.3 Extended Rule Base

After the initial run of the rules on the proof-of-concept sample, it was con-

cluded that there was a need to extend and customise the existing rule base.

An effort limit of three working days (24 hours) was set for one person, with

knowledge on the reengineering process, to improve the rule base. Given that

the initial version of the rules was tested on the small BankSystem application

only, the effort for the first large case study was expected to be higher than in

subsequent projects, in which a more thoroughly tested base is available from

the start. In the three days allocated it was possible to add ten more rules as

well as to modify (i.e., generalise) four existing rules. As a result, the coverage

was increased from 70% to about 80%. Any further improvements will usually

take more effort because the cases left to be considered for creating new rules

will be more and more specific, i.e., occurring less frequently and having less

8.5. Full Case Study 123

impact in the overall coverage. The timing does not change perceptibly from

the previous version.

8.4 Full Case Study

The following task was running the improved set of rules on the entire case

study. As seen from Table 8.1, the coverage achieved is 75%, down 5% from

the proof-of-concept. It is believed that this is due to the fact that, while tech-

nologically homogeneous, as an open source project the RapidMiner displays

a variety of different individual coding styles. Nevertheless, an increase of 5%

in coverage would result in an additional 18,500 lines to be transformed auto-

matically, which for three person-days corresponds to 6,167 lines transformed

per day, by far outperforming the manual migration estimate of 160 lines of

code per day discussed in section 4.1.

For what concerns scalability, the total run time of about five hours is con-

siderable, but follows an almost linear relationship (about 0.04 seconds per

line of code in the proof-of-concept vs. 0.05 seconds in the full RapidMiner).

The distribution repeats the established pattern. In particular, the redesign

phase is relatively fast compared to the others, benefiting from the high level

of abstraction of the graph model, while the phases working at code level have

to deal with the full detail of the abstract syntax tree.

8.5 Code Quality

One of the main concerns with automated reengineering solutions is the result-

ing code quality, specifically in terms of readability and complexity. In order

8.6. Threats to Validity 124

to analyse this important aspect, Q-CARE [3] was used, a code certification

tool from ATX, to check for code quality issues in source code vs. target code.

With this, for the set of code quality rules existing in the tool, it is possible to

attest if undesirable effects have occurred due to the whole approach. The tool

results for the BankSystem application showed similar counts for quality rules

violations for source vs. target code, but not an exact match. For instance,

since the target code has more classes than the source one, as code is split

in more files (classes), the rule “EachFileMustHaveHeader”, which validates

if files have a header comment, had a higher count in the target code. This

happened due to the fact that the original files did not have a header comment,

so one was not propagated to the target ones, but this could be avoided if the

class creation templates always specified one if none existed in the source, for

example retrieving information from the class name, and setting a creation

date. Another rule that showed a significant different count between source

and target was “UseFullyQualifiedImport”, which checks if generic imports are

being used without being necessary, but in this case it was the target that had

a lower number of occurrences, since a reorganisation of import statements

occurs in the transformation process. A screenshot of Q-CARE is presented

in figure 8.2.

8.6 Threats to Validity

Since the work presented in this thesis constitutes original work done in the

context of a PhD, the evaluation work was performed solely by an author of the

approach. Due to his familiarity with all the process, including the experience

in improving it with practical experiments, he is likely to have achieved better

results in terms of rules design effectiveness (code coverage) than an external

8.7. Further Evaluation 125

Figure 8.2: Q-CARE code certification tool

individual who is not versed in the process. Of course, this kind of activity, like

many others, has its learning curve and, with experience, other software engi-

neers can gain the same performance. In terms of the run-time performance or

scalability aspects the above setting has a lower potential impact, as these are

a consequence of the approach but could, in extreme situations (for instance

very poor code pattern matching rules design) be affected to some extent. The

code quality evaluation was performed using a tool that, whilst belonging to

ATX, this dissertation’s author has not participated in its development, nor

rules design, so it is not susceptible of being affected by the above conditions.

8.7 Further Evaluation

Besides the various aspects that were given more focus in this thesis, there

are others of relevance for evaluating the result of applying its approach, some

of which can only be fully evaluated in the context of a real project. These

include specific management, financial and infrastructural constraints, and as-

pects such as process flexibility (e.g. dividing the several steps between team

8.7. Further Evaluation 126

members with different expertise) could be analysed.

Addressing all of Rapid Miner code base could provide additional useful met-

rics, as full effort required, including for functional testing, which in the context

of this work, was only done for the Banking System application, and would be

a good setting to also attest project management specifics (e.g. team member

specialisation and parallel tasks).

Evaluating the approach in other scenarios, such as having a source program-

ming language from a paradigm other than OO, for example COBOL or PL-I,

is a possible vector of future work, as it would allow, amongst other things, to

verify the reuse of pattern matching, and graph transformation rules between

different technologies.

Another important aspect to evaluate is source code quality as this is a major

factor since it impacts software maintenance, which is known to be one of the

most relevant costs in IT departments. The final quality will depend upon

the original one, but there are measures that can be taken to get the best

result. This is a concern that has been present during the approach and the

prototype development, particularly regarding the nomenclature used in the

generated code, which is based in the original one, and the code patterns used,

which were based in Java’s known best practices. A more formal evaluation

of this aspect is planned as future work. One possible way to evaluate it is

through the use of quality assurance tools, that can statically validate if the

code complies to a set of rules. An initial evaluation of code quality, based in

a quality assurance tool (Q-CARE), was already described in this dissertation.

This can be complemented by a dynamic approach, in order to evaluate non-

functional aspects such as performance, which be done by comparison between

the original and transformed applications.

Chapter 9

Conclusions

The main contribution of this work is in the definition, application and evalu-

ation of a generic methodology of architectural transformation to address the

problem of migration towards a more modern architecture, with a particular

emphasis on layered and service-oriented architectures. The method supports

a process where migration is offered as a service including the customisation

of a generic rule set to the application(s) at hand. With this preparatory

step, the transformation achieves a high level of automation and allows for a

cost-effective deep restructuring of the code towards the intended target whilst

complying to important SOA principles, as opposed to a wrapping approach.

Code pattern matching and graph transformations are central to the four-step

method which is applied in two iterations to achieve both technological and

functional decomposition of the application. Due to its high level of abstrac-

tion, the redesign transformation at the core of the method is programming-

language independent as well as highly scalable. The abstraction is enabled by

a reverse engineering step which keeps only such details as are relevant to the

transformation and could at times represent an entire class by a single node

in the graph model. By working at this level of abstraction, it is also possible

9.0. 128

to take advantage of graph/model analysis techniques.

The approach presented in this dissertation uses graph transformation for the

central redesign step, where a graph model of the relevant source architecture

is transformed by means of refactoring rules into the target architecture. De-

spite the relative complexity of graph transformation when compared to, for

example, tree rewriting, it turns out that this step is highly scalable due to the

benefits of a concise graph-based representation. The decision not to represent

the entire detail of the source code in the graph, but only to the level required

to support the redesign, is key to achieve this property.

A significant part of the effort in developing the tool support was required for

the reverse and forward engineering steps. These are mostly generic and can be

reused across different types of transformations. The more flexible rule-based

approaches of XPath based pattern matching and graph transformation are

reserved for the code annotation and redesign steps, which can be adapted for

every new instantiation of the methodology. This is especially the case for the

former, which is more dependent upon each application’s specifics.

A prototype has been developed to apply this approach to a sequence of case

studies. This allowed for the evaluation of the approach in regards to the re-

quirements it was set up to address. The methodology is general enough to

enable both technological and functional dimensions of migration, including

the restructuring of applications for compliance with service-orientation prin-

ciples. The evaluation also included the analysis of the properties of coverage,

reuse and scalability, which produced very positive results.

The contribution of this work is a concrete process of addressing architecture

transformation projects in a systematic way, with an emphasis on transforma-

tion to layered architectures and SOA migration. The study and comparison

9.0. 129

described in chapter 3 showed that there are not many approaches that were

developed allowing for SOA principles-compliance (restructuring approaches).

Amongst these, the approach described in this dissertation stands out due to

the deep restructuring it supports, its scalability, and support for automation.

Future Work

Plans for future work include the evaluation of the method and tool in a real

project as well as its adaptation to other languages and architectural styles.

Only in the context of a real project it is possible to evaluate management,

financial and infrastructural constraints.

Particularly if of a large scale, the experience of such a real project would allow

further work over the code annotation rule set, but could also contribute with

improvements to the technique itself.

Developing a prototype of the approach for other scenarios, such as addressing

different programming language paradigms besides OO, constitute possible

future work. From an evaluation standpoint, this would allow verifying the

reuse of pattern matching, and graph transformation rules between different

technologies. From a business perspective, this would broaden the spectrum

of projects that could be addressed.

As mentioned earlier in this thesis, important aspects such as the resulting

source code quality are amongst those in which it will be relevant to evaluate

and, if necessary, improve upon. This has an impact on maintenance so it

is also a considerable factor when considering commercialisation. There were

already several measures built into the prototype to achieve this, particularly

regarding the nomenclature used in the generated code and the code patterns

applied.

9.0. 130

A different possible future work would be on enhancing the approach to take

into concern matters of service discoverability. Devising techniques to work

together with the migration process described in this dissertation, gathering

meta data for publishing in a service registry, would add to its value.

Whilst the methodology was defined having layered and service-oriented archi-

tectures as target, it can be applied for different architectural transformations.

Exploring its usage for migration to other intended architectural styles is a

possible vector of future work.

Additionally, whilst the methodology is focused in architectural transforma-

tions, it can adequately be used for expressive code transformations that do

not change the architecture level, but improve the code structure. Advanced

refactoring could be specified as graph transformation rules, making use of

information gathered by purposefully designed code annotation rules.

Bibliography

[1] ATX Software. http://www.atxtechnologies.co.uk.

[2] Henshin project. http://www.eclipse.org/modeling/emft/henshin/.

[3] Q-care. http://www.atxtechnologies.co.uk/other/development/qcare/q-
care/.

[4] Tiger EMF Transformer. http://tfs.cs.tu-berlin.de/emftrans/.

[5] Amund Aarsten, Davide Brugali, and Giuseppe Menga. Patterns for
three-tier client/server applications. In Proceedings of Pattern Languages
of Programs (PLoP), 1996.

[6] Charles Abrams and Roy W. Schulte. Service-oriented architecture
overview and guide to SOA research. Technical Report G00154463, Gart-
ner Research, January 2008.

[7] Robert L. Akers, Ira D. Baxter, Michael Mehlich, Brian J. Ellis, and
Kenn R. Luecke. Case study: Re-engineering c++ component models
via automatic program transformation. Information and Software Tech-
nology, 49:275–291, March 2007.

[8] Altova. UModel UML software development tool.
http://www.altova.com/products/umodel/uml tool.html.

[9] Lúıs Andrade, João Gouveia, Miguel Antunes, Mohammad El-Ramly,
and Georgios Koutsoukos. Forms2Net - Migrating Oracle Forms to Mi-
crosoft .NET. In Ralf Lämmel, João Saraiva, and Joost Visser, edi-
tors, Generative and Transformational Techniques in Software Engineer-
ing, volume 4143 of Lecture Notes in Computer Science, pages 261–277.
Springer-Verlag, 2006.

[10] Giuliano Antoniol and Yann-Gaël Guéhéneuc. Feature identification:
A novel approach and a case study. In Proceedings of International
Conference Software Maintenance (ICSM), pages 357–366, Washington,
DC, USA, 2005. IEEE Computer Society.

Bibliography 132

[11] Ira Baxter, Christopher Pidgeon, and Michael Mehlich. DMS R©: Pro-
gram transformations for practical scalable software evolution. In Pro-
ceedings of International Conference on Software Engineering (ICSE),
pages 625–634, Washington, DC, USA, 2004. IEEE Computer Society.

[12] Ted J. Biggerstaff, Bharat G. Mitbander, and Dallas E. Webster. Pro-
gram understanding and the concept assignment problem. Communica-
tions of the ACM, 37(5):72–82, 1994.

[13] Garret Birkhoff. Lattice theory, volume 25 of Colloquium publications.
American Mathematical Society, 1940.

[14] Dénes Bisztray and Reiko Heckel. Combining termination criteria by
isolating deletion. In Hartmut Ehrig, Arend Rensink, Grzegorz Rozen-
berg, and Andy Schürr, editors, Proceedings of International Conference
on Graph Transformation (ICGT), Lecture Notes in Computer Science,
pages 203–217, Berlin, Heidelberg, 2010. Springer-Verlag.

[15] Dorothea Blostein and Andy Schürr. Computing with Graphs and Graph
Rewriting. 29(3):1–21, 1999.

[16] Thierry Bodhuin and Maria Tortorella. Using grid technologies for web-
enabling legacy systems. In Proceedings of the Eleventh Annual Inter-
national Workshop on Software Technology and Engineering Practice,
pages 186–195, Washington, DC, USA, 2003. IEEE Computer Society.

[17] Gerardo Canfora, Anna Rita Fasolino, Gianni Frattolillo, and Porfirio
Tramontana. Migrating interactive legacy systems to web services.
In Proceedings of European Conference on Software Maintenance and
Reengineering (CSMR), pages 24–36, Washington, DC, USA, 2006. IEEE
Computer Society.

[18] Gerardo Canfora, Anna Rita Fasolino, Gianni Frattolillo, and Porfirio
Tramontana. A wrapping approach for migrating legacy system interac-
tive functionalities to service oriented architectures. Journal of Systems
and Software, 81:463–480, April 2008.

[19] Maurice M. Carey and Gerald C. Gannod. Recovering concepts from
source code with automated concept identification. In International
Conference on Program Comprehension, pages 27–36, Los Alamitos, CA,
USA, 2007. IEEE Computer Society.

[20] S. Jeromy Carrière, Steven G. Woods, and Rick Kazman. Software archi-
tectural transformation. In Proceedings of Working Conference on Re-
verse Engineering (WCRE), pages 13–23, Washington, DC, USA, 1999.
IEEE Computer Society.

[21] Mariano Ceccato, Marius Marin, Kim Mens, Leon Moonen, Paolo
Tonella, and Tom Tourwé. Applying and combining three different as-
pect mining techniques. Software Quality Control, 14(3):209–231, 2006.

Bibliography 133

[22] Feng Chen, Shaoyun Li, and William Cheng-Chung Chu. Feature anal-
ysis for service-oriented reengineering. In Proceedings of the 12th Asia-
Pacific Software Engineering Conference, pages 201–208, Washington,
DC, USA, 2005. IEEE Computer Society.

[23] Kunrong Chen and Vaclav Rajlich. Case study of feature location using
dependence graph. In International Workshop on Program Comprehen-
sion, page 241, Los Alamitos, CA, USA, 2000. IEEE Computer Society.

[24] Elliot J. Chikofsky and James H. Cross II. Reverse engineering and
design recovery: A taxonomy. IEEE Software, 7:13–17, January 1990.

[25] Sam Chung, Joseph Byung Chul An, and Sergio Davalos. Service-
oriented software reengineering: Sosr. In Proceedings of the 40th Annual
Hawaii International Conference on System Sciences, HICSS ’07, pages
172c–, Washington, DC, USA, 2007. IEEE Computer Society.

[26] James Cordy, Thomas Dean, Andrew Malton, and Kevin Schneider.
Source transformation in software engineering using the TXL trans-
formation system. Journal of Information and Software Technology,
44(13):827–837, 2002.

[27] Andrea Corradini, Ugo Montanari, and F. Rossi. Graph processes. Fun-
damenta Informaticae, 26(3 and 4):241–265, 1996.

[28] Katja Cremer, André Marburger, and Bernhard Westfechtel. Graph-
based tools for re-engineering. Journal of Software Maintenance,
14(4):257–292, 2002.

[29] Félix Cuadrado, Boni Garćıa, Juan C. Dueñas, and Hugo A. Parada. A
case study on software evolution towards service-oriented architecture.
In Proceedings of the 22nd International Conference on Advanced Infor-
mation Networking and Applications - Workshops, AINAW ’08, pages
1399–1404, Washington, DC, USA, 2008. IEEE Computer Society.

[30] Scott C. Deerwester, Susan T. Dumais, Thomas K. Landauer, George W.
Furnas, and Richard A. Harshman. Indexing by latent semantic analysis.
Journal of the American Society of Information Science, 41(6):391–407,
1990.

[31] Serge Demeyer, Stéphane Ducasse, and Oscar Nierstrasz. Object-
Oriented Reengineering Patterns. Morgan Kaufmann, San Francisco,
CA, USA, 2002.

[32] Eclipse. Eclipse Modeling Framework. http://www.eclipse.org/emf/.

[33] Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer.
Fundamentals of Algebraic Graph Transformation. Springer-Verlag,
2006.

Bibliography 134

[34] Thomas Eisenbarth, Rainer Koschke, and Daniel Simon. Locating fea-
tures in source code. IEEE Transactions on Software Engineering,
29(3):210–224, 2003.

[35] Mohammad El-Ramly, Eleni Stroulia, and Hani Samir. Legacy systems
interaction reengineering. In Ahmed Seffah, Jean Vanderdonckt, and
Michel C. Desmarais, editors, Human-Centered Software Engineering,
Human-Computer Interaction Series, pages 316–333. Springer London,
2009. 10.1007/978-1-84800-907-3 15.

[36] Thomas Erl. Service-Oriented Architecture: Concepts, Technology, and
Design. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2005.

[37] Hoda Fahmy, Richard C. Holt, and James R. Cordy. Wins and losses
of algebraic transformations of software architectures. In Proceedings
of International Conference on Automated Software Engineering (ASE),
pages 51–60, Washington, DC, USA, 2001. IEEE Computer Society.

[38] Rudolf Ferenc and Árpád Beszédes. Data exchange with the columbus
schema for c++. In Proceedings of European Conference on Software
Maintenance and Reengineering (CSMR), pages 59–66, Washington, DC,
USA, 2002. IEEE Computer Society.

[39] Ian Finley and Mike Blechar. Hype cycle for application development,
2011. Technical Report G00214153, Gartner Research, July 2011.

[40] Martin Fowler. Refactoring: Improving the Design of Existing Code.
Addison-Wesley, Boston, MA, USA, 1999.

[41] Martin Fowler. Patterns of Enterprise Application Architecture.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2002.

[42] Erich Gamma, Richard Helm, Ralf Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Languages and Systems.
Addison-Wesley, 1994.

[43] David Garlan and Mary Shaw. An introduction to software architecture.
In V. Ambriola and G. Tortora, editors, Advances in Software Engineer-
ing and Knowledge Engineering (SEKE), pages 1–39, Singapore, 1993.
World Scientific Publishing Company.

[44] Nicolas E. Gold, Mark Harman, David Binkley, and Robert M. Hi-
erons. Unifying program slicing and concept assignment for higher-level
executable source code extraction. Software-Practice and Experience,
35:977–1006, August 2005.

[45] Concettina Del Grosso, Massimiliano Di Penta, and Ignacio Garcia-
Rodriguez de Guzman. An approach for mining services in database ori-
ented applications. In Proceedings of European Conference on Software
Maintenance and Reengineering (CSMR), pages 287–296, Washington,
DC, USA, 2007. IEEE Computer Society.

Bibliography 135

[46] The Open Group. TOGAF - The Open Group Architecture Framework.
http://www.opengroup.org/togaf/.

[47] He Guo, Chunyan Guo, Feng Chen, and Hongji Yang. Wrapping client-
server application to web services for internet computing. In Proceed-
ings of the Sixth International Conference on Parallel and Distributed
Computing Applications and Technologies, PDCAT ’05, pages 366–370,
Washington, DC, USA, 2005. IEEE Computer Society.

[48] Thomas Haase. Model-driven service development for a-posteriori appli-
cation integration. In Proc. of International Conference on e-Business
Engineering (ICEBE), pages 649–656, Washington, DC, USA, 2007.
IEEE Computer Society.

[49] Ali Nasrat Haidar and Ali E. Abdallah. Composition and customization
of web services using wrappers: A formal approach based on csp. In Pro-
ceedings of the 2008 32nd Annual IEEE Software Engineering Workshop,
SEW ’08, pages 187–194, Washington, DC, USA, 2008. IEEE Computer
Society.

[50] Reiko Heckel. Graph transformation in a nutshell. Electronic Notes in
Theoretical Computer Science (ENTCS), 148(1):187–198, 2006.

[51] Reiko Heckel, Rui Correia, Carlos Matos, Mohammad El-Ramly, Geor-
gios Koutsoukos, and Luis Andrade. Software Evolution, chapter Archi-
tectural Transformations: From Legacy to Three-tier and Services, pages
139–170. Springer-Verlag, 2008.

[52] Reiko Heckel and Annika Wagner. Ensuring consistency of conditional
graph grammars: A constructive approach. Electronic Notes in Theoret-
ical Computer Science (ENTCS), 2:118–126, 1995.

[53] Tassilo Horn, Andreas Fuhr, and Andreas Winter. Towards applying
model-transformations and -queries for soa-migration. In Proceedings of
MDD, SOA und IT-Management (MSI 2009), 2009.

[54] He Yuan Huang, Hua Fang Tan, Jun Zhu, and Wei Zhao. A lightweight
approach to partially reuse existing component-based system in service-
oriented environment. In Proceedings of the 10th international conference
on Software Reuse: High Confidence Software Reuse in Large Systems,
ICSR ’08, pages 245–256, Berlin, Heidelberg, 2008. Springer-Verlag.

[55] Suhaimi Ibrahim, Norbik Bashah Idris, and Aziz Deraman. Case study:
Reconnaissance techniques to support feature location using recon2. In
Asia-Pacific Software Engineering Conference, page 371, Los Alamitos,
CA, USA, 2003. IEEE Computer Society.

Bibliography 136

[56] Igor Ivkovic and Kostas Kontogiannis. A framework for software ar-
chitecture refactoring using model transformations and semantic an-
notations. In Proceedings of European Conference on Software Main-
tenance and Reengineering (CSMR), pages 135–144, Washington, DC,
USA, 2006. IEEE Computer Society.

[57] Vladimir Jakobac, Alexander Egyed, and Nenad Medvidovic. Improving
system understanding via interactive, tailorable, source code analysis. In
Maura Cerioli, editor, Proceedings of Fundamental Approaches to Soft-
ware Engineering (FASE), volume 3442 of Lecture Notes in Computer
Science, pages 253–268. Springer-Verlag, 2005.

[58] JetBrains. IntelliJ IDEA. http://www.jetbrains.com/idea/.

[59] Jörg Niere, Wilhelm Schäfer, Jörg P. Wadsack, Lothar Wendehals, and
Jim Welsh. Towards pattern-based design recovery. In Proceedings of In-
ternational Conference on Software Engineering (ICSE), pages 338–348.
IEEE Computer Society Press, May 2002.

[60] Yiannis Kanellopoulos, Thimios Dimopulos, Christos Tjortjis, and Chris-
tos Makris. Mining source code elements for comprehending object-
oriented systems and evaluating their maintainability. SIGKDD Explor.
Newsl., 8(1):33–40, 2006.

[61] Rick Kazman, Steven Woods, and Jeromy Carrière. Requirements for
integrating software architecture and reengineering models: CORUM II.
In Proceedings of Working Conference on Reverse Engineering (WCRE),
pages 154–163, Washington, DC, USA, 1998. IEEE Computer Society.

[62] N. Kiesel, P. Klein, M. Nagl, and V. Schmidt. Verteilung in betrieb-
swirtschaftlichen anwendungen: Einige bemerkungen von seiten der soft-
warearchitektur. In S. Jhnichen, editor, Online ’94 Congress VI, pages
C.620.01–C.620.29, 1994.

[63] Donald E. Knuth. Computer-drawn flowcharts. Communications of the
ACM, 6:555–563, September 1963.

[64] Jun Kong, Kang Zhang, Jing Dong, and Guanglei Song. A graph gram-
mar approach to software architecture verification and transformation.
pages 492–497, Washington, DC, USA, 2003. IEEE Computer Society.

[65] Rainer Koschke and Jean-Francois Girard. An intermediate representa-
tion for reverse engineering analyses. In Proceedings of Working Confer-
ence on Reverse Engineering (WCRE), pages 241–250, 1998.

[66] Rainer Koschke and Jochen Quante. On dynamic feature location. In
Automated Software Engineering, pages 86–95, New York, NY, USA,
2005. ACM Press.

Bibliography 137

[67] Georgios Koutsoukos, Luis Andrade, João Gouveia, and Mohammad El-
Ramly. Service extraction. Technical Report D6.2a, SENSORIA Project,
August 2006.

[68] Roger Lee, Haeng-Kon Kim, and Hae Sool Yang. An architecture model
for dynamically converting components into web services. In Proceedings
of the 11th Asia-Pacific Software Engineering Conference, APSEC ’04,
pages 648–654, Washington, DC, USA, 2004. IEEE Computer Society.

[69] Leg2Net. From legacy systems to services in the net.
http://www.cs.le.ac.uk/SoftSD/Leg2Net/.

[70] Timothy Lethbridge, Erhard Plödereder, Sander Tichelaar, Claudio
Riva, Panos Linos, and Sergei Marchenko. The Dagstuhl Middle Model
(DMM). http://www.ece.queensu.ca/hpages/courses
/elec875/pdf/DMMDescriptionV0006.pdf.

[71] Grace Lewis, Edwin Morris, Dennis Smith, and Liam O’Brien. Service-
oriented migration and reuse technique (smart). In Proceedings of the
13th IEEE International Workshop on Software Technology and Engi-
neering Practice, pages 222–229, Washington, DC, USA, 2005. IEEE
Computer Society.

[72] Yan Liu, Qingling Wang, Mingguang Zhuang, and Yunyun Zhu. Reengi-
neering legacy systems with restful web service. In Proceedings of the
2008 32nd Annual IEEE International Computer Software and Appli-
cations Conference, COMPSAC ’08, pages 785–790, Washington, DC,
USA, 2008. IEEE Computer Society.

[73] Michael Löwe, Martin Korff, and Annika Wagner. An algebraic frame-
work for the transformation of attributed graphs. In Ronan Sleep, Mari-
nus Plasmeijer, and Marko van Eekelen, editors, Term Graph Rewriting:
Theory and Practice, chapter 14, pages 185–199. John Wiley & Sons Ltd,
1993.

[74] Andrian Marcus, Vaclav Rajlich, Joseph Buchta, Maksym Petrenko,
and Andrey Sergeyev. Static techniques for concept location in object-
oriented code. In International Workshop on Program Comprehension,
pages 33–42, Los Alamitos, CA, USA, 2005. IEEE Computer Society.

[75] Andrian Marcus, Andrey Sergeyev, Vaclav Rajlich, and Jonathan I.
Maletic. An information retrieval approach to concept location in source
code. In Proceedings of Working Conference on Reverse Engineering
(WCRE), pages 214–223, Washington, DC, USA, 2004. IEEE Computer
Society.

[76] Marius Marin, Arie van Deursen, and Leon Moonen. Identifying as-
pects using fan-in analysis. In Proceedings of Working Conference on
Reverse Engineering (WCRE), pages 132–141, Washington, DC, USA,
2004. IEEE Computer Society.

Bibliography 138

[77] Tom Mens, Serge Demeyer, and Dirk Janssens. Formalising behaviour
preserving program transformations. In Andrea Corradini, Hartmut
Ehrig, Hans-Jörg Kreowski, and Grzegorz Rozenberg, editors, Proceed-
ings of International Conference on Graph Transformation (ICGT),
volume 2505 of Lecture Notes in Computer Science, pages 286–301.
Springer-Verlag, 2002.

[78] Tom Mens, Gabriele Taentzer, and Olga Runge. Analyzing refactoring
dependencies using graph transformation. Software and Systems Model-
ing, 6(3):269–285, 2007.

[79] Tom Mens, Niels Van Eetvelde, Serge Demeyer, and Dirk Janssens. For-
malizing refactorings with graph transformations. Software Maintenance
and Evolution: Research and Practice, 17(4):247–276, July/August 2005.

[80] Maxim Mossienko. Automated Cobol to Java recycling. In Proceed-
ings of European Conference on Software Maintenance and Reengineer-
ing (CSMR), pages 40–50, Washington, DC, USA, 2003. IEEE Computer
Society.

[81] Code Generation Network. List of code generators.
http://www.codegeneration.net/generators.php.

[82] Jörg Niere and Albert Zündorf. Reverse engineering with fuzzy layered
graph grammars. Technical report, University of Paderborn, 2003.

[83] SERC University of West Florida. Recon2. http://www.cs.uwf.edu/ re-
con/recon2/index.html.

[84] Object Management Group (OMG). Object Constraint Language spec-
ification. http://www.omg.org/spec/OCL.

[85] Object Management Group (OMG). Unified Modeling Language: Su-
perstructure version 2.0. http://www.omg.org/spec/UML/2.0, August
2005.

[86] Organization for the Advancement of Structured Information Stan-
dards (OASIS). Reference model for service oriented architecture 1.0.
http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.html.

[87] Michael P Papazoglou and Willem-Jan Van Den Heuvel. Service-oriented
design and development methodology. International Journal of Web
Engineering and Technology, 2:412–442, July 2006.

[88] David Lorge Parnas. On the criteria to be used in decomposing systems
into modules. Communications of the ACM, 15:1053–1058, December
1972.

[89] Detlef Plump. Hypergraph rewriting: Critical pairs and undecidability
of confluence. In M. R. Sleep, M. J. Plasmeijer, and M. C. van Eekelen,

Bibliography 139

editors, Term Graph Rewriting: Theory and Practice, chapter 15, pages
201–213. Wiley, 1993.

[90] Denys Poshyvanyk, Andrian Marcus, Vaclav Rajlich, Yann-Gaël
Guéhéneuc, and Giuliano Antoniol. Combining probabilistic ranking
and latent semantic indexing for feature identification. In International
Conference on Program Comprehension, pages 137–148, Los Alamitos,
CA, USA, 2006. IEEE Computer Society.

[91] Ganesan Ramalingam, Raghavan Komondoor, John Field, and Saurabh
Sinha. Semantics-based reverse engineering of object-oriented data mod-
els. In Proceedings of International Conference on Software Engineer-
ing (ICSE), pages 192–201, New York, NY, USA, 2006. ACM Press.

[92] Rapid-I. RapidMiner. http://sourceforge.net/projects/yale/.

[93] Maryam Razavian and Patricia Lago. A frame of reference for soa mi-
gration - appendix.
http://www.few.vu.nl/ mrazavi/SOAMigrationAppendix.pdf.

[94] Maryam Razavian and Patricia Lago. A frame of reference for soa mi-
gration. In ServiceWave, volume 6481 of Lecture Notes in Computer
Science, pages 150–162. Springer-Verlag, 2010.

[95] Roy Martin Richards. Implementing user/computer dialogue in COBOL.
ACM SIGCSE Bulletin, 19:15–19, June 1987.

[96] Bradley Schmerl, David Garlan, Vishal Dwivedi, Michael W. Bigrigg,
and Kathleen M. Carley. Sorascs: a case study in soa-based platform
design for socio-cultural analysis. In Proceedings of International Con-
ference on Software Engineering (ICSE), ICSE ’11, pages 643–652, New
York, NY, USA, 2011. ACM.

[97] Andy Schürr, Andreas Winter, and Albert Zündorf. The PROGRES
approach: Language and environment. In H. Ehrig, G. Engels, H.-J.
Kreowski, and G. Rozenberg, editors, Handbook of Graph Grammars
and Computing by Graph Transformation: Applications, Languages, and
Tools, volume 3, pages 487–550. World Scientific, 1999.

[98] A. E. Scott. Automatic preparation of flow chart listings. Journal of the
ACM (JACM), 5:57–66, January 1958.

[99] SENSORIA. Software engineering for service-oriented overlay comput-
ers. http://www.sensoria-ist.eu/.

[100] Mary Shaw. What makes good research in software engineering. In-
ternational Journal of Software Tools for Technology Transfer (STTT),
4:1–7, 2002.

[101] Daniel Sholler. Hype cycle for application architecture, 2011. Technical
Report G00213388, Gartner Research, July 2011.

Bibliography 140

[102] Harry Sneed. Integrating legacy software into a service oriented architec-
ture. In Proceedings of European Conference on Software Maintenance
and Reengineering (CSMR), pages 3–14, Los Alamitos, CA, USA, 2006.
IEEE Computer Society.

[103] Harry Sneed and Stephan Sneed. Creating web services from legacy
host programs. In Proceedings of International Symposium on Website
Evolution (WSE), pages 59–65, Los Alamitos, CA, USA, 2003. IEEE
Computer Society.

[104] Gabriele Taentzer. AGG. http://tfs.cs.tu-berlin.de/agg/index.html,
2007.

[105] TeReSe. Term Rewriting Systems. Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, March 2003.

[106] The Eclipse Foundation. Eclipse. http://www.eclipse.org/.

[107] Mark van den Brand, Jan Heering, Paul Klint, and Pieter Olivier. Com-
piling language definitions: the ASF+SDF compiler. ACM Trans. Pro-
gramming Languages and Systems, 24(4):334–368, July 2002.

[108] Jilles van Gurp and Jan Bosch. Design erosion: problems and causes.
The Journal of Systems and Software, 61:105–119, March 2002.

[109] W3C. XPath specification. http://www.w3.org/TR/xpath.

[110] Neil Walkinshaw. Partitioning Object-Oriented Source Code for Inspec-
tions. PhD thesis, University of Strathclyde, 2006.

[111] Mark Weiser. Program slicing. In Proceedings of International Confer-
ence on Software Engineering (ICSE), ICSE ’81, pages 439–449, Piscat-
away, NJ, USA, 1981. IEEE Press.

[112] Norman Wilde, Michelle Buckellew, Henry Page, Vaclav Rajlich, and
LaTreva Pounds. A comparison of methods for locating features in legacy
software. The Journal of Systems and Software, 65(2):105–114, February
2003.

[113] Norman Wilde, Juan A. Gomez, Thomas Gust, and Douglas Strasburg.
Locating user functionality in old code. In Proceedings of International
Conference Software Maintenance (ICSM), pages 200 –205, nov 1992.

[114] Norman Wilde and Michael C. Scully. Software reconnaissance: mapping
program features to code. Journal of Software Maintenance, 7:49–62,
January 1995.

[115] Andreas Winter and Jörg Ziemann. Model-based migration to service-
oriented architectures - a project outline. In Harry Sneed, editor, Pro-
ceedings of European Conference on Software Maintenance and Reengi-
neering (CSMR), pages 107–110. Vrije Universiteit Amsterdam, 2007.

Bibliography 141

[116] Bo Zhang, Liang Bao, Rumin Zhou, Shengming Hu, and Ping Chen. A
black-box strategy to migrate gui-based legacy systems to web services.
In Proceedings of the 2008 IEEE International Symposium on Service-
Oriented System Engineering, pages 25–31, Washington, DC, USA, 2008.
IEEE Computer Society.

[117] Lu Zhang, Tao Qin, Zhiying Zhou, Dan Hao, and Jiasu Sun. Identi-
fying use cases in source code. The Journal of Systems and Software,
79(11):1588–1598, November 2006.

[118] Zhuopeng Zhang, Hongji Yang, and William C. Chu. Extracting reusable
object-oriented legacy code segments with combined formal concept anal-
ysis and slicing techniques for service integration. In Proceedings of Inter-
national Conference on Software Quality (QSIC), pages 385–392, Wash-
ington, DC, USA, 2006. IEEE Computer Society.

[119] Wei Zhao, Lu Zhang, Yin Liu, Jiasu Sun, and Fuqing Yang. SNIAFL:
Towards a static non-interactive approach to feature location. In Inter-
national Conference on Software Engineering, pages 293–303, Los Alami-
tos, CA, USA, 2004. IEEE Computer Society.

[120] Ying Zou and Kostas Kontogiannis. Web-based specification and inte-
gration of legacy services. In Proceedings of the 2000 conference of the
Centre for Advanced Studies on Collaborative research, CASCON ’00,
pages 17–. IBM Press, 2000.

