
Adaptive Mutation Operators for

Evolutionary Algorithms

by

Imtiaz Ali Korejo

A thesis submitted in partial fulfillment for the

degree of Doctor of Philosophy

in the

Department of Computer Science

University of Leicester

2011

Declaration of Authorship

The content of this submission was undertaken in the Department of Computer

Science, University of Leicester, and supervised by Dr. Shengxiang Yang during the

period of registration. I hereby declare that the materials of this submission have not

previously been published for a degree or diploma at any other university or institute.

All the materials submitted for assessment are from my own research, except the

reference work in any format by other authors, which are properly acknowledged in

the content.

Part of the research work presented in this submission has been published or is under

preparation to be submitted for publication in the following papers:

1. S. Yang and I. Korejo. Multi-population methods with adaptive mutation for

multi-modal optimization problems. To be submitted for journal publication,

2012.

2. I. Korejo, S. Yang, and C. Li. A directed mutation operator for real coded

Genetic Algorithms. Proceedings of the 10th European Conference on Evolu-

tionary Computation in Combinatorial Optimisation (EvoApplications 2010),

LNCS 6024, pp. 491-500, 2010. Springer.

3. I. Korejo, S. Yang, and C. Li. A comparative study of adaptive mutation op-

erator for function optimization. Post-Conference Volume of the 2009 Meta-

heuristics International Conference (MIC 2009), 2011.

4. C. Li, S. Yang, and I. Korejo. An adaptive mutation operator for particle

swarm optimization. Proceedings of the 2008 UK Workshop on Computational

Intelligence, pp. 165–170, 2008.

i

Adaptive Mutation Operators for Evolutionary Algorithms

by

Imtiaz Ali Kojero

Abstract

Evolutionary algorithms (EAs) are a class of stochastic search and optimization algo-

rithms that are inspired by principles of natural and biological evolution. Although

EAs have been found to be extremely useful in finding solutions to practically in-

tractable problems, they suffer from issues like premature convergence, getting stuck

to local optima, and poor stability. Recently, researchers have been considering

adaptive EAs to address the aforementioned problems. The core of adaptive EAs is

to automatically adjust genetic operators and relevant parameters in order to speed

up the convergence process as well as maintaining the population diversity.

In this thesis, we investigate adaptive EAs for optimization problems. We study

adaptive mutation operators at both population level and gene level for genetic

algorithms (GAs), which are a major sub-class of EAs, and investigate their perfor-

mance based on a number of benchmark optimization problems. An enhancement

to standard mutation in GAs, called directed mutation (DM), is investigated in

this thesis. The idea is to obtain the statistical information about the fitness of

individuals and their distribution within certain regions in the search space. This

information is used to move the individuals within the search space using DM. Ex-

perimental results show that the DM scheme improves the performance of GAs on

various benchmark problems.

Furthermore, a multi-population with adaptive mutation approach is proposed to

enhance the performance of GAs for multi-modal optimization problems. The main

idea is to maintain multi-populations on different peaks to locate multiple optima for

multi-modal optimization problems. For each sub-population, an adaptive mutation

scheme is considered to avoid the premature convergence as well as accelerating the

GA toward promising areas in the search space. Experimental results show that the

proposed multi-population with adaptive mutation approach is effective in helping

GAs to locate multiple optima for multi-modal optimization problems.

Acknowledgements

Starting in the name of Almighty ALLAH, who is the most kind and merciful to

mankind, this is a great opportunity for me to thank those people whose direct or

indirect contribution has made the writing of this thesis possible for me. The most

significant contributions come from my research supervisor Dr. Shengxiang Yang,

who is not only a great person but also a great teacher and supervisor. During this

period of four years, he provided encouragement, suggestions, good company, and

a lot of good ideas, and supervised me in a manner which has led to the successful

completion of my PhD study.

I would also like to thank those people whose contribution also played an important

role in my success. I wish to express my warm and sincere thanks to all the fac-

ulty members, especially, Prof. Rajeev Raman, Prof. Rick Thomas, Prof. Thomas

Erlebach, Dr. Fer-Jan de Vries, and Dr. Stanley P Y Fung, for their moral and

technical support, advice, encouragement, and keen interest in assessing my yearly

reports, presented to them, from time to time. My sincere gratitude to the admin-

istrative staff for their supportive behaviour, and swift and effective solutions of the

issues that emerged during the course of my PhD study.

It is very important and necessary to offer my gratitude to my mother university

and employer, i.e., University of Sindh, Jamshoro, Sindh, Pakistan. All the financial

support for this study was provided by my university, as I was awarded a foreign

scholarship for my PhD research under the faculty strengthening and development

program of the Higher Education Commission Pakistan. It was simply impossible for

me to complete my study here, if I would have not been provided this opportunity.

I would also like to thank those colleagues/friends here in Leicester, who expended

their time and shared their knowledge, in order to help and improve my research

work, especially Changhe Li, who provided me technical support, and Muhammad

Muzammal, who provided me a wonderful company and emotional support, when-

ever I felt homesickness or lonely in this foreign land, thousand miles away from my

home.

I also wish to extend my thanks to my colleagues and friends here in the Depart-

ment of Computer Science, who shared their joys and happy moments with me.

iii

Their kindness, generosity, and help made my life easier in Leicester, whenever I felt

stranger here in different culture and atmosphere.

In the end, I would like to thank my entire family for providing me a loving envi-

ronment during my entire life. My mother, my brothers, and my wife, in particular,

were very supportive in my absence and managed many troubles on their own, with-

out putting me into any stress. They always prayed for me to successfully complete

my PhD study. I would like to present this thesis as a gift to my kids Kousar and

Muhammad Ihsaan.

iv

Contents

Declaration of Authorship i

Abstract ii

Acknowledgements iii

List of Figures ix

List of Tables x

List of Algorithms xi

Abbreviations xii

Symbols xiv

1 Introduction 1

1.1 Motivation . 4

1.2 Aims and Objectives . 5

1.3 Methodology . 6

1.4 Contributions . 7

1.5 Structure of the Thesis . 9

2 Global Optimization and Evolutionary Algorithms 11

2.1 Optimization . 11

2.1.1 Maximization problem . 12

2.1.2 Neighbourhood and Local Optimum 12

2.1.3 Global Optimum . 13

2.2 Global Optimization Methods . 15

2.3 Evolutionary Computation . 17

2.3.1 Evolution Strategies (ESs) . 18

2.3.2 Evolutionary Programming (EP) 19

v

Contents

2.3.3 Genetic Algorithms (GAs) . 20

2.3.4 Genetic Programming . 20

2.3.5 Particle Swarm Optimization 21

2.4 GAs: Key Components . 24

2.4.1 Representation of Solutions 25

2.4.1.1 Binary Representation 26

2.4.1.2 Real-Valued Representation 26

2.4.2 Objective Function . 26

2.4.3 Selection Schemes . 27

2.4.3.1 Rank Selection . 28

2.4.3.2 Tournament Selection 29

2.4.4 Crossover Operators . 29

2.4.4.1 One-Point Crossover 30

2.4.4.2 Two-Point Crossover 30

2.4.4.3 Uniform Crossover 31

2.4.5 Mutation . 32

2.4.5.1 Fixed Mutation Probability 33

2.4.5.2 Adaptive Mutation 33

2.5 Computational Complexity . 35

2.5.1 Definition of the P Class . 36

2.5.2 Definition of the NP Class . 37

2.6 Statistical Test . 37

2.6.1 One-sample t-test . 38

2.6.2 Paired t-test . 39

2.7 Chapter Summary . 39

3 Adaptation in Evolutionary Algorithms 40

3.1 Introduction . 40

3.2 Short History of Adaptation in EAs 42

3.3 Taxonomy of Adaptation in EAs . 46

3.4 General Considerations for Adaptation in EAs 49

3.5 Adaptation of the Population Size . 51

3.5.1 Adaptive Population Sizing Approaches 51

3.5.1.1 Population Sizing in GAVaPS 52

3.5.1.2 Strategy Adaptation by Competing Sub-Populations 53

3.5.1.3 Population Sizing in SAGA 54

3.5.1.4 Population Sizing in PRoFIGA 56

3.6 Adaptation of Representation . 57

3.7 Adaptation of Selection Operators . 58

3.7.1 Adaptive Selection Routine for EAs 59

3.7.2 An Adaptive Tournament Selection 60

3.8 Adaptation of Variation Operators 61

vi

Contents

3.8.1 Adaptation of Crossover Operators 62

3.8.1.1 Adapting the Type of Crossover 62

3.8.1.2 Adapting the Rate of Crossover 62

3.8.1.3 Adapting the Crossover Position or Swapping Rate
in Each Locus . 63

3.8.2 Adaptation of Mutation Operators 63

3.8.2.1 Adapting the Probability of Mutation 64

3.8.2.2 Adapting the Mutation Rate of Each Locus 65

3.9 Chapter Summary . 66

4 Adaptive Mutation Operators for Function Optimization 68

4.1 Introduction . 68

4.2 Population-Level Adaptive Mutation Operators 70

4.2.1 Adaptive Mutation Operator for PSO 70

4.2.1.1 Three Mutation Operators 71

4.2.2 An Adaptive Mutation Operator for GAs 73

4.3 Gene-Level Adaptive Mutation Operators 75

4.4 Complexity Analysis . 79

4.5 Experimental Study . 79

4.5.1 Test Functions . 79

4.5.2 Parameter Setting . 82

4.5.3 Experimental Results and Analysis 83

4.6 Chapter Summary . 85

5 Directed Mutation for Real-Coded Genetic Algorithms 90

5.1 Introduction . 90

5.2 Directed Mutation for Genetic Algorithms 91

5.3 Experimental Study . 95

5.3.1 Experimental Setting . 95

5.3.2 Experimental Results and Analysis 96

5.4 Chapter Summary . 99

6 Multi-Population with Adaptive Mutation for Multi-Modal Opti-
mization 101

6.1 Challenges to EAs for Multi-Modal Optimization 102

6.2 EAs with Multi-Population Approaches 103

6.2.1 General Consideration of Multi-Population 103

6.2.2 Recent Multi-Population Approaches for EAs 105

6.2.2.1 Species-Based Multi-Population Approach 105

6.2.2.2 Partition Based Multi-Population Approach 107

6.3 GAs with Multi-Population with Adaptive Mutation 109

6.3.1 Motivation . 109

vii

Contents

6.3.2 Framework of the Proposed GA 111

6.3.2.1 Partition(pt) . 112

6.3.2.2 Statistics . 112

6.3.2.3 Mutation(pit) . 114

6.3.3 Overlapping and Convergence Check 115

6.4 Experimental Study . 117

6.4.1 Boolean Satisfiability and Genetic Algorithms 117

6.4.2 Generating Multi-Modal Problems 119

6.4.3 Peer Algorithms for Comparing the Proposed GA 120

6.4.4 Experimental Setting . 122

6.4.5 Experimental Results and Analysis 124

6.4.5.1 Effect of Varying the Length of Solutions and Popu-
lation Size . 125

6.4.5.2 Effect of Varying the Number of Peaks 125

6.4.5.3 Effect of Varying the Parameter r or min dist 125

6.4.5.4 Comparison Regarding the t-Test and Performance
Results . 129

6.5 Chapter Summary . 135

7 Conclusions and Future Work 137

7.1 Technical Contributions . 138

7.1.1 Adaptive Techniques Developed for Global Optimization . . . 139

7.2 Conclusions . 142

7.2.1 Adaptive Mutation Operators with GAs and PSO 143

7.2.2 GAs with Directed Mutation Operator 144

7.2.3 Multi-population with Adaptive Mutation Operator 144

7.3 Future Work . 145

7.3.1 Adaptive Mutation Operators within GAs and PSO 145

7.3.2 GAs with Directed Mutation Operator 146

7.3.3 Multi-population with Adaptive Mutation Operator 146

Bibliography 148

viii

List of Figures

2.1 A maximization problem. 13

2.2 A constraint minimization problem. 14

2.3 Taxonomy of global optimization algorithms. 16

2.4 Flowchart of a conventional genetic algorithm 25

2.5 Roulette wheel selection. 27

2.6 One-point crossover . 30

2.7 Two-point crossover. 31

2.8 Uniform crossover. 32

3.1 Global taxonomy of parameter setting in EAs. 48

4.1 Experimental results of adaptive mutation operators. 87

4.2 Experimental results of adaptive mutation operators. 88

5.1 Fitness landscape of the d-th dimension. 92

5.2 Evolutionary progress of directed mutation and directed variation op-
erators on (a) f4 with L = 12, (b) f6 with L = 12, (c) f7 with L = 3,
and (d) f9 with L = 6. 99

6.1 Evolutionary process of algorithms on simple problems. 130

6.2 Evolutionary process of algorithms on simple problems. 131

6.3 Evolutionary process of algorithms on bit harder problems. 133

6.4 Evolutionary process of algorithms on difficult problems. 134

ix

List of Tables

4.1 The twenty six test functions, where n is the number of variables
(dimensions) of a problem and D represents the domain of a problem
(Dn ⊆ Rn), fmin the minimum value of each function. 81

4.2 Average result over 50 independent runs of algorithms on the test
functions. 84

4.3 Statistical comparison of adaptive mutation operators on the test
functions . 86

5.1 Test functions of n = 10 dimensions, where D (D ∈ Rn) and fmin,
denote the domain and minimum value of a function, respectively,
and ~M is the rotation matrix . 96

5.2 Comparison results between DV and DM with the number of intervals
for each dimension set to different values for different problems 97

6.1 Fitness f for assignments to a ∧ (a ∨ b̄), taken from [86] 118

6.2 Comparison results of algorithms with different parameter settings on
different problems with one peak . 126

6.3 Comparison results of algorithms with different parameter settings on
different problems with five peaks . 127

6.4 Comparison results of algorithms with different parameter settings on
different problems with ten peaks . 128

6.5 The t-test results of comparing algorithms on different problems with
different levels of difficulty . 132

x

List of Algorithms

1 The basic structure of evolution strategies 19

2 The general framework of evolutionary programming 20

3 The general framework of GAs . 21

4 Basic PSO Optimizer . 24

5 PSO without adaptive mutation . 74

6 GA with adaptive mutation . 76

7 GA with the gene based adaptive mutation operator 78

8 Transformatin Matrix . 82

9 GA with directed mutation (DM) . 93

10 Directed mutation . 93

11 Identifying species seeds . 106

12 Replacing redundant solutions . 107

13 The partition algorithm – Partition(pt) 108

14 GA with the multi-population with adaptive mutation scheme 111

15 Adaptive mutation . 114

16 Overlapping check of sub-populations 115

17 Convergence check of sub-populations 116

xi

Abbreviations

ABC Artificial Bee Colony

ACO Ant Colony Optimization

AGA Adaptive Genetic Algorithm

APGA Genetic Algorithm with Adaptive Population size

AREA Adaptive Representation Evolutionary Algorithm

CMA-ES Covariance Matrix Adaptation Evolution Strategy

CNF Conjunctive Normal Form

COBRA COst Based operator Rate Adaptation

DM Directed Mutation

DMGA Dynamic Mutation Genetic Algorithm

DNA Deoxyribo Nucleic Acid

DV Directed Variation

EA Evolutionary Algorithm

EP Evolutionary Programming

ESs Evolutionary Strategies

GAs Genetic Algorithms

GAVaPS Genetic Algorithm Varying Population Size

GBAM Gene Based Adaptive Mutation

GBAM FAD Gene Based Adaptive Mutation with

Fitness and Allele Distribution correlation

GEP Gene Expression Programming

GLAM Gene-Level Adaptive Mutation

xii

Abbreviations

GP Genetic Programming

MAX-SAT MAXimum SATtisfiability

PLAM GA Population-Level Adaptive Mutation Genetic Algorithm

PLAM PSO Population-Level Adaptive Mutation Particle Swarm

Optimization

PRoFIGA Population Resizing On Fitness Improvement Genetic

Algorithm

PSO Particle Swarm Optimization

PWAM Partition based multi-population With Adaptive Mutation

SAGA Self-Adaptive Genetic Algorithms

SANUM Statistics-based Adaptive Non-Uniform Mutation

SANUX Statistics-based Adaptive Non-Uniform X:crossover

SGA Simple Genetic Algorithm

SPSO Species-based Particle Swarm Optimization

SSRGA Site Specific Rate Genetic Algorithm

SWAM Species based multi-population With Adaptive Mutation

xiii

Symbols

α, β parameters for SANUM

α reduction factor

δ minimum selection ratio for each operator in PLAM GA

ǫ distance threshold

η1, η2 acceleration constants in PSO algorithms

γ minimum selection ratio for each operator in PLAM PSO

µ number of individuals

D domain of a problem

f fitness of an individual

f̄ average fitness of the population

f́ fitness of an individual to be crossed

f1 frequency of 1’s in a locus

fmax maximum fitness

fmin minimum fitness

L total number of intervals

(l, n) length of individual, population size

maxgen maximum number of generations

min dist minimum distance among individuals of a sub-population

N number of mutation operators

n number of dimensions

Pc crossover probability

Pm mutation probability

xiv

Symbols

Pmax maximum probability

Pmin minimum probability

Pmutation initial mutation probability of each mutation operator

r radius of a species/sub-population

sgn(x) sing function, which returns the value 1, 0, or -1

T local search size for the global best particle

Uf update frequency for each operator

xv

Dedicated to my family. . .

xvi

Chapter 1

Introduction

This world is full of problems and many of these problems can be translated into

optimization. Optimization is useful in various fields and plays an important role in

engineering, management science, medicine, computer science, applied mathematics,

and many more areas. The concept of optimization may be different for different

fields. But, the main objective remains the same, namely, making an optimum

decision. The applicability of optimization in many different disciplines makes it

difficult to provide a single specific definition of optimization. Mathematicians, for

instance, aim to get the maxima or minima of a real function within a set of variables.

From the computing and engineering point of view, the objective of optimization is

usually to maximize the system or application performance with minimal runtime

and resources possible [112]. Remarks on optimization were given by Cherkaev [19]

and we quote as follows:

“the desire for optimality (perfection) is inherent for humans. It seems

a natural instinct to search for extremes in all endeavour of life

(personal emphasis). The search for extremes inspires mountaineers,

1

Chapter 1. Introduction

scientists, mathematicians, and the rest of the human race. The mathe-

matical theory of optimization has been developed since the sixties when

computers became available. The goal of the theory is the creation of

reliable methods to catch the extremum of a function by an intelligent

arrangement of its evaluations. This theory is vitally important for mod-

ern engineering and planning that incorporate optimization at every step

of the complicated decision making process.”

Global optimization is a branch of applied mathematics and numerical analysis,

which deals with the optimization of a function or a set of functions for finding

the best possible solution(s) from a solution set. Simple conventional global opti-

mization problems can be solved by using deterministic algorithms. However, if the

objective function of a problem is not differentiable (if there is no clear difference

in between local and global optimal solutions), has too many local optima, and/or

has a very high dimensional search space, it becomes impossible to apply deter-

ministic approaches to solve these global optimization problems. Due to the above

properties, it is impossible for deterministic methods to enumerate all local optima

within an endurable time. Due to this reason, probabilistic algorithms are required

to achieve the best possible solution(s), which may be a bit inferior to the global

optimum, instead of the global optimum, which needs, for instance, 10100 years, to

be found.

Evolutionary algorithms (EAs) are stochastic search and optimization methods which

are inspired by principles of natural evolution and genetics. EAs have been used for

solving different optimization problems due to the properties of self-learning, self-

organization, and self-adaptation, as well as the property of implicit parallelism. In

the past few decades, different approaches were introduced along with their prop-

erties. Genetic algorithms (GAs) [49], evolution strategies (ESs) [72], evolutionary

programming (EP) [36], and genetic programming (GP) [58] are major variants of

2

Chapter 1. Introduction

EAs. Some other schemes are resemblance with the above branches of EAs. These

methods, e.g., particle swarm optimization (PSO) [27, 57], ant colony optimiza-

tion (ACO) [22], and artificial bee colony (ABC) [56], have also become important

research areas.

When EAs are applied for a specific problem, we first need to consider the search

space of candidate solutions to that problem and decide upon a representation for

the solutions. Then, we need to determine a set of relevant parameters. After

that, we can initialize a population of candidate solutions to the problem, which are

usually randomly generated. New solutions are generated from the current popu-

lation by using selection, recombination and mutation operators. For instance, for

a conventional genetic algorithm, we may decide to employ binary representation,

uniform crossover, bit-flip mutation, tournament selection, and generational replace-

ment. In addition, further more information of relevant parameters is needed for

a full specification of an EA, e.g., the population size, the probability of mutation,

the probability of crossover, and the tournament size for the tournament selection

scheme. These relevant parameters are called algorithm parameters or strategy

parameters. The values of these parameters greatly affect the behaviour of an al-

gorithm, e.g., whether it will find an optimal or near-optimal solution, and whether

it will search such a solution efficiently. Selecting suitable parameter values is a very

difficult task, if not impossible.

Generally speaking, there are two major classes of methods to set parameter values:

parameter tuning and parameter control. Parameter tuning sets parameters

before the execution of an algorithm while parameter control adjusts parameters

during the running process of an algorithm.

Adaptation of strategy parameters and genetic operators has become an important

and promising research area in the domain of EAs. Nowadays, many researchers are

focusing on solving numerous optimization problems by using adaptive techniques.

3

Chapter 1. Introduction

The objective of adaptive algorithms is to modify the genetic operators and relevant

parameters to maintain the diversity of the population and obtain good results to a

problem within a reasonable amount of time.

1.1 Motivation

Adapting the values of strategy parameters of an EA in order to achieve good per-

formance has become an important and promising research area in EAs. Some of

the typical strategy parameters are the population size, the number of crossover

points, the probabilities for crossover and mutation operators. These parameters

can be configured by experimenting with different values and choosing the suitable

one that provides the best results on the optimization problem in hand. Typically,

one parameter is modified at a time, which may lead to an algorithm getting stuck

on a local optimum, since usually it is not known how the parameters are related to

each other. However, various parameters and their different values determine a lot

of combinations. Therefore, it is a time-consuming activity. For instance, given four

parameters and five values associated with each of them, there are 54 = 625 distinct

setups. If an algorithm is allowed 100 independent runs for each setup, 62,500 runs

are needed just to develop a good algorithm design.

Another parameter tuning approach is to find the values of parameters before the

execution of an algorithm. This rigid form of static parameter setting contrasts the

dynamic nature of EAs. For example, a large mutation step can help the exploration

of the search space in the early generations and a small mutation step may be useful

for an EA to exploit a more accurate solution in the late generations. This is

impossible with conventional fixed parameters approaches.

4

Chapter 1. Introduction

A number of studies have addressed the issue empirically and theoretically, showing

that different values of parameters and operators may be optimal at different stages

of the evolutionary process of an EA [7–9, 25, 30, 47, 79, 81, 91, 92]. Due to this

reason, static parameter setting (i.e., parameter tuning) has been gradually discour-

aged in the EA community. In order to tackle the limitations of static parameter

setting for EAs, a straightforward way is to replace a parameter p by a function p(t),

where t is the index of the current generation (or any other method of counter). In

this (deterministic) approach, the parameter value p(t) is modified by a “blind” rule,

activated by the current generation value t, without taking any information of the

actual progress in solving the problem, i.e., without using any feedback information

of the current state of the search process. This may not be appropriate for EAs.

Another approach, which overcomes the limitations of fixed parameters, is to use

adaptive techniques. Parameters are modified by taking into account the current

state of the search process. Different parameters and operators can be updated in

this mechanism by using the quality of solutions during the evolutionary process.

It is necessary to differentiate between deterministic and adaptive schemes, as the

second one uses feedback information from the search space and the first one does

not.

1.2 Aims and Objectives

The primary aim of this thesis is to test the hypothesis of effective adaptive muta-

tion operators for EAs for global optimization problems. GAs and particle swarm

optimization (PSO) are used for the implementation of these adaptive approaches.

The main objectives of this thesis are summarized as follows:

1. To study in detail adaptive mutation approaches for EAs.

5

Chapter 1. Introduction

2. To compare adaptive mutation techniques for GAs and PSO algorithms.

3. To propose new ideas of adaptive mutation operators and apply them to im-

prove the performance of GAs and PSO algorithms for global optimization

problems.

4. To obtain empirical results to validate our introduced ideas.

1.3 Methodology

Nowadays, a few researchers presented analytical proof of EA approaches on very

simple problems. But, it is quite difficult to analyse most EAs. Generally speaking,

it is very difficult, if not impossible, to give an accurate analysis of the convergence

of these algorithms. Hence, one can not perform an accurate behaviour analysis of

EA approaches and predict their general search behaviour, which depends on their

working mechanism as well as the problem being solved.

Another important method to test the performance of EAs is to observe and analyse

the empirical results on benchmark problems. Different benchmark problems have

been suggested to test different sort of properties of EAs in the literature. It is very

hard to measure the performance of algorithms on all benchmark problems. In the

common practice, an algorithm’s performance is investigated on various benchmark

problems that have distinct characteristics.

In this thesis, we will follow the second research method, i.e., evaluating and justi-

fying the performance of algorithms based on empirical results on benchmark prob-

lems. The adaptive mutation schemes to be investigated in this thesis will be tested

on a series of well-known benchmark optimization problems taken from the liter-

ature. These optimization problems will be explained in Chapters 4, 5, and 6,

6

Chapter 1. Introduction

respectively. Furthermore, comparing the performance of proposed algorithms with

other existing algorithms under the same criteria is also carried out in this thesis.

1.4 Contributions

Different mutation techniques are suggested and investigated in this thesis to im-

prove the performance and reduce the disadvantages of conventional EAs, e.g., to

maintain the diversity in the population by adaptive mutation, directed mutation,

and multi-population with adaptive mutation schemes. These mutation approaches

introduce new individuals into the population, which are guided by the feedback

information from the current generation.

From the research, the following contributions are made:

1. An experimental analysis shows that an adaptive mutation operator proposed

for PSO can greatly improve the performance of PSO on a set of benchmark

optimization problems. In the adaptive mutation operator for PSO, each so-

lution has a set of three operators to cope with different situations in the

search process. The interaction of the three operators is used by an adaptive

framework at the population level: each particle can select a suitable operator

at the appropriate level according to the property of its local search space

for attaining the best performance by the adaptive approach. It is possible

that different operators may be optimal at different stages of an evolutionary

process on different optimization problems.

2. We review a number of techniques that have been introduced to adjust the

mutation probabilities based on the global behaviour of the population during

the evolutionary process. This approach investigates several adaptive mutation

operators, including the population level and gene level adaptive mutation

7

Chapter 1. Introduction

operators, for PSO and GAs and compare their performance based on a set

of uni-modal and multi-modal benchmark functions. The gene level adaptive

mutation operators show great advantage over the traditional fixed mutation

probability operators and the population level adaptive mutation operator for

GAs. The adaptive mutation operator for PSO which is also a population level

operator outperforms the gene level adaptive mutation and population level

adaptive mutation operator for GAs.

3. A directed mutation technique is suggested for GAs to address uni-modal and

multi-modal problems. This approach introduces new solutions in the search

space guided by the information acquired in the previous generations. The

effectiveness of the new scheme is investigated on different benchmark opti-

mization problems and compared with other approaches from the literature.

The result shows that the directed mutation mechanism is able to produce

good results on various benchmark problems.

4. A multi-population with adaptive mutation approach is proposed for GAs to

locate the multiple peaks of multi-modal optimization problems. In order to

address the convergence problem of GAs, the multi-population with adaptive

mutation approach can be used to maintain the diversity, guide the algorithms

for fast convergence, and prevent GAs from being trapped into local optima.

The developed GA is investigated on benchmark problems with different levels

of difficulties in comparison with other four adaptive algorithms taken from

the literature. The experimental results show that the proposed GA is a good

choice for locating multiple optima in multi-modal optimization problems.

8

Chapter 1. Introduction

1.5 Structure of the Thesis

The rest of this thesis is organised as follows.

Chapter 2 introduces the concept of optimization and identifies the maximization

and minimization problem and its local and global optimum. The overview of global

optimization algorithms and their classification are mentioned in this chapter. Evo-

lutionary computation, especially genetic algorithms and their components are also

explained in this chapter.

Chapter 3 starts with an introduction of adaptation, followed by the short history

of adaptation and taxonomy of adaptation in evolutionary algorithms. Afterwards,

this chapter provides a review of empirical research of adaptive methods applied in

GAs, evolutionary strategies and evolutionary programming (in general EAs).

The comparative study and performance of population level and gene level different

adaptive mutation schemes of GAs and particle swarm optimization are explained

in Chapter 4, these approaches are tested on several distinct benchmark global

optimization problems.

In Chapter 5, directed mutation is used to modify conventional mutation operator

in GAs along with discussions on some common issues, e.g., how to get the lost

information during the early generations, how to increase the diversity in the pop-

ulation, and how to get the permanently lost genetic information. These common

issues can be solved by the directed mutation approach.

The multi-population with adaptive mutation approach proposed in this thesis is

described in Chapter 6. This technique can be used to reduce the limitations of GAs

on multi-modal optimization problems. It can help GAs to reduce the probability

of getting stuck to local optima, maintain the diversity in the population, and hence

9

Chapter 1. Introduction

increase the performance and locate multiple optima in multi-modal optimization

problems.

Finally, Chapter 7 summarizes the research carried out in this thesis. Some directions

for future research of adaptive mutation operators in EAs are also discussed.

10

Chapter 2

Global Optimization and

Evolutionary Algorithms

This chapter presents an overview of optimization and global optimization methods,

an explanation of evolutionary computation, a detailed description of the key genetic

operators and relevant parameters of genetic algorithms (GAs), which are a major

class of evolutionary algorithms (EAs) and are the major concern of the research in

this thesis. We also provide a brief introduction to computational complexity and

statistical test, which are relevant to the study of global optimization and EAs, at

the end of this chapter.

2.1 Optimization

In general, optimization is the process of finding the best solution for a given prob-

lem. It is made up of three basic components [20, 59, 111]: the decision variables,

which determine the components of the problem and can be modified to generate

distinct possibilities; constraints, which specify the limitations on the variables; and

11

Chapter 2. Global Optimization and Evolutionary Algorithms

the objective function, which determines the quality of individuals. The aim of an

optimization problem is to find the best solution that satisfies the constraints and

maximize(or minimize) the objective function.

2.1.1 Maximization problem

A maximization optimization problem is to maximize f(x), where f is the real

valued objective or cost function and x ∈ S is a feasible solution, where S is the

set of feasible solutions. A global optimum is a solution x′ ∈ S such that f(x′) ≥

f(x), ∀x ∈ S. The corresponding value of the objective function is denoted by

f ′, i.e., f ′ = f(x′). The set of global optimal solutions S ′ is defined by S ′ =

{x ∈ S|f(x) = f ′}.

2.1.2 Neighbourhood and Local Optimum

Let S be the set of feasible solutions. For each solution x ∈ S, a solution y ∈ S is in

the neighbourhood of x if the distance D between x and y is less than or equal to

a given distance threshold ǫ. The neighbourhood function N(x) of x can be defined

as follows: N(x) = {y ∈ S|D(x, y) ≤ ǫ}.

A solution is a local optimum if the objective function of the solution is the best

among the solutions in its neighbourhood. Neighbourhood may help to find local

optima of a problem. Hence, local optimum based on the neighbourhood approach

is usually applied.

Let S be a set of feasible solutions and N(x) be the neighbourhood of a solution

x ∈ S. A solution x′ ∈ S is a local maximum w.r.t N(x) if f(x′) ≥ f(x), ∀x ∈ N(x′)

and local minimum w.r.t N(x) if f(x′) ≤ f(x), ∀x ∈ N(x′). Local optimum can

either be a local minimizer or a local maximizer.

12

Chapter 2. Global Optimization and Evolutionary Algorithms

2.1.3 Global Optimum

Let S be a set of feasible solutions. A solution x′ ∈ S is a global maximum if

f(x′) ≥ f(x), ∀x ∈ S or a global minimum if f(x′) ≤ f(x), ∀x ∈ S. A global

optimum can either be a global minimum or a global maximum.

Figure 2.1: A maximization problem.

Figure 2.1 and Figure 2.2 illustrate the above points in the fitness landscape. In

the context of maximization problems, a global optimum is the highest peak in the

search space while other peaks with lower heights are local optima. There is no any

other peak which is higher than a local optimum within its neighbourhood. There

are various efficient algorithms for finding the candidate solutions to some kinds of

13

Chapter 2. Global Optimization and Evolutionary Algorithms

Figure 2.2: A constraint minimization problem.

optimization problems. For complex problems, the objective function becomes very

difficult to search the global optima because of the properties like too many local

optima, not continuous objective function, high dimensions of the objective func-

tion, and unclear differences between local and global optimal solutions. Therefore,

algorithms face difficulty to find the optimal solutions in the search space for such

complex problems and an algorithm may get stuck on local optima.

Non-linear optimization or non-linear programming is a branch of applied mathe-

matics that deals with finding the maximum or minimum value of a function subject

to constraints or restrictions on the variables of the function. There are a lot of ap-

plications of these problems in the real world, such as engineering design, space

planning, networking, data analysis, logistic management, financial planning, and

14

Chapter 2. Global Optimization and Evolutionary Algorithms

many more. These problems often require a global search approach to get their opti-

mal solutions. Generally speaking, they are very hard to solve due to many reasons.

First, as described in the literature, optimization problems from these applications

are often NP-hard in nature [12, 21, 37, 123]. Secondly, in order to solve benchmark

and real world problems by using some requirements and constraints, these problems

are either hard (in the context of solvability) or conflicting [4, 12]. Other reasons

were mentioned in [112], where some fundamental issues are considered for solving

difficult optimization problems.

2.2 Global Optimization Methods

The goal of global optimization is to find the best candidate solution to a given

problem within a reasonable time limit. It is a swiftly increasing area in many fields

of study. These include engineering, management science, medicine, computer sci-

ence, economics, biotechnology, computational chemistry, and applied mathematics,

to bring up a few examples. Different fields of study may view global optimization

from different perspectives. But, the overall goal of the whole process is the same,

namely, making an optimum decision.

There are a wide range of different optimization techniques, which face difficulties

to solve global optimization problems. In [112], the authors suggested some key

features of optimization problems, which include ruggedness, causality, deceptive-

ness, epistasis, robustness, overfitting, over-simplification, and dynamic fitness. An

optimization problem can be regarded as a decision making problem. As mentioned

earlier, a particular optimization technique is only suitable for a specific type of

problems.

15

Chapter 2. Global Optimization and Evolutionary Algorithms

Figure 2.3: Taxonomy of global optimization algorithms.

The general view of global optimization methods is given in this section. Figure

2.3 illustrates a rough classification of global optimization algorithms by Weise et

al. [111]. Generally speaking, global optimization algorithms can be classified into

two basic classes: deterministic and probabilistic methods [111]. It becomes harder

for deterministic algorithms to find the global optima, if the relation between a

candidate solution and its fitness is not clear, the number of dimensions is very

high, or the objective function is too complicated. In these cases, deterministic

methods may look like a blind search in a black box where the fitness landscape is

16

Chapter 2. Global Optimization and Evolutionary Algorithms

very complex; trying them in this case would possibly be an exhaustive enumeration

of the search space or just searching in a local search space without the complex

fitness landscape.

Probabilistic or Non-deterministic methods can be used when problems have a huge

number of local optima, the fitness landscape is very complex, or the dimensionality

of the search space is very high. These methods are used to achieve the optimal

or near-optimal solution(s) within a reasonable time. Probabilistic methods have

the advantages over deterministic methods due to the properties of simplicity and

easy-to-use for finding good solutions in a complex search space.

Monte Carlo methods (or Monte Carlo experiments) are a class of computational

algorithms that deal with random calculation and most stochastic schemes are in-

cluded in the Monte Carlo approach. Heuristics and meta-heuristics play a very

important role in most of probabilistic algorithms, which use the current informa-

tion gathered during the evolutionary process to decide how to create a next can-

didate solution or which individual should be processed next. Generally speaking,

this type of algorithms can use feedback information achieved from samples in the

search space. Usually, they use some abstract models from natural phenomena. The

most popular methods are simulated annealing and evolutionary algorithms (EAs).

2.3 Evolutionary Computation

Evolutionary computing is a rapidly growing area. It plays an important role within

the field of computer science. Evolutionary computing uses computational models

of evolutionary processes as key elements for designing and implementing computer-

based problem solving systems. Several evolutionary computation models have been

proposed and studied in the literature, which are known as evolutionary algorithms.

17

Chapter 2. Global Optimization and Evolutionary Algorithms

They use common properties of simulating the evolution of individual structures

through the process of selection and recombination. These mechanisms depend on

the perceived quality of the individual structures as determined by the environment.

Over the past few decades, different approaches of EAs have been introduced with

their properties; some of them are briefly explained in the following sections.

In the literature, various types of EAs have been proposed. All of them share

the following basic properties: (i) An EA uses the collective learning process of a

population of individuals. Each individual has its own representation in the search

space for a given problem; (ii) Each individual is evaluated in its environment.

The quality or fitness can be specified for individuals, and during the selection

process fitter individuals have more chances to be selected for next generation than

less quality individuals; (iii) offspring are generated by applying variation genetic

operators (e.g., mutation and recombination).

2.3.1 Evolution Strategies (ESs)

In the 1960s, ESs were introduced by Rechenberg and Schwefel [80] in Berlin, Ger-

many. They were considered as the search heuristic technique for solving optimiza-

tion problems in the area of engineering. The genotype of solutions is represented

by a vector of real values. The earliest evolutionary strategies contained only a

single individual in the population, with the solution competing in each generation

for survival with a single offspring. This scheme is called (1+1)-ES. The idea of

Rechenberg was extended by Schwefel, who applied recombination and more than

one solutions in the population, and determined a better comparison of ESs with

previous optimization approaches. There are different versions of multi-membered

ES or steady state ES, which are called (µ+ λ)−ES and (µ, λ)−ES. The general

framework of multi-membered ESs is given in Algorithm 1.

18

Chapter 2. Global Optimization and Evolutionary Algorithms

Algorithm 1 The basic structure of evolution strategies

1: t := 0;
2: Initialize a population of µparent individuals;
3: Evaluate the fitness of each individual in the population;
4: while t < max gen do
5: Select and recombine parents from the population to generate offspring µchild;

6: Mutate the offspring µchild;
7: Evaluate the offspring µchild;
8: Select the best µparent solutions from the offspring and parent populations

according to the quality of solutions;
9: Use the selected µparent offspring as parents for the next generation;
10: t := t+ 1;
11: end while

2.3.2 Evolutionary Programming (EP)

In [36], Fogel et al. first proposed the concept of EP, which is a stochastic technique

for solving optimization problems. EP has been successfully applied in the field of

numerical and combinatorial optimization problems [33–35]. The main motivation

behind EP is to generate an alternative scheme to artificial intelligence. The different

representations used in the traditional EP are tailored to the problem domain (see

Spear et al. [95]). For example, each individual of the population can be a real-

valued vector, which is specifically for real valued optimization problems, an ordered

list, which is applied for solving the travelling salesman problem, or a finite state

machine, which is used for graph applications.

After randomly generated population, the general selection scheme is used to choose

all the solutions from the population to be the N parents. Then, the N parents

are mutated to give the life of new offspring. These offspring are measured and N

survivors are selected from the 2N solutions to form the next generation.

19

Chapter 2. Global Optimization and Evolutionary Algorithms

Algorithm 2 The general framework of evolutionary programming

1: t := 0;
2: initialize P (t);
3: evaluate P (t);
4: repeat
5: select P (t) from P (t− 1)
6: alter P (t)
7: evaluate P (t)
8: t := t+ 1;
9: until The stop criterion is satisfied (or maximum number of generations)

2.3.3 Genetic Algorithms (GAs)

GAs are powerful search methods, which were inspired by Darwin’s theory of sur-

vival of the fittest. GAs were first introduced by John Holland in 1960s in USA.

Generally speaking, GAs have been successfully applied for solving many optimiza-

tion problems due to the properties of easy-to-use and robustness for finding good

solutions to difficult problems [39]. A set of individuals of population is first ini-

tialized and then evolved from generation to generation by an iterative process of

evolution, selection, recombination, and mutation. The size of the population is usu-

ally constant during the evolutionary process. The basic structure of simple GAs is

presented in Algorithm 3. The detailed description of GAs will be presented in the

following section of this chapter.

2.3.4 Genetic Programming

In the mid eighties of the last century, John Koza first invented the idea of genetic

programming (GP), which is a branch of EAs. It uses evolutionary processes to

automatically generate programs. GP is a growing popular approach in the commu-

nity of EAs. The representation of each GP solution is a tree structure that consists

of functions (sub-trees) and values (leafs). The tree is composed of sub-trees. Each

sub-tree is evaluated by resulting the measurement of its sub-trees. The whole tree

20

Chapter 2. Global Optimization and Evolutionary Algorithms

Algorithm 3 The general framework of GAs

1: Input: A problem instance
2: t := 0;
3: Randomly generate an initial population P (t);
4: Evaluate the fitness of each individual of P (t);
5: while t < max gen do
6: Selection P (t);
7: Crossover P (t);
8: Mutation P (t);
9: Evaluation P (t);
10: t := t+ 1;
11: end while
12: Output: A (sub-optimal) solution

represents a single function, which can be evaluated according to a left-most depth-

first manner. GP is almost similar to GA except the variation operators, which

are determined according to a tree representation. The sub-tree crossover operator

is used by taking randomly chosen complete sub-trees in two parent solutions and

swapping them between the parents.

2.3.5 Particle Swarm Optimization

Particle swarm optimization (PSO) was first proposed in 1995 [27, 57]. PSO is a

mechanism applied to explore the search space for the particular problem to find the

settings or parameters required to maximize a specific objective, which is inspired

from the social behaviour of organisms, due to the attributes of bird flocking and

fish schooling. In PSO, a number of particles “fly” in the search space. Each particle

in the swarm keeps track of the best position achieved by itself so far and the best

position achieved by its topological neighbors in order to share the information with

its topological neighbors and move toward the best position found by its neighbors.

Different models have been suggested to increase the success rate of finding the

global optima. The gbest and lbest models are specified for the original PSO. In the

21

Chapter 2. Global Optimization and Evolutionary Algorithms

gbest model, all the particles are neighbors to each other, which share information

globally. Particles converge quickly with the help of the gbest mechanism because

they are all attracted to a global best position found so far by the whole swarm.

However, this model may get stuck to local optima due to the loss of diversity in the

swarm. On the contrary, in the lbest model, only a fixed number of particles share

information with a particle, and convergence occurs slowly as compared to gbest.

Therefore, the lbest has a greater chance of finding the global optimum than the

gbest model. These two models give different performances on different problems.

PSO has become a popular and efficient heuristic optimization tool for solving op-

timization problems. Recently, many researchers have focused their attention on

this promising research area. The general concept regarding the PSO is that: it

gives better results in a faster and cheaper way as compared to other techniques.

There are few parameters to adjust in the PSO, which is the second reason to mo-

tivate researchers to use this tool to solve optimization problems. There are many

applications using one version of PSO with slight variations.

As mentioned above, PSO stimulates the social behaviour of organisms, such as

bird flocking and fish schooling. Before presenting the original PSO algorithm, the

scenario presented by Hu in [52] is shown as follows:

“a group of birds are randomly searching food in an area. There is only

one piece of food in the area being searched. All the birds do not know

where the food is. But they know how far the food is in each iteration.

So what’s the best strategy to find the food? The effective one is to

follow the bird which is nearest to the food.”

Ideally, PSO acquires information from scenario and apply it to solve optimization

problems. In PSO, the “bird” represents the solution in the search space of the

problems. Each solution of the swarm has fitness value, which is measured by the

22

Chapter 2. Global Optimization and Evolutionary Algorithms

objective function at its current location which needs to be optimized, and has

velocity, which guides in flying the particle.

There are several major versions of PSO algorithms. The following version, which

is modified by Shi and Eberhart [82], is used in this thesis. The PSO algorithm

maintains and evolves a population of particles. Each particle is represented by a

position and a velocity, which are updated as follows:

~v′i = ω~vi + η1r1(~pi − ~xi) + η2r2(~pg − ~xi) (2.1)

~x′
i = ~xi + ~v′i (2.2)

where ~x′
i and ~xi represent the current and previous positions of particle i, ~vi and

~v′i are the previous and current velocity of particle i, ~pi and ~pg are the best-so-

far position of particle i and the best position found in the whole swarm so far,

respectively. ω ∈ (0, 1] is an inertia weight which determines how much the previous

velocity is preserved, η1 and η2 are acceleration constants, and r1 and r2 are random

numbers generated from the interval [0.0, 1.0]. The basic structure of the original

PSO algorithm is shown in Algorithm 4.

There are some advantages of PSO for solving optimization problems: 1) it is easy

to explain; 2) it is simple to implement; 3) it has a fast convergence speed; 4) it

is robust to solve different problems by tuning parameters. However, on the other

hand, there are some disadvantages of using PSO techniques: 1) It is easy to be

trapped into local optima due to the fast convergence speed; 2) there is no global

level information sharing approach; 3) there are relatively fewer application areas

for PSO than for other EAs.

23

Chapter 2. Global Optimization and Evolutionary Algorithms

Algorithm 4 Basic PSO Optimizer

1: Initialize a population of particles by randomly generating the position and
velocity for each particle;

2: Evaluate the fitness of each particle;
3: repeat
4: for i := 0 to popsize do
5: update particle i according to Eqs. (2.1) and (2.2);
6: if f(~xi) < f(~pi) then
7: ~pi := ~xi;
8: if f(~xi) < f(~pg) then
9: ~pg := ~xi;
10: end if
11: end if
12: end for
13: until A termination criterion is satisfied (e.g., the maximum number of genera-

tions is reached)

2.4 GAs: Key Components

In Section 2.3, we presented a brief overview of GAs. Now, it is necessary to fully un-

derstand and examine GAs and their key components in detail. GAs are population-

based meta-heuristic approaches that maintain and evolve a population of solutions

based on Darwin’s theory of survival of the fittest [39]. The flowchart of traditional

GAs is shown in Figure 2.4. GAs start with a population of randomly generated

candidate solutions. These solutions are encoded with a fixed length representation

and different encoding schemes are available in the literature. The solutions are eval-

uated by an objective function, which produces the fitness value of each solution.

Then, the selection approach is applied to identify the parents based on the fitness

values to reproduce offspring. The selected parents are paired together to exchange

genes via crossover, followed by mutation to create new offspring. Once all of these

steps are completed, the GA enters the next generation. This process is continued

generation by generation until a certain termination condition is satisfied.

24

Chapter 2. Global Optimization and Evolutionary Algorithms

Figure 2.4: Flowchart of a conventional genetic algorithm

2.4.1 Representation of Solutions

When applying GAs to solve a given problem, we first need the determine how to

represent a solution to the problem in hand and the representation scheme deter-

mines the search space, which should contain all possible solutions for the given

problem. Genome is another similar name of the search space and the elements are

called genotypes. In nature, genotypes include the whole hereditary information of

an organism encoded in the DNA. DNA is the string of base pairs of genetic in-

formation which determines phenotypical properties of the creature it belongs to.

Each point of genomes in GAs represents a string or linear sequence of certain data

type [111]. These genotypes are also called solutions due to the properties of linear

structure. Generally speaking, these solutions are used in GAs, which are strings of

same data type, for example, bits or real numbers. Different encoding schemes are

25

Chapter 2. Global Optimization and Evolutionary Algorithms

available in the literature. Here, we explain two most important and widely applied

representation schemes and summarize a few of their main properties. In this thesis,

it is very hard to re-examine all representation which have been used. A detailed

description of different types of representations can be found in [10].

2.4.1.1 Binary Representation

In GAs, one of the most common ways of encoding a solution is based on binary

representation. In this case, the search space in GAs can be denoted by Sg = {0, 1}
l,

where l is the fixed length of a binary string xg = (xg
1, x

g
2, ..., x

g
l) ∈ {0, 1}

l. Some-

times, the binary representation of solutions are complemented with the application

of gray coding during the genotype-phenotype mapping. Gray coding is used to

increase the causality and ensure that small changes in the genotype will also lead

to small changes in the phenotype [18].

2.4.1.2 Real-Valued Representation

This representation scheme uses real-valued solutions. The search space Sg is de-

noted as Sg = R
l, where l represents the length of real-valued chromosome. Many

different real-world problems can easily be represented by real-valued solutions and

corresponding genotype-phenotype mappings.

2.4.2 Objective Function

In GAs, the fitness function is usually the same as the objective function, but is

problem dependent. Each individual is evaluated by an objective function, which

not only determines the quality of the solution but also corresponds to how much

26

Chapter 2. Global Optimization and Evolutionary Algorithms

the individual is close to the optimal solution. The fitness of a solution is usually

the value of the objective function for that solution.

2.4.3 Selection Schemes

The selection approach is the process to select the individuals from the population

probabilistically according to their relative fitness. These individuals are chosen for

reproduction, where a number of offspring are produced by their parents. The ques-

tion is how to select the individuals from the population. There are different number

of selection approaches available in the literature to determine the individuals from

the population, for example, the roulette wheel selection, rank selection, tournament

selection, and a few others [41, 85].

Figure 2.5: Roulette wheel selection.

The roulette wheel selection is the simple selection scheme typically used in conven-

tional GAs. In this scheme, a commonly applied reproductive operator is the fitness

proportionate selection operator. Here, an individual is chosen from the current

27

Chapter 2. Global Optimization and Evolutionary Algorithms

population according to a probability proportional to its relative fitness. Figure 2.5

shows a population of four individuals. Each individual is assigned a probability

of being selected by using the fitness of that individual, divided by the sum of the

fitness of individuals in the population. For example, the probability of the first indi-

vidual to the fourth individual is 0.1, 0.1, 0.2, and 0.6, respectively. These candidate

solutions are diagrammatically shown in Figure 2.5 with their associated probabili-

ties. From Figure 2.5, it can be analysed that a better solution has a higher chance

to be selected. The roulette wheel is spun every time when a parent is needed. In

each spin, an individual is selected as a parent if the wheel’s marker falls in the area

represented by that individual.

There are some disadvantages of using the roulette wheel selection approach. In

[41, 85], some problems regarding the roulette wheel selection were discussed. When

there are large differences between the fitness values among the individuals, then

the individuals with a higher fitness will have very large chances to be selected. For

example, if the fitness of a candidate solution is 90% of the sum of the fitness of

all individuals, then the rest of the individuals will have only 10% of chance to be

selected. In this case, the premature convergence (i.e., whole population of EAs

enters into the status where all solutions becomes similar due to the loss of diversity.

When this happens, it is very difficult for an algorithm to make any further progress

in the searching of better solutions) problem may occur since the selection causes the

search to narrow down too quickly, and due to the fast convergence, the algorithm

may get stuck into local optimum quickly.

2.4.3.1 Rank Selection

Baker suggested the idea of rank selection for GAs. This scheme helps minimizing

the problems in the roulette wheel selection. In rank selection, individuals are sorted

according to their measured fitness values, and they are ranked by their fitness as

28

Chapter 2. Global Optimization and Evolutionary Algorithms

follows: the first individual is considered as the worst and the last individual as the

best. Then, each individual is assigned a probability for selection according to their

rank. The selection probability of individual i is calculated as follows:

Pi =
1

N
(η− + (η+ − η−)

i− 1

N − 1
); i ∈ {1, ..., N} (2.3)

Here η−

N
and η+

N
represent the probability of the worst and best individuals to be

selected. The size of population is constant, both conditions (η+ = 2 − η−) and

η− ≥ 0 must be satisfied. Here the important point is that every individual has a

distinct rank, such that, if all the individuals have the same fitness value, they still

use different selection probabilities.

2.4.3.2 Tournament Selection

The tournament selection method randomly chooses t individuals, where t repre-

sents the tournament size, from the population and keep the best solution for fur-

ther evolutionary processing, and remain repeated until the mating pool is filled. In

common practice, the tournament technique is applied only on two individuals (bi-

nary tournament) but larger tournament sizes can also be used for picking candidate

solutions. A value of t > 2 can be used in order to increase the selection pressure of

the tournament selection.

2.4.4 Crossover Operators

Generally speaking, crossover is considered as a basic genetic operator in GAs, which

exchanges genetic information between two parents to generate the offspring without

altering the gene values. It is different from mutation because it does not create new

genes but combines the elements of individuals to form new solutions. Combining

29

Chapter 2. Global Optimization and Evolutionary Algorithms

Figure 2.6: One-point crossover

the genetic information can be accomplished by several different crossover schemes;

some of them are explained below.

2.4.4.1 One-Point Crossover

The simplest crossover operator is the one-point crossover, where two mating indi-

viduals are cut once at a specific point and gene values are exchanged after the cut

point. One-point crossover is illustrated by Figure 2.6. Here, a point is randomly

selected on the mating parents and bits after that point are exchanged between

parents. It can be observed that the gene values next to the crossover point are

combined to generate two new offspring.

2.4.4.2 Two-Point Crossover

After one-point crossover operator, several crossover operators have been proposed,

where two or more cut points are applied. The advantage of using more than one cut

30

Chapter 2. Global Optimization and Evolutionary Algorithms

Figure 2.7: Two-point crossover.

point is that the problem space can be searched more properly. Two-point crossover

randomly selects two points on the parents and combines segments between the two

mated individuals, as illustrated in Figure 2.7, where the dotted lines represent the

crossover points. Hence, the genetic material between these points are exchanged

between the individuals to generate new offspring for the next population.

2.4.4.3 Uniform Crossover

Uniform crossover is a different approach from the multi-point (N-point) crossover.

Each bit in the offspring is generated via swapping the associated bit from both

parents based on a randomly created binary crossover mask of the same length as

the parents. If the bit value is 1 in the crossover mask, then the gene from the first

parent is copied into the bit for the offspring; otherwise, the gene from the second

parent is copied to create the first child. For the second child, if the bit value is 1

in the crossover mask, then the gene from the second parent is copied into the bit

for the offspring; otherwise, the gene from the first parent is copied. For each pair

31

Chapter 2. Global Optimization and Evolutionary Algorithms

Figure 2.8: Uniform crossover.

of parents in the population, a new crossover mask is randomly generated. Hence,

the offspring created by the uniform crossover include a mixture of genes from each

parent. Figure 2.8 shows a uniform crossover operation.

2.4.5 Mutation

Mutation has been conventionally considered as a background operator, which ran-

domly modifies gene values during the evolutionary process. We quote Goldberg’s

remarks regarding mutation from his book [39] as follows.

“By itself mutation is a random walk through the search space. When

used sparingly with reproduction and crossover, it is an insurance policy

against premature loss of important notions.”

Mutation plays an important role in recovering lost genetic materials as well as for

randomly disturbing genetic information. It works as an insurance policy against

the permanent loss of genetic material. Mutation helps jump out from local optima

and maintain the diversity in the population. Many different types of mutation

operators for different kind of representations were developed in the literature [85]

pp 56-57. Bit flipping, interchanging, and reversing mutation operators are some

32

Chapter 2. Global Optimization and Evolutionary Algorithms

examples under binary representation. These mutation operators will be explained

in Chapter 4 later.

2.4.5.1 Fixed Mutation Probability

The mutation probability (pm) is an important parameter in the mutation technique.

Solution will be mutated based on pm. If new children are created instantly after

crossover without any change, there is no concept of mutation. If mutation is used,

usually, some genetic information is changed. If the mutation probability is 1.0, the

entire individual will be altered. On the other hand, If it is 0, similar individuals

will be generated.

Originally, GAs have used a fixed mutation probability to mutate the gene values of

individuals. A lot of work has been done regarding the fixed mutation probability,

aiming to find the optimal mutation probability for GAs. Different settings of a

constant mutation probability were suggested by different researchers [8, 42, 54, 65–

68]. However, if not impossible, it is very difficult to find the optimal setting of the

mutation probability. There is one problem of using a fixed mutation probability.

For example, a very high mutation probability converts a GA into a random search

procedure and a too low rate may cause the process to be trapped at local optima.

Adaptation process can tackle this problem in GAs [9].

2.4.5.2 Adaptive Mutation

Nowadays, adaptive mutation operators are commonly used in the GA for solving

optimization problems, especially for real-world problems. For adaptive mutation

operators, the mutation probability is modified during the execution of an algorithm.

There are three adaptive mutation schemes, i.e., the variable mutation where the

mutation rate is changing based on the progress of the search, the directed mutation

33

Chapter 2. Global Optimization and Evolutionary Algorithms

where the mutation probability at a particular locus is linked to some properties of

that position, and the hybrid mutation which is the combination of both variable

and directed mutation schemes. These three adaptive mutation schemes are briefly

explained in the following sub-sections.

Variable Mutation

It can be considered as an approach that prevents the premature convergence of GAs

to a local optimum. The diversity of the population may not be constant throughout

the process. At certain stages of the evolutionary process, different mutation rates

can be applied to achieve the best performance. The variable mutation determines

that in for a GAs to be effective, a higher mutation rate is necessary when the

population has converged this is another advantage of using variable mutation over

the fixed mutation probability. In other words, crossover operator is more responsible

for search during the early stage of an evolutionary process of GAs and that’s why the

mutation rate is set at a low value to allow minimal disruption. As process continues,

crossover operator becomes less successful and so mutation rate increases. Due to

this, variable mutation can be effective during the whole process of GAs to enhance

the performance.

Directed Mutation

Directed mutation does not modify the probabilistic nature but using the feed-

back information from the previous generation. This approach will deterministically

generate new solutions in the search space, in certain environment. The earlier

individuals guide new solutions toward the optimum. Hence, it is called directed

mutation.

34

Chapter 2. Global Optimization and Evolutionary Algorithms

Hybrid Mutation

Hybrid mutation is to integrate variable and directed mutation approaches at differ-

ent levels of the evolutionary process. This mutation scheme may have the ability

to escape from local optima and explore solutions in different regions in the search

space.

2.5 Computational Complexity

In theoretical computer science, computational complexity aims to classify the com-

putational problems according to their built-in difficulty.

A computational problem is typically solved by a computer, and therefore, it can be

written as a set of mathematical instructions. Typically, a computational problem

has an input and an associated solution for that input. Note that there are infinite

inputs possible, and there exists a solution for every input. In short, a computational

problem is an abstract problem that is typically solved by a computer. For example,

in the subset-sum problem, given a set of integers I (e.g., I = {2,−3, 4,−1, 5}), the

question is that “is there a subset of integers having a sum equal to zero”. The

answer to this question may be “yes” or “no” according to the input. In the above

example, it is “yes” as for {−3, 4,−1}, the sum is zero.

A problem is regarded as intrinsically difficult if it requires considerable resources, no

matter which algorithm is used. Computational complexity formalizes the computa-

tional needs of a problem by mathematically modelling the time and space required

to solve the problem.

In order to measure how difficult it is to solve a problem, it may be appropriate

to find how much time (or space) an optimal algorithm will require to solve the

35

Chapter 2. Global Optimization and Evolutionary Algorithms

problem. However, the resources required (time or space) to solve a problem may

depend on the input size. It is, therefore, reasonable to model the resources required

(time or space) to solve a problem, as a function of input size.

It is also understood that problems of the same size might have different computa-

tional requirements. For example, sorting an array of size n using the bubble sort

algorithm will require n operations if the array is already sorted, and n2 operations

if it is in the reverse order. From the complexity analysis viewpoint, the worst case

scenario is considered in such circumstances. To suggest approximate limits on the

resources required to solve a problem, it is common to model the resources required

using the Big-O family of notations [111].

Typically, before identifying the complexity of a problem, a computation model must

be considered for that problem. In [13], the authors suggested well-known models of

computation, for instance, Turing machines, random access machines, circuits, and

probabilistic models. The complexity of a specific problem may vary, depending on

which model is chosen for the associated problem. Problems can be further classified

in terms of the computational complexity into, e.g., P and NP classes.

2.5.1 Definition of the P Class

An optimization problem belongs to the class P if it can be solved within a polyno-

mial time with a deterministic Turing machine, or the running time of the problem

on a deterministic Turing machine is polynomial in length of its input instance. The

2SAT, minimum spanning tree, unary knapsack problem, linear programming, and

some other problems, are examples of the P class.

36

Chapter 2. Global Optimization and Evolutionary Algorithms

2.5.2 Definition of the NP Class

An optimization problem belongs to the class NP if the running time of the problem

on a non-deterministic Turing machine is polynomial in length of its input. For

example, the travelling salesman problem, multi-dimensional knapsack problem, 3-

SAT, and many more combinatorial problems, are the hardest problems in NP.

According to the above definition of the complexity classes, it is clearly determined

that P ⊆NP. Whether P andNP are equal or not, is still a research question so far.

For the moment, there is no any algorithm, which is able to solve an NP-complete

problem in a polynomial time on a deterministic computer. Initially, computational

complexity was just introduced for decision problems and later on for optimization

problems. Decision problems take a decision into two possible solutions: Yes or

No. Global optimization problems have a similarity to decision problems but these

problems are more difficult than decision problems. Meta-heuristics and heuristics

are applied to find the near-optimal or global optimum of candidate solutions of NP

problems in reasonable time. In this thesis, we uses GAs to solve these problems.

2.6 Statistical Test

T-test is a statistical test that is used to find out if there is a real difference between

the means (averages) of two different groups. It is sometimes used to see if there is a

significant difference in response to treatment between groups in a trial. The T-test

is probably the most widely applied statistical data analysis procedure for hypothesis

testing. Generally speaking, there are different types of t-test. The general term

used for t-test is “two-sample t-test”. It is said to be the “Student’s t-test” or the

“independent sample t-test”. For the detailed procedure of using t-test, the readers

are referred to [1–3].

37

Chapter 2. Global Optimization and Evolutionary Algorithms

The two-sample t-test simply measures whether the means of two independent popu-

lations are statistically different from each other. For example, suppose the research

hypothesis in our mind is that rich people have a different quality of life than poor

people. We conduct the survey regarding the quality of life from a random sample

of rich people and a random sample of poor people. A “null” hypothesis assumes

that there is no difference between the quality of life in rich and poor people; and

this would be assumed true until proved wrong. The t-test is used to determine

a p-value that indicates how likely we could have gotten these results by chance.

By convention, if there is less than 5% chance of getting the observed differences

by chance, we reject the null hypothesis and say we found a statistically significant

difference between the two groups.

2.6.1 One-sample t-test

One-sample t-test is used to test the mean score of a sample to a known value.

Generally, the known value becomes a population mean. For example, the teacher

of a school claims that an average student of his school studies 8 hours per day

during weekends, and we have to test the truth of this claim. In this context, the

“null” hypothesis would be that average students of the school do not study 8 hours

per day during weekends. We take a group of students of the school, say 10, and

acquire the data on how long they study during weekends. Suppose that the sample

mean of the data is 6.5 hours. On the basis of this, we can not infer any thing

directly whether the claim is to be accept or reject. In this case, we use one-sample

t-test to accept or reject the null hypothesis.

38

Chapter 2. Global Optimization and Evolutionary Algorithms

2.6.2 Paired t-test

The paired t-test is used in the situation when data is taken from the same sample

before and after the occurrence of some events. For example, paired t-test can

be used to determine the significance of the performance of students in some test

before and after the tutoring session. A “null” hypothesis assumes that there is no

difference in the performance of the student before and after the tutoring session.

Improperly applied independent tests in this case would not be able to reject the

null hypothesis.

2.7 Chapter Summary

This chapter has presented the basic concepts of optimization, global optimization,

and classification of global optimization algorithms. The chapter has described the

detailed operation of traditional GAs. GAs work on a population of individuals.

Selection, crossover, and mutation operators are utilized to the individuals of the

current population to generate new offspring for the next population. Hence, differ-

ent genetic operators play important roles in GAs. Computational complexity and

statistical test, which are relevant to the research of global optimization and EAs,

are also briefly discussed in this chapter.

39

Chapter 3

Adaptation in Evolutionary

Algorithms

Adaptation of genetic operators and relevant parameters has become a promising

area of research in evolutionary algorithms (EAs) during the last 20 years. It is

considered as a state-of-the-art approach to improve the performance of EAs for

optimization problems. In this chapter, we review the history of adaptation in EAs,

provide a comprehensive classification of adaptation in genetic operators, and pay

particular attention to adaptive mutation operators.

3.1 Introduction

Originally, the word adaptation was taken from biology. Adaptation is a basic

phenomenon in biology. It is the evolutionary process whereby a population becomes

better and better accommodated to its habitat. This process takes place over many

generations.

40

Chapter 3. Adaptation in Evolutionary Algorithms

At the beginning of evolutionary computation, EAs were considered robust with

respect to relevant parameters. However, it has been observed that the right param-

eter values do greatly affect the performance of EAs in a specific problem. Hence,

in the last two decades, setting proper values for parameters has been considered

cruicial for the good performance of EAs. Some key parameters in EAs are the

population size, representation, selection pressure, crossover probability, and mu-

tation probability. These parameters are usually called algorithm parameters or

strategy parameters. The challenge is how to set the right values for these strategy

parameters in order to achieve the best performance of EAs for a given problem.

Several researchers have proposed different constant values for key parameters in

EAs in order to find good solutions for a particular fitness landscape [8, 42, 54, 65–

68]. These parameter settings are derived from experience or by trial-and-error, and

are fixed before the execution of algorithms. However, it is very difficult, if not

impossible, to find suitable parameter setting for the optimal performance of EAs,

and the approach of finding proper parameters is also time consuming. Morevoer,

static values are enventually discouraged by the EA researchers because different

values of parameters and different operators may be suitable at different stages of

the evolutionary process of an EA. So, no common optimal parameter setting can

be found initially [115]. In order to address this deficiency, researchers have diverted

their attention towards adapting the parameters during the evolutionary process for

finding better solutions to the problem in hand.

It is a natural idea to adjust genetic operators and relevant parameters during the

execution of an algorithm. In the early days, the adaptation of crossover and mu-

tation operators was used to improve the performance of genetic algorithms (GAs)

[25, 32, 77, 96, 114]. These schemes aim to maintain sufficient diversity in the

population to prevent GAs from being trapped into local optima and determine

41

Chapter 3. Adaptation in Evolutionary Algorithms

the direction and/or magnitude of changing the parameters according to the feed-

back information from the search space. More recently, many researchers have ap-

plied different methods to integrate adaptation into different EAs [30, 61, 101, 105–

108, 110, 120, 124]. These approaches are used to solve various optimization prob-

lems. In this chapter, we focus our attention on variation operators for EAs in

general and on the mutation operators for EAs in particular.

The rest of this chapter is arranged as follows. Section 3.2 briefly reviews the history

of adaptation in EAs. The comprehensive classification of adaptation techniques is

presented in Section 3.3. Section 3.4 describes the generation consideration for

adaptation in EAs. An adaptation of the population size is presented in section

3.5. Section 3.6 describes an adaptation of representation. An adaptation of selec-

tion operators are presented in section 3.7. Section 3.8 describes an adaptation of

variation operators. Finally, the summary is given in Section 3.9.

3.2 Short History of Adaptation in EAs

A brief overview of the historical development in adaptation approaches for EAs is

presented in this section. Since the beginning of evolutionary computation, modify-

ing the values of various parameters in EAs has been a research topic.

In 1967, Rosenberg [74] suggested an approach which modifies the crossover prob-

ability during the run time in the context of evolutionary strategies (ESs). The

techniques for adapting the parameters during the evolutionary process were pro-

posed in the early 1970s by Rechenberg [72]. The 1/5 success rule is a well-known

example of parameter adaptation. It records the ratio of successful mutation to

unsuccessful mutation within a certain number of generations. If the ratio is more

42

Chapter 3. Adaptation in Evolutionary Algorithms

than 1/5, then the mutation strength should be increased; otherwise, it should be

decreased.

In [25, 26], Davis proposed an effective algorithm for updating the probabilities

of the operators according to their performance. This scheme specifies that the

modification of operator rates is associated with the fitness of solutions generated

by the operators; this has been used for steady state GAs. Julstrom [55] proposed

a slightly different idea; in his approach, an operator was chosen if the generated

child is better than its own parent. This should be done on the basis of calculation

of the reward value to the parents of the good child, which is easier than Davis’s

approach.

In [32], Fogarty proposed a dynamic mutation rate control scheme for GAs, where the

mutation rate decreases exponentially over the number of generations. Whitley et

al. [114] suggested an adaptive mutation technique, which has been shown to bring

in significant performance improvement. The probability of mutation is adapted

according to the Hamming distance between the parent individuals. The diversity

is maintained in the population by associating the similar solutions to increase the

mutation rate. It has been introduced for the steady state GA. Another adaptive

scheme was proposed by Srinivas [96], which is almost similar to the adaptive scheme

by Whitley [114]. In this approach, the procedure of varying the probabilities of

crossover and mutation takes into account the fitness values of solutions. This

technique also maintains the diversity of the population without influencing the

convergence property, which has been applied for the generational GA.

In [51], Hong et al. proposed a dynamic mutation scheme for GAs, which simulta-

neously applies several mutation operators in generating the next population. All

the mutation operators have the same initial ratio and each mutation operator is

used according to its assigned selection ratios. The selection ratio of each mutation

operator is updated based on its average progress value at every generation.

43

Chapter 3. Adaptation in Evolutionary Algorithms

A directed variation (DV) technique was proposed by Zhou and Li [125]. This

algorithm does not introduce any scheme for completely generating an average step

size but adjusts some individuals by using the feedback information from the current

population. Suppose the population is a set of N individuals X = {~x1, ~x2, · · · , ~xN}

and each individual is a K-dimensional vector, denoted by ~xi = [xi1, xi2, · · · , xiK].

We denote the minimal d-th component of the individuals at generation t by xL
d

and the maximum by xU
d , that is, the range of the d-th dimension at time t is

Rd(t) = [xL
d , x

U
d]. This range can be equally divided into L intervals. The fitness of

a nonempty interval, say, the j-th interval of the d-th dimension, is defined as:

Fdj =
N
∑

i=1

I(xid ∈ Bdj)fNorm(~xi) (3.1)

I(xid ∈ Bdj) =

1, if xid ∈ Bdj

0, otherwise
(3.2)

where Bdj denotes the range (lower and upper bounds) of the j-th interval of the

d-th dimension, N represents the population size, I(.) is the indicator function, and

the fitness of each solution vector ~xi is normalized as follows:

fNorm(~xi) =
f(~xi)− fmin

fmax − fmin
(3.3)

where fmax and fmin represent the maximum and minimum fitness of the whole

population, respectively.

Within DV, in each generation, some individuals are selected for directed variation in

each component. DV is applied on a component, say, the d-th component, only when

the range of the d-th dimension of all solutions in the current generation decreases

in comparison with that of the previous generation, i.e., the population converges

regarding that dimension. DV works as follows. First, the fitness of interval, i.e.,

44

Chapter 3. Adaptation in Evolutionary Algorithms

Fdj , is calculated according to Eq. (3.1). Then, DV is applied for an individual

component by component, where each component of the individual may be shifted

from its current interval to a neighboring interval that has a higher fitness with a

certain probability, as described below.

In DV, for each component xid ∈ Bdj of an individual ~xi, whether it is mutated or

not depends on the value Fdj and the fitness of its neighboring intervals, i.e., Fd,j−1

and Fd,j+1. If Fdj is greater than both Fd,j−1 and Fd,j+1, then DV is not applied

to the d-th component of any selected individuals with xid ∈ Bdj . If Fdj is in the

middle, without loss of generality, suppose Fd,j−1 > Fdj > Fd,j+1, the probability of

directed variation, PDV
dj , can be calculated as follows:

PDV
dj = 1−

Fdj

Fd,j−1
(3.4)

With this probability, xid is replaced with a number, randomly generated between

xid and the center of Bd,j−1. If Fdj is smaller than both Fd,j−1 and Fd,j+1, then either

Bd,j−1 or Bd,j+1 is randomly selected with an equal probability and xid moves towards

the selected interval, i.e., replaced with a number randomly generated between xid

and the center of the selected interval.

A statistics-based adaptive non-uniform mutation (SANUM) operator was intro-

duced for GAs by Yang [118]. The basic idea of SANUM is to make use of feedback

information implicitly contained in the population to explicitly direct the muta-

tion operation. Uyar et al. proposed an asymmetric gene-based adaptive mutation

(GBAM) technique [84]. In GBAM, each gene locus has two different mutation

probabilities: pm1 which is used for the loci having the value 1 and pm0 which is

used for the loci having the value 0. The probabilities of pm1 and pm0 are automat-

ically updated based on the feedback information from the search space, according

to the relative success or failure of those chromosomes having a 1 or 0 at that locus

45

Chapter 3. Adaptation in Evolutionary Algorithms

for each generation. Yang and Uyar [120] suggested another gene-based adaptive

mutation with fitness and allele distribution correlation (GBAM FAD), where the

mutation rate of each gene locus was adaptively modified based on the correlated

feedback information from the search process, according to the relative success or

failure of the solutions.

Recently, an adaptive operator selection scheme was proposed by Thierens [101, 102],

who suggested an adaptive pursuit strategy for allocating operator probabilities. It

pursues the optimal operator that currently has the maximal estimated reward. In

order to do this, the algorithm increases the selection probability of the optimal

operator and decreases the probabilities of all other operators. The pursuit algo-

rithm was inspired from the field of learning automata, which are rapidly convergent

algorithms for the learning automata introduced by Thathachar and Sastry [100].

In [24], the authors suggested an adaptive operator selection approach based on the

well-known Multi-Armed Bandit (MAB) paradigm in order to combine the MAB

concept with the statistical Page-Hinkley test, which has been applied in dynamic

environments and is efficient in terms of detecting changes in time series.

3.3 Taxonomy of Adaptation in EAs

Several researchers have introduced different terminologies on the adaptation of

genetic operators and their parameters for EAs [5, 28, 91, 93]. Generally speaking,

there are two classification criteria: the type of adaptation (i.e., how a parameter

is modified) and the level of adaptation (i.e., where the changes occur). Below,

we first introduce the classification proposed by Angeline [5], and then present the

classification proposed by Eiben et al. [30], which extends and broadens the idea by

Angeline [5].

46

Chapter 3. Adaptation in Evolutionary Algorithms

According to Angeline’s classification [5], based on the type of adaptation, adaptive

EAs can be categorised into two distinct classes of approaches: one with absolute

update rules and the other with empirical update rules. For the first category, with

absolute update rules, the feedback information over a number of generations or

populations is calculated. Then, based on the feedback information, some determin-

istic rules regarding when or how to alter the strategy parameters are determined.

Rechenberg’s 1/5 rule [72] is a typical example of this category. For the second

category, with empirical update rules, the strategy parameters in EAs are modified

via self-adaptation. The parameters to be modified are encoded into chromosomes

and further undergo the process of genetic variation. Hence, the parameters should

be able to self-adapt themselves. Some researchers have done a lot of work regarding

this self-adaptation approach [16, 63, 79, 92].

Later in 2007, Eiben et al. [30] introduced a taxonomy of parameter setting ap-

proaches for EAs, as shown in Figure 3.1. According to this taxonomy, parameter

setting is divided into two main sub-fields: parameter tuning and parameter con-

trol. Parameter tuning (also called static adaptation) means to set suitable values

for parameters before the run of EAs. These parameters will remain constant dur-

ing the execution of EAs. Static adaptation is done by an external process (e.g.,

a person or a program) for selecting appropriate values. Many researchers have

suggested well-known heuristics to set different parameters in order for EAs to find

good solutions for a problem [39, 42, 54, 66–68, 76]. These values are derived from

experiences or via trial-and-error methods. In addition, it has been empirically and

theoretically shown that different operators as well as different values of parameters

may be optimal at different stages of the evolutionary process [7, 9, 25, 47]. The

term of parameter control is applied to categorize algorithms where strategy param-

eters are adjusted using various methods during the execution of EAs. There are

three different distinct sub-classes, which are determined according to the adaptation

47

Chapter 3. Adaptation in Evolutionary Algorithms

Figure 3.1: Global taxonomy of parameter setting in EAs.

mechanism. They are deterministic, adaptive, and self-adaptive mechanisms.

Deterministic adaptation adjusts the values of parameters according to some deter-

ministic rule without using any feedback information from the search space. Ex-

amples of this approach, like the time-varying modification of the probability of

mutation, are shown in [50]. The adaptive approach modifies the algorithm parame-

ters using the feedback information from the search space. This information is used

as an input in the adaptive approach to determine the direction or magnitude of

changes for the algorithm parameters. Several examples of this type of adaptive

adaptation methods are available in the literature [25, 30, 32, 55, 72, 114].

In the case of self-adaptive adaptation, the parameters are altered by EAs them-

sleves. Strategy parameters to be modifed are encoded into chromosomes and

undergo variation with the rest of the chromosome. The basic concept of self-

adaptation is better explained in [8].

According to [5, 30], both classification approaches have suggested three distinct

levels at which adaptation can take place in adaptive EAs. These levels of adapta-

tion can be applied with each type of adaptation. The first one is the population

level adaptation, in which strategy parameters are modified globally for the whole

population and are applied on all individuals of the population. In general, this

48

Chapter 3. Adaptation in Evolutionary Algorithms

population level of adaptation is used with the deterministic or adaptive approach.

Many researchers have proposed various well-known and popular parameter control

schemes based on the population level adaptation [23, 25, 55, 84, 118, 120]. The

second level is the individual level of adaptation, where the strategy parameters are

modified for each individual of the population independently. There are also various

well-known approaches suggested to alter the algorithm parameters regarding the

individual level adaptation [8, 48, 77, 90, 93, 96]. Finally, the third level of adapta-

tion is the component-level, where strategy parameters are changed for some gene

or component of an individual in the population. Some examples of this level of

adaptation have been introduced in the literature [8, 84, 87–89, 118, 120].

3.4 General Considerations for Adaptation in EAs

In order to apply the adaptation approach in EAs, there are several key aspects to

be studied, which are described as follows:

1. What components/parameters are changed?

The parameter control techniques are categorized in the perspective of what

components or parameters are changed. It is necessary to agree upon the set

of all main components of an EA; which is a hard task itself. In this context,

each of the following components can be parameterised in EAs.

• population (size, topology)

• Represenation of solutions

• Genetic operators and their probabilities

• Selection scheme and some others.

49

Chapter 3. Adaptation in Evolutionary Algorithms

2. How is the change made?

Algorithm parameters are modified on the basis of various methods during the

execution of EAs. The value of algorithm parameters can be classified into one

of the three categories: deterministic, adaptive, and self-adaptive. These three

types are taken from the parameter control. These have been briefly explained

in the section 3.3.

3. Which evidence is used to make the change?

This category of parameter control classification concerns with the evidence

used for the alteration of parameter values. In general, the progress of the

search is observed, e.g., by examining the performance of operators, the diver-

sity of the population, and so on. The parameters are adjusted by using the

feedback information, such information is gathered by monitoring the process.

The evidence is further classified into two sub-fields: absolute evidence and

relative evidence. The detailed description of these sub-fields was given in

[30].

4. What is the scope/level of the adaptation?

Any component of an EA can be changed, which may affect a gene, a whole

solution, the entire population, and other component (e.g., the evolution func-

tion). This is called the scope or level of adaptation. However, the scope or

level is not an independent factor. It always depends upon the component of

the EAs where the modification may occur. The best example of this approach

is the change of the mutation step size. It may affect a gene, an individual, or

the entire population, depending on the specific implementation.

50

Chapter 3. Adaptation in Evolutionary Algorithms

3.5 Adaptation of the Population Size

In traditional GAs, the population size is usually set to a constant value during

the execution of GAs. The population size is an important parameter in GAs.

Researchers in the GA community have been studying the effect of the population

size on the performance of GAs since the early days of GAs [40]. If the population

size is too small, there is a potential problem that the population may get stuck

on local optima (or GAs may not be able to find new candidate solutions). In

this context, the diversity will be lost among the solutions and then the algorithm

can hardly make any progress. However, if the population size is too large, then

the computational cost of GAs may become very high. The standard setting (50-

100 individuals) of the population size is altered by experimenting with a number

of different sizes and selecting the right choice that gives the best performance on

different problems in hand. It is a very difficult task, if not impossible, to find the

suitable population size for the optimal performance. In addition, several researchers

have investigated that different population sizes may be optimal at different stages

of a single run of an EA.

3.5.1 Adaptive Population Sizing Approaches

There are several schemes for adjusting the population size during the run of GAs.

Lobo and Lima [61] presented a review of adaptive population sizing schemes in GAs.

Some of them are presented here in this thesis. Interested researchers can find more

adaptive populaltion sizing schemes in [61]. They raised three main motivations for

developing these techniques:

1. The recognition that an adequate sizing of the population is problem dependent

and is hard to estimate.

51

Chapter 3. Adaptation in Evolutionary Algorithms

2. The observation that a GA with an adaptive population sizing scheme may

find a better solution quality and better performance than a GA with fixed

(and poorly set) population size.

3. To make life easier for users by removing the population sizing parameter.

3.5.1.1 Population Sizing in GAVaPS

The GA with Varying Population Size (GAVaPS) was introduced in [6], which is

based on the concept of age and lifetime of an individual. When a solution is gen-

erated, either during the initial generation or through a genetic operator, its age is

set to zero. After that, for each generation that the individual survives, its age is

incremented by 1. Every individual is allotted a lifetime by birth, which corresponds

to the number of iterations that the solution is allowed to survive in the popula-

tion. An individual would die and be removed from the population when the age

of the individual exceeds its lifetime. A fraction ρ (called the reproduction ratio) of

individuals are regenerated for the current population at every generation. Every

individual of the population has the same probability of being selected for repro-

duction. Hence, there is no explicit selection operator in GAVaPS. Individuals are

chosen indirectly for the selection process through their own lifetime. An individ-

ual with above average fitness has a longer lifetime than an individual with below

average fitness. Reinforcement of best solutions should result in above-average as-

signment of their offspring in the auxiliary populations. While each individual have

an equal probability to undergo the genetic recombination, the expected number

of the solution’s offspring is proportional to its lifetime value. Therefore, solutions

keeping above-average fitness values should be allowed higher lifetime values.

Three lifetime strategies (proportional, linear, and bi-linear) have been used based

on the concept of reinforcing individuals with high fitness and controlling individuals

52

Chapter 3. Adaptation in Evolutionary Algorithms

with low fitness. There are two important parameters, i.e., MinLT and MaxLT ,

which denote the minimum and maximum lifetime value given for an individual,

respectively. These techniques rely on MinLT and MaxLT . The values of MinLT

and MaxLT were set to 1 and 7, respectively. The authors did not clearly mention

how these parameters should be set. Interested researchers can find detailed descrip-

tion of this mechanism and slightly different adaptive population size approaches in

the paper [61].

3.5.1.2 Strategy Adaptation by Competing Sub-Populations

This approach is based on the adaptation of the population size by using competing

sub-populations [78], which is inspired by the biological discovery that the species

increase (or decrease) in size, when these species are competing for the same food.

In this approach, there are a set S of competing populations, each of which runs

a different search mechanism independently. It is also possible for populations to

compete with each other at regular intervals. The concept is to increase the size of

the best acting population and decrease the size of the rest of the populations.

Quality criterion and gain criterion are two important parameters in this scheme.

The first one is based on the fitness of the best individual of the competing popula-

tion, which marks the performance of a population, and the second gives reward or

penalty of the competing populations.

An improved version of the same technique was given by the same authors, which

assigns a consumption factor γ for each population. The idea was motivated by the

recognition that different search strategies might produce the optimal performance

at different population sizes. For example, the authors investigated that mutation

performs more efficiently with small populations and the recombination operator

gives the best result with large populations. In contrast to the basic competition

53

Chapter 3. Adaptation in Evolutionary Algorithms

model, the improved version allows the total population size to alter during the

whole evolutionary process. The authors reported that the improved version of the

competition scheme is usable for locating good regions of attraction with a breadth

first search algorithm.

However, a serious disadvantage of the competing scheme is that the sum of pop-

ulation sizes of all strategies remains constant during the whole simulation. This

problem has been tackled by the improved version of the competing scheme, but it

is not clear how sensitive the algorithm is with respect to the consumption factor

γ, the loss factor applied in the gain criterion and the evaluation interval between

successive competitions.

3.5.1.3 Population Sizing in SAGA

A Self-Adaptive GA (SAGA) was suggested in [48], which considers an adaptive pop-

ulation sizing technique to specify three parallel GAs, each with its own population.

The three populations are denoted as P1, P2, and P3 with size(P1) < size(P2) <

size(P3), where size(P1), size(P2), and size(P3) denote the population size of P1,

P2, and P3, respectively. The sizes of the three populations are adjusted using some

rules in order to “optimize” the performance of the middle-sized population P2. The

initial population sizes are set to 50, 100, and 200, respectively. The range of the

population size is set to between 10 and 1000. The difference among the population

sizes should always be 20 in order to avoid population sizes to be too similar.

The population sizes are updated based on the best fitness found in each GA at

regular intervals (an epoch in the authors’ terminology) according to a number of

rules. Specially, there is a “move-apart” rule which denotes that two populations

must be moved apart if the difference of the fitness of their best solutions is within

a threshold ǫ = 10−9, by halving the size of the small population and doubling the

54

Chapter 3. Adaptation in Evolutionary Algorithms

size of the large population while moving the populations apart. This condition

also happens when all three populations are within the ǫ fitness threshold. In this

context, without any modification of the middle-sized population, the other two

populations either grow or shrink.

The following rules are applied when the best fitness of three populations of solu-

tions are not within the ǫ value:

if f(P1) < f(P2) < f(P3) : move right

if f(P3) < f(P2) < f(P1) : move left

if f(P1) < f(P3) < f(P2) or f(P2) < f(P1) < f(P3) : compress left

if f(P2) < f(P3) < f(P1) or f(P3) < f(P1) < f(P2) : compress right

where f represents the fitness of the best individual, and “move right”, “move left”,

“compress left”, and “compress right” are defined as follows:

move right : size(P1) = size(P2);

size(P2) = size(P3);

size(P3) = size(P3) ∗ 2;

move left : size(P1) = size(P2)/2;

size(P2) = size(P1);

size(P3) = size(P2);

compress left : size(P1) = (size(P1) + size(P2))/2;

compress right : size(P3) = (size(P2) + size(P3))/2;

55

Chapter 3. Adaptation in Evolutionary Algorithms

The main motivation behind these rules is to grow or shrink all the population sizes,

if the “ideal” population size seems to be out of the range of the current population

sizes; otherwise, we should adapt the size of the worst performing population so that

its size becomes closer to the size of the other two populations.

The limitations of SAGA are that there exists a maximum population size and the

time span of the epoch parameter is bounded. It is not clear why 1000 fitness

evaluations are employed for the time span (epoch).

3.5.1.4 Population Sizing in PRoFIGA

A Population Resizing on Fitness Improvement GA (PRoFIGA) was introduced by

Eiben and Valk [29]. This algorithm bears a close resemblance to a traditional

GA. In PRoFIGA, however, the population size can grow or shrink according to

whether there is an improvement of the best fitness in the population. There are

two possibilities to grow the population size: (1) there is an improvement in the

best fitness, or (2) there is no improvement in the best fitness for a ”long time”.

If both of these conditions do not hold, then the population size shirks by a small

percentage (1-5). The authors reported that the motivation of PRoFIGA is to use

large population sizes for exploration and small population sizes for exploitation.

The growth rate X for the population size is defined as follows:

X = Fincrease×(maxEvalNum−currEvalNum)×
maxFitnessnew −maxFitnessold

maxFitnessinit

where Fincrease denotes the increase factor in the interval (0, 1), maxEvalNum

is the maximum number of fitness evaluations allowed for the whole evolutionary

process, currEvalNum is the current number of evaluations, and maxFitnessnew,

maxFitnessold, and maxFitnessinit represent the best fitness value in the current

generation, previous generation, and initial generation, respectively.

56

Chapter 3. Adaptation in Evolutionary Algorithms

Although the conventional constant population size has been eliminated from PRoFIGA,

some parameters need to be assigned by the user before the execution of the algo-

rithm, which are the initial population size, minimum and maximum population

size where the algorithm must follow, the increase factor, the ”long time without

improvement (V)”, and the decrease factor. In the experiments carried out in [29],

PRoFIGA used the initial population size 100, the increase factor 0.1, V = 500, the

decrease factor 0.4, the minimum population size 15, and the maximum population

size 1000. Unfortunately, it is difficult from the user’s point of view to decide how

to set the values for these parameters in order to solve a particular problem.

The authors reported that the performance of PRoFIGA was compared with a GA

with adaptive population size (APGA) and a parameter-less GA. The performance

of these approaches is ordered in the following sequence: APGA, PRoFIGA, and the

parameter-less GA. Those claims, however, have been determined to be unjustified

[62].

3.6 Adaptation of Representation

Grosan and Oltean [43] developed an Adaptive Representation EA (AREA) for single

objective optimization problems, which uses an ever-changing alphabet for encoding

individuals. Several examples can be found from nature in order to justify AREA.

For example, DNA is an important component of human body, which contains the

basic genetic information of living organisms. Actually, DNA is a string of nu-

cleotides over the alphabet {T (thymine), C (cytosine), G (guanine), A (adenine)}.

Similarly, simple EAs also use strings over the alphabet {0, 1}, which consists of

binary values.

57

Chapter 3. Adaptation in Evolutionary Algorithms

However, if a small size (e.g., 2) is used for nucleotide, the length of the human

DNA (in this case, the diversity will be lost) can be very large. The solution can

be significantly changed by applying too small mutation on it and the acquired

individual can hardly survive in future generations. If a large size (10) is considered

for nucleotide, the length of the human DNA (same above problem) could have been

very small. In this case, the mutated individual can create a significant change and

the diversity of the population increases.

The main idea behind this approach is to encode each solution of the population

over different alphabets. In addition, the representation of a particular individual is

adaptively changed during the search process as an effect of the mutation operator.

In order to address the representation of solutions, each AREA individual contains

two variables (x, Y), where x is a string encoding component variable and Y deter-

mines the alphabet applied for encoding x. Y is an integer number, Y ≥ 2, and x is

a string value from the alphabet {0, 1, ..., Y −1}. Each solution has its own encoding

alphabet. The alphabet of x can be altered during the evolutionary process. An

example of an AREA solution is defined as follows: C = (231054, 6). An improved

version of AREA was introduced with multi-objective optimization problems in [69].

3.7 Adaptation of Selection Operators

The selection operator is one of the main components in EAs, which selects the indi-

viduals from the current population to form a mating pool. Chosen individuals from

the population may undergo recombination operations to generate new offspring to

make next population.

The selection pressure is the critical parameter in the selection mechanism, which

can be used to control the convergence rate of EAs, with a higher selection pressure

58

Chapter 3. Adaptation in Evolutionary Algorithms

resulting in a higher convergence rate. However, if the selection pressure is too high,

there is a potential problem: the high convergence rate may lead to the lose of

diversity of the population, and hence, the EA gets stuck on local optima. In this

situation, the algorithm can not make any further progress. However, if the selection

pressure is too low, the convergence rate will be slow and it will take the algorithm

unnecessarily longer to find the optimal solution. These problems were reported in

[64] and it also analyzes the effect of noise on different selection approaches for EAs.

To address the above problem regarding the selection operator, some kind of adap-

tation of the selection pressure is highly desirable. Two EAs have been recently

introduced to incorporate adaptation of selection into them [44, 71], which are de-

scribed below.

3.7.1 Adaptive Selection Routine for EAs

Pham and Castellani [71] proposed an adaptive selection routine for EAs, which

adjusts the stochastic noise level in the determination of the mating pool in order

to regulate the selection pressure. This approach is composed of two main levels,

namely noise addition and mating.

Let us start from the first level, in which a noise addition procedure is used to create

two ordered lists of selected individuals. This procedure is based on the following

equation:

m(i) = f(i) + (fmax − µf)× rand (3.5)

where m(i) denotes the mating chance of individual i, f(i) is the fitness of indi-

vidual i, fmax and µf represent the maximum and average fitness of the solutions,

respectively, and rand is a random number in the range (0, 1), which serves as the

noise factor. These solutions are ordered regarding their mating chance, and the

59

Chapter 3. Adaptation in Evolutionary Algorithms

best fitness half is contained into a temporary list A according to its ranking order.

Another mating chance is measured for each individual by using the above equation

once again. The population is marked in the descending order of the mating chance

of individuals, and the top half is moved into a second temporary list B.

The main idea behind this level is to adjust the selection pressure according to the

progress of search and to speed up the convergence of the population towards the

global optimum. At the early generations, the difference (fmax − µf) is large and

the noise factor plays an important role in the determination of the mating chance.

The major consequence of population convergence is the loss of diversity since the

population converges somewhere in the search space and all individuals are similar.

As the population converges and the diversity of the population is reduced, the

difference (fmax − µf) becomes increasingly small. In this context, the stochastic

noise factor in the above equation decreases and the search becomes increasingly

deterministic and rapid.

In the second level, based on the two lists already generated in the level one, individ-

uals are selected for reproduction in the following way: the first chromosome of list

A is combined with the last element of list B, and so on, while both lists are scanned

in the opposite direction. The motivation of this level is to gradually improve the

average fitness of the population, preventing potentially similar individuals from

pairing up, and avoiding the premature convergence.

3.7.2 An Adaptive Tournament Selection

Gwozdz and Szlachcic [44] developed an adaptive tournament selection approach for

EAs for the capacitated vehicle routing problem. This technique is used to make the

compromise between the potential selective pressure and the wide search range of

solutions. The tournament size is updated during the evolutionary process according

60

Chapter 3. Adaptation in Evolutionary Algorithms

to the index p > 0, where p ∈ {2, 3, ..., pI}. The number of pi solutions chosen in one

tournament may change. The number n of tournament sizes is mostly less than the

number of iterations I. After a fixed number of iterations m, where m = xI/ny, the

tournament size increase according to {p1, p2, ..., pn}, where pi < pi+1 for 1 ≤ i ≤ n.

The motivation of this mechanism is the possibility of controlling the selective pres-

sure during the whole running process of the algorithm. In the initial phase of the

running process, a small tournament size provides the possibility of searching in a

wide area. On the basis of earliest generations, the search area becomes narrower

when we increase the tournament size, which allows us to accelerate the convergence

of the adaptive selection EA.

3.8 Adaptation of Variation Operators

Variation operators and relevant parameters greatly affect the performance of EAs.

However, selecting the suitable operators and parameters is a difficult task and

there are no general guidelines to help determine an optimal configuration for these

operators and parameters. In common practice, they are determined by trial-and-

error experiments for a particular domain in advance, and then are fixed during

the running of EAs. Clearly, this type of constant parameter setting technique

is computationally expensive. If the parameters are inappropriately set, then it

can lead to sub-optimal performance. The optimal parameter settings might be

different with the evolutionary process of EAs. Due to this reason, researchers

have focused their attention towards the adaptive methods. They have considered

adaptive algorithms as a means of enhancing the performance of EAs [25, 30, 32,

51, 61, 96, 102, 114, 116–118, 120].

61

Chapter 3. Adaptation in Evolutionary Algorithms

3.8.1 Adaptation of Crossover Operators

Since the beginning, the crossover operator is considered as the primary genetic

operator in GAs. Different authors have long been suggesting approaches of in-

corporating adaptation into crossover operators in GAs. Yang [116] suggested three

distinct levels where adaptation in crossover operators can occur from top to bottom.

These levels are briefly described as follows.

3.8.1.1 Adapting the Type of Crossover

In the top level adaptive approach, Davis [25] proposed that the GA might not

use both crossover and mutation for selected parents; operators can be selected

with fixed probabilities from a set of operators. In [31], the authors introduced an

adaptive technique, where if the population is converged, then the population would

be partially or fully randomized except the best solutions; during this re-start process

the population switches between two crossover operators based on their performance.

In [93], one extra tag bit is added with each individual, which co-evolves with the

individual. Crossover operator is selected on the basis of the tag bit. If both the tag

bits are 1 for both the selected solutions, then the two-point crossover is applied; if

both are 0, then the uniform crossover is applied; otherwise, a crossover operator is

randomly chosen between the two-point and uniform crossover and is applied.

3.8.1.2 Adapting the Rate of Crossover

In the medium level, a different Cost Operator Based Rate Adaptation (COBRA)

approach was suggested by Corne et al. [23] for modifying the rates of applying

operators for solving timetabling problems. According to the COBRA approach,

the GA statistically swaps assigned i constant probabilities between i operators by

62

Chapter 3. Adaptation in Evolutionary Algorithms

assigning the highest probability to the operator which obtains the greatest growth

in fitness. In [103], the authors extended the idea introduced in [23], by encoding

each individual’s crossover and mutation probabilities as real numbers (normalized

to 1) that are applied by and co-evolve with the individual.

3.8.1.3 Adapting the Crossover Position or Swapping Rate in Each Lo-

cus

In the final bottom level, the position of crossing or exchanging probability of each

site is altered during the evolutionary process of GAs. The notion of recombina-

tion distribution was introduced by Booker [17], which determines the probability

of all achievable recombination events. Distinct operators represent different proba-

bility distributions. In [113], White and Oppacher introduced an adaptive uniform

crossover scheme, where each site of a solution in the population is increased au-

tomatically at each bit position; it describes the relation to a crossover probability

for that bit location. A different mechanism was applied in the Statistics-based

Adaptive Non-Uniform Crossover (SANUX) method [116], which uses the feedback

information of the allele distribution in each locus to adaptively modify the crossover

operation.

3.8.2 Adaptation of Mutation Operators

After the consideration of the crossover operator, the mutation operator is another

important variation operator in EAs. Holland [50] proposed mutation as a kind

of background operator for GAs that randomly alters bits of a solution with an

associated small mutation probability per bit. It can also be a key variation operator

in GAs to explore the seach space [94]. However, in the mutation operator, it

has been investigated that the mutation rate is not only based on problem being

63

Chapter 3. Adaptation in Evolutionary Algorithms

optimized but also on the search space and feedback information from the current

state of search [9]. A lot of work has been done on adaptation in mutation for GAs

[8, 23, 25, 28, 30, 32, 55, 103, 118]. Some learning rules for choosing the operator

have been mentioned in the literature [98, 101, 102]. There are two different levels

at which adaptation can occur in mutation operators, as suggested by Yang [116].

3.8.2.1 Adapting the Probability of Mutation

Different adaptive mutation approaches which belong to the top level were proposed

by researchers [55, 101, 102, 105, 107, 108]. These techniques adjust the probability

of mutation during the running of a GA. In [55], Julstrom introduced an adaptive

scheme, which adjusts the ratio between mutation and crossover according to their

performance. An adaptive GA was proposed in [96], in which the probabilities of

mutation and crossover are adapted depending on the fitness values of the individ-

uals. This technique provides two important factors of maintaining diversity in the

population and sustaining the convergence capacity of GAs.

A dynamic mutation GA (DMGA) was introduced in [51], which simultaneously

uses several mutation operators in solving optimization problems. Each mutation

operator is used according to its progress ratio. The mutation operators that result

in higher fitness values of children have their progress ratios increased. The mu-

tation operators that result in lower fitness values of children have their progress

ratios decreased. Here, the pursuit algorithm was originally taken from the learn-

ing automata, which were introduced by [100] and are a class of rapidly converging

algorithms. The learning automata represent adaptive allocation rules that adapt

the probabilities of selecting operators in order to pursue the selected operator that

currently has the maximal estimated rewards. This approach increases the selection

probability of that operator and decreases the probabilities of all other operators

[102].

64

Chapter 3. Adaptation in Evolutionary Algorithms

In [107], the authors proposed to dynamically adapt the probabilities of genetic

operators according to the global behaviour of the population for each generation.

There are two main components mentioned in the proposed scheme, which are as-

signing rewards to operators based on the fitness improvement of the solutions and

updating the probabilities of these operators at each generation. Vafaee and Nelson

[105] developed a novel approach which adaptively updates mutation rates in GAs.

This approach integrates the basic statistical framework of biological evolutionary

models into the framework of EAs. Adapting the mutation rate is performed by

using these evolutionary models.

3.8.2.2 Adapting the Mutation Rate of Each Locus

The bottom level of mutation adaptation approaches modifies the probability of

mutation during the evolutionary process of a GA, uniformly or non-uniformly, over

the loci. Bäck [8] suggested a self-adaptive mutation approach. In this mechanism,

each solution is attached a vector of mutation probabilities, which is as long as the

length of the solution. The mutation scheme first mutates the mutation probability

by itself then uses the mutated value as the mutation probability to mutate the

i-th objective variable. The authors proposed a general expression which apparently

modifies the mutation probability with time as follows:

Pm(t) = (α/β)1/2exp(−γt/2)/(NL1/2) (3.6)

where α, β, and γ are fixed factors, N is the population size, L is the length of

string, and t is the generation counter.

Fogarty [32] introduced a mechanism to vary the mutation rate over the generation

for GAs with discrete representation. It is a deterministic approach that decreases

65

Chapter 3. Adaptation in Evolutionary Algorithms

the mutation rate exponentially over time. This scheme also provides bits of different

significances with different schedules.

A statistic-based adaptive non-uniform mutation (SANUM) was proposed for GAs

by Yang [118]. It takes into account the information of the allele distribution in

each locus to adaptively alter the mutation rate of that locus with generation. Yang

[118] has demonstrated that SANUM gives significant performance improvement

over the traditional mutation operator on a set of test problems. An explorative

and exploitative mutation scheme was suggested by [106], which is capable of ex-

ploring the unseen region of the solution space in search of the global optimum and

simultaneously exploiting the already found promising area. It is a multi-population

adaptive mutation approach and specifies different mutation rates for different sites

of the solutions. The probabilities of sites are adapted according to the fitness and

distribution of population during the evolutionary process.

In addition, some other researchers [84, 120] have suggested mechanisms to adapt

the rate of mutation of each locus over generation.

3.9 Chapter Summary

In this chapter, we presented the background of adaptation in EAs, with special

focus on adaptive mutation operators. The global taxonomy of parameter setting in

EAs is also given in this chapter. We have discussed several schemes regarding the

parameter settings of EAs that have been used to solve the optimization problems.

Each scheme has its own benefits and drawbacks. It is evident that various adaptive

algorithms in EAs have been introduced by researchers in order to find good solutions

in the search space, e.g., adaptive population size approaches, adaptive mutation

operators, adaptive crossover operators, and adaptive selection schemes.

66

Chapter 3. Adaptation in Evolutionary Algorithms

We found that many researchers tested their approaches with fixed parameters and

genetic operators in EAs in order to find the good solutions for a specific problem.

However, it is very difficult to find the suitable parameter setting for the optimal

performance, and this approach is also time consuming. Therefore, researchers have

diverted their attention towards adjusting the operators and relevant parameters

during the evolutionary process of EAs for finding good solutions to the problem

in hand. It is evident that the optimal performance of EAs can be determined by

adjusting genetic operators and relevant parameters. In addition, adaptation also

holds a strong potential to be extended further in order to improve the performance

of EAs both in real-world applications and in theoretical and empirical research in

EAs.

67

Chapter 4

Adaptive Mutation Operators for

Function Optimization

This chapter provides a comparative analysis of different population level and gene

level adaptive mutation operators for evolutionary algorithms (EAs) for function

optimization. We first briefly review each adaptive mutation scheme and then move

on to compare these approaches. Several adaptive mutation operators have been

investigated in this study. At the end of this chapter, the experimental results are

presented and analyzed regarding the comparison of these operators on different

benchmark function optimization problems.

4.1 Introduction

The adaptation of variation operators and relevant parameters was first suggested

into evolutionary strategies where the mutation step size was successfully adjusted

by self-adaptation, e.g., see Schwefel [79]. Recently, researchers have shown an in-

creasing interest in the use of adaptive operators within the EA to enhance its

68

Chapter 4. Adaptive Mutation Operators for Function Optimization

performance. Generally speaking, different problems may have different properties

due to different features of the fitness landscape. So, individuals in the EA may

require different learning approaches to deal with these diverse properties. It may

also be true even for a particular problem because the shape of a local fitness land-

scape in different sub-areas of a particular problem may be quite different, e.g., see

Suganthan [97].

Adaptive Operator Selection (AOS) is the on-line adjusting technique that selects

a genetic operator amongst a set of operators relevant to the problem. It is an

important direction toward self-tuning for EAs, which uses the feedback information

from the searching proccess. The overall framework of AOS consists of two main

components: a credit assignment mechanism, which calculates a reward for each

operator at-hand based on some rules from the statistical information of offspring;

and an adaptation mechanism, which is capable to automatically choose one operator

from different operators based on the allotted credit values.

The efficiency of EAs is dependent on not only the algorithms, representation, and

operators for a problem, but also the setting of parameter values and operator prob-

abilities for EAs. Operator adaptation can been classified into the population level,

individual level, and component or gene level operator adaptation based on how

operators are adjusted. At the population level, strategy parameters are evaluated

from all offspring whom it has created from; different parents and genetic operators

are modified globally for the whole population. At the individual level, operators are

altered independently for each individual in the population. Finally, the component

or gene level operator adaptation is done for some gene or component of individuals

in the population. In this study, we will considere only Population Level Adaptive

Mutation (PLAM) and Gene Level Adaptive Mutation (GLAM) for EAs.

69

Chapter 4. Adaptive Mutation Operators for Function Optimization

4.2 Population-Level Adaptive Mutation Opera-

tors

Traditional EAs apply a single mutation operator at one iteration. A mutation

operator can be used to increase the diversity of population in EAs. It is difficult

to locate the best result by appling a single mutation operator. Therefore, various

mutation operators may be used at different levels on a single problem to achieve

the best results. Different mutation operators can be used to avoid being trapped

into local optima. There are two population based mutation approaches considered

in this section. One is an adaptive mutation operator in PSO and the other is an

adaptive mutation operator in GAs.

4.2.1 Adaptive Mutation Operator for PSO

Different mutation operators can be used to help PSO jump out of local optima.

However, a mutation operator may be more effective than others on a certain type

of problems and may be worse on another type of problems. In fact, it is the same

even for a specific problem at different stages of the optimization process. That is,

the best mutation results can not be achieved by a single mutation operator, instead

several mutation operators may have to be applied at different stages for the best

performance. This study designs a mutation operator that can adaptively select

the most suitable mutation operator for different problems. Before presenting the

adaptive mutation operator, three mutation operators designed for the global best

particles are described as follows.

70

Chapter 4. Adaptive Mutation Operators for Function Optimization

4.2.1.1 Three Mutation Operators

A. Cauchy mutation operator

~V ′
g = ~Vgexp(δ) (4.1)

~X ′
g =

~Xg + ~V ′
gδg (4.2)

where ~Xg and ~Vg represent the position and velocity of the global best particle. δ

and δg denote Cauchy random numbers with the scale parameter of 1.

B. Gaussian mutation operator

~V ′
g = ~Vgexp(N) (4.3)

~X ′
g =

~Xg + ~V ′
gNg (4.4)

where ~Xg and ~Vg represent the position and velocity of global best particle. N and

Ng are Gaussian distribution numbers with the mean 0 and the variance 1.

C. Levy mutation operator

~V ′
g = ~Vgexp(L(α)) (4.5)

~X ′
g =

~Xg + ~V ′
gLg(α), (4.6)

where L(α) and Lg(α) are random numbers generated from the Levy distribution

with a parameter α. In this study, α is set to 1.3.

In paper [60], a PSO with a population based adaptive mutation operator, denoted

PLAM PSO, was introduced. The proposed adaptive mutation operator uses the

three mutation operators described above. All mutation operators have an equal

initial selection ratio with 1/3. Each mutation operator is applied according to its

71

Chapter 4. Adaptive Mutation Operators for Function Optimization

selection ratio (i.e., the probability of the mutation operator to be selected among

a set of mutation operators to perform a mutation operation) and its offspring fit-

ness is evaluated. The mutation operators that result in higher fitness values of

offspring have their selection ratios increased. The mutation operators that result

in lower fitness values of offspring have their selection ratios decreased. Gradually,

the most suitable mutation operator will be chosen automatically and control all the

mutation behaviour in the whole swarm. Without loss of generality, we discuss the

minimization optimization problems in this study.

First, some definitions are given below: The progress value progi(t) of operator i at

generation t is defined as follows:

progi(t) =

Mi
∑

j=1

(f(pij(t))−min (f(pij(t)), f(c
i
j(t)))), (4.7)

where pij(t) and cij(t) denote a parent and its child produced by mutation operator

i at generation t and Mi is the number of particles that select mutation operator i

to mutate.

The reward value rewardi(t) of operator i at generation t is defined as follows:

rewardi(t) = exp(progi(t)∑N
j=1

progj(t)
α + si

Mi
(1− α)) + cipi(t)− 1 (4.8)

where si is the number of particles whose children have a better fitness than them-

selves after being mutated by mutation operator i, pi(t) is the selection ratio of

mutation operator i at generation t, α is a random weight between (0, 1), N is the

number of mutation operators, and ci is a penalty factor for mutation operator i,

which is defined as follows:

ci =

0.9, if si = 0 and pi(t) = maxNj=1 (pj(t))

1, otherwise
(4.9)

72

Chapter 4. Adaptive Mutation Operators for Function Optimization

if the previous best operator has no contribution at current generation, then the

selection ratio of the current best operator will decrease.

With the above definitions, the selection ratio of mutation operator i is updated

according to the following equation:

pi(t + 1) =
rewardi(t)

∑N
j=1 rewardj(t)

(1−N ∗ γ) + γ, (4.10)

where γ is the minimum selection ratio for each mutation operator, which is set

0.01 for all the experiments in this study. This selection ratio update equation

considers four factors: the progress value, the ratio of successful mutations, previous

selection ratio, and the minimum selection ratio. Another important parameter for

the adaptive mutation operator is the frequency of updating the selection ratios of

mutation operators. That is, the selection ratio of each mutation operator can be

updated at a fixed frequency, e.g., every Uf generations, instead of every generation.

The framework of a PSO algorithm without the adaptive mutation operator is shown

in Algorithm 5. The PSO with the adaptive mutation operator differs from the

algorithm 5 in Step 6. At Step 6, we select one of the three mutation operators

according to their select ratios to mutate Pg for T times and then update the selection

ratio for each mutation operator according to Eq. (4.10).

4.2.2 An Adaptive Mutation Operator for GAs

In [51], a GA with a population based adaptive mutation operator, denoted PLAM GA,

was proposed. This algorithm uses four mutation operators, denoted M1 to M4,

respectively. The first operator M1 invert a bit value 0 to 1 and 1 to 0. An example

is given below.

Solution: 0 1 0 1 0 0 1 1 −→ 1 0 1 0 1 1 0 0

73

Chapter 4. Adaptive Mutation Operators for Function Optimization

Algorithm 5 PSO without adaptive mutation

1: Generate the initial particles by randomly generating the position and velocity
for each particle;

2: Evaluate each particle’s fitness;
3: For each particle, if its fitness is better than the fitness of its previous best (Pi),

update Pi;
4: For each particle, if its fitness is better than the fitness of the best one (Pg) of

all the particles, update Pg;
5: Update each particle according to Eqs. (2.1) and (2.2) in Chapter 2;
6: Mutate Pg according one of the three mutation operators for T times (T is the

local search size for the global best particle). Then, compare the best one P ∗
g

with Pg, select a better one as the new global best particle;
7: Stop if the stop criterion is satisfied; otherwise, goto Step 3.

The M2 operator swaps any two bits in a single individual. An example is given

below.

Solution: 0 1 0 1 0 0 1 1 −→ 0 1 1 1 0 0 0 1

The third one reverses the interval order of bits in an individual. An example is

given below.

Solution: 0 1 0 1 0 0 1 1 −→ 0 0 0 1 0 1 1 1

The last one (M4) just changes one bit in an individual. An example is given below.

Solution: 0 0 1 1 1 1 0 0 −→ 0 0 1 1 1 1 0 1

These four mutation operators are used adaptively in the GA. All mutation ratios

of these operators are assigned initial values, e.g, 0.1. Each mutation operator is

applied by its mutation ratio. After the mutation operation, the progress value is

calculated using the following equation:

progressi(t) =

Mi
∑

j=1

(max[f(pij(t)), f(c
i
j(t))]− f(pij(t))) (4.11)

74

Chapter 4. Adaptive Mutation Operators for Function Optimization

where progressi(t) is the progress value of operator i at generation t, f is the fitness

of an individual, pij(t) and cij(t) are the parent and its offspring produced by mutation

operator i at generation(t), and Mi represent the total number of individuals that

select the mutation operator i to mutate. The mutation ratio of operator i is updated

according to their average progress value at generation(t), according to the following

equation:

pi(t+ 1) =
progressi(t)

∑N
j=1 progressj(t)

(Pmutation −N ∗ δ) + δ (4.12)

where pi(t) is the mutation ratio of mutation operator i at generation t, N is the

total number of mutation operators, δ = 0.01 is the minimum mutation ratio for

each mutation operator and Pmutation means the initial mutation probability. The

key idea behind PLAM is to apply more than one mutation operator on different

stages to achieve the best result for a specific problem, at the same time the mutation

ratio of the operator is updated by using the above formula.

The framework of the GA with the adaptive mutation operator is shown in Algorithm

6. An algorithm 6 is different from a standard GA in a few steps, such as Step 4,

10, and 11.

4.3 Gene-Level Adaptive Mutation Operators

In [118], a statistics-based adaptive non-uniform mutation (SANUM) was proposed

for GAs, which is a gene level adaptive mutation operator. SANUM calculates the

frequency of ones for each locus in the current population to adapt the mutation

probability for that locus during the execution of the GA. If the amount of ones in

alleles for a gene locus is increased (or decreased) over the population, that gene

locus is called 1-inclined (or 0-inclined). A gene locus is called non-inclined if there

is no trend of increasing or decreasing of 1’s in the gene locus. The probability of

75

Chapter 4. Adaptive Mutation Operators for Function Optimization

Algorithm 6 GA with adaptive mutation

1: t := 0;
2: Randomly initialize a population of individuals;
3: Evaluate the fitness of each individual;
4: Initialize the mutation ratio for each mutation operator equally;
5: repeat
6: Assign various mutation operators according to their mutation ratios;
7: Employ the crossover operator to create offspring;
8: Mutate each offspring according to one of the four mutation operators;
9: Evaluate the fitness of each offspring;
10: Calculate the progress value of each operator according to Eq. (4.11);
11: Update the mutation ratios of mutation operators according to their progress

values Eq. (4.12);
12: Select best individuals according to their fitness to form the next population;

13: t := t+ 1;
14: until the stop condition is satisfied

mutation for each locus i at generation t is adjusted by using following equation.

pm(i, t) = Pmax − 2 ∗ |f1(i, t)− 0.5| ∗ (Pmax − Pmin) (4.13)

where f1(i, t) represent the frequency of 1’s in the locus i over the population at

generation t, |x| returns the absolute value of x, Pmax and Pmin are the maximum

and minimum value of the mutation probability for a locus.

In [84], the authors used an unparallel adaptive technique on each locus of a chromo-

some, called Gene Based Adaptive Mutation (GBAM). In GBAM, each gene locus

has two different mutation probabilities: pm1 is used for those loci that have the

value of 1 and pm0 is used for those loci that have the value of 0. Initially, all mu-

tation probabilities are assigned to a value, e.g, 0.02. The probabilities of pm1 and

pm0 are automatically updated based on the feedback information from the search

space, according to the relative success or failure of those chromosomes having a

“1” or “0” at that locus for each generation. The new mutation probability for each

locus i at generation t + 1 is updated using the following equations in the case of a

76

Chapter 4. Adaptive Mutation Operators for Function Optimization

maximization problem.

pm0(i, t+ 1) =

pm0(i, t) + γ, if G1
avg(i, t) > Pavg

pm0(i, t)− γ, otherwise
(4.14)

pm1(i, t+ 1) =

pm1(i, t)− γ, if G1
avg(i, t) > Pavg

pm1(i, t) + γ, otherwise
(4.15)

where γ is the updated value for the mutation rate, G1
avg(i, t) is the average fitness

of individuals with allele “1” for locus i at generation t, and Pavg(t) is the average

fitness of the population at generation t. The above update mechanism is used for

each locus separately.

Another gene based adaptive mutation method, called GBAM FAD, was proposed

by Yang and Uyar [120] . This method constructs probabilities of each gene locus

with the combination information of fitness and allele distribution. GBAM FAD

also uses two different mutation probabilities for each gene locus, just as in GBAM.

The probabilities of each gene locus are adaptively updated based on the correlated

feedback information from the search process, according to the relative success or

failure of individuals. The new mutation probabilities for each locus i at generation

t+1 are updated using the following equations in the case of maximization problems.

pm0(i, t + 1) = pm0(i, t) + γ ∗ sgn((G1
avg(i, t)− Pavg(t))(f1(i, t)− 0.5)) (4.16)

pm1(i, t+ 1) = pm1(i, t)− γ ∗ sgn((G1
avg(i, t)− Pavg(t))(f1(i, t)− 0.5)) (4.17)

where G1
avg(i, t) and Pavg(t) have the same meaning as in Eqs. (4.14) and (4.15),

f1(i, t) is calculated frequency of ones in the alleles in the locus i over the population

at generation t and the method sgn(x) returns the value 1, 0, or -1 if x > 0, x = 0,

and x < 0, respectively. The GBAM FAD algorithm efficiently solves the deception

77

Chapter 4. Adaptive Mutation Operators for Function Optimization

problems.

The framework of GAs with the above three gene based adaptive mutation operators

is shown in Algorithm 7, where two additional steps (line 5 and line 10) are added

to the design of Algorithm 6. At line 5, a statistics process calculates the feedback

information of the current population, which is used in the adaptive mutation scheme

in this algorithm. If the best individual of the current population is worse than

the best individual of the previous population, the worst individual of the current

population is replaced by the best one of the previous population, i.e., the elitism

scheme is used in the algorithm (line 10).

Algorithm 7 GA with the gene based adaptive mutation operator

1: t := 0;
2: Initialize population with Random individuals;
3: Evaluate each individual’s fitness;
4: while (t < Tot gen) do
5: Statistics {feedback statistics taken from the current population};
6: Select {parents};
7: Crossover {pairs of parents};
8: Mutate {the resulting offspring};
9: Evaluate {new potential solutions};
10: Elitism;
11: t := t+ 1;
12: end while

The aforementioned GLAM operators have already been investigated on simple uni-

modal functions (having single peak) and multi-modal functions (having more than

one peaks). The detailed description of these functions are given in [84, 118, 120].

The PLAM operators have also been investigated on various multi-dimensional prob-

lems. These operators are implemented on different benchmark optimization prob-

lems. It is very difficult to say which operator is more suitable for which problem.

In order to better understand these operators, we compare their performance on a

set of benchmark problems in this study.

78

Chapter 4. Adaptive Mutation Operators for Function Optimization

4.4 Complexity Analysis

This section briefly analyzes the computational complexity of the five adaptive

mutation operators studied in this study. Population Leve Adpative Mutation

PLAM PSO and PLAM GA are population level adaptive mutation operators. The

population size P and the total number of operators (N) are the key components

for the analysis of computational complexity for the two adaptive mutation opera-

tors used in PLAM PSO and PLAM GA. The time complexity of each algorithm

is O(NP) in the worst case for one iteration. Usually, N is much less than P . So,

we can say that the complexity of the mutation operators is O(P). GBAM FAD,

GBAM, and SANUM are gene level adaptive mutation operators. There are three

major components regarding to the time complexity of these adaptive operators,

which are the population size (P), the length of individual (L), and the number of

dimensions (n). The computional time of each gene level adaptive mutation opera-

tor is O(nPL) in the worst case for a single iteration. Usually, P is greater than L

and P is also greater than n. So, we can say that the time complexity of each gene

level adaptive algorithm is O(P 3).

4.5 Experimental Study

4.5.1 Test Functions

Experiments were carried out to compare the performance of several GAs with adap-

tive mutation operators. They are the PLAM GA and the three GAs with SANUM,

GBAM, and GBAM FAD respectively, which are described in Section 4.2.2 and 4.3.

We also tested the PLAM PSO algorithm. The experiments were conducted on 26

different benchmark optimization functions, including traditional, shifted, rotated

79

Chapter 4. Adaptive Mutation Operators for Function Optimization

shifted and hybrid composition functions, which are widely used in the literature.

These functions are classified into four different groups according to their properties:

traditional functions f1 to f15, shifted functions f16 − f20, hybrid composition func-

tions f21-f22 and rest of the functions are rotated and shifted f23-f26. The detailed

description of these test functions is shown in Table 4.1.

1) Traditional test functions: we considered these functions to compare the perfor-

mance of four GAs and one PSO with adaptive mutation operators. Fifteen

functions are used in this section. Five out of fifteen are unimodal functions,

which are Sphere (f1), Rosenbrock (f8), Schwefel 2 22 (f11), Schwefel 1 2 (f12),

and Schwefel 2 21 (f13) functions. The unimodal functions are relatively sim-

ple, with no local optimum. The rest of the functions in this group are mul-

timodal problems. These problems have several local optima throughout the

search space. These functions are used as more challenging tasks. Function

f7 is a noisy quartic function, where U(0,1) is a uniform distribution number

within [0, 1].

2) Shifted test functions: Shifted functions f16 − f20 are modified from present

traditional test functions by moving the global optimum to a random point

around the search space. The global optima of these functions were shifted

according to:

F (~x) = f(~x− ~or)

The new global optimum is estimated as: ~onew = ~or + ~oold, where ~oold, ~or, and

~onew are the previous global optimum, the random position, and the newly

generated global optimum, respectively.

3) Rotated shifted test functions: The performance of various adaptive mutation

operators are also investegated with the use of the rotated shifted functions.

80

Chapter 4. Adaptive Mutation Operators for Function Optimization

Table 4.1: The twenty six test functions, where n is the number of variables
(dimensions) of a problem and D represents the domain of a problem (Dn ⊆ Rn),

fmin the minimum value of each function.

Test Function n D fmin

f1(x) =
∑n

i=1 x
2
i 10 [−100, 100] 0

f2(x) =
∑n

i=1 (x
2
i − 10 cos(2πxi) + 10) 10 [-5.12, 5.12] 0

f3(x) =
n
∑

i=1
(
kmax
∑

k=0

[ak cos(2πbk(xi + 0.5))])− n
kmax
∑

k=0

[ak cos(πbk)] 10 [-0.5,0.5] 0

, a = 0.5, b = 3, kmax = 20

f4(x) =
1

4000

∑n
i=1(xi − 100)2 −

∏n
i=1cos(

xi−100√
i

) + 1 10 [-600, 600] 0

f5(x) = −20 exp(−0.2
√

1
n

∑n
i=1 x

2
i)− exp(1n

∑n
i=1 cos(2πxi)) 10 [-32, 32] 0

+20 + e

f6(x) =
∑n

i=1 (⌊xi + 0.5⌋)2 10 [-100,100] 0

f7(x) =
∑n

i=1 iẋ
4
i + U(0, 1) 10 [-1.28, 1.28] 0

f8(x) =
∑n

i=1 100(x
2
i+1 − xi)

2 + (xi − 1)2) 10 [-30, 30] 0

f9(x) =
∑n

i=1−xi sin (
√

|xi|) 10 [-500, 500] -4189.829

f10(x) = 418.9829 · n+
∑n

i=1−xi sin (
√

|xi|) 10 [-500, 500] 0

f11(x) =
∑n

i=1 |xi|+
∏n

i=1 |xi| 10 [-10, 10] 0

f12(x) =
∑n

i=1 (
∑i

j=1 xj)
2 10 [-100, 100] 0

f13(x) = maxni=1 |xi| 10 [-100, 100] 0

f14(x) =
π
30{10 sin

2 (πy1) +
∑n−1

i=1 (yi − 1)2 · [1 + 10 sin2 (πyi+1)] 10 [-50, 50] 0

+(yn − 1)2}+
∑n

i=1 u(xi, 5, 100, 4), yi = 1 + (xi + 1)/4

f15(x) = 0.1{10 sin2 (3πx1) +
∑n−1

i=1 (xi − 1)2 · [1 + sin2 (3πxi+1)] 10 [-50, 50] 0

+(xn − 1)2[1 + sin2 (2πxn)]}+
∑n

i=1 u(xi, 5, 100, 4)

f16(x) =
∑n

i=1 z
2
i , ~z = ~x− ~o 10 [−100, 100] 0

f17(x) =
∑n

i=1 (
∑i

j=1 zj)
2, ~z = ~x− ~o 10 [-100, 100] 0

f18(x) =
∑n

i=1 (
∑i

j=1 zj)
2. (1 + 0.4 .U(0, 1)), ~z = ~x− ~o 10 [-100, 100] 0

f19(x) =
∑n

i=1 100(z
2
i+1 − zi)

2 + (zi − 1)2), ~z = ~x− ~o 10 [-30, 30] 0

f20(x) =
∑n

i=1 (z
2
i − 10 cos(2πxi) + 10), ~z = ~x− ~o 10 [-5.12,5.12] 0

f21(x) = Hybrid Composition function (F15) in [97] 10 [-5, 5] 0

f22(x) = Rotated Hybrid Composition function (F16) in [97] 10 [-5, 5] 0

f23(x) =
1

4000

∑n
i=1(zi − 100)2 −

∏n
i=1cos(

zi−100√
i

) + 1, 10 [-600, 600] 0

~z = (~x− ~o) ∗M

f24(x) = −20 exp(−0.2
√

1
n

∑n
i=1 z

2
i)− exp(1n

∑n
i=1 10 [-32, 32] 0

cos(2πzi)) + 20 + e, ~z = (~x− ~o) ∗M

f25(x) =
∑n

i=1 (z
2
i − 10 cos(2πzi) + 10), ~z = (~x− ~o) ∗M 10 [-5.12, 5.12] 0

f26(x) =
n
∑

i=1
(
kmax
∑

k=0

[ak cos(2πbk(zi + 0.5))])− n
kmax
∑

k=0

10 [-0.5,0.5] 0

[ak cos(πbk)], ~z = (~x− ~o) ∗M

81

Chapter 4. Adaptive Mutation Operators for Function Optimization

In [97], the authors applied a method for rotated and shifted, which is used as

follows:

F (~x) = f((~x− ~or) ∗M)

where M is a linear transformation matrix. A rotation matrix Rij(θ) is ob-

tained by rotating the projection of ~x in the plane i − j by an angle θ from

the i-th axis to the j-th axis. The transformation matrix M is developed by

Algorithm 8.

Algorithm 8 Transformatin Matrix

1: Randomly select l dimensions (l is an even number) from the n dimensions to
compose a vector r = [r1, r2, · · · , rl].

2: For each pair of dimension r[i] and dimension r[i+1], construct a rotation matrix
Rr[i],r[i+1](θ), θ = U(0, 360), where U reprents the random number of uniform
distribution.

3: The transformation matrix M is obtained by: M = Rr[1],f [2](θ) ·
Rr[3],r[4](θ) · · ·Rr[l−1],r[l](θ)

4) Composition Test Functions: In order to further evaluate the performance of

various adaptive mutation operators, two hybrid composition functions, as in

[97], are applied.

4.5.2 Parameter Setting

For the presentation of individuals, PLAM PSO uses the real coding and GAs use

the gray encoding scheme, where 100 bits are used for each dimension of the func-

tions. The parameters of PLAM PSO were set as suggested in [109] as follows: the

acceleration constants η1 = η2 = 1.496180 and the inertia weight ω = 0.729844.

For all the GAs, the genetic operators were set as follows: the tournament selection

with the tournament size of 2, elitism of size 1, 2-point crossover with a probability

1.0 and the population size N = 250. The initial selection ratio was 1/3 for each

adaptive mutation operator and the minimum selection ratio γ was set to 0.001

82

Chapter 4. Adaptive Mutation Operators for Function Optimization

for each adaptive mutation operator, the update frequency Uf was set to 5 and T

in [60] was set to 10 for PLAM PSO. For PLAM GA, the initial probability was

set to Pmutation = 0.1 and δ = 0.01. For SANUM, the parameters were fixed as:

(α, β) = (0.05, 0.04) and Pmin = 0.0001 (i.e, pm(i, t) ∈ [0.0001, 0.05] for each locus

i). For GBAM and GBAM FAD, the following parameters were used: γ = 0.001,

[Pmin, Pmax] = [0.0001, 0.2], and initially pm1(i, 0) = pm0(i, 0) = 0.01 for each gene

i.

4.5.3 Experimental Results and Analysis

This section presents the average result of 50 independent runs of each algorithm

on the test functions. For each run of an algorithm on a function, 300 generations

were allowed. The experimental results are shown in Table 4.2.

From Table 4.2, several results can be seen. Firstly, the performance of PLAM PSO

is better than all other algorithms on all optimization benchmark functions except

f2, f4, f9, f10, f20, and f26. For function f2, the effiency of adaptive mutation

operators is ranked in the following sequence: GBAM FAD, GBAM, PLAM GA,

PLAM PSO, and SANUM. On function f4, GBAM is better than other four algo-

rithms. The PLAM PSO, GBAM FAD, and GBAM algorithms obtain the global

minimum optimum result within a few number of generations on f6. The result of

GBAM FAD and GBAM are equal and better than the other three adaptive muta-

tion algorithms on function f9 and PLAM GA gets a close result to GBAM FAD

and GBAM on the same function. GBAM, GBAM FAD, and PLAM GA are more

efficient than the other two adaptive mutation operators on f10. It can be observed

that among the four algorithms with adaptive mutation operator gets optimum re-

sult on functions f20, and f26. Specially the effiency of PLAM GA is better than

83

Chapter 4. Adaptive Mutation Operators for Function Optimization

Table 4.2: Average result over 50 independent runs of algorithms on the test
functions.

Function PLAM PSO GBAM FAD GBAM SANUM PLAM GA

f1 7.864e-19 0.03678 0.04727 29.7191 0.17517
f2 1.97063 0.00400 0.00609 13.5803 0.953409
f3 1.388e-07 0.03773 0.03542 2.99221 0.769488
f4 1.08447 0.21244 0.19436 1.11027 0.34151
f5 4.370e-10 0.32794 0.30930 3.43966 2.43678
f6 0 0 0 17 0.02
f7 0.00090 0.00186 0.00209 0.19893 0.01141
f8 12.7173 452.22 454.798 101665 821.919
f9 -4061 -4189 -4189 -3800 -4188
f10 204.562 0.04354 0.03823 369.191 1.45351
f11 6.010e-11 0.00653 0.00885 0.562058 0.05199
f12 5.609e-05 8.91879 11.3487 2455.3 26.7143
f13 2.027e-07 0.60960 0.79703 17.9564 3.14116
f14 3.376e-20 1.18793 0.83958 1.1945 0.21389
f15 2.371e-19 24.8396 6.96587 15.9828 0.74665
f16 0.0378785 6.17991 11.3346 227.919 7.78063
f17 2.46237 301.771 233.052 3786.39 103.533
f18 7.796e-08 205.474 214.617 4864.53 173.374
f19 1.93557 7.22322 6.82506 30.1953 7.13815
f20 3.79834 2.01078 2.22618 18.0262 3.65105
f21 40.1652 233.092 245.237 509.324 257.529
f22 80.4926 236.584 226.073 923.067 250.783
f23 0.197994 2.18459 2.69248 15.7312 2.46165
f24 20.2595 20.3125 20.3082 20.4051 20.4233
f25 22.4549 19.3109 17.0176 73.3473 17.0002
f26 5.10594 3.86784 3.90365 8.10701 4.68206

other mutation algorithms on f25. Generally, the PLAM PSO performed well among

the four adaptive mutation operator on eighteen out of twenty six problems.

Secondly, the statistical test of five mutation operators in two groups (population-

level adaptive mutation and gene-level adaptive mutation operator) is carried out

using the two-tailed t-test with a 98 degree of freedom at a 0.05 level of significance.

Table 4.3 shows the t-test results for pairs of algorithms, where the result is shown

as “+”, “−”, or “∼” if the first algorithm in a pair is significantly better than,

84

Chapter 4. Adaptive Mutation Operators for Function Optimization

significantly worse than, or statistically equivalent to the second algorithm, respec-

tively. From Table 4.3, it can be seen that PLAM PSO, GBAM FAD and GBAM

algorithms are statistically better than the other two adaptive approaches in finding

the optimum value.

Figures 4.1 and 4.2 show the results of the evolutionary process of the five algorithms

on f1 to f5, f7, f9, f10, f17 to f22, f25, and f26. The results on f1, f3, and f7 were

presented by a log scale. From Figure 4.1, it can be noticed that the convergence

speed of PLAM PSO is much faster than other adaptive techniques on f1 and f3

functions, but it is interesting to see that different adaptive techniques have different

convergence speeds on different functions. From Figure 4.2, it can be observed that

the convergence speed of GBAM FAD, and GBAM is close to that of PLAM PSO.

In Figure 4.2, GBAM FAD and GBAM have a higher convergence speed than other

four adaptive algorithms on f26. The convergence of different adpative algorithms

varies on different functions.

The overall performance of the five adaptive mutation algorithms are reasonably

good except SANUM. Generally speaking, PLAM PSO is the most efficient on most

benchmark optimization functions. The performance of GBAM FAD, GBAM, and

PLAM GA is better than PLAM PSO on only a few problems. The reason lie in the

encoding scheme used in these algorithms, which results in a discrete search space

and makes it difficult for the algorithms to locate optimal solutions.

4.6 Chapter Summary

This chapter presents a comparative study of a population-level adaptive muta-

tion operator with gene-level adaptive mutation operators for GAs and PSO on

85

Chapter 4. Adaptive Mutation Operators for Function Optimization

Table 4.3: Statistical comparison of adaptive mutation operators on the test
functions

Test function: f1 f2 f3 f4 f5 f6 f7 f8 f9

PLAM PSO – GBAM FAD + − + − + ∼ + + −
PLAM PSO – GBAM + − + − + ∼ + + −
PLAM PSO – SANUM + + + ∼ + + + + +
PLAM PSO – PLAM GA + − + − + ∼ + + −
GBAM FAD – GBAM ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼
GBAM FAD – SANUM + + + + + + + + +
GBAM FAD – PLAM GA + + + + + ∼ + ∼ +
GBAM – SANUM + + + + + + + + +
GBAM – PLAM GA + + + + + ∼ + ∼ +
SANUM – PLAM GA + + + + + + + + +

Test function: f10 f11 f12 f13 f14 f15 f16 f17 f18

PLAM PSO – GBAM FAD − + + + + ∼ + + +
PLAM PSO – GBAM − + ∼ + + ∼ + + +
PLAM PSO – SANUM + + + + + + + + +
PLAM PSO – PLAM GA − + + + + + + + +
GBAM FAD – GBAM ∼ ∼ ∼ ∼ − ∼ ∼ ∼ ∼
GBAM FAD – SANUM + + + + ∼ ∼ + + +
GBAM FAD – PLAM GA + + + + − ∼ ∼ − ∼
GBAM – SANUM + + + + ∼ ∼ + + +
GBAM – PLAM GA + + + + − ∼ ∼ ∼ ∼
SANUM – PLAM GA + + + + + + − − −

Test function: f19 f20 f21 f22 f23 f24 f25 f26

PLAM PSO – GBAM FAD + − + + + + − −
PLAM PSO – GBAM + − + ∼ + + − −
PLAM PSO – SANUM + + + + + + ∼ +
PLAM PSO – PLAM GA + ∼ + + + + − ∼
GBAM FAD – GBAM ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼
GBAM FAD – SANUM + + + + + + + +
GBAM FAD – PLAM GA ∼ + ∼ ∼ ∼ + ∼ +
GBAM – SANUM + + + + + + + +
GBAM – PLAM GA ∼ + ∼ + ∼ + ∼ +
SANUM – PLAM GA − − − − − ∼ − −

86

Chapter 4. Adaptive Mutation Operators for Function Optimization

-20

-15

-10

-5

 0

 5

 10

 15

75 150 225 300

A
ve

ra
ge

 B
es

t F
it

ne
ss

 (
L

og
)

Generations

Function f1

 PLAM_PSO
PLAM_GA

GBAM_FAD
GBAM

SANUM

 0

 20

 40

 60

 80

 100

75 150 225 300

A
ve

ra
ge

 B
es

t F
it

ne
ss

Generations

Function f2

 PLAM_PSO
PLAM_GA

GBAM_FAD
GBAM

SANUM

-8

-6

-4

-2

 0

 2

75 150 225 300

A
ve

ra
ge

 B
es

t F
it

ne
ss

 (
L

og
)

Generations

Function f3

 PLAM_PSO
PLAM_GA

GBAM_FAD
GBAM

SANUM 0

 20

 40

 60

 80

 100

75 150 225 300

A
ve

ra
ge

 B
es

t F
it

ne
ss

Generations

Function f4

 PLAM_PSO
PLAM_GA

GBAM_FAD
GBAM

SANUM

-5

 0

 5

 10

 15

 20

75 150 225 300

A
ve

ra
ge

 B
es

t F
it

ne
ss

Generations

Function f5

 PLAM_PSO
PLAM_GA

GBAM_FAD
GBAM

SANUM

-4

-3

-2

-1

 0

 1

75 150 225 300

A
ve

ra
ge

 B
es

t F
it

ne
ss

 (
L

og
)

Generations

Function f7

 PLAM_PSO
PLAM_GA

GBAM_FAD
GBAM

SANUM

-4500

-4000

-3500

-3000

-2500

-2000

-1500

75 150 225 300

A
ve

ra
ge

 B
es

t F
it

ne
ss

Generations

Function f9

 PLAM_PSO
PLAM_GA

GBAM_FAD
GBAM

SANUM

 0

 500

 1000

 1500

 2000

 2500

75 150 225 300

A
ve

ra
ge

 B
es

t F
it

ne
ss

Generations

Function f10

 PLAM_PSO
PLAM_GA

GBAM_FAD
GBAM

SANUM

Figure 4.1: Experimental results of adaptive mutation operators.

multi-dimensional benchmark functions. The performance of different adaptive mu-

tation operators varies on different functions. From the experimental results, it

87

Chapter 4. Adaptive Mutation Operators for Function Optimization

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

75 150 225 300

A
ve

ra
ge

 B
es

t F
it

ne
ss

Generations

Function f17

 PLAM_PSO
PLAM_GA

GBAM_FAD
GBAM

SANUM

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

75 150 225 300

A
ve

ra
ge

 B
es

t F
it

ne
ss

Generations

Function f18

 PLAM_PSO
PLAM_GA

GBAM_FAD
GBAM

SANUM

 0

 200

 400

 600

 800

 1000

75 150 225 300

A
ve

ra
ge

 B
es

t F
it

ne
ss

Generations

Function f19

 PLAM_PSO
PLAM_GA

GBAM_FAD
GBAM

SANUM

 20

 40

 60

 80

 100

 120

75 150 225 300

A
ve

ra
ge

 B
es

t F
it

ne
ss

Generations

Function f20

 PLAM_PSO
PLAM_GA

GBAM_FAD
GBAM

SANUM

 200

 400

 600

 800

 1000

 1200

 1400

75 150 225 300

A
ve

ra
ge

 B
es

t F
it

ne
ss

Generations

Function f21

 PLAM_PSO
PLAM_GA

GBAM_FAD
GBAM

SANUM

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

75 150 225 300

A
ve

ra
ge

 B
es

t F
it

ne
ss

Generations

Function f22

 PLAM_PSO
PLAM_GA

GBAM_FAD
GBAM

SANUM

 20

 40

 60

 80

 100

 120

 140

 160

 180

75 150 225 300

A
ve

ra
ge

 B
es

t F
it

ne
ss

Generations

Function f25

 PLAM_PSO
PLAM_GA

GBAM_FAD
GBAM

SANUM

 2

 4

 6

 8

 10

 12

75 150 225 300

A
ve

ra
ge

 B
es

t F
it

ne
ss

Generations

Function f26

 PLAM_PSO
PLAM_GA

GBAM_FAD
GBAM

SANUM

Figure 4.2: Experimental results of adaptive mutation operators.

can be concluded that PLAM PSO is the most efficient on all benchmark opti-

mization problems with only a few exceptions. On some functions, GBAM FAD,

GBAM, and PLAM GA mutation algorithms perform better than PLAM PSO.

88

Chapter 4. Adaptive Mutation Operators for Function Optimization

With PLAM PSO, GBAM FAD and GBAM, the population rapidly converges in

a relatively short period of time to a near-optimal solution even for multi-modal

functions. PLAM PSO, GBAM FAD and GBAM are statistically better than other

adaptive approaches for finding the optimum value.

In general, the experimental results indicate that PLAM PSO provides better so-

lutions with a reduced number of generations on most test problems. It is also

investigated that the performance of GBAM FAD and GBAM is close to that of

PLAM PSO. GLAM operators are better than PLAM PSO on very few problems

only. The drawback with the GLAM operators is that it takes some time to calculate

new mutation probabilities for each gene locus at every generation. We will exam-

ine the performance of individual level adaptive mutation operators with population

level and gene level adaptive mutation operators on benchmark problems GECCO

2009 [73] or CEC 08-05 [97]; and how to reduce the complexity of gene level adaptive

mutation operators in the future.

89

Chapter 5

Directed Mutation for Real-Coded

Genetic Algorithms

5.1 Introduction

Mutation is an important operator in genetic algorithms (GAs), which maintains

the genetic diversity in the population in order to get better individuals to an op-

timization problem. The step size and search direction are the major factors that

determine the performance of mutation operators. It may be beneficial to use differ-

ent values during different stages of evolution in order to get a better performance

of GAs. Traditional real-coded GAs use one of uniform and non-uniform mutation

operators for creating the next generation, which is unable to guide the algorithm

regarding fast convergence toward promising regions of the fitness landscape of a

given problem.

This chapter investigates a directed mutation (DM) operator for GAs to explore

promising areas in the search space. The DM operator uses a concept of induced

90

Chapter 5. Directed Mutation for Real-Coded Genetic Algorithms

mutation in biological systems. According to induced mutation, the statistical in-

formation is used to guide the mutation of an individual towards the neighbouring

interval that has a better statistics result in each dimension.

Several researchers have tried to increase the performance of real-coded GAs by

using directed mutation techniques [14, 15, 46, 99]. In [15], the authors proposed a

co-evolutionary technique, where each component of a solution vector is added one

extra bit to determine the direction of mutation. The direction bit is adapted by

using the feedback information from the current population. A directed mutation

based on momentum was proposed in [99], where each component of an individual is

attached a standard Gaussian mutation and the current momentum to mutate that

component.

In the proposed DM method, the statistical information regarding the fitness and

distribution of individuals over intervals of each dimension is calculated according

to the current population and is used to guide the mutation of an individual towards

the neighbouring interval that has the best statistical result in each dimension.

5.2 Directed Mutation for Genetic Algorithms

The main motivation behind the DM operator is to explore promising areas in the

search space by using the feedback information from the current population, e.g., the

fitness and some other factors. It is a modified version of the standard mutation.

Since individuals in directed variation (DV) [125] only move toward the interval

with the highest fitness, it may easily cause the premature convergence problem.

This chapter introduces a DM technique which aims to explore promising areas of

the search space with fixed boundaries according to the fitness of intervals and the

percentage of individuals in each interval of each dimension.

91

Chapter 5. Directed Mutation for Real-Coded Genetic Algorithms

In the proposed DM operator, individual shifting is not only based on the feedback

information of the average fitness of intervals, but also on the population distribu-

tion. By taking into account the information of population distribution, DM effi-

ciently avoids the premature convergence problem. The key idea of the DM operator

is illustrated in Figure 5.1.

Figure 5.1: Fitness landscape of the d-th dimension.

From Figure 5.1, we consider the j-th interval, if we only consider DV, the two

individuals of interval j will move toward the (j − 1)-th interval due to the higher

fitness of the (j − 1)-th interval. However, the right direction should be the (j +1)-

th interval since the (j + 1)-th interval is more promising (because it contains more

individuals) than the (j − 1)-th interval. Hence, DM is an enhanced version of DV.

The framework of the GA with the proposed DM operator is given in Algorithm 9.

The proposed GA differs from the standard GA in that in each generation, a set

of individuals are selected to undergo the DM operation iteratively. As shown in

Algorithm 10, the DM operator is applied for each component of a selected solution

in a similar way as the DV operator described in Section 3.2. The difference lies

in the calculation of the probability of moving a component of a solution from one

interval to its neighbouring interval, which is described in detail below.

92

Chapter 5. Directed Mutation for Real-Coded Genetic Algorithms

Algorithm 9 GA with directed mutation (DM)

1: Randomly generate an initial population pop
2: Evaluate the fitness of each individual of pop
3: t := 0.
4: while t < max gen do
5: for each individual i in pop do
6: Select individual j by the roulette wheel method
7: Crossover individual i with individual j using the arithmetic crossover

method
8: Mutate individual i by using the Gaussian mutation with mean zero and

pre-selected or adaptive standard deviation
9: end for
10: Apply DM on a set of individuals randomly selected from the population
11: t := t+ 1
12: end while

Algorithm 10 Directed mutation

1: for each dimension d ∈ {1, 2, · · · , K} do
2: if |Rd(t)| < |Rd(t− 1)| then
3: for each interval j do
4: Calculate Fdj according to Eq. (3.1)
5: Calculate the number of individuals Pdj according to Eq. (5.1)
6: end for
7: for each interval j do
8: Calculate FPdj according to Eq. (5.2)
9: end for
10: for each interval j do
11: Calculate PDM

dj according to Eq. (5.3)
12: end for
13: Shift the genes xid of selected individuals to their neighbouring interval with

a higher fitness with the associated probability
14: end if
15: end for

Similar to the DV operator, the range of the d-th dimension of individuals at gen-

eration t, i.e., Rd(t) = [xL
d , x

U
d], is also equally divided into L intervals. Note that

|Rd(t)| and |Rd(t− 1)| in Algorithm 10 denote the length of the range at time t and

t− 1, respectively. DM is applied only when the range of the d-th component Rd(t)

of all solution vectors of current generation t decreases in comparison with that of

previous generation t − 1. The fitness Fdj of each non-empty interval is calculated

93

Chapter 5. Directed Mutation for Real-Coded Genetic Algorithms

by Eq. (3.1), Eq. (3.2), and Eq. (3.3). In addition to the fitness of each interval, the

percentage of individuals in each interval is also calculated in the DM operator as

follows:

Pdj =
1

N

N
∑

i=1

I(xid ∈ Bdj) (5.1)

where Pdj represents the percentage of individuals with the d-th component in the j-

th interval in the current population, and Bdj and I(.) are the same as defined before

in Eq. (3.1) and Eq. (3.2). From Fdj and Pdj , we calculate a value that is associated

with the j-th interval of the d-th dimension, assuming Fd,j−1 > Fdj > Fd,j+1, as

follows:

FPdj =
Fdj

Fd,j−1

+
Pdj

Pd,j−1

(5.2)

With above definitions, the component xid of a selected individual ~xi is mutated by

the associated value of FPdj . Where Fdj is bigger than the fitness of both neigh-

bouring intervals, i.e., Fd,j−1 and Fd,j+1, no directed mutation will be used to xid.

If Fdj is in the middle in comparison with the fitness of its two neighbour intervals

j − 1 and j + 1, without loss of generality, suppose Fd,j−1 > Fdj > Fd,j+1. Then,

move the individual ~xi towards the interval j − 1 with a certain probability, which

is calculated as follows.

PDM
dj =

FPdj
∑L

j=1 FPdj

(5.3)

where the DM probabilities PDM
dj are normalized over all intervals. In this case,

the solution ~xi is moved toward the interval j − 1 by replacing xid with a number

randomly generated between xid and the center of Bd,j−1 as follows:

xid = rand(xid, Bd,j−1) (5.4)

Otherwise, if Fdj < Fd,j−1 and Fdj < Fd,j+1, then either Bd,j−1 or Bd,j+1 is selected

with an equal probability and the solution ~xi moves towards the selected interval

94

Chapter 5. Directed Mutation for Real-Coded Genetic Algorithms

with the probability PDM
dj .

5.3 Experimental Study

5.3.1 Experimental Setting

In order to test the performance of GA with DM, three f1, f6, and f8 uni-modal

functions and eleven multi-modal functions, which are widely used as the test func-

tions in the literature [97, 122], were selected as the test bed in this study. The

number of dimensions n is set to 10 for all test functions. The details of these test

functions are given in Table 5.1. Function f9 is a composition function proposed by

Suganthan et al. [97], which is composed of ten benchmark functions: the rotated

version and shifted version of f1, f2, f3, f4, and f5, as also listed in Table 5.1, re-

spectively. Functions f10 to f14 are rotated functions, where the rotation matrix ~M

for each function is obtained using the method in [75].

The idea of DV was taken from [125], which is implemented in the peer GA. The

adaptive standard deviation [80] is used in DM. The population size (100) and total

number of generations (500) are the same for both DM and DV on all problems, the

total number of intervals L was set to 3, 6, 9, and 12, respectively. The mutation

probability Pm for the Gaussian mutation is the same for DM and DV, which was

set to different values for different test problems, as listed in Table 5.1. Both the

GA with DM and the GA with DV were run 30 times independently on each test

problem.

95

Chapter 5. Directed Mutation for Real-Coded Genetic Algorithms

Table 5.1: Test functions of n = 10 dimensions, where D (D ∈ Rn) and fmin,
denote the domain and minimum value of a function, respectively, and ~M is the

rotation matrix

Test Function Pm D fmin

f1(x) =
∑n

i=1 x
2
i 0.1 [−100, 100] 0

f2(x) =
∑n

i=1 (x
2
i − 10 cos(2πxi) + 10) 0.01 [-5.12,5.12] 0

f3(x)=
n
∑

i=1

kmax
∑

k=0

[ak cos(2πbk(xi + 0.5))]−n
kmax
∑

k=0

[ak cos(πbk)], 0.01 [-0.5,0.5] 0

a = 0.5, b = 3, kmax = 20

f4(x) =
1

4000

∑n
i=1(xi − 100)2 −

∏n
i=1cos(

xi−100√
i

) + 1 0.01 [-600, 600] 0

f5(x) = −20 exp(−0.2
√

1
n

∑n
i=1 x

2
i)− exp(1n

∑n
i=1 cos(2πxi)) 0.01 [-32, 32] 0

+20 + e

f6(x) =
∑n

i=1 100(x
2
i+1 − xi)

2 + (xi − 1)2) 0.05 [-30, 30] 0

f7(x) =
∑n

i=1−xi sin (
√

|xi|) 0.01 [-500, 500] -4189.829

f8(x) =
∑n

i=1 (
∑i

j=1 xj)
2 0.01 [-100, 100] 0

f9(x) = Composition function (CF 5) in [97] 0.05 [-5, 5] 0

f10(x) =
∑n

i=1 100(y
2
i+1 − yi)

2 + (yi − 1)2), ~y = ~M ∗ ~x 0.05 [-100, 100] 0

f11(x) =
1

4000

∑n
i=1(yi − 100)2 −

∏n
i=1cos(

yi−100√
i

) + 1, 0.01 [-600, 600] 0

~y = ~M ∗ ~x

f12(x)=−20 exp(−0.2
√

1
n

∑n
i=1 y

2
i)− exp(1n

∑n
i=1 cos(2πyi)) 0.01 [-32,32] 0

+20+e, ~y = ~M ∗ ~x

f13(x) =
∑n

i=1 (y
2
i − 10 cos(2πyi) + 10), ~y = ~M ∗ ~x 0.01 [-5, 5] 0

f14(x)=
n
∑

i=1

kmax
∑

k=0

[ak cos(2πbk(yi + 0.5))]−n
kmax
∑

k=0

[ak cos(πbk)], 0.01 [-0.5,0.5] 0

a = 0.5, b = 3, kmax = 20, ~y = ~M ∗ ~x

5.3.2 Experimental Results and Analysis

The average results of 30 independent runs of the GA with directed mutation and

the GA with directed variation on the test problems are shown in Table 5.2. From

Table 5.2, it can be seen that the number of intervals used for each dimension is a

key parameter. The performance of the GA with DM becomes significantly better

on some problems than that of the GA with DV as the number of intervals increases.

The performance of both operators is different on different problems.

96

Chapter 5. Directed Mutation for Real-Coded Genetic Algorithms

Table 5.2: Comparison results between DV and DM with the number of intervals
for each dimension set to different values for different problems

function f1 f2 f3 f4 f5 f6 f7

L = 3 DV 8.28e-06 0.0151 0.2590 0.0985 0.0088 49.41 -2667
DM 7.33e-06 0.0122 0.2304 0.1116 0.0082 33.87 -2062

L = 6 DV 7.55e-06 0.0093 0.2030 0.0820 0.0114 95.25 -2692
DM 8.99e-06 0.0172 0.1837 0.0385 0.0090 18.84 -1797

L = 9 DV 6.19e-06 0.0087 0.2181 0.0731 0.0076 68.78 -2574
DM 9.03e-06 0.0067 0.2558 0.1143 0.0089 22.97 -1857

L = 12 DV 7.21e-06 0.0191 0.2271 0.0972 0.0107 16.63 -2578
DM 7.86e-06 0.0153 0.2196 0.0341 0.0080 5.65 -1905

t-test DV-DM ∼ ∼ ∼ ∼ ∼ + -

function f8 f9 f10 f11 f12 f13 f14

L = 3 DV 2.7677 102 61 0.0929 0.0476 2.0971 0.4200
DM 3.5671 100 21 0.0891 0.0093 2.8655 0.4794

L = 6 DV 2.6971 64 82 0.1147 0.0470 2.5969 0.4283
DM 1.9957 18 14 0.0386 0.0089 2.1034 0.3483

L = 9 DV 3.8969 94 30 0.0726 0.0974 2.1034 0.4099
DM 3.8160 24 24 0.0998 0.0077 2.7950 0.4833

L = 12 DV 2.0960 230 50 0.0826 0.0472 3.0315 0.4175
DM 2.7178 63 53 0.0444 0.0086 1.9218 0.4180

t-test DV-DM ∼ + + ∼ + ∼ ∼

When the number of intervals is set to 3, the results of DM are better than DV on

half of the test problems. DM is trapped into local optima due to the large range of

intervals. It is interesting that DM achieves the best result on f9, f10, and f12 over

all different number of intervals.

When we increase the number of intervals to 6, the performance of DM is better

than DV on most benchmark problems. Although DV presents better results than

DM on f1, f2, f9, and f14, DM obtains close results to DV on these functions.

Similar observations can be made as the number of intervals increases to 9. The

results obtained by DM are better than that of DV. Compared with the results of

DM with the number of intervals of 6, the performance of DM deteriorates on some

multi-modal problems. However, the results of DM with the number of intervals of

97

Chapter 5. Directed Mutation for Real-Coded Genetic Algorithms

9 are better than the results with the number of intervals of 6 on most uni-modal

problems.

When L = 12, the results of DM are better than the results of DV on more than

half of the test functions. Similar results can be viewed as the number of interval 6

but the performance of DM increases compared with the number of interval of 9 on

some multi-modal problems.

Table 5.2 also shows the statistical analysis of comparing DM with DV when L = 6

by using the two-tailed t-test with a 58 degree of freedom at a 0.05 level of signifi-

cance, where the t-test result is presented as “+”, “−”, or “∼” if the performance of

the GA with DM is significantly better than, significantly worse than, or statistically

equivalent to the GA with DV, respectively. The DM operator is significantly better

on four problems, significantly worse on one problem, and statistically similar on

the rest of the problems.

From Table 5.2, three conclusions can be made. First, the overall performance of

DM is better than DV on half test functions at least. Especially, on f9, f10 and f12,

the performance of DM is better over all different settings of the number of intervals.

Second, the interval quantity is a crucial factor to the performance of both DM and

DV on different benchmark functions. According to variable number of intervals,

the result of DM and DV varies on different test problems. Third, a larger number of

intervals is needed on multi-modal problems than uni-modal problems. The smaller

number of intervals causes the larger number of local optima within an interval,

since multi-modal problems have many local optima.

Figure. 5.2 presents the evolutionary process for DM and DV operators on f4, f6,

f7, and f9 respectively, where the result on f4 is presented in a log scale. From

Figure 5.2, it can be seen that the convergence speed of DM is faster than that of

98

Chapter 5. Directed Mutation for Real-Coded Genetic Algorithms

-2

-1.5

-1

-0.5

 0

 0.5

 1

125 250 75 500

A
ve

ra
ge

 B
es

t
F

it
ne

ss
 (

L
og

)

Generations

Directed Variation
Directed Mutation

 0

 50

 100

 150

 200

 250

 300

125 250 75 500

A
ve

ra
ge

 B
es

t
F

it
ne

ss

Generations

Directed Variation
Directed Mutation

(a) (b)

-3000

-2800

-2600

-2400

-2200

-2000

-1800

125 250 75 500

A
ve

ra
ge

 B
es

t
F

it
ne

ss

Generations

Directed Variation
Directed Mutation

 0

 50

 100

 150

 200

 250

 300

125 250 75 500

A
ve

ra
ge

 B
es

t
F

it
ne

ss

Generations

Directed Variation
Directed Mutation

(c) (d)

Figure 5.2: Evolutionary progress of directed mutation and directed variation
operators on (a) f4 with L = 12, (b) f6 with L = 12, (c) f7 with L = 3, and (d)

f9 with L = 6.

DV except on f9. This result validates our idea that the performance of DV can be

enhanced by taking into account the population distribution in the search space.

5.4 Chapter Summary

In this chapter, a directed mutation operator is proposed for genetic algorithms to

explore promising solutions in the search space. In the proposed directed mutation,

individual shifting is not only based on the feedback information of the fitness of

each interval, but also on the population distribution. By taking into account the

information of the population distribution, directed mutation greatly improves the

performance of directed variation.

99

Chapter 5. Directed Mutation for Real-Coded Genetic Algorithms

In order to justify the proposed directed mutation, a set of benchmark functions was

used as the test base to compare the performance of the directed mutation operator

with the directed variation operator from the literature [125]. The experimental

results show that the efficiency of DV is improved by the proposed enhancement on

four out of fourteen functions.

Although the prooposed DM operator achieves better results on the test problems,

there is a limitation, i.e., different problems need different optimum values of the

number of intervals to achieve the best result. So, how to adaptively adjust the

number of intervals is our major work in the future, and we will consider to com-

pare the performance of proposed DM technique with DV on CMA-ES benchmark

problems.

100

Chapter 6

Multi-Population with Adaptive

Mutation for Multi-Modal

Optimization

This chapter investigates multi-population approaches with adaptive mutation in

evolutionary algorithms (EAs) for multi-modal optimization problems. This idea is

the combination of multiple population and adaptive mutation approaches. We will

start with discussion on some challenging issues in EAs for multi-modal optimiza-

tion problems. Then, we present the general consideration of the multi-population

approach and some recently developed EAs with multi-population approaches. Af-

ter that, we describe in detail the proposed multi-population with adaptive muta-

tion approach for genetic algorithm (GAs) for multi-modal optimization problems.

Thereafter, we will present the experimental study of the proposed algorithm based

on a set of benchmark problems.

101

Chapter 6. Multi-Population with Adaptive Mutation for Multi-Modal Optimization

6.1 Challenges to EAs for Multi-Modal Optimiza-

tion

Much research has been done on EAs to find multiple peaks of a multi-modal opti-

mization problem. So far, the major challenge on EAs for multi-modal optimization

problems is how to avoid the stagnation of EAs to local optima. Generally speaking,

in a well-designed algorithm, the population will evolve towards the global optimum.

In this case, the diversity in the population will decrease. If all of the solutions have

similar gene values, the population is said to be converged. If an algorithm has

converged somewhere in the search space, it means no new candidate solution can

be generated in the entire search space. An algorithm is said to be prematurely

converged if it has converged to a local optimum and there are still better points

existing in the fitness landscape than the area that has been currently searched.

This problem of premature convergence is a challenging task, especially when the

search space contains numerous local optima.

The loss of diversity is a major drawback in EAs. Usually, EAs may get stuck to

premature convergence due to the loss of diversity in the population. If so, it is very

difficult for the EAs to make any further progress in the searching of better solutions.

This problem can be relieved by using some mechanisms to maintain or increase the

diversity in the population. It is a very important issue to maintain the diversity in

the population, which is relevant to how to balance the exploration and exploitation

capacities for EAs. Exploitation is a process of refining solutions with small changes

to the current individuals while exploration is the ability of a search algorithm to

explore new areas of the search space. Hence, another widespread opinion is that

exploitation and exploration are opposite forces, to guide the search behaviour of

individuals.

102

Chapter 6. Multi-Population with Adaptive Mutation for Multi-Modal Optimization

From the algorithm point of view, almost all EAs also face this problem. If an

algorithm uses the exploitation mechanism, it normally has a fast convergence speed,

but may get stuck to local optima easily. If an algorithm employs the exploration

approach, it may never improve potential solutions well enough to find global optima,

or it may achieve good solutions by chance but may need a long time.

Several approaches have been recently suggested to help EAs jump out of local

optima. Multi-population is an efficient technique to enhance the diversity in the

population. The following section first gives the general consideration of the multi-

population approach for EAs and then describes a few recently developed EAs with

multi-population approaches.

6.2 EAs with Multi-Population Approaches

6.2.1 General Consideration of Multi-Population

The fundamental idea of multi-population approaches is to generate a number of sub-

populations from the available whole population of individuals and maintain these

sub-populations on different promising peaks of the fitness landscape. This tech-

nique can be used to enhance the diversity of the population. The fitness landscape

contains more than one peak in the context of multi-modal problems: the highest

fitness peak represents the global optimum and other peaks with lower heights are

local optima. Hence, the working mechanism of multi-population is to divide the

search space into various sub-regions. One or more than one peak might be covered

by each sub-area, and each sub-population will reside in one sub-area and exploit

that sub-area.

103

Chapter 6. Multi-Population with Adaptive Mutation for Multi-Modal Optimization

Several key issues are raised, when using the multi-population approach to find

multiple peaks in the fitness landscape [119]. These key issues are summarized as

follows. The first key issue is how to divide the individuals to different promising

sub-areas. If the individuals can not be effectively distributed to different promising

sub-regions in the search space, then a GA can not find multiple optima. This issue

plays an important role. The motivation behind this issue is that an algorithm

should have the ability to improve the global search capability to explore promising

sub-regions.

After description of the first issue, we face another problem – how to set the area

of each sub-region in the fitness landscape. The number of peaks are determined by

the area of sub-regions. If the area of a sub-region is too small, there is a potential

problem that a small isolated sub-population may get stuck on local optima. In this

case, it can be difficult for the algorithm to make any further progress due to the

lose of diversity. However, if a sub-region becomes too large, it is possible that the

sub-region, which will be covered by a sub-population, will contain more than one

optimum within it.

The third issue is related to how many sub-populations are needed. It is possible

that the optimal number of sub-populations is equal to the total number of peaks in

the landscape. In this context, the more optima in the search space, the more sub-

populations may be needed. However, the limited computational resources may be

wasted when using the large number of sub-populations. If there is too small number

of sub-populations, GAs can not quickly detect different local optima. Generally

speaking, the number of peaks in the search space is unknown in advance, which

is the potential problem especially in real-world applications. Although for some

benchmark problems, the number of peaks is determined, over all, we should consider

that it is unknown to us.

104

Chapter 6. Multi-Population with Adaptive Mutation for Multi-Modal Optimization

Finally, there is also one open issue, that is, how to create sub-population? Usually,

the entire population is divided into sub-populations by using some approaches.

Many researchers have recently suggested different mechanisms for EAs [38, 83, 104,

119, 121]. These schemes can be used to enhance the diversity in the population,

with the aim of maintaining those sub-populations on different peaks of the fitness

landscape.

6.2.2 Recent Multi-Population Approaches for EAs

6.2.2.1 Species-Based Multi-Population Approach

A species-based particle swarm optimization (SPSO) algorithm was proposed by

Parrot and Li [70]. A species can be taken as a collection of individuals sharing the

common characteristics in terms of similarity of individuals. The similarity between

two individuals can be measured by the Hamming distance between them for binary

encoded EAs. The smaller the Hamming distance between two individuals, the more

similar they are. A species depends on the parameter min dist, which represents

the species radius (or similarity threshold). The species radius is estimated by

the Hamming distance from the center of species to its boundaries. The center of a

species is called the species seed, which is usually the fittest individual in the species.

In SPSO, the algorithm of determining the species seeds is given in Algorithm 11.

The algorithm receives one sorted list of all particles in the population. The particles

of the list are arranged in the order of non-increasing fitness values. The algorithm

for identifying species seeds has to be applied at each iteration of SPSO. All the

particles in the ordered list are examined from the best to the worst against the

species seeds identified so far. Once the fittest individual of unselected ones in the

ordered list has been determined as a species seed, all unselected individuals in the

105

Chapter 6. Multi-Population with Adaptive Mutation for Multi-Modal Optimization

Algorithm 11 Identifying species seeds

1: input: Ld – A list of all particles sorted in non-increasing fitness values
2: output: LS – A list of particles identified as species seeds
3: LS := φ;
4: for each particle p ∈ Ld do
5: seed := true;
6: for each seed s in LS do
7: if (distance(p, s) <= min dist) then
8: seed := false;
9: break;
10: end if
11: end for
12: if seed = true then
13: add the particle p as a species seed into LS ;
14: end if
15: end for

list that are within the species radius distance to the species seed are classified to

the same species. If an individual is not around all species seeds (i.e., not within the

species radius to all existing species seeds), this individual will become a new species

seed. If the radii of species seeds are overlapped, the first determined species seed will

dominate over the other seeds that are determined later on. Any individual which is

included within the overlapped radii, will be classified to the species corresponding

to the dominating seed. For example, suppose that the algorithm creates three

different species seeds s1, s2, and s3, in this order (i.e., s1 is generated first, s2 the

second, and s3 the last) and one individual x is within the overlapped radii of s1

and s2, then x will be classified into the species with the seed s1 since s1 dominates

s2.

In SPSO, each sub-population covers one sub-region in the fitness landscape, which

may contain one or multiple peaks. To address the major problem with regard to the

efficiency of SPSO, a few individuals of the same species may have converged to one

optimum before different species converge to other optima. All the individuals of a

same species that have converged to the same global optimum are called redundant.

106

Chapter 6. Multi-Population with Adaptive Mutation for Multi-Modal Optimization

Algorithm 12 Replacing redundant solutions

1: input: Ld – A list of all particles sorted in non-increasing fitness values
2: maxSize := Ld.size();
3: for i := 1 to maxSize do
4: if Ld[i].f itness = Ld[i].seedfitness then
5: Mark the i-th individual in Ld as redundant;
6: end if
7: end for
8: Delete all individuals marked as redundant from Ld;
9: Add all species seeds back into Ld;
10: while Ld.size() 6= maxSize do
11: Randomly create a new solution x́;
12: Push x́ into Ld;
13: end while

There is no any further contribution of these redundant individuals to the search

for better solutions. It is better to replace the redundant solutions with randomly

generated individuals so that other sub-regions of the search space can be explored.

The procedure of replacing redundant individuals in the species is summarized in

Algorithm 12, where Ld.size() returns the size of the list Ld (i.e., the number of

elements in Ld), Ld[i].f itness denotes the fitness of the i-th individual in Ld, and

Ld[i].seedfitness denotes the fitness of the species seed of the species, to which the

i-th individual in Ld belongs.

6.2.2.2 Partition Based Multi-Population Approach

Recently, in [106], the authors have proposed a partition technique, which divides the

current population into different sub-populations according to the fitness and distri-

bution of individuals in the landscape. Each sub-population can ideally incorporate

the basins of attraction of similar optima. The basic idea of the proposed partition

approach is to distribute the best individuals away from each other (according to a

certain distance measure) under different peaks in the search space.

107

Chapter 6. Multi-Population with Adaptive Mutation for Multi-Modal Optimization

Algorithm 13 The partition algorithm – Partition(pt)

1: input: Current population pt, reduction factor α ∈ (0, 1), and distance threshold
ǫ

2: µ← Get-Potential-Attractors(pt, α)
3: F ← Get-Final-Attractors(µ, ǫ)
4: pt ← Construct-Partitions(pt, F)

Algorithm 13 shows the pseudo-code of the partition approach. This partition ap-

proach has three main different sub-procedures, which are summarized as follows:

The first sub-procedure takes two arguments pt and α, where pt is the current pop-

ulation and α represents a reduction factor, and returns a set of individuals showed

as µ. The aim of this sub-procedure is to select good individuals from the current

population as the potential attractors. The selection mechanism is based on the rel-

ative candidate fitness values. For example, the selected individuals have quit close

(or the same) fitness values to the fitness of the best individual in the population.

These individuals are incorporated in the set µ, if the following condition is satisfied:

∀x ∈ pt, x ∈ µ if f(x) ≥ αfmax(pt) (6.1)

where fmax(pt) and f(x) represent the maximum fitness of the current population

pt and the fitness of individual x. The value of α = 0.9 was used in [106].

Two parameters are passed in the second sub-procedure: one is µ, which is already

explained in the above paragraph, and the other is ǫ, which is the distance threshold

value. This sub-procedure is used to refine the set of those individuals which are

contained in µ. The individuals that have the mutual distance (measured in the

Hamming distance) greater than a threshold value ǫ are moved into the set F .

It works by trying to locate all pairs of individuals in µ that are closer than the

predetermined distance threshold ǫ. If such a pair (x, y) exists and suppose x has a

higher fitness than y, then y is removed from µ. Finally, all the individuals left in

108

Chapter 6. Multi-Population with Adaptive Mutation for Multi-Modal Optimization

µ are moved to F . So, the set F will include those individuals that are adequately

away from each other.

The last sub-procedure is used to determine sub-populations from the individuals in

the set F . The total number of sub-populations is equal to the number of individuals

contained in F , each of which is considered as a representative to construct a sub-

population. So, suppose there are m individuals in F , then there will be m sub-

populations constructed, which can be denoted as p1t , p
2
t , · · · , p

m
t and are associated

with the representatives r1t , r
2
t , · · · , r

m
t in F , respectively. The m sub-populations

are constructed as follows. For each individual x ∈ pt, if x is closest to the i-th

representative rit, then it is included in the i-th sub-population pit.

From the above description of the partition approach, it can be seen that the in-

dividuals in a sub-population are near to each other regarding but individuals in

different sub-populations are far away in the fitness landscape. This means that

different sub-populations may be on different peaks. The main motivation behind

this approach is to maintain the diversity in the whole population.

6.3 GAs withMulti-Population with Adaptive Mu-

tation

6.3.1 Motivation

Exploration and exploitation are essential in GAs for optimizing multi-modal func-

tions. Exploration has the ability to explore new regions of the solution space in

search of the global optimum. On the other hand, exploitation is the capacity to

converge to an optimum (local or global) after finding the region which is holding

109

Chapter 6. Multi-Population with Adaptive Mutation for Multi-Modal Optimization

the optimum. The balance between these properties of GAs can be maintained by

using the multi-population with an adaptive mutation approach.

Adaptive techniques are used to accelerate the convergence speed and avoid GAs

from being trapped into local optima. The important contribution of adaptive mu-

tation operators is to improve the performance of GAs. So far, adaptive mutation

schemes are usually used to a single population in the evolution process of a GA,

no matter steady state GA (i.e., a single individual is generated at each iteration)

or generational GA (i.e., the whole population is replaced at each generation).

As mentioned before, the premature convergence due to the loss of diversity is a big

challenge to GAs. The multi-population approach can be applied to maintain the

diversity of the whole population of GAs and retain the convergence capacity of GAs.

In this chapter, a multi-population with adaptive mutation approach is proposed for

GAs to address multi-modal optimization problems. Basically, an adaptive mutation

operator is combined with the two aforementioned multi-population approaches: one

is the species based multi-population approach in [70] and the other is the partition

based multi-population approach in [106]. We use PWAM and SWAM to represent

partition based multi-population with adaptive mutation and species based multi-

population with adaptive mutation, respectively, in this study.

Generally speaking, GAs have two searching capacities: exploration and exploita-

tion. But, the problem is how to balance these two capacities during the running

process. In order to address this problem, researchers have used separately multi-

population approaches and adaptive probabilities of genetic operators to increase

the diversity during the evolution process. Our proposed scheme aims to combine

both approaches for finding better solutions in multi-modal optimisation problems.

This technique is applied to achieve a good balance between the explorative and

exploitative capacities of GAs.

110

Chapter 6. Multi-Population with Adaptive Mutation for Multi-Modal Optimization

Algorithm 14 GA with the multi-population with adaptive mutation scheme

1: t := 0;
2: Randomly create an initial population pt;
3: Evaluate the fitness of each individual in pt;
4: pop lstt := Partition(pt);
5: while t < max gen do
6: for i := 0 to pop lstt.size() do
7: Statistics(pop lstit);
8: Selection(pop lstit);
9: Crossover(pop lstit);
10: Mutation(pop lstit);
11: Evaluation(pop lstit);
12: end for
13: Overlapping(pop lstt);
14: Convergence(pop lstt);
15: if pt.size() < min Inds then
16: ptmp :=Re-initialization(numRemovedInds);
17: new pop lstt := Partition(ptmp);
18: Merge pop lstt and new pop lstt into pop lstt
19: end if
20: t := t+ 1;
21: end while

6.3.2 Framework of the Proposed GA

The framework of the GA with the proposed multi-population with adaptive muta-

tion scheme is shown in Algorithm 14. This algorithm starts from a randomly gen-

erated population of individuals. Then, a list of sub-populations pop lst are created

using either the PWAM or SWAM scheme. When sub-populations have been gener-

ated, each sub-population pop lstit (i = 0, · · · , pop lstt.size(), where pop lstt.size()

denotes the number of sub-populations in the list pop lst at generation t) evolves

independently just like in a classical GA except that a gene-level adaptive mutation

scheme, i.e., the GBAM operator proposed in [84], is used. For each sub-population,

we maintain two mutation probability vectors, which are updated using the statistics

information from the sub-population and are used to control the bitwise mutation

111

Chapter 6. Multi-Population with Adaptive Mutation for Multi-Modal Optimization

operation for each individual of the sub-population. At the end, after each sub-

population has completed one generation, the overlapping and convergence check

techniques are applied on each sub-population before starting the next generation.

Some of the tasks in this algorithm are similar to the classical GA. Here, we will

focus on the main components of this approach, including partition, statistics, muta-

tion, overlapping and convergence check procedures. These components are the key

features of the proposed GA for multi-modal optimization problems. The detailed

description of these components is given in the following sections.

6.3.2.1 Partition(pt)

There are several approaches available in the literature to generate multi-populations.

Two approaches, i.e., the species-based multi-population [70] and partition-based

multi-population [106] schemes, are considered in this study. Detailed explanation

of these techniques has been given in Section 6.2.2. Let pt represent the current

population at generation t, which is passed to the partition procedure as a parame-

ter. The partition procedure will then use the SWAM or PWAM scheme to divide

the current population into a list pop lst of different sub-populations, which are ex-

pected to cover different areas in the fitness landscape. This approach can be helpful

towards getting good results on multi-modal optimization problems.

6.3.2.2 Statistics

After the partition of the whole population into sub-populations, each sub-population

evolves independently using a GA with the GBAM scheme. Each sub-population,

say sub-population i, maintains two mutation probability vectors, denoted as ~M0i =

{M0i
1 ,M0i

2 , · · · ,M0i
l } and ~M1i = {M1i

1 ,M1i
2 , · · · ,M1i

l }, respectively, where l is the

length of a binary-encoded solution. Each element of the vector ~M0i denotes the

112

Chapter 6. Multi-Population with Adaptive Mutation for Multi-Modal Optimization

mutation probability for a corresponding gene locus that has the allele 0, while each

element of ~M1i denotes the mutation probability for a corresponding gene locus

that has the allele 1. Below, we describe the calculation of the mutation probability

vectors for each sub-population.

In the statistics procedure, the mutation probabilities for each gene locus are up-

dated using the feedback information for each current sub-population. Each vector

contains a set of elements, which is associated to the probabilities of mutating a

particular allele at each gene locus. Initially, each element of the vectors is set to an

initial value within its boundaries.

For each generation, vectors are updated based on the fitness and distribution of

solutions in a specific sub-population. It means that each sub-population alters

its own vectors independently. The estimation of both vectors are updated using

Eqs. (6.2) and (6.3).

M0i
j (t+ 1) =

M0i
j (t) + γ, if G

1i

jt > P
i

t

M0i
j (t)− γ, otherwise

(6.2)

M1i
j (t+ 1) =

M1i
j (t)− γ, if G

1i

jt > P
i

t

M1i
j (t) + γ, otherwise

(6.3)

where γ is the updated value of mutation probabilities of the vectors, G
1i

jt is the

average fitness of individuals with allele “1” for locus j within sub-population i at

generation t, and P
i

t is the average fitness of sub-population i at iteration t. The

above update mechanism is used for each locus separately.

In summary, each gene locus j has two different mutation probabilities: M1i
j is used

for those individuals that have the value of 1 at gene locus j, and M0i
j is used for

those individuals that have the value of 0 at gene locus j. Initially, all mutation

probabilities are assigned to a value, e.g, 0.02. The probabilities of M0i
j and M1i

j

113

Chapter 6. Multi-Population with Adaptive Mutation for Multi-Modal Optimization

are then automatically updated based on the feedback information from the search

space, according to the relative success or failure of those chromosomes having a “1”

or “0” at gene locus j for each generation. The new mutation probability for each

locus j at generation t + 1 is updated using Eqs. (6.2) and (6.3) in the case of a

maximization problem.

6.3.2.3 Mutation(pit)

This mutation procedure is performed on each sub-population i every iteration. It is

distinctly employed on each sub-population using the associated vectors. Suppose,

an offspring (x́ = {x́1, ..., x́l}) is generated by mutating the parent x = {x1, ..., xl}

according to the corresponding vectors, which is one member of a sub-population.

The mutation operation is performed on the whole solution gene by gene, which

is mentioned in the Algorithm 15, where Rnd(0, 1) is a uniform random number

generated within the range [0, 1].

Algorithm 15 Adaptive mutation

1: for j := 0 to l do
2: if x[j] = 0 then
3: if Rnd(0, 1) < M0i

j then
4: x́[j] := 1;
5: end if
6: else
7: if Rnd(0, 1) < M1i

j then
8: x́[j] := 0;
9: end if
10: end if
11: end for

114

Chapter 6. Multi-Population with Adaptive Mutation for Multi-Modal Optimization

Algorithm 16 Overlapping check of sub-populations

1: numRemovedInds := 0;
2: for i := 0 to pop lst.size() do
3: b1 is the best solution of pop lsti;
4: for j := i+ 1 to pop lst.size() − 1 do
5: b2 is the best solution of pop lstj ;
6: if (distance(b1, b2) < min Dist) then
7: if (b1 is worse than b2) then
8: numRemovedInds := numRemovedInds+ pop lsti.size();
9: delete pop lsti;
10: else
11: numRemovedInds := numRemovedInds+ pop lstj .size();
12: delete pop lstj from pop lst;
13: end if
14: end if
15: end for
16: end for

6.3.3 Overlapping and Convergence Check

After selection, crossover, and mutation operations, all the sub-populations are

checked regarding overlapping and convergence. Normally, the overlapping check

between two sub-populations can be carried out by calculating the distance of the

best solutions of the two sub-populations. If the distance is less than a threshold

value min Dist, then the two sub-populations are considered as overlapped. In this

case, the sub-population, of which the fitness of the best solution is worse than that

of another sub-population, is removed from the list pop lst, and the number of indi-

viduals in the removed sub-population is recorded and accumulated into the variable

numRemovedInds. Algorithm 16 shows the overlapping check of sub-populations.

After overlapping check, all sub-populations will undergo the convergence check

process, which is performed to see whether a sub-population has converged or not. If

the number of similar solutions of a sub-population is greater than a threshold value

Lmt conv (The threshold value is set to 0.95 times the size of the sub-population),

the sub-population is considered to be converged. If a sub-population is converged,

115

Chapter 6. Multi-Population with Adaptive Mutation for Multi-Modal Optimization

Algorithm 17 Convergence check of sub-populations

1: for each sub-population s ∈ pop lst do
2: if totSimilInds > (0.95 ∗ s.size()) then
3: numRemovedInds := numRemovedInds+ s.size();
4: Delete s from pop lst;
5: end if
6: end for

then it is removed from pop lst. The convergence check of sub-populations is shown

in Algorithm 17.

After the overlapping and convergence checks, we check whether the number of

individuals that are still active in the whole population is less than a predefined

minimum threshold min Inds. If so, the following actions (see Lines 15-19 in Al-

gorithm 14) will be taken. First, a temporary population of numRemovedInds

random individuals is created; Then, the temporary population is partitioned into

a list new pop lst of sub-populations using one of the SWAM and PWAM partition

methods; Finally, this list of sub-populations is merged with the current list pop lst

of sub-populations.

In summary, the proposed GA with the multi-population with adaptive mutation

approach has the following characteristics:

1. It maintains two mutation probability vectors for each sub-population. Each

gene locus has two different mutation probabilities and different loci have dif-

ferent mutation probabilities.

2. The mutation probabilities for each locus are updated iteration by iteration

according to the current state of evolution.

3. The multi-population method is expected to locate multiple optima of multi-

modal optimization problems, and the adaptive mutation scheme aims to speed

up the convergence toward the optima covered by a sub-population.

116

Chapter 6. Multi-Population with Adaptive Mutation for Multi-Modal Optimization

6.4 Experimental Study

In this section, three different groups of experiments were conducted on well-known

decision problems, which have been evaluated in the area of maximum satisfiability

(MAX-SAT) problems. Boolean satisfiability problems involve finding an assignment

of variables that maximizes the number of satisfied clauses of given constraints. The

general form of these constraints is presented in conjunctive normal form (CNF)

or product-of-sum form. The MAX-SAT problem is also a well-known NP-hard

optimization problem. In addition, boolean satisfiability expression has been applied

to introduce an approach for generating problems with controllable degree of “multi-

modality” and “epistasis”. Spears in [94] introduced a scheme which creates epistasis

problems of different sizes by generating specific boolean expressions which always

have only one solution. These problems are similar to the multi-modal problems,

but having only one solution makes the problem harder to solve.

In this section, we first introduce the mapping between GAs and MAX-SAT prob-

lems [94] for generating constraints with controllable degree of multi-modality and

epistasis, and then investigate the experimental results.

6.4.1 Boolean Satisfiability and Genetic Algorithms

In order to employ GAs to solve any particular problem, we need to consider two

critical components: 1) specifying the appropriate representation for the solution

space, i.e., the search space; and 2) defining an external evaluation function which

determines the quality of individuals, i.e., the fitness of individuals. MAX-SAT has

a simple string representation which is highly compatible for GAs. Each individual

is a binary string of length l, where the i-th bit determines the truth value of the i-th

boolean variable shown in the boolean expression. A candidate solution is evaluated

117

Chapter 6. Multi-Population with Adaptive Mutation for Multi-Modal Optimization

Table 6.1: Fitness f for assignments to a ∧ (a ∨ b̄), taken from [86]

a b Fitness f

0 0 avg(0,max(0,(1-0))) = 0.5
0 1 avg(0,max(0,(1-1))) = 0.0
1 0 avg(1,max(1,(1-0))) = 1.0
1 1 avg(1,max(1,(1-1))) = 1.0

by the fitness function, which delegates a fitness value 1 to the individual (string)

by whose boolean values the boolean expression is evaluated to 1, and 0 to other

solutions.

In [94], Spear proposed another scheme that assigns a fitness to an individual’s sub-

expressions in the whole expression and aggregate them in some way to produce a

complete individual fitness value. According to this scheme, a general and natural

way is to specify the value of TRUE to be 1 and the value of FALSE to be 0 by

Smith [86]. The fitness value f(ei) of a simple expressions ei is defined as follows:

f(ē) = 1− f(e)

f(e1 ∨ e2 ∨ ... ∨ en) = max(f(e1), f(e2), ..., f(en))

f(e1 ∧ e2 ∧ ... ∧ en) = avg(f(e1), f(e2), ..., f(en))

where avg represents the average fitness of its parameters. In [86], the author sug-

gested an evaluation function, which gives reward to an intermediate solution. For

example, the fitness values of solutions to the boolean expression (a ∧ (a ∨ b̄)) are

determined according to Table 6.1. As shown in Table 6.1, half of the solutions are

correct (lines 3 and 4) and are assigned a fitness 1. For the other half of incorrect

solutions (lines 1 and 2), one of them which satisfies half of the conjunction (line 1)

is achieved a better fitness value.

118

Chapter 6. Multi-Population with Adaptive Mutation for Multi-Modal Optimization

6.4.2 Generating Multi-Modal Problems

In order to explain the above consideration regarding the mapping between GAs

and boolean satisfiability problems. The mapping should have the ability to express

any satisfiability problem into a function optimization problem. Spear [94] proposed

boolean satisfiability expressions, which can also be applied to control the difficulty

of the problem under study by modifying the degree of multi-modality and epistasis

of the search space.

The MAX-SAT has been used to create multi-modal problems, which is a straight-

forward process. Here, we are going to consider the example proposed by [94]. In

this example, an expression is based on 30 boolean variables, which may contain

varying number of peaks.

A uni-modal problem can be defined using an expression as follows:

1Peak ≡ (x1 ∧ x2 ∧ ... ∧ x30)

This expression is completely true only when all variables are true. In addition,

the fitness of a solution in the search space is simply the number of true variables

(divided by 30) in the expression. Thus, we can say that there is a unique peak in

the fitness landscape.

Now, a bi-modal problem can be determined with slightly modification to the one-

peak problem as follows:

2Peak ≡ 1Peak ∨ (x̄1 ∧ x̄2 ∧ ... ∧ x̄30)

The above problem consists of two peaks. Before creating a new peak, all variables

are true of the previous peak, then the new peak would occur where all variables

119

Chapter 6. Multi-Population with Adaptive Mutation for Multi-Modal Optimization

are false. The fitness values of both peaks are 1.0 and both are global optima in this

context. It is possible to consider the problem to be more challenging.

2Peak ≡ 1Peak ∨ (x1 ∧ x̄1 ∧ x̄2 ∧ ... ∧ x̄30)

Since it is impossible for a single boolean variable x1 to be both true and false at

the same time, the second disjunct cannot be true (satisfied). However, if the rest

of the 29 variables are 0, the disjunct will have a fitness value a little less than 1.0.

It is often pertained as a false peak. It is very difficult to locate the global optimum

due to the increasing number of false peaks. This way, the problem becomes more

challenging for GAs to solve. The following expressions are more suitable examples

of the problems with many number of false peaks:

3Peak ≡ 2Peak ∨ (x1 ∧ x̄1 ∧ x̄2 ∧ ... ∧ x̄15 ∧ x16 ∧ ... ∧ x̄30)

4Peak ≡ 3Peak ∨ (x1 ∧ x̄1 ∧ x2 ∧ ... ∧ x15 ∧ x̄16 ∧ ... ∧ x30)

5Peak ≡ 4Peak ∨ (x1 ∧ x̄1 ∧ x2 ∧ x̄3 ∧ x4 ∧ x̄5... ∧ x̄29 ∧ ... ∧ x30)

6Peak ≡ 5Peak ∨ (x1 ∧ x̄1 ∧ x̄2 ∧ x3 ∧ x̄4 ∧ x5... ∧ x29 ∧ ... ∧ x̄30)

6.4.3 Peer Algorithms for Comparing the Proposed GA

The performance of proposed algorithm is compared with some existing GAs, which

are taken from the literature. These algorithms were tested on different multi-

modal boolean satisfiability problems, which are widely applied in the literature.

Initially, our algorithm has been compared to standard GAs with fixed mutation

and crossover probabilities. In addition, the proposed technique is compared with

some other parameter control approaches, such as adaptive [96], self-adaptive [11]

120

Chapter 6. Multi-Population with Adaptive Mutation for Multi-Modal Optimization

and SSRGA [106] schemes. These compared approaches are briefly described as

follows.

The simple GA (SGA) is a standard binary-encoded GA with each solution rep-

resented as a bit string of length l. Mutation and crossover operators are used in

the SGA as variation operators. The probabilities of these variation operators are

initially assigned in our experiments and are then fixed during the whole evolution

process.

Srinivas and Patnaik introduced an adaptive genetic algorithm (AGA) [96], which

is an efficient adaptive algorithm for multi-modal optimization problems. The main

motivation of this approach is to maintain the diversity in the population and retain

the convergence capacity of the GA by using adaptive probabilities of crossover and

mutation. The rates of mutation and crossover are updated depending on the fitness

values of obtained solutions. These adaptive mutation and crossover operators are

helpful to preserve good solutions of the population. The mutation and crossover

rates are updated according to the following equations.

pc =

k1(fmax − f́)/(fmax − f̄), if f́ ≥ f̄

k3, otherwise
(6.4)

pm =

k2(fmax − f)/(fmax − f̄), if f ≥ f̄

k4, otherwise
(6.5)

where fmax and f̄ represent the maximum fitness and the average fitness of the

population, respectively, f́ is the larger of the fitness values of the individuals to be

crossed and f is the fitness of the solution which is being mutated. k1, k2, k3, k4 ∈

[0,1] are predefined constants. These predefined constant values are taken from [96]

so that the same values are considered in our experiments.

121

Chapter 6. Multi-Population with Adaptive Mutation for Multi-Modal Optimization

A self-adaptive GA (SAGA) was developed by Back and Schutz [11], which uses a

single mutation rate separately per solution. For example, an individual consists

of a binary string of length l and an associated mutation rate µ ∈ [0, 1]. The new

mutation probability is adjusted according to the following equation.

µ́ = 1 +
1− µ

µ
exp(γN(0, 1)) (6.6)

where γ = 0.22 is the learning rate and N(0, 1) is the uniform distributed value with

mean 0.0 and standard deviation 1.0. A new solution is generated through bit-wise

mutation of l bits applying the mutated mutation rate value µ́. The mutation rate

is not less than 1/l.

Vafaee and Peter recently proposed a site-specific rate GA (SSRGA) [106], which

introduces a mutation scheme to determine different mutation rates for different sites

of individuals. The main motivation of this approach is to face both explorative

and exploitative responsibilities of variation operators. This scheme starts from

partitioning the population into a number of sub-populations based on the fitness

and distribution of solutions contained in the search space, as discussed in Section

6.2.2.2. Then, the result of this procedure is a probability vector (SSR vector) with

each element associated to the rate of mutating a specific allele at each locus of every

solution of a sub-population.

6.4.4 Experimental Setting

In order to investigate our proposed algorithms in comparison with four other al-

gorithms on problems with different levels of difficulty, we modified the length l of

individuals and the population size n to change the difficulty of problems. Generally,

the problem becomes more difficult if the length of individuals increases.

122

Chapter 6. Multi-Population with Adaptive Mutation for Multi-Modal Optimization

We have considered different levels of problem difficulty by setting the parameter

pair (l, n) to (20, 30), (30, 50), (50, 50), and (60, 70), respectively. These parameter

settings were used to multi-modal landscape with different degrees of multi-modality

by assigning the number of peaks to the values in 1, 5, 10. The number of peaks

(or degree of multi-modality) can be controlled by the experimenter. Each peak is

determined by a randomly created solution of length l, which identifies the specific

position of the peak in the search space. When a solution is to be evaluated, we first

identify the nearest peak (in terms of Hamming space) to the solution. Then, the

fitness of the solution is calculated by dividing the common number of bits between

the solution and the nearest peak by the total length l of a solution. Formally, the

fitness of an arbitrary string j, denoted by fj, is calculated by the following equation:

fj =
1

l
maxp

i=1{l −HammingDistance(j, peaki)} (6.7)

where p is the total number of peaks in the fitness landscape.

The default setting of parameters applied in the experiments can be observed in the

original papers [11, 96, 106]. To compare the performance of the multi-population

with adaptive mutation approaches and other algorithms described in Section 6.4.3,

all algorithms were allowed the same population size, same length of individuals,

and same maximum number of generations for each run.

The performance of investigated approaches depends on the operators and parame-

ters applied. In this study, the key parameters are considered for sensitivity analysis,

such as the population size, the length of individuals, and the radius (min dist). It

is not always a good idea to locate multiple optima by using a small population size.

Increasing the population size, however, reduces the probability of being trapped

into local optimum and increasing the probability of locating good solutions during

the evolution process. A solution consists of a l-bit binary string. If the length

123

Chapter 6. Multi-Population with Adaptive Mutation for Multi-Modal Optimization

of string increases, the problem becomes more challenging since the state space is

exponentially expanded according to the length of solutions.

The parameter r (min dist) is used to determine the species and species seed in

the SPSO [70] and to identify the representative individual from the population in

PWAM [106]. The radius (r) is the key parameter to both approaches. If the radius

is too small, there is a potential problem that few isolated solutions species may tarp

into local optimum due to very small size of radius. In this context, due to the loss of

diversity, the algorithms can not progress further during the process. If the radius

is too large, there may be more than one optimum within the radius. It is very

difficult to choose a suitable value of the radius. In this study, we have considered

different values of the radius to investigate the performance of algorithms in order

to determine that which parameter setting gives the great performance among the

compared algorithms.

6.4.5 Experimental Results and Analysis

In order to investigate that the multi-population with adaptive mutation scheme can

improve the performance of GAs regarding the solution quality and convergence rate

for multi-modal problems, all algorithms were run independently 50 times on multi-

modal problems with different degrees of multi-modalities. The parameter r is only

associated with the top three algorithms in these tables because multi-population

schemes are used in these algorithms. The parameter r is considered as a threshold

value (i.e., the minimum distance between two solutions) in the PWAM and SSRGA

algorithms. In the SWAM algorithm, species and species seed are constructed with

the help of the parameter r.

The experimental results of algorithms on different problems with one peak, five

peaks and ten peaks, are shown in Tables 6.2, 6.3 and 6.4, respectively, which give

124

Chapter 6. Multi-Population with Adaptive Mutation for Multi-Modal Optimization

detailed results of the average and standard deviation of the best fitness values

found during the evolution process. Both values are computed when the maximum

number of iterations is completed or the global optimum is found. The smaller

standard deviation means that an algorithm produces reliable solutions.

6.4.5.1 Effect of Varying the Length of Solutions and Population Size

The algorithms have been investigated on different problems with different levels of

difficulty in terms of the combination of the length of individuals and the population

size. The problem would become more difficult if the length of solutions is increased.

The increasing size of population leads to less chance of stagnation of the EA on

local optima and more chance to locate the better solution at the termination of the

optimization process [94]. The proposed algorithms have been tested on different

lengths of solution and population sizes.

6.4.5.2 Effect of Varying the Number of Peaks

The performance of PWAM and SWAM is equal on the problems with a specific

setting of (l, n) and different number of peaks. The efficiency of SSRGA slightly

declines as the number of peaks increases. However, the situation of the rest of

compared algorithms is reversed.

6.4.5.3 Effect of Varying the Parameter r or min dist

Different settings of the parameter r, e.g., 0.5∗l, 0.6∗l, and 0.7∗l, are applied within

the algorithms PWAM, SWAM, and SSRGA, where the performance of PWAM and

SWAM is observed to be identical on these values of r. The performance of PWAM

and SWAM may be affected by different values of r other than these values. From

125

C
h
a
p
ter

6
.
M
u
lti-P

o
p
u
la
tio

n
w
ith

A
d
a
p
tive

M
u
ta
tio

n
fo
r
M
u
lti-M

od
a
l
O
p
tim

iza
tio

n

Table 6.2: Comparison results of algorithms with different parameter settings on different problems with one peak

(l, n) (20, 30) (30, 50) (50, 50) (60, 70)
r or min dist 0.5*l 0.6*l 0.7*l 0.5*l 0.6*l 0.7*l 0.5*l 0.6*l 0.7*l 0.5*l 0.6*l 0.7*l

PWAM avg 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
std 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

SWAM avg 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
std 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

SSRGA avg 1.0 1.0 1.0 0.998 1.0 0.998 0.922 0.916 0.921 0.891 0.893 0.897
std 0.0 0.0 0.0 0.007 0.0 0.006 0.016 0.019 0.022 0.016 0.014 0.016

SAGA avg 0.877 0.824 0.750 0.740
std 0.033 0.024 0.022 0.020

AGA avg 0.93 0.872 0.794 0.774
std 0.026 0.023 0.020 0.015

SGA avg 0.897 0.876 0.817 0.810
std 0.051 0.047 0.041 0.034

126

C
h
a
p
ter

6
.
M
u
lti-P

o
p
u
la
tio

n
w
ith

A
d
a
p
tive

M
u
ta
tio

n
fo
r
M
u
lti-M

od
a
l
O
p
tim

iza
tio

n

Table 6.3: Comparison results of algorithms with different parameter settings on different problems with five peaks

(l, n) (20, 30) (30, 50) (50, 50) (60, 70)
r or min dist 0.5*l 0.6*l 0.7*l 0.5*l 0.6*l 0.7*l 0.5*l 0.6*l 0.7*l 0.5*l 0.6*l 0.7*l

PWAM avg 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
std 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

SWAM avg 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
std 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

SSRGA avg 1.0 1.0 1.0 0.991 0.995 0.944 0.906 0.906 0.911 0.879 0.874 0.878
std 0.0 0.0 0.0 0.014 0.011 0.012 0.017 0.017 0.016 0.026 0.026 0.024

SAGA avg 0.909 0.850 0.779 0.760
std 0.022 0.021 0.018 0.012

AGA avg 0.943 0.878 0.802 0.779
std 0.026 0.022 0.017 0.014

SGA avg 0.905 0.886 0.806 0.807
std 0.038 0.039 0.034 0.028

127

C
h
a
p
ter

6
.
M
u
lti-P

o
p
u
la
tio

n
w
ith

A
d
a
p
tive

M
u
ta
tio

n
fo
r
M
u
lti-M

od
a
l
O
p
tim

iza
tio

n

Table 6.4: Comparison results of algorithms with different parameter settings on different problems with ten peaks

(l, n) (20, 30) (30, 50) (50, 50) (60, 70)
r or min dist 0.5*l 0.6*l 0.7*l 0.5*l 0.6*l 0.7*l 0.5*l 0.6*l 0.7*l 0.5*l 0.6*l 0.7*l

PWAM avg 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
std 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

SWAM avg 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
std 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

SSRGA avg 1.0 1.0 1.0 0.987 0.988 0.987 0.876 0.882 0.884 0.831 0.837 0.833
std 0.0 0.0 0.0 0.017 0.015 0.016 0.040 0.027 0.030 0.031 0.030 0.034

SAGA avg 0.923 0.866 0.788 0.774
std 0.030 0.021 0.018 0.021

AGA avg 0.952 0.890 0.810 0.791
std 0.030 0.021 0.020 0.019

SGA avg 0.920 0.893 0.820 0.805
std 0.036 0.032 0.0340 0.027

128

Chapter 6. Multi-Population with Adaptive Mutation for Multi-Modal Optimization

Tables 6.2, 6.3, and 6.4, it is clear that different configurations of the parameter r

affects the performance of the SSRGA algorithm.

6.4.5.4 Comparison Regarding the t-Test and Performance Results

The statistical test of comparing algorithms is carried out applying a two-tailed t-

test with a 98 degree of freedom at a 0.05 level of significance. Table 6.5 presents the

t-test results of comparing algorithms, where the result is shown as “s+”, “s−”, “+”,

“−”, or “∼” if the first algorithm in a pair is significantly better than, significantly

worse than, insignificantly better than, insignificantly worse than, or equivalent to

the second algorithm, respectively. The t-test results of comparing algorithms are

shown on the problem with 10 peaks and mini dist is chosen 0.6 ∗ l with different

levels of problem settings. From Table 6.5, it can be observed that both PWAM and

SWAM approaches are statistically better than other compared schemes to locate

the optimum value in the fitness landscape. Here, we present only the statistical

results of compared techniques with different level of difficulty of different problems

with 10 peaks.

According to the parameter setting of different level of multi-modal problems are

divided into three categories such as simple problems, bit harder problems, and

difficult problems. The performance of all algorithms varies on different categories.

From Figures 6.1 and 6.2, it can be seen that the convergence speed of involved

algorithms, which were tested on different level of difficulty in simple multi-modal

problems.

In Figures 6.1 and 6.2, PWAM, SWAM, and SSRGA have a higher convergence rate

than self-adaptive GA, adaptive GA, and Standard GA on simple problems. The

overall convergence speed of PWAM and SWAM is initially better than SSRGA on

129

Chapter 6. Multi-Population with Adaptive Mutation for Multi-Modal Optimization

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

25 50 75 100

A
ve

ra
ge

 B
es

t F
itn

es
s

Generations

Peak 1, l = 20, n = 30 and r = 0.5*l

SGA
AGA

SAGA
SSRGA

SWAM
PWAM

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

25 50 75 100

A
ve

ra
ge

 B
es

t F
itn

es
s

Generations

Peak 1, l = 20, n = 30 and r = 0.6*l

SGA
AGA

SAGA
SSRGA

SWAM
PWAM

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

25 50 75 100

A
ve

ra
ge

 B
es

t F
itn

es
s

Generations

Peak 1, l = 20, n = 30 and r = 0.7*l

SGA
AGA

SAGA
SSRGA

SWAM
PWAM

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

25 50 75 100

A
ve

ra
ge

 B
es

t F
itn

es
s

Generations

Peak 5, l = 20, n = 30 and r = 0.5*l

SGA
AGA

SAGA
SSRGA

SWAM
PWAM

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

25 50 75 100

A
ve

ra
ge

 B
es

t F
itn

es
s

Generations

Peak 5, l = 20, n = 30 and r = 0.6*l

SGA
AGA

SAGA
SSRGA

SWAM
PWAM

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

25 50 75 100

A
ve

ra
ge

 B
es

t F
itn

es
s

Generations

Peak 5, l = 20, n = 30 and r = 0.7*l

SGA
AGA

SAGA
SSRGA

SWAM
PWAM

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

25 50 75 100

A
ve

ra
ge

 B
es

t F
itn

es
s

Generations

Peak 10, l = 20, n = 30 and r = 0.5*l

SGA
AGA

SAGA
SSRGA

SWAM
PWAM

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

25 50 75 100

A
ve

ra
ge

 B
es

t F
itn

es
s

Generations

Peak 10, l = 20, n = 30 and r = 0.6*l

SGA
AGA

SAGA
SSRGA

SWAM
PWAM

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

25 50 75 100

A
ve

ra
ge

 B
es

t F
itn

es
s

Generations

Peak 10, l = 20, n = 30 and r = 0.7*l

SGA
AGA

SAGA
SSRGA

SWAM
PWAM

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

25 50 75 100

A
ve

ra
ge

 B
es

t F
itn

es
s

Generations

Peak 1, l = 30, n = 50 and r = 0.5*l

SGA
AGA

SAGA
SSRGA

SWAM
PWAM

Figure 6.1: Evolutionary process of algorithms on simple problems.
130

Chapter 6. Multi-Population with Adaptive Mutation for Multi-Modal Optimization

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

25 50 75 100

A
ve

ra
ge

 B
es

t F
itn

es
s

Generations

Peak 1, l = 30, n = 50 and r = 0.6*l

SGA
AGA

SAGA
SSRGA

SWAM
PWAM

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

25 50 75 100

A
ve

ra
ge

 B
es

t F
itn

es
s

Generations

Peak 1, l = 30, n = 50 and r = 0.7*l

SGA
AGA

SAGA
SSRGA

SWAM
PWAM

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

25 50 75 100

A
ve

ra
ge

 B
es

t F
itn

es
s

Generations

Peak 5, l = 30, n = 50 and r = 0.5*l

SGA
AGA

SAGA
SSRGA

SWAM
PWAM

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

25 50 75 100

A
ve

ra
ge

 B
es

t F
itn

es
s

Generations

Peak 5, l = 30, n = 50 and r = 0.6*l

SGA
AGA

SAGA
SSRGA

SWAM
PWAM

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

25 50 75 100

A
ve

ra
ge

 B
es

t F
itn

es
s

Generations

Peak 5, l = 30, n = 50 and r = 0.7*l

SGA
AGA

SAGA
SSRGA

SWAM
PWAM

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

25 50 75 100

A
ve

ra
ge

 B
es

t F
itn

es
s

Generations

Peak 10, l = 30, n = 50 and r = 0.5*l

SGA
AGA

SAGA
SSRGA

SWAM
PWAM

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

25 50 75 100

A
ve

ra
ge

 B
es

t F
itn

es
s

Generations

Peak 10, l = 30, n = 50 and r = 0.6*l

SGA
AGA

SAGA
SSRGA

SWAM
PWAM

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

25 50 75 100

A
ve

ra
ge

 B
es

t F
itn

es
s

Generations

Peak 10, l = 30, n = 50 and r = 0.7*l

SGA
AGA

SAGA
SSRGA

SWAM
PWAM

Figure 6.2: Evolutionary process of algorithms on simple problems.

131

Chapter 6. Multi-Population with Adaptive Mutation for Multi-Modal Optimization

Table 6.5: The t-test results of comparing algorithms on different problems with
different levels of difficulty

Problems (20, 30) (30, 50) (50, 50) (60, 70)

PWAM-SWAM ∼ ∼ ∼ ∼
PWAM-SSRGA ∼ ∼ s+ s+
PWAM-SAGA s+ s+ s+ s+
PWAM-AGA s+ s+ s+ s+
PWAM-SGA s+ s+ s+ s+
SWAM-SSRA ∼ ∼ s+ s+
SWAM-SAGA s+ s+ s+ s+
SWAM-AGA s+ s+ s+ s+
SWAM-SGA s+ s+ s+ s+
SSRGA-SAGA s+ s+ s+ s+
SSRGA-AGA s+ s+ s+ s+
SSRGA-SGA s+ s+ s+ s+
SAGA-AGA s+ s− s+ s−
SAGA-SGA s+ s+ s− s−
AGA-SGA s+ s+ − −

simple problems but with time going the performance of all three algorithms are

same except last two rows in Figures 6.1 and 6.2.

Figure 6.3 presents the results of the evolutionary process of compared algorithms on

a bit harder problems. It can be clearly seen that the convergence speed of PWAM

and SWAM is higher than other approaches. But, it is interesting to observe that

different scheme have different convergence rate on different (bit harder) problems

with different peaks. On a few problems, PWAM is initially better than SWAM

regarding the convergence speed.

From Figure 6.4, it can be seen that the convergence rate of PWAM is faster than

SWAM from the beginning to generation 50 on the first column, afterwards both

schemes have the same convergence curve. In this figure, the convergence curves are

quiet clear among the compared algorithms.

132

Chapter 6. Multi-Population with Adaptive Mutation for Multi-Modal Optimization

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

25 50 75 100

A
ve

ra
ge

 B
es

t F
itn

es
s

Generations

Peak 1, l = 50, n = 50 and r = 0.5*l

SGA
AGA

SAGA
SSRGA

SWAM
PWAM

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

25 50 75 100

A
ve

ra
ge

 B
es

t F
itn

es
s

Generations

Peak 1, l = 50, n = 50 and r = 0.6*l

SGA
AGA

SAGA
SSRGA

SWAM
PWAM

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

25 50 75 100

A
ve

ra
ge

 B
es

t F
itn

es
s

Generations

Peak 1, l = 50, n = 50 and r = 0.7*l

SGA
AGA

SAGA
SSRGA

SWAM
PWAM

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

25 50 75 100

A
ve

ra
ge

 B
es

t F
itn

es
s

Generations

Peak 5, l = 50, n = 50 and r = 0.5*l

SGA
AGA

SAGA
SSRGA

SWAM
PWAM

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

25 50 75 100

A
ve

ra
ge

 B
es

t F
itn

es
s

Generations

Peak 5, l = 50, n = 50 and r = 0.6*l

SGA
AGA

SAGA
SSRGA

SWAM
PWAM

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

25 50 75 100

A
ve

ra
ge

 B
es

t F
itn

es
s

Generations

Peak 5, l = 50, n = 50 and r = 0.7*l

SGA
AGA

SAGA
SSRGA

SWAM
PWAM

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

25 50 75 100

A
ve

ra
ge

 B
es

t F
itn

es
s

Generations

Peak 10, l = 50, n = 50 and r = 0.5*l

SGA
AGA

SAGA
SSRGA

SWAM
PWAM

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

25 50 75 100

A
ve

ra
ge

 B
es

t F
itn

es
s

Generations

Peak 10, l = 50, n = 50 and r = 0.6*l

SGA
AGA

SAGA
SSRGA

SWAM
PWAM

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

25 50 75 100

A
ve

ra
ge

 B
es

t F
itn

es
s

Generations

Peak 10, l = 50, n = 50 and r = 0.7*l

SGA
AGA

SAGA
SSRGA

SWAM
PWAM

Figure 6.3: Evolutionary process of algorithms on bit harder problems.
133

Chapter 6. Multi-Population with Adaptive Mutation for Multi-Modal Optimization

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

25 50 75 100

A
ve

ra
ge

 B
es

t F
itn

es
s

Generations

Peak 1, l = 60, n = 70 and r = 0.5*l

SGA
AGA

SAGA
SSRGA

SWAM
PWAM

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

25 50 75 100

A
ve

ra
ge

 B
es

t F
itn

es
s

Generations

Peak 1, l = 60, n = 70 and r = 0.6*l

SGA
AGA

SAGA
SSRGA

SWAM
PWAM

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

25 50 75 100

A
ve

ra
ge

 B
es

t F
itn

es
s

Generations

Peak 1, l = 60, n = 70 and r = 0.7*l

SGA
AGA

SAGA
SSRGA

SWAM
PWAM

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

25 50 75 100

A
ve

ra
ge

 B
es

t F
itn

es
s

Generations

Peak 5, l = 60, n = 70 and r = 0.5*l

SGA
AGA

SAGA
SSRGA

SWAM
PWAM

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

25 50 75 100

A
ve

ra
ge

 B
es

t F
itn

es
s

Generations

Peak 5, l = 60, n = 70 and r = 0.6*l

SGA
AGA

SAGA
SSRGA

SWAM
PWAM

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

25 50 75 100

A
ve

ra
ge

 B
es

t F
itn

es
s

Generations

Peak 5, l = 60, n = 70 and r = 0.7*l

SGA
AGA

SAGA
SSRGA

SWAM
PWAM

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

25 50 75 100

A
ve

ra
ge

 B
es

t F
itn

es
s

Generations

Peak 10, l = 60, n = 70 and r = 0.5*l

SGA
AGA

SAGA
SSRGA

SWAM
PWAM

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

25 50 75 100

A
ve

ra
ge

 B
es

t F
itn

es
s

Generations

Peak 10, l = 60, n = 70 and r = 0.6*l

SGA
AGA

SAGA
SSRGA

SWAM
PWAM

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

25 50 75 100

A
ve

ra
ge

 B
es

t F
itn

es
s

Generations

Peak 10, l = 60, n = 70 and r = 0.7*l

SGA
AGA

SAGA
SSRGA

SWAM
PWAM

Figure 6.4: Evolutionary process of algorithms on difficult problems.
134

Chapter 6. Multi-Population with Adaptive Mutation for Multi-Modal Optimization

Let’s analyze the convergence rate of the six compared algorithms. A very interesting

thing is that the convergence speed of both PWAM and SWAM approaches is initially

faster than other compared algorithms even on simple problems where SSRGA is

going to compete to PWAM and SWAM. It can also be seen from figures that the

proposed approach has two properties. The first is the quick convergence rate against

other peer algorithms except on simple problems; PWAM and SWAM have quicker

convergence speed than other compared approaches on different levels of problem

difficulty by setting the parameters. The second property of suggested scheme is

the ability to explore the prominent area by avoiding the premature convergence in

the fitness landscape on multi-modality problems. The proposed technique reduces

the probability of being trapped into local optima and increases the probability of

locating the better results than other algorithms.

6.5 Chapter Summary

From the beginning, the community of GAs has done a lot of work to improve the

performance and locate multiple optima in multi-modal optimization problems. Ex-

ploration and exploitation are two main characteristics that affect the performance

of GAs for multi-modal optimization problems. Researchers have applied multi-

population schemes to increase the efficiency of GAs in this context.

This chapter proposed a new approach for GAs to address multi-modal optimiza-

tion problems, which is the combination of multi-population and adaptive mutation

schemes. In the adaptive mutation scheme, two different mutation probability vec-

tors are used for each sub-population. Each mutation probability vector contains

elements associated to the probabilities of possessing a specific allele at each site.

These vectors are updated during the evolution process independently for each sub-

population. The suggested mutation scheme has been combined with two different

135

Chapter 6. Multi-Population with Adaptive Mutation for Multi-Modal Optimization

multi-population techniques for GAs to address multi-modal optimization problems

in this chapter.

In order to test the performance of our proposed GA, experimental studies were

conducted on different benchmark problems to compare the results of our proposed

GA with the results of a standard GA and some other approaches which belong

to parameter control approaches. From the experimental results, it can be seen

that our proposed approach greatly improves the performance of GAs regarding the

location of multiple optima in the fitness landscape.

In the future, we will use the proposed GA with the multi-population with adaptive

mutation scheme on large and complex real-world problems because GAs have a lot

of applications in different area of real-world problems, such as science, engineering,

business, and social science. In addition, it would be interesting to combine the

clustering partition technique with adaptive mutation operators to improve the per-

formance of GAs. Finally, we will conduct further experiments on epistatic [94] and

deceptive [39] benchmark problems, which are similar to the multi-modal problems

tested in this chapter.

136

Chapter 7

Conclusions and Future Work

Research is a never ending iterative process. The community of researchers keep

testing their hypothesis, extending previous successful ideas, and investigate what

other researchers have done in the same field. My work in this thesis is not an

exception.

In general, the performance of evolutionary algorithms (EAs) depends on several

factors, such as the choice of the population size, genetic operators, and many more.

Selecting the right parameters and operators for EAs is a very hard task. There are

two main points which motivate us to pursue the adaptation of genetic operators

and relevant parameter values for EAs.

1. Parameter tuning: It is time consuming and difficult process, even if param-

eters are optimised one by one, regardless of their interactions. Therefore,

reliable adaptation of parameter values and operators can improve the perfor-

mance of EAs for optimization problems.

2. It is likely that for many optimization problems, the optimal parameter values

or genetic operators may vary during the whole evolutionary process.

137

Chapter 7. Conclusions and Future Work

In the heuristic context, there is no single algorithm that will perform the best than

all other algorithms. As Wolpert and Macready stated, “No search algorithm is

superior on ALL problems” [115]. Due to this “No Free Lunch” theorem, one set of

parameters can not be suitable for all problems.

In this thesis, we investigate adaptive mutation operators for EAs in order to tackle

the problem of diversity loss and premature convergence to a sub-optimal solution for

solving global optimization problems. From experimental results, it can be observed

that the proposed ideas greatly improve the performance of EAs in the context of

global optimization problems.

This chapter summarizes the technical contributions, describes conclusions based on

the empirical results in this thesis, and discusses possible future research relevant to

the work carried out in this thesis.

7.1 Technical Contributions

In this thesis, the following technical contributions have been made for the domain

of EAs for global optimization problems.

• A novel approach that simultaneously uses several mutation operators for EAs

to solve global optimization problems was proposed by considering various

challenging issues (discussed in Section 1.1 of Chapter 1). This is one of

the contributions in this thesis. This technique significantly improves the

performance of the particle swarm optimization (PSO) algorithm for global

optimization problems.

138

Chapter 7. Conclusions and Future Work

• In this thesis, we investigated several adaptive mutation operators, including

population level adaptive mutation and gene level adaptive mutation opera-

tors, for genetic algorithms (GAs) and PSO for function optimization, which is

the second contribution in this thesis. These adaptive algorithms were tested

on different benchmark problems.

• The third contribution is the directed mutation (DM) idea for GAs to explore

promising areas in the search space. There are some challenging issues in

real coded mutation operators when mutation is used, e.g., how to determine

the optimum mutation step size and how to get the suitable search direction

towards the global optimum. The DM technique was proposed to address these

issues in EAs.

• The multi-population with adaptive mutation idea is the fourth contribution

in this thesis. The loss of diversity and premature convergence are the major

drawbacks in EAs for multi-modal optimization problems. These issues are

discussed in the thesis (Section 6.1 in Chapter 6). The idea of combining

multi-population with adaptive mutation is used to enhance the performance

of GAs on multi-modal optimization problems.

The major technical contributions accomplished in this thesis towards the re-

search domain of global optimization and multi-modal optimization are sum-

marised as follows.

7.1.1 Adaptive Techniques Developed for Global Optimiza-

tion

1. A new PSO algorithm based on adaptive mutation operator using self-choosing

mutation operator is introduced for global optimization problems. Adaptive

139

Chapter 7. Conclusions and Future Work

mutation is applied to diversify the search direction and expedite the conver-

gence speed of the algorithm to global optima. Three mutation operators are

employed in this scheme. These mutation operators have different properties,

which are used to guide the individual towards the global optima, explore new

promising areas in the search space, and avoid the stagnation of PSO to local

optima, respectively.

In order to find the potential solution for automatically choosing the appro-

priate mutation operator at the different level of the evolutionary process, an

adaptive selection approach based on the assumption that the most suitable

operator applied in the latest generations may also be successful in the com-

ing various iterations is used. The selection ratios of all available mutation

operators are equally initialized to 1/3 and are updated according to their

performance. If the performance of an operator is relatively higher, then its

selection ratio will increase. Gradually, the most suitable operator will be se-

lected automatically for an individual and that operator will dominate almost

all mutation behaviour according to its local fitness landscape at the corre-

sponding evolutionary stage. By introducing the adaptive mechanism, PSO

significantly improves its global search capability without losing its conver-

gence property. However, different mutation operators give different perfor-

mance on different test problems. The adaptive mutation operator exhibits

balanced performance on all test problems.

2. We review several schemes that have been developed to modify the muta-

tion probabilities based on statistical information of the population during the

whole process. This approach provides a comparative analysis of various pop-

ulation level and gene level adaptive mutation operators for EAs for function

optimization. The experimental results were presented and analyzed regard-

ing the comparison of these operators on different benchmark optimization

140

Chapter 7. Conclusions and Future Work

problems.

3. A new DM approach was suggested to explore the promising areas in the

search space. In this approach, the fitness and some other factors are con-

sidered to guide the individuals towards global optima. Different benchmark

optimization problems were used as the test bed to verify the effectiveness of

the DM approach. The idea of DM is comprised of fitness and percentage of

individuals in each interval by using the statistical information from the cur-

rent population. This information is used to shift the individuals around the

search space via the DM. DM also has the capability to guide the individuals

towards unseen areas of the search space by applying the feedback information.

Some sort of neighbouring individuals to be mutated regarding the fitness and

their distribution of those individuals, which exist in a specific interval. It is

a modified version of the standard mutation.

To show the effectiveness of the DM strategy, experiments were conducted

to test the performance of traditional mutation GAs and proposed DM in

two aspects: one is the comparison of the performance on different function

optimization problems in terms of the t-test results; the other is the comparison

of the performance with directed variation according to the same parameter

setting. Based on the experimental analysis, it is clear that the DM approach

has the property to guide the individuals towards the un-explored area of the

search space and expedites individuals of the population towards local or global

optima.

4. The multi-population with adaptive mutation approach is used to find multiple

peaks and accelerate the search to global optima in the case of multi-modal

optimization problems. This idea is the combination of multiple population

and adaptive mutation schemes. A multi-population technique divides the

whole search space into a number of sub-populations in order to maintain

141

Chapter 7. Conclusions and Future Work

these sub-populations on different promising peaks of the fitness landscape.

These sub-populations are automatically created in the search space. For each

sub-population, an adaptive mutation mechanism is considered to help GAs

jump out of local optima and expediting the GAs towards promising regions

in the search space.

In order to investigate the effect of the multi-population with adaptive muta-

tion strategy, experiments were conducted to test the performance on different

multi-modal Boolean satisfiability problems, which are popular problems in

the literature. The experimental results of the proposed approach were also

compared to standard GAs with random mutation probability and several

other parameter control techniques such as adaptive, self-adaptive, and SS-

RGA schemes on different multi-modal Boolean satisfiability problems.

7.2 Conclusions

It is evident from the investigation demonstrated in this thesis that the performance

of EAs for optimization problems can be improved by using the fine-grained adapta-

tion of mutation operator probabilities at the population level, individual level, and

gene level. This research mainly focuses on the adaptation of mutation operators

at the population level and gene level. The main objectives of this study have been

to explore alterations to the traditional mutation operator for EAs. The adaptive

approaches operate on the population level and gene level to enhance the diversity

and avoid the premature convergence of EAs towards local optima.

In order to justify the algorithms which we have developed in this thesis, we con-

ducted the experiments systematically and analysed the experimental results re-

garding the performance of these algorithms in comparison with several existing

142

Chapter 7. Conclusions and Future Work

EAs taken from the literature. Here, the major conclusions are given based on the

experimental results and relevant analysis carried out in this thesis.

7.2.1 Adaptive Mutation Operators with GAs and PSO

The new PLAM PSO operator diversifies the search directions and avoids the con-

vergence of PSO to local optima. This strategy simultaneously uses several mutation

operators in solving optimization problems. The selection ratio of each mutation op-

erator is updated according to its relative performance. The results show that the

adaptive scheme performs better than most algorithms that use a single mutation

operator. It is very suitable to use for problems where the appropriate mutation

operator is unknown.

We demonstrate various adaptive mutation operators, including the population level

and gene level adaptive mutation operators, for GAs and PSO. The performance of

several adaptive mutation operators varies on different benchmark problems. From

the empirical results, it can be concluded that PLAM PSO is greatly efficient on all

test optimization problems with only some exceptions. GBAM FAD, GBAM, and

PLAM GA algorithms are more efficient than PLAM PSO on some functions.

The experimental results show that the gene level adaptive mutation operators are

usually more efficient than the population level adaptive mutation operators for

GAs. There is one issue with the gene level adaptive mutation operators. These

operators take some time to calculate new mutation probabilities for each gene locus

at each generation.

143

Chapter 7. Conclusions and Future Work

7.2.2 GAs with Directed Mutation Operator

The DM operator is an enhancement to the standard mutation for GAs to explore

promising solutions in the search space. The statistical information regarding the

fitness and distribution of solutions within the search space is achieved by DM.

Such information is applied to migrate the individuals within the search space. DM

also guides the solutions towards unseen areas of the fitness landscape by using the

statistical information.

The effectiveness of GAs with DM on different benchmark optimization problems

is presented via experiments. From the experimental results, it has been observed

that the DM mechanism obtains good solutions.

7.2.3 Multi-population with Adaptive Mutation Operator

We analyzed that the multi-population with adaptive mutation approach works

well on multi-modal optimization problems, which is also very effective to main-

tain multi-populations on different peaks to locate multiple optima for multi-modal

optimization functions. This mechanism is applied to avoid the stagnation of GAs

to local optima and expediting the convergence speed of GAs towards the better

solutions in the search space. Exploitation and exploration are the two main prop-

erties in EAs for optimizing multi-modal functions. The balance between exploita-

tion and exploration can be determined by using multi-population with adaptive

mutation mechanism. Experimental results in Chapter 6 show that the suggested

multi-population with adaptive mutation technique is effective in helping GAs to

locate multiple optima for multi-modal problems.

144

Chapter 7. Conclusions and Future Work

7.3 Future Work

In this thesis, we presented different adaptive mutation schemes for EAs, which

maintain the genetic diversity and also accelerate the convergence speed towards

the global optimum. The effectiveness of these approaches are demonstrated for

solving global optimization problems. However, there are some ideas that still need

to be explored further in the future.

7.3.1 Adaptive Mutation Operators within GAs and PSO

The observation made in Chapter 4 regarding the adaptive mutation scheme for

PSO showed that the operator that results in a higher relative performance, which

is measured by a combination of the offspring fitness, current success ratio, and

previous selection ratio, will have its selection ratio increased. The selection ratio

of each operator is modified by using a single mechanism. In the future, we might

also be able to find better schemes for updating the selection ratio of each operator.

For example, if each operator is modified based on the average fitness improvement

of all of the individuals affected by that operator, it may be possible to enhance the

performance of GAs with adaptive mutation for global optimization problems.

In addition, we will investigate the performance of individual level adaptive mutation

operators in comparison with population level and gene level adaptive mutation

operators on different function optimization problems, and study how to reduce the

complexity of gene level adaptive mutation operators in the future.

145

Chapter 7. Conclusions and Future Work

7.3.2 GAs with Directed Mutation Operator

The current research of DM has determined two objectives for real-coded GAs.

The first one is to maintain the diversity of the population and the second is to

accelerate the convergence speed for finding the potential individuals. There are

still some issues to be considered for further research, e.g., how to adaptively adjust

the number of intervals. This is an issue that needs to be explored further.

Adaptive tuning depends on not only the average fitness of intervals and the dis-

tribution of individuals in the population, but also automatically modifying the

number of intervals, population size, selection schemes, and the number of opera-

tors (crossover or mutation). This could also be experimentally tested further for

enhancing the optimization.

The basic idea of DM can be applied with the multi-population approach for main-

taining the diversity of the population and enhancing the performance of the algo-

rithm. For this, the fitness function can also be modified. The aim of this mechanism

is to hold sub-populations at different peaks. It may be helpful to find the good so-

lution or global optimum within a reasonable time. In addition, the performance

of DM can be compared with some state-of-the-art algorithms, e.g., the covariance

matrix adaptation evolution strategy (CMA-ES) [45].

7.3.3 Multi-population with Adaptive Mutation Operator

The multi-population with adaptive mutation approach has been used in GAs, which

greatly improves the performance of GAs for multi-modal optimization problems.

But, still some problems related to the divergence of algorithms and the premature

convergence can be considered for further research. It is difficult for GAs to jump

146

Chapter 7. Conclusions and Future Work

out form local optimum if the mutation probability and population variance are

decreased too fast. A lot of work needs to be done to solve this problem.

Multi-population with adaptive mutation may not be useful in the situation when

each sub-population contains a small number of individuals or a single solution. In

this case, since the update mechanism of adaptive mutation is based on the feedback

information of each current sub-population in the search space, there is no enough

information achieved from the search space. This could result in almost similar

mutation probabilities in a sub-population and the algorithm can be stuck into

local optimum. This problem could be solved by setting the population properly or

maintaining the population adaptively. This needs further experimentation.

When a sub-population becomes converged or overlapped in the proposed multi-

population with adaptive mutation scheme, we just delete the converged or over-

lapped sub-population from the population. Hence, the entire population becomes

smaller and smaller. But, if the size of the population is less than a predetermined

threshold MniInds, then sub-populations are created after regenerating the corre-

sponding number of randomly created individuals (these solutions may not work

well since they may be attracted towards existing sub-populations). Finally, we

merge all the sub-populations as a whole population. It is worth examining how

to effectively generate individuals in the process of re-initialization to maintain the

entire population size at the optimal value.

147

Bibliography

[1] http://www.biology.ed.ac.uk/research/groups/jdeacon/statistics/

tress4a.html Student’ t-test, 2011.

[2] http://www.statisticallysignificantconsulting.com/Statistics101.

htm, Statistics Tutorial, 2011.

[3] http://www.experiment-resources.com/independent-one-sample-t-test.

html, INDEPENDENT ONE-SAMPLE T-TEST, 2011.

[4] A. O. Adewumi, M. M. Ali, and J. O. Ayeni. A multi-level genetic algo-

rithm for a multi-stage space allocation problem. Mathematical and Computer

Modelling, 51: 109–126, 2010.

[5] P. J. Angeline. Adaptive and self-adaptive evolutionary computations. In

Computational Intelligence: A Dynamic Systems Perspective, pages 152–163.

IEEE Press, 1995.

[6] J. Arabas, Z. Michalewicz, and J. J. Mulawka. Gavaps - a genetic algorithm

with varying population size. In Proceedings of the 1994 International Con-

ference on Evolutionary Computation, pages 73–78, 1994.

[7] T. Bäck. The interaction of mutation rate, selection, and self-adaptation within

a genetic algorithm. In R. Männer and B. Manderick, editors, Proceedings of

148

http://www.biology.ed.ac.uk/research/groups/jdeacon/statistics/tress4a.html
http://www.biology.ed.ac.uk/research/groups/jdeacon/statistics/tress4a.html
http://www.statisticallysignificantconsulting.com/Statistics101.htm
http://www.statisticallysignificantconsulting.com/Statistics101.htm
http://www.experiment-resources.com/independent-one-sample-t-test.html
http://www.experiment-resources.com/independent-one-sample-t-test.html

Bibliography

the 2nd International Conference on Parallel Problem Solving from Nature,

pages 87–96, North-Holland, Amsterdam, 1992.

[8] T. Bäck. Self-adaptation in genetic algorithms. In Proceedings of the 1st

European Conference on Artificial Life, pages 263–271. MIT Press, 1992.

[9] T. Bäck. Optimal mutation rates in genetic search. In Proceedings of the 5th

International Conference on Genetic Algorithms, pages 2–8. Morgan Kauf-

mann, 1993.

[10] T. Bäck, D. B. Fogel, and Z. Michalewicz, editors. Handbook of Evolutionary

Computation. IOP Publishing Ltd., Bristol, UK, 1st edition, 1997.

[11] T. Bäck and M. Schütz. Intelligent mutation rate control in canonical genetic

algorithms. In Proceedings of the 9th International Symposium on Foundations

of Intelligent Systems, pages 158–167, 1996.

[12] R. Bai. An Investigation of Novel Approaches for Optimising Retail Shelf

Space Allocation. PhD thesis, School of Computer Science And Information

Technology, The University of Nottingham, Nottingham, UK, September 2005.

Online avialable http://etheses.nottingham.ac.uk/153/.

[13] J. Balczar, J. Diaz, and J. Gabarro. On Non- uniform Polynomial Space. In

Proceedings of the 1988 Conference on Structure in Complexity Theory, pages

35–50, Berkeley, California, USA, 1988.

[14] S. Berlik and B. Reusch. Foundations of directed mutation. In Proceeding of

the 2006 International Conference on Integrated Intelligent Systems for Engi-

neering Design, pages 3–22, Amsterdam, The Netherlands, 2006. IOS Press.

[15] A. Berry and P. vamplew. Pod can mutate: A simple dynamic directed muta-

tion approach for genetic algorithms. In Proceedings of the 2nd International

149

http://etheses.nottingham.ac.uk/153/

Bibliography

Conference on Artificial Intelligence in Science and Technology, pages 200–

205, 2004.

[16] H. Beyer. The Theory of Evolution Strategies. Natural computing series.

Springer, Berlin, 2001.

[17] L. B. Booker. Recombination distributions for genetic algorithms. In Proceed-

ings of the 2nd Workshop on Foundations of Genetic Algorithms, pages 29–44,

Vail, Colorado, USA, 1992. Morgan Kaufmann.

[18] R. Caruana and J. D. Schaffer. Representation and hidden bias: Gray vs.

binary coding for genetic algorithms. In Proceedings of the 5th International

Conference on Machine Learning, pages 153–161, 1998.

[19] A. Charkaev. Course note on methods of optimization. online available at.

Department of Mathematics, College of Science, The University of Utah, USA.

http://www.math.utah.edu/~cherk/teach/opt/2009.html.

[20] J. W. Chinneck. Practical Optimization: A Gentle Introduction. Systems and

Computer Engineering, Carleton University Ottawa, Canada, 2009. Online

avialable http://www.sce.carleton.ca/faculty/chinneck/po.html.

[21] E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson. Approximation algo-

rithms for bin packing: a survey. In Dorit S. Hochbaum, editor, Approximation

Algorithms for NP-Hard Problems, pages 46–93, PWS Publishing Co., Boston,

MA, USA, 1997.

[22] A. Colorni, M. Dorigo, and V. Maniezzo. Distributed optimization by ant

colonies. In Proceeding of the 1991 European Conference on Artificial Life,

pages 134–142, 1991.

150

http://www.math.utah.edu/~cherk/teach/opt/2009.html
http://www.sce.carleton.ca/faculty/chinneck/po.html

Bibliography

[23] D. Corne, P. Ross, P. Ross, and H. lan Fang. Fast practical evolutionary

timetabling. In Proceedings of the 1994 Artificial Intelligence and the Simu-

lation of Behaviour Workshop on Evolutioanry Computation, pages 251–263,

Springer Verlag, 1994.

[24] L. DaCosta, A. Fialho, M. Schoenauer, and M. Sebag. Adaptive operator se-

lection with dynamic multi-armed bandits. In Proceedings of the 2008 Genetic

and Evolutionary Computation Conference, GECCO’08, pages 913–920, New

York, NY, USA, 2008. ACM.

[25] L. Davis. Adapting operator probabilities in genetic algorithms. In Proceedings

of the 3rd International Conference on Genetic Algorithms, pages 61–69, San

Francisco, CA, USA, 1989. Morgan Kaufmann Publishers Inc.

[26] L. Davis. Handbook of Genetic Algorithms. Van Nostrand Reinhold, 1991.

[27] R. Eberhart and J. Kennedy. A new optimizer using particle swarm theory. In

Proceedings of the 6th International Symposium on Micro Machine and Human

Science, pages 39–43, 1995.

[28] A. Eiben, R. Hinterding, and Z. Michalewicz. Parameter control in evolution-

ary algorithms. IEEE Transactions on Evolutionary Computation, 3(2):124

–141, jul 1999.

[29] A. E. Eiben, E. Marchiori, and V. A. Valk. Evolutionary algorithms with

on-the-fly population size adjustment. In Proceedings of the 8th International

Conference on Parallel Problem Solving from Nature, PPSN VIII, LNCS 3242,

pages 41–50, 2004. Springer.

[30] A. E. Eiben, Z. Michalewicz, M. Schoenauer, and J. E. Smith. Parameter con-

trol in evolutionary algorithms. In F. G. Lobo, C. F. Lima, and Z. Michalewicz,

151

Bibliography

editors, Parameter Setting in Evolutionary Algorithms, volume 54 of Studies

in Computational Intelligence, pages 19–46. Springer, 2007.

[31] L. J. Eshelman and J. D. Schaffer. Productive recombination and propagating

and preserving schemata. In Proceedings of the 3rd Workshop on Foundations

Of Genetic Algorithms, pages 299–313, 1994.

[32] T. Fogarty. Varying the probability of mutation in the genetic algorithm. In

Proceedings of the 3rd International Conference on Genetic Algorithms, pages

104–109, San Francisco, CA, USA, 1989. Morgan Kaufmann Publishers Inc.

[33] D. B. Fogel. System Identification through Simulated Evolution: A Machine

Learning Approach to Modeling. Ginn Press, 1991.

[34] D. B. Fogel. Evolving Artificial Intelligence. PhD thesis, 1992.

[35] D. B. Fogel. Applying evolutionary programming to selected traveling sales-

man problems. Cybernetics and Systems, 24: pages 27–36, January 1993.

[36] L. G. Fogel, A. J. Owens, and M. J. Walsh. Artificial Intelligence through

Simulated Evolution. Wiley, Chichester, UK, 1966.

[37] J.-P. Gagliardi, A. Ruiz, and J. Renaud. Space allocation and stock replen-

ishment synchronization in a distribution center. International Journal of

Production Economics, 115(1): pages 19–27, April 2008.

[38] D. Goldberg and J. Richardson. Genetic algorithms with sharing for multi-

modal function optimization. In Proceedings of the 2nd International Confer-

ence on Genetic Algorithms and their Application, pages 41–49, Hillsdale, NJ,

USA, 1987.

[39] D. E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine

Learning. Addison-Wesley, 1989.

152

Bibliography

[40] D. E. Goldberg. Sizing populations for serial and parallel genetic algorithms.

In Proceedings of the 3rd International Conference on Genetic Algorithms,

pages 70–79, San Francisco, CA, USA, 1989. Morgan Kaufmann Publishers

Inc.

[41] D. E. Goldberg and K. Deb. A comparative analysis of selection schemes used

in genetic algorithms. In Proceeding of the 1st Workshop on Foundations of

Genetic Algorithms, pages 69–93. Morgan Kaufmann, 1991.

[42] J. Grefenstette. Optimization of control parameters for genetic algorithms.

IEEE Transactions on Systems, Man, and Cybernetics, 16: 122–128, January

1986.

[43] C. Grosan and M. Oltean. Adaptive representation for single objective opti-

mization. Soft Comput., 9: 594–605, August 2005.

[44] P. Gwozdz and E. Szlachcic. An adaptive selection evolutionary algorithm

for the capacitated vehicle routing problem. In Proceedings of the 2nd Inter-

national Symposium on Logistics and Industrial Informatics (LINDI 2009),

pages 1–6, 2009.

[45] N. Hansen and A. Ostermeier. Convergence properties of evolution strategies

with the derandomized covariance matrix adaptation: The (µ/µI , λ)-CMA-

ES. In Proceedings of the 5th European Congress on Intelligent Techniques

and Soft Computing, pages 650–654, 1997.

[46] A.-R. Hedar and M. Fukushima. Directed evolutionary programming: Towards

an improved performance of evolutionary programming. In Proceedings of the

2006 IEEE Congress on Evolutionary Computation, pages 1521–1528, 2006.

153

Bibliography

[47] J. Hesser and R. Männer. Towards an optimal mutation probability for genetic

algorithms. In Proceedings of the 1st International Conference on Parallel

Problem Solving from Nature, PPSN I, pages 23–32. Springer-Verlag, 1990.

[48] R. Hinterding, Z. Michalewicz, and T. C. Peachey. Self-adaptive genetic al-

gorithm for numeric functions. In Proceedings of the 4th International Con-

ference on Parallel Problem Solving from Nature, PPSN IV, pages 420–429.

Springer-Verlag, 1996.

[49] J. H. Holland. Adaptation in natural and artificial systems. PhD thesis, Ann

Arbor, MI, USA, 1975.

[50] J. H. Holland. Adaptation in natural and artificial systems. MIT Press, Cam-

bridge, MA, USA, 1992.

[51] T.-P. Hong, H.-S. Wang, and W.-C. Chen. Simultaneously applying multiple

mutation operators in genetic algorithms. Journal of Heuristics, 6: 439–455,

September 2000.

[52] X. Hu. PSO Tutorial. Self-Published. Online avialable: http://www.

swarmintelligence.org/tutorials.php.

[53] C. Igel and M. Toussaint. Neutrality and self-adaptation. Natural Computing,

2(2): 117–132, 2003.

[54] K. A. D. Jong. An Analysis of the Behavior of a Class of Genetic Adaptive

Systems. PhD thesis, University of Michigan, Ann Arbor, MI, USA, 1975.

[55] B. A. Julstrom. What have you done for me lately? adapting operator prob-

abilities in a steady-state genetic algorithm. In Proceedings of the 6th Inter-

national Conference on Genetic Algorithms, pages 81–87, San Francisco, CA,

USA, 1995.

154

http://www.swarmintelligence.org/tutorials.php
http://www.swarmintelligence.org/tutorials.php

Bibliography

[56] D. Karaboga. An idea based on honey bee swarm for numerical optimiza-

tion. Technical report, Erciyes University, Engineering Faculty, Computer

Engineering Department. Online avialable http://mf.erciyes.edu.tr/abc/

pub/tr06_2005.pdf.

[57] J. Kennedy and R. Eberhart. Particle swarm optimization. In Proceedings

1995 IEEE International Conference on Neural Networks, pages 1942 –1948,

1995.

[58] J. R. Koza. Genetic programming: a paradigm for genetically breeding pop-

ulations of computer programs to solve problems. Technical report, Stanford,

CA, USA, Tech: Report, 1990. Online avialable http://citeseer.ist.psu.

edu/viewdoc/summary?doi=10.1.1.4.9961.

[59] A. B. Levy. The Basics of Practical Optimization. Society for Indus-

trial and Applied Mathematics, Market Street Philadelphia, USA, 2009.

online available http://coep.ufrj.br/~nero/Levy%20-%20The%20Basics

%20of%20Practical%20Optimization.pdf.

[60] C. Li, S. Yang, and I. Korejo. An adaptive mutation operator for particle

swarm optimization. In Proceedings of the 2008 UK Workshop on Computa-

tional Intelligence, pages 165–170, 2008.

[61] F. Lobo and C. F. Lima. Adaptive population sizing schemes in genetic algo-

rithms. In F. G. Lobo, C. F. Lima, and Z. Michalewicz, editors, Parameter

Setting in Evolutionary Algorithms, volume 54 of Studies in Computational

Intelligence, pages 185–204. Springer, 2007.

[62] F. G. Lobo and C. F. Lima. Revisiting evolutionary algorithms with on-

the-fly population size adjustment. In Proceeding of the 2006 Genetic and

Evolutionary Computation Conference, GECCO’06, pages 1241–1248, 2006.

155

http://mf.erciyes.edu.tr/abc/pub/tr06_2005.pdf
http://mf.erciyes.edu.tr/abc/pub/tr06_2005.pdf
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.4.9961
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.4.9961
http://coep.ufrj.br/~nero/Levy%20-%20The%20Basics%20of%20Practical%20Optimization.pdf
http://coep.ufrj.br/~nero/Levy%20-%20The%20Basics%20of%20Practical%20Optimization.pdf

Bibliography

[63] S. Meyer-Nieberg and H.-G. Beyer. Self-adaptation in evolutionary algorithms.

In F. G. Lobo, C. F. Lima, and Z. Michalewicz, editors, Parameter Setting in

Evolutionary Algorithms, volume 54 of Studies in Computational Intelligence,

pages 47–75. Springer, 2007.

[64] B. L. Miller and D. E. Goldberg. Genetic algorithms, selection schemes, and

the varying effects of noise. Evolutionary Computation, 4: 113–131, June 1996.

[65] H. Mühlenbein. How genetic algorithms really work i: Mutation and hillclimb-

ing. In Proceedings of the 2nd Conference on Parallel Problem Solving from

Nature, pages 15–25, 1992.

[66] G. Ochoa. Setting the mutation rate: Scope and limitations of the 1/l heuristic.

In Proceedings of the 2002 Genetic and Evolutionary Computation Conference,

GECCO’02, pages 495–502, 2002.

[67] G. Ochoa. Error thresholds in genetic algorithms. Evolutionary Computation,

14(2): 157–182, 2006.

[68] G. Ochoa, I. Harvey, and H. Buxton. Error thresholds and their relation to

optimal mutation rates. In Proceedings of the 5th European Conference on

Artificial Life, ECAL ’99, pages 54–63, London, UK, 1999. Springer-Verlag.

[69] M. Oltean, C. Grosan, A. Abraham, and M. Köppen. Multiobjective optimiza-

tion using adaptive pareto archived evolution strategy. In Proceedings of the

5th International Conference on Intelligent System Design and Application,

pages 558–563, 2005.

[70] D. Parrott and X. Li. Locating and tracking multiple dynamic optima by a

particle swarm model using speciation. IEEE Transactions on Evolutionary

Computation, 10(4): 440–458, August 2006.

156

Bibliography

[71] D. T. Pham and M. Casttellani. Adaptive selection routine for evolution-

ary algorithms. Proceedings of the Institution of Mechanical Engineers, Part

I: Journal of Systems and Control Engineering, 224(6): 623–633, September

2010.

[72] I. Rechenberg. Evolutions strategie - optimierung technischer systeme nach

prinzipien der biologischen evolution, stuttgart: Frommann-holzboog. 1973.

[73] R. Ros Benchmarking the NEWUOA on the BBOB-2009 noisy testbed. In

Proceedings of the 2009 Genetic and Evolutionary Computation Conference,

GECCO ’09, pages 2429–2434, Montreal, CA, USA, 2009.

[74] R. Rosenberg. Simulation of genetic populations with biochemical proper-

ties. Technical report, The Univresity of Michigan, College of Literature, Sci-

ence, and The Department of Communication Science, 1967. online available

http://deepblue.lib.umich.edu/handle/2027.42/7321.

[75] R. Salomon. Reevaluating genetic algorithm performance under coordinate

rotation of benchmark functions - a survey of some theoretical and practical

aspects of genetic algorithms. BioSystems, 39: 263–278, 1995.

[76] J. D. Schaffer, R. A. Caruana, L. J. Eshelman, and R. Das. A study of con-

trol parameters affecting online performance of genetic algorithms for function

optimization. In Proceedings of the 3rd International Conference on Genetic

Algorithms, pages 51–60, San Francisco, CA, USA, 1989. Morgan Kaufmann

Publishers Inc.

[77] J. D. Schaffer and A. Morishima. An adaptive crossover distribution mecha-

nism for genetic algorithms. In Proceedings of the 2nd International Conference

on Genetic Algorithms and their Application, pages 36–40, 1987.

157

http://deepblue.lib.umich.edu/handle/2027.42/7321

Bibliography

[78] D. Schlierkamp-voosen and H. M’́uhlenbein. Strategy adaptation by competing

subpopulations. In Proceedings of the 3rd International Conference on Parallel

Problem Solving from Nature, PPSN III, pages 199–208. Springer-Verlag, 1994.

[79] H.-P. Schwefel. Numerical Optimization of Computer Models. John Wiley &

Sons, Inc., New York, NY, USA, 1981.

[80] H. P. Schwefel. Evolution and Optimum Seeking: The Sixth Generation. John

Wiley & Sons, Inc., New York, NY, USA, 1993.

[81] M. Serpell and J. Smith. Self-adaptation of mutation operator and probability

for permutation representations in genetic algorithms. Evolutionary Compu-

tation, 18: 491–514, September 2010.

[82] Y. Shi and R. Eberhart. A modified particle swarm optimizer. In Proceedings

of the 1998 IEEE World Congress on Computational Intelligence, pages 69–73,

1998.

[83] P. Siarry, A. Pétrowski, and M. Bessaou. A multipopulation genetic algorithm

aimed at multimodal optimization. Advances in Engineering Software, 33: 207–

213, April 2002.

[84] G. E. Sima Uyar, Sanem Sariel. A gene based adaptive mutation strategy for

genetic algorithms. In Proceedings of the 2004 International Conference on

Genetic and evolutionary computation, pages 271–281, 2004.

[85] S. N. Sivanandam and S. N. Deepa. Introduction to Genetic Algorithms.

Springer Publishing Company, Incorporated, 1st edition, 2007.

[86] G. H. Smith. Adaptive genetic algorithms and the boolean satisfiability prob-

lem. Technical report, University of Pittsburgh, Pittsburgh, PA, 1979.

158

Bibliography

[87] J. Smith and T. C. Fogarty. An adaptive poly-parental recombination strategy.

In Selected Papers from AISB Workshop on Evolutionary Computing, pages

48–61, London, UK, 1995. Springer-Verlag.

[88] J. Smith and T. C. Fogarty. Adaptively parameterised evolutionary systems:

Self-adaptive recombination and mutation in a genetic algorithm. In Pro-

ceedings of the 4th International Conference on Parallel Problem Solving from

Nature, PPSN IV, pages 441–450, London, UK, 1996. Springer-Verlag.

[89] J. Smith and T. C. Fogarty. Recombination strategy adaptation via evolu-

tion of gene linkage. In Proceedings of the 1996 International Conference on

Evolutionary Computation, pages 826–831, 1996.

[90] J. Smith and T. C. Fogarty. Self adaptation of mutation rates in a steady

state genetic algorithm. In Proceedings of the 1996 International Conference

on Evolutionary Computation, pages 318–323, 1996.

[91] J. Smith and T. C. Fogarty. Operator and parameter adaptation in genetic

algorithms. Soft Computing, 1(2): 81–87, 1997.

[92] J. E. Smith. Self-Adaptation in Evolutionary Algorithms for Combinatorial

Optimisation, volume 136 of Studies in Computational Intelligence. Springer,

pages 31-51, 2008.

[93] W. M. Spears. Adapting crossover in evolutionary algorithms. In Proceedings

of the 4th Annual Conference on Evolutionary Programming, pages 367–384,

1995. MIT Press.

[94] W. M. Spears. Evolutionary Algorithms: The Role of Mutation and Recombi-

nation. Natural Computing Series. Springer, Secaucus, NJ, USA, 2000.

159

Bibliography

[95] W. M. Spears, K. A. D. Jong, T. Bäck, D. B. Fogel, and H. de Garis. An

overview of evolutionary computation. In Proceedings of the European Con-

ference on Machine Learning, pages 442–459, London, UK, 1993. Springer-

Verlag.

[96] M. Srinivas and L. Patnaik. Adaptive probabilities of crossover and mutation

in genetic algorithms. IEEE Transactions on Systems, Man and Cybernetics,

24(4): 656–667, April 1994.

[97] P. Suganthan, N. Hansen, J. Liang, K. Deb, Y. Chen, A. Auger, and S. Tiwari.

Problem definitions and evoluation criteria for the cec 2005 speicial session on

real-parameter optimization. Technical report, Nanyang Technical University,

Singapore and Indian Institute of Technology, Kanpur, India, 2005.

[98] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction.

MIT Press, 1998. http://www.cs.ualberta.ca/%7Esutton/book/ebook/

the-book.html.

[99] L. Temby, P. Vamplew, and A. Berry. Accelerating real valued genetic algo-

rithms using mutation-with-momentum. In Proceedings of the 2005 Australian

Conference on Artificial Intelligence, pages 1108–1111, 2005.

[100] M. Thathachar and P. Sastry. A class of rapidly converging algorithms for

learning automata. IEEE Transactions on Systems, Man and Cybernetics,

15: 168–175, 1985.

[101] D. Thierens. An adaptive pursuit strategy for allocating operator probabilities.

In Proceedings of the 2005 Genetic and Evolutionary Computation Conference,

GECCO ’05, pages 1539–1546, New York, NY, USA, 2005. ACM.

[102] D. Thierens. Adaptive strategies for operator allocation. In F. G. Lobo,

C. F. Lima, and Z. Michalewicz, editors, Parameter Setting in Evolutionary

160

http://www.cs.ualberta.ca/%7Esutton/book/ebook/the-book.html
http://www.cs.ualberta.ca/%7Esutton/book/ebook/the-book.html

Bibliography

Algorithms, volume 54 of Studies in Computational Intelligence, pages 77–90.

Springer, 2007.

[103] A. Tuson and P. Ross. Adapting operator settings in genetic algorithms. Evo-

lutionary Computation, 6: 161–184, June 1998.

[104] R. K. Ursem. Multinational evolutionary algorithms. In Proceedings of the

1999 IEEE Congress on Evolutionary Computation, pages 1633–1640. IEEE

Press, 1999.

[105] F. Vafaee and P. C. Nelson. A genetic algorithm that incorporates an adaptive

mutation based on an evolutionary model. In Proceedings of the 2009 Inter-

national Conference on Machine Learning and Applications, pages 101–107,

Washington, DC, USA, 2009. IEEE Computer Society.

[106] F. Vafaee and P. C. Nelson. An explorative and exploitative mutation scheme.

In Proceedings of the 2010 IEEE Congress on Evolutionary Computation,

pages 1–8, 2010.

[107] F. Vafaee, P. C. Nelson, C. Zhou, and W. Xiao. Dynamic adaptation of genetic

operators’ probabilities. In Proceedings of the Nature Inspired Cooperative

Strategies for Optimization, pages 159–168. 2007.

[108] F. Vafaee, W. Xiao, P. C. Nelson, and C. Zhou. Adaptively evolving probabili-

ties of genetic operators. In Proceedings of the 7th International Conference on

Machine Learning and Applications, pages 292–299. IEEE Computer Society,

2008.

[109] F. van den Bergh. An analysis of particle swarm optimizers. PhD thesis,

Department of Computer Science, University of Pretoria, South Africa, 2002.

[110] N. Wagner and Z. Michalewicz. Parameter adaptation for GP forecasting ap-

plications. In F. G. Lobo, C. F. Lima, and Z. Michalewicz, editors, Parameter

161

Bibliography

Setting in Evolutionary Algorithms, volume 54 of Studies in Computational

Intelligence, pages 295–309. Springer, 2007.

[111] T. Weise. Global Optimization Algorithms – Theory and Application. Self-

Published, second edition, 2009. Online available http://www.it-weise.de/

projects/book.pdf.

[112] T. Weise, M. Zapf, R. Chiong, and A. J. Nebro. Why Is Optimization Diffi-

cult?, volume 193 of Studies in Computational Intelligence. Springer, 2009.

[113] T. White and F. Oppacher. Adaptive crossover using automata. In Proceedings

of the 3rd International Conference on Parallel Problem Solving from Nature,

pages 229–238, 1994.

[114] D. Whitley and T. Starkweather. Genitor ii.: a distributed genetic algorithm.

Journal of Experimental and Theoretical Artificial Intelligence, 2: 189–214,

October 1990.

[115] D. Wolpert and W. Macready. No free lunch theorems for optimization. IEEE

Transactions on Evolutionary Computation, 1(1): 670–82, April 1997.

[116] S. Yang. Adaptive non-uniform crossover based on statistics for genetic al-

gorithms. In Proceedings of the 2002 Genetic and Evolutionary Computation

Conference, GECCO ’02, pages 650–657, San Francisco, CA, USA, 2002. Mor-

gan Kaufmann Publishers Inc.

[117] S. Yang. Adaptive non-uniform mutation based on statistics for genetic al-

gorithms. In Proceedings of the 2002 Genetic and Evolutionary Computation

Conference, GECCO’02, Part II, pages 490–495, Berlin, Heidelberg, 2002.

Springer-Verlag.

[118] S. Yang. Statistics-based adaptive non-uniform mutation for genetic algo-

rithms. In Proceedings of the 2003 Genetic and Evolutionary Computation

162

http://www.it-weise.de/projects/book.pdf
http://www.it-weise.de/projects/book.pdf

Bibliography

Conference, GECCO’03, Part II, pages 1618–1619, Berlin, Heidelberg, 2003.

Springer-Verlag.

[119] S. Yang and C. Li. A clustering particle swarm optimizer for locating and

tracking multiple optima in dynamic environments. IEEE Transactions on

Evolutionary Computation, 14(6): 959–974, December 2010.

[120] S. Yang and S. Uyar. Adaptive mutation with fitness and allele distribution

correlation for genetic algorithms. In Proceedings of the 2006 ACM symposium

on Applied Computing, SAC ’06, pages 940–944, New York, NY, USA, 2006.

ACM.

[121] J. Yao, N. Kharma, and P. Grogono. A multi-population genetic algorithm for

robust and fast ellipse detection. Pattern Analysis and Applications, 8: 149–

162, September 2005.

[122] X. Yao, Y. Liu, and G. Lin. Evolutionary programming made faster. IEEE

Transactions on Evolutionary Computation, 3(2): 82–102, 1999.

[123] P.-Y. Yin, S.-S. Yu, P.-P. Wang, and Y.-T. Wang. Task allocation for maximiz-

ing reliability of a distributed system using hybrid particle swarm optimization.

Journal of Systems and Software, 80: 724–735, May 2007.

[124] T.-L. Yu, K. Sastry, and D. E. Goldberg. Population sizing to go: Online

adaptation using noise and substructural measurements. In F. G. Lobo, C. F.

Lima, and Z. Michalewicz, editors, Parameter Setting in Evolutionary Algo-

rithms, volume 54 of Studies in Computational Intelligence, pages 205–223.

Springer, 2007.

[125] Q. Zhou and Y. Liu. Directed variation in evolutionary strategies. IEEE

Transactions on Evolutionary Computation, 7(4): 356–366, 2003.

163

	Declaration of Authorship
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Algorithms
	Abbreviations
	Symbols
	1 Introduction
	1.1 Motivation
	1.2 Aims and Objectives
	1.3 Methodology
	1.4 Contributions
	1.5 Structure of the Thesis

	2 Global Optimization and Evolutionary Algorithms
	2.1 Optimization
	2.1.1 Maximization problem
	2.1.2 Neighbourhood and Local Optimum
	2.1.3 Global Optimum

	2.2 Global Optimization Methods
	2.3 Evolutionary Computation
	2.3.1 Evolution Strategies (ESs)
	2.3.2 Evolutionary Programming (EP)
	2.3.3 Genetic Algorithms (GAs)
	2.3.4 Genetic Programming
	2.3.5 Particle Swarm Optimization

	2.4 GAs: Key Components
	2.4.1 Representation of Solutions
	2.4.1.1 Binary Representation
	2.4.1.2 Real-Valued Representation

	2.4.2 Objective Function
	2.4.3 Selection Schemes
	2.4.3.1 Rank Selection
	2.4.3.2 Tournament Selection

	2.4.4 Crossover Operators
	2.4.4.1 One-Point Crossover
	2.4.4.2 Two-Point Crossover
	2.4.4.3 Uniform Crossover

	2.4.5 Mutation
	2.4.5.1 Fixed Mutation Probability
	2.4.5.2 Adaptive Mutation

	2.5 Computational Complexity
	2.5.1 Definition of the P Class
	2.5.2 Definition of the NP Class

	2.6 Statistical Test
	2.6.1 One-sample t-test
	2.6.2 Paired t-test

	2.7 Chapter Summary

	3 Adaptation in Evolutionary Algorithms
	3.1 Introduction
	3.2 Short History of Adaptation in EAs
	3.3 Taxonomy of Adaptation in EAs
	3.4 General Considerations for Adaptation in EAs
	3.5 Adaptation of the Population Size
	3.5.1 Adaptive Population Sizing Approaches
	3.5.1.1 Population Sizing in GAVaPS
	3.5.1.2 Strategy Adaptation by Competing Sub-Populations
	3.5.1.3 Population Sizing in SAGA
	3.5.1.4 Population Sizing in PRoFIGA

	3.6 Adaptation of Representation
	3.7 Adaptation of Selection Operators
	3.7.1 Adaptive Selection Routine for EAs
	3.7.2 An Adaptive Tournament Selection

	3.8 Adaptation of Variation Operators
	3.8.1 Adaptation of Crossover Operators
	3.8.1.1 Adapting the Type of Crossover
	3.8.1.2 Adapting the Rate of Crossover
	3.8.1.3 Adapting the Crossover Position or Swapping Rate in Each Locus

	3.8.2 Adaptation of Mutation Operators
	3.8.2.1 Adapting the Probability of Mutation
	3.8.2.2 Adapting the Mutation Rate of Each Locus

	3.9 Chapter Summary

	4 Adaptive Mutation Operators for Function Optimization
	4.1 Introduction
	4.2 Population-Level Adaptive Mutation Operators
	4.2.1 Adaptive Mutation Operator for PSO
	4.2.1.1 Three Mutation Operators

	4.2.2 An Adaptive Mutation Operator for GAs

	4.3 Gene-Level Adaptive Mutation Operators
	4.4 Complexity Analysis
	4.5 Experimental Study
	4.5.1 Test Functions
	4.5.2 Parameter Setting
	4.5.3 Experimental Results and Analysis

	4.6 Chapter Summary

	5 Directed Mutation for Real-Coded Genetic Algorithms
	5.1 Introduction
	5.2 Directed Mutation for Genetic Algorithms
	5.3 Experimental Study
	5.3.1 Experimental Setting
	5.3.2 Experimental Results and Analysis

	5.4 Chapter Summary

	6 Multi-Population with Adaptive Mutation for Multi-Modal Optimization
	6.1 Challenges to EAs for Multi-Modal Optimization
	6.2 EAs with Multi-Population Approaches
	6.2.1 General Consideration of Multi-Population
	6.2.2 Recent Multi-Population Approaches for EAs
	6.2.2.1 Species-Based Multi-Population Approach
	6.2.2.2 Partition Based Multi-Population Approach

	6.3 GAs with Multi-Population with Adaptive Mutation
	6.3.1 Motivation
	6.3.2 Framework of the Proposed GA
	6.3.2.1 Partition(pt)
	6.3.2.2 Statistics
	6.3.2.3 Mutation(pti)

	6.3.3 Overlapping and Convergence Check

	6.4 Experimental Study
	6.4.1 Boolean Satisfiability and Genetic Algorithms
	6.4.2 Generating Multi-Modal Problems
	6.4.3 Peer Algorithms for Comparing the Proposed GA
	6.4.4 Experimental Setting
	6.4.5 Experimental Results and Analysis
	6.4.5.1 Effect of Varying the Length of Solutions and Population Size
	6.4.5.2 Effect of Varying the Number of Peaks
	6.4.5.3 Effect of Varying the Parameter r or min_dist
	6.4.5.4 Comparison Regarding the t-Test and Performance Results

	6.5 Chapter Summary

	7 Conclusions and Future Work
	7.1 Technical Contributions
	7.1.1 Adaptive Techniques Developed for Global Optimization

	7.2 Conclusions
	7.2.1 Adaptive Mutation Operators with GAs and PSO
	7.2.2 GAs with Directed Mutation Operator
	7.2.3 Multi-population with Adaptive Mutation Operator

	7.3 Future Work
	7.3.1 Adaptive Mutation Operators within GAs and PSO
	7.3.2 GAs with Directed Mutation Operator
	7.3.3 Multi-population with Adaptive Mutation Operator

	Bibliography

