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Abstract

This thesis describes the application of H∞ design techniques to the control of high per-

formance aero-engines. The design study presented is practical and realistic, the work

being motivated by problems that arise naturally in real engineering situations. The

aero-engine is multivariable and highly nonlinear: the dynamics vary considerably with

the thrust being produced, and with the altitude and forward speed of the aircraft. More-

over, there are operational constraints that must never be violated for reasons of safety:

certain engine variables should always be limited to safe vales. Furthermore, not all the

engine parameters to be controlled are directly measurable; instead a number of related

measurements are available. A methodology is presented to choose from the available

measurements, those that are preferable for feedback control. Different techniques of

model reduction using balanced realizations are considered. Two illustrative examples

are presented, and the methods compared in detail. Explicit state-space formulae for

an H∞-based two degrees-of-freedom robust controller are derived in discrete time. The

controller provides robust stability with respect to coprime factor perturbations, and a

degree of robust performance in the sense of making the closed-loop system match an ideal

reference model. Special attention is paid to the structure of the controller. It is shown

that the controller consists of a plant observer, the reference model, and a generalized

state feedback law associated with the plant and model states. Multi-mode control logic

is developed to ensure that safety limits are never violated. Actual engine test results are

presented for sea-level static conditions. All the different modes of operation are tested.

Full flight envelope evaluation of the controller is carried out using a nonlinear engine

simulation. The robust performance of the controller is demonstrated and comparisons

made with existing engine control systems.
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Chapter 1

Introduction

1.1 An overview

This thesis is about the application of linear robust control theory to high performance

aero-engines. The need and importance of robustness in control system design though

always appreciated, has been brought into the limelight during the last fifteen years.

In classical single-input single-output control, robustness is achieved by ensuring good

gain and phase margins. Designing for good stability margins also results in good, well-

damped time responses, i.e., good performance [26]. When multivariable design techniques

were first developed in the 1960s, the emphasis was laid on achieving good performance,

and not on robustness. These multivariable techniques were based on linear quadratic

performance indices and Gaussian disturbances, and proved to be successful in many

aerospace applications. The main reason for this success was that accurate mathematical

models of aerospace vehicles can be developed, and descriptions for external disturbances

based on white noise are often appropriate in such applications. However, application of

these methods, commonly referred to as the linear quadratic Gaussian (LQG) methods,

to other industrial problems made apparent the poor robustness properties exhibited by

LQG controllers. Doyle [15] and Doyle & Stein [18] later showed that LQG designs

can exhibit arbitrarily poor stability margins. This led to a substantial research effort

to develop a theory which could explicitly address the issue of robustness in feedback

design. The pioneering work in the development of the forthcoming theory, now known

as the H∞ control theory, was performed in the early 80s by Zames [113] and Zames &

1



Chapter 1. Introduction 2

Francis [114]. In H∞ design, the designer from the outset, specifies a model of system

uncertainty (such as additive or input multiplicative) that is most suited to the problem

at hand. A constrained optimization is then performed to maximize the robust stability

of the closed-loop system to the type of uncertainty chosen, the constraint being that the

feedback system be internally stable. Performance objectives can also be included in the

optimization function. Design using the H∞ approach has recently become very attractive

with the efficient state-space solution of Doyle et al. [17]. This only requires the solution

of two algebraic Riccati equations, and results in a controller of state dimension equal to

that of the (weighted) plant. Earlier frequency domain methods (see for example, Francis

[25]) resulted in controllers of a much higher order.

Alongside the theoretical developments in the field of H∞ control, application studies also

started appearing in the literature, see for example, Postlethwaite et al. [81, 83], Doyle et

al. [14], and Safonov & Chiang [87]. Postlethwaite et al. [81, 83] considered a variety of

industrial case studies: full authority flight control of a high performance helicopter, pitch

axis control of an unstable aircraft, and control of a nuclear reactor and power plant. The

performance and robustness objectives for the designs were taken to be the minimiza-

tion of the weighted sensitivity function S and the weighted complementary sensitivity

function T := I − S. Minimization of S gives good disturbance rejection properties at

the plant output, while minimization of T gives robustness against output multiplicative

uncertainty. The transfer function KS was also included in the cost to penalize the con-

trol energy, K being the H∞ controller. The design procedure thus came to be known

as the S/T/KS procedure, the objective being to minimize

∥∥∥∥∥∥∥∥∥∥∥

W1S

W2T

W3KS

∥∥∥∥∥∥∥∥∥∥∥∞

, where Wi are

the weighting functions chosen by the designer. The weights were proposed to be chosen

as simple first or second order filers: W1 chosen to be a low-pass filter, while W2 and W3

chosen as high-pass filters, to appropriately shape the different closed-loop transfer func-

tions. Standard software for H∞ design was not available then and a high level of software

development was required to implement the designs; CAD packages such as Stable-H [82]

were developed specially for this purpose. The choice of the weighting functions for the

S/T/KS designs usually required numerous iterations and was cumbersome, hence the
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S/KS design formulation was adopted subsequently [83]. Note that the transfer function

KS not only penalizes the control energy, but also provides robustness against additive

plant perturbations.

Safonov & Chiang [87] advocated the use of the S/T design procedure. They studied

an aircraft pitch axis control design example involving an unstable, non-minimum phase

plant. The H∞ design was compared to an earlier frequency-weighted LQG design, and

it was concluded that the H∞ theory easily produced a superior design, having both a

higher bandwidth, and greater stability margins.

The software problems associated with H∞ design were gradually overcome by the in-

troduction of standard software packages such as Matlab1, and specialized toolboxes,

see for example [33, 10, 6]. This greatly facilitated design using the H∞ approach. The

S/KS and S/T techniques, commonly referred to as the mixed sensitivity techniques,

were subsequently applied to various design problems. However, one major disadvantage

of the mixed sensitivity approach became apparent: it results in pole-zero cancellations

between the plant and the controller. All the stable poles of the open-loop plant are can-

celled by the controller, and furthermore, the closed-loop poles include the mirror image

positions (in the imaginary axis) of all the unstable poles of the plant [101, 62]. The

consequences of this phenomenon are that the closed-loop properties of the system are

directly determined by the properties of the open-loop plant, which may be undesirable

in the following scenarios:

(i) The cancellation of relatively slow or lightly damped resonant poles, means that

the closed-loop system will exhibit undesirable properties. In particular, these

modes will be uncontrollable from the controller input and unobservable from

the controller output, leaving them as modes of the closed-loop system. These

modes are not visible as long as we examine the transfer functions S or T or

KS, but they become apparent once we consider how any disturbance at the

plant input may propagate to the plant output. These modes will be excited in

response to a disturbance which affects the control inputs, and the closed-loop

system will exhibit undesirable behaviour.

1Matlab is a registered trademark of The MathWorks, Inc.
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(ii) If the plant contains slow unstable poles compared to the rest of the system,

some closed-loop transfer functions will contain slow stable poles, which again

may result in undesirable behaviour.

Tsai et al. [101] gave some guidelines on how to choose the weighting functions to prevent

undesirable pole-zero cancellations. They showed that with a particular construction

of the weights, the designer can not only prevent undesirable pole-zero cancellations,

but can also effect (partial) pole placement. This however, leads us to the other major

drawback of the mixed sensitivity approach: the choice of the weighting functions is not

straightforward, and it is often difficult to

• establish clear relationships between closed-loop design objectives and the choice of

particular weighting functions,

• produce rules by which the weights are to be modified in the event of an unsuitable

design.

A new approach to H∞ design was developed by McFarlane & Glover [64, 63] in the late

1980s. This approach, referred to as the loop-shaping design approach, overcomes to a

great extent, the main drawbacks of the mixed sensitivity approach. In particular, the

problem of pole-zero cancellation is largely avoided, except for a certain special class of

plants (i.e., those containing stable all-pass factors) [101]. As the name suggests, the loop-

shaping approach is based on the multivariable generalization of classical loop-shaping

ideas. The frequency response of the open-loop plant is shaped by augmenting it with

appropriate weighting functions. The choice of the weights is, therefore, more intuitive

and straightforward; the weights being selected for open-loop shaping and not for closed-

loop shaping as in the mixed sensitivity approach. Moreover, the uncertainty in the plant

is modelled in a fractional framework, which allows a much broader class of perturbations

to be considered; this is discussed in detail in Chapter 2. Furthermore, the loop-shaping

design approach has been shown (Chapter 6) to yield better robust performance properties

than the mixed sensitivity approach, which places all the emphasis on the output of the

plant, giving rise to possibly poor properties at the plant input. Also there is no need to

iterate for the optimal solution, which in general, is a characteristic of all H∞ designs.
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These advantages led to the loop-shaping approach being applied successfully to various

design problems, see for example [103, 48, 80].

It should be noted that all the design formulations considered so far rely on frequency

shaping of various transfer functions, and time domain performance specifications can-

not be incorporated directly into the design framework. In the loop-shaping approach,

for example, the performance specifications are aimed for by appropriately shaping the

open-loop plant. A more direct way of incorporating time domain specifications was

proposed by Hoyle et al. [45] by extending the loop-shaping approach to a two degrees-

of-freedom configuration. This allowed a model-matching problem to be included into the

H∞ cost function, and provided an explicit framework for robust performance design (in

the model-matching sense). The two degrees-of-freedom design procedure has since been

used successfully in various applications, examples are [104, 69]. It is emphasized however,

that almost all these application studies have been based on computer simulations of the

actual systems. Also the controller designs have mostly been performed in continuous

time, and either used as such in the simulations, or discretized using certain s-plane to

z-plane transformations. In this thesis, a discrete time design procedure based on the

two degrees-of-freedom configuration is presented, and applied to the aero-engine control

problem. The controller thus designed has been tested on an actual aero-engine, the Rolls

Royce Spey Mk 202, and the test results discussed and compared with those obtained

from existing engine control systems. The theory of discrete time H∞-optimization has

been developed by Walker [107], and Iglesias & Glover [50].

The control of high performance aero-engines has been the subject of numerous papers

over the last few years. All these papers can broadly be classified as belonging to one

of two categories: (i) those in which the emphasis is on the controller design theory and

the aero-engine control problem is presented as an illustrative (and in most cases trivial)

example, and (ii) those in which the emphasis is on the aero-engine control problem, and

simple classical controllers are designed and verified by simulation on the plant model.

We shall now look at some of the work done in this field over the last ten years.

Kapasouris [52] presents controller designs for the GE-21 variable cycle turbofan jet en-

gine using the LQR (linear quadratic regulator) and the LQG-LTR (linear quadratic

Gaussian with loop transfer recovery) based methods of controller synthesis. The LTR
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technique was introduced to improve the robustness of LQG controllers. It is well-known

(see for example, [62]) that optimal state feedback (LQR controllers) and the Kalman

filter, taken separately, have good robustness and performance properties. It might be

expected therefore, that LQG compensators, which are constituted by combining the LQR

state feedback with the Kalman state estimator, would also yield good robustness and

performance. This, as indicated earlier, is generally not the case [15]. However, there is a

way of designing the Kalman filter so that the full state feedback properties are ‘recovered’

at the input of the plant, this being referred to as the loop transfer recovery (LTR) proce-

dure. What is needed is for some of the filter’s eigenvalues to be placed at the zeros of the

plant, the remainder being allowed to become arbitrarily fast [18]. Since the procedure

relies on cancellation of some of the plant dynamics (in particular the zeros) by the filter

dynamics, it is guaranteed to work only with minimum phase plants. Kapasouris [52]

selects nine operating points for linear designs. The linear compensators are scheduled

using least-squares polynomial fitting methods to produce a ‘global’ nonlinear controller.

The problem, however, is over-simplified, and the work is mainly of academic interest

only. There have been some other studies on the application of the LQG-LTR technique

to aero-engine control, see for example [76, 5, 65]. These again, are based on a simplified

version of the problem, and serve mainly to illustrate the design technique.

Peczkowski & Sain [73] have advocated the use of the ‘total synthesis’ approach for the

design of multivariable controllers for gas turbine engines. They argue that in order to

control the outputs of the plant independently with unique control inputs, the plant in-

verse must exist. Furthermore, for practical considerations, it should be well-conditioned.

Given a plant G and a unity feedback error-actuated controller K, the transfer function

from the reference input r to the plant output y is given by (I + GK)−1GK. If the

desired output response is given by y = Tr, where T is an ideal model, then equating the

response of the feedback system to the ideal response gives the following expression for

the controller:

K = G−1T (I − T )−1. (1.1.1)

K as given above is the ‘total synthesis’ controller. Peczkowski & Sain [73] apply this

scheme to a gas turbine engine model and design five linear controllers for different oper-

ating points. These controllers are then gain-scheduled to cover half of the thrust range
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of the engine. In practice, the operating point of the aero-engine depends not only on

thrust, but also on the operating altitude and forward speed. Hence a large number of

such controllers would need to be designed to cover the full operating envelope of the en-

gine. The design technique, however, has a number of obvious flaws: the requirement that

the inverse of the plant must exist is not always a realistic one, and the controller given

by (1.1.1) may not be realizable. Furthermore, the issue of robustness is not addressed;

even the internal stability of the feedback system is not guaranteed.

Porter & Jones [78] have attempted to extend to multivariable plants, the classical

proportional-integral-derivative (PID) based techniques of control system design. They

assume the plant to be asymptotically stable, and propose a way to determine the pro-

portional and integral gain matrices directly from step responses of the open-loop plant.

These matrices are chosen so as to provide decoupling between the different controlled

outputs. They propose the gains in each channel to be tuned on-line, and apply the

technique to a linear engine model. The issue of robustness again, is not considered.

PI controllers, nevertheless, have been successfully used in the aero-engine industry for

a long time. However, with the future generation of engines being more complex and

having a relatively large number of manipulated and controlled variables, there is a need

to consider more sophisticated methods of control, and to analyse the benefits they may

offer over the simpler PI schemes.

Eisa & Tyler [22] describe the development of a nonlinear multivariable controller for the

F100 engine using the total synthesis theory of Peczkowski & Sain [73], as mentioned

above. They use a fourth order nonlinear model of the engine, and linearize it at eight

different points over the thrust range. Linear controllers are then designed at each of the

chosen operating points using equation (1.1.1). These controllers are linked together using

linear interpolation techniques to form a full range gain-scheduled nonlinear controller.

The ideal response matrix T is chosen to be a diagonal matrix of first order lags. The

controller is simulated on the nonlinear simulation, the responses are seen to be good

for small steps, but with the full range reference step and a delay in fuel ignition, the

controller performance is not good. This is not surprising as the issue of robustness is not

addressed in the design procedure.

Polley et al. [77] describe the design of a full flight envelope nonlinear multivariable con-
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troller for a single bypass variable-cycle jet engine. The nonlinear controller is obtained by

scheduling linear compensator gains designed at selected operating points. Each individ-

ual linear controller is designed by parameter optimization techniques, using Edmund’s

algorithm [21] for optimizing the controller parameters. The algorithm aims at making

the closed-loop transfer function approach a desired or ‘target’ transfer function as closely

as possible over a specified frequency range. The design methodology is a frequency based

one, and uses closed-loop Nyquist and Bode plots. The structure of the controller has to

be specified by the designer, and the parameters of the controller are estimated by min-

imizing the square of the 2-norm of the error between the actual and target closed-loop

transfer functions. This problem is shown to be reduced to a linear least-squares problem

[21], to which a standard solution exists. Success of the algorithm depends on having a

sufficiently good initial design and an appropriate choice of the controller structure. Pol-

ley et al. [77] choose a proportional plus integral (PI) based controller structure. After

designing linear compensators at a number of operating points, the compensator gains

are linked and scheduled using curve-fitting methods. The simulation results are seen

to be good. Drawbacks of the design procedure are the lack of consideration to plant

uncertainty and possibly undesirable pole-zero cancellations between the plant and the

controller.

Leithead & O’Reilly [58] discuss multivariable control by the ‘individual channel design’

method. The multivariable problem is reduced to a set of single-loop design problems by

taking into account the interaction between the different loops. The design technique is

simple and manageable for 2-input 2-output systems, but for higher dimension systems,

the procedure becomes complicated and cumbersome. Leithead & O’Reilly [58] apply

the method to the design of a gas turbine control system. The example, however, is

over-simplified and serves mainly to illustrate the main points of the proposed design

procedure.

Recently there has been a study of the application of H∞ mixed sensitivity control to gas

turbine engines for helicopters [108]. This problem differs from the aero-engine control

problem in several respects. Firstly, gas turbine engines for helicopters drive the rotor

shaft, the rotational speed of the shaft being the most important output to be controlled.

Aero-engines on the other hand, produce thrust by the expansion of hot compressed gases
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in the nozzle. Secondly, for helicopter engines, the problem is basically that of regulation,

the speed of the rotor shaft is required to be regulated to a desired value. There are some

common attributes too, which both the aero-engine and the helicopter engine control

problems share: the change in the dynamics of the engines with thrust and with the flight

conditions is quite similar. A single-input single-output controller is designed in [108] for

regulation of rotor shaft speed. Only one flight condition is considered.

Sutton [100] and Greig [37] have presented realistic case studies of the aero-engine control

problem. They use simple PI controllers, which are gain-scheduled to produce a full range

controller. It should be noted here that a very important issue in aero-engine control is

the necessity of preventing violation of operational constraints. Since the principle of op-

eration of a gas turbine engine is based on the compression, combustion and expansion of

air, certain temperatures and rotational speeds in the engine can, under some conditions,

rise to dangerously high levels. This can adversely affect engine life, and in some cases

can cause catastrophic failure. Hence, critical engine variables are always required to be

limited to specified safe values. In all the design studies considered so far, this important

aspect of the engine control problem is completely neglected. Sutton [100] considers the

design of engine limiters to prevent overspeeding and overheating of the engine; his ap-

proach is based on the ideas of Nett & Polley [71], and results in a “multi-mode” control

scheme. The term “multi-mode” corresponds to the controller having different modes of

operation: the ‘normal’ or thrust control mode, and the various limiting modes, which

are switched between, depending on which output is the most significant at a given time.

A similar multi-mode scheme is developed in this thesis. Sutton [100] and Greig [37]

demonstrate their designs by engine tests. They however, do not consider the full flight

envelope operation of the engine.

It is apparent from the literature survey presented here that the majority of the work

in the field of aero-engine control is based on simplified and often unrealistic definitions

of the control problem, and not all essential control requirements are considered. Most

researchers have presented case studies in order to illustrate a particular design technique,

and in the process have over-simplified the problem. The more realistic design studies all

employ classical PI controllers. Such controllers have been successfully used in the indus-

try, however, new engines under development are expected to require more sophisticated



Chapter 1. Introduction 10

methods of control. These engines will have an increased number of variable inputs, and

the existing approaches to controller design are likely to be inadequate; engine designs

at present being undertaken by Rolls Royce have as many as nine control variables. The

application of modern techniques to contemporary engines, and then proving these by

engine tests, will demonstrate a capability and provide experience in design to meet the

likely challenge of forthcoming control requirements.

The aero-engine control problem considered here is a challenging one. The dynamics of

the engine vary considerably with the thrust it produces, and also with the operating

altitude and the forward speed of the aircraft. The controller should either be robust

to the change in dynamics, or be adapted accordingly; all existing schemes use gain-

scheduling to cover the full operating envelope of the engine. Secondly, the requirement

that certain variables (apart from the ones being primarily controlled) must not exceed

pre-set limits adds to the complexity of the problem. Moreover, the engine is inherently

nonlinear and multivariable, future engines will have an increased number of manipulated

and controlled variables. There is thus, a need to apply state-of-the-art techniques to

this problem, and to analyse the benefits these techniques can offer over existing control

schemes. This need motivates the work described in this thesis.

1.2 Structure of thesis

This thesis consists of nine chapters and is organized as follows.

Chapter 2 briefly reviews the ideas and concepts fundamental to the theory of H∞ con-

trol. The use and need of robust multivariable control is motivated. It is argued that

the Nyquist-like techniques of multivariable design (such as the Characteristic Locus and

Nyquist array methods) can lead to designs that have poor stability margins. More-

over, since the question of optimality is not addressed, it is not clear if the design can

be improved or not. H∞-optimization is presented as a complete theory which explic-

itly addresses the issue of robustness in feedback design. The ‘small gain theorem’ is

presented and the use of singular values in quantifying robustness described. Different

representations of uncertainty are discussed and conditions for robust stability derived.

The normalized coprime factor representation of transfer functions is presented and the
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merits of modelling uncertainty in this framework discussed. It is shown that this frame-

work allows a relatively broad class of perturbed systems to be modelled. The standard

formulation for posing H∞-optimization problems is presented. Most design problems can

be formulated in this standard form, for which standard solutions exist.

Chapter 3 introduces the aero-engine control problem. The working and operation of

the aero-engine is discussed in detail. The characteristics of the individual components

of the engine are described. The design specifications and closed-loop objectives are

discussed. The plant inputs, and the parameters to be controlled or limited are listed:

three parameters require control while two outputs need to be limited, there being three

control inputs. Since the number of outputs is greater than the number of available inputs,

a multi-mode scheme is developed in which separate controllers are designed for different

sets of outputs. These controllers are arranged to be switched between in an appropriate

manner, depending on which output is the most significant at a given time. The main

sources of nonlinearity in the engine are described. Discretization of linear engine models

is discussed. Formulae are derived for discretizing general linear state-space models with

different time delays in different input channels, assuming a zero-order hold on the inputs.

The discrete time engine model is to be used later for designing discrete time controllers.

Direct discrete design is important in our case since the sample time we had to choose

is barely sufficient for the application at hand. The delays associated with the digital

implementation are thus significant and cannot be neglected. These delays are modelled

exactly in discrete time, there is no need for continuous time approximations, and hence

direct discrete design is preferable.

Chapter 4 presents a systematic methodology to deal with the problem of ‘control struc-

ture design’. For the case of the aero-engine, some of the parameters to be controlled,

such as thrust and the compressor surge margin, are not directly measurable. Instead, a

number of related measurements are available which can be used to represent these pa-

rameters. For example, there are five measurements which can represent thrust, and three

which can represent the compressor surge margin. The problem is then to choose from

among these available measurements, the ones that are in some sense better for closed-

loop control. This task of choosing appropriate outputs and then deciding on how to

pair them with the inputs, is referred to as control structure design. Different techniques
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to tackle this problem are presented and demonstrated by application to the aero-engine

example. The importance of input output scaling is discussed. The limitations in closed-

loop performance arising from slow right half-plane zeros of the plant are described. The

relative-gain array is discussed and its role in structure design elaborated. It is shown that

large entries in the relative-gain array indicate a plant which is poorly conditioned with

respect to inversion. Also such plants can result in the closed-loop system having poor

stability robustness in the presence of actuator uncertainty. The plant condition number

and its role in structure selection is then discussed. It is shown that for ill-conditioned

plants, robust performance can be very poor, even if the closed-loop system has good

robust stability and nominal performance properties. Moreover, high condition numbers

indicate potentially poor robustness in the face of additive or input multiplicative un-

certainty. The Hankel singular values and their role in structure design is introduced.

Finally the problem of input output pairing based on the steady-state relative-gain array

is briefly reviewed. The main part of the chapter has been published in [90].

Chapter 5 discusses in detail different methods of obtaining reduced order models using

balanced realizations. The issue of model reduction has obtained great importance over

the last fifteen years. Optimal design methods, such as H∞ or LQG, produce controllers

of order at least equal to that of the plant, if not higher. The designer has no direct

control over the state dimension of the resulting controllers. As a result, these methods

are generally considered by practitioners to be too complex with regards to practical

implementation. The problem of complexity becomes even more pronounced when dealing

with multi-mode systems, where a number of controllers, each corresponding to a different

mode of operation, are run in parallel. Moreover, gain-scheduling requirements further

increase the computational load. Hence, there is always a need for obtaining low order, yet

accurate approximations of high order systems. The balanced truncation technique has

been widely used for model reduction, owing to its simplicity and ease of use. The basic

idea is to discard the less controllable and observable states of a system. This idea can

be extended so that the less controllable and observable states are ‘residualized’ instead

of being truncated. The resulting method, referred to as ‘balanced residualization’, is

shown to enjoy some favourable properties. It is shown that this method preserves the

steady-state gain of the system. An error bound for this method is also derived, and
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this turns out to be the same as the bound for balanced truncation. This error bound

has previously been derived by Liu & Anderson [61] using a different approach, they

refer to the technique as ‘singular perturbation approximation’. The optimal Hankel-

norm approximation technique of Glover [30] is also discussed. The three techniques

are demonstrated and compared on two detailed examples. The first example is about

reduction of an aero-engine model, and the other about reduction of an H∞ controller.

The bulk of this chapter has been published in [93, 39, 92].

Chapter 6 describes an H∞ two degrees-of-freedom discrete time controller synthesis

procedure. Special importance is given to the structure of the controller. This is because

it not only provides a deeper understanding of the working of the controller, but is also

vital for the acceptance of the technique into mainstream industrial usage. The robust

stabilization problem in the normalized coprime factor framework is reviewed. The im-

portance of loop-shaping in H∞ design is described. The loop-shaping design procedure

(LSDP) of McFarlane & Glover [64] is discussed in detail. It is shown that common

closed-loop transfer function objectives are easily incorporated into the design procedure.

Moreover, the LSDP ensures that these closed-loop objectives are well-behaved, and can

be shaped as desired at low and high frequencies by appropriately choosing the weighting

functions. The two degrees-of-freedom design configuration is presented, which includes a

model matching problem in addition to the coprime factor robust stabilization problem.

The problem is cast into the standard form introduced in Chapter 2. Explicit state-space

formulae for the corresponding controller are derived. This is done by breaking down the

problem into two parts: the full information problem and the disturbance feedforward

problem, and using standard results to solve these problems. The structure of the con-

troller is presented. It is shown that the controller consists of an observer for the (shaped)

plant, the chosen reference model, and a generalized state feedback law associated with

the plant and model states. Finally the controller design procedure is presented. The

major part of this chapter has been published in [89].

Chapter 7 works through the design details of the aero-engine multi-mode controller and

discusses important implementation issues. Design considerations for plants with more

outputs than inputs are discussed. It is shown that for good tracking and disturbance

rejection on some outputs, the loop gain associated with these outputs has to be rela-
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tively high. The design of the thrust controller and the two limiters is described in detail,

thus illustrating the design procedure proposed in Chapter 6. The performance of the

controllers is verified using linear simulations. An efficient form for controller implemen-

tation is presented. This resolves potential stability problems which can arise from a high

bandwidth local feedback loop inside the controller. The controller structure is shown to

be utilized to yield considerable real time computational savings. The structure of the

overall switched controller is described. Anti-windup and bumpless transfer issues are dis-

cussed. The conditioning technique of Hanus et al. [41], and the observer-based approach

of Åström & Wittenmark [4] are described in detail. These approaches are applied to

the aero-engine multi-mode controller to provide anti-windup action in case of actuator

saturation, and bumpless transfer when switching between different controller modes of

operation.

Chapter 8 presents and discusses the results of the engine tests carried out at the De-

fence Research Agency’s engine test facility. The tests are carried out at sea-level static

conditions. All the three controller modes of operation are tested. The controller is tested

over the entire thrust range of the engine. A way of improving the speed of response of

the closed-loop system is suggested by changing slightly the implementation of the anti-

windup compensation. Full flight envelope evaluation of the controller is carried out using

the nonlinear thermodynamic simulation of the engine. The controller is tested at ten

different flight points in the flight envelope. The performance at seven of the ten points

is deemed acceptable, large interaction between the controlled outputs is observed for the

other three points. Filtering of the reference signals is proposed to reduce the interaction,

and the simulations repeated to demonstrate the improvement offered by the pre-filter.

Part of Chapters 7 and 8 has been published in [84].

Chapter 9 draws together the main conclusions and contributions of the thesis. Sugges-

tions for further work are given.
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1.3 Notation

All systems considered are linear, time-invariant and finite-dimensional. A (proper) trans-

fer function (matrix) is represented in terms of state-space data as:



A B

C D


 := C(sI − A)−1B + D,

alternatively written as (A,B,C,D), where A, B, C and D are real valued matrices, and

I is the identity matrix of appropriate dimension. If D = 0, the zero matrix, then the

system is strictly proper, and we shall write (A,B,C). The system is asymptotically stable

if and only if each of the eigenvalues of the matrix A has a strictly negative real part. For

discrete time systems, the condition is for all the eigenvalues of A to lie inside the unit

disk.

1.3.1 Mathematical notation

< the field of real numbers

<m×n the set of real matrices with m rows and n columns

Cm×n the set of complex matrices with m rows and n columns

dB decibels: x dB represents a gain of 10x/20

.∗ element-by-element multiplication (the Schur or Hadamard product)

|a| the absolute value of the real number a

AT the transpose of the matrix A

AH the transpose of the complex conjugate of matrix A

det(A) the determinant of the square matrix A

[A]ij or aij the (i, j) element of the matrix A

A−1 the inverse of the square matrix A

λi(A) the ith eigenvalue of the square matrix A

λmax(A) the largest eigenvalue of the square matrix A

λmin(A) the smallest eigenvalue of the square matrix A

ρ(A) the spectral radius of the square matrix A, i.e., maxi|λi(A)|
σi(A) the ith singular value of the matrix A

σ̄(A) the largest singular value of the matrix A
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σ
¯
(A) the smallest singular value of the matrix A

κ(A) the condition number of A, σ̄(A)/σ
¯
(A)

diag{σi} a diagonal matrix with σi on the main diagonal

I identity matrix of unspecified dimension

In the n× n identity matrix

j
√−1; sometimes an index, as in aij

log or log10 logarithm to base 10

δ(A) the number of eigenvalues of A on the imaginary axis

A > 0 symmetric matrix A is positive definite

A ≥ 0 symmetric matrix A is positive semi-definite

‖x‖ Euclidean norm of vector, (xHx)1/2

‖x‖2

(∫∞
−∞ xT (t)x(t)dt

)1/2
, if x(t) is a real continuous time signal

(∑∞
k=−∞ xT (k)x(k)

)1/2
, if x(k) is a real discrete time signal

‖A‖2 the spectral norm of A, σ̄(A)

G(s) a continuous time transfer function (matrix)

G(z) a discrete time transfer function (matrix)

‖G‖∞ supω σ̄(G(jω)), if G is a continuous time transfer function (matrix)

supθ∈(−π,π] σ̄(G(ejθ)), if G is a discrete time transfer function (matrix)

RH∞ set of asymptotically stable transfer functions G, with ‖G‖∞ < ∞
‖G‖H Hankel norm, if G is a transfer function (matrix)

Tzw transfer function from signal w to signal z

∃ ‘there exists’

∈ ‘an element of’

∀ ‘for all’

6= ‘not equal to’

1.3.2 Abbreviations

AWBT anti-windup bumpless transfer

CAD computer aided design

DARE discrete algebraic Riccati equation
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DCU digital control unit

DOF degrees-of-freedom

DRA Defence Research Agency

HP high pressure

LFT linear fractional transformation

LHP left half-plane

LP low pressure

LQG linear quadratic Gaussian

LTR loop transfer recovery

LSDP loop-shaping design procedure

FDLTI finite-dimensional linear time-invariant

MIMO multi-input multi-output

PI proportional plus integral

PID proportional-integral-derivative

RGA relative-gain array

RHP right half-plane

SISO single-input single-output

1.3.3 List of variable names

AJ nozzle area (percent of maximum)

BOV blow-off valve position (percent of maximum)

DPUP Mach number measurement at LP compressor’s exit to bypass

IGV inlet guide vane angle (degrees)

NHPCSL HP compressor’s non-dimensional percent spool speed

NL LP compressor’s percent spool speed

NLPCSL LP compressor’s non-dimensional percent spool speed

OPRS engine’s overall static pressure ratio

OPRT engine’s overall total pressure ratio

PS6PS1 ratio of HP compressor’s static outlet pressure to the static pressure

at engine inlet

PT6PT1 ratio of HP compressor’s total outlet pressure to the total pressure
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at engine inlet

PS21PS1 static pressure ratio across the LP compressor

PT21PT1 total pressure ratio across the LP compressor

TBT turbine blade temperature (degrees Kelvin)

TT15 total temperature at LP turbine’s outlet (degrees Kelvin)

WFE fuel flow (cc/sec)



Chapter 2

Background and preliminaries

2.1 Introduction

In this chapter the concepts and ideas basic to the field of H∞-optimal control are briefly

reviewed. §2.2 motivates the use of robust control for tackling uncertain multivariable

design problems. §2.3 discusses the use of singular values and the L∞-norm to quantify

robustness for multi-input multi-output (MIMO) systems. §2.4 introduces the normalized

coprime factor uncertainty representation and discusses its advantages over other models

of uncertainty. §2.5 describes the standard form for formulating H∞ design problems, and

§2.6 summarises the main points of the chapter.

2.2 Motivation for robust multivariable control

A mathematical model of any physical system is always an approximation of the true

system dynamics. The difference between the model and the true system, i.e., the plant

uncertainty depends on various factors. Typical sources of uncertainty include unmodelled

(high frequency) dynamics, neglected nonlinearities, effects of deliberate reduced order

modelling, and plant parameter changes due to environmental factors and with time. A

feedback system (in which the controller design is based on an imperfect plant model)

is required to be robust to such perturbations: it must maintain stability and some level

of performance in the face of uncertainty. In classical single-input single-output (SISO)

control, gain and phase margins have been used as measures of robustness. It is now

19
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well known that these measures (taken one loop at a time) are not good indicators of

robustness for multivariable feedback systems (as shown, for example, in [36]).

Many SISO design techniques have been generalized to tackle multivariable problems.

Examples are the Characteristic Locus and Nyquist Array design methods. These tech-

niques have also been applied to some design problems, an example is the aircraft control

problem discussed by Maciejowski [62]. The main drawback of these design methods is

that they rely mainly on the notion of gain and phase margins to address robustness, and

these measures, as indicated above, can be poor indicators of robust stability. Moreover

if designs obtained through such methods do not yield satisfactory closed-loop behaviour,

it is often not clear what can be done for improvement. Furthermore, since the question

of optimality is not addressed, one does not know if the design can even be improved or

not. Hence when faced with the design of controllers for complex multivariable systems,

one is motivated to look towards techniques which are inherently multivariable and which

provide a degree of robustness to modelling errors and uncertainties. In this thesis, one

such approach is considered.

2.3 Singular values and the small gain theorem

In addition to plant uncertainties, a control system is also subject to command and/or

disturbance input uncertainties. Stability and performance is desired for every disturbance

and command input in a prescribed set, under all possible plant perturbations. Infact

plant perturbations can also be modelled as external disturbances acting on the system.

These external input signals are usually not known precisely but can be classified so

as to belong to a prescribed norm-bounded (energy-bounded) set. The design engineer

then strives to minimize the maximum error (which is a measure of performance/stability

degradation) that can occur subject to all possible input signals belonging to this set.

This is achieved by minimizing the maximum singular value (or the maximum gain) of

the corresponding transfer function(s) [19].

The notion of gain and phase margins turned out to be a poor indicator of robustness for

multivariable systems primarily because it doesn’t allow for coupling between the loops.

The idea of using the maximum singular value however, captures not only the worst-case
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scenario, but is also natural in a multivariable setting. A very general result known as

the small gain theorem forms the basis for the use of the maximum singular value for

evaluating robustness of multivariable feedback systems. It states that a feedback loop

composed of stable (linear or nonlinear) operators will remain (internally) stable if the

product of all the operator gains is less than unity [12]. As an example let A,B ∈ RH∞

form a closed-loop system, where RH∞ denotes the space of all real rational asymptotically

stable transfer functions. Then according to the small gain theorem, the condition for

stability of the feedback system is:

σ̄ (A(jω)) · σ̄ (B(jω)) < 1 ∀ ω ∈ <. (2.3.1)

Here σ̄(·) denotes the maximum singular value, and < the field of real numbers.
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Figure 2.1: Feedback loop containing plant with additive uncertainty.

This theorem can be applied to yield sufficient conditions for robust stability for any repre-

sentation of uncertainty. Let us consider Figure 2.1. The ∆-block represents the (stable)

additive uncertainty associated with the nominal plant model G. If the uncertainty is

bounded in the sense that

σ̄ (∆(jω)) < ε ∀ ω, (2.3.2)

then it follows from the small gain theorem that the closed-loop system will remain stable

provided the transfer function from w to e is stable and has gain less than or equal to

1/ε, i.e.,

σ̄
(
K (I + GK)−1

)
≤ 1/ε ∀ ω. (2.3.3)
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Defining the L∞/H∞-norm of a transfer function H (where H has no poles on the imag-

inary axis) as:

‖H‖∞
4
= sup

ω
σ̄ (H(jω)) , (2.3.4)

we can rewrite (2.3.3) in more compact notation as:

∥∥∥K (I + GK)−1
∥∥∥∞ ≤ 1/ε. (2.3.5)

(2.3.5) is thus a sufficient condition for stability of the feedback system of Figure 2.1. If

however, all possible perturbations can occur for which (2.3.2) holds, then the condition

(2.3.5) is necessary as well as sufficient for robust stability. Similar conditions can be

obtained for other representations of uncertainty, e.g., the input multiplicative pertur-

bation, or the output multiplicative perturbation etc., as discussed by Doyle et al. [20].

It should be noted however, that the small gain theorem imposes a restriction on the

allowable perturbation ∆: it must be stable. This restriction can be relaxed somewhat

by using the generalized Nyquist stability theorem instead; however the set of allowable

perturbations is still restricted by the condition that the number of closed right half-plane

poles of the nominal and perturbed plants be the same. This assumption is retained for

such representations of uncertainty because it simplifies the theory and allows the use of

homotopy arguments in robust stability analysis1. Furthermore in order to have a finite

L∞-norm, ∆(s) must not have any poles on the jω-axis. Such restrictions can seriously

limit the set of perturbed plants that can be modelled, and hence guaranteed to be ro-

bustly stabilized. As an example we consider a system with a pair of resonant poles on

the jω-axis, i.e., let G = 5
s2+ω2

o
. If the perturbed plant G∆ is given by 5

s2+(ωo+α)2 indi-

cating uncertainty in the resonant frequencies of the poles, then the additive uncertainty

G∆ − G is found to be
−5(α2+2αωo)

[s2+(ωo+α)2](s2+ω2
o) , which is unbounded in the L∞-norm. The

same can be verified for the multiplicative uncertainty models for this example. Thus

these uncertainty descriptions can, in some cases, fail to capture simple perturbations

on the nominal system model. An alternate representation of uncertainty, known as the

normalized coprime factor perturbation, can represent a much wider class of systems than

the additive or multiplicative models, and is discussed next.

1More general tests are infact available which allow the nominal and perturbed plants to have different

numbers of right half-plane poles and zeros, such tests are however, generally complicated and require

the uncertainty to be represented in different forms simultaneously [79].
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2.4 Normalized coprime factors and uncertain models

This section introduces the normalized coprime factor perturbation which, as indicated

above, is capable of modelling a broader range of systems than some other uncertainty

descriptions. For a detailed discussion on coprime factorization, refer to Vidyasagar [102].

The pair (M̃, Ñ) constitutes a left coprime factorization of a transfer function G if:

• G = M̃−1Ñ ,

• M̃, Ñ ∈ RH∞ and there exist X, Y also ∈ RH∞ such that M̃X + ÑY = I, and

• det(M̃) 6= 0 (det(·) denotes the determinant).

A left coprime factorization of G is said to be normalized if M̃, Ñ satisfy

M̃M̃∗ + ÑÑ∗ = I,

where M̃∗ denotes the complex conjugate transpose of M̃ , etc. If G is a plant transfer

function, then the perturbations or uncertainties in the plant are represented as additive

perturbations on the normalized coprime factors of the plant. The perturbed plant G∆ is

then given by:

G∆ = (M̃ + ∆M̃)−1(Ñ + ∆Ñ),

where ∆M̃ , ∆Ñ are unknown transfer functions representing uncertainty in the plant model

G = M̃−1Ñ ; see Figure 2.2.

It is important to note that the perturbation ∆M̃ , ∆Ñ will always be stable since M̃, Ñ , (M̃+

∆M̃) and (Ñ + ∆Ñ) are stable by the definition of coprime factors. Thus this uncertainty

representation imposes no restriction on the number of right half-plane poles of the nom-

inal and perturbed plants: ∆M̃ , ∆Ñ are always stable, and hence the small gain theorem

can be applied to any perturbed model. The family of perturbed plants (or the model

set) for the normalized coprime factor perturbation is given by:

Gε =
{
(M̃ + ∆M̃)−1(Ñ + ∆Ñ) : ∆M̃ , ∆Ñ ∈ RH∞; ‖[ ∆M̃ ∆Ñ ]‖∞ < ε

}
. (2.4.1)

The robust stabilization problem is now to find the maximum achievable value of ε, εmax,

and the controller that achieves it (i.e., which stabilizes the model set Gεmax). It follows
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Figure 2.2: Left coprime factor perturbation.

from the small gain theorem that if the transfer function from φ to


 u

y


 is less than or

equal to 1/ε, i.e., if ∥∥∥∥∥∥


 K

I


 (I −GK)−1M̃−1

∥∥∥∥∥∥∞
≤ 1/ε, (2.4.2)

then this ensures that the feedback loop will be stable for all plants in the model set

(2.4.1). Therefore in order to maximize the robust stability of the feedback system of

Figure 2.2, one seeks a controller that stabilizes the nominal plant G and minimizes

γ
4
= 1/ε. This problem has been formulated and solved for the continuous time case by

McFarlane & Glover [64]; the solution is particularly attractive because the optimal γ can

be found without iteration and the controller has an observer-state feedback structure

[94]. The discrete time version of this problem has been studied by Walker [106]. An

analytical expression for the optimal γ and state-space formulae for the corresponding

central optimal and sub-optimal controllers are available for both the continuous and

discrete time cases [32, 106].

McFarlane & Glover [63] have proposed a design procedure which allows performance

specifications to be incorporated into the robust stabilization problem outlined above.

This is done by first translating the performance specifications into the frequency domain,

and then giving the open-loop plant’s singular values the desired shape. The singular

values are shaped by augmentation of the nominal plant model G by pre- and/or post-
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compensators (or weighting functions) W1 and W2 respectively. The shaped plant Gs =

W2GW1 is then robustly stabilized against coprime factor uncertainty, and the controller

K thus obtained is cascaded with the weights to obtain the final controller W1KW2. It can

be shown that the controller does not significantly alter the specified loop shape provided

a sufficiently small value of γ is achieved.

2.5 The H∞ standard plant

As discussed in the preceding sections, robustness problems can be formulated as mini-

mization problems where the L∞-norm of transfer functions relating various signals in the

feedback loop is to be minimized. Performance specifications can be similarly formulated,

e.g., attenuation of output disturbances at the plant output requires minimization of the

L∞-norm of the sensitivity function. Thus both performance and robustness problems

can be treated by specifying a set of (external) inputs and a set of outputs that define a

set of suitable transfer functions to be minimized. Let all the external inputs be denoted

by w, and let z denote the error or the outputs that are to be minimized; see Figure 2.3.

Note that z includes both performance and robustness measures and hence characterizes

fully the behaviour of the closed-loop system. P is called the generalized plant, u is the

vector of control signals, and q the vector of measurements available to the controller.

-

¾

--

u q

zw

K

P

Control
signals

Measured
variables

Outputs to be
minimized

External
inputs

Figure 2.3: The H∞ standard plant.
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Partitioning the generalized plant P as:

P =


 P11 P12

P21 P22


 ,

one can write

z =
[
P11 + P12K (I − P22K)−1 P21

]
w. (2.5.1)

This is called the lower linear fractional transformation of P and K and is denoted by

Fl(P,K). Thus (2.5.1) can be rewritten as:

z = Fl(P, K)w. (2.5.2)

The design objective now becomes:

minimize ‖Fl(P, K)‖∞ ,

where the minimization is over all linear, realizable controllers K which internally stabilize

the closed-loop system. This is referred to as the H∞-optimization problem. Much research

during the last decade has gone into finding effecient solutions to this problem. Formulae

are now available for controllers which are internally stabilizing, and which achieve

‖Fl(P,K)‖∞ < γ, (2.5.3)

where γ is any real number greater than the optimal value. The continuous time formulae

are given by Doyle et al. [17] and Glover & Doyle [31], while the discrete time case is

discussed by Walker [107] and Iglesias & Glover [50], and briefly summarized by Limebeer

et al. [59]. In both cases the controller can be found by solving two matrix Riccati

equations, and has a state dimension equal to that of the weighted plant. Having obtained

a stabilizing, norm-bounding controller (i.e., one which satisfies (2.5.3) for a particular

value of γ), the solution to the H∞-optimization problem, in general, is obtained iteratively

by searching over γ until a controller which yields a value sufficiently close to the optimal

is obtained. This is referred to as the γ-iteration in H∞ design.

Note that to put the robust stabilization problem of Figure 2.2 into the standard form of

Figure 2.3, the output z and the external input w will consist of the signals


 u

y


 and φ

of Figure 2.2 respectively.
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2.6 Summary

In this chapter the use of robust multivariable control has been motivated for the design

of controllers for complex MIMO systems. It has been stressed that methods which are

extensions of classical SISO control, and which essentially rely on gain and phase margins

and on shaping of the characteristic loci to satisfy the generalized Nyquist criterion, may

lead to poor robust stability properties. The use of the maximum singular value and

the L∞-norm as a measure of robustness was introduced and it was argued that this is

more appropriate as it allows for coupling between the loops and considers the worst-case

scenario. The small gain theorem was presented and applied to obtain sufficient stability

conditions for different uncertainty representations. The concept of normalized coprime

factor perturbation was introduced and its potential advantages over other uncertainty

models discussed. Finally the standard framework for posing H∞-optimization problems

was presented.



Chapter 3

A multivariable multi-mode design problem

3.1 Introduction to high performance aero-engines

The purpose of this chapter is to describe in simple physical terms the fundamental char-

acteristics of gas turbines, and associated control problems. The understanding of engine

characteristics and operation will aid in the choice of appropriate output variables and the

design of a control system that meets the desired specifications. §3.2 gives specifications

for controller design in terms of steady-state and transient accuracy, disturbance rejec-

tion, and robustness requirements. §3.3 describes the engine parameters to be controlled

and the available measurements. The non-linear behaviour of the engine is also discussed.

§3.4 discusses discretization of the engine linearized model with pure time delays in input

channels driven by zero-order hold circuits. Finally §3.5 summarizes the main points of

the chapter.

All gas turbine aero-engines are heat engines, in which thermal energy derived from the

combustion of fuel with air is converted to useful work. The transfer of energy from the

fire in the combustion chamber to the actual hardware (i.e., propulsion of the aircraft)

is achieved by the appropriate use of the working fluid, or air, which is made to flow

through the engine. The working fluid is handled by the thermodynamic cycle of induction,

compression, combustion, expansion and exhaust.

The engine considered for the purpose of this study is a Rolls Royce Spey. It is a 2-spool

reheated turbofan engine, used to power modern military aircraft. The engine has two

compressors: a low pressure (LP) compressor (sometimes also referred to as the fan),

28
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and a high pressure (HP) or core compressor (Figure 3.1). The LP compressor draws

air into the engine and raises its pressure. A small portion of this air is by-passed to

the jetpipe; this portion does not pass through the thermodynamic cycle of the engine.

The remaining portion goes through to the HP compressor where it is compressed to

a much higher pressure and smaller volume. The high pressure flow at the exit of the

HP compressor flows to the combustor into which fuel is injected in spray form, mixed

with the air-stream and ignited. The resultant combustion causes an increase in the gas

temperature, proportional to the amount of fuel being injected. The hot gases released

from the combustor partially expand through two stages of turbine: the HP turbine and

the LP turbine. The turbines extract some of the energy from the expanding combusted

gases and drive the two compressors. The still hot and compressed gases at the output

of the LP turbine flow into the jetpipe where they mix with the by-pass flow, coming

direct from the LP compressor. This mixed flow then expands (almost) to atmospheric

pressure in the nozzle, thus producing thrust for propulsion. The main components of the

aero-engine are now discussed in more detail.
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Figure 3.1: Schematic of the aero-engine.

In the sequel pressure and temperature measurements will be frequently referred to as
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being total or static. Total measurements are absolute, stagnation values, measured by

instruments which face into the approaching flow to give an indication of the energy in

the flow at any point. These measurements are taken when a steadily flowing fluid is

stagnated (brought to rest) without any transfer of heat. In contrast static conditions

apply normal to the flow and would be measured by an instrument moving with the flow.

For more details refer to [11].

3.1.1 The compressor

Both the compressors of the Spey engine are of the axial-flow type, i.e., in which the air

flows mainly parallel to the rotational axis of the engine (as opposed to the radial-flow

or centrifugal type). The LP compressor or fan is situated at the front end of the engine

as shown in Figure 3.1. It acts to drive air into the engine system, and at the same

time provides some compression. As indicated above, part of the air delivered by the LP

compressor by-passes the core of the engine (HP compressor, combustion chamber and

turbines) to form an annular propulsive jet of cooler air surrounding the hot engine. This

results in a final jet of lower mean velocity which provides not only a better propulsive

efficiency, but also significantly reduced exhaust noise [11]. The main compression of air

takes place in the HP or core compressor.

C

Figure 3.2: Diagrammatic representation of a compressor.

The axial compressor, represented diagrammatically in Figure 3.2, is normally built up

from a number of stages, like a series of fans of reducing flow area. It can generate a

pressure ratio of 10 or more provided sufficient stages are used [42]. Each stage comprises

of a row of rotor blades followed by a row of stator blades. The working fluid (air) is

initially accelerated by the rotor blades, and then decelerated in the stator blade passages

wherein the kinetic energy transferred by the rotor is converted to potential energy in the
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form of raised pressure. The process is repeated in a number of stages, the working fluid

thus flows continuously into a region of higher pressure. This flow pattern may, in some

cases, break down or even become unstable, particularly if the outlet to inlet pressure

ratio becomes very large. Such a condition must be avoided by the use of adequate means

of control.

The steady-speed characteristic for a multi-stage axial compressor is shown in Figure 3.3,

in terms of pressure ratio and mass flow. The characteristic is obtained by varying the

mass flow through the compressor, say by placing a valve in its outlet, and keeping the

compressor speed constant. As the valve is steadily closed, the pressure ratio across the

compressor starts to build up until the maximum possible value is attained (the peak of

the curve in Figure 3.3).

P

Q

mass flow

operation
stable

operation
unstable

surge point

ratio
pressure

Figure 3.3: Constant speed characteristic of an axial compressor.

The compressor operation is stable only to the right of the maximum pressure ratio. This

is because if the flow were to drop slightly while operating at point P, the operating

point would move up the curve to a higher pressure ratio; this increased pressure would

increase the flow through the outlet valve, thus returning to point P. The dashed part of

the curve, on the other hand, represents the unstable region of operation. A slight drop in

flow when operating at point Q for example, would result in a slight loss of outlet pressure,
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a further loss of flow, greater pressure loss, etc. This is unstable, there being nothing to

stop the operating point from accelerating off the bottom of the curve. This happens in

practice; when the pressure ratio across the compressor at a certain speed exceeds the

maximum for that speed, it is no longer able to hold the pressure head generated and

the flow reverses its direction. This is however only a momentary effect. When the back

pressure has cleared itself, positive flow is re-established but, if flow conditions do not

change, the pressure builds up causing flow reversal again. Thus the flow surges back

and forth at high frequency, the phenomenon being referred to as surge and the limit of

stability called the surge point. Surging causes excessive aerodynamic pulsations which

are transmitted through the whole machine and must be avoided at all costs. For more

details on compressor stability and the phenomenon of surge, refer to [55].

When all the individual, steady-speed characteristics are plotted together, the overall

compressor characteristic is obtained as shown in Figure 3.4. The surge points are joined

by the surge line, and only the stable region of operation is shown. In practice the

compressor is made to operate below the surge line, as indicated by its working line

(Figure 3.4). The separation between the two lines is referred to as the surge margin.

50
60

70

10090
80

mass flow

percent speed

surge line

working line

ratio
pressure

Figure 3.4: Overall compressor characteristic, covering the operational speed range.

The efficiency of the engine and the thrust produced depends on the pressure ratios
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generated by the two compressors. For higher performance the compressors should be

operated close to their surge lines, i.e., at low surge margins. One of the main objectives

of the engine control system is thus not only to avoid surge, but also to ensure that the

compressors operate at their specified surge margins at all times. Indeed the regulation of

compressor surge margins is one of the most important issues in the field of aero-engine

control. In addition to this, compressor rotational speeds need also be limited so that

they do not exceed pre-specified maximum values for reasons of mechanical safety and

durability.

3.1.2 The combustor

The combustor makes possible the reaction of air with fuel at compressor outlet conditions.

Its main purpose is to add heat to the compressed flow, and thereby raise its temperature.

This is important because the heated compressed flow is capable of doing much more work

during expansion than was done initially on its compression. Part of this work is extracted

by the turbines which drive the compressors, while the remainder is used to provide thrust.

In a combustion chamber, a steady supply of fuel and air mixes and burns as it flows

through a flame zone. The flame does not touch its container, being stabilized by the inlet

air-flow pattern which also cools the container walls. The combustion process involves

very highly developed control of flame stability and can be tuned to emit very low levels

of smoke and pollutants.

Gas turbine combustion is a continuous process and usually takes place at a temperature

above the melting point of its container [42]. The incoming air is slowed down and a

stable flow pattern is generated, to provide adequate residence time for the fuel mixing

and chemical processes to take place before the outlet flow is accelerated into the turbine.

The combustion chamber is designed so that the process is maintained in a moving stream

of air which, although slowed down, still has a velocity in the range of 30–60 m/sec [11].

Another design consideration is the requirement for the process to remain stable over

a wide range of air/fuel ratio from full load to idling conditions. Note that full load

implies that maximum thrust is being produced whereas idle corresponds to the engine

running just at self-sustaining speed, producing very little or no thrust. In addition, the
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combustion process must also be stable over a wide range of chamber pressure because

this parameter changes with altitude and forward speed.

The main input to the combustion process, the fuel, is one of the control inputs avail-

able to the engine control system. By manipulating the fuel flow, the controller can

directly vary the amount of combustion taking place and hence, can indirectly vary many

other parameters that are important for control purposes and that are influenced by the

combustion process.

3.1.3 The turbine

The turbine, represented diagrammatically in Figure 3.5, is used to extract energy from

a flowing stream of combusted gases, and hence drive the compressor. The loss of energy

causes the pressure and temperature of the flow to fall from turbine inlet to outlet, and

necessitates the use of an increasing passage area to restrain the flow to a constant velocity.

T

Figure 3.5: Diagrammatic representation of a turbine.

The Spey engine under consideration has two turbines: the HP turbine which is located

just after the combustor and drives the HP compressor, and the LP turbine which drives

the LP compressor. Apart from extracting energy from the flow, the HP turbine design

is also concerned with protecting all components from the heat of the inlet gas. Higher

temperature of the inlet gas provides better specific fuel consumption (i.e., the fuel con-

sumption per unit net work output). Also, the higher the turbine inlet temperature, the

higher the specific thrust, defined as the thrust obtained per unit of air flow. Thus it

is desirable to have a high turbine inlet temperature for improved system efficiency, but

this also poses some serious problems: the life of the turbine is greatly affected by the

temperature of the incoming flow. The main influence on maintenance costs and engine

life is the condition of the turbine blades which, as indicated above, is dependent on the
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turbine inlet temperature. Typically the blade life is halved for every 20◦C increase in

temperature near its rated operating point [42]. Limiting the turbine temperature to a

safe value is therefore of great importance with regards to engine life and durability, and

this is one of the main objectives of the aero-engine control system.

3.1.4 The nozzle

The exhaust gases from the LP turbine flow into the nozzle where they are expanded to

atmospheric pressure to produce a high velocity jet. The nozzle on the Spey engine has a

variable area: hydraulic jacks can be controlled to open or close the nozzle, thus giving a

desired outlet flow area. The nozzle area is one of the inputs that would be used by the

engine control system.

3.2 Design specifications

In this section, design specifications and control objectives for the Spey aero-engine are

drawn up based on the information supplied in [98]. In broad terms, the aim is to achieve

a range control of engine thrust, from idle to maximum engine speed, whilst regulating

compressor stability (surge) margins and minimizing the effects of external disturbances.

In addition, the controller is also required to regulate the most significant structural limit

of the engine, i.e., the turbine blade temperature, HP compressor spool speed and the LP

compressor spool speed must all be limited to safe maximum values under all conditions.

The control strategy should take into consideration actuator limits (including minimum

and maximum position and slew-rate limits) and engine acceleration and deceleration

limits.

In the sequel, the HP compressor’s percent spool speed will be denoted by NH and the

LP compressor’s spool speed by NL. TBT will denote the turbine blade temperature. The

performance requirements are given as follows.

3.2.1 Steady-state accuracy

The required steady-state accuracies for the different controlled variables are given below:



Chapter 3. A multivariable multi-mode design problem 36

NH : ±0.1% of design speed.

NL : ±0.2% of design speed.

TBT : ±2◦C.

It should be noted that these values are indicative of the level of accuracy desired from the

controller; other variables may be chosen as controlled outputs with similar requirements

for steady-state accuracy.

3.2.2 Transient accuracy

The maximum allowable closed-loop command response overshoots are as follows:

NH : 0.5% of design speed.

NL : 1.0% of design speed.

TBT : 10◦C.

Engine pressures : 1.0% of design pressure.

Cross-coupling between controlled outputs is to be minimized so that a change in the

demand of one controlled variable should result in little change in the controlled variables

whose demands are held stationary.

3.2.3 Disturbance rejection

Rejection of disturbances to parameters around which loops are closed should be sub-

stantially complete within one second so that the pilot noticing the disturbance would

not need to intervene. More specifically, the requirement is that 50% of the maximum

amplitude of the response to a discrete disturbance should be removed within 0.5 sec, and

80% of the amplitude removed within 1 sec of the advent of the disturbance.

3.2.4 Stability

Stability margins should be such that oscillations in parameters about which loops are

closed should be attenuated by at least a factor of four per cycle. Fuel oscillation should

be minimized to avoid rapid engine temperature changes (in order to minimize thermal

fatigue).
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3.2.5 Limiter loop exchange

Change over in control loops when limiting different variables should be smooth and

should not give rise to oscillations or disturbances.

3.2.6 Robustness requirements

Whilst meeting performance requirements, the controller should also exhibit good ro-

bustness properties. In the absence of detailed knowledge of uncertainty in the plant, a

robustness measure which captures a broad enough class of perturbations should be used.

The controller should be robust to the differences between the actual engine dynamics

and the linearized models on which the design is based. Also the dynamics of the engine

vary not only with the level of thrust it produces, but also with flight conditions as de-

fined by altitude and forward speed. Hence (performance) robustness across the operating

envelope is desired in order to eliminate or minimize gain-scheduling requirements.

3.3 The aero-engine control problem

Based on the discussion in the preceding sections, the control problem can now be defined

in more specific terms. This section lists the variables that need to be controlled and the

available measurements and control inputs.

3.3.1 Parameters to be controlled/limited and available measurements

For the purpose of this study, the parameters considered for closed-loop control are listed

below. Note that the notation used for engine variables is that which is commonly used

in the industry, and the numbers refer to different stations in the engine body, e.g., PS6

is the static pressure measurement at the outlet of the HP compressor.

1. Engine thrust. This cannot be measured directly during flight. There are however

a number of related measurements which can be used to represent thrust. These

include:
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(i) ratio of HP compressor’s static outlet pressure to the static pressure at

engine inlet (PS6PS1),

(ii) ratio of HP compressor’s total outlet pressure to the total pressure at engine

inlet (PT6PT1),

(iii) LP compressor’s non-dimensional1 percent spool speed (NLPCSL),

(iv) the engine’s overall static pressure ratio (OPRS). This is defined as PS32/PS1,

where PS32 and PS1 are the static pressures at the nozzle entry and engine

inlet respectively, and

(v) the engine’s overall total pressure ratio (OPRT).

Engine thrust is thus to be controlled indirectly by controlling one of these five

measurements; the problem of choosing between them is dealt with in Chapter 4.

2. LP compressor’s surge margin. This parameter is also to be controlled indirectly by

controlling one of three representative measurements:

(i) ratio of LP compressor’s static outlet pressure (at the by-pass) to static

inlet pressure (PS21PS1),

(ii) ratio of LP compressor’s total outlet pressure (at the by-pass) to total inlet

pressure (PT21PT1), or

(iii) LP compressor’s mach number measurement at the by-pass exit (DPUP).

This is defined in terms of the total and static pressures in the by-pass,

PT21 and PS21 respectively, as: DPUP=(PT21-PS21)/PS21.

3. HP compressor’s non-dimensional percent spool speed (NHPCSL).

4. LP compressor’s percent spool speed (NL). This has to be limited to a safe value.

5. The total temperature at LP turbine’s outlet (TT15). This is limited in order to

indirectly limit to a safe value the turbine blade temperature which is very hard to

1It is usual to work with engine variables in non-dimensional form in order to simplify graphical

presentation and understanding of data. Compressor spool speed is expressed in dimensionless form as

NL/
√

TT1, where TT1 is the total inlet temperature; for details refer to [42].
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measure. A temperature (TT15) is thus measured downstream at the LP turbine’s

outlet which is an indirect measure of the critical blade temperature.

There are thus five outputs which are to be controlled. The next section lists the available

control inputs.

3.3.2 The control inputs

The control inputs available to the control system are:

• fuel flow,

• variable nozzle area, and

• a variable guide vane angle setting.

The fuel control consists of an engine driven fixed displacement pump, a fuel metering

valve whose position is determined by the control computer’s output, and a spill valve

which controls the pressure drop across the metering valve. The nozzle area control is a

hydraulic jack servo controlled from the control computer. The hydraulic fluid is supplied

by an independent pump. A similar system controls the guide vanes using the high

pressure fuel supply as power source.

3.3.3 The multi-mode (switching) strategy

It should be noted that with three inputs one can independently control only three out-

puts. To control independently the five engine outputs mentioned in §3.3.1 above, three

separate controllers will be designed: a primary thrust controller, an NL limiter, and a

TT15 limiter. Representing LP compressor’s surge margin by LPCSM, the thrust con-

troller will control outputs [thrust,LPCSM,NHPCSL], the NL limiter will control outputs

[NL,LPCSM,NHPCSL], while the TT15 limiter will control outputs [TT15,LPCSM, NH-

PCSL], respectively. These three controllers will then be switched between, depending

upon which controlled output is more significant at any given time. The rationale behind

this strategy is that it is the large reference demands on the thrust output which cause the
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NL and/or TT15 limits to be exceeded. Higher thrust levels require greater fuel flow, and

hence higher temperatures and speeds. We shall therefore, set the reference demands for

NL and TT15 to their maximum values for the two limiters, and then use a lowest-wins

logic to select the controller that demands the lowest fuel. Thus while the thrust controller

asks for the least fuel, as will normally be the case, it will be on-line, but when its fuel

demand exceeds that of either one of the limiters, the implication is that the particular

limit is about to be violated, and hence that limiter will be selected on-line. The limiter

will hold the engine constant at the maximum value until the thrust demand is relaxed

and the thrust controller resumes control. The controller will thus have three modes of

operation, a primary or thrust control mode, an NL limiting mode, and a TT15 limiting

mode; the strategy is illustrated in Figure 3.6. Switching schemes like the one proposed

here have been considered previously for multi-mode operation, see for example [71].

3.3.4 Engine non-linearities

Gas turbine aero-engines by their very nature are highly non-linear in operation. The

non-linearity arises mainly from change in the dynamic response of the engine with cer-

tain internal and external parameters. The chief internal parameter which affects engine

dynamics is the amount of thrust being produced. The dynamics vary considerably as

the engine is accelerated from idle to maximum thrust and because of this classical engine

controllers need gain-scheduling to meet performance requirements.

The external parameters which influence the dynamic behaviour of the engine are, as

mentioned previously, the operating altitude and forward speed. Changes in altitude and

speed cause the engine’s inlet and outlet conditions (such as pressures, temperatures etc.)

to change, thereby affecting its dynamic response.

Other sources of non-linearity include actuator position and slew-rate limits and non-

linear thermodynamic effects such as heat soakage.

It should be noted here that the incorporation of the knowledge of these non-linearities into

the control design process is not straightforward. The parameters affecting the dynamics

do not appear directly in the state-equations. The change in the state-space description of

the system as key variables change can however still be modelled as structured uncertainty
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Figure 3.6: Illustration of the switching scheme.

(as discussed in [72]). Once in this form, the state-space uncertainty can be used in

structured singular value analysis and also for design with D-K iteration [16]. In practice

however there is a trade-off to be made between how much knowledge is incorporated

into the control law, and keeping controller complexity within reasonable limits. For

the purpose of this study, the non-linearities as described above are not modelled in the

structured uncertainty form. This could nevertheless be a subject for future research.
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3.4 The aero-engine model

This section describes the linear model development of the aero-engine. Since the con-

troller will be synthesized directly in discrete time, discretization of the model is also

discussed.

A detailed non-linear simulation of the gas turbine aero-engine was made available for the

purpose of this study. The non-linear engine model has 15 states. This model is used to

obtain a continuous time linearization at a particular operating point. The actuators are

modelled as simple first order lags. The linearized engine model including the actuators

has state dimension 18.

In the actual implementation of the digital control system, the controller drives the plant

through a digital-to-analogue converter, which in this case is a simple zero-order hold

circuit. The engine model is thus discretized with a zero-order hold on the inputs.

It should be noted that we will discretize the model only after a selection of appropriate

outputs has been made (based on the continuous time model) and the continuous time

model has been reduced (Chapters 4 & 5). Below we present the discretization formulae.

3.4.1 Discretization: modelling of input delays

There arises in one of the input channels, namely the fuel flow, a pure time delay of more

than one sample period. It represents the time elapsed between the injection of liquid

fuel into the combustion chamber and its subsequent vaporization and mixing with air

before it burns. The effect of this delay has to be included into the engine’s linear model.

There is no delay associated with the other two actuators. Formulae are therefore derived

for discretization of a multi-input multi-output linear model with different time delays

in different input channels, assuming a zero-order hold on the inputs. The derivation

presented here is an extension of the single-input single-output case discussed by Franklin

et al. [27].

Consider a linear state-space model of a system that contains delays λ1, λ2, . . . , λn in the
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control inputs u1, u2, . . . , un respectively:

ẋ = Fx + G




u1(t− λ1)

u2(t− λ2)
...

un(t− λn)




, y = Hx, (3.4.1)

where G
4
= [ G1 G2 · · · Gn ]. The general solution to (3.4.1) is given by:

x(t) = eF (t−t0)x(t0) +
∫ t

t0
eF (t−τ)G




u1(τ − λ1)

u2(τ − λ2)
...

un(τ − λn)




dτ. (3.4.2)

Letting t0 = kT and t = kT + T , we have:

x(kT + T ) = eFT x(kT ) +
∫ kT+T

kT
eF (kT+T−τ)G




u1(τ − λ1)

u2(τ − λ2)
...

un(τ − λn)




dτ. (3.4.3)

Substituting η = kT + T − τ in the integral gives:

x(kT + T ) = eFT x(kT ) +
∫ T

0
eFηG




u1(kT + T − η − λ1)

u2(kT + T − η − λ2)
...

un(kT + T − η − λn)




dη. (3.4.4)

We now separate each delay λi into an integral number of sampling periods li and a

fraction mi of the sample period so that:

λi = liT −miT, li ≥ 1, 0 ≤ mi < 1. (3.4.5)

With this substitution, the discrete system equation becomes:

x(kT + T ) = eFT x(kT ) +
∫ T

0
eFηG




u1(kT + T − η − l1T + m1T )

u2(kT + T − η − l2T + m2T )
...

un(kT + T − η − lnT + mnT )




dη. (3.4.6)

Shown in Figure 3.7 is a sketch of the i th input near time t = kT − liT . Note that the

input is piecewise constant because it is being driven by a zero-order hold circuit. It is



Chapter 3. A multivariable multi-mode design problem 44

¾

¾ -

-
.............
.............@@

.............
.............

6 η

T 0

miT

kT − liT + 2TkT − liT + TkT − liT t

ui(t)

Figure 3.7: Sketch of the i th input with delay liT −miT .

seen that as η varies from 0 to T , time t runs backwards from kT − liT + T + miT to

kT − liT + miT . We can therefore, for each input ui, break the integral into two parts,

one where ui takes the value ui(kT − liT + T ), and the other where it has the value

ui(kT − liT ). The integral can now be written as:

x(kT + T ) = eFT x(kT ) +
∫ m1T

0
eFηG1u1(kT − l1T + T )dη +

∫ T

m1T
eFηG1u1(kT − l1T )dη +

· · ·+
∫ mnT

0
eFηGnun(kT − lnT + T )dη +

∫ T

mnT
eFηGnun(kT − lnT )dη

= eFT x(kT ) +
∫ m1T

0
eFηdη G1u1(kT − l1T + T ) +

∫ T

m1T
eFηdη G1u1(kT − l1T ) +

· · ·+
∫ mnT

0
eFηdη Gnun(kT − lnT + T ) +

∫ T

mnT
eFηdη Gnun(kT − lnT )

= Φx(kT ) + Γ1




u1(kT − l1T )
...

un(kT − lnT )


 + Γ2




u1(kT − l1T + T )
...

un(kT − lnT + T )


 , (3.4.7)

where

Φ
4
= eFT , (3.4.8)

Γ1
4
= [

∫ T
m1T eFηdη G1 · · · ∫ T

mnT eFηdη Gn ]
4
= [ Γ11 · · · Γ1n ] , (3.4.9)

Γ2
4
= [

∫ m1T
0 eFηdη G1 · · · ∫ mnT

0 eFηdη Gn ]
4
= [ Γ21 · · · Γ2n ] . (3.4.10)

For notational convenience we henceforth drop the explicit mention of the sample period
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T from the state equation. We now have:

x(k + 1) = Φx(k) + Γ1




u1(k − l1)
...

un(k − ln)


 + Γ2




u1(k − l1 + 1)
...

un(k − ln + 1)


 . (3.4.11)

In order to put this equation in state-space form, we have to eliminate all the past controls

up to ui(k). To do this we introduce new state variables defined as xn+1(k)
4
= u1(k −

l1), xn+2(k)
4
= u1(k − l1 + 1), . . . , xn+l1(k)

4
= u1(k − 1), . . . , xn+l1+···+ln−1+1(k)

4
=

un(k − ln), xn+l1+···+ln−1+2(k)
4
= un(k − ln + 1), . . . , xn+l1+···+ln(k)

4
= un(k − 1). We thus

have an increased state dimension, and the equations are:



x(k + 1)

xn+1(k + 1)
...

xn+l1−1(k + 1)

xn+l1(k + 1)
...

xn+l1+···+ln−1+1(k + 1)
...

xn+l1+···+ln−1(k + 1)

xn+l1+···+ln(k + 1)




=




Φ Γ11 Γ21 0 · · · 0 Γ12 Γ22 0 · · · Γ1n Γ2n 0 · · · 0

0 0 1 0 · · · 0 0 0 0 · · · 0 0 0 · · · 0
...

0 0 0 0 · · · 1 0 0 0 · · · 0 0 0 · · · 0

0 0 0 0 · · · 0 0 0 0 · · · 0 0 0 · · · 0
...

0 0 0 0 · · · 0 0 0 0 · · · 0 1 0 · · · 0
...

0 0 0 0 · · · 0 0 0 0 · · · 0 0 0 · · · 1

0 0 0 0 · · · 0 0 0 0 · · · 0 0 0 · · · 0







x(k)

xn+1(k)

xn+2(k)

xn+3(k)
...

xn+l1(k)

xn+l1+1(k)

xn+l1+2(k)

xn+l1+3(k)
...

xn+l1+···+ln−1+1(k)

xn+l1+···+ln−1+2(k)

xn+l1+···+ln−1+3(k)
...

xn+l1+···+ln(k)




+




0 0 · · · 0

0 0 · · · 0
...

0 0 · · · 0

1 0 · · · 0
...

0 0 · · · 0
...

0 0 · · · 0

0 0 · · · 1







u1(k)

u2(k)
...

un(k)




, (3.4.12)
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and

y = [ H 0 · · · 0 ]




x(k)

xn+1(k)
...

xn+l1+···+ln(k)




. (3.4.13)

It should be noted that if a particular delay λi is less than one sample period so that

li = 1, then the first row of the matrix coupling the inputs to the states will not all be

zero, but will contain a term Γ2i to go with the input ui(k).

For our particular application, n = 3 (since the aero-engine has three inputs), and λ2 =

λ3 = 0 ⇒ l2 = l3 = m2 = m3 = 0 (since there are no delays in the second and third

input channels). The first channel has a delay slightly greater than one sample period

and therefore, l1 = 2. The discrete state equation is:

x(k + 1) = Φx(k) + [ Γ11 Γ12 Γ13 ]




u1(k − 2)

u2(k)

u3(k)


 + [ Γ21 Γ22 Γ23 ]




u1(k − 1)

u2(k + 1)

u3(k + 1)


 ,

(3.4.14)

where

[ Γ11 Γ12 Γ13 ] = [
∫ T
m1T eFηdη G1

∫ T
0 eFηdη G2

∫ T
0 eFηdη G3 ] ,

[ Γ21 Γ22 Γ23 ] = [
∫ m1T
0 eFηdη G1

∫ 0
0 eFηdη G2

∫ 0
0 eFηdη G3 ] . (3.4.15)

It is clear from (3.4.15) that Γ22 = Γ23 = 0, and hence the state equation simplifies to:

x(k + 1) = Φx(k) + [ 0 Γ12 Γ13 ]




u1(k)

u2(k)

u3(k)


 + Γ11u1(k − 2) + Γ21u1(k − 1). (3.4.16)

Defining new state variables xn+1(k)
4
= u1(k− 2), xn+2(k)

4
= u1(k− 1), the equations can

be put in standard state-space form as:




x(k + 1)

xn+1(k + 1)

xn+2(k + 1)


 =




Φ Γ11 Γ21

0 0 1

0 0 0







x(k)

xn+1(k)

xn+2(k)


 +




0 Γ12 Γ13

0 0 0

1 0 0







u1(k)

u2(k)

u3(k)


 ,

y = [ H 0 0 ]




x(k)

xn+1(k)

xn+2(k)


 .



Chapter 3. A multivariable multi-mode design problem 47

To evaluate the integrals in (3.4.15), we first convert Γ11 to a form similar to that of the

other integrals by setting σ = η −m1T to get:

Γ11 = eFm1T
∫ T−m1T

0
eFσdσ G1. (3.4.17)

To compute these integrals, we will use the following two identities which are valid for

any positive non-zero scalar number a [27]:

eFa =
∞∑

k=0

F kak

k!
,

1

a

∫ a

0
eFσdσ =

∞∑

k=0

F kak

(k + 1)!
. (3.4.18)

We now define the matrix exponentials:

S1
4
= exp





 Fm1T G1m1T

0 0





 , S2

4
= exp





 F (T −m1T ) G1(T −m1T )

0 0





 ,

S3
4
= exp





 FT G2T

0 0





 , S4

4
= exp





 FT G3T

0 0





 .

Φ can now be computed by multiplying the (1,1) block of S1 on the right-hand side by

the (1,1) block of S2, i.e., Φ = eFm1T eFT−Fm1T . The (1,2) block of S2 is:

S2(1, 2) = G1(T −m1T ) +
1

2!
F (T −m1T )G1(T −m1T )

+
1

3!
F 2(T −m1T )2G1(T −m1T ) + · · ·

=
[
I +

1

2!
F (T −m1T ) +

1

3!
F 2(T −m1T )2 + · · ·

]
G1(T −m1T )

=
1

T −m1T

∫ T−m1T

0
eFσdσ G1(T −m1T ) =

∫ T−m1T

0
eFσdσ G1,

where we have made use of the identities given in (3.4.18). Γ11 is now simply obtained

by left-multiplying the (1,2) block of S2 with the (1,1) block of S1. To compute Γ21, we

expand the (1,2) block of S1, using the identities in (3.4.18), to get:

S1(1, 2) = G1m1T +
1

2!
Fm1TG1m1T +

1

3!
(Fm1T )2G1m1T + · · ·

=
[
I +

1

2!
Fm1T +

1

3!
(Fm1T )2 + · · ·

]
G1m1T

=
1

m1T

∫ m1T

0
eFσdσ G1m1T =

∫ m1T

0
eFσdσ G1.

Γ21 is thus equal to the (1,2) block of S1. Similarly we can compute Γ12 and Γ13 from the

(1,2) blocks of S3 and S4 respectively.
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The discrete engine model incorporating the fuel flow input delay is thus given by Ĝ(z)
4
=

Ĉ(zI − Â)−1B̂, where

Â
4
=




Φ Γ11 Γ21

0 0 1

0 0 0


 , B̂

4
=




0 Γ12 Γ13

0 0 0

1 0 0


 , Ĉ

4
= [ H 0 0 ] .

3.4.2 Modelling of output delays

The discrete time implementation causes a delay of one sample period in the measurements

available to the controller, i.e., to generate the control at the k th sample, the controller

has access only to the measurements up to and including the k−1 th sample. This output

delay is modelled by pre-multiplying the discrete engine transfer function Ĝ(z) by z−1I,

where the dimension of the identity matrix I is equal to the number of engine outputs.

We call the final transfer function G(z).

3.5 Summary

In this chapter the principle of operation of gas turbine aero-engines and the working of

individual components have been briefly discussed. The main objectives of the aero-engine

control system were described. Specifications for feedback control design were presented.

The parameters required to be controlled or limited, and the available measurements and

control inputs were listed. The chief sources of non-linearity in the engine were discussed.

Linear model development of the aero-engine was described. Formulae for discretizing

multivariable state-space models with different time delays in different input channels

were derived. The derivation assumed a zero-order hold on the plant inputs.
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Control structure design

4.1 Introduction

An important part of multivariable design is the choice of manipulated and controlled

variables (plant inputs and outputs). For many systems, a number of measurements are

available for use, and a particular closed-loop specification can be defined in terms of the

control of several of these measured variables. However, one can independently control

only as many outputs as there are inputs. In the case of the aero-engine, for example,

thrust may be represented by the fan spool speed, the engine pressure ratio, or some other

appropriate variable. Thus, for thrust regulation, we have the option of choosing from a

range of variables, the one we want to control.

Once the choice of output variables has been made, it is frequently necessary to choose

appropriate pairs of inputs and outputs. This is of prime importance in decentralized

control, but can also produce easier and simpler designs for centralized controllers.

The task of choosing inputs and outputs and deciding on how to pair them is referred to

as control structure design. A good physical understanding of the plant must be combined

with the available analytical tools for an effective structure design.

The purpose of this chapter is to develop a systematic methodology to tackle the structure

design problem and apply it to the aero-engine example. As discussed in the previous

chapter, engine thrust can be controlled by controlling one of five representative measure-

ments. Similarly LP compressor’s surge margin can be represented by any one of three

candidate measurements. In this chapter we will address the problem of choosing from

49
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the range of available measurements the ones that are most suitable for control of thrust

and the LP compressor’s surge margin. In other words, we will perform structure design

for the thrust controller, which is to be designed to control thrust, LP compressor’s surge

margin and NHPCSL (as discussed in §3.3.3). A 15-state continuous time linear model

of the engine, derived from the non-linear simulation at 87% of maximum thrust, will be

used in the analysis that follows. The 87% thrust point was chosen since it represents the

usual operating conditions of the engine. It should be noted that the aero-engine is an

asymptotically stable system.

§4.2 describes the importance of plant scaling in control system analysis and design. §4.3

discusses the relevance of physical understanding of the system and practical considera-

tions when choosing outputs for feedback. The importance of right half-plane zeros with

regards to structure selection is discussed in §4.4. The relative gain array and the condi-

tion number and their roles in structure design are described in §4.5 and §4.6 respectively.

§4.7 introduces the use of Hankel singular values in choosing between outputs. The prob-

lem of input output pairing is then briefly reviewed and finally §4.9 sums up the main

points of the chapter.

4.2 Input output scaling

Some of the tools we will be using for structure selection are dependent on the scalings

employed. Scaling the inputs and the candidate measurements therefore, is vital before

comparisons are made. Scaling also improves the conditioning of the problem, and enables

meaningful analysis to be made of the robustness properties of the closed-loop system in

the frequency domain. The outputs should be scaled such that equal magnitudes of cross-

coupling into each of the outputs are equally undesirable. We have chosen to scale the

thrust-related outputs such that one unit of each scaled measurement represents 10% of

maximum thrust. A step demand on each of these scaled outputs would thus correspond

to a demand of 10% (of maximum) in thrust. The surge margin-related outputs are scaled

so that one unit corresponds to 5% surge margin. If the controller designed provides an

interaction of less than 10% between the scaled outputs (for unit reference steps), then

we would have a 1% or less change in thrust for a step demand of 5% in surge margin,
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and a 0.5% or less change in surge margin for a 10% step demand in thrust. The inputs

are scaled by 10% of their expected ranges of operation.

4.3 Practical considerations

A good physical understanding of the behaviour of the plant is vital for control structure

design. This can also simplify the structure design problem. Some candidate outputs may

be preferred over others on practical grounds or because of reasons associated with the

behaviour of the plant; these engineering considerations should be considered before any

analytical tools are employed. Some of the candidate measurements can thus be screened

beforehand.

Regarding the aero-engine example, it is known that the static and total pressure ratios

behave similarly, and that static pressures are easier to measure than total pressures.

Thus it is desirable to choose outputs involving static pressures over those involving total

pressures; we therefore drop the total pressure ratio measurements in favour of static

pressure ratios.

4.4 Right half-plane zeros

Right half-plane (RHP) zeros limit the achievable performance of a feedback loop (both in

the SISO and the multivariable cases) by limiting the open-loop gain-bandwidth product.

They can be a cause of concern, particularly, if they lie within the closed-loop bandwidth

one is aiming for. Choosing different outputs for feedback control can give rise to different

numbers of RHP zeros at differing locations. The choice of outputs should be such that

a minimum number of RHP zeros are encountered, and these should be as far removed

from the imaginary axis as possible.

We can now form sets of outputs (Table 4.1) and analyze their non-minimum phase char-

acteristics. The closed-loop bandwidth requirement for the aero-engine is approximately

10 rad/sec. RHP zeros close to this value or slower, will therefore, cause problems and

should be avoided. Table 4.1 shows the RHP zeros slower than 100 rad/sec for all combi-

nations of prospective output variables for the thrust controller. It should be noted that
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Set No. Contents RHP zeros < 100 rad/sec

1 PS6PS1, PS21PS1, NHPCSL none

2 NLPCSL, PS21PS1, NHPCSL none

3 OPRS, PS21PS1, NHPCSL 20.661

4 PS6PS1, DPUP, NHPCSL none

5 NLPCSL, DPUP, NHPCSL none

6 OPRS, DPUP, NHPCSL 19.694

Table 4.1: RHP zeros for different sets of outputs for the thrust controller.

measurements involving total pressures have been excluded as discussed in §4.3 above. It

is seen from the table that the variable OPRS introduces (relatively) slow RHP zeros. It

was observed that these zeros move closer to the origin at higher thrust levels. Thus sets

3 and 6 are dropped as being unfavourable for closed-loop control.

4.5 The relative-gain array

The relative-gain array (RGA) has been available for over twenty years and has been

widely used for control structure design, specially in the process industry. However, no

theoretical explanation of its utility was available until recently, and most of the knowledge

was empirical and based on practical experience. A number of results are now available

which attempt to provide theoretical justification for the use of the RGA. The RGA is

defined as follows.

Suppose that the transfer function from the jth input to the ith output of a square plant

G is gij when all loops are open, and hij when all outputs except the ith output are tightly

controlled. Then the (i,j) element of the RGA Γ is defined as:

γij
4
=

gij

hij

. (4.5.1)

It can be shown that hij = 1/ĝji, where ĝji is the (j,i) element of Ĝ
4
= G−1 [62]. Thus

(4.5.1) becomes:

γij = gij ĝji, (4.5.2)
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and in terms of matrix operations the RGA is written as:

Γ(G(s)) = G(s). ∗ ĜT (s), (4.5.3)

where ‘.∗’ denotes element-by-element multiplication (the Schur or Hadamard product).

Some interesting properties of the RGA are as follows:

• The RGA is independent of input and output scaling,

• All row and column sums equal one, i.e.,
∑

i γij =
∑

j γij = 1,

• Any permutation of rows or columns in G results in the same permutation in Γ(G),

and

• If G(s) is triangular (and hence also if it is diagonal), then Γ(G) = I.

Hovd & Skogestad [44] show that if Γ(G) = I ∀ω then stability of the individual loops

implies stability of the entire system. Triangular plants yield Γ = I, and plants where

Γ is different from I are termed as interactive [112]. Hoskin et al. [43] show that large

off-diagonal elements in the RGA cause greater cross-feed performance degradation. Fur-

thermore it has been known that choosing variables which result in large or negative

elements in the RGA leads to difficulties in controlling the plant, and that plant inputs

and outputs should be paired so that the diagonal elements of the RGA are as close as

possible to unity. It can be shown that [62]:

∂ĝji

ĝji

= −γij
∂gij

gij

. (4.5.4)

This implies that a change in gij will result in a much larger relative change in ĝji, if

| γij | À 1. Thus large entries in the RGA indicate a plant which is poorly conditioned

with respect to inversion. An inverse-based controller for such a plant would be very

sensitive to changes in the behaviour of the plant. The closed-loop system in such a case

is therefore likely to exhibit poor levels of robustness.

It is also known that large elements in the RGA indicate sensitivity to diagonal multi-

plicative input uncertainty, i.e., if the plant transfer function is G∆ = G(I + ∆I), where

G is the nominal model, and ∆I = diag{∆i}. Such perturbations are always present to

some extent because of uncertainty about the exact behaviour of control actuators. If K
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is the controller, then the loop-gain matrix G∆K which is closely related to performance,

can be written in terms of the nominal GK as:

G∆K = GK
(
I + K−1∆IK

)
(4.5.5)

=
(
I + G∆IG

−1
)
GK. (4.5.6)

For SISO plants, a relative input uncertainty of magnitude ∆ will result in the same

relative change in G∆K = GK(I + ∆). For multivariable plants however, the effect of

input uncertainty on the loop-gain may be amplified as shown below. For a plant with

two inputs and two outputs, the error term in (4.5.6) can be expressed in terms of the

RGA of the plant as [95]:

G∆IG
−1 =


 γ11∆1 + γ12∆2 −γ11

g12

g22
(∆1 −∆2)

γ11
g21

g11
(∆1 −∆2) γ21∆1 + γ22∆2


 . (4.5.7)

For n× n plants, the diagonal elements of G∆IG
−1 can be written as:

[
G∆IG

−1
]
ii

=
n∑

j=1

γij(G)∆j, (4.5.8)

where γij(G) is the (i,j) element of the RGA of the nominal model G. Similarly we have

[95]:
[
K−1∆IK

]
ii

=
n∑

j=1

γji(K)∆j, (4.5.9)

where γji(K) is the (j,i) element of the RGA of the controller K. If the nominal plant and

the controller both have large RGAs, then it follows from (4.5.8) and (4.5.9) above that

the error terms G∆IG
−1 and K−1∆IK will be large, and hence the loop-gain G∆K will

be significantly different from its nominal value GK. Thus, we can say that if the RGAs

of both the plant and the controller have large elements, then the closed-loop system will

have little stability robustness in the face of diagonal multiplicative input uncertainty.

Hence for plants with large RGAs, controllers having small RGAs should be used. Such

controllers are however, unlikely to give good performance and will not be able to remove

interactions in the plant. Large elements in the plant’s RGA have also been shown to

cause problems in the presence of individual element uncertainty in the plant’s transfer

function matrix. Hovd & Skogestad [44] show that if the relative uncertainty in an element

gij of G at a given frequency is larger than | 1/γij(jω) |, then the plant may have jω-axis

and RHP zeros at this frequency.
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We therefore conclude that plants with large RGAs are inherently difficult to control, and

should be avoided, if possible. We now define a measure of the size of the RGA, which

also takes into account interaction in the plant. The RGA number (rnum) defined below

is a measure of the deviation of the RGA from the identity matrix:

rnum =
∑

i=j

| 1− γij | +
∑

i6=j

| γij | . (4.5.10)

The lower the RGA number, the more preferred would be the control structure. Before

calculating the RGA number, the output variables should be arranged so that the steady-

state RGA matrix is as close as possible to the identity matrix. The RGA numbers for sets

1 and 4 are shown in Figure 4.1. It is clear that set 4 is a preferred choice over set 1. This

indicates that the measurement DPUP should be preferred over PS21PS1. Comparing

the RGA numbers for sets 2 and 5 gave the same conclusion. The RGA number thus

indicates that the sets 1 and 2 should be dropped in favour of sets 4 and 5.

We are now left with sets 4 and 5; their RGA numbers are shown in Figure 4.2, and are

seen to be very similar for the two sets. The RGA number in this case therefore, does not

yield decisive information.
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Figure 4.1: RGA numbers for sets 1 and 4.
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Figure 4.2: RGA numbers for sets 4 and 5.

4.6 The condition number

The condition number κ(G) of a plant G(s) is defined as:

κ(G(jω))
4
=

σ̄(G(jω))

σ
¯
(G(jω))

, (4.6.1)

where σ̄(G) and σ
¯
(G) denote the maximum and minimum singular values of the plant.

Ill-conditioned plants are those which have a high condition number, and it is known that

such plants can cause control problems [96].

Ill-conditioned plants are characterized by strong directionality because inputs in direc-

tions of large plant gains are strongly amplified, while inputs in directions of low plant

gains are not. For tight control of such plants, the controller would have to compensate

for the directionality of the plant by applying large inputs in the directions corresponding

to low gains, i.e., it would have to have a directionality similar to G−1. However, due

to uncertainty in the plant model, the direction of the large input may not match the

direction of low plant gain, and the amplification of the large inputs could be much larger

than that expected from the model. This could result in large values of the plant output,

leading to poor performance or even instability [96].

Morari & Zafiriou [68] have derived sufficient conditions for robust performance in the
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presence of unstructured multiplicative uncertainty at the plant input. The perturbed

plant is written as:

G∆ = G(I + lI∆I), (4.6.2)

where lI(jω) is a scalar weight on the normalized perturbation ∆I so that σ̄(∆I) ≤ 1.

Performance is defined in terms of the sensitivity operator S, the requirement being

σ̄(S∆w) < 1, where S∆ is the sensitivity function for G∆ and w(jω) is the performance

weight. Sufficient conditions for robust performance are [68]:

σ̄(wS) + κ(G)σ̄(lIT ) < 1 or (4.6.3)

σ̄(wS) + κ(K)σ̄(lIT ) < 1. (4.6.4)

Here κ(G) and κ(K) denote the plant and controller condition numbers, and S and T are

the nominal sensitivity and complementary sensitivity functions respectively. We note

from (4.6.3) and (4.6.4) that even when robust stability and nominal performance are

satisfied with a reasonable margin (σ̄(lIT ) < 1 and σ̄(wS) < 1), the robust performance

conditions can be violated by an arbitrarily large amount if both the plant G and the

controller K are ill-conditioned. Thus for ill-conditioned plants, decoupling should be

avoided as it can lead to poor robust performance; such plants are thus inherently difficult

to control.

It should be noted that for sensitivity to diagonal multiplicative input uncertainty, we

found in §4.5, that both the plant and the controller must have large RGA elements.

In this section we observe that for unstructured uncertainty to cause poor robust per-

formance, both the plant and controller have to be ill-conditioned. Thus the condition

number plays a similar role for unstructured input uncertainty as the RGA does for diag-

onal input uncertainty [68]; several quantitative relationships between these two measures

have been discovered [70].

Chen et al. [9] give an alternate characterization of the condition number with regards to

difficulty in robustly controlling the plant. They give estimates for the worst case relative

deviations in the open-loop transfer function in the presence of uncertainty. Defining

the nominal output open-loop transfer function by L, i.e., L
4
= GK, the relative error is

defined as: E
4
= (L∆ − L)L−1. Here L∆ := G∆K, with G∆ as defined in (4.6.2) with
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lI = 1. It can be shown that [9]:

σ̄(E(jω)) = κ(G(jω)), (4.6.5)

i.e., the maximum relative open-loop deviation in the loop transfer function due to input

uncertainty equals the plant condition number. The higher the condition number, the

larger the relative deviation E; for such a case the open-loop transfer function will de-

viate far from its nominal value and thus will potentially lead to undesirable closed-loop

properties.

Apart from input multiplicative uncertainty, high condition numbers have also been re-

lated to robust stability problems in the presence of additive uncertainty. The following

theorem is taken from Hoskin et al. [43].

Theorem 4.6.1 [43] For a square plant G, there exists a linear controller K which sta-

bilizes all G∆ = G + ∆ with

(i) the same number of RHP poles as G, and

(ii) σ̄(∆)
σ̄(G)

≤ δra,

and achieves σ̄(S) ≤ 0.707 ∀ ω ≤ ωS only if

κ(G) <
3.414

δra

∀ ω ≤ ωS.

Here δra is the relative additive uncertainty margin and ωS is the specified closed-loop 3dB

bandwidth of the system.

This theorem provides a necessary condition for robust stability in the presence of addi-

tive uncertainty. The higher the condition number of the plant, the smaller the relative

additive perturbation δra which can be robustly stabilized. Furthermore Freudenberg [28]

shows that a feedback system whose plant is ill-conditioned is potentially very sensitive to

simultaneous input and output uncertainty. These and the previous results of this section

show that plants with high condition numbers are difficult to control and therefore, should

be avoided.

Figure 4.3 shows the condition numbers for sets 1 and 4 and indicates that set 4 should

be favoured over set 1. The measurement DPUP is thus seen to be better than PS21PS1
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for feedback purposes; this supports our earlier conclusions based on the RGA. Condition

numbers for sets 2 and 5 (not shown here) led to the same conclusion. Therefore, based

on both the RGA and the condition numbers, we drop sets 1 and 2 in favour of sets 4

and 5.

The condition numbers of sets 4 and 5 are shown in Figure 4.4; just like the RGA numbers,

the condition numbers are also very similar for the two sets. We therefore need some other

criterion to select between these two sets. It should be noted that the condition number

which is based on plant input and output scaling, supports the scaling independent RGA

in all the cases we considered; this indicates that the scalings chosen were reasonable and

physically meaningful.
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Figure 4.3: Condition numbers for sets 1 and 4.

4.7 Hankel singular values

We now present and discuss the use of Hankel singular values in control structure selection.

Let (A,B, C, D) be a minimal realization of an asymptotically stable, rational transfer

function G(s), then the associated controllability gramian P , and observability gramian Q

are defined as:

P =
∫ ∞

0
eAtBBT eAT tdt,
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Figure 4.4: Condition numbers for sets 4 and 5.

Q =
∫ ∞

0
eAT tCT CeAtdt.

It can be shown that P and Q are given by the unique, positive-definite solutions to the

following Lyapunov equations:

AP + PAT + BBT = 0, (4.7.1)

AT Q + QA + CT C = 0. (4.7.2)

The Hankel singular values of G with degree n (where n is the number of states of G) are

given by:

σi = λ
1/2
i (PQ), i = 1, . . . , n,

ordered by convention, σ1 ≥ σ2 . . . ≥ σn > 0. A necessary and sufficient condition

for the controllability of the states of a realization is that its controllability gramian be

nonsingular. Similarly, the nonsingularity of the observability gramian is a necessary and

sufficient condition for the observability of the system states in the particular realization.

The realization for which the controllability and observability gramians are diagonal and

equal is called balanced. The Hankel singular values defined above reflect the joint con-

trollability and observability (giving equal weight to both) of the states of the balanced

realization (since for the balanced case, P = Q = diag{σ1, σ2, . . . , σn}). Note that the
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Hankel singular values are invariant under state transformations. They do, however, like

the condition number, depend on scaling.

Let the plant transfer function matrix G(s) be given by:

G =




g11 g12 · · · g1n

...

gm1 gm2 · · · gmn




,

where G has n inputs and m outputs. Now consider the sub-matrix of G formed from its

first row:

G1 =
[

g11 g12 · · · g1n

]
,

which relates the first output to all the inputs. The Hankel singular values of G1 give

its combined state controllability and state observability properties. Now consider the

sub-matrix G2 defined as:

G2 =
[

g21 g22 · · · g2n

]
,

relating the second output to all the inputs. Now if all the Hankel singular values of G2

are larger than the corresponding values for G1, then one can say that the second output

is “easier” to control than the first, as it has associated with it better state controllability

and observability properties. The Hankel singular values can thus be used to choose

between different outputs, the one corresponding to larger Hankel singular values being

the one that is more preferable. After a set of outputs has been chosen, the same approach

can also be used to pair inputs and outputs by comparing the Hankel singular values of

the transfer functions relating the different outputs to a particular input, and so on. It

should be noted that Hankel singular values are only defined for asymptotically stable

systems.

We now consider the problem of choosing between sets 4 and 5, i.e., choosing between

outputs PS6PS1 and NLPCSL. Figure 4.5 shows the Hankel singular values of the two

transfer functions relating PS6PS1 and NLPCSL to the three inputs. It is seen from the

figure that PS6PS1 has associated with it better state controllability and observability

properties as compared to NLPCSL. It would therefore be preferable to use PS6PS1 for

control purposes, and hence, set 4 is our final choice.
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Figure 4.5: Hankel singular values for PS6PS1 and NLPCSL.

4.8 Input output pairing

Pairing of inputs and outputs is important in that it makes the design of the pre-filter

simpler in some two degrees-of-freedom (DOF) controller design procedures. It is of great

importance if a de-centralized control scheme is to be used, and gives insight into the

working of the plant. There are several results (see Maciejowski [62]) which show that

negative entries on the principal diagonal of the steady-state RGA should be avoided and

that it should be close to the identity matrix. Arranging the outputs so that the steady-

state RGA meets these conditions gives PS6PS1, DPUP and NHPCSL paired with fuel

flow, nozzle area and guide vane angle respectively. The arranged steady-state RGA is

shown below:

Γ(set 4) =




1.0783 0.0232 −0.1014

0.0190 0.9737 0.0073

−0.0973 0.0032 1.0941




.

These pairings are also confirmed using the structured singular value interaction measure

of Grosdidier & Morari [38] as described in detail by Samar & Postlethwaite [91].
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4.9 Summary

This chapter has described different tools for control structure design, and their applica-

tion to the aero-engine problem. Some of the tools are scaling dependent, i.e., they are

affected by the choice of scalings employed on plant inputs and outputs. Hence proper

scaling of the plant is vital before applying these tools; this was discussed in §4.2. Dif-

ferent sets of prospective output variables were formed and their non-minimum phase

characteristics analyzed. The relative-gain array was discussed in §4.5. It was shown that

large elements in the plant’s RGA indicate sensitivity to diagonal multiplicative input

uncertainty and individual element uncertainty, and that inverse-based controllers should

not be used with such plants. The RGA number was defined and used to screen some of

the output sets. The condition number and its role in structure design was discussed in

§4.6. Ill-conditioned plants were shown to be prone to robust performance problems in

the face of input uncertainty, and to robust stability problems in the presence of additive

perturbations. The condition number was shown to support earlier conclusions based on

the RGA number. The Hankel singular values and their use in structure selection was

introduced in §4.7. Finally the problem of input output pairing based on the steady-state

RGA was briefly reviewed in §4.8.



Chapter 5

Model reduction with balanced realizations

5.1 Introduction

After deciding on a set of suitable output variables, one is faced with the task of de-

signing robust controllers for the plant. Modern controller design methods such as H∞-

optimization (which is the subject of this thesis) and LQG, produce controllers of order

at least equal to that of the plant, if not higher. These control laws are typically too

complex with regards to practical implementation and simpler designs are sought. In the

aero-engine control problem at hand, a number of parameters, apart from the ones being

primarily controlled, are to be kept within specified limits, as discussed in Chapter 3. The

number of parameters to be controlled or limited exceeds the number of available inputs,

and hence all these parameters cannot be controlled independently at the same time.

The problem is to be tackled by designing a number of controllers, each for a different set

of output variables, which are then switched between, depending on the most significant

limit at any given time. The switching is to be done by means of a lowest-wins gate, which

serves to propagate the output of the most suitable controller to the plant input. The

calculations for all these controllers have to be done and the selection made before each

control signal update. This places a high computational demand on the digital controller.

In addition, since the aero-engine is highly non-linear, a number of designs may have to

be done at various operating points, which would then be scheduled. This would further

increase the computational requirements. Hence there is always a great motivation for

obtaining low order controllers. For this purpose, one could either reduce the order of

64
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the plant model prior to controller design, or reduce the controller in the final stage, or

both. For the aero-engine case, we have chosen to reduce the order of the plant model

before design; the reason for this is that controller scheduling is expected to be required

to compensate for the non-linear behaviour of the engine. In order to be scheduled, the

controllers need to have a well-defined structure, and the change in parameters from one

controller to the next is required to be smooth. Reducing the controllers can result in loss

of structure and smooth variation between controllers.

In many applications, it is required that the steady-state gain of the system model is

not changed after reduction. Examples are internal model-based (IMC) and 2-DOF con-

trollers. If the dc-gain of the controller is changed, a steady-state error between the

reference inputs and the outputs will be introduced, which is not desirable. Furthermore

when the plant is non-square, the dc-gain of the plant must be accurately known for per-

fect steady-state tracking (Chapter 7), hence it is desirable that the dc-gain of the plant

remains unchanged after reduction. Some popular methodologies for model reduction,

such as balanced truncation and optimal Hankel-norm approximation, do not preserve

the dc-gain of the system. The reduced system, thus needs to be scaled, and then it no

longer enjoys the error bounds guaranteed by these reduction algorithms.

The balanced truncation technique was originally proposed by Moore [66], and later stud-

ied by many other researchers, see for example [75, 23]. It consists of balancing the system

and then discarding the states corresponding to small Hankel singular values. This idea

has been extended such that instead of discarding the states, their derivatives are put

to zero. The less controllable and observable states are thus residualized, instead of be-

ing truncated. This preserves the dc-gain of the system, and retains more “information”

about the original system than the truncation method.

The concept of residualization has been used previously in removing fast system modes

and approximating them by a constant term added to the D matrix of the state-space

model. The idea of using residualization with balanced realizations can be found in [33],

but no reference is made to any error bound. Such a bound is derived in this thesis, but

it is lately discovered that this bound had already been derived by Liu & Anderson [61],

where the technique is referred to as singular perturbation approximation. The derivation

of the error bound has therefore, been relegated to the appendix. The approach taken
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here, however, is quite different and follows closely that of Glover [30], and important

connections between balanced residualization and optimal Hankel-norm approximation

are established.

This chapter is organized as follows. §5.2 contains the necessary background, and intro-

duces the idea of balanced residualization. It is shown that residualization maintains the

dc-gain of the system. §5.3 presents some relevant results from [30] and briefly reviews

the optimal Hankel-norm approximation technique for stable systems. The error bound

for balanced residualization is presented in §5.4. §5.5 works through two examples to

demonstrate and compare the balanced residualization approach with the truncation and

Hankel-norm approximation techniques for plant and controller reduction. It should be

noted that all the results presented in this chapter are developed in continuous time.

We will therefore apply these results to the continuous time aero-engine model before

discretizing it for discrete time controller design. The controller reduction example is

included because of its tutorial value and since it nicely illustrates the importance of dc-

gain matching in controller order reduction. §5.6 summarizes the main conclusions of the

chapter.

5.2 Truncation and residualization

Let (A,B, C, D) be a minimal realization of an asymptotically stable, rational transfer

function G(s). The realization (A, B, C, D) is called balanced (as mentioned in §4.7), if

the solutions to the following Lyapunov equations

AP + PAT + BBT = 0 (5.2.1)

AT Q + QA + CT C = 0 (5.2.2)

are P = Q = diag{σ1, σ2, . . . , σn} 4
= Σ, and σ1 ≥ σ2 ≥ . . . ≥ σn > 0. Σ is the gramian

and σi the ordered Hankel singular values of the system. The notation AT stands for

transpose of the matrix A.

Let the balanced A,B,C and the corresponding Σ be partitioned compatibly as:

A =




A11 A12

A21 A22


 , B =




B1

B2


 , C =

[
C1 C2

]
, Σ =




Σ1 0

0 Σ2


 ,



Chapter 5. Model reduction with balanced realizations 67

where Σ1 = diag{σ1, σ2, . . . , σk}, Σ2 = diag{σk+1, σk+2, . . . , σn} and σk > σk+1. Then

the reduced order model given by (A11, B1, C1, D) is called a balanced truncation of the

full order system G(s), and the infinity-norm of the error between G(s) and the reduced

order system is bounded by twice the sum of the last n− k Hankel singular values (trace

of Σ2) [30, 24]. For the case of repeated Hankel singular values, Glover [30] shows that

each repeated Hankel singular value is to be counted only once in calculating the sum;

his bound in such a case is therefore better than that of Enns [24].

Let




x1

x2


 denote the state vector partitioned compatibly with the balanced (A,B,C,D)

above. To residualize the state vector x2, we put ẋ2 = 0 in the state equations and solve

for x2 in terms of x1 and the input u. Backsubstitution of x2 gives:

ẋ1 = (A11 − A12A
−1
22 A21)x1 + (B1 − A12A

−1
22 B2)u, (5.2.3)

y = (C1 − C2A
−1
22 A21)x1 + (D − C2A

−1
22 B2)u. (5.2.4)

Since (A,B, C, D) is a minimal and balanced realization of an asymptotically stable sys-

tem, A22 has negative eigenvalues only (Theorem 4.2 in [30]). This implies that A22 is

invertible. (5.2.3) and (5.2.4) are therefore, well-defined. Let us define:

Ar
4
= A11 − A12A

−1
22 A21, (5.2.5)

Br
4
= B1 − A12A

−1
22 B2, (5.2.6)

Cr
4
= C1 − C2A

−1
22 A21, (5.2.7)

Dr
4
= D − C2A

−1
22 B2. (5.2.8)

(Ar, Br, Cr, Dr) is called a balanced residualization of the system G(s). Liu & Anderson

[61] have shown that it enjoys the same error bound as balanced truncation. An alternate

proof is presented in Appendix 5B.

We shall now show that balanced residualization preserves the system dc-gain. The dc-

gain of the full order balanced system (A,B,C, D) partitioned as above is given by:

−CA−1B + D = − [ C1 C2 ]


 A11 A12

A21 A22



−1 

 B1

B2


 + D. (5.2.9)

Because 
 I 0

−A−1
22 A21 I





 I 0

A−1
22 A21 I


 = I,
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and 
 I A12A

−1
22

0 I





 I −A12A

−1
22

0 I


 = I,

(5.2.9) can be written as:

− [ C1 C2 ]


 I 0

−A−1
22 A21 I





 I 0

A−1
22 A21 I





 A11 A12

A21 A22



−1 

 I A12A
−1
22

0 I





 I −A12A

−1
22

0 I





 B1

B2


 + D

= − [ C1 − C2A
−1
22 A21 C2 ]





 I −A12A

−1
22

0 I





 A11 A12

A21 A22





 I 0

−A−1
22 A21 I






−1


 B1 − A12A

−1
22 B2

B2


 + D.

From (5.2.6) and (5.2.7), the above expression becomes:

− [ Cr C2 ]





 A11 − A12A

−1
22 A21 0

A21 A22





 I 0

−A−1
22 A21 I






−1 

 Br

B2


 + D

= − [ Cr C2 ]


 A11 − A12A

−1
22 A21 0

0 A22



−1 

 Br

B2


 + D

= − [ Cr C2 ]


 (A11 − A12A

−1
22 A21)

−1 0

0 A−1
22





 Br

B2


 + D

= − [ Cr C2 ]


 A−1

r 0

0 A−1
22





 Br

B2


 + D,

where we have used the definition of Ar as given in (5.2.5). Further manipulation of this

gives:

− [ CrA
−1
r C2A

−1
22 ]


 Br

B2


 + D = −CrA

−1
r Br + (D − C2A

−1
22 B2)

(5.2.8) =⇒ = −CrA
−1
r Br + Dr,

which is the dc-gain of the residualized system (Ar, Br, Cr, Dr). Thus we see that balanced

residualization preserves the steady-state gain of the system. This is exactly as one would

expect since we are discarding derivative terms which are zero anyway in the steady-state.
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5.3 Optimal approximations of stable transfer functions

Theorem 6.3 by Glover [30] gives a particular construction for optimal approximations

of stable transfer functions. Here we give a slightly less general statement of the same

theorem, specific to our requirements here.

Theorem 5.3.1 [30] Let (A,B,C,D) with A ∈ <n×n, B ∈ <n×m, C ∈ <m×n, D ∈ <m×m

(where <n×m denotes the space of n×m real matrices) be a balanced realization of a stable,

rational transfer function G(s) which satisfies

AP + PAT + BBT = 0 (5.3.1)

AT Q + QA + CT C = 0 (5.3.2)

for

P = Q = diag{Σ1, σIl} (5.3.3)

with Σ1 diagonal ( Σ1 > σI is implied as the realization is balanced), σ 6= 0 and δ(Σ1 −
σI) = 0, where δ(·) represents the number of eigenvalues on the imaginary axis. Partition

(A,B,C) conformally with P and define:

Â
4
= Γ−1(σ2AT

11 + Σ1A11Σ1 − σCT
1 UBT

1 ), (5.3.4)

B̂
4
= Γ−1(Σ1B1 + σCT

1 U), (5.3.5)

Ĉ
4
= C1Σ1 + σUBT

1 , (5.3.6)

D̂
4
= D − σU, (5.3.7)

where U is a unitary matrix satisfying

B2 = −CT
2 U, (5.3.8)

and

Γ
4
= Σ2

1 − σ2I. (5.3.9)

Also define the error system:

Ae
4
=




A 0

0 Â


 , Be

4
=




B

B̂


 , Ce

4
=

[
C −Ĉ

]
, De

4
= D − D̂.
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Then (Ae, Be, Ce, De) satisfy

AePe + PeA
T
e + BeB

T
e = 0 (5.3.10)

AT
e Qe + QeAe + CT

e Ce = 0 (5.3.11)

with

Pe =




Σ1 0 I

0 σI 0

I 0 Σ1Γ
−1




, (5.3.12)

Qe =




Σ1 0 −Γ

0 σI 0

−Γ 0 Σ1Γ




, (5.3.13)

PeQe = σ2I. (5.3.14)

On defining E(s)
4
= Ce(sI − Ae)

−1Be + De, we have:

E(s)ET (−s) = σ2I. (5.3.15)

An optimal Hankel-norm approximation of a stable transfer function G(s) is defined as one

that minimizes the Hankel-norm of the error between the full order and reduced systems.

One class of solutions to this problem has been shown by Glover [30] to be obtained as

follows. Let G have Hankel singular values σ1 ≥ σ2 ≥ . . . ≥ σk > σk+1 = σk+2 = . . . =

σk+l > σk+l+1 ≥ . . . ≥ σn > 0, and construct a balanced realization of G but with the

gramian reordered as Σ = diag{σ1, σ2, . . . , σk, σk+l+1, . . . , σn, σk+1, . . . , σk+l}. Denote the

balanced realization by (A,B,C) and the gramian by Σ =


 Σ1 0

0 σk+1Il


. Now partition

(A,B,C) conformally with Σ and define (Â, B̂, Ĉ, D̂) by equations (5.3.4)–(5.3.7), and

write:

Gh + F = Ĉ(sI − Â)−1B̂ + D̂, (5.3.16)

where Gh is a stable transfer function and F is an anti-stable transfer function (i.e., poles

in the right half-plane). Gh is an optimal Hankel-norm approximation to G of McMillan

degree k (the McMillan degrees of Gh and F depend on the σ chosen). If σk+1 is the
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smallest Hankel singular value then F = 0, otherwise (Â, B̂, Ĉ, D̂) has a non-zero anti-

stable part. In such a case Gh has to be separated from F . The Hankel-norm of the error

between G and Gh is equal to σk+1, i.e., the (k + 1) th Hankel singular value of G.

The Hankel-norm does not depend on the D matrix of the state-space model. The choice

of the D matrix of Gh is, therefore, arbitrary except when F = 0 as in that case it is just

equal to D̂. The L∞-norm however, does depend on D. A particular choice of D, say Do,

has been shown to give the following L∞-norm bound on the error [30]:

‖G−Gh −Do‖∞ ≤ σk+1 + δ, (5.3.17)

where

δ = σ1(F (−s)) + σ2(F (−s)) + . . .

≤ σk+2(G(s)) + . . . + σn(G(s)).

5.4 Error bound for balanced residualization

As already mentioned, the L∞-norm of the difference between a balanced full order system

G(s) of McMillan degree n and its reduced order approximation of degree k obtained via

balanced residualization is bounded by twice the sum of the last n − k Hankel singular

values of G. To be more precise and to take into consideration the case where one might

have repeated Hankel singular values, we present here the statement of Theorem 5B.3

(Appendix 5B).

Theorem 5B.3 Let G(s) be a stable, rational, p × m, transfer function with Hankel

singular values σ1 > σ2 > . . . > σN , where each σi has multiplicity ri and let G̃k(s) be

obtained by residualizing the balanced realization of G(s) to the first (r1 + r2 + . . . + rk)

states. Then

1. ‖G(s)− G̃k(s)‖∞ ≤ 2(σk+1 + σk+2 + . . . + σN)

2. ‖G(s)− G̃k(s)‖H ≤ 2(σk+1 + σk+2 + . . . + σN).

The proof is detailed in Appendix 5B.
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5.5 Some multivariable examples

In this section we demonstrate the balanced residualization procedure on different exam-

ples and make comparisons with balanced truncation and optimal Hankel-norm approxi-

mation methods. The first example is about reduction of the aero-engine plant model and

the second example considers reduction of a 2-DOF H∞ controller. As mentioned earlier,

the controller reduction example is included because of its tutorial value; only the engine

plant model is reduced in the context of this project.

5.5.1 Reduction of the aero-engine model

For the first example, we consider the reduction of a continuous time model of the aero-

engine. The model has 3 inputs, 3 outputs, and 18 states; the outputs being PS6PS1,

DPUP and NHPCSL. The model is reduced to 6 states via balanced residualization,

balanced truncation, and optimal Hankel-norm approximation, and the results compared

in both the frequency and time domains.

Figures 5.1, 5.2 and 5.3 show the singular values of the reduced and full order mod-

els plotted against frequency for the residualized, truncated and optimal Hankel-norm

approximated cases, respectively. The D matrix used for optimal Hankel-norm approx-

imation is such that the error bound given in (5.3.17) is met. It can be seen that the

residualized system matches perfectly at steady-state. The singular values of the three

error systems (defined as the difference between the full order and reduced models) are

shown in Figure 5.4. The L∞-norm of the error system is computed to be 0.1863 for

balanced residualization and occurs at infinite frequency; the corresponding error norms

for balanced truncation and optimal Hankel-norm approximation are 0.2931 and 0.1501

occurring at 181.9 rad/sec and zero respectively. The theoretical upper bounds for these

error norms are 0.6285 (twice the sum of the tail) for residualization and truncation, and

0.1724 (using (5.3.17)) for optimal Hankel-norm approximation respectively. It should

be noted that the plant under consideration is desired to have a closed-loop bandwidth

of around 10 rad/sec. The error close to this frequency, therefore, should be as small as

possible. Figure 5.4 shows that the error for balanced residualization is the smallest at

low and medium frequencies (i.e., close up to the bandwidth), but at high frequencies,
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Figure 5.1: Aero-engine: Balanced residualization.
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Figure 5.2: Aero-engine: Balanced truncation.
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Figure 5.3: Aero-engine: Optimal Hankel-norm approximation.
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the error is greater than for the other two reduced systems.

It is sometimes desirable to have the steady-state gain of the reduced plant model the

same as the full order model. This is true for non-square plants, in which case accu-

rate knowledge of the plant’s dc-gain is essential for perfect tracking (Chapter 7). The

truncated and optimal Hankel-norm approximated systems do not preserve the dc-gain

and have to be scaled, i.e., the reduced model Greduced is replaced by GreducedS, where

S = Greduced(0)−1G(0), G being the full order model. The scaled systems no longer enjoy

the bounds guaranteed by these methods and ‖ G−GreducedS ‖∞ can be quite large. The

singular values of the scaled reduced order systems are shown in Figures 5.5 and 5.6 for the

two cases. The singular values of the error systems for balanced residualization, and for

the other two scaled systems are shown in Figure 5.7. Note that the residualized system

does not need scaling, and the error system for this case has been shown again only for

ease of comparison. The L∞-norms of these errors are computed and are found to degrade

to 4.542 (at 12.14 rad/sec) for the scaled truncated system and 5.703 (at 11.65 rad/sec)

for the scaled optimal Hankel-norm approximated system. The truncated and Hankel-

norm approximated systems are clearly worse after scaling since the errors in the critical

frequency range around cross-over become large despite the improvement at steady-state.

Hence residualization is to be preferred over these other techniques whenever good low

frequency matching is desired.

Impulse and step responses from the second input to all the outputs for the three reduced

systems (with the truncated and optimal Hankel-norm approximated systems scaled) are

shown in Figures 5.8 and 5.9 respectively. The responses for the other inputs were found

to be similar. The residualized model’s response is seen to be closer to the full order

model’s response.

We have observed that balanced residualization performs closer to the full order system

(i.e., the error is smaller) at low and medium frequencies, whereas the other two methods

perform better at high frequencies. It should be noted that plant models are inherently

inaccurate at high frequencies, and it is the low to medium frequency behaviour which is

more important. Thus, residualization may be a preferable choice over the other methods

in the context of plant model reduction.
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Figure 5.5: Aero-engine: Truncation (scaled).
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Figure 5.6: Aero-engine: Optimal Hankel-norm approximation (scaled).
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Figure 5.7: Aero-engine: Singular values of the error systems (scaled).
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Figure 5.9: Aero-engine: Step response (2nd input).

Finally, scaling can pose problems for non-square plants. Consider, for example, a plant

with more outputs than inputs. Suppose that it is reduced by some method, whereby

the dc-gain has been lost, and it is required to scale the reduced system to restore the

steady-state value. Normally scaling is done by post-multiplying (pre-compensating) the

plant with the inverse of its dc-gain and then with the desired dc-gain matrix. For the

plant under discussion, however, such an inverse (i.e., the right inverse) does not exist, and

the scaling procedure is not clear. It should be noted that accurate dc-gain information

is needed for such plants in order to achieve perfect steady-state tracking; it is therefore

desirable that the reduced models do not lose the system dc-gain. In such cases, the

residualization method for reduction is preferable.

5.5.2 Reduction of an aero-engine controller

We now consider reduction of a 2-DOF controller designed via H∞-optimization. The

plant for which the controller is designed is the full order gas turbine engine model de-

scribed in Example 5.5.1 above.

A robust controller was designed using the procedure outlined by Hoyle et al. [45]. The
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Figure 5.10: 2-DOF design configuration.

procedure is based on robust stabilization in the normalized coprime factor framework

with model matching, using a 2-DOF control configuration. The discrete time version

of this procedure is discussed in the next chapter, and in Chapter 7 this is used to

design robust controllers for the aero-engine. We therefore leave the details of the design

procedure for subsequent chapters and concentrate here on controller order reduction.

The framework for posing the H∞-optimization problem is illustrated in Figure 5.10.

(M̃, Ñ) are the normalized coprime factors of the shaped plant model Gs, i.e., Gs =

M̃−1Ñ . Mo is a refernce model chosen to have ideal closed-loop time response character-

istics. The controller K is partitioned as K = [ K1 K2 ], where K1 is the pre-filter and

K2 the feedback controller. The problem is formulated as a standard H∞-optimization

problem such that the L∞-norm of the transfer function relating u, y, e to r, φ, namely




ρ(I −K2Gs)
−1K1 K2(I −GsK2)

−1M̃−1

ρ(I −GsK2)
−1GsK1 (I −GsK2)

−1M̃−1

ρ2((I −GsK2)
−1GsK1 −Mo) ρ(I −GsK2)

−1M̃−1




(5.5.1)

is minimized. The (1,2) partition of (5.5.1) is associated with robust stability optimization,

while the (2,1) partition is associated with model matching. The pre-filter K1 ensures
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Figure 5.11: Mo and Ryβ for [K1 K2].

that

‖ Ryβ −Mo ‖∞≤ γρ−2, (5.5.2)

where Ryβ = (I − GsK2)
−1GsK1 is the closed-loop transfer function mapping β → y

and γ is the L∞-norm achieved for the transfer function given in (5.5.1). For further

details refer to [45] or [60]. A 2-DOF controller was designed using this procedure. The

controller has 6 inputs (because of the 2-DOF structure), 3 outputs, and 27 states. It has

not been scaled (i.e., the dc-gain of Ryβ has not been matched to that of Mo by scaling

the pre-filter). It is to be reduced to 7 states in each of the cases that follow.

Let us first compare the magnitude of Ryβ with that of the specified model Mo. This

is shown in Figure 5.11. The L∞-norm of the difference is computed to be 0.9475 and

occurs at zero frequency. Note that we have ρ = 1 and the γ achieved is 2.8603, so that

(5.5.2) is satisfied. The pre-filter is now scaled so that Ryβ matches Mo exactly at steady-

state, i.e., we replace K1 by K1S where S = Ryβ(0)−1Mo(0). It is argued by Hoyle et

al. [45] that this scaling produces better model matching at all frequencies, because the

H∞-optimization process has already given Ryβ the same magnitude frequency response

shape as the model Mo. The scaled transfer function is shown in Figure 5.12, and the
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Figure 5.12: Mo and Ryβ for [K1S K2].

L∞-norm of the difference (Ryβ −Mo) computed to be 1.126 (at 17.17 rad/sec). It can

be seen that this scaling has not degraded the L∞-norm of the error significantly as was

claimed in [45]. To ensure perfect steady-state tracking the controller is always scaled in

this way. We are now in a position to discuss ways of reducing the controller. We shall

look at the following two approaches:

1. The scaled controller [ K1S K2 ] is reduced. A balanced residualization of this

controller preserves the controller’s steady-state gain and would not need to be

scaled again. Reductions via truncation and optimal Hankel-norm approximation

techniques, however, lose the dc-gain. The pre-filters of these reduced controllers

would therefore need to be scaled.

2. The full order controller [ K1 K2 ] is directly reduced without first scaling the pre-

filter. In which case, scaling is done after reduction.

We now consider the first approach. A balanced residualization of [ K1S K2 ] is obtained.

The theoretical upper bound on the L∞-norm of the error (twice the sum of the tail) is
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0.5416, i.e.,

‖ K1S − (K1S)reduced K2 −K2reduced
‖∞≤ 0.5416. (5.5.3)

The actual error norm is computed to be 0.2574. Ryβ for this residualization is computed

and its magnitude plotted in Figure 5.13. The L∞-norm of the difference (Ryβ −Mo) is

computed to be 1.124 (at 15.52 rad/sec). This value is very close to that obtained with the

full order controller [ K1S K2 ], and so the closed-loop response of the system with this

reduced controller is expected to be very close to that with the full order controller. Next

[ K1S K2 ] is reduced via balanced truncation. The L∞-norm bound given in (5.5.3)

still holds. The dc-gain however, falls below the adjusted level, and the pre-filter of the

truncated controller is thus scaled. The bound given in (5.5.3) can no longer be guaranteed

for the pre-filter (it is infact found to degrade to 1.56), but it holds for K2 − K2reduced
.

Singular values of Mo and Ryβ for the scaled truncated controller are shown in Figure

5.14. The L∞-norm of the difference is computed to be 1.476 and this maximum occurs

at 14 rad/sec. Finally [ K1S K2 ] is reduced by optimal Hankel-norm approximation.

The following error bound is theoretically guaranteed:

‖ K1S − (K1S)reduced K2 −K2reduced
‖∞≤ 0.1326. (5.5.4)

Again the reduced pre-filter needs to be scaled and the above bound can no longer be

guaranteed; it actually degrades to 0.9806. Magnitude plots of Ryβ and Mo are shown in

Figure 5.15 and the L∞-norm of the difference is computed to be 1.316, and occurs at

15.43 rad/sec.

It has been observed that both balanced truncation and optimal Hankel-norm approxima-

tion cause a lowering of the system dc-gain. In the process of adjustment of these dc-gains,

the L∞-error bounds are destroyed. In the case of the 2-DOF controller, where the pre-

filter has been optimized to give closed-loop responses within a tolerance of a chosen ideal

model, large deviations may be incurred. Closed-loop responses for the three reduced

controllers discussed above are shown in Figures 5.16, 5.17 and 5.18. It is seen that the

residualized controller performs much closer to the full order controller and exhibits better

performance in terms of interactions and overshoots. It may not be possible to use the

other two reduced controllers if the deviation from the specified model becomes larger

than the allowable tolerance, in which case the number of states by which the controller
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Figure 5.13: Mo and Ryβ for [K1S K2] residualized.
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Figure 5.14: Mo and Ryβ for [K1S K2] truncated and scaled.
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Figure 5.15: Mo and Ryβ for [K1S K2] optimal Hankel-norm approximated and scaled.
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Figure 5.16: Closed-loop: [K1S K2] residualized.
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Figure 5.17: Closed-loop: [K1S K2] truncated and scaled.
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Figure 5.18: Closed-loop: [K1S K2] optimal Hankel-norm approximated and scaled.
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is reduced would probably have to be lessened. It should also be noted from (5.5.3) and

(5.5.4) that the guaranteed bound for K2 − K2reduced
is lowest for optimal Hankel-norm

approximation.

Let us now consider the second approach. The controller [ K1 K2 ] obtained from the

H∞-optimization algorithm is reduced directly. The theoretical upper bound on the error

for balanced residualization and truncation is:

‖ K1 −K1reduced
K2 −K2reduced

‖∞≤ 0.1862. (5.5.5)

The residualized controller holds to the dc-gain of [ K1 K2 ]. It is, therefore, scaled

with the same S as was required for scaling the pre-filter of the full order controller.

Singular values of Mo and Ryβ for this reduced controller are shown in Figure 5.19, and

the L∞-norm of the difference computed to be 1.24 (at 15.15 rad/sec). [ K1 K2 ] is next

truncated. The dc-gain of the truncated controller is lower than that of [ K1 K2 ], and

it turns out that this has the effect of reducing the dc-gain of Ryβ. Note that the dc-gain

of Ryβ is already less than that of Mo (Figure 5.11). Thus in scaling the pre-filter of the

truncated controller, the dc-gain has to be pulled up from a lower level as compared to the

previous (residualized) case. This causes greater degradation at other frequencies. The

L∞-norm of (Ryβ −Mo) in this case is computed to be 3.506 and occurs at 7.165 rad/sec

(see Figure 5.20). Finally [ K1 K2 ] is reduced by optimal Hankel-norm approximation.

The theoretical bound given in (5.3.17) is computed and found to be 0.0448, i.e., we have:

‖ K1 −K1reduced
K2 −K2reduced

‖∞≤ 0.0448. (5.5.6)

The dc-gain falls once more in the reduction process, and again a larger scaling is required.

Singular value plots for Ryβ and Mo are shown in Figure 5.21. ‖ Ryβ−Mo ‖∞ is computed

to be 26.31 and occurs at 7.45 rad/sec.

The closed-loop step response simulations are shown in Figures 5.22, 5.23 and 5.24. It

can be seen that the truncated and Hankel-norm approximated systems have deteriorated

to an unacceptable level. Only the residualized system maintains an acceptable level of

performance.

We have seen that the first approach yields better model matching, though at the ex-

pense of a larger L∞-bound on K2−K2reduced
(compare (5.5.3) and (5.5.5), or (5.5.4) and
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Figure 5.19: Mo and Ryβ for [K1 K2] residualized and scaled.
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Figure 5.20: Mo and Ryβ for [K1 K2] truncated and scaled.
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Figure 5.21: Mo and Ryβ for [K1 K2] optimal Hankel-norm approximated and scaled.
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Figure 5.22: Closed-loop: [K1 K2] residualized and scaled.
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Figure 5.23: Closed-loop: [K1 K2] truncated and scaled.
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Figure 5.24: Closed-loop: [K1 K2] optimal Hankel-norm approximated and scaled.
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(5.5.6)). We have also seen how the scaling of the pre-filter in the first approach gives

poorer performance for the truncated and optimal Hankel-norm approximated controllers,

relative to the residualized one.

In the second case, all the reduced controllers need to be scaled, but a “larger” scaling

is required for the truncated and optimal Hankel-norm approximated controllers. This

is an observation only, and there exists no formal proof for it. It is however intuitive in

the sense that controllers reduced by these two methods yield poorer model matching at

dc as compared to that achieved by the full order controller. A larger scaling is required

for them therefore, than that required by the full order or residualized controllers. This

larger scaling gives poorer model matching at other frequencies, and only the residualized

controller’s performance is deemed acceptable.

5.6 Conclusions

Internally balanced realizations have been investigated in the context of model reduction.

Residualization of such realizations, unlike truncation and optimal Hankel-norm approx-

imation, preserves the dc-gain of the system. The method, like truncation, is simple and

computationally inexpensive. It was observed that truncation and optimal Hankel-norm

approximation perform better at high frequencies, whereas residualization performs better

at low and medium frequencies, i.e., up to the critical frequencies. Thus for plant model

reduction, where models are not accurate at high frequencies to start with, residualization

would seem to be a better option. Further, if the dc-gains are to be kept unchanged, trun-

cated and optimal Hankel-norm approximated systems require scaling, which may give

large L∞-norms for the errors. In such a case, too, residualization would be a preferred

choice.

Frequency weighted model reduction has been the subject of numerous papers over the

past few years, see for example, [57, 1, 24]. The idea is to emphasize frequency ranges

where better matching is required. This however, has been observed to have the effect of

producing larger errors (greater mismatching) at other frequencies [1, 24]. In order to get

good steady-state matching, a relatively large weight would have to be used at dc, which

would cause poorer matching elsewhere. The choice of weights is not straightforward,
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and an error bound is available only for weighted Hankel-norm approximation. The

computation of the bound is also not as easy as in the unweighted case [2]. Balanced

residualization can in this context, be seen as a reduction scheme with implicit low and

medium frequency weighting built into it.

For controller reduction, we have shown in a 2-DOF example, the importance of scaling

and dc-gain matching. Two approaches were considered. In the first approach, the pre-

filter of the full order controller was scaled beforehand. In this case, the pre-filter of

the residualized system does not need to be scaled, and enjoys the guaranteed L∞-error

bounds. The pre-filters of the other reduced systems have to be scaled, and can have

large L∞-errors (with respect to the scaled full order pre-filter). They were thus, seen to

give poorer performance.

In the second approach, the unscaled full order controller [ K1 K2 ] was first reduced,

and then scaled. The residualized system needed the same scaling matrix as the full order

controller. With the other reduced controllers, the model matching at dc deteriorated

compared to the full order controller, and hence a larger scaling was needed. This caused

very poor matching at other frequencies. The residualized controller thus performed better

than the other two. As for the feedback part of the controller (K2), the L∞-error bound

given by optimal Hankel-norm approximation was the best.

It is remarked that in general, dc-gain matching may not be crucial. The matching should,

however be good near the desired closed-loop bandwidth. Balanced residualization has

been seen to perform very close to the full order system in this frequency range. Good

approximation at high frequencies may also sometimes be desired. In such a case, using

truncation or optimal Hankel-norm approximation with appropriate frequency weightings

may yield better results.
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APPENDICES

5A All-pass transfer functions

The following theorem is taken from [30]:

Theorem 5A.1 [30] Given a realization (A,B, C) (not necessarily stable) with A ∈
<n×n, B ∈ <n×m, C ∈ <m×n, then

1. If (A,B, C) is completely controllable and completely observable, the following two

statements are equivalent:

(a) ∃ D such that G(s)GT (−s) = σ2I ∀s, where G(s)
4
= C(sI − A)−1B + D.

(b) ∃ P, Q ∈ <n×n such that

i. P = P T , Q = QT ,

ii. AP + PAT + BBT = 0,

iii. AT Q + QA + CT C = 0,

iv. PQ = σ2I.

2. Given that part 1(b) is satisfied, then ∃ D satisfying

DT D = σ2I,

DT C + BT Q = 0,

and

DBT + CP = 0,

and any such D will satisfy part 1(a) (note, observability and controllability are not

assumed).

5B Error bound for balanced residualization

We shall first show that residualization of a balanced realization is balanced and preserves

the Hankel singular values. Then we shall use this and several other results to show that



Chapter 5. Model reduction with balanced realizations 93

the difference between a residualized balanced realization of degree n− l and an optimal

Hankel-norm approximation of the same degree is all-pass. This can then be used to

derive an error bound for balanced residualization.

Lemma 5B.1 Let (A,B,C) be a balanced realization of a stable, rational transfer func-

tion G(s) with gramian Σ, partitioned as in §5.2, and let (Ar, Br, Cr, Dr) be defined by

equations (5.2.5)–(5.2.8). Then Σ1 satisfies the following Lyapunov equations:

ArΣ1 + Σ1A
T
r + BrB

T
r = 0, (5B.1)

AT
r Σ1 + Σ1Ar + CT

r Cr = 0. (5B.2)

Proof

Since (A,B, C) is balanced, (5.2.1) and (5.2.2) hold. Rewriting (5.2.1) we have:




A11 A12

A21 A22







Σ1 0

0 Σ2


 +




Σ1 0

0 Σ2







AT
11 AT

21

AT
12 AT

22


 +




B1

B2




[
BT

1 BT
2

]
= 0 (5B.3)

Multiplying both sides of the above equation on the left by


 I −A12A

−1
22

0 I


 and on the

right by


 I 0

−A−T
22 AT

12 I


 and picking out the (1,1) block, we have:

(A11−A12A
−1
22 A21)Σ1 +Σ1(A11−A12A

−1
22 A21)

T +(B1−A12A
−1
22 B2)(B1−A12A

−1
22 B2)

T = 0,

and thus, equation (5B.1) is satisfied.

To prove (5B.2), we left-multiply both sides of (5.2.2) by


 I −AT

21A
−T
22

0 I


 and right-

multiply by


 I 0

−A−1
22 A21 I


, and pick the (1,1) block again to give:

(A11−A12A
−1
22 A21)

T Σ1 +Σ1(A11−A12A
−1
22 A21)+ (C1−C2A

−1
22 A21)

T (C1−C2A
−1
22 A21) = 0,

and the proof is complete.

Thus, it is seen that the residualized system, like the truncated system, is balanced (with

a positive-definite gramian Σ1), and hence stable.



Chapter 5. Model reduction with balanced realizations 94

Lemma 5B.2 Let (A,B, C) be a balanced realization of a stable, rational, m×m transfer

function G(s), and let

A =




A11 A12

A21 A22


 , B =




B1

B2


 , C =

[
C1 C2

]
, Σ =




Σ1 0

0 σI


 ,

with δ(Σ1−σI) = 0. Let (Ar, Br, Cr, Dr) and (Â, B̂, Ĉ, D̂) be defined by equations (5.2.5)–

(5.2.8) and (5.3.4)–(5.3.7) respectively, and define:

Gr(s)
4
= Cr(sI − Ar)

−1Br + Dr,

Gh(s)
4
= Ĉ(sI − Â)−1B̂ + D̂,

then

1. (Gr(s)−Gh(s))/σ is all-pass.

2. ‖G(s)−Gr(s)‖∞ ≤ 2σ.

3. ‖G(s)−Gr(s)‖H ≤ 2σ (‖ · ‖H denotes the Hankel-norm).

Proof

Gh defined above is an optimal Hankel-norm approximation to G and is identical to that

defined in (5.3.16). Note however that here F = 0 as σ is the smallest Hankel singular

value (by definition of balanced realizations).

1. In order to prove that (Gr(s)−Gh(s))/σ is all-pass, we note that Gr(s)−Gh(s) =

C̃(sI − Ã)−1B̃ + D̃ where

Ã =


 Ar 0

0 Â


 , B̃ =


 Br

B̂


 , C̃ = [ Cr −Ĉ ] , D̃ = Dr − D̂.

We shall prove the all-pass property by first showing that the solutions to the Lya-

punov equations

ÃP̃ + P̃ ÃT + B̃B̃T = 0 (5B.4)

ÃT Q̃ + Q̃Ã + C̃T C̃ = 0 (5B.5)
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are

P̃ =


 Σ1 I

I Σ1Γ
−1


 , Q̃ =


 Σ1 −Γ

−Γ Σ1Γ


 , (5B.6)

(where Γ is defined as in (5.3.9)), and then using Theorem 5A.1 to show that D̃ is

an appropriate choice. To prove (5B.4), we rewrite it as follows:


 Ar 0

0 Â





 Σ1 I

I Σ1Γ
−1


 +


 Σ1 I

I Σ1Γ
−1





 AT

r 0

0 ÂT




+


 Br

B̂


 [ BT

r B̂T ] (5B.7)

=


 ArΣ1 Ar

Â ÂΣ1Γ
−1


 +


 Σ1A

T
r ÂT

AT
r Σ1Γ

−1ÂT


 +


 BrB

T
r BrB̂

T

B̂BT
r B̂B̂T


 (5B.8)

The (1,1) block of the above expression has been proved to be equal to zero in

Lemma 5B.1, the (1,2) and (2,1) blocks are proved to be zero in Appendix 5C.1.

The (2,2) block is zero from equation (5C.1), block (3,3).

To prove (5B.5), we rewrite it as:


 AT

r 0

0 ÂT





 Σ1 −Γ

−Γ Σ1Γ


 +


 Σ1 −Γ

−Γ Σ1Γ





 Ar 0

0 Â




+


 CT

r

−ĈT


 [ Cr −Ĉ ] (5B.9)

=


 AT

r Σ1 −AT
r Γ

−ÂT Γ ÂT Σ1Γ


 +


 Σ1Ar −ΓÂ

−ΓAr Σ1ΓÂ


 +


 CT

r Cr −CT
r Ĉ

−ĈT Cr ĈT Ĉ


 (5B.10)

The (1,1) block of the above expression is proved to equal zero in Lemma 5B.1, and

the (1,2) and (2,1) blocks are proved to be zero in Appendix 5C.2. The (2,2) block

is readily seen to be equal to zero from equation (5C.2), block (3,3).

Now it can be seen that P̃ and Q̃ also satisfy P̃ Q̃ = σ2I and by Theorem 5A.1,

there exists a D̃ such that (Gr(s) − Gh(s))/σ is all-pass. We can now show that

D̃ = Dr − D̂ is an appropriate choice from Theorem 5A.1, part 2, by showing that

D̃ satisfies the equations:

D̃T D̃ = σ2I, (5B.11)

D̃T C̃ + B̃T Q̃ = 0, (5B.12)

D̃B̃T + C̃P̃ = 0. (5B.13)
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The proofs of these equations can be found in Appendices 5C.3, 5C.4 and 5C.5

respectively.

2. (G(s) − Gr(s))/σ = ((G(s) − Gh(s))/σ + (Gh(s) − Gr(s))/σ, but the first term on

the right-hand side is all-pass by Theorem 5.3.1 equation (5.3.15), and the second

term is all-pass by part 1 above. Hence

‖G(s)−Gr(s)‖∞ ≤ 2σ.

3. Using the fact that all-pass functions have unity Hankel-norms gives:

‖G(s)−Gr(s)‖H ≤ ‖G(s)−Gh(s)‖H + ‖Gh(s)−Gr(s)‖H

= 2σ.

Given the result of Lemma 5B.2, the bound on the error in a residualized balanced real-

ization is easily proved as follows.

Theorem 5B.3 Let G(s) be a stable, rational, p × m, transfer function with Hankel

singular values σ1 > σ2 > . . . > σN , where each σi has multiplicity ri and let G̃k(s) be

obtained by residualizing the balanced realization of G(s) to the first (r1 + r2 + . . . + rk)

states. Then

1. ‖G(s)− G̃k(s)‖∞ ≤ 2(σk+1 + σk+2 + . . . + σN).

2. ‖G(s)− G̃k(s)‖H ≤ 2(σk+1 + σk+2 + . . . + σN).

Proof

If p 6= m then augmenting B or C by zero columns or rows, respectively, will still give

a balanced realization and the same argument is valid. Hence we assume p = m. We

have already seen in Lemma 5B.1 that residualizations of balanced realizations are also

balanced, satisfying the smaller (residualized) Lyapunov equations, therefore, the Hankel

singular values of G̃i(s) will be σ1, σ2, . . . , σi with multiplicities r1, r2, . . . , ri, respectively.

Also G̃i(s) can be obtained by residualizing the balanced realization of G̃i+1(s) and hence
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by Lemma 5B.2, ‖G̃i+1(s)− G̃i(s)‖ ≤ 2σi+1 for both L∞- and Hankel-norms. Therefore,

with the simplifying notation G̃N(s)
4
= G(s), we have:

‖G(s)− G̃k(s)‖ =

∥∥∥∥∥∥
∑

k≤i≤N−1

(G̃i+1(s)− G̃i(s))

∥∥∥∥∥∥
≤ 2(σk+1 + σk+2 + . . . + σN).

for both norms, and the proof is complete.

It is therefore seen that the L∞-norm of the error in residualized balanced realizations

is bounded by twice the sum of the Hankel singular values of the states that have been

residualized. This is identical to the bound on balanced truncation.

5C Manipulation of equations and some useful results

We will first give detailed expressions for equations (5.3.10) and (5.3.11). Substituting

Ae, Be and Pe in (5.3.10), we get:




A11Σ1 σA12 A11

A21Σ1 σA22 A21

Â 0 ÂΣ1Γ
−1


 +




Σ1A
T
11 Σ1A

T
21 ÂT

σAT
12 σAT

22 0

AT
11 AT

21 Σ1Γ
−1ÂT




+




B1B
T
1 B1B

T
2 B1B̂

T

B2B
T
1 B2B

T
2 B2B̂

T

B̂BT
1 B̂BT

2 B̂B̂T


 = 0. (5C.1)

Substituting Ae, Ce and Qe in (5.3.11), we get:




AT
11Σ1 σAT

21 −AT
11Γ

AT
12Σ1 σAT

22 −AT
12Γ

−ÂT Γ 0 ÂT Σ1Γ


 +




Σ1A11 Σ1A12 −ΓÂ

σA21 σA22 0

−ΓA11 −ΓA12 Σ1ΓÂ




+




CT
1 C1 CT

1 C2 −CT
1 Ĉ

CT
2 C1 CT

2 C2 −CT
2 Ĉ

−ĈT C1 −ĈT C2 ĈT Ĉ


 = 0. (5C.2)

5C.1 Expression (5B.8): (1,2)/(2,1) blocks

Using equation (5.2.6), we can write:

BrB̂
T = (B1 − A12A

−1
22 B2)B̂

T
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= B1B̂
T − A12A

−1
22 B2B̂

T

(5C.1) block(1, 3) =⇒ = −A11 − ÂT − A12A
−1
22 B2B̂

T

(5C.1) block(2, 3) =⇒ = −A11 − ÂT + A12A
−1
22 A21

= −Ar − ÂT . (5C.3)

Therefore, we have:

Ar + ÂT + BrB̂
T = 0.

5C.2 Expression (5B.10): (1,2)/(2,1) blocks

Using equation (5.2.7), we can write:

CT
r Ĉ = (CT

1 − AT
21A

−T
22 CT

2 )Ĉ

= CT
1 Ĉ − AT

21A
−T
22 CT

2 Ĉ

(5C.2) block(1, 3) =⇒ = −AT
11Γ− ΓÂ− AT

21A
−T
22 CT

2 Ĉ

(5C.2) block(2, 3) =⇒ = −AT
11Γ− ΓÂ + AT

21A
−T
22 AT

12Γ

= −(AT
11 − AT

21A
−T
22 AT

12)Γ− ΓÂ

= −AT
r Γ− ΓÂ. (5C.4)

Thus we have:

AT
r Γ + ΓÂ + CT

r Ĉ = 0.

5C.3 Proof of equation (5B.11)

Note that the (2,2) blocks of (5.3.1) and (5.3.2) give:

σA22 + σAT
22 + B2B

T
2 = 0, (5C.5)

σAT
22 + σA22 + CT

2 C2 = 0. (5C.6)

Using (5.2.8) and (5.3.7), we can write:

D̃T D̃ = (σUT −BT
2 A−T

22 CT
2 )(σU − C2A

−1
22 B2)

= −σUT C2A
−1
22 B2 + σ2UT U + BT

2 A−T
22 CT

2 C2A
−1
22 B2 − σBT

2 A−T
22 CT

2 U

(5.3.8) & (5C.6) ⇒ = σBT
2 A−1

22 B2 + σ2I + σBT
2 A−T

22 (−AT
22 − A22)A

−1
22 B2 + σBT

2 A−T
22 B2

= σ2I.
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5C.4 Proof of equation (5B.12)

The (2,1) block of equation (5.3.2) gives:

AT
12Σ1 + σA21 + CT

2 C1 = 0. (5C.7)

Rewriting (5B.12), we have:

(Dr − D̂)T [ Cr −Ĉ ] + [ BT
r B̂T ]


 Σ1 −Γ

−Γ Σ1Γ


 = 0. (5C.8)

Let us first prove the (1,1) block of the above equation. Substituting the values of Dr, Cr

and Br, we get:

(Dr − D̂)T Cr + BT
r Σ1 − B̂T Γ

= (D − D̂)T C1 − (D − D̂)T C2A
−1
22 A21 − (C2A

−1
22 B2)

T C1 + (C2A
−1
22 B2)

T C2A
−1
22 A21 +

BT
1 Σ1 − (A12A

−1
22 B2)

T Σ1 − B̂T Γ.

It can easily be verified that (D− D̂)T C1 + BT
1 Σ1 − B̂T Γ = 0. Using this and (5.3.7), we

can write the above as:

−σUT C2A
−1
22 A21 − (C2A

−1
22 B2)

T C1 + BT
2 A−T

22 CT
2 C2A

−1
22 A21

−(A12A
−1
22 B2)

T Σ1

(5.3.8) & (5C.6) =⇒ = σBT
2 A−1

22 A21 − (C2A
−1
22 B2)

T C1 − (A12A
−1
22 B2)

T Σ1

−σBT
2 A−T

22 (AT
22 + A22)A

−1
22 A21

= −BT
2 A−T

22 CT
2 C1 − (A12A

−1
22 B2)

T Σ1 − σBT
2 A−T

22 A21

(5C.7) =⇒ = BT
2 A−T

22 (AT
12Σ1 + σA21)− (A12A

−1
22 B2)

T Σ1 − σBT
2 A−T

22 A21

= 0.

We now prove the (1,2) block of (5C.8). Using the definitions of Br and Dr, we have:

−(Dr − D̂)T Ĉ −BT
r Γ + B̂T Σ1Γ

= −(D − D̂)T Ĉ + (C2A
−1
22 B2)

T Ĉ −BT
1 Γ + (A12A

−1
22 B2)

T Γ + B̂T Σ1Γ.

It can readily be verified that −(D − D̂)T Ĉ − BT
1 Γ + B̂T Σ1Γ = 0. Thus the above

expression becomes:

BT
2 A−T

22 CT
2 Ĉ + (A12A

−1
22 B2)

T Γ
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(5C.2)block(2, 3) =⇒ = −BT
2 A−T

22 AT
12Γ + BT

2 A−T
22 AT

12Γ

= 0.

5C.5 Proof of equation (5B.13)

Left-multiplying (5B.12) by D̃ and right-multiplying by P̃ yields

D̃D̃T C̃P̃ + D̃B̃T Q̃P̃ = 0. (5C.9)

It can be verified that Q̃P̃ = σ2I and, since D̃ is square, (5B.11) implies D̃D̃T = σ2I.

Now (5C.9) becomes:

D̃B̃T + C̃P̃ = 0,

and (5B.13) is proved.



Chapter 6

Robust two degrees-of-freedom discrete time

controller synthesis

6.1 Introduction

Over the past few years, there has been considerable progress towards the design of

robust controllers for multi-input multi-output systems. Design methods, such as H∞-

optimization and µ-synthesis, have been developed and translated into commercial soft-

ware packages. These modern techniques are powerful in that they are inherently multi-

variable and guarantee a degree of robustness against a specified uncertainty structure.

They are thus best suited to address the control problems associated with ever more

complex multivariable systems, such as high performance aero-engines.

However, there has been a very limited acceptance of these methods by the industrial

sector. High state dimension of the resulting controllers together with the absence of

any readily recognizable controller structure have both contributed to this cause. Control

solutions provided by these methods are generally considered by practitioners to be too

complex with regards to implementation. This problem of complexity becomes even more

pronounced when dealing with multi-mode problems where a number of controllers have

to be run in parallel. This could make the structure of the overall controller very obscure

and the computational load associated with it can easily get out of hand. If however, all

these controllers have a well-defined basic structure, considerable simplifications in the

overall switched controller can be made.

101
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The ability to synthesize controllers with a simple and well-defined structure is therefore,

of great engineering importance and motivates the work described in this chapter. Since

the control law is finally to be implemented in discrete time, the results presented here

are developed in a discrete time framework.

This chapter is organized as follows. §6.2 contains the necessary background to robust

stabilization in the normalized coprime factor framework. In §6.3 the idea of loop-

shaping in the context of H∞-optimization is motivated. §6.4 describes the two degrees-

of-freedom controller configuration that we use and formulates the problem as a standard

H∞-optimization problem. Results on H∞ full information control and the disturbance

feedforward problem are presented in §6.6 and §6.7 respectively. In §6.8 we show that the

discrete central two degrees-of-freedom H∞ loop-shaping controller has an observer-based

structure. A similar development in the continuous domain is presented in [105]. §6.9

outlines the design procedure and §6.10 summarizes the main points of the chapter.

6.2 Robust stabilization in the normalized coprime factor frame-

work

In the sequel, we will denote by RH∞, the space of all rational functions which are analytic

and bounded for all |z| > 1. The notation

G(z) = C(zI − A)−1B + D
s
=




A B

C D




will be used to denote the state-space representation of a transfer function.

We will concentrate on the H∞ loop-shaping design procedure introduced by McFarlane

& Glover [64] and later extended to the two degrees-of-freedom case by Hoyle at al.

[45]. The procedure is intuitive in that it is based on the multivariable generalization of

classical loop-shaping ideas. The open-loop plant, once given the desired loop-shape, is

robustly stabilized against coprime factor uncertainty. The resulting controller has been

shown to enjoy some favourable properties, such as no pole-zero cancellation occurs in

the closed-loop system (except for a certain special class of plants) [101]. In addition, the

controllers thus designed have been successful in various applications; examples are those
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described in [103, 104], [69] and [46, 111]. Moreover, the two degrees-of-freedom structure

allows performance specifications to be explicitly introduced into the H∞-optimization

framework.

Representing uncertainty in the plant model in terms of perturbations on its normalized

coprime factors has advantages over other representations, as discussed in Chapter 2. We

now give a state-space construction for the normalized left coprime factorization [107].

Given G(z) = C(zI − A)−1B + D, let R1
4
= I + DT D, R2

4
= I + DDT , and let P = P T

be the non-negative definite stabilizing solution to the algebraic Riccati equation:

BR−1
1 BT − P + ΦPΦT − ΦPCT

(
R2 + CPCT

)−1
CPΦT = 0, (6.2.1)

then

[ Ñ M̃ ]
s
=




A + HC B + HD H

Z2C Z2D Z2


 (6.2.2)

is a normalized left coprime factorization of G, where Φ = A−BR−1
1 DT C, H = −(APCT +

BDT )(R2 + CPCT )−1, and Z2 satisfies

ZT
2 Z2 = (R2 + CPCT )−1.

If G is a plant transfer function, then the perturbations or uncertainties in the plant are

represented as perturbations on the normalized coprime factors of the plant (Chapter 2).

The perturbed plant G∆ is then given by

G∆ = (M̃ + ∆M̃)−1(Ñ + ∆Ñ),

where ∆M̃ , ∆Ñ are stable unknown transfer functions representing uncertainty in the plant

model G = M̃−1Ñ ; see Figure 2.2. We saw in Chapter 2 that robust stability to coprime

factor perturbations is maximized by a controller K which stabilizes the nominal plant

G, and minimizes

γ =

∥∥∥∥∥∥


 K

I


 (I −GK)−1M̃−1

∥∥∥∥∥∥∞
. (6.2.3)

The perturbed closed-loop system is then guaranteed to remain stable in the face of all

∆M̃ , ∆Ñ such that

‖[ ∆M̃ ∆Ñ ]‖∞ < γ−1.
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An analytical expression for the lowest achievable value of γ referred to as γopt has been

derived in [106] and is given by:

γopt =
√

1 + λmax(PQ), (6.2.4)

where Q = QT is the non-negative definite stabilizing solution to the algebraic Riccati

equation:

CT R−1
2 C −Q + ΦT QΦ− ΦT QB

(
R1 + BT QB

)−1
BT QΦ = 0,

λmax(·) denotes the largest eigenvalue, and R1, R2, Φ and P are as defined above. State-

space formulae for the central optimal and sub-optimal controllers are also presented in

[106].

6.3 H∞ loop-shaping

The technique of loop-shaping has been used extensively in SISO feedback design. Over

the last few years, the loop-shaping process has been successfully generalized to multi-

variable design problems by using singular values as appropriate measures of magnitude

for matrix-valued transfer functions [19]. However, it has been argued that singular value

loop-shaping is an effective1 MIMO design paradigm only for problems involving spatially

round (i.e., well-conditioned) specifications on closed-loop transfer functions [97]. Stein

[97] considers the problem of output sensitivity reduction in the presence of uncertainty

and derives sufficient conditions for robust performance. It is seen that these conditions,

which are in terms of acceptable shapes for the nominal sensitivity function, can be ar-

bitrarily conservative for skewed problems, i.e., problems for which specifications are not

spatially round. Such problems arise when the plant is ill-conditioned, and performance

and robustness requirements are levied at different points in the feedback loop, e.g., per-

formance required at the plant’s output, uncertainties applied at its input, and vice versa.

Freudenberg [29] has given some guidelines on how to shape the open-loop transfer func-

tion so that performance at one point is insensitive to uncertainty at another, given that

the plant is ill-conditioned. His results, however, are based on several assumptions, such

1By effective we mean effective in designing for robust performance.
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as the plant is assumed to have a natural partition into high- and low-gain sub-systems,

and the gain within each sub-system is assumed to be uniform. The structured singular

value [20, 13] has been put forward as a more effective tool to deal with such problems;

it is however computationally expensive and results in controllers of high state dimension

[111, 109].
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Figure 6.1: Simultaneous uncertainty at plant input and output.

Freudenberg [28] also considers the robust performance problem for ill-conditioned plants.

He shows that the robust performance problem is synonymous to the simultaneous uncer-

tainty problem, i.e., when modelling errors occur at different points in the feedback loop.

Figure 6.1 illustrates simultaneous uncertainty at two different points in the loop, i.e., at

the plant input and output. The perturbed plant G∆ is given by:

G∆ = (I + ∆2)
−1G(I + ∆1).

The transfer functions ∆1 and ∆2, used to model the system uncertainty, represent the

input and output perturbations respectively and are assumed to be stable and proper.

∆1 is used to model actuator uncertainty and high frequency plant modelling errors. ∆2

can represent modelling errors at the plant output but, as is more often, it is used to

represent a performance specification, such as output disturbance rejection. The simul-

taneous uncertainty problem can thus be viewed as a robust performance problem where

performance at the plant output has to be maintained in the presence of uncertainty at

its input.

We now consider the loop-shaping approach in the context of coprime factor robust stabi-
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lization, as developed by McFarlane & Glover [64]. In this case, performance specifications

are translated into the frequency domain, and the open-loop plant’s singular value fre-

quency response is given the desired shape. This is achieved by augmentation of the

nominal plant model G by pre- and/or post-compensators (or weighting functions) W1

and W2 respectively. Recently the use of numerical optimization techniques has been sug-

gested for automating the choice of the weighting functions [86, 110, 109]. Having chosen

the weights, the shaped plant Gs = W2GW1 = M̃−1Ñ is robustly stabilized against co-

prime factor uncertainty, and the controller K thus obtained is cascaded with the weights

to obtain the final controller Kf = W1KW2. It can be shown that the controller does

not significantly alter the specified loop-shape provided a sufficiently small value of γ is

achieved. Note that W1 and W2 must be chosen such that Gs contains no hidden unstable

modes.

We now look at the advantages the loop-shaping approach of McFarlane & Glover [64]

has to offer over some of the other approaches to H∞ design. During the last few years,

several formulations for H∞ controller synthesis have been proposed, the most widely

used being the S/KS [83] and the S/T design procedures [87, 88]. A potential problem

with these methods is that all the emphasis is placed at the output of the plant, and this

can give rise to poor properties at the plant input. Also the choice of weighting functions

is not always obvious and undesirable cancellation of plant poles can occur [94, 85].

With the loop-shaping design procedure (LSDP) of McFarlane & Glover [64], the designer

specifies the open-loop shape W2GW1. The choice of weights is intuitive and relatively

straightforward. The actual loop shape achieved, however, is given by W1KW2G at the

plant input and GW1KW2 at the plant output, K being the H∞ controller. McFarlane

& Glover [64] show that at frequencies where σ
¯
(W2GW1) À 1 or σ̄(W2GW1) ¿ 1, the

deterioration in the loop shape due to K is bounded by a function of γ and the condition

numbers of the weights only, a small value of γ and well-conditioned weights indicate

minimal deterioration in the loop shape, both at the plant input and output. Thus with

this approach, good nominal properties can be achieved easily at both points. Further

it can be shown that the robust stabilization objective (6.2.3) is equivalent to the more

standard H∞ 4-block problem of minimizing the L∞-norm of the frequency-weighted gain

from disturbances on the plant input and output to the controller input and output as



Chapter 6. Robust two degrees-of-freedom discrete time controller synthesis 107

follows [63]:

∥∥∥∥∥∥


 I

K


 (I −GsK)−1M̃−1

∥∥∥∥∥∥∞
(6.3.1)

=

∥∥∥∥∥∥


 I

K


 (I −GsK)−1 [ I Gs ]

∥∥∥∥∥∥∞
(6.3.2)

=

∥∥∥∥∥∥


 W2

W−1
1 Kf


 (I −GKf )

−1 [ W−1
2 GW1 ]

∥∥∥∥∥∥∞
(6.3.3)

=

∥∥∥∥∥∥


 I

Gs


 (I −KGs)

−1 [ I K ]

∥∥∥∥∥∥∞
(6.3.4)

=

∥∥∥∥∥∥


 W−1

1

W2G


 (I −KfG)−1 [ W1 KfW

−1
2 ]

∥∥∥∥∥∥∞
. (6.3.5)

This shows how the common closed-loop transfer function objectives are incorporated

into the loop-shaping design procedure. From (6.3.2) and (6.3.4) it is seen that solving

the normalized coprime factor robust stabilization problem is equivalent to achieving good

feedback properties both at the input and output of the shaped plant Gs. Thus important

closed-loop transfer functions relating to both points in the feedback loop are incorporated

into the design, e.g., the input and output sensitivities (I−KGs)
−1 and (I−GsK)−1, the

gain from input disturbance to the plant output (I−GsK)−1Gs, and robustness measures

for additive, input multiplicative, and output multiplicative perturbations K(I−GsK)−1,

K(I − GsK)−1Gs, and Gs(I − KGs)
−1K, respectively. It can easily be seen that this

incorporates the closed-loop transfer function from


 d1

d2


 to


 e1

e2


 in Figure 6.1, provided

we take G in the figure to represent the shaped plant. Thus output disturbance rejection

on the shaped plant is achieved in the face of input multiplicative uncertainty; this is a

conservative solution to the simultaneous uncertainty problem and therefore, the loop-

shaping design procedure is seen to provide a degree of robust performance.

It should be noted that we have so far considered performance and robustness objectives

on the shaped plant W2GW1, and not the nominal plant G. For implementation, however,

the weights W1 and W2 are absorbed into the controller, and hence in the final analysis,

closed-loop objectives involving the unshaped nominal plant G are the ones that must

be satisfactory. McFarlane & Glover [63] show that the loop-shaping design procedure

ensures that these closed-loop objectives are well-behaved. More specifically they show
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that if ∥∥∥∥∥∥


 K

I


 (I −GsK)−1M̃−1

∥∥∥∥∥∥∞
≤ γ,

then

σ̄(Kf (I −GKf )
−1) ≤ γσ̄(M̃)σ̄(W1)σ̄(W2), (6.3.6)

σ̄((I −GKf )
−1) ≤ γσ̄(M̃)κ(W2), (6.3.7)

σ̄(Kf (I −GKf )
−1G) ≤ γσ̄(Ñ)κ(W1), (6.3.8)

σ̄((I −GKf )
−1G) ≤ γσ̄(Ñ)

σ
¯
(W1)σ

¯
(W2)

, (6.3.9)

σ̄((I −KfG)−1) ≤ 1 + γσ̄(Ñ)κ(W1), (6.3.10)

σ̄(G(I −KfG)−1Kf ) ≤ 1 + γσ̄(M̃)κ(W2), (6.3.11)

where (M̃, Ñ) is a normalized coprime factorization of Gs = W2GW1, Kf = W1KW2, and

κ(·) denotes the condition number. (6.3.6), (6.3.8) and (6.3.11) above are bounds on the

additive, input multiplicative and output multiplicative robustness measures respectively

for the unshaped plant G, while (6.3.7), (6.3.9) and (6.3.10) give bounds on various

performance measures. Given that σ̄(M̃) ≤ 1 and σ̄(Ñ) ≤ 1, it follows that if γ is

small and the weights are well-conditioned, then all the above closed-loop objectives are

well-behaved, i.e., they have bounded magnitude. Further it can be shown that these

objectives can be shaped at low and high frequencies by appropriate choice of the weights

W1 and W2. We therefore see that the LSDP ensures good feedback properties both at

the input and output of the plant G. Also the selection of weights is relatively simple

and pole-zero cancellations are avoided in most cases. In conclusion, we can therefore say

that the LSDP is an intuitive and effective design technique.

6.4 Two degrees-of-freedom configuration

We will now discuss the two degrees-of-freedom configuration (Figure 5.10) which we

briefly considered in §5.5.2. The formulation includes a model matching problem in addi-

tion to the robust stability maximization problem outlined above. This is discussed for the

continuous time case in [45, 60]. The controller K is partitioned as K = [ K1 K2 ] where

K1 is the pre-filter, and K2 the feedback controller. Mo(z) is a reference model chosen to
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have ideal time-domain response characteristics, which the closed-loop system is desired

to follow. Gs = GW1 = M̃−1Ñ is the shaped plant. For the two degrees-of-freedom

configuration, we assume in the first instance the plant to have no post-compensation

as part of the weighting, i.e., W2 = I. We will later consider the case where W2 may

also be used in shaping the plant gains. The problem is now formulated as a standard

H∞-optimization problem such that L∞-norm of the transfer function relating u, y, e to

r, φ, namely




ρ(I −K2Gs)
−1K1 K2(I −GsK2)

−1M̃−1

ρ(I −GsK2)
−1GsK1 (I −GsK2)

−1M̃−1

ρ2((I −GsK2)
−1GsK1 −Mo) ρ(I −GsK2)

−1M̃−1




(6.4.1)

is minimized. As discussed in §5.5.2, the (1,2) partition of (6.4.1) is associated with robust

stabilization and the (2,1) partition with model matching. The aim is thus to provide

robust stability and model following in face of the uncertainty ∆M̃ , ∆Ñ . The parameter ρ

is a scaling used to emphasize the (2,1) partition of (6.4.1), thus emphasizing the model

matching part of the problem.

To set the problem in an H∞-optimization framework, we will first put it into the standard

regulator form given in §2.5 (Figure 2.3). As shown in the figure, w is the vector of all

external signals ([ rT φT ]T for our two degrees-of-freedom case) and z is a vector of all

signals to be minimized ([ uT yT eT ]T for our case, as is apparent from the choice of

the transfer function (6.4.1) we seek to minimize). u is the vector of control signals and

q is the vector of measurements available to the controller ([ βT yT ]T for our case, see

Figure 5.10). The generalized plant P is thus given by




u

y

e

β

y




=




P11 P12

P21 P22







r

φ

u



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=




0 0 I

0 M̃−1 Gs

−ρ2Mo ρM̃−1 ρGs

ρI 0 0

0 M̃−1 Gs







r

φ

u




. (6.4.2)

Let the shaped plant Gs(z) and the reference model Mo(z) have state-space realizations

Gs
s
=




A B

C 0


 and Mo

s
=




Ao Bo

Co Do


 respectively, with Mo chosen stable, and let the

normalized coprime factors of Gs be given by (6.2.2). A state-space realization for P is

then given as follows:

P
s
=




Ã B1 B2

C1 D11 D12

C2 D21 D22




=




A 0 0 −HZ−1
2 B

0 Ao Bo 0 0

0 0 0 0 I

C 0 0 Z−1
2 0

ρC −ρ2Co −ρ2Do ρZ−1
2 0

0 0 ρI 0 0

C 0 0 Z−1
2 0




. (6.4.3)

The state vector x of P can be partitioned as


 xG

xo


, where xG is the state of the shaped

plant and xo the state of the reference model. Note that we have assumed the shaped

plant Gs to be strictly proper (no direct feedthrough). This is true for most physical

systems, and the direct feedthrough term remains zero even after the system is discretized,

assuming a zero-order hold on the inputs. The controller formulae are more complicated

for systems that are not strictly proper, and these will not be considered here.

We now consider the case where the post-compensator W2 is also used in shaping the

open-loop plant, i.e., the shaped plant is given by Gs = W2GW1 = M̃−1Ñ . We will

assume W2 to be invertible. The signal y in Figure 5.10 is now the output of the shaped

plant, i.e., the actual plant output post-compensated by W2. Hence it is the transfer

function from the reference input r to the output of the shaped plant, denoted Tr→y, that

is being matched to the model Mo. It is, however, desired that the transfer function Tr→ỹ

be matched to the chosen model, ỹ being the actual plant output (i.e., ỹ = W−1
2 y). This
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can be done as follows. We define the model matching error e to be ρ (ỹ − yo) where yo

is the output of the reference model. Given y = Cx + Z−1
2 φ (see (6.4.3)) and W2, an

expression for ỹ = W−1
2 y can be obtained easily. The state-space realization for P as

given in (6.4.3) can then be modified slightly to accomodate this new definition of e. This

will be illustrated by an example in Chapter 7.

6.5 H∞ two degrees-of-freedom controller synthesis

We will now derive a state-space realization for the two degrees-of-freedom controller

(Figure 5.10) that internally stabilizes the generalized plant given in (6.4.3), and achieves

a given (sub-optimal) L∞-norm for the closed-loop transfer function relating the error

signals (u, y and e) to the external inputs (r and φ). First however, we present some

relevant results on full information control and the disturbance feedforward problem.

6.6 H∞ full information control

The full information control is characterized by the structure shown in Figure 6.2 where

the controller K has access to both the present dynamic state x of the generalized plant

P , and to the current disturbance input w. The discrete time full information control

problem is discussed in detail by Walker [107]. Here we will briefly review the main results.

-

¾

¾

--

P

K

u x w

zw

Figure 6.2: Full information control structure.
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Let the general system for the full information problem (Figure 6.2) be described by the

equations:

xk+1 = Ãxk + B1wk + B2uk,

zk = C1xk + D11wk + D12uk. (6.6.1)

The notation is simplified using the ‘J ’ notation of Green et al. [35], defining:




Ã B̃

C̃ D̃


 4

=




Ã B1 B2

C1 D11 D12

0 I 0




, (6.6.2)

and

Jpq(γ)
4
=




Ip 0

0 −γ2Iq


 . (6.6.3)

The latter will simply be denoted by J . The full information control problem has a game-

like nature. The disturbance w influences P so as to make the magnitude of the cost z

large (in the sense of the 2-norm). The control input u, on the other hand, tries to keep

z small. These conflicting aims are embodied in a cost (or performance) functional V

associated with the game, which has the general form

V = ‖z‖2
2 − γ2 ‖w‖2

2 .

For the system described by (6.6.1), the cost functional is defined as:

V =
N−1∑

k=0

(zT
k zk − γ2wT

k wk) + xT
NPNxN .

where the horizon is later on extended to infinity (N →∞). Note that in order to prevent

the state vector from possibly becoming unbounded in the limit as N tends to infinity,

the cost functional includes a terminal state weighting PN . Lagrange multipliers λk are

now introduced to determine stationary values of the cost functional:

V =
N−1∑

k=0

(
(zT

k zk − γ2wT
k wk)− 2λT

k+1(xk+1 − Ãxk −B1wk −B2uk)
)

+ xT
NPNxN .

Assuming (C1, Ã) to be detectable (no unobservable unstable modes), input-output sta-

bility effectively implies internal stability, hence PN can be made zero and the above
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expression for the cost rewritten as:

V =
N−1∑

k=0




[
zT

k wT
k

]
J




zk

wk


− 2λT

k+1(xk+1 − Ãxk − B̃δk)


 ,

where δk
4
= [ wT

k uT
k ]T . Note that this assumption of detectability remains in force

throughout the rest of the chapter. Also




zk

wk


 =




C1 D11 D12

0 I 0







xk

wk

uk




=
[

C̃ D̃

]



xk

δk


 ,

in which case we have:

V =
N−1∑

k=0

(
(C̃xk + D̃δk)

T J(C̃xk + D̃δk)− 2λT
k+1(xk+1 − Ãxk − B̃δk)

)
.

The first-order necessary conditions for a stationary point:

∂V

∂xk

= 0, k = 1, 2, . . . , N,

∂V

∂δk

= 0, k = 0, 1, . . . , N − 1,

lead as N is made infinite, to the following discrete time algebraic Riccati equation:

X∞ = ÃT X∞Ã + C̃T JC̃ − (C̃T JD̃ + ÃT X∞B̃)(D̃T JD̃ + B̃T X∞B̃)−1(D̃T JC̃ + B̃T X∞Ã).

(6.6.4)

This can be rearranged to give:

X∞ = ÃT X∞Ã + C̃T JC̃ − F T (D̃T JD̃ + B̃T X∞B̃)F, (6.6.5)

where

F
4
= (D̃T JD̃ + B̃T X∞B̃)−1(D̃T JC̃ + B̃T X∞Ã). (6.6.6)

The term (D̃T JD̃ + B̃T X∞B̃) may be factorized [34], with W =




W11 W12

W21 0


, as:

D̃T JD̃ + B̃T X∞B̃ = W T JW

=




W T
11 W T

21

W T
12 0







I 0

0 −γ2I







W11 W12

W21 0




=



−γ2I + BT

1 X∞B1 + DT
11D11 DT

11D12 + BT
1 X∞B2

DT
12D11 + BT

2 X∞B1 DT
12D12 + BT

2 X∞B2


 . (6.6.7)
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The terms of W are found by solving the two Cholesky factorizations:

W T
12W12 = DT

12D12 + BT
2 X∞B2, (6.6.8)

W T
21W21 = γ−2

[
(DT

11D12 + BT
1 X∞B2)(D

T
12D12 + BT

2 X∞B2)
−1(DT

12D11 + BT
2 X∞B1)

−DT
11D11 + γ2I −BT

1 X∞B1

]
, (6.6.9)

and then

W11 = W−T
12

(
DT

12D11 + BT
2 X∞B1

)
. (6.6.10)

(6.6.6) may now be rewritten as:

F = W−1J−1W−T (D̃T JC̃ + B̃T X∞Ã)

=




0 W−1
21

W−1
12 −W−1

12 W11W
−1
21







W−T
12 Γ2

−γ−2W−T
21 Γ1 + γ−2W−T

21 W T
11W

−T
12 Γ2




=




0 W−1
21

W−1
12 −W−1

12 W11W
−1
21







L1

L2


 , (6.6.11)

where Γ1
4
= (DT

11C1 + BT
1 X∞Ã), Γ2

4
= (DT

12C1 + BT
2 X∞Ã), L1

4
= W−T

12 Γ2 and L2
4
=

−γ−2W−T
21 Γ1 + γ−2W−T

21 W T
11W

−T
12 Γ2. The following theorem summarizes the results on

the full information problem. Tzw is used to denote the closed-loop transference from the

disturbance w to the error z (Figure 6.2).

Theorem 6.6.1 [107] Given γ such that

−γ2I + BT
1 X∞B1 + DT

11D11 − (DT
11D12 + BT

1 X∞B2)(DT
12D12 + BT

2 X∞B2)−1(DT
12D11 + BT

2 X∞B1) < 0,

where X∞ = XT
∞ ≥ 0 is the stabilizing solution to the discrete algebraic Riccati equa-

tion (6.6.4), all finite-dimensional linear time-invariant (FDLTI) full information controls

which guarantee ‖Tzw‖∞ < γ and which are internally stabilizing are generated by

uk = −W−1
12 L1xk −W−1

12 W11wk + γW−1
12 Θ{γW21wk + γL2xk}, (6.6.12)

where Θ(z) is an arbitrary stable transfer function satisfying ‖Θ(z)‖∞ < γ−1. The plant

state-space realization is assumed to be stabilizable and detectable. The central full

information control law, obtained by setting Θ = 0 is given by

uk = −W−1
12 L1xk −W−1

12 W11wk. (6.6.13)
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Assuming full information, this theorem can be applied to the generalized plant of (6.4.3).

The matrices Ã, B̃, C̃ and D̃ can be fully defined by the matrices Ã, [ B1 B2 ], C1 and

[ D11 D12 ] (see (6.6.2)) as given in (6.4.3), and hence only these are required for the

computation of the full information control. The central control law thus obtained will

simply be a constant gain matrix to be used with the state and disturbance measurements.

6.7 The disturbance feedforward problem

For the realization of the full information control, as discussed above, the state and distur-

bance measurements are required. In the event that these measurements are not available,

an estimate has to be generated, and the estimated state x̂ and disturbance ŵ substituted

for their actual values in (6.6.12) to obtain the so-called ‘Certainty Equivalence’ control

[107]. If the matrix D21 is square, as is the case for the two degrees-of-freedom configu-

ration considered above (see (6.4.3)), the measurement equation q = C2x + D21w + D22u

can be inverted, and an estimate of w obtained in terms of u, q and an estimate of x. This

characterizes what is referred to as the disturbance feedforward problem. We will hence-

forth be specific to the generalized plant P of (6.4.3), for which state and disturbance

estimates can be obtained as follows.

Noting that D22 = 0 for our case, the measurement equation becomes:

q = C2x + D21w. (6.7.1)

The observer will be designed so that its state vector x̂, which is an estimate of P ’s true

state x, evolves according to the following equation:

x̂k+1 = Ãx̂k + B1ŵk + B2uk, (6.7.2)

where ŵ is the observer estimate of w, given by the inversion of (6.7.1) as:

ŵk = D−1
21 (qk − C2x̂k). (6.7.3)

On substituting for q from (6.7.1), the above equation can be written for the disturbance

estimation error as:

ŵ − w = D−1
21 C2(x− x̂). (6.7.4)
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Also subtracting xk+1 = Ãxk + B1wk + B2uk from (6.7.2) and substituting from (6.7.4),

we get:

(x̂− x)k+1 =
(
Ã−B1D

−1
21 C2

)
(x̂− x)k . (6.7.5)

This equation describes the propagation of the state estimation error. We can show that

the estimation error dynamics are stable by showing the stability of
(
Ã−B1D

−1
21 C2

)
as

follows. From (6.4.3) we have:

Ã−B1D
−1
21 C2 =


 A 0

0 Ao


−


 0 −HZ−1

2

Bo 0





 ρI 0

0 Z−1
2



−1 

 0 0

C 0




=


 A + HC 0

0 Ao


 , (6.7.6)

which is stable because A+HC is stable from the definition of coprime factors and (6.2.2),

and Ao is chosen to have eigenvalues inside the unit circle. Thus if x̂0 = x0, (6.7.5) shows

that the observer state will be identically equal to P ’s true state vector x for all k, and

hence from (6.7.4), ŵ ≡ w for all k. Thus if initialized properly, the observer will be

able to reconstruct full information concerning P from q. Even if the observer is not

initialized with the right initial state, the estimation error is guaranteed to decay to zero.

We can therefore incorporate the observer with the full information control law, where the

observer provides an estimate of state and disturbance information regarding the plant P

from the measurement q. Rearranging the above equations, the observer dynamics can

be expressed as:

x̂k+1 =
(
Ã−B1D

−1
21 C2

)
x̂k + B1D

−1
21 qk + B2uk. (6.7.7)

Now substituting the observer estimates of state x and disturbance w for the actual values

in the central full information control law (6.6.13), the following certainty equivalence

control is obtained:

uk = −W−1
12 L1x̂k −W−1

12 W11ŵk. (6.7.8)

It can be shown that such a control is norm-bounding as well as internally stabilizing as

follows.

Theorem 6.7.1 Given a stabilizable and detectable realization of the FDLTI plant P

described by

xk+1 = Ãxk + B1wk + B2uk,



Chapter 6. Robust two degrees-of-freedom discrete time controller synthesis 117

ek = C1xk + D11wk + D12uk,

qk = C2xk + D21wk,

(6.7.9)

with D21 square and D12 tall:

1. There exist internally stabilizing FDLTI controls of the form u = Kq satisfying

‖Tzw‖∞ < γ if and only if

−γ2I+BT
1 X∞B1+DT

11D11−(DT
11D12+BT

1 X∞B2)(DT
12D12+BT

2 X∞B2)−1(DT
12D11+BT

2 X∞B1) < 0,

where X∞ = XT
∞ ≥ 0 is the stabilizing solution to the discrete Riccati equation

(6.6.4).

2. When the above condition is satisfied, all internally stabilizing FDLTI controls u =

Kq achieving ‖Tew‖∞ < γ are generated by

uk = −W−1
12 L1x̂k −W−1

12 W11ŵk + γW−1
12 Θ{γW21ŵk + γL2x̂k}, (6.7.10)

where ŵk is given by (6.7.3) and x̂k evolves according to (6.7.7). Θ(z) is an arbitrary

stable transfer function satisfying ‖Θ(z)‖∞ < γ−1. The central certainty equivalence

control law obtained by setting Θ = 0 is given by (6.7.8).

Proof

1. By Theorem 6.6.1, the condition of part 1 above is necessary and sufficient for the

existence of internally stabilizing full information controls for which ‖Tzw‖∞ < γ.

If there exists a norm-bounding output feedback control of the form u = Kq, then

there also exists a norm-bounding full information control [107], in which case the

condition must be satisfied. Conversely, since the observer construction reconstructs

full information from the measurement q, existence of an internally stabilizing norm-

bounding full information control implies existence of an internally stabilizing norm-

bounding measurement feedback control.

2. Since x̂ = x and ŵ = w, combining the observer with the generator of all internally

stabilizing norm-bounding full information controls captures all controls of the form

u = Kq.

The overall structure of the controller is depicted in Figure 6.3.
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Figure 6.3: Controller separation structure.

6.8 Controller formulae and structure

We will now derive a state-space realization of the central sub-optimal controller for

the two degrees-of-freedom control configuration under consideration. First, however, we

make the following observations. From (6.4.3) we have:

DT
12D11 = 0, DT

12C1 = 0, DT
12D12 = I. (6.8.1)

Now from (6.6.10) we have:

W−1
12 W11 = W−1

12 W−T
12

(
DT

12D11 + BT
2 X∞B1

)

(6.8.1) =⇒ =
(
W T

12W12

)−1
BT

2 X∞B1

(6.6.8) =⇒ =
(
DT

12D12 + BT
2 X∞B2

)−1
BT

2 X∞B1

(6.8.1) =⇒ =
(
I + BT

2 X∞B2

)−1
BT

2 X∞B1. (6.8.2)

From (6.6.11) we can write:

W−1
12 L1 = W−1

12 W−T
12

(
DT

12C1 + BT
2 X∞Ã

)

(6.8.1) =⇒ =
(
W T

12W12

)−1
BT

2 X∞Ã
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(6.6.8) =⇒ =
(
DT

12D12 + BT
2 X∞B2

)−1
BT

2 X∞Ã

(6.8.1) =⇒ =
(
I + BT

2 X∞B2

)−1
BT

2 X∞Ã. (6.8.3)

The central sub-optimal controller given in (6.7.8) can now be written as:

uk = −W−1
12 L1x̂k −W−1

12 W11ŵk

(6.8.2)&(6.8.3) =⇒ uk = −
(
I + BT

2 X∞B2

)−1
BT

2 X∞Ãx̂k −
(
I + BT

2 X∞B2

)−1
BT

2 X∞B1ŵk

= −
(
I + BT

2 X∞B2

)−1
BT

2 X∞
(
Ãx̂k + B1ŵk

)

(6.7.3) =⇒ = −
(
I + BT

2 X∞B2

)−1
BT

2 X∞
[
Ãx̂k + B1D

−1
21 (qk − C2x̂k)

]

= −
(
I + BT

2 X∞B2

)−1
BT

2 X∞
[(

Ã−B1D
−1
21 C2

)
x̂k + B1D

−1
21 qk

]

= Ckx̂k + Dkqk, (6.8.4)

where

Ck
4
= −

(
I + BT

2 X∞B2

)−1
BT

2 X∞
(
Ã−B1D

−1
21 C2

)
, (6.8.5)

Dk
4
= −

(
I + BT

2 X∞B2

)−1
BT

2 X∞B1D
−1
21 . (6.8.6)

Now substituting for uk from (6.8.4) in (6.7.7), the observer dynamics can be written as:

x̂k+1 =
(
Ã−B1D

−1
21 C2

)
x̂k + B1D

−1
21 qk + B2 (Ckx̂k + Dkqk)

=
(
Ã−B1D

−1
21 C2 + B2Ck

)
x̂k +

(
B1D

−1
21 + B2Dk

)
qk

= Akx̂k + Bkqk, (6.8.7)

where

Ak
4
= Ã−B1D

−1
21 C2 + B2Ck, (6.8.8)

Bk
4
= B1D

−1
21 + B2Dk. (6.8.9)

The solution X∞ of the discrete Riccati equation can be partitioned conformally with

Ã =




A 0

0 Ao


, i.e., X∞ =




X∞11 X∞12

X∞21 X∞22


. We can thus write from (6.4.3):

BT
2 X∞ = [ BT 0 ]


 X∞11 X∞12

X∞21 X∞22


 = [ BT X∞11 BT X∞12 ] ,
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and

BT
2 X∞B2 = [ BT 0 ]


 X∞11 X∞12

X∞21 X∞22





 B

0


 = BT X∞11B,

so that (6.8.5) becomes:

Ck = −
(
I + BT X∞11B

)−1
[ BT X∞11 BT X∞12 ]

(
Ã−B1D

−1
21 C2

)

(6.7.6) =⇒ = −
(
I + BT X∞11B

)−1
[ BT X∞11 BT X∞12 ]


 A + HC 0

0 Ao




= −
(
I + BT X∞11B

)−1
[

BT X∞11 (A + HC) BT X∞12Ao

]

4
=

[
Ck11 Ck12

]
. (6.8.10)

Similarly substituting for BT
2 X∞ and BT

2 X∞B2 from above and for B1 and D21 from

(6.4.3) in (6.8.6), we get:

Dk = −
(
I + BT X∞11B

)−1
[ BT X∞11 BT X∞12 ]


 0 −HZ−1

2

Bo 0





 ρI 0

0 Z−1
2



−1

= −
(
I + BT X∞11B

)−1
[

1
ρ
BT X∞12Bo −BT X∞11H

]

4
=

[
Dk11 Dk12

]
. (6.8.11)

By using (6.4.3), (6.7.6) and (6.8.10), (6.8.8) can be written as:

Ak =


 A + HC 0

0 Ao


 +


 B

0


 [ Ck11 Ck12 ]

=


 A + HC + BCk11 BCk12

0 Ao


 . (6.8.12)

Similarly for Bk substituting from (6.4.3) and (6.8.11) into (6.8.9), we have:

Bk =


 0 −HZ−1

2

Bo 0





 ρI 0

0 Z−1
2



−1

+


 B

0


 [ Dk11 Dk12 ]

=


 BDk11 −H + BDk12

1
ρ
Bo 0


 . (6.8.13)

Using Ak and Bk from above, the observer dynamics (6.8.7) can be written as:

 x̂Gk+1

xok+1


 =


 A + HC + BCk11 BCk12

0 Ao





 x̂Gk

xok


 +


 BDk11 −H + BDk12

1
ρ
Bo 0





 βk

yk


 ,

where we have split the observer state vector into the estimated state x̂G of the shaped

plant Gs, and the state xo of the reference model Mo. Recall that the measurement q
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available to the controller consists of the scaled reference input β and the plant output y

(as can be seen from (6.4.2)), and hence q has been replaced above by [ βT yT ]T . Using

β = ρr (see Figure 5.10), we can rewrite the observer state equation as:
[

x̂Gk+1

xok+1

]
=

[
A + HC + BCk11 BCk12

0 Ao

] [
x̂Gk

xok

]
+

[
ρBDk11 −H + BDk12

Bo 0

] [
rk

yk

]
.(6.8.14)

The controller output equation (6.8.4) can be written as:

uk = [ Ck11 Ck12 ]


 x̂Gk

xok


 + [ ρDk11 Dk12 ]


 rk

yk


 . (6.8.15)

(6.8.14) and (6.8.15) give a state-space realization of the sub-optimal controller that is

stabilizing and norm-bounding for the generalized plant of (6.4.3).

The controller state equation (6.8.14) can also be written as:


 x̂Gk+1

xok+1


 =


 A + HC 0

0 Ao





 x̂Gk

xok


 +


 B −H 0

0 0 Bo







uk

yk

rk


 , (6.8.16)

which shows clearly the controller structure. It is seen that the controller consists of an

observer for the shaped plant Gs, which provides an estimate x̂G for the state xG of Gs;

H being the observer gain. The observer is driven by the input and output of Gs, uk and

yk respectively. Also included in the controller dynamical equation is the state update

equation of the reference model Mo. The model runs autonomously inside the controller,

its state xo being driven by the reference input r. Recall that the generalized plant P

given in (6.4.3) has the state vector


 xG

xo


. The controller has information regarding some

of the states of P , i.e., the ones corresponding to the reference model. These states are

thus used directly – they need not be estimated. An observer, it turns out from (6.8.16),

is constructed only for the estimation of the states of the shaped plant Gs.

The controller output equation (6.8.15) consists of a generalized state feedback that uses

both the plant state estimate, and the reference model state. It is remarked here that in

general, H∞ sub-optimal control problems cannot be solved by an observer-state feedback

combination alone – a worst case disturbance estimate will also be used to generate the

control. In the two degrees-of-freedom case under consideration however, it is the special

structure of the generalized plant P (D21 square), that enables the controller to be written

simply as an observer plus a state feedback. The controller structure is elaborated in
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Figure 6.4: Controller structure.
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Figure 6.4. For implementation of the control law, the weights W1 and W2 are cascaded

with K
4
= [ K1 K2 ]

s
=




Ak Bk

Ck Dk


 to yield the final controller [ W1K1 W1K2W2 ]. In

addition, for perfect steady-state tracking, the pre-filter K1 is scaled so that the steady-

state gain from the reference to the output becomes unity.

6.9 Design procedure

In this section we present a design procedure for designing robust two degrees-of-freedom

discrete time controllers based on open-loop shaping and robust stabilization of the nor-

malized coprime factors of the plant. The two degrees-of-freedom configuration provides

a degree of robust performance in the sense of making the closed-loop system match a

pre-specified reference model in the face of coprime factor uncertainty. The procedure

was developed for the continuous time case by Hoyle et al. [45]. The procedure consists

of the following main steps.

1. Plot the singular value frequency response of the open-loop plant G(z). Based

on this, select a pre-compensator Ŵ1 and/or a post-compensator W2, both in the

continuous domain, to give the plant a desired open-loop shape. These weights

will be discretized later, before being cascaded with the plant G(z). It has been

found from experience that it is easier and more intuitive to select the weights in

continuous time and then discretize them, rather than to choose them directly in

the discrete domain. Discretize Ŵ1 and W2 using, for example, Tustin’s method,

and form the product W2(z)G(z)Ŵ1(z).

2. Align the singular values of W2GŴ1 at the desired bandwidth. The align gain Ka is

the approximate real inverse of the system at the specified frequency. The cross-over

(and hence the bandwidth) is thus adjusted to approximately the align frequency.

Alignment should not be used with ill-conditioned plants, this can result in poor

robustness properties, as seen earlier in Chapter 4.

An additional constant diagonal matrix Kg may sometimes be used in front of the

align gain to exercise control over actuator usage. It is chosen so that the various

actuator rate limits are not exceeded whilst following references or rejecting distur-
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bances. The pre-compensator can now be written as W1 = Ŵ1KaKg; see Figure 6.5.

Build the shaped plant Gs(z) = W2(z)G(z)W1(z) and calculate the optimal value

γopt as given by (6.2.4), for the pure robust stabilization problem. A high value

(typically > 10) of γopt indicates that the specified loop-shape is inconsistent with

robust stability; in such a case the weights W1 and W2 should be modified.

¾ ¾

-----

-

-
yGuG

y

u
r

W2

GŴ1KaKgK

Figure 6.5: The shaped plant and the controller.

3. Select a step response model (Mo) for the closed-loop system, again in continuous

time, for ease and intuition. The model is usually a diagonal matrix of first or second

order lags. Discretize the reference model, set ρ to be in the range 1 ≤ ρ ≤ 3, and

build the state-space realization of the generalized plant as given in (6.4.3).

4. Perform γ-iterations, find the near to optimal γ and compute the corresponding

controller. It should be noted that while iterating for γ, only one Riccati equation

needs to be solved, i.e., the H∞ full information Riccati equation given in (6.6.4).

If for a certain value of γ a stabilizing solution to this Riccati equation exists, an

internally stabilizing, norm-bounding full information control law exists, which can

then be combined with an observer (§6.7) to yield the corresponding output feedback

control.

5. Cascade the controller with the weights W1 and W2, and scale the pre-filter to

achieve perfect steady-state model matching.

6. Form the closed-loop and check the appropriate performance and robustness mea-

sures against the given specification.
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This procedure will be illustrated on the aero-engine designs, presented in the next chap-

ter.

6.10 Summary

This chapter has motivated and described the robust 2-DOF discrete time controller

synthesis and design procedure based on open-loop shaping and robust stabilization in

the normalized coprime factor framework. A state-space construction for the normalized

left coprime factorization was given in §6.2. The technique of multivariable loop-shaping

in the context of coprime factor robust stabilization was motivated in §6.3. Justification

for the loop-shaping design procedure of McFarlane & Glover [64] was given and its

connection to the simultaneous uncertainty problem described. It was shown that the

LSDP ensures that standard closed-loop transfer function objectives remain well-behaved

and that good feedback properties are achieved at both the plant input and output.

The extension of the LDSP to the two degrees-of-freedom configuration was discussed in

§6.4. The problem was then set up in the generalized regulator framework of Chapter

2. Results on discrete time full information H∞ control were summarized in §6.6. The

disturbance feedforward problem was discussed in §6.7. It was shown that the two degrees-

of-freedom H∞ controller synthesis problem posed earlier could be solved by an observer

state-feedback combination; controller structure and formulae were presented in §6.8.

Finally the controller design procedure was given in §6.9.



Chapter 7

Multi-mode controller design and implementation

7.1 Introduction

When faced with the task of control of complex engineering systems, efficient and effective

ways of implementing the controller are as important as its design in the first place.

Most of the application studies based on H∞ controllers to date have been based on

computer simulations, and hence very few (such as [48]) have discussed issues regarding

implementation. There have been some studies regarding switching and scheduling of

H∞ controllers (see for example, [49, 47, 54]) to cope with the non-linear behaviour of the

plant, but design of multi-mode systems using H∞ controllers has been very rare, if not

altogether absent. Furthermore, problems can arise from discrete time implementation

of the controller, particularly if the sample time is comparable to the system bandwidth.

In this chapter we shall look into some of these issues; the emphasis will be on obtaining

workable solutions for the aero-engine multi-mode problem.

This chapter is organized as follows. §7.2 describes limitations and design considerations

associated with plants having more outputs than inputs. §7.3 works through the details

of the controller design for the aero-engine example, based on the procedure outlined in

Chapter 6. The controller structure used for implementation, and the associated com-

putational advantages are discussed in §7.4 and §7.5 respectively. The structure of the

overall switched controller is given in §7.6. §7.7 discusses the issues of anti-windup and

bumpless transfer between controllers and §7.8 summarizes the main points of the chapter.

126
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7.2 Design considerations for plants with more outputs than

inputs

For the aero-engine under consideration, we plan to design three separate controllers each

controlling three outputs independently – a thrust controller for controlling [PS6PS1,

DPUP, NHPCSL], an NL limiter for controlling [NL,DPUP,NHPCSL] and a TT15 limiter

for controlling [TT15,DPUP,NHPCSL]. There are three control inputs to the engine. Five

measurements are available to each controller (Figure 3.6). It shall now be explored

whether using measurements in addition to the ones being controlled offer any advantages

for each of these controllers.

As already mentioned, one can independently control only as many outputs as there are

inputs. Any extra outputs cannot be controlled independently, but may be made effective

use of by the controller. For example, low noise rate measurements in position control

systems provide improved system damping. For an observer-based controller, the extra

measurements if contributed by low noise, high fidelity sensors, can act to improve the

state estimate. Extra measurements however, make the plant non-square, and this has an

effect on the tracking and disturbance rejection properties of the feedback system. Here

we briefly discuss some of these issues.
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Figure 7.1: Plant with extra measurements.

Let us consider a two degrees-of-freedom control system as shown in Figure 7.1 where

extra output measurements y2 are available to the controller. The plant G(s) can be
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partitioned as


 G1(s)

G2(s)


 where G1(s) is square, y1 being the outputs to be controlled. We

have shown integral action in the control loop because ideally we want perfect steady-state

tracking and disturbance rejection. r is the reference input for y1 to follow. Defining e to

be the tracking error, i.e., e
4
= r − y1, we have:

e =
[
I −G1(sI −K21G1 −K22G2)

−1K1

]
r −

[
I + G1(sI −K21G1 −K22G2)

−1K21

]
d1

−G1(sI −K21G1 −K22G2)
−1K22d2. (7.2.1)

Thus the transfer function from r to e denoted Ter is:

Ter = I −G1(sI −K21G1 −K22G2)
−1K1.

At steady-state (zero frequency) we have:

Ter(s = 0) = I + G1(K21G1 + K22G2)
−1K1

∣∣∣
s=0

.

For perfect steady-state tracking, we require Ter(s = 0) = 0 which gives

K1(0) = − [K21(0)G1(0) + K22(0)G2(0)] G1(0)−1. (7.2.2)

Thus we have to scale the pre-filter K1 so that its dc-gain equals that given by (7.2.2).

Note that this scaling is dependent on the plant dc-gain, and in cases where the exact plant

dc-gain is not known (or it changes with time), there would be discrepancies between r

and y1 in the steady-state. Now assuming that ‖K21(0)G1(0)‖2 À ‖K22(0)G2(0)‖2, (7.2.2)

becomes:

K1(0) = −K21(0). (7.2.3)

Thus we see that if the steady-state loop gain associated with the controlled outputs is

relatively large, the scaling required on the pre-filter becomes independent of the plant

dc-gain. Hence for square plants one can always achieve exact tracking in the steady-state

whenever there is integral action in the loop.

Now considering the transfer function from d1 to y1 denoted Ty1d1 at dc, we have:

Ty1d1(s = 0) = I −G1(K21G1 + K22G2)
−1K21

∣∣∣
s=0

.

For perfect disturbance rejection in the steady-state (i.e., Ty1d1(s = 0) = 0), we require

(K21(0)G1(0) + K22(0)G2(0))−1 = (K21(0)G1(0))−1 , (7.2.4)
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for which again we need that ‖K21(0)G1(0)‖2 À ‖K22(0)G2(0)‖2. Thus making the

loop gain associated with y1 much greater than that associated with y2 will give good

disturbance rejection on the controlled outputs y1.

We have shown that for good steady-state reference following and disturbance rejection

on the controlled outputs, the loop gain associated with these outputs should be relatively

large. For the aero-engine example under consideration, we shall have three controllers

running in parallel; at any given time one of the three would be on-line and the other

two off-line. These controllers should have a high loop gain associated with the outputs

they are designed to control so that they may provide good tracking and disturbance

rejection on these outputs. The loop gains for the various outputs can be adjusted by an

appropriate choice of the post-compensator W2. Choosing it to be a constant diagonal

matrix with relatively high gains in the channels corresponding to the controlled outputs

results in these outputs having higher loop gains. The three controllers can thus either be

designed such that they only use the outputs they are designed to control (i.e., for square

plants), or if extra outputs are to be used, the post-compensator W2 should be chosen

such that it emphasizes the controlled outputs over the extra measurements.

The improvement offered by the use of additional measurements can be judged from the

improvement in the value of the cost function that the controller is designed to minimize.

In our case the cost function is the L∞-norm of the transfer function given in (6.4.1),

denoted by γ. Several designs were performed, with and without extra outputs, and the

values achieved for γ compared. It was found that using additional outputs offered only

a marginal improvement in the cost. For example, a design was performed for the thrust

controller using only the outputs [PS6PS1,DPUP,NHPCSL], and the value of γ achieved

was 2.37. The design was repeated so that the controller now had access to all the five

measurements; and with W2 = diag{1, 1, 1, 0.2, 0.2}, the value achieved for the cost was

2.32. This improvement is indeed quite marginal and does not justify using additional

measurements, particularly if perfect steady-state tracking and disturbance rejection on

the controlled outputs are required.

The usual incentive for the use of additional measurements in feedback systems is the

improvement they provide in stability margins and damping of the system. In our case,

the optimal cost γ is a design indicator; the lower the cost, the better the design. We
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have seen that the extra measurements offer no significant improvement in the optimal

cost, and hence their use appears to be unjustified in our case. It is discovered, however,

that the use of an extra measurement in the PS6PS1 and NL controllers can lead to a

considerable simplification in the overall switched controller structure. This simplification

is a consequence of the particular relation between the PS6PS1 and NL outputs, and is

specific to the aero-engine example under consideration. An extra measurement is thus

used in each of the PS6PS1 and NL controllers; this is elaborated further in the following

paragraph.

As already discussed, the H∞ two degrees-of-freedom controller consists of an observer for

the shaped plant, the chosen reference model, and a generalized state feedback law. The

thrust controller and the two limiters all share this same basic structure. In effect, thus,

we shall be running three observers in parallel. This is indispensable in general because

each of the three observers estimates the shaped plant’s states from different outputs,

and this is crucial for rejecting disturbances acting on these outputs. For the case of the

aero-engine however, the knowledge of actual disturbances acting on the engine suggests

that these affect the outputs PS6PS1 and NL in a very similar way. That is to say that if

the disturbance impinging on the system causes a change ∆PS6PS1 in the thrust output,

and a change ∆NL in the LP compressor’s spool speed, then rejecting the disturbance on

PS6PS1 also causes ∆NL → 0, and vice versa. This close relationship between PS6PS1

and NL can be exploited so that just a single observer can be used for both the thrust

and NL controllers. The TT15 controller however, uses a separate observer. The three

controllers thus use only two observers, which significantly reduces the state dimension of

the overall switched controller. This is discussed in greater detail in subsequent sections.

7.3 Controller design

Here we will describe the design of the three controllers, and hence illustrate the design

procedure as proposed in Chapter 6. Since we plan to use the same observer for both

PS6PS1 and NL controllers, the linear engine model we will use for the design of these

controllers has four outputs, i.e., PS6PS1, DPUP, NHPCSL and NL. The selection of

the sample time is dictated by the available computing resources and is chosen to be 30
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msec, which is just adequate for the closed-loop bandwidth we are aiming for. The delays

associated with the discrete time implementation are therefore significant in this case.

These delays arise because the plant output at a particular sampling time is not available

to the controller until after one sample period has elapsed. Also there is a half sample

delay associated with the zero-order hold at the output of the controller. A time delay is

well-known to produce phase lag and generally leads to a less stable design if not taken

properly into account. These delays have to be approximated for continuous time design,

but can be modelled exactly in discrete time. Direct discrete design is therefore important

and will yield superior results as compared to those obtained by discretizing continuous

time controllers.

7.3.1 PS6PS1 controller design

We now follow the design procedure given in §6.9.

1. Singular values of the open-loop plant G(z) are plotted and these indicate the need

for boosting the low frequency gain for good tracking and disturbance rejection at

low frequencies. The weights are thus to be selected with these objectives in mind.

The low frequency gain is boosted by introducing integral action in the control

loop. We are aiming for a closed-loop bandwidth of approximately 9 rad/sec. We

therefore introduce zeros at −5 to reduce the roll-off at the cross-over frequencies.

Ŵ1 in Figure 6.5 thus becomes s+5
s I3. It is discretized using Tustin’s method. W2

is chosen to be diag{1, 1, 1, 0.2} so that it de-emphasizes the NL output relative to

the other three.

2. W2GŴ1 is now aligned at 6 rad/sec. The cross-over is thus adjusted to approxi-

mately 6 rad/sec. Alignment should not be used with ill-conditioned plants, the

condition number of the aero-engine is only 2.8 at 6 rad/sec, and hence alignment is

not expected to cause problems. An additional gain Kg is used in front of the align

gain to exercise control over actuator usage. It is chosen to be diag{1, 1.1, 0.3},
the third actuator (the guide vane angle) being made to respond slower. The pre-

compensator can now be written as W1 = Ŵ1KaKg. The shaped plant Gs = W2GW1

is now formed, its singular values are shown in Figure 7.2.
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Figure 7.2: Singular values of the shaped plant for the PS6PS1 controller design.

3. A step response model (Mo) is selected for the closed-loop system. The model

is chosen in continuous time as diag{ 1
0.08s+1 ,

1
0.055s+1 ,

1
0.33s+1}. The controlled

outputs are thus desired to behave as simple first order lags with no interaction. The

reference model is discretized using Tustin’s method. It should be noted that we are

controlling only the first three outputs, i.e., PS6PS1, DPUP and NHPCSL, hence

the 3-input 3-output reference model. ρ is set to 1 and the state-space realization

of the generalized plant as given in (6.4.3) formed, except for C1 and D11; ρC and

ρZ−1
2 in the third rows of these matrices being replaced by ρTC and ρTZ−1

2 , where

T =




1 0 0 0

0 1 0 0

0 0 1 0


. This corresponds to selecting the first three outputs for model

matching, i.e., the error e (see Figure 5.10) is given by ρ (Ty − yo), yo being the

output of the reference model. Note that W2 does not affect the first three plant

outputs, the gain being unity in these channels.

4. γ-iterations are performed, and a slightly sub-optimal controller achieving γ =

2.3125 obtained.

5. The controller is cascaded with the weights W1 and W2, and the pre-filter scaled to
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achieve perfect steady-state model matching.

Step responses for the linear model are shown in Figure 7.3. The NL ouput is shown with

a dotted line, and not being a controlled output, is not regulated to any specific value.

The response times are within the specification, and the decoupling is good with less than

10% interaction. Responses to disturbances are also analysed and shown in Figure 7.4.

Each output is given a step disturbance of amplitude −1 at zero time. The NL output

can be seen to have no disturbance rejection action, this being expected as it was given a

low weighting in the post-compensator W2. It should be noted that these disturbances are

hypothetical; in real life the disturbances on PS6PS1 and NL would be strongly coupled.

The rejection of disturbances on the three controlled outputs is satisfactory and conforms

to the specification. The singular values of the sensitivity function are shown in Figure

7.5. One of the singular values, the one that remains flat at low frequencies, corresponds

to NL and indicates no disturbance rejection on that output.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.5

1

time (sec)

am
pl

itu
de

Reference step response for PS6PS1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.5

1

time (sec)

am
pl

itu
de

Reference step response for DPUP

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.2
0.4
0.6
0.8

time (sec)

am
pl

itu
de

Reference step response for NHPCSL

Figure 7.3: Reference step responses for the PS6PS1 controller (PS6PS1 —, DPUP - - -,

NHPCSL -·-·, NL · · ·).
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Figure 7.4: Disturbance step responses for the PS6PS1 controller (PS6PS1 —, DPUP -

- -, NHPCSL -·-·, NL · · ·).
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Figure 7.5: Sensitivity function (I + GW1K2W2)
−1 for the PS6PS1 controller.
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7.3.2 NL limiter design

We now consider design of the NL limiter. Since we plan to use the same shaped

plant observer as we used for the PS6PS1 controller, the shaped plant must be the

same in both cases. We therefore select the same weights W1 and W2 as for the pre-

vious design. The reference model chosen is however slightly different and is given by

diag{ 1
0.05s+1 ,

1
0.05s+1 ,

1
0.33s+1}. The model is discretized using Tustin’s method. ρ is

chosen to be 1. The generalized plant of (6.4.3) is now built, where C1 and D11 are

changed to

C1 =




0 0

C 0

ρT C̄ ρ2Co


 , D11 =




0 0

0 Z−1
2

−ρ2Do ρT Z̄−1
2


 .

The third rows of C1 and D11 correspond to the difference between the model output

and the actual plant output ỹ = C̄x + Z̄−1
2 φ (and not the plant output after W2). C̄ is

given by W−1
2 C and Z̄−1

2 is obtained by solving the normalized coprime factor Riccati

equation (6.2.1) for GW1. Obtaining Z̄−1
2 in this way was found to give a more realistic

representation of the direct feedthrough from φ through to the plant output ỹ, as compared

to just taking it as W−1
2 Z−1

2 . The output selection matrix T is chosen so that the fourth,

second and third outputs (i.e., NL, DPUP and NHPCSL) are used for model matching,

i.e., T =




0 0 0 1

0 1 0 0

0 0 1 0


. A slightly sub-optimal stabilizing solution to the discrete full

information Riccati equation is iteratively found, the corresponding value of γ being

2.2969. The state-space realization of the controller K as given in (6.8.14) and (6.8.15) is

constructed. Note that the observer part of the controller is the same as for the PS6PS1

controller, the shaped plant used for design being the same in both cases.

As already mentioned, the weight W2 used in this design is the same as that used for

the design of the PS6PS1 controller. It therefore weights the NL output relatively small,

thus giving no disturbance rejection on NL. The disturbances on PS6PS1, DPUP and

NHPCSL would however be rejected as for the PS6PS1 controller. Moreover, the scaling

required on the pre-filter for perfect steady-state reference following will be very much

dependent on the plant dc-gain, as discussed previously in §7.2. If the plant’s steady-

state gain is not exactly known, or in case it changes over time, the tracking on NL
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would deteriorate. This latter problem in our case is more pronounced, since disturbance

rejection on NL can be provided through disturbance rejection on PS6PS1, as discussed

previously. We therefore need a high loop gain associated with NL for robust tracking,

and this gain could be traded against that for PS6PS1; PS6PS1 serving here as an extra

measurement and no longer being a controlled output. W2 is therefore changed, the gain

in the PS6PS1 channel lowered and that in the NL channel raised until step responses

obtained are similar to the ones achieved with the original W2. With some trial and error

W2 is finally chosen to be




0.05 0 0 0

0 1 0 0

0 0 1 0

0 −1 0 7.2



. W1 and the new W2 are now cascaded

with the controller K = [ K1 K2 ] to yield the final controller [ W1K1 W1K2W2 ]. The

controller now essentially uses the outputs DPUP, NHPCSL and NL for generating the

plant state estimate, the PS6PS1 measurement being weighted to be negligible. Note

that this effective “replacement” of the PS6PS1 measurement by NL has been possible

only because the two outputs have similar response times, it would not be possible if

one lagged considerably behind the other. It must be appreciated however that the H∞-

optimization problem was solved for the original W2, the γ of 2.2969 being achieved for

that W2. The new W2 is therefore expected to give a poorer cost; the value of γ achieved

with the new W2 is calculated and is found to deteriorate to 7.17. The stability margins

are thus reduced by approximately one third; this is still deemed acceptable given that

the limiter would be on-line only for certain specific operating conditions. Linear step and

disturbance responses are shown in Figures 7.6 and 7.7 respectively. It can be seen that

the disturbance rejection on NL has been traded against that for PS6PS1, the sensitivity

function is shown in Figure 7.8.

7.3.3 TT15 limiter design

The TT15 limiter is designed for a square plant model with just three outputs, i.e.,

TT15, DPUP and NHPCSL. The same pre-compensator W1 as used for the PS6PS1

and NL controllers is found to give an acceptable open-loop frequency response shape,

and hence is chosen for this design as well (it need not be the same though). W2 is

taken to be the identity matrix. The singular values of the shaped plant Gs = W2GW1
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Figure 7.6: Reference step responses for the NL limiter (PS6PS1 —, DPUP - - -, NHPCSL

-·-·, NL · · ·).
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Figure 7.7: Disturbance step responses for the NL limiter (PS6PS1 —, DPUP - - -,

NHPCSL -·-·, NL · · ·).
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Figure 7.8: Sensitivity function (I + GW1K2W2)
−1 for the NL limiter.

are shown in Figure 7.9. The reference model for the closed-loop system is chosen to

be diag{ 1
1.3s+1 ,

1
0.05s+1 ,

1
0.33s+1}. With ρ set to 1, the generalized plant of (6.4.3) is

constructed and a γ of 2.675 achieved. Reference and disturbance step responses on the

linear model are shown in Figures 7.10 and 7.11 respectively. The singular values of the

sensitivity function are shown in Figure 7.12.

7.4 Controller implementation

We now present the controller structure used for implementation. The controller dynam-

ics can be decomposed into an observer for the shaped plant, and the reference model

dynamics, as is clear from Chapter 6, equation (6.8.16). Separating the observer and

model dynamics, the controller state-space equations can be rewritten as:

x̂Gk+1
= (A + HC) x̂Gk

+ [−H B ]


 yk

uk


 , (7.4.1)

xok+1
= Aoxok

+ Bork, (7.4.2)
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Figure 7.9: Singular values of the shaped plant for the TT15 limiter design.
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Figure 7.10: Reference step responses for the TT15 limiter (TT15 —, DPUP - - -, NH-

PCSL -·-·).
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Figure 7.11: Disturbance step responses for the TT15 limiter (TT15 —, DPUP - - -,

NHPCSL -·-·).
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Figure 7.12: Sensitivity function (I + GW1K2W2)
−1 for the TT15 limiter.
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and

uk = Ck11x̂Gk
+ Ck12xok

+ ρDk11rk + Dk12yk

= ûk + uok
, (7.4.3)

where

ûk
4
= Ck11x̂Gk

+ [ Dk12 0 ]


 yk

uk


 , (7.4.4)

uok

4
= Ck12xok

+ ρDk11rk. (7.4.5)

The controller is now seen to constitute two sub-systems, one given by equations (7.4.1)

and (7.4.4), and the other given by equations (7.4.2) and (7.4.5), connected as in Figure

7.13.
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Figure 7.13: Controller partitioning into observer and reference model.

u is the input to the shaped plant while ũ represents the actual plant input. Similarly

y and ỹ represent the shaped plant output and the actual plant output respectively.

The separation of the controller as above yields significant computational advantages as

discussed in the next section.

The controller was simulated in the form shown in Figure 7.13. It was found that imple-

menting the controller in this form gave rise to stability problems. The instability resulted
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from a high bandwidth local feedback loop inside the controller, i.e., from the signal û to

the signal u and back again to û via the observer-state feedback combination. This loop

was found to have a much higher bandwidth than that desired for the closed-loop system.

The chosen sample time of 30 msec though just adequate for the closed-loop system band-

width, was definitely inadequate for this much faster observer loop. The solution taken

to this problem was to collapse the loop causing the instability and make the feedback

implicit in the state-space equations as follows. From (7.4.1) we have:

x̂Gk+1
= (A + HC) x̂Gk

+ Buk −Hyk

(7.4.3) =⇒ = (A + HC) x̂Gk
+ B (Ck11x̂Gk

+ Ck12xok
+ ρDk11rk + Dk12yk)−Hyk

= (A + HC + BCk11) x̂Gk
+ B (Ck12xok

+ ρDk11rk) + (−H + BDk12) yk

(7.4.5) =⇒ = (A + HC + BCk11) x̂Gk
+ [−H + BDk12 B ]


 yk

uok


 . (7.4.6)

(7.4.4) can be rewritten as:

ûk = Ck11x̂Gk
+ [ Dk12 0 ]


 yk

uok


 . (7.4.7)

The two systems, one given by equations (7.4.6) and (7.4.7) and the other described by

the state-space equations (7.4.2) and (7.4.5) can now be connected as in Figure 7.14, and

this is the final form used for implementation. It can be seen that the local feedback

inside the controller is no longer explicit in the block diagram (Figure 7.14), rather it is

made implicit in the observer state equation. The stability problems associated with the

sample time are therefore resolved.

7.5 Computational advantages gained by utilizing the controller

structure

Each of the three controllers designed has, excluding the weights, a state dimension of 27.

The shaped plant observer contributes 24 states, and the reference model three states.

The observer for each controller is reduced to 12 states, so that the reduced controllers

have order 15. We will now explore the computational advantages gained by implementing

the controllers in the form shown in Figure 7.14.
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Figure 7.14: Controller structure used for implementation.

First let us calculate the computations required to run a 15 state unstructured controller in

real time. The state up-date equation for such a controller (assuming three measurements)

requires 15 × 15 + 15 × 3 = 270 multiplications and 15 × 14 + 15 × 2 = 240 additions.

We now consider the case where the controller is partitioned into a 12 state observer

and a 3 state reference model (as in Figure 7.14). The observer state equation requires

12×12+12×3 = 180 multiplications and 12×11+12×2 = 156 additions while the model

state up-date requires 3× 3+3× 3 = 18 multiplications and 3× 2+3× 2 = 12 additions.

The total number of multiplications required is therefore calculated to be 180+18 = 198,

and the total additions are 156+12 = 168. This corresponds to a reduction of 26% in the

number of multiplications and a reduction of 30% in the number of additions required.

When running a number of controllers in parallel, implementing each in the form shown

in Figure 7.14, can thus yield a significant saving in the amount of real time computation

required. The overall switched controller containing all the three controllers running in

parallel (§7.6), was implemented on a real time Intel 486-based machine. The controller

structure described above was found to be crucial in running the control algorithms within
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the desired sample time of 30 msec.

7.6 The switched controller structure

We now present the structure of the overall switched controller. In the sequel M̄o(z)

denotes the reference model dynamics and the associated state feedback gain, i.e., M̄o(z)
4
=


Ao Bo

Ck12 ρDk11


. The controller structure is illustrated in Figure 7.15. The superscripts

“nl” and “tt” refer to parameter values for the NL and TT15 controllers respectively.

It can be seen that the PS6PS1 and NL controllers share the same observer. The post-

compensator driving the observer is switched, depending on whether the PS6PS1 or NL

controllers is on-line, thus giving disturbance rejection and precise tracking on appropriate

outputs. Either W2 or W nl
2 can be used while the TT15 limiter is on-line. The observer

states evolve according to equation (7.4.6), Ck11 and Dk12 being replaced by Cnl
k11

and Dnl
k12

respectively when the NL limiter is selected on-line. The second input to the observer

(from M̄o(z) or M̄nl
o (z)) is also switched accordingly. The reference demands rnl and rtt

for the limiters are set so that maximum values of NL and TT15 are demanded. The

pre-compensator W1 is the same for the three controllers. The selection is made with

regards to the amount of fuel demanded by each controller, the one that demands the

least fuel is the one that is selected on-line (§3.3.3). The switched control system thus

operates in the PS6PS1 mode or in one of the two limiter modes, depending on which

controller is on-line at a given time.

7.7 Anti-windup and bumpless transfer

The issues of anti-windup and bumpless transfer (AWBT) are of great importance with

regards to the practical implementation of a multi-mode control system. There have been

many approaches to provide a solution to the AWBT problem, e.g., anti-reset windup [7]

or back-calculation and tracking [3], the high gain conventional anti-windup [46, 53], the

conditioning technique [41, 40], the observer-based approach [4] and the internal model

control based approach [68, 7]; for a survey of these approaches refer to [67, 56]. All these

approaches can be summarized as consisting of two parts:
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Figure 7.15: Structure of the overall switched controller.

• design the linear controller ignoring control limitations and substitutions, and

• add AWBT compensation to minimize the adverse effects of limitations and substi-

tutions on closed-loop performance.

Recently there have been studies to cast the AWBT problem into a general design frame-

work [8, 7] but this approach is still in the developing stage and synthesis results are

not available. Almost all practical designs therefore, employ one of the above-mentioned

techniques to provide anti-windup and bumpless transfer action. These techniques though

somewhat ad-hoc, have nevertheless been successful in many applications; see for example

[46, 53]. Their main strength lies in their simplicity and ease of implementation.
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The conditioning technique of Hanus et al. [41] and the observer-based approach of

Åström & Wittenmark [4] will be used for the aero-engine designs presented here. Both

techniques are inherently multivariable and are simple and intuitive. The conditioning

technique has been shown to be a generalization of both classical anti-windup and the

internal model control based approach [7]. Campo & Morari [7] also show that the con-

ditioning technique is superior to the other two schemes and can be combined with input

directionality compensation to yield an effective anti-windup scheme.

The conditioning technique provides AWBT action by ensuring that the states of the

(off-line) controller are always consistent with the input to the plant. Consider a simple

error feedback controller (A,B, C, D) with the non-linearity N representing a limitation

or a substitution:

ẋ = Ax + B(r − y),

u = Cx + D(r − y),

um = N(u). (7.7.1)

Here r and y represent the reference input and the plant output respectively, and um

represents the actual plant input. Following Hanus et al. [41] we can apply a “realizable

reference” rr to the controller such that the output of the controller is um, i.e., rr is the

reference signal that would make u = um if applied to the controller state and output

equations in place of r. Thus, we have:

ẋ = Ax + B(rr − y), (7.7.2)

um = Cx + D(rr − y). (7.7.3)

Using the state x as given by (7.7.2) and the actual reference input r to build the control

u, we can write [40]:

u = Cx + D(r − y). (7.7.4)

From (7.7.3) and (7.7.4) we obtain the expression for rr as:

rr = r + D−1(um − u), (7.7.5)

where we assume that D is invertible. Combining equations (7.7.1), (7.7.2), (7.7.4) and

(7.7.5), we get:

ẋ = (A−BD−1C)x + BD−1um, (7.7.6)
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u = Cx + D(r − y), (7.7.7)

um = N(u). (7.7.8)

This is the AWBT self-conditioned controller. Using equations (7.7.6) – (7.7.8) we can

write the conditioned controller in more compact notation as:

u =




A−BD−1C 0 BD−1

C D 0





 r − y

um


 . (7.7.9)

It can be seen from (7.7.9) that during limitations or substitutions, the controller is ef-

fectively inverted, while in normal conditions (i.e., when um = u) the controller dynamics

remain unchanged. Hence for this technique to be applied, the controller must be invert-

ible and minimum phase.

We now discuss briefly the idea of providing AWBT action using the observer approach

of Åström & Wittenmark [4]. Let the output of an observer-based controller be u, the

observer being driven by u and the plant output y. The plant input is given by um. When

there is a limitation or a substitution, um is different from u, and since the observer is

not aware of this it computes the state as if the plant input is u. Thus windup can be

prevented simply by making the observer input to be [ uT
m yT ]T instead of [ uT yT ]T .

Let us define an observer-based controller as:

˙̂x = Ax̂ + Bu + H(Cx̂− y), (7.7.10)

u = Fx̂, (7.7.11)

um = N(u). (7.7.12)

Here (A,B, C, 0) is the state-space realization of the plant being controlled, and H and

F are the observer and state feedback gains respectively. Note that the dynamics of the

controller are given by

det(sI − A−BF −HC) = 0

in the absence of the non-linearity N and by

det(sI − A−HC) = 0

when um is different from u. The dynamics of the controller in this case are thus given by

the observer dynamics which are designed to be fast and stable, hence preventing windup

problems.
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With reference to the controller of Figure 7.15, the pre-compensator W1 provides integral

action that is vital for rejecting disturbances acting on the system. However, in case of

actuator saturation, or the controller being selected off-line, the integrators continue to

integrate the error and hence cause windup problems. An anti-windup scheme is therefore

required on the weighting function W1. The approach taken here is to implement the

weight W1 in its self-conditioned or Hanus form. Given W1
s
=




Aw1 Bw1

Cw1 Dw1


, we have

from Figure 7.15:

up = W1u =




Aw1 Bw1

Cw1 Dw1


 u. (7.7.13)

When implemented in Hanus form, the expression for up becomes:

up =




Aw1 −Bw1D
−1
w1

Cw1 0 Bw1D
−1
w1

Cw1 Dw1 0





 u

upm


 , (7.7.14)

where upm is the actual plant input. Note that upm is the measurement at the output of the

actuators and hence contains information about possible actuator saturation. As discussed

above, the Hanus form (7.7.14) prevents windup by keeping the states of W1 consistent

with the actual plant input at all times. In cases where there is no saturation/substitution

(i.e., upm = up), the dynamics of W1 remain unaffected as (7.7.14) simplifies to (7.7.13),

but when upm 6= up, the dynamics are inverted and driven by upm so that the states remain

consistent with upm . Note that such an implementation requires W1 to be invertible and

minimum phase.

In addition to W1, the model M̄o(z) and the observer are also conditioned to ensure

smooth transition from one controller to the other (bumpless transfer). The observer is

conditioned so that its state always conforms to the actual input to the shaped plant.

Thus when on-line, the observer state evolves according to (7.4.6), but when off-line the

state equation becomes:

x̂Gk+1
= (A + HC) x̂Gk

+ Bum −Hyk, (7.7.15)

where um is the actual input to the shaped plant, i.e., um = u or unl or utt, depending

on which controller drives the plant at a given time. The estimated state thus remains

consistent with the actual plant input. The observer for the TT15 controller is also

conditioned in a similar way.
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For the model M̄o(z), we have (Figure 7.15):

uo = M̄or =




Ao Bo

Ck12 ρDk11


 r. (7.7.16)

In its self-conditioned form the expression for uo is written as:

uo =




Ao −Bo (ρDk11)
−1 Ck12 0 Bo (ρDk11)

−1

Ck12 ρDk11 0





 r

um − û


 . (7.7.17)

The conditioning on M̄o(z) thus ensures that the input û + uo to the shaped plant for

the (off-line) controllers follows the actual shaped plant input um. It should be noted

that we have used identical pre-compensators W1 for all the three controllers. In cases

where these need to be different, one can still partition them such that they share a

common factor (provided they have some common dynamics). M̄nl
o (z) and M̄ tt

o (z) are

also conditioned likewise. This helps in making the switching between the controllers

smooth and bumpless.

7.8 Summary

This chapter has illustrated the design procedure proposed in Chapter 6, and discussed

some of the implementation issues associated with multi-mode control systems. Design

considerations for non-square (tall) plants were discussed in §7.2. It was shown that

extra measurements with large loop-gains, can give poor disturbance rejection on the

controlled outputs. Designs for the aero-engine controller were presented in §7.3. An

efficient implementation strategy was developed in §7.4. The decoupling of the observer

and model states was exploited to yield considerable real-time computational savings.

The structure of the overall switched controller was discussed in §7.6. §7.7 described ways

of conditioning the controller to provide anti-windup action in case of actuator saturation,

and bumpless transfer when switching between different controller modes of operation.



Chapter 8

Engine test results

8.1 Introduction

The purpose of this chapter is to evaluate the H∞ multi-mode control law developed in

Chapter 7 and to present and discuss engine test results. The controller was tested on the

Rolls Royce Spey engine in July 1994. The engine is housed at one of the test facilities

of the Defence Research Agency (DRA). It is controlled via an Intel 486-based computer,

referred to as the digital control unit (DCU). The H∞ controller was coded in FORTRAN

and implemented on the DCU. Control of engine start-up was not considered, the engine

being started and brought to idle1 using conventional controllers. Arrangements were

made so that by toggling a switch, control of the engine could be transferred from and to

the conventional controller. This was done in the interests of safety; if anything were to

go wrong, the control could quickly be switched to conventional.

This chapter is organized as follows. The test results are presented in §8.2. All the three

modes of operation are considered and smooth switching between the modes is demon-

strated. New design specifications were set up after the tests; these included requirements

on the time response of the controlled system. §8.3 describes how these can be met using

the same H∞ controller as designed in Chapter 7. The engine tests were carried out at

sea-level static conditions. §8.4 evaluates the controller at a range of points across the

flight envelope (i.e., at different altitude and forward speeds) using the full non-linear

1The term ‘idle’ corresponds to the engine running just at self-sustaining speed, producing very little

or no thrust (§3.1.2).

150
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engine simulation. Finally §8.5 concludes the chapter.

8.2 Engine test results

Here we present engine test results. The output PS6PS1, as mentioned previously, repre-

sents engine thrust, and ranges from (approximately) 2.5 to 16 as the engine is accelerated

from idle to maximum power. The operating point of the engine for the tests considered

here, is therefore defined by PS6PS1.

All the three modes of operation: the thrust control mode, the NL limiting mode and the

TT15 limiting mode were tested.

8.2.1 PS6PS1 (thrust) control mode

Figure 8.1 shows a positive step demand on PS6PS1, commanding the engine to accelerate

from just above idle to about 75% of maximum power. The reference (or command) signals

are shown in dashed line and the actual outputs in solid line. The thrust controller is

on-line, and the three controlled outputs PS6PS1, DPUP, and NHPCSL are seen to track

the reference signals closely. PS6PS1 and DPUP are non-dimensional quantities, while

NHPCSL is expressed as percent of maximum speed. Engine thrust is also shown in the

figure. The thrust measurement though available on the testbed, is not available during

flight; hence we use PS6PS1 to represent and control thrust. The thrust plot serves to

illustrate the close correspondence between PS6PS1 and thrust. Figure 8.2 shows the

corresponding actuator signals. The fuel flow is measured in cc/sec and ranges from

approximately 120 cc/sec to more than 1200 cc/sec. The nozzle area is expressed as

percent of the maximum; 0% indicating minimum nozzle area and 100% indicating a fully

open nozzle. Larger nozzle areas (30% and above) are required during reheat, when the

afterburner is switched on. Control of reheat is not considered here and hence, the nozzle

actuator will be seen to operate in the lower range only. The inlet guide vane angle is

measured in degrees and ranges from 0 to 40. The fourth actuator, the blow-off valve

position, is not used for closed-loop control; it is open-loop scheduled with NHPCSL.

Figure 8.3 shows an acceleration from idle to maximum power, PS6PS1 being commanded
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from 2.5 to 16. The control signals are shown in Figure 8.4. Figures 8.5 and 8.6 show

deceleration from full power down to idle, and the corresponding actuator signals. The

reference tracking is again seen to be good. The tracking of the DPUP output is partic-

ularly important, this variable defines the surge margin of the low pressure compressor.

Good tracking on DPUP gives good surge margin regulation, which implies that the en-

gine can be operated at lower surge margins (higher efficiency) with greater confidence.

This has important implications for future engine design: engines in the future could be

designed to operate closer to their surge lines, and thus yield higher efficiency. It is seen

that three of the actuators hit their end-stops (limits) during this manoeuvre. The fuel

flow saturated at its lower limit of 160 cc/sec, the nozzle area saturated at 2%, and the

guide vane angle at 0 degrees. Although the limits for fuel flow and nozzle area could

be relaxed a bit more, these were set to conservatively safe values for the purpose of

these tests. It is observed however, that all the three actuators come out of saturation

gracefully; the AWBT compensation devised in Chapter 7 thus copes with the saturation

successfully.

It should be noted that a single controller was used throughout the operating range –

no gain-scheduling was used. Existing controllers used to drive such engines are gain-

scheduled – six or more controllers are normally scheduled between idle and full power

[100, 37, 51, 22]. The H∞ two degrees-of-freedom controller thus exhibited a superior

level of robust performance.

8.2.2 NL limiting mode

We now consider multi-mode operation of the controller. Figure 8.7 shows switching from

the PS6PS1 controller to the NL limiter when the NL limit is lowered from 102% to 80%,

the PS6PS1 demand being kept constant. It is seen from Figure 8.7(d) that before the

limit is lowered, the NL output is at 84.5%, much below the set limit of 102%, and hence

the PS6PS1 controller is on-line. Just before time 0 sec, NL limit is lowered to 80%; this

caused the limit to be violated, hence the NL limiter comes on-line, bringing NL down to

the new limit. The tracking on PS6PS1 is lost and it settles to a value in conformation

with the limit on NL. Tracking on NHPCSL and DPUP remains effective. Figure 8.8(a)

shows the fuel outputs of the PS6PS1 controller (dotted line) and the NL limiter (dashdot
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Figure 8.1: (a),(b),(c)–Reference tracking for the controlled outputs (commanded value -

- -, actual output —). (d)–Engine thrust measurement.
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Figure 8.2: Actuator (control) signals.
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Figure 8.3: (a),(b),(c)–Reference tracking for the controlled outputs: idle to maximum

power (commanded value - - -, actual output —). (d)–Engine thrust measurement.
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Figure 8.5: (a),(b),(c)–Reference tracking for the controlled outputs: maximum power to

idle (commanded value - - -, actual output —). (d)–Engine thrust measurement.
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Figure 8.6: Actuator (control) signals: maximum power to idle.
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line). The fuel selected to drive the engine is shown in solid line. It is seen that the NL

limiter demands a higher fuel initially and so the PS6PS1 controller is selected on-line,

but after the limit is lowered, the NL limiter’s fuel output becomes smaller and hence

it is chosen on-line. The switching from PS6PS1 control mode to the NL limiting mode

occurs smoothly without excessive transients or bumps.

Figure 8.9 shows switching to the NL limiter due to an excessive PS6PS1 demand. The

NL limit is fixed at 80%. Initially NL is at 70%, and the PS6PS1 controller is on-line.

At time 0 sec, the reference for PS6PS1 is raised to a high value so that it would cause

NL to exceed its limit. The NL limiter thus switches over and brings NL on to its limit.

The limit is overshot transiently, the overshoot of 1% being within the specification.

DPUP and NHPCSL are held at their demanded values. The fuel outputs of the PS6PS1

controller and the NL limiter are shown in Figure 8.10(a). The lower of the two fuels is

always selected, as indicated by the solid line. The transition is smooth and takes place

at the instant when the fuel demanded by the PS6PS1 controller (dotted line) exceeds

that demanded by the NL limiter (dashdot line).
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Figure 8.10: Actuator signals: switching to NL limiter due to excessive PS6PS1 demand.

(a)–Fuel outputs (PS6PS1 controller · · ·, NL limiter -·-·, fuel selected (to engine) —).

8.2.3 TT15 limiting mode

Figure 8.11 shows switching from the PS6PS1 controller to the TT15 limiter due to a

lowering of the TT15 limit from 913◦K down to 843◦K. Initially the PS6PS1 controller is

on-line, and TT15 is below the limit. At time 0 sec, the limit is lowered so that TT15 is

now higher than the limit; the TT15 limiter is thus selected on-line driving TT15 down

to the new limit. The tracking on PS6PS1 is lost as expected, and the other two outputs

track their references satisfactorily. The actuator signals are shown in Figure 8.12. The

lowest-wins selection on fuel is illustrated, the fuel output of the TT15 limiter (shown in

dashdot line) being selected to drive the engine when it falls below the fuel demanded by

the PS6PS1 controller (dotted line).

Figure 8.13 shows switching to the TT15 limiter following an excessive thrust demand.

The PS6PS1 controller is on-line initially and the TT15 limit is set to 843◦K. The reference

for PS6PS1 is then raised to a value that would cause the temperature limit to be violated.

The control is thus switched to the TT15 limiter, the exact instant of switching can be

seen from the controller fuel outputs shown in Figure 8.14(a).
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Figure 8.11: Switching from PS6PS1 controller to TT15 limiter by lowering the limit.

(a),(b),(c)–commanded value - - -, actual output —. (d)–TT15 limit - - -, TT15 —.

800

850

900

950

1000

-10 0 10 20 30

time (sec)

cc
/s

ec

(a) - Fuel selection: lowest wins

10

11

12

13

14

0 10 20

time (sec)

%
 a

re
a

(b) - Nozzle area (%)

14

16

18

20

22

24

-10 0 10 20 30

time (sec)

D
eg

re
es

(c) - Guide vane angle (degrees)

-0.05

0

0.05

-10 0 10 20 30

time (sec)

%
 p

os
iti

on

(d) - Blow-off valve position (%)

Figure 8.12: Actuator signals: switching to TT15 limiter by lowering the limit. (a)–Fuel

outputs (PS6PS1 controller · · ·, TT15 limiter -·-·, fuel selected (to engine) —).



Chapter 8. Engine test results 160

6

8

10

12

14

16

-20 0 20 40

time (sec)

PS
6P

S1

(a) - Reference tracking for PS6PS1

0.05

0.1

0.15

0.2

-20 0 20 40

time (sec)

D
PU

P

(b) - Reference tracking for DPUP

75

80

85

90

95

-20 0 20 40

(c) - Reference tracking for NHPCSL

time (sec)

%
 s

pe
ed

700

750

800

850

-20 0 20 40

time (sec)

D
eg

re
es

 K
el

vi
n

(d) - Riding upto & holding TT limit

Figure 8.13: Switching from PS6PS1 controller to TT15 limiter due to excessive PS6PS1

demand. (a),(b),(c)–commanded value - - -, actual output —. (d)–TT15 limit - - -,

TT15 —.

200

400

600

800

1000

-20 0 20 40

time (sec)

cc
/s

ec

(a) - Fuel selection: lowest wins

8

10

12

14

16

18

-20 0 20 40

time (sec)

%
 a

re
a

(b) - Nozzle area (%)

15

20

25

30

-20 0 20 40

time (sec)

D
eg

re
es

(c) - Guide vane angle (degrees)

0

20

40

60

80

100

-20 0 20 40

time (sec)

%
 p

os
iti

on

(d) - Blow-off valve position (%)

Figure 8.14: Actuator signals: switching to TT15 limiter due to excessive PS6PS1 de-

mand. (a)–Fuel outputs (PS6PS1 controller · · ·, TT15 limiter -·-·, fuel selected —.



Chapter 8. Engine test results 161

8.3 Improving speed of response

New specifications [99] were provided after the tests; these included requirements on the

step response of the closed-loop system. In particular, the requirement given for a small

scale step response for thrust was that the response should attain 90% of the demanded

change within 0.5 seconds of the initiation of the step and thereafter stay within a band

of 10% of the change from the demanded value. The engine test results indicate that this

requirement has not been met. We will now show how to improve the speed of response

of the closed-loop system so that the specification is achieved; the same controller will be

used and no redesign is required.

It should be noted that the H∞ controller of Chapter 7 was designed so that it could

yield rise times of magnitude similar to that required by the new specification. This can

be seen from Figure 7.3, in which the linear PS6PS1 response is seen to settle within the

desired time of 0.5 seconds. The sluggishness observed in the engine tests arises from the

particular implementation of the anti-windup compensation used. Note that the weight

W1 is conditioned based on the “measured” actuator position (upm in equation (7.7.14)),

and is thus influenced by the actuator dynamics. Even when there is no saturation, upm is

not equal to up (because of the dynamics of the actuators), and this affects the dynamics

of W1 as (7.7.14) does not simplify to (7.7.13). W1 is conditioned so that its states (and

output up) conform to the measurement upm , and since upm always lags behind up due to

the actuator lag, the effect is to make the control signal sluggish, and the response slow.

It should be noted that engine control systems in general do not use the actual actuator

position to produce anti-windup, and in any case such a measurement is not available

during flight. The actuator saturation levels are known and in practice the control signal is

limited by the control computer itself before giving it to the actuators. In other words, the

computed output of the controller is “software limited”, and this limited output is used for

conditioning. The sluggishness caused by having the actuator dynamics in the anti-windup

loop is therefore removed. In the test results shown, the actual actuator measurement was

used since it was desired to be able to switch to and from the conventional controller at any

time. In the actual implementation however, this would not be the case, conditioning will

be done with respect to the (limited) output of the controller, and the speed of response
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will improve. This is seen from Figure 8.15 in which the dashed line shows the (linear)

case when the controller is conditioned with the actuator measurement, and the solid line

corresponds to conditioning being done with the controller output. In both cases there is

no saturation, the sluggishness of the response for the former case is clearly seen. Thus

it can be said that the same controller (as was tested on the engine) should be able to

meet the time domain specification when conditioned with the ‘proper’ signal. This is

confirmed by simulating the controller on the full non-linear engine model; Figure 8.16

shows that the response is well within the specification and faster than that achieved by

some existing controllers [100, 37]. It should also be noted that for the engine tests, the

reference demands were rate-limited; the rate limit could also be increased to yield faster

responses.
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Figure 8.15: Linear step responses: conditioning done with the (limited) output of the

controller —, conditioning done with the actuators’ measured output - - -.

8.4 Full flight envelope evaluation

The operating point of an aero-engine is defined by its operating altitude, forward speed

(or Mach number) and the thrust being produced. The altitude and forward speed cause
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Figure 8.16: Step response for the non-linear model.

the engine’s inlet pressure and temperature to change and it is this change in pressure

which causes the engine dynamics to vary. In the test results presented earlier, the thrust

level varied, but the altitude and speed were fixed to be zero. It was found that the

controller’s performance was robust enough to cope with the change in engine dynamics

due to variation in thrust. We shall now analyse the controller at different combinations

of altitude and forward speed, i.e., at different points in the flight envelope.

The flight envelope of the Spey engine is defined in Table 8.1 and depicted graphically

in Figure 8.17. Also given in Table 8.1 is the engine inlet pressure which varies from 216

kPa for point 8 to 17.6 kPa for point 7. This variation in pressure causes considerable

change in the engine open-loop dynamics, and to cope with this, controllers designed for

full flight envelope operation have always had to be gain-scheduled [52, 77, 74].

The H∞ controller designed in Chapter 7 was tested over the entire flight envelope using

the full non-linear engine simulation. Step responses for the thrust output (PS6PS1) for

flight points 1, 2, 3, 4, 6, 8 and 10 are shown in Figure 8.18 and are seen to be acceptable

and within the specification. Responses for points 5, 7 and 9 are shown in Figure 8.19;

these show excessive cross-coupling from PS6PS1 to the DPUP channel, in particular
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Flight point Mach number Altitude (kft) Total Inlet Pressure (kPa)

1 0.0 0 101.325

2 0.0 5 84.3073

3 0.2 5 86.6916

4 0.297 20 49.5023

5 0.4 36 25.3785

6 0.8 20 70.9782

7 0.8 50 17.6782

8 1.1 0 216.3427

9 1.1 36 48.5302

10 1.8 36 130.598

Table 8.1: Flight envelope of the Spey engine – possible flight points for control checks.
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Figure 8.17: Operating envelope for the Spey engine.
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DPUP shows 60% coupling for point 7. It is observed that these three points correspond

to relatively low engine inlet pressures (Table 8.1). It should be noted that the outputs

of the aero-engine are inter-dependent: in practice the reference set-points for the various

outputs will be changed in accordance with each other, hence the interaction between the

PS6PS1 and DPUP outputs is not as serious as it appears from the figure. Nevertheless

this cross-coupling should be reduced and this can be done by appropriately filtering the

references before giving them to the controller. As an example, we consider a pre-filter of

the form:

Kp =




1 0 0

α s
s2+15s+50

1 0

0 0 1


 , (8.4.1)

where α is a scalar gain which can be scheduled between different points. Step responses

for flight points 5 and 7 were repeated with the pre-filter, α being chosen to be 9 for point 5,

and 12 for point 7. These responses are shown in Figure 8.20; it is seen that the interaction

has been reduced to an acceptable level. The parameter α can thus be scheduled with

the inlet pressure to reduce the cross-coupling observed at low pressures. The responses

are now within the specification, except for the rise time for point 7, the 90% level being

achieved in 0.65 seconds, instead of 0.5 seconds. This will require some redesign: the

weighting functions W1 and W2, and/or the reference model Mo may be changed and the

controller re-synthesized. It is emphasized however that the specifications [98] and [99]

were prepared primarily for sea-level static conditions; for other flight points these may

be slightly different.

Disturbance step responses for PS6PS1 are shown in Figures 8.21 and 8.22 for flight points

1 and 7, respectively. The rejection of the disturbance is seen to be satisfactory.

8.5 Conclusions

Engine test results were presented and were seen to be very promising. The tests were

conducted on the Rolls Royce Spey engine at the DRA at sea-level static conditions. The

controller performed all the tasks well, and within the specification. One single controller

was used – gain scheduling was not required. Existing controllers [100, 37] need to be

scheduled – six or more controllers are normally scheduled between idle and full power.
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Figure 8.18: Non-linear step responses for flight points 1,2,3,4,6,8 and 10.
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Figure 8.19: Non-linear step responses for flight points 5,7 and 9.
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Figure 8.20: Non-linear step responses for flight points 5 and 7 with the pre-filter.
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Figure 8.21: Non-linear disturbance step response for PS6PS1 at flight point 1.
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Figure 8.22: Non-linear disturbance step response for PS6PS1 at flight point 7.

Factors affecting the speed of response of the closed-loop system were discussed, and it

was shown how the controller could be conditioned to improve the system’s rise time. Full

flight envelope evaluation of the controller was carried out by using the full non-linear

simulation of the aero-engine. The plant dynamics were seen to vary considerably with the

engine’s inlet pressure. The controller performed satisfactorily at seven of the ten points

chosen. The three other points were judged to require some redesign: this could either be

a pre-filter for shaping the references, or a separate controller, which could be switched

to at low inlet pressures. In any case, more design and test effort is required in this

direction. Closed-loop specifications need to be produced for the entire flight envelope,

and designing for these will be the subject of future work.

In conclusion of this chapter, it can be said that the controller was seen to provide, in

addition to robust stability, a good degree of robust performance, and therefore holds

great potential for success in the field of high performance aero-engine control.



Chapter 9

Conclusions and suggestions for further research

9.1 Conclusions

This thesis demonstrates the applicability of H∞ control theory to real engineering prob-

lems. H∞ control techniques were used to develop robust digital controllers for high

performance aero-engines. Engine tests were carried out to demonstrate the design work

and to make comparisons with existing control systems. The major conclusion of this

work is that H∞ control theory is indeed a powerful design tool which can provide practi-

cal and workable solutions to the control problems associated with complex multivariable

systems.

The design problem tackled here is a challenging one, owing to the highly nonlinear

behaviour of the plant, a limited amount of computing power available, and the necessity

of preventing violation of several operational constraints. In the process of designing the

controller, many issues regarding the design and implementation of robust multi-mode

controllers were brought to light. Some answers to these issues have been found and

have resulted in an overall design methodology which is fairly generic and which could be

applied to a multitude of other problems. The main conclusions and contributions of this

thesis are now discussed.

• The working and operation of high performance aero-engines, and associated control

problems were discussed in detail. Multi-mode control logic was developed to ensure

that engine variables are always limited to specified safe values. Since the controller

was to be implemented using a digital computer, the delays associated with such

169
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an implementation were modelled exactly in the discrete domain, and the controller

synthesized directly in discrete time.

• Some of the engine parameters which need to be controlled, such as thrust and com-

pressor surge margin, are not directly measurable. Instead, a host of representative

measurements are available which can be controlled to provide indirect control of

these parameters. A methodology for choosing between the available measurements

(control structure design) was presented and demonstrated on the aero-engine ex-

ample.

• To derive accurate, yet low order models of a physical system from more compli-

cated models is very important for the design of reasonably low order controllers. For

this purpose, model reduction using balanced realizations was investigated. Resid-

ualization of balanced realizations was considered, and detailed comparisons made

with balanced truncation and optimal Hankel-norm approximation. Balanced resid-

ualization was shown to preserve the steady-state gain of the system and produce

accurate matching at low and medium frequencies. This is favourable for both plant

and controller order reduction. The various techniques were demonstrated on two

illustrative examples.

• Modern design methods, such as H∞-optimization, are generally considered by prac-

titioners and industrial engineers to produce controllers which are too complex with

regards to practical implementation. This is in part due to the high state dimension

of the resulting controllers, and also largely due to the fact that the basic structure

and operation of these controllers is not as intuitive and readily recognisable as that

of say, the more familiar PIDs. Nevertheless, the limitations of single-input single-

output control are becoming more and more widely appreciated, and the need for

inherently multivariable design procedures has become more accepted. The benefits

offered by multivariable control led the aerospace industry, to take up and apply

in the 1960s and 70s, the linear quadratic Gaussian based design methods to flight

control problems. The notion of control via state feedback combined with a state es-

timator was thus first taken up by the aerospace industry, and gradually this concept

gained familiarity and acceptance from other industries as well. With this in the
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background, a particular H∞ design formulation was considered, and the structure

of the controller investigated. The design technique considered is both powerful and

simple to use; the design procedure involves generalization of classical loop-shaping

ideas, and provides robust performance in the sense of making the closed-loop sys-

tem match an ideal time response model. The resulting H∞ controller was shown to

possess the familiar observer plus state feedback structure. The controller structure

was utilized to yield considerable real time computational savings.

• The design procedure was illustrated by working through the design details of the

aero-engine controller. The structure of the overall switched multi-mode controller

was described. Implementation issues were discussed and an efficient form for imple-

mentation presented. The problem of anti-windup and bumpless transfer between

different modes of operation was discussed and a simple strategy for dealing with

this problem outlined.

• Engine test results were presented and discussed. The engine was operated over its

full thrust range. One single controller was used – gain-scheduling was not required.

Existing engine controllers need to be gain-scheduled – six or more controllers are

normally scheduled between idle and full power [100, 37, 51, 22]. Furthermore, the

same controller was evaluated over the entire flight envelope using the full nonlinear

engine simulation provided by the DRA. The controller gave good performance for

seven of the ten flight points simulated. For the three other points, a high level of in-

teraction was observed, but this was shown to be reduced by appropriately filtering

the reference signals. However, some redesign for one of the flight points was still

thought to be required to meet the rise time specification. It is however, remarked

that the specifications were originally prepared for sea-level static conditions. New

specifications therefore, need to be devised for other points in the flight envelope.

More design and test effort is required in this area and this should be the subject of

future research. The robust performance of the controller was nevertheless demon-

strated, and was found to be far superior to that afforded by existing engine control

systems. It is reckoned that simple scheduling of the reference pre-filter or at most,

one additional controller which could be switched to at low inlet pressures, would be

sufficient for the entire flight envelope. Multi-mode operation of the controller was
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also engine tested and found to give excellent results. The anti-windup and bump-

less transfer compensation worked well – the switching between different modes of

operation was smooth and bumpless.

9.2 Suggestions for future research

The work presented in this thesis, in terms of both design and implementation, points to

a number of areas which require further research. These are discussed below.

• The model reduction approach advocated in Chapter 5 is applicable only to asymp-

totically stable systems. To tackle unstable systems, one way to proceed is to use

a fractional representation of the system, as proposed by McFarlane & Glover [64].

For example, an unstable system G can be written in terms of its coprime factors

as G = M−1N , where M, N ∈ RH∞. The balanced residualization technique could

then be used to approximate
[

N M

]
of degree n by

[
Nr Mr

]
of degree k,

where k < n. The reduced order transfer function Gr could then be formed as

Gr = M−1
r Nr. Whereas the error bound

∥∥∥∥
[

N M

]
−

[
Nr Mr

]∥∥∥∥∞
is known,

the bound on the error between the full order and reduced systems, i.e., ‖G−Gr‖∞
is not available. Deriving this bound could be a subject for future research.

• A more general and challenging problem pertaining to controller reduction is that

of finding the optimal reduced order controller, where by optimal we mean the con-

troller which best meets the performance and robustness requirements from amongst

the set of all possible reduced order controllers of a given degree.

• Multi-mode control logic was developed to preserve the structural integrity of the

engine by limiting certain critical variables to specified maximum values. This was

done by designing a number of controllers and then switching between them using

a lowest-wins gate. The rationale behind this strategy is that a large demand on

thrust will require a large amount of fuel, and hence result in higher temperatures

and speeds. This can cause the temperature and/or speed limits to be violated.

Alternative multi-mode schemes, such as the one shown in Figure 9.1, can also be

investigated. With reference to Figure 9.1, the idea is to devise a strategy where the



Chapter 9. Conclusions and suggestions for further research 173

reference demand for thrust (PS6PS1ref) is “backed off” when a particular limit is

about to be violated.
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Figure 9.1: An alternative limiting strategy.

The output to be limited, say the temperature TT15 in this case, is passed to a

nonlinearity N , whose output is connected to the linear compensation KL. The

nonlinearity N can be designed such that its gain is unity when the input exceeds

some specified value, but is zero at all other times. Hence the signal ê could be

arranged to become non-zero just before the limit is about to be exceeded, and

based on this the compensator KL can generate a signal r̂ which will serve to lower

the demand on thrust. A limiting scheme could be developed based on these ideas.

The design of the compensator KL and the nonlinear element N is, however, an

open question and requires further research.

• The structure of the H∞ loop-shaping controller was shown to be utilized to yield

considerable real time computational savings. The computational load could be

reduced further by making use of the minimal modal canonical form proposed by

Nett & Polley [71], and later used by Hyde [46]. When implemented in this form

the A matrix of the state-space realization (A,B, C,D) has elements only on the

leading diagonal and the immediate off-diagonals, and the B matrix consists mainly
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of ones and zeros. Finding such a realization is straightforward and just requires

an eigenvalue-eigenvector decomposition of the matrix A. For future implementa-

tion, the observer and the reference model parts of the controller could both be

implemented in the modal form; this is expected to yield further computational

savings.

• Design of anti-windup and bumpless transfer (AWBT) compensators for multivari-

able systems is quite ad hoc at present. A set of guidelines as to which anti-windup

scheme is most appropriate for a given situation would be very useful.

The AWBT design problem has almost always been tackled by breaking it down

into two separate parts:

(i) the design of the controller without regard to control limitations and sub-

stitutions, and

(ii) the design of AWBT compensation to minimize the adverse effects of lim-

itations and substitutions on closed-loop performance.

Campo et al. [8] and Campo & Morari [7] have proposed a general framework for

the study of anti-windup designs, which has implications for developing synthesis

procedures as well; synthesis results are, however, not yet available. A challenging

problem for future research could be to further the work of Campo et al. [8] and

Campo & Morari [7] and to develop general synthesis methods for AWBT controllers.

• The dynamics of high performance aero-engines have been found to vary consider-

ably over the operating envelope. Different design techniques could be applied to

design robust and/or adaptive controllers for such systems. The controllers should

provide full flight operation, and should prevent violation of operational constraints.

One particular design approach was considered in this thesis, other approaches could

be used and the results compared with those presented here.

One of the design methods which could be applied to the aero-engine control problem

is µ-synthesis. Linear engine models for different operating points could be obtained,

and the change in the state-space description of the plant modelled as structured

uncertainty [72]. Once in this form, the state-space uncertainty can be used in
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structured singular value analysis, and also for design using D-K iteration [16]. µ-

optimal controllers can thus be designed; this should address explicitly the problem

of maintaining acceptable performance over the entire operating range of the engine.

The robustness that H∞-optimization provides can thus be “tuned” to the problem

at hand. This could be a novel and challenging application for design using µ-

synthesis techniques.
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