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ABSTRACT 

i 
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Ying Wang 
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University of Leicester 

Abstract 

Bioresorbable polymers, especially the homo and co-polymers of poly lactic acid (PLA) 

and poly glycolic acid (PGA), have been used for a broad range of applications for the 

last three decades owing to their biodegradable, biocompatible and non-toxic natures. 

One of the applications for these polymers is in the orthopaedic surgery as bone fixation 

device. According to the Wolff‟s law, if the bone fixation devices are overly strong to 

shield the healing bone from sufficient stress stimulation, the bone will resorb to an 

extent. Therefore the optimised design of such devices relies on the prediction of the 

stress redistribution between the device and the bone during the device degradation. 

However, the auto-catalysis nature of the polymer degradation brings extra 

complications to the modelling of the device degradation. Currently the time consuming 

trial and error approach is widely employed in the device development. In fact 

mathematical models and the finite element method can be a great assistance to the 

designing of these resorbable devices. This thesis presents a complete model for the 

interaction between a resorbable fixation device and a healing bone. 

 

A phenomenological model is firstly presented that can capture the main features of the 

polymer degradation. An important factor in this model is the effective diffusion 

coefficient for the oligmers which is studied subsequently. Then an entropy theory 

based model is presented to relate the decay of Young‟s modulus to the polymer 

degradation. Finally the polymer degradation model and the Young‟s modulus decay 

model is integrated with a bone remodelling model and stress analysis to predict the 

growth or decay of a healing bone that is “protected” by a bioresorbable fixation device. 

The work in this thesis focuses on amorphous polymers. The work is entirely 

computational which is guided by existing experimental data and observations in the 

literature. 
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Chapter 1 

Introduction to Bioresorbable Polymeric Medical 

Devices 

 

Sutures made of bioresorbable polymers have been successfully used in surgery since 

the 1970s (Ratner et al., 2004). Screws and plates made of similar polymers are being 

increasingly used to fix broken bones (Athanasiou et al., 1996; Barber et al., 2000; 

Rokkanen et al., 2000). Bioresorbable wafers loaded with anticancer drugs are placed 

into resection cavity after cancer surgery to slowly release the drugs, preventing the 

cancer from coming back (Moses et al., 2003). Intensive research is being carried out 

worldwide to use porous foams made of bioresorbable polymers as scaffolds for tissue 

regeneration (Sanz-Herrera et al., 2009). In all these applications, the bioresorbable 

devices firstly provide some temporary functions, then degrade to let biology take over 

and are eventually metabolised into carbon dioxide and water. Figure 1 shows some 

typical examples of the biodegradable devices including scaffolds for tissue engineering, 

fixation screws for broken bones and drug-loaded matrices for controlled release. 

 

(a)     (b)       (c)     (d) 

Figure 1 (a) Scaffold for tissue engineering (Wu and Ding, 2004); (b) – (c) fixation 

devices for orthopaedic surgeries (Gutwald et al., 2002) (PolyMax®, Inion); (d) 

polymeric wafers loaded with anticancer drug (Moses et al., 2003) (Gliadel®). 

 

The development is, however, entirely based on trial and error. The degradation rate 

strongly depends on the shape and size of the devices (Grizzi et al., 1995), making it 

difficult to transfer experience from one device to another. The degradation time for 

biodegradable polymers ranges from weeks to years (Cameron and 
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Kamvari-Moghaddam, 2008); animal and ultimately human trials have to be carried out, 

making the trial and error approach time-consuming and expensive. The research and 

development of bioresorbable devices would benefit enormously from mathematical 

models capable of predicting the degradation rate and the corresponding change in 

elastic properties of the devices as well as the interaction between polymer degradation 

and the healing bone. This thesis sets out to develop such models.  

 

1.1 Introduction to biodegradable polymers 

 

Biodegradable polymers are the kind of polymers that will eventually disappear once 

introduced into a living organism. The term biodegradable can also be found in 

literature together with the term bioabsorbable, with no clear distinction made between 

the definitions. Like all other polymers, biodegradable polymers are also comprised of 

large numbers of repeating units and the number of these units on one single polymer 

chain is defined as the degree of polymerisation and a small molecule of these repeating 

units is called a monomer. This type of polymer, either naturally generated or 

synthetically manufactured, has attracted great attention from researchers and 

commercial markets within the last three decades. These innovative materials enjoy 

such increasing popularity mainly because they can be degraded by the hydrolysis 

process and the products can be eliminated by natural pathways. Of the two kinds of 

biodegradable polymers, it is the synthetic materials which have much wider application 

in daily life as these materials can be designed and controlled to meet certain practical 

requirements – physical, mechanical, etc. Among all the biodegradable polymers that 

are currently used, three linear aliphatic polyesters have found the broadest range of 

application owing to their great bio-compatibility and non-toxicity (Gupta et al., 2007; 

Chu and Liu, 2008; Athanasiou et al., 1996). These linear polymers are: poly (lactic) 

acid, poly (glycolic) acid and poly ( ε -caprolactone) (Cameron and 

Kamvari-Moghaddam, 2008; Gupta et al., 2007). Their chemical structures are listed in 

figure 1.1.1 (Chu and Liu, 2008). 
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Figure 1.1.1 The chemical structure of linear aliphatic polyesters (Chu and Liu, 

2008). 

 

Owing to the variety of their chemical structures (figure 1.1.1), polymers behave 

differently from each other in terms of their degradation rate and mechanical properties, 

especially as regarding to the impact of those factors, such as crystallinity, 

co-polymerization, fabrication techniques, composite formation, and so on. The 

degradation time of the above polymers can be tailored from weeks to years to suit 

different applications by changing the average molecular weight and the initial degree 

of crystallinity, and by co-polymerising or blending in different proportions (Li et al., 

1990
a
; Li et al., 1990

b
; Li et al., 1990

c
; Saha and Tsuji, 2006; Renouf-Glauser et al., 

2005).  

 

PGA is the simplest linear polyester with a faster degradation rate and higher 

crystallinity. The first totally synthetic, absorbable suture to be commercially 

manufactured was sold under the trade name „Dexon‟ in 1970 and made from poly 

(glycolic acid) (PGA). The disadvantage of PGA was that its mechanical property was 

lost rapidly within two to four weeks (Ratner et al., 2004). To ensure a wider range of 

application, poly (lactic acid) (PLA) was later introduced, as it is more hydrophobic 

than PGA and therefore degrades at a much slower rate (Cameron and 

Kamvari-Moghaddam, 2008). Meanwhile their co-polymers rapidly lost their 

crystallinity and degraded much faster than both of the polymers (Ratner et al., 2004).    

 

PLA is of several kinds, since the lactic acid is a chiral molecule, as figure 1.1.2 

suggests (Gupta et al., 2007). 
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Figure 1.1.2 Chiral molecule structure of D-Lactic acid (PDLA) and L-Lactic acid 

(PLLA) (Gupta et al., 2007). 

 

The structure in figure 1.1.2 gives two morphologies of the polymers: D-PLA, L-PLA; 

these two optical isomers can generate their racemic form D, L-PLA, from which the 

rarely used meso-PLA can be obtained. L-PLA is more frequently used than D-PLA 

because the hydrolysis product yields L (+)-lactic acid, a naturally occurring stereoisomer 

of lactic acid. The D, L-PLA is always amorphous and therefore it has a degradation rate 

faster than that of L-PLA whereas the latter has higher mechanical strength. The 

co-polymers of PLA and PGA can be designed to fit requirements, i.e. by changing the 

crystallinity, morphology and molecular weight (Chu and Liu, 2008). It is notable that 

the co-polymer loses its crystallinity considerably, despite PGA itself being a highly 

crystallising material (Ratner et al., 2004; Chu and Liu, 2008). If PDLLA is the 

composite of the co-polymer, the material becomes amorphous in nature (Ratner et al., 

2004; Chu and Liu, 2008). The lower crystallinity of the co-polymer obviously reduces 

the degradation time of these materials. PCL is hydrophobic polyester with a much 

longer degradation time than PLA and therefore can be used for long-term drug delivery 

devices that remain active for over a year (Chu and Liu, 2008). It is mechanically much 

more flexible than PLA or PGA. The polymers can be made by either direct 

condensation, which produces a polymer of low molecular weight, or by ring-opening 

polymerisation to obtain high and controllable molecular weight products. Figure 1.1.3 
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shows PLA derived from lactic acid by ring-opening polymerisation stimulated by a 

catalyst and heat (Cameron and Kamvari-Moghaddam, 2008; Chu and Liu, 2008).  

 

Figure 1.1.3 Ring-opening polymerisation of lactide in the presence of a catalyst 

and heat (Chu and Liu, 2008; Cameron and Kamvari-Moghaddam, 2008). 

 

Molecular weight is a factor that has to be given consideration in the selection or design 

of the material because the molecular weight can affect both the degradation rate and 

the mechanical properties of the polymers (Park, 1995). 

 

1.2 Current application of biodegradable polymers 

 

The typical applications of biodegradable polymers can be sub-categorised into five 

types (Ratner et al., 2004):  

(1) Temporary support device: provides an artificial mechanical support when the 

original tissue bed is broken or weakened by disease, injury or surgery. The device 

should be able to take the load instead of the tissue and gradually transfer it back as the 

tissue heals. The adjustment of the degradation rate to suit the healing of the 

environment is one of the major challenges in design. 

(2) Temporary barrier: prevents the adhesion of two nearby tissue surfaces that are 

not meant to bond together as the failure of separation may cause pain, functional 

impairment, and other problems. The normal forms of these barriers are films and 

membranes  

(3) Implantable drug delivery device: implanted into the patient‟s body as the carrier 

of the drug particles and vanishes after a certain period of time, preferably after the drug 
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is totally released or the disease fully cured. The release rate of the loaded drug is 

decided by the material‟s diffusivity, therefore its geometry and structure as well. 

(4) Tissue engineering scaffold: provides space for cells to grow into and to 

reorganise into functional tissue. For tissue engineering scaffolds, pore interconnectivity 

is a key property as body cells need to grow throughout the material, similarly to the 

temporary support implant; one of the major challenges in design is to adjust the rate of 

degradation to the rate of tissue healing.  

(5) Multifunctional devices: combine the several functions mentioned above within 

one device. For instance, a bone fixation device may also carry some bone healing 

substances with known effectiveness.  

These bioresorbable devices are listed below in table 1.2.1 together with some 

comments on their status of development. 
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Table 1.2.1 Medical applications of biodegradable polymeric devices 

Applications Device examples Comments 

Wound 

management 

Sutures; Staples; Clips; 

Adhesives; Surgical meshes 

Currently occupy most of 

market share in biodegradable 

devices 

Orthopaedic 

fixation 

Pins; Rods; Screws; Tacks; 

Ligaments 

In wide clinical use; 

over-designed, problem with 

bone regeneration 

Dental applications 
Tissue regeneration membrane; 

Void filler 
In clinical use 

Cardiovascular 

applications 
Stents Unsuccessful so far 

Intestinal 

applications 
Anastomosis rings  

Drug delivery 

systems 
Excipients 

Under active research, a few 

drugs already approved for 

clinical use 

Tissue engineering Scaffolds of various forms 
Under intensive research and 

undergoing multi-clinical trials 

 

The three aliphatic polymers have been used differently in these applications. For 

example, the D, L-PLA is often used in drug delivery systems owing to its faster 

degradation rate (Cameron and Kamvari-Moghaddam, 2008) whereas the L-PLA is 

more useful in applications like fixation devices because of its high mechanical strength 

(Cameron and Kamvari-Moghaddam, 2008). The co-polymers of PLA and PGA were 

used as sutures as long ago as 1974. The major applications of these polymers are listed 

in table 1.2.2: 
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Table 1.2.2 Major applications of the three linear aliphatic polymers 

Polymers Major applications 

PCL Long-term drug delivery, tissue engineering 

 

PGA Bone fixation (bone pins) 

 

PLGA Drug delivery, suture 

PDLLA Drug delivery where it is important to have a homogeneous 

dispersion within the carrier matrix. 

PLLA Sutures and orthopaedic devices, where high mechanical 

strength and toughness are required. 

 

The reason why the different types of polymers can be made into several types of 

devices with various functions lies in the difference between the two main 

characteristics of the polymers: degradation rate and mechanical strength. Therefore it is 

vital for a mathematical model to capture these two aspects. 

 

1.3 The Mechanisms of Biodegradation 

 

The biodegradation of polymers in the body is a two-phase process (Chu and Liu, 2008; 

Ratner et al., 2004; Gupta et al., 2007): (a) chemical hydrolysis of the polymer 

backbone and (b) active metabolism. During the first phase, water penetrates the 

biodegradable device, preferentially attacking the ester bonds in the amorphous phase 

and converting the long polymer chains into shorter water-soluble fragments. In the 

second phase, enzymes released from white blood cells attack these fragments, causing 

the further degradation of the polymer to natural monomeric acids found in the body, 

such as lactic acid. These acids enter the citric acid cycle and are excreted as water and 

carbon dioxide. The cleavage of the unstable polymer backbone could be mediated by 

water or by biological agents such as enzymes and micro-organisms called hydrolytic 
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degradation and biodegradation, respectively. A scheme for the hydrolysis reaction is 

shown in figure 1.3.1 (Ratner et al., 2004). 

 

Figure 1.3.1 Scheme of degradation process. 

 

The H
+
 from water attacks the ester bond and releases those repeating units from the 

backbone to generate soluble fragments of low molecular weight. For the most common 

polyesters such as polyglycolic acid (PGA), polylactic acid (PLA) and polycaprolactone 

(PCL), the degradation rate depends not only on the polymer but also on the shape and 

size of the device (Grizzi et al., 1995). It is well established that the degradation is 

heterogeneous in larger devices as shown in figure 1.3.2 – the inside degrades much 

faster than the surface (Li et al., 1990
b
). 
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Figure 1.3.2 Hollow structure of a PLA37.5GA25 specimen after ten days of 

degradation in distilled water (Li et al., 1990
b
). 

 

This size effect makes it difficult to transfer experience from one device to another even 

if they are made of the same polymer. The reason why this material degrades into 

hollow structures is the co-existence of hydrolytic degradation as well as an 

auto-catalytic mechanism. If some small and water-soluble fragment can diffuse away, 

then the acidity of the local environment is reduced. This explains why the surface 

degrades more slowly than the core of a device (Li et al., 1990
b
; Li et al., 1990

a
). 

Auto-catalysis is a factor that complicates the biodegradation. The chemical reaction of 

hydrolysis of the polymer‟s unstable backbone can be categorised by acid-catalysed 

hydrolysis and base-catalysed hydrolysis depending on the pH value within the system 

(Cameron and Kamvari-Moghaddam, 2008). Polymer hydrolysis rate increases as the 

concentration of the reaction product increases. The hydrolysis of polyester produces 

shorter chains with acid and alcohol end groups. For PLA, the acid end groups have a 

high degree of dissociation which gives rise to an acidic environment, significantly 

accelerating the hydrolysis rate (Siparsky et al., 1998). Therefore elimination of these 

shorter chains within the system is important for control of the overall degradation rate. 

The interplay between monomer diffusion and the hydrolysis reaction is a central issue 
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that any model must consider. Furthermore, the monomers diffuse in a degrading 

polymer which has increasing porosity, crystallinity and water content as the 

degradation progresses. A four degradation stage mechanism is proposed to describe the 

degradation of PGA polymers (Hurrell and Cameron, 2001
a
; Hurrell and Cameron, 

2001
b
; Hurrell and Cameron, 2002; Hurrell et al., 2003; Milroy et al., 2003; Hurrell and 

Cameron, 2003). In the first stage, a small amount of water quickly diffuses into the 

sample reaching an equilibrium concentration and forming a homogeneous water 

distribution. This procedure happens several hours after the polymer is exposed to the 

aqueous medium. During the second stage, very little water is absorbed and very little 

polymer mass is lost. Relatively long polymer chains undergo scissions on reaction with 

water that reduces polymer molecular weight in this stage. In the third stage, the 

polymer reaches a critical molecular weight so the inside oligmer chains are small 

enough to dissolve into the degradation medium and subsequently diffuse out of the 

polymer matrix. The diffusion of these oligmers leaves space for massive water to come 

into the system, the absorption of water will allow even faster diffusion for the oligmers. 

Therefore a reaction-erosion front is formed owing to the autocatalysis difference 

between centre and surface of the material. The position of this reaction-erosion front 

moves towards the polymer centre and hypothetically there is a fourth stage that the 

reaction-erosion fronts meet in the polymer centre, degradation continues in this stage 

until the polymer is all degraded. The variation of the effective diffusion coefficient 

with respect to the above factors has to be modelled, this brings extra complication to 

the modelling of the diffusion coefficient. 

 

The degradation mechanism is basically the scission of the polymer chains. It can be 

further divided into end scission and random scission (Shih, 1995
a
; Shih, 1995

b
; de 

Rong et al., 2001; Belbella et al., 1996; van Nostrum et al., 2004) as figure 1.3.3 

demonstrates, depending on the position of the chain cleavage when attacked by acid. 
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Figure 1.3.3 Demonstration of end scission and random scission mechanisms. 

 

End scission occurs at the end position of polymer chains. Random scission, on the 

other hand, takes place at any random place of a polymer chain. Because the monomer 

product released from the polymer chain has an acid end that locally accelerates the 

degradation in the following steps, further end scission is very likely to take place with 

the presence of acid ends, or in other words, where end scissions have happened. 

Therefore this polymer chain will become shorter and shorter by losing its end units one 

by one because of auto-catalysis. This mechanism is often known as „unzipping‟. 

 

1.4 Purpose and structure of the thesis 

 

Despite the intensive research taking place in polymeric biomaterials, little modelling 

work has been undertaken. Trial and error, as a classical research method, is practised 

all around the world in the development of the bioresorbable devices. “Given the 

benefits of modelling, there is a surprising lack of work in this area. Many published 

studies of degradation characterise and describe changes in properties such as molecular 

weight, crystallinity, strength and mass loss over time. However, there is rarely any 

attempt to link these aspects.” (Farrar, 2008). A more detailed literature review on the 

existing models of polymer degradation will be presented in Chapter 2. However it is 
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worth pointing out here that only a few papers can be found in the literature on 

modelling degradation of bioresorbable devices. Rate equations for hydrolysis reaction 

were proposed and compared with experimental data (Siparsky et al., 1998). 

Reaction-diffusion equations were developed and solved for one-dimensional problems 

to predict drug release (Göpferich and Langer, 1995; Joshi and Himmelstein, 1991). 

Population balance models were developed to simulate polymer chain scissions (Staggs, 

2002; Staggs, 2004). Kinetic Monte Carlo models were developed to simulate scaffold 

degradation (Mohammadi and Jabbari, 2006). Molecular dynamic models were used to 

calculate activation energies for hydrolysis reactions (Entrialgo-Castano et al., 2006). 

An over-simplistic degradation model was combined with a bone remodelling model for 

scaffold design (Sanz-Herrera et al., 2009). These previous models, however, do not 

form an integrated framework for device design.  

 

This thesis focuses on orthopaedic fixation devices made of amorphous resorbable 

polymers. The aim of this thesis is to present a complete mathematical framework to 

predict the interplay between the degradation of fixation devices and bone healing. 

Governing equations for the polymer degradation are developed. A simple entropy 

spring theory is established to predict the change in the Young‟s modulus of amorphous 

polymers caused by polymer chain scission. The effective diffusion coefficient for 

monomer diffusion in a degrading polymer is calculated. Where possible, the models 

are validated using existing experimental data from the literature. These models are then 

integrated with a model for bone remodelling and stress analysis. The multi-physics 

problem of polymer degradation, monomer diffusion, bone remodelling and stress 

analysis are solved using the finite element method to study the interaction between 

bone healing and device degradation.  

 

The author is fully aware of the complications on the modelling effort caused by the 

observed continuous crystallisation during biodegradation, the use of composites in the 

current development of the fixation devices and, more importantly, the effect of the 

biological environment on the degradation. These factors are however ignored in this 
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study mainly due to the time limit of this PhD project. However the work presented here 

forms a solid foundation for further research to take these factors into account, some of 

which have already been studied by a follow up PhD project (Han and Pan, 2009) at 

Leicester.  

 

The structure of the thesis is organised as follow.  

 

Chapter 2 presents a phenomenological model for the degradation of biodegradable 

polymers.  

 

Chapter 3 presents a study on the effective diffusion coefficient of oligmers in a 

degrading polymer. 

 

Chapter 4 presents a study on the relation between Young‟s modulus change and 

polymer molecular weight loss. 

 

Chapter 5 integrates all the models in Chapter 2, 3, 4 with a bone growth model and 

stress analysis to provide a complete case study for the biodegradation of orthopaedic 

fixation devices and its interplay with the healing bone. 

 

Chapter 6 provides some further studies on the degradation model by separating end 

scission and random scission in the phenomenological model.  
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Chapter 2 

Governing Equations for Biodegradation and 

Biodegradation Mechanism Maps 

 

2.1 Introduction 

 

In this chapter, we focus on the degradation of the biodegradable polymers and present 

a phenomenological model for the hydrolysis of polymers, the diffusion of the 

monomers that are produced by the hydrolysis reaction and the interplay between the 

hydrolysis and monomer diffusion. The equations are then solved using the finite 

element method, predicting the spatial and temporal evolution of the average molecular 

weight in a biodegradable device of any sophisticated shape. A large number of detailed 

studies, both in vitro and in vivo, have been published on degradation mechanisms and 

the factors controlling the degradation rate of a range of biodegradable polymers (Li et 

al., 1990
a
; Li et al., 1990

b
; Li et al., 1990

c
; Hurrell and Cameron, 2003; Belbella et al., 

1996; Park, 1995; Shih, 1995
a
). One characteristic phenomenon of the degradation is 

that a thicker plate degrades faster than a thinner one made of the same polymer (Grizzi 

et al., 1995). This is because the structural change of PLA is heterogeneous in an 

implant owing to the auto-catalytic nature of the hydrolysis reaction of PLA (Li et al., 

1990
a
; Li et al., 1990

b
). The choice of dimensions for a particular device is therefore not 

straightforward – a thicker device can take higher load compared with a thinner one but 

it also degrades faster. This complicated behaviour makes it difficult to optimise the 

design of a biodegradable device. The purpose of this chapter is to demonstrate that it is 

possible to extract a general phenomenological model for biodegradation from the 

existing experimental and modelling works, and that modern numerical techniques can 

be used to solve the corresponding equations for devices of both simple and 

complicated geometries.   
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2.2 A review of previous reaction-diffusion models for degradation of 

biodegradable polymers 

 

This section provides detailed descriptions of three existing reaction-diffusion models 

for polymer degradation. It is these models that inspired the work presented in this 

thesis. Joshi and Himmelstein (1991) established a relatively comprehensive 

reaction-diffusion model for drug release from an infinitely extended slab made of 

biodegradable polymers. Their scheme is shown in Figure 2.2.1. 

 

Figure 2.2.1 Scheme of the drug release model by Joshi and Himmelstein (1991). 

 

The distribution of drug particles (denoted by E) inside the big slab is assumed to be 

homogeneous and so is the acid generator (denoted by B). After the system surface 

meets water (denoted by A), water hydrolyze B to generate acid (denoted by C). Then 

the acid will hydrolyze the polymer (denoted by D) therefore intermediate polymer (D
*
)

 

is produced. The degradation would be finalized once D
*
 react with water and small 

water soluble chains would be diffused out of the system. No volume change is 

considered during degradation and perfect sink condition is applied on the boundary; 

Fickian diffusion law is applied to the system: 
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in which, 
iC  is the concentration of species i

 
(water, acid generator, acid or drug), 

),( txDi
 is the corresponding diffusion coefficient of that species, x  is the distance 

from the centre of the slab; 
iv  is the net sum of synthesis and degradation of species i  

(water, acid generator, acid or drug); t  is time. The diffusion coefficient in this model 

is assumed to be an exponential function to the polymer concentration: 

 

)
)(

exp(
0

0
0

D

DD
ii

C

CC
DD





                          (2.2.2) 

 

in which iD
 
and 0

iD
 
are the diffusion coefficients of species i  (water, acid 

generator, acid or drug) at any time and at t=0 respectively, 0

DC  and 
DC  are the 

concentrations of the polymer in the initial state and at time t, and   is a constant. 

Polymer degradation mechanism is considered as the random hydrolysis of ester bonds 

in this model and molecular weight change with time of the polymer can be obtained 

from a statistical expression. Good but limited experimental evidence was provided by 

Joshi and Himmelstein (1991) to show that the model was able to capture the trend in 

the drug release profile and molecular weight change.  

 

Göpferich and Langer (1995) developed a model combining the erosion mechanism of 

the polymer matrix with the diffusion of monomers. The model suggests that the 

erosion of the matrix produces two types of monomers, named SA (sebacic acid) and 

CPP (1,3-bis(p-carboxyphenoxy)propane)) respectively. These two types of monomers 

are produced by polymer degradation and the monomers produced are mostly 

suspended within the system due to the limited solubility for both types. The diffusion 

of these two types of monomers follows Fick‟s second law and the diffusion coefficient 

is a function of porosity. A Monte Carlo simulation is set up to obtain the effective 

diffusion coefficient (figure 2.2.2). 
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Figure 2.2.2 Scheme of Monte Carlo method to calculate the porosity of the 

polymer matrix by Göpferich and Langer (1995). 

 

This model uses a two-dimensional grid to simulate the porosity and diffusion in one 

dimension shown at the bottom of the grid. The pixels in the matrix are randomly 

distinguished as crystal or amorphous. The erosion time for either amorphous or crystal 

pixels is randomly decided when they contact the „aqueous media‟ (eroded pixel) and 

the crystal pixels need a much longer time to erode, comparing to the amorphous pixels. 

The column porosity ),( tx  is a function of time and column position, this value can 

be calculated by summing up the value ),( jis  for all the pixels within the same 

column by:  

 1),( jis  if the pixel is not eroded (either crystal or amorphous). 

0),( jis  if the pixel is eroded. 

The Monte Carlo method generates randomly distributed pixels that have degraded in 

the polymer matrix. Fick‟s second law is modified to calculate the diffusion of the 

monomers: 
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in which ),( txC  is the concentration for either SA or CPP monomers, ),( tx  is the 

porosity along the diffusion pathway obtained from the Monte Carlo method. Equation 

(2.2.3) can be rewritten as: 
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Most of the SA and CPP monomers produced crystallized instantaneously owing to the 

very limited solubility of these two types of monomers. Therefore the dissolution of the 

suspended monomers and the diffusion of the monomers in the solvent are considered 

simultaneously. Monomer dissolution is introduced to the above equation by including a 

source term from the suspended crystalline:  
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in which the source term is calculated according to  

 

)],([),(
),(

txCCtxmk
t

txS
s 




                         (2.2.6) 

 

where k  is a constant, 
sC  is the solubility of the monomer and ),( txm  is the 

amount of suspended monomer. The impact of pH is taken into account as well. Given 

that the solubility of SA is a constant that is independent of the pH value, the following 

expression was used: 
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in which SApKa  is the logarithm acid dissociation constant that describes the strength 

of acid for SA monomers. The governing equation for SA monomers is then given by 
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    (2.2.8) 

 

For CPP monomer suspension, its solubility is affected by the SA solubility as the latter 

is a deciding factor in pH value in the surroundings: 
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The governing equation for CPP monomers is then given by 
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           (2.2.10) 

 

Equations (2.2.10) and (2.2.8) are the complete equations for the diffusion of CPP and 

SA monomers with pH effect and monomer dissolution, respectively. 
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Siepmann et al. (2002) used a Monte Carlo model to simulate the drug release for 

surface eroding polymer matrices. They represent a 3D spherical micro particle using a 

quarter of a 2D axisymmetric circle as shown in figure 2.2.3.  

 

Figure 2.2.3 Scheme of the Monte Carlo-based simulation of polymer degradation: 

(a) initial state (b) during drug release. 

 

Each unit pixel in figure 2.2.3 represents one of the components in the system which 

could be drug (dotted unit), polymer (grey unit), or pore (white unit). All these pixels 

are marked as being either intact or eroded. An intact unit started to dissolve once 

coming into contact with water. A fixed life time, i.e. a „life expectancy‟, was defined 

for each type of pixel. When its lifetime expired, a pixel was assumed to „dissolve‟ 

instantaneously and became either a pore or a non-solvable solid. The life time of a 

pixel is given by 
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in which   is a random integer number between 0 and 99,   is a constant, and 

averaget  is the average “lifetime” for all the pixels. With this random process, the 

porosity along the r and z directions can be calculated as 
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in which nr and nz are the number of elements in that row or column along r or z 

direction and 

 

 1),,( tjis  for non-eroded polymer 

0),,( tjis  for pores 

 

The effective diffusion coefficient is calculated as a function of time and position: 
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                              (2.2.13) 

 

in which critD  represents a critical diffusion coefficient being characteristic for a 

specific drug-polymer combination. This diffusion coefficient is then applied to Fick‟s 

second law describing the diffusion of the drug particles. 

 

The problems with the Joshi and Himmelstein (1991) model are that  

(a) a rather arbitrary expression for the effective diffusion coefficient was taken 

(b) the reaction equations used do not apply to PLA/PGA co-polymers 

(c) it was only applied to one-dimensional problems, and 

(d) polymer degradation is estimated by statistical analysis of purely random scission. 
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The problems with the models by Göpferich and Langer (1995) and that by Siepmann 

and co-workers (2002) are that  

(a) the matrix erosion was modelled independently from monomer diffusion. It 

therefore excludes the autocatalytic effect. In fact the hydrolysis reaction was 

over-simplified into a uniform random event in these models, and 

(b) the effective diffusion coefficient was related to the random change of polymer into 

monomers. This is logically incorrect since the effective diffusion coefficient is altered 

mostly by monomers diffusing out of the system rather than by polymer turning into 

monomers.  

 

It is in fact possible to generalise and improve the work by Joshi and Himmelstein 

(1991) to model the degradation of fixation devices made of biodegradable polymers in 

general, which is the topic of this chapter. It is also possible to redevelop the work by 

Gopferich and Langer (1995) and that by Siepmann (2002) to build up an appropriate 

multi-scale model for device degradation, which is the topic of another PhD project 

(Xiaoxiao Han) at Leicester. Another key development presented in this thesis is that 

the finite element method, a well-established engineering tool, is used to solve the 

equations, hence moving the models beyond simple devices such as plates and spheres.  

 

2.3 A phenomenological diffusion-reaction model for biodegradation of 

biodegradable polymers 

 

2.3.1 Description of the model 

 

To model the biodegradation process in full, a complicated mathematical model is 

needed, such as the one discussed in Chapter 6, to account for all the reaction steps and 

all the structural and morphological changes. The parameters in such a model require 

extensive experimentation to calibrate. In this chapter a simplified model is presented to 



CHAPTER 2 GOVERNING EQUATIONS FOR BIODEGRADATION AND 

BIODEGRADATION MECHANISM MAPS 

Page 24  

 

capture the key features of the process and give predictions consistent with existing 

experimental observations. A biodegradable device loses all its strength within the first 

phase of the biodegradation while the device remains as a complete piece, which is the 

focus of this chapter. In this phase, the material can be viewed as consisting of four 

species:  

(a) amorphous polymer chains, which can hydrolyse but cannot diffuse; 

(b) monomers and oligomers, the small fragments that consist of one or a few 

repeating chemical units, which are the product of the hydrolysis reaction and can 

diffuse; monomers and oligomers together are considered as the diffusing species in this 

thesis, hence we don‟t distinguish them when no confusion can be caused.  

(c) water molecules, which are always assumed to be abundant anywhere in the 

device.  

The size distributions of the polymer chains and hydrolysis products are ignored for 

simplicity. The water penetration in the device is assumed to be much faster than the 

other kinetic processes, normally about several days compared with the lengthy 

degradation time. The diffusion front discovered by Hurrell and Cameron (2001
a
) was 

not considered as this phenomenon may be unique to PGA. The assumption of fast 

water diffusion does not exclude hydrophobic polymers from the model as long as the 

biodegradation is not controlled by the water diffusion. If the biodegradation is indeed 

controlled by the slow ingress of water into the device, then surface erosion would 

dominate the biodegradation. Such polymer systems are often used in controlled drug 

release but not in fixation devices. In fact, the hydrophilicity of the polymers is reflected 

by the effective reaction and diffusion coefficients in the model. The state of a 

biodegrading polymer can therefore be described using  

(a)  the mole concentration of the ester bonds of the amorphous polymer, and 

(b)  the mole concentration of the ester bonds of the monomers and oligomers 

remaining in the device 

which are referred to as eC , and mC  respectively. In the hydrolysis reaction, the water 

molecules attack the ester bonds of the polymer chain which is accelerated by the acid 
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end-groups of the monomers is present. In a general co-polymer system the rate of the 

chain scission of the polymers, referred to as 
dt

dRs , can be written as 

 

n

mee
s CCkCk

dt

dR
21   .                                              (2.3.1) 

 

The first term on the right-hand side reflects un-catalysed hydrolysis while the second 

term reflects the acid-catalysed hydrolysis. 
1k  and 

2k  are phenomenological reaction 

constants for the two types of hydrolysis reactions. The power n in the second term 

accounts for the dissociation of the acid end groups. The water concentration does not 

appear in the equation because the water molecules are assumed to be abundant. 

Equation (2.3.1) is therefore designed for hydrolysis reaction in a general co-polymer 

system. The chain scission may produce:  

(a) monomers; if the scissions occur at the end of a polymer chain;  

(b) oligomers; if the scissions occur a few monomers away from the end of a long 

chain. 

(c) neither monomers or oligomers; if the scissions occur somewhere in the middle of 

the long polymer chains; the molecular weight is nevertheless always reduced by the 

chain scission.  

In general the mole concentration of the ester bonds of the monomers 
mR , and 

oligomers produced by scission can be related to the mole concentration of the total 

number of chain scission, 
sR , through an empirical power relation: 

 

 sm ARR                                       (2.3.2) 

 

In most part of this thesis, it is further assumed that A=1 and 1 , which are only 

strictly correct if the hydrolysis reaction is controlled by end scission. There is no 

difficulty in solving the equations without this further simplification but there is 
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experimental evidence showing that the hydrolysis reaction in PLAs is indeed dominated 

by end scission within acid environment (Shih, 1995
a
; Shih, 1995

b
). 

 

Equation (2.3.1) can then be written as: 

 

n

mee
sm CCkCk

dt

dR

dt

dR
21  .                             (2.3.3) 

 

The ester bond concentration in the amorphous phase reduces as a consequence of the 

monomer and oligomer production. We then have  

 

dt

dR

dt

dC me                                                        (2.3.4) 

 

Assuming Fick‟s law for monomer/oligomer diffusion, we have the following 

governing equation for the ester bond concentration of the monomers and oligomers: 
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The phenomenological diffusion coefficient D increases as more and more monomers 

and oligomers diffuse out of the system, replaced by pores filled with the aqueous 

medium. Chapter 3 presents a detailed study on the dependence of the diffusion 

coefficient on the pore structures. For randomly distributed pores the effective diffusion 

coefficient is given by (Chapter 3): 

 

))(3.03.1( 0max

32

0 DDppDD 
                   

     (2.3.6) 

 

in which maxD  is the diffusion coefficient of monomers in the liquid filled pore, D0 is 

the diffusion coefficient of monomers in the fresh polymer and p is the porosity caused 

by monomers leaving the system. The porosity can be estimated as 
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0/)(1 eem CCCp                                                (2.3.7) 

 

where 0eC  represents the initial ester bond concentration of the polymer.  

 

2.3.2 The parameter n 

 

This section presents a discussion by Siparsky et al. (1998) on the second term in the 

reaction rate equation (2.3.1). Considering the case without diffusion, Siparsky et al. 

(1998) firstly considered the following hydrolysis reaction equation  

 

me

e CkC
dt

dC
 .                                (2.3.8) 

 

i.e. the case where n=1 which means the monomers participate in the autocatalytic 

reaction fully. They showed that equation (2.3.8) leads to a linear relation between 

)/ln( 5.0

em CC  and time t  with a slope of kCKC mae ])([ 5.000  and the intercept of 

)/)ln(( 05.00

em CC  on the y  axis, in which aK  is a dissociation constant. However their 

experimental data on a group of PLA samples ( 000,55nM  solute in acetonitrile and 

kept under 60 C0  up to 60 days) did not support this theoretical prediction. An 

improvement was made whereby the acidic end groups participate in the hydrolysis 

reaction partially through n=0.5. They used the following equation: 

 

5.0)( mae

e CKkC
dt

dC
                               (2.3.9) 

 

This reaction equation leads to a linear relation between 

})/()ln{()/1( 5.05.05.05.05.0 aCaaCaa ee   and time t  with a slope of 5.0

akK  and 

an intercept of })/()ln{()/1( 5.05.005.05.005.0 aCaaCaa ee   to the y  axis, where 
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00

me CCa  . This prediction was supported by their experimental data as shown in 

figure 2.3.1. 

 

Figure 2.3.1 Experimental result for PLA sample kept in acetonitrile solution 

under 60 C0  up to 60 days (Siparsky et al., 1998). 

 

Siparsky et al. (1998) showed that the fact that n=0.5 agrees with a simple version of 

the hydrolysis reaction: 

ROHCOOHOHOHCOOHE   232  

in which E is the ester bond, COOH is the carboxyl group, ROH is the hydroxyl group. 

It is important to notice that the degradation experiment was conducted in solution 

rather than solid state. 

 

2.3.3 Nondimensionalisation of the equations 

 

In a numerical analysis, it is convenient to use a non-dimensional form of the equations 

so that the numerical results are not specific to the dimensions and material parameters 

used in the analysis. Using the reaction rate of the catalysed hydrolysis as a reference, 

we introduce the following non-dimensional variables: 
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and material parameters: 
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in which 0eC  is the ester bond concentration of the amorphous phase at the beginning 

of the biodegradation, and l is a characteristic length of the device. The 

reaction-diffusion model for biodegradation can then be summarised as consisting of a 

hydrolysis reaction equation for the polymer: 

 

 n

mee

e CCCk
td
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 1 ,                                             (2.3.12) 

 

and a diffusion equation for monomers and oligomers: 
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in which the effective diffusion coefficient is given by 
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Where the porosity is calculated by 

 

)(1 em CCp  . 
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The model is perhaps the simplest form possible that can capture the key features of the 

device degradation. Apart from the dissociation exponent n, only three non-dimensional 

parameters enter the governing equations:  

 1k  - reflecting the relative reaction rate of the non-catalysed hydrolysis with 

respect to that of the catalysed one; 

 
0D  - reflecting the diffusion rate relative to the combination of catalysed 

hydrolysis rate and the characteristic length of the material, and  

 
0

max

D

D
 - reflecting the relative diffusion rate of the monomers in the liquid filled 

pores to that in the undegraded polymer.  

0

max

D

D

 
can be set as a very large value, 100 for example. As can be seen in the rest of 

this thesis, the degradation behaviour is controlled by the interplay between 1k  and 

0D .  

The number average molecular weight is calculated as  

 

)(0
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unite

n
RRN
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


                                             (2.3.14) 

 

in which Ce is the total number of ester bonds, Munit is the molecular weight of one 

repeating unit, 0

chainN  is the initial number of polymer chains, Rs is the total number of 

chain cleavage and Rm is the total number of monomers. 

 

Noticing that the initial value of Mn is given by  
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chain

unite

n
N

MC
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
 ,                                                (2.3.15) 

 

And that 
 sm ARR , equation (2.3.14) can be written in a normalised form as  
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where DP0 represents the initial degree of polymerisation of the polymer. In the simple 

case of A=1 and α=1, we have 
en CM  . 

 

2.3.4 Heterogeneous degradation of biodegradable polymeric devices 

 

A characteristic phenomenon of biodegradation is that PLA/PGA polymers tend to form 

a hollow structure at the later stage of the degradation as shown in figure 1.3.2. Li et al. 

(1990
b
) suggested that this is because the hydrolysis reaction is auto-catalysed when the 

acids produced and accumulated inside the system accelerate the degradation of the 

material in the centre rather than on the boundaries. The picture in figure 1.3.2 was 

obtained by Li et al (1990
b
) using PLA37.5GA25 (75% DL-lactide and 25% glycolide 

in the feed) after 10 days of degradation in distilled water. This surface-centre 

differentiation has been widely observed by researchers. It is therefore constructive to 

test if our model can capture this phenomenon. We consider a brick sample as shown in 

figure 1.3.2 and apply our phenomenological equations with 1.0 ,001.0 10  kD . 

Assuming the sample surface is perfect sink for the monomers (i.e. 0mC ), the 

equations were solved using the finite element method. The distribution of the ester 

bond concentration remained after a period of degradation (at 24.0t ) over the 

mid-cross section of the sample is shown in figure 2.3.2.  
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Figure 2.3.2 A representative case to demonstrate the model is able to capture the 

heterogeneous degradation, colour represent the ester bond concentration. 

 

The red colour indicates a relatively high concentration while the blue colour indicates a 

low concentration. The value of the colour bar is normalised by the initial ester bond 

concentration. The surface/core differentiation of the biodegradation is clearly captured 

by the model.  

  

2.3.5 Localisation of biodegradation  

 

Localisation is often observed in the degradation of PLA/PGA polymers. Figure 2.3.3 

shows an example (Gutwald et al., 2002). 
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Figure 2.3.3 Cross-section image of a PLLA implant after 80 weeks (Gutwald et al., 

2002). 

 

The photo shows isolated pores formed during the degradation at micron scale. Grizzi et 

al. (1995) also observed the formation of cavities in their degradation experiment using 

PDLA plates. The cause for the localisation may be due to heterogeneity of the initial 

polymer, for example, being locally rich of residual monomers. To test this idea, we 

introduce a small initial concentration of the monomers in some selected “defect” 

regions as shown in Figure 2.3.4. The initial monomer concentration in the small 

“defect” regions is set as 
01.0 em CC   in contrast to zero in the rest of the device. 

Figure 2.3.4 shows the computer simulated degradation using 

5.0,10,10 4

1

5

0   nkD
 
in equation (2.3.12) & (2.3.13). It can be observed from 

Figure 2.3.4 that the introduced “defects” indeed accelerate the local degradation to 

some extent. However the difference between the degradation rates in the defect and 

normal regions is not significant enough to explain the observed formation of cavities.  
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(a) 0t  

 

(b)  1t  
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(c)  2t  

Figure 2.3.4 Computer simulated localisation of degradation using 

5.0,10,10 4

1

5

0   nkD . The colour represents the average molecular weight 

normalised by its initial value. 

  

In section 2.3.2, it is shown that the parameter, n, takes the value of 0.5 according to 

Siparsky et al. (1998). However this is the only literature that we are aware of 

discussing the hydrolysis reaction mechanism in this detail. Their conclusion is based 

on a hydrolysis test in PLA solution rather than in the solid state. Here we hypothesise 

that parameter n may take other values. The simulation is repeated using 

2,10,10 4

1

5

0   nkD  and the results are presented in figure 2.3.5 at four 

normalised times. 
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(a)  28t  

 

(b)  38t  
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(c)  48t  

 

(d)  68t  

Figure 2.3.5 Computer simulated localisation of degradation using 

2,10,10 4

1

5

0   nkD . The colour represents the average molecular weight 

normalised by its initial value. 

 

A very different behaviour can be observed in Figure 2.3.5 from that in Figure 2.3.4 

Firstly the defect region degrades much faster than the normal region. Figure 2.3.5 (a) 

shows that by 28t , the molecular weight in the defect zones has reached almost zero 
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while the normal zone is still intact. Secondly the defects zones clearly interact and 

propagate as shown the Figure 2.3.5 (b) – (d) unlike for the case of n=0.5 shown in 

figure 2.3.4. In almost all the biodegradation experiments, the testing materials or 

devices break up well before the averaged molecular weight reaches zero. Figure 2.3.6 

shows an example.  

 

(a) t = 3 weeks                                   (b) t=52 weeks 

Figure 2.3.6 Observed breaking up of amorphous PLLA plate during the in vivo 

degradation experiment in rat muscle by Gutwald et al. (2002). 

 

Therefore defect propagation may be a rule rather than an exception during the 

degradation of biodegradable devices. 

 

2.3.6 The size effect of biodegradation 

 

A related phenomenon of biodegradation of resorbable polymers is the size effect: a 

thicker device degrades faster than a thinner one which was discovered by Grizzi et al. 

(1995). They explained the size effect by arguing that it is more difficult for soluble 

oligomers to diffuse out of a thicker plate than those in a thinner plate. An acidic 

environment is therefore built up in a thicker plate making it degrade faster than a 

thinner one. This interplay between oligomers diffusion and hydrolysis can be 

demonstrated using our phenomenological model. Figure 2.3.7 shows the degradation 

data (discrete symbols) collected by Grizzi et al. (1995) using DLPLA plate samples of 
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2mm thickness (diamond symbols) and DLPLA film samples of 0.3mm thickness 

(triangle symbols) respectively. 

 

Figure 2.3.7 Experimental data (discrete symbols) of average molecular weight as a 

function of time obtained using DLPLA films of 0.3mm and plate of 2mm in 

thickness respectively (Grizzi et al., 1995); the continuous line are calculated 

results of the model using 25.0 and 005.0,5.0,25.0 01  Dnk . 

 

The figure shows number average molecular weights for both samples as a function of 

the degradation time. Figure 2.3.8 shows our computational model which considers a 

representative element of the plates in which both the mC  and eC  are assumed to be 

independent of the y and z coordinates. 
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Figure 2.3.8 A representative unit for a biodegradable film 

 

For the representative unit showed on the right hand side of the figure, the right 

boundary, i.e. the interface between the polymer and the aqueous medium, is assumed 

to be a perfect sink for the monomer diffusion (i.e. any monomer arriving at the 

boundary is immediately taken away by the aqueous medium, which is a simplification); 

the other boundary has zero diffusive flux of the monomers due to the fact that it is a 

symmetry line. The solid and dashed lines in figure 2.3.7 show the prediction of 

equations (2.3.12) and (2.3.13) using 25.01 k , 5.0n , 25.0  and  005.00 D , 

which correspond to weekk /042.01  , weekmolmk //1027.1 33

2

 , and 

smD /105.5 215

0

 .  
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Figure 2.3.9 The comparison between the predicted (lines) and measured (discrete 

symbols) weight loss as functions of time for DLPLA films of 0.3mm and plate of 

2mm respectively. This figure corresponds to figure 2.3.7. 

 

Figure 2.3.9 compares the predicted and experimental data for weight loss of the 

samples. It is apparent that the agreement is poor. In the model, a much larger weight 

loss is required than that observed in the experiment, for the thin sample to achieve the 

degradation rate shown in figure 2.3.7. Detailed study of the model prediction also 

revealed that the difference in the average molecular weights of the core and surface 

polymers is much smaller compared to that reported by Grizzi et al. (1995). As 

discussed in section 2.3.4, we consider the possibility of n=2 and repeated the above 

analysis. Figure 2.3.10 and 2.3.12 compare the model predictions with the experimental 

data using n=2.  
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Figure 2.3.10 Fitting the model prediction to the experimental data of average 

molecular weight versus time (Grizzi et al., 1995) by using 05.01 k , 2n , 

0004.0  and  02.00 D .
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Figure 2.3.11 Comparison between predicted (lines) and measured (discrete 

symbols), weight loss of DLPLA films of 0.3mm and plate of 2mm as a functions of 

time. This figure corresponds to figure 2.3.10. 

 

It can be observed from figure 2.3.10 and 2.3.12 that both the molecular weight and the 

weight loss data can be fairly well fitted using n=2. The numerical study presented in 

section 2.3.5 and in the current section show that the acid disassociation exponent n in 

the hydrolysis reaction equation has a key effect on the model prediction. There is 

however confusion on the actual value of n that should be used. Some authors used n=1 

(Farrar, 2008) while Siparsky et al. (1998) showed that n=0.5. Siparsky and co-workers‟ 

(1998) experiment is however for PLA degradation in solutions. Our numerical studies 

show that a much larger value of n is necessary to capture the observed surface/core 

differentiation that has been observed in the experiment. The mechanism responsible for 

the large value of n is however unclear. There is a need for further fundamental study on 

the hydrolysis reactions. 

 

Apart from the experimental evidence provided above, Han and Pan (2009) have 

recently extended the model to include the effect of chain cleavage induced 
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crystallisation and validated the model using experimental data for 3 different 

biodegradable polymers.  

 

2.4 Biodegradation map 

 

2.4.1 The concept of a biodegradation map 

 

The size effect suggests that the difference in the material thickness decides the 

difference in biodegradation. Apart from that, there are still other factors controlling the 

degradation. Even for the one-dimensional case, the degradation behaviour is affected 

not only by the thickness of the plate but also the four parameters in equations (2.3.4) 

and (2.3.5). The non-dimensional version of the model given by equations (2.3.12) and 

(2.3.13) provides a much clearer picture as it reduces the parameter to two. To show 

how these two parameters can control the degradation mechanism, some numerical 

explorations are undertaken in which the auto-catalysed hydrolysis is used as the 

reference in the non-dimensionalisation. The two-dimensional problem shown in figure 

2.3.8 is solved numerically to give the spatial distribution of 
eC  at various degradation 

times. The ester bond concentration 
eC  is then averaged over the entire area at these 

times. For the degradation mechanism, there are two extreme cases. The first one is the 

fast diffusion limit above which the product of the hydrolysis reaction is immediately 

taken away from the plate. At this extreme the auto-catalysed hydrolysis reaction is 

starved of the catalyst because the second item on the right-hand side of the equation 

(2.3.13) is approaching zero. Consequently, the polymer degradation rate is relatively 

slow and entirely controlled by the non-catalysed reaction which is the first item on the 

right-hand side of equation (2.3.13). For this case, the thickness of the material is no 

longer a factor in the degradation process. Another extreme is the slow diffusion limit 

under which all the reaction product remains in situ as catalyst. At this extreme the 

polymer degradation rate is fast and controlled by the auto-catalysed reaction rate, as 

the second right-hand side item is dominant over the first right-hand side item in 

equation (2.3.13). These limits are also affected by the rate of the non-catalysed 
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hydrolysis reaction as well. For example, if the non-catalysed hydrolysis reaction is 

very fast, then diffusion of the reaction product becomes irrelevant to the hydrolysis 

reaction and the degradation is entirely controlled by the non-catalysed hydrolysis 

reaction. There is always a critical value of the normalised diffusion coefficient, above 

which the degradation time is not affected by the material thickness any longer. 

Similarly there is always a critical value of the normalised diffusion coefficient below 

which the degradation time is not affected by the material thickness either. These limits 

can be plotted together to form a biodegradation map showing different degradation 

mechanisms. 

 

2.4.2 A biodegradation map for plate  

 

To find out the fast and slow diffusion limits we set up numerical tests using the 

non-dimensional model for plate (figure 2.3.8). When constructing the degradation map, 

the value of n in equation (2.3.12) and (2.3.13) is taken as 0.5 following the discussion 

in section 2.3.2. The effect of n on the degradation map will be discussed in section 

2.4.4. For any fixed value of 1k , at a reference non-dimensional time, the upper limit of 

0D  can be found if the spatially averaged ester bond concentration 
eC  does not 

change any further while 
0D  is increasing. Similarly, a lower limit of 

0D  can be 

found if the spatially averaged ester bond concentration 
eC  does not change any 

further while 
0D  is decreasing. These calculations of the upper and lower limits of 

0D  

are repeated for different values of 1k . The reference non-dimensional time is selected 

as 
05.0 et CC   when 10 D . This is because the other data under different 

0D  value 

can be well presented. Some examples of the calculations are given below in figure 

2.4.1. 
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(a) 7.25  ,001.01  tk . 

 

(b) 25.15  ,01.01  tk . 
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(c) 94.3  ,1.01  tk . 

 

(d) 58.0  ,11  tk . 
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(e) 07.0  ,101  tk . 

 

(f) 014.0  ,501  tk . 

Figure 2.4.1 Effect of normalised diffusion coefficient of the monomers on the ester 

bond concentration averaged over the sample volume that remains in the sample 

at a fixed time of degradation; the five sub-figures show the calculation for (a) 

001.01 k , (b) 01.01 k , (c) 1.01 k , (d) 11 k , (e) 101 k , (f) 501 k . 

 

The series of figures above (figure 2.4.1 (a)-(e)) shows that for every fixed 1k  value, 

there always exists an upper limit and a lower limit for the normalised diffusion 
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coefficient, beyond which the degradation is no longer controlled by 
0D . The range of 

0D  in which 
eC  is controlled by 

0D  is gradually reduced as 1k  increases. The 

upper and lower limits converge to each other when 1k  reaches a certain value as 

shown in figure 2.4.1 (f). Figure 2.4.1 (f) is considered as a „converging case‟ because 

we take the difference of %1eC  as a standard for judging convergence. All the 

limits in this series of cases have their correspondent values of 1k  and 
0D . These 

upper and lower diffusion limits can be plotted against 1k  forming a biodegradation 

map, as shown by figure 2.4.2. 

Figure 2.4.2 The biodegradation map for plate 

 

The vertical axis is 
0D  in the log scale and the horizontal axis is 1k . There are four 

different zones on the map marked by A, B, C and D. Zone B is the fast diffusion zone 

where the polymer degradation is entirely controlled by the non-catalysed hydrolysis 
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( 0mC ). Zone C is the slow diffusion zone where the degradation is controlled by the 

auto-catalysed hydrolysis ( RCm  ). Zone D ( 0 RCm
) is the fast non-catalysed 

hydrolysis zone ( 02 k ). Finally, zone A is where all three kinetic processes affect the 

degradation rate. Under the assumption of fast water penetration into the device, 

degradation in zones C, B and D is spatially uniform and there is no need to solve the 

partial differential equation (2.3.12) and (2.3.13). For zones B and D equations (2.3.12) 

and (2.3.13) become: 

 

0

1






m

tk

e

C

eC

                                                                                

    (2.4.1) 

 

For zone C, equations (2.3.12) and (2.3.13) become: 
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                                              (2.4.2) 

 

Under these conditions the device geometry and dimensions have no effect on the 

degradation and one can simply apply equation (2.4.1) or (2.4.2) to obtain the 

degradation rate. Only when parameters fall in zone A do the equations (2.3.12) and 

(2.3.13) need to be solved simultaneously.  

 

The degradation map is immediately useful for the design of biodegradation 

experiments. For example, all the experimental data collected by Tsuji (2000, 2002; 

Tsuji and Muramatsu, 2001; Tsuji and Ikarashi, 2004; Tsuji and Ikada, 2000) despite 

being extremely valuable, are within zone B as very thin specimens were used in these 

experiments. Consequently these experiments alone provided no information on the 

auto-catalysed reaction and diffusion. Data in zone C have to be collected to 

characterise the auto-catalysed degradation and data in zone A are needed to determine 
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the diffusion coefficient. It is important to recognise that 
0D  can be varied to a wide 

range by changing the thickness of the sample (see equation (2.3.11)) for the same 

material. 

 

The case points shown on the two boundaries separating zone A, B and C on the 

degradation map in figure 2.4.2 can be illustrated using the degradation figures 2.4.3 to 

2.4.5).  

Figure 2.4.3 Cases 1 (upper line) and 2 (lower line), 1.01 k . 
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Figure 2.4.4 Cases 3 (upper line) and 4 (lower line), 101 k . 

 

Figure 2.4.5 Cases 5 and 6, 551 k . 
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All these cases are on either the fast or slow diffusion limit. Cases 1 and 2 share a low 

value of 1k = 0.1 as in figure 2.4.3. Because the degradation is dominated by the 

auto-catalysed hydrolysis, it can be observed from figure 2.4.3 that the diffusion rate 

has a major impact on the overall degradation rate. For cases 3 and 4 (figure 2.4.4) the 

non-catalysed hydrolysis is much faster than the auto-catalysed hydrolysis, i.e. 1k = 10. 

It can be seen from figure 2.4.4 that the impact of diffusion on the degradation rate is 

much less significant. Cases 5 and 6 have a high value of 1k = 55 (figure 2.4.5). It can 

be seen from figure 2.4.5 that diffusion has no effect at all on the degradation under this 

condition. It is interesting to observe that the fast diffusion limit (upper boundary) is 

independent of 1k . In fact, the numerical results did show a very weak dependence 

which was ignored when the map was constructed. To avoid confusion caused by too 

much information on the degradation map, a measure of the biodegradation rate is not 

presented. The biodegradation rate increases from the left to the right, and decreases 

from the bottom to the top. It is fastest toward the right bottom corner, and slowest 

toward the left upper corner. For a constant value of 1k , the difference between the 

degradation rates for different values of 
0D  is small if 101 k , as shown in figure 

2.4.4, but only becomes completely negligible after 501 k , as shown in figure 2.4.5.  

 

2.4.3 Biodegradation map for a solid cylinder 

 

The biodegradation map changes if the shape of the device changes. To study the 

sensitivity of the degradation map to different geometry, the above analysis was 

repeated for an infinitively long and cylindrical pin. Owing to the axisymmetry of the 

problem, it can be solved as a one-dimensional problem. Similarly to the plate shape 

model, the spatial distribution of 
eC  is obtained by solving the one-dimensional pin 

shape problem numerically then averaging over the entire geometry at these times.  

The spatially averaged 
eC  will not change any further once the non-dimensional initial 

diffusion coefficient 0D  reaches a value that is high or low enough. Similarly to the 
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previous case, the higher diffusion limit and the lower diffusion limit are developing 

closer to each other as 1k  increases, with a trend of convergence. 

 

The biodegradation map for pin shape can be produced and it is similar to the 

biodegradation map for plate shapes, differing on its lower boundary and converging 

1k  point (figure 2.4.6). 

 

Figure 2.4.6 The biodegradation map for pin shapes. 

 

The degradation map for pin shapes is shown in figure 2.4.6. The radius of the pin is 

used as the characteristic length in equations (2.3.10) and (2.3.11). Comparing the maps 

in figure 2.4.6 and figure 2.4.2, it can be seen that it is much easier for a pin to enter 

zone D than a plate, which means less help from the non-catalysed reaction is needed 

for a pin to have uniform degradation. This is simply because the pin has a larger 

contact area per unit volume of material with water than a plate does, which means a 

smaller 
mC  inside the system would be observed compared with the plate shape 
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material. So a relatively smaller 
1k  value is required to make the hydrolysis term 

dominant over the auto-catalysis. Again, the fast diffusion limit (the upper boundary) 

can be considered as independent of 1k . 

 

2.4.4 Biodegradation map for plates using n=2 

 

The biodegradation map for plates is re-calculated using n=2 which is shown in figure 

2.4.7. 

 

Figure 2.4.7 The biodegradation map for a plate shape; exponential parameter 

n=2. 

 

The map in this case has a lower upper limit owing to a larger n value which makes the 

system more sensitive to the monomer concentration. In other words, any small loss in 
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the monomer concentration would be amplified. As a result, it is easier for 
0D  to reach 

Zone B ( 0mC ) so the upper bond of 
0D  is significantly lower compared with the 

biodegradation map for plates using n=0.5. Another difference in this case is that a 

smaller 
1k  is required for the device to enter Zone D ( 0 RCm

). This is because 

mC , as a normalised variable, is always a value between zero and one; a higher order on 

mC  in the reaction equation will make the auto-catalysis term smaller compared to the 

first case, with all other conditions remaining the same. Therefore a smaller 
1k  value is 

required to make the auto-catalysis term neglectable.  

 

As seen in the three biodegradation maps, there are always a upper and lower limits of 

the diffusion coefficient above or below which the entire material will degrade 

uniformly and these two limits tend to converge when the hydrolysis-auto-catalysis ratio 

increases. The purpose of generating the biodegradation maps with four zones is to aid 

the design of the material. The different zones on the map represent the different 

degradation mechanisms of the biodegradable polymers and to satisfy specific 

requirements the materials have to be designed to fall into certain zones. The 

biodegradation maps will vary if the geometry or chemistry mechanism changes, in 

which case the biodegradation map has to be rebuilt. 

 

2.5 The study of half degradation time 

 

The maps in the previous section generate a clear picture of the degradation 

mechanisms. However, an important factor missing from the maps is the degradation 

rate, which is of course important because the design of a biodegradable device requires 

the degradation rate to be well understood. For a known geometry of the device, we can 

vary the values of 1k  and 0D  then calculate the ester bond concentration until its 

volume average reaches half of its initial value, i.e. we can calculate halft
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corresponding to 5.0 dVC
V

e

 

for different values of  1k  and 0D . The half 

degradation time halft  can then be used as an indicator for the degradation rate of a 

device. 

 

2.5.1 Half degradation time for plates using n=0.5 

 

Table 2.5.1 provide the values of halft
 
calculated for plate with different combinations 

of 1k  and 0D . 
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Table 2.5.1 The normalized half degradation time of various 1k  0D  values for 

plate shape using n=0.5 

     1k  

0D  

0.001 0.01 0.1 1 10 50 

610  1.72 1.65 1.3 0.47 0.06 0.014 

510  1.72 1.65 1.3 0.47 0.06 0.014 

410  1.72 1.65 1.3 0.47 0.06 0.014 

310  1.74 1.67 1.31 0.47 0.06 0.014 

0.01 1.79 1.73 1.34 0.48 0.06 0.014 

0.1 2.07 2.02 1.55 0.49 0.06 0.014 

1 25.7 15.25 3.94 0.58 0.06 0.014 

10 157 41 5.78 0.67 0.07 0.014 

100 396 60 6.6 0.71 0.07 0.014 

1000 557 68 6.9 0.71 0.07 0.014 

410  672 70 6.94 0.71 0.07 0.014 

510  696 70 6.95 0.71 0.07 0.014 

 

The highest value of halft  occurs at the left bottom of table 2.5.1 where 0D  is very 

large and 1k  is very small. This is because very small hydrolysis autocatalysis ratio– 1k  

delays the initiation of degradation process significantly. The extreme case is when 1k  

equals to zero for which the degradation process would never start. On the other hand, 

very large value of 0D  eliminates all the catalyst in the system therefore leads to a low 

degradation rate. The peak value of halft

 

reduces if either 1k  increases or 0D  

decreases. As 1k  increases, the hydrolysis generates monomers while the diffusivity of 
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the system remains the same. As 0D  decreases, more monomers accumulate inside the 

system to act as catalysts while the hydrolysis-auto-catalysis ratio is fixed. On the right 

hand side of this table, the half degradation time reaches its minimum value. This value 

reduces even further as 1k  increases while 0D  has little impact on it. The reason for 

this is that the high 1k  can see the plate to enter zone D in figure 2.4.2. In this case, 

according to equation (2.4.1), the decrease of the polymer concentration eC  is 

exponential to the product of time and 1k , and 
halft  can be calculated as 

1/5.0ln kthalf                                                     (2.5.1) 

 

2.5.2 Half degradation times for cylindrical pins 

 

To test the effect of device shape on the degradation rate, the calculations of 
halft  are 

repeated for cylindrical pins. The results are listed in table 2.5.2. 

  



CHAPTER 2 GOVERNING EQUATIONS FOR BIODEGRADATION AND 

BIODEGRADATION MECHANISM MAPS 

Page 60  

 

Table 2.5.2 The normalized half degradation time of various 1k  0D  values for pin 

shape using n=0.5 

     1k  

0D  

0.001 0.01 0.1 1 10 25 

610  1.72 1.65 1.32 0.47 0.066 0.028 

510  1.72 1.65 1.32 0.47 0.066 0.028 

410  1.73 1.66 1.32 0.47 0.066 0.028 

0.001 1.76 1.7 1.33 0.47 0.066 0.028 

0.01 1.9 1.83 1.42 0.48 0.066 0.028 

0.1 6.2 5.1 2.4 0.53 0.067 0.028 

1 62 25.4 4.98 0.62 0.067 0.028 

10 250 50.5 6.4 0.69 0.069 0.028 

100 505 64.5 7.04 0.71 0.071 0.028 

1000 646 70.2 7.16 0.71 0.071 0.028 

410  680 71.6 7.22 0.71 0.071 0.028 

510  710 71.6 7.22 0.71 0.071 0.028 

 

Comparing table 2.5.2 with table 2.5.1, it can be observed that the half degradation 

times, similar to those results for plate shape, have the highest value when 
1k  is small 

and 
0D  is large. No difference between the half degradation times for these two 

geometries is found when either 
1k  or 

0D  is large. The reason for is because the shape 

difference is represented by the diffusion term in equation (2.3.12) and (2.3.13); large 

0D  or 
1k  eliminates the impact of the device shape. When 

1k  and 
0D  are both 
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relatively small, the half degradation times for the pin shape are smaller than those for 

the plates. This is because the pin geometry has a large boundary per unit area 

compared to the plate; correspondingly it is always easier for the monomers in pin 

shape system to diffuse out. Therefore the time for pins to degrade half of its initial 

polymer concentration is always longer than those for plates. 

 

2.5.3 Half degradation times of plates using n=2 

 

Table 2.5.3 presents the half degradation time for plates calculated using n=2. 
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Table 2.5.3 The normalized half degradation time of various 1k  0D  values for 

plate using n=2 

1k  

0D
 

0.001 0.01 0.1 1 10 15 

710  47.8 14.8 4 0.63 0.068 0.046 

610  50.4 14.8 4 0.63 0.068 0.046 

510  50.5 15.8 4 0.64 0.068 0.046 

410  50.8 15.8 4.1 0.64 0.068 0.046 

0.001 52.4 16.3 4.2 0.64 0.069 0.046 

0.01 71 18.9 4.6 0.65 0.069 0.046 

0.1 705 70 6.7 0.66 0.069 0.046 

1 705 71 7 0.69 0.069 0.046 

10 705 71 7.1 0.7 0.007 0.046 

100 705 71 7.1 0.7 0.007 0.046 

1000 705 71 7.1 0.7 0.071 0.046 

410  705 71 7.1 0.7 0.071 0.046 

 

Similarly to the previous two cases, the half degradation times in this case have the 

highest value when 
1k  is small and 

0D  is large. Again, very little difference between 

the half degradation tables is found when either 
1k

 
is large or 

0D  is large. In this case, 

the half degradation times can be calculated as equation (2.5.1) without any influence 

from the shape or the exponent n. Apart from those half degradation times that can be 

calculated directly, other half degradation times for n=2 are longer than those for n=0.5. 

This is because monomer concentration in the calculation is a normalised value that 
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varies from 0 to 1, the large exponent reduces the absolute value of this term therefore 

delays the degradation for the entire system for n=2. 

 

The half degradation time is a good indicator that is helpful in device design. As shown 

in Tables 2.5.1 to 2.5.3, the degradation time are affected significantly by 
1k , 

0D  and 

the exponential parameter n. The degradation time becomes independent of 
0D  and n 

when (a) the diffusion is fast or (b) the hydrolysis auto-catalysis ratio is small. Under 

these circumstances, 
halft  can be calculated as equation (2.5.1) 

 

2.6 Concluding remarks 

 

The biodegradation of biodegradable polymers is affected by a wide range of factors 

including chemical composition, molecular structure, morphology and processing 

conditions of the polymers. Correlating the degradation rate with all these factors in a 

quantitative way seems to be a formidable task. This chapter shows, however, that it is 

possible to develop a phenomenological framework based on the existing understanding 

of the biodegradation mechanisms. The phenomenological model can capture the key 

characteristics of the existing observations of the biodegradation. It is therefore a useful 

tool to guide the design of biodegradable devices. Discussion of the results of the 

calculation led to the degradation maps which can be used to guide the design of 

experiments to determine the material parameters required by the computer model. Half 

degradation time is a useful indicator for the degradation rate of the bioresorbable 

device that can be calculated numerically using the phenomenological model in general 

situations and using an analytical expression if the diffusion of the monomers in either 

extremely large or small. 
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Chapter 3 Effective Diffusion Coefficient of Monomers 

in a Degrading Polymer 

 

3.1 Introduction 

 

The effective diffusion coefficient for monomer diffusion in a degrading polymer is one 

of the controlling parameters in the mathematical model for biodegradation presented in 

the previous chapter. A biodegradable polymer becomes porous as a consequence of 

monomers diffusing out of the system. The porous structure will allow the monomer to 

escape at an even faster rate (Figure 3.1.1). The effective diffusion coefficient is 

therefore a strong function of the porosity (Siepman et al., 2002; Göpferich and Langer, 

1995). 

 

Figure 3.1.1 The effective diffusion coefficient is a function of the porosity. 

 

Because the degradation process takes place randomly within the material and further 

degradation produces heterogeneous structures at both macro and micro levels in the 

system, the effective diffusion coefficient is not straight forward to obtain. In order to 

calculate monomer diffusion in a degrading polymer, two approaches can be used. The 

first one is to generate a large finite element model using many elements which are so 

finely meshed to directly calculate monomer diffusion considering the actual micro 

structures throughout the material. The second one, which is taken in this thesis, is to 
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avoid the formidable computing task by firstly obtaining an effective diffusion 

coefficient for a representative unit of the material (figure 3.1.2) and then use it as the 

diffusion coefficient for the entire domain in the diffusion-reaction model. 

 

Figure 3.1.2 Scheme of multi-scale modelling. 

 

In the calculation, a representative element of the material, typically a three-dimensional 

cube or a two-dimensional square is considered. The dark grey colour represents the 

polymer matrix while white circles denote the pores. This chapter presents numerical 

studies on the relationship between the effective diffusion coefficient and the structure 

of the pores as well as the porosity. Our particular attention is paid to the circumstances 

under which porosity cannot be used as the only controlling factor for the monomer 

diffusion. 

 

3.2 A review of the literature 

 

One of the areas that has a major interest in the effective diffusion coefficient of the 

biodegradable polymers is controlled drug release because (a) the tablet coating or 

matrix are often made of biodegradable polymers and (b) the effective diffusion 

coefficient affects the amount of the drug released over time. Faisant et al. (2002) 

suggests that the effective diffusion coefficient depends on the weight average 

molecular weight wM  in the following manner: 
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w

w
M

k
DMD  0)(                 (3.2.1) 

 

where 0D is the initial diffusion coefficient of the drug in undegraded polymer, k  is a 

constant, and  

 

)exp(4.78)( deg tktM rw                           

(3.2.2) 

 

where 
rkdeg

 is the pseudo first order degradation rate of the polymer. Similarly, 

Charlier et al. (2000), considered the polymer degradation and drug diffusion. Under the 

assumption that the polymer chain cleavage follows a first order kinetics that the 

effective diffusion coefficient is proportional to the inverse of the polymer molecular 

weight, they obtain that: 

 

)exp(0 ktDD                   (3.2.3) 

 

where 0D  is the initial diffusion coefficient of the drug prior to polymer degradation; 

and k is the degradation rate. Joshi and Himmelstein (1991) established a 

comprehensive reaction-diffusion-transport model and suggested that the diffusion 

coefficient is an exponential function of the polymer concentration: 

 

)
)(

exp(
0

0
0

D

DD
ii

C

CC
DD





              (3.2.4) 

 

in which iD and 0

iD are the diffusion coefficients of either water, acid or drug at any 

time and t=0 respectively, 0

DC and
DC are the concentrations of polymer material at t=0 

and any other time respectively, and  is a constant. In order to calculate drug release 

from PLGA based micro-particles, Raman et al. (2005) applied Fick‟s second law for 

spherical geometry: 
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              (3.2.5) 

 

where C is the concentration of the drug, t is time, r the radial coordinate and )( wMD is 

the drug diffusivity which is taken as a function of the weight average molecular weight 

(measured from experiment) given by: 

 

95.316)(ln95.104)(ln394.10)(ln347.0ln 23  www MMMD .        (3.2.6) 

 

Siepmann et al. (2002) and Göpfreich and Langer (1995) suggested that the effective 

diffusion coefficient can be considered as linearly proportional to the porosity as 

discussed in Chapter 2 

 

3.3 Methods of calculating the effective diffusion coefficient for a 

representative unit 

 

3.3.1 Direct calculation using a finite element model 

 

Considering one unit volume of a biodegradable material, as shown in figure 3.3.1, the 

diffusion coefficient of the material at any time during the degradation can be calculated 

by applying two fixed concentrations at both horizontal boundaries respectively while 

the two vertical boundaries are kept under insulation condition. A horizontal flux will 

be generated in the material as a consequence of the concentration difference. 
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Figure 3.3.1 A scheme of the calculation of the effective diffusion coefficient. 

 

Fick‟s first law suggests that  

 

x

C
DJ



                                       (3.3.1) 

 

where J  is the diffusion flux, x is the horizontal coordinate, C  is the concentration 

and D  is the diffusion coefficient.  

 

We refer to the diffusion coefficient of the material for the polymer matrix (undegraded 

polymer) as 0D , and assume that the diffusion rate inside the liquid- filled pore is much 

larger than 0D . In our calculation it is assumed that  
0100DDpore   throughout the 

rest of this chapter unless stated otherwise. The finite element method is used to 

calculate the effective diffusion coefficient using the following steps: 

1. Define the pore geometry within the system including pore shapes and sizes.  

2. Apply appropriate boundary conditions: insulation condition on the top and bottom 

boundaries and concentration conditions on the left and right boundaries. 
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3. Calculate the concentration field until a steady state is reached. 

4. Integrate the flux J on either the left or right boundary. 

5. Calculate the effective diffusion coefficient according to:  

 

LCC

dyJ
Deff

/)( 12 



                              (3.3.2) 

 

3.3.2 Using the homogenization technique 

 

Alternatively, to calculate the effective property of a material, a so called 

homogenization technique can be used (Nguyen et al., 2005; Hassani and Hinton, 1998
a
; 

Hassani and Hinton, 1998
b
). The technique has been used to evaluate the effective 

material properties of composite materials such as effective Young‟s Modulus, effective 

diffusion coefficient, effective heat conductivity and so on. The main idea of the method 

is to replace the original material with an equivalent material that consists of a large 

number of identical representative units (as shown in figure 3.3.2). The coordinates of 

the macroscopic and microscopic material are referred to as )3,2,1( ixi  and 

)3,2,1( iyi , respectively. 

 

Figure 3.3.2 The idea of homogenization technique. 

 

  shown in the figure is always a small value that represents the ratio between the unit 

cell and the macroscopic dimension of the material, i.e. 
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y

x
 . 

For diffusion problems which follow Fick‟s Second Law, we have, using tensor 

notation, 
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Its equivalent weak form is: 
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Using the following asymptotic expansion for the concentration field C: 

 

...),,(),,(),,(),,( 2

2

10  tyxCtyxCtyxCtyxC          (3.3.5) 

 

together with the fact that: 
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and by comparing the same order of the ratio  , it can be shown that the following 

expression is valid (Nguyen et al., 2005; Hassani and Hinton, 1998
a
; Hassani and 

Hinton, 1998
b
): 
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in which 
ij  is the Kronecker delta. Therefore the effective diffusion coefficient can be 

defined as 
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in which the vectorial field )3,2,1( ii  is the solution of the following equation 

associated with a periodic boundary condition (Nguyen et al., 2005; Hassani and Hinton, 

1998
a
; Hassani and Hinton, 1998

b
): 
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A numerical case is presented to show the results obtained using the direct calculation 

and the homogenization technique respectively. We consider a piece of material that has 

an isotropic diffusion coefficient D11=D22=D0, and a non-symmetric pore which has the 

diffusion coefficient of 100D0 as shown in figure 3.3.3. The strange non-symmetric pore 

shape is used here to highlight the difference between the direct calculation and the 

homogenization technique. Firstly the concentration field obtained by the direct FE 

calculation is shown in figure 3.3.3. 
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Figure 3.3.3 Concentration field using FE method. 

 

Two concentrations of C1=200 and C2=50 are applied on the left and right boundaries. 

The figure shows the concentration field at the steady state, in which the red colour 

indicates higher value of C while the blue colour indicates lower value. The 

concentration difference generates a flux field from the left to the right. Integrating the 

flux field over the left boundary we obtain a total horizontal flux which is defined as: 

 

totalJd
x

C
D 



   .                 (3.3.10) 

 

In general we have  
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Therefore the horizontal flux also depends on the gradient of the concentration in the 

vertical direction. From the finite element results, it is found that the ratio between 
y

C




 

and 
x

C




 is about 1:200, therefore the second item in the equation (3.3.11) is dropped 

and the effective diffusion coefficient in the horizontal direction, effD11 , is obtained as 

0449697.0 D . 

 

Alternatively using the homogenization technique we have 

  





  d

x
DDeff )1( 1

011
                                     (3.3.12) 

 

in which the field 
1  is obtained by solving equation (3.3.9) on the same geometry 

with periodic boundary conditions for the two sets of opposite boundaries. The field is 

shown in figure 3.3.4. The horizontal effective diffusion coefficient for this case is 

calculated as 0462045.0 D using equation (3.3.12). 

 

Figure 3.3.4 The field of 
1  obtained by solving equation (3.3.9). 



CHAPTER 3 EFFECTIVE DIFFUSION COEFFICIENT OF DEGRADING POLYMERS 

Page 74  

 

 

The homogenization technique can always provide the correct effective property of the 

material while the accuracy of the direct calculation depends on whether the imposed 

boundary conditions are correct or not. For example, the top and the bottom boundaries 

of the representative unit should not be treated as insulting boundaries in general. 

However, as demonstrated in this numerical case study, the difference between the two 

results is small. The direct method is much more convenient to use especially when 

dealing with three dimensional problems. In this work, the direct method will be 

adopted.  

 

3.4 Case studies of the effective diffusion coefficient  

 

The study of the effective diffusion coefficient of a representative unit can be generally 

categorized into two scenarios: (a) the pores are mostly isolated from each other; and (b) 

the pores are mostly connected and some of them form tunnels connecting the inner part 

of the material to the outside environment. For the first case, the effective diffusion 

coefficient depends on the porosity and the distribution of the pores while for the 

second case once a tunnel is formed the diffusion of the monomers will be considerably 

faster and the effective diffusion coefficient can be controlled by a combination of the 

tunnelling effect and the pore size. 

 

3.4.1 Effective diffusion coefficient in polymers containing randomly distributed 

pores 

 

Recently, a pure random case study is undertaken by Jiang and Pan (2008) using a 

3-dimensional cubic representative unit as shown in figure 3.4.1. The representative unit 

is modelled using cubic finite elements as shown in the figure. The white cubic 

elements represents the polymer matrix with the diffusion coefficient of 0D  while the 

black elements are randomly generated “pores” which are assigned a diffusion 
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coefficient of 01000D . Effective diffusion coefficient is calculated using the finite 

element model for a range of values of total porosity 

 

Figure 3.4.1 Finite element model of randomly generated pores by Jiang and Pan 

(2008). 

 

Figure 3.4.2 shows the relative effective diffusion coefficient (normalized by D0) of the 

above case as function of the porosity. 

 

Figure 3.4.2 Effective diffusion coefficient versus the porosity for randomly 

generated pores. 

 

The result demonstrates that the effective diffusion coefficient increases slowly with 

porosity when porosity is small and increase sharply after a critical porosity is reached. 

The sharp increase is due to the tunnelling effect as mentioned early. The location of the 
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“turning point” can be understood through a concept of percolation threshold in 

statistics which is demonstrated using the array of cells as shown in figure 3.4.3. The 

array is so large that any boundary effect is negligible once a certain fraction of the 

array is occupied. Any two cells inside the large array sharing a common side, e.g. cell 

A and cell B, will be named as nearest neighbor and any two cells which have only one 

point in contact, e.g. cell A and cell C, will be named as the next nearest neighbor. The 

percolation theory states that there is a critical value of the fraction of the grey cells, 

above which the occupied (grey) cells can percolate the array by the nearest neighbors 

therefore the grey cells are connected through their nearest neighbors (Stauffer and 

Aharony, 1994). 

 

Figure 3.4.3 Demonstration of the percolation theory. 

 

The threshold or, in another word, the critical fraction varies with the shape of the cells. 

In random simulation by Jiang and Pan (2008), the cell shape is selected as simple cubic 

for which the percolation theory predicts that the threshold value is 31.16% (Stauffer 

and Aharony, 1994). In other word, once this critical volume fraction of porosity is 

reached by degradation, the effective diffusion coefficient increases shapely. It can be 
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observed from Figure 3.4.2 that the percolation theory is consistent with the numerical 

prediction of Jiang and Pan (2008). Jiang and Pan (2008) fitted their numerical results to 

the following analytical expression: 

 

)]1)(3.03.1(1[
0

32

0 
D

D
VVDD

pore

porepore                  (3.4.1) 

 

This equation is used in chapter two in the phenomenological model for biodegradation. 

It is however important to further study the conditions under which the expression is 

valid, which is the purpose of the following sections in this chapter. 

 

3.4.2 Effective diffusion coefficient of polymers containing highly localized pores 

 

A number of degradation experiments of the biodegradable polymers revealed that the 

pores generated during the degradation can be highly localized as shown in figure 3.4.4 

(Cai et al., 2003). 

 

Figure 3.4.4 The highly localized pore structure (Cai et al., 2003). 
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The image shows the cross section of a 0.2mm thick PLGA film after 2 weeks of 

degradation obtained using scanning electron microscope (SEM). The localized pore 

structure may be due to the autocatalytic effect in the hydrolysis reaction caused by the 

accumulated monomers. In that case, the porosity of the geometry increases owing to 

the self-expanding pore size rather than the formation of new pores. In this section, we 

focus on the spherical or circular pore structures to study the effective diffusion 

coefficient with respect to the total porosity, which is caused by the self expansion of 

the pore. 

 

First we consider the effective diffusion coefficient for homogenous pore distribution; 

we start with a simple case of one spherical pore located at the centre of a three 

dimensional cubic representative unit of the material as shown by figure 3.4.5. 

 

Figure 3.4.5 Cross section image of 3D representative unit with a central spherical 

pore. 

 

The effective diffusion coefficient for this simple case is plotted in figure 3.4.6 with 

respect to porosity. 
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Figure 3.4.6 Effective diffusion coefficient versus porosity for a cubic 

representative unit of the polymer containing one spherical pore. 

 

It can be observed that the diffusion coefficient and the porosity follows a roughly 

linear relationship at relative low porosity (<40%). The linear relationship is a very 

welcome simplification for the early stages of degradation. The empirical equation 

(3.4.1) for D obtained by Jiang and Pan (2008) is also included in figure 3.4.6 for 

comparison. It can be concluded that the effective diffusion coefficient for this simple 

model increases significantly slower than the random pore distribution case. Perhaps 

this is because Jiang and Pan (2008) take cubic as the shape of the pores which is easier 

to build connected structures, while the central pore geometry never percolated through 

the system. 

 

The increase in the porosity may be accompanied by the localization of the pore 

structure, with the location of these pore structures randomly distributed. In other word, 

the formation of the pores may occur at any position at the early stage of degradation; 

once these pores are generated, the porosity increases by the self-expansion of these 

pores. Therefore, a very fine and uniform pore structure may not be obtained unless 

certain processing methodology is used (Nam and Park, 1999). To relate the effective 

diffusion coefficient to the self-expansion of randomly located pores, we used the 

following steps as illustrated in figure 3.4.7: 
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1. Divide the representative unit into a number of sub-domains, each containing a pore. 

2. Allow each pore to make a random movement within their sub-domain. 

3. Once the locations of the pores are “randomly” decided, calculate the effective 

diffusion coefficient for the entire domain. 

4. Fix the locations of all the pores and increase their sizes. Update the FEM model 

and calculate the effective diffusion coefficient. 

5. Repeat step 4 to obtain a series data for the effective diffusion coefficient with 

respect to porosity. 

 

Figure 3.4.7 The scheme of the “sub-domain” of the system. 

 

Actual calculations are executed on a 3D cubic unit with 8 spherical pores located in 8 

sub-domains. Step 2 to 5 is repeated 10 times and 10 groups of the effective diffusion 

coefficients versus porosities are listed in table 3.4.1. The mean value of these ten 

groups of results is plotted (black solid line) in figure 3.4.8 showing the relative 

effective diffusion coefficient versus porosity. The numerical results shown in figure 

3.4.8 that obtained using equation (3.4.1) are also plotted (dashed line) for a 

comparison. 
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Figure 3.4.8 The average value of relative effective diffusion coefficient from 10 

random cases compare to the effective diffusion coefficient from one central 

spherical pore. 

 

Figure 3.4.8 shows that the simple model of a single expanding pore (red line) is in fact 

very good in comparison to the much more sophisticated model of randomly located 

self expanding pores. These results are however rather different from that obtained by 

Jiang and Pan (2008) in which pores are much more randomly generated. 
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Table 3.4.1 The 10 group of random distributed spherical pore structure and their 

effective diffusion coefficient’s plot against the porosity. 

   porosity 

groups 

1% 5% 10% 20% 30% 

Group 1 1.0293 1.153 1.3237 1.743 2.392 

Group 2 1.0294 1.1533 1.325 1.745 2.419 

Group 3 1.0295 1.153 1.322 1.733 2.336 

Group 4 1.0295 1.153 1.321 1.7247 2.2936 

Group 5 1.0295 1.1533 1.323 1.736 2.36 

Group 6 1.0297 1.154 1.325 1.752 2.45 

Group 7 1.0294 1.153 1.3245 1.7444 2.403 

Group 8 1.0294 1.153 1.321 1.729 2.338 

Group 9 1.0294 1.153 1.328 1.737 2.304 

Group 10 1.0294 1.153 1.323 1.742 2.384 

Average 1.0294 1.1532 1.3236 1.7386 2.368 

 

It can be observed in table 3.4.1 that the ten different groups of results corresponding to 

different pore locations are very similar to each other. From the numerical results, it can 

be conclude that for such porous structure, the effective diffusion coefficient can be 

related to the porosity in a linear relationship: 

 

poreeff VkDDD  00
                                              (3.4.2) 

 

in which k=4.5 and Vpore represents the porosity, subject to the following conditions: 

1. The pores are relatively uniformly distributed within the system. 

2. The size of these pores is relatively close to each other. 

3. The total porosity in the system is less than 40%. 
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3.4.3 The tunnelling effect 

 

During the degradation process of a biodegradable polymer, sometimes cracks can be 

observed on the cross section of the material (figure 2.3.3) which implies that tunnels 

can be built during the degradation process. These cracks connect the cores inside the 

polymer to the surrounding environment and significantly enhance the diffusivity of the 

material. Figure 2.3.3 shows a PLLA implant inside the muscle of a rat after 80 weeks. 

The effective diffusion coefficient for this type of structure has to consider the short 

circuit effect of the tunnels. It is obvious that porosity is not the only factor that controls 

the diffusion of monomers in the polymer. 

 

Figure 3.4.9 The effective diffusion coefficient of a tunnel structure can be 

recognized as the combination of the two structures. 

 

We propose the following expression for the effective diffusion coefficient to consider 

the tunnelling effect: 

 

0DVkDD poretunneleff                   (3.4.3) 
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in which 
effD

 
is the effective diffusion coefficient, k   is constant depends on the 

tunnel width, 
poreV  is the volume fraction of the pore, tunnelD  is the effective diffusion 

coefficient of the material containing the tunnel only which can be calculated as: 

 

0max )1( D
L

Width
D

L

Width
Dtunnel                            (3.4.4) 

 

where, D0 is the diffusion coefficient for polymer matrix, Dmax represents the diffusion 

coefficient in the liquid medium and Width/L is the ratio of tunnel width over the length 

of the material boundary. On 3D level, this ratio could also be cross section area of the 

tunnel over the surface area of the representative unit. 

 

Equation (3.4.3) assumes that the effective diffusion coefficient of a tunnelled polymer 

is a simple superposition of the effective diffusion coefficient of the polymer without 

tunnels and that of the polymer containing tunnels alone. In order to test this idea, 

numerical case studies are undertaken using a cubic representative unit containing a 

spherical pore located at the centre which is connected to the unit boundaries by a 

cylindrical tunnel as shown in figure 3.4.10.  
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Figure 3.4.10 Cross section image of 3D representative unit with a tunnel and 

central spherical pore. 

 

The calculations of the effective diffusion coefficient are repeated using various tunnel 

widths. The results are plotted in figure 3.4.11 showing the relative effective diffusion 

coefficient versus the Vpore for different radius of the tunnel. 

 

Figure 3.4.11 The relative effective diffusion coefficient for the tunnel with centre 

spherical pore structure on 3D level. 
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The results presented are for the tunnel radius of 0.02 (squares), 0.05 (diamonds) and 

0.1 (triangles), respectively. The comparison between the full numerical results (discrete 

symbols) and that predicted by equation (3.4.3) (lines) show that the simple 

superposition provides a very good estimation subject to the condition that the total 

porosity of the central pore is less than 40%. In fact, the concept of superposition can be 

extended to randomly distributed pores with tunnels by using the empirical equation 

developed by Jiang and Pan (2008) for the polymer matrix, i.e. we could have 

 

)]3.03.1)(1(1[ 32

0

max
0 poreporetunneleff VV

D

D
DDD          (3.4.5) 

 

3.4.4 Encapsulation case 

 

To demonstrate that porosity is not always the controlling factor for monomer diffusion, 

we consider a very rare structure of pore containing a suspending particle inside as 

shown in figure 3.4.12. The inner and outer space are treated as continuum material and 

the grey ring between them indicates the liquid filled pore.  

 

Figure 3.4.12 The explanation of encapsulation structure. 

 

Figure 3.4.13 and 3.4.15 show the effective diffusion coefficient for three different 

microstructures: (a) a pore containing a suspending particle, (b) same size as (a) but 
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without the suspending particle and (c) pore of the same volume fraction as (a) but 

without the suspending particle hence much smaller in size. If porosity controls the 

effective diffusion coefficient, then cases (a) and (c) would give the same result. The 

numerical results clearly show that case (a) and (b) give almost identical result, i.e. it is 

the outer radius of the pore, not the porosity that controls the diffusion coefficient. 

 

Figure 3.4.13 Effective diffusion coefficient for polymer of microstructures (a) and 

(c). 

 

 

Figure 3.4.14 Effective diffusion coefficient for polymer of microstructures (a) and 

(b). 
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3.5 Conclusion  

 

The numerical studies in this chapter demonstrated that porosity is not always the 

controlling factor for monomer diffusion in a degrading polymer. A practical case of the 

exception is that a polymer containing tunnels as a consequence of the cracking of the 

material. An un-practical but nevertheless instructive case of the exception is that some 

materials are suspended in the pores. The study further shows that it is possible to take 

the tunnelling effect into account by using a simple theory of superposition. 
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Chapter 4 

An Entropy Spring Model for Change in Young’s 

Modulus of Amorphous Biodegradable Polymers 

during Biodegradation 

 

4.1 Introduction 

 

A critical issue in the use of biodegradable bone fixation devices is to understand the 

load transfer from a device to the protected bone as the bone heals and the device 

degrades. The polymer-chain scissions in a biodegradable polymer owing to hydrolysis 

reaction ultimately lead to the reduction in the Young‟s modulus. A simple rule of 

mechanics tells us that the device shares less load if its stiffness is reduced. If the 

Young‟s modulus reduces too fast, then the healing bone would be put in danger. On the 

other hand, if the Young‟s modulus reduces too slowly, the bone would be weakened by 

the well-known stress-shielding effect. Therefore there is an optimised degradation rate 

which ensures both the complete healing and the healthy growth of a broken bone. The 

current generation of biodegradable devices has not fully exploited this optimised 

potential owing to the lack of a predictive tool for the stress transfer. To be on the safe 

side, the polymers are often over-designed, with very high molecular weight and degree 

of crystallinity. The degradation time of these devices is very long, sometimes over four 

years (Barber, 2000). Extensive experimental studies have been carried out on the 

degradation behaviour of biodegradable polymers. For example, Tsuji and his 

co-workers (Tsuji, 2000; Tsuji, 2002; Tsuji and Muramatsu, 2001; Tsuji and Ikarashi, 

2004; Tsuji and Ikada, 2000) published a series of experimental data on the degradation 

of polylactic acids (PLA) and their co-polymers. These are long-term data, some over a 

period of 36 months, showing average molecular weight, degree of crystallinity, weight 

loss, Young‟s modulus, ultimate strength and elongation to failure as functions of the 
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degradation time. One observation of the data is that the Young‟s modulus reduction 

significantly lags behind the reduction in the average molecular weight for most of the 

biodegradable polymers. In fact the Young‟s modulus often increases, instead of 

decreasing, at the early stage of the degradation. A reasonable understanding has also 

been obtained on the „degradation pathways‟. It has been concluded that the water 

molecules diffuse into the amorphous region of the polymers relatively quickly and 

attack the backbones of the amorphous polymer chains. There is however some 

confusion about whether the chain cleavage occurs randomly along the polymer chains, 

referred to as random scission, or dominantly at the end of the polymer chains like 

unzipping, referred to as end scission (van Nostrum et al., 2004; Shih, 1995
a
; Shih, 

1995
b
; Belbella et al., 1996; de Jong et al., 2001). As degradation proceeds further, the 

water molecules enter the narrow amorphous gaps between the crystalline lamellae 

causing chain scissions there (Zong et al., 1999). In the final stage of the degradation, 

water attacks the crystalline phase which takes a much longer time to degrade. One 

complication is that the degree of crystallinity can increase significantly during the 

degradation process (Zong et al., 1999; Tsuji and Ikada, 2000). This has been explained 

as the chain cleavage providing the amorphous polymer chains with extra mobility and 

allowing small crystals to form first in the large amorphous region and later between the 

gaps of the lamellae (Zong et al., 1999). The cleavage-induced crystallisation may 

partially explain the increase in Young‟s modulus in the early stage of the degradation.  

 

Chapter 2 presented a phenomenological model for polymer degradation which can 

predict the average molecular weight as a function of location and time in a device of 

any sophisticated shape. Such a model, when connected with a model for predicting the 

change in elastic properties, would be a powerful tool to assist device manufacturers 

and orthopaedic surgeons to optimise the device design and applications. Unfortunately, 

existing theories for property degradation of polymers cannot capture the observed 

behaviour of biodegradable polymers. The modern constitutive laws for elastomers have 

taken the effect of chain scissions into account (Wineman, 2005; Shaw et al., 2005), 

which was built on the experimental and theoretical work of Tobosky (1960). These 
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constitutive laws were, however, targeted at rubbers undergoing oxidation. The 

fundamental trend in these materials is that the Young‟s modulus reduces exponentially 

with time, which is well captured by Tobosky‟s theory (1960).  Consequently the same 

theory cannot be applied to biodegradable polymers which show an incubational 

behaviour (Tsuji, 2002).  

 

The purpose of this chapter is to present a model relating Young‟s modulus to the 

average molecular weight for biodegradable polymers. The model is based on the 

entropy spring theory for amorphous polymers, which predicts that the Young‟s 

modulus depends linearly on the number of polymer chains inside the system (Ward and 

Hadley, 1993). A central issue in using the entropy theory is how to count the number 

of molecular chains as chain scissions occur. Two concepts, a molecular weight 

threshold and a so-called „no-rise rule‟, are proposed. The model is then used to explain 

the experimental data for poly(L-lactic acid) (PLLA) and poly(D-lactic acid) (PDLA) 

by Tsuji (2002). A demonstration case is provided to show how to connect the 

biodegradation model developed in Chapter 2 with the model for Young‟s modulus 

change for a three-dimensional device. The focus of this chapter is on amorphous 

polymers because (a) some biodegradable polymers remain amorphous throughout the 

biodegradation process and (b) the amorphous region is the weak link in the degradation 

of semi-crystalline biodegradable polymers; the composite theory can be used to predict 

the Young‟s modulus of a semi-crystalline polymer from its degree of crystallinity and 

Young‟s modulus of the amorphous region. 

 

4.2 Entropy theory for Young’s modulus of polymers 

 

This section presents a brief outline of the entropy theory for the Young‟s modulus of 

amorphous polymers (Ward and Hadley, 1993). Consider that a force applied on a piece 

of material, f, is related to its stretched length, l, through its internal energy, U, and 

entropy, S, such that  
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in which T represents the temperature. For most engineering materials, the entropy term 

can be ignored. For amorphous polymers, the entropy spring model assumes that the 

internal energy term can be ignored and it is the entropy increase of the polymer chains 

from a disordered state to a more ordered state during deformation that provides the 

elasticity of the material. The entropy spring theory reflects the fact that very little force 

is carried by the polymer backbone during deformation; hence the total internal energy 

change is small relative to the entropy change. During the polymerisation process, the 

repeating units connect to each other to form long polymer chains following the random 

walk mechanism. The polymer chains have their end-to-end distances distributed in the 

form of a Gaussian error function. The entropy of a single chain can be calculated as 

(Ward and Hadley, 1993) 

 

)( 222222 zyxkbcrkbcs   (4.2.2) 

 

in which b is the length of the polymer ester bond, c is an arbitrary constant, k is the 

Boltzmann constant, r is the end to end distance of a polymer chain, x,y,z are the spatial 

coordinates of the chain end. 
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Figure 4.2.1 A single polymer chain. 

 

The entropy changes if the polymer chain deforms, i.e. if the chain end moves from Q  

to 'Q , as in figure 4.2.2. 

 

Figure 4.2.2 Change in entropy of a single chain as the polymer deforms. 

 

If the deformation of this chain follows 
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xx 1'  ; yy 2'  ; zz 3'                                (4.2.3) 

 

the entropy of the chain after the deformation becomes: 
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2 zyxkbcs                                           (4.2.4) 

 

The difference of the entropy in this case is:  
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For N  chains per unit volume in the system, because there is no preferred direction 

for the chain vectors in the isotropic state, there is no preference for the zyx  , ,

directions with the mean square chain length, so that: 
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owing to the Gaussian distribution of polymer chain 

length. The total entropy change for all the N  chains in a unit volume can be derived 

as: 
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                               (4.2.7) 

 

The Helmholtz function (free energy) is defined by: 

 

TSUA 
                                                       

(4.2.8) 
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in which, U  is the internal energy, T  is the absolute temperature, S  is the entropy. 

Assuming there is no change in the internal energy on deformation, under isothermal 

condition: 
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1  NkTSTA                      (4.2.9) 

 

The change in strain energy comes from the change in Helmholtz free energy and if the 

strain-energy function U  is zero initially, then we have 
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1  NkTAU                      (4.2.10) 

 

Consider the simple elongation   in x  direction; the incompressibility relationship 

indicates 1321  , and by symmetry we have 2/1

32

   

Equation (4.2.9) becomes  
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Then we have 
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                                            (4.2.12) 

 

For small strain, let xxe1 , and equation (4.2.11) is approximated as: 

 

xxxxxx EeNkTef  3                                     (4.2.13) 

 

Thus we have 
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NkTE 3 ,                                           (4.2.14) 

 

that is, the Young‟s modulus under isothermal condition is proportional to the number 

of polymer chains of a unit volume of polymers times the absolute temperature. 

 

4.3 The degradation theory of rubber oxidation due to Tobolsky (1960) 

 

Tobolsky (1960) studied the stress decay of rubbers during the oxidation process. Their 

study starts from the stress-relaxation experiment on rubbers of several kinds. The 

measurement of Young‟s modulus in his work is given by equation (4.3.1) 
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                                                (4.3.1) 

 

in which E is the Young‟s modulus, f(t) is the stress that is measured from the 

experiment at time t, n(t) is the number of network chains that are still supporting the 

stress at time t. According to this equation, the Young‟s modulus of rubber is 

proportional to the number of polymer chain and the rule for counting n(t) is the number 

of network chains that have never been cut up to time t.  

 

If scissions occur randomly within the system (which means the polymer chains can be 

cut more than once), the Young‟s modulus can be calculated as: 
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                                            (4.3.2) 

 

in which 0q  is the rate of scission (equal to the total number of scissions over time). If 

the chain scission occurs only at the cross-link sites and each chain can only be cut once, 

the Young‟s modulus is also an exponential function of time. 
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in which k   is a constant. 

 

Both equation (4.3.2) and equation (4.3.3) suggest an exponential relationship between 

Young‟s modulus and time. This relation is supported by the stress-relaxation 

experiment from rubber as shown in figure 4.3.1. 

 

Figure 4.3.1 The change of Young’s modulus for rubber in stress-relaxation 

experiment with respect to time (Tobolsky, 1960). 

 

Figure 4.3.1 shows the stress-relaxation for natural rubber in the stress-relaxation 

experiment, Young‟s modulus is proportional to the measured stress as strain was kept 

constant. The exponential decay of stress suggests that the Young‟s modulus decays in 

the accordance with equation (4.3.2).  

 

4.4 The experimental data by Tsuji (2002) 

 

A long-term degradation experiment was reported by Hideto Tsuji in 2002. The 

degradation samples are four species from the PLA family: PLLA, PDLA, PDLLA and 
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PLLA/PDLA (1:1). The polymers are made into films with the dimension of 

mmmmm    10050303  and mmmmm   25 3018  in order to eliminate any 

acceleration from the accumulated oligomers (reach zone B in our biodegradation map 

in Chapter 2) and kept in 10mL of phosphate-buffered solution (pH 7.4  0.1) at 37 C0  

for up to 60 months. The initial number average molecular weights are: PLLA: 

15104.5  molg , PDLA: 15104.4  molg , PDLLA: 15107.3  molg , and 

PLLA/PDLA (1:1): 15104.4  molg . All four groups of samples are amorphous 

throughout the experiment; we choose the data of PDLA and PLLA for the case study in 

the rest of this chapter. The GPC (Gel Permeation Chromatography) curves for PLLA 

and PDLA polymer samples are shown in figures 4.4.1 and 4.4.2 respectively, for the 

degradation times of 0, 8, 16, 24 months from the right to left. 

 

 

Figure 4.4.1 GPC curves for PLLA at four different times (Tsuji, 2002). 

 

 

Figure 4.4.2 GPC curves for PDLA at four different times (Tsuji, 2002). 

24 months 0 month 

0 month 24 months 
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The number average molecular weights reduction with respect to times (0 4 8 12 16 20 

24 months) for PLLA (triangles) and PDLA (squares) are shown in figure 4.4.3. 

 

Figure 4.4.3 The number average molecular weight loss versus time (Tsuji, 2002) 

for PLLA (triangles) and PDLA (squares). 

 

The number average molecular weight shown in figure 4.4.3 roughly follows an 

exponential relation with the degradation time. This trend can be well captured by our 

previous model in Chapter 2. The change in Young‟s modulus at 0 4 8 12 16 20 24 

months for PLLA (triangles) and PDLA (squares) samples are plotted in figure 4.4.4. 
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Figure 4.4.4 Young’s Modulus versus time averaged from four samples (Tsuji, 

2002) for PLLA (triangles) and PDLA (squares). 

 

The reduction in Young‟s modulus in figure 4.4.4 is measured by tensile tester at 25 C0  

at a relative humidity of 50%, without any influence of crystallisation phenomenon 

from the polymers. Because PLLA and PDLA are both amorphous material the 

reinforcement of their strength should be excluded, and therefore this set of 

experimental data was chosen to be compared with the theoretical work as these 

polymers remain amorphous throughout the experiment.  

 

4.5 An entropy based model for change in Young’s modulus 

 

4.5.1 Description of the model 

 

Comparing figure 4.4.4 with figure 4.3.1, it is obvious that the Young‟s modulus 

reduction for rubber and PLA behave very differently from each other. Therefore the 

theory from Tobolsky (1960) cannot be applied to biodegradable polymers. This is 

because in rubbers it is the cross-link density that provides the resistance to deformation, 

while in amorphous polymers, it is the entropy change that provides the resistance to 
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very quickly at the late stage. If the N is taken as the total number of polymer chains per 

unit volume, equation (4.2.14) seems to predict an ever-increasing Young‟s modulus for 

a degrading polymer as the chain cleavage always increases the total number of polymer 

chains. However the entropy theory was developed for fresh polymers and a 

fundamental assumption leading to equation (4.2.14) is that the end-to-end distance of a 

single polymer chain is much smaller than the extended chain length. Under this 

assumption, the end-to-end distance follows the Gaussian distribution. This assumption 

is no longer valid if random chain cleavage occurs. It is complicated to calculate the 

entropy taking into account of the random scission. Instead an intuitive argument is 

suggested here to modify the entropy spring theory. As schematically illustrated in 

figure 4.5.1 (a) & (b), an isolated chain scission of a very long chain should not affect 

the entropy change during the deformation of the polymer because the long polymer 

chain is constrained by its surrounding chains.  It is then reasonable to assume that N 

does not increase after a chain cleavage. This is referred to as the „no-rise rule‟ in the 

following discussion. Furthermore, a very short chain does not contribute to the entropy 

change during deformation. It has long been recognised that polymers with a very small 

degree of polymerisation have little strength and stiffness (Kaufman and Falcetta, 1976). 

Therefore chains shorter than a critical degree of polymerisation should not be counted 

when equation (4.2.14) is used. Consequently, a polymer chain should be removed from 

the entropy calculation if enough cleavages have occurred such that its molecular 

weight is smaller than the threshold. This is schematically shown in figure 4.5.1 (a) & 

(c). From a known initial distribution of polymer molecular weight, the random and end 

scissions can be simulated numerically on a computer using the classical Monte Carlo 

scheme. By means of the “no-rise” rule and the molecular weight threshold, the value of 

N, hence the Young‟s modulus, and the average molecular weight can be calculated. A 

relationship between the Young‟s modulus and the average molecular weight is then 

determined.  
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Figure 4.5.1 Illustration of entropy theory for elasticity. 

 

A computer code is developed to implement a Monte Carlo scheme for polymer chains 

scissions and to calculate the Young‟s modulus – number average molecular weight 

relation. Figure 4.5.2 shows the flowchart of the Monte Carlo scheme. 



CHAPTER 4 AN ENTROPY SPRING MODEL FOR CHANGE IN YOUNG’S MODULUS OF 

AMORPHOUS BIODEGRADABLE POLYMERS DURING BIODEGRADATION 

Page 103  

 

  

Figure 4.5.2 Flowchart showing the Monte Carlo scheme to simulate polymer 

chain scissions and to calculate the corresponding Young’s modulus and average 

molecular weight. 

 

The Monte Carlo simulation starts from a numerically generated matrix representing the 

polymer chains with their degrees of polymerisation following a known initial 

molecular weight distribution. The information is contained in the two columns of the 

matrix generated from GPC curves figures 4.4.1 and 4.4.2. As shown in figure 4.5.3, the 
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first column is a number that identifies a single polymer chain. The second column 

contains the corresponding degree of polymerisation of the polymer chain.  

 

Figure 4.5.3 Data structure for computer simulation of polymer chain scission. 

 

The sample size (the initial number of polymer chains) in the simulation has to be 

chosen arbitrarily, the effect of which will be further discussed in the following section. 

At each time step, either a random or end scission is prosecuted. The probability of end 

scission is taken as 

   

)( endtotalrandomendend

endend

endrandom

end

end
NNKNK

NK

PP

P
P





                    (4.5.1) 

 

in which endP  and randomP  represent the probability for end and random scission 

respectively ( 1 randomend PP ), endN
 
is the number of polymer chain ends inside the 

system at the current time step and totalN  is the total number of repeating units in the 

system at the current time step. 
random

end

K

K
 is an input parameter representing the relative 

rates of the two scission mechanisms. During the simulation, a random number between 
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zero and one is generated. If the random value is less than Pend then end scissions occurs. 

The computer programme will randomly pick a polymer chain, i.e. a row of the matrix, 

and reduce its degree of polymerisation, i.e. the value of the second-column, by one 

unless the „chain length‟ number is one, in which case the entire row will be removed. If 

the random value is larger than or equal to Pend, then random scission occurs. The 

computer code will pick a random row and position on the row and generate two new 

polymer chains accordingly. After each time step, the average molecular weight and the 

value of N are calculated according to the rules discussed above. According to these 

rules, the value of N never increases and is reduced by one if the degree of 

polymerisation of all the polymer chains sharing same identity become smaller than a 

threshold which will be referred to as thM .  

 

4.5.2. Comparison with the experimental data by Tsuji (2002)  

 

The experimental data on poly(L-lactide) and  poly(D-lactide) produced by Tsuji 

(2002) are used here for comparison with the entropy spring model. In figure 4.4.4, the 

Young‟s modulus of the PDLA samples at t=0 and t=24 are 2.09 and 0.33 GPa 

respectively. With a series of trial and error simulations, it was found that 

51015.1 thM  g/mol leads to a good fitting for between equation (4.2.14) and the 

experimental data. With this value of the threshold and the initial sample size of 3000 

chains, the normalised Young‟s modulus versus the number average molecular weight 

is obtained for PDLA as shown in figure 4.5.4 (solid line) which also shows the 

experimental data (discrete dots) by Tsuji (2002). 
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Figure 4.5.4 Normalised Young’s modulus versus normalised average molecular 

weight for PDLA. Solid line – model prediction using  51015.1 thM  g/mol  

initial sample size of 3000 polymer chains and the random to end scission ratio of 

1:1; discrete dots – experimental data obtained from figures 4.4.3 and 4.4.4 

 

In the numerical simulation, the ratio of 
random

end

P

P

 

was initially set at 1:1 (by choosing 

random

end

K

K
=3500). This simulation is repeated to fit the PLLA data obtained by Tsuji 

(2002). It was found that  5103.1 thM  g/mol leads to a good fit. Figure 4.5.5 

compares the predicted (solid line) and experimental (discrete dots) relation between the 

Young‟s modulus and average molecular weight. As in the previous simulation, 3000 

initial polymer chains were used and 
random

end

P

P

 

was initially set at 1:1. 
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Figure 4.5.5 Normalised Young’s modulus versus normalised average molecular 

weight for the PLLA used by Tsuji (2002). Solid line – model prediction using  

5103.1 thM  g/mol, initial sample size of 3000 polymer chains and the random to 

end scission ratio of 1:1; discrete dots – experimental data obtained by Tsuji 

(2002). 

 

In the two fitting curves (figures 4.5.4 and 4.5.5), the simulation results rely on the two 

values of parameter thM . These two thresholds determined for PDLA and PLLA 

correspond to degrees of polymerisation of about 1600 and 1800, respectively. Kaufman 

and Falcetta (1976) stated that it is the molecular weight that decides the mechanical 

strength for polymer materials. According to their theory, when the degree of 

polymerisation of polymers is low there will be no such strength; when the degree of 

polymerisation is beyond a critical value the mechanical strength will show a steep rise 

until the polymerisation reaches a large value above which the mechanical property 

remains stable, as figure 4.5.6 demonstrates. 
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Figure 4.5.6 Relation between mechanical property and degree of polymerisation 

according to Kaufman and Falcetta (1976). 

 

Almost all polymers follow this trend of the relationship and the usual threshold of 

degree of polymerisation above which the mechanical property remains stable is 

between 600 and 900. The critical values of Mth therefore well above these known 

threshold values for polymers to have stable mechanical strength.  

 

4.5.3 Effect of the simulation parameters on the predicted Young’s modulus 

 

It can be observed from figures 4.5.4 and 4.5.5 that the simple model proposed in this 

chapter can capture the trend of the Young modulus reduction very well. In this section, 

we will change the inputs to the model to test the importance of the parameters. The 

first input to the model to be changed is the initial polymer chain number, i.e. the 

sample size. To show that the initial sample size of 3000 polymer chains is large enough, 

the simulation was repeated using sample sizes of 10000 and 30000 respectively with 

all other inputs remaining the same. The results are shown below in figure 4.5.7. 
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Figure 4.5.7 The normalised Young’s Modulus versus normalised number average 

molecular weight with sample size of 3000 (red), 10000 (dotted), 30000 (solid line) 

for PDLA. 

 

All these curves in figure 4.5.7 are very close to each other, showing that the sample 

size of 3000 polymer chains is large enough. The second parameter to study is the ratio 

of 
random

end

K

K
. The simulation was repeated using the 

random

end

P

P
=10:1, 1:1, and 1:10 (by 

choosing 
random

end

P

P
=35000, 3500, 350) at initial stage respectively and the results are 

plotted in figure 4.5.8.  
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Figure 4.5.8 The normalised Young’s modulus versus normalised number average 

molecular weight with end scission to random scission of 10:1 (red), 1:1 (dotted), 

1:10 (solid line) for PDLA. 

 

It can be observed from figure 4.5.8 that the result is insensitive to the random to end 

scission ratio. The initial degree of polymerisation for PDLA in Tsuji‟s (2002) 

experiment is approximately 6100. With 3000 initial polymer chains, the system 

contains about 7108.1   repeating units which are subject to hydrolysis cleavage. 

Therefore, the reduction in the number average molecular weight is mostly caused by 

the increasing of the polymer chain number (random scission) rather than the decreasing 

of the polymer chain unit (end scission). The ratio of 
random

end

P

P

 

does not affect the 

change in the average molecular weight unless the probability for random scission is a 

tiny number, i.e. 1/10000. 

 

The simulation results are however sensitive to the choice of Mth. To show this, we 

changed the threshold value while all other parameters remained the same. Figures 4.5.9 

(a) and (b) show the simulation results using different threshold values. 
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Figure 4.5.9 (a) Influence of Mth on the model result for PDLA; 51015.1 thM  

(solid line) and 5103.1 thM  (dashed line). 

 

 

Figure 4.5.9 (b) Influence of Mth on the model result for PLLA; 5103.1 thM  

(solid line) and 5101.1 thM  (dashed line). 

 

Figure 4.5.9 (a) and (b) show the impact from changing Mth values. Comparing to figure 

4.5.7 and figure 4.5.8, figure 4.5.9 (a) & (b) indicates the difference on two Mth values 

which are not very far from each other could still provide a clearly different prediction 
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result. In order word, the model is much more sensitive to Mth value than the initial end 

to random scission ratio as well as the sample size. 

 

4.5.4. A discussion on end scission versus random scission 

 

Using equation (4.5.1) for the initial state of the polymer gives 

 

000

0

00

0

)( endendendtotalrandom

endend

randomend

end

NKNNK

NK

PP

P




  

                         (4.5.2) 

 

where the superscript 0 indicates the value of the variable at time zero. Here totalN
 

represents the total number of ester bond (repeating units) and endN
 
represents the total 

number of polymer ends. Noting that 100  randomend PP  and using chN
 
to represent the 

total number of polymer chains, we have: 
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Similarly at any scission step, we have 

 

endrandom

end

end
KDPK

K
P

2)2(

2


                                         (4.5.4) 

 

Combining (4.5.3) with (4.5.4) we obtain  
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Because n

n

n M
M

M

DP

DP
DDP 

00

0 ;2P and , 2 , the above equation can be 

rewritten as: 

 

1

1




n

end
M

P                                                     (4.5.6) 

 

in which  

 

0

0

0

0

endend

totalrandom

end

rand

NK

NK

P

P


 
 

For reasonable values of 
random

end

K

K

, 

value of   is very large because the total number of 

ester bonds is much larger than the total number of chain ends. Equation (4.5.5) 

indicates that the probability of end scission increase from a very small value to unity 

towards the end of the degradation as Mn reaches zero. Figures 4.5.10 (a) –(c) shows the 

actual probability of end scissions observed in our simulations for three different values: 

Kend/Krandom=35000, 3500, 350; Pend/Prandom=10:1, 1:1, 1:10. 
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Figure 4.5.10 (a) End scission probability versus total number of chain scissions 

with initial input 
random

end

P

P
 = 10:1 for PDLA. 

 

 

Figure 4.5.10 (b) End scission probability versus total number of chain scissions 

with initial input 
random

end

P

P
 = 1:1 for PDLA. 
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Fig 4.5.10 (c) End scission probability versus total number of chain scissions with 

initial input 
random

end

P

P
 = 1:10 for PDLA. 

 

It is apparent from these figures that end scission dominates during the later stage of the 

hydrolysis degradation. This observation is also supported by experimental observations 

by Shih (1995
a
). Note that the end scission has a much smaller effect on the reduction in 

the average molecular weight. This is simply because a random scission can cut a 

polymer chain by half while an end scission only reduces the degree of polymerisation 

by one. Therefore it is important not to confuse the fact that “end scission dominates the 

hydrolysis reaction”, meaning more end scissions occur than random scission, with the 

fact that “the average molecular weight and consequently the mechanical properties are 

more affected by random scission”.  

 

4.6 Connecting biodegradation with property degradation  

 

Next we demonstrate how to connect the entropy spring model and the biodegradation 

model to predict stiffness change of a biodegradable device. The spatial and temporal 

evolution of the average molecular weight can be calculated using finite element 

method for equations (2.3.12) and equation (2.3.13). The corresponding spatial and 
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temporal distribution of Young‟s modulus in a device can be obtained by using the 

relation between Young‟s modulus and average molecular weight given by, for example, 

figure 4.5.5. As a demonstration case, we consider a biodegradable rod made of PLLA 

as shown in figure 4.6.1: a small section of the rod is modelled with the finite element 

method. Despite the obvious axisymmetry of the problem, we still solve it as a general 

three-dimensional problem just to show that the method is generally valid.  

 

Figure 4.6.1 A biodegradable rod and its finite element model. 

 

The boundary conditions are that there is no diffusive flux of mC  normal at the top and 

bottom cross-sections and that 0mC  at the outer surface of the rod. The following 

non-dimensional parameters were used in the analysis, as Chapter 3 suggests: 

1.0
02

1
1 

n

eCk

k
k  and 01.0

2

20

0

0 
RkC

D
D

n

e

. Here 0D  is the diffusion coefficient of 

the monomers in the non-degraded polymer and R is the radius of the rod.  The spatial 

distributions of the average molecular weight field at two different degradation times 

are presented in figure 4.6.2. 
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Figure 4.6.2 Distribution of normalised average molecular weight obtained by 

solving equations (2.3.12) and (2.3.13) using the finite element method at two 

normalised times of degradation. 

 

The finite element results clearly show the heterogeneous nature of the biodegradation 

owing to the autocatalytic effect. The degradation is much faster at the core of the rod 

because of acid accumulation there. Each field in figure 4.6.2 corresponds to a 

distribution of Young‟s modulus calculated from the empirical fitting to the curve in 

figure 4.5.5: 
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CCCCCE
           (4.6.1) 

 

The effective Young‟s modulus in the axial direction of the rod is then calculated as a 

function of the degradation time and presented in figure 4.6.3. This curve is the critical 

information from which the stress transfer from the rod to the broken bone that the rod 

protects can be calculated with the finite element method.  
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Figure 4.6.3 Effective Young’s modulus of a biodegradable rod in its axial 

direction as a function of the normalised degradation time 

 

An interesting observation in figure 4.6.3 is that the reduction in the effective Young‟s 

modulus of the rod does not show the incubation effect as much as the thin sample did. 

The acid accumulation at the core of the rod accelerates the initial degradation and leads 

to significant reduction in effective Young‟s modulus of the rod even in the early stage 

of the degradation.  

 

4.7 Concluding remarks 

 

In this chapter, a common thread in the set of long-term data for the degradation of 

PLAs reported by Tsuji (2002) is provided using the entropy spring theory. The central 

assumption is that relatively short polymer molecules do not affect the entropy change 

of an amorphous polymer during its deformation. By counting the number of polymer 

chains which are long enough to be mechanically active, the Young‟s modulus of the 

degrading polymer can be related to its average molecular weight in a Monte Carlo 

simulation of random and end scissions of the polymer chains. Four inputs of the model 
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are (a) the rate ratio of end to random scissions, (b) initial molecular weight distribution 

of the polymer, (c) a threshold for the molecular weight, and (d) the sample size. Our 

study shows that the first and last parameters have little effect on the relationship 

between Young‟s modulus and the average molecular weight. The numerical results 

obtained from this simulation provides a connection between Young‟s modulus and 

average molecular weight that can be used in the biodegradation model to predict the 

spatial and temporal distribution of the Young‟s modulus in a device of any 

sophisticated shape. The case study in section 4.6 shows that even in the simple case of 

a cylindrical rod, the experimental data for the Young‟s modulus change obtained with 

very thin samples cannot be directly used to assess the stiffness of the rod. This is 

because the Young‟s modulus varies significantly in a device owing to the 

heterogeneous nature of the hydrolysis reaction. It is the stiffness of the rod, or the 

effective Young‟s modulus, that determines the stress transfer from the degrading 

device to the healing bone. The effective Young‟s modulus can only be determined after 

combination of this model with the degradation model in the previous chapter.  
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Chapter 5 

Interaction between Device Degradation and Bone 

Healing in Orthopaedic Fixation – A Numerical Case 

Study 

 

5.1 Introduction 

 

Chapters 2, 3, and 4 have provided a complete set of models to capture the main 

features of biodegradable polymer degradation and Young‟s modulus decay. In this 

chapter, we focus on the practical application in orthopaedic device. As regarding to the 

biodegradable polymers, one of their important applications is fixation devices for 

fractured bones. As stated before, in order to ensure the complete healing of the broken 

bone, the mechanical property loss of the supporting devices needs to be controlled. Up 

to now, all our discussions have been about the biodegradable polymers themselves 

without consideration of the fractured bone. For bone regeneration, it is well known that 

the bone density is adaptive to the loading environment at a certain stage of the healing 

process. This brings extra complexity as the healing bone density is not only a function 

of time but also a function of mechanical loading. Models predicting the bone 

remodelling to loading environment are well developed, and can be sub-categorised into 

three types: bone remodelling is stimulated by strain (Turner et al., 1997), stress 

(Sanz-Herrera et al, 2009) or strain energy (Wienans et al., 1992). The strain, stress or 

strain energy can all be calculated from structural mechanics analysis assuming that the 

elastic properties of the degrading device and the healing bone are known. Therefore the 

device degradation has a direct impact on bone healing – as the stiffness of the device 

gets smaller due to polymer degradation, more load is carried by the bone which 

stimulates further bone remodelling. If the device degrades too slowly, the bone would 

weaken itself due to lack of mechanical stimulation. The corresponding mathematical 
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problem is coupled between stress analysis, bone healing and polymer degradation. In 

this chapter we integrate stress analysis, a bone remodelling model and our polymer 

degradation model together. Our aim is to find out how the degradation rate of the 

material affects bone regeneration. The work presented in this chapter connects all parts 

of this thesis together and provides a complete case study for the biodegradation of 

orthopaedic fixation devices. 

 

5.2 An integrated model for device degradation and bone remodelling 

 

Stress shielding is the reduction in bone density attributed to removal of normal stress 

from the bone by an implant. According to Wolff's law, the bone in a healthy person or 

animal will remodel in response to the loads it is placed under. Therefore, if the loading 

on a bone decreases, the bone will become less dense and weaker because there is 

negative stimulus for continued remodelling. Ideally, the bone strength and the transfer 

of the mechanical load should follow the trend in the right-hand side of the curve below 

(figure 5.2.1). 

 

Figure 5.2.1 Scheme of the load transfer for biodegradable bone-supporting device 

applied to fractured bone during the healing process. 
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As the figure demonstrates, the load applied to the bone is allocated on the supporting 

plate at the beginning and slowly decreases thereafter as the device degrades. As a result, 

the bone gradually takes over the load from the plate and grows denser. This ideal 

situation requires the stiffness of the plate decreases to be achieved in a controlled and 

predictable manner. 

 

The healing process of a broken bone can be divided into 3 distinctive stages (URL: 

http://en.wikipedia.org/wiki/Bone_healing; Doblaré et al., 2004): 

I.  Reactive stage 

Not long after the bone fracture occurs, blood cells fill the gap of the fracture to stop the 

further bleeding and initiate the forming of granulation tissue. 

II. Reparative stage 

The granulation tissue is replaced by woven bone and cartilage in this step. The fracture 

gap is then filled by these woven bones and cartilage, restoring some of the original 

strength. Later, further ossification takes place to substitute both the cartilage and 

woven bone with trabecular bone which has most of the bone's original strength. 

II. Remodelling stage 

In the end, the entire fracture callus is remodelled in order to retrieve the original bone 

strength and shape. 

 

The ideal load transfer from a degrading fixation device to a healing bone is 

schematically shown in figure 5.2.2. 
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Figure 5.2.2 Schematic illustration of ideal load transfer from a fixation device to a 

healing bone corresponding to the bone healing stages 

 

For stage I and the early part of stage II, the broken bone needs full protection as any 

Young‟s modulus decay in these stages would put the healing bone in danger. Therefore 

our study focuses on the later part of the reparative stage and the entire remodelling 

stage. The bone remodelling process is a lifelong process of generation and 

degeneration of bone cells. Mechanical stimulation plays a critical role in the process. A 

classical example is that of astronauts, who may lose part of their bone density in outer 

space whereas certain exercises help them to retrieve their bone strength. The 

fundamental considerations in the model for bone healing and device degradation are: 

A. The starting point of the model is when the fractured bone has already restored 

most of its strength and Young‟s modulus while the polymeric device, on the other hand, 

has only lost very little of its original stiffness. 

B. The supporting device loses its mechanical property because of the polymer 

degradation while the bone is remodelled to its original strength and shape. 

C. The degradation of the supporting devices affects the remodelling of bone as the 

bone density is adaptive to the loading condition. 

A flow chart to demonstrate this interaction between different elements of the integrated 

model is shown in figure 5.2.3. 
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Figure 5.2.3 Integrated model for bone healing supported by a biodegradable 

fixation device 

 

It is worth to point out again that the bone has regained most of its strength and Young‟s 

modulus at the beginning of this flow chart. At each time step, four steps are involved in 

the calculation, each feeding information to the others. The output of the analysis 

includes temporal and spatial evolution of the bone density and average molecular 

weight of the device. A finite element model is developed broadly based on the 

geometry of a bone fixation device as shown in figure 5.2.4. 

 

Figure 5.2.4 One-sided bone fixation (Reichert et al., 2009). 
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The part of the fixation-bone system outlined using the dash line in figure 5.2.4 is 

isolated out for analysis as shown in figure 5.2.5. For simplicity we consider a two 

dimensional model and assume plane stress condition in the stress analysis.  

 

Figure 5.2.5 Geometry of the case study. 

 

The model consists of three types of sub-domains: (1) the fixation device made of 

biodegradable polymer (white); (2) the healthy bone which has not fractured (deeper 

grey); (3) the healing bone with less density than normal bone (lighter grey). In the 

region of fractured bone, Young‟s modulus is considered as a power function of the 

bone density (Wienans et al., 1992): 

 

3 densityCE                                                       (5.2.1) 

 

densityC  is the constant which is taken as 3790MPa(gcm
-3

)
-3

 following Wienans et al. 

(1992). Bone remodelling consists of two sub-processes: formation of the new bone and 

removal of the old bone. It is well known that bone can be self-adaptive to the loading 

environment and we take this factor into account by applying a rate equation following 

Turner et al. (1997) 
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BA
dt

dE


                                                      
(5.2.2) 

 

in which E is the Young‟s modulus of the bone, A is the rate constant; B is the threshold 

constant value,   represents the average strain that equals to the average absolute 

value of the three in plane principal strains: 

 

3

221 
                                                   (5.2.3) 

 

Note that this remodelling equation only applies to the fractured bone; the remodelling 

process in the healthy bone is not considered in our model. For simplicity we neglect 

the fact that the bone is anisotropic and its Young‟s modulus can be different in 

different directions. In the special case shown in figure 5.2.4, the shear strain in the 

healing bone is small owing to the loading and boundary conditions. The two in plane 

principal strains can be taken as 

 

E

E

E

x

z

x

y

x

x










3

2

1

 

 

in which 
x , 

y  and 
x , 

y  are the normal stains and direct stresses in the x and y 

directions;   is the Poisson‟s ratio which is taken as 0.33 throughout the chapter. We 

therefore rewrite (5.2.2) as: 

 

B
E

A

dt

dE x



 ))(21(

2
                                            

(5.2.4) 
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Recently Sanz-Herrera et al. (2009) proposed a model to predict the bone remodelling 

behaviour inside biodegradable scaffolds. They proposed the following equations:  

 

water

water C
dt

dC
                                                   (5.2.5) 

 

waterC
dt

dMn
                                                     (5.2.6) 

 

and 

 

0

0

)(

Mn

tMn
EE 

                                                     

(5.2.7) 

 

in which, 
waterC  is the concentration of water in the polymer, Mn is the polymer 

molecular weight, E is Young‟s modulus of the biodegradable polymer, and   and   

are constants. This is the state of the art of mathematical models for the interaction 

between polymer degradation and bone remodelling. It is obviously over simplistic and 

does not fit with the existing experimental evidence. For example, there is no 

experimental evidence for the polymer degradation rate to be dependent on the water 

concentration. In fact most experimental data show that water penetrates into the 

polymer much faster than the polymer degradation and that the degradation rate is 

independent of the water concentration. Furthermore the reduction in the Young‟s 

modulus always significantly legs behind the reduction in the average molecular weight 

as shown in Chapter 4. The linear relation of (5.2.7) cannot be correct. We therefore 

used the models developed in Chapters 2 and 4 to replace (5.2.6) and (5.2.7) and assume 

that the water penetration is much faster than all the other processes.  

 

For the biodegradable polymer, the reaction-diffusion model developed in Chapter 2 is 

applied to calculate the molecular weight distribution: 
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)( 21

n

mee

e CCkCk
dt

dC
                                             (5.2.9) 

 

in which me CC , are the concentration of ester bond and monomers, respectively; D is 

the diffusion coefficient; 
1k  and 

2k  are rate constants; x and y are the spatial 

coordinate; and t is the time. The stress distributed on the polymeric device could 

accelerate the degradation rate of the polymer but we ignored this factor here for 

simplicity. Followed the previous discussion in Chapter 2, the average molecular weight 

is calculated using: 

 

00 e

e

C

C

Mn

Mn
                                                       (5.2.10) 

 

in which Mn  is the polymer molecular weight, 0Mn  is the initial polymer molecular 

weight and 0eC  is the initial ester bond concentration for polymers. It is convenient to 

use normalised equations in numerical studies. To normalise the equation, we define the 

following non-dimensionalised variables or constants: 
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in which bone  is the density of the healthy bone which is taken as 1.74g/cm
3
 (Weinans 

et al., 1992), l is a characteristic length scale taken as the diameter of the fixation pin. 
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boneE  is the Young‟s modulus of healthy bone which is taken as 20GPa (Weinans et al., 

1992), max  is the stress that the fractured bone carries after the biodegradable device 

vanishes. We then have: 

 

)()(
1

1

i

m

i

n

mee

m

x

C
D

x
CCCk

Atd

Cd








                                (5.2.11) 
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n
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                                           (5.2.12) 

 
3 densityCE                                                      (5.2.13) 

B
Etd

Ed x



                                                     (5.2.14) 

eCnM                                                           (5.2.15) 

 

The Young‟s modulus for the biodegradable polymer is calculated using equation 

(4.6.1). The effective diffusion coefficient D for monomers, we follow the expression 

presented in Chapter 3, i.e. D is related to porosity p through a numerical fitted relation: 

 

))(3.03.1( 0max

32

0 DDppDD 
                             

 (5.2.16) 

 

in which D0 is the diffusion coefficient of the monomers in the polymer before 

degradation starts, maxD  is the diffusion coefficient of the monomers in the liquid filled 

pores which is taken as 0max 100DD  , and p is the porosity which can be estimated as 

)(1 em CC  .  
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Figure 5.2.6 FE model of large bone defect with fixation showing boundary 

conditions. 

 

Figure 5.2.6 show an example of the finite element models used in this study. A 

uniform normal stress is applied on the left boundary of the healthy bone, and perfect 

sink condition ( 0mC ) is assumed at the boundary of the fixation device. The right 

bottom corner is completely fixed to eliminate rigid motion.  The applied load is 

carried at the right boundary by both the device and the bone. The total load carried by 

the device is referred to as 
pF   and the total load carried by the healing bone is 

referred to as bF  , both of which are calculated at each time step of the calculation. 

Due to mechanical equilibrium these two forces always add up to the applied load F , 

as schematically shown in figure 5.2.1. The initial conditions of the analysis are given in 

table 5.2.1. 
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Table 5.2.1 The initial conditions for the case study 

             Model 

Region 

Structural Mechanics Reaction-Diffusion 

Model 

Normal bone domain 

GPaE

cmg

E

20

;/74.1

;1;1

3







 

N/A 
 

Healing bone domain 

GPaE

cmg

E

17

;/65.1

;85.0;95.0

3







 

N/A
 

Degradable polymer 

domain 
GPaE

E

40

;2




 

0;1  me CC  

 

As shown in table 5.2.1, the initial value of Young‟s modulus for the unmanned 

biodegradable polymer is taken as 40GPa which can be reached only in reinforced 

biodegradable polymers rather than in normal PLA/PGAs. The initial Young‟s modulus 

of the fractured bone is taken as 17GPa, corresponding to the initial bone density of 

1.65g/cm
3
 according to equation (5.2.1). This relatively large initial value for the 

Young‟s modulus of the healing bone is because the fractured bone has restored most of 

its Young‟s modulus in the reactive and partially reparative stages. Parameters shown in 

table 5.2.2 are fixed for all the cases in order to provide systematic reference point for 

the numerical study.  

 

Table 5.2.2 Material parameters used in the analysis 

1k  0.5 

0D  0.01 

B  -1.74 

densityC  1 
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The boundary conditions in figure 5.2.6, the initial conditions in table 5.2.1 and the 

parameters in table 5.2.2 are all applied to solve the non-dimensionalised equations of 

5.2.11 to 5.2.15 using the finite element method. The output of the analysis includes the 

spatial and time evolution of the normalised bone density, which is calculated from the 

Young‟s modulus using equation (5.2.13), as well as the time evolutions of bF
 
and 

pF . The finite element analysis was carried out using a commercial finite element 

package Comsol®.  

 

5.3 Numerical results 

 

The main purpose of this case study is to demonstrate how the degradation of the 

fixation device affects the healing process of the bone. In order to present the results 

relatively, we measure the normalised half degradation time for the degradable polymer 

to reach 5.0eC
 

 in each case to provide a reference to the bone remodelling rate. It 

is useful to note that the definition of 
n

ebone CkE

A
A

02

2

max

2

)21( 
  indicates that this parameter 

represents the relative rate between polymer degradation and bone remodelling. In other 

words, in the numerical analysis we manipulate the rate of bone remodelling relative to 

that of the degradation by adjusting this parameter A . We study three different 

scenarios:  

A) the remodelling time is much longer than the half degradation time;  

B) infinit half degradation time;  

C) remodelling time is comparable to the half degradation time.  

We consider two different defects in a healing bone. Firstly we consider a large cavity 

under healing i.e. the preclinical large segmental defects (Reichert et al., 2009). 

Secondly we consider a normal fractured bone which has a crack like healing zone i.e. 

fatigue damage in the compact bone (Taylor and Lee, 1998). Note that the ratio of 

healing bone area size does not represent the real size ratio between segmental defects 
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and fatigue damage; we only use a much smaller healing bone area to represent the size 

difference here instead of using exactly the actual size ratio. The numerical studies start 

with one-sided fixation and the analysis is then repeated for symmetric fixation in order 

to study the possible different behaviour in the two types of supports.  

 

5.3.1 Large healing cavity  

 

Scenario A – Fast device degradation 

 

Scenario A means the polymer device loses most of its stiffness at the beginning of the 

bone remodelling. The growth of healing bone density (averaged over the entire 

remodelling bone sub-domain) and the load transfer from the supporting device to the 

bone are presented in figures 5.3.1 and 5.3.2. The polymer molecular weight averaged 

over the device domain is also plotted in the figures to provide a reference.   
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Figure 5.3.1 Bone density and polymer molecular weight averaged over the bone 

and polymer domains respectively as functions of time for large bone defect 

fixation with 4105 A  (scenario A). 

 

 

Figure 5.3.2 Load transfer from the supporting device to the healing bone for large 

bone defect fixation with 4105 A  (scenario A). 

 

The density growth follows a smooth curve and reaches 98% of the normal healthy 

bone. The Young‟s modulus of the fixation device does not reach zero even in the very 

late stage of calculation. Hence the bone does not carry the full load that would make it 
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to reach the full healthy density. While the bone is regaining its original density, the 

load allocated on the healing bone increases owing to the molecular weight and stiffness 

loss for the fixation devices. The actual molecular weight distributions in the fixation 

device at various times are shown in figure 5.3.3. 

 

Figure 5.3.3 The spatial distribution of the average molecular weight in the 

fixation device at 4105 t , 4106 t  , 
4107 t  , 

4108 t  , respectively. 

The colour represents the normalised average molecular weight. 

 

Figure 5.3.3 shows the spatial distribution of the average molecular weight at 4 different 

normalised times. The colour represents the average molecular weight normalised by its 

initial value. It can be observed that the degradation is heterogeneous with the inside of 

the device degrading faster than the surface regions. The very small normalised time 

indicates that the degradation of the polymer is considerably faster than the bone 

remodelling shown in figure 5.3.1.  
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Figure 5.3.4 The spatial distribution of bone density at 5.0t , 1t  , 5.1t , 

2t , respectively. The colour represents the bone density normalised by 20GPa. 

 

Figure 5.3.4 shows the spatial distribution of the bone density at 4 different normalised 

times. In consistency with figure 5.3.1, the average bone density in these 4 time steps 

are monotonically increasing. It can be observed from the figure that distribution of the 

bone density is more or less uniform in the healing region throughout the remodelling 

process. 

 

Scenario B – Zero device degradation   

 

Now let us consider a situation where the polymeric device degrades at a very slow rate, 

which is the current practice in most of the orthopaedic fixations using bioresorbable 

polymers. Some biodegradable device remains intact after 5 years of implantation.  
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The extreme is that the fixation device never loses its Young‟s modulus. Assuming no 

degradation in the device, the change of bone density and the load transfer from the 

device to the bone are shown in figures 5.3.5 and 5.3.6. 

 

Figure 5.3.5 Bone density averaged over the bone domain as a function of time for 

large bone defect fixation with A  (scenario B). 

 

 

Figure 5.3.6 Load transfer from the fixation device to the healing bone for large 

bone defect with A  (scenario B) 
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Bone density continues to decrease as shown in figure 5.3.5 because the strong fixation 

device shields the remodelled bone from sufficient stress to cause positive growth of the 

bone. A small transfer of load from the bone to the device occurs as shown in figure 

5.3.6 as the bone degrades and its Young‟s modulus reduces. The transfer is 

nevertheless stabilised over a longer term. Setting A  means that equations (5.2.11) 

& (5.2.12) are ignored during the calculation and we only solve equations (5.2.13) to 

(5.2.15) and the stress analysis simultaneously.  

 

Figure 5.3.7 The spatial distribution of bone density at 4.0t , 8.0t  , 2.1t , 

6.1t , respectively. The colour represents the bone density normalised by 20GPa. 

 

Figure 5.3.7 shows the spatial distribution of the bone density at 4 different normalised 

times. It can be observed from the figure that during the remodelling process, the top 

part of the healing bone is degenerated owing to the lack of stress stimulation while the 

bottom part of the remodelling bone reaches the full healthy bone density. At later time, 
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we can observe that the healing bone changes its shape as the top region of the 

remodelling bone keeps losing its density. Therefore the vertical height of the 

remodelling bone is reduced. In other words, using a non-degradable fixation plate with 

high Young‟s modulus, the near side of the remodelling bone would be degenerated by 

stress shielding and the remodelling bone would change its shape. The stress shielding 

can be understood by examining the strain distribution from the top to the bottom of the 

remodelling bone which is given in figure 5.3.8. 

 

Figure 5.3.8 Distribution of direct strain in the horizontal direction along the side 

a-b of the healing bone 

 

The vertical axis in figure 5.3.8 represents the normalised direct strain in the horizontal 

direction along the side a-b of the healing bone. The horizontal axis is the position on 

that boundary from a to b as indicated in the figure. The figure corresponds to the first 

image in figure 5.3.7 at 4.0t . Note that the strain in this figure is a value normalised 

by 
boneE

max
 because both the stress and Young‟s modulus have been normalised in the 

previous discussion. We can observe that it is this heterogeneous strain distribution that 

reduces the bone density at top end of the remodelling bone in the later time steps. 

 

Scenario C –Moderate degradation   
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Now let‟s consider the scenario between the previous two situations. In this case, the 

bone remodelling rate is comparable to the degradation rate of the polymer device. The 

change in bone density and the load transfer are shown in figures 5.3.9 and 5.3.10. The 

change in the polymer molecular weight averaged over the entire device is also shown 

in the figures to provide a reference.  

 

Figure 5.3.9 Bone density and polymer molecular weight averaged over the bone 

and polymer domains respectively as functions of time for large bone defect with 

5.0A  (scenario C). 
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Figure 5.3.10 Load transfer from the supporting device to the healing bone for 

large bone defect with 5.0A  (scenario C) 

 

The density of the bone reduces at first because the strong supporting device shields the 

bone and later increases because the weakening fixation transfers the load back to the 

remodelled bone. It is noteworthy that, according to the two curves in figure 5.3.9, the 

positive bone remodelling process started when the polymer lost most of its Young‟s 

modulus. After that, the remodelling bone retrieved its original density and Young‟s 

modulus rapidly. The molecular weight distribution in the degrading device during the 

degradation is presented in figure 5.3.11. 
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Figure 5.3.11 The spatial distribution of the average molecular weight at 5.0t , 

6.0t , 7.0t , 8.0t , respectively. The colour represents the distribution of 

polymer concentration. 

 

The molecular weight distribution at four different times in figure 5.3.11 shows 

identical degradation situation as those in the figure 5.3.3 with only difference in the 

degradation time. According to equations (5.2.11) & (5.2.12), the degradation behaviour 

of the biodegradable material is determined by the values of 1k , 
0D  and A . We have 

fixed the values of 1k  and 
0D  are fixed, and varied the value of A  in our studies. 

However changing A  only scales the normalised time in equations (5.2.11) & (5.2.12) 

and does not change the molecular weight distribution in the device.  
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Figure 5.3.12 The spatial distribution of bone density at 1t , 2t  , 4t , 8t , 

respectively. The colour represents the bone density normalised by 20GPa. 

 

Figure 5.3.12 shows the distribution of bone density in the remodelling bone. At early 

time steps, similar to scenario B, the top part of the remodelling bone lost its density 

while the bottom part remains unchanged.  As the fixation device degrades and load is 

transferred to the remodelling bone, the entire remodelling bone domain shows uniform 

distribution like scenario A. We can consider the bone density evolution in scenario C 

as a combination of the previous two scenarios. 

 

We can conclude from the above three cases that bone remodelling can leads to either 

degeneration owing to the stress shielding or strengthening owing to the device 

degradation. Which of the two trends occurs is controlled by the parameter A , which 

describes the relative rate ratio between the bone growth and the device degradation.  
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In scenarios A and C, the parameter A  is chosen to be small enough to ensure that the 

bone remodels up to almost its full density, while in case B the parameter A  is set so 

large that most of the load is transferred from the fixation plate back to the remodelling 

bone. A critical value of the parameter A  therefore exists below which the bone 

density growth can overcome the negative effect from stress shielding and regenerate up 

to full density. Our numerical study shows that the critical value is around 2A . 

Figures 5.3.13 and 5.3.14 show the density change and load transfer for 2A . 

 

Figure 5.3.13 Bone density and polymer molecular weight averaged over the bone 

and polymer domains respectively as functions of time for large bone defect for 

2A . 
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Figure 5.3.14 Load transfer from the supporting device to the healing bone for 

large bone defect fixation with critical value 2A . 

 

A mechanism similar to scenario C can be observed from the above two figures. The 

difference between these two cases is that the bone density decreases for a longer time 

in figure 5.3.13 comparing to that in figure 5.3.9 of scenario C, and that after the load 

has been transferred to the remodelling bone, the bone requires longer time to retrieve 

its full density. The load applied on the remodelling bone in figure 5.3.14 also takes a 

longer time to reach its maximum value. The reason for these two differences is because 

the polymer degradation time, which is decided by A , is longer than that in scenario C. 

 

5.3.2 Crack like healing zone 

 

Next we consider a case of a fractured bone with a crack like defect as shown in figure 

5.3.15.  
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Figure 5.3.15 A schematic illustration of bone fracture and fixation 

 

We use a model that is identical to that shown in figure 5.2.6 except for the size of bone 

defect. We can therefore compare the numerical results between two cases and highlight 

the possible effect of the defect size on the bone remodelling process. The FE mesh for 

this case is presented in figure 5.3.16. 

 

Figure 5.3.16 FE mesh and boundary conditions for a bone with crack like defect 

and fixation 

 

The analysis for the three scenarios of the previous case is repeated here.   

 

Scenario A – Fast device degradation 

 

The numerical results of changes in the bone density and molecular weight are 

presented in figure 5.3.17 and the load transfer curves are shown in figure 5.3.18. 
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Figure 5.3.17 Bone density and polymer molecular weight averaged over the bone 

and polymer domains respectively as functions of time for crack like defect with 

4105 A  (scenario A). 

 

 

Figure 5.3.18 Load transfer from the supporting device to the healing bone for 

crack like bone defect using  4105 A  (scenario A). 

 

For scenario A, figure 5.3.17 shows that the bone density increases to almost its full 

healthy density; while figure 5.3.18 shows that the load on the boundary of healing bone 

follows the same trend with bone density remodelling. Note that the above two figures 
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are very similar to figures 5.3.1 and 5.3.2. This suggests that the bone remodelling is not 

affected by the size of the defect. We further study if this is the case for scenarios B and 

C. 

 

Scenario B – Zero device degradation   

 

The change in the bone density for the remodelling bone and the load transfer curves are 

shown in figures 5.3.19 and 5.3.20, respectively. 

 

Figure 5.3.19 Bone density averaged over the bone domain as function of time for 

crack like small bone defect with A  (scenario B). 
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Figure 5.3.20 Load transfer from the supporting device to the healing bone with a 

crack like defect for A  (scenario B). 

 

The density growth curves for scenario B (figure 5.3.19) is rather expected since we 

assume the device degrades similarly to that in the large defect case. The monotonic 

degeneration of the remodelling bone is caused by a negative feedback mechanism: if 

the Young‟s modulus of the remodelling bone becomes smaller, less load will be 

allocated on the remodelling bone domain; if less load is applied, the bone will  

degenerates more. Again the behaviour here is very similar to that shown in the case of 

large defect zone.  

 

Scenario C –Moderate degradation 

 

The change in the average bone density within remodelling bone domain and the load 

transfer from the supporting device to the remodelling bone are shown in figures 5.3.21 

and 5.3.22, respectively. The change of molecular weight of the device is also plotted in 

figure 5.3.21 for reference. 
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Figure 5.3.21 Bone density and polymer molecular weight averaged over the bone 

and polymer domains respectively as functions of time for small crack like bone 

defect with 5.0A  (scenario C). 

 

 

Figure 5.3.22 Load transfer from the supporting device to the healing bone with a 

crack like defect for 5.0A  (scenario C). 

 

It can be observed from these figures that the change in the bone density (figure 5.3.21) 

and the load transfer (figure 5.3.22) behave very similar to scenario C for the case of a 
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large defect. Therefore it can be concluded that the size of the defect has little effect on 

the bone remodelling behaviour.    

 

5.3.3 Symmetric fixation 

 

Our final case study is a discussion on the effect of the mechanical boundary condition 

on the bone remodelling. We consider a different boundary condition as shown in figure 

5.3.23. This boundary condition represents a symmetric fixation which is rarely 

practiced in orthopaedic surgery because it requires opening far more tissues around the 

broken bone than the one-sided fixation. However the study in this section will 

demonstrate that the symmetric fixation is beneficial to the bone healing. Therefore if 

circumstance allows, in a severe injury for example, symmetric fixation should be 

preferred.  

 

Figure 5.3.23 FE mesh of symmetric fixation with boundary condition 

 

We consider two sided fixation as in figure 5.3.23. Everything in this case remains the 

same as those in the one-side fixation except that the bottom boundary is not allowed to 

move freely in the vertical direction. The entire bottom boundary therefore represents a 

symmetry line. The boundary condition for the monomer diffusion in the fixation pins 

at the bottom boundary should be set as zero flux across the boundary. However in 

order to highlight the effect of the displacement boundary condition on the model 
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outcome, the same perfect sink condition is used as that in the one-sided fixation. Figure 

5.3.24 and 5.3.25 compares the deformation and the spatial distribution of the average 

principal strain in the system. It can be observed from the two figures that a significant 

bending deformation occurs in the non-symmetric case, leading to a non-uniform 

distribution of the average principal strain in the bone. Because the average strain acts 

as the mechanical stimulus for the bone remodelling, this non-uniform distribution 

causes differential bone healing which does not exist in the symmetric fixation as shown 

the following results.  

 

Figure 5.3.24 The deformation of one-side bone fixation, colour represents average 

strain. 
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Figure 5.3.25 The deformation of symmetric bone fixation, colour represents 

average strain. 

 

Figure 5.3.24 and 5.3.25 are both the average strain distribution to the entire bone 

fixation system; colour in the figures represents the average strain which is defined in 

equation (5.2.3). The deformation shapes from these two figures are quite different from 

each other and so is the average strain distribution within the healing bone domain. 

Instead of a heterogeneous average strain distribution in healing bone area in figure 

5.3.24, figure 5.3.25 shows a uniform strain field in the healing bone domain. This 

would change the remodelling behaviour of the bone significantly, the discussion is 

presented in this section. 

 

Scenario A – Fast device degradation 

 

The bone density growth together with the molecular weight loss is shown in figure 

5.3.26 while the load transfer curves are shown in figure 5.3.27. 
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Figure 5.3.26 Bone density and polymer molecular weight averaged over the bone 

and polymer domains respectively as functions of time for symmetric fixation with 

4105 A  (scenario A). 

 

 

Figure 5.3.27 Load transfer from the supporting device to the healing bone with 

symmetric fixation for 4105 A  (scenario A). 

 

Figure 5.3.26 shows that bone density increases to the same saturated value as in figure 

5.3.1; while figure 5.3.27 shows that the load on the boundary of healing bone domain 

follows the same trend as that of the bone density remodelling. The bone density takes 
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longer time to grow to this saturated value because the symmetric fixation appears 

stiffer than the un-symmetric one. The load transfer curves, on the other hand, follow 

the trend very much like that in figure 5.3.2 but with different initial values of the two 

loads. The bone density distributions at different times are presented in figure 5.3.28. 

 

Figure 5.3.28 The spatial distribution of bone density at 5.0t , 1t  , 5.1t , 

2t , respectively. The colour represents the distribution of bone density 

normalised by 20GPa. 

 

The four bone density distributions are all uniform distribution and almost identical to 

those in figure 5.3.4.   

 

Scenario B – Zero device degradation 
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The numerical results for the bone density growth and the load transfer curves are 

shown in figures 5.3.29 and 5.3.30. 

 

Figure 5.3.29 Bone density averaged over the bone domain as function of time for 

symmetric fixation with A  (scenario B). 

 

 

Figure 5.3.30 Load transfer from the supporting device to the healing bone with 

symmetric fixation for A  (scenario B). 

 

The bone density loss in figure 5.3.29 is faster than that for the one-side fixation case 

(figure 5.3.6) because the two-side fixation shields more stress. Figure 5.3.30 shows that 

0.9

0.91

0.92

0.93

0.94

0.95

0 0.4 0.8 1.2 1.6

N
o
rm

a
li

se
d

 b
o
n

e 
d

en
si

ty

Normalised time

Bone density

0%

20%

40%

60%

80%

100%

0 0.4 0.8 1.2 1.6

L
o
a
d

 d
is

tr
ib

u
ti

o
n

Normalised time

Load on the bone Load on the plate



CHAPTER 5 INTERACTION BETWEEN DEVICE DEGRADATION AND BONE HEALING 

IN ORTHOPAEDIC FIXATION-A NUMERICAL STUDY 

Page 157  

 

very few load is transferred between remodelling bone and fixation device as the 

fixation device in this case never degrades. The bone density distribution shown in 

figure 5.3.31 in this scenario is however very interesting in comparison to the 

non-symmetric case shown in figure 5.3.7.  

 

Figure 5.3.31 The spatial distribution of bone density at 4.0t , 8.0t  , 2.1t , 

6.1t , respectively. The colour represents the distribution of bone density 

normalised by 20GPa. 

 

The density distribution remains much more uniform throughout the healing process 

although the healing rate is slightly slower. The cause for this difference in uniformity is 

due to the difference in the distribution of the average strains shown in Figures 5.3.32 

and figure 5.3.8.  
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Figure 5.3.32 The normal strain distribution on the right boundary of the bone 

remodelling domain. 

 

To shows this point more clearly, figure 5.3.32 shows the distribution of the direct strain 

in the horizontal direction along the left boundary, a-b, of the healing bone. This strain 

distribution is taken at time of 4.0t . Notice that the strain in this figure is not the 

actual deformed strain for the system, but a value that has been normalised by 
boneE

max
. 

The difference between the maximum and minimum strain values here is 10 times 

smaller than that shown in figure 5.3.8. The uniform normal strain distribution in figure 

5.3.31 explained the uniform bone density distributions.  

 

Scenario C –Moderate degradation 

 

The change of average bone density and molecular weight are shown in figure 5.3.33 

while the load transfer curves are in figure 5.3.34. 
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Figure 5.3.33 Bone density and polymer molecular weight averaged over the bone 

and polymer domains respectively as functions of time for symmetric fixation with 

5.0A  (scenario C). 

 

 

Figure 5.3.34 Load transfer from the supporting device to the healing bone with 

symmetric fixation for 5.0A  (scenario C). 

 

The bone density in figure 5.3.33 follows the same trend as that in figure 5.3.9 except 

that the density decreases faster at first until degradation of the device transfers the load 

to the remodelling bone. The load transfer in figure 5.3.34 also follows the same trend 
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as that in figure 5.3.10 except that the initial load sharing is different. The bone density 

distributions at different times are shown in figure 5.3.35. 

 

Figure 5.3.35 The spatial distribution of bone density at 1t , 2t  , 4t , 8t , 

respectively. The colour represents the distribution of bone density normalised by 

20GPa. 

 

Again a uniform distribution for the bone density is observed for the same reason as 

explained in scenario B.   

 

Generally speaking, figures 5.3.26, 5.3.29, 5.3.33 show that the bone density increases 

under this circumstance which is not much different from the scenarios A B and C in 

one-sided fixation (figures 5.3.1, 5.3.5, 5.3.9). This is because the load transfer shown 

in figures 5.3.27, 5.3.30, 5.3.34 are very similar to those in the one-side fixation as 

shown in figures 5.3.2, 5.3.6, 5.3.10. The initial load sharing between the device and the 
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bone is however slightly different because the device is the symmetric fixation appears 

stiffer than the one-sided fixation. The two-side fixation device therefore shields more 

stress from the bone than the one-side fixation does. It is interesting to note that in 

figures 5.3.27 and 5.3.34, the normalised times for the bone to reaches its full load 

sharing in each scenario equals to the normalised times in figure 5.3.2 and 5.3.10. This 

observation indicates that it is the degradation of the fixation device, rather than the 

change of the bone density, that controls the load transfer from the device to the bone.  

 

5.4 Concluding remarks 

 

This chapter demonstrates that the combined application of all our previous models can 

provide a methodology for the multi-disciplinary study of bone remodelling with 

simultaneous polymer degradation. With the help of proper software, variables such as 

polymer concentration, molecular weight distribution, Young‟s modulus change, bone 

density and stresses can be obtained simultaneously within an integrated model. This 

model consists of three different types of sub-domains: normal healthy bone, healing or 

remodelled bone, biodegradable polymer fixation device. Models with corresponding 

initial and boundary conditions for the different processes are applied to the different 

sub-domains and boundaries. The results in this chapter suggest that the degradation can 

prevent the stress shielding and aid the growth of bone density, regardless of the bone 

defect size that applies. Therefore, the biodegradable polymer fixation device has its 

advantages, not only in the elimination of the need for surgical removal but also in 

avoiding the stress shielding aspect. Three conclusions from this series of case study 

curves are: (a) the bone healing behaviour is controlled by a non-dimensional grouping, 

A , of the various parameters in the equations govern the degradation, bone growth and 

stress analysis; (b) the time for the bone to reach to its healthy density is controlled by 

the degradation rate of the polymer; and (c) symmetric fixation, when applicable, can 

ensure a more uniform healing of the bone.  
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Chapter 6 

Some Further Studies of the Degradation Model 

 

6.1 Introduction 

 

A complete model for the degradation of biodegradable polymeric devices has been 

presented in the previous chapters of this thesis. The study so far is driven by 

developing a simplest possible model which is not overwhelmed by too many “material 

parameters” so that they can be used in practical device design. The purpose of this 

chapter is to present a further study of the biodegradation model addressing slightly 

more complex issues which only future experimental studies can help to resolve fully. 

In this chapter, we present a more complex phenomenological model for biodegradation 

taking into account of the actual mechanism of random and end scissions in contrast to 

the Monte Carlo model presented in Chapter 4.  

 

6.2 A phenomenological model considering end and random scissions  

 

The literature shows some confusion in our current understanding in the hydrolysis 

mechanism during biodegradation. Some well know literature claims that for the 

degradation in acid environment, chain end scission is faster than random scission for 

biodegradable polymers (Shih, 1995
b
); while others claimed just the opposite 

mechanism (Belbella et al., 1996). The evidence for the above opinions is from 

degradation tests in PLA solutions rather than in solid state. It is therefore useful to 

develop a mathematical model that considers the two mechanisms simultaneously and 

explicitly. The relative importance of the two mechanisms can then be varied in the 

computer simulated degradation. Comparing the computer simulation with experimental 

studies, yet to be carried out, would then provide an in depth understanding in the 

hydrolysis mechanism.    
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The phenomenological model presented in Chapter 2 does not separate the two different 

scissions. We now distinguish the end scissions from random scissions through a series 

of definitions: 

 
sR : Number of scission steps, including both random scission and end scission, that 

have ever occurred within the system 

 
mR : Number of monomer units that have been produced within the system by either 

random scission or end scission 

 
middleC : concentration of all the polymer (not monomers) ester bonds excluding all 

those at the end positions of the polymer chains  

 
endC : concentration of the polymer chain (exclude monomers) ends. Note that this 

number is always twice the value of the total chain number within the system. 

 
mC : monomers concentration; the monomers are defined here as being small group 

of repeating units whose number of the repeating units is no more than a critical value 

Nmono. This is usually the definition of oligmers, but we use this term interchangeably 

with monomers. Nmono is a threshold value for the definition of monomers which is 

normally around 7 to 9 repeating units (Saha and Tsuji, 2006). In this chapter we take 

Nmono=5. 

 

Now we split both 
sR  and 

mR  into contributions from random scission and end 

scission respectively. 

 

end

s

random

ss RRR 
                           

                      (6.2.1) 

end

m

random

mm RRR                                                   (6.2.2) 

 

in which, end

sR  is the number of end scission that ever occurred within the system; 

random

sR  is the number of random scission that ever occurred within the system; end

mR  is 

the number of monomers that ever produced by end scission mechanism; random

sR  is the 
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number of monomers that ever produced by random scission mechanism. We define 

two types of end scission situations: 

 E1: Normal chain scission takes place on a relatively long polymer chain. 

 

Figure 6.2.1 The scheme for incident E1. 

 

 E2: Chain scission occurs when small polymer chain length equals to Nmono+1. 

Figure 6.2.2 The scheme for incident E2. 

 

The monomer production rate equation for incident E1 is: 

 

dt

dR

dt

dR end

s

end

m                                                       (6.2.3) 

 

This is because for every step of E1, one and only one monomer unit will be produced. 

The monomer production rate equation for incident E2 is: 

 

dt

dR
N

dt

dR end

s

mono

end

m )1(                                              (6.2.4) 
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For every step of E2, the entire polymer with the length of 1monoN  will become 

monomers. We define 
2Er  as the ratio between number of incident E1 and incident E2. 

In other word, for every 
sR  

times of E1 incident occurred, 
2Es rR   times of E2 

happened at the same time. Therefore equation (6.2.3) and (6.2.4) can be combined 

together as: 

 

dt

dR

dt

dR
Nr

dt

dR end

s

end

s

monoE

end

m  )1(2                                    (6.2.5) 

 

We define three types of random scission situations:  

 R1. Normal chain scission takes place at any random ester bond position, exclude 

those on any polymer chain ends. 

 

Figure 6.2.3 The scheme for incident R1. 

 

 R2. Chain scission that produces a shorter polymer chain and one small monomer 

group (chain length no more  than 
monoN ) 

 

Figure 6.2.4 The scheme for incident R2. 
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 R3. Chain scission occurs that produce two small monomer group (both chain 

length is no more than 
monoN ) 

 

Figure 6.2.5 The scheme for incident R3. 

 

The monomer production rate equation for incident R1 is: 

 

dt

dR

dt

dR random

s

random

m  0             
                    

 
 
             (6.2.6) 

 

Incident R1 produces no monomers. The monomer production rate equation for incident 

R2 is: 

 

dt

dR

dt

dR random

s

random

m                                                  (6.2.7) 

 

in which   is a random integer number between [ 2 ,
monoN ], which is the number of 

monomer units for a single step of incident R2 could possibly produce. The monomer 

production rate equation for incident R3 is: 

 

dt

dR

dt

dR random

s

random

m                                                 (6.2.8) 

 

where   is a random integer number between [ 1monoN ,
monoN2 ], which is the number 

of monomer units that incident R3 could produce. 
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For every 
sR  

steps of R1 incidents, 
2Rs rR   times of R2 and 

3Rs rR   times of R3 

occur at the same time. Therefore equations (6.2.6), (6.2.7) and (6.2.8) can be combined 

together as: 

 

23 R

random

s

R

random

s

random

m r
dt

dR
r

dt

dR

dt

dR
                               (6.2.9) 

 

The combination of equations (6.2.5) and (6.2.9) provides a complete equation for 

monomers produced by both types of chain scissions: 

 

dt

dR
Nr

dt

dR
rr

dt

dR end

s

monoE

random

s

RR

m ]1)1([)( 223                   (6.2.10) 

 

We define the scission rate equations as: 

 

n

mendend

end

s CCkCk
dt

dR
21  .                                          (6.2.11) 

n

mmiddlemiddle

random

s CCkCk
dt

dR
43                                        (6.2.12) 

 

in which 4321 ,,, kkkk
 
are all rate constants here. Equation (6.2.11) indicates that end 

scission rate is decided by the concentration of end ester bond units while equation 

(6.2.12) suggests the random scission rate is decided by the concentration of non-end 

ester bond units. Both equations consider the hydrolysis together with auto-catalysis 

mechanism as the original phenomenological model suggests. Using equation (6.2.11) 

and (6.2.12) in equation (6.2.10), and taking into account of the monomer diffusion, we 

obtain that: 
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m

i

n

mendendmonoE

n

mmiddlemiddleRR

m

x

C
D

x
CCkCkNr

CCkCkrr
dt

dC












)(]1)1([

)()(

212

4323 

                     (6.2.13) 

 

in which D is the diffusion coefficient and xi is the spatial coordinate. Repeating the 

above analysis for the changing rate of middle units and end units under each of the 5 

incidents, the results are listed in table 6.2.1. 

 

Table 6.2.1 The changing rates for mC
 middleC

  
and endC

 
caused by incidents E1, 

E2, R1, R2, R3. 

       Variables 

Incidents 

mC  middleC  endC  

E1 1 -1 0 

E2 )1( monoN  )1(  monoN  -2 

R1 0 -2 2 

R2     0 

R3   )2(    -2 

 

With the information from table 6.2.1, we could obtain the equations for the changing 

rate of middle units and end units: 

 

)(]1)1([

)())2(2(

212

4323

n

mendendEmono

n

mmiddlemiddleRR

middle

CCkCkrN

CCkCkrr
dt

dC



 
            (6.2.14) 

)()2(

)()22(

212

433

n

mendendE

n

mmiddlemiddleR

end

CCkCkr

CCkCkr
dt

dC




                          (6.2.15) 

 

The ratio parameters 
2Er , 

2Rr , 
3Rr  should all be very small, because incident E2 and 

R3 happen only when the polymer chain length is very short i.e. contains less than 

2Nmono repeating units while incident R2 relies on the random scission taking place at a 
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position very close to a polymer chain end, normally less than Nmono ester bonds away. 

Compared with the usual 2000 to 7000 degrees of polymerisation for polymer chains, 

the probability of these situations can be considered trivial unless the degradation 

reaches the late stage when most of the chains are short; in which case these three ratios 

would be much larger values. Therefore 
2Er , 

2Rr , 
3Rr  are neglectable numbers at the 

early stage of the scission but becomes much larger towards the end of the degradation. 

Setting 
2Er , 

2Rr , 
3Rr  as zero, the model can be simplified as: 

 

i

m

i

n

mendend

m

x

C
D

x
CCkCk

dt

dC








 )( 21

                               (6.2.16) 

)(1)(2 2143

n

mendend

n

mmiddlemiddle

middle CCkCkCCkCk
dt

dC
                 (6.2.17) 

)(2 43

n

mmiddlemiddle

end CCkCk
dt

dC
                                      (6.2.18) 

 

Similar to our phenomenological model, we normalise this model using the following 

definitions: 

 

000 endmiddlee CCC  ;   
0e

end
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m
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02

1
1  ;   

n
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2

4
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k

k
k  ;   

2

02

0

0
lCk

D
D

n

e

 ;    tCkt n

e02  

 

in which Ce0 is the ester bond concentration at the beginning of the biodegradation, l is a 

characteristic length of the device, D0 is the initial diffusion coefficient. The equations 

(6.2.16)-(6.2.18) can be normalised as: 

 

)()( 1
x

C
D

x
CCCk
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Cd mn

mendend

m








                                 (6.2.19) 
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n
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CHAPTER 6 FURTHER STUDY OF THE DEGRADATION MODEL 

Page 170  

 

)(2 43

n

mmiddlemiddle

end CCkCk
td

Cd
                                      (6.2.21) 

 

Follow the previous chapters we take the effective diffusion coefficient as a function of 

porosity: 

 









 )1)(3.03.1(1
0

max32

0
D

D
ppDD                                  (6.2.22) 

 

in which 0D  is the initial diffusion coefficient of the material at initial state, maxD  is 

the diffusion coefficient in the aqueous media, p  is the porosity that we can write as 

mendmiddleemendmiddle CCCCCCCp  1/)(1 0
 in this model. 

 

If 1,, 143 kkk 
 
in equation (6.3.19)-(6.2.21), this model is purely end scission 

controlled; if 1,, 143 kkk  , this model is purely random scission controlled. The pure 

end scission controlled case can be written as: 

 

)()( 1
x

C
D

x
CCCk

td

Cd mn

mendend

m








                                 (6.2.23) 

)( 1

n

mendend

middle CCCk
td

Cd
                                         (6.2.24) 

0
td

Cd end                                                         (6.2.25) 

 

No new chains will be generated as equation (6.3.25) suggests. The pure random 

scission controlled case, on the other hand, can be written as: 

 

)(0
x

C
D

xtd

Cd mm








                                              (6.2.26) 
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n
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)(2 43

n

mmiddlemiddle

end CCkCk
td

Cd
                                      (6.2.28) 

 

All the degradation behaviour in this case is converting the non-end repeating units into 

end repeating units. Note that the total chains number within the system always equal to 

2/endC , so the total chains number increasing rate is equal to the polymer chain 

scission rate. No monomers are generated and diffused during the process thus no 

weight loss for the system until the late degradation stage when 
2Er , 

2Rr , 
3Rr  became 

larger.  

 

The impact of combined end scission and random scission on the number average 

molecular weight and weight loss can be generally categorised in terms of whether the 

random scission mechanism can be ignored: 

1. Pure or almost pure end scission controlled ( 1,, 143 kkk  ). In this case model 

equations are simplified in equations (6.2.23)-(6.2.25). Monomers are generated entirely 

from the middle units on the chain. The lost of monomers on polymer chain ends 

controls both the molecular weight loss and weight loss. 

2. Random scission cannot be neglected. In this case the number of random scission 

decides the molecular weight loss. Because random scission affects polymer molecular 

weight by changing total chain number while end scission can only reduce one 

repeating unit on the polymer chains. Considering the fact that the degree of 

polymerisation for polymer chains is large at the early stages, random scission will 

certainly play a much more important role than end scission. As a consequence, the 

molecular weight calculations are different for the above two scenarios. For both 

situations: 

 

2

)(

end

unitendmiddle

n C
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
                                          (6.2.29) 
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In which 
unitM  is the molecular weight for a single repeating unit. The normalised 

molecular weight is: 

 

end

endendmiddle

n
C

CCC
M 0)( 

                                            (6.2.31) 

 

Because the first situation is a pure end scission controlled, the number of chains within 

the system does not change (
0endend CC  ). Equation (6.2.31) becomes: 

 

0

0)(
endmiddleendmiddle

end

endendmiddle

n CCCC
C

CCC
M 


                   (6.2.32) 

 

Equation (6.2.32) indicates that the average molecular weight is almost equal to the 

normalised middle unit concentration which decreases as equation (6.2.24) suggests. 

Therefore, in order to capture the molecular weight loss from the experimental data 

describing amorphous PLA material (Grizzi et al., 1995; Tsuji 2002; Saha and Tsuji, 

2006), the degradation should be calculated to the late stage in order to simulate small 

average molecular weight values. In that case, all the parameters including 
2Er , 

2Rr , 

3Rr  are not neglectable and this complete model becomes too complicated to handle.  

 

For the second situation, we apply this developed model to simulate the molecular 

weight loss of same polymer but two different thicknesses (Grizzi et al., 1995). 

According to the experimental data, the initial number average molecular weights for 

the two samples are 20,000g/mol for 2mm thick plate and 34,000g/mol for 0.3mm thick 

film (Grizzi et al., 1995). Therefore the initial degree of polymerisation can be obtained 

as 277 for 2mm plate and 472 for 0.3mm film. Among these numbers of ester bonds, the 

initial end units and initial middle units are: 

 

472

470
,

472

2
;

277

275
,

277

2
0000  middleendmiddleend CCCC  
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The calculation of average molecular weight for this case can be obtained from equation 

(6.2.31)  

 

)1(
472

2
);1(

277

2

end

middle

n

end

middle

n
C

C
M

C

C
M                              (6.2.33) 

 

We can use the model to show that the polymer lost most of its average molecular 

weight while the weight loss of the sample remains very small. One group of the fitting 

data can be used to produce the change in average molecular weight versus time (Grizzi 

et al., 1995). 

 

Figure 6.2.6 A numerical fitting to the experimental data of two thicknesses in the 

amended phenomenological model (Grizzi et al., 1995). 

 

The two experimental curves presented in discrete symbols in figure 6.2.6 are the 

degradation behaviour of the same material with different thicknesses of 2mm (dashed 

line) and 0.3mm (solid line) respectively (Grizzi et al., 1995). The fitting data are 

produced using n=0.5, with the following parameters: 5
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104 k , 25t , 40 and 20000 D . The weight loss calculated using the above fitting 

data are both almost zero (less than 1%) until the end of the degradation. By separating 

the end scission and random scission, this model can well fit the reported phenomenon 

that PLA polymer lost its molecular weight while the weight loss remains very little 

during the degradation for amorphous PLA polymers (Saha and Tsuji, 2006; Tsuji, 

2002). 

 

6.3 Concluding remarks 

 

This chapter provides some further discussion on the phenomenological model by 

separating the end scission and random scission. A new model making a clear 

distinction between the random and end scission mechanism is proposed with full 

consideration of all the possible incidents that may occur during hydrolytic reactions. 

This complete model contains one extra variable and seven more parameters, although it 

can be simplified at extreme conditions. It is possible to use the model to explain the 

often observed phenomenon that polymer loses most of its molecular weight before any 

significant weight loss occurs. 
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Chapter 7 Concluding remarks and future work 

 

Biodegradable polymers, especially the homo and co-polymers of poly lactic acid (PLA) 

have been used widely in orthopaedic surgery as bone fixation devices. The design of 

such devices is complicated requiring not only the prediction of the polymer 

degradation and Young‟s modulus decay but also the stress shielding effect of the bone. 

In this thesis, the finite element method is used to:  

a) predict the polymer degradation using a phenomenological model, 

b) determinate the effective diffusion coefficient and, 

c) predict the bone remodelling process and its interaction with the polymer  

degradation.  

These models are integrated in a complete case study. 

 

Chapter 2 presents a phenomenological model to simulate the degradation rate and 

molecular weight distribution for biodegradable polymers. This model can very well 

capture the heterogeneous pattern of the device degradation. A degradation map was 

established to guide the design of simple devices. Finally, half degradation times was 

calculated to relate the degradation rate for a biodegradable device to its geometry and 

both hydrolyze and diffusion rates. 

 

Chapter 3 combined the multi-scale modelling idea with the finite element method to 

establish a case study on an important factor in the degradation model – the effective 

diffusion coefficient. We discussed several possible micro structures and calculated the 

effective diffusion coefficient. One conclusion from those case studies is that the 

diffusion coefficient can be presented as a linear function of porosity if the total 

porosity is low. We also recognised that the effective diffusion coefficient can be 

affected by many factors and can only be related to porosity for tunnelling effect can be 

ignored. 

 



CHAPTER 7 CONCLUDING REMARKS AND FUTURE WORK 

Page 176  

 

Chapter 4 focused on using the entropy theory to explain how molecular weight affects 

the Young‟s modulus decay of the degrading polymers. A statistical model was set up to 

simulate the chain scission process. This model has captured the major trend of Young‟s 

modulus reduction during degradation: slight loss before molecular weight reaches a 

critical value and rapid loss towards the end of degradation.  

 

Chapter 5 demonstrates that this series of models can integrated to provide a complete 

methodology for modelling the bone healing process with the presence of a 

biodegradable bone fixation device. The coupled model contains several analyses at the 

same time: polymer degradation, monomer diffusion, Young‟s modulus decay, 

structural mechanics analysis and bone remodelling process. All these models depend 

on the calculation results from other models and generate certain results for other 

models as inputs. The series of case studies demonstrated that:  

(a) a biodegradable fixation device has the advantage of not only eliminating the 

necessity for surgical removal but also helping the healing bone to be remodelled to 

its full density;  

(b) on the assumption that bone remodelling follows the stimulus of the stress 

distribution, the bending moment, can be an important factor in bone healing 

simulation. 

 

Chapter 6 provides some further discussion on the phenomenological model. A new 

model separating random and end scission mechanism is proposed with full 

consideration of all the possible situations during hydrolytic chain cleavage. This 

complete model can be used to explain the common experimental observation that 

polymer loses most of its molecular weight before any significant weight loss occurs. 

 

The degradation of polymeric bioresorbable device is a very complicated process. The 

behaviour of the healing bone under the “protection” of a resorbable device is even 

more sophisticated. Many issues remain unresolved including: 

1. The bone remodelling models lack experimental validation. 
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2. The hydrolysis mechanisms of the polymers are still not well understood. 

3. Many factors, from processing conditions, storing condition, sterilization procedure, 

to the details of the polymer chemistry, affect the degradation rate. These effects are 

however poorly understood. 

 

The work presented in this thesis attempts to overcome these difficulties by developing 

a simple but phenomenological model. A complete experimental validation of the 

approach adopted in this thesis is the next logical but step outside the scope of this 

thesis due to the limitation of the project duration. 
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