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Exact discrete sampling of finite variation tempered

stable Ornstein–Uhlenbeck processes

Reiichiro Kawai and Hiroki Masuda

Abstract. Exact yet simple simulation algorithms are developed for a wide class of Orn-

stein–Uhlenbeck processes with tempered stable stationary distribution of finite varia-

tion with the help of their exact transition probability between consecutive time points.

Random elements involved can be divided into independent tempered stable and com-

pound Poisson distributions, each of which can be simulated in the exact sense through

acceptance-rejection sampling, respectively, with stable and gamma proposal distribu-

tions. We discuss various alternative simulation methods within our algorithms on the ba-

sis of acceptance rate in acceptance-rejection sampling for both high- and low-frequency

sampling. Numerical results illustrate their advantage relative to the existing approxima-

tive simulation method based on infinite shot noise series representation.
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1 Introduction

The class of non-Gaussian Ornstein–Uhlenbeck processes has long been of both

theoretical and practical interest. From a theoretical point of view, on one hand,

this class is closely related to the self-decomposable infinitely divisible distribu-

tion. Several interesting properties are known, such as the explicit relation between

the Lévy measures of the stationary distribution and the underlying Lévy process

and the representation of entire trajectory using the series representation of under-

lying Lévy process, to mention just a few. (For details, see Section 17 of Sato [21],

Masuda [18] and references therein.) On the other hand, in practice, non-Gaussian

Ornstein–Uhlenbeck processes have been used in mathematical physics under the

name of exponentially correlated colored noise, and more recently in financial

economics and mathematical finance (for example, Barndorff-Nielsen and Shep-

hard [3,4] and Benth et al. [5]). Due to the growing practical interest, many authors

have proposed statistical inference methods for non-Gaussian Ornstein–Uhlenbeck

processes. (See, for example, Brockwell et al. [7] and Jongbloed et al. [13].)
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The main purpose of this paper is to develop and investigate exact simulation

algorithms for a wide class of Ornstein–Uhlenbeck processes of finite variation

with tempered stable stationary laws. In particular, the flexibility and mathemati-

cal tractability of the tempered stable distribution makes this class more attractive

than the other classes of Ornstein–Uhlenbeck processes. It is well known that the

exact simulation of its entire trajectory over a finite horizon is only possible, in

principle, with the infinite series representation of tempered stable Lévy processes.

(See, for example, Barndorff-Nielsen and Shephard [3,4] and Rosiński [20].) This

method often requires extremely expensive computing effort, especially when the

convergence of the infinite series is very slow. In addition, simulation via the se-

ries representation is no longer an exact method as soon as the infinite sum is

truncated. The exact simulation algorithm we develop in this paper is designed

to generate arbitrary discrete time skeleton of the trajectory. Thanks to the homo-

geneous Markovian autoregressive structure of Ornstein–Uhlenbeck processes, its

transition probability between consecutive times can be derived in closed form,

in a similar manner to Zhang and Zhang [23, 24]. Random elements involved can

be divided into independent tempered stable and compound Poisson components,

each of which can be simulated exactly with acceptance-rejection sampling, re-

spectively, with non-tempered stable and gamma proposal distributions. It turns

out that our approach is easily applicable to the settings of bilateral tempered

stable Ornstein–Uhlenbeck processes of finite variation and of normal tempered

stable processes as well.

The rest of this paper is organized as follows. Section 2 summarizes back-

ground material on stable and tempered stable subordinators and on tempered

stable Ornstein–Uhlenbeck processes. In Section 3, we derive the exact transi-

tion probability consisting of independent tempered stable and compound Poisson

components. In Section 4, acceptance-rejection sampling methods are discussed

for tempered stable and compound Poisson distributions for different sampling fre-

quencies. In particular, we discuss various alternative simulation methods within

our algorithms on the basis of acceptance rate in acceptance-rejection sampling.

We provide in Section 5 numerical results to illustrate the effectiveness of our ex-

act simulation algorithms relative to the existing approximative method based on

infinite series representation. Finally, Section 6 concludes.

2 Preliminaries

Let us begin this preliminary section with the notation which will be used through-

out the paper. We denote by R the one dimensional Euclidean space with the norm

j � j, RC WD .0;C1/ and R� WD .�1; 0/. Let N be the collection of positive
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integers with N0 WD N [ ¹0º. We denote by L.X/ and
LD, respectively, the law

of random variable X and identity in law. We denote by �.a; b/ the gamma dis-

tribution with density ba=�.a/xa�1e�bx . We fix .�; F ; P / as our underlying

probability space. We say that the stochastic process ¹Yt W t � 0º in R is a sub-

ordinator (without drift) if it is a non-decreasing Lévy process with characteristic

function

E
h
eiyYt

i
D exp

"
t

Z

RC

�
eiyz � 1

�
�.dz/

#
; (2.1)

where � is a Lévy measure defined on RC satisfying
R 1

0 z�.dz/ < C1. Finally,

let us note that �.�s/ < 0 for s 2 .0; 1/.

2.1 Stable subordinator

Let ¹L.s/
t W t � 0º be a stable subordinator with characteristic function

E
h
eiyL

.s/
t

i
D exp

"
t

Z

RC

�
eiyz � 1

� a

z˛C1
dz

#

D exp
h
ta�.�˛/ cos

��˛

2

�
jyj˛

�
1� i tan

�˛

2
sgn.y/

�i
;

(2.2)

with ˛ 2 .0; 1/ and a > 0. Note that a only acts as a scale parameter. For each

t > 0, the marginal L
.s/
t has a stable distribution on RC and EŒ.L

.s/
t /� � is finite if

� 2 .0; ˛/, while is infinite if � � ˛. Throughout this paper, we denote by S.˛; a/

the distribution of L
.s/
1 when (2.2) is satisfied. Clearly, it holds that for each t > 0,

L.L
.s/
t / D S.˛; ta/. The distribution S.˛; a/ can be simulated in the exact sense

through the well known representation, due to Kanter [14] and Chambers et al. [8],

S.˛; a/
LD

�
a�.1 � ˛/

˛ cos.V /

� 1
˛

sin.˛.V C �=2//

�
cos .V � ˛ .V C �=2//

E

� 1�˛
˛

;

(2.3)

where V is a uniform random variable on .��=2; �=2/ and E is a standard expo-

nential random variable independent of V . The distribution S.˛; a/ admits C 1-

density on RC given in form of convergent series

fS.˛;a/.x/ WD 1

�.�a�.�˛//1=˛

�
C1X

kD1

.�1/k�1 sin.k�˛/
�.k˛ C 1/

kŠ

�
x

.�a�.�˛//1=˛

��k˛�1

:

(2.4)

See Zolotarev [25] for more details on the stable distribution.
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2.2 Tempered stable subordinator

Consider the exponentially tempered stable Lévy density

v.z/ D a
e�bz

z˛C1
; z 2 RC; (2.5)

where a > 0, b > 0 and ˛ 2 .0; 1/. The associated subordinator

¹L.ts/
t W t � 0º

(without drift) is often called the tempered stable subordinator, with characteristic

function

E
h
eiyL

.ts/
t

i
D exp

"
t

Z

RC

�
eiyz � 1

�
v.z/dz

#

D exp
�
ta�.�˛/

�
.b � iy/˛ � b˛

��
:

(2.6)

Throughout this paper, we denote by TS.˛; a; b/ the distribution of L
.ts/
1 defined

on RC, which we call tempered stable distribution, when (2.6) is satisfied. Clearly,

it holds that for each t > 0,

L.L
.ts/
t / D TS.˛; ta; b/:

The tempered stable distribution admits C 1-density on RC as well, with a simple

yet very insightful relation to the density of its non-tempered stable distribution

fTS.˛;a;b/.x/ WD e�bx�a�.�˛/b˛

fS.˛;a/.x/: (2.7)

This property acts as a key building block later. The class of tempered stable dis-

tributions is first proposed by Tweedie [22]. Barndorff-Nielsen and Shephard [4]

studies the tempered stable subordinator and the so-called normal tempered stable

law, that is, a normal variance-mean mixture of the positive tempered stable dis-

tribution, with a view towards financial economics. Various featuring properties of

tempered stable processes are revealed by Rosiński [20], such as a stable-like be-

havior over short intervals, the absolute continuity with respect to its short-range

limiting stable subordinator (Proposition 4.1), aggregational Gaussianity and an

infinite series representation in closed form

°
L

.ts/
t W t 2 Œ0; T �

±

LD
´C1X

kD1

"�
˛�k

aT

��1=˛

^
VkU

1=˛

k

b

#
1.Tk 2 Œ0; t �/ W t 2 Œ0; T �

µ
;

(2.8)
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which was first introduced by Rosiński in the discussion part of Barndorff-Nielsen

and Shephard [3]. Here, ¹�kºk2N denotes a sequence of standard Poisson arrivals,

¹Tkºk2N is a sequence of iid uniform random variables on Œ0; T �, ¹Vkºk2N is a

sequence of iid standard exponential random variables and ¹Ukºk2N is a sequence

of iid uniform random variables on Œ0; 1�. All those random sequences are mutually

independent. Note that the kernel of series representation is not unique. (See Imai

and Kawai [11, 12] for different representations and numerical issues.)

2.3 Ornstein–Uhlenbeck Processes with tempered stable

stationary distribution

Consider the stochastic process ¹Yt W t � 0º defined in form of stochastic differ-

ential equation

dYt D ��Ytdt C dZ�t ; (2.9)

where � > 0 and ¹Zt W t � 0º is a subordinator, or in canonical form

Yt D e��t Y0 C e��t

Z �t

0

esdZs : (2.10)

The process of this type is called a Lévy-driven Ornstein–Uhlenbeck process and

is used, for example, to model the squared volatility in a stochastic volatility model

(Barndorff-Nielsen and Shephard [3]).

The Lévy density (2.5) forms a self-decomposable Lévy measure. By the ar-

guments in Section 17 of Sato [21], there exists an Ornstein–Uhlenbeck process

¹Yt W t � 0º whose marginal has the infinitely divisible distribution with the tem-

pered stable Lévy density (2.5), if the initial state Y0 is chosen to have the same

distribution to the stationary infinitely divisible distribution. In particular, the Orn-

stein–Uhlenbeck process with inverse Gaussian stationary marginal (˛ D 1=2)

is often abbreviated to IG-OU and is applied in Benth [5] to stochastic volatility

modeling of [3] for volatility and variance swap valuations.

Let w.z/ be the Lévy density of the marginal Z1 and let u.z/ be the Lévy den-

sity of the stationary marginal Y1. If u.z/ is differentiable, then the Lévy densities

w.z/ and u.z/ are related as

w.z/ D �u.z/ � z
@

@z
u.z/ D a

�˛

z
C b

� e�bz

z˛
: (2.11)

This implies that the underlying subordinator ¹Zt W t � 0º is the superposition of

a tempered stable subordinator and a compound Poisson process. With the help of

the infinite shot noise series representation (2.8) of tempered stable subordinators,
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we can formulate sample paths as

¹Yt W t 2 Œ0; T �º

LD
´

e��t Y0 C
C1X

kD1

e�.Tk�t/

"�
�k

aT

��1=˛

^
VkU

1=˛

k

b

#
1 .Tk 2 Œ0; t �/

C
C1X

kD1

e
e�k��t Gk1

�e�k 2 Œ0; �t �
�
W t 2 Œ0; T �

µ
;

(2.12)

where ¹e�kºk2N is a sequence of Poisson arrivals with intensity a�.1 � ˛/b˛,

independent of ¹�kºk2N , and ¹Gkºk2N is a sequence of iid random variables with

gamma distribution �.1 � ˛; b/.

In fact, we can readily extend to the bilateral finite variation setting by super-

positioning two independent subordinators in the opposite directions, by setting

Zt WD ZC
t � Z�

t in the definition (2.9) or (2.10), where ¹Z˙
t W t � 0º are inde-

pendent subordinators with suitable laws. This setting will be considered in Corol-

lary 3.2.

3 Exact transition probability

The main purpose of this paper is to develop an exact simulation algorithm for

arbitrary discrete time skeleton

Y0; Y�; Y2�; : : : ;

of the tempered stable Ornstein–Uhlenbeck process (2.9), with a positive step-

size �. (In principle, discrete observations do not need to be equidistant. Stepsizes

can be set different positive values for different steps.) To this end, we first provide

the exact transition probability of the random sequence ¹Yk�ºk2N0
, due to Zhang

and Zhang [24]. For completeness, we also outline its proof.

Theorem 3.1. For each n 2 N0, it holds that given Yn�,

Y.nC1/�
LD e���Yn� C �0.�/C

N.�/X

kD1

�k.�/;

where N.�/ and �0.�/; �1.�/; : : : are independent random variables specified

as follows:

� �0.�/ � TS.˛; a.1 � e�˛��/; b/.

� N.�/ denotes the Poisson random variable with intensity

�a.1 � e�˛��/�.�˛/b˛ :
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� ¹�k.�/ºk2N is a sequence of iid random variables with common probability

density

v�.x/ WD 1

.1 � e˛��/�.�˛/b˛
x�1�˛

�
e�bx � e�be��x

�
; x 2 RC: (3.1)

Proof. By the homogeneous Markovian autoregressive structure of (2.10), it holds

that for each n 2 N0,

Y.nC1/� D e���Yn� C
Z .nC1/�

n�

e��..nC1/��s/dZ�s

DW e���Yn� C ��;nC1

LD e���Yn� C
Z ��

0

e���CsdZs ;

where the identity in law holds by independence and stationarity of increments of

the underlying subordinator ¹Zt W t � 0º. This implies that ¹��;kºk2N is simply

a sequence of iid random variables with common distribution

F� WD L

�Z ��

0

e���CsdZs

�
:

It thus suffices to investigate the conditional distribution L.Y�jY0/ of the first

increment. Note that by definition, this distribution is infinitely divisible.

Let w.z/ be the Lévy density of Z1 given by (2.11). By the Lévy-integral trans-

form of the characteristic function, we get

ln E
h
eiy��;1

i
D

Z ��

0

ln E
h
eiye���CsZ1

i
ds

D
Z

RC

�
eiyz � 1

� �Z ��

0

esw
�
esz

�
ds

�
dz

DW
Z

RC

�
eiyz � 1

�
w�.z/dz:

Note that w�.z/ indicates the Lévy density of the distribution F�. Observe that

for each z 2 RC,

w�.z/ D az�1�˛

Z ��

0

�
˛ C besz

�
e�˛se�beszds

D az�1�˛
�
e�bz � e�˛��e�be��z

�

D a
�
1� e�˛��

�
z�1�˛e�bz C ae�˛��z�1�˛

�
e�bz � e�be��z

�

DW w�;1.z/C w�;2.z/;
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where the second equality holds by

.@=@s/.�e�˛se�besz/ D .˛ C besz/e�˛se�besz :

Clearly, the function w�;1.z/ is the Lévy density of TS.˛; a.1�e�˛��/; b/. More-

over, since
Z

RC

w�;2.z/dz D a
�
e�˛�� � 1

�
�.�˛/b˛ < C1;

the function w�;2.z/ acts as the Lévy density of the compound Poisson compo-

nent. This completes the proof.

Let us below describe a direct extension to the bilateral finite variation setting.

We omit the proof to avoid overloading the paper with lengthy details of routine

nature.

Corollary 3.2. For each n 2 N0, it holds that given Yn�,

Y.nC1/�
LD e���Yn� C �C

0 .�/C
N C.�/X

kD1

�C
k

.�/� ��
0 .�/C

N �.�/X

kD1

��
k .�/;

where N C.�/, N �.�/, �C
0 .�/; �C

1 .�/; : : : , ��
0 .�/; ��

1 .�/; : : : are mutually in-

dependent random variables specified as follows:

� we have

�C
0 .�/ � TS.˛C; aC.1� e�˛C��/; bC/

and

��
0 .�/ � TS.˛�; a�.1 � e�˛���/; b�/:

� N C.�/ and N �.�/ are Poisson random variables with intensities

aC.e�˛C�� � 1/�.�˛C/b
˛C

C and a�.e�˛��� � 1/�.�˛�/b˛�
� ;

respectively.

� ¹�C
k

.�/ºk2N and ¹��
k

.�/ºk2N are sequences of iid random variables with

common probability densities

vC
�.x/ WD 1

.1 � e˛C��/�.�˛C/b
˛C

C
x�1�˛C

�
e�bCx � e�bCe��x

�

for x 2 RC, and

v�
�.x/ WD 1

.1 � e˛���/�.�˛�/b˛��
jxj�1�˛�

�
e�b�jxj � e�b�e��jxj

�

for x 2 R�, respectively.
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4 Exact simulation using acceptance-rejection sampling

Due to the exact transitions of Theorem 3.1 and Corollary 3.2, the exact simulation

of random elements involved enables one to simulate exactly the discrete time

skeleton ¹Yk�ºk2N in a recursive manner. Random elements to be generated are

the tempered stable random variable �0.�/ and the random variables N.�/ and

¹�k.�/ºk2N in the compound Poisson component.

Let us begin with the exact simulation of �0.�/ � TS.˛; a.1 � e�˛��/; b/.

An efficient exact simulation method for the case ˛ D 0:5, that is the inverse

Gaussian, is well known due to Michael et al. [19]. For the general case ˛ 2 .0; 1/,

a straightforward approach would be to apply acceptance-rejection sampling based

on the representation (2.3) of the stable distribution and the ratio (2.7) of the two

densities, that is, for each x 2 RC,

fTS.˛;a;b/.x/

fS.˛;a/.x/
D e�bx�a�.�˛/b˛ � e�a�.�˛/b˛

: (4.1)

(See, for example, Brix [6].) The acceptance-rejection sampling algorithm for gen-

eration of the random variable �0.�/ is then as simple as

Algorithm 1.

Step 1 Generate U as uniform .0; 1/ and V as S.˛; a.1� e�˛��// through (2.3).

Step 2 If U � e�bV , let �0.�/ V . Otherwise, return to Step 1.

Note that this algorithm clearly works more efficiently when the acceptance

rate ea.1�e�˛��/�.�˛/b˛

at Step 2 is closer to 1. This happens when b # 0 and/or

� # 0. The case b # 0 is obvious since then the tempered stable distribution ap-

proaches to its stable proposal distribution. In practice, we only have control on

the time interval �. To account for the case � # 0, we employ the short-range

behavior of tempered stable subordinators, which is rigorously proved first by

Rosiński [20].

Proposition 4.1. Let ¹L.s/
t W t � 0º and ¹L.ts/

t W t � 0º be Lévy processes respec-

tively with S.˛; a/ and TS.˛; a; b/. It holds that as h # 0, h > 0,

°
h�1=˛L

.ts/

ht
W t � 0

±
!

°
L

.s/
t W t � 0

±
;

where the convergence of random processes holds in the weak sense in the space

D.Œ0;C1/I RC/ of càdlàg functions equipped with the Skorohod topology.

This convergence result implies that a tempered stable marginal over a very

short time is very close to a stable distribution. The acceptance rate thus tends
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to 1 as well. To illustrate this phenomenon, we compare in Table 1 percentiles

of a tempered stable marginal and its stable proposal marginal at time t D 0:1,

0:01 and 0:001. The percentiles are estimated by Monte Carlo methods based on

3000000 iid replications. Acceptance rates of acceptance-rejection sampling are

respectively 0:7192, 0:9676 and 0:9967. Clearly, the tempered stable distribution

tends to the stable proposal distribution as t is smaller. It is worth pointing out

an obvious merit of Algorithm 1 in the implementation of the Euler–Maruyama

scheme for more general stochastic differential equations driven by a tempered sta-

ble subordinator, in which stepsize � is often desired to be taken arbitrarily small.

20% 40% 60% 80% 90% 95% 97% 98% 99%

L
.s/
1 5.25 6.77 9.29 16.43 31.51 65.17 115.65 186.04 425.94

h
�1=˛
1 L

.ts/

h1
5.25 6.76 9.27 16.31 30.92 62.44 107.76 167.31 350.53

h
�1=˛
2 L

.ts/

h2
5.22 6.68 9.05 15.36 27.07 48.73 74.51 103.28 172.17

h
�1=˛
3 L

.ts/

h3
5.00 6.19 7.89 11.47 16.33 22.76 28.52 33.73 44.02

Table 1. Percentile comparison of scaled marginals h�1=˛L
.ts/

h
of TS.0:8; 1:0; 0:5/

and the 0.8-stable proposal distribution L
.s/
1 for .h1; h2; h3/ D .1e-3, 1e-2, 1e-1/.

Unlike in the high-frequency sampling framework, however, Algorithm 1 may

be inefficient when � is large, with the worst acceptance rate being eab˛�.�˛/.

It is worth comparing Algorithm 1 with the double rejection sampling algorithm

recently developed in Devroye [10], in expected time not depending upon all the

model parameters.

Algorithm 2.

Step 1 Set

�1  a
�
1 � e�˛��

�
b˛�.2 � ˛/;

�2  1C 2C
p

�=2

�

p
2�1;

�3  
r

�

2
e� �1�2

8 .�2 � 1/:

Step 2 Generate U1 and U2 as independent uniform .0; 1/. If �1 < 1, then go to

Step 4.
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Step 3 If U1 < �2

�2C2
p

2�1�3
, then generate Z1 as N .0; 1/ and set V  jZ1j=

p
�1.

Otherwise, set V  �.1 � U 2
2 /. Go to Step 5.

Step 4 If U1 <
p

��2p
��2C2�3

, then set V  �U2. Otherwise, set V  �.1 � U 2
2 /.

Step 5 Set

�4  

s

sin.V /

�
˛

sin.˛V /

�˛ �
.1 � ˛/

sin..1 � ˛/V /

�1�˛

;

�5  
�p

�1 C ˛�4

� 1
˛

;

�6  
�5

�5 � 2
p̨

�1

;

�7  
�e� �1.1���2

4
/

˛.1�˛/

�
1C

q
�
2

� p
�1=�4 C �6

�
�2e� �1V 2

2 1.V � 0; �1 � 1/

C �3p
� � V

1.V 2 .0; �//C �21.V 2 Œ0; ��; �1 < 1/

�
:

Step 6 Generate U3 as uniform .0; 1/. If V < � and �7U3 � 1, then go to Step 7.

Otherwise, go to Step 2.

Step 7 Generate U4 as uniform .0; 1/ and set

�8  �
2

˛�1

4 ˛
˛

1�˛ .1 � ˛/; �9  
.1 � ˛/˛�1�1

˛˛C1�˛
8

;

�10  
p

˛�9=�8; �11  �10

p
�=2;

�12  �6=�8; �13  �10 C �11 C �12:

Step 8 If U4 < �11=�13, then generate Z2 as N .0; 1/, set X  �9� �10jZ2j, and

go to Step 11.

Step 9 If U4 < .�10 C �11/=�13, then generate U5 as uniform Œ�9; �9 C �10�, set

X  U5, and go to Step 11.

Step 10 Generate E1 as Exp.1/ and set X  �9 C �10 C �12E1.
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Step 11 Generate E2 as Exp.1/. If X � 0 and

�8.X � �9/C
�

�1

˛.1 � ˛/

� 1
˛

�
X

˛�1
˛ � �

˛�1
˛

9

�

� Z2
2

2
1.X < �9/�E11.X > �9 C �10/ � E2;

then exit with X
˛�1

˛ . Otherwise, go to Step 2.

The algorithm possesses a surprising feature; if �1 � 1, then the expected num-

ber of iterations is uniformly bounded as

�2

r
�

2�1
C 2�3

p
� �

r
1

2�
C 2p

�
C 1p

2
C 8

�
p

e
C

r
8

�e
� 4:7468288;

while if �1 � 1, then

2�3

p
� C �2� � 8

�
p

e
C

r
8

�e
C
p

8C
p

� C 1 � 8:1132815;

the upper bounds being valid regardless of the model parameters .˛; a; b; �; �/.

In the case Algorithm 1 is less efficient, that is, when in terms of acceptance rates,

exp
h
a.1 � e�˛��/�.�˛/b˛

i

D exp

�
� �1

˛.1� ˛/

�
<

8
<
:

�
�2

q
�

2�1
C 2�3

p
�

��1

; if �1 � 1;
�
2�3

p
� C �2�

��1
; if �1 � 1;

(4.2)

it is worth employing Algorithm 2. To be more illustrative, we provide Figure 1

to compare acceptance rates of Algorithm 1 and 2 against sampling frequency �,

where the model parameters are fixed .a; b; �/ D .1:0; 1:0; 0:5/. (This parame-

ter setting will be used for numerical illustrations shortly in Section 5.) Accep-

tance rates of Algorithm 1 increases to 1 as � # 0 and decreases to eab˛�.�˛/

as � " C1. In those parameter settings, Algorithm 2 outperforms when step-

size � is roughly greater than 4:0, 2:5, 1:0, respectively, for ˛ D 0:4; 0:6; 0:8.

In any event, a decision can be made between Algorithm 1 and 2 simply based on

(4.2) prior to implementation.

Straightforward decompositions of the random variable �0.�/ may do the job

as well. Observe that its Lévy measure can be decomposed, for example, as

w�;1.z/ D
nX

kD1

a

n

�
1 � e�˛��

�
z�1�˛e�bz ; n 2 N; (4.3)
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˛ D 0:4 ˛ D 0:6

˛ D 0:8

Figure 1. Acceptance rate (y-axis) against sampling frequency � (x-axis) of Algo-

rithm 1 (solid lines) and Algorithm 2 (dotted lines). The model parameters are set

.a; b; �/ D .1:0; 1:0; 0:5/.

that is, decomposing �0.�/ into n iid random variables, due to its infinite divisi-

bility. The decomposition (4.3) induces an algorithm consisting of n independent

runs of Algorithm 1 with a different parameter set, which results in the expected

number ne�a.1�e�˛��/�.�˛/b˛=n.DW nen�=n DW H.n// of loops in total, relative

to the original expected number en� of Algorithm 1. Considering that n is an in-

teger, we can show that if both n� > 1 and H.bn�c/ ^H.dn�e/ < en� hold true,

then the decomposition (4.3) provides a more efficient algorithm with n D dn�e if

H.dn�e/ < H.bn�c/ or with n D bn�c otherwise. The criterion can be checked

prior to implementation and tends to hold in the low-frequency sampling frame-

work. It is noteworthy that various different decompositions are certainly available,

such as

w�;1.z/ D
nX

kD1

ae�˛�.k�1/=n
�
1� e�˛��=n

�
z�1�˛e�bz ;

while the above simplest one (4.3) seems most effective for our purpose.
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Remark 4.2. Let XS and XTS be random variables respectively with distributions

S.˛; a/ under the probability measure Q and TS.˛; a; b/ under P . It is a straight-

forward application of Theorem 33.3 of Sato [21] to evaluate an expected value

related to tempered stable random variables by the density transform

EP Œˆ .XTS/� D EQ

�
dP

dQ

ˇ̌
G

ˆ .XS /

�
;

with ˆ W RC ! R such that EP Œjˆ.XTS/j� < C1. Here, the Radon–Nykodym

derivative is given in closed form .dP=dQ/jG D e�bXS =EQŒe�bXS �, Q-a.s.,

where G is the minimal � -field generated by the random variable XS . (This den-

sity transform formulation is found useful in the computation of Greeks under an

asset price model driven by tempered stable processes. See Kawai–Takeuchi [17]

for details.) This method does not employ acceptance-rejection sampling. (In fact,

the tempered stable random variable XTS is not even generated in this framework.)

However, this is only valid for the evaluation of expectations, and the estima-

tor variance VarQ..dP=dQ/jG ˆ.XS // is typically greater than the original one

VarP .ˆ.XTS//, provided that both variances are well defined, due to

EQŒe�bXTS �� EP Œe�bXS �:

Those observations discourage the use of this approach in the Monte Carlo frame-

work.

We next consider simulation of the compound Poisson component. (We do not

consider generation of the Poisson random variable N.�/ here since its random

number generator is available in most mathematical tools. See, for example, [1] for

efficient Poisson generators.) Recall that ¹�k.�/ºk2N has a common probability

density v�.x/ given by (3.1). In a similar manner to Lemma 1 of [23], observe

that

v�.x/ � ˛
e�� � 1

e˛�� � 1

�
b1�˛

�.1 � ˛/
x.1�˛/�1e�bx

�
DW C.�/ g1.x/; x 2 RC;

where C.�/ WD ˛.e���1/=.e˛���1/ � 1 and g.x/ is the density of the gamma

distribution �.1 � ˛; b/. Also, it holds that

v�.x/

C.�/g1.x/
D 1� eb.1�e��/x

bx
DW g2;�.x/; x 2 RC:

This suggests the following acceptance-rejection sampling algorithm for the sim-

ulation of the random variable �1.�/.
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Algorithm 3.

Step 1 Generate U as uniform .0; 1/ and V as �.1 � ˛; b/.

Step 2 If U � g2;�.V /, let �1.�/ V . Otherwise, return to Step 1.

Acceptance rate here is 1=C.�/ and is close to 1 when � is very small. In other

words, Algorithm 3 is efficient in the high-frequency sampling framework. The ac-

ceptance rate may be small, however, when the stability index ˛ is extremely close

to zero along with a large stepsize �. To address this issue, we can apply a sim-

ple yet very efficient improvement, due to [23], based on the composition method

(see, for example, Devroye [9]) and the decomposition of the density function

v�.x/ into an arbitrary number of density functions within the same class; for

each n 2 N,

v�.x/ D
n�1X

kD0

pn.k/
�

e��k=nv�=n

�
e��k=nx

��
;

where

pn.k/ WD .e˛��=n � 1/e˛��k=n

e˛�� � 1
; k D 0; : : : ; n � 1:

Note that pn.k/ > 0 and
Pn�1

kD0 pn.k/ D 1 and that e��k=nv�=n.e��k=nx/ in the

above summand acts as probability density function of e���k=n�1.�=n/, which

can be generated exactly by Algorithm 3. The improved algorithm is as follows.

Algorithm 4.

Step 1 Generate U as uniform .0; 1/ and find the index

j D min

´
l W

lX

kD0

pn.k/ � U

µ
:

Step 2 Generate a random variable �1.�=n/ by Algorithm 3.

Step 3 Return e���j=n�1.�=n/.

Relative to Algorithm 3, acceptance rate increases to 1=C.�=n/ from 1=C.�/.

It can be made as close to 1 as one wishes by increasing n at almost no cost;

additional computing effort is required at Step 1, while this is a minor increase.

Remark 4.3. With those exact simulation methods for the tempered stable distri-

bution, we can readily derive an exact simulation algorithm for the multivariate,
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possibly skewed, normal tempered stable Lévy process [4]. To be precise, the nor-

mal tempered stable Lévy process ¹Yt W t � 0º in Rd is defined by

Yt D �t C ˇƒL
.ts/
t Cƒ1=2B

L
.ts/
t

;

where �, ˇ 2 Rd , the matrix ƒ 2 R1�d is symmetric positive definite and has unit

determinant, and ¹Bt W t � 0º is a standard Brownian motion in Rd (see [2, 4] for

details.) That is to say, the law L.Yt/ can be simulated immediately from the law

L.L
.ts/
t / and the standard normal distribution in Rd . To the best of our knowledge,

simulation of normal tempered stable Lévy processes has been discussed solely

through infinite series representations, such as (2.8).

We close this section with discussing simulation of random elements arising

in Corollary 3.2 above. In principle, the recipe is almost the same, that is, Al-

gorithm 1 is applicable to �C
0 .�/ and ��

0 .�/, while Algorithm 3 to ¹�C
k

.�/ºk2N

and ¹��
k

.�/ºk2N . When ˛C D ˛� DW ˛, however, we can go a little further. The

proposal distribution for �C
0 .�/C��

0 .�/ is then again a stable distribution, which

can be simulated as a single stable random variable. Write

�.�/ WD �C
0 .�/C ��

0 .�/;

where �˙
0 .�/ � TS.˛;ea˙; b˙/, ea˙ WD a˙.1 � e�˛��/, and moreover

c WD e��.�˛/.1�e�˛��/.aCb˛
C

Ca�b˛
�/:

The density f�.�/.x/ of the random variable �.�/ has a upper bound as

f�.�/.x/ D
Z

R

fTS.˛;eaC;bC/.x � y/fTS.˛;ea�;b�/.�y/dy

D c

Z x^0

�1
e�bC.x�y/eb�yfS.˛;eaC/.x � y/fS.˛;ea�/.�y/dy

� ce�bCxe.bCCb�/.x^0/

Z x^0

�1
fS.˛;eaC/.x � y/fS.˛;ea�/.�y/dy

D c
�
e�bCx

1.x > 0/C e�b� jxj
1.x < 0/

�

�
Z

R

fS.˛;eaC/.x � y/fS.˛;ea�/.�y/dy

DW c g3.x/

Z

R

fS.˛;eaC/.x � y/fS.˛;ea�/.�y/dy;
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where the last integral is the density of the (bilateral) stable distribution with no

drift, S.˛;eaC;ea�/ say, with Lévy density

eaC
z1C˛

1.z > 0/C ea�
jzj1C˛

1.z < 0/:

This stable proposal distribution can be simulated in a similar manner to (2.3):

S .˛;eaC;ea�/
LD

� �.eaC Cea�/�.�˛/ cos.�˛=2/

cos.V /.1C .ˇ tan.�˛=2//2/�1=2

� 1
˛

� sin .˛.V C �//

�
cos.V � ˛.V C �//

E

� 1�˛
˛

;

where V is a uniform random variable on the interval .��=2; �=2/, E is a standard

exponential random variable independent of V , ˇ WD .eaC �ea�/=.eaC Cea�/ and

� WD arctan.ˇ tan.�˛=2//=˛. (See Chambers et al. [8] for details.) In that case,

we can apply the following acceptance-rejection sampling algorithm, similar to

Algorithm 1 above, to generate �.�/ with the bilateral stable proposal distribution

S.˛;eaC;ea�/.

Algorithm 5.

Step 1 Generate U as uniform .0; 1/ and V as S.˛;eaC;ea�/.

Step 2 If U � g3.V /, let �.�/ V . Otherwise, return to Step 1.

The acceptance rate at Step 2 is c�1 D e�.�˛/.1�e�˛��/.aCb˛
C

Ca�b˛
�/, which

increases to 1 as � tends to zero. An important remark here is that generation of

�.�/ by Algorithm 5 above may not always outperform that of �C.�/ and ��.�/

through implementation of Algorithm 1 twice. To describe this, fix

˛˙ D ˛ 2 .0; 1/ and a˙ D b˙ D 1;

for simplicity. Also, let N1.��/ and N5.��/ be the expected loop numbers re-

quired, respectively, for generation of �C.�/ and ��.�/ by Algorithm 1 twice and

for generation of �.�/ by Algorithm 5 once, where N1.s/ WD 2e�.1�e�˛s /�.�˛/

and N5.s/ WD e�2.1�e�˛s /�.�˛/. Then, observe that

N1.s/�N5.s/

´
� 0; if s 2

h
0; � 1

˛
ln

�
1C ln 2

�.�˛/

�i
;

< 0; otherwise:

Hence, Algorithm 5 is of practical use when � � �.�˛/�1 ln.1C ln 2=�.�˛//

and is preferable for small ˛ since the boundary point is strictly decreasing in ˛

towards zero.
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5 Numerical illustration

We provide in Figure 2 typical sample paths of finite variation tempered stable

Ornstein–Uhlenbeck processes in the high-frequency sampling framework, based

on the exact transitions given in Theorem 3.1 and the acceptance-rejection sam-

pling methods described in Algorithms 1 and 3 above. The model parameters are

set .a; b; �/ D .1:0; 1:0; 0:5/ and ˛ D 0:4, 0:6 and 0:8, the same setting for Fig-

ure 1. For simplicity, we set the initial state

Y0 D a�.1 � ˛/b˛�1 D lim
t"C1

EŒYt �;

that is the mean of the stationary distribution TS.˛; a; b/. Sample paths are gen-

erated over time intervals Œ0; 100� and Œ0; 200�, where stepsize is � D 0:1. Hence,

1000 and 2000 recursive increments are needed, respectively, for the intervals

Œ0; 100� and Œ0; 200�. In the context of asymptotic statistics for discretely observed

Ornstein–Uhlenbeck processes, it is often preferable to take � small and T large,

as in this setting. (See, for example, [7, 13].)

Computing times required for an implementation of 2000 recursive increments

by R software are 0:20, 0:25 and 0:34 seconds, respectively, for ˛ D 0:4; 0:6 and

0:8, on a typical desktop PC. (Computing times can be reduced much further by

using a low-level language such as C, rather than high-level ones such as R and

MATLAB.) In principle, the difference in computing time comes from acceptance

rates in Algorithms 1 and 3. In our parameter setting, acceptance rates in Algo-

rithm 1 (one sample from L.�0.�//) are 0:929, 0:896 and 0:800, respectively,

while in Algorithm 3 (one sample from L.�1.�//), the acceptance rates are, re-

spectively, 0:985, 0:990 and 0:995. Clearly, acceptance rate for �0.�/ virtually

dominates that for �1.�/, due to very small means 0:074, 0:109 and 0:225 of the

Poisson random variable N.�/.

Finally, let us comment in brief on the existing simulation method based on the

infinite shot noise series representation (2.12) for comparison. The simulation use

of infinite series representations entails a finite truncation of infinite sum. (See Imai

and Kawai [11].) We have observed through numerical experiments that under the

same parameter setting as above, approximately 4000 summands are needed to

obtain sensible sample paths over time interval Œ0; 200�. (Our observation here is

based upon Monte Carlo estimation of the mean EŒY200� � Y0 and the variance

Var.Y200/ � a�.2 � ˛/b˛�2.) Although results are different for different param-

eter settings and for different criteria and although generalizing solely based on

numerical experiments is somewhat risky, it seems fair to claim that our exact sim-

ulation algorithm outperforms, considering many kinds of random sequences to be

generated and all the other operations such as taking minimum, sorting the series
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Figure 2. The figures show typical sample paths of tempered stable Ornstein–Uhlen-

beck processes through exact simulation algorithm. The model parameters are set

Y0 D a�.1�˛/b˛�1.D limt"C1 EŒYt �/, .a; b; �/ D .1:0; 1:0; 0:5/. The horizontal

dashed lines indicate the initial state Y0.
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by ¹Tkºk2N , counting arrivals ¹e�kºk2N and monitoring at every discrete time

point in the representation (2.12). In particular, some of those operations may re-

quire a tremendous amount of computing time in high-level languages based on

matrix operations.

6 Concluding remarks

In this paper, we have discussed exact simulation algorithms for a wide class of

Ornstein–Uhlenbeck processes of finite variation tempered stable stationary laws

based on the exact transition probability between consecutive observations. We

have adopted acceptance-rejection sampling to simulate tempered stable and com-

pound Poisson distributions, respectively, with stable and gamma proposal distri-

bution. We have shown that Algorithms 1, 3 and 5 approach to perfect acceptance-

rejection sampling as stepsize tends to zero. This fact supports the proposed

method for validation and estimation purposes under high-frequency sampling.

We have also addressed the issue of their inefficient functionality when sampling

frequency is very low. Our algorithms prove applicable to simulations of bilateral

finite variation tempered stable Ornstein–Uhlenbeck processes and normal tem-

pered stable processes as well. Our exact simulation algorithms work more effi-

ciently relative to the existing approximative simulation method based on infinite

series representation of sample paths. It is of practical interest to extend to the infi-

nite variation setting, in which no practical exact simulation method is known yet.

Those topics are addressed in subsequent papers [15,16]. It would also be an inter-

esting future research topic to improve Algorithm 5 to a uniformly fast algorithm,

in a similar spirit to Algorithm 3.
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