
Search-Based and Goal-Oriented

Refactoring using Unfolding of Graph

Transformation Systems

Submitted to the

Department of Computer Science,

University of Leicester, UK.

by Fawad Qayum

A Thesis Submitted for the Degree of

Doctor of Philosophy

January 2012

Abstract

To improve automation and traceability of search-based refactoring, in this

thesis we propose a formulation of using graph transformation, where graphs

represent object-oriented software architectures at the class level and rules

describe refactoring operations. This formalisation allows us to make use of

partial order semantics and an associated analysis technique, the approxi-

mated unfolding of graph transformation systems. In the unfolding we can

identify dependencies and conflicts between refactoring steps leading to an

implicit and therefore more scalable representation of the search space by

sets of transformation steps equipped with relations of causality and conflict.

To implement search based refactoring we make use of the approximated

unfolding of graph transformation systems. An optimisation algorithm based

on the Ant Colony paradigm is used to explore the search space, aiming to

find a sequence of refactoring steps that leads to the best design at a minimal

cost.

Alternatively, we propose a more targeted approach, aiming at the re-

moval of design flaws. The idea is that such sequences should be relevant to

the removal of the flaw identified, i.e., contain only steps which are directly

or indirectly contributes to the desired goal.

1

Acknowledgements

First and foremost I offer my sincerest gratitude to my supervisor, Pro-

fessor Reiko Heckel, who has supported me thoughout my thesis with his

patience and knowledge whilst allowing me the room to work in my own

way. I attribute the level of my PhD degree to his encouragement and effort

and without him this thesis, too, would not have been completed or written.

One simply could not wish for a better or friendlier supervisor.

I would also like to thank my examiners, Professor Dirk Yassens, and Dr.

Neil Walkingshaw, for many constructive suggestions which improved this

thesis. Specifically, I would like to acknowledge and extend my gratitude to

Barbara könig for her thorough and continuous help during this work.

I am extremely grateful to University of Malakand for funding this re-

search under Overseas Faculty Development Programme by the Higher Ed-

ucation Commission of Pakistan

Finally, I would particularly like to thank my mother and my wife Anisa

Fawad for their constant prayers encouragement and support.

Words fail me to express my appreciation to my uncle Dr.Nisar and her

wife Carol, whose love, support and persistent confidence in me, has taken

the load off my shoulder and made my life easy in England.

In addition, I would like to thank many other members of the Department

i

of Computer Science at the University of Leicester for their help, and for

creating a friendly and welcoming environment for work.

Dedication

This thesis is dedicated to my beloved father, Prof. Adbdul Qayum Khan

(Late) who taught me that the best kind of knowledge to have is that which

is learned for its own sake. God rest his soul in peace. Ameen!

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Statement . 2

1.3 Contributions . 4

1.4 Road Map . 6

2 Background 8

2.1 Graphs and Graph Transformation 9

2.2 Unfolding of Graph Grammars 14

2.2.1 Petri Graph . 16

2.2.2 Approximated Unfolding 18

2.2.3 AUGUR2 . 24

2.3 Modelling Refactoring as Graph Transformation 25

2.4 Search Based Software Engineering 29

2.5 Data Exchange Formats . 31

ii

CONTENTS iii

2.5.1 GXL (Graph eXchange Language) 32

2.5.2 MSE . 32

2.6 Ant Colony Optimization . 33

2.7 Counterexample-Guided Abstraction

Refinement . 38

3 Related Work 43

3.1 Refactoring as Search Problem 43

3.2 Analysis of Refactoring Dependencies 48

3.3 Model Refactoring . 50

4 Methodology 52

4.1 Overview . 52

4.1.1 Search-based Refactoring 54

4.1.2 Goal-oriented Refactoring 57

4.2 Application to Running Example 60

4.2.1 Search-based Refactoring 65

4.2.2 Goal-oriented Refactoring 69

5 Analysis of Dependencies and Conflicts 75

5.1 Unfolding of the Refactoring Grammar 76

5.2 Analysis of the Unfolding . 77

CONTENTS iv

6 Refactoring as an Optimisation Problem 82

6.1 Evaluation Function . 82

6.2 Search-based Refactoring as ACO Problem 85

6.3 Goal-oriented Refactoring as a Search Problem 90

7 Verification of the Transformation Sequence 93

8 Implementation 99

8.1 Translating Java Source Code into GXL 100

8.1.1 Java to MSE . 100

8.1.2 MSE to GXL . 104

8.2 Data Structure for Petri Graphs 109

8.3 Search Techniques . 113

8.3.1 Search-based Refactoring as ACO problem 113

8.3.2 Goal-oriented Refactoring as search problem 114

9 Proof of Concepts 116

9.1 Patient Information System (PIS) 116

9.2 Discussion and Evaluation . 128

10 Conclusion and Future Work 132

List of Figures

2.1 DPO graph transformation . 12

2.2 A hypergraph . 13

2.3 A hypergraph rewriting rule and its corresponding DPO rule . 15

2.4 A graph grammarM for mobile processes. 20

2.5 Few transformation steps in the mobile systems mention in

graph grammar M of Figure 2.4. 21

2.6 Folding and unfolding in the Approximated unfolding technique. 22

2.7 Approximated unfolding for the graph grammarM in Figure 2.4. 23

2.8 Meta model for representing object oriented Class Structure. . 26

2.9 Graph Transformation rules for Extract Superclass refactoring 28

2.10 Initial graph of the firewall system 40

2.11 Rules of the firewall system 40

2.12 Hypergraph component of the underlying Petri graph 41

2.13 Petri net component of the underlying Petri graph 41

v

LIST OF FIGURES vi

2.14 Hypergraph obtained after abstraction refinement 42

4.1 Abstract view of the Search-based Refactoring Approach . . . 56

4.2 Abstract view of the Goal-oriented Refactoring Approach . . . 59

4.3 Simplified Class Diagram of LAN Simulation 61

4.4 Rule for refactoring Extract Superclass, in class diagram no-

tation . 62

4.5 LAN Simulation after Extract Superclass 65

4.6 Hypergraphs for Extract Superclass Refactoring Rule 66

4.7 Initial Hypergraph . 67

4.8 Final Class level diagram . 68

4.9 Simplified Class Diagram of LAN Simulation with markers. . . 70

4.10 Graph of refactoring steps with their causal dependencies and

conflicts . 71

4.11 Pattern pointing out duplicated methods 71

4.12 LAN simulation design after refactoring 73

6.1 Probe rules representing bad patterns 84

6.2 Probe rules represents good patterns 85

6.3 ACO-based algorithmic framework 88

7.1 Screen-shot 1 of GUI Panel of AUGUR2 97

LIST OF FIGURES vii

7.2 Screen-shot 2 of GUI Panel of AUGUR2 98

8.1 Simplified Class Diagram of LAN Simulation 101

8.2 Metamodel for extracting information from MSE file 102

8.3 Metamodel for the Unfolding process 111

8.4 Relationships among the components in our methodology. . . 112

9.1 Initial Class diagram representing Patient Information System. 118

9.2 Dependency table. x denotes mutual exclusion, ND denotes

“no dependency” and > shows causality between transforma-

tions. 120

9.3 Overview pyramid for cyclomatic complexity before refactoring 123

9.4 Overview pyramid for cyclomatic complexity after refactoring 123

9.5 Final Class diagram representing Patient Information System. 124

9.6 Initial Class diagram representing Patient Information System

with marker. 127

9.7 Dependency table. x denotes mutual exclusion, ND denotes

“no dependency”, > shows causality and # denotes conflict

between transformations. 129

9.8 Overview pyramid for cyclomatic complexity after refactoring 130

9.9 Initial Class diagram representing Patient Information System

after refactoring. 131

Chapter 1

Introduction

1.1 Motivation

Refactoring has emerged as a successful technique to enhance object-oriented

software designs by a series of small, behaviour-preserving transformations

[35]. However, due to the number of design choices and the complex de-

pendencies and conflicts between them it is difficult to choose an optimal

sequence of refactoring steps, maximising the quality of the resulting design

while minimising the cost of the transformation. Even in a system with only

20 classes the situation becomes acute because existing tools offer only lim-

ited support for their automated application [61]. Therefore, search-based

approaches have been suggested in order to provide automation in discover-

ing appropriate refactoring sequences [77, 40]. The idea is to see the design

1

CHAPTER 1. INTRODUCTION 2

process as a combinatorial optimisation problem, attempting to derive the

best solution (with respect to a given quality measure or objective function)

from a given initial design [65].

Apart from optimising given designs, refactoring is also considered as an

effective tool for addressing design flaws. One accepted methodology is to

identify an occurrence of an antipattern or code smell [83] known to affect

negatively the desired quality of the code, and to use refactoring to remove

the occurrence. This can be supported by tools for detecting design flaws

and executing refactorings. However, the task of planning the refactoring

sequence required to achieve the removal of the flaw is left to the developer.

Again, this is non-trivial due to complex dependencies and conflicts between

individual steps [61].

1.2 Problem Statement

Two obvious problems are the automation of the task of software refactor-

ing [66], and traceability, i.e., the ability on behalf of the developer to under-

stand the changes suggested by the optimisation [40]. In particular, heavy

modifications make it difficult to relate the improvement to the original de-

sign, so that developers will struggle to understand the new structure. We

believe that both problems can be mitigated by exploiting the local nature

CHAPTER 1. INTRODUCTION 3

of refactoring operations, which affect only a certain part of the design while

leaving the context unchanged. In terms of scalability, local operations per-

mit the use of partial order models representing the behaviour of a system by

a set of actions (refactoring steps) equipped with relations of causality and

conflict. Such models provide an implicit representation of the states (de-

signs) of the system as conflict-free subsets of actions closed under causal de-

pendencies, which scales better than the explicit representation of reachable

states. For traceability, causal dependencies provide a model of explanation

of why certain steps are required to perform later steps, thus reducing the

problem to understanding the benefits of the final steps in a sequence.

Likewise, there is also a potential problem with the approach of using

heuristic search to discover refactoring sequences automatically [40, 77] which

doesn’t focus on removing a specific design flaw, but uses a global software

metric to guide the search for a good refactoring. The result, therefore,

depends on the ability of the metric to capture the desired combination of

qualities, typically leading to complex formulas that are hard to understand

and evaluate [49]. A detailed analysis of the (potentially complex) metrics

may be required for developers to accept the outcome and relate it to the

original design. Otherwise, the accumulated understanding of the previous

design may be lost.

CHAPTER 1. INTRODUCTION 4

1.3 Contributions

The contributions of this thesis can be summarised as follow:

1. Studying how the formulation of refactoring as a graph rewriting can be

exploited for optimisation. Thus, we propose the idea of a formulation

of refactoring based on graph transformation and the Ant Colony Opti-

misation metaheuristic (ACO). The main goal is to provide automation

for the process of selecting refactoring sequences based on quality met-

rics, and formulate this as combinatorial optimisation problem to utilise

locality of graph transformation with the help of the ACO metaheuris-

tic.

2. The mechanism of how refactoring can exploit the unfolding technique

from the theory of graph transformation. The analysis of graph trans-

formation systems aids in summarising all potential interactions among

transformation steps which enables us to detect the dependencies/con-

flicts among the proposed refactorings in order to an apply optimal

sequence of transformations.

3. In search-based refactoring, there remains the problem of understand-

ing the end product and rationale of the transformation. In order to im-

prove understandability, the refactoring sequences generated should be

CHAPTER 1. INTRODUCTION 5

relevant to a specified goal of removing a given design flaw, i.e., contain

only steps required to achieve that goal. We propose a more targeted

approach, aiming at the removal of design flaws within a search-based

framework, allowing for automation of the planning of refactoring se-

quences where each step, directly or indirectly, contributes to the de-

sired goal.

Publications

The work done in this thesis expands and generalise material published in

several research publications.

• Initially, we published in [72], the idea of a local formulation of refactor-

ing based on graph transformation and the Ant Colony Optimisation

metaheuristic (ACO).

• The idea of analysing refactoring dependencies using approximated un-

folding of graph transformations was published in [71].

• We published in [70], the problem statement and implementation idea

of using a combination of graph transformation theory and ACO meta

heuristic, aiming to improve performance/scalability and traceabili-

ty/understandability of search-based refactoring.

• We presented a detailed overview of the approach in [73].

CHAPTER 1. INTRODUCTION 6

1.4 Road Map

The thesis is compiled of two main parts. The first two chapters present the

context of the thesis, while the next five chapters present the main contribu-

tions followed by the case study. The last chapter concludes the thesis.

Chapter 2 introduces the theoretical background and techniques that our

contributions are based on including graph and hyper graph transforma-

tion, the presentation of refactoring as graph transformation, the ACO meta

heuristic and counter-example guided abstraction refinement.

Chapter 3 discusses the different search based refactoring approaches,

illustrates the analysis of refactoring dependencies and talks about the model

refactorings.

The next four chapters present the main contributions. The overall

methodology is explained in the Chapter 4. It has been categorised into

two parts, addressing different problems in search-based refactoring. These

are Search-based Refactoring and Goal-oriented Refactoring. Chapter 5 illus-

trates how we analyse dependencies and conflicts by exploiting the unfolding

of graph transformation system. Refactoring as an optimisation problem is

addressed in Chapter 6 and Chapter 7 presents the verification of sequence

produced in the approximated model.

In Chapter 8, we present the implementation tool chain involved in our

CHAPTER 1. INTRODUCTION 7

methodology. Chapter 9 consists of the case study and evaluation. We

conclude our thesis and presents future work in the Chapter 10.

Chapter 2

Background

In this chapter, we provide an introduction to the theoretical background of

our research. It begins with the general concepts of graph transformation in

the Section 2.1. Section 2.2 explains the unfolding of graph grammars, fol-

lowed by demonstrating the idea of Petri graph, approximating the behaviour

of graph transformation system and the tool called AUGUR2. Section 2.3 de-

scribes the modelling of refactoring as graph transformation. The Ant Colony

Optimization metaheuristic is explained in the Section 2.6. The chapter is

concluded by reviewing the technique of Counter-Example Abstraction Re-

finement (CEGAR) in Section 2.7.

8

CHAPTER 2. BACKGROUND 9

2.1 Graphs and Graph Transformation

Firstly, in this section we need to introduce the essential concepts of graph

and hypergraph transformations.

Definition 2.1.1 (Graph and Graph Morphism [31]) A graph consist

of G = (V,E,s, t), where V is set of nodes (vertices), E is a set of edges such

that each edge e in E has a source and a target vertex s(e) and t(e) in V ,

respectively. The two functions s, t : E → V are specifying the source and

target of an edge.

E V
s
t

Given graphs G1, G2 with Gi = (Vi,Ei,si, ti) for i = 1, 2, a graph mor-

phism f : G1→G2, f = (fV ,fE) consists of two functions fV : V1→ V2 and

fE : E1→E2 that preserve source and target, i.e., with fV ◦ s1 = s2 ◦fE and

fV ◦ t1 = t2 ◦fE:

E V
s
t1 1

E V
s
t2 2

fv

1

1

2

2

=fE

A graph morphism f is injective (or surjective) if both functions fV , fE

are injective (or surjective, respectively); f is called isomorphic if it is bijec-

tive, which means both injective and surjective.

CHAPTER 2. BACKGROUND 10

A type graph describes a set of types, which can assign a type to the nodes

and edges of a graph. The typing itself is done by a graph morphism between

the graph and the type graph.

Definition 2.1.2 (Typed Graph and Typed Graph Morphism [31])

A type graph is a distinguished graph TG = (VT G,ET G,sT G, tT G) where VT G

and ET G are called the vertex and edge type alphabets, respectively.

A tuple (G, type) of a graph G together with a graph morphism type : G→

TG is called a graph typed over TG.

Given typed graphs GT
1 = (G1, type1) and GT

2 = (G2, type2), a typed graph

morphism f : GT
1 →GT

2 is a graph morphism f : G1→G2 such that type2◦f =

type1.

G

type1

1
G2

f

= type2

TG

A production rule p : L→R consists of a pair of TG-typed instance graphs

L and R. L represents the left-hand side graph (LHS) and R represents the

right-hand side graph (RHS). Applying rule p to a source graph means finding

a match of L in the graph and replacing it with R, thus creating the target

graph.

CHAPTER 2. BACKGROUND 11

In the DPO approach [32], a graph K is used as the common interface

of L and R, usually their intersection. Hence, a rule is given by a span

p : L←K→ R.

Definition 2.1.3 (Graph Production [22]) A (typed) graph production

p = (L
l
← K

r
→ R) is composed of a production name p and two injective

graph morphisms l : K → L and r : K → R. L, K and R are (typed) graphs

called left-hand side, gluing graph (or interface graph) and right-hand side

respectively.

A graph transformation with a production p is defined by first finding a

match m of the left-hand side L in the current host graph G. Then all the

vertices and edges which are matched by L \K are removed from G. An

intermediate graph D is created by D := (G\m(L))∪m(K). It has to be a

legal graph, i.e., no edges should be left dangling. Hence, the match m has

to satisfy a suitable gluing condition, which makes sure that the gluing of

L \K and D is equal to G (see (1) in Figure 2.1). In the second step of a

graph transformation, the graph D is glued together with R \K to obtain

the derived graph H (see (2) in Figure 2.1).

CHAPTER 2. BACKGROUND 12

L

m (1)

RK

G HD

(2)

Figure 2.1: DPO graph transformation

Definition 2.1.4 (Graph Transformation [22]) Given a (typed) graph

production p = (L
l
← K

r
→ R) and a (typed) graph G with a (typed) graph

morphism m : L→G, called the match, a direct (typed) graph transformation

t = G
p(m)
=⇒ H to be constructed, producing a new graph H by construction the

double pushout diagram in Figure 2.1.

A graph transformation is a sequence of production applications. A set of

production rules over a common type graph form a graph transformation

system R. A graph grammar G is a graph transformation system R with a

start graph GR.

Now we will introduce hypergraph transformation. The difference with

the more common notions of typed or labelled graphs with binary edges is

that, in hypergraphs, only edges are labelled and each edge can be connected

to a finite sequence of nodes, rather than just one source and one target. Let

Λ denote a fixed set of labels and each label l ∈Λ is associated with an arity

ar(l) ∈N.

CHAPTER 2. BACKGROUND 13

Definition 2.1.5 (Hypergraph) According to [6] a (Λ-)hypergraph G is a

tuple (VG,EG, cG, lG), where VG and EG are finite sets of nodes and edges

respectively, cG : EG → VG
∗ is a connection function and lG : EG → Λ is

the labelling function for edges satisfying ar(lG(e)) = |cG(e)|. Nodes are not

labelled.

A node v ∈ VG is called isolated if it is not connected to any edge, i.e. if

there are no edges e ∈EG and u,w ∈ VG
∗ such that cG(e) = uvw.

For example Figure 2.2 depicts a hypergraph with three edges labelled as A,

B, C and three nodes.

Figure 2.2: A hypergraph

Let G,G′ be hypergraphs. A hypergraph morphism ϕ : G→G′ consists of

a pair of total functions 〈ϕV : VG→ V
G

′ , ϕE : EG→E
G

′ 〉 such that for every

e ∈EG it holds that lG(e) = l
G

′ (ϕE(e)) and ϕV ∗(cG(e)) = c
G

′ (ϕE(e)).

Definition 2.1.6 (Hypergraph Rewriting Rule [6]) A rewriting rule r

is a triple (L,R,α) where L and R are hypergraphs, called left-hand side

and right-hand side, respectively, and α : VL→ VR is an injective function

CHAPTER 2. BACKGROUND 14

mapping the nodes of the left-hand side to nodes of the right-hand side.

Intuitively, a rule r = (L,R,α) specifies that an occurrence of the left-hand

side L can be replaced by R. To apply a rule r to a graph G at the match

ϕ :L → G, we first remove from G the images of the edges of L. Then the

graph is extended by adding the new nodes in R i.e., the nodes in VR−α(VL)

and edges of R. A rule can delete and produce but not preserve edges, while

nodes cannot be deleted and its left-hand side must be connected [6].

A graph transformation system is a finite set of rewriting rules. A graph

transformation system with a start graph is called a graph grammar G.

Rules r = (L,R,α) can be seen as DPO rules (L ←֓ VL
r
→֒ R) [33] such

that hypergraph rewriting is equivalent to a DPO construction. Figure 2.3

illustrate the idea of a rewriting rule and its corresponding DPO rule, where

mapping α corresponds to the numbering of nodes from the left-hand side to

the right-hand side. Nodes without numbers on the right-hand side are the

result of the application of the rule [7].

2.2 Unfolding of Graph Grammars

Before we give an impression of the technique, presented in [6], for the con-

struction of a finite approximation of the unfolding of a graph grammar, we

summarise the class of (hyper)graph transformation systems explained in the

CHAPTER 2. BACKGROUND 15

Figure 2.3: A hypergraph rewriting rule and its corresponding DPO rule

previous section. Then we go over the basic concepts underlying the ordinary

unfolding construction for graph grammars [8]. Afterwards we demonstrate

Petri graphs, the structure combining hypergraphs and Petri nets, which is

used to approximate the behaviour of graph grammars.

The unfolding, an initially formulated for Petri nets [64], is based on the

notion of associating a system to a single branching structure, describing all

its possible runs, with all the possible events and their mutual dependencies.

We are using this technique presented in [8], which unfolds a (hyper)graph

transformation system. It starts with the initial hypergraph and produces a

branching structure by applying at each graph in all possible ways the rules,

without deleting the left-hand side. Consequently, it extracts an approxima-

tion called Petri graph, describing the behaviour of a graph grammar [6].

CHAPTER 2. BACKGROUND 16

2.2.1 Petri Graph

First we explain Petri nets before describing the structure that we intend to

use to approximate graph transformation systems, the so-called Petri graphs,

because it consist of an hypergraph and of a Petri net whose places are the

edges of the graph.

Definition 2.2.1.1 (Petri net [6]) Let A be a finite set of action labels.

An A-labelled Petri net is a tuple N=(S, T, •(),()•,P) where S is a set of

places, T is a set of transitions, •(),()• : T → S⊕ assign to each transition its

pre-set and post-set and p : T →A assigns an action labels to each transition.

A marked Petri nets is pair (N,mN), where N is a Petri nets and mN ∈

S⊕ is the initail marking.

It is important to mention the relation between Petri nets and DPO graph

grammars. As observed by Kreowski in [55], graph transformation systems

can model the behaviour of Petri nets. The proposed encoding of nets into

grammars represents the topological structure of a marked net as a graph, in

such a way that the firing of transitions modelled by direct derivations [8].

A Petri graph is a static data structure, which records the transformation

process. Combining a hypergraph and a Petri net, it is used to approximate

a graph transformation system [6].

CHAPTER 2. BACKGROUND 17

Let R be a graph transformation system. A Petri graph over R is tuple:

P=(G, N, µ), where G is a hypergraph, N=(EG,TN ,• (),()•,PN) is an R-

labelled Petri net, where the places are the edges of G, and µ associates

to each transition t ∈ TN , with pN (t) = (L,R,α), a hypergraph morphism

µ(t) : L∪R→G such that:

•t = µ(t)⊕(EL) ∧ t• = µ(t)⊕(ER)

This condition allows to interpret a transition in the net as an occurrence of

a rule in R.

A Petri graph for a graph grammar (R, GR) is a pair (P, ι), where

P=(G, N, µ) is Petri graph for R and ι : GR→G is a graph morphism. The

multiset ι⊕(EGR
) is called initial marking of the Petri graph. Precisely, if

pN (t)= (L, R, α) and µ(t) : L∪R→ G is the graph morphism associated

to the transition, then µ(t)|L : L→ G must be a match of r in G, i.e., the

image of the edges of L in G coincides with the pre-set of t. The result of

applying the rule to the considered match must be already in graph G, and

the corresponding edges must coincide with the post-set of t. Petri graph

consists of two components, i.e., a graph component that conveys structural

information and a Petri net component that represents causality, conflicts

and concurrency. It is important to note that the hyperedges of the graph

component are at the same time the places of the Petri net.

CHAPTER 2. BACKGROUND 18

2.2.2 Approximated Unfolding

Usually, the unfolding is infinite, even in the case of finite state systems. In

order to ensure that the unfolding construction generates a finite structure,

the authors in [6] propose to consider – besides the unfolding rule, which

extends the graph by simulating the application of a rule – a folding rule,

which, under suitable conditions, allows us to merge different parts of the

structure that have been generated.

To achieve an unfolding step one has to find a match ϕ of a rule r, i.e.,

an occurrence of its left-hand side in the current graph. Afterwards the rule

is applied but only adds new items as specified by the right-hand side of the

rule without deleting the match (left-hand side). On the other hand, in a

folding step, one has to find two matches of the same rule r. Then the two

occurrences of the left-hand side of rule r in the current graph are merged.

In both kinds of steps the matches are to be coverable, i.e., when interpreted

as markings of the Petri graph they must be covered by a marking reachable

from the initial marking in the Petri graph.

The algorithm used for the construction of the approximated unfolding of

a graph grammar G is based on these two operations unfolding and folding,

which can be illustrated as below [7]:

- (Step 0) → It begins with start graph of the grammar;

CHAPTER 2. BACKGROUND 19

- (Step i+1) → Let Ui be the Petri graph produced at step i. Choose non-

deterministically one of the following actions:

• Folding: Find a rule r and two matches of r coverable by a marking reach-

able from the initial marking in Ui such that one causally depends on the

other, i.e., each item x in the second match causally depends on the tran-

sition labelled r applied to the first match or coincides with an item in the

first match. Then merge these two matches.

• Unfolding: Find a rule r and a match of r coverable by a marking reach-

able from the initial marking in Ui such that the match cannot be involved

in a folding step (and no other r-labelled transition has this match as pre-

condition). Then apply the unfolding step to such a match.

These operations are applied subject to certain conditions and the algo-

rithm stops when no (folding and unfolding) step can be performed [6]. The

resulting Petri graph is called approximated unfolding of G and denoted by

A(G). This guarantees that the resulting Petri graph is finite.

In order to demonstrate the idea of unfolding/folding steps in the approx-

imated unfolding, we consider the graph grammar as an example from [7]

representing a simple distributed system with mobility, with locations and

processes running on these locations. Locations, connections and processes

are characterized as hyperedges. The edge labels represent the following: P

denotes a process running on a location, Q stands for a process, which trav-

CHAPTER 2. BACKGROUND 20

Figure 2.4: A graph grammarM for mobile processes.

els between locations. The labels L and sL stand for locations and secure

locations, respectively, and, in the same way, conn and sconn stand for con-

nections and secure connections, respectively. And hence firewall represents

the one directional firewall connection.

For instance, the start graph in Figure 2.4 represents a network with three

locations, among one of them is secure. The secure location is connected to

others through firewalls and initially no process is running. The dynamics of

the system is demonstrated with the help of rewriting rules depicted in the

CHAPTER 2. BACKGROUND 21

Figure 2.5: Few transformation steps in the mobile systems mention in graph

grammar M of Figure 2.4.

Figure 2.4. Some of the rules can be applied in both directions, as indicated

by the presence of a double arrow. A possible evolution of M is described

in the Figure 2.5 i.e., a new secure location is created which later enables to

create a new process. This process travels along the new secure connection

and then crosses a firewall.

We exploit the algorithm to construct the approximated unfolding of the

CHAPTER 2. BACKGROUND 22

Figure 2.6: Folding and unfolding in the Approximated unfolding technique.

graph grammarM in Figure 2.4. It does several folding and unfolding steps

and finally produces the Petri graph A(M) in Figure 2.7. A Petri graph

contains both the graph structure of the system and a Petri net having edges

as places. Both parts of the approximated unfolding are used to analyse the

original system. For instance, the start graph of the grammar is represented

by the marking of the Petri graph in Figure 2.7, consisting of the labelled

CHAPTER 2. BACKGROUND 23

Figure 2.7: Approximated unfolding for the graph grammarM in Figure 2.4.

edges L, conn, firewall and sL. The black rectangles represent transitions,

which can be interpreted as occurrences of rewriting rules. Each transition

t is labelled by the corresponding rule name (e.g., t: [create proc]) and it

consumes and produces tokens, being the edges of the graph, as denoted by

the dashed arrows.

Some of the unfolding and folding steps are presented in Figure 2.6: we

start from the start graph of the system in Figure 2.4 and choose non-

deterministically to apply an unfolding step corresponding to the creation

of a new process at a non-secure location (rule [create proc]). A newly cre-

ated location is a match for rule [create proc] and it causally dependends on

transition t which corresponds to rule [create proc]. A folding step allows us

to merge such an edge and the precondition of t. A series of several similar

CHAPTER 2. BACKGROUND 24

unfolding and folding steps follows.

Similarly the process P and its location on the right represent a match

for rule [leave loc] and they both causally depend on transition t′, the match

and the precondition of t′ are consequently merged. Some more steps finally

lead to the Petri graph in Figure 2.7.

2.2.3 AUGUR2

AUGUR2 is the verification tool based on the previously developed verifica-

tion tool Augur, which can analyse graph transformation systems by approx-

imating them by Petri nets [53]. As compared to the previous version, the

new version AUGUR2, provides a more general and extensible software archi-

tecture and additional functionality for analysis and visualization. AUGUR2

provides new analysis techniques and more functionality. In particular, an

analysis algorithm for Petri nets has been added, which is based on cover-

ability graphs [75] and backward reachability [1]. Additionally, an interface

to Graphviz1 for visualization purposes has been set up and also added the

possibility to specify forbidden paths in graphs using regular expressions [53].

In AUGUR2, rewriting takes place on hypergraphs, i.e., left and right-

hand sides can be (almost) arbitrary hypergraphs. However, no nodes can

be deleted and rules must be consuming, i.e., at least one edge is deleted.

1http://www.graphviz.org/

CHAPTER 2. BACKGROUND 25

In order to provide input to AUGUR2, we need to translate the initial

hypergraph and hypergraph rules into GXL (Graph Exchange Language),

an XML standard for graph transformation systems [57]. AUGUR2 only

allows GXL files as input for the purpose of constructing approximated un-

folding. The output produced by AUGUR2 is in GXL, as well augmenting

the Petri graph with information about nodes, transitions and extra tenta-

cles connecting transitions with hyperedges [29]. This enables us to analyse

the concurrent behaviour of the system including all possible transformation

steps and the dependencies among them.

2.3 Modelling Refactoring as Graph Trans-

formation

Graphs are often used as abstract representations of models. For example, in

the UML specification [68] a collection of object graphs is defined by means of

a metamodel as abstract syntax of UML models. Model transformations can

be specified in terms of graph transformation. In order to provide a localised

formal description of refactorings as input to the partial order analysis, we

follow [61] representing refactoring operations as graph transformation rules.

The graph we use to represent Java class structures is typed to a metamodel

CHAPTER 2. BACKGROUND 26

Figure 2.8: Meta model for representing object oriented Class Structure.

for representing object oriented class diagrams, and is depicted in the Fig-

ure 2.8. It shows the basic object oriented concepts like classes, methods,

attributes and their relationships.

Class Level Refactoring

Refactoring has emerged as a successful technique to reduce the complexity

of object oriented designs. We use graphs to represent software architectures

at the class level and graph transformation to formally describe their refac-

toring operations. Each transformation (called a ‘refactoring’) does little,

but a sequence of transformations can produce a significant restructuring.

CHAPTER 2. BACKGROUND 27

Standard examples of refactorings are: moving a method from one class to

another to better reflect that methods use; inserting a class into the inheri-

tance hierarchy to capture common properties of subclasses, etc.

Below we present graph transformation rules for some of the class level

refactorings [35], which will be considered later in this thesis.

Extract SuperClass: When two classes have similar features, we create

a superclass for them and move their common features to this superclass.

Graph transformation rules for the Extract Superclass refactoring are given

for two different situations. In the first situation, if we have two classes with

common features and they don’t have a superclass, a superclass is created for

them, while in the second situation, if the two classes with common features

are in an existing inheritance hierarchy, a superclass is created for these two

classes only and is inserted into the hierarchy. Both situations are depicted

as Case A and Case B in Figure 2.9 respectively.

Move Method: When a method is using or is used by more features of

another class than the class on which it is defined, we move that method to

the other class. We consider three situations in order to move a method from

one class to another. In the first case, we move a method to the class an

invoked method belongs to. In the second case, we move a method to one of

CHAPTER 2. BACKGROUND 28

1: Class 2: Class

inherit inherit

8:Class

6: Method

7: common 1: Class 2: Class

5: Method 6: Method

7: common

4: contains3: contains 3: contains 4: contains

5: Class

6: inherit 7: inherit

11: Class

1: Class 2: Class

3: Method 4: Method

10: common

8: contains 9: contains

6: inherit 7: inherit

5:Class

1: Class 2: Class

3: Method 4: Method

10: common

8: contains 9: contains

Case (A)

Case (B)

5:Method

 inherit

Figure 2.9: Graph Transformation rules for Extract Superclass refactoring

its parameter types. In the third case, a method is moved to the type of an

attribute of the class. All three cases are shown in the following Figure.

PullUp Method: When you have methods with identical results on sub-

classes, move them to the superclass. The graph transformation rules for the

Pull Up Method refactoring is depicted below.

CHAPTER 2. BACKGROUND 29

5: contains

5: contains

6: Atypeof

7: hasAtt7: hasAtt

7: hasParam 7: hasParam

1: Class

3:Method

2: Class

6: contains

4:Method

7: invokes

1: Class

3:Method

2: Class

contains 6: contains

4:Method

7: invokes

1: Class

3:Method

2: Class

6: Ptypeof

4:Parameter

1: Class

3:Method

2: Class

contains
6: Ptypeof

4:Parameter

1: Class

3:Method

2: Class

5: contains 6: Atypeof

4:Attribute

1: Class

3:Method

2: Class

contains

4:Attribute

Case: A

Case: B

Case: C

Encapsulate Attribute: When we need to increase modularity by avoid-

ing direct access of the attribute, we change its visibility from public to

private. The corresponding graph transformation rule for Encapsulate At-

tribute refactoring is given below.

2.4 Search Based Software Engineering

In recent years, research in search based software engineering (SBSE) has

shown the potential of the approach. The idea is to see software engineer-

ing problems as combinatorial optimization problem or search problems [65]

CHAPTER 2. BACKGROUND 30

6: inherit 7: inherit

1:Class

2: Class 3: Class

4: Method 5: Method

common

8: contains 9: contains

6: inherit 7: inherit

1:Class

2: Class 3: Class

Method

contains

1: Class

2: Class

4: contains

3:Attribute

2: Class
contains

4: contains

5: Atypeof

6:Method
name = get

7:Method
name = set

3:Attribute

contains
updates

accesses

3:Attribute

5: Atypeof

Atypeof

Atypeof

utilising a large set of metaheuristic techniques such as genetic algorithms,

simulated annealing and tabu search etc.

As asserted in [20], software engineers face problems, including not only of

finding a solution, but ensuring that it is acceptable or near optimal solution

from a large number of alternatives. Usually, it is difficult to reach an optimal

solution, but more obvious to evaluate and compare candidates. E.g., it

may be tough to know how to get a design with low coupling and high

cohesion, however it is fairly easy to make a decision whether one design is

more closely coupled than another. Generally, it is useful in problem domains

with conflicting or competing goals, to anticipate many potential solutions

CHAPTER 2. BACKGROUND 31

instead of a single perfect one, which is common in software engineering [42].

When any software engineering problem is designed as a search problem, a

variety of approaches can be applied to that problem and allowing reuse of

existing knowledge [66]. Therefore, Search-Based Software Engineering can

be described as the application of search-based approaches to optimisation

problems in software engineering [38].

A metaheuristic is a general algorithmic framework which is intended to

find optimal or near optimal solutions to a problem having more than one

solution in the search space [20]. Hence, metaheuristic algorithms have been

applied successfully to variety of software engineering problems from require-

ments engineering [5], project planning and cost estimation [2, 3] through

testing [11, 16, 39, 58], to automated maintenance [15, 34, 63, 67, 40, 77],

service oriented software engineering [17], compiler optimization [21] and

quality assessment [15].

2.5 Data Exchange Formats

In order to situate the background about the data exchange formats used

later in this thesis, we provide a short description about MSE and GXL

(Graph eXchange Language) data exchange formats.

CHAPTER 2. BACKGROUND 32

2.5.1 GXL (Graph eXchange Language)

Research in reverse engineering and program analysis has established that

there are plenty of tools available to extract information about a program for

the purpose of manipulation and analysis. For the sake of interoperability

among these tools, support for exchanging information was missing [46]. On

the other hand, a lot of software tools depend on graphs for internal data

representation, which offers support towards a standardized language for

exchanging those graphs and improving interoperability between these tools

[85]. Hence, the development of GXL (Graph eXchange Language) originally

started to support data interoperability between reengineering tools.

GXL is an XML-based format for exchanging graphs [86]. Formally, GXL

represents typed, attributed, directed, ordered graphs which are extended to

represent hypergraphs and hierarchical graphs [45].

2.5.2 MSE

MSE is the generic file format used for import-export in Moose (a language-

independent reengineering environment) [30]. Moose is open source software,

which offers a comprehensive platform for software and data analysis. It

provides a variety of services ranging from importing and parsing data, to

modeling, measuring, querying, mining, and building interactive and visual

CHAPTER 2. BACKGROUND 33

analysis tools. Different kinds of tools have been built around Moose. Some

of these tools are distributed in the Moose Suite and others are to be loaded

separately. Fame is one of these tools, and is a meta-modeling engine based on

FM3 (Fame meta-metamodel) using the text-based exchange format (MSE).

Similar to XML, MSE is generic and can describe any model. MSE is part

of the Fame [56] project and allows the specification of models for import

and export with Fame. That means, MSE is a file format to store FM3 [56]

compliant meta-models and models.

2.6 Ant Colony Optimization

ACO is applicable to a wide range of combinatorial optimisation problems.

It is based on the metaphor of artificial ants cooperating to find a solution

by searching a graph independently, but leaving pheromone deposits on the

graph’s edges to indicate ignore paths. To accomplish this, ants have to know

the local neighbourhood of their current node, from which they will select

the most likely edge to traverse based on the evaluation of the successor node

and the pheromone value of the edge.

A metaheuristic is a general algorithmic framework which can be applied

to different optimisation problems with relatively few modifications to make

them adapted to a specific problem. - (Marco Dorigo and Thomas Stützle)

CHAPTER 2. BACKGROUND 34

[28]

The capability of finding very high-quality solutions to hard, practically

relevant combinatorial optimization problems in a reasonable time has con-

siderably increased with the help of metaheuristics. This is particularly true

for large and poorly understood problems [28].

Since the early nineties Ant Systems were suggested as a novel heuristic

approach for the solution of combinatorial optimization problems [27]. Ini-

tially, they were applied to the traveling salesman problem, and along with

necessary modifications to improve performance and apply to other optimiza-

tion problems, the Ant Colony Optimization (ACO) metaheuristic emerged

as an effort to describe a common framework for all the versions of AS [25].

The Ant Colony Optimisation (ACO) can be seenas a sophisticated op-

timisation strategy inspired by the foraging behaviour of ant colonies, and

improved by artificial intelligence techniques [13]. This has been recognised

as a strategy that can be used to solve complex optimisation problems. It is

based on a set of artificial ants cooperating to find a solution by searching a

graph independently, but leaving pheromone deposits on the graph’s edges

to indicate promising paths. Each single ant reveals a very minor behaviour:

it simply goes from a node to another across an arc, but when all ants co-

operate, like actual ants do in a real colony, the whole system reveals an

intelligent behaviour, as much as it is able to find a good solution [26].

CHAPTER 2. BACKGROUND 35

Artificial Ants

The ant agents used in the ACO metaheuristic are generally known as artifi-

cial ants. As compared to the natural counterpart, artificial ants are equipped

with some extra capabilities to solve more complex real-world optimisation

problems [28].

• Visibility: Artificial ants are given visibility when they come across

intersections. With this ants are capable to judge the better path at

the junction by using the probabilistic rules based on local information.

• Memory: Real ants are supposed have no memory and build paths

on the basis of pheromone intensities of the decision path. On the

contrary, memory is given to the artificial ants for storing records of

previously visited paths.

• Pheromone update: Pheromone updating consist of two activities

pheromone evaporation and pheromone deposit. In the first activity,

pheromone evaporation reduces the value of the pheromone trails on

all the arcs (i, j) by a constant value ρ, hence decreasing the difference

in pheromone intensities among arcs. As a result, it can be considered

as a source of encouraging exploration of unvisited paths by reduc-

ing the overall gap between pheromone trail intensities. During the

CHAPTER 2. BACKGROUND 36

foraging process of real ants pheromone evaporation also takes place,

but at much slower rate. In contrast, the higher evaporation rates

are suggested for artificial ants, especially when solving more complex

problems.

Deposition adds pheromone to the arcs as reward that it connects com-

ponents contained in the candidate solution based on the objective

function of the solution.

ACO for Combinatorial problems

Prior to applying any optimisation metaheuristic to solve a combinatorial

optimisation problem, it is crucial that the problem can be represented in

a form that is identifiable by the metaheuristic. Similarly, ACO is a meta-

heuristic widely applicable to any combinatorial optimisation problem for

which a constructive solution procedure can be envisaged. To employ it,

we need to map our problem into a representation allowing artificial ants to

construct the solution by traversing a graph [28].

Problem representation

ACO assumes a problem representation with the following characteristics [28].

1. A finite set of solution components C = {c1, c2, · · · , cn}, and a set of

arcs E connecting the components in C.

CHAPTER 2. BACKGROUND 37

2. The states of the search problem, defined as sequences of components

x = 〈ci, cj , · · · 〉 in C. The set of all possible states x is denoted X. The

length (number of components) of a sequence is denoted by | x |.

3. A finite set S of candidate solutions with distinguished subset S̄ ⊆ S

of feasible candidate solutions determined by a set of constraints Ω.

4. A non-empty subset S∗ of optimal solutions.

5. An evaluation f(s) for each candidate solution s. For some problems

it is possible to calculate partial evaluations fp(x) associated with in-

termediate states x of the problem.

Using the formulation above, artificial ants build solutions by performing

randomised walks on the connected graph G = (C,E), based on the following

basic operations [26].

• A state transitions takes an ant from a one node to another across an

arc;

• A local update changes the pheromone deposit on the arc it currently

walks on;

• A global update changes the pheromone deposits on all arcs an ant has

traversed when this ant successfully ends its trip;

CHAPTER 2. BACKGROUND 38

In addition, we require a comparison function to evaluate different paths and

an end of activity condition to specify when an ant has completed its trip.

2.7 Counterexample-Guided Abstraction

Refinement

The techniques based on counterexample-guided abstraction refinement (CE-

GAR) have been used successfully for the purpose of verification [19]. The no-

tion behind this approach is to start with a coarse initial over-approximation

of a system and try to verify a certain property using this abstraction. If the

property cannot be verified, there is a run, i.e., sequence of events in the Petri

graph, that violates this property. This is known as counterexample [54]. The

authors in [51] employed the technique of counterexample-guided abstraction

refinement for the verification of graph transformation systems.

Their approach is based on approximating graph transformation systems

by Petri nets by means of unfolding the construction [6]. The obtained

approximation has the essential property that each graph reachable from the

initial graph can be mapped, by combining some of its nodes, to a reachable

marking of the over-approximating Petri net. Conversely, there might be

some reachable markings in the over-approximation (Petri graph) having no

CHAPTER 2. BACKGROUND 39

counterpart in the original GTS. Such sequence of events in the Petri graph

is called a spurious run [51].

The reason behind spurious runs is the merging of graph nodes in the

construction of the over-approximation, which is similar to the idea of sum-

mary nodes in shape analysis [76]. The construction of a more exact over-

approximation proceeds by separating merged nodes in order to avoid this

spurious run and the same process can be executed frequently for any num-

ber of spurious runs. This mechanism of finding the causes for spurious runs

could be utilised in other frameworks based on approximations of graph struc-

tures [51]. It has been examined experimentally in [52] that counterexample-

guided abstraction refinement is faster than already existing abstraction re-

finement technique mentioned in [10].

Let us consider the example from [51] illustrating a firewall system iden-

tical to the one presented in [7]. The system consists of two different types

of processes, i.e., a safe processes (running behind a firewall) and unsafe pro-

cesses (running in a public area). During runtime the system can generate

any number of safe processes (SP) and connection locations (L). This is to

make sure in the system that unsafe processes from the public area do not

enter the firewall. This property needs to be verified but if such a situation

is detected, then rule Error will be applied and an edge labelled Error is

created. The initial graph and rules of the firewall system are depicted in

CHAPTER 2. BACKGROUND 40

Figure 2.10: Initial graph of the firewall system

Figure 2.11: Rules of the firewall system

Figure 2.10 and 2.11 respectively. The rules with double-head arrow can be

applicable in both direction.

After constructing the approximated unfolding of the graph grammar,

which consists of the hypergraph in Figure 2.12 and the Petri net in Fig-

ure 2.13, the set of edges of the hypergraph corresponds precisely to the set

of places of the net in the approximating unfolding.

In order to verify the graph grammar by analysing the Petri graph, we

need to demonstrate that no reachable graph contains a subgraph Gs, which

CHAPTER 2. BACKGROUND 41

Figure 2.12: Hypergraph component of the underlying Petri graph

Figure 2.13: Petri net component of the underlying Petri graph

has been added to the grammar with Gs as left-hand side and an edge labelled

Error in the right-hand (as rule Error in the Figure 2.11). The system will

hold this property if and only if no place labelled Error is present in the

underlying net or every such place is not coverable [51].

In the initial graph in Figure 2.10 and its hypergraph component in Fig-

ure 2.12 the nodes v1 and v2 as well as w1 and w2 have been merged by the

over-approximation turned into v1,2 and w1,2. This is the case, which leads

CHAPTER 2. BACKGROUND 42

to a spurious run.

Figure 2.14 illustrates the hypergraph component of the refined approxi-

mated unfolding obtained for the firewall system after the abstraction refine-

ment. One can observe that crucial nodes of the hypergraph i.e., w1 and w2

are not merged.

Figure 2.14: Hypergraph obtained after abstraction refinement

Chapter 3

Related Work

The purpose of this chapter is to clarify the contribution of this thesis in

relation to other work in the area. Related work is described in three areas:

search based software refactoring, analysis of refactoring dependencies and

model refactorings.

3.1 Refactoring as Search Problem

Recently, the problem of refactoring has been addressed using search-based

approaches [77]. The notion behind this is to formulate object-oriented de-

sign as a combinatorial optimization problem and the goal is to find an

optimal design for a given initial model and objective function [65]. Having

presented the refactoring task in this way, a variety of search techniques from

43

CHAPTER 3. RELATED WORK 44

local searches, such as exhaustive search and hill-climbing, to metaheuristic

searches, such as genetic algorithms and ant colony optimization, can be ap-

plied to solve the optimisation problem [66]. Since search-based refactoring

has been introduced recently, it is not yet clear which search techniques are

best suited in general.

Our approach analyses refactoring operations on the basis of graph trans-

formation techniques, i.e., unfolding of graph transformation systems to iden-

tify conflicts and dependencies. Due to unfolding, our methodology doesn’t

express the state space explicitly but provides implicit representations of

graphs as states.

Search-based refactoring often is based on a simple and small set of refac-

toring rules chosen from Fowler’s catalogue [35]. E.g., in [41] they have built

a general-purpose search based refactoring system, where they consider only

the Move Method refactoring and authors in [65] had applied only two basic

refactorings (PullUp Method and PushDown Method) in their approach. In-

stead, the prototype called CODe-Imp [67] uses six different refactorings,

namely Push Down Field, Pull Up Field, Push Down Method, Pull Up

Method, Extract Hierarchy and Collapse Hierarchy, but these refactorings

are implemented individually for the purpose of design improvement. Like-

wise [77], implemented refactorings only for Move Method in order to improve

the class structure of a system.

CHAPTER 3. RELATED WORK 45

In our approach we consider a complex set of refactoring rules with de-

pendencies and conflicts. This allows us to address a variety of design flaws

at various levels within a system.

Below, we outline some of the approaches in the field of search-based

refactoring in order to compare them to our contribution.

Initially, the idea to consider object-oriented design as a combinatorial

optimization problem that can be solved with the help of search-based ap-

proach was coined by the O’Keeffe et al. in [65]. The authors have developed

a prototype tool (Dearthóir) to confirm the concept of automated design

improvement using simulated annealing. It takes Java code as input and

chooses the task of moving methods to their best possible positions in the

class hierarchy. In their proposed approach, they consider PullUp Method

and PushDown Method refactoring [35] in a stochastic manner in order to

improve the design of a system. Their only goal is to provide assistance

to move methods to their most favourable positions in the class hierarchy,

which shows that the approach is confined to a specific level in the system

and supports a very limited number of refactorings.

Since the authors have presented their initial idea of automated design

improvement, in [67] they have reformulated the refactoring task as a search

problem in order to discover the extent to which software maintenance can

be automated. They considered a small set of automatable refactorings to

CHAPTER 3. RELATED WORK 46

find the appropriateness of the quality evaluation and assess the relative per-

formance of a small set of search techniques in the perspective of automated

refactoring of Java programs. But still their chosen set of refactorings ad-

dressed the design at the method/field level of granularity. The prototype

(CODe-Imp) was aimed at automated designed improvement for search-based

maintenance. Hence, in contrast to previous automated refactoring work, the

authors have employed a more complex evaluation function in order to ac-

commodate various metrics values. We believe that our approach is similar

to this work in that the application of refactorings can provide a search space

of alternative designs.

Similarly Seng et al. [77] described a search-based refactoring approach

based on an evolutionary algorithm that suggests a list of refactorings in

order to improve the class structure of a system. They transformed source

code into an appropriate model with the help of fact extraction techniques in

order to replicate the source code refactorings and find out their impact on

a system. They classify the essential model elements, i.e., classes, methods,

attributes, parameters and local variables in order to distinguish them as per

their role in the system’s design. The main similar idea between our work

and this approach is extracting models from source code at the class level of

granularity for the purpose of design improvement. In general, this approach

has provided a valid bases for further research in the field of search-based

CHAPTER 3. RELATED WORK 47

software engineering.

Followed the idea in [67], Harman and Tratt have employed the concept

of Pareto optimality in search-based refactoring [41], allowing to combine dif-

ferent optimisation criteria into a single optimisation problem. The approach

was helpful to resolve issues regarding evaluation functions, but so far the

implementation of the approach is limited to the Move Method refactoring.

In this approach the authors described the notion of “direct” and “indirect”

approaches to search based refactoring and illustrated how existing search

based refactoring approaches rely on complex fitness functions. We adopted

this approach in terms of being indirect in nature because we are also op-

timising the sequence of refactorings and our evaluation function consist of

different probe rules representing different optimisation criteria.

The authors in [14] have developed a tool called SORMASA, which iden-

tifies refactoring opportunities for improving the quality of software systems.

SORMASA is using a search-based approach based upon a simple Genetic

Algorithm in order to suggest refactoring actions (field and method level) to

the user.

In this thesis along with finding an optimal sequence of refactorings ac-

cording to some general quality metric, we also employ a more goal ori-

ented search. Particularly, we are interested to suggest relevant refactoring

sequences allowing the developer to address a specific design flaw. For in-

CHAPTER 3. RELATED WORK 48

stance, if an improvement is witnessed by the programmer in the last step

of the sequence, they will implicitly accept the relevance of all changes up to

that point that the final step depends on.

Refactoring to patterns proposed that an existing design can be better

improved with the help of patterns as compared to using patterns early in

a new design [50]. Similarly, patterns allow us to find the locations in order

to improve a design by applying pattern-directed refactoring. The authors

mentioned in [48], Design Patterns· · ·provide targets for your refactorings. It

means that there is an affiliation between patterns and refactorings because

patterns show where to go and refactoring tells how to get there. We presume

that our work is in some way similar to [50] in a sense that we have patterns

and with the help of sequences of rules we achieve them. Our approach is

not implementing the pattern but potentially we are refactoring to get rid of

anti-patterns.

3.2 Analysis of Refactoring Dependencies

The authors in [61] presented refactorings as graph transformations, and pro-

posed the technique of critical pair analysis to identify implicit dependencies

between refactorings. Hence, the main objective of their work is to discover

automated techniques in order to find out the implicit dependencies between

CHAPTER 3. RELATED WORK 49

a list of refactorings.

To attain the above goal, they rely on graph transformation theory for a

precise formal specification of refactorings and also they need to be capable

of analysing mutual exclusion and sequential dependencies between refactor-

ings. They employed the critical pair analysis [43] and sequential dependency

analysis to identify mutual exclusions, asymmetric conflicts and sequential

dependencies between refactorings respectively. In principal, critical pair

analysis is useful to demonstrate conflicts, but it computes all potential con-

flicts. In a concrete situation, only a small part these conflicts may arise.

Our approach combines a formalisation of refactoring based on graph

transformation [61] with the analysis of dependencies extracted from their ap-

proximated unfolding [53] by means of an optimisation using the Ant Colony-

meta heuristic [28]. In [61] some of the potential conflict situations were not

detected because of their specifications of refactoring were not complete.

Sometimes more than one rule would be involved in the complete specifica-

tion of refactorings. In contrast to [61] this thesis is based on the analysis

of dependencies between actual refactoring steps as opposed to potential de-

pendencies detected at the level of rules. In essence this is a “dynamic”

approach, taking into account the given design as the actual input to the

problem, as opposed to a “static” one.

CHAPTER 3. RELATED WORK 50

3.3 Model Refactoring

The research on refactoring at model level is still in a developing stage and

a number of problems are worthwhile for further research. Tool support

for model refactoring is very limited. Often it is not even clear, what are

appropriate refactorings on different types of models. An important question

is, how model refactoring differs from program refactoring. Can notions,

techniques and tools used for program refactoring also be applicable at the

model level [60]?

In order to comprehend and investigate model refactoring a variety of

formalisms have been presented in the literature. In [82], the authors used

the formalism of Description Logic to detect behaviour inconsistencies during

model refactorings. In another approach a forward-chaining logic reasoning

engine has been used to support composite model refactorings [81]. In [37]

the authors formalise a static semantics for Alloy, a formal object-oriented

modelling language, in order to specify model refactorings. It is evident

from the literature that UML models are regarded as suitable candidates

for model refactoring. For example [78] presents a set of refactorings and

describes how they can be designed in order to preserve the behaviour of

a UML model. Similarly in [4], the authors proposed UML as a helping

tool to find design smells and perform model refactorings. There are several

CHAPTER 3. RELATED WORK 51

model transformation approaches based on graph transformation theory for

the specifying of model refactorings, and rely on these formal properties to

reason about and analyse these refactorings [12, 59, 61].

Our approach is using a similar formalism but addressing a different prob-

lem in the domain of refactoring, i.e., automation and traceability in search-

based refactoring. Our research is originally inspired by the work of Mens

et al. in [61]. Our methodology involves a local formulation of refactoring

based on graph transformation. This allows us to make use of partial order

semantics and an associated analysis technique, the approximated unfolding

of graph transformation systems in order to identify dependencies between

refactoring operations.

Several challenges in model refactoring have been discussed by the authors

in [60]. For instance to provide a precise definition of model quality [80, 62],

maintain consistency between model and program refactoring [84], behaviour

preservation [74], testing model of refactorings [24], domain specific mod-

elling [87] and analysing model refactorings [61]. Our work is an effort to

address one of these challenges, i.e, analysing model refactorings. While

in [61] they employ critical pair analysis techniques to analyse dependencies

between refactorings, we propose the approximated unfolding construction

for the analysis of refactoring operations.

Chapter 4

Methodology

In this chapter, we distinguish two approaches, addressing two different prob-

lems in search-based refactoring: automation and traceability.

We refer to them as:

• Search-based refactoring

• Goal-oriented refactoring

4.1 Overview

Both use a representation of object-oriented designs as graphs and of refac-

toring operations as graph transformation rules [61]. Such rules provide a

local description, identifying and changing a specific part of the design graph

only. After suitably encoding our rules into a hypergraph representation,

52

CHAPTER 4. METHODOLOGY 53

this enables us to derive a partial order structure of causality and conflict

relations using the approximated unfolding of a graph transformation sys-

tem [8] and its implementation in AUGUR2 [53]. The result is a structure

called Petri graph [6]. Causal dependencies and conflicts, derived directly

from the Petri graph, serve as input to our search problem.

Formally, our rules are based on hypergraphs representing instances of

a metamodel for object-oriented software [70]. The unfolding of a graph

grammar (a set of rules p1, . . . ,pn modelling refactoring operations plus an

initial graph G0 representing the given design) starts from the initial (hy-

per)graph and applies all rules at all possible matches to the given and all

resulting graphs. Rather than representing these graphs explicitly, only the

rules and their matches are recorded. This leads to a compact representation

of the behaviour of the system, further reduced by a scalable approxima-

tion obtained by folding potentially unbounded iterations. The result is an

over approximation of the actual behaviour, potentially allowing for spurious

transformation sequences. These have to be verified in the real model, possi-

bly leading to a refinement of the approximation using the Counter-example

Guided Abstraction Refinement (CEGAR) technique [51] .

CHAPTER 4. METHODOLOGY 54

4.1.1 Search-based Refactoring

To implement search-based refactoring we make use of the approximated un-

folding of graph transformation systems. In the unfolding we can identify

dependencies and conflicts between refactoring steps, leading to an implicit

and therefore more scalable representation of the search space. An optimi-

sation algorithm based on the Ant Colony paradigm is used to explore this

search space, aiming to find a sequence of refactoring steps that lead to the

best design at a minimal costs.

We employ Ant Colony Optimisation (ACO) [28] metaheuristic search

for a solution. ACO is inspired by the behaviour of foraging ants, which

search for food individually and concurrently, but share information about

food sources and paths leading towards them by leaving pheromone trails.

This amounts to a distributed traversal of a graph whose paths represent

possible solutions [26]. In our case, the nodes of that graph could be the

designs to be explored and its edges are the refactoring steps. Rather than

representing this so-called construction graph explicitly, its nodes and edges

are derived from the partial order structure as and when required. The

ACO metaheuristic relies on an explicit representation of the search space.

Thus, solutions and their local neighbourhoods have to be reconstructed

on the fly from the partial order representation. The desired result is a

CHAPTER 4. METHODOLOGY 55

sequence of transformations leading from the given design to a design of

high(er) quality, using only transformation steps that are optimal to achieve

that improvement. As a result, a path (refactoring sequence) is produced

representing the cheapest way to transform the given design into an optimal

one.

A more detailed view of the approach is given by the diagram in Fig-

ure 4.1. Using UML activity diagram notation, boxes represent artifacts

while oval nodes are the actions or transformations performed on them. For

the sake of clarity, we divide the approach into three phases depicting differ-

ent actions performed in an ascending order during the process.

Refactoring rules: Graph transformation rules formalising the refactoring

operations are chosen from the standard catalogue [35] shared across

all Java programs.

Encoding: A given Java program is translated into a graph representation.

Probe rules: We define probe rules in order to recognise patterns that are

desirable or to be avoided in object-oriented designs.

Unfolding: We derive a partial order structure of causality and conflict

relations, using the approximated unfolding of a graph transformation

system [8].

CHAPTER 4. METHODOLOGY 56

Figure 4.1: Abstract view of the Search-based Refactoring Approach

CHAPTER 4. METHODOLOGY 57

Search: The automatic refactoring problem is represented as an instance of

the ACO metaheuristic. The partial order structure from the unfolding

phase serves as input to the search algorithm.

Verification: If the optimal sequence doesn’t exist in the real model and the

sequence is rejected as spurious, then a refinement of the abstraction

will be required leading to more accurate unfolding and another round

of optimisation.

4.1.2 Goal-oriented Refactoring

Search-based refactoring is emerging as an approach to automate the im-

provement of object-oriented software. However, there remains the problem

of understanding the end product and rationale of the transformation. In or-

der to improve understandability, the refactoring sequences generated should

be relevant to a specified goal of removing a given design flaw, i.e., contain

only steps required to achieve that goal.

A problem with automated transformation in general, and refactoring in

particular, is the traceability and understandability of the resulting design.

Heavy modifications will make it more difficult to relate to previous designs

and developers familiar with these may struggle to understand the new struc-

ture. We believe that both problems can be mitigated by exploiting the local

CHAPTER 4. METHODOLOGY 58

nature of refactoring operations, which affect only a certain part of the design

while leaving the context unchanged.

For traceability, causal dependencies provide an explanation of why cer-

tain steps are required to perform later steps, thus reducing the problem to

understanding the benefits of the final steps in a sequence. Thus, a repre-

sentation of the search space by sets of transformation steps equipped with

relations of causality and conflict is used to construct sequences where each

step, directly or indirectly, contributes to the desired goal.

This requires a targeted approach, aiming at the removal of design flaws.

The idea is that refactoring sequences should be relevant to the removal of the

flaw identified. At the same time there may be more than one way to achieve

this goal, requiring ranking and selection of the best sequence. In contrast to

other search-based approaches, in this case metrics are not the main drivers

of refactoring, but provide guidance in selecting between alternatives leading

to the desired result with different costs and side-effects. The detection of

design flaws [83] is beyond the scope of this work.

An overview of our goal-oriented refactoring approach is given in Fig-

ure 4.2 by means of a UML activity diagram. The following actions differen-

tiate this approach from the one in Figure 4.1.

Identification of Design Flaws: We identify the relevant design flaws with

CHAPTER 4. METHODOLOGY 59

Figure 4.2: Abstract view of the Goal-oriented Refactoring Approach

CHAPTER 4. METHODOLOGY 60

the help of markers in the start graph encoding the Java program.

Search: Searching backwards from the identified design flaw, we find all

sequences if refactorings removing this flaw and select one of them

according to a specified metric.

Here the result is a sequence of transformations representing the best

sequence of refactorings that is relevant to the desired goal of removing an

identified design flaw.

4.2 Application to Running Example

The graphs we transform represent Java class structures, which can be vi-

sualised by class diagrams. As a running example we use the class diagram

of a LAN simulation [61] in Figure 4.3. In addition to the standard nota-

tion we show call dependencies between methods (calls this.send(p)), variable

access/update (accesses Packet.sender and updates Packet.sender).

A software developer could improve the structure of the design in Fig-

ure 4.3 by applying a variety of different refactorings. We consider the fol-

lowing set of refactoring operations [35].

• Extract Superclass, creating a common superclass for two existing

classes, usually in order to encapsulate shared features.

CHAPTER 4. METHODOLOGY 61

Figure 4.3: Simplified Class Diagram of LAN Simulation

• Add Parameter, introducing a new parameter for a method to make

data access explicit.

• Pull Up Method, transferring a method from a sub to a superclass.

• Move Method, transferring a method to any other class.

• Encapsulate Attribute, to increase modularity by changing the visibility

of an attribute in a class from public to private.

We formalise the local nature of individual refactoring operations by rep-

resenting them as graph transformation rules [61]. Graphs representing class-

level architectures of OO software are manipulated by rule-based transfor-

mations. Consider, e.g., the refactoring Extract Superclass describing the

CHAPTER 4. METHODOLOGY 62

Figure 4.4: Rule for refactoring Extract Superclass, in class diagram notation

creation of a new superclass for two existing classes for the purpose of ex-

tracting common functionality. This operation is specified by the rule in the

Figure 4.4, visualised in class diagram notation.

Rules can be applied in different orders and locations, giving rise to a

number of refactoring sequences. Below we describe and motivate some of

the steps for future reference.

t1: Extract Superclass Server from classes P rintServer and FileServer.

This will allow us to extract common methods into the new superclass.

t2: Pull Up Method accept from classes P rintServer and FileServer into

superclass Server created by t3.

t3: Move Method accept from class P rintServer to P acket, because it is

more tightly coupled to that class (accessing its attribute).

CHAPTER 4. METHODOLOGY 63

t4: Move Method accept from class FileServer to class P acket, with the

same motivation.

t5: Encapsulate Variable receiver in class P acket, making the attribute pri-

vate and creating setter and getter methods.

t6: Add Parameter p of type class P acket to method process in class P rintServer

to make explicit the access to instances of P acket.

t7: Add Parameter p of type class P acket to method process in class FileServer,

for the same motivation.

Note that the transformations listed are not part of a single sequence.

For example t2, t3 are in conflict.

Basically, in our encoding the identity of graph elements i.e., class, method

and attribute etc., are represented by the nodes in the Petri graph. So, we

consider every hyperedge (a first tentacles) attached to a node representing

the identity of a node. Therefore, the pre- and post-sets for each transition

in Petri graph are given by these hyperedges to workout the difference and

intersection between these sets.

By analysing the resulting unfolding structure (Section 5.2) we can derive

two relations on transformation steps, called causality and conflict [9]. A

causal dependency t1 < t2 exists if t2 cannot be executed before t1 because

CHAPTER 4. METHODOLOGY 64

it relies on resources created by the first step. A conflict t1#t2 arises if both

steps are enabled in the same graph G and require the same resources for

their execution. That means, they prevent each other from occurring in the

same sequence, but can occur individually.

Based on these two relations, reachable designs are represented by sub-

sets of transformations T ⊆ T that are conflict-free and closed under causal

dependencies, i.e., for all t, t′ ∈ T , T represents a state if:

• t′ ∈ T and t < t′⇒ t ∈ T

• t, t′ ∈ T ⇒¬(t′#t)

The transformations enabled in T are those whose dependencies are sat-

isfied by transformations in T and that are not in conflict with any transfor-

mation in that set.

That means, the empty set of transformations ∅ represents the initial

design with no refactorings applied yet, while {t1} represents the design

shown in Figure 4.5 obtained by applying Extract Superclass and, as we

shall see later, {t1, t2} represents the design with the duplication removed

because it is closed under dependencies, whereas {t3, t4} have a conflict.

CHAPTER 4. METHODOLOGY 65

Figure 4.5: LAN Simulation after Extract Superclass

4.2.1 Search-based Refactoring

As outlined earlier, we use an implicit representation of the search space

based on causality and conflict relations over rule applications representing

refactoring steps such as t1 to t7 before. These partial orders are derived in

two steps. First, the approximated unfolding of the grammar given by the

start graph representing the initial design and the generic refactoring rules

is produced and second, partial orders are derived by analysing the overlaps

of the pre- and postconditions of these rules in the resulting Petri graph

(Section 5.2). The hypergraph representation for the initial class model and

refactoring Extract Superclass rule are depicted in the Figures 4.7 and 4.6

respectively.

CHAPTER 4. METHODOLOGY 66

1

2

3

Package (43)

0

Class (44)

0

Class (45)

0
Contains (47)

2

1

0

=)
1

2

3

Package (53)

0

Class (54)

0

Class (55)

0

Class (56)

0

gen (57)

0 1

gen (58)

0

1

Contains (60)

1

0

Figure 4.6: Hypergraphs for Extract Superclass Refactoring Rule

C
H

A
P

T
E

R
4
.

M
E

T
H

O
D

O
L

O
G

Y
67

Initial graph:

Class (25)

0

Class (26)

0

Class (27)

0

Class (28)
0

Class (29)

0

method (30)
0

method (31)

0

method (32)

0

method (33)

0

method (34)

0

method (35)
0

method (36)

0

attribute (37)

0

attribute (38)

0

attribute (39)

0

parameter (40)

parameter (41)

parameter (42)

parameter (43)parameter (44)

parameter (45)

Inheritance (46)

0

1

Inheritance (47)

1

0

contains (48)
0

1

contains (49)

0

1

contains (50)
0

1

contains (51)

01

contains (52) 0
1

contains (53)0

1

contains (54)

0

1

invokes (55)

1

0

invokes (56)

0

1

invokes (57)

1

0

invokes (58)

0

1

invokes (59)

1 0

invokes (60)

0

1

invokes (61)

0

1

Typeof (62)

1

0

Typeof (63)

1

0

Typeof (64)

1

0Contains (65)

0

1

Contains (66)

0

1

Contains (67)

0

1

Contains (68)
0

1

Contains (69)

0

1

Access (70)

0

1

Access (71)

0

1

Access (72)
0

1

Access (73)

01

Access (74)

0

1

Access (75)

0
1

Access (76)

0

1

Access (77)

0

1

Access (78)

0

1

Access (79)
01

Access (80)
01

Access (81)

0

1

Access (82)

0

1

Access (83)

0

1

Access (84)

0

1

Access (85)

0

1

has (86)

0
1

has (87)
0

1

has (88)

0
1

has (89)

0

1

has (90)

0

1

has (91)

0
1

typeof (92)

0

1

typeof (93)

0

1

typeof (94)

0

1

typeof (95)

0

1

typeof (96)

0

1

typeof (97)0

1

2

Figure 4.7: Initial Hypergraph

CHAPTER 4. METHODOLOGY 68

Figure 4.8: Final Class level diagram

Unfolding analyses a hypergraph grammar, starting with the initial hy-

pergraph and producing a branching structure by applying all possible rules

on the system. The resulting Petri graph presents the behaviour in terms of

an over-approximation of its transformations and dependencies [6].

The Petri graph serves as input to a search problem. The optimisation

yields paths representing sequences of transformations that are optimal to

take the given design to a design of high(er) quality.

We make use of Ant Colony Optimisation (ACO) [28] metaheuristic search

to find such a solution. The search space is defined by the associated set of

all transformations, such as {t1, · · · , t7}. Running our algorithm with five

ants, each computing its own candidate solution, we obtain {t5; t7; t6; t3},

CHAPTER 4. METHODOLOGY 69

{t6; t7; t5; t4}, {t7; t6; t1; t2; t5}, {t5; t6; t7; t3} and {t5; t6; t7; t1; t2}.

We employ probe rules to represent patterns in order to evaluate candi-

date solutions. These probe rules will be used to define the objective function.

The idea is to specify positive and negative patterns, so that their number of

occurrences is maximised and minimised, respectively. As per the evaluation

function the best path computed by the algorithm is {t7; t6; t1; t2; t5}, repre-

senting an optimal sequence of refactorings. Since the unfolding represents

an over-approximation, the existence of this sequences needs to be verified

in the real model, possibly leading to a refinement of the approximation [51].

But our final optimal sequence exists in the real model and hence there is

no need for refinement. The resulting class model after applying the optimal

sequence of transformations is visualised in Figure 4.8.

4.2.2 Goal-oriented Refactoring

We will consider the same running example in order to illustrate the goal-

oriented refactoring approach. Similarly, in this approach the Petri graph

also serves as input to our search problem, but before constructing the ap-

proximated unfolding of the graph transformation system we identify the

design flaws in the start graph representing the initial design. For example,

we point out design flaws by markers such as dup and pub in the class diagram

CHAPTER 4. METHODOLOGY 70

Figure 4.9: Simplified Class Diagram of LAN Simulation with markers.

of the LAN simulation in Figure 4.9, where dup refers to the duplication of

a method and pub to publicly accessible variables.

In order to remove these flaws, we have to find a refactoring sequence

based on a catalogue of basic refactoring operations [35], in our case con-

sisting of Extract Superclass, Pull Up Method, Move Method, Encapsulate

Variable and Add Parameter. They are specified by six graph transforma-

tion rules, which can be applied in different orders and at different matches,

giving rise to transformations t1 to t7 described in the previous section. For

example the application of t1: Extract Superclass to the initial design has

been shown in Figure 4.5.

The result of the unfolding of the grammar consisting of (a hypergraph

CHAPTER 4. METHODOLOGY 71

Figure 4.10: Graph of refactoring steps with their causal dependencies and

conflicts

Figure 4.11: Pattern pointing out duplicated methods

CHAPTER 4. METHODOLOGY 72

representations of) our six refactoring rules and the initial LAN simulation

design leads to a partial order structure as shown in Figure 4.10, where

nodes represent refactoring steps and edges depict the following different

relationships:

GFED@ABCt1
//GFED@ABCt2 casual dependency i.e., t1 must come

before t2 in a sequence.

GFED@ABCt2
______ GFED@ABCt4 symmetric conflict i.e., t2, t4 cannot be

part of the same sequence.

ONMLHIJKpub ______ GFED@ABCt5 conflict i.e., t5 disables pub.

In addition, the dependency graph contains the occurrences of patterns

dup and pub identifying designated design flaws. Such a pattern is expressed

by a graph as in Figure 4.11 for duplication, whose purpose it is to define the

location of the flaw by means of a mapping from the pattern graph into the

design. It is important to remember that the detection of design flaws is not

a concern of this work. We rely on external tools and the developer to tell us

which flaws are to be removed. Formally a pattern graph P is regarded as a

rule P → P , which will be matched in the graph, but whose application does

not have any effect. A conflict involving a pattern, such as that between dup

and t2, means that transformation t2 removes the occurrence of the pattern,

and thus the design flaw.

CHAPTER 4. METHODOLOGY 73

Figure 4.12: LAN simulation design after refactoring

The relational structure described in Figure 4.10 is used to find a refac-

toring sequence which removes one of the flaws identified while optimising

the quality metrics used to guide the refactoring. The feasible solutions are

constructed starting from the design flaw and selecting a conflicting trans-

formation, which will be the final step in the sequence removing the flaw.

The sequence is completed by computing the closure under causal dependen-

cies. We start from the set of smells such that (dup, pub) representing the

occurrences of the patterns identifying the designated design flaws with an

empty solution.For each smell, we check the set of smell-killers (refactoring

steps) in the dependency graph (Figure 4.10) in order to find a conflicting

transformation, such as t2 or t5.

CHAPTER 4. METHODOLOGY 74

In our example, the closure of t2 (the step removing the flaw labelled dup

in the graph of Figure 4.10) under dependencies yields the set {t1, t2}. Any

ordering compatible with the dependency relations yields a valid refactoring

sequence. Figure 4.12 shows the resulting design after applying refactorings

t1; t2 to the model in Figure 4.9.

Next, the feasibility of the sequence has to be verified on the actual design,

because the unfolding used to construct the dependency structure produces

an over approximation of the actual behaviour. If the sequence is rejected

as spurious, the procedure is repeated based on a more detailed version of

the unfolding, following the principle of a Counter-example Guided Abstrac-

tion Refinement (CEGAR) [51]. Here, in this example the final refactoring

sequence is not spurious because it exists in the real model and therefore

refinement is not needed.

Chapter 5

Analysis of Dependencies and

Conflicts

In the following sections we study in more detail the technical realisation

of the approach. As illustrated in Chapter 4 we use an implicit representa-

tion of the search space based on causality and conflict relations over rule

applications representing refactoring operations. We derived these partial

orders using the approximated unfolding of the grammar given by the start

graph representing the initial design and the generic refactoring rules and by

analysing the overlaps of pre and postconditions of these rules in the resulting

Petrigraph.

75

CHAPTER 5. ANALYSIS OF DEPENDENCIES AND CONFLICTS 76

5.1 Unfolding of the Refactoring Grammar

The approximated unfolding and its implementation in AUGUR2 [8] are

defined for hypergraph grammars. Thus, we have to encode the initial design

and refactoring rules into a hypergraph representations. As mentioned in

Section 2.1 a hypergraph G is a tuple (VG,EG,CG, lG) where VG and EG

are finite sets of nodes and edges respectively, CG : EG→ V ∗
G is a connection

function, while lG is a labelling function for edges [6]. The difference with the

more common notions of typed or labelled graphs with binary edges is that,

in hypergraphs, only edges are labelled, and each edge can be connected to

a finite sequence of nodes, rather than just one source and one target. For

example the hypergraph of the initial class model (Figure 4.3) is depicted in

Figure 4.7. The idea is to introduce a node for each node in the original graph

plus one edge to carry a label representing the type of the node. Additional

binary hyperedges are introduced to represent edges in the original binary

graphs. Rules undergo a similar transformation, but an additional restriction

(imposed by the theory of unfolding) is that rules can delete and produce, but

not preserve edges, while nodes cannot be deleted. The left-hand side of a

rule must be connected [6]. This does not directly impact on the expressivity

of the rules, but requires us to delete and regenerate edges that are meant to

be preserved. The result for Extract Superclass is shown in the Figure 4.6.

CHAPTER 5. ANALYSIS OF DEPENDENCIES AND CONFLICTS 77

Nodes of the left-hand side are mapped to those in the right-hand side with

the same number, while the unnumbered nodes in the right are newly created.

Edges in the left- and right-hand side are disjoint.

Given the hypergraph grammar, the unfolding starts with the initial hy-

pergraph and produces a branching structure by applying all possible rules

on the system at all possible matches. The resulting Petri graph contains

both the graph structure of the system (essentially the union of all reachable

graphs) and a Petri net with hyperedges as places and rule applications as

transitions. The approximated unfolding creates a more abstract structure,

potentially folding into one several graph elements or rule applications [6].

The result is an over approximation of the behaviour, i.e., spurious sequences

may appear that do not exist in the actual behaviour. We use the AUGUR2

implementation of this construction [53] where initial hypergraph and rules

are presented in the Graph Exchange Language GXL [79]. The output Petri

graph produced is in GXL format as well [29].

5.2 Analysis of the Unfolding

From the pre- and post-conditions in this high-level representation we can

extract causality and conflict relations on transitions. Using Peri net-like

notation, we represent the pre- and post-sets for a transition t by •t and t•,

CHAPTER 5. ANALYSIS OF DEPENDENCIES AND CONFLICTS 78

respectively [8]. Then, in the obvious way, two transitions are in conflict,

t1#t2, if and only if •t1∩
•t2 6= φ. They are causally dependent, t1 < t2, if and

only if t•
1 ∩

•t2 6= φ. The set of transitions t1, t2, . . . representing refactoring

steps and relations # and < provide the input to our search for an optimal

sequence of refactorings.

Due to the fact that rules can’t preserve hyperedges, if a hyperedge with

the same label and connected to the same nodes occurs on both sides of a

rule, it means that it has been deleted and regenerated in order to model an

edge which should have been preserved.

Technically, a Petri graph has hyperedges as places and pre- and post-sets

for a transition are given by these hyperedges. To avoid artificial conflicts

and dependencies due to the encoding of edge preservation, we define more

complex conditions. First, we define pre- and post-sets based on the nodes

the hyperedges are attached to, making use of the fact that, in our encoding,

each hyperedge considers the first attachment as an anchor. Then we perform

the difference and intersection on these sets of anchor nodes.

∗t = {fst(src(e)) | e ∈•t} and t∗ = {fst(src(e)) | e ∈ t•}

where src(e) is the list of nodes e is attached to and fst(src(e)) is the first

element of this list.

We define sets of deleted, created and preserved nodes as follows.

CHAPTER 5. ANALYSIS OF DEPENDENCIES AND CONFLICTS 79

1. t− = ∗tr t∗, represents the nodes which are deleted.

2. t+ = t∗
r

∗t, represents the newly created nodes.

3. t = ∗t∩∗t, represents the preserved nodes.

Causality and conflict relations are defined by:

• t+
1 ∩

∗ t2 6= φ implies t1 < t2, that is, if an item is generated by t1 and

consumed by t2, then t1 must precede t2 in any computation.

• t−
1 ∩ t−

2 6= φ and t1 6= t2 imply t1#t2, that is, t1 is in conflict with t2.

These relations are the basis for an efficient representation of the search space

in the next chapter.

For example, consider the set of refactoring steps mentioned in Sec-

tion 4.2:

List of Transitions/Rules

=================================

_795247 | Add Parameter

_795246 | Add Parameter

_795245 | Move Method2

_795244 | Encapsulate Attribute

_795243 | Move Method1

_795242 | Pullup Method

_795241 | Extract Superclass

=================================

CHAPTER 5. ANALYSIS OF DEPENDENCIES AND CONFLICTS 80

For the sake of brevity, we only consider the presets and postsets for transi-

tions _795241, _795242 based on the anchor nodes to perform intersection

and difference operations on them. Then, we compute the folowing added,

delete and preserved sets for each transition allowing us to find the causal

relation between them.

Presets and Postsets for Transition/Rules

==

List of Presets for _795242:

yn1_795129, yn2_795129, S0_795129, m1_795130, m2_795130

List of Postsets for_795242:

yn1_795129, yn2_795129, S0_795129, m3_795130

--

List of Presets for _795241:

wn1_795129, wns1_795146, wn2_795129, wns2_795146,

m1_895130, m2_895130

List of Postsets for_795240:

wn1_795129, wn2_795129, S0_795129, m1_795130, m2_795130

===

Info - Added, Deleted and Preserved Sets

===

Rule Id - _795242

Added [m3_795130]

Deleted [m1_795130, m2_795130]

Preserved [yn1_795129, yn2_795129, S0_795129]

Rule Id - _795241

Added [S0_795129]

Deleted [wns1_795146, wns2_795146]

Preserved [wn1_795129, wn2_795129, m1_795130, m2_795130]

CHAPTER 5. ANALYSIS OF DEPENDENCIES AND CONFLICTS 81

Hence, the intersection between the added and preset of transitions _795241

and _795242, respectively, is not empty, which shows the causality between

these two transitions.

Chapter 6

Refactoring as an Optimisation

Problem

The performance of optimisation problems depends on the definition of the

objective function [69]. The success of the optimization procedure relies on

the selection of the objective function and its functional relationship to the

control parameters [44]. Prior to explaining our optimisation problem, we

describe the evaluation functions used in both approaches.

6.1 Evaluation Function

In order to formalise a notion of quality, we define probe rules as patterns

to recognise situations that are desirable or to be avoided in object-oriented

82

CHAPTER 6. REFACTORING AS AN OPTIMISATION PROBLEM 83

designs. Then, we look for a solution having a maximum number of desirable

and a minimum number of undesirable occurrences. Using the unfolding

as underlying data structure, information about probe rule occurrences is

available at little extra cost.

The question remains, how to find the occurrences of probe rules repre-

senting our pattern within the current graph. For example if G is a graph,

the occurrence of a good pattern is represented by a match m for the identity

rule that defines pattern p+. A graph with 3 occurrences of p+ is better than

a graph with 2 occurrences. In Figure 6.1 and 6.2 we represent the probe

rules in order to recognise the patterns that are bad or good respectively.

The bad probe rules in Figure 6.1 will find all those classes with methods

accessing attributes of a type of another class, whereas the good probe rules

in Figure 6.2 will discover those classes with methods accessing attribute of

a type of its own class.

For every probe p and solution s, we define #p(s) as the number of

occurrences of probe p in s. It will return negative integers for anti patterns.

Assuming probes p1,p2, · · · ,pn (both positive and negative) the evaluation

function is defined by f(s) = 〈#p1
(s), · · · ,#pn

(s)〉, returning a vector of probe

counts.

Thus knowledge about good and bad patterns is embedded in the oc-

currence functions #p. We use pointwise extension of ≤ from integers to

CHAPTER 6. REFACTORING AS AN OPTIMISATION PROBLEM 84

Bad Probe 1

4: access

1: Class 1: Class

2: Method 2: Attribute

3: contains 3: Atypeof

4: access

1: Class 1: Class

2: Method 2: Attribute

3: contains 3: Atypeof

4:hasParam

1: Class 1: Class

2: Method 2: Parameter

3: contains 3: Ptypeof

4:hasParam

1: Class 1: Class

2: Method 2: Parameter

3: contains 3: Ptypeof

Bad Probe 2

Figure 6.1: Probe rules representing bad patterns

vectors to define a partial order on the solutions, i.e., v1 ≤ v2 if and only if

v1[j]≤ v2[j] for all 1≤ j ≤ n. That means the relation must holds for every

entry in the vectors to hold for the vectors in total.

The probability of choosing the next transformation depends on the qual-

ity of the successor solution, i.e., the number of occurrences of probe rules.

Each ant will compute the probe vector while it moves from one solution to

another in the search space.

CHAPTER 6. REFACTORING AS AN OPTIMISATION PROBLEM 85

Good Probe 1

4: access

1: Class

2: Method 2: Attribute

3: contains

3: Atypeof

4: access

1: Class

2: Method 2: Attribute

3: contains

3: Atypeof

4:hasParam

1: Class

2: Method 2: Parameter

3: contains

3: Ptypeof

4:hasParam

1: Class

2: Method 2: Parameter

3: contains

3: Ptypeof

 Good Probe 2

Figure 6.2: Probe rules represents good patterns

6.2 Search-based Refactoring as ACO Prob-

lem

We use the Ant Colony Optimisation (ACO) [28] metaheuristic to find an

optimal refactoring sequence. The formal representation of an ACO problem

has shown in Section 2.6

Artificial ants build solutions by moving randomly on the graph of com-

ponents. Pheromone deposits are changed while ants move from node to

node. Whenever the ants end their trip, we compute the best path according

to the evaluation function. Then pheromone deposits are updated for all

edges on that path [26].

CHAPTER 6. REFACTORING AS AN OPTIMISATION PROBLEM 86

We characterize search-based refactorings as an ACO problem using the

formulation above.

1. The set of components C is given by the set of transformations T .

The edges E are the causality and conflict relations obtained from

the unfolding construction. The conflict relations # requires mutual

exclusion of refactoring steps and the causal relation < requires two

steps to occur in a certain order. Pheromone values τij and heuristic

values ηij are associated with the edges of the graph.

2. The set of candidate solutions S consists of all refactoring sequences.

The subset S̄ of feasible candidate solutions is made up of all sequences

that take the original design to a design of higher quality.

3. The set of optimal solution solutions S∗ consists of the best refactoring

sequences among the feasible solutions, i.e., those where the evaluation

vector is maximal with respect to the partial order.

4. The evaluation function is defined by probe rules to recognise situations

that are desirable or to be avoided in a design. Hence, probes are either

good or bad in order to represent desirable or undesirable situations

respectively (see Section 6.1).

Therefore, we consider a graph defined by the set of transformation steps

CHAPTER 6. REFACTORING AS AN OPTIMISATION PROBLEM 87

as nodes with edges representing relations derived from dependencies and

conflicts as obtained from the unfolding construction. The problem is thus

expressed as the search for an optimal sequence of refactoring steps appli-

cable to the original system. The optimisation depends on an evaluation of

sequences of refactorings representing candidate solutions, which takes into

account both the cost of the refactoring transformations and the quality of

the end result.

Intuitively, the search proceeds as follows. Locate ants on nodes repre-

senting initially independent transformations. At first, each ant will start

with empty candidate solution (|s| = 0) and select any applicable refactor-

ing from the available neighbours in the search space, where neighbours are

enabled transformations which don’t initiate conflicts and unresolved depen-

dencies. Then the ant will look for the next possible move to construct a

candidate solution and check its dependency with previous solution compo-

nents in the sequence under construction. In this way, we can construct S as

the set of all possible candidate solutions (sequences of nodes) until the ter-

mination condition (neighbours = ∅) is satisfied, i.e., when all ants complete

their tours. After computing all feasible sequences from the search space, the

optimal sequence will be chosen based on the evaluation function, balancing

cost against quality as measured by the metrics.

We use a so-called Hybrid Ant System [36] where ACO is extended by

CHAPTER 6. REFACTORING AS AN OPTIMISATION PROBLEM 88

Start ACO

Locate ants randomly

 on nodes in the search space

representaing initially indepedent

transformations

Ant move probabilistically to next node

from the available neighbours

Ant includes the new node

in the sequence

Computer the Sequence

Determine the Best Sequence

Maximum

iterations

performed

Compute

neighbours

for each ant

Compute final best Sequence

Stop ACO

Neighbours =

Neighbours

YES

NO

∅

6= ∅

Figure 6.3: ACO-based algorithmic framework

local search. In particular, the Java framework by Chiricom [18] implement-

ing [26] is used in order to solve a variety of ACS problems. We adapted this

framework to an implicit representation of solutions based on our partial or-

der model, deriving solutions and their local neighbourhood on the fly. The

ACO based algorithmic framework for our problem has been depicted in the

Figure 6.3.

CHAPTER 6. REFACTORING AS AN OPTIMISATION PROBLEM 89

Deriving Solutions and Transformations

Solutions S are subsets of transformations that are conflict-free and closed

under causal dependencies as hown in Section 4.2.

The neighbourhood for a solution s is characterised by all transformations

enabled in s. A transformation t is enabled in s if all its dependencies are

satisfied by transformations in s and it is not in conflict with any transforma-

tion in that set. Adding such a transformation leads to a new solution s∪{t}.

While computing the neighbourhood for a solution in the search space, we

need to check that the new transformation is not yet present in the solution.

The conditions for enabled transformations ensure that the new solution is

well-defined, i.e., the added transformation does not introduce conflicts or

unresolved dependencies.

With these prerequisites the algorithms proceeds as follows.

• Step 1: We initialise each ant by assigning an empty state s0 = ∅.

• Step 2: For each solution s, an ant will determine its local neighbour-

hood Nb by computing all enabled transformations in s, with successor

solution si = s∪{ti}.

• Step 3: Ant moves to a neighbouring solution based on the pheromone

values associated with the transformation.

CHAPTER 6. REFACTORING AS AN OPTIMISATION PROBLEM 90

• Step 4: After moving to a new solution, the ant will update the

pheromone deposit locally.

• Step 5: The ant will stop when there are no more new transformations

to be added, i.e., Nb = ∅.

At the end a global update will take place to increase the pheromone

deposits on all arcs leading to success, leaving the rest unchanged.

• Step 6: An evaluation function f(s) computes the probe vector for

each solution s.

Hence, the end result is the best path computed by the algorithm, represent-

ing an optimal sequence of transformations for a given initial design.

6.3 Goal-oriented Refactoring as a Search Prob-

lem

In this version of the problem our search is goal oriented in order to find the

optimal sequence of transformation, addressing a specific design flaw. Like

for search-based refactoring, we use the implicit representation of the search

space by sets of transformation steps equipped with relations of causality

and conflict. We exploit the relational structure obtained from the partial

order analysis to find refactoring sequences that are relevant to the goal

CHAPTER 6. REFACTORING AS AN OPTIMISATION PROBLEM 91

of removing a given design flaw. We present goal-oriented refactorings as

a search problem using the same construction graph as mentioned in the

previous approach.

1. Step 1: We assign a design smell to each solution s0 initialised by an

empty set (s0 = ∅).

2. Step 2: Compute the smell-killers, i.e., conflicting transformations for

each smell.

3. Step 3: A feasible solution s is completed by computing the closure

under causal dependencies. Hence, a finite set S is made up of all

sequences that end with a transformation removing the identified flaw.

4. Step 4: An evaluation function f(s) computes the probe vector for

each solution s.

Therefore, the search space is associated with a graph defined by the set of

transformation steps as nodes with edges representing relations derived from

dependencies and conflicts as mentioned in the Figure 4.10. We will consider

pattern rules representing design flaws in the given system along with the

proposed set of refactorings as a set T (as shown in the Figure 4.9). The

sequences are constructed starting from a design flaw taken from the set of

design smells and selecting conflicting transformations for each smell in order

CHAPTER 6. REFACTORING AS AN OPTIMISATION PROBLEM 92

to compute the set of smell-killers. Each sequence is completed by computing

the closure under causal dependencies. Such sequences are relevant to the

removal of the flaw identified and there may be more than one way to achieve

this goal, requiring ranking and selection of the best sequence.

Chapter 7

Verification of the

Transformation Sequence

Since our approach is based on an over-approximation of graph transforma-

tions, it might lead to spurious solutions which have to be filtered out. Hence

the feasibility of the final transformations sequence has to be verified on the

actual design. If the sequence is rejected as spurious, the refinement proce-

dure is repeated based on a more detailed version of the unfolding, following

the principle of Counter-example Guided Abstraction Refinement (CEGAR)

[51].

CEGAR has been used successfully for the purpose of verification [19].

The idea is to start with coarse initial over-approximation of a system and

try to verify a certain property. If the property cannot be verified, there is a

93

CHAPTER 7. VERIF: OF THE TRANSFORMATION SEQUENCE 94

run, i.e., sequence of transitions in the Petri graph that violates this property,

known as counter-example [51]. We make use of CEGAR in order to realise

the existence of the optimal sequence in the real model, possibly leading to

a refinement of the approximation.

AUGUR2 has the functionality to specify prohibited paths in graphs us-

ing regular expressions with the set of hyperedge labels as the alphabet. It

produces conditions on the marking of the hypergraph, which guarantee that

a path in the hypergraph matches the regular expression. This regular ex-

pression illustrates forbidden paths which should not occur in any reachable

graph [51].

It is a “known” limitation in AUGUR2 that complex regular expression

won’t work. The reason is that the over-approximation might not be caused

by a rule application, but by a false positive for a subgraph satisfying the

regular expression. For this case there are no refinement rules. If however

the regular expression consists of only one edge, there can be no such false

positive.

Spurious counter-examples always arise from node fusion in the over ap-

proximation. Edges are also fused, but simple edge fusion will not cause

any spurious runs. However, if two nodes are merge that “should” not be

merged, new left-hand sides might appear, more rules might be applicable,

etc. If a spurious run has been found, the tool detects the cause of the spuri-

CHAPTER 7. VERIF: OF THE TRANSFORMATION SEQUENCE 95

ous behaviour, i.e., the merging of two nodes. Then, in the next abstraction

refinement loop the merged nodes are deliberately kept apart.

In our case this functionality is not directly accessible because there is no

general facility in AUGUR2, where we provide a sequence of transformations

and it checks for us whether the sequence is real or spurious. However,

for smaller examples we are exploiting this functionality in AUGUR2 by

producing a counter-example manually from the transformations sequence

computed by the search and then replacing the transpath file with that

sequence accordingly. Then we can check the validity of our run via the

AUGUR2 functionality by pressing the “Unfold” button. A transpath is a

file, which contains trace for a coverable marking in the Petri net.

The implementation of this functionality is sketchy and only serves to

show the principle and will be of interest in future research for verification

of sequences in the case of larger case studies.

Let us consider the final optimal sequence of Section 4.2.1 for the purpose

of verification. We generate a counter-example by introducing a special rule

Error with a single 0-ary edge (labelled “0′Error′0” in the right-hand side)

along with the refactoring rules mentioned in Section 4.2. This edge labelled

“0′Error′0” of the approximation (Petri graph) can be covered by firing

transition Error.

After constructing the approximated unfolding of the graph grammar, we

CHAPTER 7. VERIF: OF THE TRANSFORMATION SEQUENCE 96

specify a regular expression “0′Error′0” in the property box of the tool in

order to check the feasibility of the final transformation steps. This regular

expression is converted into a marking of the Petri graph via scenario prop-

erty2marking, , which is a special algorithm. The regular expression is saved

in the file work/regexpr and the resulting marking is written to work/mark-

ing.

After this we check if this marking is coverable in the underlying Petri

net. Towards this goal we call the scenario cover with a standard coverability

algorithm, which checks whether a marking can be covered (as depicted in

the Figure 7.1). If the marking is coverable in the Petri net, the trace is

saved in the file work/transpath. Now, we replace the transpath with our own

final sequence of transformations and try to check its validity in the actual

model.

Hence, if the trace (sequence of transformations) is real it will appear

in the window as “The counter-example is real” as shown in the Figure 7.2

otherwise it will show “The counter-example is spurious”.

In case the trace is spurious, i.e., it has no counterpart in the original

grammar, to eliminate the spurious run, the tool detects the cause and avoids

it in the next iteration [51] to compute a refined Petri graph.

CHAPTER 7. VERIF: OF THE TRANSFORMATION SEQUENCE 97

Figure 7.1: Screen-shot 1 of GUI Panel of AUGUR2

CHAPTER 7. VERIF: OF THE TRANSFORMATION SEQUENCE 98

Figure 7.2: Screen-shot 2 of GUI Panel of AUGUR2

Chapter 8

Implementation

In order to use the unfolding technique, we encode the initial class model

and graph transformation rules for refactoring steps into the GXL format

required by AUGUR2. This is accomplished with the help of the environ-

ment called InFusion [47] and a subsequent transformation of the resulting

MSE [56] file into GXL. The result represents the start graph of the hyper

graph grammar to be unfolded. The rules of the grammar formalising the

refactoring operations are derived from the standard catalogue [35] shared

across all Java programs. AUGUR2 constructs the approximated unfolding

of a system [8], producing a Petri graph to serve as input to the ACO-based

search algorithm.

99

CHAPTER 8. IMPLEMENTATION 100

8.1 Translating Java Source Code into GXL

8.1.1 Java to MSE

We transform Java source code into MSE with the help of an integrated envi-

ronment called inFusion [47], which can be used for in-depth code and archi-

tectural analysis of object-oriented and procedural software systems written

in C, Java or C++.

We consider the same running example as in Chapter 4. The Java source

code represents a simulation of a Local Area Network (LAN) that has been

used at various universities to teach object-oriented design and refactor-

ing [23]. For the sake of brevity, we will envisage the simplified version

of the class hierarchy for this LAN in Figure 8.1 in order to see how the

resulting MSE file corresponds to the actual model.

We infer information from the MSE file about the classes, methods, at-

tributes and parameters along with data call and access dependencies etc.

Figure 8.2 depicts the core entities and relations of our metamodel for ex-

tracting a GXL from a MSE file.

The following are excerpts of the MSE file generated from the Java source

code. Each element and relation has its own id (integer) and name (string).

Below we cite some of the representations for classes, methods, attributes and

some of the access relations between different entities depicted in Figure 8.1.

CHAPTER 8. IMPLEMENTATION 101

Figure 8.1: Simplified Class Diagram of LAN Simulation

1. The classes are represented with their names and ids. Below are the

representations for the classes Node, PrintServer, Workstation.

(FAMIX.Class (id: 11)

(sourceAnchor (ref: 174))

(container (ref: 1))

(name ‘Node’)

....

)

(FAMIX.Class (id: 72)

(sourceAnchor (ref: 178))

(container (ref: 1))

(name ‘PrintServer’)

CHAPTER 8. IMPLEMENTATION 102

Figure 8.2: Metamodel for extracting information from MSE file

....

)

(FAMIX.Class (id: 95)

(sourceAnchor (ref: 182))

(container (ref: 1))

(name ‘Workstation’)

....

)

2. The inheritance relation has its own id and refers to individual ids for

subclass and superclass, e.g., Class Node inherits Class PrintServer.

(FAMIX.Inheritance (id: 179)

(subclass (ref: 72))

(superclass (ref: 11))

....

)

CHAPTER 8. IMPLEMENTATION 103

3. Methods have their own ids and names, along with the information

about their parents and declared types. Beside its own id, method in-

vocations also contain ids for both methods, i.e., sender and candidate.

FAMIX.Method (id: 74)

(sourceAnchor (ref: 192))

(parentType (ref: 72))

(declaredType (ref: 15))

(name ‘print’)

....

)

(FAMIX.Method (id: 81)

(sourceAnchor (ref: 193))

(parentType (ref: 72))

(declaredType (ref: 15))

(name ‘accept’)

....

)

(FAMIX.Invocation (id: 86)

(sender (ref: 81))

(candidates (ref: 74))

....

)

4. Access relations among methods and attributes can be characterised in

the same way, e.g., an attribute named ‘contents’ of type class (id:22)

is accessed by method (id:74):

(FAMIX.Attribute (id: 41)

(name ‘contents’)

CHAPTER 8. IMPLEMENTATION 104

(parentType (ref: 22))

(declaredType (ref: 32))

....

)

(FAMIX.Access (id: 79)

(variable (ref: 41))

(accessor (ref: 74))

)

5. Method access parameter relations are represented in the same way,

e.g., the parameter ‘p’ of type class (id:22) is accessed by method

(id:74):

(FAMIX.Parameter (id: 76)

(name ‘p’)

(parentBehaviouralEntity (ref: 74))

(declaredType (ref: 22))

)

(FAMIX.Access (id: 80)

(variable (ref: 76))

(accessor (ref: 74))

)

...

8.1.2 MSE to GXL

The class structure of a given Java program (excluding method bodies, but

keeping call and data access dependencies) is encoded into the GXL format

required by the analysis tool (AUGUR2). Hence, the resulting GXL docu-

CHAPTER 8. IMPLEMENTATION 105

ment will represent the start graph of the hypergraph grammar containing

all entities mentioned in the metamodel (as shown in Figure 8.2). There is

a node for each node in the original graph along with one edge to carry a

label representing the type of the node. Furthermore, binary hyperedges are

introduced to represent edges in the ordinary binary graphs. The translation

process is mostly automatic. The nodes of the object-based graph gram-

mar are converted into hyperedges, whereas the connections between nodes

become nodes in the hypergraph.

The transformation of a MSE file into the GXL format is done with the

help of our MSE Reader designed in Java. It takes a MSE file as an input and

produces the final output as an initial hypergraph represented in GXL. By

the MSE Reader, the whole MSE file is considered as consisting of a string

of tokens. It has specific identifiers for each element such as FAMIX.Class,

FAMIX.Method and FAMIX.Inheritance, etc., as depicted in the previ-

ous section. We search for these tokens to get the respective classes, methods,

attributes and relations such as inheritance, invocation and access etc. We

can utilize tokens to split a string into sub-strings.

To read the MSE file, we employ the TextTransformer class in order

to generate tokens out of that file. For this purpose, we use a class called

StreamTokenizer and pass reference of a TextTransformer in its construc-

tor. Along with the input string, we need to specify a string that contains

CHAPTER 8. IMPLEMENTATION 106

delimiters (characters). The TextTransformer class scans the MSE file line

by line to match keywords like Class, Method, Inheritance etc. We create

an object of the BufferedReader class and pass the InputStream object

into it, which will read the MSE file at run time. Once a match is found,

the attributes of the corresponding object are read and stored in maps. The

process of searching attributes is the same as for searching the keywords such

as Class, Method etc., explained above. We make use of a DOM parser to

prepare the XML document. The DOM parser is used here for the sake of

simplicity in XML tree generation. The header of the XML document is a

standard GTS element with attributes.

For each KeyMap, we create an XML element of type node and set

the id as a value concatenated with “_”. For example, when generating

XML constructs for a class from MSE an file, we create elements such as

relation, attribute, string and relend. In each of these elements are placed

attributes like id, name and class, etc., depending on the type of element.

These elements are then appended to one another to create a tree structure.

So, every Class element has child nodes rel, attr, string and relend. The

maps relate the property values through a key-value relation. The key is

the unique id against which a value is stored. KeyMaps are made for all

the properties required, for example, attribute−Map denotes the KeyMap

for all attributes. Once the KeyMaps are ready, we start populating an

CHAPTER 8. IMPLEMENTATION 107

XML document. The XML constructs are generated based on a formally

agreed contract. The XML structure is prepared using element tags and

the attribute values are set. The values are chosen from the appropriate

KeyMap and substituted as string values.

The relations are mapped to the classes/attributes. Along with this, we

map properties as well, for example, attribute has a type and it also belongs

to a class. We take care of these kinds of relation while scanning a MSE

file. Individual KeyMaps are used to store these relations. When an XML

element for an access relation is generated, we check which attributes have

this value of access id from the attribute KeyMap. Since we already have

knowledge regarding the access elements and the child nodes it contains, we

pull out the relevant information from the appropriate maps and fill in the

XML elements, attribute values. Likewise, a similar procedure is used to

generate other XML elements.

Below are the excerpts from the final output as an initial hypergraph

represented in GXL syntax extracted from the Java source mentioned earlier

in this section. The key word rel (= relation) defines a hyperedge, whereas

relend introduces the tentacles of a hypergraph. Each entity of the class

diagram will have its own node with unique id’s:

• Each element like class, method and attribute, etc., has its own id.

CHAPTER 8. IMPLEMENTATION 108

<GTS id="LAN Simulation">

<Initial>

<Graph edgeids="true" edgemode="undirected"

hypergraph="true" id="Start Graph">

<node id="22_Packet"/>

<node id="9_Fileserver"/>

...

<node id="13_save"/>

...

• The hyperedge representing the identity of a node:

<rel id="n_22">

<attr name="label">

<string>Class</string>

</attr>

<relend id="n_relend1 "startorder="0" target="22_Packet"/>

</rel>

...

<rel id="method_13">

<attr name="label">

<string>method</string>

</attr>

<relend id="method_relend1" startorder="0" target="13_save"/>

</rel>

...

• The inheritance relation between two classes:

<rel id="R_173">

<attr name="label">

<string>Inheritance</string>

</attr>

CHAPTER 8. IMPLEMENTATION 109

<relend id="R_relend1" startorder="0" target="9_Fileserver"/>

<relend id="R_relend2" startorder="1" target="11_Node"/>

</rel>

• The invocation relation between two methods:

<rel id="invokes_67">

<attr name="label">

<string>invokes</string>

</attr>

<relend id="invokes_relend2" startorder="0" target="58_send"/>

<relend id="invokes_relend1" startorder="1" target="51_accept"/>

</rel>

• The access relation between method and parameter:

<rel id="access_68">

<attr name="label">

<string>Access</string>

</attr>

<relend id="access_relend2" startorder="1" target="62_p"/>

<relend id="access_relend1" startorder="0" target="58_send"/>

</rel>

8.2 Data Structure for Petri Graphs

A Petri graph [6] is a finite data structure which records the behaviour of a

graph transformation system. It combines hypergraphs with Petri nets used

to approximate the behaviour. The hyperedges of the graph component are at

CHAPTER 8. IMPLEMENTATION 110

the same time the places of the Petri net. The GXL representation produced

by AUGUR2 [29] is in a low level format and problem independent. It only

knows about graph elements and their attributes, but not about transforma-

tions. To create a problem-specific data structure to allow for dependency

analysis, we have to extract information about rules and transformations,

then we can derive conflict and dependency relations by comparing the pre-

and post-sets of transformations.

We need a data structure specific to our problem, which is not entirely

generic and can be optimized to the purpose at hand because we need an

efficient algorithm to run on it. In the process of unfolding, we have trans-

formations, hyperedges, nodes and associations which are called source and

they are ordered. Indirectly, there exist relations such as causality, conflict

and concurrency but they are not in the basic data structure. We can get

this information from the pre-set and post-set conditions of a transformation.

The class diagram in Figure 8.3 provides the conceptual data model for the

unfolding process, in the sense that it is a set of transformations and each

transformation has pre-conditions and postconditions, where pre-conditions

and post-conditions consist of sets of hyperedges. A Java object graph repre-

senting an instance of this model is extracted from the GXL representation

produced by AUGUR2.

The metamodel provides an object oriented abstraction, enabling us to

CHAPTER 8. IMPLEMENTATION 111

Figure 8.3: Metamodel for the Unfolding process

extract explicit information to run our optimisation algorithm. Hence, we

can use the unfolding as an implementation for that data structure using

efficient queries to extract concrete information about dependencies and in-

terrelationships among the solutions in the search space of our algorithm.

The UML component diagram shown in Figure 8.4 describes how our search

algorithms will access the information from the output file (Petri graph) of

an unfolding process.

Our GXL Reader enables us to extract explicit information about trans-

formations and their dependencies from the approximation result (Petri graph).

It computes a dependency table, consisting of causal dependencies and con-

flicts, derived directly from the Petri graph, and serves as an input to our

search problem.

CHAPTER 8. IMPLEMENTATION 112

GXL Reader

MSE Reader

Search-based
Refactoring

Goal-oriented
Refactoring

Provides input
to search space

requires GXL
input

AUGUR 2

requires Petri graph

Figure 8.4: Relationships among the components in our methodology.

Initially, the GXL output file (Petri graph) is read through an XML DOM

parser, which converts it into an XML DOM object, that can be accessed

and manipulated. Hence, we can navigate the Petri graph representation

in the memory at object level, in order to capture and move the required

information through different queries into the higher level model, which are

indirectly present in the output of an unfolding process. We need those nodes

of the GXL file that have transition as their attribute name along with the

interrelationships among them in order to compute a search space for our

optimisation algorithm.

CHAPTER 8. IMPLEMENTATION 113

8.3 Search Techniques

As we mentioned in the Chapter 4 we are dealing with two different problems

in search-based refactoring, i.e., automation and traceability. To address

these problems, we implement two different search techniques. Below, we

illustrate the implementation of both.

8.3.1 Search-based Refactoring as ACO problem

We use an object-oriented framework by Ugo Chirico written in Java to

employ Ant Colony Systems [18]. After some modifications the proposed

framework is reused and adapted to implement search-based refactoring. In

Section 2.6 we have already discussed and presented the general framework

of Ant Colony Systems but here we present the actual implementation of the

algorithm. There are three main components which collaborate in an Ant

Colony System: a set of ants, an ant colony and an ant graph [26].

Ant is an abstract class which employs the general behaviour of an artifi-

cial Ant. There is a concrete derived class called AntforRef, which implements

abstract methods corresponding to the ACO rules, i.e., the stateTransition-

Rule, the localUpdatingRule, compare and end. Each ant works in its own

thread launched by the start method. Java implementation for Ant class is

based on the following algoritham.

CHAPTER 8. IMPLEMENTATION 114

Iterate

Call State Transition Rule

Update the sequence

Call Local Updating Rule

Until End of Activity returns true

Call Comparison Function

If the current sequence is better than the best sequence

then update the best sequence.

AntColony is an abstract class employing the general behaviour of an Ant

Colony System and it should be specialized to the specific problem as well.

The abstract methods createAnts and globalUpdatingRule are implemented

in the concrete derived class AntColonyforRef.

AntGraph is a class which understands the features of a graph specific for

Ant Colony Systems.

8.3.2 Goal-oriented Refactoring as search problem

In this approach, we make use of the same construction graph like in the pre-

vious case but here our search is goal-oriented. There are two main entities,

i.e., a set of smells and a corresponding set of smell-killers for each smell.

A high-level view of our search algorithm is as follows:

1. Initialisation

for i=1 to n do

CHAPTER 8. IMPLEMENTATION 115

smi
← s0

end for.

Each solution is initialised by an empty set (s0 = ∅).

2. The conflicting transformations, i.e., smell-killers are assigned for each

design smell and the casual history of every smell-killer is computed.

Set<String> smells = smellKiller.keySet();

int count = 0;

for(String sm : smells)

{

List<String> smellK = smellKiller.get(sm);

for(String sk : smellK)

{

List<String> list = getParentList(sk);

sequence.add(list);

}

count++;

}

3. A candidate solution s is constructed starting from the design smell

sm. The solution is completed by computing the closure under causal

dependencies.

4. An evaluation function f(s) computes the probe vector for each solution

s.

Chapter 9

Proof of Concepts

In this section, we consider the following Java program in order to evaluate

our methodology. The main purpose of this evaluation is to find out whether

our approach could find meaningful refactorings in the original system struc-

ture. Secondly, we are interested to see how much improvement is achieved

after the application of the final optimal sequence of refactorings suggested

by the optimisation.

9.1 Patient Information System (PIS)

We start with a simple example representing a small software system aimed

to support a doctor’s surgery. The system can register patients (these are

either categorised as children, adult or elderly). It can print out prescription

116

CHAPTER 9. PROOF OF CONCEPTS 117

forms for drugs, and compute the Body Mass Index (BMI) recommendations.

The system is not very well designed; there are “bad smells” in the system.

As we are interested in improving the class structure of a system, we consider

the following set of generic refactorings from the catalogue [35], which could

be helpful in aiding a software developer to improve the structure of the

design in Figure 9.1. For the sake of simplicity readable, we mention only

the initial design with the help of UML Class diagram, the call dependencies

between methods and associations between classes are ignored in Figure 9.1.

• Extract Superclass, creating a common superclass for two existing

classes, usually in order to encapsulate shared features.

• Pull Up Method, transferring a method from a sub to a superclass.

• Move Method, transferring a method to any other class.

• Encapsulate Attribute, to increase the modularity by changing a visi-

bility of attribute in a class from public to private.

We provide the initial hypergraph representing the initial design/hyper-

graph rules modelling refactoring operations as shown in Section 2.3. Probe

rules representing patterns as shown in Section 6.1 complete the input to

AUGUR2 in order to construct the approximated unfolding [53]. This ap-

proximation will allow us to analyse the concurrent behaviour of the system

C
H

A
P

T
E

R
9
.

P
R

O
O

F
O

F
C

O
N

C
E

P
T

S
118

Figure 9.1: Initial Class diagram representing Patient Information System.

CHAPTER 9. PROOF OF CONCEPTS 119

including all possible transformation steps and their dependencies among

them.

The concrete dependencies/conflicts are depicted in Figure 9.2 as com-

puted from the Petri graph.

The list of all transformations along with their label and unique ids ex-

tracted from the approximation are depicted below:

List of Transformations/Rules

================================

_895249 | Probe1+

_895250 | Probe1-

_895248 | Probe2+

_895247 | Probe2-

_895246 | Move Method3

_895245 | Pullup Method

_895241 | EncapsulateAttribute

_895243 | Move Method1

_895244 | Pullup Method

_895242 | Pullup Method

_895240 | Pullup Method

_895239 | ExtractSuperclass

================================

Search-based Refactoring: The Petri graph serves as input to our search

problem. Using the formulation as shown in Section 6.2, we set the construc-

tion graph by representing the set of proposed refactorings as nodes while

the edges will correspond to dependencies/conflicts between these refactor-

CHAPTER 9. PROOF OF CONCEPTS 120

Figure 9.2: Dependency table. x denotes mutual exclusion, ND denotes “no

dependency” and > shows causality between transformations.

ings derived from the unfolding as shown in Figure 9.2. The construction

graph will aid in summarising all interactions among these refactorings and

provides input to the search space of the algorithm.

In order to generate solutions from the search space, we choose the ini-

tially independent transitions from the Petri graph, as mentioned below:

Initially Independent Transformations/Rules:

===============================

_895249

_895250

_895248

CHAPTER 9. PROOF OF CONCEPTS 121

_895247

_895246

_895243

_895241

_895239

Each transformation will be assigned an identification number in the

search space for reference as mentioned below:

AntColonySystem for Refactoring:

Ants: 5

Nodes: 11

Iterations: 10

Repetitions: 3

NodeID 0 _895249

NodeID 1 _895250

NodeID 2 _895248

NodeID 3 _895247

NodeID 4 _895246

NodeID 5 _895245

NodeID 6 _895241

NodeID 7 _895243

NodeID 8 _895244

NodeID 9 _895242

NodeID 10 _895240

NodeID 11 _895239

In the search space of our algorithm, we employ five ants, each to start

with an initially independent transformation and compute its own sequence.

They select enabled transformations to move in the search space. This will

enlarge their solutions and enable more transformations until all remaining

CHAPTER 9. PROOF OF CONCEPTS 122

transformations are in conflict. We derive the following sequences along

with the corresponding probe vectors representing the pattern’s occurrences,

which allow the objective function to evaluate each sequence. In this example

we get the same probe vectors for all sequences, hence the objective function

O(s) declares the first available candidate solution as an optimal sequence.

The best path computed by the algorithm, representing an optimal se-

quence of refactorings, is shown below. It represents a sequence of transfor-

mations for the initial class model in Figure 9.1. The final optimal sequence is

verified and it exists in the real model. The resulting class model is visualised

in Figure 9.5.

AntID 1, Path=> [1,11,9,8,7,0,5,10,4,3,2,6] [1,-1,1,-2]

AntID 2, Path=> [6,11,9,8,5,7,0,4,10,2,3,1] [1,-1,1,-2]

AntID 3, Path=> [3,7,11,0,10,5,4,6,1,2,8,9] [1,-1,1,-2]

AntID 4, Path=> [11,3,2,6,10,9,8,7,0,5,4,1] [1,-1,1,-2]

AntID 5, Path=> [3,11,7,10,9,8,6,1,5,0,4,2] [1,-1,1,-2]

Best Path NodeIDs: [1,11,9,8,7,0,5,10,4,3,2, 6]

Best Path RuleIDs:

[_895250 _895239 _895242 _895244 _895243 _895249 _895245

_895240 _895246 _895247 _895248 _895241]

Figure 9.3 and 9.4 give an overview of the system metrics before and after

the application of the suggested refactoring sequence. The comparison shows

that the cyclomatic complexity of the system has been improved and also the

number of methods as well as lines of code (LOC) has been reduced in

CHAPTER 9. PROOF OF CONCEPTS 123

.

Figure 9.3: Overview pyramid for cyclomatic complexity before refactoring

.

Figure 9.4: Overview pyramid for cyclomatic complexity after refactoring

C
H

A
P

T
E

R
9
.

P
R

O
O

F
O

F
C

O
N

C
E

P
T

S
124

Figure 9.5: Final Class diagram representing Patient Information System.

CHAPTER 9. PROOF OF CONCEPTS 125

the refactored system. The abbreviations used in the overview pyramids

depicted in Figures 9.3, 9.4 and 9.8 are explained below:

ANDC: Average Number of Derived Classes

AHH: Average Hierarchy Height

NOP: Number of Packages

NOC: Number of Classes

NOM: Number of methods

LOC: Lines of Code

CYCLO: Cyclomatic Number

CALLS: Number of Invocations

FANOUT: Number of Called Classes

Goal-oriented Refactoring: In order to evaluate the goal-oriented refac-

toring approach, we consider the same example to find a refactoring sequence

which removes one of the flaws identified while optimising the quality met-

rics used to guide the refactoring. In our example, we find out the design

flaws with the help of marker dup referring to the duplication of methods

in the class diagram of PIS, as shown in the Figure 9.6. Below are the

list of transformations along with their label and unique ids taken from the

approximation.

List of Transformations/Rules

================================

_895251 | dup

_895249 | Probe1+

_895250 | Probe1-

_895248 | Probe2+

CHAPTER 9. PROOF OF CONCEPTS 126

_895247 | Probe2-

_895246 | Move Method3

_895245 | Pullup Method

_895241 | EncapsulateAttribute

_895243 | Move Method1

_895244 | Pullup Method

_895242 | Pullup Method

_895240 | Pullup Method

_895239 | ExtractSuperclass

================================

The resulting unfolding of the grammar consists of hypergraph rules

(refactoring operations) and the initial PIS design leading to a partial or-

der structure, which is used to find a refactoring sequence in order to remove

the flaw identified in Figure 9.6. Each solution starts with a design flaw

marked by dup, selecting conflicting transformation which will be the final

step in the solution removing a flaw. The dependency information obtained

from the unfolding is depicted in the Figure 9.7.

The sequence is completed by computing the closure under causal depen-

dencies. In our example, the closure of transformation id : 895240 (the step

removing the flaw labelled dup in the graph of Figure 9.6) under dependen-

cies yields the set {_895239,_895240}. This final sequence also exists in the

real model, hence no need of refinement. The resulting design after remov-

ing the identified design flaw and its corresponding overview of cyclomatic

complexity are shown in Figure 9.9 and 9.8 respectively.

C
H

A
P

T
E

R
9
.

P
R

O
O

F
O

F
C

O
N

C
E

P
T

S
127

Figure 9.6: Initial Class diagram representing Patient Information System with marker.

CHAPTER 9. PROOF OF CONCEPTS 128

9.2 Discussion and Evaluation

We use the unfolding as a scalable representation where designs (solutions)

are given by sets of transformations closed under causal dependencies, instead

of an explicit representation of the search space of designs and refactorings.

We can thus reconstruct solutions when needed, for example in order to

evaluate the objective function, but will deal with the more compact repre-

sentation when navigating the search space. In addition, the approximation

guarantees that a finite dependency structure is produced even if the actual

state space of the system is infinite [53].

In terms of system size, our approach has the ability to apply to larger

models but constructing the approximation for a system takes longer, which

is a major limitation in our approach. Apart from this the optimisation part

is relatively scalable in terms of handling large sets of refactoring operations

for the purpose of search based refactoring. In the above case study it took

around two hours to construct the approximation, but the optimisation time

is 2 sec in a search space of 12 transformations to compute the optimal

sequence.

We support a set of refactorings based on the catalogue [35], i.e., Move

Method, Pull Up Method, Extract SuperClass, Encapsulate Attribute, which

are implemented together. Most other approaches implement refactorings

individually for the purpose of design improvement.

CHAPTER 9. PROOF OF CONCEPTS 129

Figure 9.7: Dependency table. x denotes mutual exclusion, ND denotes “no

dependency”, > shows causality and # denotes conflict between transforma-

tions.

CHAPTER 9. PROOF OF CONCEPTS 130

.

Figure 9.8: Overview pyramid for cyclomatic complexity after refactoring

C
H

A
P

T
E

R
9
.

P
R

O
O

F
O

F
C

O
N

C
E

P
T

S
131

Figure 9.9: Initial Class diagram representing Patient Information System after refactoring.

Chapter 10

Conclusion and Future Work

In this thesis, we are primarily interested in studying how the formulation

of refactoring as graph rewriting can be exploited for optimisation. The

presented approach involves a combination of graph transformation theory

and the ACO metaheuristic, aiming to implement search-based refactoring.

Hence the technique relies on a formalisation of refactoring based on graph

transformation [61] with the analysis of dependencies extracted from their

approximated unfolding [6] by means of an optimisation using the ACO [28].

To improve traceability/understandability, we are using the causal rela-

tion to explain refactorings in terms of their interdependency. For example, if

the programmer accepts that the last step performed represents an improve-

ment, they will implicitly accept the relevance of all changes up to that point

that the final step depends on. We can also specify constraints on the sets of

132

CHAPTER 10. CONCLUSION AND FUTURE WORK 133

transformations to ensure that every step contributes directly or indirectly

to the last step in the sequence. The use of dependency information between

transformations allows us to remove steps that are unrelated to the intended

change, making each change relevant and therefore easier to interpret. An

evaluation of understandability through experiments with smaller models,

assessing the effort it takes a human developer to understand the changes

proposed by the search-based approach, is providing one of the interesting

challenge in the future.

It seems apparent that goal-oriented refactorings are easier to understand

than those obtained by global optimisation while at the same time leaving

control with the developer through selecting the goal in terms of the design

flaws to be removed. An experimental evaluation of usability is a topic for

future work.

AUGUR2 was developed as a prototype tool and used for the analysis

of graph transformation systems. Currently, it doesn’t allow us to create

approximations for larger examples. Hence, we are interested to improve

the matching algorithm in AUGUR2 in order to produce approximations for

larger models.

Obviously, there are some options to increase efficiency (i.e., no redun-

dancy and no coverability check, etc.) but still the runtime is long for larger

graphs. In AUGUR2, we tried to use the search plan algorithm (see Op-

CHAPTER 10. CONCLUSION AND FUTURE WORK 134

tions), which is a more efficient implementation of the matching algorithm,

but it did not seem to help very much. Therefore, the optimisation of the

matching algorithm in AUGUR2 is essential future work.

We have implemented the approach up to a point where we can check for

smaller graphs that the sequences produced in the approximated model are

also executable in the full model. The verification of the sequence for larger

models will be future work.

Bibliography

[1] P. Abdulla, B. Jonsson, M. Kindahl, and D. Peled. A general approach

to partial order reductions in symbolic verification. In Computer Aided

Verification, pages 379–390. Springer, 1998.

[2] J.S. Aguilar-Ruiz, I. Ramos, J.C. Riquelme, and M. Toro. An evolution-

ary approach to estimating software development projects 1. Informa-

tion and Software Technology, 43(14):875–882, 2001.

[3] G. Antoniol, M. Di Penta, and M. Harman. Search-based techniques

applied to optimization of project planning for a massive maintenance

project. In Proceedings of the 21st IEEE International Conference on

Software Maintenance, pages 240–249, Washington, DC, USA, 2005.

IEEE Computer Society.

[4] D. Astels. Refactoring with UML. In 3rd International Conference on

Extreme Programming and Flexible Processes in Software Engineering

(XP2002), pages 67–70, 2002.

135

BIBLIOGRAPHY 136

[5] A.J. Bagnall, V.J. Rayward-Smith, and I.M. Whittley. The next release

problem. Information and Software Technology, vol:43(14):pages 883–

890, 2001.

[6] P. Baldan, A. Corradini, and B. König. A static analysis technique for

graph transformation systems. In Proc. of CONCUR ’01, pages 381–395.

Springer-Verlag, 2001. LNCS 2154.

[7] P. Baldan, A. Corradini, and B. König. Static analysis of distributed

systems with mobility specified by graph grammars—a case study. In

Proc. of IDPT ’02 (Sixth International Conference on Integrated Design

& Process Technology). Society for Design and Process Science, 2002.

[8] P. Baldan, A. Corradini, and U. Montanari. Unfolding and event struc-

ture semantics for graph grammars. In FoSSaCS ’99: Held as Part of

the European Joint Conference on the Theory and Practice of Software,

ETAPS’99, pages 73–89, London, UK, 1999. Springer-Verlag.

[9] P. Baldan, A. Corradini, and U. Montanari. Contextual petri nets, asym-

metric event structures, and processes. Information and Computation,

171(1):1–49, 2001.

[10] P. Baldan and B. König. Approximating the behaviour of graph transfor-

mation systems. In ICGT, pages LNCS vol:2505,14–29, 2002. Springer-

BIBLIOGRAPHY 137

Verlag.

[11] A. Baresel, H. Sthamer, and M. Schmidt. Fitness function design to

improve evolutionary structural testing. In Proceedings of the Genetic

and Evolutionary Computation Conference, GECCO ’02, pages 1329–

1336, San Francisco, CA, USA, 2002. Morgan Kaufmann Publishers

Inc.

[12] E. Biermann, K. Ehrig, C. Köhler, G. Kuhns, G. Taentzer, and E. Weiss.

Graphical Definition of In-Place Transformations in the Eclipse Model-

ing Framework. In Model Driven Engineering Languages and Systems,

volume 4199 of LNCS, chapter 30, pages 425–439. Springer Berlin/Hei-

delberg, 2006.

[13] C. Blum and A. Roli. Metaheuristics in combinatorial optimization:

Overview and conceptual comparison. ACM Comput. Surv., 35:268–

308, September 2003.

[14] T. Bodhuin, G. Canfora, and L. Troiano. Sormasa: A tool for suggesting

model refactoring actions by metrics-led genetic algorithm. In Proceed-

ings of the 1st Workshop on Refactoring Tools (WRT’ 07-in conjunction

with ECOOP’07), pages 23–24, 2007.

BIBLIOGRAPHY 138

[15] S. Bouktif, G. Antoniol, E. Merlo, and M. Neteler. A novel approach

to optimize clone refactoring activity. In Proceedings of the 8th annual

conference on Genetic and evolutionary computation, GECCO ’06, pages

1885–1892, New York, NY, USA, 2006. ACM.

[16] Lionel C. Briand, J. Feng, and Y. Labiche. Using genetic algorithms

and coupling measures to devise optimal integration test orders. In

Proceedings of the 14th international conference on Software engineering

and knowledge engineering, SEKE ’02, pages 43–50, New York, NY,

USA, 2002. ACM.

[17] G. Canfora, M. Di Penta, R. Esposito, and M.L. Villani. An approach for

QoS-aware service composition based on genetic algorithms. In Proceed-

ings of the 2005 conference on Genetic and evolutionary computation,

GECCO ’05, pages 1069–1075, New York, NY, USA, 2005. ACM.

[18] U. Chirico. A Java framework for ant colony systems. In Ants2004: Forth

International Workshop on Ant Colony Optimization and Swarm Intel-

ligence, Brussels September 5-8, Proceeding Series: LNCS, Vol. 3172,

2004.

[19] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-

guided abstraction refinement. In Computer Aided Verification, pages

BIBLIOGRAPHY 139

154–169. 2000, LNCS Springer.

[20] J. Clarke, J.J. Dolado, M. Harman, R.M. Hierons, B. Jones, M. Lumkin,

B. Mitchell, S. Mancoridis, K. Rees, M. Roper, and M. Shepperd. Re-

formulating software engineering as a search problem. Software, IEEE

Proceedings, 150(3):161 – 175, June 2003.

[21] Keith D. Cooper, Philip J. Schielke, and D. Subramanian. Optimizing

for reduced code space using genetic algorithms. In Proceedings of the

ACM SIGPLAN 1999 workshop on Languages, compilers, and tools for

embedded systems, LCTES ’99, pages 1–9, New York, NY, USA, 1999.

ACM.

[22] A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. Löwe.

Algebraic approaches to graph transformation. Part I: Basic concepts

and double pushout approach. In Handbook of graph grammars and com-

puting by graph transformation, pages 163–245. World Scientific Publish-

ing Co., Inc., 1997.

[23] S. Demeyer, F. Van Rysselberghe, T. Girba, J. Ratzinger, R. Marinescu,

T. Mens, B. Du Bois, D. Janssens, S. Ducasse, M. Lanza, M. Rieger,

H. Gall, and M. El-Ramly. The LAN-simulation: a refactoring teach-

BIBLIOGRAPHY 140

ing example. In Principles of Software Evolution, Eighth International

Workshop on, pages 123 – 131, sept. 2005.

[24] A. Deursen, LMF Moonen, A. Bergh, and G. Kok. Refactoring test

code. CWI. Software Engineering [SEN], (R 0119):1–6, 2001.

[25] M. Dorigo and G. Di Caro. The ant colony optimization meta-heuristic,

pages 11–32. New ideas in optimization, McGraw-Hill Ltd., UK, Maid-

enhead, UK, England, 1999.

[26] M. Dorigo and L.M. Gambardella. Ant colony system: A cooperative

learning approach to the traveling salesman problem. Evolutionary Com-

putation, IEEE Transactions on, 1(1):53–66, 1997.

[27] M Dorigo, V. Maniezzo, and A. Colorni. Positive feedback as a search

strategy. Technical Report 91016, 91-016(91016), 1991.

[28] M. Dorigo and T. Stützle. Ant colony optimization. MIT Press, 2004.

[29] F.L. Dotti, B. König, O. Marchi dos Santos, and L. Ribeiro. A case

study: Verifying a mutual exclusion protocol with process creation using

graph transformation systems. Technical Report 08/2004, Universität

Stuttgart, 2004.

[30] S. Ducasse, M. Lanza, and S. Tichelaar. The MOOSE reengineering

environment. Smalltalk Chronicles, 3(2), 2001.

BIBLIOGRAPHY 141

[31] H. Ehrig. Tutorial introduction to the algebraic approach of graph gram-

mars. In Graph-Grammars and Their Application to Computer Science:

3rd International Workshop, Warrenton, Virginia, USA, December 2-6,

1986, volume 291, page 1. Springer Verlag, 1988.

[32] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Alge-

braic Graph Transformation (Monographs in Theoretical Computer Sci-

ence. An EATCS Series). Springer-Verlag New York, Inc., Secaucus,

NJ, USA, 2006.

[33] H. Ehrig, M. Pfender, and H.J. Schneider. Graph-grammars: An alge-

braic approach. In Switching and Automata Theory, 1973. SWAT’08.

IEEE Conference Record of 14th Annual Symposium on, pages 167–180.

IEEE, 1973.

[34] D. Fatiregun, M. Harman, and R.M. Hierons. Search-based amorphous

slicing. In Reverse Engineering, 12th Working Conference on, pages

10–pp. IEEE, 2005.

[35] Martin Fowler. Refactoring: improving the design of existing code.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[36] L.M. Gambardella and M. Dorigo. An ant colony system hybridized

with a new local search for the sequential ordering problem. INFORMS

BIBLIOGRAPHY 142

J. on Computing, 12(3):237–255, 2000.

[37] R. Gheyi, T. Massoni, and P. Borba. Type-safe refactorings for Alloy.

In Proceedings 8th Brazilian Symposium on Formal Methods, pages 174–

190, 2005.

[38] M. Harman and J. Clark. Metrics are fitness functions too. In Software

Metrics, 2004. Proceedings. 10th International Symposium on, pages 58–

69. IEEE, 2004.

[39] M. Harman, L. Hu, R. Hierons, J. Wegener, H. Sthamer, A. Baresel,

and M. Roper. Testability transformation. IEEE Trans. Softw. Eng.,

30:3–16, January 2004.

[40] M. Harman and Bryan F. Jones. Search-based software engineering.

Information and Software Technology, 43(14):833 – 839, 2001.

[41] M. Harman and L. Tratt. Pareto optimal search based refactoring at

the design level. In GECCO 2007 (Conf. on Genetic and evolutionary

computation), pages 1106–1113, New York, NY, USA, 2007. ACM.

[42] M. Harman and J. Wegener. Getting results from search-based ap-

proaches to software engineering. In Proceedings of the 26th Interna-

tional Conference on Software Engineering, ICSE ’04, pages 728–729,

Washington, DC, USA, 2004. IEEE Computer Society.

BIBLIOGRAPHY 143

[43] R. Heckel, J.M. Küster, and G. Taentzer. Confluence of typed attributed

graph transformation systems. In Graph transformation: first interna-

tional conference, ICGT 2002, Barcelona, Spain, October 7-12, 2002:

proceedings, volume 2505, page 161. Springer Verlag, 2002.

[44] A. Hilgers and BJ Boersma. Optimization of turbulent jet mixing. Fluid

dynamics research, 29(6):345–368, 2001.

[45] R.C. Holt, A. Schurr, S.E. Sim, and A. Winter. GXL: A graph-based

standard exchange format for reengineering. Science of Computer Pro-

gramming, 60(2):149–170, 2006.

[46] R.C. Holt, A. Winter, and A. Schürr. Gxl: Toward a standard exchange

format. In Reverse Engineering, 2000. Proceedings. Seventh Working

Conference on, pages 162–171. IEEE, 2000.

[47] inFusion http://www.intooitus.com/products/infusion, Dated: 11-09-

2011.

[48] R. Johnson, E. Gamma, R. Helm, and J. Vlissides. Design patterns: El-

ements of reusable object-oriented software. Addison-Wesley, 1(1-2):33–

57, 1995.

BIBLIOGRAPHY 144

[49] C. Kaner, S. Member, and Walter P. Bond. Software engineering metrics:

What do they measure and how do we know? In In METRICS 2004.

IEEE CS. Press, 2004.

[50] J. Kerievsky. Refactoring to patterns. Pearson Education, 2005.

[51] B. König and V. Kozioura. Counterexample-guided abstraction refine-

ment for the analysis of graph transformation systems. In Proc. of

TACAS ’06, pages 197–211. Springer, 2006. LNCS 3920.

[52] B. König and V. Kozioura. Counterexample-guided abstraction refine-

ment for the analysis of graph transformation systems. Technical report,

Universität Stuttgart, 2006.

[53] B. König and V. Kozioura. AUGUR2—a new version of a tool for the

analysis of graph transformation systems. In Proc. of GT-VMT ’06

(Workshop on Graph Transformation and Visual Modeling Techniques),

volume 211 of ENTCS, pages 201–210. Elsevier, 2008.

[54] V. Kozyura. Abstraction and abstraction refinement in the verification

of graph transformation systems. 2010. http://duepublico.uni-duisburg-

essen.de/servlets/DocumentServlet?id=21627.

BIBLIOGRAPHY 145

[55] H.J. Kreowski. A comparison between petri-nets and graph grammars.

Graphtheoretic Concepts in Computer Science, pages 306–317, 1981,

Springer.

[56] A. Kuhn and T. Verwaest. Fame, a polyglot library for metamodeling

at runtime. In Workshop on Models at Runtime, pages 57–66. Citeseer,

2008.

[57] L. Lambers. A new version of GTXL: An exchange format for graph

transformation systems. In Proc. Workshop on Graph-Based Tools (Gra-

BaTs’ 04.

[58] Z. Li, M. Harman, and R.M. Hierons. Search algorithms for regression

test case prioritization. IEEE Transactions on Software Engineering,

33:225–237, 2007.

[59] T. Mens. On the use of graph transformations for model refactor-

ing. Generative and transformational techniques in software engineering,

pages LNCS, 2006, Volume 4143/2006, 219–257, 2006.

[60] T. Mens, G. Taentzer, and D. Müller. Challenges in model refactor-

ing. In Proc. 1st Workshop on Refactoring Tools, University of Berlin,

volume 98, 2007.

BIBLIOGRAPHY 146

[61] T. Mens, G. Taentzer, and O. Runge. Analysing refactoring depen-

dencies using graph transformation. Software and Systems Modeling,

6(3):269–285, 2007.

[62] T. Mens, R. Van Der Straeten, and J.F. Warny. Graph-based tool sup-

port to improve model quality. In Workshop on Quality in Modeling,

page 47, 2006. Co-located with the ACM/IEEE 9th International Con-

ference on Model Driven Engineering Languages and Systems, 2006.

[63] Brian S. Mitchell and S. Mancoridis. Using heuristic search techniques

to extract design abstractions from source code. In Proceedings of the

Genetic and Evolutionary Computation Conference, GECCO ’02, pages

1375–1382, San Francisco, CA, USA, 2002. Morgan Kaufmann Publish-

ers Inc.

[64] M. Nielsen, G. Plotkin, and G. Winskel. Petri nets, event structures and

domains, Part I. Theoretical Computer Science, 13(1):85–108, 1981.

[65] M. O’Keeffe and M. Ó Cinnéide. A stochastic approach to automated

design improvement. In Proceedings of the 2nd international conference

on Principles and practice of programming in Java, PPPJ ’03, pages

59–62, New York, NY, USA, 2003. Computer Science Press, Inc.

BIBLIOGRAPHY 147

[66] M. O’Keeffe and M. Ó Cinnéide. Search-based refactoring: an empirical

study. J. Softw. Maint. Evol., 20(5):345–364, 2008.

[67] M. O’Keeffe and M. O’Cinneide. Search-based software maintenance.

In Proceedings of the Conference on Software Maintenance and Reengi-

neering, pages 249–260, Washington, DC, USA, 2006. IEEE Computer

Society.

[68] OMG. Unified Modeling Language: Superstructure version 2.0.

formal/2005-07-04, August 2005.

[69] J. Otamendi. The importance of the objective function definition and

evaluation in the performance of the search algorithms. Proceedings of

the 16TH European Simulation Symposium, 2004, Budapest, Hungary.

[70] F. Qayum. Automated assistance for search-based refactoring using un-

folding of graph transformation systems. In Proceedings of the 5th inter-

national conference on Graph transformations, ICGT’10, pages LNCS,

2010, Volume 6372/2010, 407–409, Berlin, Heidelberg, 2010. Springer-

Verlag.

[71] F. Qayum and R. Heckel. Analysing refactoring dependencies using

unfolding of graph transformation systems. In Proceedings of the 7th

BIBLIOGRAPHY 148

International Conference on Frontiers of Information Technology, FIT

’09, pages 15:1–15:5, New York, NY, USA, 2009. ACM.

[72] F. Qayum and R. Heckel. Local search-based refactoring as graph trans-

formation. In Proceedings of the 2009 1st International Symposium on

Search Based Software Engineering, SSBSE ’09, pages 43–46, Washing-

ton, DC, USA, 2009. IEEE Computer Society.

[73] F. Qayum and R. Heckel. Search-based refactoring using unfolding

of graph transformation systems. International Conference on Graph

Transformation 2010 - Doctoral Symposium, Electronic Communica-

tions of the EASST, 38(0), 2011.

[74] G. Rangel, L. Lambers, B. Konig, H. Ehrig, and P. Baldan. Behavior

preservation in model refactoring using dpo transformations with bor-

rowed contexts. In Graph transformations: 4th international conference,

ICGT 2008, Leicester, United Kingdom, September 7-13, 2008: proceed-

ings, volume 5214, page 242. Springer-Verlag New York Inc, 2008.

[75] W. Reisig. Petri nets: An introduction. Springer-Verlag New York, Inc.,

New York, NY, USA, 1985.

[76] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via

3-valued logic. ACM Transactions on Programming Languages and Sys-

BIBLIOGRAPHY 149

tems (TOPLAS), 24(3):217–298, 2002.

[77] O. Seng, J. Stammel, and D. Burkhart. Search-based determination of

refactorings for improving the class structure of object-oriented systems.

In GECCO 2006, pages 1909–1916, New York, NY, USA, 2006. ACM.

[78] G. Sunyé, D. Pollet, Y. Le Traon, and J.M. Jézéquel. Refactoring UML

models. «UML» The Unified Modeling Language. Modeling Languages,

Concepts, and Tools, pages 134–148, 2001.

[79] G. Taentzer. Towards common exchange formats for graphs and graph

transformation systems. Electronic Notes in Theoretical Computer Sci-

ence, 44(4):28 – 40, 2001. UNIGRA 2001, Uniform Approaches to

Graphical Process Specification Techniques (a Satellite Event of ETAPS

2001).

[80] L. Tahvildar and K. Kontogiannis. Improving design quality using meta-

pattern transformations: a metric-based approach. Journal of Software

Maintenance and Evolution: Research and Practice, 16(4-5):331–361,

2004.

[81] R. Van Der Straeten and M. D’Hondt. Model refactorings through rule-

based inconsistency resolution. In Proceedings of the 2006 ACM sympo-

sium on Applied computing, pages 1210–1217. ACM, 2006.

BIBLIOGRAPHY 150

[82] R. Van Der Straeten, V. Jonckers, and T. Mens. Supporting model

refactorings through behaviour inheritance consistencies. The Unified

Modeling Language. Modelling Languages and Applications, LNCS Vol-

ume:3273,, pages 305–319, 2004, Springer-Verlag.

[83] E. Van Emden and L. Moonen. Java quality assurance by detecting

code smells. In Reverse Engineering, 2002. Proceedings. Ninth Working

Conference on, pages 97–106. IEEE, 2002.

[84] P. Van Gorp, H. Stenten, T. Mens, and S. Demeyer. Towards automating

source-consistent UML refactorings. «UML» 2003-The Unified Model-

ing Language. Modeling Languages and Applications, 6th international

conference, San Francisco, CA, USA, October 20-24, 2003: proceedings.

LNCS, volume:2863, Springer-Verlag., pages 144–158, 2003.

[85] A. Winter. Exchanging graphs with GXL. Graph Drawing- 9th Interna-

tional Symposium proceedings. Vienna, Austria, September 23-26, 2001,

Volume:9:485, 2002, Springer-Verlag,.

[86] A. Winter, B. Kullbach, and V. Riediger. An overview of the GXL graph

exchange language. In Revised Lectures on Software Visualization, Inter-

national Seminar, pages 324–336, London, UK, 2002. Springer-Verlag.

BIBLIOGRAPHY 151

[87] J. Zhang, Y. Lin, and J. Gray. Generic and domain-specific model refac-

toring using a model transformation engine. In Volume II of Research

and Practice in Software Engineering, pages 199–218. Springer, 2005.

