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Abstract

Chaotic accretion and merging

supermassive black holes
by

Christopher Nixon

The main driver of the work in this thesis is the idea of chaotic accretion in galaxy
centres. Most research in this area focuses on orderly or coherent accretion where
supermassive black holes or supermassive black hole binaries are fed with gas always
possessing the same sense of angular momentum. If instead gas flows in galaxies
are chaotic, feeding occurs through randomly oriented depositions of gas. Previ-
ous works show that this chaotic mode of feeding can explain some astrophysical
phenomena, such as the lack of correlation between host galaxy structure and the
direction of jets. It has also been shown that by keeping the black hole spin low
this feeding mechanism can grow supermassive black holes from stellar mass seeds.
In this thesis I show that it also alleviates the ‘final parsec problem’ by facilitating
the merger of two supermassive black holes, and the growth of supermassive black
holes through rapid accretion. I also develop the intriguing possibility of breaking
a warped disc into two or more distinct planes.
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Introduction 1.1. Prologue

1.1 Prologue

In this thesis I explore the evolution of gas discs (e.g. Pringle, 1981) around spinning

supermassive black holes (SMBH), or SMBH binaries. This is an important ingre-

dient in understanding the evolution of SMBH, governing both how they grow and

how they merge. SMBH and SMBH binaries possess significant amounts of angular

momentum, as well as mass. This complicates the disc physics somewhat, but in

this thesis I show that SMBH and SMBH binaries encourage their own growth and

mergers through their effects on surrounding gas.

In this Chapter I provide the required background to my work. In Chapter 2 I

examine the effect of a binary on a misaligned external gas disc, finding that both

alignment and counteralignment of the disc are possible. In Chapter 3 I show that

counteralignment of a circumbinary disc is stable and thus prolonged periods of

accretion from retrograde circumbinary discs are to be expected. In Chapter 4 I

show that such accretion can lead to significant evolution of the binary, specifically

increasing the binary eccentricity to unity once the smaller mass SMBH has inter-

acted with approximately its own mass. Once the binary eccentricity is large enough

gravitational waves will complete the coalescence. This provides a mechanism for

merging SMBH within a Hubble time.

In Chapter 5 I explore the evolution of a misaligned disc around a single SMBH.

In this case the black hole spin plays an important role. In previous work the

assumed form of the disc viscosity has been fairly simple. In this work we use the

full effective viscosities expected in a warped disc (Ogilvie, 1999), finding as a result

that the disc may break into two distinct planes. This suggests a mode of feeding

the SMBH where there is a large internal disc tilt, allowing cancellation of angular

momentum. In Chapter 6 I explore this possibility and quantify the increase in
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Introduction 1.2. Supermassive black holes

accretion rate associated with the enhanced mixing of the gas orbits.

Finally in Chapter 7 I provide the conclusions from my work and suggest possible

future research.

1.2 Supermassive black holes

Generally, black holes are objects which posses an ‘event horizon’ inside which their

gravitational field is so strong that even light cannot escape it. For the purposes

of this thesis we can describe a black hole by two parameters: mass and angular

momentum. Black holes themselves do not emit any observable electromagnetic

radiation and thus they are potentially difficult to detect. However with so much

mass in a small volume, their compactness generates a gravitational field with large

amounts of potential energy available to infalling material. As this energy is liber-

ated the black holes become indirectly observable (see Section 1.2.1).

Black holes are thought to provide other forms of radiation. The most relevant

here, and the focus of much current research, is gravitational wave radiation. This

is released between orbiting massive objects, however its efficiency depends very

strongly on the mass and separation of the objects. Therefore it is only critical

when objects of extreme mass are orbiting very close to each other. This is an

important aspect in coalescing SMBH (Section 1.3.3)

The physics of black holes can become very complex. However, if we are only

interested in the dynamics occurring far from the innermost stable circular orbit

(isco) we can neglect much of the complexity associated with General Relativity. We

can parametrise the main effects as perturbations to a Newtonian potential, making

tractable problems that would otherwise inhibit progress. For a non–spinning black

3



Introduction 1.2. Supermassive black holes

hole we treat it as a point mass with a Newtonian gravitational potential,

φ (r) = −GM

r
, (1.1)

where G is the gravitational constant, M is the mass of the black hole and r is the

radial distance from the black hole. This is a spherically symmetric potential which

exerts a force per unit mass of

f (r) = −∇φ = −GM

r3
r (1.2)

where r is the radial vector from the point mass.

The angular momentum or spin of the black hole can play a significant role in the

dynamics – even far from the isco. The effect of the spin can be approximated as

a perturbation to the orbits of particles in a Newtonian potential (Wilkins, 1972).

This perturbation causes the orbits to precess around the black hole spin vector.

This effect vanishes for circular orbits in the plane of the black hole spin, either

coaligned or counteraligned. This precession is known as the Lense–Thirring effect

(Lense and Thirring, 1918; Mashhoon et al., 1984) and plays an important role in

the evolution of a misaligned disc around a black hole (see Chapter 5).

1.2.1 Observations

Astronomers now generally agree that the centre of every reasonably large galaxy

contains an SMBH. The strongest evidence is for the SMBH at the centre of our own

galaxy, with the most clear evidence being the observation of stellar orbits in the

central parsec (e.g. Schödel et al., 2002; Ghez et al., 2005). These high–resolution

astrometric imaging observations follow full orbits of stars around a central mass

4



Introduction 1.2. Supermassive black holes

concentration which is only plausibly explained by the presence of an SMBH.

Evidence also exists for the presence of SMBH in other galaxies such as stellar

and gas kinematics (e.g. Kormendy and Richstone, 1995). For example Keplerian

rotation profiles in observed in maser discs. Also the detection of a gravitationally

redshifted Iron Kα emission line suggests the presence of SMBH in galaxy centres

(Tanaka et al., 1995).

It is also generally accepted that galaxies follow a hierarchical structure formation

where small galaxies merge to produce larger ones (e.g. Springel et al., 2005). Thus

galaxy mergers play a significant role in galaxy evolution. In this picture it is

important to understand how the two SMBH evolve. It is expected that they will

sink rapidly to the centre of the merged galaxy and form a binary, however there is

currently no strong evidence for the existence of binary SMBH on . parsec scales.

Therefore we expect the binary does merge, however it is not clear how this is

achieved (Begelman et al., 1980). I shall return to this point in more detail in

Section 1.3.

1.2.2 Growing supermassive black holes

We still do not fully understand how SMBH can grow to be so large so quickly. Near–

infrared observations of quasars provide evidence for SMBHs of mass & 109M⊙ at

a redshift of z ≃ 6 (e.g. Willott et al., 2003). This provides a significant challenge

for current models. In any physically realistic scenario, gas in a galaxy possesses

angular momentum which is a barrier to accretion. The gas must spiral slowly

inwards through a disc, transporting angular momentum outwards by the action of

a viscosity (see Section 1.4). This process is slow. The timescale for a disc of gas

at a radius of 1 pc to accrete on to an SMBH of mass 108M⊙ approaches a Hubble

5



Introduction 1.2. Supermassive black holes

time. We therefore need an alternative mechanism for driving the accretion of gas

on to SMBH. One natural idea is that accretion occurs through chaotic deposition

of gas into the galaxy centre. This is reasonable, as the nuclei of galaxies are very

chaotic places, with random injections of energy and momentum from star formation,

supernovae and stellar winds. Moreover, there is no reason to assume that gas falling

into the galactic centre has any prior knowledge of the SMBH angular momentum.

This gas must settle into a disc, generally with a random angle of misalignment

between the disc and the SMBH angular momentum. The disc is probably strongly

warped because of the chaotic nature of the infalling gas, and warped further still

by interaction with the spinning SMBH via the Lense–Thirring effect (e.g. Bardeen

and Petterson, 1975). In Chapters 5 & 6 we shall explore the evolution of such discs.

A chaotic accretion scenario was originally suggested by King and Pringle (2006) as

a mechanism for keeping the spin of SMBH low, because accretion occurs from both

retrograde and prograde discs at various epochs. This allows the growth of SMBH

from stellar mass seeds (King and Pringle, 2006, 2007; King et al., 2008).

Soltan (1982) suggests that there is on average a 108M⊙ SMBH per reasonable size

galaxy. This argument equates the power in the observed background radiation

field with the power emitted by quasars1. King and Pringle (2006) showed that this

can place limits on the growth of SMBH. If we assume SMBH undergo luminous

accretion then the accretion luminosity cannot exceed the Eddington luminosity

LEdd =
4πGMc

κ
≃ 1047M9 erg s−1 (1.3)

where M = 109M9M⊙ and κ is the electron scattering opacity. This limit on the

1Quasars are assumed to be powered by the emission from accretion discs around SMBH.
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Introduction 1.2. Supermassive black holes

luminosity sets a limit on the rate at which the black hole can accrete as

LEdd = ǫṀaccc
2 (1.4)

where ǫ is the accretion efficiency, determined by the fractional binding energy of

the isco of the black hole (see King and Pringle 2006 for more detail). Therefore the

growth rate of the black hole accreting at the Eddington limit is given by

Ṁ = (1 − ǫ) Ṁacc (1.5)

and therefore

Ṁ =
1 − ǫ

ǫ

M

tEdd

(1.6)

with

tEdd =
κc

4πG
= 4.5 × 108yr. (1.7)

King and Pringle (2006) further argue that although ǫ varies as accretion proceeds,

its minimum value ǫmin sets a limit on the mass M to which the black hole can grow

from an initial seed mass M0. By integrating (1.6) they show that

M

M0

< exp

[(

t

tEdd

)(

1

ǫmin

− 1

)]

(1.8)

Now let us remember that there is observational evidence for an SMBH of mass

& 109M⊙ at a redshift of z ≃ 6 (e.g. Willott et al., 2003). At a redshift of z ≃ 6,

t/tEdd ≃ 2. Therefore if we assume that the black hole is maximally spinning

(dimensionless Kerr parameter a ≃ 1), and thus ǫmin = 0.43 we have M/M0 . 20.

Clearly there is no prospect of growing black holes in this manner. However, if we

have ǫmin ≃ 0.06, as appropriate for a ≃ 0.3− 0.4, then M/M0 ∼ 4× 1013. Thus we

7



Introduction 1.2. Supermassive black holes

see that it is clearly possible to grow the black holes rapidly if we can keep the spin

low2. Note that as the spin can vary and accretion is not continuous one does not

expect SMBH of mass ∼ 1013M⊙.

King and Pringle (2006) go on to discuss the spin evolution of SMBH. Using the

results of King et al. (2005) we expect that the fraction of randomly oriented ac-

cretion events that counteralign with respect to the hole’s spin (the rest coalign) to

be

f =
1

2

[

1 − Jd

2Jh

]

, (1.9)

where Jd and Jh are the magnitudes of the disc and hole angular momenta respec-

tively .Therefore there are two modes of accretion relevant here. If Jd . Jh then

accretion episodes will alternate between coaligned and counteraligned, however if

Jd & Jh then accretion proceeds in a prograde manner, consistently spinning up the

hole. There is an additional complicating effect that the specific angular momentum

of prograde and retrograde accretion are distinct. The radius of the isco is largest

for a = −1 and smallest for a = 1, suggests that spindown is considerably more

effective than spinup (King and Pringle, 2006).

King et al. (2008) explored this effect in detail by calculating the effect of ran-

domly oriented accretion events on to an SMBH. They argue that the self–gravity

of the disc limits the mass in each event to be a small fraction of that of the hole

Msg . (H/R) M and thus both coaligned and counteraligned discs occur. The spin

parameter performs a random walk and King et al. (2008) suggest that the final

spins from this mode of accretion are a ≃ 0.3 (see Eq. 19 of that paper). An impor-

tant factor discussed in their paper is the effect of black hole coalescences which may

significantly increase or decrease the spin. Both accretion (King et al., 2008) and

2The hole’s spin will vary as it accretes, however it must spend some time with low spin to grow
efficiently.
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Introduction 1.3. The final parsec problem

coalescences (Hughes and Blandford, 2003) statistically lead to spindown, however

any individual episode is capable of significantly increasing the spin. Whilst the

hole spin is low it may accrete efficiently and hence grow its mass to the observed

values.

1.3 The final parsec problem

The ‘final parsec problem’ (Begelman et al., 1980) is born from a dichotomy between

observations and theory. Begelman et al. (1980) showed that it is theoretically

difficult to drive the merging of an SMBH binary. However, observationally we

know that galaxy mergers are common in the universe and that galaxies host one

(and apparently only one3) SMBH, suggesting that the process which merges SMBH

binaries is rather more efficient than the theory suggests.

When two galaxies merge it is expected that the two SMBH sink towards the centre

of the merged galaxy through dynamical friction with background gas and stars and

begin to orbit each other at some radius. Now one of two things must happen:

either the galaxy can remove angular momentum and energy from the binary orbit

efficiently enough to facilitate a merger, or the binary will ‘stall’ and therefore not

coalesce. There are several mechanisms that have been discussed in the literature

to extract angular momentum from the binary. I briefly summarise the main ones

here.

3It is not yet possible to rule out binary SMBH completely, and there are claimed observations
of dual SMBH galaxies, however these are usually at much larger separations than the sub–parsec
scale required here (Merritt and Milosavljević, 2005), however some close binaries may exist on
∼pc scales (e.g. ∼ 7pc separation, Rodriguez et al., 2006).
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1.3.1 Dynamical friction

Dynamical friction with background stars is a very efficient mechanism at driving

the SMBH binary from ∼ kpc scales to ∼ 1 pc. On the larger scales the motion of

the SMBH through a background of stars leads to an over-density of stars behind

each SMBH through gravitational focusing. This over-density causes a drag force

on the binary which removes angular momentum and energy from its orbit (see e.g.

Binney and Tremaine, 2008).

At smaller separations (but still & 1 pc) there are many stars on orbits that produce

an interaction with the binary. During this three–body encounter angular momen-

tum and energy are exchanged between the components resulting in the ejection of

one of the objects. It is highly favourable for the lowest mass object to be ejected,

as it is moving fastest (requiring the exchange of the least angular momentum) and

thus the star is ejected carrying off some energy and angular momentum. This pro-

cess is efficient at shrinking the binary until separations of ∼ 1 pc. At this point

the binary has scattered away most of the stars it can interact with and refilling of

these orbits is apparently too slow (Begelman et al., 1980).

Refilling these orbits may be possible if the galaxy potential is triaxial (Merritt and

Poon, 2004). Triaxiality in the potential induces box–orbits, passing arbitrarily close

to the centre, which can interact with the binary. Berczik et al. (2006) show that

triaxial potentials can induce the merger of SMBH binaries on timescales of . 10

Gyr. It is not clear whether this works in practise: the degree of triaxiality in dark

matter haloes is not known, and the destruction of these box–orbits by the SMBH

binary should cause a back-reaction on the halo which reduces its triaxiality. For

the purposes of this thesis I will assume that dynamical friction with background

stars can only shrink the binary to ∼ 1 pc (Begelman et al., 1980).

10
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1.3.2 Gas discs

Gas is expected to play a role in facilitating an SMBH binary merger. We know that

galaxies supply their central SMBH with large amounts of gas during the relatively

quiet phases between mergers. Therefore during a merger, when the entire galaxy is

stirred up, we expect large amounts of gas to fall to the galaxy centre and interact

with the binary. Note that the total mass in the binary is a small fraction of the

mass in gas in the galaxy and therefore only a small fraction of the total gas is

required.

Previous work in this area has focused on the evolution of prograde gas discs around

an SMBH binary. A prograde circumbinary disc does not evolve as a usual accretion

disc. Instead the rotation of the binary acts as a source of angular momentum

generating a decretion disc4. The angular momentum of the binary is communicated

to the disc through resonances, these occur at radii where the orbits in the disc line

up with the orbit of the binary, i.e. where

Ω2 = m2 (Ω − ω)2 (1.10)

or equivalently

Ω (R) =
mω

m ± 1
(1.11)

where Ω is the disc angular velocity and ω is the binary orbital frequency and

m = 1, 2, ... is the wave mode number (Papaloizou and Pringle, 1977).

The resonances close to the binary have the strongest effect. To a good approxi-

mation the disc will move inwards viscously seemingly unperturbed until it reaches

the 1:2 resonance. At this point the disc is strongly affected by the binary and is

4An accretion disc moves mass inwards, however a decretion disc moves mass outwards.
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held at this radius. In holding the disc out the binary slowly shrinks. The timescale

for this exchange of angular momentum is long and indeed is found to be too long

to provide a reasonable solution to the final parsec problem (Lodato et al., 2009;

Cuadra et al., 2009). The main reason for this lack of efficiency is the gas has to

carry away the angular momentum and thus moves outwards, reducing the exchange

of angular momentum.

However gas can still play a major role in the evolution of an SMBH binary. So far

we have only considered prograde discs. In Chapter 4 we shall see that retrograde

discs can be more efficient at merging the binary.

1.3.3 Gravitational waves

Gravitational wave emissions play a crucial role in merging an SMBH binary. At

all separations the binary is emitting gravitational waves, however the efficiency of

this process is dependent on the binary separation to the fourth power (e.g. Eq. 7

in Lodato et al., 2009). Therefore when the binary is at separations & 0.1 pc this

mechanism will take too long to coalesce the binary (∼ 1011 yrs), however if the

binary can reach separations . 0.01 pc then gravitational waves will complete the

coalescence in ∼ 107 yrs (e.g. Lodato et al., 2009).

This is the only mechanism which gets stronger at smaller separations, and is there-

fore a crucial element in the final stages of an SMBH merger.

1.3.4 Summary

Dynamical friction is capable of shrinking the binary to separations ∼ 1 pc. If we

can drive the binary to separations ∼ 0.01 pc, then gravitational waves will complete

the coalescence. Prograde gas discs are not very efficient at driving this evolution, in

12
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Chapter 4 we propose a possible solution to this problem – retrograde circumbinary

discs.

1.4 Accretion discs

In general gas falling towards a black hole (or any point mass) possesses angular

momentum, i.e. gas is not perfectly aimed to collide directly with the object. Instead

it orbits the black hole. In reality the orbit is not a closed ellipse but forms a rosette

as the potential is not perfectly Keplerian due to nearby stars or gas self–gravity

etc. On this rosette gas orbits intersect and shock, leading to dissipation of energy

through heating or radiation. However angular momentum must be conserved during

this process. Therefore the gas settles into the orbit of lowest energy for the given

angular momentum – a circle. In general gas will not all possess the same specific

angular momentum and so settles into a disc, rather than a ring. More generally

gas will have angular momentum with a spread of directions, and so settles into a

warped disc (see Section 1.4.2).

The disc then evolves under the action of a viscosity. For the purposes of this thesis

‘viscosity’ is defined as whatever process drives the Shakura & Sunyaev viscosity

ν = αcsH (Shakura and Sunyaev, 1973). In the literature there is much debate on

its origin. The most accepted is the magneto-rotational instability (MRI) suggested

by Balbus and Hawley (1991). This instability requires a weakly magnetised disc

and the angular velocity to decrease outwards as in Keplerian and near–Keplerian

discs. The cartoon picture of the instability is two parcels of gas, at different radii,

joined by a magnetic field loop. The inner parcel rotates faster and thus the loop

becomes stretched. The magnetic field acts to slow the inner parcel and speed up

the outer parcel, thus transferring angular momentum from the inner parcel to the
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outer parcel. The net effect is the inner parcel moves inwards through the disc, and

the outer parcel moves outwards. For the purposes of this thesis we assume that the

disc viscosity can be parametrised by the Shakura & Sunyaev α.

The parametrisation is a simple, but powerful, way of characterising the angular

momentum transport in a disc. For a viscosity we need a length and a velocity. In

a disc the typical length scale is the disc thickness H, for example the largest length

scale for any turbulence in the disc ∼ H. Any supersonic motions in the disc drive

shocks and thus rapidly dissipate, therefore the maximal signal velocity in the disc

is approximately the disc sound speed cs. Therefore the maximal viscosity expected

in a disc is ν = csH and so by adding the efficiency parameter we have the Shakura

& Sunyaev viscosity ν = αcsH.

1.4.1 Thin disc equations

Now that we have a prescription for the viscosity in a disc we can derive its equations

of motion. To make things simple, we assume (for the moment) that the disc can be

modelled in 2D polars (R, φ) with surface density Σ (R, t), radial velocity vR (R, t)

and angular velocity Ω (R, t). Now we consider the annulus of gas between R and

R + ∆R. The mass in this annulus is 2πR∆RΣ. Conservation of mass then allows

us to equate the rate of change of mass in the annulus to the net flow of mass into

or out of the annulus

∂

∂t
(2πR∆RΣ) = (2πRvRΣ)R − (2πRvRΣ)R+∆R (1.12)
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If we rearrange and take the limit as ∆R → 0 then we arrive at the continuity

equation (mass conservation) for a disc

R
∂Σ

∂t
+

∂

∂R
(RΣvR) = 0. (1.13)

Similarly we can derive the equation expressing angular momentum conservation.

The angular momentum of an annulus is 2πR∆RΣR2Ω and the rate of change of

angular momentum is the net flux of angular momentum plus the net torques

∂

∂t

(

2πR∆RΣR2Ω
)

=
(

2πRΣR2ΩvR

)

R
−

(

2πRΣR2ΩvR

)

R+∆R
(1.14)

+G (R + ∆R) − G (R)

and again by rearranging and taking the limit ∆R → 0 we have the angular mo-

mentum equation

R
∂

∂t

(

ΣR2Ω
)

+
∂

∂R

(

RΣvRR2Ω
)

=
1

2π

∂G

∂R
(1.15)

where G (R, t) is the internal disc torque.

G (R, t) is the result of the disc viscosity. The viscous force is proportional to the

rate of shearing

F = 2πRHµR
dΩ

dR
(1.16)

where RdΩ/dR is the rate of shear and µ is the dynamic viscosity – related to the

kinematic viscosity by µ = ρν. Therefore, using ρ = Σ/H the force is

F = 2πRνΣR
dΩ

dR
. (1.17)

Note that this force acts in the azimuthal direction, and thus when the cross product
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with the radial vector is taken to generate the torque, we can see that the torque

acts in the correct direction (i.e. on the z-component of angular momentum - note

we are only considering a flat disc in the R–φ plane so far). So we can write the

internal torque due to viscosity as

G = 2πRνΣRΩ′R (1.18)

and so the equation expressing angular momentum conservation is

R
∂

∂t

(

ΣR2Ω
)

+
∂

∂R

(

RΣvRR2Ω
)

=
∂

∂R

(

νΣR3Ω′
)

. (1.19)

By multiplying Eq. 1.13 by R2Ω and then subtracting from Eq. 1.19 we can rearrange

for vR to get

vR =
∂

∂R
(νΣR3Ω′)

RΣ ∂
∂R

(R2Ω)
. (1.20)

Substituting this into (1.13) gives

∂Σ

∂t
=

1

R

∂

∂R

(

∂
∂R

[νΣR3 (−Ω′)]
∂

∂R
(R2Ω)

)

(1.21)

which for the Keplerian potential, Ω =
√

GM/R3, is

∂Σ

∂t
=

3

R

∂

∂R

[

R1/2 ∂

∂R

(

νΣR1/2
)

]

. (1.22)

This is essentially a diffusion equation, if we know the viscosity ν then we know how

a distribution Σ (R, t) will evolve.

If we assume the disc is in hydrostatic balance we can also derive the vertical struc-
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ture by equating the vertical pressure force with the relevant component of gravity

1

ρ

∂P

∂z
= − GM

R2 + z2

z√
R2 + z2

(1.23)

where the last factor is the geometrical sine term. If the disc is thin, then we can

use |z| ≪ R, so

1

ρ

∂P

∂z
= −GMz

R3
. (1.24)

Now if we assume an equation of state, e.g. isothermal P = c2
sρ then

c2
s

∂ ln ρ

∂z
= −GMz

R3
. (1.25)

We can then integrate to get

ρ = ρ0 exp

(−GMz2

2c2
sR

3

)

= ρ0 exp

(

− z2

2H2

)

(1.26)

where we have introduced the disc scale–height H = cs/Ω.

From this we can see that a disc in vertical hydrostatic equilibrium has H/R = cs/vφ,

so for thin discs the flow is supersonic.

1.4.2 Warped discs

In the previous section we derived the equations relevant to a flat disc, however in

general the disc may also be warped. Warping disturbances can propagate in two

distinct modes: wave–like or diffusive. If α < H/R then waves propagate efficiently,

however if α > H/R then diffusion dominates (Papaloizou and Pringle, 1983). In

this thesis we focus on the latter case relevant for discs around black holes. Here I

detail a simple derivation of the equation of motion for a diffusive warped disc.
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The local angular momentum density is L (R, t) = ΣR2Ωℓ (R, t), where ℓ (R, t) is

a unit vector determining the direction of the angular momentum of the ring. The

mass conservation equation is the same as for the flat disc (1.13).

The angular momentum conservation is expressed as

∂

∂t

(

2πRΣR2Ω∆Rℓ
)

=
(

2πRΣR2ΩvRℓ
)

R
(1.27)

−
(

2πRΣR2ΩvRℓ
)

R+∆R

+G (R + ∆R) −G (R)

+∆T

where G is the viscous torque and ∆T is any other (external) torque acting on ∆R.

The viscous torque has two obvious components, the (R, φ) stress contributes a

torque acting in the direction of ℓ (1.18)

G1 = 2πRν1ΣRΩ′Rℓ, (1.28)

where ν1 is the azimuthal shear viscosity. If we consider two neighbouring rings with

ℓ and ℓ + ∆ℓ then the (R, z) stress acts to communicate ∆ℓ between the rings and

thus the torque acts in the direction ∂ℓ/∂R. The (R, z) torque is then

G2 = 2πR
1

2
ν2ΣR2Ω

∂ℓ

∂R
, (1.29)

where ν2 is the vertical shear viscosity and the factor of a half comes from integrating

cos2 φ across the ring (Papaloizou and Pringle, 1983).

Therefore, once again rearranging and taking the limit ∆R → 0 we have (Papaloizou
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and Pringle, 1983)

∂

∂t

(

ΣR2Ωℓ
)

+
1

R

∂

∂R

(

ΣvRR3Ωℓ
)

=
1

R

∂

∂R

(

ν1ΣR3Ω′
ℓ
)

(1.30)

+
1

R

∂

∂R

(

1

2
ν2ΣR3Ω

∂ℓ

∂R

)

.

Pringle (1992) showed that this equation can be combined with (1.13) to eliminate

vR and give an equation governing the evolution of the total angular momentum

vector

∂L

∂t
=

1

R

∂

∂R

{

(∂/∂R)
[

ν1ΣR3
(

−Ω
′
)]

Σ (∂/∂R) (R2Ω)
L

}

(1.31)

+
1

R

∂

∂R

[

1

2
ν2R |L| ∂ℓ

∂R

]

+
1

R

∂

∂R

{[

1
2
ν2R

3Ω |∂ℓ/∂R|2

(∂/∂R) (R2Ω)
+ ν1

(

RΩ
′

Ω

)

]

L

}

.

The derivation of this equation is somewhat simplistic, so to check its validity Ogilvie

(1999) derived the equation from the full hydrodynamical equations of motion.

Ogilvie (1999) found that the equation is correct up to two important points. First

the equation is missing a term which makes neighbouring annuli precess if they are

tilted with respect to each other (cf. Eq 5.3), and second the viscosities in the disc

are related and are uniquely determined once the α parameter and warp amplitude

are known. The consequences of these relations are studied in Chapter 5.

1.5 Numerical methods

In this section I provide a brief description of the numerical methods employed in

this thesis. The two methods used are an accretion disc ring–code (Pringle, 1992)
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and Smoothed Particle Hydrodynamics.

1.5.1 Accretion disc ring–code

In this section I give a description of the code used in Chapter 5. The method

is described in full in Pringle (1992) and here I repeat the salient points. It is a

1D code5 which integrates the evolution of rings of gas due to various internal and

external torques assuming diffusive (viscous) communication of angular momentum.

Each ring of gas is assumed to be in centrifugal balance, i.e. the rings are rigid

and concentric, thus obviating the need to integrate over the dynamical timescale.

The gas is implicitly assumed to be in equilibrium on the dynamical timescale,

with any changes occurring on the much longer viscous timescale. This will clearly

miss any dynamical behaviour, for example excluding any dynamical infall of gas.

However this method is very powerful as it allows us to integrate for a viscous time

or longer to determine the secular evolution of the disc, and we can also perform

many simulations exploring a wide parameter space.

The full evolution equation for the accretion disc is Eq. 1.31 (Pringle, 1992) where the

first term on the right hand side describes the usual viscous diffusion of mass. This

is governed by the azimuthal shear viscosity ν1. The second term is also diffusive,

governed by the vertical viscosity ν2, and is responsible for diffusing the disc tilt.

The third term is an advective torque. Depending on its sign this advects angular

momentum (and hence mass) inwards or outwards through the disc.

The main variable is the local angular momentum density of the ring, L(R, t). From

this we can work out the surface density of the ring as

Σ =
|L|
h

(1.32)

51D implies that all quantities only depend on radius

20



Introduction 1.5. Numerical methods

where h (R, t) = R2Ω is the specific angular momentum of the ring of gas. We can

also find the unit tilt vector for the ring as

ℓ (R, t) =
1

Σh
L (R, t) . (1.33)

From the tilt vector we can derive the angles for the tilt and twist of each ring. If

we define a frame of reference (usually the angular momentum vector for the central

object or the total angular momentum vector) then the tilt angle is the inclination

of the ring relative to the frame of reference. The twist angle defines the azimuth of

the tilt. The tilt and twist are the Euler angles in spherical polars and can be seen

in Fig. 1 of Ogilvie (1999). Thus for an inclination angle β (R, t) and a twist angle

of γ (R, t) we have the unit tilt vector as (Pringle, 1996, 1997)

ℓ (R, t) = (ℓx, ℓy, ℓz) = (cos γ sin β, sin γ sin β, cos β) . (1.34)

We can calculate the quantities β and γ from this by

β = cos−1 (ℓz) (1.35)

and

γ = tan−1

(

ℓy

ℓx

)

. (1.36)

This code will be used in Chapter 5 to determine the evolution of a tilted accre-

tion disc around a spinning black hole. This scenario has been extensively studied

(Bardeen and Petterson, 1975; Pringle, 1992; Scheuer and Feiler, 1996; Natarajan

and Pringle, 1998; Armitage and Natarajan, 1999; Natarajan and Armitage, 1999;

Lodato and Pringle, 2006, etc.). However these investigations assume simple forms

for the viscosities ν1 and ν2. Ogilvie (1999) determines the relation between the
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coefficients of the two viscosities for a particular value of the dimensionless disc

viscosity parameter α (Shakura and Sunyaev, 1973) and a general warped disc. A

relation between the viscosities was derived in the linear regime by Papaloizou and

Pringle (1983)

α2 =
1

2α1

(1.37)

where ν1 = α1csH, ν2 = α2csH and α = α1 is the Shakura & Sunyaev viscosity

parameter. However Ogilvie (1999) showed that it was possible to derive the full

nonlinear viscosity coefficients for a warped disc analytically (although the final

solutions must be found numerically). Ogilvie (1999) showed that in the linear

regime the analysis of Papaloizou and Pringle (1983) produces the correct relation

(Eq. 1.37), but for strong warp amplitudes the viscosities can be markedly different.

In Chapter 5 we determine the evolution of a tilted disc around a spinning black

hole using the full effective viscosities derived in Ogilvie (1999).

1.5.2 Smoothed particle hydrodynamics

Smoothed Particle Hydrodynamics (SPH) is a Lagrangian numerical method for

integrating the equations of motion for a fluid. It was first introduced by Lucy

(1977) and Gingold and Monaghan (1977). SPH is a simple, intuitive and fast way

of solving the equations of motion for fluid dynamics. This has led to SPH being the

focus of much attention in the literature, its methodology being developed for over

30 years. There are now many good review papers (e.g. Monaghan 1992; Rosswog

2009; Springel 2010; Price 2012). In particular Price (2012) provides an excellent

introduction to the basics and subtleties of the method. Rather than repeat much of

the good work that is printed in these reviews I instead provide a brief description

of the basic principles which underpin the method, focusing on the parts of greatest
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relevance to this thesis. There are many variations of SPH, but the one used in this

thesis follows Price (2012).

1.5.2.1 Calculating densities

The most fundamental part of SPH is the density calculation. For a set of particles

with positions rj and masses mj the density field can be approximated as

ρ (ri) =
N

∑

j=1

mjW (ri − rj, hi) (1.38)

where W is a smoothing kernel (see Section 1.5.2.2), whose size depends on the

smoothing length6 hi, and the sum is taken over all the N particles found within

the range of the smoothing kernel. It is clear from the form of (1.38) that ρ is

independent of time and thus depends only on the instantaneous particle positions

and masses, and not on their histories. Also we can see that the properties of the

density estimate will be inherited from the properties of the smoothing kernel W .

1.5.2.2 Smoothing kernels

For a good density estimate the kernel must satisfy at least the following properties:

1) W (r− ri, h) > 0 for all ri, decreases monotonically from r and has a smooth

first derivative (continuous second derivative).

2) Isotropy. The kernel should be dependent only on the magnitude of the separation

of the particles and the smoothing length, i.e. W (ri − rj, h) = W (rj − ri, h) =

W (|ri − rj| , h). Thus the estimate is independent of rotations and translations.

6Note: this is one of two existing formalisms. Here we define hi as the smoothing length and
the kernel size as ζhi where ζ is dependent on the kernel function. Another formalism defines hi

as the kernel size.
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3) Flat inner regions to prevent large fluctuations in the density estimate by a small

movement of a close neighbour.

We now denote the kernel as W (qij) where qij = |ri − rj| /hi.

The obvious choice for a kernel is a Gaussian:

W (qij) =
σ

hd
exp

[

−q2
ij

]

, (1.39)

where d is the number of spatial dimensions and σ = [1/
√

π, 1/π, 1/(π
√

π)] is a

normalisation factor in [1, 2, 3] dimensions. However, it is clear that this kernel is

non-zero across the whole domain. This requires that all particles contribute to the

density estimate (and all other calculated quantities) leading to a numerical method

that is O(N2). This is restrictive computationally and so a kernel which goes to

zero at a finite distance is usually employed.

The most commonly used class of kernels are the B-spline kernels (Monaghan and

Lattanzio, 1985), of which the most used is the M4 (cubic) spline truncated at 2h

(i.e. the kernel size in units of the smoothing length ζ = 2). This is given by

W (q) ≡ 1
hd w (q), where

w(q) = σ























1
4
(2 − q)3 − (1 − q)3, 0 ≤ q < 1;

1
4
(2 − q)3, 1 ≤ q < 2;

0. q ≥ 2,

(1.40)

and σ is a normalisation constant given by σ = [2/3, 10/(7π), 1/π] in [1, 2, 3] dimen-

sions.

If greater accuracy in the estimated quantities is required then higher order kernels

can be used, such as the M5 (quartic) or the M6 (quintic). As the order of the spline

kernels increases they approach the Gaussian.
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1.5.2.3 Consistent h–ρ calculation

After choosing a smoothing kernel, Eq. 1.38 gives the density ρ if the smoothing

length h is known. To take advantage of the Lagrangian nature of the method we

should allow for variable h so that regions with a high number density of particles

are not excessively smoothed. Thus we require a constraint on h:

h(ri) = η

(

mi

ρi

)1/d

(1.41)

where η is a parameter (to be chosen by the user) which specifies the smoothing

length in units of the mean particle spacing. Typically η is between 1.2 − 1.5

(Rosswog, 2009) and in this thesis we choose η = 1.2 – this value is stable to the

pairing instability for the B-spline kernels (Price, 2012). It is clear that we should

choose η & 1 so that the kernel function has not significantly decreased before

reaching the nearest neighbours, however we do not want to choose η ≫ 1 as we

will smooth out regions that could otherwise be resolved.

We can convert η into an average number of neighbours by

h ≈ η

(

m

ρ

)1/d

≈ η

(

m

mNneigh/V

)1/d

(1.42)

where V is the volume of the kernel. This can then be rearranged to get

Nneigh ≈ ηd V

hd
(1.43)

which in three dimensions with V = 4
3
π(ζh)3 is

Nneigh ≈ 4

3
π(ζ ∗ η)3. (1.44)
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For the M4 cubic spline (ζ = 2) with η = 1.2 this corresponds to ≈ 58 neighbours.

We now have two equations constraining both the density (1.38) and the smoothing

length (1.41). To calculate these quantities self–consistently we must iterate between

the two equations. This is done via a Newton–Raphson technique.

1.5.2.4 Equations of motion

We now have a method for self–consistently calculating the density and smoothing

length of the particles. To evolve them in time we require an equation of motion.

Following Price (2012) we can derive an equation of motion simply from the density

(1.38) and the Lagrangian. The Lagrangian for a set of discrete particles is

L =
∑

j

mj

[

1

2
v2

j − uj (ρj, sj)

]

(1.45)

where mj, vj, uj, ρj and sj are the mass, velocity, internal energy, density and

entropy respectively of particle j and the sum is over all particles.

To find the equations of motion we use the principle of least action to derive the

Euler–Lagrange equations:

d

dt

(

∂L

∂vi

)

− ∂L

∂ri

= 0. (1.46)

This shows explicitly that the method requires the density, velocity and thermal

energy to be differentiable7, and thus we shall see below that extra terms are required

to deal with discontinuities. Also we must specify the thermodynamics of the gas,

i.e. how the internal energy is related to the density and pressure. As entropy is

conserved, the first law of thermodynamics gives du = PdV , where the change in

7The density is differentiable as long as the kernel is differentiable.
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particle volume is given by dV = −m/ρ2dρ. We now also assume P = Kργ, or more

simply P = c2
sρ for the pressure.

The equations of motion are then (Price, 2012)

ρi =
∑

j

mjW (qij) , (1.47)

dvi

dt
= −

∑

j

mj

[

Pi

Ωiρ2
i

∂Wij (qij)

∂ri

+
Pj

Ωjρ2
j

∂Wji (qji)

∂ri

]

, (1.48)

dui

dt
=

Pi

Ωiρ2
i

∑

j

mj (vi − vj) ·
∂Wij (qij)

∂ri

. (1.49)

Note that in the case of an isothermal equation of state the temperature of the gas

remains constant and hence dui/dt = 0.

1.5.2.5 Dissipative terms

We have discussed above the need for the Lagrangian to be differentiable. Therefore

the current set of equations will break down in the presence of discontinuities in the

flow, such as shocks. Therefore we include dissipation terms to smooth the velocities

(‘viscosity’) and the internal energies (‘conductivity’).

The viscosity takes the form

(

dvi

dt

)

diss

=
∑

j

mj
αSPHvsig (vi − vj) · r̂ij

ρ̄ij

r̂ijF̄ij. (1.50)

where F̄ij = [Fij (hi) + Fij (hj)] /2 with ∇iWij (qij) = r̂ijFij (hi) and the signal ve-

locity is

vsig =











1
2
[cs,i + cs,j − βvij · r̂ij]; vij · r̂ij ≤ 0;

0; vij · r̂ij > 0.
(1.51)
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The thermal conductivity (combined with the term due to the viscosity) gives

(

dui

dt

)

diss

= −
∑

j

mj

ρ̄ij

[

1

2
αSPHvsig (vij · r̂ij)

2 + αuv
u
sig (ui − uj)

]

F̄ij (1.52)

where vu
sig need not be the same signal velocity as 1.51 (Price, 2008). In this thesis

we do not use the conductivity term and thus set the coefficient αu = 0 throughout.

In principle these dissipative terms can be switched off when the flow is continuous,

and so there have been many attempts to reduce the unwanted dissipation away from

shocks and discontinuities (e.g. Morris and Monaghan, 1997; Price and Monaghan,

2005; Cullen and Dehnen, 2010). However in this thesis we take a different approach,

where we use the viscosity term to represent a Shakura & Sunyaev disc viscosity.

Lodato and Price (2010) found that with suitable adjustments, the viscosity term

(1.50) can provide a viscosity which “shows remarkable agreement with the analyt-

ical theory both in the linear and nonlinear regime”. To generate the disc viscosity

from (1.50) the viscosity should be applied to both approaching and receding par-

ticles, switches on the viscosity should not be used, i.e. αSPH should be constant in

time and space, and finally the term should be multiplied by a factor h/ |rij| similar

to the Monaghan (1992) viscosity scheme.

It can then be shown that this form of SPH viscosity leads to a Shakura & Sunyaev

viscosity of the form (Murray, 1996; Lodato and Price, 2010)

α =
1

10
αSPH

〈h〉
H

(1.53)

where 〈h〉 is the azimuthally averaged (strictly shell averaged for a warped disc)

smoothing length.
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1.5.2.6 Time–stepping

Finally, to integrate the equations of motion, we need to determine a suitable

timestep for the integration. The two conditions imposed on the timestep are the

Courant condition and a force condition. The Courant condition is

dtC =
hi

vsig,i

, (1.54)

and the force condition is

dtf =

(

hi

|ai|

)1/2

, (1.55)

where |ai| is the total acceleration of the particle. The final timestep is then chosen

as the minimum of the two with a stability parameter C ∼ 0.25. Thus

dt = C min {dtC, dtf} . (1.56)

For individual particle timesteps this is set for each particle. However if a global

timestep is used then the minimum of (1.56) is taken over all particles.
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Binary–Disc Alignment 2.1. Abstract

2.1 Abstract

We consider the interaction between a binary system (e.g. two supermassive black

holes or two stars) and an external accretion disc with misaligned angular momen-

tum. This situation occurs in galaxy merger events involving supermassive black

holes, and in the formation of stellar–mass binaries in star clusters. We work out the

gravitational torque between the binary and disc, and show that their angular mo-

menta Jb,Jd stably counteralign if their initial orientation is sufficiently retrograde,

specifically if the angle θ between them obeys cos θ < −Jd/2Jb, on a time short

compared with the mass gain time of the central accretor(s). The magnitude Jb re-

mains unchanged in this process. Counteralignment can promote the rapid merger

of supermassive black hole binaries (see Chapter 4), and possibly the formation of

coplanar but retrograde planets around stars in binary systems.

2.2 Introduction

Galaxy mergers are commonly thought to be the main mechanism driving the co-

evolution of galaxies and their central supermassive black holes (SMBH). In such

a merger we expect the formation of a SMBH binary in the centre of the merged

galaxy. Gravitational waves quickly drive the binary to coalesce if the orbital sepa-

ration can be shortened to . 10−2pc. The binary may stall at a separation greater

than this if the interaction with the merged galaxy is not efficient enough in ex-

tracting orbital angular momentum and energy. For the stellar component of the

galaxies this occurs at approximately a parsec, creating “the final parsec problem”

(Begelman et al., 1980; Milosavljević and Merritt, 2001). There have been many

papers exploring potential solutions to this problem, for example a sling-shot mech-

anism involving a triple SMBH system (Iwasawa et al., 2006), efficient refilling of
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the binary loss cone by angular momentum exchange between stellar orbits and a

triaxial dark matter halo (Berczik et al., 2006) and also the evolution of the binary

with a prograde accretion disc (circumbinary discs: Armitage and Natarajan 2005;

MacFadyen and Milosavljević 2008; Lodato et al. 2009; Cuadra et al. 2009 and em-

bedded discs: Escala et al. 2005; Dotti et al. 2007, 2009). In a recent paper (Nixon

et al., 2011a, Chapter 4) we explored the evolution of a binary interacting with a

retrograde circumbinary accretion disc. We showed that this is more efficient than

a prograde disc in removing binary orbital angular momentum and energy. This is

simply because there are no orbital resonances between the binary and the disc and

thus there is direct accretion of retrograde gas on to the binary.

Here we consider the alignment process between a binary system and an external

misaligned accretion disc. This situation can arise in at least two astronomical

contexts. A merger event between galaxies can produce an SMBH binary in the

centre of the merged galaxy, and this or a later accretion event may surround the

hole with a disc of accreting gas. A similar situation arises during the formation of

stars in a cluster. A binary system may form, but also capture gas into an external

disc.

In both of these cases, there is no compelling reason to assume that the binary and

disc rotation are initially parallel or even roughly coaligned (cf. King and Pringle

2006). As we shall see, the gravitational interaction between the binary and the disc

generates differential precession in the disc gas, and thus viscous dissipation. This

gives a dissipative torque which vanishes only when the binary and disc angular

momenta Jb,Jd are either parallel or antiparallel. In all such cases, the torque

diffuses the tilt or warp through the disc (cf. Pringle 1992, 1999; Wijers and Pringle

1999) driving the system to one of these equilibria. The existence of a warp makes

the precise definition of disc angular momentum Jd quite subtle and we return to
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this point in Section 2.5.

The binary–external disc interaction is very similar to the effect of the Lense–

Thirring (LT) precession on an accretion disc around a spinning black hole (Bardeen

and Petterson, 1975; Pringle, 1992; Scheuer and Feiler, 1996; Natarajan and Pringle,

1998; Armitage and Natarajan, 1999; Natarajan and Armitage, 1999; Nelson and

Papaloizou, 2000; Lodato and Pringle, 2006, etc.) if we replace Jb by the hole spin

angular momentum Jh. For some years it was thought that the LT interaction al-

ways led to co–alignment (i.e. Jb and Jd parallel). However King et al. (2005)

(hereafter KLOP) showed on general grounds that counteralignment does occur, if

(and only if) the initial angle θ between Jd and Jh satisfies cos θ < −Jd/2Jh, where

Jd = |Jd| and Jh = |Jh|. Scheuer and Feiler (1996) had implicitly assumed Jd ≫ Jh

and so enforced co–alignment. With this restriction lifted, King and Pringle (2006,

2007) and King et al. (2008) showed that accretion from a succession of randomly–

oriented discs leads to spindown of the supermassive black hole, allowing rapid mass

growth.

Here we examine the alignment process for a binary and an external disc. We show

that the argument of KLOP is generic, and that the disc and binary counteralign if

and only if cos θ < −Jd/2Jb. As a result it is quite possible for SMBH binaries to

be surrounded by a completely retrograde disc which strongly promotes coalescence

(cf. Nixon et al. 2011a, Chapter 4). In the case of a newly–formed stellar binary, the

presence of a counteraligned disc can lead to the formation of planets with retrograde

orbits.
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2.3 The binary–disc torque

We consider a binary system with masses M1,M2 and a circular orbit, with the

binary angular momentum vector pointing along the z–axis of cylindrical polar co-

ordinates (R, φ, z). For simplicity we assume M2 ≪ M1 and place M1 at the origin,

with M2 orbiting at radius a in the (R, φ) plane (our conclusions are not affected by

this assumption). The orbit has angular velocity

Ωb =

[

G(M1 + M2)

a3

]1/2

. (2.1)

Now we consider a disc particle in an orbit about the binary at radius R ≫ a. If both

the small quantities M2/M1 and a/R actually vanished, the particle’s orbit would

be a circle, with angular velocity (GM1/R
3)1/2. When these quantities are small but

finite they induce various perturbations in the orbit. Some of these perturbations

have (inertial–frame) frequency 2Ωb and higher multiples. These are oscillatory,

and have no long–term secular effect. Long–term effects on the orbit, and hence

eventually on the disc, come from the zero–frequency (azimuthally symmetric m =

0) term in the binary potential. This point is considered in more detail in Bate et al.

(2000), who considered the related problem of a disc around the primary mass M1

(i.e. M2 ≪ M1, but R ≪ a).

Physically this m = 0 term is given by replacing the orbiting mass M2 with the

same mass spread uniformly over its orbit, i.e. a ring of mass M2 and radius a in

the (R, φ) plane. Adding in the potential from the fixed point mass M1 at the origin

we find the effective gravitational potential experienced by a disc particle as

Φ(R, z) = − GM1

(R2 + z2)1/2
− GM2

2π

∫ 2π

0

dφ

r
(2.2)

34



Binary–Disc Alignment 2.3. The binary–disc torque

where r is the distance between the particle position and a point on the ring at

(a, φ, z), i.e.

r2 = R2 + a2 + z2 − 2Ra cos φ. (2.3)

We now expand Eq. 2.2 in powers of a/R and z/R, keeping terms only up to second

order. This gives

Φ(R, z) = −G(M1 + M2)

R
+

GM2a
2

4R3
+

G(M1 + M2)z
2

2R3
− 9GM2a

2z2

8R5
+ .... (2.4)

The orbital frequency Ω of the particle subject to this potential is given by

Ω2 =
1

R

∂Φ

∂R
(2.5)

and its vertical oscillation frequency ν by

ν2 =
∂2Φ

∂z2
, (2.6)

both evaluated at z = 0. The nodal precession frequency is Ωp = Ω− ν and we find

Ωp(R) =
3

4

[

G(M1 + M2)

R3

]1/2
M2

M1 + M2

a2

R2
. (2.7)

This frequency is very similar to that for LT precession around a spinning black

hole (e.g. Scheuer and Feiler 1996), which goes as R−3 rather than the R−7/2 here.

Equation 2.7 is formally almost identical to the precession frequency found by Bate

et al. (2000) for a disc around the primary, although derived for R ≫ a rather than

R ≪ a. The same argument as in that paper shows that if the disc and binary

axis are misaligned by an angle θ (called δ in Bate et al. 2000) with 0 ≤ θ ≤ π/2,

the precession frequency is just multiplied by cos θ. The opposite case with the
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disc somewhat counteraligned (i.e. θ > π/2) is equivalent to the θ < π/2 case

with the binary angular momentum reversed. But this reversal leaves the precession

frequency unchanged, since we are dealing only with the m = 0 part of the potential.

So for all θ with 0 < θ < π the precession frequency is

Ωp(θ) = Ωp |cos θ| . (2.8)

2.4 Co– or counter–alignment?

We have shown above that the effect of the binary potential on the disc is to induce

precession of the disc orbits. This precession is strongly dependent on radius: rings

of gas closer to the binary precess faster. The differential precession creates a dissi-

pative torque between adjacent rings of gas tending to make θ −→ 0, π so that the

precession ultimately vanishes.

The precession timescale in the disc increases with radius (cf. Eq. 2.7). The torque

therefore acts faster at smaller radii to co– or counter–align disc orbits with the

binary plane. This leads to the creation of a warp in the disc, where the inner parts

are co– or counter–aligned and the outer parts are still misaligned (cf. Fig. 2.1).

This warp propagates outwards, eventually co– or counter–aligning the entire disc

with the binary plane. This effect was solved numerically for discs warped under

the LT effect by Lodato and Pringle (2006).

Now we argue as in KLOP that since each ring feels a precession, the resultant

back–reaction on the binary is a sum of precessions, which is just a precession.

This argument is equivalent to that presented in Bate et al. (2000) who argue that

because the binary potential is symmetric about the plane of the binary, the disc–

binary torque cannot have a component in the direction of Jb. Accordingly Jb can
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only precess. These arguments show that we can write the torque on the binary

in the same form as the LT–induced torque on a spinning black hole considered in

KLOP, i.e.

dJb

dt
= −K1[Jb ∧ Jd] − K2[Jb ∧ (Jb ∧ Jd)]. (2.9)

Here K1, K2 are coefficients depending on disc properties. The first term gives the

magnitude and sign of the torque inducing the precession. It does not change the

alignment angle θ. The second term describes the torque which changes θ. The

same arguments as in KLOP for the LT case, and Bate et al. (2000) for a disc

around the primary, show that dissipation in the disc requires K2 to be a positive

quantity. Its magnitude depends on the properties of the disc and the binary. The

one difference from the LT case is that the |cos θ| dependence means that the sign of

the coefficient K1 can be either positive or negative. But this difference has no effect

on the conditions under which the disc and binary co– or counter–align. These are

formally identical with the ones for the LT case derived by KLOP, with the binary

angular momentum Jb replacing the hole spin angular momentum Jh. The process

has a different timescale specified by the different magnitude of K2.

The same arguments as in KLOP now show that the magnitude Jb of the binary

angular momentum remains constant, while the direction of Jb aligns with the total

angular momentum Jt = Jb + Jd, which is of course a constant vector. During

this process the magnitude of J2
d decreases because of dissipation (KLOP). Coun-

teralignment (θ → π) occurs if and only if J2
b > J2

t . By the cosine theorem

J2
t = J2

b + J2
d − 2JbJd cos(π − θ), (2.10)

so this is equivalent to

cos θ < − Jd

2Jb

. (2.11)
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Thus counteralignment of a binary and an external disc is possible, and requires

θ > π/2, Jd < 2Jb. (2.12)

2.5 Discussion

So far we have avoided fully spelling out the meaning of the disc angular momentum

Jd. This is complicated because the binary torque falls off very strongly with radius,

and so a large contribution to the angular momentum in a distant part of the disc

may be irrelevant to the alignment process, or affect this process in a time–dependent

way (cf. Lodato and Pringle 2006). Sections 3 and 4 of KLOP discuss these questions

in more detail. Effectively Jd can be thought of as the disc angular momentum inside

the warp radius, and therefore a time–dependent quantity.

At early times Jd is small, as only a fraction of the total gas interacts with the

binary. Counter–alignment may occur if θ > π/2, but at later times, as Jd grows

and more gas is able to interact with the binary, alignment eventually happens (when

Jd > 2Jb). So if θ > π/2, even for Jd > 2Jb we expect ∼ 2Jb| cos θ| of disc angular

momentum to counteralign with the binary before the outer disc comes to dominate

and enforce coalignment (cf. Lodato and Pringle 2006).

The typical timescale for co– or counter–alignment for a SMBH binary is

tbinary ≃ Jb

Jd(Rw)

R2
w

ν2

(2.13)

where Rw is the warp radius, Jd(Rw) is the disc angular momentum within Rw,

and ν2 is the vertical disc viscosity. This equation describes the transfer of angular

momentum in the disc to the hole, this is mediated by the ν2 viscosity flattening
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tilted rings of gas into the plane of the hole, which occurs at the warp radius Rw.

This is identical to the formal expression for LT alignment of a spinning black hole

if we replace the spin angular momentum Jh with Jb (cf. Scheuer and Feiler 1996).

The warp radius is given by equating the precession time 1/Ωp(R) to the vertical

viscous time R2/ν2 . Inside this radius the precession timescale is short and the disc

dissipates and co– or counter–aligns with the binary plane. Outside this radius the

disc is not dominated by the precession and so maintains its misaligned plane. The

connecting region therefore takes on a warped shape shown in Fig. 2.1. As time

passes the warp propagates outwards and co– or counter–aligns the entire disc with

the binary plane.
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Figure 2.1: The warped disc shape expected after the inner disc co– or counter–aligns
with the binary plane but the outer disc stays misaligned. Eventually the entire disc
will co–or counter–align with the binary plane, depending on the global criterion
(Eq. 2.12). Note that in practice precession makes the warp non–axisymmetric.
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Approximating the disc angular momentum as

Jd(Rw) ∼ πR2
wΣ(GMRw)1/2 (2.14)

with Σ the disc surface density and M = M1 + M2, and using the steady–state disc

relation Ṁ = 3πνΣ we find

tbinary ∼ 3
M2

M1

(

a

Rw

)1/2
ν1

ν2

M

Ṁ
, (2.15)

where we have also used (e.g. Frank et al., 2002)

Jb = M1M2

(

Ga

M

)1/2

. (2.16)

Since ν1 < ν2 (Papaloizou and Pringle, 1983), a ≪ Rw and M2 < M1, we see that

alignment takes place on a timescale shorter than the mass growth of the central

accretor(s).

The timescale (2.15) is directly analogous to the expression

tLT ∼ 3a∗

(

Rs

Rw

)1/2
ν1

ν2

M

Ṁ
(2.17)

for alignment under the LT precession, where a∗ < 1 is the Kerr spin parameter and

Rs the Schwarzschild radius of the spinning hole. Evaluating Rw in the two cases

we find

tLT

tbinary

∼ 31/2

2

(

a∗

M2/M1

)1/2 (

a

Rs

)1/4

. (2.18)

Thus in general, provided we assume that the ratio ν1/ν2 is similar in the two

cases and that the hole spin is not rather small (a∗ < (Rs/a)1/2(M2/M1)), then the

binary–disc alignment is rather faster than the corresponding process for spinning
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black holes.

Our result has significant consequences for SMBH binaries. For random orientations,

Eq. 2.12 shows that initial disc angles leading to alignment occur significantly more

frequently than those giving counteralignment only if Jd > 2Jb. (In the LT case

this fact leads to a slow spindown of the hole, because retrograde accretion has a

larger effect on the spin, King et al. 2008.) A number of studies (Armitage and

Natarajan 2005; MacFadyen and Milosavljević 2008; Cuadra et al. 2009; Lodato

et al. 2009) have shown that prograde external discs are rather inefficient in shrinking

SMBH binaries and solving the final parsec problem. This is essentially because of

resonances within the disc. In contrast, the slightly rarer retrograde events have a

much stronger effect on the binary. These rapidly produce a counterrotating but

coplanar accretion disc external to the binary, which has no resonances. We note

that Nixon et al. (2011a, Chapter 4) show that the binary gradually increases its

eccentricity as it captures negative angular momentum from the disc, ultimately

coalescing once this cancels its own. A non–zero binary eccentricity changes the

detailed form of the perturbing potential from that in Eq. 2.4, but cannot change

the precessional character leading to the torque equation (2.9). Our results remain

unchanged, particularly the counteralignment condition (2.12), apart from minor

modifications of the timescale (2.15).

Thus in a random sequence of accretion events producing external discs, the prograde

events have little effect, and the retrograde ones shrink the binary. In particular,

a sequence of minor retrograde events with Jd < Jb has a cumulative effect and

must ultimately cause the binary to coalesce once the total retrograde
∑

Jd = Jb.

This is important, since the disc mass is limited by the onset of self–gravity to

Md . (H/R) M1 (cf. King, Pringle and Hofmann 2008). Coalescence will then occur

once the retrograde discs have brought in a total mass M2, i.e. once a sequence
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of & (M2/M1)(R/H) retrograde discs have accreted (see Chapter 4). For minor

mergers this requires at most a few randomly oriented accretion disc events, rising

to a few hundred for major mergers (q > 0.1).

We note finally that similar considerations apply in planet–forming discs around

stellar binary systems, which can also be initially misaligned (Bate et al., 2010).

This may offer a way of making retrograde planets in binaries, as recently suggested

for ν Octantis (Eberle and Cuntz, 2010).
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3.1 Abstract

In general, when gas accretes on to a supermassive black hole binary it is likely to

have no prior knowledge of the binary angular momentum. Therefore a circumbinary

disc forms with a random inclination angle θ to the binary. It is known that for

θ < 90◦ the disc will coalign with respect to the binary. If θ > 90◦ the disc wholly

counteraligns if it satisfies cos θ < −Jd/2Jb, where Jd and Jb are the magnitudes

of the disc and binary angular momentum vectors respectively. If however θ > 90◦

and this criterion is not satisfied the same disc may counteralign its inner regions

and, on longer timescales, coalign its outer regions. I show that for typical disc

parameters, describing an accretion event on to a supermassive black hole binary, a

misaligned circumbinary disc is likely to wholly co– or counter–align with the binary

plane. This is because the binary angular momentum dominates the disc angular

momentum. However with extreme parameters (binary mass ratio M2/M1 ≪ 1

or binary eccentricity e ∼ 1) the same disc may simultaneously co– and counter–

align. It is known that coplanar prograde circumbinary discs are stable. I show that

coplanar retrograde circumbinary discs are also stable. A chaotic accretion event

on to an SMBH binary will therefore result in a coplanar circumbinary disc that is

either prograde or retrograde with respect to the binary plane.

3.2 Introduction

Galaxy mergers are commonly thought to be the main mechanism driving the co-

evolution of galaxies and their central supermassive black holes (SMBH). An SMBH

binary is likely to form in the centre of the merged galaxy and subsequently accrete

from a circumbinary disc. It is reasonable to expect that the angular momentum

of the binary and that of the accreting gas are uncorrelated, and that each has no
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prior knowledge of the other. We can therefore expect a random distribution of

orientations for such circumbinary discs.

Understanding the evolution of a misaligned circumbinary disc is needed if we are to

understand the evolution of SMBH binaries. In a recent paper (Nixon et al., 2011a,

Chapter 4) we showed that a retrograde circumbinary disc can be very efficient in

extracting angular momentum from the binary orbit. This may offer a solution to

the final parsec problem (Begelman et al. 1980; Milosavljević and Merritt 2001).

In another recent paper (Nixon et al., 2011b, hereafter NKP, Chapter 2) we showed

that the dominant effect of the binary potential, on a misaligned circumbinary disc,

is to induce radially–dependent precessions of the misaligned disc particle orbits.

This differential precession is known to induce warping of the disc as rings of gas

dissipate energy through viscosity. The precession vanishes only when the orbit

is in the plane of the binary (either prograde or retrograde) and thus we expect

that both prograde and retrograde orbits are possible equilibria for the gas. NKP

showed that the evolution of a misaligned circumbinary disc is formally similar to

the evolution of a misaligned disc around a spinning compact object. In this case

the evolution is driven by the Lense–Thirring effect (e.g. Bardeen and Petterson

1975; Pringle 1992; Scheuer and Feiler 1996; Lodato and Pringle 2006; Nixon and

King 2012; Chapter 5). This implies that the analysis of King et al. (2005), which

calculates the conditions for co– or counter–alignment, holds for circumbinary discs

as well. The disc co– or counter–aligns depending on the magnitudes and directions

of Jb and Jd, the angular momentum of the binary and disc respectively. The whole

disc counteraligns with the binary if the initial inclination angle of the disc, θ, and

the magnitudes of the disc and binary angular momentum, Jd and Jb respectively,

satisfy

cos θ < − Jd

2Jb

. (3.1)
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NKP only considered the zero-frequency (azimuthally symmetric m = 0) term in the

binary potential. This is a reasonable approach as all other terms induce oscillatory

effects which cancel out on long timescales.

It is natural to assume that coaligned discs are stable, however in the past coun-

teraligned discs have been incorrectly found to be unstable (Scheuer and Feiler,

1996). I therefore use a full three dimensional hydrodynamic approach to check the

assumptions in NKP are valid and to confirm that co– and counter–alignment are

stable. In Section 3.3 I discuss the possibility of both co– and counter–alignment of

the same disc (cf. Lodato and Pringle 2006). In Section 3.4 I report a simulation of

a counteraligning disc and give my conclusions in Section 3.5.

3.3 Simultaneous co– and counter–alignment?

Lodato and Pringle (2006) considered the alignment of a disc and a spinning black

hole. They showed that for a disc where θ > π/2 and Jd > 2Jh, initial counteralign-

ment of the inner disc occurs, followed by subsequent coalignment of the outer disc.

During the alignment of the outer disc the inner disc retains its retrograde nature

and so a warp of significant amplitude is achieved (∆θ ∼ π). This scenario produces

a disc which is simultaneously counteraligned (in the inner parts) and coaligned (in

the outer parts). For the subsequent evolution of such a disc see Nixon et al. (2012,

Chapter 6).

If however the angular momenta are such that Jd . Jh then the disc can only wholly

co– or counter–align and the above process is impossible. In this section we discuss

whether it is feasible to have circumbinary discs such that both co– and counter–

alignment are simultaneously possible. This possibility is constrained as the mass of

the disc is limited by self–gravitational collapse and the radius of the disc is limited
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by the gravitational sphere of influence of the binary. Therefore there must be a

maximum feasible disc angular momentum.

The disc simultaneously co– and counter–aligns if (and only if) θ > π/2 and the

condition (3.1) does not hold. So for randomly aligned discs, simultaneous co– and

counter–alignment is only possible if Jd & 2Jb (assuming cos θ ∼ −1). Thus I derive

the condition for Jd & 2Jb. The disc angular momentum is

Jd ∼ Md

√

GMRd (3.2)

where Md is the mass in the disc, M is the total binary mass, Rd is a characteristic

radius for the disc and G is the gravitational constant. We note that the definition

of Jd in this case is simply the total angular momentum in the disc. The exact

definition of Jd is usually more subtle because the disc takes time to communicate

its angular momentum.

The angular momentum of a binary with eccentricity e is

Jb = µ
√

GMa (1 − e2) (3.3)

where M is the total mass of the binary and µ is the reduced mass (µ ∼ M2 for

M2 ≪ M1).

So for simultaneous co– and counter–alignment we require

Md

√

GMRd & 2µ
√

GMa (1 − e2). (3.4)

Self–gravity limits Md . (H/R)M , so we get

(H/R)M
√

GMRd & 2µ
√

GMa (1 − e2). (3.5)
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After a bit of algebra this tells us that we can only get simultaneous co– and counter–

alignment if

Rd

a
& 4

(

R

H

)2 (

M2

M

)2
(

1 − e2
)

, (3.6)

where we have used the approximation µ ∼ M2.

For the most optimistic parameters we have a ∼ 0.1 pc and the sphere of influence

of the binary ∼ 10 pc. This gives the left hand side as . 100. For typical disc

thickness (H/R ∼ 10−3) it is clear that binaries with a low eccentricity (e ≈ 0)

we cannot get simultaneous co– and counter–alignment unless the mass ratio is

extreme (M2/M1 . 10−2). However if the disc is very thick then this is possible.

For small binary mass–ratios the disc mass may be greater than the mass of the

secondary, therefore the hydrodynamic drag on the binary may become significant

(Ivanov et al., 1999). If the binary is significantly eccentric, as predicted for binaries

that have accreted through a retrograde disc (Nixon et al., 2011a, Chapter 4) then

simultaneous co– and counter–alignment may be possible. I shall return to these

possibilities in future work. However these arguments suggest that it is reasonable

to assume an SMBH binary must wholly co– or counter–align the disc with the

binary plane.

3.4 Simulation

To confirm the stable counteralignment of a circumbinary disc I perform one simple

simulation. I use the SPH code phantom, a low-memory, highly efficient SPH code

optimised for the study of non-self-gravitating problems. This code has performed

well in related simulations. For example Lodato and Price (2010) simulated warped

accretion discs and found excellent agreement with the analytical work of Ogilvie

(1999) on the nature of the internal accretion disc torques.
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The implementation of accretion disc α−viscosity (Shakura and Sunyaev, 1973)

in phantom is described in Lodato and Price (2010). Specifically, we use the

‘artificial viscosity for a disc’ described in Sec. 3.2.3 of Lodato and Price (2010),

similar to earlier SPH accretion disc calculations (e.g. Murray, 1996). The main

differences compared to standard SPH artificial viscosity are that the disc viscosity

is applied to both approaching and receding particles and that no switches are

used. The implementation used here differs slightly from Lodato and Price (2010)

in that the βAV term in the signal velocity is retained in order to prevent particle

interpenetration. The disc viscosity in phantom was extensively calibrated against

the 1D thin α−disc evolution in Lodato and Price (2010) (c.f. Fig. 4 in that paper)

and the disc scale heights employed here are similar. We use αAV = 1 and βAV = 2

which at the employed resolution (see below) corresponds to a physical viscosity

αSS ≈ 0.05. Note that the initial viscosity is slightly smaller than this, however

during the simulation the disc spreads and particles are accreted and thus the spatial

resolution decreases which increases the viscosity (see Eq. 38 of Lodato and Price

2010).

3.4.1 Setup

The simulation has two equal mass sink particles representing the binary (of total

mass unity in code units), on a circular orbit with separation 0.5 (in code units). The

sink particles effect the gas only by Newtonian gravity. Initially the circumbinary gas

disc is flat and composed of 1 million SPH particles, in hydrostatic equilibrium from

1.0 to 2.0 in radius, and surface density distribution Σ ∝ R−1, set up by means of the

usual Monte–Carlo technique. This places particles in random positions following

the required surface density profile and with a Gaussian vertical density profile.

The vertical hydrostatic equilibrium corresponds to H/R = 0.05 at R = 1. The
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equation of state for the gas is isothermal. The disc is initially tilted at 170◦ to the

binary plane. Any gas which falls within a radius of 0.5 from the binary centre of

mass is removed as it no longer has any affect on the alignment of the circumbinary

disc. The disc mass is negligible in comparison to the binary mass and thus the

gravitational back–reaction of the gas on the binary is not included.

3.4.2 Geometry

The binary is taken to orbit in the x–y plane with binary angular momentum vector

in the z–direction. We define the ‘tilt’ and the ‘twist’ of the disc with respect to the

binary using Euler angles (e.g. Bardeen and Petterson 1975; Pringle 1996), where

the unit angular momentum vector in the disc is described at any radius by

ℓ = (cos γ sin β, sin γ sin β, cos β) (3.7)

with β (R, t) the local angle of disc tilt with respect to the z–axis and γ (R, t) the

local angle of disc twist measured from the x–axis.

3.4.3 Stable counteralignment

As predicted by NKP the dominant effect of the binary on the disc is to induce

precessions in the gas orbits. As the radial range of the disc in this simulation

is only a factor of two, the precession rate changes little between the inner and

outer parts of the disc. However there is still a differential precession across the

disc, which leads to a twist. This causes dissipation between rings of gas and so

a small amplitude warp in the disc (cf. Fig. 3.1). The disc angular momentum

vector precesses around the binary angular momentum vector for the duration of
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the simulation. In Fig. 3.2 the twist angle in the disc (at unit radius) is plotted

against time. As the twist angle is defined between ±180◦ the plot has a ‘saw–

tooth’ shape, as the disc precesses until the twist is −180◦ which is then equivalent

to 180◦.
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Figure 3.1: The tilt angle in the disc as a function of radius. This is plotted at six
different times corresponding to (in units of the dynamical time at R = 1) t = 0
(black), t = 500 (red), t = 1000 (green), t = 1500 (blue), t = 2000 (grey), t = 2500
(purple). Initially the disc is flat with a global tilt of 170◦. In time the disc spreads
and counteraligns with respect to the binary plane.
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Figure 3.2: The twist angle (angle from x–axis to the line of nodes) at R = 1 in
the disc as a function of time. Initially the line of nodes is in the y–direction and
hence the angle is 90◦. The binary potential induces precession of the gas orbits.
The twist is calculated between ±180◦ which generates the ‘saw–tooth’ structure in
the plot.
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Figs. 3.3 & 3.4 show the disc structures at various times. Fig. 3.3 shows the disc

column density viewed face on, and Fig. 3.4 shows it edge on. In Fig. 3.3 we see the

usual viscous spreading of the disc, and also the lack of any resonances in the disc.

This is expected in a counterrotating circumbinary accretion disc (Papaloizou and

Pringle 1977; Nixon et al. 2011a; Chapter 4). In Fig. 3.4 we can see the tilt of the

disc. Initially the disc is tilted by 170◦, but then precesses and counteraligns with

the binary plane.
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Figure 3.3: Face–on column density rendering of the disc at various times in the
simulation. Each component of the binary is represented by a red filled circle. Over
time the disc spreads and precesses around the binary. The precession induces
dissipation in the disc which aligns the disc with the binary plane.
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Figure 3.4: Edge–on column density rendering of the disc at various times in the
simulation. Each component of the binary is represented by a red filled circle. Over
time the disc spreads and precesses around the binary. The precession induces
dissipation in the disc which aligns the disc with the binary plane.
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I have also performed simulations (not illustrated) of a moderately eccentric binary

(e = 0.3) and an unequal mass ratio binary (M2/M1 = 0.5) which both display the

same behaviour.

3.5 Conclusions

I have shown that for realistic parameters a circumbinary disc must usually wholly

co– or counter–align with a binary. However for extreme mass ratios or high eccen-

tricities the binary may be dominated by the disc angular momentum (cf. Eq. 3.6).

In this case evolution similar to Fig. 9 of Lodato and Pringle (2006) is expected with

simultaneous co– and counter–alignment of the disc.

I have shown that a disc with an initial inclination of 170◦ to the binary plane stably

counteraligns. Circumbinary discs, with Jd ≪ Jb and an initial misalignment angle

of > 90◦ counteralign with respect to the binary. If the disc angular momentum is

not negligible, King et al. (2005) showed that the condition for counteralignment is

cos θ < − Jd

2Jb

. (3.8)

A counteraligned circumbinary disc is efficient at shrinking the binary as it directly

absorbs negative angular momentum when capturing gas into circumprimary or

circumsecondary discs (Nixon et al., 2011a, Chapter 4). This interaction increases

the binary eccentricity. Nixon et al. (2011a, Chapter 4) show that the timescale to

increase the eccentricity from zero to unity is ∼ M2/Ṁ where Ṁ is the mass inflow

rate through the retrograde circumbinary disc. Once the eccentricity is high enough

gravitational wave losses will drive the binary to coalescence.
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4.1 Abstract

We investigate whether a circumbinary gas disc can coalesce a supermassive black

hole binary system in the centre of a galaxy. This is known to be problematic for a

prograde disc. We show that in contrast, interaction with a retrograde circumbinary

disc is considerably more effective in shrinking the binary because there are no

orbital resonances. The binary directly absorbs negative angular momentum from

the circumbinary disc by capturing gas into a disc around the secondary black hole,

or discs around both holes if the binary mass ratio is close to unity. In many cases the

binary orbit becomes eccentric, shortening the pericentre distance as the eccentricity

grows. In all cases the binary coalesces once it has absorbed the angular momentum

of a gas mass comparable to that of the secondary black hole. Importantly, this

conclusion is unaffected even if the gas inflow rate through the disc is formally super–

Eddington for either hole. The coalescence timescale is therefore always ∼ M2/Ṁ ,

where M2 is the secondary black hole mass and Ṁ the inflow rate through the

circumbinary disc.

4.2 Introduction

Astronomers now generally agree that the centre of every reasonably large galaxy

contains a supermassive black hole (SMBH). Moreover the mass of this hole cor-

relates (at least at low redshift) with properties of the host galaxy (Ferrarese and

Merritt, 2000; Gebhardt et al., 2000; Häring and Rix, 2004). In the hierarchical

picture of structure growth, small galaxies merge to produce large ones, promoting

accretion on to their central SMBHs, and apparently causing these holes to coalesce.

The favoured mechanism for driving the holes closer is dynamical friction. However
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it is unclear that this can bring them close enough for gravitational wave losses to

complete the coalescence, since the frictional process itself scatters away the stars

causing it, and refilling of the loss cone is apparently too slow. This is often called

the ‘final parsec problem’, as dynamical friction typically stalls at such separations

between the holes (Begelman et al., 1980).

A possible way of overcoming this problem is interaction with gas orbiting in a

disc just outside the SMBH binary (Armitage and Natarajan, 2005; MacFadyen and

Milosavljević, 2008; Lodato et al., 2009; Cuadra et al., 2009). There has also been

much discussion of cases where an SMBH binary is embedded in a disc (Escala

et al., 2005; Dotti et al., 2007, 2009). It is implicitly assumed that dissipative

torques make the disc coplanar with the binary. Studies of the circumbinary disc

problem have so far considered prograde discs, i.e. those rotating in the same sense

as the binary. Then tidal interaction with the binary turns the disc into a decretion

disc, which transports angular momentum outward, but with little inward mass

transport (Lodato et al., 2009). If the disc mass is large enough to carry away the

binary angular momentum, a decretion disc is vulnerable to the self–gravitational

instability (Lodato et al., 2009). This can rob the disc of the gas it needs to drive

further angular momentum loss, halting the binary shrinkage.

This makes it doubtful that a prograde disc can ever in practice shrink the binary

separation from a ∼ 1 pc to the point (a ∼ 10−2 pc) where gravitational wave losses

can drive it to coalescence. However the separation of the SMBH binary is much

smaller than the interacting galaxies themselves so it is highly unlikely that the

central gas flows are always prograde. These flows also receive randomly–directed

injections of energy and momentum from star formation and supernovae, suggesting

that retrograde flows are as likely as prograde. This kind of chaotic accretion gives

a plausible picture of the mass and spin evolution of a central accreting black hole
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(King and Pringle, 2006; King et al., 2008). It also implies that if nothing else

manages to drive an SMBH binary to coalescence, it is highly likely that at some

point there will be a retrograde coplanar disc surrounding the binary. This situation

would arise if for example an earlier episode of prograde gas accretion failed to

coalesce the binary, and was followed by a retrograde accretion event. As we will

see, retrograde discs behave quite differently from prograde ones, and may offer a

solution to the final parsec problem.

4.3 Prograde vs. Retrograde

We start by contrasting the main qualitative features of the prograde and retrograde

cases. These stem from the physics of the interaction between the binary and the

disc, where dissipative torques try to share the angular momenta. If the disc is

prograde, this interaction shrinks the binary but moves the inner edge of the disc

outwards, reducing the torque shrinking the binary. If instead the disc is retrograde,

the effect is to shrink the binary, but also to move the inner edge of the disc inwards.

A prograde disc becomes a decretion disc, transporting angular momentum out-

wards with little net mass transport (Lodato et al., 2009). A retrograde disc instead

remains an accretion disc, transporting angular momentum outwards and mass in-

wards. As we shall see, the long–term evolution of the disc–binary system is radically

different in the two cases.

In particular, the disc–binary torque is quite different. For a prograde disc the tidal

interaction occurs mainly through resonances. These occur when

Ω2 = m2(Ω − ω)2, (4.1)
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where ω is the binary orbital frequency, Ω(R) is the disc angular velocity and m =

1, 2, ... is the wave mode number (for example see the analysis in Papaloizou and

Pringle 1977). So there are resonances at radii where

Ω(R) =
mω

m ± 1
, (4.2)

where Ω and ω have the same sign. Resonances outside the binary orbit (i.e. with

Ω < ω) correspond to the positive sign in the denominator of Eq. 4.2 and so appear

at radii where

Ω(R)

ω
=

1

2
,

2

3
,

3

4
, ... (4.3)

The dominant interaction then involves the 2:1 (more strictly 1:2) resonance.

By contrast, in a retrograde disc Ω and ω have opposite signs, and Eq. 4.1 requires

|Ω| > |ω|, so there are no resonances in a circumbinary retrograde disc. The disc–

binary interaction is direct, as the inner edge of the disc starts to impinge on the

secondary black hole. A retrograde circumbinary disc remains an accretion disc

whose material is gravitationally captured by the binary, directly reducing its angu-

lar momentum. This is inherently more promising for shrinking the binary towards

coalescence than the prograde case, where the binary dams up the disc.

It is important to understand that ‘capture’ simply means that the gas orbits a par-

ticular hole, and so has added its (negative) angular momentum to the binary orbit.

It does not imply that the relevant hole must actually accrete this gas (although

it may). Once captured the gas is bound to the hole and thus may be treated as

a single body. Some or all of this captured gas can be expelled, for example by

radiation pressure. Provided that this process is isotropic in the frame of the hole

this does not change its orbital angular momentum, and so has very little effect on

the orbital dynamics and eventual coalescence (cf. Eq. 4.22 below).
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4.4 Where does the mass go?

The effect of a retrograde circumbinary disc differs in detail depending on how the

captured mass is distributed between the two black holes. Accordingly we look at

the reaction of test particles to the binary. To make things simple we first consider

a circular binary with a low mass ratio, i.e. M2/M1 . 0.1. Then to first order we

can treat the primary as fixed and the secondary as following a circular orbit of

radius a around it with velocity V = (GM1/a)1/2. The circumbinary disc gas is on

circular orbits with velocity ≃ (GM1/R)1/2 at each radius R. We assume the disc

gas spirals slowly inwards from a large radius by the usual viscous evolution. As

it is counter–rotating we can ignore all resonant effects and assume everything is

ballistic until orbits begin to cross and fluid effects appear. We define the effective

radii R1, R2 of the two holes as the radii within which gas particles are captured by

each hole, e.g. by forming a disc around one or other of them, so that this captured

gas has the same net specific angular momentum as the relevant hole. Evidently

R1, R2 cannot in practice be larger than the individual Roche lobes for each hole.

For the disc particles orbiting closest to M2 the interaction with M2 is initially

hyperbolic and so we can use the impulse approximation. Here the relative velocity

is approximately 2V . If the disc edge is at a radius R = a + b, where b ≪ a,

the impulse approximation shows that the disc particle acquires an inward radial

velocity

UR =

(

GM2

b2

)

× 2b

2V
=

GM2

bV
. (4.4)

The inner edge of the circumbinary disc is not significantly perturbed if its distance

b from the secondary’s orbit is large enough that UR . V , i.e. V 2 & GM2/b, or

equivalently b & (M2/M1)a. From this we conclude that the secondary cleanly pulls
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the gas from the unperturbed inner edge of the disc at b provided that R2 & b, i.e.

R2

a
&

M2

M1

. (4.5)

Comparing this with the Roche lobe constraint

R2

a
. 0.4f

(

M2

M1

)1/3

, (4.6)

where f . 1 is a dimensionless factor, we see that the secondary captures almost all

the gas for mass ratios

q =
M2

M1

. qcrit = 0.25f 3/2 ≃ 0.25. (4.7)

Equivalently we can define a Safronov number (Safronov, 1972) as used in discussing

accretion of planetesimals from a protoplanetary disc:

Θ =
v2

esc

2v2
orb

≃ GM2

R2

a

GM1

=
M2

M1

a

R2

(4.8)

where vesc, vorb are the escape velocity from the secondary’s effective radius, and

its orbital velocity respectively. This measures how much the gas is gravitationally

perturbed before being captured. Small Θ implies little perturbation. We see that

the criterion for secondary capture is just Θ . 1, that is, the gas is cleanly captured

without significant perturbation.

For larger mass ratios the flow becomes more complex and it is likely that some gas

falls towards the binary centre of mass, producing some form of primary capture.

In numerical simulations (Section 4.7) we will find that even in this case most of

the gas is captured by the secondary. So in general the secondary captures most

of the mass, and only in a major merger with q > qcrit does the primary capture a
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non–negligible amount from a retrograde circumbinary disc.

4.5 Eccentricity growth

A retrograde circumbinary disc can decrease both the energy and angular momentum

of the SMBH binary, and so change its eccentricity. A simple argument shows how

this happens. We consider a slightly eccentric binary orbit (the orbit is never exactly

circular if it is shrinking) and again for simplicity assume that the mass ratio is

sufficiently extreme that we can regard the primary black hole as effectively fixed,

and only the secondary as interacting with the disc.

Momentum conservation shows that capture of disc gas always reduces the sec-

ondary’s orbital velocity (see Eq. 4.18). This holds both for a direct collision, or

(more commonly) if the secondary captures gas into a bound disc around itself. The

secondary’s mass cannot decrease in these interactions. Its specific orbital energy

therefore always drops, so that the binary semimajor axis a decreases. But for mass

capture into a symmetrical disc around the secondary near apocentre, the new orbit

must retain the same apocentre as the old one (it must pass through this point, and

the radial velocity remains zero there). Given the decrease of the semimajor axis,

this means that capture near apocentre tends to increase the orbital eccentricity e

(since a[1 + e] remains constant). The eccentricity is evidently

e ∼ ∆M

M2

(4.9)

where ∆M is the amount of mass the secondary has captured. Exactly the same

reasoning shows that for mass capture near pericentre, the quantity a(1− e) has to

stay constant despite a further decrease in a – in other words, the eccentricity must
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decrease here by about the same amount (∆M/M2) it increased at apocentre.

The secondary obviously captures at all points in between apo– and pericentre, but

the effects are opposed for significant times. If the eccentricity is initially small these

times are nearly equal, and e stays small as the orbit shrinks, provided that ∆M/M2

is below a certain value (4.12).

If on the other hand the orbit is initially quite eccentric, or the mass grows signifi-

cantly in one orbit, the pericentre may be too small to allow disc interaction. Then

e grows with a(1 + e) = a0 ≃ constant, and the pericentre distance goes as

p = a(1 − e) = 2a − a0. (4.10)

The binary therefore coalesces once the original semimajor axis has halved. We show

below (Eq. 4.22) that this occurs once the secondary has absorbed the (negative)

angular momentum of disc gas with mass comparable to its own. If gas flows inwards

through the circumbinary disc at the rate Ṁ the timescale for coalescence is

tco ≃
M2

Ṁ
(4.11)

We stress again that this does not require either hole to accrete this gas but only to

capture the gas into a bound orbit around the hole. In particular, Ṁ can formally

exceed the Eddington accretion rate for either hole without affecting the orbital

shrinkage. If the accretion rates on to either hole were super–Eddington then the

captured gas would be blown away by radiation pressure from the disc(s) around

the secondary (and possibly primary) black hole, without significantly changing the

binary orbital evolution (cf. Eq. 4.22).

The critical eccentricity separating cases where the binary remains almost circular
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from those of growing eccentricity depends on the surface density distribution of the

circumbinary disc. In a real three–dimensional disc with scale height H and aspect

ratio H/R the surface density tails off over a length–scale H(a) ∼ (H/R)a. This

suggests that the critical eccentricity dividing these two cases is just

ecrit ∼
H

R
(4.12)

Thus any binary starting with e > ecrit, or achieving it by capturing a large mass

(comparable to the secondary’s) in one orbit, must become very eccentric. We note

that even a preceding episode of prograde accretion can leave the binary with an ec-

centricity exceeding ecrit (e.g. Cuadra et al. 2009), so that growth to high eccentricity

is very likely if accretion is chaotic. Our conclusions about eccentricity growth agree

with those of Dotti et al. (2009), who considered a related but different problem.

A secondary black hole was injected with significant eccentricity into a pre–existing

dense circumnuclear disc surrounding a primary black hole. The secondary’s orbit

was initially retrograde with respect to this interior disc. However the secondary

was able to interact with enough gas in less than one orbit that it cancelled all of

its angular momentum. The secondary then briefly had approximately zero angular

momentum before capturing more gas and so changing its angular momentum to

prograde. Here we restrict ourselves to accretion events on much smaller scales than

in Dotti et al. (2009). This difference in lengthscales is important. At the smaller

scales we consider, a disc with mass Md ≫ M2 would probably be self–gravitating,

and this change of angular momentum sign is unlikely to occur. Our simulations

agree with this conclusion: once interaction with the disc has cancelled the orbital

angular momentum (and thus much of the orbital energy) of the secondary, the

binary coalesces.
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4.6 Orbital evolution of the binary

We can now make analytic estimates of the orbital evolution as the binary interacts

with an exterior retrograde disc. For simplicity we again assume that q = M2/M1 ≪

1, so that the secondary has specific orbital energy and angular momentum E, J2

where

E = −GM1

2a
=

1

2
v(r)2 − GM1

r
(4.13)

and

J2 = GM1a(1 − e2) (4.14)

We have seen above that in many cases the binary eccentricity grows quite strongly.

We take the limit where the secondary interacts with the disc only very near apoc-

entre r = a(1 + e). Here its velocity vap is purely azimuthal, with

[a(1 + e)vap]
2 = J2 (4.15)

which by Eq. 4.14 gives

v2
ap =

GM1

a

1 − e

1 + e
(4.16)

Near apocentre the secondary interacts with disc material moving with azimuthal

velocity vdisc < 0, with

v2
disc =

GM1

r
=

GM1

a(1 + e)
(4.17)

We assume that a mass ∆M of disc matter is captured into orbit about the secondary

near apocentre, as we discussed above, so that all of its orbital angular momentum

is transferred to the secondary. To allow for mass loss from the subsequent accretion

process on to this hole (if for example this is super–Eddington, or mass interacts

gravitationally with the secondary but is all accreted by the primary) we assume
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that the effective mass of the hole plus disc becomes M2 + α∆M , with 0 ≤ α ≤ 1.

Then conservation of linear momentum gives

M2vap − ∆Mvdisc = (M2 + α∆M)u (4.18)

where u is the new apocentre velocity of the secondary plus its captured gas disc.

The changes ∆E, ∆a in orbital specific energy and semi–major axis are given by

GM1

2a2
∆a = ∆E =

1

2
u2 − 1

2
v2

ap (4.19)

Combining Eqs. 4.16,4.17,4.18 and 4.19 gives

∆a

a2
=

−2

a(1 + e)

∆M

M2

[(1 − e)1/2 + α(1 − e)] (4.20)

to lowest order in ∆M . We noted above that if the interaction is confined to the

immediate vicinity of apocentre then the apocentre distance a0 = a(1 + e) stays

constant in the subsequent evolution. Then 1 + e = a0/a and 1 − e = 2 − a0/a,

so that the left hand side of Eq. 4.20 is simply ∆(1 − e)/a0 and therefore Eq. 4.20

becomes

∆(1 − e) = −2∆M

M2

[(1 − e)1/2 + α(1 − e)]. (4.21)

Using M2 = M20 + αM , where M20 was the mass of the secondary hole when e was

zero, and M is the total mass since transferred from the disc, this integrates to give

1 − e =

(

M20 − M

M20 + αM

)2

, (4.22)

Hence in this approximation the binary coalesces (i.e. 1 − e = 0) once the disc
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has transferred a mass equal to the secondary black hole, i.e. after a time tco (cf.

Eq. 4.11), independently of the fraction α. This means that mass loss has no effect

in slowing the inspiral. We note that Eq. 4.20 implies that the energy dissipated in

the shrinkage of an eccentric binary is

− M2∆E ≃ GM1∆M

2a
(4.23)

per binary orbit, which is less than that produced by viscous dissipation in the disc

(this has to pull in a mass larger than ∆M on each orbit).

All other cases give similar timescales ∼ tco for coalescence. For example if the orbit

stays circular we can set e = 0 in Eq. 4.20 and find

∆a

a
= −2(1 + α)

∆M

M2

, (4.24)

so that a ∝ M
−2(1+α)
2 . If the secondary gains the transferred mass we have α =

1, a ∝ M−4
2 , while if the transferred mass (but not the angular momentum) ends up

on the primary we have α = 0, a ∝ M−2
2 . Shrinking the binary from a = 1 pc to

a = 10−2 pc, where gravitational radiation rapidly coalesces it, requires the transfer

of between 2 and 9 times the original mass of the secondary in the two cases. This

is larger than in the eccentric case because the torque on the binary now decreases

with a (indeed the required mass would be formally infinite without gravitational

radiation).

4.7 Simulations

We now use Smoothed Particle Hydrodynamics (SPH) simulations to compare with

the analytical arguments above.
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4.7.1 Code setup

We use a fully 3D conservative Lagrangian implementation of the SPH algorithms,

for example Springel and Hernquist (2002); Rosswog (2009); Price (2012). We ne-

glect gas self-gravity and so are able to use linked–lists of particles rather than the

usual tree for neighbour finding (Deegan, 2009). We assume an isothermal disc,

i.e. P = c2
sρ, where the temperature and hence sound speed cs is constant for all

particles at all times. We make this choice for simplicity, and anticipate that the

interaction of gas with the binary is not greatly affected by it. In particular we noted

in Section 4.6 above (cf. Eq. 4.23) that binary shrinkage does not greatly increase

the heating of the disc. We integrate a ‘live’ binary which feels the back reaction of

the gas and generates self–consistent orbits for the binary and the gas.

Our aim here is to understand the dynamical interaction of the disc with the binary,

rather than long–term behaviour such as the timescales for coalescence, which we

know depends on the total mass transferred through the disc (see Section 4.6 above).

Accordingly we use only the standard SPH artificial viscosity (Rosswog, 2009) and

do not include a physical viscosity. Our simulations run only for a few tens of binary

orbits, so that the viscosity scheme employed should not affect our results.

Our code units are dimensionless and take the initial separation and mass of the

binary as unity. The period of the binary in its initial configuration is thus 2π.

The general disc setup is gas, of mass Md, spread from Rin to Rout with a surface

density following a power law in radius, i.e. Σ = Σ0 (R/R0)
−p with p typically

= 1. The initial vertical structure in the disc is a Gaussian. We set the sound

speed in the gas to a value ensuring that our neglect of self–gravity is justified.

The relevant quantity here is the Toomre parameter Q = csΩ/πGΣ (Toomre, 1964),

which describes the stability of a disc to gravitational collapse. For Q < 1 the disc
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self–gravity overwhelms the disc pressure resulting in collapse. Thus we arrange

that Q exceeds a minimum value (> 1) throughout the disc. Typically we arrange

Q > 5 for a disc of mass Md = 10−2. The particles are all on initially circular orbits.

The simulations detailed below were repeated with half a million, one million and

two million particles and were deemed to have converged. All of the simulations

detailed below initially contain one million particles.

4.7.2 Where does the mass go?

Two main parameters govern the gas flow for a retrograde disc–binary system: the

binary mass ratio and the ‘capture’ radius of each binary component. As we dis-

cussed in Section 4.4, with mass ratios q ≃ 1, both the primary and secondary can

interact with the inner edge of the disc so we should expect gas capture by both

objects. However if q ≪ 1, an inward–moving disc reaches the secondary before the

primary. Then the secondary’s effective radius may be large enough for it to capture

all of the gas. If instead this radius is small the gas may be perturbed towards the

primary rather than captured. In Section 4.4 we estimated the critical value dividing

these cases (Eq. 4.5). We study the effects of changing parameters here.

It is of course currently impossible to follow gas accretion down to the innermost

stable circular orbits of the two black holes while simultaneously following the gas

flow from the circumbinary disc. The analytic work above suggests that the sec-

ondary hole is always surrounded by a gas disc denser than the circumbinary disc

and any gas flow from it, which therefore captures any gas impacting it. If ini-

tially there had been no gas around the secondary, gas entering Rcapture = aM2/2M1

would be captured (but not necessarily accreted). This gas would spread to form a

disc around the secondary, on a timescale short with respect to the mass transfer
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timescale in the circumbinary disc. The secondary’s disc then forms an obstacle for

further inflow from the circumbinary disc. As further mass is captured in this way,

this disc can become at most as large as some fraction of the Roche lobe (cf. Eq. 4.6).

In the language of planetary dynamics this condition is formally equivalent to tak-

ing the secondary’s Safronov number, defined as (planetary escape velocity/orbital

velocity)2/2, (e.g. Safronov 1972; Hansen and Barman 2007) to be of order 2.5q2/3.

From this analysis we expect the capture radius of the holes to be of order or smaller

than the Roche lobe. For completeness we also consider the possibility of still smaller

capture radii. Once a particle moves within the capture radius it is assumed to have

impacted upon the disc assumed to be present inside the capture radius. This

gas could be accreted by the black hole or expelled by radiation pressure from the

innermost parts of the disc. In either case it is clear that once it has been ‘captured’

it plays no significant further role in the binary dynamics. Accordingly we add its

mass and momentum to the relevant hole and remove it from the simulation.

4.7.2.1 Secondary capture

The first simulation has a mass ratio of q = 0.1 and effective radii 0.15, 0.2 for the

secondary and primary. Eq. 4.5 implies that the secondary should capture the inner

edge of the circumbinary disc without significantly perturbing the remaining disc

particles. From Eq. 4.8 the secondary’s Safronov number is 2/3.

We start with the retrograde disc extending from 1 to 2 in radius, and a circular

binary.

74



Retrograde Accretion 4.7. Simulations

Figure 4.1: Image of the simulation from Section 4.7.2.1 at time t = 50. The binary
is represented by the two dots. The axes are in code units with the log of the column
density given by the bar.
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At first the disc inner edge is slightly perturbed, but not enough to provide any

noticeable accretion onto the primary. After one binary orbit the system settles and

the secondary smoothly captures the inner edge of the disc. Fig. 4.1 shows the state

of the simulation at t = 50. At this time, of the particles accreted, the secondary

has captured ∼ 100% (149759 particles) and the primary has captured ∼ 0% (3

particles).

4.7.2.2 Primary capture

The second simulation also has a mass ratio of q = 0.1, but this time we use an

effective radius of 0.05 for the secondary with again 0.2 for the primary capture

radius, so that its Safronov number is Θ = 2. Eq. (4.5) implies that the secondary

should perturb the disc particles significantly without directly accreting all of them.

The initial disc is exactly the same as for the simulation in Section 4.7.2.1. The

binary is again initially circular.
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Figure 4.2: Image of the simulation from Section 4.7.2.2 at time t = 50.
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At first, the disc inner edge is significantly perturbed, with some particles on orbits

passing close to the primary. In the first 3 – 4 orbits the gas flow is very chaotic.

After this the system settles into a quasi–steady state. Both holes capture from the

retrograde circumprimary disc (as shown in Fig. 4.2). The secondary both disturbs

and captures particles from the outer edge of the circumprimary disc, and perturbs

more particles into it. The circumprimary disc is warped, eccentric and precessing.

This is probably a result of particle noise destroying the symmetry about the orbital

plane, as might indeed happen in a realistic situation.

At time t = 50 the secondary has captured ∼ 95% (147642) particles and the primary

has captured ∼ 5% (8193 particles). So even in this case the secondary still takes

most of gas captured from the circumbinary disc. The binary probably coalesces

once the disc has transferred a mass ∼ M2, so if the disc is more massive than this,

the coalesced hole eventually accretes the remainder. Clearly if the secondary’s mass

or its capture radius is made arbitrarily small, it would accrete very little, and most

of the mass would be captured by the primary. However it is clear that this requires

extreme choices of these parameters.

4.7.2.3 Dual Capture

Here we look at the interaction of an near equal–mass binary with the disc. We use

q = 0.5 and the same disc as in Sections 4.7.2.1 and 4.7.2.2. Again the binary is

initially circular. Here we use capture radii of 0.01 for both holes to allow formation

of circumprimary and circumsecondary discs.
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Figure 4.3: Face on image of the simulation from Section 4.7.2.3 at time t = 25.
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Figure 4.4: Image of the simulation from Section 4.7.2.3 at time t = 25 viewed at
an angle of 15◦ to the plane of the disc.
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During the initial 3 – 4 binary orbits the flow is very chaotic, with mass captured

by both holes. As more gas is captured (but this time not ‘accreted’) by both holes,

circumprimary and circumsecondary discs are formed which persist throughout the

simulation. The discs are supplied by streams from the circumbinary disc. We show

the simulation at time t = 25 in Figs. 4.3 & 4.4. At this time the primary has

captured 48% (57969) and the secondary 52% (62189) of the accreted particles. To-

gether with the previous simulation, this shows that the primary can gain significant

mass only if the mass ratio is close to unity. We note again that the discs are not

planar, and show a significant tilt with respect to the binary plane. Again this is

probably a result of particle noise removing the symmetry about the orbital axis.

Globally angular momentum is conserved but locally the streams that supply these

discs need not be planar.

4.7.3 Eccentricity growth

The analytic arguments of Section 4.5 suggest that capture from a retrograde cir-

cumbinary disc at apocentre and pericentre of the binary orbit increase and decrease

its eccentricity respectively. Here we show three SPH experiments exploring this.

The first simulation has an initially circular binary, with q = 10−3, where the sec-

ondary is embedded just inside the inner edge of a retrograde disc. In code units

the disc is spread radially from 0.8 to 1.5. The disc has an initial mass Md = 10−2.

The second simulation also starts with the secondary embedded in the disc. However

this time the inner edge of the disc extends much further in, to 0.1.

The third simulation starts with a retrograde disc interior to the binary, i.e. a

circumprimary disc extending from 0.1 to 1.0. In this case we start with initial

eccentricity 0.5 and the binary at apocentre – so the secondary begins outside the
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circumprimary disc but plunges into it before it reaches pericentre.

All of these simulations have capture radii 0.1, 0.01 for the primary and secondary

respectively.
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Figure 4.5: Eccentricity growth and decay of the simulations in Section 4.7.3. Time
is in code units. The solid line is the first simulation (capture at apocentre but not
at pericentre), the dashed line is the second simulation (capture at both pericentre
and apocentre) and the dotted line is the third simulation (capture at pericentre
and not apocentre)
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We show in Fig. 4.5 how the eccentricity of the binary evolves in the three cases. In

the first simulation the binary captures enough gas at apocentre on the first orbit to

plunge inside the inner edge of the disc. This means that the eccentricity growth at

apocentre cannot be moderated by decay at pericentre. The eccentricity therefore

grows as shown in Fig. 4.5. In the second simulation the secondary is still capturing

when it reaches pericentre and so the eccentricity decays. It is notable that the

eccentricity never returns precisely back to zero in this case. This happens because

the secondary captures unequal amounts of gas at apo– and pericentre. This is

reasonable, as its velocity is higher at pericentre and so it has less time to interact

with the gas, In addition the mass and angular momentum at each radius is not

constant.

In the third simulation the secondary can initially only capture from the circumpri-

mary disc at pericentre and so the eccentricity decays. After approximately 3 − 4

orbits the secondary has damped out most of its initial eccentricity to an almost

circular orbit. After a short interaction with the inner parts of the disc it reaches its

inner edge. Here there is a brief interval of eccentricity growth as it captures from

this inner edge of a (now) circumbinary disc.

All of the results of these simulations agree with the analytic arguments of Sec-

tion 4.5.

4.8 Discussion

We have seen that accretion from a retrograde circumbinary disc can be considerably

more effective in shrinking a supermassive black hole binary system than accretion

from a corresponding prograde disc. Coalescence occurs if the secondary black hole

captures angular momentum from a gas mass comparable to its own.
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The reason for this effectiveness is the absence of orbital resonances in a retrograde

disc. This cannot react to tidal torques from the binary and become a decretion disc,

which is what tends to slow the evolution in the prograde case (Lodato et al., 2009;

Cuadra et al., 2009; Dotti et al., 2007; MacFadyen and Milosavljević, 2008). Instead,

the disc directly feeds negative orbital angular momentum to the secondary black

hole. An important aspect here is that there is no restriction on the rate at which

this can occur. In particular gas can flow inwards at rates higher than Eddington

for even the primary black hole without any significant effect on the amount of gas

required to coalesce the binary.

Capture to the primary hole is negligible unless the mass ratio is very close to unity,

and is never dominant (even if ‘capture’ actually leads to ‘accretion’, which is not

required). This may be important in interpreting attempts to observe merger events.

In many cases the binary may develop very high eccentricity before gravitational

wave emission coalesces it. The latter rapidly damps the eccentricity during the final

inspiral, but leaves a residual value which is likely to be significant in any merger

event detectable by gravitational wave observatories such as LISA. If the secondary

hole actually accretes the captured mass it will acquire a large spin (Kerr parameter

a ≃ 1) antiparallel to its binary orbit, which would be potentially detectable in the

LISA waveform. Moreover if the mass ratio is very close to unity it is conceivable that

the primary hole might do the same. This could in principle favour high black hole

spin as a result of major mergers (e.g. in giant ellipticals), as sometimes proposed.

However we should recall that the holes may well not gain much mass, particularly

if this is captured at super–Eddington rates, and the primary definitely does not

gain mass (and thus spin up) unless the mass ratio is very close to unity. For these

reasons it seems unlikely that coalescences induced by retrograde gas flows produce

rapidly spinning merged holes except in rare cases.
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We caution finally self–gravity can deplete the circumbinary disc of gas and reduce

its ability to shrink the binary (cf. Lodato et al. 2009 in the prograde case). Since

coalescence by a retrograde disc requires Md & M2, and self–gravity effects appear

unless Md . (H/R)(M1+M2), where H/R is the disc aspect ratio, it appears that the

final parsec problem is so far alleviated only for mergers with M2/M1 . H/R. This

work does suggest how coalescence might work for larger mass ratios. The secondary

hole has to absorb negative angular momentum from a gas mass comparable to

its own, preferably in an eccentric orbit. Although gas self–gravity is inevitably

important in such an event, a retrograde flow has the advantage that there is no

limit on the mass inflow rate. A sequence of randomly oriented accretion events,

aligning both prograde and retrograde, may provide a solution to the final parsec

problem.
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5.1 Abstract

We simulate the viscous evolution of an accretion disc around a spinning black hole.

In general any such disc is misaligned, and warped by the Lense–Thirring effect.

Unlike previous studies we use effective viscosities constrained to be consistent with

the internal fluid dynamics of the disc. We find that nonlinear fluid effects, which

reduce the effective viscosities in warped regions, can promote the breaking of the

disc into two distinct planes. This occurs when the Shakura & Sunyaev dimensionless

viscosity parameter α is . 0.3 and the initial angle of misalignment between the disc

and hole is & 45◦. The break can be a long–lived feature, propagating outwards in

the disc on the usual alignment timescale, after which the disc is fully co– or counter–

aligned with the hole. Such a break in the disc may be significant in systems where

we know the inclination of the outer accretion disc to the line of sight, such as some

X–ray binaries: the inner disc, and so any jets, may be noticeably misaligned with

respect to the orbital plane.

5.2 Introduction

In realistic astrophysical situations the angular momentum of a spinning black hole

may be significantly misaligned with respect to a surrounding accretion disc. This is

expected in black hole X–ray binaries where the hole may have received a significant

kick during formation (Shklovskii 1970; Sutantyo 1978; Arzoumanian et al. 2002;

Hobbs et al. 2005). It is also likely for accretion on to a supermassive black hole

(SMBH) in the centre of a galaxy. The scale of the SMBH is so small compared

with the galaxy that any process which drives gas down to the galactic centre is

unlikely to have any special orientation with respect to the SMBH spin. The spin

direction is set by the SMBH’s accretion history and not by whatever causes the
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next accretion event. Processes such as star formation, merging of satellite galaxies,

gas cloud collisions and other galactic phenomena likely to drive gas inwards are

chaotic, so it is reasonable to expect a random spread of angles between the angular

momentum of infalling gas and that of the hole (cf. King and Pringle 2006, 2007;

King et al. 2008). This gas is likely to form a ring around the SMBH which then

viscously spreads into a misaligned accretion disc.

The Lense–Thirring (hereafter LT) effect of a spinning black hole causes non–

equatorial orbits to precess at rates dependent on the distance from the hole (Lense

and Thirring, 1918). In an accretion disc, this differential precession causes a warp

which propagates through the disc. This is the Bardeen–Petterson effect (Bardeen

and Petterson, 1975). Here we restrict our attention to viscous Keplerian accretion

discs with negligible self–gravity. Papaloizou and Pringle (1983) linearised the equa-

tions of fluid dynamics to derive the first consistent equation governing the evolution

of a warped disc of this type, assuming a tilt angle smaller than the disc angular

semi–thickness. They introduced two effective kinematic viscosities controlling the

angular momentum transport in the disc. In principle these two quantities depend

on the nature of the warp: ν1 governs the usual radial communication of the compo-

nent of angular momentum perpendicular to the plane of the disc due to differential

rotation (for a flat disc this is the Shakura & Sunyaev alpha viscosity), while ν2

governs the radial communication of the component of angular momentum parallel

to the local orbital plane; this acts to flatten tilted rings of gas. Papaloizou and

Pringle (1983) also showed that conservation laws require a relation between ν1 and

ν2. For small warps this is

ν2 =
ν1

2α2
, (5.1)

where α is the usual dimensionless viscosity parameter for discs (Shakura and Sun-
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yaev, 1973) assumed ≪ 1 by Papaloizou and Pringle (1983). This gives

α2 =
1

2α
, (5.2)

(again for small α) where α2 is an equivalent dimensionless viscosity parameter for

ν2.

Pringle (1992) derived an evolution equation valid for larger warps expressing global

angular momentum conservation for a disc composed of rings of gas with no inter-

nal degrees of freedom. Pringle (1992) went on to develop a numerical technique

for integrating this equation over rings of gas to study the viscous evolution of a

time–dependent warped disc. Lodato and Pringle (2006) used this to study the

Bardeen–Petterson effect. They assumed constant effective viscosities, related as

expected for small amplitude warps (Eq. 5.1). This treatment suggests that a disc

warp must always straighten itself out on a timescale shorter than the accretion

timescale (assuming only the LT torque and the internal disc torques, i.e. no other

external torques), because (5.1) implies ν2 ≫ ν1 for typical values of α. The realign-

ment process enhances the accretion rate by inducing extra dissipation (Lodato and

Pringle, 2006).

The analysis of Pringle (1992) did not allow for any internal degrees of freedom

within the gas rings, and was described as the ‘naive approach’ in Papaloizou and

Pringle (1983). However Ogilvie (1999) derived equations of motion directly from the

full three–dimensional fluid dynamical equations with an assumed isotropic viscosity.

This confirmed that the equations of Pringle (1992) are formally valid only when

two differences are taken into account (or can be safely neglected). The first is

that the Pringle (1992) equations omit a torque causing rings to precess if they are

tilted with respect to their neighbours. In a viscous Keplerian disc where α ≪ 1
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but not close to zero, this torque is much smaller than the usual viscous torques

included by Pringle (1992) and so can be neglected in time–dependent calculations.

(however for completeness we include the torque in this work). Our main focus,

however, is on the second extension. The quantities ν1 and ν2 are functions of the

disc structure and so depend on the warp amplitude |ψ| = R |∂ℓ/∂R|, where ℓ is the

unit angular momentum vector and R is the spherical radius coordinate. Ogilvie

(1999) used the equations of fluid dynamics to determine the relation between the

effective viscosities for a general warp amplitude. In contrast to an assumption of

constant effective viscosities, this analysis suggests that these quantities drop in a

warped region, making it much harder for the disc to straighten any twisted rings

of gas. Indeed, if the warp becomes large enough the disc may break into distinct

planes with only a tenuous connection. We expect this to occur in large warps, as

nonlinear corrections to the fluid flow are significant for warp amplitudes |ψ| & α

(Ogilvie, 1999).

There have been several theoretical investigations which show evidence of breaking

discs. Larwood and Papaloizou (1997) report an example in Smoothed Particle Hy-

drodynamics (SPH) simulations of a circumbinary disc with a strong radial density

decrease. This is suggestive, since the evolution of a misaligned circumbinary disc

is qualitatively similar to that of a misaligned disc around a spinning black hole

(Nixon et al., 2011b, Chapter 2). SPH simulations by Lodato and Price (2010) also

found disc breaking. They assumed the presence of a large–amplitude warp and

followed its viscous development. Their results agreed with those expected for the

constrained viscosities derived in Ogilvie (1999), and showed that the disc could

break if the warp amplitude was large enough (note that this paper did not attempt

to show that the LT precession could produce such a warp).

Here we explore disc evolution under the LT effect with general warp amplitudes, and
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the effective viscosities constrained as in Ogilvie (1999). We explore the evolution

for a range of α values and different degrees of misalignment between the disc and

hole. We aim to discover if the internal torques in an accretion disc can sustain

a smooth warped configuration under the LT torque, or whether instead the disc

breaks into distinct planes.

5.3 Numerical method

5.3.1 Evolution equation

The problem of disc breaking is complex, and to make progress we adopt the simplest

approach. We use a 1D Eulerian ring code of the type described in Pringle (1992) and

used in Lodato and Pringle (2006). Our code has been adapted to include the third

effective viscosity and the nonlinear fluid dynamical constraints found by Ogilvie

(1999). Here ‘1D’ means that the properties assigned to each ring depend only on

its radius. Section 2.1 of Lodato and Pringle (2006) gives a detailed discussion of

the validity of this approach. The main restriction is that the evolution of a disc

warp must be diffusive rather than wave–like. Papaloizou and Pringle (1983) show

that this holds if α > H/R, which is usually satisfied for accretion discs around

compact objects.

Our 1D ring code describes the evolution of warped accretion discs by evolving the
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angular momentum density vector of each ring L(R, t) through the equation

∂L

∂t
=

1

R

∂

∂R

{

(∂/∂R)
[

ν1ΣR3
(

−Ω
′
)]

Σ (∂/∂R) (R2Ω)
L

}

(5.3)

+
1

R

∂

∂R

[

1

2
ν2R |L| ∂ℓ

∂R

]

+
1

R

∂

∂R

{[

1
2
ν2R

3Ω |∂ℓ/∂R|2

(∂/∂R) (R2Ω)
+ ν1

(

RΩ
′

Ω

)

]

L

}

+
1

R

∂

∂R

(

ν3R |L| ℓ × ∂ℓ

∂R

)

+ Ωp × L

where ν1, ν2 and ν3 are the effective viscosities, Ω (R) is the local azimuthal angular

velocity, Σ (R) is the disc surface density, ℓ (R) is the unit angular momentum vector,

and Ωp (R) is the precession frequency induced in the disc by the LT effect (defined

below). We note that L = ΣR2Ωℓ.

Equation (5.3) shows that there are five independent torques acting on the rings of

gas. The first four terms on the right hand side represent the internal disc torques

responsible for communicating angular momentum. The last term represents the

LT torque. Here we briefly discuss these terms.

The first term on the right hand side of (5.3) describes the usual viscous diffusion

of mass. This is governed by the azimuthal shear viscosity ν1. The second term

is also diffusive. This term, governed by the vertical viscosity ν2, is responsible for

diffusing the disc tilt. The third term is an advective torque. Depending on its sign

this advects angular momentum (and hence mass) inwards or outwards through the

disc.

The three terms discussed above are exactly those derived straightforwardly from

the conservation of mass and angular momentum (Pringle, 1992). The fourth term
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is a precessional torque found by the analysis in Ogilvie (1999). This torque causes

rings to precess when they are tilted with respect to their neighbours. The direction

of the precession is dependent on α and |ψ| (cf. Fig. 5 in Ogilvie, 1999). This

term has exactly the same form as the second term in (5.3) with the substitutions

0.5ν2 → ν3 and ∂ℓ/∂R → ℓ × ∂ℓ/∂R. This transformation shows that we can

integrate this term using the technique described in Pringle (1992) for integrating

the second term.

The fifth term is the LT torque arising from the gravitomagnetic interaction of the

disc with the spinning hole. This induces precessions in the disc orbits, and hence

causes the angular momentum vector for each ring to precess around the spin vector

for the black hole with a frequency

Ωp =
2GJh

c2R3
(5.4)

with c the speed of light and G the gravitational constant. The magnitude of Jh is

given by Jh = acM(GM/c2) where a is the dimensionless spin parameter and M is

the mass of the hole (Kumar and Pringle, 1985). We include the back–reaction on

the hole angular momentum vector Jh by summing the effect of the precessions over

all radii, giving the torque on the hole as:

dJh

dt
= −2π

∫

Ωp × LRdR. (5.5)

Since Ωp ∝ Jh this equation makes it clear that the magnitude of Jh is conserved

and hence Jh can only precess on a sphere, simply because the LT torque has no

component in the direction of Jh for any disc structure. Equivalently the LT torque

induces only precessions in the disc, so that the reaction back on the hole is simply

a sum of precessions, which is itself a precession.
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We integrate both (5.3) and (5.5) using a simple forward Euler method (Pringle,

1992) on a logarithmically spaced grid. However we adopt a different implementation

of the boundary conditions. Rather than implementing a sink over a few grid cells

we simply remove all of the angular momentum that reaches the inner– and outer–

most cells at the end of each integration step. This allows angular momentum (and

hence mass) to flow freely across the boundary, giving the usual Σ = 0, torque–free,

accreting boundary condition. This is the form adopted in Lodato and Price (2010).

We note that this boundary condition does not conserve angular momentum exactly.

However this small effect does not affect the inclination of any of the rings and hence

does not alter our results. Once the warp reaches the outer boundary it flows freely

off the computational domain and the disc is flattened (i.e. we do not impose a

boundary condition at the outer edge of the disc to maintain the disc warp).

5.3.2 Generating the constrained effective viscosities

We use the effective viscosities derived by Ogilvie (1999) for a locally isothermal

disc. These are constrained to be consistent with the internal fluid dynamics of the

disc, assuming an isotropic physical viscosity. The physics of these constraints is

simply local conservation of mass and angular momentum in the disc.

The effective viscosities which describe the transport of angular momentum in a

warped disc take the usual form of a Shakura & Sunyaev disc viscosity. The con-

straints determine the nonlinear coefficients (Q1, Q2, Q3) of the effective viscosities

(cf. equations 5.10, 5.11 and 5.12). These coefficients all decrease in magnitude

in the presence of a strong warp, where the disc rings are highly inclined to each

other. Communication of angular momentum is reduced because the rings of gas are

no longer in perfect contact. We expect angular momentum to be communicated

through perturbations of the particles from circular orbits. The rate of communi-
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cation, and hence the magnitude of the viscosities, therefore depend on how easily

these particles can interact. This is harder for particles on inclined orbits, and once

these reach a critical inclination this can only happen where the rings cross. We

note that for inviscid discs, which we do not consider here, this interpretation is no

longer valid, see Ogilvie (1999) for further details.

We now detail the calculation of the effective viscosities from the disc properties.

The notation in Ogilvie (1999) differs from that in Pringle (1992). Our Eq. 5.3, and

equation 122 from Ogilvie (1999) relate the effective viscosities (ν1, ν2 and ν3) to

the nonlinear viscosity coefficients (Q1, Q2 and Q3) by

ν1 =
Q1I Ω2

ΣR dΩ
dR

, (5.6)

ν2 =
2Q2I Ω

Σ
(5.7)

and

ν3 =
Q3I Ω

Σ
, (5.8)

where I is given by

I =
1

2π

∫ 2π

0

Ĩ dφ =
1

2π

∫ 2π

0

∫

∞

−∞

ρz2 dz dφ. (5.9)

Assuming Σ constant in azimuth, and a locally isothermal disc with sound speed cs,

we can write this as I ∝ Σc2
s/Ω

2. For a point–mass potential with Ω = (GM/R3)1/2

we get after some algebra

ν1 = −2

3
Q1

[

(H/R)2 R2Ω
]

, (5.10)

ν2 = 2Q2

[

(H/R)2 R2Ω
]

(5.11)
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and

ν3 = Q3

[

(H/R)2 R2Ω
]

, (5.12)

where H = cs/Ω is the disc thickness.

For simplicity we assume that

(H/R)2 R2Ω = const. (5.13)

This removes the radial dependence of the viscosities, making them functions only of

|ψ| and α and so allowing a direct comparison with the constant viscosity simulations

of Lodato and Pringle (2006). The assumption (5.13) requires that the sound speed

cs ∝ R−3/4. This compares with the usual steady–state disc, where cs ∝ R−3/8 (e.g.

Frank et al. 2002).

We note that for a disc without a warp, ν1 reduces to exactly the usual α disc

viscosity (Shakura and Sunyaev, 1973), since

ν1 = αcsH = α (H/R)2 R2Ω (5.14)

and

Q1(|ψ| = 0) = −3α/2. (5.15)

The effective viscosities are now fixed by the nonlinear coefficients Q1 (α, |ψ|), Q2 (α, |ψ|)

and Q3 (α, |ψ|). We calculate these coefficients in the same way as described in

Ogilvie (1999) with Γ = 1 and αb = 0 using the code kindly provided by Gordon

Ogilvie. Figs. 5.1, 5.2 & 5.3 show the coefficients plotted against the warp amplitude

for α = 0.2.
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Figure 5.1: The effective viscosity coefficient Q1 plotted against warp amplitude |ψ|,
assuming that α = 0.2, αb = 0 and Γ = 1. The coefficients change significantly for
0 < |ψ| . 5, after which they are approximately constant at a small but non-zero
value
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Figure 5.2: The effective viscosity coefficient Q2 plotted against warp amplitude |ψ|,
assuming that α = 0.2, αb = 0 and Γ = 1. The coefficients change significantly for
0 < |ψ| . 5, after which they are approximately constant at a small but non-zero
value
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Figure 5.3: The effective viscosity coefficient Q3 plotted against warp amplitude |ψ|,
assuming that α = 0.2, αb = 0 and Γ = 1. The coefficients change significantly for
0 < |ψ| . 5, after which they are approximately constant at a small but non-zero
value
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5.4 Simulations

We use the method described above to simulate the warping of a misaligned accretion

disc under the LT effect. We set up our initially planar but misaligned disc on a

logarithmically spaced grid from Rin = 10Risco to Rout = 1000Risco using 100 grid

cells (where Risco = 6GM/c2 is the radius of the innermost stable circular orbit

around a Schwarzschild black hole ). The disc surface density is initially a Gaussian

ring peaked at R0 = 500Risco with width 50Risco. We initialise each ring with a

constant misalignment angle, θ0, such that the initial disc is flat but tilted to the

plane of the black hole.

Lodato and Pringle (2006) suggest that the only governing parameters for simula-

tions of this type are the ratio of disc to hole angular momenta (Jd/Jh), the ratio of

the warp radius Rw = ΩpR
3/ν2 to R0, and the ratio of the effective viscosities ν2/ν1

(note that they neglect ν3). However, as we use the constrained effective viscosities,

ν2/ν1 is now determined once we have chosen α.

The parameters that we are free to choose in these simulations are α, H/R, R0,

θ0 and Jd/Jh. For black hole accretion discs H/R ∼ 10−3 and so we assume this

throughout. Lodato and Pringle (2006) explored the effect of changing Rw/R0, so

we fix R0 as above (note that this does not fix the ratio Rw/R0. However this

ratio varies little throughout our simulations.) To examine disc breaking we choose

Jd/Jh ≪ 1 as the simplest case and then vary α and θ0.

5.4.1 Does the disc break?

We perform several simulations for 0.2 ≤ α ≤ 0.5 to determine the various nonlinear

responses of the disc to warping. We do not simulate α < 0.2 as this is where

the viscosity ν1 is predicted to become negative in strong warps. We simulate a
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range of θ0 from 10◦ to 60◦. This allows us to explore the two regimes: |ψ| . α,

where nonlinear effects should be negligible, and |ψ| & α, where nonlinear effects

should be important. Our setup corresponds to Jd/Jh ≈ 0.02, with Rw/R0 varying

between ∼ 0.95 and ∼ 1.20 as α changes. Note that we evaluate (5.13) at R0 with

H/R = 10−3.

We perform these simulations for two cases. In the first we use constant effective

viscosities. This acts as a control so we can isolate the effect of introducing nonlinear

dynamics in the second set of simulations, where we use the full effective viscosities.

The constant effective viscosities are simply calculated using the method described

in Section 5.3.2 with |ψ| = 0.

For the simulations involving constant effective viscosities we expect to recover the

Bardeen–Petterson effect as seen by several other authors (e.g. Bardeen and Pet-

terson 1975; Pringle 1992; Scheuer and Feiler 1996; Lodato and Pringle 2006 etc).

However the simulations involving the full nonlinear effective viscosities should mod-

ify this somewhat.

5.4.1.1 θ = 10◦

In Fig. 5.4 (left column) we show the disc structures for simulations with θ0 = 10◦

and the constant effective viscosities at 0.01, 0.1 and 1 tvisc. Here we define the

viscous timescale as tvisc = R2
0/ν1 with ν1 evaluated for |ψ| = 0 and α as defined

in the particular case. Fig. 5.4 shows the behaviour for different values of the disc

viscosity parameter α. In this case the behaviour is similar for all simulations, with

lower α aligning in a shorter fraction of the viscous time (although in reality more

slowly because the viscous timescale is longer).

In the right hand column of Fig. 5.4 we show the same simulation as in the left
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hand column, however this time we use the full effective viscosities. We expect the

evolution here to be similar, as the warp is never able to achieve a large amplitude,

making the viscosities similar in both cases. This is indeed the case, as there is no

visible difference between left and right hand columns of Fig. 5.4.

5.4.1.2 θ = 30◦

In Fig. 5.5 we show the disc structures for simulations with θ0 = 30◦. Again there is

very little difference between the disc structures obtained using the constant effective

viscosities and those with the full effective viscosities. However the disc profile

steepens in the early stages of the α = 0.2 simulation. This suggests that for

θ = 30◦ we would have to go to α ≪ 0.2 to get disc breaking.

5.4.1.3 θ = 45◦

In Fig. 5.6 we show the disc structures for simulations with θ0 = 45◦. There is

now a noticeable difference between the constant effective viscosity and full effective

viscosity simulations. Even for large α the disc profile is steepened and for α ∼ 0.2

the disc breaks into two distinct planes. This break persists for more than a tenth

of the viscous timescale for the disc. The disc aligns when the break propagates out

to the edge of our grid which occurs at t = 0.13tvisc.

5.4.1.4 θ = 60◦

In Fig. 5.7 we show the disc structures for simulations with θ0 = 60◦. There is again

a noticeable difference between the constant effective viscosity and full effective

viscosity simulations. At t = 0.01tvisc the disc profile is steepened noticeably more

than in the θ = 45◦ case and by t = 0.1tvisc all of the simulations have maintained
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a break. We can also see that at t = 0.01tvisc in the constant effective viscosity

simulation with α = 0.2 it is possible for the disc to break without the nonlinear

effects.

These simulations suggests two main results of using the full effective viscosities.

First, discs can break for higher values of α, and second, discs can break for lower

inclination angles.

There are two features of the simulations which we have not discussed so far. The

first is the wiggles in the disc at the top of the warp in the full effective viscosity

simulations with θ = 45, 60 (Figs. 5.6 & 5.7). In these simulations the disc appears

to try to break into more than just two distinct planes. It may be that for smaller

α or larger |ψ| the disc can break into more than two planes. However we deem this

beyond the scope of the present investigation.

Second, the torques on the disc in the strong warp regions generate rapid mass flow

rates into the ring inside the warp. This results in prominent spikes in Σ (R) inside

regions with large |ψ|. Increasing resolution only resolves these spikes better. We

therefore leave the investigation of this effect to future work, which will require a

different numerical method.
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Figure 5.4: Disc structures given by plotting the tilt angle (θ) between the disc
and the hole against the log of the radius. The initial misalignment of the disc
is θ0 = 10◦. From top to bottom the panels correspond to t = 0.01, 0.1 and 1
viscous times after the start of the calculation. The left hand column shows the
constant effective viscosity simulations, whereas the right hand column shows the
full effective viscosity simulations. On each plot the legend gives the value of α used
in the simulation. By t = 1 the warp has moved to the edge of our grid and the disc
aligns. This shows that for small inclinations the nonlinear effects are negligible.
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Figure 5.5: Disc structures as in Fig. 5.4, but this time for initial misalignment
θ = 30◦. From top to bottom the panels correspond to t = 0.01, 0.1 and 1 viscous
times after the start of the calculation. The left hand column shows the constant
effective viscosity simulations, whereas the right hand column shows the full effective
viscosity simulations. This figure shows that even for a 30◦ misalignment angle the
effect of the full effective viscosities can be small, however there is a steepening of
the disc profile at early times for the α = 0.2 simulations. This suggests that for
the nonlinear effects to be important at θ0 = 30◦ we need α ≪ 0.2.
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Figure 5.6: Disc structures as in Fig. 5.4, but this time for initial misalignment
θ = 45◦. From top to bottom the panels correspond to t = 0.01, 0.1 and 1 viscous
times after the start of the calculation. The left hand column shows the constant
effective viscosity simulations, whereas the right hand column shows the full effective
viscosity simulations. This figure shows that the nonlinear effects can significantly
influence the evolution of the disc. Here the profile is noticeably steepened at t =
0.01tvisc for all α. For α = 0.2 the break persists until reaching the outer edge of
the grid. For larger α the disc is smoothed before it aligns.

107



Broken Discs 5.4. Simulations

log (r/risco)

θ
 (

d
eg

re
es

)

1 1.5 2 2.5 3

0

20

40

��
α = 0.2

      0.3

      0.4

      0.5

log (r/risco)

θ
 (

d
eg

re
es

)

1 1.5 2 2.5 3

0

20

40

60
α = 0.2

      0.3

      0.4

      0.5

log (r/risco)

θ
 (

d
eg

re
es

)

1 1.5 2 2.5 3

0

20

40

60
α = 0.2

      0.3

      0.4

      0.5

log (r/risco)

θ
 (

d
eg

re
es

)

1 1.5 2 2.5 3

0

20

40

60
α = 0.2

      0.3

      0.4

      0.5

log (r/risco)

θ
 (

d
eg

re
es

)

1 1.5 2 2.5 3

0

20

40

60
α = 0.2

      0.3

      0.4

      0.5

log (r/risco)

θ
 (

d
eg

re
es

)

1 1.5 2 2.5 3

0

20

40

60
α = 0.2

      0.3

      0.4

      0.5

Figure 5.7: Disc structures as in Fig. 5.4, but this time for initial misalignment
θ = 60◦. From top to bottom the panels correspond to t = 0.01, 0.1 and 1 viscous
times after the start of the calculation. The left hand column shows the constant
effective viscosity simulations, whereas the right hand column shows the full effective
viscosity simulations. This figure shows that the nonlinear effects can significantly
influence the evolution of the disc. Initially the disc profile is significantly steepened
for all α and the disc breaks for all α. This break propagates outwards in the disc
until reaching the outer edge of the grid at which point the disc aligns.
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5.5 Discussion

We have simulated the evolution of a misaligned accretion event on to a spinning

black hole. Many previous simulations of this type assumed that the effective vis-

cosities governing the angular momentum transport were constant. Here we have

used effective viscosities constrained to be consistent with the internal fluid dy-

namics of the disc. We compare these results with those of equivalent simulations

which assume constant effective viscosities. In the latter case we find that for small

enough α the precession induced by the LT effect can cause the disc to break into

two distinct planes if the misalignment is large enough. We also find that if we

allow nonlinear effects (Ogilvie, 1999) the disc can break for higher values of α and

smaller inclination angles. This suggests that nonlinear effects significantly change

the evolution of strongly warped discs. The main effect is in reducing the magnitude

of the effective viscosities in the warped region, noticeably reducing ν1 more than

ν2. This reduces the disc’s ability to smooth out the warp induced by the LT torque

and so prevent a break. This is essentially a modified form of the Bardeen–Petterson

effect, where the warp is steepened by the weakened disc response.

For small values of α, ν2 ≫ ν1. Then the effective viscosity that tries to flatten

tilted rings of gas is much stronger than the effective viscosity responsible for trans-

porting angular momentum radially. However the ν1 and ν2 torques responsible for

communicating angular momentum are proportional to ℓ and ∂ℓ/∂R respectively.

So to break the disc we also need a large warp. As |ψ| increases the ν2 torque be-

comes comparatively stronger that the ν1 torque. When the discrepancy between

the magnitudes of the two torques is large enough the disc is effectively unable to

communicate radially. As the differential precession induced by the LT effect acts

faster at smaller radii, this allows the vertical effective viscosity (ν2) to flatten each

ring in turn into the plane of the spinning black hole. To maintain a smooth (small
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amplitude) warp the disc must be able to communicate radially on a timescale com-

parable to the flattening of rings into the plane of the black hole. When this does

not hold the disc breaks.

For α ∼ 1 the disc can efficiently maintain a smooth warp. However for α ∼ 0.2−0.4

and a large misalignment we show there is a strong tendency for the disc to break

under an external torque such as the LT torque. We see no reason for this behaviour

to change when α ≤ 0.1. However there may be other nonlinear effects which become

important here. The next step is a full 3D hydrodynamical numerical investigation

to determine the disc response in this regime (e.g. Nelson and Papaloizou 2000;

Lodato and Price 2010).

When the disc breaks it splits into a co– or counter–aligned inner disc and a mis-

aligned outer disc. This break can propagate outwards and (dependent on α and

θ0) may persist until it reaches the outer regions of the disc. At this point the whole

disc is co– or counter–aligned with the hole spin. This suggests that a break in the

disc can be a long–lived feature, lasting for roughly the alignment timescale. We

note that although we have not included any simulations of counter–aligning discs,

it is already known that for Jd/Jh ≪ 1 there is a symmetry in the behaviour of

discs of this type around θ = 90◦ (King et al. 2005 and Lodato and Pringle 2006).

Therefore the same behaviour would be seen in discs that are counter–aligning with

the black hole (i.e. a misalignment of 120◦ would produce the same dynamics with

a counter–aligning disc as the 60◦ case produces here).

For observational purposes it is important to compare the alignment timescale tal

with the lifetime tlife of the system. If tal > tlife, the centre of the disc is never

aligned with its warped outer plane. In an accreting stellar–mass black–hole binary

this would mean that jets (which propagate along the axis of the central parts of the

disc, and so the spin of the black hole) are in general misaligned with respect to the
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orbital plane. This is seen in the black–hole binary GRO J1655-40 (Martin et al.

2008 and references therein). Similarly the continuum–fitting method for estimating

black–hole spins (Kulkarni et al. 2011 and references therein) uses the assumption

that the black hole spin is aligned with the orbital axis in estimating the radiating

disc area and hence the ISCO radius. It therefore implicitly requires tal < tlife. In our

simulations it is clear that discs are able to remain warped or broken for significant

fractions of their viscous timescale. However we note that for strong warps there

may be other nonlinear effects not included in the analysis of Ogilvie (1999) or

additional dissipation caused by fluid instabilities (cf. Gammie et al. 2000). These

may impact upon the alignment timescale.

It is also possible that the disc is never able to align fully; for example an accretion

disc in a misaligned black hole binary system may be twisted one way by the LT effect

and a different way by the binary torque (e.g. Martin et al., 2009). We therefore

suggest careful consideration before assuming that black hole accretion discs are

aligned – particularly as Lodato and Pringle (2006) suggest that the accretion rate

through warped discs is significantly enhanced, which suggests the possibility that

strongly accreting discs are also strongly warped.

Disc breaking can have some important observational consequences. For example

accretion discs in binary systems often have an outer disc aligned to the binary

plane. However the inner disc (and so the direction of any jets) must be aligned

with the black hole spin, which may be significantly misaligned with respect to the

binary axis. Similarly breaks in protoplanetary discs may occur through the internal

disc response to warping during formation of the disc, rather than being driven by

the presence of a planet.

We have used a 1D Eulerian ring code to calculate the evolution of misaligned

accretion events on to a spinning black hole. We caution that there is still much
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work to do before we can fully understand the evolution of such a disc. For example

our treatment requires gas to orbit on circular rings, inherently excluding any effects

which might break the cylindrical symmetry in the local disc plane. We also assume

that the disc responds viscously, with no wave–like behaviour. The method also

prevents us from examining exactly what happens in the disc break: by its nature,

it occurs over only over a small number of rings and is therefore poorly resolved

– however this does not affect our conclusion that the disc can break. The most

frustrating restriction is the difficulty in simulating small enough α: the simulations

we present here suggest that for small α nonlinear fluid effects can be particularly

important. We will address these restrictions in future investigations.

We remark finally that although we have considered alignment effects induced by

the LT effect on an accretion disc around a spinning black hole, the torque between

a misaligned binary and an external accretion disc has a very similar form (Nixon

et al., 2011b, Chapter 2). Thus we expect similar phenomena to appear in that

case. The enhanced accretion rates through the disc due to the dissipation in the

warp (Lodato and Pringle, 2006) would increase the mass flow rate on to the binary.

Therefore the coalescence timescale for the binary would be reduced further (Nixon

et al., 2011a, Chapter 4).
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6.1 Abstract

Accretion in the nuclei of active galaxies may occur chaotically. This can produce

accretion discs which are counterrotating or strongly misaligned with respect to the

spin of the central supermassive black hole (SMBH), or the axis of a close SMBH

binary. Accordingly we consider the cancellation of angular momentum in accretion

discs with a significant change of plane (tilt) between inner and outer parts. We

estimate analytically the maximum accretion rate through such discs and compare

this with the results of Smoothed Particle Hydrodynamics (SPH) simulations. These

suggest that accretion rates on to supermassive black holes may be larger by factors

& 100 if the disc is internally tilted in this way rather than planar. This offers

a natural way of driving the rapid growth of supermassive black holes, and the

coalescence of SMBH binaries.

6.2 Introduction

Astronomers still do not know how the supermassive black holes (SMBH) in galaxy

centres accrete gas and grow. The problem lies in the very small angular momentum

this gas must have in order to accrete on a reasonable timescale. For example, the

viscous time of a standard accretion disc of ∼ 1 pc radius accreting on to a SMBH

of 108M⊙ approaches a Hubble time. A natural remedy for this is to assume that on

small scales near the hole, accretion occurs in episodes whose angular momenta are

randomly oriented with respect to each other. This chaotic picture predicts that the

spin of the hole remains low, allowing rapid mass growth provided that there is an

adequate mass supply (King and Pringle 2006; King and Pringle 2007; King et al.

2008; Fanidakis et al. 2011). A characteristic feature of this type of accretion is that

the disc flow on to the SMBH is often retrograde (King et al., 2005) with respect to
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the hole spin, or to the rotation of an SMBH binary resulting from a galaxy merger.

In Chapter 4 (Nixon et al., 2011a) we showed that a retrograde coplanar exter-

nal gas disc can be markedly more efficient in shrinking an SMBH binary than a

prograde one. A retrograde disc can cancel the binary orbital angular momentum

directly, rather than being slowed by the resonances which always arise in a pro-

grade circumbinary disc. It is natural to ask if this angular momentum cancellation

can work if we replace the SMBH binary with a pre–existing gas disc surrounding a

single SMBH. If so, this may be a mechanism promoting much faster delivery of gas

on to the black hole. This situation may arise naturally from misaligned accretion

events, for example where an accretion event forms a disc around the black hole,

and a second event forms an outer disc which is misaligned with respect to the first

one. Similar cases occur as a misaligned accretion disc attempts to reach an axisym-

metric (co– or counter–aligned) configuration around a spinning black hole (King

et al. 2005; Lodato and Pringle 2006), and also during the closely related co– or

counter–alignment of an accretion disc around a central binary (Nixon et al., 2011b,

Chapter 2).

In all these cases integrating the full dynamics of the accretion disc is complex and

time–consuming because the component discs can warp before interacting. To study

the mixing of distinct or opposing disc angular momenta we investigate a simple form

of this kind of accretion. We assume an accretion disc with initially distinct planes

in its inner and outer parts. We let these two parts interact viscously and determine

how much the accretion is enhanced compared with a disc lying in a single plane.

In Section 6.3 we give simple analytical estimates of this. In Section 6.4 we perform

global 3D hydrodynamical simulations to examine the disc’s dynamical behaviour

in the light of these estimates. We interpret our results in Section 6.5.
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6.3 Counterrotating discs

We consider an inner and outer disc counterrotating with respect to each other but

not coplanar, that is, the angle θ between the disc angular momentum vectors obeys

π/2 < θ < π.

If the discs were in perfect contact the gas would share opposed angular momenta

from almost the same radii. This may be unphysical (or imply a very rapid evolution

away from the initial state) since the discs may attempt to open a gap of some size,

as we discuss later. For generality we choose an arbitrary gap between the discs of

size a.

Now we assume that the gas efficiently shares angular momentum across this gap

and that an equal mass of gas from each disc takes part in the interaction. The

resultant angular momentum of the interacting gas is

Lnew =
1

2
[L (Rgap + a) + L (Rgap)] (6.1)

Lnew ≈ 1

2

√

GMRgap

(

1 +
1

2

a

Rgap

+ cos θ

)

(6.2)

to first order in a/Rgap, where Rgap is the outer edge of the inner disc (so that

Rgap + a is the inner edge of the outer disc), G is the gravitational constant, M is

the mass of the central object, and we have assumed a Keplerian potential for the

gas.

The circularisation radius for this interacting gas is

Rcirc =
1

4
Rgap

(

1 + cos θ +
1

2

a

Rgap

)2

(6.3)

We expect the size of the gap between the two discs to be roughly the scale of the
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epicyclic motions in the gas disc as this is where fluid orbits cross and interact. This

implies a gap size ∼ H(Rgap), where H is the semi–thickness of the disc, so that

Rcirc =
1

4

(

1 + cos θ +
1

2

H

R

)2

Rgap. (6.4)

For typical AGN disc parameters, H/R ∼ 10−3, and there are two distinct cases.

For θ close to π, we can have 1 + cos θ ≪ H/R, so that

Rcirc ≈
1

16
(H/R)2 Rgap. (6.5)

This suggests that the gas orbits would decrease by ∼ 7 orders of magnitude in

radius which implies direct accretion of the gas as long as its path to the hole is

clear.

If however θ is not close to π we have 1 + cos θ ≫ H/R, and

Rcirc ≈
1

4
(1 + cos θ)2 Rgap. (6.6)

Then the gas orbit decreases least when θ ∼ π/2, where Rcirc ∼ 1
4
Rgap. The orbit

scale (6.4) varies smoothly between these two extreme values.

The accretion rate through a disc is approximately

Ṁ ∼ Mdisc

τvisc

(6.7)

where Mdisc is the disc mass and τvisc is the viscous timescale

τvisc ∼
R2

ν
(6.8)

where R is a characteristic radius for the disc and ν is a measure of the disc viscosity.
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Thus for constant viscosity1 the accretion rate is ∝ R−2. This suggests that for

θ > π/2, where the gas orbits decrease by a factor > 4, there is potential for the

accretion rate to increase by a factor > 16. For large θ ≈ π the cancellation can

lead to direct accretion of gas on a dynamical timescale. This allows accretion on a

local disc filling timescale at the radius of the gap. This timescale is much shorter

than the viscous timescale as we only need move gas to Rgap and not right on to the

hole. Note that the rate at which mass can be supplied to Rgap is clearly an upper

bound on the possible accretion rate from this process.

If the gas does not accrete directly then the viscous timescale is shortened to

τvisc, circ ∼ (Rcirc/Rgap)
2 τvisc, gap. (6.9)

Although these estimates are suggestive, we caution that we have assumed that the

gas shares angular momentum efficiently, and that an equal mass of gas interacts

from each disc. In reality neither of these simplifications may be valid. Accord-

ingly we use Smoothed Particle Hydrodynamics (SPH) to simulate the interactions

between the discs.

6.4 Simulations

6.4.1 Code Setup

We use phantom, a low-memory, highly efficient SPH code optimised for the study

of non-self-gravitating problems. This code has performed well in related simu-

lations. For example Lodato and Price (2010) performed simulations of warped

1This is only approximate as one expects ν to increase with radius.
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accretion discs and found excellent agreement with the analytical work of Ogilvie

(1999) on the nature of the internal accretion disc torques in response to warping.

The implementation of accretion disc α−viscosity (Shakura and Sunyaev, 1973) in

phantom is described in Lodato and Price (2010). Specifically, we use the ‘artificial

viscosity for a disc’ described in Sec. 3.2.3 of Lodato and Price (2010), similar to

earlier SPH accretion disc calculations (e.g. Murray, 1996). The main differences

compared to standard SPH artificial viscosity are that the disc viscosity is applied

to both approaching and receding particles and that no switches are used. Our

implementation also differs slightly from Lodato and Price (2010) in that we retain

the βAV term in the signal velocity in order to prevent particle interpenetration from

occurring in high-velocity stream-disc collisions. The disc viscosity in phantom was

extensively calibrated against a 1D thin α−disc evolution in Lodato and Price (2010)

(c.f. Fig. 4 in that paper) and the disc scale heights employed here are similar. As

the exact value of α is unimportant given the dynamical nature of the simulations,

we simply use αAV = 1 and βAV = 2 which at the employed resolution (see below)

corresponds to a physical viscosity αSS ≈ 0.02–0.06.

For these simulations we model the gravity of the accretor with a Newtonian point

mass potential, adopting an accretion radius of 0.1 in code units. We start with a flat

disc of gas, composed of 10 million SPH particles, in hydrostatic equilibrium between

1.0 to 2.0 in radius, and surface density distribution Σ ∝ R−1, setup using the usual

Monte-Carlo technique. We also choose a vertical density profile corresponding to

H/R = 0.02 at R = 1 and employ an isothermal equation of state. To produce the

two distinct planes for the disc we rotate the outer half (in radius) of the disc by

an angle θ. We then perform simulations with different values of θ to find how the

accretion rate changes with inclination angle.
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6.4.2 Tilted disc evolution

We perform seven simulations corresponding to inclination angles θ = 30n◦ where

n = 0, 1, ..., 6. The θ = 0◦ simulation gives a flat–disc accretion rate to which we

compare the other simulations. We note that the 180◦ case is a rather unrealistic

setup as it would require perfectly anti–parallel accretion events. Even in the co–

and counter–aligned discs predicted by the numerical simulations of Lodato and

Pringle (2006) the discs never achieve a configuration where θ is precisely 180◦.

The simulations were run with an isothermal equation of state, i.e. the temperature

of each particle was held constant for each simulation (see Section 6.4.2.2 below

for a discussion of the effects of different equations of state). This implies that the

pressure, determined by P = c2
sρ, is simply proportional to ρ, and the sound speed

cs is constant in time and the same for all particles.

In Fig. 6.1 we report the accretion rates achieved for the different values of θ. This

shows that for discs inclined by less than 90◦ the accretion rates are similar to that

of a flat disc for the duration of our simulations. In this case the interaction between

inclined gas orbits is relatively weak with the gas staying on near circular orbits,

with planes slowly varying from the inner to outer disc. In contrast the simulations

with θ ≥ 90◦ show a dramatic increase in the accretion rate. This is caused by the

direct cancellation of orbital angular momentum and energy where the orbits of the

disc gas cross.
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Figure 6.1: The accretion rates for the isothermal simulations with different incli-
nation angles θ. Time is in units of the dynamical time at R = 1. The discs with a
tilt ≥ 90◦ are much more efficient at driving accretion, as these involve a degree of
counterrotation and so direct cancellation of angular momentum.
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In Fig. 6.2 we show the disc structure for the simulation where θ = 30◦. Here the

two discs initially join to form a coherent disc with a warped region joining the still

misaligned inner and outer discs. Gas is quickly depleted from the warp region,

leaving a clear drop (of 2-3 orders of magnitude) in projected density in the warp

region. This break between the discs persists throughout the simulations as the two

discs slowly align with each other, reaching an angular separation of ∼ 10◦ by the

time the simulation ends. The large gradient in specific angular momentum in the

warp region causes gas to quickly move on past the warp. This causes the low density

in the warp region which is the disc break (Nixon and King, 2012, Chapter 5). The

disc therefore maintains two distinct planes. We still resolve the rings of gas between

the two discs but this is clearly of much lower density than the inner and outer discs

(cf. Lodato and Price 2010). In Fig. 6.3 we show the similar disc structure for the

simulation where θ = 60◦.
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Figure 6.2: Column density projection showing the disc structure for the θ = 30◦

simulation. The disc has evolved for ∼ 50 dynamical times (∼ 10 orbits).
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Figure 6.3: Column density projection showing the disc structure for the θ = 60◦

simulation. The disc has evolved for ∼ 50 dynamical times (∼ 10 orbits).
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The θ = 90◦ simulation (not illustrated) has an initial period of chaotic flow between

the two discs, until the inner disc moves towards an inclination of ∼ 85◦ after mixing

with some of the gas from the outer disc. At this point a strong warp is set up and

the flow continues in a similar way to θ = 60◦.

The evolution of the θ = 120◦ and θ = 150◦ simulations proceed in a dramatically

distinct way to those with smaller θ. This is simply because the sharing of angular

momentum now causes significant changes to the gas orbits. In the θ = 120◦ sim-

ulation gas falls from the region between the two discs and circularises at a radius

inside the inner accretion disc. In this process some of gas is also accreted, as it

carries a spread of angular momentum. Clearly this gas does not have precisely the

angular momentum of the inner disc; it is a mix of gas from both discs. Therefore

the quasi–steady state for this simulation is an outer disc causing cancellation with

the outer edge of the original inner disc. This gas falls and feeds both direct ac-

cretion and the new innermost disc (white region of high density in Fig. 6.4). This

innermost disc is strongly warped with respect to the original inner disc and so there

is again extra dissipation between these two discs as they try to straighten. The

disc structure can be seen in Fig. 6.4.

In the θ = 150◦ simulation the gas falls to a much smaller radius from the region

between the two discs. Initially a large amount of gas is directly accreted on to

the sink particle representing the central accretor. The strong dissipation occurring

early in the simulation also causes the inner disc to spread all the way in to the

accretion radius. Some of the falling gas tries to circularise at a radius where it is

forced to impact upon the inner disc. As it still has the sense of angular momentum

of the outer disc this causes more cancellation of angular momentum, driving more

accretion. For these reasons this simulation generates the highest accretion rates –

this is simply because it causes the greatest mixing of angular momentum in the
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gas. The disc structure for this simulation can be seen in Fig. 6.5.
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Figure 6.4: Column density projection showing the disc structure for the θ = 120◦

simulation. The disc has evolved for ∼ 50 dynamical times (∼ 10 orbits). Note the
new innermost disc (of high density and therefore white) which has formed from the
dynamical infall of gas from the warp region.
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Figure 6.5: Column density projection showing the disc structure for the θ = 150◦

simulation. The disc has evolved for ∼ 50 dynamical times (∼ 10 orbits). Note the
new innermost disc (of high density and therefore white) which has formed from the
dynamical infall of gas from the warp region.

128



Rapid AGN accretion 6.4. Simulations

6.4.2.1 θ = 180◦

The θ = 180◦ case does not initially appear a very realistic initial setup. However

something close to this configuration may appear in the evolution of accretion discs

around spinning black holes (cf. King et al. 2005; Lodato and Pringle 2006) and

also during the evolution of an accretion disc around a binary system (cf. Nixon

et al. 2011b; Chapter 2).

Initially while the two discs (inner and outer) are in contact there is great cancel-

lation of angular momentum for the gas. This gas then attempts to fall towards

the central sink particle. It therefore impacts upon the inner disc. The pressure

of the inner disc gas is enough to force the falling gas out of the plane of the disc

where it can continue on a low angular momentum orbit towards the centre. It then

circularises inside the inner disc (with some accretion) after colliding with gas on

similar orbits and losing orbital energy in shocks. This new innermost disc clearly

has the same sense of angular momentum as the outer disc since this has the larger

specific angular momentum. Once the original inner disc has spread inwards (and

this new innermost disc has spread outwards), exactly the same process starts again

between these two discs. See Fig. 6.6 for the disc structure.

Angular momentum cancellation thus proceeds as follows. Imagine the two discs are

not in contact. They spread viscously until gas from the discs can interact, sharing

and so destroying angular momentum. Now consider two test particles (one from

the inner disc and one from the outer disc) which interact. The particle from the

inner disc adopts a slightly eccentric orbit, which passes through its parent disc.

It rejoins its own disc, which shrinks slightly to accommodate the loss of angular

momentum. The particle from the outer disc also adopts a slightly eccentric orbit

(inside its original orbit). But this forces it to interact more with the ‘hostile’ inner
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disc. This causes runaway angular momentum loss for the outer disc particle, almost

to the point of free–fall to the centre. Now the particle’s free–fall energy is enough

to move it out of the disc plane (helped by the pressure force from the inner disc).

It thus moves over and then inside the inner disc. The overall effect is to shrink the

inner disc and move the outer disc particles on to orbits that pass inside the inner

disc.

At this point one of three things can happen to the outer disc particle:

1) it may have cancelled enough angular momentum to accrete directly.

2) it may have cancelled enough to fall inside the inner edge of the discs where

it crosses the plane of the inner disc and meets other particles on similar orbits:

the particles shock and dissipate energy, forming a new disc at much smaller radii.

This disc should be planar, but any small perturbations in the initial discs will be

amplified here at smaller radii and could produce a disc with a substantial warp.

3) The particle’s new orbit may take it through the inner (initial) disc. If this is the

case it again interacts with the (hostile) disc and falls further. There are again two

possibilities here. Either the particle bounces all the way in past the hostile disc, or

it has so many interactions that it adopts the sense of rotation of the hostile disc.

So the particle either accretes or drives the inner disc to shrink, and hence drives

accretion through the inner disc.

All sequences here greatly enhance the central accretion rate while the discs are

trying to mix their angular momenta.
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Figure 6.6: Column density projection showing the disc structure for the θ = 180◦

simulation. The disc has evolved for ∼ 50 dynamical times (∼ 10 orbits). The
innermost disc is formed of gas falling from the gap between the original inner
disc (now the middle disc) and the outer disc. In this picture the innermost and
outermost discs are rotating clockwise and the middle disc rotates counter–clockwise.
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6.4.2.2 Effect of the gas equation of state

We have also investigated the effect of changing the thermal treatment of the gas.

In the simulations detailed above we used an isothermal equation of state. The gas

was assumed to radiate away any dissipative heating instantly. The other extreme

is to assume that any dissipation feeds the internal energy of the particles, which

are not allowed to cool by radiative losses. Therefore we also simulate the θ = 150◦

case using an adiabatic equation of state (with γ = 5/3), transferring the kinetic

energy dissipated by the viscous terms into internal energy. In all other ways this

simulation is precisely the same as the corresponding isothermal simulation. In

Figs. 6.7 & 6.8 we show the disc evolution after ∼ 20 dynamical times. In the

isothermal case the gas cancels angular momentum and falls to circularise at a new

radius. In comparison Fig. 6.8 shows that the equation of state can play a significant

role in the hydrodynamics. In this case the gas is significantly heated when it shocks

and thus initially expands violently. This process drives more mixing of the gas and

thus the accretion is now almost a factor of two higher here than in the isothermal

case. The gas is still bound to the black hole and so returns on chaotic orbits to

eventually accrete.
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Figure 6.7: Column density projection showing the disc structure for the θ = 150◦

simulation with an isothermal equation of state. The disc has evolved for ∼ 20
dynamical times. Note that the gas is not heated by shocks, and thus can fall to
form a smaller disc. This figure should be compared to Fig. 6.8 where the thermal
treatment allows shock heating.
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Figure 6.8: Column density projection showing the disc structure for the θ = 150◦

simulation with an “adiabatic” equation of state (see the text for a full definition).
The disc has evolved for ∼ 20 dynamical times. Note that the gas no longer can
cool to form a smaller disc (cf. Fig. 6.7), but instead forms outflows which return
on chaotic orbits generating a lot of cancellation of angular momentum.
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6.5 Discussion

Retrograde circumbinary accretion discs are natural in the chaotic accretion picture

(King and Pringle 2006; King and Pringle 2007), and offer the possibility of can-

celling the binary orbital angular momentum (Nixon et al., 2011a, Chapter 4). We

have performed numerical simulations of accretion discs with two initially distinct

planes. In the region between the two discs angular momentum is shared, driving

accretion, particularly if θ > π/2.

The highest accretion rates come from discs with inclination θ ≈ 150◦. Here the gas

cancels angular momentum when the discs meet, allowing this gas to fall directly to

the centre without the need to interact with the inner disc. Clearly this gas would

in reality have some residual angular momentum and so would circularise at a new

smaller radius. In the simulations however the gas falls inside our accretion radius

for the central sink particle and so is directly accreted. Gas falling from between

the discs always has angular momentum with the same sense of direction as the

outer disc. Therefore if the gas tries to circularise outside the accretion radius it

impacts the inner disc, cancelling more angular momentum and falling further until

it is accreted.

The accretion rates found here are > 100 times those of a flat planar disc. This

increase comes from the mixing of angular momenta and consequent dynamical

infall of gas to smaller radii. As gas is depleted from the gap the disc tries to

spread and fill the gap, promoting more cancellation of angular momentum and

so more accretion. The timescale for gas accretion is shortened (cf. Eq. 6.9). If

enough angular momentum is cancelled then the gas accretes directly on a dynamical

timescale.

Our simulations show that discs with an initial inclination less than 90◦ evolve into
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coherent discs joined by a warp. Over time, dissipation from this warp brings the

two discs into a common plane. This extra dissipation enhances accretion, the effect

increasing with inclination angle (although negligible in comparison to the enhanced

accretion when θ > π/2). The discs appear to break, in the sense that the surface

density of the disc is greatly reduced in the warp. However in these high–resolution

simulations we still resolve the orbits of the disc particles in the warp. This disc

breaking is predicted by the numerical simulations of warp propagation in accretion

discs by Nixon and King (2012) (Chapter 5) using the constrained viscosities of

Ogilvie (1999), and has been also been seen in the SPH simulations of Larwood and

Papaloizou (1997) and Lodato and Price (2010).

Inclinations greater than 90◦ cancel rather than sharing angular momentum between

particles. This leads to particles falling on to smaller orbits, and so the accretion

rates in these simulations are significantly higher. The accretion rate for θ = 180◦

is lower than that of θ = 150◦. This is probably because gas must be pushed out of

the plane of the discs before it can leap over the inner disc.

The numerical simulations do not predict accretion rates as high as the analytical

approach (6.4). This was based on two assumptions: that the angular momentum

cancellation is perfect, and an equal mass from each disc interacts. The simulations

suggest instead that the gas falling from the gap has a spread of angular momentum,

where some accretes and some falls to a smaller radius.

The main result is that internally tilted accretion discs can generate enhanced accre-

tion rates of up to ∼ 104 times that of a plane disc (cf. Fig. 6.1). In a quasi–steady

state (such discs never reach a full steady state) we see accretion rates that are

& 100 times those of a planar disc. As remarked above, discs tilted in this way arise

naturally during the alignment of a disc around a spinning black hole or a central

binary (cf. Lodato and Pringle 2006 & Nixon et al. 2011b; Chapter 2). We also
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expect such structures to occur during chaotic gas infall into galactic centres. This

is a very efficient way of driving gas right down to the vicinity of an SMBH or an

SMBH binary and thus causing accretion. Nested discs suggest a way of transferring

gas from large radii (approaching galaxy scales) to small radii.

We note finally that our result, that tilted and nested discs imply enhanced accretion,

has implications for simulations where subgrid models are used to mimic feedback

from the SMBH. The dynamics of misaligned accretion events may imply much

larger accretion rates than predicted by the simple assumption of a planar disc with

a fixed direction of angular momentum.
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In this thesis I have presented mechanisms which may be important ingredients to

understanding two astrophysical phenomena. The first is the final parsec problem,

which requires angular momentum to be extracted from an SMBH binary orbit to

allow the SMBH to coalesce. The second is the growth of supermassive black holes,

which requires rapid accretion of gas. Here I summarise the main conclusions from

each chapter.

7.1 Misaligned circumbinary discs

In Chapter 2 we explored the effect of a binary on an external gas disc. We used

the dominant zero–frequency (azimuthally symmetric m = 0) term of the binary

potential to derive the main secular effect which is simply that misaligned gas orbits

in the disc will precess about the binary. This is similar to the Lense–Thirring effect

from a spinning black hole on a misaligned accretion disc. Using results that were

originally derived with the latter case in mind, we determined the resulting evolution.

The disc must counteralign with the binary if the inclination angle between the two

is such that cos θ < −Jd/2Jb. Otherwise the disc coaligns with the binary. This

suggests that for randomly oriented accretion events on to an SMBH binary we can

expect to form both prograde and retrograde circumbinary discs.

7.2 Stable counteralignment

In Chapter 3 I tested whether our assumptions in Chapter 2 were correct by sim-

ulating a misaligned disc around a binary. This simulation showed the precession

induced in the disc by the binary and the subsequent counteralignment of the disc

that was initially tilted by 170◦ to the binary plane. This shows that counteralign-
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ment is stable and can occur for up to half of all randomly oriented accretion events.

7.3 Retrograde circumbinary discs

In Chapter 4 we explored the subsequent evolution of a retrograde circumbinary gas

disc. We show that it can be considerably more effective in shrinking an SMBH

binary than accretion from a corresponding prograde disc. Coalescence occurs once

the binary has lost all of its angular momentum, i.e. once the secondary black hole

captures a gas mass comparable to its own.

The reason for this effectiveness, in comparison to the prograde case, is twofold. First

the disc has negative angular momentum, and second there are no orbital resonances

in a retrograde disc. The disc cannot react to tidal torques from the binary and

become a decretion disc, which is what slows the evolution in the prograde case

(Lodato et al., 2009; Cuadra et al., 2009). Instead, the disc directly feeds negative

orbital angular momentum to the secondary black hole. An important aspect here

is that there is no restriction on the rate at which this can occur. In particular

gas can flow inwards at rates higher even than Eddington for the primary black

hole, without any significant effect on the amount of gas required to coalesce the

binary. This happens because once the gas is captured, it has given up its (negative)

angular momentum to the binary – a subsequent Eddington wind would most likely

be isotropic and thus not affect the binary orbit.

We caution finally that self–gravity can deplete the circumbinary disc of gas and

reduce its ability to shrink the binary (cf. Lodato et al. 2009 in the prograde

case). Since coalescence by a retrograde disc requires Md & M2, and self–gravity

effects appear unless Md . (H/R)(M1 + M2), where H/R is the disc aspect ratio,

it appears that the final parsec problem is so far alleviated only for mergers with
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M2/M1 . H/R. This work does suggest how coalescence might work for larger

mass ratios. The secondary hole has to absorb negative angular momentum from a

gas mass comparable to its own, preferably in an eccentric orbit. Although gas self–

gravity is inevitably important in such an event, a retrograde flow has the advantage

that there is no limit on the mass inflow rate. One can also envisage a scenario where

multiple randomly oriented accretion events interact with the binary, in this case

the binary will merge when the total mass of retrograde accretion is comparable to

the secondary black hole mass.

7.4 Broken discs

In Chapter 5 we looked at the effect of the full effective viscosities (Ogilvie, 1999)

on the evolution of a misaligned accretion disc around a spinning black hole. With

constant effective viscosities the disc is able to maintain a coherent smooth warp

between the aligned inner part and the misaligned outer part. However, if we include

the full effective viscosities the evolution is changed. As the full effective viscosities

decrease sharply in magnitude in a strong warp, it becomes possible to break the disc

into two (possibly more) distinct planes. This hints at a possible mode of accretion

where a sharp tilt in the disc is able to induce counterrotation in the gas and hence

subsequent cancellation of angular momentum. It also suggests that observations of

accretion discs around black holes may be problematic as it is unclear how the disc

surface is oriented, even if the outer disc plane is known.
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7.5 Rapid accretion

In Chapter 6 we explored the evolution of a disc with a significant internal tilt.

We found that discs with a tilt less than 90◦ have similar accretion rates. This is

probably because the expected increase in the disc torques (cf. Eq. 5.3) is offset

by the decrease in the effective viscosities (cf. Figs. 5.1, 5.2 and 5.3). However, if

the tilt in the disc is greater than 90◦ the gas is able to cancel angular momentum

directly, and so fall to a much smaller radius. The mass flow rates through such

discs, can exceed those in the corresponding flat disc by factors ∼ 100− 10000. We

also show that this result does not depend on the thermal treatment for the gas. If

we assume the gas is isothermal it can readily fall to smaller radii as it is not heated

in shocks. However, if the gas retains the shock heat, the flow becomes more chaotic,

driving more mixing of the gas angular momentum and hence more accretion. The

difference in accretion rate between these two extremes is only a factor of ∼ 2.

7.6 Future work

I would like to simulate a full accretion episode on to an SMBH binary, from the cap-

ture of the initial gas into a circumbinary disc, the alignment or counteralignment of

the disc and then the subsequent evolution of the binary. This could be extended to

include multiple accretion events with random angular momentum (both magnitude

and orientation). Another intriguing possibility is the prospect of simultaneous co–

and counter–alignment of the same disc. This is almost certainly likely to drive en-

hanced accretion and it would be useful to quantify how high the accretion rates can

be, both for the merging of an SMBH binary and also for the growth of individual

SMBH.
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I would also like to perform simulations of tilted accretion discs around spinning

black holes. Previous investigations have been limited by resolution and also focused

on small warps. From the investigations in this thesis it appears obvious that in the

nonlinear, large warp, regime the disc can evolve in an extraordinary way.
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Dowski, A., Zhu, Y., McClintock, J. E., Davis, S. W., and McKinney, J. C.: 2011,

MNRAS 414, 1183

Kumar, S. and Pringle, J. E.: 1985, MNRAS 213, 435

Larwood, J. D. and Papaloizou, J. C. B.: 1997, MNRAS 285, 288

Lense, J. and Thirring, H.: 1918, Phys. Z. 19, 156

Lodato, G., Nayakshin, S., King, A. R., and Pringle, J. E.: 2009, MNRAS 398,

1392

Lodato, G. and Price, D. J.: 2010, MNRAS 405, 1212

Lodato, G. and Pringle, J. E.: 2006, MNRAS 368, 1196

146



Lucy, L. B.: 1977, AJ 82, 1013

MacFadyen, A. I. and Milosavljević, M.: 2008, ApJ 672, 83
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