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Abstract. We consider automatic synthesis from linear temporal logic
specifications for asynchronous systems. We aim the produced reactive
systems to be used as software in a multi-threaded environment. We ex-
tend previous reduction of asynchronous synthesis to synchronous syn-
thesis to the setting of multiple input and multiple output variables.
Much like synthesis for synchronous designs, this solution is not practical
as it requires determinization of automata on infinite words and solution
of complicated games. We follow advances in synthesis of synchronous
designs, which restrict the handled specifications but achieve scalabil-
ity and efficiency. We propose a heuristic that, in some cases, maintains
scalability for asynchronous synthesis. Our heuristic can prove that spec-
ifications are realizable and extract designs. This is done by a reduction
to synchronous synthesis that is inspired by the theoretical reduction.

1 Introduction

One of the most ambitious and challenging problems in reactive systems design is
the automatic synthesis of programs from logical specifications. It was suggested
by Church [3] and subsequently solved by two techniques [2, 19]. In [15] the
problem was set in a modern context of synthesis of reactive systems from Linear
Temporal Logic (ltl) specifications. The synthesis algorithm converts a ltl
specification to a Büchi automaton, which is then determinized [15]. This double
translation may be doubly exponential in the size of ϕ. Once the deterministic
automaton is obtained, it is converted to a Rabin game that can be solved in time
nO(k), where n is the number of states of the automaton (double exponential in ϕ)
and k is a measure of topological complexity (exponential in ϕ). This algorithm
is tight as the problem is 2EXPTIME-hard [15].

This unfortunate situation led to extensive research on ways to bypass the
complexity of synthesis (e.g., [11, 7, 13]). The work in [13] is of particular interest
to us. It achieves scalability by restricting the type of handled specifications.
This led to many applications of synthesis in various fields [1, 5, 24, 8, 10, 6]. So,
in some cases, synthesis of designs from their temporal specifications is feasible.

These results relate to the case of synchronous synthesis, where the synthe-
sized system is synchronized with its environment. At every step, the environ-
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ment generates new inputs and the system senses all of them and computes a
response. This is the standard computational model for hardware designs.

Here, we are interested in synthesis of asynchronous systems. Namely, the
system may not sense all the changes in its inputs, and its responses may become
visible to the external world (including the environment) with an arbitrary delay.
Furthermore, the system accesses one variable at a time while in the synchronous
model all inputs are observed and all outputs are changed in a single step. The
asynchronous model is the most appropriate for representing reactive software
systems that communicate via shared variables on a multi-threaded platform.

In [16], Pnueli and Rosner reduce asynchronous synthesis to synchronous syn-
thesis. Their technique, which we call the Rosner reduction, converts a specifica-
tion ϕ(x; y) with single input x and single output y to a specification X (x, r; y).
The new specification relates to an additional input r. They show that ϕ is asyn-
chronously realizable iff X is synchronously realizable and how to translate a
synchronous implementation of X to an asynchronous implementation of ϕ.

Our first result is an extension of the Rosner reduction to specifications with
multiple input and output variables. Pnueli and Rosner assumed that the system
alternates between reading its input and writing its output. For multiple vari-
ables, we assume cyclic access to variables: first reading all inputs, then writing
all outputs (each in a fixed order). We show that this interaction mode is not
restrictive as it is equivalent (w.r.t. synthesis) to the model in which the system
chooses its next action (whether to read or to write and which variable).

Combined with [15], the reduction from asynchronous to synchronous synthe-
sis presents a complete solution to the multiple-variables asynchronous synthesis
problem. Unfortunately, much like in the synchronous case, it is not ‘effective’.
Furthermore, even if ϕ is relatively simple (for example, belongs to the class of
GR(1) formulae that is handled in [13]), the formula X is considerably more
complex and requires the full treatment of [15].

Consequently, we propose a method to bypass this full reduction. In the
invited paper [14] we outlined the principles of an approach to bypass the com-
plexity of asynchronous synthesis. Our approach applied to specifications that
relate to one input and one output, both Boolean. We presented heuristics that
can be used to prove unrealizability and to prove realizability. It called for the
construction of a weakening that could prove unrealizability through a simpler
reduction to synchronous synthesis. This result is naturally extended to mul-
tiple variables, based on the extended Rosner reduction presented here, and is
presented in an extended version [9]. In [14] we also outlined an approach to
strengthen specifications and an alternative reduction to synchronous synthe-
sis for such strengthened specifications. Here we substantiate these conjectured
ideas by completing and correcting the details of that approach and extending
it to multiple value variables and multiple outputs. We show that the ideas por-
trayed in [14] require to even further restrict the type of specifications and a
more elaborate reduction to synchronous synthesis (even for the Boolean one-
input one-output case of [14]). We show that when the system has access to the
‘entire state’ of the environment (this is like the environment having one multiple
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value variable) there are cases where a simpler reduction to synchronous synthe-
sis can be applied. We give a conversion from the synchronous implementation
to an asynchronous implementation realizing the original specification.

To our knowledge, this is the first ‘easy’ case of asynchronous synthesis iden-
tified. With connections to partial-information games and synthesis with nonde-
terministic environments, we find this to be a very important research direction.

Proofs, which are omitted due to lack of space, are available in [9].

2 Preliminaries

Temporal Logic. We describe an extension of Quantified Propositional Tem-
poral Logic (QPTL) [21] with stuttering quantification. We refer to this extended
logic as QPTL. Let X be a set of variables ranging over the same finite domain
D. The syntax of QPTL is defined according to the following grammar.

τ ::= x = d, where x ∈ X and d ∈ D
ϕ ::= τ ‖ ¬ϕ ‖ ϕ ∨ ϕ ‖2ϕ ‖�ϕ ‖ ϕUϕ ‖ ϕ S ϕ ‖ (∃x).ϕ ‖ (∃≈x).ϕ

where τ are atomic formulae and ϕ are QPTL formulae (formulae, for short).
We use the usual standard abbreviations as well as: (∀≈x).ψ for ¬(∃≈x).(¬ψ),

ψ1 B ψ2 for ψ1 S ψ2∨` ψ1, ψ1 =�ψ2 for0(ψ1 → ψ2). For a set X̂ = {x1, . . . , xk}
of variables, where X̂ ⊆ X, we write (∃X̂).ψ for (∃x1) · · · (∃xk).ψ and similarly
for (∀X̂).ψ. We sometimes list variables and sets, e.g., (∃X̂, y).ψ instead of (∃X̂∪
{y}).ψ. Also, for a Boolean variable r we write r for r = 1 and r for r = 0.

Ltl does not allow the ∃ and ∃≈ operators. We stress that a formula ϕ is
written over the variables in a set X by writing ϕ(X). If variables are parti-
tioned to inputs X and outputs Y , we write ϕ(X;Y ). We call such formulae
specifications. We sometimes list the variables in X and Y , e.g., ϕ(x1, x2; y).

The semantics of QPTL is given with respect to computations and locations
in them. A computation σ is an infinite sequence a0, a1, . . ., where for every i ≥ 0
we have ai ∈ DX . That is, a computation is an infinite sequence of value assign-
ments to the variables in X. For an assignment a ∈ DX and a variable x ∈ X we
write a[x] for the value assigned to x by a. If X = {x1, . . . , xn}, we freely use the
notation (ai1 [x1], . . . , ain [xn]) for the assignment a such that a[xj ] = aij [xj ]. A
computation σ′ = a′0, a

′
1, . . . is an x-variant of computation σ = a0, a1, . . . if for

every i ≥ 0 and every y 6= x we have ai[y] = a′i[y]. The computation squeeze(σ) is
obtained from σ as follows. If for all i ≥ 0 we have ai = a0, then squeeze(σ) = σ.
Otherwise, if a0 6= a1 then squeeze(σ) = a0, squeeze(a1, a2, . . .). Finally, if a0 =
a1 then squeeze(σ) = squeeze(a1, a2, . . .). That is, by removing repeating assign-
ments, squeeze returns a computation in which every two adjacent assignments
are different unless the computation ends in an infinite suffix of one assignment.
A computation σ′ is a stuttering variant of σ if squeeze(σ) = squeeze(σ′).

Satisfaction of a QPTL formula ϕ over computation σ in location i ≥ 0, de-
noted σ, i |= ϕ, is defined as usual. We define here only the case of quantification.
1. We have σ, i |= (∃x).ϕ iff σ′, i |= ϕ for some σ′ that is an x-variant of σ.
2. We have σ, i |= (∃≈x).ϕ iff σ′′, i |= ϕ for some σ′′ that is a x-variant of some

stuttering variant σ′ of σ.
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We say that the computation σ satisfies the formula ϕ, iff σ, 0 |= ϕ.

Realizability of Temporal Specifications. We define synchronous and asyn-
chronous programs. While the programs themselves are not very different the
definition of interaction of a program makes the distinction clear.

Let X and Y be the sets of inputs and outputs. We stress the different roles
of the system and the environment by specializing computations to interactions.
In an interaction we treat each assignment to X ∪ Y as different assignments to
X and Y . Thus, instead of using c ∈ DX∪Y , we use a pair (a, b), where a ∈ DX

and b ∈ DY . Formally, an interaction is σ = (a0, b0), (a1, b1), . . . ∈ (DX ×DY )ω.

A synchronous program Ps from X to Y is a function Ps : (DX)+ 7→ DY . In
every step of the computation (including the initial one) the program reads its
inputs and updates the values of all outputs (based on the entire history). An
interaction σ is called synchronous interaction of P if, at each step of the interac-
tion i = 0, 1, . . ., the program outputs (assigns to Y ) the value Ps(a0, a1, . . . , ai),
i.e., bi = Ps(a0, . . . , ai). In such interactions both the environment, which up-
dates input values, and the system, which updates output values, ‘act’ at each
step (where the system responds in each step to an environment action).

A synchronous program is finite state if it can be induced by a Labeled Tran-
sition System (LTS). A LTS is T = 〈S, I,R,X, Y, L〉, where S is a finite set of
states, I ⊆ S is a set of initial states, R ⊆ S×S is a transition relation, X and Y
are disjoint sets of input and output variables, respectively, and L : S 7→ DX∪Y

is a labeling function. For a state s ∈ S and for Z ⊆ X ∪ Y , we define L(s)|Z
to be the restriction of L(s) to the variables of Z. The LTS has to be recep-
tive, i.e., be able to accept all inputs. Formally, for every a ∈ DX there is
some s0 ∈ I such that L(s0)|X = a. For every a ∈ DX and s ∈ S there is
some sa ∈ S such that R(s, sa) and L(sa)|X = a. The LTS T is determin-
istic if for every a ∈ DX there is a unique s0 ∈ I such that L(s0)|X = a
and for every a ∈ DX and every s ∈ S there is a unique sa ∈ S such that
R(s, sa) and L(sa)|X = a. Otherwise, it is nondeterministic. A deterministic
LTS T induces the synchronous program PT : (DX)+ 7→ DY as follows. For
every a ∈ DX let T (a) be the unique state s0 ∈ I such that L(s0)|X = a. For
every n > 1 and a1 . . . an ∈ (DX)+ let T (a1, . . . , an) be the unique s ∈ S such
that R(T (a1, . . . , an−1), s) and L(s)|X = an. For every a1 . . . an ∈ (DX)+ let
PT (a1, . . . , an) be the unique b ∈ DY such that b = L(T (a1, . . . , an))|Y . We note
that nondeterministic LTS do not induce programs. As nondeterministic LTS
can always be pruned to deterministic LTS, we find it acceptable to produce
nondeterministic LTS as a representation of a set of possible programs.

An asynchronous program Pa from X to Y is a function Pa : (DX)∗ 7→ DY .
Note that the first value to outputs is set before seeing inputs. As before, the
program receives all inputs and updates all outputs. However, the definition of
an interaction takes into account that this may not happen instantaneously.

A schedule is a pair (R,W ) of sequences R = r11, . . . , r
n
1 , r

1
2, . . . , r

n
2 , . . . and

W = w1
1, . . . , w

m
1 , w

1
2, . . . , w

m
2 , . . . of reading points and writing points such that

r11 > 0 and for every i > 0 we have r1i < r2i < · · · < rni < w1
i and w1

i <
w2
i < · · · < wmi < r1i+1. It identifies the points where each of the input variables
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is read and the points where each of the output variables is written. The order
establishes that reading and writing points occur cyclically. When the distinction
is not important, we call reading points and writing points I\O-points.

An interaction is called asynchronous interaction of Pa for (R,W ) if b0 =
Pa(ε), and for every i > 0, every j ∈ {1, . . . ,m}, and every wji ≤ k < wji+1:

bk[j] = Pa((ar11 [1], . . . , arn1 [n]), (ar12 [1], . . . , arn2 [n]), . . . , (ar1i [1], . . . , arni [n]))[j].

Also, for every j ∈ {1, . . . ,m} and every 0 < k < wj1, we have that bk[j] = b0[j].
In asynchronous interactions, the environment may update the input values

at each step. However, the system is only aware of the values of inputs at reading
points and responds by outputting the appropriate variables at writing points.
In particular, the system is not even aware of the amount of time that passes
between the two adjacent time points (read-read, read-write, or write-read). That
is, output values depend only on the values of inputs in earlier reading points.

An asynchronous program is finite state if it can be asynchronously in-
duced by an Initialized LTS (ILTS). An ILTS is T = 〈Ts, i〉, where Ts =
〈S, I,R,X, Y, L〉 is a LTS, and i ∈ DY is an initial assignment. We sometimes
abuse notations and write T = 〈S, I,R,X, Y, L, i〉. Determinism is defined just as
for LTS. Similarly, given a1, . . . , an ∈ (DX)+ we define T (a1, . . . , an) as before.
A deterministic ILTS T asynchronously induces the program PT : (DX)∗ 7→ DY

as follows. Let PT (ε) = i and for every a1 . . . an ∈ (DX)+ we have PT (a1, . . . , an)
as before. As i is a unique initial assignment, we force ILTS to induce only asyn-
chronous programs that deterministically assign a single initial value to outputs.
All our results work also with a definition that allows nondeterministic choice of
initial output values (that do not depend on the unavailable inputs).

Definition 1 (realizability). A ltl specification ϕ(X;Y ) is synchronously
realizable if there exists a synchronous program Ps such that all synchronous
interactions of Ps satisfy ϕ(X;Y ). Such a program Ps is said to synchronously
realize ϕ(X;Y ). Synchronous realizability is often simply shortened to realiz-
ability. Asynchronous realizability is defined similarly with asynchronous
programs and all asynchronous interactions for all schedules.

Synthesis is the process of automatically constructing a program P that
(synchronously/asynchronously) realizes a specification ϕ(X;Y ). We freely write
that a LTS realizes a specification in case that the induced program satisfies it.

Theorem 1 ([15]). Deciding whether a specification ϕ(X;Y ) is synchronously
realizable is 2EXPTIME-complete. Furthermore, if ϕ(X;Y ) is synchronously re-
alizable the same decision procedure can extract a LTS that realizes ϕ(X;Y ).

Normal Form of Specifications. We give a normal form of specifications
describing an interplay between a system s and an environment e. Let X and Y
be disjoint sets of input and output variables, respectively. For α ∈ {e, s}, the
formula ϕα(X;Y ), which defines the allowed actions of α, is a conjunction of:
1. Iα (initial condition) – a Boolean formula (equally, an assertion) over X∪Y ,

describing the initial state of α. The formula Is may refer to all variables
and Ie may refer only to the variables X.
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2. 0 Sα (safety component) – a formula describing the transition relation of
α, where Sα describes the update of the locally controlled state variables
(identified by being primed , e.g., x′ for x ∈ X) as related to the current
state (unprimed, e.g., x), except that s can observe X’s next values.

3. Lα (liveness component) – each Lα is a conjunction of 01 p formulae
where p is a Boolean formula.

In the case that a specification includes temporal past formulae instead of the
Boolean formulae in any of the three conjuncts mentioned above, we assume
that a pre-processing of the specification was done to translate it into another
one that has the same structure but without the use of past formulae. This
can be always achieved through the introduction of fresh Boolean variables that
implement temporal testers for past formulae [18]. Therefore, without loss of
generality, we discuss in this work only such past-formulae-free specifications.

We abuse notations and write ϕα also as a triplet 〈Iα, Sα, Lα〉.
Consider a pair of formulae ϕα(X;Y ), for α ∈ {e, s} as above. We define

the specification Imp(ϕe, ϕs) to be (Ie ∧ 0 Se ∧ Le) → (Is ∧ 0 Ss ∧ Ls). For
such specifications, the winning condition is the formula Le → Ls, which we call
GR(1). Synchronous synthesis of such specifications was considered in [13].

The Rosner Reduction. In [16], Pnueli and Rosner show how to use syn-
chronous realizability to solve asynchronous realizability. They define, what we
call, the Rosner reduction. It translates a specification ϕ(X;Y ), where X = {x}
and Y = {y} are singletons, into a specification X (x, r; y) that has an additional
Boolean input variable r. The new variable r is called the Boolean scheduling
variable. Intuitively, the Boolean scheduling variable defines all possible sched-
ules for one-input one-output systems . When it changes from zero to one it
signals a reading point and when it changes from one to zero it signals a writing
point. Given specification ϕ(X;Y ), we define the kernel formula X (x, r; y):

r ∧01 r ∧01 r︸ ︷︷ ︸
α(r)

→

ϕ(x; y) ∧
(r ∨� r) =�(y =� y) ∧
(∀≈x̃).[(r ∧� r) =�(x = x̃)]→ ϕ(x̃; y)


︸ ︷︷ ︸

β(x,r;y)

According to α(r), the first I\O-point, where r changes from zero to one, is a
reading point and there are infinitely many reading and writing points. Then,
β(x, r; y) includes three parts: (a) the original formula ϕ(x; y) must hold, (b)
outputs obey the scheduling variable, i.e., in all points that are not writing
points the value of y does not change, and (c) if we replace all the inputs except
in reading points, then the same output still satisfies the original formula.

Theorem 2 ([16]). The specification ϕ(x; y) is asynchronously realizable iff the
specification X (x, r; y) is synchronously realizable. Given a program that syn-
chronously realizes X (x, r; y) it can be converted in linear time to a program
asynchronously realizing ϕ(x; y).

Pnueli and Rosner also show how the standard techniques for realizability of
ltl [15] can handle stuttering quantification of the form appearing in X (x, r; y).
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3 Expanding the Rosner Reduction to Multiple Variables

In this section we describe an expansion of the Rosner reduction to handle spec-
ifications with multiple input and output variables. The reduction reduces asyn-
chronous synthesis to synchronous synthesis. Without loss of generality, fix a
ltl specification ϕ(X;Y ), where X = {x1, . . . , xn} and Y = {y1, . . . , ym}.

We propose the generalized Rosner reduction, which translates ϕ(X;Y ) into
Xn,m(X∪{r};Y ). The specification uses an additional input variable r, called the
scheduling variable, that ranges over {1, . . . , (n+m)}, which defines all reading
and writing points. Variable xi may be read by the system whenever r changes
its value to i. Variable yi may be modified whenever r changes to n+ i. Initially,
r = n+m and it is incremented cyclically by 1 (hence, in the first I\O-point x1
is read). Let i⊕k 1 denote (imod k) + 1.

We also denote [r = (n+ i)]∧�[r 6= (n+ i)] by writen(i) to indicate a state
that is a writing point for yi, (r = i) ∧�(r 6= i) by read(i) to indicate a state
that is a reading point for xi,

∧
d∈D[(z = d) ↔ �(z = d)] by unchanged(z) to

indicate a state where z did not change its value, and ¬�t by first to indicate
a state that is the first one in the computation.

The kernel formula Xn,m(X ∪{r};Y ) is αn,m(r)→ βn,m(X ∪{r};Y ), where

αn,m(r) =

r = (n+m) ∧
n+m∧
i=1

[
(r = i) =�

[
(r = i)U [r = (i⊕n+m 1)]

]] 

βn,m(X ∪ {r};Y ) =


ϕ(X;Y ) ∧
m∧
i=1

[
[¬writen(i) ∧ ¬first ] =�unchanged(yi)

]
∧

(∀≈X̃).

[ n∧
i=1

[read(i) =�(xi = x̃i)]

]
→ ϕ(X̃;Y )

 .

There is a 1-1 correspondence between sequences of assignments to r and
schedules (R,W ). As r is an input variable, the program has to handle all possible
assignments to it. This implies that the program handles all possible schedules.

Theorem 3. The specification ϕ(X;Y ) (|X| = n, and |Y | = m) is asyn-
chronously realizable iff Xn,m(X ∪ {r};Y ) is synchronously realizable. Further-
more, given a program synchronously realizing Xn,m(X ∪ {r};Y ) it can be con-
verted in linear time to a program asynchronously realizing ϕ(X;Y ).

Proof (Sketch): Suppose we have a synchronous program realizing Xn,m(X∪
{r};Y ) and we want an asynchronous program realizing ϕ(X;Y ). An input to
the asynchronous program is stretched in order to be fed to the synchronous pro-
gram. Essentially, every new input to the asynchronous program is stretched so
that one variable changes at a time and in addition the new valuation of all input
variables is repeated enough time to allow the synchronous program to update
all the output variables. This is forced to happen immediately by increasing the
scheduling variable r (cyclically) in every input for the synchronous program.
This forces the synchronous program to update all output variables and this is
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the value we use for the asynchronous program. Then, the stuttering quantifi-
cation over the synchronous interaction shows that an asynchronous interaction
that matches these outputs does in fact satisfy ϕ(X;Y ).

In the other direction we have an asynchronous program realizing ϕ(X;Y )
and have to construct a synchronous program realizing Xn,m(X ∪ {r};Y ). The
reply of the synchronous program to every input in which the scheduling vari-
ables behaves other than increasing (cyclically) is set to be arbitrary. For inputs
where the scheduling variable behaves properly, we can contract the inputs to
the reading points indicated by r and feed the resulting input sequence to the
asynchronous program. We then change the output variables one by one as indi-
cated by r according to the output of the asynchronous program. In order to see
that the resulting synchronous program satisfies X , we note that the stuttering
quantification relates precisely to the possible asynchronous interactions.

In principle, this theorem provides a complete solution to the problem of
asynchronous synthesis (with multiple inputs and outputs). This requires to con-
struct a deterministic automaton for Xn,m and to solve complex parity games. In
particular, when combining determinization with the treatment of ∀≈ quantifica-
tion, even relatively simple specifications may lead to very complex deterministic
automata and (as a result) games that are complicated to solve.

Since the publication of the original Rosner reduction, several alternative
approaches to asynchronous synthesis have been suggested. Vardi suggests an
automata theoretic solution that shows how to embed the scheduling variable
directly in the tree automaton [22]. Schewe and Finkbeiner extend these ideas to
the case of branching time specifications [20]. Both approaches require the usage
of determinization and the solution of general parity games. Unlike the gener-
alized Rosner reduction they obfuscate the relation between the asynchronous
and synchronous synthesis problems. In particular, the simple cases identified
for asynchronous synthesis in the following sections rely on this relation between
the two types of synthesis. All three approaches do not offer a practical solution
to asynchronous synthesis as they have proven impossible to implement.

4 A More General Asynchronous Interaction Model

The reader may object to the model of asynchronous interaction as over sim-
plified. Here, we justify this model by showing that it is practically equivalent
(from a synthesis point of view) to a model that is more akin to software thread
implementation. Specifically, we introduce a model in which the environment
chooses the times the system can read or write and the system chooses whether
to read or write and which variable to access. We formally define this model
and show that the two asynchronous models are equivalent. We call our original
asynchronous interaction model round robin and this new model by demand.

For this section, without loss of generality, fix a ltl specification ϕ(X;Y ),
where X = {x1, . . . , xn} and Y = {y1, . . . , ym}.

A by-demand program Pb from X to Y is a function Pb : D∗ 7→ {1, . . . , n} ∪
(D × {n + 1, . . . , n + m}). We assume that for 0 ≤ i < m and for every
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d1, . . . , dm−1 ∈ D, we have Pb(d1, . . . , di) = (d, (n + i + 1)) for some d ∈ D.
That is, for a given history of values read\written by the program (and the pro-
gram should know which variables it read\wrote) the program decides on the
next variable to read\write. In case that the decision is to write in the next I\O
point, the program also chooses the value to write. Furthermore, the program
starts by writing all the output variables according to their order y1, y2, . . . , ym.

We define when an interaction matches a by-demand program. Recall that
an interaction over X and Y is σ = (a0, b0), (a1, b1), . . . ∈ (DX ×DY ). An I\O-
sequence is C = c0, c1, . . . where 0 = c0 < c1 < c2, . . .. It identifies the points in
which the program reads or writes. For a sequence d1, . . . , dk ∈ D∗, we denote
by t(Pb(d1, . . . , dk)) the value j such that either Pb(d1, . . . , dk) ∈ {1, . . . , n} and
Pb(d1, . . . , dk) = j or Pb(d1, . . . , dk) ∈ D×{n+1, . . . , n+m} and Pb(d1, . . . , dk) =
(d, j). That is, t(Pb(d1, . . . , dk)) tells us which variable the program Pb is going
to access in the next I\O-point. Given an interaction σ, an I\O sequence C,
and an index i ≥ 0, we define the view of Pb, denoted v(Pb, σ, C, i), as follows.

v(Pb, σ, C, i) =


b0[1], . . . , b0[m] If i = 0
v(Pb, σ, C, i− 1), aci [t(Pb(v(Pb, σ, C, i− 1)))]

If i > 0 and t(Pb(v(Pb, σ, C, i− 1))) ≤ n
v(Pb, σ, C, i− 1), bci [t(Pb(v(Pb, σ, C, i− 1)))]

If i > 0 and t(Pb(v(Pb, σ, c, i− 1))) > n

That is, the view of the program is the part of the interaction that is observable
by the program. The view starts with the values of all outputs at time zero.
Then, the view at ci extends the view at ci−1 by adding the value of the variable
that the program decides to read\write based on its view at point ci−1.

The interaction σ is a by-demand asynchronous interaction of Pb for I\O
sequence C if for every 1 ≤ j ≤ m we have Pb(b0[1], . . . , b0[j−1]) = (b0[j], (n+j)),
and for every i > 1 and every k > 0 such that ci ≤ k < ci+1, we have
– If t(Pb(v(Pb, σ, C, i− 1))) ≤ n, forall j ∈ {1, . . . ,m} we have bk[j] = bk−1[j].
– If t(Pb(v(Pb, σ, C, i − 1))) > n, forall j 6= t(Pb(v(Pb, σ, C, i − 1))) we have
bk[j] = bk−1[j] and for j = t(Pb(v(Pb, σ, C, i− 1))) we have Pb(v(Pb, σ, c, i−
1)) = (bk[j], j).

Also, for every j ∈ {1, . . . ,m} and every 0 < k < c1, we have bk[j] = b0[j]. That
is, the interaction matches a by-demand program if (a) the interaction starts
with the right values of all outputs (as the program starts by initializing them)
and (b) the outputs do not change in the interaction unless at I\O points where
the program chooses to update a specific output (based on the program’s view
of the intermediate state of the interaction).

Definition 2 (by-demand realizability). A ltl specification ϕ(X;Y ) is by-
demand asynchronously realizable if there exists a by-demand program Pa
such that all by-demand asynchronous interactions of Pa (for all I\O-sequences)
satisfy ϕ(X;Y ).

Theorem 4. A ltl specification ϕ(X;Y ) is asynchronously realizable iff it is
by-demand asynchronously realizable. Furthermore, given a program that asyn-
chronously realizes ϕ(X;Y ), it can be converted in linear time to a program that
by-demand asynchronously realizes ϕ(X;Y ), and vice versa.
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

αn,m(r) ∧
Iψe ∧0 Sψe ∧
ψ(X, r;Y ) ∧
n∧
i=1

[read(i) =�(xi = x̃i)] ∧
m∧
i=1

[
[¬writen(i) ∧ ¬first ] =�unchanged(yi)

]


→ ϕ(X̃;Y ).

Fig. 1. Logical implication of asynchronous strengthening.

Proof (Sketch): A round-robin program is also a by-demand program.
Showing that if a specification is by-demand realizable then it is also round-

robin realizable is more complicated. Given a by-demand program, a round-robin
program can simulate it by waiting until it has access to the variable required
by the by-demand program. This means that the round-robin program may idle
when it has the opportunity to write outputs and ignore inputs that it has the
option to read. However, the resulting interactions are still interactions of the
by-demand program and as such must satisfy the specification.

5 Proving Realizability of a Specification, and Synthesis

As mentioned, the formula Xn,m does not lead to a practical solution for asyn-
chronous synthesis. Here we show that in some cases a simpler synchronous re-
alizability test can still imply the realizability of an asynchronous specification.
We show that when a certain strengthening can be found and certain condi-
tions hold with respect to the specification we can apply a simpler realizability
test maintaining the structure of the specification. In particular, this simpler
realizability test does not require stuttering quantification. When the original
formula’s winning condition is a GR(1) formula, the synthesis algorithm in [13]
can be applied, bypassing much of the complexity involved in synthesis.

We fix a specification ϕ(X;Y ) = Imp(ϕe, ϕs) with a GR(1) winning condi-
tion, where X = {x1, . . . , xn}, Y = {y1, . . . , ym}, and ϕe = 〈Iϕe , Sϕe , Lϕe〉. Let

r be a scheduling variable ranging over {1, . . . , (n+m)} and let X̃ = {x̃|x ∈ X}.
We define the set of declared output variables Ỹ = {ỹ|y ∈ Y }. We assume that
r /∈ X, X̃ ∩ Y = ∅, and that Ỹ ∩ X = ∅. We re-use the notations writen(i),
read(i), unchanged(x), and first .

We start by definition of a strengthening, which is a formula of the type
ψ(X, r;Y ). Intuitively, the strengthening refers explicitly to a scheduling variable
r and should imply the truth of the original specification and ignore the input
except in reading points so that the stuttering quantification can be removed.

Definition 3 (asynchronous strengthening). A specification ψ(X, r;Y ) =
Imp(ψe, ψs) with a GR(1) winning condition, where ψe = 〈Iψe , Sψe , Lψe〉, is an
asynchronous strengthening of ϕ(X;Y ) if Iψe

= Iϕe
, Sψe

= Sϕe
, and the

implication in Fig. 1 is valid

Checking the conditions in Def. 3 requires to check identity of propositional
formulae and validity of a ltl formulae, which is supported, e.g., by jtlv [17].
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The formula needs to satisfy two more conditions, which are needed to show
that the simpler synchronous realizability test (introduced below) is sufficient.
Stuttering robustness is very natural for asynchronous specifications as we expect
the system to be completely unaware of the passage of time. Memory-lessness
requires that the system knows the entire ‘state’ of the environment.

Definition 4 (stuttering robustness). A ltl specification ξ(X;Y ) is stut-
teringly robust if for all computations σ and σ′ such that σ′ is a stuttering
variant of σ, σ, 0 |= ξ iff σ′, 0 |= ξ.

We can test stuttering robustness by converting a specification to a nondeter-
ministic Büchi automaton [23], adding to it transitions that capture all stuttering
options [16], and then checking that it does not intersect the automaton for the
negation of the specification. In our case, when handling formulae with GR(1)
winning conditions, in many cases, all parts of the specifications are relatively
simple and stuttering robustness can be easily checked.

Definition 5 (memory-lessness). A ltl specification ξ is memory-less if
for all computations C = c0, c1, . . . and C ′ = c′0, c

′
1, . . . such that C, 0 |= ξ

and C ′, 0 |= ξ, if for some i and j we have ci = c′j, then the computation
c0, c1, . . . , ci, c

′
j+1, c

′
j+2, . . . also satisfies ξ.

Specifications of the form ϕe = 〈Ie, Se, Le〉 are always memory-less. The
syntactic structure of Se forces a relation between possible current and next
states that does not depend on the past. Furthermore Le is a conjunction of
properties of the form 01 p, where p is a Boolean formula. If the specification
includes past temporal operators, these are embedded into the variables of the
environment (c.f. [18]), and must be accessible by the system as well.

In the general case, memory-lessness of a specification ϕ(X;Y ) can be checked
as follows. We convert both ξ and ¬ξ to nondeterministic Büchi automata N+

and N−. Then, we create a nondeterministic Büchi automaton A that runs two
copies of N+ and one copy of N− simultaneously. The two copies of N+ ‘guess’
two computations that satisfy ϕ(X;Y ) and the copy of N− checks that the two
computations can be combined in a way that does not satisfy ϕ(X;Y ). Thus,
the language of A would be empty iff ϕ(X;Y ) is not memory-less.

Note that if ϕ(X;Y ) has a memory-less environment then every asynchronous
strengthening of it has a memory-less environment. This follows from the two
sharing the initial and safety parts of the specification.

The kernel formula defined in Fig. 2 under-approximates the original. The
formula declaren,m ensures that the declared outputs are updated only at reading
points. Indeed, for every i, ỹi is allowed to change only when r changes to a value
in {1, . . . , n}. Furthermore, the outputs themselves copy the value of the declared
outputs (and only when they are allowed to change). Thus, the system ‘ignores’
inputs that are not at reading points in its next update of outputs.

Theorem 5. Let ϕ(x;Y ) = Imp(ϕe, ϕs), where ϕe = 〈Iϕe
, Sϕe

, Lϕe
〉, be a stut-

teringly robust specification with a GR(1) winning condition and with a memory-
less environment, where |Y | = {y1, . . . , ym} and where there is exactly one input
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- x. Let r be a scheduling variable ranging over {1, . . . , (1 + m)}, and let Ỹ be
declared output variables.

If ψ(x, r;Y ) is a stutteringly robust asynchronous strengthening of ϕ(x;Y )
and X 1,m

ψ (x, r;Y ∪ Ỹ ) is synchronously realizable then ϕ(x;Y ) is asynchronously

realizable. Furthermore, given a program that synchronously realizes X 1,m
ψ it can

be converted in linear time to a program that asynchronously realizes ϕ.

Proof (Sketch): The algorithm takes a program Ts that realizes ψ and con-
verts it to a program Ta. The program Ta ‘jumps’ from reading point to reading
point in Ts. By using the declared outputs in Ỹ the asynchronous program does
not have to commit on which reading point in Ts it moves to until the next input
is actually read. By ψ being a strengthening of ϕ we get that the computation
on Ts satisfies ϕ. Then, we use the stuttering robustness to make sure that the
time that passes between reading points is not important for the satisfaction
of ϕ. Memoryless-ness and single input are used to justify that prefixes of the
computation on Ts can be extended with suffixes of other computations. Essen-
tially, allowing us to ‘copy-and-paste’ segments of computations of Ts in order
to construct one computation of Ta.

We note that restricting to one input is similar to allowing the system to
read multiple inputs simultaneously.

In the case that ϕ has a GR(1) winning condition then so does X 1,m
ψ . It

follows that in such cases we can use the algorithm of [13] to check whether Xψ
is synchronously realizable and to extract a program that realizes it. We show
how to convert a LTS realizing Xψ to an ILTS realizing ϕ.

For a LTS Ts = 〈Ss, Is, Rs, {x, r}, Y, Ls〉, state stes ∈ Ss is an eventual suc-
cessor of state st ∈ Ss if there exists m ≤ |Ss| and states {s1, . . . , sm} ⊆ Ss such
that the following hold: s1 = st and sn = stes; For all 0 < i < m, (si; si+1) ∈ Rs;
For all 0 < i < m, if L(s1)|{r} = r1 then L(si)|{r} = r1, but L(sm)|{r} 6= r1. If
L(sm)|{r} = 1 we also call stes an eventual read successor, otherwise an eventual
write successor. Note that the way the scheduling variable r updates its values
is uniform across all eventual successors of a given state.

Xn,mψ (X ∪ {r};Y ∪ Ỹ ) = αn,m(r)→ βn,mψ (X ∪ {r};Y ∪ Ỹ )

βn,mψ (X ∪ {r};Y ∪ Ỹ ) =


declaren,m({r};Y ∪ Ỹ ) ∧
ψ(X ∪ {r};Y ) ∧
m∧
i=1

[
[¬writen(i) ∧ ¬first ] =�unchanged(yi)

]


declaren,m({r};Y ∪ Ỹ ) =
m∧
i=1

[writen(i) =�(yi = ỹi)] ∧[[
(r =� r) ∨

m∨
i=1

[r = (n+ i)]

]
=�
[ m∧
i=1

(ỹi =� ỹi)

]]
 .

Fig. 2. The under approximation Xn,mψ (X ∪ {r};Y ∪ Ỹ ).
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Given a LTS Ts = 〈Ss, Is, Rs, {x, r}, Y, Ls〉 such that Y = {y1, . . . , ym} the
algorithm in Fig. 3 extracts from it an ILTS Ta = 〈Sa, Ia, Ra, {x}, Y, La, ia〉.
In the first part of the algorithm that follows its initialization, between lines 5
and 15, all reading states reachable from Is are found, and used to build Ia (as
part of Sa). In the second part, between lines 16 and 43, the (m+1)-th eventual
successors of each reading state are added to Sa. This second part ensures that
all writing states are ‘skipped’ so that Ra transitions include only transitions
between consecutive reading states.

As Ts is receptive, so is Ta. In particular the algorithm transfers sink states
that handle violations of environment safety or initial conditions to Ta.

6 Applying the Realizability Test

We illustrate the application of the realizability test presented in Section 5. To
come up with an asynchronous strengthening we propose the following heuristic.

Heuristic 1 In order to derive an asynchronous strengthening ψ(X ∪ {r};Y )
for a specification ϕ(X;Y ), replace one or more occurrences of atomic formulae
of inputs, e.g., xi = d, by (xi = d)∧�(r 6= i)∧ (r = i), which means that xi = d
at a reading point.

The rationale here is to encode the essence of the stuttering quantification into
the strengthening. Since this quantification requires indifference towards input
values outside reading points, we state this explicitly.

In [14] we showed how to strengthen the specification 0(x ↔ y) to an
asynchronously realizable specification with the same idea: a Boolean output y
copies the value of an input x.

ϕ1(x; y) = [¬(x↔ y) =�(x↔2x)]→


x=�1 y ∧
x=�1 y ∧
y=�y S y S x ∧
2(y=�y B y S x)


This specification has a GR(1) winning condition, it is stutteringly robust with
a memory-less environment, and therefore it is potentially a good candidate to
apply our heuristic. As suggested, we obtain the specification ψ1(x, r; y):

[¬(x↔ y) =�(x↔2x)]→


x=�1 y ∧
x=�1 y ∧
y=�y S y S [x ∧�(r = 2) ∧ (r = 1)] ∧
2{y=�y B y S [x ∧�(r = 2) ∧ (r = 1)]}


We establish that ψ satisfies all our requirements. We then apply the syn-

chronous realizability test of [13] to the kernel formula Xψ1
(x, r; y). This formula

is realizable and we get a LTS S1 with 30 states and 90 transitions, which is then
minimized, using a variant of the Myhill-Nerode minimization, to a LTS S′1 with
16 states and 54 transitions. The algorithm in Fig. 3 constructs an ILTS AS′

1

with 16 states and 54 transitions. Using model-checking [4] we ensure that all
asynchronous interactions of AS′

1
satisfy ϕ1(x; y).

We devise similar specifications that copy the value of a Boolean input to
one of several outputs according to the choice of the environment. Thus, we have
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Input: LTS Ts = 〈Ss, Is, Rs, {x, r}, Y, Ls〉 such that |Y | = m, and an initial outputs assignment Yinit.
Output: The elements ia, Ia, La, Sa and Ra of the extracted ILTS Ta = 〈Sa, Ia, Ra, {x}, Y, La, ia〉.
1: ia ← Yinit
2: Ia ← ∅, Sa ← ∅, Ra ← ∅
3: ST ← [EmptyStack] . a new states stack (for reachable unexplored ‘read’ states)
4: touched← ∅ . a new states set (for states that were pushed to ST )
5: for all ini ∈ Is do . find all reachable initial ‘read’ states
6: for all succ ∈ Ss s.t. succ is an eventual (read) successor of ini do
7: if succ 6∈ touched then . add a new state to Ia and Sa
8: push succ to ST
9: touched← touched ∪ {succ}

10: Ia ← Ia ∪ {succ}
11: Sa ← Sa ∪ {succ}
12: La(succ)|{x} ← Ls(succ)|{x}, La(succ)|Y ← Ls(succ)|Ỹ
13: end if
14: end for
15: end for
16: while ST 6= [EmptyStack] do . explore all reachable ‘read’ states
17: st← pop ST
18: gen← {st}
19: for i = 1, . . . ,m do . find all m-th (last ‘write’) eventual successors of st
20: nextgen← ∅ . a new states set
21: for all stgen ∈ gen do . find all i-th eventual successors of st
22: for all succ ∈ Ss s.t. succ is an eventual (write) successor of stgen do
23: nextgen← nextgen ∪ {succ}
24: end for
25: end for
26: gen← nextgen
27: end for
28: nextgen← ∅ . a new states set
29: for all stgen ∈ gen do . find all ’eventual read successors’ of st
30: for all succ ∈ Ss s.t. succ is an eventual (read) successor of stgen do
31: nextgen← nextgen ∪ {succ}
32: end for
33: end for
34: for all stng ∈ nextgen do
35: if stng 6∈ touched then . add a new state to Sa
36: push stng to ST
37: touched← touched ∪ {stng}
38: Sa ← Sa ∪ {stng}
39: La(stng)|{x} ← Ls(stng)|{x}, La(stng)|Y ← Ls(stng)|Ỹ
40: end if
41: Ra ← Ra ∪ {(st, stng)} . add a new transition to Ra
42: end for
43: end while
44: return ia, Ia, La, Sa, Ra

Fig. 3. Algorithm for extracting Ta from Ts
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a multi-valued input variable encoding the value and the target output variable
and several outputs variables. The specification ϕ2(x; y0, y1) is given below.

ϕ2,e(x; y0, y1) =


((x = 0) ∧ y1) ∨
((x = 1) ∧ y1) ∨
((x = 2) ∧ y0) ∨
((x = 3) ∧ y0)

 =�2 unchanged(x)

ϕ2,s(x; y0, y1) =



(x = 0) =�1 y1 ∧
(x = 1) =�1 y1 ∧
(x = 2) =�1 y0 ∧
(x = 3) =�1 y0 ∧
y0 =�y0 S y0 S (x = 3) ∧
y1 =�y1 S y1 S (x = 1) ∧
2[y0 =�y0 B y0 S (x = 2)] ∧
2[y1 =�y1 B y1 S (x = 0)]


Using the same idea, we strengthen ϕ2 to ψ2(x, r; y0, y1), which passes all

the required tests. We then apply the synchronous realizability test in [13] to
Xψ2

(x, r; y0, y1) and get a LTS S2 with 340 states and 1544 transitions, which
is then minimized to 196 states and 1056 transitions. Our algorithm extracts an
ILTS AS′

2
, which, as model checking confirms, asynchronously realizes ϕ2.

From ϕ3(x; y0, y1, y2) (similar to ϕ2, with 3 outputs), we get a LTS with 1184
states and 8680 transitions.

7 Conclusions and Future Work

In this paper we extended the reduction of asynchronous synthesis to syn-
chronous synthesis proposed in [16] to multiple input and output variables. We
identify cases in which asynchronous synthesis can be done efficiently by bypass-
ing the well known ‘problematic’ aspects of synthesis.

One of the drawbacks of this synthesis technique is the large size of resulting
designs. However, we note that the size of asynchronous designs is bounded from
above by synchronous designs. Thus, improvements to synchronous synthesis will
result also in smaller asynchronous designs. We did not attempt to minimize or
choose more effective synchronous programs, and we did not attempt to extract
deterministic subsets of the nondeterministic controllers we worked with.

We believe that there is still room to explore additional cases in which asyn-
chronous synthesis can be approximated. In particular, restrictions imposed by
our heuristic (namely, one input environment and memory-less behavior) seem
quite severe. Trying to remove some of these restrictions is left for future work.

Finally, asynchronous synthesis is related to solving games with partial in-
formation. There may be a connection between the cases in which synchronous
synthesis offers a solution to asynchronous synthesis and partial information
games that can be solved efficiently.
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