
STRUCTURAL DOMAIN MODELLING FOR POLICY LANGUAGE

SPECIALIZATION WITH CONFLICT ANALYSIS

Thesis submitted for the degree of

Doctor of Philosophy

at the University of Leicester

by

Zohra Ahsan Khowaja

Department of Computer Science

University of Leicester

June 2012

Declaration

The content of this submission was undertaken in the Department of Computer

Science, University of Leicester, and supervised by Dr. Stephan Reiff-Marganiec

during the period of registration. I hereby declare that the materials of this sub-

mission have not previously been published for a degree or diploma at any other

university or institute. All the materials submitted is the result of my own research

except as cited in the references. Research work presented in Chapter 3 has been

previously published in [47].

2

Acknowledgements

First and foremost, I thank to my ALLAH almighty for giving me strength,

will-power, patience against many odds and fulfilling my prayers, ALHAMDU-

LILLAH.

This dissertation would not have been possible without the guidance and the

help of several individuals who contributed and extended their valuable assistance

in completion of this study. First and foremost I offer my sincerest gratitude to my

supervisor, Dr. Stephan Reiff-Marganiec, who has supported me throughout my

thesis with his patience and knowledge whilst allowing me the room to work in

my own way. I would like to thanks to my second supervisor, Dr. Artur Boronat

for his support and guidelines.

My parents deserve special thanks for their inseparable support and prayers.

My Father, who has been not with me since very long, but his inspiration imparted

me as he departed us (may Allah bless his soul), YES, O baba, for me you are

always here to see me where I am now. The struggle my Mother made in raising

us through many thick and less thin. During my stint of PhD, not to mention,

Amma for absorbing my hurts, worries and scars as I deposited to you. Your

prayers and words made me to stick with my commitment of PhD when I wanted

to quit.

Special thanks to my Dearest Sister, who was always care, supported and loved

me like a mother, whom we lost when my PhD was heading towards end. The

most painful spell of my life (still I am to extent), when I used to force me to

concentrate on my work and has been failed terribly many times in such struggle

to forgetting the fact: her no more vibrant-existence in this world.

Many thanks to my younger sister for being supportive and caring, specially

sharing my responsibilities in my absence.

Words fail me to express my appreciation to my husband and my beloved

3

daughter Zainab, for their endless love and understanding, through the duration

of my studies. Without being them with me, it was not possible to complete my

studies.

I would also like to thank you to all member of Department of Computer

Science, University of Leicester, UK. Finally special thanks also goes to friends

and fellows for their help and valuable suggestions.

Abstract

Policies are descriptive and provide information which can be used to modify the

behaviour of a system without the need of recompilation and redeployment. They

are usually written in a policy definition language which allows end users to spe-

cify their requirements, preferences and constraints. Policies are used in many

software application areas: network management, telecommunications, security,

and access control are some typical examples. Ponder, KAoS, Rein, XACML,

and WSPL are examples of policy definition languages. These languages are usu-

ally targeted at a specific domain, hence there is a plethora of languages. APPEL

(the Adaptable Programmable Policy Environment Language) [69] has followed

a different approach: It is a generic policy description language conceived with

a clear separation between core language and its specialization for concrete do-

mains. So far, there has not been any formal method for the extension and domain

specialization of the APPEL policy language.

Policy conflict can occur when a new or a modified policy is deployed in a

policy server, which leads to unspecified behaviour. To make policy based sys-

tems conflict free it is necessary to detect and resolve conflicts before they occur,

otherwise the intended behaviour of a policy cannot be guaranteed.

We introduce a structural modelling approach to specialize the policy language

for different domains, implemented in the VIATRA2 graph transformation tool.

This approach is applied to APPEL. Our method for conflict analysis is based

on the modelling methodology. As conflicts depend on domain knowledge, it is

sensible to use this knowledge for conflict analysis. The identified conflicting

actions are then encoded in the ALLOY model checker that confirm the existence

of actual and potential conflicts.

Contents

1 Introduction 9

1.1 Research Challenges . 11

1.1.1 Structural Policy Language Extension Method 11

1.1.2 Policy Conflict Methodology 12

1.2 Research Aims and Objectives 12

1.2.1 Aims . 12

1.2.2 Objectives . 13

1.3 Research Methodology and Main Contributions 13

1.3.1 Modelling of Policy Language and Domains 13

1.3.2 Parametrized Composition of Models 14

1.3.3 Policy Conflict Analysis 14

1.3.4 Home Care Domain Modelling 15

1.4 Overview of Approaches and Thesis 15

2 Background and Literature Review 18

2.1 Literature Review . 19

2.1.1 Existing Policy Languages 19

2.1.2 Policy Conflicts . 22

2.1.3 Model Driven Architecture (MDA) 30

2.2 Background . 35

CONTENTS 3

2.2.1 Graph Transformation 35

2.2.2 Unified Modelling Language (UML) 43

2.2.3 APPEL . 46

2.2.4 StPowla . 48

2.2.5 Tools . 52

3 Domain Modelling for Policy Language Specialization 56

3.1 Parametrization . 57

3.2 Extension of a Policy Language 58

3.2.1 Modelling of APPEL . 59

3.2.2 Domain Modelling: STPOWLA 61

3.2.3 Application Modelling 61

3.2.4 Model Extension . 63

3.3 Towards Automated Instantiation 67

3.4 Discussion . 79

4 Policy Conflict Analysis 84

4.1 Types of Policies and Conflicts in APPEL 85

4.2 Conflict Analysis Methodology 87

4.3 Modelling of the Policy Language in ALLOY 87

4.4 Conflict Analysis and Confirmation using ALLOY 93

4.4.1 Conflicts in Reconfiguration Policy Actions 94

4.4.2 Confirmation of Conflicts in Reconfiguration Policies . . 96

4.4.3 Conflicts in Refinement Policy Actions 99

4.4.4 Confirmation of Conflict in Refinement Policies 102

4.5 Conflict Resolution . 108

4.6 Discussion . 109

CONTENTS 4

5 Evaluation and Discussion 110

5.1 Home Care Domain . 111

5.1.1 Policy Language Extension for Home Care 113

5.1.2 Policy Conflicts in Home Care 117

5.2 Discussion . 122

6 Conclusion and Future Work 124

6.1 Conclusion . 124

6.2 Future Work . 126

A Viatra2 Graph Transformations Rules and Alloy Code 127

A.1 Viatra2 Definitions of Graph Transformations Rules 127

A.1.1 First Level Specialization 127

A.1.2 Second Level Specialization 133

A.2 Home Care Domain Modelling in ALLOY 136

List of Figures

1.1 Organization of the Thesis . 16

2.1 Relationship of Model and Graph 38

2.2 Type Graph as UML Class Diagram 39

2.3 Instance Graph as UML object Diagram 40

2.4 Graph Transformation Rule . 42

2.5 DPO graph transformation . 43

2.6 Basic Class Diagram . 45

2.7 Aggregation (a) Vs Composition (b) 46

3.1 Graphical representation of Parametrization Process [65] 58

3.2 APPEL Meta-Model . 60

3.3 Domain Meta-Model: STPOWLA 62

3.4 Application Model . 64

3.5 Graphical representation of Parametrization Process 65

3.6 Target Model (tm) after Parametrization 66

3.7 Final Model after Parametrization 68

3.8 APPEL Model in VIATRA2 Model Space 71

3.9 Domain Model in VIATRA2 Model Space 72

3.10 First General Rule . 74

3.11 Rule 1: Replace Location with Task 77

LIST OF FIGURES 6

3.12 Rule 2: Replace Action with Request 78

3.13 Rule 3: Replace Condition with Dcondition 78

3.14 Rule 4: Replace Trigger with DTrigger 79

3.15 Before(a) and After transformation(b) 80

3.16 Application Model in VIATRA2 Model Space 81

3.17 Application Rules . 82

3.18 Before(a) and After transformation(b) 83

4.1 Overview of the Conflict Analysis Procedure 88

4.2 Meta Model of APPEL Core in ALLOY 91

4.3 Concrete Policy P1 . 93

4.4 Concrete Policy P1 and P2 . 98

4.5 P1 and P2 Policy Conflict . 98

4.6 Loan Approval Workflow . 100

4.7 Case Study Attributes (ALLOY Model) 103

4.8 Refinement Policy Conflict . 104

4.9 Policy2 and Policy3 Conflict . 106

4.10 P2 and P3 Conflict (1) . 107

4.11 P2 and P3 Conflict (2) . 108

5.1 Home Care Model . 112

5.2 Transformation rule for Triggers 114

5.3 Transformation rule for Conditions 114

5.4 Transformation rule for Actions 115

5.5 Transformation rule for Location 115

5.6 Home Care Application Level Specialization 116

5.7 HomeCare Model in Alloy . 118

5.8 Home Care Application Concepts Model in Alloy 120

LIST OF FIGURES 7

5.9 Policy1 and Policy2 Conflict on Door Situation 121

List of Tables

2.1 Comparison of Policy Conflict Approaches 30

4.1 Reconfiguration Functions . 86

4.2 Reconfiguration Functions Pairwise Analysis 96

4.3 STPOWLA Attributes of SOA . 101

Chapter 1

Introduction

Policies are descriptive and provide information which can be used to modify

the behaviour of a system without the need of recompilation and redeployment

[54]. They are usually written in a policy definition language which allows end

users to specify their requirements, preferences and constraints [40]. They are

common in many software application areas: electronic commerce, network man-

agement, telecommunications, security, and access control are some typical ex-

amples. Ponder, KAoS, Rein, XACML, and WSPL are examples of policy defin-

ition languages.

Policy conflicts can occur when a new or a modified policy is deployed in a

policy server, which leads to unspecified behaviour. To make policy based sys-

tems conflict free it is necessary to detect and resolve conflicts before they occur,

otherwise the intended behaviour of a policy cannot be guaranteed. Conflicts are

said to have occurred when two policies are activated at the same time (they are

triggered and their conditions are satisfied), that lead to actions that are conflicting

with each other and hence, yield an undesired system state [41]. Since policies

are defined by different stakeholders, including system administrators and end

users, the likelihood of a policy conflict occurring is high. The exact definition of

Introduction 10

conflicting actions depends on the domain in which the policy is used. Policy con-

flict is a common problem in many areas, like policy based management systems,

distributed system, access and resource control, security, QoS, STPOWLA (the

Service Target Policy Workflow Approach) [39] and many other application areas

where policies are used. Attempts have been made to deal with policy conflict in

different domains such as QoS [18, 19], security, access and resource control in

distributed systems and network management environments [25, 54, 25, 35], tele-

communication [58, 68, 17] and policy based management system [27, 54, 28, 53].

Many existent policy definition languages are targeted to specific domains

such as networking, access control, security, QoS etc. Developing these languages

from scratch represents a large investment of effort and time. Also they might not

be reusable for other application domains. Reuse is essential as it saves time and

effort of developers. A solution to this problem are languages that are general

purpose, so they can be reused for different applications domains when required.

These languages require some mechanism for domain specializations, and this

mechanism needs to be identified and developed. APPEL [69] is an example of a

general policy description language, but so far there has been no formal method

for domain specialization.

To make effective use of policies in the systems, it is necessary to provide

a policy conflict analysis and resolution mechanism. When specializing a policy

language for a new domain, it will be useful to provide a method for policy conflict

analysis and resolution at the same time.

Introduction 11

1.1 Research Challenges

1.1.1 Structural Policy Language Extension Method

The first research challenge identified and addressed in this thesis is the policy

language extension mechanism. Policy languages have been used for a variety

of applications in software systems, and usually each application has received

its own language. Policy languages such as Ponder, KAoS, Rein, XACML, and

WSPL are usually targeted to a specific domain, hence there is a plethora of lan-

guages. Typically, new policy languages (or language variants) are developed in

a pragmatic way when a new domain is addressed. These new languages and

frameworks have some general requirements such as expressiveness, simplicity,

enforceability, scalability and analyzability in addition to being domain specific

[78].

Proving all these requirements in new language at once is difficult. Moreover

inventing ad-hoc languages can lead to chaos. APPEL (the Adaptable Program-

mable Policy Environment Language) [69] has followed a different approach: AP-

PEL is a generic policy description language conceived with a clear separation

between core language and its specialization for a concrete domain. APPEL has

been proven useful in many application areas such as Internet Telephony, Home

Care, Sensor Networks, and Workflow adaptation. However so far no formal or

structured approach is available for extension and specialization of APPEL.

Developing these languages represents a large investment in time, both of de-

signers as well as domain experts. In the light of this, it is desirable to reuse as

much as possible. There are other areas of Software Engineering where similar

problems occur, that is, systems which can share a common core and require spe-

cialization. Designing domain specific languages or a system is a complex task

that involves many aspects, whether functional or not. Designing generic models

Introduction 12

and then using them for specialization is a way to achieve the solution.

1.1.2 Policy Conflict Methodology

The second research challenge is how to deal with policy conflict while specializ-

ing a policy language for a new domain. Together with the first research challenge

and based on its solution, it is required to address the problem of policy conflict

at the same time when a new domain is being addressed.

Methods exist to deal with policy conflict in many areas. Research on policy

conflicts has been conducted in telecommunication, access control, authorization,

QoS management, security, network management and many other applications.

Some existing approaches for policy conflicts are based on Model Driven Devel-

opment. These techniques use ontologies, information models, UML models and

OCL (object constraint language) to deal with conflicts. All these methods pro-

pose good solutions to deal with policy conflicts, but these are supported by meth-

ods such as information models, ontologies, etc. Availability of domain know-

ledge within the model for conflict analysis is central to our approach.

1.2 Research Aims and Objectives

1.2.1 Aims

• Develop a methodology for domain specialization of a policy language

As we identify a very strong link between domain and policy languages,

we aim to provide a methodology based on languages and domain models

to generate policy definition languages. Specifically we demonstrate the

methodology for the APPEL policy language and provide a tool for the im-

plementation of the methodology.

Introduction 13

• Develop an efficient and automatic conflict analysis methodology

This aim includes the development of suitable methods for conflict analysis

for specialized policy languages based on a conflict definition for the model.

We manually analyse the conflicts, with tool support to confirm conflicts.

1.2.2 Objectives

• Concepts that are already defined in the form of models, for example core

concepts of the policy language or domain concepts should be reused as

much as possible, both in language generation as well as conflict analysis.

• The methodology for extension of a policy language should be clear and

sufficiently generic so that it can be reused for similar problems.

• The conflict analysis methodology shall correctly analyse actual and poten-

tial conflicts.

1.3 Research Methodology and Main Contributions

We have used a modelling approach in our thesis. The policy language special-

ization is achieved using model compositions. A parametrized composition tech-

nique is used for this purpose. The composition of models is implemented using

graph transformation technology. Model checking is used for confirmation of

policy conflicts. In this thesis we have used the APPEL policy language and case

studies for our research. The main contributions of this thesis are:

1.3.1 Modelling of Policy Language and Domains

Specialization usually represents a large amount of effort involving domain ex-

perts. Using UML this knowledge is often captured in well-defined models. The

Introduction 14

aid of these models is to provide as much reuse as possible. MDD (Model Driven

Development) describes a method where the definition of the models and meta-

models is central and underlies support techniques and tools to work with these

models. In this thesis, we develop meta models of the APPEL policy language

and the STPOWLA domain. We modelled the APPEL core and the domain in in-

dependent models.

1.3.2 Parametrized Composition of Models

To extend and specialize the policy language for different domains, we introduce

a structural modelling approach. We use parametrization approach [61], where

model composition provides a way to combine models, and model parametrization

allows the reuse of models in multiple contexts. We define transformation rules

using the VIATRA2 graph transformation tool for the implementation of paramet-

rization process.

1.3.3 Policy Conflict Analysis

We manually analyse the conflicts in extended policy language (core concepts of

the APPEL policy language and specialization to the STPOLWA domain). There

are two types of policies in the STPOWLA domain: Reconfiguration and Refine-

ment. Conflict definition is based on understating of the domain and thus avail-

ability of domain knowledge. The domain knowledge is already captured in the

models, we use this knowledge to analyse policies. There is a natural link between

the model extension and conflict analysis methods – assuming we can transfer the

models to a suitable analysis tool. We decided on ALLOY as it had already been

used to analyse policy conflicts in [51, 42, 43, 66, 76, 70]. Additionally, automatic

transformation of UML into ALLOY code is possible using UML2Alloy tool [9],

Introduction 15

and there are methods such as [60], providing a mechanisms for manual trans-

formation to obtain ALLOY models from UML models. The analysed policies are

encoded into ALLOY to confirm the conflicts.

1.3.4 Home Care Domain Modelling

For evaluation of our methodology we develop a UML model for the Home Care

domain. By applying the structural approach, we extend the APPEL policy lan-

guage for the Home Care domain. When applying the structural approach to the

Home Care domain, we identify and show that this specialization needs to do

more than one level of specialization when implemented in new homes. We also

analysis the policy conflicts in this domain.

1.4 Overview of Approaches and Thesis

Figure 1.1 shows how an approach allows for joining of models to gain specialized

languages and further how these models are taken into the conflict analysis phase.

The thesis structure follows the approach closely.

Chapter 1, addresses the problem, motivation, research challenges, research

methodology, solutions and list of main contributions.

Chapter 2, presents the literature review and background on Policy Languages,

Model Driven Techniques, and Tools.

Chapter 3, introduces the structural modelling approach for the policy language

domain specialization. The approach is then applied on APPEL policy definition

language for domain specialization.

Introduction 16

Figure 1.1: Organization of the Thesis

Introduction 17

Chapter 4, describes the policy conflict problem in policy languages and the

policy based environment. It also discusses conflict analysis, confirmation of con-

flicts by model checking and types of policies and conflicts in APPEL. Conflicts in

APPEL and domain specializations are analysed and implemented in the ALLOY

model checker.

Chapter 5, presents the evaluation and discussion of the proposed methods.

Chapter 6, presents conclusions drawn from the research and suggests areas for

future work.

Chapter 2

Background and Literature Review

This chapter is comprised of three parts. In the first part we discusses the work

relating to policy languages, policy conflicts and model driven techniques. Spe-

cifically we review work containing policy languages and their use in different

domains, definitions of policy conflicts and existing methods of conflict detection.

This highlights the intimate link between policy languages and the domain they

are intended for. Overall it indicates requirements which makes policy languages

suitable for domain specialization, conflict detection and brings out the need for

a structured approaches to extension of PDLs. As model driven techniques have

been used successfully in other areas where domain expertise is essential, we ad-

opt them here. Specifically, we review existing work in model composition and

transformation.

The second part provides a deep background on APPEL and STPOWLA, the

specific PDLs considered in this work. We also provide a background for UML

and graph transformations. We make use of model transformation and also veri-

fication tools, and use this section to discuss them.

In the final part we draw conclusions from the literature review and back-

ground.

Background and Literature Review 19

2.1 Literature Review

There are several areas of existing work which have a bearing on this thesis, and

they will be reviewed here. Firstly, the background work discusses various policy

languages, their structure and use in different domains. The second part discusses

policy conflicts, their types, conflict detection and resolution methods. The third

part discusses Model Driven Development (MDD), model composition and model

transformation techniques used in this work.

2.1.1 Existing Policy Languages

A policy is defined in a particular policy description language which specifies

the syntax and semantics of a policy. This language specifies aspect such as the

structure of the policy and the format of its rules. A policy system is a framework

through which policies are stored, retrieved and executed. This policy system

interacts with a human policy creator and an underlying controlling system.

Different policy languages have been developed for different domains, hence a

number of policy systems and languages are in use. For example policies are used

in the domain of access control, distributed systems, security, telecommunica-

tion. Every language has its own syntax, structure, semantics and implementation

mechanisms. “There is no standard metric available that can be used to analyze

and compare these languages” [50]. Most work deals with declarative policies.

Examples of policy languages are eXtensible Access Control Markup Language

(XACML) [37], Ponder [21], Web Service Policy Language (WSPL) [10], Rein

[45] and APPEL [69]. These languages have much in common, but each address

a specific domain and has been devised completely from scratch. These policy

languages are briefly discuss in this section.

Before discussing individual policy languages, we need to introduce some ba-

Background and Literature Review 20

sic terminology that is commonly used in almost every policy language.

Policy: A Policy is a main element of a policy system that is used to define and

manage the behaviour of a system.

Policy Rule: A Policy Rule is a container that contains an optional Trigger, an

optional Condition and an Action.

Policy Group A Policy Group is a container that contain one or more Policy

Rule.

Trigger: A Trigger represents an occurrence of a specific event in the system or

in its environment.

Condition: A condition is represented as a Boolean expression and defines the

necessary state of the system and its environment where the policy is ap-

plicable.

Action: An action represents the necessary actions that should be performed if

the policy is applicable.

Subject: A subject is a set of entities that is the focus of the policy. The subject

can make policy decision and information requests, and it can direct policies

to be enforced at a set of targets.

Target: A target is a set of entities that a set of policies will be applied to. The

objective of applying a policy is to either maintain the current state of the

target or to transition the target to a new state.

XACML

The eXtensible Access Control Markup Language (XACML) [37] is a declarat-

ive policy language for access control implemented in XML [15]. Access con-

Background and Literature Review 21

trol policies define how services in a computer environment may be used. The

XACML policy structure consist of subject, target, action and condition. The sub-

ject is used to identify group or role. The target identifies the set of requests.

XACML has three policy elements: Rule, Policy and PolicySet. A Policy

is a set of Rule elements and a PolicySet contains various Policy elements.

As XACML is focused on access control, it is suitable for its purpose, and is not

constructed in a way that tends itself to being extended for other domains, making

it less suitable for our purpose than APPEL.

Ponder

Ponder [21] is a declarative, object-oriented policy specification language for ac-

cess control and system configuration. It is also used for specifying manage-

ment and security policies for distributed systems activities such as registration of

users or logging and auditing events for dealing with access to critical resources

or security violations. The language has three types of policies: basic policies,

composite policies and meta-policies. Basic policies include the following policy

types: Authorization policies that define permitted actions; event-triggered Ob-

ligation policies that define actions to be performed by manager agents; Refrain

policies that define actions that subjects must refrain from performing; and Del-

egation policies that define what authorizations can be delegated and to whom.

A basic policy in Ponder consist of one or more policy elements. These ele-

ments might be common to all basic policy types: the subject, the target, the

when-constraint, import statements, constant definitions and external specifica-

tions. Other policy elements are specific to a particular policy type. Policy ele-

ments can be specified in any order.

Extending the Ponder language to cater for new kinds of policies is simplified

using an underlying object-oriented implementation. Ponder can be extended by

Background and Literature Review 22

adding new base sub-classes to the existing ones, or by adding new attributes

to existing base classes. However such extensions are at a very technical level

and thus conceptually quite remote from the domain. APPEL is less complex as

compared to Ponder as APPEL offers fewer types of policies (two verses three

in Ponder). Also Ponder’s principal application areas have been security policy

creation and management, however the framework is designed to support system

management in general, while APPEL was designed to be generic and did not

evolve from the domain of security or access control.

WSPL

The Web Services Policy Language (WSPL) is used for authorization, quality-

of-service, reliable messaging, privacy, quality-of protection, and application-

specific service options [10]. The syntax of WSPL is a strict subset of the XACML

Standard. A WSPL policy consists of one or more rules. Rules are listed in or-

der of preference, with the most preferred choice listed first. A WSPL rule is a

sequence of predicates. Each predicate places a constraint on the value of an at-

tribute. Each policy also states the target aspect of the web service that is covered

by that policy. WSPL has been implemented, and is under consideration as a

standard policy language for use with web services.

2.1.2 Policy Conflicts

Policy conflict is a very common problem occurring in all areas where policies are

used. Due to the use of policies in various application areas the exact definition

of what constitutes a conflict is depended on the application domain. In general

“two policies are said to conflict with each other if there is inconsistency between

them” [32]. While this definition provides the general idea of a conflict, in other

definitions define policy conflict more precise way, e.g.: “A policy conflict occurs

Background and Literature Review 23

when two or more policies contradict each other in terms of what the system is

instructed to do or what state it should maintain” [41].

While these definitions capture the idea of policy conflict, it is only possible to

make a clear statement whether two policies conflict when understanding what it

means for two actions to conflict in the domain. Additionally there might be types

of conflict that exist within the policies, independent of the application domain.

As policies are defined by end users, the problem of policy conflict is increased

substantially. Attempts have been made to deal with policy conflict in different

domains, QoS [18, 19], pervasive computing [76, 77, 26, 71], security, access

and resource control [25, 54, 25, 35, 76], telecommunication [58, 68, 17], policy

based management system [27, 54, 28, 53] and homecare [32]. We will consider

the results of this body of work next, but apply a conceptual structure bridging

domains.

Policy Analysis Methodologies

It has been realized that research on policy conflicts can be categorized in differ-

ent ways: by methods, by approaches and by domain dependence. There is an

extensive literature on policy analysis, policy conflicts, conflict detection methods

and conflict resolution. We have put the relevant work in appropriate categories.

These approaches and related work are discussed below:

By Methods

Policy conflict analysis methods can be categorized by the time when the detection

method is applied. The research in [68] provides two main types of methods for

conflicts detection and resolution.

1. Offline Methods

Offline methods are also known as static methods to detect conflicts at

Background and Literature Review 24

design and specification time. They typically use some formal model or

pragmatic technique to resolve conflicts by redesign and are useful at the

time of policy deployment. Static conflict detection methods can also be

used for run time conflict detection, made possible by using a snap shot of

a system created at a certain moment and detect the conflict at that moment

[70]. Static policy conflict detection methods have the advantage that the

solution of the conflict is known before it happens [71].

The work presented in [75] defined a correspondence between APPEL [69]

policies and UML state machines and uses UMC [1] as a model checker

to verify that policies expressed in UML are free of conflicts. The study

uses the model checker UMC and the associated action- and state-based

branching-time temporal logic UCTL [74]. The approach is demonstrated

by a case study. For their work, they modelled APPEL policies in UML

explicitly, whereas in our work we utilize the available knowledge (APPEL,

domain, case studies) in models to provide model based conflict analysis.

A logic based approach to deal with policy conflicts in APPEL is presen-

ted in [58, 59]. The research presents the formal semantics for APPEL.

These semantics are based on ∆DST L(x) (distributed state temporal logic).

The policies and conflicts are defined by liveness formulae in a distributed

temporal logic, and detected by (semi-)automatic theorem proving: a con-

flict is found if it is possible to derive, from the logical presentation of the

policies, a formula stating that a conflict will arise. Based on these formal

semantics they proposed a technique to reason about conflicts. The research

represented in [59] is an extension of [58], which adds the formal semantics

for distributed policies in APPEL, and techniques to deal with conflicts and

their resolution. This work conducts conflicts in APPEL, but does not dis-

cuss how domain specific conflicts are detected. Also they used a theorem

Background and Literature Review 25

proving approach for conflict detection, which is semi-automatic. We used

model checking, which is automatic.

[46] presents a UML approach, based on existing knowledge of a managed

system. They argue that policy conflicts remain undetectable using con-

ventional (language based) approaches because the implicit knowledge of

a system is unavailable to policy analysis. The study represents the impli-

cit knowledge of managed systems explicitly in UML. Conflict definitions

are derived from existing models using OCL invariants, constraints, pre and

post conditions and applied on the abstract levels of models where the size

of the model is small or moderate. Invariants and conflict definitions are

defined manually. This approach represents the use of UML and OCL for

conflict detection, however it is limited as it is applied on abstract and small

models. Our conflict analysis method is based on our extension mechanism,

so all knowledge of a policy language together with the domain knowledge

is already captured in the models and we use that knowledge for conflict

analysis. We work with complete models and concrete polices to analyse

and confirm potential and actual conflicts.

An access control model based on a role based approach is presented in

[76]. The approach has been proposed for a pervasive computing applica-

tion, where the application needs contextual information. Their model uses

environmental contexts (time and location) to determine whether a user is

permitted to access some resource or not. These models have many features

because of their application requirements, and these features can be in con-

flict with each other. An automated approach using ALLOY is used to detect

these conflicts. They claim that the results obtained form the analysis would

enable the users of the model to make an informed decision.

Background and Literature Review 26

2. Online Methods

Online or dynamic methods detect conflicts at run-time. The run-time detec-

tion methods rely on information provided by the system at run-time. These

methods use some default strategy to deal with conflicts. Our methodology

is an offline conflict detection method, but there are some online approaches

that have bearing on our work uses APPEL for conflict detection.

The research in [32] focused on conflict issues when using policy-based

management in home care systems. They make use of the APPEL policy

language for the home care system. Three types of conflicts in policy-based

home care systems are identified: conflicts that result from apparently separ-

ate triggers, conflicts among policies of multiple stake holders, and conflicts

resulting from apparently unrelated actions. They systematically analyse

the types of policy conflicts, but do not demonstrate how they detect con-

flicts. However they emphasise a resolution strategy to resolve the conflicts.

While we also analyse the conflicts in our approach, we additionally encode

this analysis in the ALLOY model checker to confirm a potential and actual

conflict.

By approaches The author in [22] identified that policy conflict analysis can

be categorized into three approaches:

1. Language Based Policy Conflict Analysis

This type of analysis is carried out by testing the policy language constructs

to find conflicts. This approach is used for network filtering policies where

language constructs and their relationships are semantically well defined

[22].

2. Information Model Based Policy Conflict Analysis

This method is based on the underlying information model, which is a struc-

Background and Literature Review 27

tured representation of the entities, concepts and their relationships of a

problem domain or managed system. The policies are applied on entities,

these policies are separate from the information model [23].

A conflict prevention approach is presented in [23]. This methodology is

based on a two phase algorithm. This algorithm obtains application specific

data, i.e, constraints and relationships from an information model, that are

subsequently used for analysis of policies conflicts in the second phase of

algorithm. Conflicting policies are then modified and restored. The analysis

in [24] is an extension of the above work. The method is the same but the

approach is different. It again demonstrates the use of a two phase algorithm

to determine conflicts. The authors argue that the algorithm is generic and

independent of application specific knowledge in the sense that application

specific knowledge of a problem domain is represented in the Information

model. Their main contribution is the two phase algorithm which queries

the information model. The first phase of the algorithm analyse the rela-

tionship between policies, and the second phase uses application specific

conflict patterns in the form of matrix, to identify the conflicts. The ap-

proach takes into consideration only detection of a potential conflict, and

does not suggest any resolution strategies. Their approach is limited in the

sense that it can only be used where domain and application specific in-

formation is represented in an Information model. From this it becomes

clear that capturing the domain and application information is crucial for

conflict analysis - in our work we make such information the fundamental

basis.

3. Ontology Based Policy Conflict Analysis

This is a comparatively new method, where policy models are constructed

using ontologies and the inherent reasoning opportunity of ontologies, sup-

Background and Literature Review 28

ports policy analysis.

[17] present an approach that is based on the ontology driven method. This

method examines policy conflicts of the APPEL policy language for the do-

main of call control. The authors argue that this method automatically iden-

tifies potential conflicts among policies. Their method examines domain

knowledge to interpret policy action with their effects. Policy conflict de-

tection method are conducted offline, but the method also supports conflict

detection and resolution online. The method is supported by the RECAP

tool (rigorously evaluated conflict among policies), which filters conflict-

ing pair of actions and automatically generates resolutions. The detection

of conflicts is completely automated and resolution is partly automated by

RECAP. The details of resolution involve human judgement and are added

in a manual step. Our work is related with this study in that it also makes

use of the APPEL policy language, but the targeted domain and the conflict

analysis methodology are different. Their conflict detection and resolution

strategy is ontology based, whereas our methodology is based on modelling.

By Domain Dependence [29] classified policy conflicts into two groups:

Modality and Semantic conflicts.

1. Modality Conflicts: Modality conflicts [57] are inconsistencies in the policy

specifications, due to the existence of both a negative and a positive oblig-

ation or authorization policy that apply to the same set of managed objects.

Modalities are independent of identities of managed objects, so modality

conflicts can be detected without the knowledge of the managed system by

syntactic analysis of the policies prior to deployment [29].

2. Semantic Conflicts: Semantic conflicts are existent in the system due to

inconsistencies between policies. These can be detected by analysing sub-

Background and Literature Review 29

jects, targets and actions of the policies together with the knowledge of

external criteria such as limited resources, topology of the system, or over-

all policies of the system. These conflicts in policies cannot be determined

directly from the syntactic analysis of the policy specifications without the

description of the conflicts [29].

[29] presents a policy-conflict handling model, that is independent of both

technical details of the policy enforcement architecture and syntax of policy-

specification language. It uses a meta-policy based conflict handling mech-

anism, which defines a constraint about permitted policies. The model

primarily focuses on handling the application-specific (semantic) conflicts.

The model is applied to the POLICE Policy-Based Network Management

(PBNM) framework. They argue that the POLICE framework does not suf-

fer from modality conflicts, because it does not support negative policies.

Application-specific (semantic) conflicts are handled according to the pro-

posed model. They rely on a common schema in the model and argue that

almost all policy specification languages include subject, target and action

concepts and the fact that all languages can be modelled in similar way

allows their model to be designed independently of other details of the lan-

guage. What constitutes a conflict is dependent upon a particular applica-

tion domain. The analysis of a conflict is then carried out according to the

conflict definition. This is the drawback of their approach, as they did not

discuss the conflict definition issue.

The comparison of policy conflicts approaches that are discussed above are

summarized, and presented in Table 2.1.

Background and Literature Review 30

Research Approach Methodology Automation Method

[75] Model based (UML

state machines)

Model checking

(UMC model

checker)

Automatic Offline

[58, 59] Logic based approach Theorem proving Semi-automatic Offline

[46] UML based approach OCL invariants Automatic Offline

[76] Model based Model checking

(ALLOY model

checker)

Automatic Offline

[23, 24] Information Model

based

Two phase

algorithm

Automatic Offline

[17] Ontology Driven RECAP tool Automatic Online

[57] Syntactic Analysis Modalities Semi-automatic Offline

[29] Model based Model Based Automatic Offline

Our approach Model based Model checking

(ALLOY model

checker)

Automatic Offline

Table 2.1: Comparison of Policy Conflict Approaches

2.1.3 Model Driven Architecture (MDA)

Model-driven architecture (MDA) [2] is a software design approach for the de-

velopment of software systems. It provides a set of guidelines for the structuring

of models and their specifications. MDA defines standards and terminology for

application design and implementation. It is a kind of domain engineering, and

supports Model Driven Engineering (MDE) of software systems.

Background and Literature Review 31

Metamodel

Metamodel denotes the definition of models for models. A metamodel is simply a

model that defines the structure and constraints for a family of models (instances).

A model is a way to specify abstract syntax and semantics of a problem domain.

UML itself is defined in terms of a metamodel, called MOF (Meta Object Facility)

[63]. This concept explained in Section 2.2.2.

Model Composition

Models are continuously gaining importance in the software development life

cycle [2]. These models can be used as concrete artifacts [61] in operations like

construction and transformation. Construction techniques allow to produce a new

model from existing ones. Composition is a construction technique which permits

to build a model from a set of smaller ones. Model composition is a process of

merging two or more models to obtain a single model. In contrast, transforma-

tion is a process of transforming one or more (input) models into another (output)

model. “In model composition, the new features that are to be incorporated into

a model are explicitly described by one or more source models; in a transforma-

tion, the new features are implicitly defined in the transformation actions that are

carried out on the input model” [12].

Metamodel composition is necessary for several reasons. A metamodel provides

a modelling paradigm that is set of axioms, notions, idioms, abstractions, and

techniques that specify how domains are to be modelled. Metamodels represent

a large investment of efforts and time in the understanding of a particular engin-

eering domain. Hence is is useful to reuse previously defined domain knowledge

when constructing a new metamodel. This can be done by composing specific

metamodels from abstract metamodels (i.e. metamodels that are not significant

itself individually, but capture some general modelling constructs that are useful

Background and Literature Review 32

when combined with others). This approach is only possible as part of the com-

position process, where domain-specific concepts and constraints can be added

to the resultant metamodel. Such a compositional approach to metamodel spe-

cification and construction has the advantage of reusing the existing concepts and

increasing the quality and functionality of the metamodel.

Parametrization

Parametrization is a composition technique that can be defined as an “act that

replaces an existing element in a model by another compatible one” [61]. Model

parametrization allows existing models to be reused in different contexts, thus

significantly decreasing the effort on modelling. A metamodel can be enriched

by means of another metamodel through Parametrization [61]. In this work, we

have used parametrization for specialization of a policy language where the core

language model specialized for domains (that are modelled separately).

Model Driven Development

In this section, model composition and transformation approaches from the liter-

ature are reviewed.

The EML (Epsilon Merging Language) [49] is a rule based language for mer-

ging models. EML is used for model management tasks such as model com-

parison, model transformation, model validation, etc. It uses three categories of

rules: MatchRule, MergeRule and TransformRule [49]. The identified matched

elements are merged into a sequence of model elements in the target model and

a selection of the elements for which a match has not been found in the opposite

model are transformed into elements of the target model. Our approach is dif-

ferent from the general merge mechanism provided by EML. In a EML merge

operation, two or more input models are merged together and all other entities

Background and Literature Review 33

of both models are added to the output (resulting model). Merge in our case is

different, in that it is a parametrized merging, where two or more source (input)

models are merged into one target (output) model by replacing elements in one

input model by those in the other input models.

The work presented in [12] discusses some similarities between model com-

position and model transformation. The research analyzes a number of approaches

to implement composition as transformations. The comparison of different ap-

proaches is based on generality, ease of use and ease of implementation. The

work explored the possibility of composing a set of models based on cross-cutting

concerns (aspects), with a primary base model (which represent the core func-

tionality of an application). The model composition approach presented in [33] is

the continuity of the work in [12] and offers a generic framework which is inde-

pendent of any modeling language. The approach presents a generic metamodel,

describing structural and behavioural features of a composition operator. This

metamodel supports the composition directives concept presented in [67]. These

composition directives are supported by the Kermeta language [62]. The approach

is imperative because it describes the operation of composition (merge operation)

in an algorithmic way. The imperative approach is not easily compatible with a

declarative one, as the declarative approach specifies what should be transformed

rather than how it should be done.

The metamodel merge method represented in [31] composes two modeling

languages. The constructs of the two languages share a set of real world entities;

those concepts are used as join points to stitch the two languages together into a

unified whole. In MOF [7], terms this operation is a package merge because it

operates at the package level and impacts all of the elements contained within the

merged packages. Package merge is intended to allow concepts defined in one

package to be extended with features defined in another [88]. “A package merge

Background and Literature Review 34

is a directed relationship between two packages that indicates that the contents

of the two packages are to be combined. This mechanism should be used when

elements defined in different packages have the same name and are intended to

represent the same concept. Most often it is used to provide different definitions

of a given concept for different purposes, starting from a common base definition”

[81]. Again, it is a general merging mechanism that operates on package level, and

our parametrized merge approach is different from this merge, where the merging

operation is applied on models (class diagrams) rather then the packages level.

Implementation inheritance and interface inheritance metamodel composition

operators are proposed by the Meta GME (Generic Modeling Environment) [52].

Using the implementation inheritance operator, the children (sub class) inherit

all the parent (super/base class) attributes, but only the containment associations

where the parent acts as the container. The interface inheritance operator allows no

attribute inheritance, but allows all the associations (with the exception of the con-

tainment relations) to be inherited. This technique is used when two metamodels

capture conceptually different but related domains. This method uses generaliz-

ation (sub-typing), whereas we have used the concept of parametrization, where

original models are used for specializations.

The conceptual framework and methodology presented in [65] allows the cre-

ation of DSMLs (domain specific modelling languages) for prototyping and veri-

fication. The study introduces different model composition mechanisms such as

parametrization, merge, union, inheritance, implementation inheritance and their

transformation. The research claims that it provides syntactic and semantic com-

position of concepts allowing to define a specific DSML behaviour by starting

with a more abstract view of the language and then by particularizing some of its

concepts to fit a more precise semantics. The approach selects CO-OPN (Concur-

rent Object-Oriented Petri- Nets) [16] as a target language for implementation of

Background and Literature Review 35

proposed compositions. According to the parametrization composition require-

ments for our work, we have defined transformation rules. For implementation

and other requirements (related to our work), we have used VIATRA2 graph trans-

formation tool.

[85] introduces the concepts of a generic policy model where specific policies

languages are created as simple extensions of a generic policy model. They model

the core concepts of the language, but did not discuss how their approach can be

used for policy language extension or specialization. Our approach is applied to a

specific policy language (albeit it will be transferable to other such languages) and

focuses on providing a structured approach for tailoring this to specific domains

and applications.

Composition of parametrized models, their needs and use in MDE in discussed

in [61]. The study provides an approach of parametrized model application which

allows parametrized merging of two models to obtain an extended model. The

approach is formalized with an operator named apply. The approach is imperat-

ive rather than declarative, specifying how to merge two models. A tool (cocoa

modeler)1 is implemented for this approach, however the tool does not support

aggregation and generalization relationships of a model, which is crucial for our

work.

2.2 Background

2.2.1 Graph Transformation

This section aims to introduce the formalisms and languages of graph transforma-

tion used for modelling and extension of a policy language. However, it is import-

ant to mention that we cannot cover all aspects of graph transformation theory, but

1http://www.lifl.fr/mullera/cocoamodeler

Background and Literature Review 36

we will selectively explain only those features which are relevant to the work in

this thesis.

Graphs and Graph Schemas

Generally graph transformation systems provide an intuitive description for the

manipulation of graphs and graph-based structures as they occur in representa-

tions of programming language semantics, data bases, object-oriented systems,

and various kinds of software and distributed systems. Due to their formal, oper-

ational semantics, these descriptions can be analyzed and executed using suitable

graph transformation tools.

The literature on how to define graph transformations and their semantics is

split into two different mathematical techniques: the set theoretic approach and

the algebraic approach. The basic difference is the way how the local effect of a

graph transformation rule is embedded into the original host graph. We adopt the

use of the algebraic approach for this work. The algebraic approach was proposed

by Ehrig, Pfender, and Schneider in the early seventies in order to generalize

Chomsky grammars form string to graphs [30]. The gluing of graphs plays a

central role in the algebraic approach to graph transformation, where a subgraph,

rather than a node or an edge only can be replaced by a new subgraph. The

approach was called algebraic beacuse graphs are considered as special kind of

algebras and the gluing for graphs is defined by an algebraic construction, called

pushout, in the category of graphs and total graph morphisms. Originally rewriting

of graphs based on gluing has been formulated by the so called DPO (Double

PushOut) that uses two gluing constructions (i.e. pushouts) to model a graph

transformation step. The other approach using a single step for modelling the

transformation step is know as SPO (Single PushOut).

Graphs: A graph consists of nodes and edges, where an edge connects two nodes.

Background and Literature Review 37

Graphs can be directed or undirected. In directed graphs each edge has a specific

start (source) and end (target) node.

Definition (Graph:) [30] A graph G = (V,E,s, t) consist of a set V of all nodes,

a set E of edges and two function s, t : E −→ V, the source and target functions.

In the literature e.g. [30], a graph is G is often represented by a set of nodes

V and a set I ⊆ V X V of edges. This notation is the similar to the one presented

above: for an element (v,w) ∈ E, v represents its source and w is target node,

but the parallel edges are not expressible. To model undirected graphs, for each

respective edge between two nodes v and w, we add both directed edges (v,w) and

(w,v).

Type Graph and Typing Morphism

Schemas are used to restrict the set of allowed graphs in declarative ways, similar

to class diagrams in object-oriented models or entity relationship diagrams in data

models. This means to restrict the shape of an object is to prescribe a certain

type for the object. In the following we will introduce the notion of typed graphs.

A type graph T G is a graph whose nodes represent node types and whose edges

represent edge types. A graph that is typed over a type graph T G, also called

instance graph over T G, is a graph G equipped with a graph morphism typeG :

G −→ T G that assigns a type to every node and edge in G. The type and typed

graph have the same relationship as metamodel and model have. An edge type

in T G represents a structural relationship among nodes of T G-typed graphs. This

is because, due to the typing morphism, edges of an edge type may only connect

nodes of the node types that are incident to the edge type in T G.

Background and Literature Review 38

A model can be naturally represented as a graph based structure. Model trans-

formation problems can be relatively easily formulated as graph transformation

problems [73]. A type graph represents metamodels, and graphs represent mod-

els. A model will be well-formed if its graph conforms to the type graph [55].

This is visualized in Figure 2.1.

Figure 2.1: Relationship of Model and Graph

A node type can be compared to a class and an edge type can be compared to

an association in a UML class diagram (except that in type graphs directed edges

are used). Thus, a type graph can also be presented by a UML class diagram as

shown in Figure 2.2. Similarly, instance graphs can be represented by correspond-

ing UML object diagrams as shown in Figure 2.3. As per UML syntax, each node

is labelled by an identifier followed by a reference to its type in the type graph.

Whereas, edge labels do not contain any identifier but refer to the respective edge

type only.

Attributes and Typed Attributed Graphs

In graphs, attributes are used to store additional information in a node, so nodes

are enriched with attributes. As in object-oriented languages, an attribute has a

unique name and data value. In the context of a type graph, there is a need to

declare the attributes that belong to a certain node, each has a name followed by

Background and Literature Review 39

Figure 2.2: Type Graph as UML Class Diagram

Background and Literature Review 40

Figure 2.3: Instance Graph as UML object Diagram

Background and Literature Review 41

its data type. So each node in the instance graph can store different values in the

attribute of the same data type.

Graph Schemas

A type graph with constraints is called a graph schema, and resembles a class

diagram with constraints or an ER-diagram with cardinalities.

Graph Transformations System

The graph schema provides the set of valid instance graphs and graph transform-

ation rules are used to define the transformation of instance graphs.

Graph Transformation Rules

Graph transformation rules consist of a left-hand side and a right-hand side each.

The left-hand side represents the pre-conditions of the rule, and the right-hand side

represents its effects as post-conditions. The left-hand side and the right-hand side

are instance graphs L and R.

A rule can be applied to a concrete instance graph G, also called a host graph,

whenever there is an occurrence of the left-hand side L in G. In this context,

occurrence means a sub-graph of G which has the same structure as L and whose

elements conform to the typing and attribute values of L. Sometimes, such an

occurrence is also called a match of L in G. If an occurrence of L has been found

in G, the rule can be applied as follows: The first step is to remove those elements

from the occurrence that do not appear in the right-hand side R of the rule. Then,

a certain embedding mechanism is used to merge the remaining graph D with an

isomorphic copy of R.

Background and Literature Review 42

Example

A simple example of a graph rule is shown in Figure 2.4. In the LHS, the exist-

ence of three class instances (p, dooropen, doorlock) are required as pre-condition

of the rule. This rule requires the deletion of an instance dooropen and addition

of an instance called room on the RHS.

Figure 2.4: Graph Transformation Rule

Double Pushout (DPO) Approach

In agebric approaches direct derivations are modelled by gluing construction of

graphs. These graphs are formally characterized as pusouts in suitable categories

having graphs as objects, (and total or partial) graph homomorphism as arrows.

A production p in the DPO approach is given by a pair of p = (L← K → R) of

graph homomorphisms form a common interface graph K, and direct derivation

is consist of a two gluing diagram of graphs and total graph morphism shown in

Figure 2.5 (1) and (2). A context graph D is obtain form given graph G by deleting

all elements of G which have pre image in L, but none in K. In DPO approach the

match m must satisfy an application condition, called the gluing condition. This

condition is consist of two parts.

dangling condition: To ensure that D will have no dangling edges, the dangling

Background and Literature Review 43

condition requires that if application of p specifies the deletion of a vertex

of G, then it must specify also the deletion of all edges of G incident to that

node.

identification condition: requires that every element of G that should be deleted

by the application of p has only one pre-image in L. The gluing condition

ensure that the application of p to G deletes exactly what is specified by

production.

Figure 2.5: DPO graph transformation

2.2.2 Unified Modelling Language (UML)

UML is used for modelling in this thesis and we will discuss basic concepts of

UML here. The Meta Object Facility (MOF) [63] is an object-oriented modelling

language, its meta-language defines the foundational concepts required to build

the Unified Modelling Language (UML) [64], so the model elements in UML are

instantiates of model element defined in MOF.

UML is a graphical language that defines a notation and a metamodel. The

metamodel of UML defines the concepts of the language through its abstract syn-

Background and Literature Review 44

tax. UML is a standard modelling language controlled by the Object Management

Group (OMG). UML uses various visual notations to create models for object-

oriented modelling such as class diagrams, activity diagrams, use case diagrams

etc. UML diagrams are used for two types of modelling: static and dynamic. The

static diagrams are used for structural aspect of modelling, whereas the dynamic

diagrams are used for behavioural modelling. Class diagrams and object diagrams

are used for structural modelling, while activity and use case diagram are used for

dynamic modelling. We have used UML for structural modelling in this work.

A class diagram describes the types of objects in a system and their relation-

ships [34]. A class is composed of two features: the properties and operations.

The properties represent the structure of the class and are shown as attributes and

associations in the class diagram. An attribute is defined in the first part of the

class with the name and its type, while associations are represented as a solid line

between two classes, directed from the source to target or bidirectional. An as-

sociation has a name and multiplicity. The multiplicity of a property shows how

many objects may fill the property. Operations are the actions that a class may

carry out. They are defined in the second part of the class in the class diagram.

Figure 2.6 shows the basic structure and concepts of a class diagram.

Generalization defines inheritance between classes. In the Figure 2.6, the

Customer class is called super class (supertype), while the PersonalCustomer

and CorporateCustomer are called sub class (subtype).

Aggregation and composition are two specialized forms of association between

two classes. Aggregation is a “part-of” relationship, where all child classes are

owned by the parent class (the child class can not be owned by more than one

parent class, and the child class has its own life cycle). Composition represents a

“has-a” relationship, and is a strong type of aggregation, where a child class does

not have its own life cycle; if the parent class is terminated, all its child classes

Background and Literature Review 45

Figure 2.6: Basic Class Diagram

are deleted too. Figure 2.7(a) shows the aggregation relationship where Club own

Person as a member of the club. Figure 2.7(b) shows the composition relation

where a University has a Department, and if the university is terminated, all

departments will be deleted as well.

Background and Literature Review 46

(a) (b)

Figure 2.7: Aggregation (a) Vs Composition (b)

2.2.3 APPEL

APPEL [69] is a Policy Description Language (PDL) originally developed to provide

a practical and comprehensive policy language for call control. It is a general lan-

guage for expressing policies in variety of application domains. It is conceived

with a clear separation between core language and specialization for concrete do-

mains. APPEL is designed for end users; its style is close to natural language

permitting ordinary user to formulate and understand policies.

The APPEL policy language, has been designed with extensibility and domain

customization in mind. It has a well defined syntax and a formal semantics, how-

ever domain specialisations have been rather ad-hoc. APPEL has an XML syntax,

and a more succinct BNF representation.

Background and Literature Review 47

policy ::= [location] pol rule group | pol rule group policy

pol rule group ::= [location] polrule | pol rule group op pol rule group

op ::= g(conditions) | u | par | seq

polrule ::= [triggers] [conditions] actions

triggers ::= [location] trigger | triggers or triggers

conditions ::= [location] condition | not conditions |

conditions or conditions | conditions and conditions

actions ::= [location] action | actions actionop actions

actionop ::= and | or | andthen | orelse

location ::= constantLocation | VariableLocation

The core language defines the structure of the language that is the basic constructs

we would expect in all policies such as Triggers, Conditions and Actions

and their relationships. The details are left for later definition as required for a

particular domain.

A policy in APPEL is a main element. A policy is composed of a number of

policy rule groups. A policy rule is either a single policy rule or a composition

of policy rules. Policy rules can optionally be combined in pairs with a number

of operators (g:guarded, u:unguarded, par:parallel, seq:sequential). Each policy

rule consists of triggers, conditions and actions, where triggers and conditions are

optional. A trigger group is either a single trigger or a composition of two or more

triggers. A condition group is either a single condition or a composition of one

or more conditions. An action group is either a single action or a composition

of two or more actions. A policy rule is applicable if its trigger occurred and its

condition is satisfied (if no trigger or condition is specified they are considered to

be trivially true). Triggers, conditions and actions occur in simple forms, but there

are also complex versions composed by using specific operators (and, or, andthen

and orelse) out of the simple forms. In addition policies are assigned a location,

the exact semantics of this depends on the domain (in telecommunications it is

Background and Literature Review 48

typically a user or domain name, for workflow a task forms a suitable location).

APPEL in its original incarnation deals with two types of policies: regular

policies and resolution policies. These policies are discussed below:

Regular Policies

Regular policies are used to define new policies for the system that is being con-

trolled. APPEL has been used for call control, but also for a number of other

domains, including sensor networks, homecare [79] and service oriented architec-

ture (SoA)[39], with each domain define its own regular policies.

Resolution Policies

The resolution policies have similar structure to regular policies. A main differ-

ence is that, the resolution policies are triggered by the conflicting actions. The

triggers of the resolution policies are therefore the actions of the regular policies.

The resolution policies are used to deal with policy conflicts.

2.2.4 StPowla

The Service Target Policy Workflow Approach STPOWLA [39] addresses the in-

tegration of business processes, policies and SoA at a high level of abstraction. It

captures essential requirements at a business level in the form of workflows and

the variability in terms of policies that are expressed in a language close to the

business goals. There are two types of regular policies which have been defined

for this domain of business workflows: refinement and reconfiguration policies.

The syntax of the ad-hoc extension to APPEL used in STPOWLA policies is:

Policy <name>

appliesto <taskName>

Background and Literature Review 49

when taskEntry

if <condition>

do req (main,< args >, [])

Where,

• appliesto is a keyword that identifies that the next item is a location to

which the policy applies, and as this specific version deal with workflows

taskName is the name of a Task. Tasknames are not part of STPOWLA, but

rather of the application domain.

• taskEntry denotes the trigger event, in STPOWLA these are related to enter-

ing tasks.

• req is an action req(, ,) for refinement policies that takes three ar-

guments: the type of Service, which express its basic functionality (The

default is the name of task, denoted by main), a list of service parameters,

in terms of task parameters and attributes (the parameters and attributes are

specific to the application domain) and finally a service level requirement

(the default is empty; specific values are application domain specific). For

reconfiguration policies, the action req is replaced with an action such as

insert or delete, specified for reconfiguration (this concept is discussed in

the next section).

Reconfiguration policies

Reconfiguration policies are used to make structural short lived changes in a work-

flow/system. STPOWLA reconfiguration policies add some additional triggers and

operations that can be used in policies; these are not application but rather work-

flow domain specific. In STPOWLA a policy expresses a reconfiguration rule

based on number of available function such as insert(x,y,z), delete(x), abort(),

Background and Literature Review 50

fail() and block(s,p). These functions are defined by STPOWLA, the detailed dis-

cussion can be found in Section 4.1.

Example

Consider an example of a reconfiguration policy from [14]: a supplier whose

business process is to receive an order from a registered customer, and then to

process that order (which includes collecting, packing and shipping the items,

plus invoicing the client). There are no extra constraints on each task, therefore

the default task policies are effectively “empty”. Now consider that under cer-

tain conditions (e.g. financial pressure), a financial guarantee is required from all

customers whose order is above a certain amount. We may have the following

policy:

GetDepositIfLargeOrder

appliesTo receiveOrder

when task completion

if receiveOrder.orderValue >250000

do insert(requestDeposit,receiveOrder, false)

This policy (GetDepositIfLargeOrder) applies to the receiveOrder task. It says

that, when the task completes successfully and the attribute orderValue (bound to

that task) is above 250000, then there should be an action. The action in this case

is the insertion of a task requestDeposit into the workflow instance after (not in

parallel to) the receiveOrder task.

Refinement Policies

Refinement policies specify criteria for the selection of services to be chosen and

invoked. The conditions, actions, task and task attributes for a specific policy

Background and Literature Review 51

are not defined at domain level. The required concepts come from specific applic-

ation domain. Each individual application area has its own concepts: for example

banking applications differ from traffic management application. For example in

a hotel booking workflow “Book double room” is a task; “order an application

form” could be a task from the banking domain. So in the workflow domain, the

exact definition of the policies are application dependent.

Example

Here is an example of a policy P1 based on the On Road Assistance Scenario [48].

The policy P1 expresses:

“if the car fault happens in the driver’s home town, then the driver will select

the garage, otherwise one is chosen automatically.”

Policy P1

appliesTo OrderGarage

when taskEntry([])

if location=myTown

do req (main, [], [Automation = interactive])

seq

when taskEntry([])

do req (main, [], [Automation = Automatic])

The above example is dealing with an instance of a policy that contains some

core concepts (e.g. when, if, do), some workflow specific (aka domain) concepts

(taskEntry and req) but also some application specific terms (OrderGarage, the

automation attribute and also the fact that location inside conditions applies to

physical locations, that is ‘places’).

So these refinement policies clear the need of application specific concepts so

Background and Literature Review 52

we refer them as Application Policies.

2.2.5 Tools

VIATRA

VIATRA (Visual Automated model Transformation) is an Eclipse-based general

purpose model transformation engineering framework that supports the entire life-

cycle for the specification, design, execution, validation and maintenance of trans-

formations within and between various modelling languages and domains.

Graph patterns are used to define model transformation in VIATRA. Patterns

can be defined as a collection of model elements arranged in a certain structure.

Patterns can be matched on certain model instances, and upon successful pattern

matching, elementary model manipulation is specified by graph transformation

rules. These rules describe pre- and post conditions to the transformations.

The static syntax of the VIATRA modelling language is defined in the form of

UML class diagrams, it follows the basic concept of MOF metamodelling [63].

VIATRA belongs to the MDA technological space and uses an XMI input/output

format that conforms to the MOF model. The syntax is formalized by typed,

attributed and directed graphs. Metamodels are interpreted as type graphs, and

models are valid instances of their type graphs [83]. Models, modelling languages

and transformations are all stored uniformly in the so-called model space, which

provides a very flexible and general way for capturing languages and models on

different meta-levels and from various domains, tools or technological spaces fol-

lowing the Visual Precise Metamodeling (VPM) approach[83].

Existing application domains of VIATRA include dependable embedded sys-

tems, robust e-business applications and business workflows, middleware, and

service-oriented architectures [4].

Background and Literature Review 53

VIATRA has a transformation-based verification and validation environment

for improving the quality of systems designed using the UML approach by auto-

matically checking consistency, completeness, and dependability requirements

[20]. It is the only graph transformation tool that supports higher-order transform-

ations [82]. The VPM, the metamodelling framework used by the VIATRA tool,

also supports the reusability of transformations by means of rule inheritance[83].

A planner algorithm [84] could be used for verifying syntactic correctness and

completeness of VIATRA transformation rules [20]. The SAL intermediate lan-

guage [13] is used for verification of semantic correctness of transformation. This

can be done by projecting model transformation rules [20].

ALLOY

ALLOY [44] is a declarative modelling language, for expressing complex struc-

tural constraints and behaviour, specifications of object models through textual

syntax. ALLOY is a formal method that include a logic, language and an analysis

tool. The logic is a relational logic providing the building block of the language.

All structures are represented as relations, and structural properties are expressed

with operators. State and execution are both described using constraints. The

language adds a small amount of syntax to the logic and structuring description.

The analysis performed is a form of constraint solving. The tool is a first order

model checking tool that allows to describe a system model and will check it for

consistency. Checking involves finding a counterexample if the given predicate is

inconsistent. The tool also allows simulation involving finding instances of state

or execution that satisfy a given property.

An ALLOY model consists of a number of signature declarations, facts and

predicates.

• Signatures. A signature introduce a basic data type, denotes a set of atoms

Background and Literature Review 54

and a collection of relations (signature fields), similar to the concept of class

and set of objects in Object oriented programming. Atoms are indivisible

(they cannot be divided into smaller parts), immutable (their properties re-

main the same over time) and uninterpreted (they do not have any inherent

properties).

• Facts. Constraints that are assumed always hold are recorded as facts.

• Predicates. A predicate is a constraint, with zero or more arguments. In-

stances of a model can be checked to satisfy a given predicate.

• Assertions. Assertion is a constraint that is intended to follows from the

fact of the model.

ALLOY is supported by a fully automated constraint solver, called ALLOY

Analyzer [3], which allows analysis of system properties by searching for in-

stances of the model. It is possible to check that certain properties of the system

(assertions) are satisfied. This is achieved by automated translation of the model

into a Boolean expression, which is analyzed by SAT solvers embedded within

the ALLOY Analyzer. A user specified scope on the model elements bounds the

domain. If an instance that violates the assertion is found within the scope, the

assertion is not valid. However, if no instance is found, the assertion might be

invalid in a larger scope.

ALLOY has received considerable attention in the research community. It has

already been used to detect policy interactions. For example, it has been success-

fully applied to modelling and analysis, detecting feature interaction [51], Access

Control policy validation [43], spatio-temporal access control model [66], model

checking of health care domain[11] and Governance policies for privacy access

control and their interactions [42].

Background and Literature Review 55

In this thesis (Chapter 4), ALLOY has been used for model a policies and

detecting conflicts among the policies. Following are the main reasons why we

choose to use ALLOY as a model checker for policy conflict analysis.

We have used a model driven technique to provide the method for extension

of the APPEL policy language. The metamodel of APPEL is represented as a

UML class diagram. As the syntax of ALLOY is suitable for object oriented

model, UML representation of models would benefit. There are some similar-

ities between ALLOY and UML, i.e, UML Classes can be defined as Signatures

in ALLOY. Association can be defined as relations in ALLOY. UML constraints

can be defined by facts and predicates. Fact are the values that hold always true,

predicates and assertions are used to verify certain properties of model. As inter-

actions are exists between the policies, it is necessary to detect these interaction

before proceed to make use of these policies. ALLOY has already proven useful

for detection of feature and policy interactions.

Chapter 3

Domain Modelling for Policy

Language Specialization

Policy languages have been used for a variety of applications in software systems,

and usually each application has received its own language. Developing these

languages requires a large investment in time, both of designers as well as domain

experts. In the light of this, it is desirable to reuse these as much as possible.

APPEL is a policy language that has been designed with domain specialization

in mind, however these domain specializations are usually conducted in an ad-

hoc fashion, rather than following a structured process. Currently there is no any

formal structured process for domain specialization of the APPEL policy language.

The objective of this chapter is to define a formal structured way of policy

language specialization that can be used to extend the APPEL policy language for

domain specialization. Specialization usually represents a large amount of effort

involving domain experts. Using UML this knowledge is often captured in well-

defined models. The aid of these models is to provide as much reuse as possible.

MDD (Model Driven Development) describes a method where the definition of

the models and meta-models is central. MDD underlies support techniques and

Domain Modelling for Policy Language Specialization 57

provide tools to work with these models. The chapter is structure as follows.

Section 3.1 defines the parametrization approach. The domain specialization of

the APPEL policy language is presented in section 3.2. Section 3.3 presents the

implementation of parametrization.

3.1 Parametrization

Parametrization is a model composition technique that allows existing model to

be reused in different context. Advantages of this are:

• Complexity can be managed at the level of smaller models. In general one

only needs to focus on modelling either domain or application specific con-

cepts and the small intersection between the two models.

• The number of concepts of individual existing models can be reused. The

core only needs to be modelled once and domains can usually be reused.

• For policy languages a structured specialization process is defined.

The idea of parametrized composition approach is inspired by [65], and we

explored this approach in [47], which explicitly describes how to compose three

specific models with parametrization. Our solution is build on this idea and adds

a graph transformation based methodology to work with generic models.

The standard process of parametrization defined in [65] is expressed by:

mm′ = mm[f p
ϕ−→ ep,Ff p]

where

• mm, mm′, f p and ep are models,

Domain Modelling for Policy Language Specialization 58

• ep ⊃ ϕ(f p), redefines the elements in ep, by replacing the correlated ele-

ments of f p by those from ep.

• ϕ : f p−→ ep is a total function that creates a map between elements of f p

and ep, and

• Ff p is a set of formulas representing constraints over f p that must be re-

spected.

Figure 3.1: Graphical representation of Parametrization Process [65]

A simplified diagram of the metamodel parametrization is presented in Figure

3.1, which shows mm′ metamodel is extended by defining its formal parameters

and substituted it with an effective parameter.

3.2 Extension of a Policy Language

This section describes how parametrization approach is be used for policy lan-

guage extension.

The APPEL core language leaves the details of Triggers, Conditions and Actions

undefined. There is then a need of extending domain concepts inside the policy

Domain Modelling for Policy Language Specialization 59

language by specializing triggers, conditions and actions with the domain con-

cepts. This is achieved by defining the domain concepts as a metamodel which

is then used as a parameter to the APPEL metamodel, to produce a target model

using our composition approach.

The parametrization approach is used here for the extension of policy lan-

guage the APPEL. There are three models involved in the extension process. The

APPEL policy model, STPOWLA: the domain model and the application model.

The parametrization process is applied twice, first to specialize the APPEL with

the STPOWLA, and then a resultant model with the application model. All three

models are briefly discussed in following section.

3.2.1 Modelling of APPEL

The APPEL policy language has been designed with extensibility and domain cus-

tomization in mind. It has been defined syntactically and been given formal se-

mantics (discussed in Section 2.2.3), however extension has been rather ad-hoc.

This section formalizes APPEL by providing a metamodel (as a UML class dia-

gram) for the core language as a basis for the structured extension.

The core defines the structure of the language that is the basic constructs we would

expect in all policies such as Triggers, Conditions, Actions and their relationships.

The details of these constructs are left for later definition, and can be specialized

for specific domains when needed. The core concepts of APPEL are used to design

a metamodel for APPEL. We already discussed the APPEL policy language in

Section 2.2.3. The UML model of APPEL is represented in Figure 3.2.

Domain Modelling for Policy Language Specialization 60

Figure 3.2: APPEL Meta-Model

Domain Modelling for Policy Language Specialization 61

3.2.2 Domain Modelling: STPOWLA

A Domain is an area of knowledge that include a set of concepts and terminolo-

gies understood by practitioners meant to use the language. Domain models are

abstract representations of the knowledge and activities that govern a particular

application domain.

Considering a policy language, this would need the specific actions and trig-

gers to be used in the application domain. In the case of APPEL and its origin,

these would be “call control” concepts such as “forward-call” or “outgoing-call”.

These concepts would come from a call-control domain model. As APPEL has

been extended by modelling STPOWLA to deal with workflows, new concepts

have to be made available, e.g, “start-task” as a trigger. In this spirit the domain

specialization to workflow needs a domain model for workflow to be composed

with APPEL; domains such as security or access control easily can be envisioned

as other domains.

STPOWLA [39] has already been discussed in Chapter 2. The UML model of

STPOWLA is shown in Figure 3.3.

3.2.3 Application Modelling

What is an action at domain level? It could be simply the execution of a task,

certainly true at the workflow domain level, but not necessarily of much use to the

practitioner. Typically the required concepts would come from a specific applic-

ation domain and hence would be a specialization beyond “workflow” to express

e.g “the booking of a hotel” or “payment for a car repair”.

Clearly this argument is not restricted to actions, but applies to other elements

as well. This is referred to as a second level of specialization for the application,

but it is again just a model composition. Based on this argument, parametrization

Domain Modelling for Policy Language Specialization 62

Figure 3.3: Domain Meta-Model: STPOWLA

Domain Modelling for Policy Language Specialization 63

process is applied twice to specialize a policy language.

As an example we consider the On Road Assistant Scenario the automotive

case study of SENSORIA [87], to illustrate our approach. We define a UML model

for the case study, which is given in Figure 3.4. The scenario is described below:

“The diagnostic system of a car engine reports a severe failure in the car en-

gine, the car is no longer driveable, and sends a message with the diagnostic data

and the vehicles GPS data to the car manufacturer or service center. Based on

availability and the drivers preferences, the service discovery system identifies

and selects the appropriate services in the area: garage, tow truck and rental car.

When the driver makes an appointment with the garage; the data is automatic-

ally transferred to the garage, A towing service is also identified by the discovery

system, the driver makes an appointment with the towing service, and the vehicle

is towed to the garage. It is assume that the owner of a the car has to deposit a

security payment before able to order services” [36].

3.2.4 Model Extension

This section describes how model parametrization can be used to extend a policy

language. The method of parametrization defined in Section 3.1 is now applied

to the APPEL and Domain model. The process of parametrization in terms of the

APPEL policy language can be defined as:

tm = am[f p
φ−→ dm,Fdm]

where

• am is the metamodel of the APPEL policy language, shown in Figure 3.2

• f p the metamodel subset of am are the formal parameters,

Domain Modelling for Policy Language Specialization 64

Figure 3.4: Application Model

Domain Modelling for Policy Language Specialization 65

• dm is the domain metamodel for workflow as shown in Figure 3.3,

• tm is the target metamodel obtained after instantiation,

• φ is a total function that creates a map between elements of f p and dm

• Ff p is a set of formulas representing constraints over f p that must be re-

spected.

Figure 3.5: Graphical representation of Parametrization Process

The simplified representation of above process is shown in Figure 3.5. In

APPEL metamodel (Figure 3.2), we consider four classes (Location, Trigger,

Condition and Action) as f p (formal parameters). We use the term actual

parameters for the elements in dm that are replaced by f ormal parameters. The

operator φ can be defined as replacing the element of f p by dm. Task, DTrigger,

Dcondition and Request are actual parameters that replaces the formal paramet-

ers. Location will replaced by Task, Trigger with DTrigger, Condition with

DCondition and Action with Request. After parametrization the target model tm

would graphically be seen as one shown in Figure 3.6.

Domain Modelling for Policy Language Specialization 66

Figure 3.6: Target Model (tm) after Parametrization

Domain Modelling for Policy Language Specialization 67

As we discussed above some domain concepts need to be refined in order

to make it applicable in the specific application. The domain model has some

gaps e.g, TaskType can’t be defined at this level, and Attributes needs to come

from the specific application. These gaps need to be filled by application-specific

concepts. This is refered to as a second level of specialization.

The Application model represents the concepts of a particular application in

terms of its attributes, entities and their relationships. As an application, we

have considered the On Road Assistant scenario from the SENSORIA case study

(presented in section 3.2.3). In order to specialize the domain-specific policy

model (tm) with the Application, we will repeat the parametrization process.

Consider ap as an Application Model and tm is the target model obtained pre-

viously. Attributes and TaskType in tm are considered as f p (f ormal parameters),

while Vehicle and RepairServices in ap are actual parameters. The process of

parametrization at this stage is:

f m = tm[f p
φ−→ ap]

φ : f p−→ ap

where, φ is a function of replacing the elements of f p by ap. RepairServices

and Attributes are actual parameter in ap and TassType and Vehicle are formal

parameters.

After second level of specialization (parametrization) the Final Model would

graphically be seen as one shown in Figure 3.7.

3.3 Towards Automated Instantiation

In Section 2.3, we have discussed the relationship between model and graph and

how model transformation problems can be formulated as graph transformation

Domain Modelling for Policy Language Specialization 68

Fi
gu

re
3.

7:
Fi

na
lM

od
el

af
te

rP
ar

am
et

ri
za

tio
n

Domain Modelling for Policy Language Specialization 69

problems. The above parametrization process can be implemented using a graph

transformation tool, subject to the appropriate transformation rules being identi-

fied and applied in the right order. These needs to capture the function ϕ.

In order to automate the parametrization process, we have some requirements

on tools. Specifically, we have identified two main requirements: support for

many to one transformations and support for models expressed in UML syntax.

The former requirements arises as we have two input models (here mm and dm)

which are transformed into one (here mm’). One of the main requirements for this

work is a UML representation of these models (this would also be required for the

policy conflict analysis method). The required tool should support many to one

transformations and also supported by UML syntax.

We investigated graph transformation technologies to find a suitable a tool

for the parametrization. Research in [56] compared many graph transformation

tools, their advantages, disadvantages and their use. With respect to the the re-

quirements of proposed transformation, the VIATRA2 seems to be most suitable

tool, among others (AGG [72], Fujaba [6], GReAT[8]). With respect to the tech-

nological space, it supports MDA, so UML, business process models and XSD

models are supported. It uses an XMI input/output format that conforms to the

MOF model. It also supports many-to-one and many-to-many transformations.

“Compared to AGG and Fujaba, the VIATRA tool is more tuned to the activity of

model transformation since it was specifically built for this purpose” [56].

The static syntax of the VIATRA modelling language is defined in the form

of UML class diagrams. It follows the basic concepts of MOF meta modelling

[63]. The syntax is formalized by typed, attributed and directed graphs. Meta

models are interpreted as type graphs, and models are valid instances of these

type graphs [83]. Models, modelling languages and transformations are all stored

uniformly in the so-called model space, which provides a very flexible and general

Domain Modelling for Policy Language Specialization 70

way for capturing languages and models on different meta-levels and from various

domains, tools or technological spaces following the Visual Precise Metamodeling

(VPM) approach [83].

Graph transformation rules are defined by pre and post conditions in terms of

LHS and RHS patterns respectively. The most elementary behavioural concept

in VIATRA2 is the machine. Each machine has a single main rule that defines

the rule which is first called when the transformation specified in the machine has

been started [5]. There are no pre and post condition for the main rule, as the

purpose of the rule is to start the execution of other graph transformation rules.

As VIATRA2 seems to fulfil our requirements, so we used VIATRA2 graph

transformation tool for the implementation of parametrization. VIATRA2 uses

the VPM metamodeling language for model and meta model representation. The

meta model and model are defined either by textual syntax, or using the Visual

Editor of Viatra as a (VTML) file. We defined our meta models using VTML

files. Figure 3.8 and 3.9 present the APPEL and STPOWLA metamodel receptively

in the (VPM) VIATRA2 Model Space. In the following section, we provide two

general rules for the implementation mechanism of parametrization, so it can be

applicable to similar problems as well. The terms f ormal and actual parametesr

are one defined in Section 3.2.4.

Consider Mi as a metamodel element (that has a relation with f ormal parameter)

and mi as a model elements, where i ∈ {1,2,3}. Let FPi be f ormal parameter

in the metamodel and f pi formal parameter in the model. Let ri be a relation

between mi and f pi in the model and ACi and aci be actual parameter in the

other metamodel and model respectively. We are defining two general rules. First

for the assocaition and aggregation relations and second for the generalization

relation. Considering i = 1, the rule to replace a f ormal parameter with the re-

spective actual parameter in VIATRA2 can be defined as follows:

Domain Modelling for Policy Language Specialization 71

Figure 3.8: APPEL Model in VIATRA2 Model Space

Domain Modelling for Policy Language Specialization 72

Figure 3.9: Domain Model in VIATRA2 Model Space

Domain Modelling for Policy Language Specialization 73

pattern Formal1(m1,fp1,r1) =

{

M1(m1);

FP1(fp1);

relation(r1,m1,fp1);

}

pattern Actual1(ac1) =

{

AC1(ac1);

}

gtrule rule1(inout m1, in fp1, inout ac1, inout r1)=

{

precondition pattern lhs(m1,fp1,ac1)=

{

find Formal1(m1,fp1,r1);

find Actual1(ac1);

}

postcondition pattern rhs(m1,ac1,r1) =

{

M1(m1);

AC1(ac1);

relation(r1,m1,ac1);

}

action

{

delete (fp1);

Domain Modelling for Policy Language Specialization 74

}

}

Figure 3.10: First General Rule

The above rule is encoded into VIATRA2 textual syntax, is shown graphically

in Figure 3.10. The rule1, uses two patterns Formal1 and Actual1, one from each

model. The rule will match the pattern described in LHS and create a relation r1

between the model element m1 and the actual parameter ac1 as described in post

condition. Finally the action part of the rule will delete f ormal parameter f p1

from the model.

We need a second general rule for generalization relationship between the

model entity and f ormal parameter. The rule is given below:

pattern Formal1(m1,fp1) =

{

M1(m1);

FP1(fp1);

supertypeOf(m1,fp1);

}

Domain Modelling for Policy Language Specialization 75

pattern Actual1(ac1) =

{

AC1(ac1);

}

gtrule rule1(inout m1, in fp1, inout ac1)=

{

precondition pattern lhs(m1,fp1)=

{

find Formal1(m1,fp1,r1);

find Actual1(ac1);

}

postcondition pattern rhs(m1,ac1) =

{

M1(m1);

AC1(ac1);

supertypeOf(m1,ac1);

}

action

{

delete (fp1);

}

All four f ormal parameters replace their respective actual parameters in the

parametrization process following the same structure as first general rule. Hence

the rule can be used to implement the parametrization process for the APPEL

model and domain model. We defined four GT rules one for each formal para-

meter to replace with actual parameters. These rules can be applied in any order.

The first rule (graphically shown in 3.11) for replacing Location with Task is

Domain Modelling for Policy Language Specialization 76

given below:

pattern PolicyRelation(P1,L1,ApTo) =

{

PolicyRule(P1);

Location(L1);

relation(ApTo,P1,L1);

}

pattern TaskAttribute(Ts1) =

{

Task(Ts1);

}

gtrule rule1(inout P1, in L1, inout Ts1, inout ApTo)=

{

precondition pattern lhs(P1,L1,Ts1)=

{

find PolicyRelation(P1,L1,ApTo);

find TaskAttribute(Ts1);

}

postcondition pattern rhs(P1,Ts1,ApTo) =

{

PolicyRule(P1);

Task(Ts1);

relation(ApTo,P1,Ts1);

}

action

{

delete (L1);

Domain Modelling for Policy Language Specialization 77

println(”Replace Location with Task”);

}

}

The second rule replaces Actions with Request shown in 3.12. The third rule

replaces Conditions with DCondition shown in Figure 3.13. The fourth rule re-

places Triggers with DTrigger shown in Figure 3.14. The complete transforma-

tion is given in Appendix A.

Figure 3.11: Rule 1: Replace Location with Task

The Figure 3.15(a) shows model that is before transformation. By applying

transformation rules we obtained a Target Model shown in the Figure 3.15(b).

For the implementation of the second level of specialization (Target model

with Application), we will use the target model that we have obtained in the do-

main specialisation phase. The Application metamodel in (VMP) is shown in Fig-

ure 3.16. As there are two formal parameters that need to be replaced by actual

parameters, we defined two graph transformation rules. Here we need to use the

second general rule as well. The rules are graphically shown in Figure 3.17(a) and

Figure 3.17(b). Figure 3.18(a) shows a model before transformation and Figure

Domain Modelling for Policy Language Specialization 78

Figure 3.12: Rule 2: Replace Action with Request

Figure 3.13: Rule 3: Replace Condition with Dcondition

Domain Modelling for Policy Language Specialization 79

Figure 3.14: Rule 4: Replace Trigger with DTrigger

3.18(b) is after transformation.

Instantiation of metamodels shown in Figure 3.6 and 3.7 are drawn manually.

Automation of these instantiation is an option, but we didn’t use in these examples.

3.4 Discussion

In this chapter, we have shown how parametrization approach can be used for

domain specialization of a policy language. We define this solution for domain

specialization of the APPEL policy language for STPOWLA domain, however the

approach and its implementation is general and can be applicable to other domains

as well.

Domain Modelling for Policy Language Specialization 80

(a
)

(b
)

Fi
gu

re
3.

15
:B

ef
or

e(
a)

an
d

A
ft

er
tr

an
sf

or
m

at
io

n(
b)

Domain Modelling for Policy Language Specialization 81

Figure 3.16: Application Model in VIATRA2 Model Space

Domain Modelling for Policy Language Specialization 82

(a)

(b)

Figure 3.17: Application Rules

Domain Modelling for Policy Language Specialization 83

(a
)

(b
)

Fi
gu

re
3.

18
:B

ef
or

e(
a)

an
d

A
ft

er
tr

an
sf

or
m

at
io

n(
b)

Chapter 4

Policy Conflict Analysis

Policy conflict can occur when a new or a modified policy is deployed in a policy

server which leads to unspecified behaviour. To make policy based systems con-

flict free it is necessary to detect and resolve conflicts before they occur, otherwise

the intended behaviour of a policy cannot be guaranteed.

In general these conflicts leave the system in an unspecified state which is

undesirable and, it is therefore necessary to provide a method to detect and resolve

these conflicts. As we are analysing conflicts during a design of the policies,

resolution is by redesign. The redesigned policies need to be checked again, to

ensure that there are no further or new conflicts. The model checking results

help to identify the source of the problem and hence allow to reduce the redesign

efforts.

The objective of this chapter is to define a conflict analysis method. The ana-

lysis is based on our work (structural modelling methodology) as conflicts depend

on domain knowledge, so using this knowledge while modelling the domain is

sensible. The chapter is structured as follows: Type of policies and conflicts in

APPEL are discussed in Section 4.1. The conflict analysis methodology is dis-

cussed in Section 4.2. The modelling of a policy language in ALLOY is discussed

Policy Conflict Analysis 85

in Section 4.3. Conflict analysis and confirmation of conflicts are represented in

Section 4.4. Resolution of conflicting policies is discussed in Section 4.5.

4.1 Types of Policies and Conflicts in APPEL

In this thesis, we developed a model driven technique to provide a method for

extension of a policy language to achieve domain specialization. We exemplified

this using the APPEL policy language. The meta model of APPEL is represented

in the form of class diagram in Figure 3.2, Section 3.2.1.

APPEL originally deals with two types of policies, Regular and Resolution

policies. These policies have already been discussed in Chapter 2, Section 2.2.3.

Regular policies are used to define new policies for the system that is being con-

trolled. The details of regular policies are dependent upon the domain in which the

policies are meant to be used, while resolution policies deal with dynamic policy

conflict resolutions.

Domain Model

As an example, we consider STPOWLA [39] as a domain in our work. In Section

2.2.4, we discussed STPOWLA in detail, however some of the details are more

relevant here, and therefore are summarized below.

Recall that STPOWLA addresses the integration of business processes, policies

and SoA at a high level of abstraction. It captures essential requirements at a

business level in the form of a workflow and the variability in terms of policies

that are expressed in a language close to the business goals (see Figure 3.3 in

Section 3.2.2). There are two types of regular policies that have been defined

for STPOWLA: refinement and reconfiguration policies. Although they have been

discussed in Chapter 2, Section 2.2.3 in detail, for better understanding of the

Policy Conflict Analysis 86

Functions Description

Insert(y,x,z)
Insert task y into the current workflow instance after task x if z is true,

or in parallel with x if z is false.

delete(x) Delete task x from the current workflow instance

abort()
Abort the current task and progress to the next task,

generating the task abort event

fail()
Declare the current task to have failed, i.e. discard further task

processing and generate the task failure event

block(s,p) Wait until predicate p is true before start the task s.

Table 4.1: Reconfiguration Functions

concepts, they are summarised below:

Reconfiguration (Domain) policies

Recall that reconfigurations are used to make structural short live changes in a

workflow/system. STPOWLA defines a number of functions to make structural

changes in a workflow. These functions are shown in Table 4.1. As changes affect

the workflow, they are independent of the specialization area and hence we can

see these policies as domain policies.

Refinement (Application) Policies

These policies specify criteria for the selection of services to be chosen and in-

voked. The domain of STPOWLA assumes that workflow tasks are executed by

services in a service- oriented architecture. The judgement of what constitutes

conflicting actions is dependent on the particular application.

Policy Conflict Analysis 87

4.2 Conflict Analysis Methodology

Conflict analysis is the process of identifying policy conflicts in management

systems, languages and systems where policies are used. The process can be

fully automated or semi automated. We have discussed conflict analysis meth-

ods in Section 2.1.2. Two major groups of methods that are commonly used in

many approaches for conflict detection are offline/static and online/dynamic. The

former are used to detect conflicts at design time, using some formal technique

or pragmatic approaches, The detected conflicts are the typically resolved by re-

design. These approaches are used before or during policy deployment. The

online/dynamic method detects and resolves conflicts at runtime. The proposed

method in our work investigates policy conflicts at design time, so this proposed

conflict analysis method is static. The various approaches, methods and tools ex-

istent to detect conflicts have been already discussed in Chapter 2. We adopt a

model checking approach here. It is important to understand that the contribution

of this work is not in using model checking, but rather in addressing the issue

of using domain information on what constitutes a conflict that is being made an

integral part of the domain modelling – not an after thought when dealing with

conflicts. In this way the conflict analysis step should be entirely independent of

using a domain expert.

4.3 Modelling of the Policy Language in ALLOY

To understand the procedure of conflict analysis, Figure 4.1 shows the overall

strategy of conflict analysis. The process is started with the translation of the Do-

main Specific Policy model into ALLOY, followed by the translation of concrete

policies into ALLOY. Finally conflict definition is encoded into ALLOY to confirm

the conflicts.

Policy Conflict Analysis 88

Figure 4.1: Overview of the Conflict Analysis Procedure

Policy Conflict Analysis 89

As discussed above, the APPEL, STPOWLA and Application meta models are

defined by UML class diagrams. The combined Domain and Application Specific

Policy Model can be saved in the textual XMI format, allowing for possible auto-

matic conversion into other model languages. In order to make use of the ALLOY

model checker for confirmation of conflicts we need to transform or translate the

models into ALLOY. We have identified two options for translating/transforming

the UML models into ALLOY code.

The first option is the automatic conversion of the UML models to ALLOY

code. This transformation can be performed through the UML2Alloy [9] tool.

The tool expects a UML class diagram as input, represented in XMI format and

produces the equivalent ALLOY model (code). Unfortunately the current tool does

not allow to convert all UML class diagrams into ALLOY code, as it has some re-

strictions. Firstly the tool does not support the transformation of some of the

UML associations. Specifically, it does not accept the aggregation and compos-

ition associations that are an integral part of the UML class diagrams we have

used. Secondly the tool does not accept and support the transformation of a sub

class that is generalized by more than one class (multiple inheritance). Addition-

ally one could not redefine attributes and operations of that subclass. Thirdly the

only primitive type supported by UML2Alloy is integer, all other data types such

as Boolean or String are not supported, while we have used the String data type

in our models. There are some other restrictions, but we have only discussed the

issues relevant to our work.

In [38] UML2Alloy is used for automatic conversion of UML models into

ALLOY, with an alternative strategy to overcome the restriction discussed above.

It is suggested that aggregation and composition associations can be defined using

OCL constraints in UML diagram. We cannot use this strategy as our model

contains many such associations. As our model uses UML features that are not

Policy Conflict Analysis 90

currently supported, UML2Alloy is not a suitable approach and therefore we had

to rely on a manual approach. Note that the existence of the tool provides a hope

that in the future a generic tool can be used to perform the conversion of UML

models to ALLOY code.

The manual approach for converting UML to ALLOY is detailed in [60]. Classes

are translated into Signature declarations in ALLOY, Attributes of a class are trans-

lated into relations within the corresponding signature. Similarly, associations

between classes are also translated into relations. We followed the process of [60]

and successfully translated the model into ALLOY. For instance, the following

ALLOY code fragment specifies the classes, attributes and associations appearing

in the class diagram of the APPEL meta model (see Figure 3.2 in section 3.2.1).

The representation of the APPEL core model in ALLOY is shown in Figure 4.2.

abstract sig PolicyRuleGroup {

policyrule: some PolicyRule }

abstract sig PolicyRule {

policy:some Policy }

sig Policy {

appliesTo: set Location,

trigger: lone Trigger,

condition: lone Condition,

action: one Action

}

ALLOY only supports the integer data type, while in our models we need to use

enumeration of the string data type. Declaring an abstract signature with scalar

extensions introduces an enumeration using the one keyword. An enumeration

Policy Conflict Analysis 91

Figure 4.2: Meta Model of APPEL Core in ALLOY

Policy Conflict Analysis 92

of ActorRole is given below, ActorRole is an abstract signature, while clerk,

branchManager, managerRepresentative are the string values for ActorRole.

abstract sig ActorRole {}

one sig clerk, manager, branchManager,

managerRepresentative extends ActorRole {}

In STPOWLA a simple policy is written as:

Policy P1

appliesTo task1

do insert(X)

We discuss the policies and conflict analysis in the next section. Here we only

provide an example to show how a concrete policy can be written in ALLOY. The

policy P1 in ALLOY is given below. The signature is used to define classes. Within

the signature definition, relations are used to define associations. For example, do

is an association of Task to Action and then to Workflow. Using the keyword

one, we have defined P1 as an instance of a signature Policy. Figure 4.3 shows

the policy P1 instance graphically. In the figure, Insert is an Action form Task

to Workflow X. It is not shown connected with both Task and X, but is shown on

the association label as do[insert].

abstract sig Policy {

appliesTo:disj set Task }

abstract sig WorkflowTask {}

abstract sig Action {}

abstract sig request extends Action {}

abstract sig reconfigure extends request {}

Policy Conflict Analysis 93

abstract sig Task {

do:disj set Action->WorkflowTask

}

abstract sig Insert extends reconfigure{}

one sig p1 extends Policy {}

one sig task1 extends Task {}

one sig insert extends Insert {}

one sig X extends WorkflowTask {}

Figure 4.3: Concrete Policy P1

4.4 Conflict Analysis and Confirmation using AL-

LOY

The ALLOY Analyzer is a first order model checking tool that is used here for

automated confirmation of conflicts. Policy conflicts are discussed in the fol-

lowing sections (4.4.1 and 4.4.3), and will be encoded in ALLOY. In the next

Policy Conflict Analysis 94

section (4.4.4 and 4.4.2) we formally define these conflicts in the form of predic-

ates and assertions, so that they can be confirmed automatically. An assertion is a

mechanism for checking and finding counterexamples in an ALLOY model. The

properties are stated in the negative so that the Analyser tool can search the state

space for counter-examples. For confitmation of a conflict we use ALLOY’s small

scope concept, that is “if there is a flaw in a system, it can be found by checking

small scopes of the system, i.e. considering a small number of instances” [44].

STPOWLA has defined two types of policies. We provide methods for conflict

analysis for both policy types.

Policy conflicts can occur when several policies are applicable simultaneously

and request for contradicting actions to take place. What exactly a contradicting

action is based on domain understanding. For example the conflict definition in

the access control domain is different from the conflict definition in the telephony

domain. In access control, allowing and denying permission simultaneously on

the same resource will be conflict. In the same way, in telephony one policy states

to forward a call to mobile if its lunch time, and the caller is a family member,

while another policy states not forward call if it is lunch time. From the above

scenario we can see that the conflict definition is based on two factors: available

knowledge and understanding of the domain. As the definition of conflicting ac-

tions is based on domain understanding, the analysis methods rely on what a con-

flict is in a certain domain. The conflict definition for the STPOWLA domain can

be derived by analysis of policy actions. We will discuss the conflicting actions

for both types of policies.

4.4.1 Conflicts in Reconfiguration Policy Actions

Policies can express reconfiguration rules based on the available actions discussed

in Section 4.1. To analyze reconfiguration actions, four workflow tasks x, y, a and

Policy Conflict Analysis 95

b are considered in a workflow instance to examine conflicts. z is a Boolean

variable. To understand reconfiguration conflicts, a manual pairwise analysis is

taken in consideration. The result is shown in Table 4.2. We analyse these action

pairs manually as the definition of conflicts depends on domain understanding.

Then we encode them in ALLOY to confirm these conflicts. In Table 4.2, the

first action pair Insert(x,y,z) and Delete(y) are conflicting. If the the action in

policy1 is Delete(y) and the action in policy2 is Insert(x,y,z), these will conflict

because the action Insert(x,y,z), inserts task x in the workflow after the task y,

while Delete(y) deletes the task y. This means that the existence of the task y is

necessary for the action Insert(x,y,z). So if policy1 deletes the task y, policy2

could not be applicable.

Conflicts between the policies can be actual or potential conflicts. Actual con-

flicts exist between the policies, and they will always occur – they do not depend

on specific instantiation data, hence they will need to be resolved. For example

in Table 4.2 the third action pair is Delete(y) and Delete(y), this means that two

policies are deleting the task y. This is an actual conflict. There are some other

factors that need to be considered to determine if an actual conflict occurs. For

example, if we change the order of actions in the action pairs discussed above,

the policies will not conflict. This would be classified as a potential conflict, as it

can be seen from the policies that there is potentially a conflict, but it depends on

specific instance situations, e.g., the order of the policies. If policy2 is executed

first and inserts task x after y, then policy1 can delete task y. So both policies

can be applicable without conflict. This option can also be used when considering

resolution for the conflicting policies.

Another factor that needs to be considered is to determine whether the conflict

occurs due to the parameters of actions. Some of these actions have parameters,

which can themselves cause interaction/conflicts. For example if policy1 says

Policy Conflict Analysis 96

Action Pair Insert(x,a,z) Delete(x) Delete(y)

Insert(x,y,z) Y Y Y

Insert(a,b,z) Y(order) N N

Delete(x) Y Y N

Delete(y) N N Y

Delete(a) Y N N

Table 4.2: Reconfiguration Functions Pairwise Analysis

Delete(x), i.e. delete task x, and policy2 says Insert(x,y,z), i.e, insert a task x

after y, it would lead to a conflict. But again the order of application matters. If

policy2 is executed first, they will not conflict.

We will use these results as a domain input to the ALLOY Analyser for the

confirmation of these conflicts.

4.4.2 Confirmation of Conflicts in Reconfiguration Policies

The analysis of reconfiguration policy actions was discussed in the previous Sec-

tion and is shown in Table 4.2. As an example we take a pair of Insert(x,y,z)

and Delete(x) form the table to confirm the conflict. Having policy P1 trying to

Insert(x,y,z) and the other policy P2 trying to Delete(x) will lead to a conflict.

The following two example policies are first given in STPOWLA syntax and

then we show their ALLOY representation.

Policy P1

appliesTo task1

do insert(x,y)

Policy P2

appliesTo task2

Policy Conflict Analysis 97

do delete(x)

From the following ALLOY representation of policies P1 and P2, we can gen-

erate the graphical output shown in Figure 4.4.

abstract sig Policy {

appliesTo:disj set Task }

abstract sig WorkflowTask {}

abstract sig Action {}

abstract sig request extends Action {}

abstract sig reconfigure extends request {}

abstract sig Task {

do:disj set Action -> WorkflowTask

}

abstract sig Insert extends reconfigure{}

abstract sig Delete extends reconfigure{}

one sig P1, P2 extends Policy {}

one sig task1, task2 extends Task {}

one sig insert extends Insert {}

one sig delete extends Delete {}

one sig X,Y extends WorkflowTask {}

fact {P1.appliesTo=task1 and P2.appliesTo=task2 }

To examine the conflict in Policy P1 and P2, we define a predicate and an

assertion in ALLOY given as:

pred InsertDeleteConflict

{

Policy Conflict Analysis 98

Figure 4.4: Concrete Policy P1 and P2

(task1.do=insert-> X and task2.do=delete->X)

or (task2.do=insert-> X and task1.do=delete->X)

}

assert conflict {

InsertDeleteConflict [] }

check conflict

Figure 4.5: P1 and P2 Policy Conflict

Policy Conflict Analysis 99

Figure 4.5 shows this conflict graphically, where policy P1 inserts task X,

while policy P2 tries to delete the task X.

4.4.3 Conflicts in Refinement Policy Actions

For the analysis of refinement policies, a detailed knowledge of the particular

application domain is required. The constraints of that particular application are

essential to analyse the conflict.

As an example of refinement policies, we consider a case study of a loan ap-

proval process discussed in [39]. The workflow of the process in shown in Figure

4.6, consists of five tasks. The first step is to complete and submit a loan applica-

tion. Next, the submitted application is vetted. An offer will be made next, if the

customer is found to be credible. Then the created offer needs to be checked, and

finally the approved offer will be sent to the customer, or the application will be

rejected, if the offer is not approved [39].

The analysis of refinement conflicts is based on the attributes and policies from

the loan approval case study, as conflict definition is based on domain knowledge.

[39] defines a number of attributes for the case study, and these are shown in Table

4.3. Some concrete policies are given below, all three policies are applicable to a

task CheckforApproval.

P1: In a big branch the request should be vetted and approved by two distinct

members of staff.

P2: In a small branch the branch manager has to approve all applications.

P3: If the branch manager of a small branch is out of office, his representative

signs all applications.

As all three policies are applied to a single task, it is necessary to make them con-

Policy Conflict Analysis 100

Figure 4.6: Loan Approval Workflow

Policy Conflict Analysis 101

STPOWLA ATTRIBUTES

SLA dimensions

ActorId = String

Automation = enum{automatic, interactive}

ActorRole = enum{clerk, manager, branchManager, managerRepresentative}

General Attributes

actorId: ActorId

automation: Automation

Domain Dependent Attributes

actorRole: ActorRole

Workflow Attributes

branchSize: enum{small, large}

branchId: String

loanRequest: Integer

Task CompleteAndSubmit

applicantAccountBranch: String

Table 4.3: STPOWLA Attributes of SOA

flict free. Let us consider an informal understanding of conflict in these policies:

1. Checking inconsistency of Policy P1: Policy P1: It says In a big branch

the request should be vetted and approved by two distinct members of staff.

This policy is checked against inconsistency as two actor roles are involved

to carry out the task. This policy is only applicable if vetted by two distinct

member of staff. For this we will check the attributes branchsize and act-

orRole. If the branchsize is large, the application cannot be vetted by the

same actorRole, by whom the application was approved.

2. Conflict Analysis of Policies P2 and P3: Policy P2 says In a small branch

Policy Conflict Analysis 102

the branch manager has to approve all applications and Policy P3 say If the

branch manager of a small branch is out of office, his representative signs

all applications. Policies P2 and P3 seem to conflict if both are applicable at

the same time. The attribute branchsize in both policies needs to be small.

This means both policies satisfy the condition, while the actions for both

policies are different and would lead to a conflict.

4.4.4 Confirmation of Conflict in Refinement Policies

We modelled application specific concepts in ALLOY. The ALLOY code for ap-

plication specific attributes (defined in Table 4.3) is given below. Figure 4.7 shows

the meta model of the application specific concepts, together with the policy.

abstract sig ActorRole {}

one sig Clerk, Manager, ManagerRepresentative

extends ActorRole {}

one sig BranchManager extends ActorRole {

state: one State }

abstract sig State {}

one sig Inoffice, outOfOffice extends State {}

abstract sig Automation {}

one sig Interactive, Automatic extends Automation {}

abstract sig BranchSize {}

one sig Small, Large extends BranchSize {}

We analysed refinement policies in the previous section. The analysis is now

coded in ALLOY to confirm the conflict.

Conflict for Policy P1: We analysed policy P1 in previous section, the con-

crete policy, predicate and assert are given below and graphically shown in Figure

Policy Conflict Analysis 103

Figure 4.7: Case Study Attributes (ALLOY Model)

4.8:

abstract sig Policy {

appliesTo:Task,

do:some Action,

branchsize: Condition->BranchSize }

abstract sig Condition { }

abstract sig Action {

automation: one Interactive, }

abstract sig Refine extends Action { }

abstract sig Task {

actor_role: some ActorRole }

one sig P1 extends Policy { }

one sig CheckforApproval, VetProposal extends Task { }

one sig Req extends Refine {}

pred AppVet[] {

P1.branchsize=Condition->Large =>

VetProposal.actor_role != CheckforApproval.actor_role

}

Policy Conflict Analysis 104

assert appvet { AppVet[] }

check appvet

Figure 4.8: Refinement Policy Conflict

Conflict in Policy P2 and P3: We analysed policy P2 and P3 in the previous

section. The ALLOY code for these two policies is given below. The ActorRole of

the policy P2 is BranchManager and for the policy P3, it could be BranchManager

or ManagerRepresentative, while BranchSize is Small in both policies. These

condition are defined using fact.

abstract sig Policy {

appliesTo:Task,

do:disj set Action,

branchsize:one BranchSize

}

abstract sig Action {

automation: one Interactive }

Policy Conflict Analysis 105

abstract sig Refine extends Action {}

abstract sig Task {

actor_role: some ActorRole }

one sig P2,P3 extends Policy {}

fact P2P3 { P2.branchsize=Small and P3.branchsize=Small

and (CheckforApproval.actor_role= ManagerRepresentative

or CheckforApproval.actor_role=BranchManager) }

one sig CheckforApproval extends Task {}

one sig Req extends Refine {}

Generally, a predicate is defined to check the conflict between these two policies.

Using assert the predicated is checked. A counterexample is shown if the predic-

ate is inconsistent. The ALLOY code for this conflict is given below:

pred BranchSizeConflict[] {

BranchManager.state=outOfOffice =>

not (CheckforApproval.actor_role=BranchManager)

}

assert BSConflict { BranchSizeConflict[] }

check BSConflict

The assertion is inconsistent, and a counterexample is shown in Figure 4.9.

The two policies P2 and P3 are applied on the task CheckforApproval. As both

policies satisfy the condition: Branchsize is Small, their actions are conflicting.

The inconsistency can be easily seen in the Figure. The policy P2 is applicable

when the Branchsize is Small, whereas in case of policy P3, when the status of

a BranchManager is outOfOffice, the actor role should not be BranchManager.

Policy Conflict Analysis 106

Figure 4.9: Policy2 and Policy3 Conflict

Form this counterexample, we realize that policy P2 is inconsistent with policy

P3, so it needs to be modified. We will discuss this in the Section 4.5.

The conflicting policies P2 and P3 are discussed above are defined using the

one keyword. Till now we have used one keyword to instantiate signatures, ex-

ample the concrete policies P2, P3 and the task CheckforApproval are instantiated

using the one keyword. We will now show another way to instantiate the signa-

tures and then confirm the conflict of the two policies P2 and P3. The signatures

can also be instantiate inside the predicate definition. We define the conflicts

between P2 and P3 by instantiating the concrete policies inside the predicate. In

the predicate we instantiate two policies P2 and P3, two task t1 and t2, and two

actor roles ac1 and ac2. We check for conflict between these two policies. The

predicate is given below, the counter example graphically shown in Figures 4.10

and Figure 4.11. In Figure 4.10, the actor role is Manager Representative, but as

Policy Conflict Analysis 107

both policies are applied the actor role are overlapping. In Figure 4.11, the actor

role is Branch Manager, while the status of the Branch Manager is Out of Office,

that is not stated by the policy.

pred TConflict[] {

all P2,P3:Policy, t1,t2: CheckforApproval, ac1,ac2:ActorRole

|(ac1=BranchManager and ac2=ManagerRepresentative)

and (P2.appliesTo=t1 and P3.appliesTo= t2) =>

((t1.actor_role!=ac1 and t2.actor_role!=ac2) and

(t2.state!=outOfOffice)) and (t1.branchsize !=Small

and t2.branchsize !=Small) }

assert conflict {

TConflict[]

}

check conflict for 2

Figure 4.10: P2 and P3 Conflict (1)

Policy Conflict Analysis 108

Figure 4.11: P2 and P3 Conflict (2)

4.5 Conflict Resolution

Some resolutions strategies for APPEL policies are already discussed in [69], and

we summarized them here. Policy authors are able to specify modalities in the

form of preferences such as should, prefer, must, should not and their negations.

The preference of a policy states how strongly the policy author feels about it.

Preferences are optional and can be omitted, this means that the policy author is

neutral about this. From strongly positive to strongly negative, the ordering of

preference is must, should, prefer, empty, prefer not, should not, must not.

Principally preference used to automate conflict resolution.

In the previous section we discussed the two types of policies that are defined

for STPOWLA, and we show and confirm the conflicts between them. Resolution

for these policies can be by defining preferences for the policies or redesigning

these policies.

An Example of refinement policy conflict was discussed in Section 4.4.4,

where policies P2 and P3 are conflicting over BranchSize. A Resolution of this

conflict can be redesigning of the policy P2. The policy P2 says that “In a small

Policy Conflict Analysis 109

branch the branch manager has to approve all applications”. From the counter-

example, shown in Figure 4.11 and Figure 4.9, we realize that policy P2 is incon-

sistent and it needs an additional condition. Policy P2 is redesigned by adding

an additional condition: if the status of a BranchManager is inOffice. So the new

policy P2 after redesign is: “In a small branch, if a branch manager is in the office,

he or she has to approve all applications”.

An example of reconfiguration policies was discussed in Section 4.4.2, where

policy P1 inserts a task, while policy P2 deletes a task. Resolution for this conflict

can be by defining preference prefer for the policy P1, so P1 always executes

before P2. As policy modalities (must, should) can be used with policies, in case

of two conflicting policies that both have the same modality (must in the worst

case), resolution is required. We will consider policies with modalities in future

work.

4.6 Discussion

ALLOY Analyzer is a well-known and efficient tool. It offers useful features such

as counterexample generation and visualization which help the modeler to model

and debug the flaws in the model. However there is an issue of scalability with

the tool, as the analysis takes some time when the model becomes large. In our

work, we do not require to model large number of instances, as we found couter-

examples even in smaller scope, but to test scalability we test our model by creat-

ing instances of policy. The time taken to test the 12 policy instances was 33ms

and for 200 instances it was 721ms. So time gradually increases as the number of

instances were increased. Hence depending upon the scope and size of the model,

scalability is an issue of the tool.

Chapter 5

Evaluation and Discussion

The aim of this chapter is to evaluate the approach and methodology for both

model extension and conflict analysis. In this thesis, we have exemplified our

methodology in the STPOWLA domain and its applications as running case study

for model extension and conflict analysis. To evaluate the approach in terms of

generality and practicality, we apply the methodology to the Home Care domain.

The Home Care case study that we use for comparison is based on the one

from the MATCH project 1 (Mobilising Advance Technologies for Care at Home)

as published in [86]. In this approach, the behaviour of a care system is spe-

cified by policy rules. They specialize a policy language for this purpose. As the

purpose of our approach is to define a structural way of policy language exten-

sion, we adopt the Home Care case study to validate our approach. The proposed

Home Care System has a complete operational architecture, that contains differ-

ent layers (Policy Server, OSGi, Java, Operating system, etc). Here we focus only

on the points related to the policies and specifically the policy language and its

specialization.

1http://www.match-project.org.uk

Evaluation and Discussion 111

5.1 Home Care Domain

This section presents the model of the policy language for the Home Care domain.

Home Care systems are used for automated support of care at home. A policy

system in Home Care automates support of how a home network should deliver

care. The policies for Home Care are expressed in theAPPEL policy language.

We model the Home Care domain with UML class diagram, to show how our

structural modelling approach specializes the APPEL policy language. To model

the Home Care domain, the relevant details of the domain are extracted from

available publications [86, 79, 80, 32] and technical reports.

Figure 5.1 shows the model of the Home Care domain. The model consists of

Triggers, Conditions, and Actions defined for the Home Care domain. The

other important entities of the Home Care model are sensors, actuators and

a number of stakeholders. Stakeholders can be the user, the family,

community nurses, social workers and housing wardens. Sensors in-

clude movement detectors, pressure mats, smoke alarms and door sw-

itches. Movement detector sensors capture the movement of a resident in a cer-

tain area of the house, such as a bed room, the kitchen, or the lounge etc. A pres-

sure mat sensor is used to determine the occupancy of certain objects such as a

bed, sofa, or a chair. Smoke alarm sensors are used to detect an event of fire. Door

switch sensors can be used to determine the status of a door such as door closed,

open, left open or broken open etc. Actuators include appliance switches,

mains supply shutoff, alert messaging and lighting control. Actuat-

ors act upon certain condition as specified in policies, e.g, an appliance switch

actuators for a TV can have switch on, off or sleep actions. An alert messaging

actuator is used for reminder services such as the reminder for taking medicine.

Evaluation and Discussion 112

Fi
gu

re
5.

1:
H

om
e

C
ar

e
M

od
el

Evaluation and Discussion 113

5.1.1 Policy Language Extension for Home Care

We will now apply the structured approach of policy model extension to the Home

Care domain. Our approach was discussed in detail in Chapter 3, here we will

simply apply the approach. The MATCH project used APPEL as a core language,

so we can reuse the APPEL model from section 3.2.4 shown in Figure ??. Recall

that the APPEL core language leaves a gap in that the details of Triggers, Condi-

tions and Actions are undefined. These undefined bits (formal parameters) need

to be specialized with some specialized Triggers, Conditions and Actions of some

domain. For this case study these elements are based on the Home Care domain

model.

The Home Care model defined specialized trigger, condition and actions namely

(HCTriggers, HCConditions and HCActions), and they form a straight forward re-

placement of the Triggers, Conditions and Actions of the APPEL core language.

The other formal parameter Location is the main element of the APPEL policy

language that defines where a policy actually applies. In home care, policies are

applied to Subject, so the Location is replaced with the Subject in the Home Care

model.

The transformation process of these two models is straightforward as each

formal parameter in the APPEL model is replaced by an actual parameter in the

Home Care model. We define the relevant transformation rules graphically in

Figure 5.2, 5.3, 5.4, 5.5.

When applying the structural approach to extend APPEL to the Home Care

domain, we realize that the specialization for Home Care needs more than one

level of specialization. For example, for an installation of the Home Care model

to a new home, some concrete vocabulary needs to be defined that is installation

specific. To follow our earlier split in domain and application models, we can

say that this is the application level in the Home Care domain. For example the

Evaluation and Discussion 114

Figure 5.2: Transformation rule for Triggers

Figure 5.3: Transformation rule for Conditions

Evaluation and Discussion 115

Figure 5.4: Transformation rule for Actions

Figure 5.5: Transformation rule for Location

Evaluation and Discussion 116

following policy (from [80]) Policy1 says if the user gets out of bed and tries to

leave the house during the night, a synthesised reminder should be spoken.

Policy1: When the front door is opend, If the hour is

11PM-7PM and the user’s bed is unoccupied, Do remind

the user to go to bed as it is night time.

We can see in Policy1 that there is specific installation data e.g front door (an

instance of a door switch) or the bed (probably with pressure mat). Considering

the above example policy, we note that specific elements of the domain model

need extension. In Figure 5.6, we only show that elements that are required for

this specific policy.

Figure 5.6: Home Care Application Level Specialization

Evaluation and Discussion 117

5.1.2 Policy Conflicts in Home Care

The problem of policy conflicts, analysis methods and resolutions are discussed

in Chapter 4 in detail. Since definition of a conflict is dependent upon a particular

domain, we will analyse the Home Care domain here. Using the APPEL policy

language for Home Care, [32] identified three type of conflict in home care sys-

tem:

• conflicts resulting from apparently separate triggers

• conflicts among policies of multiple stake holders

• conflicts resulting from apparently unrelated actions

In Chapter 4, we showed the model based conflict analysis method. We will

use the method here to analyse and confirm the conflicts discussed above. As the

Home Care domain is an APPEL extension, it is therefore simpler to provide the

analysis method for these conflicts.

In our conflict analysis approach, we have used the ALLOY model checker. We

already have a meta model of the APPEL in ALLOY which was shown in Figure

4.2 in Section 4.3, that will be reused here. Hence, we only need to model the

Home Care domain concepts in ALLOY. We follow the same approach to model

Home Care concepts in ALLOY, that we have discussed and used in section 4.3.

The complete Home Care code in ALLOY is given in Appendix A, however in

Figure 5.7 we show the Home Care concepts modelled in ALLOY.

Conflicts resulting from apparently separate triggers: For the analysis of policy

conflict in Home Care, we choose a situation [32] of conflict that says “a ‘door

open’ sensor can detect the situation of door being open. Suppose a policy states

that when the front door is left open, a reminder should be given to the resident to

close the door. Combining the door sensor and the sensor in the door lock, a new

Evaluation and Discussion 118

Fi
gu

re
5.

7:
H

om
eC

ar
e

M
od

el
in

A
llo

y

Evaluation and Discussion 119

situation can be detected: the door has been broken open. Suppose another policy

states that, when the door is broken open, the resident should be advised to stay in

the room and call for help.” The policy examples are given below as Policy1 and

Policy2:

Policy1:

When Front Door left open

Do reminder close the door

Policy2:

When Front Door lock broke up

Do advice stay in room to call for help

As we discussed in the previous section (section 5.1.1), by looking at concrete

policies new vocabulary is available and we term this application level. These

application level concepts/vocabulary need to be added in Home Care model. This

new vocabulary includes Trigger:DoorBroken, DoorOpen, DoorSwitches:

FrontDoor, and AlerMessaging:DoorCloseReminder, AdviceStayInRoom.

This application level ALLOY model is shown in Figure 5.8.

To confirm the conflict in above policies, we analyse the Triggers, Condition

and Action of the policies. By looking at the Trigger of Policy2 it seems that

Policy1 and Policy2 are applicable at the same time because the door sensors trig-

ger both policies if the door is broken open. As Policy2 is applicable when the

door is broken open that is also true in other case as in the event of door left open.

In this situation the action of both policies are conflicting with each other. We en-

code this situation of conflict in ALLOY by using predicate and assertion. ALLOY

confirm the between Policy1 and Policy2 as shown in Figure 5.9. The predicate

Evaluation and Discussion 120

Figure 5.8: Home Care Application Concepts Model in Alloy

Evaluation and Discussion 121

and assertion for the conflict are given below:

pred DoorConflict[]

{

all p1,p2:Policy, f:FrontDoor, c:Condition | (p1.appliesTo=f and c.leftopen=f)

=> p2.appliesTo=f and no c.brokenopen

}

assert checkDoor {DoorConflict[]}

check checkDoor

Figure 5.9: Policy1 and Policy2 Conflict on Door Situation

Conflicts among policies of multiple stake holders: In Home Care systems

policies can be defined by different stakeholders such as house warden, a ten-

ant, a social worker, or a nurse. These policies can conflict with each other. For

example the TV volume in a home can be set by different stakeholders such as a

tenant or house warden. Suppose a house warden policy sets TV volume lower

between 23:00 to 7:00, whereas a resident or tenant policy sets the volume louder.

Evaluation and Discussion 122

As both policies are applied on TV and specifically have same action of setting

the volume, they might conflict with each other. These conflicts can be confirmed

by the same method we discussed above (by analysing Trigger, Condition and Ac-

tion). These conflicts can be resolved by setting priorities for stake holders such

as a house warden’s policy has higher priority than the tenant’s policy.

Conflicts resulting from apparently unrelated actions: The policy actions in

the Home Care system take time to complete. So there is some possibility that

new action might conflict with ongoing actions. For example a medical reminder

service reminds a patient to take medicine at certain times. While a medical re-

minder action is running, an urgent situation such as a fire may be detected in

the house following a fire alarm policy. As a action the system will remind the

user to leave the house. These actions might conflict with each other. Analysis,

confirmation and resolution of these conflicting actions need application specific

information and the policy system needs to record all the running actions. As we

can see that these conflicting actions need to be confirmed at run time, any static

confirmation would not work for these type of conflicts and hence we do not cover

here. The author discussed these actions over the time in [32], handling of these

conflicts in the policy system is not easy. It is simpler to handle these conflicts in

the actuators rather than the policy server. For example if the alarm system is be

an actuator and uses a priority based approach to handle actions that conflict over

time. A new alarm with a higher priority would stop an existing alarm with lower

priority.

5.2 Discussion

The evaluation in this chapter shows how the structural modelling approach can

be used to extend the policy language. The Home Care domain is used for the

Evaluation and Discussion 123

evaluation of our methodology, as the base policy language for the Home Care

domain is APPEL. We have applied both approaches: the extension of a policy

language and the conflict analysis for the Home Care domain.

The structural modelling of policy extension brings out several advantages.

Firstly, when applying the structural modelling approach to extend the Home Care

domain for the APPEL policy language, we have come up with interesting facts

about the level of specializations the domain. Initially, it seemed that in the Home

Care domain, we have only two levels of specialization. The first is the modelling

of APPEL core concepts (presented in Section 3.2.1, hence available for reuse

here) and the second level is domain modelling (Home Care here). Actually the

structured approach shows that there are three levels. The third level is for a

particular home where the Home Care Policy System is installed and used. The

concrete policies showed that there are certain concepts and vocabulary that are

not available in the Home Care domain model, and these concepts were discovered

when examining certain policies (as an instance of installation of the system to the

new homes). We term this level the application level.

Secondly, after following the structural approach of policy language extension,

with the complete model (Domain Specific Policy Model), it is simpler to provide

model based conflict analysis. It is simpler because all the domain and application

specific knowledge is captured in models. As conflicts are analysed manually, we

only encoded the relevent conflicts in ALLOY using predicates and assertions.

Chapter 6

Conclusion and Future Work

6.1 Conclusion

This thesis presented policy language specialization approach for different do-

mains, designed and engineered using model driven techniques. The modelling

approach not only allowed to define specialized policy languages, but also to cap-

ture domain knowledge that is then taken into the conflict analysis phase.

We found that policy languages are a typical example of systems where a

general core exists, that can be reused while at the same time a strong need to

specialize this core for many domains occurs. The domain concepts usually be

defined by domain experts and can be captured in domain models. These models

can then be used for a number of purposes. In the area of policy languages, the

domain models could contain information on conflicting actions and their resolu-

tions, while many basic elements present domain specific actions or triggers that

refine the core model.

Model driven techniques are used to provide a structured way of policy lan-

guage domain specialization. Metamodels are defined, so concepts of a language

can be addressed at more abstract levels and will then automatically hold for all

Conclusion and Future Work 125

specializations. These models are defined for different levels such as core, domain

and application. The APPEL core language defines some elements, while spe-

cific elements are normally defined per-domain as they are predefined refinement

points that are requiring specialisation. In our models, we formally term these ele-

ments formal parameters, that need to be substituted by specialized model entities

termed effective parameters. We compose core, domain and application models

using parametrize composition method, and defined the transformation rules for

each formal and effective parameter. The automatic transformation of these rules

are implemented in VIATRA graph transformation tool.

We provide the conflict analysis method that is based on our “structural mod-

elling for domain specialization” approach. Policy conflicts are dependent on

domain knowledge, and this knowledge is already captured in models. As domain

models contain information on conflicting actions so we utilize this knowledge for

conflict analysis. This approach gives us an advantage to use models for analysis

while modelling the domain.

The APPEL policy language deals with two types of policies: regular and res-

olution. Regular policies are used for defining new policy for a system, while

resolution policies are used for conflict resolutions. We specialize APPEL for

STPOWLA, and the STPOWLA domain deals with two types of regular policies:

refinement and reconfiguration. Hence, we have analysed both types of policies

to confirm potential and actual conflict. Conflicts in refinement policies are ana-

lysed by examining concrete policies, and conflicts in reconfiguration policies are

examined by pair wise analysis of reconfigurations actions. The identified con-

flicting actions are then encoded in the ALLOY model checker for that confirm the

existance of conflicts. We also suggested the resolution for conflicting policies.

The conflict actions can be resolved by defining preferences for the policies or

redesigning of these policies.

Conclusion and Future Work 126

The APPEL policy language has already been used for Home Care domain, so

we use the Home Care domain to evaluate our work. Using our structural model-

ling approach, we successfully specialize the APPEL policy with the Home Care

domain. The structural modelling for the Home Care domain was useful because,

we discovered that Home Care domain need more than one level of specializa-

tions, which might be true for some other domains too.

Furthermore, using our conflict analysis approach, we successfully analysed

and confirm the actual and potential conflicts in the Home Care domain. Use of

the conflict analysis method second time seemed simpler, because the APPEL core

was already modelled in ALLOY. We translate the Home Care model into ALLOY

and encode predicates and assertions for analysed concrete policies to confirm

conflicts.

6.2 Future Work

As future work we are looking at using the generated models as basis for cre-

ation of specialised editors. As policies are created by users, it would be useful to

provide the user with tools. Also we will use these domain models to provide onto-

logies required for policy enforcement environments specialised to the respective

domains.

We provide conflict analysis methodology, and confirm the existence of con-

flicts using ALLOY model checker. As a future work we are looking at automatic

detection of policy conflicts.

Appendix A

Viatra2 Graph Transformations

Rules and Alloy Code

A.1 Viatra2 Definitions of Graph Transformations

Rules

The following section illustrates and discusses the graph transformation rules for

the policy language extension discussed in Section 3.2.4. The rules are coded in

VIATRA2 graph transformation tool.

A.1.1 First Level Specialization

Specialization of a policy language is done in two levels. First level specialize the

APPEL policy language with STPOWLA.

namespace NewModel;

import MetaModels.PolicyModel;

import MetaModels.DomainModel;

import Models;

Viatra2 Graph Transformations Rules and Alloy Code 128

machine MetaTest

{

//************** Rule 1: Policy to Task**********

pattern PolicyRelation(P1,L1,ApTo) =

{

PolicyRule(P1) ;

Location(L1);

relation(ApTo,P1,L1);

}

pattern TaskAttribute(Ts1) =

{

Task(Ts1);

}

gtrule rule1(inout P1, in L1, inout Ts1, inout ApTo)=

{

precondition pattern lhs(P1,L1,Ts1)=

find PolicyRelation(P1,L1,ApTo);

find TaskAttribute(Ts1);

}

postcondition pattern rhs(P1,Ts1,ApTo) =

{

PolicyRule(P1) ;

Task(Ts1);

relation(ApTo,P1,Ts1);

}

action

Viatra2 Graph Transformations Rules and Alloy Code 129

{

delete (L1);

println("Replace Location with Task");

}

}

/// Rule 2 Action to Request ************/

pattern ActionRe(P1,A1,Act) =

{

PolicyRule(P1);

Actions(A1) ;

relation(Act,P1,A1);

}

pattern ServiceRequest(R)=

{

Request(R);

}

gtrule rule2(inout P1, in A1, inout Req, inout Act)=

{

precondition pattern lhs(P1,A1,Act,Req)=

{

find ActionRe(P1,A1,Act);

find ServiceRequest(Req);

}

postcondition pattern rhs(P1,Req,Act) =

{

PolicyRule(P1) ;

Request(Req);

Viatra2 Graph Transformations Rules and Alloy Code 130

relation(Act,P1,Req);

}

action

{

delete (A1);

println("Replace Request with Actions");

}

}

//*********** Rule 3: Condition to DCondition *****************

pattern RCondition(P1,C1,Con) =

{

PolicyRule(P1);

Conditions(C1) ;

relation(Con,P1,C1);

}

pattern DCondition(DC1) =

{

DCondition(DC1);

}

gtrule rule3(inout P1, in C1, inout DC1, inout Con)=

{

precondition pattern lhs(P1,C1,Con)=

{

find RCondition(P1,C1,Con);

find DCondition(DC1);

}

postcondition pattern rhs(P1,DC1,Con) =

Viatra2 Graph Transformations Rules and Alloy Code 131

{

PolicyRule(P1) ;

DCondition(DC1);

relation(Con,P1,DC1);

}

action

{

delete (C1);

println("Replaces Condition with DCondition");

}

}

//**************** Rule 4: Trigger to Dtrigger ********//

pattern RTrigger(P1,T1,Trig) =

{

PolicyRule(P1);

Triggers(T1) ;

relation(Trig,P1,T1);

}

pattern DTrigger(DT1) =

{

DTrigger(DT1);

}

gtrule rule4(inout P1, in T1, inout DT1, inout Trig)=

{

precondition pattern lhs(P1,T1,Trig)=

{

find RTrigger(P1,T1,Trig);

Viatra2 Graph Transformations Rules and Alloy Code 132

find DTrigger(DT1);

}

postcondition pattern rhs(P1,DT1,Trig) =

{

PolicyRule(P1) ;

DTrigger(DT1);

relation(Trig,P1,DT1);

}

action

{

delete (T1);

println("Replaces Trigger with Trigger");

}

}

rule main()=

let P=Models.P1,

L=Models.L1,

ApTo=Models.P1.AppliesTo,

R=Models.Req,

A=Models.A1,

Act=Models.P1.actions,

C=Models.C1,

DT=Models.DT1,

DC=Models.DC1,

Trig=Models.P1.triggers,

T=Models.T1,

Con=Models.P1.conditions,

Viatra2 Graph Transformations Rules and Alloy Code 133

Ts=Models.Ts1

in seq

{

choose with apply rule1(P,L,Ts,ApTo) do

choose with apply rule2 (P,A,R,Act);

choose with apply rule3(P,C,DC,Con);

choose with apply rule4(P,T,DT,Trig);

println("All Rules Executed");

}

}

A.1.2 Second Level Specialization

Second level specialize the previously specialized model with the Application

model.

namespace NewModel;

import MetaModels.DomainModel;

import MetaModels.ApplicationModel;

import Models;

machine MetaTest

{

//************** Rule 1: TaskType To RepairServices **********

pattern TaskTpe(Ts1,Tst1) =

{

TaskType(Tst1);

Task(Ts1);

supertypeOf(Ts1,Tst1);

}

Viatra2 Graph Transformations Rules and Alloy Code 134

pattern RepSer(RS1) =

{

RepairServices(RS1);

}

gtrule rule1(inout Ts1, in Tst1, inout RS1)=

{

precondition pattern lhs(Ts1,Tst1)=

{

find TaskTpe(Ts1,Tst1);

find RepSer(RS1);

}

postcondition pattern rhs(Ts1,RS1) =

{

Task(Ts1) ;

RepairServices(RS1);

supertypeOf(Ts1,RS1);

}

action

{

delete (Tst1);

println("Replace TaskType with RepairServices");

}

}

//********* Attribute to Vehicle**********

pattern AttTsk(Ts1,At,TAt) =

{

Attributes(At);

Viatra2 Graph Transformations Rules and Alloy Code 135

Task(Ts1);

relation(TAt,Ts1,At);

}

pattern Veh(V1) =

{

Vehicle(V1);

}

gtrule rule2(inout Ts1, in At, inout V1, inout TAt)=

{

precondition pattern lhs(Ts1,At,TAt)=

{

find AttTsk(Ts1,At,TAt);

find Veh(V1);

}

postcondition pattern rhs(Ts1,V1,TAt) =

{

Task(Ts1) ;

Vehicle(V1);

relation(TAt,Ts1,V1);

}

action

{

delete (At);

println("Replace Attribute with Vehicle");

}

}

rule main()=

Viatra2 Graph Transformations Rules and Alloy Code 136

let Ts1=Models.Ts1,

Tst1=Models.Tst1,

V1=Models.V1,

At=Models.At,

TAt=Models.Ts1.taskAttributes,

RS1=Models.RS1

in seq

choose with apply rule1(Ts1,Tst1,RS1) do

choose with apply rule2(Ts1,At,V1,TAt);

println("All Rules Executed");

}

}

A.2 Home Care Domain Modelling in ALLOY

abstract sig Subjects {}

abstract sig Component extends Subjects {}

abstract sig StakeHolder extends Subjects {}

abstract sig Sensor extends Component {}

abstract sig Acuators extends Component {}

sig SmokeAlarms extends Sensor {}

sig DoorSwitches extends Sensor {}

sig PressureMats extends Sensor {}

sig MovementDetectors extends Sensor {}

sig swtiches extends Acuators {}

sig MainSupply extends Acuators {}

sig LightControl extends Acuators {}

Viatra2 Graph Transformations Rules and Alloy Code 137

sig AlertMessaging extends Acuators {}

sig User extends StakeHolder {}

sig Family extends StakeHolder {}

sig ComunityNurse extends StakeHolder {}

sig SocailNetwork extends StakeHolder {}

sig HouseWardens extends StakeHolder {}

sig Policy {

appliesTo:some Subjects,

trigger:lone Trigger,

con:lone Condition,

action:some Action

}

sig Action {}

sig LogEvent extends Action {}

sig DeviceOut extends Action {}

sig HumanOut extends Action {}

sig DataOut extends Action {}

sig Trigger {}

sig TimeExpiry extends Trigger {}

sig HumanIn extends Trigger {}

sig DataIn extends Trigger {}

sig DeviceIn extends Trigger {}

sig Condition {}

sig UnitClass extends Condition {}

sig UnitValue extends Condition {}

sig UnitIdentifier extends Condition {}

sig TimerIdentifier extends Condition {}

Bibliography

[1] ”UMC v3.6. Online:”. http://fmt.isti.cnr.it/umc, 2010.

[2] OMG Model Driven Architecture Home Page. http://www.omg.org/mda,

Dated: 10-01-2009.

[3] Alloy Analyzer . http://alloy.mit.edu/, Dated: 10-01-2010.

[4] The Viatra-I Model Transformation Framework Users Guide. http://www.

eclipse.org/gmt/VIATRA2/doc/viatratut.pdf, Dated: 10-02-2010.

[5] Viatra-2 Model Transformation. http://http://wiki.eclipse.org/

VIATRA2, Dated: 10-04-2010.

[6] FUJABA. http://www.fujaba.de/, Dated: 10-06-2010.

[7] OMG Meta Object Facility Specification v2.0, 2002. www.omg.org/

cgi-bin/apps/doc?ptc/03-10-04.pdf, Dated: 10-08-2008.

[8] A. Agrawal. GReAT: a metamodel based model transformation language. In

18th IEEE International Conference on Automated Software Engineering,

Montreal, Canada, 2003.

[9] K. Anastasakis, B. Bordbar, G. Georg, and I. Ray. UML2Alloy: A challen-

ging model transformation. In Model Driven Engineering Languages and

Systems, pages 436–450. Springer, 2007.

BIBLIOGRAPHY 139

[10] A. Anderson. An introduction to the web services policy language (WSPL).

In Policies for Distributed Systems and Networks, volume 4, pages 189–192.

IEEE, 2004.

[11] D. Baksi. Model checking of healthcare domain models. In Computer

methods and programs in biomedicine, volume 96, pages 217–225. Elsevier,

2009.

[12] B. Baudry, F. Fleurey, R. France, and R. Reddy. Exploring the relationship

between model composition and model transformation. In 7th International

Workshop on Aspect-Oriented Modeling, Montego Bay, Jamaica, Oct. 2nd,

volume 2005.

[13] S. Bensalem, V. Ganesh, Y. Lakhnech, C. Munoz, S. Owre, H. Rueß,

J. Rushby, V. Rusu, H. Saıdi, N. Shankar, et al. An overview of SAL. In

Proceedings of the 5th NASA Langley Formal Methods Workshop, 2000.

[14] L. Bocchi, S. Gorton, and S. Reiff-Marganiec. Engineering service oriented

applications: from StPowla processes to SRML models. In Fundamental

approaches to software engineering, pages 163–178. Springer, 2008.

[15] T. Bray, J. Paoli, C. Sperberg-McQueen, E. Maler, and F. Yergeau. Extens-

ible markup language (XML) 1.0. volume 6, 2000.

[16] D. Buchs and N. Guelfi. CO-OPN: A concurrent object oriented Petri net ap-

proach. In Proceedings of 12th International Conference on the Application

and Theory of Petri Nets, Gjern, Denmark, volume 18, 1991.

[17] G. Campbell and K. Turner. Policy conflict filtering for call control. In

Proc. 9th Int. Conf. on Feature Interactions in Software and Communications

Systems, pages 83–98. Amsterdam, Netherlands: IOS Press, 2008.

BIBLIOGRAPHY 140

[18] M. Charalambides, P. Flegkas, G. Pavlou, A. Bandara, E. Lupu, A. Russo,

N. Dulav, M. Sloman, and J. Rubio-Loyola. Policy conflict analysis for

quality of service management. In Policies for Distributed Systems and Net-

works, pages 99–108. IEEE, 2005.

[19] M. Charalambides, P. Flegkas, G. Pavlou, J. Rubio-Loyola, A. Bandara,

E. Lupu, A. Russo, M. Sloman, and N. Dulay. Dynamic policy analysis and

conflict resolution for diffserv quality of service management. In Network

Operations and Management Symposium, pages 294–304. IEEE, 2006.

[20] G. Csertán, G. Huszerl, I. Majzik, Z. Pap, A. Pataricza, and D. Varró. Viatra-

visual automated transformations for formal verification and validation of

UML models. In 17th IEEE International Conference on Automated Soft-

ware Engineering, pages 267–270, 2002.

[21] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The ponder policy spe-

cification language. In Lecture Notes in Computer Science, pages 18–38.

Springer, 2001.

[22] S. Davy. Harnessing Information Models and Ontologies for Policy Conflict

Analysis . PhD thesis, Department of Computing, Mathematics and Physics,

Waterford Institute of Technology, Ireland, 2008.

[23] S. Davy, B. Jennings, and J. Strassner. Conflict prevention via model-driven

policy refinement. In Large Scale Management of Distributed Systems, pages

209–220. Springer, 2006.

[24] S. Davy, B. Jennings, and J. Strassner. Application domain independ-

ent policy conflict analysis using information models. In Proceedings

IEEE/IFIP Network Operations and Management Symposium, NOMS, pages

17–24, 2008.

BIBLIOGRAPHY 141

[25] J. de Albuquerque, H. Krumm, and P. de Geus. Policy modeling and refine-

ment for network security systems. In 6th IEEE International Workshop on

Policies for Distributed Systems and Networks (POLICY 2005), pages 6–8,

2005.

[26] A. Dersingh, R. Liscano, A. Jost, M. Ahmad, V. Saxena, K. Kurn,

M. Baumgarten, M. Mulvenna, K. Greer, and C. Nugent. Context-aware

access control using semantic policies. In Ubiquitous Computing And Com-

munication Journal (UBICC) Special Issue on Autonomic Computing Sys-

tems and Applications, volume 3, pages 19–32, 2008.

[27] N. Dunlop, J. Indulska, and K. Raymond. Dynamic conflict detection in

policy-based management systems. In Proceedings of Enterprise Distributed

Object Computing Conference (EDOC02), 2002.

[28] N. Dunlop, J. Indulska, and K. Raymond. Methods for conflict resolution in

policy-based management systems. In Enterprise Distributed Object Com-

puting Conference, 2003. Proceedings. Seventh IEEE International, pages

98–109. IEEE, 2003.

[29] T. Dursun. A generic policy-conflict handling model. In Computer and

Information Sciences-ISCIS 2005, pages 193–204. Springer, 2005.

[30] H. Ehrig, M. Pfender, and H. Schneider. Graph-grammars: An algebraic

approach. In 14th Annual Symposium on Switching and Automata Theory,

pages 167–180. IEEE, 1973.

[31] M. Emerson and J. Sztipanovits. Techniques for metamodel composition. In

6th OOPSLA Workshop on Domain-Specific Modeling (DSM06), page 123.

BIBLIOGRAPHY 142

[32] W. Feng and K. TURNER. Policy Conflicts in Home Care Systems. In

Feature Interactions in Software and Communication Systems IX, page 54.

Ios Pr Inc, 2008.

[33] F. Fleurey, B. Baudry, R. France, and S. Ghosh. A generic approach for

automatic model composition. In Models in Software Engineering, pages

7–15. Springer, 2008.

[34] M. Fowler. UML Distilled: a brief guide to the standard object modelling

language. Addison-Wesley Professional, 2004.

[35] Z. Fu, S. Wu, H. Huang, K. Loh, F. Gong, I. Baldine, and C. Xu. IPSec/VPN

security policy: Correctness, conflict detection, and resolution. In Lecture

notes in computer science, pages 39–56. Springer, 2001.

[36] S. Gnesi, M. ter Beek, H. Baumeister, M. Hoelzl, C. Moiso, N. Koch, A. Zo-

bel, and M. Alessandrini. D8. 0: Case studies scenario description. In SEN-

SORIA Deliverables Month, volume 12, 2006.

[37] S. Godik, A. Anderson, B. Parducci, P. Humenn, and S. Vajjhala. OASIS

eXtensible Access Control 2 Markup Language (XACML) 3. 2002.

[38] M. Gogolla and M. Richters. Transformation rules for UML class diagrams.

In The Unified Modeling Language.�UML�98: Beyond the Notation, pages

514–514. Springer, 2004.

[39] S. Gorton, C. Montangero, S. Reiff-Marganiec, and L. Semini. StPowla:

SOA, policies and workflows. In Service-Oriented Computing-ICSOC 2007

Workshops, pages 351–362. Springer, 2009.

BIBLIOGRAPHY 143

[40] S. Gorton and S. Reiff-Marganiec. Policy-driven business management over

web services. In Integrated Network Management. 10th IFIP/IEEE Interna-

tional Symposium, pages 721–724. IEEE, 2007.

[41] S. Gorton and S. Reiff-Marganiec. Towards Feature Interactions in Business

Processes. In Feature Interactions in Software and Communication Systems

IX, pages 99–112. IOS Press, 2008.

[42] W. Hassan and L. Logrippo. Governance policies for privacy access control

and their interactions. In Feature Interactions in Telecommunication and

Software Systems VIII, pages 114–130, 2005.

[43] W. Hassan, L. Logrippo, and M. Mankai. Validating access control

policies with Alloy. In Practice and Theory of Access Control Technolo-

gies WPTACT’2005, page 17, 2005.

[44] D. Jackson. Software Abstractions: logic, language, and analysis. MIT Press

(MA), 2006.

[45] L. Kagal. The Rein Policy Framework for the Semantic Web, 2006.

[46] B. Kempter and V. Danciu. Generic policy conflict handling using a pri-

ori models. In Lecture notes in computer science, volume 3775, page 84.

Springer, 2005.

[47] Z. Khowaja and S. Reiff-Marganiec. Extending a Policy Language in a

Structured way using Model Driven Techniques. In J. Peltonen, editor,

SPLST’09 & NW-MODE’09, pages 336–341. Tampere University of Tech-

nology, 2009.

[48] N. Koch. Automotive case study: UML specification of on road assistance

scenario. Technical report, 2007.

BIBLIOGRAPHY 144

[49] D. Kolovos, R. Paige, and F. Polack. Merging models with the Epsilon

Merging Language (EML). In Model Driven Engineering Languages and

Systems, pages 215–229. Springer, 2006.

[50] P. Kumaraguru, L. Cranor, J. Lobo, and S. Calo. A survey of privacy policy

languages. In Proceedings of the 3rd Symposium on Usable Privacy and

Security, volume 48, 2007.

[51] A. Layouni, L. Logrippo, and K. Turner. Conflict detection in call control

using first-order logic model checking. In Feature Interactions in Software

and Communication Systems IX, page 66. Ios Pr Inc, 2008.

[52] A. Ledeczi, G. Nordstrom, G. Karsai, P. Volgyesi, and M. Maroti. On

metamodel composition. In IEEE CCA, 2001.

[53] E. Lupu and M. Sloman. Conflict analysis for management policies. In

Proceedings of IFIP/IEEE International Symposium on Integrated Network

Management (IM1997), 1997.

[54] E. Lupu and M. Sloman. Conflicts in policy-based distributed systems man-

agement. In Software Engineering, IEEE Transactions on, volume 25, pages

852–869. IEEE, 1999.

[55] T. Mens. On the use of graph transformations for model refactoring. In

Generative and transformational techniques in software engineering, pages

219–257. Springer, 2006.

[56] T. Mens, P. Van Gorp, D. Varró, and G. Karsai. Applying a model transform-

ation taxonomy to graph transformation technology. In Electronic Notes in

Theoretical Computer Science, volume 152, pages 143–159. Elsevier, 2006.

BIBLIOGRAPHY 145

[57] J. Moffett and M. Sloman. Policy hierarchies for distributed systems

management. In Selected Areas in Communications, IEEE Journal on,

volume 11, pages 1404–1414. IEEE, 2002.

[58] C. Montangero, S. Reiff-Marganiec, and L. Semini. Logic–based detection

of conflicts in APPEL policies. In International Symposium on Fundament-

als of Software Engineering, pages 257–271. Springer, 2007.

[59] C. Montangero, S. Reiff-Marganiec, and L. Semini. Logic-based conflict

detection for distributed policies. In Fundamenta Informaticae, volume 89,

pages 511–538. IOS Press, 2008.

[60] F. Mostefaoui and J. Vachon. Verification of Aspect-UML models using

alloy. In Proceedings of the 10th international workshop on Aspect-oriented

modeling, AOM ’07, pages 41–48, New York, NY, USA, 2007. ACM.

[61] A. Muller, O. Caron, B. Carre, and G. Vanwormhoudt. On some properties

of parameterized model application. In Lecture notes in computer science,

volume 3748, page 130. Springer, 2005.

[62] P. Muller, F. Fleurey, and J. Jézéquel. Weaving executability into object-

oriented meta-languages. In Model Driven Engineering Languages and Sys-

tems, pages 264–278. Springer, 2005.

[63] OMG. Meta Object Facility (MOF) 2.0 Core Specification . http://www.

omg.org/docs/ptc/03-10-04.pdf, 2005.

[64] OMG. Unified Modeling Language (Version 2.2). http://www.omg.org/

spec/UML/2.2/Superstructure/PDF/, 2009.

[65] L. V. Pedro, V. Amaral, and D. Buchs. Foundations for a domain specific

modeling language prototyping environment: A compositional approach. In

BIBLIOGRAPHY 146

Proc. 8th OOPSLA ACM-SIGPLAN Workshop on Domain-Specific Model-

ing (DSM). University of Jyvskyln, 2008.

[66] I. Ray and M. Toahchoodee. A spatio-temporal role-based access control

model. In Proceedings of the 21st annual IFIP WG 11.3 working conference

on Data and applications security, pages 211–226. Springer-Verlag, 2007.

[67] Y. Reddy, S. Ghosh, R. France, G. Straw, J. Bieman, N. McEachen, E. Song,

and G. Georg. Directives for composing aspect-oriented design class models.

In Transactions on Aspect-Oriented Software Development I, pages 75–105.

Springer, 2006.

[68] S. Reiff-Marganiec and K. Turner. Feature interaction in policies. In Com-

puter Networks, volume 45, pages 569–584. Elsevier, 2004.

[69] S. Reiff-Marganiec, K. J. Turner, and L. Blair. Appel: The Accent policy

environment/language. Technical Report CSM-164, University of Stirling,

Jun 2005.

[70] S. Sheidaei. Policy conflict detection using alloy: An explorative study.

Master’s thesis, Interactive Arts and Technology, Simon Fraser University,

2010.

[71] E. Syukur, S. Loke, and P. Stanski. Methods for policy conflict detection and

resolution in pervasive computing environments. In Policy Management for

the Web, 2005.

[72] G. Taentzer. AGG: A graph transformation environment for modelling and

validation of software. In Applications of Graph Transformations with In-

dustrial Relevance, pages 446–453. Springer, 2004.

BIBLIOGRAPHY 147

[73] G. Taentzer, K. Ehrig, E. Guerra, J. De Lara, L. Lengyel, T. Levendovszky,

U. Prange, D. Varro, and S. Varro-Gyapay. Model transformation by graph

transformation: A comparative study. In Proc. Workshop Model Transform-

ation in Practice, Montego Bay, Jamaica, 2005.

[74] M. Ter Beek, A. Fantechi, S. Gnesi, and F. Mazzanti. An action/state-based

model-checking approach for the analysis of communication protocols for

Service-Oriented Applications. In Proceedings of the 12th international con-

ference on Formal methods for industrial critical systems, pages 133–148.

Springer-Verlag, 2007.

[75] M. Ter Beek, S. Gnesi, C. Montangero, L. Semnini, and P. Isti-Cnr. De-

tecting policy conflicts by model checking UML state machines. In Feature

Interactions in Software and Communication System X, pages 59–74. IOS

Press, 2009.

[76] M. Toahchoodee and I. Ray. Using alloy to analyse a spatio-temporal access

control model supporting delegation. In Information Security, IET, volume 3,

pages 75–113. IET, 2009.

[77] A. Toninelli, R. Montanari, L. Kagal, and O. Lassila. A semantic context-

aware access control framework for secure collaborations in pervasive com-

puting environments. In The Semantic Web-ISWC, pages 473–486. Springer,

2006.

[78] G. Tonti, J. Bradshaw, R. Jeffers, R. Montanari, N. Suri, and A. Uszok. Se-

mantic Web languages for policy representation and reasoning: A compar-

ison of KAoS, Rei, and Ponder. In Lecture notes in computer science, pages

419–437. Springer, 2003.

BIBLIOGRAPHY 148

[79] K. Turner, G. Campbell, and F. Wang. Policies for sensor networks and home

care networks. In Proc. 7th. Int. Conf. on New Technologies for Distributed

Systems, 2007.

[80] K. Turner, L. Docherty, F. Wang, and G. Campbell. Managing home care

networks. In Networks, 2009. ICN’09. Eighth International Conference on,

pages 354–359. IEEE, 2009.

[81] O. UML. 2.1. 1 Superstructure Specification (formal/2007-02-03). Tech-

nical report, Object Management Group. available at www. omg. org 2007,

downloaded at May 25th 2009.

[82] D. Varró and A. Pataricza. Generic and meta-transformations for model

transformation engineering. In 2004-The Unified Modelling Language,

pages 290–304. Springer.

[83] D. Varró and A. Pataricza. VPM: A visual, precise and multilevel metamod-

eling framework for describing mathematical domains and UML. In Soft-

ware and Systems Modeling, volume 2, pages 187–210. Springer, 2003.

[84] D. Varró, G. Varró, and A. Pataricza. Designing the automatic transforma-

tion of visual languages. In Science of Computer Programming, volume 44,

pages 205–227. Elsevier, 2002.

[85] K. Verlaenen, B. De Win, and W. Joosen. Towards simplified specification

of policies in different domains. In Integrated Network Management, 2007.

IM’07. 10th IFIP/IEEE International Symposium on, pages 20–29, 2007.

[86] F. Wang and K. Turner. Towards personalised home care systems. In Pro-

ceedings of the 1st international conference on PErvasive Technologies Re-

lated to Assistive Environments, pages 1–7. ACM, 2008.

BIBLIOGRAPHY 149

[87] M. Wirsing, L. Bocchi, A. Clark, J. Fiadeiro, S. Gilmore, M. Hölzl, N. Koch,

P. Mayer, R. Pugliese, and A. Schroeder. Sensoria: Engineering for service-

oriented overlay computers. In At Your Service: Service-Oriented Comput-

ing from an EU Perspective, pages 159–182, 2007.

[88] A. Zito, Z. Diskin, and J. Dingel. Package merge in UML 2: Practice vs.

theory. In Model Driven Engineering Languages and Systems, pages 185–

199. Springer, 2006.

