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The ΛCDM model for structure formation in the universe has been successful on large

scales, however there are outstanding problems on the scale of galaxies. In this thesis we

study a number of processes where baryonic and dark matter (DM) interact on the scale

of galaxies in order to provide a greater understanding of how such processes can explain

observations. One significant issue for ΛCDM is the prediction of cusped density profiles

for DM halos. In Chapter 2 we consider the infall of a massive baryonic clump into a

dark-matter halo and demonstrate that the baryons need to transfer only a small fraction

of their initial energy to the dark matter via dynamical friction to explain the discrepancy

between predicted dark-matter density profiles and those inferred from observations. The

observational evidence for density cores in local dwarf galaxies is still disputed. In Chap-

ter 3 we consider what the existence of five globular clusters (GCs) tells us about the

dynamical history of the Fornax dSph system and the implications for its density profile.

We find that if Fornax has an extended dark matter core (as opposed to a density cusp)

then its GCs remain close to their currently observed locations for long times. In Chap-

ter 4 we study the effect of a Central Mass Concentration (CMC) on the development of

a bar in a galactic disc with differing density profiles for its DM halo. We find the relative

density of the DM halo affects the potency of the CMC in suppressing the growth of a bar.
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“Mathematics is the language with which God has written the universe.”

Galileo Galilei (1564 - 1642)

“I have no doubt that in reality the future will be vastly more surprising than any-

thing I can imagine. Now my own suspicion is that the Universe is not only queerer

than we suppose, but queerer than we can suppose.”

Possible Worlds and Other Papers (1927), p. 286 J. B. S. Haldane (1892 - 1964)

“The secret to creativity is knowing how to hide your sources.”

Albert Einstein (1879 - 1955)
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1
Introduction

1.1 Λ CDM

Few can have looked at some of the many images of galaxies taken by modern telescopes

and not wondered how and when these great assemblages of stars, gas, dust and plasma

formed and how they have evolved to take their present forms (see Figures 1.1,1.2 and

1.3). It is clear from observations that galaxy formation is a process which continues to

the present and that galaxies are continually undergoing dynamic and sometimes violent

evolution. A principal objective of any galaxy formation theory must be to understand

how the underlying physics gives rise to the varied processes observed in galaxies. In

addition modern galaxy formation theory is set within the context of a larger scale cos-

mological model and the currently favoured theory is called the Λ Cold Dark Matter

(ΛCDM) model of the Big Bang theory.
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Introduction 1.1. Λ CDM

Figure 1.1: M101, a giant spiral disk of stars, dust and gas is 62 kpc across, or nearly
twice the diameter of our Milky Way galaxy. M101 is estimated to contain at least one
trillion stars.
Credit for Hubble Image: NASA, ESA, K. Kuntz (JHU), F. Bresolin (University of
Hawaii), J. Trauger (Jet Propulsion Lab), J. Mould (NOAO), Y.-H. Chu (University of
Illinois, Urbana), and STScI
Credit for CFHT Image: Canada-France-Hawaii Telescope/ J.-C. Cuillandre/Coelum
Credit for NOAO Image: G. Jacoby, B. Bohannan, M. Hanna/ NOAO/AURA/NSF
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Introduction 1.1. Λ CDM

Figure 1.2: NGC 1300 is considered to be prototypical of barred spiral galaxies (see
Chapter 4.
Credit: HubbleSite and STScI, Acknowledgment: P. Knezek (WIYN observatory)

Figure 1.3: The Fornax dwarf spheroidal galaxy (see Chapter 3).
Credit: ESO/Digitized Sky Survey 2.
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Introduction 1.1. Λ CDM

A minimal six parameter ΛCDM model of the Big Bang theory is very successful

at explaining the observed state of the universe on cosmological scales (Komatsu et al.,

2011). Here Λ is the cosmological term in Einstein’s field equations

Rμν − 1
2

gμνR + Λgμν = 8πGTμν (1.1)

where Rμν is the Ricci tensor, R is the Ricci scalar, gμν is the metric, G is the grav-

itational constant and Tμν is the energy momentum tensor. Λ was originally proposed

by Einstein to achieve a static universe but he later rejected it when the Hubble redshift

was observed and the expansion of the universe was discovered. Λ became necessary

again when observations of type Ia supernovae made in the late 1990s (Perlmutter et al.,

1999) indicated that the expansion of the universe is accelerating which is consistent with

a positive value for Λ.

Big Bang theory predicts that the universe began in a hot dense state approximately

13.8 billion years ago (Komatsu et al., 2011). which then expanded and cooled. Figure 1.4

shows the history of the universe from the Big Bang onwards. Radiation and matter ex-

isted as a hot plasma which pervaded the universe until this plasma cooled sufficiently

for the matter and radiation to decouple. At this time, after about 350 thousand years,

the photons no longer had sufficient energy to ionise the matter in the universe and the

universe became transparent. The neutral hydrogen and helium gas was no longer sup-

ported by radiation pressure and could collapse due to gravity. Big Bang theory predicts

that there were Gaussian perturbations to the primordial matter density field which were

imprinted on the CMB at its last scattering surface, that is when the photons and baryons

decoupled. Such fluctuations were detected by the COBE satellite in 1992 (Smoot et al.,

1992). More recently the the Wilkinson Microwave Anisotropy Probe (WMAP) which

launched in June 2001 has provided an even more accurate picture of these fluctuations

(see Figure 1.5).

The most recent findings from the Wilkinson Microwave Anisotropy Probe (Komatsu et al.,

16



Introduction 1.1. Λ CDM

Figure 1.4: A representation of the evolution of the universe over 13.7 billion years.
The far left depicts the earliest moment we can now probe, when a period of ”inflation”
produced a burst of exponential growth in the universe. (Size is depicted by the vertical
extent of the grid in this graphic.) For the next several billion years, the expansion of the
universe gradually slowed down as the matter in the universe pulled on itself via gravity.
More recently, the expansion has begun to speed up again as the repulsive effects of dark
energy have come to dominate the expansion of the universe. The afterglow light seen
by WMAP was emitted about 380,000 years after inflation and has traversed the universe
largely unimpeded since then. The conditions of earlier times are imprinted on this light;
it also forms a backlight for later developments of the universe.
Credit: NASA /WMAP Science Team.
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Introduction 1.1. Λ CDM

Figure 1.5: The detailed, all-sky picture of the infant universe created from seven years
of WMAP data. The image reveals 13.7 billion year old temperature fluctuations (shown
as colour differences) that correspond to the seeds that grew to become the galaxies. The
signal from our Galaxy was subtracted using the multi-frequency data. This image shows
a temperature range of 200 microKelvin.
Credit: NASA /WMAP Science Team.

2011; Bennett et al., 2011) give the following values for the fraction of baryonic matter,

dark matter (DM) and Dark Energy in the universe1:

ΩLambda ≈ 72.9%

Ωdarkmatter ≈ 22.6%

Ωbaryons ≈ 4.5%

These density fluctuations formed the basis for the growth of structure in the universe.

Structure in the universe grew by gravitational instability based on these density field fluc-

tuations which expanded with the universe before decoupling, gravitationally collapsing

and virialising to form DM halos. These original halos then underwent further mergers

and accreted baryonic matter. Thus DM dominates the matter content of the universe and

so initially structure formation is dominated by DM. Gas then settles in the dense central

1Note that Ω = ΩLambda + Ωdarkmatter + Ωbaryons = 1 implying that the universe has a flat topology.
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Introduction 1.2. Evidence for Dark Matter

regions of the DM halos eventually cooling and forming stars. Despite the success of the

ΛCDM model it does not provide an explanation of the nature of DM. This remains one

of the key questions facing fundamental physics and cosmology today.

1.2 Evidence for Dark Matter

1.2.1 Zwicky and Missing Mass

Observations of the Coma cluster of galaxies by Zwicky (Zwicky, 1933, 1937) in the

1930s implied that there was unseen mass in the cluster needed to account for the veloci-

ties of the constituent galaxies. This was the first evidence for DM. Zwicky used the virial

theorem to deduce that there is greater mass in the Coma galaxy cluster than in its visible

components implying some form of DM.

1.2.2 Galactic Rotation Curves

There is early evidence for mass in excess of the stellar component in galaxies from work

carried out on the circular velocities in galaxies by Freeman in the 1970s (Freeman, 1970).

This became much more emphatic following the work of Bosma (Bosma and van der Kruit,

1979) and Rubin (Rubin et al., 1980). Figure 1.6 shows a rotation curve taken by van Albada et al.

(1985) who looked at the rotation curve of NGC 3198 by looking at the Doppler shift of

the HI 21cm hydrogen line. It can be seen that the the velocity is flat with radius. If the

matter distribution was spherical then the circular velocity would be given by:

vc =

√
GM(R)

R
(1.2)

If vc is constant then

M(R) ∝ R (1.3)
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Figure 1.6: Rotation curve for NGC3198 showing the data fit to a model with a significant
DM halo (van Albada et al., 1985).
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whereas the light falls off exponentially. This was a further clear indication of missing

mass.

1.2.3 Strong Lensing

General relativity predicts that massive objects will warp spacetime and deflect the path of

light as it passes close to the object. Therefore massive objects such as clusters of galaxies

can act as a gravitational lens and warp the images of objects. This can be observed in

images of a background object such as a quasar. The geometry of the resulting image can

be used to calculate the mass of the lensing object. The first time this effect was used to

measure the mass of a galaxy cluster was with the cluster Abell 1689 (Taylor et al., 1998).

Masses derived from strong lensing depend on the effects of general relativity and so are

not dependant on dynamics for estimating mass.

An excellent example of the use of lensing to demonstrate the presence of DM is the

Bullet Cluster (Figure 1.7). This is an interacting cluster 1E0657-558 where a smaller

cluster has fallen into the main cluster and passed through to emerge after its first infall

(Clowe et al., 2004; Markevitch et al., 2004). The hot intra-cluster gas has been separated

from the galaxies by ram-pressure stripping and is observable through its X-ray emissions.

The detected mass peaks found by gravitational lensing for the two clusters are in good

agreement with the clusters’ galaxies and offset from the X-ray emissions. The X-ray

gas is the major visible component of the two clusters and its observed offsets from the

lensing mass peaks provide direct evidence of the presence of DM in this cluster.

1.3 The Growth of Structure - Simulations

Studies of cosmological simulations such as the Millennium Simulation (Springel et al.,

2005, and references therein) (see Figure 1.8) reveal that DM clumps begin to collapse
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Figure 1.7: Hot gas detected by Chandra in X-rays is seen as two pink clumps in the
image and contains most of the baryonic matter in the two clusters. The bullet-shaped
clump on the right is the hot gas from one cluster, which passed through the hot gas from
the other larger cluster during the collision. An optical image from Magellan and the
Hubble Space Telescope shows the galaxies in orange and white. The blue areas in this
image depict where lensing detects most of the mass in the clusters.
Credit: X-ray: NASA/CXC/M.Markevitch et al.
Optical: NASA/STScI; Magellan/U.Arizona/D.Clowe et al.
Lensing Map: NASA/STScI; ESO WFI; Magellan/U.Arizona/D.Clowe et al.
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Figure 1.8: The Millennium Run used more than 10 billion particles to trace the evolution
of the matter distribution in a cubic region of the Universe over 2 billion light-years on a
side. Credit: Springel et al. (2005).
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gravitationally to form halos as the primordial density fluctuations grow. These then

merge due to gravitational attraction to form larger objects which can in turn go through

further mergers in a process known as hierarchical structure formation. These merg-

ers can be mapped using merger trees which provide a pictorial history of a DM halo

(Lacey and Cole, 1993). By z = 0 a filamentary structure (the cosmic web) has formed

made up of DM halos whose spatial distribution is in good agreement with observed large

scale structure in the universe. On large scales gravitational attraction is the dominant

physical process governing the growth of structure.

The form of the density profiles of DM halos from cosmological simulations has

been extensively studied. Navarro et al. (1997, 1996b) showed that halos on a range of

mass scales had similar profiles, with the density in the innermost regions exhibiting an

ρ(r) ∝ r−1 cusp independent of mass, initial density fluctuation spectrum and cosmologi-

cal parameters. More recent work has found that the profile can be better represented by

profiles with either slightly shallower inner cusp slopes (Dehnen and McLaughlin, 2005;

Navarro et al., 2009) or continuously varying slope, for example the Einasto and Einasto

(1972) profile (Navarro et al., 2004).

1.4 ΛCDM at galactic scales

The success of the ΛCDM paradigm of cosmological structure formation in reproducing

the observed structure of the universe on scales � 1 Mpc is now well-established (see

e.g. Springel et al., 2006, and references therein). However, on the scale of individual

galaxies (� 100kpc) two potentially significant issues have been raised. One central tenet

of ΛCDM cosmology is that the DM is cold which means that the non-baryonic particles

were non-relativistic at the time of decoupling. This leads to the following implications:

1. As noted above simulated DM halos are cusped (White and Frenk, 1991) though

other theories such as Warm DM predict cusped halos.
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2. There is an abundance of low mass halos whose space density increases with de-

creasing mass.2 Cosmological simulations predict increasing substructure down to

the mass limit of their resolution (Klypin et al., 1999; Moore et al., 1999; Gao et al.,

2004; Diemand et al., 2007). In contrast cosmological simulations where the small

scale power spectrum is suppressed (as shown in studies of Warm DM e.g. Knebe et al.

(2002)) show reduced substructure although halo density profiles remain cusped.

1.5 The missing satellite problem

The hierarchical structure formation model predicts that small DM halos are accreted and

merged with larger ones to form the galactic halos we observe today. This continuing pro-

cess is not 100% efficient. High resolution cosmological simulations predict that a halo

the size of our galaxy should have approximately 50 DM satellites with mass greater than

3x108M�. This is considerably more than has been known though recently fainter dwarf

spheroidal galaxies have been discovered providing the possibility that further discoveries

may bring observation into line with theory (Klypin et al., 1999; Gilmore et al., 2007).

The recent discoveries of previously undetected satellite galaxies in orbit around the

Milky Way (Willman et al., 2005; Zucker et al., 2006a,b; Belokurov et al., 2006, 2007;

Irwin et al., 2007; Walsh et al., 2007) based on data from the Sloan Digital Sky Survey

(York et al., 2000) may significantly reduce the former discrepancy. As Tollerud et al.

(2008) have shown, the extension of current results to the whole sky, coupled with the

deeper photometry of upcoming surveys, may indeed resolve the so-called “satellite cri-

sis” completely.

Additionally there are a number of reasons why we may observe fewer low mass

galaxies than predicted by ΛCDM. Galaxy formation is predicted to be inefficient in the

2Halo space density ∝ M−α where α ≈ 2.0 (Reed et al., 2007; Lukić et al., 2007) and may extend down
to masses as small as ≈ 10−6M� (Green et al., 2004).

25



Introduction 1.6. The core/cusp problem of DM halos

shallow potential wells of low mass DM halos (Efstathiou, 1992; Thoul and Weinberg,

1996). Galaxies form when gas contracts onto a DM halo which is massive enough to

support efficient cooling. Cooling is inefficient in gas with primordial composition (zero

metalicity) in halos with a virial temperature � 104K which implies that halos with a mass

� 109M� will not have formed galaxies at redshift z=0 (Efstathiou, 1992). In addition

the universe underwent a period of reionization at z� 6 during which a high flux of UV

and X-ray radiation caused universal reionization which also inhibited galaxy formation.

This would have prevented the collapse of gas onto low mass DM halos and in addition

radiative cooling and star formation would have been suppressed in galaxies that formed

prior to reionization (Benson et al., 2002).

Currently therefore it seems likely that the apparent discrepancy between theory and

observations of the number of satellite galaxies may not be a significant issue for the

ΛCDM paradigm.

1.6 The core/cusp problem of DM halos

There is mounting observational evidence that real galaxies occupy DM haloes with al-

most uniform density cores at their centres. Low surface brightness galaxies offer the

strongest evidence for cored DM halos (see Oh et al., 2008; de Blok, 2010, for a recent

review). Although there have been fewer such studies in high surface brightness spirals,

recent work by Spano et al. (2008) has shown that in these galaxies also cored haloes

are favoured. Even in low-luminosity, pressure supported systems such as the dwarf

spheroidal satellite galaxies surrounding the Milky Way, there is circumstantial evidence

that their halo profiles are not cusped (Gilmore et al., 2007).

However, baryons play an important role in the formation and early evolution of galax-

ies but the predictions of cusped profiles are based on purely DM simulations. The in-

troduction of baryons can have a profound effect on halo structure, but detailed predic-
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tions are very difficult because the physics of galaxy formation is still poorly understood.

Therefore cosmological simulations are not very useful for developing insight and it is

better to use controlled simulations, that allow you to study parts of a problem in detail

and to build the physical understanding of how a particular process works.

One idea first proposed by El-Zant et al. (2001) is that clumpy gas inflow could lead to

the removal of the DM cusp by transferring of energy to the DM halo through dynamical

friction. A second proposal is that heating due to impulsive gas outflows pumps heat into

the DM halo thus removing the density cusp (Navarro et al., 1996a; Read and Gilmore,

2005; Pontzen and Governato, 2011). Pontzen and Governato (2011) show that this is

most likely what is happening in recent cosmological simulations that (owing to strong

simulated stellar feedback) have a very bursty star formation history (Mashchenko et al.,

2008; Governato et al., 2010).

In Chapter 2 we investigate in detail the effect of clumps of baryons falling into a

initially cusped DM halo and the effects on the halo and in Chapter 3 we investigate

what the existence and location of the Fornax dwarf spheroidal galaxy’s globular clusters

implies about the density profile and evolutionary history of this system.

1.7 The Dynamics of Discs and Bars

The interaction of DM and baryons can have other significant effects on the evolution

of galaxies. A significant proportion of disc galaxies have galactic bars. It is clear

that dynamical resonances between the baryons in the disc and the DM halo play a sig-

nificant role in the formation and evolution of a bar (Athanassoula, 1996, 2002, 2003;

Holley-Bockelmann et al., 2005; Ceverino and Klypin, 2007). Also disc galaxies often

harbour central mass concentrations (CMCs) in form of super-massive black holes, cen-

tral discs, and dense central star clusters. The effect of a CMC on an existing galactic

bar has been studied using N-body simulations (Norman et al., 1996; Shen and Sellwood,

27



Introduction 1.7. The Dynamics of Discs and Bars

2004; Athanassoula et al., 2005) with the result that a CMC affects the structure and ap-

pearance of the bar and, if it reaches several percent of the mass of the stellar disc itself,

may even effectuate the destruction of the bar. Thus, while it is plausible that a growing

CMC affects and weakens an established galactic bar, its destruction via secular growth

of a CMC seems rather unlikely, albeit this may be possible when (bar-driven) gas-inflow

creates a sufficiently massive CMCs (Berentzen et al., 2007).

In Chapter 4 we investigate the effect of a pre-existing CMC has on the formation of

a bar. This is motivated by the very real possibility that a CMC has been in place well

before a stellar disc (and hence any possible bar) is established within a galaxy’s inner

few kpc.

28



2
Weakening dark-matter cusps by clumpy

baryonic infall

2.1 Introduction

As was stated in our introduction the ΛCDM paradigm of cosmological structure for-

mation is successful in reproducing the observed structure of the universe on large scales.

However, on the scale of individual galaxies (� 100kpc) the density profiles of dark matter

haloes pose a potentially significant problem. The form of these profiles in the absence

of baryonic physics has been extensively studied by means of numerical simulations.

Dubinski and Carlberg (1991) and Navarro et al. (1997) showed that haloes on a range of

mass scales have similar profiles, with the density in the innermost regions exhibiting an

ρ ∝ r−1 cusp and more recent work showing that the haloes can be better represented by
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profiles with either slightly shallower inner cusp slopes (Dehnen and McLaughlin, 2005;

Navarro et al., 2010) or continuously varying slope, for example the Einasto and Einasto

(1972) profile (Navarro et al., 2004).

However, as stated in our introduction, there is observational evidence that galaxies

occupy dark-matter halos with density cores with the strongest evidence coming from

low surface brightness galaxies (de Blok, 2010) with supporting evidence from high sur-

face brightness spirals (Spano et al., 2008) and from the low-luminosity dwarf spheroidal

satellite galaxies surrounding the Milky Way (Gilmore et al., 2007).

It is important to remember however, that the ignorance of baryonic physics in the

aforementioned simulations constitutes a significant limitation with regard to any discus-

sion of the inner halo profiles. The inclusion of baryon physics is widely recognised

as a crucial, albeit extremely technically challenging prerequisite for further progress in

understanding galaxy formation.

There are multiple ways in which the baryons can affect the density profile of a dark

matter halo. First, a cloud of gas which initially extends throughout a cusped dark mat-

ter halo can dissipate energy by radiation and contract to the centre of the halo. As the

dark matter responds to the deeper gravitational potential, this in turn leads to a steep-

ening of the dark matter cusp, known as adiabatic contraction (Blumenthal et al., 1986).

This is not necessarily the end of the story, however, as baryons also have the ability to

generate mass outflows driven by stellar winds and supernovae produced as a result of

star formation. Depending on the efficiency of star formation, such processes can expel

a significant fraction of the baryonic mass from the central regions of a galaxy, result-

ing in a large-scale rearrangement of the dark matter. Using semi-analytic arguments,

Gnedin and Zhao (2002) found that when stellar mass loss was preceded by adiabatic

contraction, the resulting halo distribution was almost unchanged from its original cusped

profile. Read and Gilmore (2005), however, subsequently showed that repeated episodes
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of adiabatic contraction followed by rapid mass expulsion could give rise to a reduction

in the central density and hence produce cored haloes. This occurs because although the

initial infall/outflow produces the same mass density profile, the velocity structure of the

dark matter halo after the outflow is biased towards radial orbits. As a result, subsequent

events are able to lower the inner density more easily.

Another way in which the baryonic component of a galaxy can transfer energy to the

dark matter halo is by means of a stellar bar. Weinberg and Katz (2002) proposed that

the rotation of bars is decelerated by the exchange of energy and angular momentum with

dark-matter particles on orbits in resonance with the bar’s rotation. While further work by

Athanassoula (2002, 2003) confirmed this conclusion, the size required for a stellar bar to

significantly change the mass distribution in the inner regions of a dark-matter halo was

found to be much larger than those observed in barred galaxies. Hence, this mechanism

is thought to be of limited importance for the majority of dark-matter haloes, though the

deceleration process is certainly affecting the evolution of galactic bars.

However, galaxy formation also involves violent processes, where baryonic inflow

is neither smooth nor adiabatic. Gas accretion is likely to occur during galaxy mergers,

when it takes the form of clumpy infall rather than the slow contraction of a smooth cloud.

Although a baryonic clump falling into the centre of a dark halo will add to the gravita-

tional potential there (and thus increase the binding energy of the dark halo), it can, during

this process, lose its orbital energy via dynamical friction. El-Zant et al. (2001) showed

that the energy thus gained (i.e. binding energy lost) by the dark matter can produce an ob-

servable impact on the dark matter density profile. El-Zant et al. (2004) and Nipoti et al.

(2004) extended this work by performing N-body simulations of galaxy clusters, where

the infalling galaxies play the role of clumps. They found that the initial dark-matter

cusp can be softened through the transfer of energy from the baryonic clumps to the dark-

matter though the overall density profile, including the baryonic component, remained
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cusped.

Attempts have also been made to add full baryonic physics to the studies of sink-

ing clumps mainly based on the results of cosmological simulations, which try to model

the effect of cooling, metal enrichment and supernova feedback (e.g. Gnedin et al. 2004;

Romano-Diaz et al. 2008; Pedrosa et al. 2009; Johansson et al. 2009). These simulations

confirmed the transfer of energy and angular momentum from baryons to the dark-matter,

while the results on the dark-matter density reduction were conflicting. This is presum-

ably because of varying amounts, depending on the details of the respective model, of

contraction owed to the additional gravitational pull from the accreted baryons.

Despite these promising attempts, a truly realistic modelling of baryonic physics is

still beyond contemporary simulation techniques, not least because important baryonic

processes, such as re-ionisation as well as primordial and ordinary star-formation, are

themselves not sufficiently understood. Therefore, it is important to understand more

quantitatively the purely stellar dynamical aspect of this mechanism, which alone affects

the dark-matter distribution. Some progress towards this goal has been made recently by

Jardel and Sellwood (2009) and Goerdt et al. (2010). However, a complete understanding

of the pure stellar dynamical problem is still missing, but seems essential before attempt-

ing to interpret the results of simulations which include baryons. In the present chapter,

we build on this previous work to explore the impact of clumpy baryonic infall more

broadly. We consider more realistic initial conditions. In particular, we focus on clumps

initially on parabolic orbits, which may become bound to a halo during a merger event,

and haloes with anisotropic velocity distributions, the expected situation to obtain within

the hierarchical structure formation scenario of CDM.

The outline of the chapter is as follows. In Section 2.2 we consider analytical estimates

for the damage done to the halo by the energy transfer from the satellite orbit. Section 4.2

gives our modelling approach for the N-body simulations, while Sections 2.4 and 2.5
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describe the resulting orbital decay and typical changes induced in the simulated haloes.

Sections 2.6 and 2.7 discuss the effect of halo velocity anisotropy on both orbital decay

and damage to the halo, while Section 2.8 considers the effect of satellite mass and size.

In Section 2.9 we demonstrate the effect of removing the accreted clump, corresponding

to a galactic wind subsequent. Finally, Sections 2.10 and 2.11 summarise and discuss our

findings, respectively.

2.2 Theoretical arguments

Chandrasekhar’s (1943) dynamical friction formula for systems with a Maxwellian ve-

locity distribution of dispersion σ (eq. 8.7 of Binney and Tremaine, 2008)

dυs

dt
� −υ̂s

4πG2ms ρ lnΛ
υ2

s

[
erf(x) − 2x√

π
e−x2

]
x=υs/

√
2σ

(2.1)

(lnΛ is the Coulomb logarithm, ms and υs are the mass and velocity of the clump or

satellite, and ρ is the mass density of dark-matter particles) shows that the deceleration

is proportional to ms, such that the time for the orbit to decay tinfall ∝ m−1
s . In particular,

for this orbital decay to occur within (less than) a Hubble time, a mass of ms ∼ 106−8M�,

depending on the size of the dark-matter halo, is required. Chandrasekhar’s formula also

suggests that the drag force is strongest for small υs (because this increases the interaction

time between perturber and dark-matter particles) and/or for large ρ.

However, the formula cannot be used to assess the effect the infalling clump has on

the dark matter. A simple estimate for the mass removed from the inner parts of the dark-

matter halo can be obtained from the following argument originally due to (Goerdt et al.,

2010, preprint version). Assuming a circular orbit for the perturber, the specific energy

lost when sinking from radius r + δr to r is

δεs =
d
dr

[
GM(r)

2r
+ Φ(r)

]
δr = 2πG r

(
ρ̄

3
+ ρ

)
δr (2.2)
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with ρ̄(r) the mean density interior to radius r. Assuming this energy is injected into the

spherical shell at radius r, each dark-matter particle at that radius gains specific energy

(δεs/δr)(ms/4πρr2). A density core forms and the sinking of the clump stalls (Read et al.,

2006a) as soon as this energy equals the specific kinetic energy of each particle, which

may be estimated as υ2
circ/2 = GM(r)/2r. With (2.2), this yields (with γ = −d ln ρ/d ln r)

M(r) ∼
[
1 +

ρ̄(r)
3ρ(r)

]
ms � 4 − γ

3 − γ ms. (2.3)

This argument suggests (i) that the mass ejected by the perturber is comparable to its own

mass, and (ii) that the density core which forms in response to the heating induced by the

sinking baryonic clump has radius comparable to that at which the originally enclosed

mass equals ms.

Strictly speaking, this argument only applies to circular orbits, which are not very

realistic, and the assessment of the heating required to turn a cusp into a core is rather

crude. We now present a more quantitative estimate based on the exact energy difference

between initial and final halo and on the assumption that the orbital energy lost by the

clump is absorbed by (the inner parts of) the halo.

Assuming spherical symmetry, let Mi(r) and Mf(r) denote the cumulative mass pro-

files of the initial and final halo. At large radii the halo is hardly altered, i.e. Mf(r) ≈
Mi(r), while at small radii the halo has been heated resulting in an expansion and hence

Mf(r) < Mi(r). A quantitative relation between the change in M(r) and the mass ms of

the clump can be obtained by considering the total energy budget. By virtue of the virial

theorem, the total energy of the initial equilibrium halo is half its potential energy V i,

to which the kinetic energy of the clump and the interaction energy between clump and

halo must be added to obtain the total energy of the initial state (neglecting the clump

self-energy)

Ei =
ms

2

(
υ2

i + 2Φi(ri)
)
+

1
2

Vi. (2.4)
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Figure 2.1: Predictions, using equation (2.8), for the ratio of the maximum excavated
mass to the mass of the infalling clump (top), the radius at which this occurs (middle),
and the radius inside of which half the mass has been removed (bottom; in units of halo
scale radius) as function of the mass of the accreted clump. The clump was assumed to
be initially either on a bound orbit with energy equal to that of the circular orbit at halo
half-mass radius (left) or on a parabolic orbit (right). The initial halo is modelled to have
density distribution (4.2) also used in our simulations, while for the final halo we used the
models of equation (2.11) (solid) or (2.10) (dashed: η = 0.9 or dash-dotted: η = 1.5).
The different lines correspond to inner density slopes for the final halo between γ0 = 0
(red) and γ0 = 0.4 (green), while along each line the scale radii r0 of the final model are
varied (and ms obtained from equation 2.8).
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with ri and υi the initial radius and speed of the clump and Φi(r) the potential due to the

initial halo. Expressing this in terms of the initial specific orbital energy εs ≡ 1
2υ

2
i +Φi(ri)

of the clump and the cumulative mass profile gives

Ei = msεs − G
4

∫ ∞

0

M2
i (r)

r2
dr, (2.5)

where we have used the relation V = − G
2

∫ ∞
0

M2(r) r−2 dr. For the final state (halo in

equilibrium with the clump at rest in the centre) we have

Ef = msΦf(0) − G
4

∫ ∞

0

M2
f (r)

r2
dr (2.6)

– this is obtained as E = V/2 using M(r) = ms + Mf(r) (assuming a point-mass clump)

and ignoring the clump self-energy. If the clump is extended with cumulative mass profile

ms(r), then Φf(0) in equation (2.6) has to be replaced by

Φ̃f(0) = − G
ms

∫ ∞

0

ms(r)Mf(r)
r2

dr. (2.7)

Equating Ei = Ef and re-arranging gives

ms

(
εs − Φ̃f(0)

)
=

G
4

∫ ∞

0

M2
i (r) − M2

f (r)

r2
dr > 0. (2.8)

This equation relates the clump mass and its initial conditions with the change in the

halo mass profile. Because this latter is a one-dimensional function, while relation (2.8)

provides only a single constraint, it can be satisfied by many possible functional forms

for the final mass profile Mf(r). However, using some simple yet reasonable models for

the final mass profile Mf(r) we can obtain some quantitative estimates for the amount of

mass excavated

ΔM(r) ≡ Mi(r) − Mf(r), (2.9)

in particular its maximum and the radius at which it occurs, and their dependence on

clump mass and initial specific energy εs.
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In order to compare directly to our simulations, we chose the same initial halo density

profile, given in equation (4.2) below, as used in the simulations. For the final halo we

assume two different families of models; the first have mass profile

Mf(r) =
( r
x

)γi−γ0

Mi(r) with xη = rη + rη0, (2.10)

where γi is the central density slope of the initial halo. These models have a ρ ∝ r−γ0

density cusp at small radii. The second family of models also have the central density

slope γ0 and scale radius r0 as free parameter and are given by

Mf(r) = Mi(r)
(
1 − exp(−[r/r0]

γi−γ0 )
)
. (2.11)

The top panels of Fig. 2.1 show the resulting relations between clump mass ms, ob-

tained for the above models from equation (2.8), and the ratio of the maximum excavated

mass over the clump mass, ΔMmax/ms for a clump on an orbit with initial specific energy

of εs = − 0.12 (left, corresponding to a circular orbit at the halo half-mass radius), or an

initially parabolic orbit (εs = 0, right) decaying in a halo with initial density (4.2), as used

in our N-body simulations below. While these two types of models result in a range of

values for the excavated mass, both models suggest that a clump of 1% of the halo mass

can excavate about 1.7 times its own mass for εs = − 0.12 and twice its own mass for

εs = 0. The models of equation (2.11) also indicate that a less massive clump is relatively

more efficient in that it removes a larger multiple of its own mass.

The radius rmax at which ΔM(r) becomes maximal (and hence ρi = ρf) is shown in the

middle panels of Fig. 2.1, again as function of clump mass ms. For a clump of only 1%

of the halo mass, this radius can easily reach the dark-matter scale radius. We also plot

in the bottom panels the radius r50% inside of which half the mass has been removed, i.e.

Mf(r50%) = 1
2 Mi(r50%), which is readily measured from our N-body simulations below

and provides a more direct measure of the size of any possible density core. The rankings

between the models of equation (2.11) (solid curves in Fig. 2.1) w.r.t. rmax and r50% are
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opposite to each other: the model with the smallest r50% has the largest rmax and γ0 and

vice versa. While both r50% and rmax clearly increase with ms, as one would expect, this

dependence is rather weak, approximately r ∝ m0.6
s for the models of equation (2.11) near

ms = 0.01Mhalo.

Note that in obtaining these estimates we have assumed that the final halo is spherical

and in perfect equilibrium. In reality, the momentum of the infalling clump is absorbed

by the inner halo, which as a consequence moves slightly w.r.t. its outer parts. This

motion is only weakly damped and it takes some time before its energy is transformed

into internal heat. This implies that the estimates for ΔMmax from equation (2.8) (as used

in Fig. 2.1) are possibly somewhat too high, depending on the amount of energy absorbed

into such oscillations. The inner asphericity resulting from the absorbed momentum also

implies that the simple spherical model over-estimates ΔMmax (because it under-estimates

Ef given Mf).

2.3 Modelling approach

The above energy argument is only suggestive and cannot predict the final mass profiles

and its dependence on the details of the satellite orbit and the initial halo equilibrium.

To this end numerical (N-body) simulations are required. Recently, Jardel and Sellwood

(2009) performed such simulations for a satellite starting on a circular orbit at the half-

mass radius of a spherical dark-matter halo model with a Navarro et al. (1995) density

profile and isotropic velocities. They found that the orbital decay of a satellite with 1% of

the halo mass heats the dark matter and results in a density core of radius ∼ 0.2r2, where

r2 is the initial scale radius of the halo, the radius at which γ(r) ≡ −d ln ρ/d ln r = 2.

A study by Goerdt et al. (2010) also considered satellites on circular orbits, but for a

variety of halo density profiles with different inner density slope γ. These authors were

especially interested in the stalling of the orbital decay (Goerdt et al., 2006; Read et al.,
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2006a), which depends sensitively on γ.

Assuming a circular orbit for the satellite may simplify some analytical arguments,

but is certainly not very realistic. Similarly, the assumption of velocity isotropy for the

dark matter is not justified and made only for convenience (so that initial conditions are

easily prepared), though simulations by Arena and Bertin (2007) indicate that velocity

anisotropy plays no significant role.

The aim of the present study is to extend the aforementioned simulations to more

realistic initial conditions. In particular, we are interested in non-circular satellite orbits

and cosmologically motivated velocity anisotropy for the dark matter. Our energy-based

argument of §2.2 shows that the total amount of heating induced by the decaying satellite

orbit only depends on the satellite orbit’s energy, but not on its eccentricity. However,

where the satellite dumps its energy, and consequently which halo particles gain energy

and angular momentum, will depend on eccentricity. In order to differentiate these effects,

we will present two sets of N-body simulations with satellite orbits of the same energy.

The first set essentially extends the simulations of Jardel and Sellwood by considering

satellite orbits of varying eccentricity, but same initial radius and energy as used by those

authors. The second set of simulations considers parabolic orbits, whose initial orbital

energy just vanishes. If it were not for dynamical friction, these orbits would just pass by

the dark-matter halo and never return. However, due to dynamical friction they become

bound and decay to the halo centre if initially aimed sufficiently close. We consider

isotropic velocities for the dark matter as well as velocity anisotropy of various degree

and radial dependence. Furthermore, we investigate the effects from changing the satellite

mass and/or its adopted size.
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2.3.1 The halo model

For the density profile of the dark-matter halo, we adopt a truncated spherical Dehnen and McLaughlin

(2005) model, which gives an excellent fit to simulated CDM halos and has density

ρ(r) ∝ r−7/9
(
r4/9 + s4/9

)−6
sech(r/rt). (2.12)

For rt → ∞, this profile asymptotes to ρ ∝ r−7/9 and r−31/9 at small and large radii,

respectively, with a very smooth transition. Here s is a scale factor but we identify the

scale radius with the radius at which γ(r) = 2 (in the limit rt → ∞), which for these

models is given by r2 = (11/13)9/4s ≈ 0.687s and set the truncation radius to rt = 10r2,

which we identify with the virial radius. We consider various velocity anisotropy profiles;

in particular models for which

β ≡ 1 − σ
2
θ + σ

2
φ

2σ2
r

(2.13)

is constant and models for which

β(r) = β∞
r4/9

s4/9 + r4/9
. (2.14)

These latter models are isotropic in the centre and become increasingly radially anisotropic

(for β∞ > 0) at large radii, again with a very smooth transition, and are excellent descrip-

tions of N-body CDM haloes (Dehnen and McLaughlin, 2005).

To generate initial N-body conditions for the halo, we sample positions from (2.12)

and velocities from self-consistent distribution functions of the form L−2β f (ε) for constant

β models with f (ε) obtained from an Abel inversion (Cuddeford, 1991). For models with

β(r) as in equation (2.14), we generate initial conditions using the made-to-measure N-

body method of Dehnen (2009).

For models with constant β, the resolution in the inner parts is enhanced by increas-

ing the sampling probability by a factor g(ε)−1 which is compensated by setting particle

masses μi proportional to g(εi). We used

g(ε) ∝ 1 + q r4/9
circ(ε)

r4/9
circ(ε) + s4/9

(2.15)
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with q= 10 the ratio between maximum and minimum particle mass and rcirc(ε) the radius

of the circular orbit with specific energy ε. The gravitational forces were computed using

a softening kernel with density profile given in equation (3.5) below and rs replaced by

the softening length ε = 0.005. Testing this method for our particular purposes we found

that it allows a reduction of N to half at the same central resolution without any adverse

effects.

We use a unit system where G = M = r2 = 1, which implies a time unit of

15.5 Myr (r2/500pc)3/2(M/108M�)−1/2.

2.3.2 Orbital and other parameters of the infalling clump

Henceforth, we shall use the term ‘satellite’ for the infalling baryonic clump, which we

model as a single massive extended (softened) particle. For the satellite mass ms we

considered 0.3%, 1%, and 3% of the total halo mass (only 77% of which is inside r t

associated with the virial radius), while the satellite size rs was taken to be 0.01, 0.03,

or 0.1 times the halo scale radius. This means that the satellite is effectively modelled to

have spherical density profile

ρs(r) =
15
8π

r4
s ms

(r2 + r2
s )7/2

. (2.16)

We considered a large range of initial satellite orbits, but report here only on two sets of

simulations. The simulations of the first set, summarised in table 2.1, all start from r = 4,

the radius containing 40% of the total or 54% of the mass within r t, and have specific

orbital energy εs = −0.12 equal to that of the circular orbit at that radius. The only re-

maining free parameter of these orbits is the pericentric radius of the initial orbit—owing

to dynamical friction, the actual trajectory of the satellite may have a slightly smaller first

pericentric radius. These simulations thus extend those reported by Jardel and Sellwood

(2009) to non-zero eccentricity and also anisotropic halo velocity distributions. The sec-

ond set of simulations, summarised in table 2.2, employs parabolic orbits, i.e. with initial

41



Weakening dark-matter cusps by baryonic infall 2.3. Modelling approach

Table 2.1: Initial conditions and results for our simulations. Initial conditions are speci-
fied by the satellite size rs and mass ms, which default to rs = 0.03 and ms = 0.01, respec-
tively; the peri-centric radius rperi of the initial satellite orbit; and the halo initial velocity
anisotropy βi, which is either constant or β(r) given by equation (2.14) with β∞ = 1. As
results we list the time tinfall for the satellite to fall to the centre of the halo (defined in
Section 2.4.1); the radius rmax of maximum halo-mass reduction ΔMmax (compared to the
control simulation); the radius r50% where the cumulative mass is reduced to 50% com-
pared to the control simulation; the radius rM=ms within which the final halo mass equals
ms; and the maximum (over all radii) of ρ/σ3 for the final halo.

simulations started at ri = 4 and run until t = 1000

rs,ms rperi βi tinfall rmax ΔMmax r50% rM=ms max
{
ρ

σ3

}
default 0.00 −0.43 44.1 0.704 0.0157 0.330 0.315 1.36
default 1.03 −0.43 111.4 1.351 0.0104 0.119 0.253 4.16
default 2.44 −0.43 169.8 1.864 0.0085 0.100 0.247 4.80
default 4.01 −0.43 198.0 2.052 0.0081 0.109 0.247 4.44
default 0.00 0 43.5 0.646 0.0139 0.324 0.312 1.14
default 1.03 0 99.9 0.778 0.0106 0.165 0.266 2.84
default 2.44 0 163.1 0.783 0.0086 0.100 0.250 3.88
default 4.01 0 193.6 0.779 0.0084 0.097 0.249 3.57
default 0.00 0.3 43.2 0.563 0.0139 0.350 0.325 0.84
default 1.03 0.3 87.1 0.644 0.0104 0.242 0.287 1.42
default 2.44 0.3 145.9 0.641 0.0088 0.127 0.262 2.46
default 4.01 0.3 178.8 0.665 0.0082 0.128 0.257 2.37
rs =0.01 4.01 0 181.8 0.802 0.0084 0.048 0.247 4.67
rs =0.1 4.01 0 231.1 0.464 0.0076 0.215 0.272 2.60
ms=0.003 4.01 0 491.4 1.932 0.0028 0.042 0.116 13.38
ms=0.03 4.01 0 90.3 1.278 0.0210 0.257 0.541 0.88

orbital energy εs = 0, started at r = rt, corresponding to the halo virial radius. Again, the

only free orbital parameter is the pericentric radius of the initial orbit.

Within either set of simulations the specific energy of the initial orbit is the same. This

choice was motivated by the analytic argument of section 2.2, which suggested that orbital

energy is the main parameter affecting the amount of ‘damage’ done to the halo. Thus

keeping this energy fixed and varying orbital eccentricity or, equivalently, the pericentric

radius, we can study the influence of this secondary orbital parameter.
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Table 2.2: Initial conditions and results for our simulations. Initial conditions are speci-
fied by the satellite size rs and mass ms, which default to rs = 0.03 and ms = 0.01, respec-
tively; the peri-centric radius rperi of the initial satellite orbit; and the halo initial velocity
anisotropy βi, which is either constant or β(r) given by equation (2.14) with β∞ = 1. As
results we list the time tinfall for the satellite to fall to the centre of the halo (defined in
Section 2.4.1); the radius rmax of maximum halo-mass reduction ΔMmax (compared to the
control simulation); the radius r50% where the cumulative mass is reduced to 50% com-
pared to the control simulation; the radius rM=ms within which the final halo mass equals
ms; and the maximum (over all radii) of ρ/σ3 for the final halo.

simulations started at ri = 10 and run until t = 2000

rs,ms rperi βi tinfall rmax ΔMmax r50% rM=ms max
{
ρ

σ3

}
default 0.0 −0.43 225 0.802 0.0243 0.530 0.384 0.86
default 0.4 −0.43 460 0.891 0.0208 0.393 0.332 1.26
default 0.8 −0.43 835 1.271 0.0180 0.207 0.280 2.96
default 1.3 −0.43 1365 1.922 0.0163 0.094 0.256 4.32
default 0.0 0 215 0.701 0.0229 0.515 0.378 0.69
default 0.4 0 408 0.734 0.0197 0.447 0.352 0.82
default 0.8 0 774 0.906 0.0167 0.331 0.315 1.20
default 1.3 0 1319 1.288 0.0138 0.265 0.294 1.62
default 0.0 0.3 202 0.710 0.0220 0.511 0.380 0.57
default 0.4 0.3 388 0.721 0.0193 0.445 0.355 0.69
default 0.8 0.3 700 0.750 0.0178 0.389 0.339 0.88
default 1.3 0.3 1165 0.853 0.0160 0.358 0.329 0.84
default 0.0 β(r) 183 0.858 0.0187 0.445 0.372 0.52
default 0.4 β(r) 320 0.812 0.0182 0.435 0.368 0.53
default 0.8 β(r) 593 0.807 0.0157 0.379 0.350 0.66
default 1.3 β(r) 947 0.844 0.0159 0.372 0.348 0.65
rs =0.01 0.4 β(r) 249 0.834 0.0174 0.412 0.360 0.58
rs =0.1 0.4 β(r) 566 0.822 0.0177 0.415 0.360 0.65
ms=0.003 0.4 β(r) 1902 0.406 0.0064 0.207 0.180 2.02
ms=0.03 0.4 β(r) 95 1.149 0.0427 0.871 0.762 0.16
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2.3.3 Technicalities

The N-body simulations are performed using the public N-body code gyrfalcON which

uses the O(N) force solver falcON (Dehnen, 2002) with minimum opening parameter

θmin = 0.5 and employs an adaptive time-stepping scheme.

The simulations were run for 1000 or 2000 time units for the first and second set

of simulations, respectively. The energy conservation was typically 1 part in 104 (more

accurate control simulations obtained the same results). Halo models with constant β had

1 Mio particles selected using the resolution-enhancement method of Section 2.3.1, while

for halo models with β(r) as in equation (2.14) 2 Mio equal-mass particles were used.

In order to ensure a careful modelling of the satellite, it was integrated with a shorter

time step than most halo particles and the mutual forces with the halo particles were

approximated with a much reduced opening angle. One simulation over 1000 time units

(16 000 block steps or 256 000 shortest time steps) took about 190 CPU hours (single

CPU, N = 1 Mio), including some of the analysis.

After each time step the position and velocity of the halo centre was estimated from

the position of the most bound particles1. Snapshots are stored at regular intervals and

analysed in terms of their radial profiles using two different approaches. The first em-

ploys simple averages over radial shells, assuming the centre to coincide with the one

found from the most bound particles. The second estimates for each particle the density

as a kernel estimate from its 32 nearest neighbours and then computes the centre, radius,

and other properties from density bins. This latter method is more robust in case the con-

figuration is non-spherical, either because of flattening or because of a spatial or velocity

offset of the inner w.r.t. outer regions.

For all except one halo model, simulations in isolation maintained the original density

1Let φ denote a halo particle’s specific potential energy due to all other halo particles (but not the
satellite), then we first find the particle with the smallest (most negative) φ and its K = 256 spatially nearest
neighbours. Then we obtain the centre position and velocity as weighted average from the K/4 most bound
particles (with largest |φ|) using the weights |φK/4 − φi|3.
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Figure 2.2: Time evolution of the satellite orbits and halo Lagrange radii for four bound
(left) and four parabolic satellite orbits (right) decaying in a halo with isotropic velocity
distribution – note the different time scales. The top and middle panels show the evolution
of the satellite distance to the halo centre and the satellite orbital energy εs, respectively.
Also shown in the middle panel is the halo’s central potential depth Φh(0) (lower curves).
The thin vertical lines indicate the time at which the difference εs − Φh(0) is reduced by
a factor 50. The bottom panel shows the evolution of the halo Lagrange radii (w.r.t. the
halo centre) containing 0.08%, 0.16%, etc. up to 20.48% of the halo mass. Within each
set of orbits the initial orbital energy is the same, namely εs = 0 for the parabolic orbits
and εs = −0.12 for the bound orbits, equivalent to that of the circular orbit at the halo
half-mass radius (which is in fact the red orbit in the left panels). The purely radial orbits
of both sets are plotted in cyan, while the colour sequence to red corresponds to ever less
eccentric orbits, reaching e = 0 (circular) for the family of bound orbits, corresponding to
larger pericentric radii as indicated.
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profile over 2000 time units, except for the very inner parts, where artificial two-body

relaxation and force softening result in a slight expansion. More quantitatively, the La-

grange radii containing � 1 × 10−3 of the total mass expand noticably (see bottom panels

of Fig. 2.2), which is more pronounced in halo models with radially biased velocity distri-

butions. The exception is the halo model with initial β(r) following equation (2.14) with

β∞ = 1. This model turned out to be unstable to the radial-orbit instability and sponta-

neously re-arranges into a triaxial configuration within ∼ 200 time units. In the course

of this process the radial mass distribution is also slightly altered even without infalling

satellite. In order to minimize the effects of these problems when interpreting our re-

sults, we compare each simulation with infalling satellite to a control simulation without

satellite but identical initial halo. Tables 2.1 and 2.2 shows a numerical summary of our

results.

2.4 Orbital decay

In Fig. 2.2, we plot the time evolution of the satellite orbital radius and energy (top and

middle panels) and the halo Lagrange radii (bottom panels) for both sets of satellite orbits

in a dark-matter halo with isotropic velocities. In all these simulations the satellite mass

and size are at their default values of ms = 0.01 and rs = 0.03.

2.4.1 Initial orbital decay

We like to start our discussion by comparing the circular orbit starting at r = 4 (red in the

left panels), which is similar to that used by Jardel and Sellwood (2009), and a plunging,

almost radial, orbit with vanishing orbital energy (blue in the right panels of Fig. 2.2).

While both orbits decay to the centre, their evolution is clearly different. The circular

orbit decays first slowly then faster, whereby remaining near-circular. The rate of decay,
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as indicated by the energy loss, is continuously increasing as the orbit comes closer to the

centre. This is qualitatively consistent with Chandrasekhar’s formula (2.1), since the halo

density is steeply increasing inwards.

The plunging parabolic orbit (blue in the right panels) on the other hand, suffers no-

ticeable energy loss only near peri-centre, undergoing a stepped rather than steady decay

of orbital energy. At the first peri-centric passage, the satellite loses enough orbital energy

to find itself on a bound but highly eccentric orbit which returns to the inner parts of the

halo within about 4 halo half-mass dynamical times. The energy loss at the second peri-

centric passage is larger, resulting in a quick orbital decay thereafter. The time scale (note

the different the time axes in the left and right panels of Fig. 2.2) for the decay of this

orbit is only about twice as long as that of the circular orbit starting much closer (a cir-

cular orbit starting at rt does not decay within 1000 time units). Thus, even though more

energy has to be lost for this orbit, the dynamical friction at peri-centre is so strong that

the decay is still quite fast, even though the orbit spends about half its time well outside

the halo virial radius.

During the first few periods, the peri-centric radius for this plunging orbit is hardly

decaying. This is expected if dynamical friction causes a near-instantaneous deceleration

at peri-centre, which transfers the satellite to an orbit with the same pericentric radius.

The apparent decay of the peri-centric radius after two periods is not because dynamical

friction away from pericentre becomes significant, as the closest approach to the origin

(as opposed to the halo centre) is in fact increasing, but because the centre of the halo has

moved, as a consequence of the satellite interaction.

For all orbits, we identify as the orbital decay or infall time tinfall the time at which

the difference εs −Φh(0) first obtains 2% of its original value. There is a systematic trend

of the infall time to decrease for higher eccentricities (smaller rperi within each set of

simulations), which is easily understood by the fact that dynamical friction is stronger for
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Figure 2.3: Radial profiles of the halo’s pseudo phase-space density ρ/σ3 (top), density ρ
(middle), and the change in cumulative halo mass ΔM (bottom) at t = 1000 and 2000 for
simulations of the decay of bound (left) and parabolic (right) satellite orbits, respectively.
The simulations and colour coding are the same as in Fig. 2.2. For each model, the vertical
lines in the middle and bottom panels indicate the locations of r50% and rmax, respectively,
while the arrows in the top panels indicate the radius rM=ms within which the dark mass
equals the satellite mass. The dotted curves correspond to the situation before satellite
infall (t = 0), while the solid black curves represent the control simulation (no satellite).
In the bottom panels, the black curves give M(r), not ΔM(r). The thin black lines in the
middle panels are power-laws r−0.5(left) and r−0.4 (right).

the higher density at smaller radii.

2.4.2 Late orbital decay

Interestingly, after the initial decay, when the orbital energy has almost reached its final

value, the satellite and the halo centre are still orbiting each other at a distance of initially

r ∼ 0.1. In other words, the orbital decay was incomplete and has stalled. Unlike the

situation investigated by previous authors, this stalling occurs at a radius which contains

much less dark mass than the satellite mass ms and it seems more apt to say the halo centre

orbits the satellite.
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This small orbit remains inert only for a short while (when |xs − xc| remains constant

or even increases at ∼ 0.1, see also Fig. 2.13), which is longer for high eccentricities of

the initial orbit, while for the initially circular orbit (rperi = 4) there is hardly any such

stalling. After this brief pause, the orbit decays very nearly exponentially with radial e-

folding time of ∼ 90 time units for the bound orbits (left panels of Fig. 2.2), which is

discernable for over two e-foldings until the orbital radius reaches the noise level. In case

of initially parabolic satellite orbits (right), the stalled orbits are more eccentric and their

decay more erratic (but qualitatively similar) with a longer decay time (e-folding time of

∼ 160).

Remarkably, the secondary decay times are very similar between orbits within either

set of simulation, but differ between them. This implies that the eccentricity of the initial

and also the stalled orbit are not affecting the process responsible for this phenomenon.

The differences in secondary decay times may be caused by differences, induced by the

orbital decay, in the structure of the central halo, as discussed below.

This secondary decay is not associated with any significant orbital energy loss and has

no measurable effect on the final halo density profile (except perhaps for the innermost

0.1% of the halo mass), which is the main interest of our study. However, it is certainly

an interesting stellar dynamical phenomenon deserving further investigation.

2.5 Effect on the Halo

We now discuss the changes induced by the satellite’s orbital decay in the dark-matter

halo, concentrating mostly on the spatial distribution, while the changes to the velocity

structure are mostly discussed in the next section.
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2.5.1 Halo expansion

The middle panels of Fig. 2.2 also show the evolution of the central halo potential Φh(0)

(lower curves; not including the contribution of the satellite), which at late time coincides

with the satellite’s orbital energy. In all simulations, the final central potential depth of

the halo is considerably shallower than initially, indicating a significant reduction of the

central dark-matter concentration. A comparison between the various simulations also

shows that this reduction is more pronounced for parabolic than for bound satellite orbits,

exactly as our analytic arguments of Section 2.2 predicted, as well as for more eccentric

orbits.

In the bottom panels of Fig. 2.2, we plot the time evolution of the halo Lagrange radii,

while Fig. 2.3 shows for the same simulations the halo density ρ before and after the

satellite infall, as well as the change (2.9) in the cumulative halo mass profile and in the

pseudo phase-space density ρ/σ3. From the time evolution of the Lagrange radii, we see

that the expansion of the inner halo occurs rather suddenly at the time when the satellite

settles in the core2, in particular for the initially circular orbit (red in the left panels of

Fig. 2.2). For more eccentric orbits, the early peri-centre passages result in some minor

expansion of the halo at radii comparable to the peri-centre radius, but hardly affect the

innermost halo.

The mass ΔM(r) removed from inside radius r (compared to the control simulation3)

has different radial profiles for the various simulations. Its amplitude is generally larger

after the decay of a parabolic than a bound orbit, which is due to the larger orbital energy

of the former leading to stronger heating of the dark-matter particles. In fact, the maxi-

mum mass excavated ΔMmax is about twice the satellite mass if the latter is decaying on

a plunging parabolic orbit, consistent with our models of Section 2.2, while for a circular

2The initial slow rise of the innermost Lagrange radii is entirely due to artificial two-body relaxation and
not present in simulations with ten times the number of halo particles, see also the last paragraph of § 2.3.3.

3For the simulations, ΔM(r) is always measured this way, rather than against the initial model (as in
equation 2.9), in order to account for halo evolution in absence of any satellite.
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orbit decaying from r = 4, corresponding to the situation studied by Jardel and Sellwood

(2009), ΔMmax <ms. This difference between ΔMmax obtained for orbits with εs = 0

(parabolic) εs = −0.12 (bound) is even more pronounced than for the analytical models

of Fig. 2.1.

Within each set of orbits ΔM(r) is most peaked for the purely radial orbit, while it

widens for lower eccentricities. This is presumably because a satellite on a highly eccen-

tric orbit loses its energy to a narrow range of dark-matter particles close to its peri-centre,

while less eccentric orbits lead to a distribution over a wider range.

Central density reduction

The density profiles in the middle panels of Fig. 2.3 confirm earlier results that the infall

of a baryonic clump can considerably weaken the central dark-matter cusp. The final halo

mass profiles (not shown) are noticeably perturbed interior to the radius rmax (indicated

by the vertical lines in the bottom panels of Fig. 2.3), at which by definition the final

halo density equals that of the control simulation without satellite. In order to quantify

further the properties of the inner halo density profiles, we also calculate the radius r50%

(indicated by the vertical lines in the middle panels of Fig. 2.3) interior to which the dark

mass mass is reduced to 50% compared to the control simulation. In general, r50% is

smaller than rmax and marks the radius at which significant changes to the halo density

profile are evident.

There is a clear trend for more eccentric orbits to more strongly reduce the central

density and hence result in a larger radial range over which the density has been signif-

icantly reduced: r50% is larger for smaller rperi. The opposite is true for the radius rmax.

This contrasting behaviour of r50% and rmax can be understood in terms of the different

shapes of the excavated mass distribution ΔM(r), which becomes broader with increasing

rperi, presumably because the energy input is spread over a larger radial range.
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Such an anti-correlation between r50% and rmax for simulations with the same initial

satellite orbital energy εs was also present in the analytic models in Fig. 2.1. For those

analytic models the effect was generated by assuming different central density slopes

γ0 = −d ln ρ/d ln r|r=0. However, the central density slope of the final N-body models

(middle panel in Fig. 2.3) are remarkably similar at around γ0 = 0.4−0.5 at radii r � r50%.

We should stress, however, that the inner regions of these halo models are gravitationally

dominated by the sunken satellite, and hence cannot be sensibly compared to the dark-

matter haloes of galaxies.

Central phase-space density reduction

We also show in Fig. 2.3 the radii rM=ms at which the enclosed dark mass equals that of

the satellite (arrows in the top panels). Evidently, these radii do not differ much from

r50%, implying that the innermost final dark-matter profiles are not self-gravitating: their

gravity is dominated by the accreted satellite. Since the satellite size rs = 0.03 is about ten

times smaller than the radius inside of which it dominates the dynamics, it is effectively

acting like a central point mass. A tracer population orbiting a point mass has a cusp

ρ ∝ r−3/2 if its phase-space density is constant. However, the simulations have much

shallower central cusps, suggesting that the actual dark-matter phase-space density has a

central depression, decreasing towards the highest binding energies.

This is also borne out by the plots of the pseudo phase-space density ρ/σ3 in the top

panels of Fig. 2.3: while initially and in the control simulations (dotted and solid black

curves) these follow a pure power law (this is how these models are actually constructed,

see Dehnen and McLaughlin, 2005), the final profiles show a strong central depression,

suggesting a considerable reduction of dark-matter phase-space density. The correspond-

ing reduction in spatial density is much weaker, because the available phase space is

increased above that from the self-gravitating cusp by the deeper central potential due to

52



Weakening dark-matter cusps by baryonic infall 2.5. Effect on the Halo

Figure 2.4: Radial profiles of the intermediate-to-major (b/a, dashed) and minor-to-major
(c/a, solid) axis ratios, as well as the direction of the minor axis, provided as the x, y, and
z components of the unit vector along the minor axis (plotted where c/a < 0.95) for the
final halo in the same simulations as in Figs. 2.2 and 2.3. The vertical lines in the top
panel indicate for each model the location of rmax.
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the accreted satellite.

The central velocity dispersion initially decreases towards r = 0 as σ2 ∝ rmin(γ,2−γ) for a

self-gravitating ρ ∝ r−γ cusp. In all simulations, the final halo has σ(r) increasing towards

smaller radii (not shown, but evident from the strong central depression in ρ/σ3 compared

to that in ρ), inside the radius rM=ms , as is required for any equilibrium system dominated

by a central mass concentration.

2.5.2 Halo shape

In all our simulations, the dark matter halo is initially spherical. The top panels of Fig. 2.4

show the run of the final halo’s principal axis ratios for the same simulations as in Figs. 2.2

and 2.3. At r � 1.5 > rmax the final dark matter distribution is near-oblate in all cases,

becoming flatter towards the centre reaching c/a ∼ 0.5 at the smallest measurable radius.

The bottom panels of the same figure show the direction cosines of the minor axis. Note

that the satellite initially orbits in the xy plane, starting at y = 0 and x = r i. For all but

the purely radial orbits the halo minor axis is perpendicular to the initial orbital plane of

the satellite. This is easily understood to originate from the transfer of orbital angular

momentum from the satellite to inner halo particles during peri-centric passages, which

presumably also generates the oblate inner halo shape.

For the purely radial satellite orbits (cyan), which start off with zero orbital angular

momentum, the final halo minor axis does not align with the satellite orbit, but appears

to point in some random direction (though it is self-aligned). This behaviour is counter-

intuitive as the initial models for these simulations are completely symmetric w.r.t. the

infall axis. However, such a break of symmetry is the natural behaviour of radial orbits

in the gravitational potentials of a density cusp. This is best explained by considering

the limit of vanishing peri-centre radius for the change in azimuth Δφ occurring over one

radial period from apo-centre to apo-centre. For a harmonic potential, corresponding to
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γ= 0, the radial orbit just passes straight through (Δφ=π), while in the potential generated

by a point mass, corresponding to γ= 3, the radial orbit is reflected (Δφ= 2π). For mass

distributions with intermediate values of γ, such as dark-matter haloes, Δφ is between

these two extremes, and the symmetry of the initial orbit is broken4.

This deflection of the satellite orbit is compensated by an equal and opposite momen-

tum to the inner halo, such that the subsequent relative orbit of the two is no longer radial.

The further evolution follows the same pattern as for the non-radial orbits: the halo flat-

tens perpendicular to the angular momentum axis of this orbit. Note that for both radial

orbit simulations shown in Fig. 2.4 the minor axis is near-perpendicular to the original

infall direction (x-axis). This is explained by the fact that Δφ for a shallow cusp is only

slightly larger than the value π for the harmonic potential, implying that the orbit is only

weakly deflected from its original infall trajectory, which is indeed what we see in our

simulations.

There is also some hint of triaxiality at small radii, in particular for the radial bound

orbit. This is somewhat surprising as it mostly occurs within the region where the satellite

dominates the enclosed mass and hence the potential is near-spherical. We suspect that

this very central triaxiality is generated during the secondary orbital decay if the small

decaying orbit is eccentric.

2.6 Effect of halo velocity anisotropy

So far, we have discussed the results from eight simulations, which differed only in the

satellite orbit, but had the same initial halo model with velocity isotropy. We are now

4Strictly speaking, the radial orbit with L = 0 is never deflected (Δφ= π) as no transverse forces act on
it. However, in the limit L→ 0 one gets Δφ>π (except for the harmonic potential), i.e. Δφ is discontinuous
at L= 0 or, equivalently, rperi = 0. In our simulations, the halo potential is modelled from the softened
particle potentials and deviates from the power-law form at r � ε = 0.005, where it becomes harmonic and
the discontinuity at rperi = 0 is removed such that Δφ≈ π for rperi � ε. However, even the simulations
with initially purely radial satellite orbits have actual rperi > ε at first passage (see Fig. 2.2), such that the
simulated satellite orbit is actually deflected.
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investigating initially anisotropic dark-matter velocity distributions. Since parabolic or-

bits are more realistic for infalling clumps, we restrict our discussion to the four satellite

orbits with initially vanishing orbital energy εs = 0 and various eccentricities. Most of

our general conclusion are, however, at least qualitatively also valid for bound orbits.

In addition to the halo model with velocity isotropy, used in Sections 2.4 and 2.5,

we consider three initially anisotropic models. Two of these have constant anisotropy

parameter of β= 0.3 and β= − 0.43, respectively, which corresponds to the same level of

anisotropy in the sense of | lnσr/σt| (with the tangential velocity dispersion σ2
t ≡ [σ2

φ +

σ2
θ]/2). The third anisotropic halo model is motivated by simulations of galaxy halo

formation, which generally predict that the velocity distribution of the dark matter within

haloes is outwardly increasing radially anisotropic (Hansen and Moore, 2006). We use

the anisotropy profile of equation (2.14) with β∞ = 1. This halo model is quite different

from the others, as it undergoes a radial orbit instability, and we discuss it in some more

detail in section 2.7.

2.6.1 Halo phase-space structure and vulnerability

Before we discuss the simulations, let us consider an important difference between these

four models. Haloes with more radially biased velocities have more mass on eccentric

orbits, which spend most of their time near apo-centre, but contribute significantly to

the density near their respective peri-centres, in particular if the density increases more

slowly than r−2 (because of geometrical effects) as it does in the inner regions of dark-

matter haloes. Consequently, much of the dark matter in the innermost region of a halo

with radial velocity anisotropy is on orbits which spend most of their time outside the

innermost halo and have lower binding energies than the local circular orbits. Thus the

more radially biased the velocities, the less mass is at high binding energies, as demon-

strated in Fig. 2.5, which shows the differential energy distributions dM/dE for our four
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Figure 2.5: Differential energy distributions for the four different halo models considered,
which only differ in their velocity anisotropy profiles.
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halo models (computed from N-body data; for a cleaner plot of the same effect but for

different models see Fig. 4.5 of Binney and Tremaine, 2008).

The relative lack of highly bound orbits in haloes with radial velocity anisotropy has

immediate consequences for the responsiveness and hence vulnerability of the central re-

gions to perturbations, such as an infalling massive satellite (see also Binney and Tremaine,

2008, p. 299). Highly bound orbits are confined to the central regions, which makes them

relatively inert to external perturbations, in particular if their orbital period is short com-

pared to the time scale of the perturbation (adiabatic invariance). The eccentric orbits in

haloes with radial velocity anisotropy, on the other hand, have longer periods and hence

are not adiabatically protected in the same way. Moreover, the infalling satellite can rel-

atively easily perturb dark-matter particles near the apo-centres of such orbits, increasing

their angular momenta and hence peri-centric radius, and thereby reducing the central

density of the halo.

These arguments also suggest that the difference in vulnerability between haloes with

isotropic and radially anisotropic velocities is more pronounced for perturbation by a

satellite passing at larger peri-centric radius, which affects eccentric orbits contributing to

the centre, but hardly the innermost orbits. A satellite falling in on a purely radial orbit,

on the other hand, will affect dark-matter orbits at all radii, regardless of halo anisotropy.

2.6.2 Change in velocity anisotropy

In Fig. 2.6, we plot the radial β profiles of the final halo in simulations of the decay of the

four different parabolic satellite orbits (colour coded as in Figs. 2.2 to 2.4) in each of the

three different halo models with constant initial β.

In case of initial velocity isotropy the final velocity distribution is isotropic too, while

in all of the initially anisotropic cases, the halo velocity distribution evolves towards

isotropy in the inner regions. This evolution is partly driven by (artificial) two-body
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Figure 2.6: Radial profiles of the final (at t = 2000) halo velocity anisotropy parameter
β for 4 × 3 simulations: four parabolic satellite orbits (as shown in the right panels of
Figs. 2.2 to 2.4 with the same colour coding) decaying in three halo models with different
constant initial anisotropy (line style as indicated). The black and green curves are the
radial anisotropy profiles (obtained in the same way from N-body data) of the initial
conditions and the control simulations, respectively. The satellite mass and size are m s =

0.01 and rs = 0.03 (as for all simulations presented sofar).
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relaxation, as evident from the control simulations (green in Fig. 2.6), which results in

velocity isotropy at r � 0.1. However, for the simulations with decaying satellite orbit,

this isotropisation occurs to larger radii, which is essentially independent of the orbital

eccentricity of the decaying orbit, and is only a function of the initial halo anisotropy.

This radius is larger by about a factor 3 for the models with initially constant tangential

velocity anisotropy than for the models with initially constant radial velocity anisotropy.

This is somewhat surprising in view of the discussion in the previous subsection. One

speculation is that a system with tangential velocity anisotropy is not well-mixed in the

sense of Tremaine et al. (1986) and Dehnen (2005), such that violent relaxation, induced

by the perturbation, promotes evolution towards isotropy, while perhaps the opposite is

true for radial velocity anisotropy.

It is also interesting to note that the evolution of the anisotropy profile is complete by

the time of the first qualitative change in the orbit (i.e. essentially at t= t infall). Thereafter,

the final secondary decay of the satellite orbit takes place without further modification of

the halo velocity distribution.

2.6.3 Effect on orbital decay and final halo

Instead of showing detailed figures, similar to Figs. 2.2 to 2.4, of the time evolution and

radial profiles of density, axis ratios, etc. for the final halo of all the 4× 4 simulations, we

summarise the effects of different initial halo anisotropy in Fig. 2.7, which shows, for each

simulation, the infall time tinfall as well as several properties of the final halo (at t= 2000).

Apart from ΔMmax/ms, rmax, and r50%, already used in previous sections, we also plot the

maximum value for the pseudo phase-space density ρ/σ3 and the radius inside of which

the minor-to-major axis ratio c/a < 0.8.

There is a systematic trend of shorter infall times for initially more radial dark-matter

velocity anisotropy, exactly as expected from the arguments of Section 2.6.1: the inner

60



Weakening dark-matter cusps by baryonic infall 2.6. Effect of halo velocity anisotropy

Figure 2.7: Dependence of orbital decay time tinfall and several properties of the final
halo (the bottom panel plots the radius inside of which the minor-to-major axis ratio
c/a < 0.8) on initial halo velocity anisotropy (line style as in Fig. 2.6) and initial peri-
centre for parabolic orbits with satellite of mass ms = 0.01 and size rs = 0.03. Symbol
colours match those in Figs. 2.2 to 2.4.
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Figure 2.8: Like the right panels of Fig. 2.2, but for an initial halo with cosmologically
motivated velocity anisotropy profile.
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Figure 2.9: Final halo radial profiles after the infall of a satellite on an initially parabolic
orbit into a halo with initially radially increasing velocity anisotropy β(r) as in equa-
tion 2.14 with β∞ = 1. The plots are equivalent to Figs. 2.3 and 2.4 (the thin line in the
density plot is r−0.4), except that in the bottom three panels we plot not only the minor-
axis direction cosines (solid), but also the major axis direction cosines (dashed). For
this halo model the control simulation (black) also undergoes some evolution driven by
a radial-orbit instability, most evident from the changes in anisotropy and shape, see text
for details.
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parts of haloes with radially biased velocities are more responsive to and vulnerable by the

infalling satellite. This is also the reason for the behaviour of r50% and max{ρ/σ3}, which

demonstrate that haloes with initially more radial velocity anisotropy suffer the strongest

reduction in their central density and phase-space density. As argued in Section 2.6.1,

the effects of initial halo velocity anisotropy are most pronounced for satellite orbits with

large rperi and least for a purely radial satellite orbit.

Again, the radius rmax at which ΔM(r) peaks anti-correlates with the radius r50%, in-

dicating that the distribution ΔM(r) becomes more peaked (not shown) for more radially

biased velocities and that this peak occurs at smaller radii. Both of these are natural

consequences of the difference in orbital structure as outlined above.

There is also a systematic effect on the halo shape. For each model with initially

constant β, the bottom panel of Fig. 2.7 plots the radius inside of which the minor-to-

major axis ratio c/a < 0.8. The halo with tangential velocity anisotropy becomes flattened

in a region comparable to that of the halo with isotropic velocities. For the halo with

β = 0.3, the flattening is more pronounced, reaching out to about twice as far, and the

shape is near-oblate (not shown) with the same characteristic as for the halo with initial

velocity isotropy, discussed in Section 2.5.2. This is again expected, as the satellite’s

orbital angular momentum absorbed by the halo is relatively more important for dark-

matter on low-angular-momentum orbits, as for radial velocity anisotropy.

2.7 Halo with cosmologically motivated velocity anisotropy

The situation with a outwardly increasing radial velocity anisotropy as in equation (2.14)

is typical for dark-matter haloes emerging from simulations of large-scale structure for-

mation (Hansen and Moore, 2006). As already mentioned in section 2.3.3, our spherical

halo model with such an anisotropy profile undergoes a radial-orbit instability and quickly

settles into a prolate configuration. While this instability somewhat complicates the in-
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terpretation of any results, the corresponding simulations are presumably most realistic

concerning the halo structure.

2.7.1 Orbital Decay

For the four simulations of initially parabolic satellite orbits in this halo model, we plot

in Fig. 2.8 the orbital decay and time evolution of the halo Lagrange radii, similar to

the right panels of Fig. 2.2. First note that the control simulation (black) undergoes an

initial expansion within the first ∼ 200 time units. This expansion is largely driven by the

violent relaxation during the re-arrangement to a prolate configuration (due to the radial-

orbit instability), while the expansion seen in the other control simulations (see Fig. 2.2)

was solely driven by (artificial) two-body relaxation.

The orbital decay is faster than for any other halo model considered (see top panel of

Fig. 2.7), because of the more efficient transfer of satellite orbital energy and angular mo-

mentum to the halo particles (as outlined in Section 2.6.1) during the very first peri-centric

passages, when the halo density is not yet diminished by the instability-driven expansion.

The associated heating of the innermost halo results in a slightly faster expansion in the

simulations with satellite than in the control simulation even at r < rperi.

The same is true to a lesser degree for the halo with β = 0.3 (not shown), while

for the halo with isotropic velocities (Fig. 2.2), the Lagrange radii at r < rperi were hardly

affected by the early peri-centric passages. This different response of the innermost halo to

the satellite’s first peri-centric passage can be attributed to the predominance of eccentric

dark-matter orbits in the innermost halo, which are perturbed by the passing satellite at

their respective apo-centres, as outlined in Section 2.6.1.
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2.7.2 Effect on halo structure

Fig. 2.9 shows the radial profiles of ρ/σ3, ρ, ΔM, β, c/a, b/a and the direction cosines

of the minor and major axes (similar to the right panels of Figs. 2.3 and 2.4) for the

four simulations with decaying satellite orbits (coloured), the initial model (dotted), and

control simulation (black). All these radial profiles after satellite orbit decay are quite

similar, the strongest difference is 15% between the amplitudes of ΔM(r). This similarity

is also expected from our discussion in Section 2.6.1: the halo is so responsive that the

exact satellite orbit does not matter too much.

The pseudo phase-space density, ρ/σ3 (top panel), of the control simulation is even

larger than initially, although the density is reduced at r � 0.15. The reason for this

counter-intuitive behaviour is that the isotropisation (evident from the runs of β) has re-

duced the velocity dispersion σ in the inner parts. However, after the orbital decay of the

satellite, ρ/σ3 is substantially reduced and necessarily also the true phase-space density.

The maximum pseudo phase-space density is a factor 2-3 smaller than for simulations

with initial velocity isotropy, and the density a factor ∼ 2. This represents the strongest

central halo reduction in all models (for the default values of satellite mass and size),

which makes sense in view of the vulnerability due to the radial velocity anisotropy.

The mass ΔM excavated compared to the control simulation is slightly less for the

purely radial orbit (but slightly more for the orbit with rperi = 1.3) than in case of an

isotropic halo (Fig. 2.3). However, such a comparison is not quite adequate in view of the

different behaviour of the respective halo models in isolation, and the picture that stronger

radial velocity anisotropy results in larger an effect on the halo remains valid.

In all simulations the final halo is more isotropic than initially at r � 3, but still retains

significant radial anisotropy. In fact, the β profiles are identical to that of the control

simulation, presumably because this profile corresponds to a well-mixed state, attained

after the initial violent relaxation phase, and hardly affected by any further relaxation
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due to satellite interaction. Such radially anisotropic velocity distributions are likely the

inevitable property of triaxial and prolate equilibria, because of the predominance of low-

angular-momentum orbits, such as box orbits (Dehnen, 2009).

2.7.3 Effect on halo shape

Obviously, the final halo shapes are completely different from those obtained in simu-

lations with any other initial halo model. As a result of the radial-orbit instability, the

control simulation obtains a strongly flattened purely prolate shape with axis ratio < 0.6

at r � 2 (and some random orientation). This is in remarkable agreement with the fact that

dark-matter haloes in gravity-only simulations of large-scale structure formation tend to

have near-prolate shapes (Warren et al., 1992). After the satellite infall, however, the halo

shape becomes less flattened and triaxial in the inner parts. The changes in halo shape

compared to the control simulation extend to about r ∼ 5, much farther than the changes

in halo density or velocity anisotropy.

As the direction cosines indicate, the orientation of the principal axes of the triaxial

shape is constant with radius, as one expects for an equilibrium system. The minor axis

is always perpendicular to the original satellite orbit, while the major axis is somewhere

in the initial orbital plane (except for the purely radial orbit for which such a plane cannot

be defined).

2.8 Varying satellite mass and size

All simulations presented sofar have the same satellite mass ms = 0.01 and size rs = 0.03.

We are now investigating effects of larger and smaller values for these parameters.
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Figure 2.10: The variation with satellite mass of tinfall, ΔMmax, rmax, r50%, and the maxi-
mum (over all radii) of ρ/σ3 after the decay of a circular satellite orbit starting at ri = 4 in
a halo with isotropic velocities (red) or after the decay of a parabolic satellite orbit with
rperi = 0.4 starting at ri = 10 in a halo with outwardly increasing radial velocity anisotropy
(blue). The lines are power-laws with exponent as indicated.
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2.8.1 Varying satellite mass

Fig. 2.10 shows the effect of varying ms by a factor of 3 up and down for a satellite initially

on a circular orbit in a halo with isotropic velocities (red) and for a satellite on a parabolic

with rperi = 0.4 in a halo with cosmologically motivated β(r). As expected, more massive

satellites reach the centre more rapidly, and cause more damage to the inner halo. In

agreement with Fig. 2.1, rmax, r50%, and ΔMmax are largest for the most massive satellite,

and decrease systematically as the satellite mass is decreased. As the figure shows, the

scaling of rmax and r50% with satellite mass is close to scaling r ∝ m0.6
s (solid lines) also

found for our analytic models in Fig. 2.1.

The most interesting result from this study of varying satellite mass is that low mass

satellites are more efficient at displacing mass than high mass satellites: in agreement

with the analytic models the relative excavated mass ΔMmax/ms increases towards smaller

satellite masses.

According to Chandrasekhar’s dynamical friction formula (2.1), the drag on the satel-

lite is proportional to its mass ms and would therefore naively expect the infall time to

scale inversely with satellite mass: tinfall ∝ m−1
s . This is in fact the scaling indicated by

the solid lines in the top panel of Fig. 2.10. However, the actual infall time measured for

our simulations differ from this expectation. For the simple situation of an initially circu-

lar satellite orbit in a stable halo with isotropic velocities (red triangles), the infall time

scales more like tinfall ∝ m−0.9
s . This difference is most likely caused by the re-adjustment

of the halo during the satellite infall, an effect we ignored when deducing tinfall ∝ m−1
s ,

which therefore only applies in the limit ms → 0. The fact that this limit is not applicable

even for ms/Mhalo = 0.01 may seem surprising, but is not in view of the fact that only a

small fraction of the total halo mass accounts for most of its binding energy, which in turn

enables such a feeble satellite to inflict significant damage to the halo.

The orbital decay into the halo model with radially increasing β(r) (blue squares) is
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Figure 2.11: Like Fig. 2.10, except that satellite size rs is varied and ms = 0.01. kept
constant.
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complicated by the fact that the halo simultaneously undergoes a radial-orbit instability.

The slight central density reduction driven by this instability increases the infall time

compared to the original halo within the first ∼ 200 time units. In our simulations, this sets

up a race between satellite infall and instability-driven halo evolution. A more massive

satellite sinks more quickly than this evolution and t infall of the original halo applies, while

for a low-mass satellite the longer infall time after the instability-driven halo evolution

applies. Clearly, this race scenario is an artifact or our simulation setup, and we expect,

based on the arguments given above, that in general tinfall scales slightly shallower than

m−1
s .

2.8.2 Varying satellite size

In Fig. 2.11 we vary the size rs of the satellite by a factor 3 up and down, while holding its

mass fixed for a circular satellite orbit in an isotropic halo (red triangles) and a parabolic

satellite orbit with rperi = 0.4 in a halo with cosmologically motivated β(r). There is a

systematic trend that more compact satellites lose energy more quickly and hence exhibit

more rapid orbital decay. This is reasonable as more compact satellites are more efficient

at scattering background particles and thus lose energy to the halo more rapidly.

The panels of Fig. 2.11 show that the cumulative effect of the satellite on the halo is

almost independent of its size – the values of ΔMmax/ms, rmax, and max{ρ/σ3} are virtually

unchanged as the size of the satellite is changed by an order of magnitude, in particular

for the parabolic orbit in the β(r) halo. This is not very surprising in view of the analytical

models of Section 2.2: the orbital energy of the satellite is essentially independent of rs

(as long as rs � r2).

However, for the circular satellite orbit decaying in a β = 0 halo, there is a systematic

trend of larger r50% with larger rs and the halo profile is more significantly flattened by

a more extended satellite. This is also seen in the evolution of the Lagrange radii and
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is reasonable since the more extended the satellite, the less energy it loses at large radii

and therefore has more energy to impart to the innermost halo. More extended satellites

on near-circular orbits carry more energy to the inner regions and hence perturb the halo

profile to a greater degree (for highly eccentric orbits this picture does not apply, as they

affect the innermost halo already at their first peri-centric passage).

The evolution produced by satellites on bound orbits in isotropic haloes is qualitatively

the same as that for parabolic orbits, although the magnitude of the effects is reduced. In

particular, the infall time differs by only 30% between the largest and smallest satellites,

compared to the factor of three for the parabolic satellite orbit in the halo with increasing

β(r). This again may be caused by the increased vulnerability and responsiveness of

haloes with radial velocity anisotropy, as discussed in Section 2.6.1.

2.9 The Effect of satellite removal

In our modelling so far we have ignored the additional halo expansion following the pos-

sible loss of baryons in a feedback-driven galactic wind. At the final time in the models,

the gravitational potential inside ∼ 0.1r2 is dominated by the satellite. Therefore the cen-

tral potential is still quite deep, even though for most of our models the satellite mass is

somewhat smaller than the removed dark mass. This implies that the bound phase-space

volume available for the dark matter at the centre is almost unchanged.

In order to study the effect of baryon outflow on the dark-matter, we extend one of

our models by removing the satellite. The model concerned is the one with an initially

parabolic satellite orbit with rperi = 0.4 falling into a halo with isotropic velocities (blue

curves in the right panels of Figs. 2.2 and 2.3). In Fig. 2.12, the resulting radial profiles for

ρ/σ3, ρ, and ΔM are shown for the situation (i) after satellite accretion (same as the curves

in Fig. 2.3; blue), (ii) further 1000 time units after instant satellite removal (corresponding

to a fast wind; magenta), and (iii) after a slow satellite removal (over 250 times units
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Figure 2.12: As Fig. 2.3, but also including the removal of the satellite. The blue curves
refer to the same model as the blue curves in Fig. 2.3. The magenta curves are obtained
from this model after instant removal of the satellite; while for the red model the satelite
has been slowly removed.
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Figure 2.13: Secondary orbital decay: time evolution of the distance between satellite
and halo centre for the 300 time units after the infall time (vertical line) for the bound
satellite orbits in halo models with various velocity anisotropy as indicated (the curves
for different halo models are offset by 2dex from each other). The horizontal dashed lines
indicate the noise level measured at much later times.

followed by another 250 time units without satellite; red). Not surprisingly, the satellite

removal has a dramatic effect on the central halo density: the total mass excavated has

almost doubled compared to the situation prior to satellite removal and the density has

become clearly cored with a central density ∼ 10 times smaller than the initial density at

the radius where initially ms = M(r).

The most intriguing plot, however, is that of the pseudo phase-space density ρ/σ3

(top panel of Fig. 2.12). While the re-distribution of material to larger radii has shifted

the inner profile somewhat, the overall distribution and the maximum value for ρ/σ3

remained unaffected by the satellite removal. For the slow-wind model this is, of course,

expected, since the (true coarse-grained) phase-space density is conserved. Therefore,

the additional reduction of ρ and ΔM in this case is entirely owed to the reduction in

available phase-space effected by the removal of the satellite potential. Of course, this is

a non-linear process because the reduction in central dark-matter density itself leads to a
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further decrease in the potential depth. This explains why the additional mass removed by

the satellite departure (the difference between the red/magenta and blue curves) is quite

substantial, exceeding the satellite mass.

Somewhat unexpectedly, the fast-wind model is only slightly more efficient at remov-

ing dark-matter. This strongly suggests that even a fast galactic wind is nearly adiabatic,

i.e. has little effect on the (true coarse-grained) phase-space density (which is unaffected

by a slow wind).

2.10 Summary

We have modelled, using N-body simulations, the decay of satellite orbits in spherical

dark-matter halo models with various degrees of velocity anisotropy.

2.10.1 Orbital evolution

The evolution of the satellite orbits has several phases. First there is a steady decline

in the radius of the orbit with almost constant peri-centric radius, driven by dynamical

friction near peri-centre. This is followed by a period of rapid shrinkage of the peri-centre

coinciding with significant expansion of the innermost halo, as evident from the evolution

of the Lagrange radii in Figs. 2.2 and 2.8.

At this stage the evolution of the halo, driven by the transfer of energy and angular

momentum from the decaying satellite orbit, is more or less complete. The time required

for this process scales as tinfall ∝ m−0.9
s with satellite mass, somewhat shallower than the

inverse scaling expected from Chandrasekhar’s dynamical-friction formula. We also find

that tinfall is significantly shorter for decay in haloes with radial velocity anisotropy, be-

cause the orbital structure of such haloes makes them more susceptible to perturbations.

The orbital evolution shows some interesting and unexpected behaviour after t infall.
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The most bound region of the halo and the satellite form a sort of binary, dominated in

mass by the satellite, which is modelled as a single softened particle with size (softening

length) rs = 0.03 (our unit of length is the halo scale radius). Initially, this secondary orbit

has binary separation ≈ 0.1 > rs, but after a brief period of apparent growth decays very

nearly exponentially with e-folding time of 90 time units.

This is clearly visible in Fig. 2.13, which plots for all 12 simulations of bound satellite

orbits the late time evolution of the distance |xs−xs| between halo centre and satellite after

the initial infall of the satellite. In all these cases the secondary orbital decay occurs. The

secondary orbit may be eccentric (as for rperi = 0 in Fig. 2.13) or near-circular, when

the decay appears more regular. In the case of parabolic satellite orbits (not shown), the

secondary decay does not always occur or is much more noisy and less regular.

We are not sure about the cause and dynamics of this phenomenon, and whether it is a

numerical artifact or not. It may be related to the form of the softened satellite potential,

though the secondary orbital amplitude decays from ∼ 0.2 > rs to ∼ 0.007 < rs, such that

the harmonic inner parts of the softened potential become relevant only in the late stages.

2.10.2 Effect on Halo

Even though the assumed satellite mass was only 1% of the total halo mass, the damage

done to the halo is significant: the inner parts of the halo are substantially reduced in

density and phase-space density (as indicated by the behaviour of ρ/σ3), when the satellite

has displaced up to twice its own mass from the innermost halo. The satellite also affects

the velocity structure of the inner halo making it more isotropic. Finally, the halo shape

becomes triaxial in its inner parts.

We find that the efficiency with which the satellite can affect the halo, e.g. the amount

of central density reduction, is increased for haloes with radial velocity anisotropy. This

is understandable in terms of the orbital structure of such haloes, making them more
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vulnerable (see Section 2.6.1), and relevant, as real dark-matter haloes are expected, from

simulations of large-scale structure formation, to be radial anisotropic.

One of our most interesting findings is that satellites of smaller mass are relatively

more efficient in damaging the halo: the ratio ΔMmax/ms of the maximum displaced halo

mass over the satellite mass increases towards smaller satellite masses ms (though the

orbital decay time decreases, of course), as in fact predicted by the analytic energy argu-

ments presented in Section 2.2.

2.11 Discussion

In this study we have ignored the details of baryonic physics and instead used the simple

model of a compact baryonic clump falling into a dark-matter halo. Of all possible scenar-

ios for the effect of baryonic physics on the structure of dark-matter haloes this is likely

the most efficient. This process proved to be highly effective in altering the structure of the

dark-matter halo in its inner parts, where the galaxy resides. A single clump of only 1%

of the total halo mass can reduce the density at � 0.1 halo scale radii by more than an or-

der of magnitude (including the effect of a galactic wind as demonstrated in section 2.9),

more than sufficient to explain the discrepancies between the rotation curves predicted

(using gravity-only simulations) and observed for dark-matter dominated galaxies (e.g.

Simon et al., 2005; de Blok et al., 2008).

The total amount of baryons is one sixth of all matter (i.e. the cosmic baryon fraction)

Komatsu et al. (2011), i.e. 0.2 times the dark mass, 20 times more than our model clump.

Thus, if the baryonic heating of a dark-matter halo is only ∼ 2% efficient on average,

the damage done to the halo is equivalent to that in our models, because any additional

adiabatic inflow and outflow of baryons has no lasting effect on the dark matter.

This assumes, of course, that the baryonic sub-structures and clumps are able to heat

the dark-matter particles which contribute to the central cusp. Our simple model of a
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compact clump, which sinks to the centre of the dark-matter halo, is certainly somewhat

unrealistic as baryonic structures are susceptible to disruption by tidal forces before they

reach the innermost parts of the halo. However, owing to their dissipative nature baryons,

unlike dark-matter, can form new sub-structures and clumps, which then continue to heat

the dark-matter via dynamical friction. Moreover, as our simulations have shown, radial

velocity anisotropy, which is typical for dark-matter haloes, make their innermost parts

more vulnerable to perturbations from the outside. This is because much of the matter in

the cuspy region is on eccentric orbits spending most of their time at much larger radii

where they are prone to dynamic heating (see also Section 2.6.1).

2.11.1 Dark-matter contraction vs. expansion

A key process in the re-shaping of dark-matter haloes by non-gravitational baryonic

physics is the transfer of energy via dynamical friction from baryonic sub-structures to

the dark-matter particles5. The effect of this heating can be understood qualitatively by

considering the Jeans equation of hydrostatic equilibrium

∇(ρσ2) = −ρ∇Φ. (2.17)

The heating of the dark matter by the non-adiabatic baryon infall raises the central σ2,

which, at fixed ρ, increases the pressure gradient (left-hand side). At the same time, the

arrival of the baryons increases the gravitational pull (right-hand side). If these two effects

balance exactly, the dark-matter density ρ remains unaffected. If the heating dominates,

as was the case in our maximally non-adiabatic simulations, then ρ must flatten to re-

tain equilibrium. Conversely, if the gravitational pull dominates (especially for negligible

heating, i.e. ‘adiabatic contraction’), then ρ has to steepen (and σ2 will increase adiabat-

ically due to the compression). The exact balance depends on the details and most likely

5While this process itself is, of course, purely gravitational, it is neglected in gravity-only simulations,
which ignore the formation of baryonic sub-structures and unequivocally predict cuspy dark-matter haloes.
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varies systematically with galaxy type, size, and environment, explaining the possibil-

ity of conflicting results from simulations which attempt to model baryon physics more

directly (e.g. Romano-Diaz et al., 2008; Pedrosa et al., 2009).

An alternative way to look at this problem is to consider the effect on the dark-matter

(coarse-grained) phase-space density, which arguably is dynamically more relevant than

the space mass density, because it is conserved for adiabatic evolution. However, the pro-

cess of baryon infall is inevitably non-adiabatic and reduces the dark-matter phase-space

density6. As long as the accreted baryons remain at the centre, this may not necessarily

result in a reduction of the dark-matter spatial density, because the additional gravita-

tional potential of the newly arrived baryons increases the available bound velocity-space

(phase-space at fixed position).

Of course, a galactic wind changes the situation: the loss of some or all of the accreted

baryons tips the balance towards a reduction of the dark-matter density, as convincingly

demonstrated by our models of satellite removal. In the Jeans-equation picture the wind

removes the additional gravitational pull from the accreted baryons. In the phase-space

interpretation, the wind reduces the bound velocity space for DM particles, thus pressing

the dark-matter phase-space fluid out of the centre, like toothpaste out of its tube.

2.11.2 Application to dSph and GCs

For a dwarf spheroidal galaxy our simplistic model of baryon infall may apply even more

directly. Given that their present-day baryonic mass is comparable to the dark mass that

needs to be rearranged in order to convert their haloes from cusped to cored, it seems

plausible that for a reasonable star formation efficiency one could build the stellar com-

6More precisely, it reduces the excess-mass function

D( f ) ≡ ∫
f̄ (x,υ)> f

dx dυ
[
f̄ (x, υ) − f

]
(2.18)

with f̄ (x, υ) the coarse-grained phase-space density (Dehnen, 2005).
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ponent of the dSphs from a number of star clusters that fall to the centre by dynamical

friction and in so doing generate a macroscopic core in the halo dark matter distribution of

the dSph. For this to work, the clusters need to remain largely unscathed by tides before

they reach ∼ 0.1r2. Peñarrubia et al. (2009) have investigated the tidal disruption of star

clusters orbiting in a dSph, in particular the Sagittarius and Fornax satellites to the Milky

Way, and used N-body simulations to confirm the following criterion for the tidal radius

rt of a globular cluster (GC) at radius r within a halo

ρ̄GC(rt) ≈ 3 ρ̄h(r). (2.19)

In particular they looked at the resilience of the five GCs in Fornax and found that GCs

which retain bound masses of greater than approximately 95% of their total mass do

not undergo tidal disruption by the halo. In our simulations the clump falls in to ap-

proximately r = 0.1r2 at which point it has excavated the mass in the centre of the

halo and reduced the central density. At a corresponding radius in the simulations of

Peñarrubia et al., four of the GCs are still very stable against tidal disruption. The fifth

one is only disrupted when it spends a large fraction of a Hubble time at a radius in the

range corresponding to 0.1 − 0.2r2 of our model.

In a similar way we can look at the stability of GCs in Low Surface Brightness (LSB)

galaxies. Kuzio de Naray et al. (2008, 2006) investigated the density profiles of a number

of LSB galaxies and attempted to fit them using NFW and pseudo-isothermal halo models.

Their best-fit NFW models should give an upper limit to the density in the inner halo and

therefore the one most likely able to disrupt an infalling object. Using these we find a

range of values for ρ̄h(r) at 0.1 scale radii ranging from 0.012 to 0.080 M�pc−3. These

are lower than the corresponding value for Fornax which is ∼ 0.13 M�pc−3. Based on

the work of Peñarrubia et al. (2009) this implies that GCs would also be stable at 0.1r2 in

LSB galaxies.
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3
The mass distribution of the Fornax dSph:

constraints from its globular cluster

distribution

3.1 Introduction

The Milky Way’s dwarf spheroidal (dSph) satellites are among the nearest, smallest and

least luminous galaxies we know. They also exhibit the largest discrepancies between

dynamical and luminous masses and as such represent a unique opportunity to study the

affect of DM on stars and gas in galaxies. Fornax is the most massive undisrupted dwarf

spheroidal satellite of the Milky Way (Walker et al., 2009), only challenged by the Sagit-

tarius dwarf which is much closer to the centre of the Milky Way and undergoing strong
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tidal stresses. It was discovered by Shapley (1938) and is one of the classical dSphs as

opposed to the ultra faint dSphs which have all been discovered since 2005 from studies

of the Sloan Digital Sky Survey (SDSS). Its half light radius is 668 ± 34 pc (Walker et al.,

2009) and its mass within this radius has been estimated as 5.3 ± 0.9 x 107M� whereas its

total mass is of the order of 108M� (Table 3.1). Fornax is approximately 135kpc from the

Sun (Table 3.1) and it is estimated that it is currently near its galactic pericentre (Lux et al.,

2010). Its orbit appears to have a relatively low eccentricity compared to other milky Way

dSphs. Like all dSphs it is dark matter dominated even in its central regions. It is unique

among the Milky Way undisrupted dSphs in having globular clusters (GCs); it has five,

with three of them at a projected distance outside of the half light radius (see table 3.1).

There is also evidence of a shell structure at a distance of 670 pc in projection which,

based on the age of the stellar population making up this structure, may be the remnant of

a merger more than 2 Gyr ago when tidal stirring of gas produced the stars which form it

(Coleman et al., 2004).

One apparent paradox about these GCs is that because they move in a massive back-

ground of dark matter they should be affected by dynamical friction which will reduce

their energy causing their orbits to decay. Fornax’s GCs are metal poor and very old,

comparable with the oldest GCs in the Milky Way with ages of the order of a Hubble time

(Buonanno et al., 1998, 1999; Mackey and Gilmore, 2003a; Greco et al., 2007). During

their lifetime it would be expected that they would fall to the centre of Fornax and form

a nuclear star cluster. Tremaine and collaborators have proposed this process as a mecha-

nism for forming nuclear star clusters (Tremaine et al., 1975; Tremaine, 1976). However

no bright stellar nucleus is observed in Fornax. This is known as the timing problem

for Fornax’s GCs because it seems highly improbable that Fornax’s GCs would be ob-

served so far from its centre at present. Several authors have proposed reasons for the

observed current locations of Fornax’s GCs. Oh et al. (2000) suggested two ideas. First
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that a population of black holes transferred energy to the GCs through close encounters

and second that a strong tidal interaction between the Milky Way and Fornax could in-

ject energy into their orbits. There is no observational evidence for a population of black

holes in the centre of Fornax and the observed proper motion indicates that the orbit of

Fornax around the Milky Way never takes it closer than at present (Dinescu et al., 2004;

Lux et al., 2010) probably ruling out this idea. Angus and Diaferio (2009) proposed that

all but the most massive GC could orbit within the tidal radius and avoid falling to the cen-

tre of Fornax. Using numerical simulations and analytic arguments Goerdt et al. (2006)

proposed that the current distribution of the Fornax GCs can be explained by the diminu-

tion of dynamical friction on the edge of a cored matter distribution which would cause

the GCs to stall at the dark matter core radius. Support for this result was provided by

Sánchez-Salcedo et al. (2006) who showed that a cored matter distribution in dwarf galax-

ies can significantly delay the infall times of GCs even if simple Chandrasekhar friction

is used. Further confirmation of the reduction of dynamical friction at the edge of cored

density profiles was provided by Inoue (2009) who studied this effect using N-body sim-

ulations.

The discovery that the dark matter density distribution of Fornax is cored would have

significant implications for our ideas about how dwarf galaxies form. Collisionless cos-

mological simulations (which ignore the effects of baryons) based on the ΛCDM model

predict that the density distribution of dark matter halos have a central cusp i.e. ρ ∝ r−n

where n ≈ 1 (Dubinski and Carlberg, 1991; Navarro et al., 1996b). If Fornax has a cored

density distribution we would need to find an explanation for how it formed. It is difficult

to understand how a density core can be created by simply changing the nature of dark

matter. Neither making it warm (e.g. Tremaine and Gunn (1979); Strigari et al. (2006);

Villaescusa-Navarro and Dalal (2011)), nor self-interacting (e.g. Kochanek and White

(2000); Hogan and Dalcanton (2000)) appears to change the halo density profile results
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seen in cosmological simulations. By contrast, feedback from baryons during galaxy for-

mation on these small scales might be expected to form dark matter cores. There are

two key processes discussed in the literature: heating of the dark matter during bary-

onic infall due to dynamical friction (El-Zant et al., 2001; Goerdt et al., 2010; Cole et al.,

2011, and see Chapter 2); or heating due to impulsive gas outflows (Navarro et al., 1996a;

Read and Gilmore, 2005; Pontzen and Governato, 2011). Navarro et al. (1996a) were the

first to point out that spherically symmetric adiabatic inflow of gas followed by impulsive

outflow is not a time reversible process and will therefore pump heat into the dark mat-

ter halo. However, in their simple toy simulations, they require the baryons to collapse

by a factor of ≈100 to produce any significant effect. Gnedin and Zhao (2002) refined

this argument. They showed from the initial angular momentum of the baryons that it is

very unlikely for the gas to collapse by more than a factor of 0.1. In this case (in agree-

ment with Navarro et al. (1996a)), they find almost no effect on the dark matter profile.

However, Read and Gilmore (2005) show that repeating the inflow/outflow phases can

gradually turn a cusp into a core even when angular momentum barriers are taken into

account. Pontzen and Governato (2011) show that this is most likely what is happening

in recent cosmological simulations that (owing to strong simulated stellar feedback) have

a very bursty star formation history (Mashchenko et al., 2008; Governato et al., 2010). In

practice, both heating due to dynamical friction and heating due to impulsive gas outflow

are likely to act in tandem during galaxy formation.

The first evidence that dSphs have a density core came from Kleyna et al. (2003) who

found indirect evidence for a core in the Ursa Minor dwarf (UMi). UMi is a classical dSph

and about one third as massive Fornax. It was discovered by A.G. Wilson of the Lowell

Observatory in 1954 (Wilson, 1955). Its half light radius is 280 ± 15 pc (Walker et al.,

2009) and its mass within this radius is 1.5 ± 0.4 x 107M� . UMi is approximately 60 kpc

from the Sun but its estimated galactic pericentre is 30 to 40 kpc (Lux et al., 2010).
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The Milky Way dSphs have been observed intensively in recent years. This is primar-

ily because these systems are the most dark matter dominated which we know. They are

mostly intermediate or old stellar populations which are likely to be well mixed in the

dark matter potential because star formation ceased many dynamical times ago. This in

turn implies that they are ideal laboratories for studying the mass structure of their dark

matter halos. The intense observational effort means that there is a wealth of kinemati-

cal data available to form the basis for theoretical models of these systems. One line of

approach has been based on the Jeans equation where a parametric light profile for the

stars is assumed and a velocity dispersion profile is derived based on a underlying param-

eterised dark matter profile (Peñarrubia et al., 2008; Strigari et al., 2008; Walker et al.,

2009). Amorisco and Evans (2011) point out two flaws in this approach:

1. There is no guaranteed physical distribution function for the model. They give

the example that it is not possible to embed an isotropic cored stellar profile in a

NavarroFrenkWhite halo, even though the Jeans equations yield a solution.

2. The dark matter and stellar profiles are proposed a priori and so provide no new

insight beyond what is assumed. There is no physical connection between the lu-

minous and dark matter, other than the fact that the velocity dispersions can support

the model against gravitational collapse.

Other approaches have been used including phase space modelling of two stellar sub-

populations(Battaglia et al., 2008; Amorisco and Evans, 2011, 2012), and measuring the

slopes of the mass profiles of two chemo-dynamically distinct stellar sub-populations

(Walker and Peñarrubia, 2011). With the former approach the results of the basic Jeans

modelling leave the mass weakly constrained and is consistent with both cusped and cored

density distributions. Both of these approaches favour a cored density distribution but

these results probably require further confirmation before a cusped density distribution

can be ruled out.
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In this chapter, we we follow the work of Goerdt et al. (2006) by examining what

the current location of the GCs can tell us about Fornax’s mass distribution. Our work

improves on this previous analysis in several key respects: (i) we use six mass models

for the underlying potential in Fornax that sample the full range consistent with the latest

data; (ii) we consider triaxial as well as spherical mass distributions; (iii) we use the

latest data for Fornax’s GCs as constraints on their phase space distribution; and (iv) we

run thousands of N-body models to sample the uncertainties in the GC distribution and

Fornax mass model. This large grid search of the available parameter space allows us to

address whether or not there are multiple solutions to Fornax’s timing problem.

This chapter is organised as follows: section 3.2 will review the most up to date obser-

vations of Fornax and its GCs and describe the statistical approach we took to deal with

uncertainties in the observations which provide the parameters needed when modelling

the Fornax system. We also describe the method we have used for estimating the Fornax

mass distribution which then form the basis for our Fornax mass models. In Section 3.3

we describe our results and in section 3.4 we discuss the implications of our results and

draw our conclusions.

3.2 Modelling Approach

The basis for our approach is to take the most up to date observations of the Fornax’s

GCs and combine these with plausible mass models based on the latest kinematic data for

Fornax’s stars. We then create models of the Fornax system which we evolve over several

Gyr to discover how the locations of the GCs change.
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Table 3.1: Data for the Fornax system. The mass estimates from Mackey and Gilmore
(2003b) are given as a logarithm and we show the most likely mass in column 3. rc is the
core radius for a King model ((King, 1962)). rp is the projected distance of the cluster
from the centre of Fornax. rlos is the distance to each cluster and vlos is the line of sight
velocity relative to Fornax itself.
References: (a) Mackey and Gilmore (2003b), (b) Mackey and Gilmore (2003a), (c)
Greco et al. (2007), (d) Mateo et al. (1991), (e) Walker et al. (2009), (f)Buonanno et al.
(1999), (g)Mateo (1998).
1 The radius given for Fornax is its half light radius.

Object log MGC MGC r1
c rp rlos vlos

(M�)a (105M�)a ( pc)a (kpc)a (kpc) (km s−1)d

Fornax 8.15 +0.19
−0.37

e 1420e 668e - 137 ± 13b, f -
138 ± 8g

GC1 4.57 ±0.13 0.37 10.03 1.6 130.6 ± 3.0b -
GC2 5.26 ±0.12 1.82 5.81 1.05 136.1 ± 3.1b −1.2 ± 4.6
GC3 5.56 ±0.12 3.63 1.60 0.43 135.5 ± 3.1b 7.1 ± 3.9
GC4 5.12 ±0.24 1.32 1.75 0.24 134 ± 6c 5.9 ± 3.4
GC5 5.25 ±0.20 1.78 1.38 1.43 140.6 ± 3.2b 8.7 ± 3.6

3.2.1 Observations of the Fornax globular clusters

Our principal sources for Fornax GC data are those published by Mackey and Gilmore

(2003b,a) and Greco et al. (2007) who have carried out thorough surveys of the Fornax

GCs. For our purposes the main data needed are accurate estimates of the masses, sizes,

three dimensional positions and velocities of the globular clusters.

The best estimates for the relevant data are given in table 3.1. The values for the

core radius of each GC (rc) are based on the surface brightness profiles calculated in

Mackey and Gilmore (2003b). These are Elson, Fall and Freeman (EFF) models ((Elson et al.,

1987)) and the King core radius rc is related to the EFF scale parameter a by

rc = a(22/γ − 1)1/2 (3.1)

where γ is the power law slope of the surface brightness at large radii.

If we compare the distance of the Sun to the Fornax dwarf Spheroidal (dSph) galaxy

to the distances of its individual GCs from the Sun and the associated errors it can be seen
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Table 3.2: Kinematic data for the Fornax dSph.

Reference Approx. range of Approx range of β
radii ( kpc) σ (km s−1)

Walker et al. (2007) < 0.1 - 1.7 7 - 12 −0.5
Łokas (2009) 0.1 - 1.3 9 - 11.5 −0.33+0.15

−0.19

that the measurements of the distance of the Fornax GCs are not good enough to provide

their accurate 3 dimensional locations relative to Fornax. They could not be used for orbit

modelling which could distinguish between different matter distributions.

In order to make progress in modelling the evolution of the orbits of the Fornax GCs

we will make use of statistical methods to select their velocities and their line of sight

(LOS) distances. The methods are fully described in section 3.2.4 but in brief they con-

sists of selecting velocities which agree with the measured LOS velocities and are also

consistent with the stellar velocity distributions observed for Fornax and selecting a dis-

tribution of LOS distances consistent with observations.

The kinematics of the stellar component of Fornax itself have been widely studied.

The data for Fornax is shown in table 3.2. The measured velocity dispersions are approx-

imately flat over the range of radii observed so we have taken the velocity dispersion to

be constant with radius and have chosen a value of 10.5 km s−1. The velocity dispersion

is observed to be mildly tangentially anisotropic (Walker et al., 2007; Łokas, 2009) and

so we have chosen a value for the β parameter of β ≈ −0.33. β is given by

β ≡ 1 − σ
2
θ + σ

2
φ

2σ2
r

(3.2)

From table 3.2 it can be seen that the stellar velocity dispersion anisotropy is subject to

some uncertainty. However the difference in the radial and tangential velocity dispersions

produced by using this value of β is small with σr ≈ 9.5 kms−1 and σt ≈ 11 kms−1 so this

will not have a significant effect on our results.
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3.2.2 Technicalities

To generate initial N-body conditions for the Fornax galaxy models, we sample positions

from

ρ(r) = ρ0r
−γ0 (1 + (r/rs)

η)−((γ∞−γ0)/η) sech(r/rt), (3.3)

and velocities from self-consistent distribution functions of the form L−2β f (ε) for con-

stant β models with f (ε) obtained from an Abel inversion (Cuddeford, 1991). It is impor-

tant to note that our models represent the overall mass distribution of Fornax including

both the stars and the dark matter.

The resolution in the inner parts is enhanced by increasing the sampling probability by

a factor g(ε)−1 which is compensated by setting particle masses μi proportional to g(εi).

We used

g(ε) ∝ 1 + q rηcirc(ε)

rηcirc(ε) + rηs
(3.4)

with q= 4 the ratio between maximum and minimum particle mass and rcirc(ε) the radius

of the circular orbit with specific energy ε. The gravitational forces were computed using

a softening kernel with density profile given in equation (3.5) below and rs replaced by

the softening length ε = 0.01. Testing this method for our particular purposes we found

that it allows a reduction of N to half at the same central resolution without any adverse

effects.

ρs(r) =
15
8π

r4
s ms

(r2 + r2
s )7/2

. (3.5)

We use a unit system where G = 1, 1kpc = 1, 222288M� = 1 which implies a time

unit of 1 Gyr and velocity units where 1kms−1 ≈ 1 (0.9778kms−1 = 1).
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3.2.3 Theoretical modelling

Our modelling technique has several stages. First we find a plausible range of mass mod-

els based on recent work done elsewhere (see below). We then perform a consistency

check and test that these models produce stellar kinematics consistent with the observed

kinematics of Fornax (Section 3.2.3). We establish a statistical method for setting the

initial distances and velocities for the Fornax GCs which is consistent with the obser-

vations of the GCs and Fornax’s stellar component (Section 3.2.4). We then use these

techniques to run hundreds of simulations which sample the velocities and LOS distances

appropriately.

Modelling the mass structure

Observations over the past decade have yielded an extensive data set of more than two

thousand individual stellar velocities in Fornax (Walker et al., 2009). The richness of the

data for this, and other dSphs justifies the development of more sophisticated modelling

tools than the Jeans models typically used to date. For example, Wilkinson et al. (2002);

Kleyna et al. (2002) demonstrated that distribution function modelling could be used to

break the mass-anisotropy degeneracy inherent in kinematic modelling once sufficiently

large kinematic data sets are available. To take full advantage of the new dSph data,

Wilkinson et al. (in prep.) use a Markov-Chain-Monte-Carlo (MCMC) analysis with 13-

parameter dynamical models to constrain the mass profile of Fornax. The models assume

spherical symmetry and dynamical equilibrium. The mass profile and stellar luminosity

profile are modelled independently using profiles of the form in equation (3) without

the sech cut-off at large radii (10 parameters). The distribution functions are calculated

numerically following the approach of Gerhard (1991) and Saha (1992) and contain three

parameters which determine the velocity anisotropy profile of the stars. As in the earlier

work Wilkinson et al. (2002); Kleyna et al. (2002), the models are compared to the data
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on a star-by-star basis.

The details of the modelling will be presented elsewhere and in the present chapter

we just use them to inform our choice of halo models. Rather than considering only a

“best-fit” model of Fornax, we use the initial results to select a subset of four which span

the range of models which are consistent with the kinematic data. This set comprises (1)

a model with a logarithmic mass density slope of 1.3 at 100pc (this is the model with

the highest overall likelihood in the MCMC analysis); (2) the highest likelihood model

that exhibits a slope of 0.1 at 100pc (cored model); (3) the highest likelihood model that

exhibits a slope of 0.5 at 100pc (intermediate model); (4) the highest likelihood model

that exhibits a slope of 1.0 at 100pc (cusped model).

Table 3.3 shows the parameters for these four models. In all cases the value for γ0,

γ∞, η, ρ0, the total mass M∞ and the scale radius rs were obtained from the MCMC chain

outputs.

Creating mass models

On the basis of this modelling we have selected a number of mass distributions to explore

how the different density profiles affect the evolution of the orbits of the Fornax GCs.

Our main objective is to see if there are significant differences between a cusped dark

matter profile as predicted by cosmological simulations (Dubinski and Carlberg, 1991;

Navarro et al., 1997) and a more cored one. There is circumstantial evidence that the

halos of dSphs are not strongly cusped but have a shallow cusp or core (Gilmore et al.,

2007). For these reasons we have chosen a range of mass distributions which are all in

close agreement with the modelling referred to above (see table 3.3).

In addition to the models based on the work described in section 3.2.3 we have in-

cluded two more in order to more thoroughly explore the effects of the size and shape of

Fornax. One is based on the parameters which have arisen from the mass modelling re-
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ferred to above but has a triaxial shape. Its parameters are given in table 3.3. Its principal

axis ratios are c/a = 0.5 and b/a = 0.66.

The final model is a spherical model with a large core. It is based on the work de-

scribed in Walker and Peñarrubia (2011). They use a non-parametric statistical modelling

technique and apply it to distinct stellar populations within Fornax to define the enclosed

mass at the half light radii of the two populations.

The density profiles, mass distribution and variation of density slope with radius for

these models are shown in figure 3.1.

Checking the stellar kinematics

Figure 3.2 shows the stellar velocity dispersion for each of our Fornax models plotted

against the observed velocity dispersion as measured by Walker et al. (2007). These the-

oretical velocity dispersions were calculated by creating an N-body model of Fornax’s

stellar component based on a spherically symmetric and isotropic Plummer (Plummer,

1911) model of a tracer population of particles of negligible mass with density profile

ρ(r) = ρ0

(
1 + (r/rs)

2
)−5/2

(3.6)

moving in the overall potential of our model mass distributions. It is important to note

that our models represent the overall mass distribution of Fornax and not just the dark

matter. However, as is well known dwarf spheroidal galaxies are dark matter dominated

so our mass profiles are primarily representative of the distribution of dark matter. As can

be seen from Figure 3.2 the models all produce a good fit to the data.

3.2.4 Establishing the globular cluster distribution

Velocity sampling

There are two sets of observations we can use to model the velocities of the Fornax GCs.

We have observations of the LOS velocities for the GCs (see table 3.1) and we have data

92



The mass distribution of the Fornax dSph 3.2. Modelling Approach

Figure 3.1: The mass structure for each halo used in our simulations. The top plot shows
density versus radius, the middle plot shows mass versus radius and the bottom plot shows
slope versus radius for each halo model.
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Figure 3.2: The observed stellar velocity dispersion (Walker et al., 2007) plotted against
the theoretical velocity dispersion for each halo used in our simulations. The stellar ve-
locity dispersion was derived assuming a tangentially biased stellar velocity distribution
with a β parameter of β ≈ −0.33 (see Table 3.2).
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Table 3.3: Data for halos used in the simulations. γ0 is the inner slope, γ∞ is the outer
slope and η is the transition parameter. γ100pc is the slope at 100 pc. ρ0 is the proportion-
ality constant in equation 3.3. M∞ is the total mass of the model, rs is the scale radius and
rt is the truncation radius. c/a and b/a are the axis ratios.

Model Name γ0 γ∞ η γ100pc M∞ rs rt c/a b/a
M� kpc kpc

LC Large core 0.07 4.65 3.7 0.1 8.00 x 108 1.4 10 1 1
SS Shallow slope 0.08 4.65 2.77 0.1 1.23 x 108 0.62 10 1 1
IC Intermediate cusp 0.13 4.24 1.37 0.5 1.51 x 108 0.55 10 1 1

TIC Triaxial 0.13 4.24 1.37 0.5 1.51 x 108 0.55 10 0.5 0.67
Intermediate cusp

SC Steep cusp 0.52 4.27 0.93 1.0 1.98 x 108 0.80 10 1 1
BF Best fit 1.25 4.68 1.82 1.3 1.52 x 108 1.13 10 1 1

on the velocity structure of the stars in Fornax (see table 3.2). It seems reasonable to

assume that the GCs would follow a similar velocity structure to the stars in the bulk

of the Fornax galaxy. Therefore we have constructed a statistical sampling scheme that

produces velocities randomly such that the overall distribution matches the Fornax stellar

velocity distribution while at the same time having the observed LOS velocities.

This process is as follows:

1. We select appropriate values for the one dimensional velocity dispersion and anisotropy

parameter.

2. We transform the expressions for the velocity structure of the stellar component of

Fornax from spherical polar coordinates to Cartesian coordinates. This is primarily

to allow us to ensure that the LOS velocity can be taken into account easily in our

analysis.

3. We separate the components of our variables along the LOS and in the plane of the

sky so that the velocity distribution in the plane of the sky can be generated.
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4. We generate the components of the appropriate normal velocity distribution in the

plane of the sky.

This process is described in detail in Appendix A

Position sampling

The error in the distance estimates for the individual GCs are ∼ ±5kpc and so estimating

the LOS distance to each GC accurately is not possible. One method for estimating the

location relative to the centre of Fornax would be to assume that each component of the

radial vector to the GC are equal in quadrature. The known projected distance to the

centre of Fornax represents two of the spatial dimensions and so the square of the known

spatial distance to the centre of Fornax would be ≈ double the square of the unknown

dimension. If R is the distance of a globular cluster (GC) from the centre of Fornax, z is

the difference between the distance of the GC and the distance of Fornax and rpro j is the

distance of the GC projected onto the sky then this would imply that

2〈R2〉/3 = 〈r2
proj〉 〈z2〉 = 〈r2

proj〉/2 = 〈R2〉/3 〈z〉 = ±〈rproj〉/
√

2 (3.7)

We could base our estimate for z on a normal distribution with mean zero and standard

deviation rproj/
√

2.

One weakness in this approach is that it does not explore a large range of distances of

each GC from the centre of Fornax. Observations are consistent with the Fornax system

being several kiloparsec across. We therefore have adopted a different method. First we

have sampled the LOS distances uniformly in z between 0 and 2 kpc (z ∈ [0, 2 kpc]). 2

kpc corresponds to the approximate tidal radius of the system (Walker and Peñarrubia,

2011) and see section 3.3.3. This allows us to create other interesting initial distributions

afterwards by sampling appropriately. We have only used LOS distance in the range 0 to

2 kpc rather than -2 to 2 kpc because of the symmetry of our simulations. The majority
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of models are spherical and so symmetric in the plane of the sky. This is also true for the

triaxial model which is aligned so that the minor axis is parallel to the LOS.

3.2.5 Numerical convergence

In order to ensure that our simulations do not suffer from numerical noise we ran simu-

lations with four different scenarios at different levels of resolution. We ran simulations

with two different mass models, one cusped and one cored and for each mass model we

ran two different orbits, one circular and one eccentric. In each case we created a model

of Fornax with 4x105, 1x106 and 4x106 particles and compared the evolution of one GC

over 10 Gyrs. The evolution of the orbital radius of a single globular cluster moving on

an eccentric orbit in a halo with a small core density profile (model SS from table 3.3) is

shown in figure 3.3.

It can be seen that orbital evolution is very similar for each case with different numbers

of particles. In particular the decay of the orbit follows the same timescales with the time

and radius of the first stalling of the GC being the same. It has been shown that the 2-

body noise in a simulation can cause the GC orbit to precess and cause artificial decay of

the GC orbit once in the core (Read et al., 2006a). This combination of orbit and density

profile was used because Read et al. (2006a) showed that convergence is most difficult for

an eccentric orbit in a cored halo. This is the case where numerical friction caused by

orbit precession has the largest effect on orbital decay. The simulations shown above give

a strong indication that such effects are not significant at even lower resolutions than the

one used for the main body of this work. We conclude that our simulations are strongly

converged.
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Figure 3.3: Plot of the evolution of a single globular cluster moving on an eccentric
orbit in a halo with a small core density profile (model SS from table 3.3). The evolution
of the distance from the centre of the galaxy is shown in different colours depending on
the number of particles in the halo. Black corresponds to 500 thousand particles, red
corresponds to 1 million particles and cyan corresponds to 4 million particles.
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3.2.6 N-body simulations

We have taken the various mass models and run 700 simulations for each one. The veloc-

ities and positions were set up randomly as described above. We have fixed the position

of the GC so that it has the correct projected distance but the LOS distance has a uniform

distribution between 0 and 2 kpc relative to the distance of Fornax. This ensures that we

explore the variation of the LOS distance thoroughly and allows us to investigate other

distributions of LOS distance for each GC by filtering the simulations later. We have done

this for a distribution which follows the stellar distribution function.

We have selected the velocities randomly so that the velocity distribution of the GCs is

consistent with the velocity structure of the stellar component of Fornax and the observed

LOS velocity of each GC.

3.3 Results

3.3.1 Main simulations

We have taken the instantaneous apocentre as our measure of the development of the orbits

of the GCs. We have calculated this by taking the current energy and angular momentum

of a GC and calculating the apocentre which corresponds to these values for the current

halo potential (which will be modified by the infall of the GCs).

Figures 3.4 and 3.5 show the instantaneous apocentres of the GCs for each of seven

hundred simulations for each mass model after 2 Gyr and 10 Gyr respectively.

Uniform distribution of LOS distances

First we will consider the complete set of results where the line of sight distances were

distributed uniformly initially. After 2 Gyr (Figure 3.4) both GC1 or GC5 are only show-

ing small evidence of falling to the centre of Fornax. At this stage the great majority of
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cases for both GC1 and GC5 remain close to their initial radius in all models. GC1 is only

showing a tendency to fall inwards in the cusped models SC (steep cusp) and BF (best

fit). GC1 is the lightest (3.7x104M�) and at the largest initial projected distance from the

centre of Fornax. It will suffer the smallest dynamical friction and as dynamical friction

force F is given by

F ∝ M2
GC (3.8)

where MGC is the mass of a GC then its low mass will lead to much smaller torques driving

it inwards. Though GC5 is much more massive (approximately 5 times more massive) it

is at the second greatest projected distance from the centre of Fornax. The lower density

here will lead to a reduction in the initial dynamical friction it undergoes. The other 3

GCs are all beginning to fall to the centre of Fornax at this time. How far in they have

fallen depends strongly on the inner density profile of the mass model they orbit in.

Model BF shows the greatest evidence of undergoing the effects of dynamical friction.

For GC3 and GC4 a significant proportion of the simulations have their instantaneous

apocentres inside 30 pc with a smaller proportion of simulations showing this for GC4.

GC2 does not show such a marked effect but a number of simulations already have an

apocentre inside 100 pc. Model SC (steep cusp) shows similar results. Both of these

models have a strongly cusped profile.

Model SS (shallow slope) shows much reduced signs of the effects of dynamical fric-

tion. GC3 shows the strongest effect and here the apocentres have only moved to the

edge of the density core at worst. Many of the simulations show GC2 orbiting signifi-

cantly further out still. GC2 and GC4 also show movement inwards but mainly to a few

hundred parsecs from the centre. Model IC (intermediate cusp) shows results in between

the cusped models and the cored ones as would be expected. It shows signs of inward

migration for GC3 and GC4 but not as great as with models SC and BF.
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After 10 Gyr (Figure 3.5) the trends shown at 2Gyr are continued. Four of the GCs

show very similar behaviour. Only GC1 still shows no evidence of migrating to the centre

of Fornax. All GCs have a small number of simulations where they remain at a large

radius comparable with or greater than their initial location. GC5 has the largest proba-

bility of this occurring but even GC5 has only a small proportion of results which have

not migrated inwards.

For the cusped models SC and BF the typical apocentre of their orbits is inside 10

pc and typically 3 pc which is comparable with their softening length meaning that they

are at the very centre of the galaxy. The apocentres for the intermediate model IC are

typically inside 10 pc but some have GCs still orbiting at finite distances of the order of

10 to 70 pc. Model SS shows the smallest reduction in apocentre with many orbits having

an apocentre just inside the core radius of 100 pc. Many lie in the 20 to 100 pc range.

We highlight the behaviour of GC3 which falls to the centre of the galaxy in almost all

cases. GC3 is the most massive GC (3.63x105M�) and the second nearest to the centre of

Fornax. It seems highly unlikely that this GC would not have fallen to a vanishingly small

projected distance from the centre of Fornax in a Hubble time if the mass distribution in

Fornax followed models IC, SC or BF.

The behaviour of the GCs in the different mass models is highlighted in Figure 3.6.

Here we have plotted the instantaneous apocentres for all simulations with one Figure for

each mass model with the GCs shown in different colours (red; GC1, blue; GC2 green;

GC3, magenta; GC4 and cyan; GC5). It can clearly be seen that the GCs fall in earlier

and further as the mass models become increasingly cusped. Figure 3.6 also shows the

unusual behaviour of the large cored model (LC) where the GCs inside the core move out

to the edge of the core but the GCs outside of the core fall in to the edge of the core.
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Uniform distribution of LOS distances - large core mass model

We will now consider the behaviour of the GCs in mass model LC which has a large

density core. This model shows very unusual behaviour. After 2 Gyr all GCs have apoc-

entres which are closely clustered together with a strong peak at 1 kpc. This has become

more pronounced at 10 Gyr. Detailed examination of the orbits of the GCs in individ-

ual simulations shows two behaviours. First orbits which have an apocentre outside of

approximately 900 pc decay and the orbits move in quite rapidly (mostly in less than 2

Gyr) to approximately 900 pc. This behaviour confirms the work of Goerdt et al. (2006);

Read et al. (2006a) which showed that massive satellites orbiting outside of an harmonic

density core stall at the edge of the core. This behaviour is believed to be due to the

reduction of dynamical friction due to the resonant effects of particles in the harmonic

core. Second any GC which has an initial orbit within the harmonic core move out to

the edge of the core. This behaviour is very unexpected and we do not believe that it has

been reported previously though there is some evidence for orbital radii expanding again

after falling in at the edge of harmonic cores in what has been called the kickback effect

(Goerdt et al., 2010; Inoue, 2009). We will discuss this further in section 3.4.

3.3.2 Mass follows the light model

In order to further explore the effect of the initial orbits on the final locations of the GCs

we modified the initial distribution of GC locations by sampling the initial radial distance

and velocity of the GCs and filtering the simulations so that the GCs follow a Plummer

distribution matching the GCs’ distribution to the stellar one. This was done by filtering

the results based on initial radius and velocity. The minimum distance which any GC can

start from is the projected distance for that GC.

Figures 3.7 and 3.8 show the average instantaneous apocentre of the GCs for each of

resulting simulations for each mass model after 2 Gyr and after 10 Gyr respectively. This
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Figure 3.4: Uniform distribution of LOS distances. Plot of results for the apocentre of
each Fornax globular cluster in 700 simulations after 2 Gyr. The models shown are SS
(shallow core; black); IC (intermediate core; red); SC (steep cusp; cyan); BF (best fit;
green); LC (Large core; magenta). See section 3.3.1.

103



The mass distribution of the Fornax dSph 3.3. Results

0

200

400

600

0

200

400

600

0

200

400

600

0

200

400

600

0.01 0.1 1 10
0

200

400

600

0.01 0.1 1 10
0

200

400

600

0

200

400

600

0

200

400

600

0

200

400

600

0

200

400

600

0.01 0.1 1 10
0

200

400

600

0.01 0.1 1 10
0

200

400

600

0

200

400

600

0

200

400

600

0

200

400

600

0

200

400

600

0.01 0.1 1 10
0

200

400

600

0.01 0.1 1 10
0

200

400

600

0

200

400

600

0

200

400

600

0

200

400

600

0

200

400

600

0.01 0.1 1 10
0

200

400

600

0.01 0.1 1 10
0

200

400

600

0

200

400

600

0

200

400

600

0

200

400

600

0

200

400

600

0.01 0.1 1 10
0

200

400

600

0.01 0.1 1 10
0

200

400

600

Figure 3.5: Uniform distribution of LOS distances. Plot of results for the apocentre of
each Fornax globular cluster in 700 simulations after 10 Gyr. The models shown are SS
(shallow core; black); IC (intermediate core; red); SC (steep cusp; cyan); BF (best fit;
green); LC (Large core; magenta). See section 3.3.1.
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Figure 3.6: Instantaneous apocentres for all simulations by mass model with the GCs
shown in different colours: red; GC1, blue; GC2 green; GC3, magenta; GC4 and cyan;
GC5. The dashed line shows where the initial and later apocentres are equal.
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results in a smaller sample but still large enough for the results to be significant.

The results are broadly similar to those where there is a uniform distribution of LOS

distances. GCs in the cusped models SC and BF tend to fall in rapidly before 2 Gyr.

Model LC with the large core shows the largest values of apocentre after 10 Gyr and

the intermediate model IC show results which lie between the two extremes. The final

distribution of apocentres is very similar to the results for the uniform distribution of LOS

distances. This implies that over the period comparable with a Hubble time the final

locations of the GCs are more sensitive to the density profile of Fornax than the initial

distribution function of the GCs.

3.3.3 Initial GC position at the tidal radius of Fornax

A further variation we have tested is to look at the results if the initial distance is as large

as possible to see if the current location of the Fornax GCs can be explained by a timing

argument. Therefore we looked at the results sampled so that the initial apocentres of the

GCs were comparable with the tidal radius of Fornax. We also applied a filter to the initial

pericentres to make sure that the initial orbits were not too plunging.

We calculated the tidal radius for Fornax based on the method from Read et al. (2006b).

We modelled Fornax as a spherical satellite orbiting around the Milky Way which was rep-

resented by a spherical host galaxy using a Hernquist model (Hernquist, 1990). It solves

equation (7) of Read et al. (2006b) which accounts for the orbit of the satellite about the

host, and the orbit of the stars within the satellite. This latter is controlled by the param-

eter α = [−1, 0, 1] for retrograde, radial and prograde orbits, respectively. We calculated

a tidal radius for Fornax of between 1.8 and 2.8 kpc based on a the range of masses for

Fornax given in table 3.3 using the extremal values for the the orbital data taken from

Lux et al. (2010) and a total (extended) mass for the Milky Way of 1 to 2x1012M�. Fig-

ures 3.9 and 3.10 show the apocentres of the GCs for each of resulting simulations for
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each mass model after 2 Gyr and after 10 Gyr respectively. The orbits were filtered so

that the initial apocentres are greater than 1.75 kpc and the initial pericentres are greater

than 0.5 kpc.

The results show that placing the initial GC orbit far out in the mass distribution does

affect the proportion of results where the apocentre has not migrated to the centre of

Fornax. This effect is particularly pronounced after 2 Gyr (Figures 3.9). At this time and

with these initial conditions only a very small number of the simulations have fallen to the

centre of Fornax. After 10 Gyr however we see the same behaviour as before with GC2,

3, 4 and 5 all showing a high probability that they would be found at the centre of Fornax

when they are orbiting in a density distribution that has a cusped profile. One significant

difference however is that a larger proportion of the simulations result in the GCs being

found at large distances from the centre of Fornax. We have emphasised this by comparing

the results after 10 Gyr for the SS model in Figure 3.11 which shows a comparison of

the results from the uniform LOS distribution with those from our filtered distribution

described above. This effect is particularly marked for GCs 2, 4 and 5 (with GC1 being

largely unchanged in orbital radius). There is however still only a small probability of

GC3 failing to migrate to the centre of Fornax in a cusped mass model.

We experimented with filtering more aggressively to see if we could prevent the GCs

from falling to the centre of Fornax by limiting the initial apocentres and pericentres to

be above minimum values. GC3 is the hardest to stop falling in in the way. For the most

cusped model (BF) an initial pericentre of 1 kpc and an apocentre of 2.25 kpc ensured that

all GCs except GC3 did not fall to the centre of Fornax in 10 Gyr. However to stop GC3

falling in these values needed to be changed to an initial pericentre of 0.75 kpc and an

apocentre of 3.75 kpc or an initial pericentre of 1 kpc and an apocentre of 3.5 kpc. Quite

similar values were found with the shallow slope model (SS).

In summary starting the GCs at a distance comparable with Fornax’s tidal radius re-
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sults in there being a higher probability that GCs 2 to 5 migrate to the centre of Fornax

however there is now is a finite probability that the current locations can be explained by

the GCs starting at the edge or even outside the Fornax system. However we need the GCs

to have pericentres � 1 kpc and apocentres � 3 kpc to stop all the GCs falling in. To have

a ratio of pericentres to apocentres consistent with the cosmological mean for accretion,

we need apocentres ≈ 5 kpc. Apocentres in the range 3 kpc and 5 kpc seem unlikely given

the observed distribution, however. Therefore the idea that the GCs originally orbited at

large distances from the centre of Fornax may be ruled out.

3.3.4 Triaxial mass model

Figures 3.12 and 3.13 show a comparison of the results for models IC and TIC at 2 Gyr

and 10 Gyr respectively. These models are identical (they are isotropic and have the same

density profile) but model IC has spherical symmetry and model TIC is triaxial. Model

TIC was generated using the made to measure method of Dehnen (2009) and has axis

ratios of c/a = 0.5 and c/a = 0.67. It can be seen that the triaxial model TIC has led to

a much reduced level of migration inwards. After 2 Gyr in most of the simulations with

a triaxial halo the GCs have not fallen as far as when they are orbiting in a mass model

with spherical symmetry. After 10 Gyr typically the GCs that do migrate inwards (GCs 3

to 5) have final radii of tens of parsecs and a significant number have orbits at 100 pc and

more. Interestingly the number that do not migrate in is fairly similar. We conclude that

triaxiality has a substantial effect on the effect of dynamical friction on satellites orbiting

in any given matter distribution.
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Figure 3.7: Mass follows light. Plot of results for the apocentre of each Fornax globular
cluster after 2 Gyr. The models shown are SS (shallow core; black); IC (intermediate
core; red); SC (steep cusp; cyan); BF (best fit; green); LC (Large core; magenta). See
section 3.3.2.
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Figure 3.8: Mass follows light. Plot of results for the apocentre of each Fornax globular
cluster after 10 Gyr. The models shown are SS (shallow core; black); IC (intermediate
core; red); SC (steep cusp; cyan); BF (best fit; green); LC (Large core; magenta). See
section 3.3.2.
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Figure 3.9: Starting on an orbit near the tidal radius. Plot of results for the apocentre of
each Fornax GC after 2 Gyr.The models shown are SS (shallow core; black); IC (inter-
mediate core; red); SC (steep cusp; cyan); BF (best fit; green); LC (Large core; magenta).
See section 3.3.3.

111



The mass distribution of the Fornax dSph 3.3. Results

0

100

200

300

0

100

200

300

0

100

200

300

0

100

200

300

0.01 0.1 1 10
0

100

200

300

0.01 0.1 1 10
0

100

200

300

0

100

200

300

0

100

200

300

0

100

200

300

0

100

200

300

0.01 0.1 1 10
0

100

200

300

0.01 0.1 1 10
0

100

200

300

0

100

200

300

0

100

200

300

0

100

200

300

0

100

200

300

0.01 0.1 1 10
0

100

200

300

0.01 0.1 1 10
0

100

200

300

0

100

200

300

0

100

200

300

0

100

200

300

0

100

200

300

0.01 0.1 1 10
0

100

200

300

0.01 0.1 1 10
0

100

200

300

0

100

200

300

0

100

200

300

0

100

200

300

0

100

200

300

0.01 0.1 1 10
0

100

200

300

0.01 0.1 1 10
0

100

200

300

Figure 3.10: Starting on an orbit near the tidal radius. Plot of results for the apocentre
of each Fornax GC after 10 Gyr.The models shown are SS (shallow core; black); IC
(intermediate core; red); SC (steep cusp; cyan); BF (best fit; green); LC (Large core;
magenta). See section 3.3.3.
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Figure 3.11: Starting on an orbit near the tidal radius. Plot of results for the apocentre of
each Fornax globular cluster after 10 Gyr. The models shown is SS (shallow core) filtered
so that the initial apocentre > 1.75 kpc and the initial pericentre > 0.5 kpc (black) and
unfiltered (dashed red). See section 3.3.3.
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Figure 3.12: Uniform LOS distribution. Plot of results for the average final radius of each
Fornax globular cluster in 700 simulations after 2 Gyr for spherical model IC (black) and
triaxial model TIC (red). See section 3.3.4.
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Figure 3.13: Uniform LOS distribution. Plot of results for the average final radius of each
Fornax globular cluster in 700 simulations after 10 Gyr for spherical model IC (black) and
triaxial model TIC (red). See section 3.3.4.
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3.4 Conclusions

The Fornax galaxy is unique among the Milky Way dSphs in having five GCs at finite

projected distances from its centre. These GCs are metal poor and very old comparable

with the oldest GCs in the Milky Way. There is a timing problem with these GCs because

it would be expected that they would fall to the centre of Fornax due to the action of dy-

namical friction and form a nuclear star cluster. No such star cluster is observed. Various

proposals have been made to explain this and we have explored the idea that dynamical

friction fails on the edge of a cored matter distribution which would cause the GCs to stall

at the dark matter core radius thus providing evidence for a cored density distribution

in Fornax. This would have strong implications for the way in which Fornax and other

dSphs formed. Cosmological simulations based on ΛCDM predict that the density distri-

bution of dark matter halos have a central cusp. Evidence for a cored matter distribution

in Fornax would provide further impetus to find an explanation for why the predictions of

ΛCDM are not always born out in practice.

We have extended previous work on what the current location of the GCs can tell us

about Fornax’s mass distribution in several ways. We use five mass models for the under-

lying potential in Fornax, we consider triaxial as well as spherical mass distributions, we

use the latest data for Fornax’s GCs as constraints on their phase space distribution and

we run thousands of N-body models to sample the uncertainties in the GC distribution.

This large grid search of the available parameter space allows us to address whether or

not there are multiple solutions to Fornax’s timing problem.

Our results show pronounced differences in the behaviour of GCs orbiting in the dif-

ferent mass models. However there are some clear trends in behaviour: cusped models

have a high probability of causing the four most massive GCs to migrate to the centre of

Fornax in a Hubble time. The more cored the models become the more likely it is that

GCs 2 to 5 remain at a finite distance from the centre of Fornax. The mass model with a
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small core with radius ≈ 100 pc keeps the GCs’ orbits at tens of parsecs from the centre

of Fornax. However this is not sufficient to explain the current projected distances of the

GCs from its centre.

When the GCs have a uniform distribution of LOS distances the five GCs all show

different behaviour. GC1 has an orbit that does not evolve greatly with time. Its location

at the end of the simulations is very little changed from its initial location independent of

the mass model it is placed in. GC1 tells us very little about the mass structure of Fornax.

GC5’s orbit does evolve and there are significant differences between its orbital behaviour

in the different mass models. The final location of GC5 is bimodal with some instances of

our simulations resulting in the GC falling in towards the centre of the galaxy and in others

we find GC5 near its current location or even further out. Though this is true it would be

difficult to draw conclusions about the mass distribution in Fornax based on its current

location. In 10 Gyr GC5 has a finite probability of being found at its current projected

distance from the centre of Fornax. GC2 and GC4 show significant differences between

the different mass models in terms of their final distances from the centre of Fornax. GC2

and GC4 both show a very small probability of being found outside of 100 pc after 10 Gyr

except for mass model LC with the large core. GC3 shows an even smaller probability

of being found outside of the central regions of Fornax and in the majority of cases the

inward migration has completed after 2 Gyr.

If we consider what happens if the GCs are initially located outside of the tidal radius

of Fornax we find that though a fraction of the GCs fall to the centre of Fornax there is

sufficiently large number that do not so that it seems possible that placing the GCs at this

distance could be an explanation for their current distribution. However after examining

the range of pericentres and apocentres needed to stop all the GCs falling in during 10

Gyr the ratio of apocentres to pericentres required are inconsistent with the cosmological

mean for accretion. We therefore discard this as a possible explanation for the current
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location of the GCs.

The mass model based on the non-parametric model of Walker and Peñarrubia (2011)

shows some very interesting behaviour. Any GC starting outside the core falls in to the

edge of the density core (� 1 kpc). However we also observe that GCs with orbits initially

within the core move out to the edge of the core. The final instantaneous apocentres lie in

the range 0.5 to 1.0 kpc. The orbital stalling may be explicable in terms of the mechanism

described by Read et al. (2006a) (see also Inoue, 2009). However we are unaware of any

general mechanism which would explain the dynamical “buoyancy” seen in our results.

Tremaine and Weinberg (1984) carried out a thorough analytical treatment of dynamical

friction in spherical systems and report that satellites moving slowly through resonance in

a mass distribution with an harmonic core may have the sign of their dynamical friction

reversed. We will carry out further analysis of these results to investigate the cause of this

phenomenon.

Taken individually there is a strong case that the current locations of each GC cannot

be explained if they orbit in a cusped mass distribution. Taken as a group it is even

less likely that the GCs could be formed with the same distribution of initial locations

as Fornax’s stellar component and remain at their current minimum distances. There is

a high probability that the current distribution of GCs could not be sustained except in a

density profile where there is a significant core out to several hundred parsecs.

Given these results it seems unlikely that the GCs could have been formed with a sim-

ilar spatial distribution to the stellar component of the main body of Fornax and survived

at their current projected distances except in a density profile where there is a significant

core out to several hundred parsecs. In particular it is very difficult to explain the current

location of GC3 other than by supposing that it is moving in a matter density distribution

with a flat or very shallow profile out to several hundred parsecs.

The addition of triaxiality to the intermediate mass model IC (to create model TIC)

118



The mass distribution of the Fornax dSph 3.4. Conclusions

results in a slower and less pronounced migration inwards by the GCs. This may be a

further mechanism which can help to provide an explanation for the current location of

the GCs which we will explore further in future work.

Peñarrubia et al. (2009) studied the tidal disruption of GCs in Fornax and showed that

only GC1 (see table 3.1) would be fully disrupted by Fornax’s gravitational potential.

This implies that GC1 is the only cluster that absolutely cannot have fallen to the centre

otherwise we would not observe it at present. It does not sink to the centre of Fornax in

almost all of our models, independently of the orbit distribution of GC1 or the underlying

potential. This confirms that our models are consistent with observations since loosely

bound clusters that pass near the centre would show no remaining trace of their existence

after disruption. If there were more loosely bound clusters that we don’t see now then they

could have fallen to the centre of Fornax and been disrupted which implies a minimum

central density for Fornax. The other clusters almost always sink to the centre unless the

potential is cored or the GCs start very far out and are not on too plunging orbits. There

inward motion would help to form a cored density profile and then they move out again

due to the ”dynamical buoyancy” effect. They would not have been disrupted because

they are more tightly bound implying a maximum central density for Fornax. Thus if

the potential of Fornax is cored then we can naturally understand the survival of the one

loosely bound cluster GC1, and why the others haven’t fallen to the centre and remained

there (because the others did fall to the centre and then came out again).

If Fornax had originally had more GCs , perhaps twice as many, then the ones we

do not see today would have had two possible fates. First they could have fallen in and

been disrupted as described in the previous paragraph. The fact that we do not see a

nuclear star cluster means that none of these potential GCs were tightly bound enough

to survive. As the most massive clusters are most likely to fall in this seems unlikely. A

second possible scenario is that missing GCs were tidally stripped from Fornax by the
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Milky Way’s gravitational potential. This is of course a possibility but our arguments

rests on the fate of the observed GCs and so the existence of tidally stripped GCs does not

invalidate our conclusions.
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4
Can central mass concentrations prevent

the formation of galactic bars?

4.1 Introduction

At least a third of all disc galaxies have strong bars and another third weak bars or

oval distortions (Menéndez-Delmestre et al., 2007; Barazza, 2009; Masters et al., 2010;

Nair and Abraham, 2010). These fractions increase when observing in the near-infrared,

where the effect of dust and young stars is largely suppressed (Eskridge et al. 2000,

Grosbøl et al. 2004). Bars can form spontaneously from an instability of the stellar disc

(Miller et al., 1970; Toomre, 1981), but in reality, it seems more likely that external per-

turbations by interactions and mergers trigger a marginally stable stellar disc to form

a bar (Byrd et al. 1986, Noguchi 1987, Berentzen et al. 2003, 2004, Gauthier et al. 2006,
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Romano-Dı́az et al. 2008). Bars may be considered standing spiral waves (Lynden-Bell and Kalnajs,

1972), but unlike spiral patterns they are long-lived phenomena, i.e. they are natural (non-

linear) modes of rotating stellar discs and do not decay away. Theoretical considerations

based on orbital dynamics imply that bars cannot extend beyond their co-rotation radius

(Contopoulos, 1980; Athanassoula, 1992), and observationally determined bar pattern

speeds (e.g. Kent 1987, Merrifield and Kuijken 1995, Weiner et al. 2001, Corsini et al.

2007, Zánmar Sánchez et al. 2008) suggest that bars extend almost out to their co-rotation

radius, i.e. are rotating as fast as possible given their size, which is also in agreement with

N-body simulations (Sellwood, 1980; Athanassoula, 1996).

Disc galaxies also often harbour central mass concentrations (CMCs) in form of

super-massive black holes, central discs, and dense central star clusters. While super-

massive black holes reach typically at most 0.1% of the disc mass (Magorrian et al. 1998,

Ferrarese and Merritt 2000, Gebhardt et al. 2000, Kormendy and Richstone 1995), the

corresponding CMC may be substantially more massive, since the black hole’s gravi-

tational influence can induce the formation of a steep central stellar cusp (Peebles, 1972;

Young, 1980; Goodman and Binney, 1984; Quinlan et al., 1995; Leeuwin and Athanassoula,

2000). By their non-axisymmetric force field bars affect the gas flow in the inner galaxy

and often promote a gas-inflow (Sakamoto et al., 1999; Sheth et al., 2005), which can fur-

ther add to the CMC, either in form of a nuclear gas disc or by forming stars in the central

� 100 pc (Schinnerer et al., 2006).

The effect of a CMC on an existing galactic bar has been studied using N-body sim-

ulations (Norman et al., 1996; Shen and Sellwood, 2004; Athanassoula et al., 2005) with

the result that a CMC affects the structure and appearance of the bar and, if it reaches sev-

eral percent of the mass of the stellar disc itself, may even effectuate the destruction of the

bar1. Thus, while it is plausible that a growing CMC affects and weakens an established

1 This result from fully self-consistent 3D N-body simulations (Athanassoula et al., 2005) is contra-
dicted by a study of Hozumi and Hernquist (2005), who simulate a razor-thin (2D) disc without a bulge or
dark-matter halo and find a CMC of only 0.5% the disc mass to destroy the bar. However, this finding is at
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galactic bar, its destruction via secular growth of a CMC seems rather unlikely, albeit

this may be possible when (bar-driven) gas-inflow creates a sufficiently massive CMCs

(Berentzen et al., 2007).

In this study, we investigate the effect a pre-existing CMC has on the formation of

a bar. This is motivated by the very real possibility that a CMC has been in place well

before a stellar disc (and hence any possible bar) is established within a galaxy’s inner

few kpc. The CMC could be originating from a gas-rich merger event, which may either

form a dense nucleus via a starburst, or feed the growth of a super-massive black hole.

(Note that contrary to some previous beliefs, a stellar-mass seed black hole may easily

grow to a mass of a few 109 M� by redshift z = 6, see King and Pringle 2006).

As mentioned above, bar formation may either occur spontaneously from gravita-

tional instability, or be triggered by perturbations to the disc. Here, we will concen-

trate on the simpler first scenario and consider two different types of initial galaxy mod-

els. Model ‘MD’ starts with a maximum disc, i.e. the inner rotation curve is dominated

by the contribution from the disc to the total gravitational attraction, while for model

‘MH’ the contribution from the halo to the rotation curve exceeds that from the disc at

all radii, see Fig. 4.1 and 4.2. These models are conceptually similar to those used by

Athanassoula and Misiriotis (2002), Athanassoula (2002, 2003), and Athanassoula et al.

(2005), but have central dark-matter density cusps as predicted for CDM (model MH) or

shallower (model MD), rather than a constant density core.

The dominance of the halo in model MH compared to model MD has two opposite

effects. First, the halo reduces the importance of self-gravity for the disc and hence exten-

uates the linear instability which causes bar formation. (In low-resolution N-body simu-

lations, this effect prevents bar formation altogether, which was used as indirect argument

for the presence of massive dark-matter haloes in a bar-less galaxy, Ostriker and Peebles

also at odds with observational evidence that bars can co-exist with such massive CMCs (Sakamoto et al.,
1999).
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1973). Second, the halo can absorb angular momentum of the bar via resonant interactions

(Athanassoula, 1996, 2002, 2003; Holley-Bockelmann et al., 2005; Ceverino and Klypin,

2007). Since a bar is limited in size by its co-rotation radius, its ability to loose angular

momentum is necessary for it to grow in size and strength. Without a massive dark halo,

the bar can only exchange angular momentum with the outer parts of the stellar disc and

hence remains small. Bars embedded in massive haloes, on the other hand, can grow to

consume the whole stellar disc and grow much stronger (Athanassoula, 2002, 2003).

While a halo extenuates a bar initially but supports it eventually, a CMC only ever

attenuates it, either by weakening an existing bar (as discussed above) or by hindering

a bar from forming. This latter effect can be understood by the CMC moving the inner

Lindblad resonance outwards (for a fixed bar pattern speed) and thus reducing the ability

of the bar to form, since a linear bar-like perturbation can only exist between its inner

Lindblad and co-rotation resonances (Contopoulos, 1980).

In this study, we compare the effects of a pre-existing CMC on the formation of a bar

to the effect of a CMC introduced after formation of a bar in both types of galaxy models.

In the linear regime of weak bar-like perturbations, these two effects are identical, so we

are really looking for non-linear effects. To this end we run fully self-consistent N-body

simulations. The models and numerical details are presented in section 4.2.

4.2 Modelling approach

4.2.1 The galaxy models

As already outlined in the introduction, we use two galaxy models: MD (for ‘massive

disc’) and MH (for ‘massive halo’), following a terminology introduced by Athanassoula and Misiriotis

(2002). Both models consist of an exponential stellar disc with density profile

ρd(R, z) =
Md

4πR2
dzd

exp−
(

R
Rd

)
sech2

(
z
zd

)
, (4.1)
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Figure 4.1: Rotation curves for a galaxy model used as initial conditions in our simula-
tions. This is for the Model MD (“maximum disc”) galaxy model where the disc dom-
inates the rotation curves in the inner region . Both panels show the same curves. The
top one shows the rotation curves in the inner region of our model and the bottom panel
shows these curves on a logarithmic scale at up to five times the radius. The solid line is
the total rotation curve and the contributions from disc and halo are shown as dashed and
dotted curves, respectively. Radii is given in units of the disc scale length and velocities
in units of

√
GMd/Rd with Md the total disc mass.
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Figure 4.2: Rotation curves for a galaxy model used as initial conditions in our simula-
tions. This is for the Model MH (“maximum halo”) galaxy model where the disc dom-
inates the rotation curves in the inner region . Both panels show the same curves. The
top one shows the rotation curves in the inner region of our model and the bottom panel
shows these curves on a logarithmic scale at up to five times the radius. The solid line is
the total rotation curve and the contributions from disc and halo are shown as dashed and
dotted curves, respectively. Radii is given in units of the disc scale length and velocities
in units of

√
GMd/Rd with Md the total disc mass.
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and a dark-matter halo, for which we adopt the density profile

ρ(r) ∝ r−γ0
(
rη + rηs

)−(γ∞−γ0)/η sech(r/rt). (4.2)

The parameter values for both models are given in Table 4.1. For model MH, the param-

eters for the dark-matter halo are those of a truncated Dehnen and McLaughlin (2005)

model, which has a central density cusp with ρ ∝ r−7/9 as r → 0 and gives an excellent fit

to simulated CDM haloes, while model MD has a shallower central cusp with ρ ∝ r−2/9

and turns faster to steeper slopes at large radii (due to a larger η). We smoothly truncate

both models at r ∼ rt = 30Rd. This reduces the number of particles at very large radii but

does hardly affect the models in the range where resonant interaction with a bar may be

important.

The rotation curves of both models, including the separate contributions from disc

and halo, are plotted in Fig. 4.1 and 4.2. It shows that for model MH the halo con-

tribution to υcirc dominates at all radii, while for model MH the halo contribution be-

comes important only at r > 3.5Rd, similar to the situation for the Milky Way today (e.g.

Dehnen and Binney, 1998; McMillan, 2011).

From the mass models, self-consistent dynamical models are constructed following

the method of McMillan and Dehnen (2007), which adapts the halo to the non-axisymmetric

contributions of the disc gravity by adiabatically introducing them during a controlled N-

body simulation. Unlike similar methods, this procedure does not seek to alter the radial

density profile of the dark-matter halo to bring it into equilibrium with the disc but relaxes

the halo in the potential of the disc resulting in a flatter shape. The disc velocity dispersion

at each radius is set such that Toomre’s Q = 1.2.

When generating the initial N-body model for the halo (before the aforementioned

adaption to the disc non-axisymmetry), we sample positions from (4.2) and velocities

from an ergodic distribution function. The resolution in the inner parts is enhanced by
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increasing the sampling probability by a factor

g(ε) ∝ 1 + q rηcirc(ε)

rηcirc(ε) + rηs
(4.3)

with q= 16 the ratio between maximum and minimum particle mass and rcirc(ε) the radius

of the circular orbit with specific energy ε. This sampling is compensated by setting

particle masses μi proportional to g(εi). The particles were given individual gravitational

softening lengths εi = 0.01(μi/μ̄)1/2 such that the maximum softened force exerted by

each particle is a global constant. In equation (4.3) η and rs can be choosen independently

of the parameters of the same name in the mass model (4.2) but we have used the same

values (see table 4.1).

For simulations with a CMC present from the beginning, the halo and disc equilibria

are constructed taking the CMC gravity into account. We model the CMC by a softened

N-body particle (which is allowed to move). This implies that the CMC is assumed to

have spherical density

ρ(r) =
15
8π

MCMC r4
CMC

(r2 + r2
CMC)7/2

(4.4)

with scale length rCMC and mass MCMC obeying

rCMC = 0.1Rd(MCMC/Md). (4.5)

Our unit system is such that G = Md = Rd = 1, which implies

time unit ≈ 13

(
Rd

3.2 kpc

)3/2 (
Md

4x1010 M�

)−1/2

Myr. (4.6)

4.2.2 Technicalities

The N-body simulations were performed using the public N-body code gyrfalcON which

uses the O(N) force solver falcON (Dehnen, 2000, 2002) with minimum opening angle

θmin = 0.5 and employs a scheme with individual adaptive time steps with minimum time-

step of typically 2−10 time units. For some of the simulations shown in Table 4.3 we used
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Figure 4.3: Surface density contours of the disc after 500 time units (top) for models MD
(left panels) and MH (right panels). Rows 2 and 3 show the situation a further 500 time
units later after the growth of a CMC at t = 500. The discs are oriented such that the
maximum elongation occurs along the x-axis.
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Figure 4.4: Surface density contours of the disc after 500 time units (top) for models MD
(left panels) and MH (right panels). Rows 2 and 3 show the situation a further 500 time
units later after the growth of a CMC at t = 500. The discs are oriented such that the
maximum elongation occurs along the x-axis.
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Figure 4.5: Surface density contours of the disc after 500 time units for models MD (left
panels) and MH (right panels) with a CMC present from the start (except for the top row,
which agrees with that of Figs. 4.3 and 4.4). The discs are oriented such that the maximum
elongation occurs along the x-axis.
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Figure 4.6: Surface density contours of the disc after 500 time units for models MD (left
panels) and MH (right panels) with a CMC present from the start (except for the top row,
which agrees with that of Figs. 4.3 and 4.4). The discs are oriented such that the maximum
elongation occurs along the x-axis.
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Model Md Rd zd Mh rs rt γ0 γ∞ η
MD 1 1 0.1 16.8 6 30 2/9 31/9 1
MH 1 1 0.1 25.4 10 30 7/9 31/9 4/9

Table 4.1: Parameters of the two galaxy models used. Md, Rd, and zd are, respectively, the
mass, scale length, and scale height of the stellar disc (equation 4.1). Mh, rs, and rt are,
respectively, the total mass, scale radius, and truncations radius of the dark-matter halo,
while γ0, γ∞ and η parameterise its density-profile (equation 4.2), in particular ρh ∝ r−γ0

as r → 0.

shorter minimum time steps to achieve good energy conservation. The minimum time

steps are shown in Table 4.3. Unless otherwise stated, we modelled the disc with 1 Mio

particles of identical mass and the halo with 4.2 (MD) or 6.35 (MH) Mio particles of

varying mass as outlined above.

The simulations were run for at least 500 time units, corresponding to ∼ 6.5 Gyr when

scaled to the Milky Way, which was typically much longer than the time (∼150 time units)

required for any bar to form. The energy was typically conserved to a few parts in 10000

(control simulations with more accurate time integration and force evaluation obtained

the same results). A single run over 500 time units took about 360 CPU hours (on a

single processor) in the MD case and 550 CPU hours in the MH case. (Some simulations

required shorter time steps than 2−7 and hence more CPU time to complete.)

In order to ensure a careful modelling of the CMC, it was integrated with a time step

(≤ 2−11 time units) and its mutual forces with any other particles were approximated with

a much reduced opening angle (by a factor of 0.7).

We also ran four additional simulations with increased resolution to test for conver-

gences (the bottom four in table 4.2). For these, the number of disc particles was increased

by a factor of four to 4 Mio, and the mass of the halo particles was reduced, but their num-

ber kept the same. In order to preserve the same halo profile in the inner galaxy, we used

a smaller truncation radius of rt = 10Rd.
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name initial MCMC tstart tend Nd Nh

MD00i MD 0 0 500 1 Mio 4.2 Mio
MD01i MD+CMC 0.01 0 500 1 Mio 4.2 Mio
MD02i MD+CMC 0.02 0 500 1 Mio 4.2 Mio
MD05i MD+CMC 0.05 0 500 1 Mio 4.2 Mio
MD10i MD+CMC 0.10 0 500 1 Mio 4.2 Mio
MH00i MH 0 0 500 1 Mio 6.35 Mio
MH01i MH+CMC 0.01 0 500 1 Mio 6.35 Mio
MH02i MH+CMC 0.02 0 500 1 Mio 6.35 Mio
MH05i MH+CMC 0.05 0 500 1 Mio 6.35 Mio
MH10i MH+CMC 0.10 0 500 1 Mio 6.35 Mio
MD02iH MD+CMC 0.02 0 1000 4 Mio 4.2 Mio
MD05iH MD+CMC 0.05 0 1000 4 Mio 4.2 Mio
MH02iH MH+CMC 0.02 0 1000 4 Mio 6.35 Mio
MH05iH MH+CMC 0.05 0 1000 4 Mio 6.35 Mio

Table 4.2: Simulations with CMC present from the start. The last four simulations we run
to test for convergence, but have a smaller halo truncation radius, see last paragraph of
section 4.2.

4.3 Results

4.3.1 Bar Formation with a CMC present from the start

For both of the galaxy model described in section 4.2.1, we run simulations with initial

CMC masses of MCMC = 0, 0.01, 0.02, 0.05 and 0.1, i.e. 0, 1, 2, 5, and 10 per cent

of the disc mass, totalling ten simulations, see also table 4.2. In order to measure the

behaviour of the disc, we perform, at each snapshot, an azimuthal Fourier analysis of the

disc properties in radial annuli. In particular, we use the Fourier amplitude of the m = 2

component to the surface density to gauge the strength of the bar, while the pattern speed

can be deduced from the evolution of the phase.

So that we can compare all our simulations we use the ratio between the amplitudes

of the m = 2 and m = 0 Fourier components of the disc surface density as our estimate of

bar strength thus eliminating any variations in total surface density. We find the maximum

value of this ratio over the whole disc (maximum over all annuli). Figure 4.7 shows the
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Figure 4.7: Time evolution of the ratio between the amplitudes of the m = 2 and m = 0
Fourier components of the disc surface density. See Section 4.3.1 for fuller description.
The top and bottom panels show, respectively, the models MD00i to MD10i (using galaxy
model MD) models MH00i to MH10i (using galaxy model MH), see table 4.2.
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time evolution of this measure for the ten simulations of table 4.2 with typical resolution.

Figures 4.5 and 4.6 show the surface density of the stellar discs at the final time t =

500. The cases without CMC (black curves) may be compared to the simulations of

Athanassoula (2002).

The upper panel of figure 4.7 shows the growth of the m = 2 Fourier component for

the model MD simulations. Several features can be noted.

All simulations form a bar and the bar strength grows readily from the start of the

simulation. The simulation without a CMC forms a bar quickest and it forms the strongest

bar. There is an initial peak between t = 60 and t = 80 which is followed by a deep

minimum between t = 80 and t = 100 and then a second peak after t = 100. The deep

minimum is dues to a m = 1 asymmetry which can be seen in figure 4.11 (panel labelled

t = 100).

The general shape of the growth of the m = 2 Fourier component is similar in all MD

simulations. There is an initial main peak after 60 to 100 time units followed by a number

of significant oscillations until the curve settle down to an approximately constant value

with oscillations about a mean value. The simulation without a CMC shows the biggest

difference from this pattern as it undergoes a second more extended period of secular

growth between t ≈ 260 and t ≈ 440 before declining again and flattening out.

In general the larger the CMC the more slowly the bar forms and the weaker the bar

becomes. However, as can be seen from Figure 4.5 and 4.6 the relationship between

the size of the CMC and the strength of resulting bar is not completely monotonic. For

instance the bar in the simulation with a CMC of mass MCMC = 2% Md forms a stronger

bar than for the MCMC = 1% Md simulation. In addition the bar strength, as measured

by the relative m = 2 Fourier component grows more quickly than the MCMC = 1% Md

simulation. The bars in simulations with CMCs are all weakened compared to the one

without a CMC.
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The lower panel of figure 4.7 shows the growth of the m = 2 Fourier component for

the model MH simulations. As with the model MD simulations we took five models with

increasing CMC masses and evolved them.

The most notable result is clear from Figures 4.5 and 4.6 where it can be seen that for

the three largest masses of the CMC the growth of a bar is completely suppressed. It is

only where the CMC is less than 2% of the disc mass where a bar grows readily.

In the case with no CMC the bar grows from the start but not as rapidly as with the

model MD simulations. Initially the model MH simulations are not prone to the the bar

instability in the way the model MD simulations are due to the suppression of the disc self

gravity by the stronger effect of the DM halo (Athanassoula, 2002). Significant growth of

the bar is delayed until after t = 100.

Once the bar starts to grow there are a number of oscillations in the m = 2 Fourier

component strength and there is an initial local peak of bar strength at about t = 160

(a2/a0 ≈ 0.55). This is followed by a minimum and then a further maximum at t = 200

before a sustained period of secular growth starts until the end of the simulation. These

minima are again due to m = 1 asymmetries caused by a spiral arm asymmetry originating

on the end of the bar (as can be seen in figure 4.14 panel for t = 200).

A significant difference from the MD simulations is that the bar strength continues

to grow after this until t = 500 and the bar is eventually longer and stronger than for

the model MD discs (a2/a0 ≈ 0.65 at t = 500 for the model MH simulations versus

a2/a0 ≈ 0.406 at t = 500 for the model MD simulations).

The simulations with the lowest mass CMC (MCMC = 1% Md) also grows a bar. In this

case the bar shows a similar pattern of growth to the simulation with no CMC but delayed

until t = 155 and the the final value of the m = 2 Fourier component is significantly lower

at the end of the simulation. In all other cases a bar does not form in the period of the

simulation.
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name initial MCMC tstart tgrow tend Nd Nh Tmin

MD01g MD+CMC 0.01 500 50 1000 1 Mio 4.2 Mio 2−12

MD02g MD+CMC 0.02 500 50 1000 1 Mio 4.2 Mio 2−12

MD05g MD+CMC 0.05 500 50 1000 1 Mio 4.2 Mio 2−11

MD10g MD+CMC 0.10 500 50 1000 1 Mio 4.2 Mio 2−10

MH01g MH+CMC 0.01 500 50 1000 1 Mio 6.35 Mio 2−12

MH02g MH+CMC 0.02 500 50 1000 1 Mio 6.35 Mio 2−12

MH05g MH+CMC 0.05 500 50 1000 1 Mio 6.35 Mio 2−11

MH10g MH+CMC 0.10 500 50 1000 1 Mio 6.35 Mio 2−10

Table 4.3: Simulations with CMC present from the start. Note Tmin is the minimum time
step for a simulation.

In summary it can be seen that the presence of a CMC is potentially compatible with

the growth of a bar in a galactic disc. For the model MD simulations a bar will develop in

the presence of a CMC of all masses up to MCMC = 10% Md. The bars in the simulations

with the more massive CMCs have a tendency to be weaker but this is not a monotonic

effect and the bars are all of similar strength. The model MH simulations show a much

lower tolerance to the presence of a CMC and a bar only develops in a simulation with the

lowest mass CMC (MCMC = 1% Md)). There is a strong implication that the suppression

of the growth of a bar by a CMC is a non-linear effect.

4.3.2 Effect of a CMC grown in a disc with an existing bar

Several previous studies have looked at the effect if the introduction of a CMC into

a disc with a pre-existing bar (Norman et al., 1996; Athanassoula and Misiriotis, 2002;

Shen and Sellwood, 2004; Hozumi and Hernquist, 2005; Athanassoula et al., 2005). Gen-

erally these have shown that weaker bars are easier to destroy than stronger ones e.g.

(Athanassoula et al., 2005). In order to compare our work with these studies we ran a

series of simulations looking at the effect of the introduction of a CMC on the bars which

developed in our simulations where no CMC was present.

We did this by taking the output from both the model MD and model MH simulations
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with no CMC when a bar had evolved (t = 500). At this time both simulations have a bar

which is sufficiently evolved for the effect of the introduction of a CMC to be studied. We

then grew a CMC (in the form of an external potential) with the same range of masses used

in the original simulations. The CMC potential was grown adiabatically over a period of

50 time units starting at t = 500. Its mass growth is given in equations 4.7 and 4.8.

M(t) =

(
3
16

x5 − 5
8

x3 − 15
16

x +
1
2

)
MCMC (4.7)

x = 2

(
t − ti
t f − ti

)
− 1 (4.8)

Where ti = 500 and tf = 550. The details are given in Table 4.3.

The upper panel of figure 4.8 shows the growth of the m = 2 Fourier component for

the model MD simulations. Several features can be noted. As can be seen in Figures 4.3

and 4.4 (left hand columns) the growth of a CMC destroys or significantly weakens the bar

in every instance. The MCMC = 1% Md and MCMC = 2% Md simulations have a significant

effect on the strength of the bar. The maximum strength of the bar reduces gradually over

the period of the simulations leaving the bar weakened but not completely destroyed and

bar strength is reduced to about half its initial value. The final surface density for the

simulations with CMCs of mass MCMC = 1% Md and MCMC = 2% Md shows the bar has

been reduced to a mildly oval bulge.

The introduction of the MCMC = 5% Md and MCMC = 10% Md CMCs have an imme-

diate effect on bar strength which rapidly declines. By 60 time units after the introduction

of the CMC the bar has essentially been destroyed in both cases though it takes a fur-

ther 200 time units for the bar to fully dissipate in the simulation with a CMC of mass

MCMC = 5% Md.

The lower panel of figure 4.8 shows the growth of the m = 2 Fourier component for

the model MH simulations. As can be seen in Figures 4.3 and 4.4 (right hand column) the

introduction of a CMC has a similar effect to those seen in the model MD simulations. The
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Figure 4.8: Simulations where a CMC is grown in a disc with a pre-existing bar. Time
evolution of the (maximum over all annuli for) ratio between the amplitudes of the m = 2
and m = 0 Fourier components of the disc surface density. The top and bottom pan-
els show, respectively, the models MD01g to MD10g (using galaxy model MD) models
MH01g to MH10g (using galaxy model MH), see table 4.3.
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initial bar is stronger than for the model MD simulations but the reduction in bar strength

is relatively as great. In all cases the introduction of the CMC reduces the strength of the

bar and in the case of the MCMC = 10% Md that the bar is destroyed.

The results for the introduction of a CMC are broadly in agreement with those found

by Athanassoula et al. (2005). However particularly in the simulation where a CMC of

mass MCMC = 1% Md is introduced the bar is reduced to such an extent that it is virtually

destroyed. Our results indicate that a CMC of significantly lower mass than found in

previous work can destroy a bar.

4.3.3 Comparison of methods of CMC growth

If we compare the results in Section 4.3.1 and 4.3.2 we see that there is a difference in the

effect of a CMC depending on how it is introduced. In model MH simulations a CMC

with a mass of 2% of the disc mass suppresses bar development when present prior to a

bar forming. When a CMC of this mass is grown in a disc containing an evolved bar a

weak bar remains. Thus the CMC has a bigger effect on the development of a bar than

when destroying an evolved bar. For model MD simulations a CMC of 10% of the disc

mass does not stop a bar developing (when present before a bar develops) whereas the

introduction of a CMC of 5% of the disc mass destroys an evolved bar. Thus we see a

difference in the effect of a CMC in our two different types of models (MD and MH).

In the model MD simulations there is a larger effect on a bar when a CMC is intro-

duced to a pre-existing bar than when the bar grows with the CMC present. The CMCs

with masses MCMC = 1% Md and MCMC = 2% Md have the smallest effect on the bar

in both cases. However the relative strength of the bar is lower when the CMC is in-

troduced than when it is present from the start. In the MCMC = 10% Md case and the

MCMC = 5% Md case the bar is destroyed when a CMC is introduced to a disc with an

existing bar but fail to suppress the bar when present before a bar is formed.
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In the model MH simulations a reverse effect can be seen. Again the MCMC = 10% Md

suppresses the bar in both cases but the other cases all show differences. In the case

of the least massive CMC (MCMC = 1% Md), the effect of the presence a CMC prior

to bar formation is very small, and the disc develops a strong bar. However there is

significant weakening of the bar when a CMC is introduced once the bar has formed. In

the MCMC = 2% Md model the presence a CMC suppresses the formation of a bar. When

a CMC of mass MCMC = 2% Md is introduced the bar is significantly weakened but not

destroyed.

Our results imply that the CMC affects bar dynamics through different mechanisms

in the two scenarios. When a CMC is present prior to bar formation, the model MH

simulations appear to be more susceptible to the suppression of the bar by the CMC

compared to the massive disc model. On the other hand when a CMC is introduced after

the formation of a bar the model MD simulations are more susceptible to bar dissolution

compared to the MH model.

4.3.4 Pattern speed CMC present from the start

A bar in a disc represents an non-axisymmetric distortion of the mass distribution in the

disc with an m = 2 Fourier component symmetry. The angular speed Ω with which this

distortion rotates is called the pattern speed. We measured the pattern speed of the bars in

our simulations. The upper panel of figure 4.9 shows the evolution of the pattern speed of

the bars for the model MD simulations discussed in section 4.3.1.

For the simulation without a CMC the pattern speed is quickly established. There is

an initial peak corresponding to the initial peak in the m = 2 Fourier component followed

by a minimum at t = 110 and then a decline during the remainder of the simulation as

the bar strengthens. The simulation where MCMC = 1% Md shows a similar behaviour but

at a higher pattern speed corresponding to its weaker m = 2 Fourier component. Other
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Figure 4.9: The upper panel shows the pattern speed for three typical cases of the MD
simulations in units of radians per time unit. The mass of the CMC is given as a percentage
of the disc mass. The arrows on the time axis mark the peak of the first major maximum
value of the m = 2 Fourier component of the disc’s surface density. The lower panel
shows the pattern speed for the two MH simulations where a bar forms. As above the
arrows on the time axis mark the peak of the first major maximum value of the m = 2
Fourier component of the disc’s surface density.
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simulations show this behaviour (the MCMC = 5% Md case is also shown for comparison).

Previous studies have found that when CMCs are introduced into discs with pre-

existing bars the pattern speed increases as the bar weakens (Norman et al., 1996; Athanassoula et al.,

2005). In addition when larger CMCs have produced weaker bars they have higher pattern

speeds. One feature that can be seen in the MCMC = 0 and MCMC = 1% Md simulations

is that there is a peak in the pattern speed just after the initial peak in the maximum value

of the m = 2 Fourier component of the disc’s surface density. This corresponds to a mini-

mum in the m = 2 Fourier component which occurs just after its initial peak emphasising

the fact that the pattern speed increases as the bar weakens.

The lower panel of figure 4.9 shows the evolution of the bar’s pattern speed for the

model MH discs. For the simulation without a CMC the pattern speed is established by

t = 140 and then declines until the end of the simulation. There is a steady fall throughout

the remainder of the simulations. For the simulation where MCMC = 1% Md, the pattern

speed is established by t = 230 and then falls in a similar manner to the simulation without

a CMC. Its pattern speed is always higher.

4.3.5 Pattern speed CMC is grown in a disc with an existing bar

We will now consider the development of the pattern speed for the simulations where a

CMC is grown in a disc with an evolved bar. The upper panel of figure 4.10 shows the

evolution of the pattern speed of the bar for all model MD simulations. For the simulations

with MCMC = 1% Md and MCMC = 2% Md the pattern speed remains constant over the

period of the simulation. The introduction of a CMC has had little effect on the pattern

speed in these cases. For the simulations with MCMC = 5% Md and MCMC = 10% Md the

pattern speed rises rapidly initially as the bar weakens until the bar is destroyed.

Comparing these results to the ones in sections 4.3.1 and 4.3.2 it can be seen that

generally the pattern speed correlates inversely with the bar strength. The pattern speed
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Figure 4.10: The upper panel shows the pattern speed for the MD simulations when a
CMC was introduced into a disc with an existing bar. The units are radians per time unit.
The mass of the CMC is given as a percentage of the disc mass. The lower panel shows
the same plots for the MH simulations.
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rises as a result of the bar decaying before the bar becomes too weak for us to measure a

pattern speed.

The lower panel of figure 4.10 shows the evolution of the pattern speed for the model

MH simulations. For the simulations with MCMC = 1% Md, MCMC = 2% Md and MCMC =

5% Md the pattern speed rise slightly initially and then remains constant over the period of

the simulation. For the simulations with MCMC = 10% Md the pattern speed rises rapidly

just prior to the bar being destroyed.

4.3.6 Evolution with a CMC vs CMC introduction

Past studies have shown (Norman et al., 1996; Athanassoula et al., 2005) that as a bar

grows in strength its pattern speed falls. Bars grow through the exchange of angular

momentum between particles in the bar forming region of the disc and with resonant

particles in the outer disc and DM halo. The inner disc particles are exchanging angular

momentum which is absorbed by particles in the outer disc and DM halo. The bar grows

in strength as more particles come into resonance with material further out in the outer

disc and DM halo. The bar slows down because the particles at the extremities of the bar

will have a lower angular speed. We have found that when a CMC is introduced there is

an initial increase in pattern speed as the bar weakens but then the pattern speed remains

approximately constant.

One explanation for this effect is the fact the the bar length does not change greatly

even though the strength of the m = 2 Fourier component weakens considerably. When a

bar is growing it gains length through more disc mass coming into resonance with material

in the outer disc and DM halo. This means that the bar slows as it grows in length and

strength. When it is weakened by the introduction of a CMC material is scattered from

the bar by the influence of the CMC, but some material remains in resonance with the

outer disc and halo, maintaining the bar speed at lower levels. Examination of the effect

146



Can CMCs prevent galactic bars? 4.4. Bar Morphology

of the CMC on bar strength shows that the bar is weakened from the inside outwards,

preserving the bar further out and maintaining pattern speed.

4.4 Development of the Size and Shape of Bar

We will now consider some of the key changes in the bar morphology as bars develop

or fail to do so. First we will consider the development of our two models (MD and

MH) with no CMC and then look at some key models which have a CMC to see what

differences the CMC makes.

4.4.1 Development of bars with no CMC

Figures 4.11 and 4.12 show density maps of the disc illustrating its evolution for the model

MD simulation2. The bar forms early in this case and is clearly visible by t = 50, though

it does not have a boxy shape, and there is a large number of flocculent trailing spirals in

the outer disc. The disc is still thin and shows no vertical structure. By t = 100 the bar

has become asymmetric and the height of the disc has increased. There is a strong m = 1

Fourier component asymmetry visible in the spiral arms. At t = 150 the bar has a regular

oval shape though the spiral arms have strong asymmetric features. The vertical height of

the bar has increased further and buckling is clearly visible in the side on view.

Buckling plays an important role in the development and evolution of numerical stel-

lar bars (see section 4.5.1). It is sometimes followed by a second episode of buckling

(Martinez-Valpuesta et al., 2006) which occurs here. At t = 500 the bar is very prominent

and has a softened boxy shape with significant vertical asymmetry. The bar is approxi-

mately 4 scale radii long.

2All of the density maps shown in this chapter were produced using glnemo an interactive visualization
3D program for N-body snapshots. Glnemo copyright Jean-Charles Lambert at The Astronomy Observatory
of Marseilles Provence.

147



Can CMCs prevent galactic bars? 4.4. Bar Morphology

10 RD
  

 
 
 
 
8 RD 
 

  

 
 
 
 
8 RD 
 

Figure 4.11: Model MD without a CMC. Density map for t = 50 (top) and t = 100
(bottom). Each set of density maps consists of face on view with bar side view underneath
and bar end on view at the side.
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Figure 4.12: Model MD without a CMC. Density map for t = 150 (top) and t = 500
(bottom). Each set of density maps consists of face on view with bar side view underneath
and bar end on view at the side.

149



Can CMCs prevent galactic bars? 4.4. Bar Morphology

10 RD
  

 
 
 
 
8 RD 
 

  

 
 
 
 
8 RD 
 

Figure 4.13: Model MH without a CMC. Density map for t = 50 (top) and t = 125
(bottom). Each set of density maps consists of face on view with bar side view underneath
and bar end on view at the side.
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Figure 4.14: Model MH without a CMC. Density map for t = 200 (top) and t = 500
(bottom). Each set of density maps consists of face on view with bar side view underneath
and bar end on view at the side.
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Figures 4.13 and 4.14 show density maps of the disc illustrating its evolution for the

model MH simulation. At t = 50 the bar is not visible, but a large number of flocculent

trailing spirals can be seen. The disc remains thin and has no vertical structure. It is not

until t = 125 that a very short bar begins to form in the centre of the disc (less than 2

disc scale radii long) and spiral arms are prominent. The bar then continues to strengthen

(t = 200). A complex density structure is developing in the disc and the inner spiral arms

have become less distinct. Vertical structure is becoming visible and a peanut shaped

bulge is forming. At t = 500 the bar is now very prominent and has a strong peanut

shape. The length of the bar is approximately 6 scale radii.

In summary, a bar forms much earlier in the model MD simulation (by t = 50) com-

pared to t = 125 for model MH. Its evolution continues for the next 150 time units with

the development of significant asymmetries in both the disc plane and the disc vertical

thickness. It seems likely that this is due to non-linear growth modes which cause reso-

nant density patterns in the disc and lead to the early development of the bar. By contrast

the bar forms much later in the model MH simulation hinting at the suppression of non-

linear growth modes. In addition, the model MH bar develops through secular growth. It

evolves steadily and does not show the asymmetries seen in the model MD simulation or

the asymmetric buckling which leads to the development of a boxy shape of the bar seen

in the MD case at t = 500.

4.4.2 Development of bars with a CMC

Bars formed in all of the model MD simulations where a CMC was present. Let us

consider the simulation with CMC mass 0.02Md (Figure 4.15). The bar forms at t = 100

and is about 4 disc scale radii long. The upper panel of Figure 4.15 shows density maps for

t = 125. There is a mildly peanut shape to the vertical structure. There is also a significant

m = 1 Fourier component asymmetry visible in the spiral arms which is probably the
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Figure 4.15: Model MD with CMC of mass 0.02Md. Density map for t = 125 (top) and
t = 500 (bottom). Each set of density maps consists of face on view with bar side view
underneath and bar end on view at the side.
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reason for the falling strength of the bar at this time. At t = 500 the bar is 5 disc scale

radii long and has no strong boxy or peanut structure. The main differences to the model

MD simulation with no CMC is that the disc is thicker and the bar narrower. Development

of the bar is very similar to the simulation with no CMC but fewer asymmetries develop

in the disc implying that non-linear growth modes are damped. This damping can also

be seen in the relative size of the fluctuations in the relative m = 2 Fourier component

(Figure 4.7).

Bars formed in only one of the MH simulations where a CMC was present, the one

with a CMC of 0.01Md. Bar development is very similar to the simulation with no CMC.

By t = 250 a bar and a peanut are clearly developing. By t = 500 a strong bar has

grown and a strong peanut has developed. The main effect of the CMC is to slow the

development of the bar and reduce its strength.

Bar formation was suppressed in the model MH simulation which had a CMC of

0.02Md. Figure 4.16 shows the surface density maps of the disc at t = 500 (equivalent to

6.5 Gyr for a galaxy with the mass of the Milky Way) and clearly a bar has not developed.

For model MD simulations a CMC slows the development of a bar and weakens its

final size and shape possibly by suppressing the non-linear growth modes. However it

does not suppress bar formation completely even for very large CMC masses (0.1Md).

For the MH simulations with CMC mass 0.01Md the CMC delays the start of bar growth

but once started the bar grows at a similar rate and though it is smaller at t = 500 it has

a strong peanut shape and is still growing. For the other masses bar growth is suppressed

for a much longer period.

4.4.3 Evolution of Bars when a CMC introduced

Figures 4.3 and 4.4 shows the surface density maps when growing a CMC in a disc with

an evolved bar. The density plots are taken 450 time units after the CMC has grown to its
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Figure 4.16: Model MH with CMC of mass 0.02Md. Density map for t = 500. The set of
density maps consists of face on view with bar side view underneath and bar end on view
at the side.
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full mass. If we consider the model MD results (left hand column) for CMC mass 0.02Md

and CMC mass 0.05Md the bar has been destroyed. Introducing a CMC into a model MD

disc with an existing bar has a very significant effect on the bar destroying it even for low

CMC masses. The model MH simulations (right hand column) for CMC mass 0.02Md

and CMC mass 0.05Md show a short weak bar but it has been greatly diminished. In both

MD and MH simulations the growth of a CMC has a significant effect on the strength of

a pre-existing bar.

4.5 Evolution of Disc Parameters

4.5.1 Disc buckling and velocity dispersion

Past studies have shown that numerical stellar bars undergo a dynamical instability called

vertical buckling (Combes et al., 1990; Pfenniger and Friedli, 1991; Raha et al., 1991;

Berentzen et al., 1998; Patsis et al., 2002b). This is an out of plane instability where the

bar bends out of the plane of the disc initially into a banana shape which is asymmetric

perpendicular to the plane of the disc. Following this instability the bar thickens, and

acquires a characteristic boxy peanut shape. Buckling is important in bar formation as it

has a profound effect on bar development. In addition it heats the disc and can destroy

the bar. The origin of boxy/peanut shaped bulges has two possible explanations. One is

the so called fire-hose instability (Toomre, 1966; Raha et al., 1991; Merritt and Sellwood,

1994) and the other is resonance heating (Combes et al., 1990; Pfenniger and Friedli,

1991; Patsis et al., 2002a). The fire-hose instability occurs when bending waves in the

disc become unstable when their wavelength is sufficently short (Binney and Tremaine,

2008). Resonance heating occurs when stars undergoing the instability are in resonance

with bar itself.

Buckling is most easily quantified through the m=1 Fourier component of the disc
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Figure 4.17: Evolution of the vertical buckling amplitude (magnitude of the m = 1
Fourier component of the disc surface density in the rz-plane) (top) and the vertical to
radial dispersion velocity in the disc (bottom) for the massive disc model with no CMC.
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Figure 4.18: Evolution of the vertical buckling amplitude (magnitude of the m = 1
Fourier component of the disc surface density in the rz-plane) (top) and the vertical to
radial dispersion velocity in the disc (bottom) for the model MD disc with a CMC with a
mass of 2% of the mass of the disc.
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surface density in the rz-plane (a1z). For the model MD simulation with no CMC the

evolution of this parameter is shown in figure 4.17. It can be seen that there are two

periods of buckling, one beginning at t ≈ 100 with a peak at t ≈ 140 and one at starting

at t ≈ 220 with a peak at t ≈ 400. The first of these can be seen in the top panel of Figure

4.12 and the second in the bottom panel of Figure 4.12. The second episode initially

grows the strength of the bar which then reduces dramatically after t=440 (see figure 4.7).

Figure 4.17 also shows the evolution of the vertical to radial dispersion velocity in the

disc. The buckling instability is a breaking of the vertical symmetry in the bar. Toomre

(1966) has shown that the coupling between the vertical and radial motion is the main

cause of this instability and the result is that the vertical and radial velocity dispersions

become equal (the fire hose instability). The expected evolution of σ2
z/σ

2
r is that it initially

falls due to the onset of the bar instability as σr grows. It then rises again due to the

coupling between the vertical and radial motion which marks the onset of disc buckling.

The critical value of σ2
z/σ

2
r at which buckling starts has been estimated at various values

from 0.06 to 0.6 (Raha et al., 1991; Sotnikova and Rodionov, 2005; Sellwood, 1996) but

clearly depends on the form and status of the disc. Figure 4.17 shows that this ratio starts

to fall at t ≈ 40 marking the onset of the bar instability. It falls to a value of ≈ 0.5 at

t ≈ 110 where it starts to rise again but stabilises at between 0.55 and 0.6 until t ≈ 380

when it rises again to � 0.75.

Examination of the density profiles of section 4.4.1 reveal two episodes of buckling.

One starting at t ≈ 100 and ending at t ≈ 150 and the second more significant one at

t ≈ 400. This corresponds with the changes in the m=1 Fourier component of the disc

surface density in the rz-plane and the evolution of σ2
z/σ

2
r .

Figure 4.18 shows the evolution of a1z and the evolution of σ2
z/σ

2
r for the MD model

with a CMC of mass 0.02Md. Here the evolution of the a1z is quite different to the MD

model with no CMC. There is no obvious early peak and later growth is more gradual,
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Figure 4.19: Evolution of the vertical buckling amplitude (magnitude of the m = 1
Fourier component of the disc surface density in the rz-plane) (top) and the vertical to
radial dispersion velocity in the disc (bottom) for the MH model with no CMC.

continuing to grow throughout the simulation. The evolution of the σ2
z/σ

2
r ratio is even

more noticeably different to the no CMC model. There is no fall initially though the ratio

rises from t ≈ 70 stabilising at � 0.75.

Figure 4.19 shows the evolution of a1z and σ2
z/σ

2
r for the model MH disc with no

CMC. The m = 1 Fourier component of the disc surface density in the rz-plane shows

secular growth starting at t ≈ 170 and continuing until the end of the simulation. The

σ2
z/σ

2
r ratio is quite different to the evolution of the no CMC model MD. It falls gradually

from ≈ 0.75 until t ≈ 180 and then stabilises before recovering slowly until it reaches

≈ 0.65 at t = 500. This simulation grows a strong boxy peanut (see section 4.4.1). The
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Figure 4.20: Evolution of the vertical buckling amplitude (magnitude of the m = 1
Fourier component of the disc surface density in the rz-plane) (top) and the vertical to
radial dispersion velocity in the disc (bottom) for the model MH disc with a CMC of
mass of 1% of the mass of the disc.
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Figure 4.21: Evolution of the vertical buckling amplitude (magnitude of the m = 1
Fourier component of the disc surface density in the rz-plane) (top) and the vertical to
radial dispersion velocity in the disc (bottom) for the model MH disc with a CMC of
mass of 2% of the mass of the disc.
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start of the growth of the peanut begins at t ≈ 175 which corresponds the the start of the

growth of a1z and the minimum in σ2
z/σ

2
r .

Figure 4.20 shows the evolution of a1z and σ2
z/σ

2
r for the for the model MH disc with

a CMC of mass of 1% of the mass of the disc. The evolution of a1z and the minimum in

σ2
z/σ

2
r shows a similar pattern to the model MH disc with no CMC. The secular growth

starts somewhat later at t ≈ 300. The σ2
z/σ

2
r ratio falls gradually from ≈ 0.75 until

t ≈ 140 and then stabilises before recoveing slowly until it reaches ≈ 0.73 at t = 500.

This simulation grows a less strong boxy peanut (see section 4.4.2).

In both of the above cases the growth of the boxy peanut does not require a strong

buckling phase to initiate it and the growth of the peanut is a secular phenomenon (Villa-Vargas et al.,

2009).

Figure 4.21 shows the evolution of a1z and that of σ2
z/σ

2
r for the for the model MH

disc with a CMC of mass of 2% of the mass of the disc. The evolution of a1z shows a

similar pattern to the previous two MH cases but the secular growth starts at t ≈ 300 as

in the model with a mass of 0.01Md. However the σ2
z/σ

2
r ratio falls from ≈ 0.75 until

t ≈ 150 and then continues to subside never recovering significantly.

4.5.2 Evolution of angular momentum

Figure 4.22 shows the evolution of the z component of the angular momentum of the disc

for two model MD discs in three radial ranges. The inner range is r < 1, the central range

correspond to the region where the bar tends to be strongest and is 1 < r < 3 and the outer

range is outside this region, r > 3. For the model MD disc with no CMC it can be seen

that the angular momentum in the bar region drops rapidly between t = 40 and t = 120

which is the main period of bar formation. This corresponds to the early onset of the bar

instability and corresponds to the establishment of resonances which allow the inner part

of the disc to transfer angular momentum to the outer disc. More than 75% of the angular
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Figure 4.22: Evolution of the z component of the angular momentum of the disc in three
radial bins for model MD discs. The solid lines are the with no CMC and the dashed lines
are the MD model with a CMC of mass 2% of the disc.
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Figure 4.23: Evolution of the z component of the angular momentum of the disc in three
radial bins for model MH discs. The solid lines are with no CMC, the dotted lines are
with with a CMC of mass 1% of the disc and the dashed lines are with a CMC of mass
2% of the disc.
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momentum exchanged by the bar region is absorbed by the outer disc. There is then a

much longer period of secular exchange of angular momentum of the bar region with

the outer disc and to a greater extent the halo (more than 55% of the angular momentum

exchanged by the bar region is absorbed by the halo during this period). The dashed line

in figure 4.22 shows the z component of the angular momentum for the model with a CMC

with 2% of the mass of the disc. The main effect of the CMC is to delay the onset of the

disc instability slightly and to make the step change smaller, both of which contribute to a

weaker bar forming. Over 90% of the initial rapid exchange of momentum from the inner

disc is absorbed by the outer disc but all of the remaining angular momentum exchanged

by the bar region of the disc is absorbed by the halo.

Figure 4.23 shows the evolution of the z component of the angular momentum of the

disc in three radial ranges for two model MH discs. The three ranges are the same as for

the model MD discs described above. For the model MH disc with no CMC it can be

seen that the angular momentum exchange is delayed until t = 100 and then the angular

momentum in the bar region changes much more gradually. The changes start slowly and

then become more rapid by t = 170 which corresponds to the growth of the boxy peanut.

About 55% of the angular momentum exchanged by the bar region is absorbed by the

outer disc during the secular exchange of angular momentum of the bar region with the

outer disc and the halo.

The dotted lines in figure 4.23 shows the z component of the angular momentum for

the model with a CMC with 1% of the mass of the disc. For the CMC with 1% of the

mass of the disc the main effect of the CMC is to delay the onset of the angular momentum

exchange and make the rate of exchange smaller, both of which contribute to a weaker

bar forming.

The dashed lines in figure 4.23 shows the z component of the angular momentum for

the model with a CMC with 2% of the mass of the disc. Here there is still an exchange of
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angular momentum but the rate of exchange is smaller. In both the MCMC = 0 and MCMC =

0.01Md there is a noticeable acceleration in the rate of transfer of angular momentum from

the bar region of the disc a t ≈ 150 in the MCMC = 0 model and at t ≈ 300 for the MCMC =

0.01Md model. No such acceleration is seen in the rate of transfer of angular momentum

for the MCMC = 0.02Md model. It seems likely that this acceleration corresponds to

the rapid growth of orbital resonances and that the presence of the CMC suppresses the

growth of orbital resonances needed to grow the bar.

4.6 Discussion and Conclusions

Model MH discs are more susceptible to the suppression of bar formation than model MD

discs which is the reverse of the effect seen when a CMC is grown in a disc with a pre-

existing bar. Figure 4.24 shows the value to the second Fourier component of the surface

density averaged over the final 50 time units for all our simulations. It seems highly likely

that the mechanism for the suppression of a bar is different from the mechanism for the

destruction of a bar. Athanassoula et al. (2005) found that strong bars are less prone to

dissolution than weak ones. Our simulations show that MD models are more prone to the

bar instability than MH models. In model MD discs the bar develops earlier and grows

more rapidly than those seem in model MH discs. This is clearly illustrated by the step

change in the angular momentum discussed in section 4.5.2. However the exchange of

angular momentum continues for longer and the bar thus grows stronger in model MH

discs due to the greater mass in the dark matter halo to absorb angular momentum.

In the model MD discs the bar forms spontaneously due to the bar instability however

the growth of the bar is limited by its ability to transfer angular momentum to the outer

disc or the dark matter (DM) halo. In these models there is not enough mass in the DM

halo to absorb angular momentum beyond a certain level and so the bar cannot grow

further. This is true for all masses of CMC where the bar forms.
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Figure 4.24: The final value of the second Fourier component of the surface density ( a2
a0

)
averaged over the final 50 time units of our simulations. The upper panel shows the results
when the CMC is present from the beginning and the lower panel shows the results what
a CMC is introduced when a bar has evolved.
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As the model MH discs are already less susceptible to the formation of a bar then

the addition of CMC will dilute the disc self gravity which will increase the damping of

the disc instability. The presence of the CMC acts against the resonant orbit coupling

between the inner disc and the outer disc and dark matter halo.

The growth of the strong peanut shaped bulge in the model MH discs appears to

proceed through a secular and not a dynamical buckling mechanism (Villa-Vargas et al.,

2009) and proceeds without the onset of the buckling instability. Buckling can be seen in

the model MD discs but it does not appear to be caused by the fire hose instability. The

ratio of σ2
z/σ

2
r does not fall to the levels at which the instability is predicted to be triggered

(Raha et al., 1991; Sotnikova and Rodionov, 2005; Sellwood, 1996). This implies that

the evolution of this ratio is an outcome of the buckling and not a cause. As has been

suggested by Athanassoula and Martı́nez-Valpuesta (2008) it seems likely that in this case

the formation of a bar is due to the changes in the orbital structure of the stars in the disc.
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Over the last 30 years great advances have been made in our understanding of cosmology

and the growth of structure in the universe. During that time it has become clear that most

of the matter in the Universe is dark, only detectable through its gravitational influence on

luminous matter. Our standard cosmological model, ΛCDM, makes detailed predictions

on the scale of galaxy clusters and larger (Mpc) scales and is in excellent agreement with

a number of observations (Springel et al., 2006). However ΛCDM does not tell us what

dark matter (DM) is. The nature of this dark matter is one of the biggest problems in fun-

damental physics and cosmology today. Theoretically it is believed that the dark matter is

a non-baryonic Cold Dark Matter (CDM). The predictions of the CDM model have been

explored in great detail using cosmological N-body simulations. All dark matter models

predict the formation of massive self-gravitating structures called halos, and these halos

are important because they are where galaxies form.
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On the scale of galaxies there are many challenges. The CDM model makes a clear

prediction that dark matter haloes should have divergent central densities (cusps), yet

observations of galaxies strongly suggest that haloes in the real Universe have finite cen-

tral densities (cores) (de Blok, 2010, and references therein). Does this tension between

theory and observation signal a fundamental problem for the CDM model, or are there

astrophysical processes that could explain naturally why we see dark matter cores instead

of cusps? One of our objectives has been to provide an answer to this important question

and to investigate some of the key problems of galaxy formation in a rigorous way and

build a deep understanding of the key processes involved.

Baryons play an important role in the formation and early evolution of galaxies but the

predictions of cusped profiles are based on purely dark matter simulations. If baryons are

introduced, they can have a profound effect on halo structure, but it is far from clear what

kind of effect they will have because the physics of galaxy formation is still poorly un-

derstood. Therefore cosmological simulations are not very useful for developing insight

and it is better to use controlled simulations that allow you to study parts of a problem in

detail and to build the physical understanding of how a particular process works.

However baryons interact in much more complex ways than DM. Gas physics is a

multiscale problem with a dynamic range of many orders of magnitude. Including full

baryonic physics is too difficult for the computing power available to us today. We have

not attempted to model the complexities of baryonic physics but instead use dynamical

models of baryonic matter moving in dark-matter halos.

We have found that one key process in the re-shaping of dark-matter haloes by baryons

is the transfer of energy via dynamical friction from baryonic sub-structures to the dark-

matter. The dark matter is heated by the non-adiabatic infall of the baryons. We have

demonstrated that this raises the central velocity dispersion which will tend to drive matter

out. However the arrival of the baryons also raises the gravitational force pulling matter
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in. Which of these two effects wins out depends on the details of such “mergers”. If the

infall is rapid and non-adiabatic then the pressure due to heating wins and the central dark

matter density will fall. If the heating is small, the gravitational pull will dominate and the

density will increase. The latter occurs in the case of adiabatic contraction. Which effect

dominates will depend on the specific situation and this fact probably explains some of the

conflicting results reported in the literature (e.g. Romano-Diaz et al., 2008; Pedrosa et al.,

2009).

A good way to envisage this problem is to look at the effect on the dark-matter coarse-

grained phase-space density which is conserved for adiabatic evolution. However it seems

highly likely that in the early universe the baryonic infall is a violent non-adiabatic process

which reduces the dark-matter phase-space density. If the accreted baryons fall in and then

remain at the centre of the galaxy this may not result in a reduction of the dark-matter

spatial density, because the additional gravitational potential of the newly arrived baryons

increases the available bound velocity-space (phase-space at this position). However we

have demonstrated (see Chapter 2) that if the baryons are driven out of the galaxy by a

galactic wind this will result in a reduction in available phase space which in turn will

result in the dark matter moving out, reducing the central density. Another way to look at

this is that the wind removes the additional gravitational pull from the accreted baryons.

In the phase-space interpretation, the wind reduces the bound velocity space meaning that

the dark matter must expand.

Our model has implications for the formation of dwarf galaxies. Their present day

baryonic mass within the half light radius (of the order of a few percent of the total mass) is

of the order of the mass of DM which needs to be rearranged in order to convert their halos

from cusped to cored. This opens up the scenario that their stellar component could be

built from a number of star clusters that fall to their centres due to the action of dynamical

friction (assuming a plausible star formation efficiency).
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This brings us to the subject of the density profile of dwarf galaxies. There is strong

evidence that Low Surface Brightness (LSB) galaxies have a central core or shallow slope

(e.g. Oh et al., 2008). However, though there is some good evidence that the central

density of dwarf spheroidal galaxies are not cusped, the evidence is not as conclusive

(see Chapter 3). Can observations of the dynamical state of the dwarfs provide evidence

to distinguish whether they have a cored or cusped density profile? Here the situation

with the Fornax dwarf provides some clues. It is unique in having five globular star

clusters which present us with a paradox. Why have they not fallen to the centre of the

galaxy creating a nuclear star cluster? Our approach here is to model Fornax and the

clusters plausibly in agreement with the best observations and see how they develop in

mass models for Fornax with differing density profiles.

Our results show that the timing problem can be solved in three ways:

1 Fornax has a large core such that the GCs stall at its edge. We have shown that a

shell-like distribution for the GCs can be expected in this case independently of the initial

conditions (because of ”dynamical buoyancy”). Furthermore, this can naturally explain

why there is only one low density GC that could have been disrupted in the Fornax core,

and it is located on an orbit which means that it is extremely unlikely to have ever fallen

into the core.

2 The GCs were accreted only very recently. However, this solution seems unlikely

because it is not clear where would they accrete from.

3 The GCs are a long way from the centre of Fornax. This could be consistent with the

GCs having been accreted long ago, leaving them on high-apocentre orbits. However we

have shown that to avoid them falling to the centre over a Hubble time, the GCs require a

pericentre of � 1 kpc and an apocentre of � 2-3kpc (if this solution is to work for cusped

Fornax mass distributions). The former is theoretically odd, while the latter is at strong

tension with the observed distribution of GCs.
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Solutions 2 and 3 are essentially strongly disfavoured. This leaves only the strong

probability that Fornax has a large core such that the GCs stall at its edge. From our work

in Chapter 2 and that of others reported in the literature it seems likely that such a core

can form naturally as a result of baryonic processes. Warm dark matter / self-interacting

dark matter can lead to core formation too, but only if very exotic and unusual versions

of these dark matter models are employed. If Fornax has a core, then this strongly affects

the mapping from the measured velocity dispersion to the maximum velocity of the halo.

This invalidates any results based on abundance matching on these small scales which

have led some to conclude that warm dark matter may provide a better alternative to cold

dark matter in explaining the kinematic properties of the local group (Lovell et al., 2012).

A coherent picture is building where galaxies in the universe form by the gravitational

infall of baryons into cusped dark matter halos. This infall heats the dark matter increasing

the available phase space. As the gas contracts stars form creating stellar winds which are

augmented by winds from supernovae as the most massive stars reach the ends of the lives.

This in turn removes baryons reducing the available phase space which in turn reduces

the real space density and turns the dark matter density into a cored one. This process

may happen many times, each one contributing to the reduction in central density.

One other major process which effects galactic evolution is the growth of the super-

massive black holes (SMBHs) at the centre of galaxies. These objects can grow very

rapidly during the early universe and have a profound effect on the evolution of their

galaxy. The relative rate of growth of SMBHs compared to other formation and secular

processes which go on in galaxies could have observational implications at low red-shift.

We have studied how CMCs affect the development of bars in galaxies. The existence

of a bar is an important diagnostic tool for interpreting the developmental history of a

galaxy. We find that the pre-existence of a large enough CMC in a galaxy could lead to

the suppression of a galactic bar. In addition the relative dominance of dark-matter in a
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disc galaxy affects the likelihood that a bar will be suppressed by a CMC of any given

mass. We find significant differences between the effect a CMC has on a bar that already

exists and that when a CMC has grown prior to a galactic bar developing.

Bars develop in different ways depending on the relative contribution of the DM halo

to the inner galactic rotation curve (where the gas and stars are found). We distinguish

two scenarios for the development of galactic bars, one where baryons dominate the in-

ner rotation curve (model MD) and one where the DM makes an equivalent contribution

(model MH). In the model MD a bar forms quickly and grows by transferring angular

momentum from the inner disc to the outer disc and DM halo. In the model MH the bar

grows more slowly due to the suppression of the disc self gravity by the halo. However

the bar can continue to grow and become stronger than the model MD because the there

is more available matter in the DM halo to absorb angular momentum from the inner disc.

Our findings show that the pre-existence of a CMC can suppress the growth of a bar

more easily in the model MH. This is likely to be due to the further suppression of the

bar instability in the disc by the CMC. Thus the resonances which lead to the transfer of

angular momentum in the disc are suppressed. The model MD on the other hand develops

a bar even with a very massive (10% of the mass of the disc) CMC in place.

We conclude that ΛCDM is a very successful theory but at galactic scales it requires

careful interpretation in terms of baryonic physics. The interactions between baryons and

dark matter play a very significant role in shaping galaxies. Future careful modelling with

careful interpretation can provide useful insights into the nature of galaxy formation and

evolution.
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A
Generating Fornax’s Globular Cluster

Distribution

A.1 Transformation of coordinates

Normally we would consider the velocity dispersion for a system such as Fornax in terms

of its components in spherical polar coordinates. If we assume we have a dynamical

model for Fornax which has a velocity dispersion structure

(
σr, σθ, σφ

)
(A.1)

Here σr, σθ, σphi may all depend on r. We want to convert this to a Cartesian frame

shown in figure A.1 with velocity dispersion components

(
σx, σy, σz

)
(A.2)
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Figure A.1: Cartesian coordinate axes for the globular cluster relative to the centre of
Fornax.

The distribution of velocities in each of the r, θ and φ coordinates will be normally

distributed with a mean value of 0 and standard deviation of σr, σθ, σφ respectively. The

overall distribution f(w) may be expressed as

f (w) ∝ exp (−1/2 (wWw)) (A.3)

where w =
(
vr, vθ, vphi

)
and W is a 3 × 3 matrix given by

W =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1/σ2
r 0 0

0 1/σ2
θ 0

0 0 1/σ2
φ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(A.4)

If we now transform into a Cartesian frame as shown in figure A.1 then v =
(
vx, vy, vz

)
and

f (v) ∝ exp
(
−1/2

(
vR−1WRv

))
(A.5)

where R is the transformation matrix. We are at liberty to chose a frame where φ = 0 then

R =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

sinθ 0 cosθ

cosθ 0 −sinθ

0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(A.6)
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R−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

sinθ cosθ 0

0 0 1

cosθ −sinθ 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(A.7)

and

R−1WR =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

sin2θ/σ2
r + cos2θ/σ2

θ 0 sinθcosθ/σ2
r − sinθcosθ/σ2

θ

0 1/σ2
φ 0

sinθcosθ/σ2
r − sinθcosθ/σ2

θ 0 cos2θ/σ2
r + sin2θ/σ2

θ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(A.8)

We can separate out the dependency on vy due to choosing φ = 0 and the velocity distri-

bution then becomes

f (v) ∝ exp
(
−1/2

(
v′R′−1W′R′v′

)
exp

(
−1/2

(
v2

y/σ
2
φ

)))
(A.9)

with v′ = (vx, vz) and R′,W′ and given by

R′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
sinθ cosθ

cosθ −sinθ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (A.10)

W′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1/σ2

r 0

0 1/σ2
θ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (A.11)

A.1.1 Separation of variables

We now have an expression for the velocity distribution which depends simply on vy and

in a more complex way on vx and vz. We can express the vx and vz dependency of f (v) as

f (v) ∝ exp
(
−1/2

(
v2

xaxx + v2
z azz + 2vxvzaxz

))
(A.12)

The constants axx, azz and axz are derived from the multiplication of the 2 x 2 matrices

R′−1, W′ and R′ and given by the expressions

axx = sin2θ/σ2
r + cos2θ/σ2

θ (A.13)
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azz = cos2θ/σ2
r + sin2θ/σ2

θ (A.14)

axz = sinθcosθ/σ2
r − sinθcosθ/σ2

θ (A.15)

We can equate axx to the normal exponent of the x component of the velocity dispersion

1/σ′x
2 = axx (A.16)

In addition we have an estimate for vz = Vlos and so we can simplify this distribution by

completing the square for the exponent as shown in equation A.17.

v2
xaxx + v2

zazz + 2vxvzaxz = C + (vx − V0)
2/σ′x

2 (A.17)

where

V0 =
[(
σ2

r − σ2
θ

)
sinθcosθ/

(
sin2θσ2

θ + cos2θσ2
r

)]
Vlos (A.18)

We can now express the velocity distribution in a form which has separated the depen-

dence on vy and a new variable v′x which is offset by V0 from vx. The velocity distribution

is then given by

f (v) ∝ exp
(
−1/2

(
v′x

2/σ′x
2
))

exp
(
−1/2

(
v2

y/σ
2
φ

))
(A.19)

where

v′x = vx − V0 (A.20)

The dependence on C which is a function of Vlos has been absorbed into the constant of

proportionality.
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A.1.2 Generation of the velocity distribution

To complete the process for choosing the velocities for the globular clusters we introduce

variables ρ and ψ such that vx and vy depend on them as shown

vy = σφρsinψ vx = σxρcosψ + V0 (A.21)

If we substitute these expressions back into equation A.19 we obtain

f (v)dvxdvy → exp(−ρ2/2)ρdρdψ (A.22)

We define the cumulative probability P(ρ) of selecting a value ρ which is given by the

expression

P(ρ) = 1 − exp (−ρ2/2) (A.23)

ρ itself can then be calculated from the expression

ρ =
√−2 ln (1 − P(ρ)) (A.24)

We can now use P(ρ) and ψ to generate our velocity distribution. If we select these as uni-

formly distributed random numbers they can be used to calculate the normally distributed

velocities vx and vy using equation A.21.

A.2 Velocity structure

As shown in table 3.2 the velocity dispersion of Fornax is approximately constant with ra-

dius. We use a constant value of 10.5kms−1 (Walker et al., 2007) for the one dimensional

velocity dispersion and a value of β of -0.33 (Łokas, 2009) making the stellar velocity

structure mildly tangential. We can then calculate the different components of the spheri-

cal velocity dispersion using the following expressions

β = 1 − σ2
θ/σ

2
r 3σ2

1D = σ
2
Total =⇒ σ2

r = σ
2
1D/ (1 − 2/3β) (A.25)
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and

σ2
θ = σ

2
φ = (1 − β)σ2

r (A.26)

This gives the following values for the spherical components of the velocity dispersion

σr = 9.51kms−1 σθ = 10.96kms−1 σφ = 10.96kms−1 (A.27)
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Schinnerer, E., Böker, T., Emsellem, E., and Lisenfeld, U. (2006). Molecular Gas Dynamics in

NGC 6946: A Bar-driven Nuclear Starburst “Caught in the Act”. ApJ, 649:181–200.

Sellwood, J. A. (1980). Galaxy models with live halos. A&A, 89:296–307.

Sellwood, J. A. (1996). Bar Formation, Evolution and Destruction. In R. Buta, D. A. Crocker,

& B. G. Elmegreen, editor, IAU Colloq. 157: Barred Galaxies, volume 91 of Astronomical

Society of the Pacific Conference Series, pages 259–+.

193



Interactions of Dark and Baryonic Matter in Dwarf Galaxies REFERENCES

Shapley, H. (1938). Two Stellar Systems of a New Kind. Nature, 142:715–716.

Shen, J. and Sellwood, J. A. (2004). The Destruction of Bars by Central Mass Concentrations.

ApJ, 604:614–631.

Sheth, K., Vogel, S. N., Regan, M. W., Thornley, M. D., and Teuben, P. J. (2005). Secular Evolu-

tion via Bar-driven Gas Inflow: Results from BIMA SONG. ApJ, 632:217–226.

Simon, J. D., Bolatto, A. D., Leroy, A., Blitz, L., and Gates, E. L. (2005). High-Resolution

Measurements of the Halos of Four Dark Matter-Dominated Galaxies: Deviations from a

Universal Density Profile. ApJ, 621:757–776.

Smoot, G. F., Bennett, C. L., Kogut, A., Wright, E. L., Aymon, J., Boggess, N. W., Cheng, E. S.,

de Amici, G., Gulkis, S., Hauser, M. G., Hinshaw, G., Jackson, P. D., Janssen, M., Kaita,

E., Kelsall, T., Keegstra, P., Lineweaver, C., Loewenstein, K., Lubin, P., Mather, J., Meyer,

S. S., Moseley, S. H., Murdock, T., Rokke, L., Silverberg, R. F., Tenorio, L., Weiss, R., and

Wilkinson, D. T. (1992). Structure in the COBE differential microwave radiometer first-year

maps. ApJ, 396:L1–L5.

Sotnikova, N. Y. and Rodionov, S. A. (2005). Bending Instability of Stellar Disks: The Stabilizing

Effect of a Compact Bulge. Astronomy Letters, 31:15–29.

Spano, M., Marcelin, M., Amram, P., Carignan, C., Epinat, B., and Hernandez, O. (2008).

GHASP: an Hα kinematic survey of spiral and irregular galaxies - V. Dark matter distribu-

tion in 36 nearby spiral galaxies. MNRAS, 383:297–316.

Springel, V., Frenk, C. S., and White, S. D. M. (2006). The large-scale structure of the Universe.

Nature, 440:1137–1144.

Springel, V., White, S. D. M., Jenkins, A., Frenk, C. S., Yoshida, N., Gao, L., Navarro, J., Thacker,

R., Croton, D., Helly, J., Peacock, J. A., Cole, S., Thomas, P., Couchman, H., Evrard, A.,

Colberg, J., and Pearce, F. (2005). Simulations of the formation, evolution and clustering of

galaxies and quasars. Nature, 435:629–636.

Strigari, L. E., Bullock, J. S., Kaplinghat, M., Kravtsov, A. V., Gnedin, O. Y., Abazajian, K., and

Klypin, A. A. (2006). A Large Dark Matter Core in the Fornax Dwarf Spheroidal Galaxy?

ApJ, 652:306–312.

194



Interactions of Dark and Baryonic Matter in Dwarf Galaxies REFERENCES

Strigari, L. E., Bullock, J. S., Kaplinghat, M., Simon, J. D., Geha, M., Willman, B., and Walker,

M. G. (2008). A common mass scale for satellite galaxies of the Milky Way. Nature,

454:1096–1097.

Taylor, A. N., Dye, S., Broadhurst, T. J., Benitez, N., and van Kampen, E. (1998). Gravitational

Lens Magnification and the Mass of Abell 1689. ApJ, 501:539–+.

Thoul, A. A. and Weinberg, D. H. (1996). Hydrodynamic Simulations of Galaxy Formation. II.

Photoionization and the Formation of Low-Mass Galaxies. ApJ, 465:608.

Tollerud, E. J., Bullock, J. S., Strigari, L. E., and Willman, B. (2008). Hundreds of Milky Way

Satellites? Luminosity Bias in the Satellite Luminosity Function. ApJ, 688:277–289.

Toomre, A. (1966). Notes on the 1966 Summer Study Program at the Woods Hole Oceanogr. Inst.

Geophysical Fluid Dynamics No. 66-46 p 111.

Toomre, A. (1981). What amplifies the spirals. In S. M. Fall & D. Lynden-Bell, editor, Structure

and Evolution of Normal Galaxies, pages 111–136.

Tremaine, S. and Gunn, J. E. (1979). Dynamical role of light neutral leptons in cosmology.

Physical Review Letters, 42:407–410.

Tremaine, S., Henon, M., and Lynden-Bell, D. (1986). H-functions and mixing in violent relax-

ation. MNRAS, 219:285–297.

Tremaine, S. and Weinberg, M. D. (1984). Dynamical friction in spherical systems. MNRAS,

209:729–757.

Tremaine, S. D. (1976). The formation of the nuclei of galaxies. II - The local group. ApJ,

203:345–351.

Tremaine, S. D., Ostriker, J. P., and Spitzer, Jr., L. (1975). The formation of the nuclei of galaxies.

I - M31. ApJ, 196:407–411.

van Albada, T. S., Bahcall, J. N., Begeman, K., and Sancisi, R. (1985). Distribution of dark matter

in the spiral galaxy NGC 3198. ApJ, 295:305–313.

Villa-Vargas, J., Shlosman, I., and Heller, C. (2009). Dark Matter Halos and Evolution of Bars in

Disk Galaxies: Collisionless Models Revisited. ApJ, 707:218–232.

Villaescusa-Navarro, F. and Dalal, N. (2011). Cores and cusps in warm dark matter halos. , 3:24.

195



Interactions of Dark and Baryonic Matter in Dwarf Galaxies REFERENCES

Walker, M. G., Mateo, M., Olszewski, E. W., Gnedin, O. Y., Wang, X., Sen, B., and Woodroofe,

M. (2007). Velocity Dispersion Profiles of Seven Dwarf Spheroidal Galaxies. ApJ, 667:L53–

L56.

Walker, M. G., Mateo, M., Olszewski, E. W., Peñarrubia, J., Wyn Evans, N., and Gilmore, G.
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