
Genetic Algorithms for University

Course Timetabling Problems

by

Sadaf Naseem Jat

A thesis submitted in partial fulfillment for the

degree of Doctor of Philosophy

in the

Department of Computer Science

University of Leicester

May 2012

Declaration of Authorship

The content of this submission was undertaken in the Department of Computer

Science, University of Leicester, and supervised by Dr. Shengxiang Yang during the

period of registration. I hereby declare that the materials of this submission have not

previously been published for a degree or diploma at any other university or institute.

All the materials submitted for assessment are from my own research, except the

reference work in any format by other authors, which are properly acknowledged in

the content.

Part of the research work presented in this submission has been published or has

been submitted for publication in the following papers:

� S. Yang and S. N. Jat. Multi-objective evolutionary algorithms with guided

and local search strategies for the multi-objective university course timetabling

problem. IEEE Transactions on Systems, Man and Cybernetics, Part B: Cy-

bernetics, to be submitted in December 2011. (This paper contains much of

the work that is presented in Chapter 7).

� S. N. Jat and S. Yang. A hybrid genetic algorithm and tabu search approach

for post enrolment course timetabling. Journal of Scheduling, published online

first: 3 November 2010. Springer. (The detail of this work is presented in

Chapter 6).

� S. N. Jat and S. Yang. A guided search non-dominated sorting genetic al-

gorithm for the multi-objective university course timetabling problem. Pro-

ceedings of the 11th European Conference on Evolutionary Computation in

Combinatorial Optimisation (EvoCOP 2011), Lecture Notes in Computer Sci-

ence 6622, pp. 1–13, 2011. Springer. (In this paper, the university course

timetabling problem is represented as a multi-objective optimization problem,

and the work is presented as an initial part of Chapter 7).

� S. Yang and S. N. Jat. Genetic algorithms with guided and local search strate-

gies for university course timetabling. IEEE Transactions on Systems, Man,

and Cybernetics Part C: Applications and Reviews, 41(1): 93–106, January

i

2011. IEEE Press. (This paper contains much of the work that is presented

in Chapter 5).

� S. N. Jat and S. Yang. A guided search genetic algorithm for the univer-

sity course timetabling problem. Proceedings of the 4th Multidisciplinary In-

ternational Scheduling Conference: Theory and Applications (MISTA 2009),

pp. 180-191, 2009. (The work is presented in the first half of Chapter 5).

� S. N. Jat and S. Yang. A memetic algorithm for the university course timetabling

problem. Proceedings of the 20th IEEE International Conference on Tools

with Artificial Intelligence, vol. 1, pp. 427–433, 2008. IEEE Press. (This pa-

per presents the initial work on genetic algorithms with local search for the

university course timetabling problem, and the work is presented in Chapter

4).

ii

Abstract

The university course timetabling problem is a difficult optimisation problem due to

its highly-constrained nature. Finding an optimal, or even a high quality, timetable

is a challenging task, especially when resources (e.g., rooms and time slots) are lim-

ited. In the literature, many approaches have been studied to solve this problem. In

this thesis, we investigate genetic algorithms to solve the problem because they have

been successfully used for a wide range of real-world problems. However, for uni-

versity course timetabling problems, traditional genetic algorithms are not usually

considered as efficient solvers.

In this thesis, we investigate genetic algorithms to acquire good solutions for uni-

versity course timetabling problems. Several ideas are introduced to increase the

general performance of genetic algorithms on these problems. Local search strate-

gies are introduced into the traditional genetic algorithm to enhance its performance

for the university course timetabling problem. This differs from many works in the

literature because it works on time slots of the timetable rather than events directly.

A guided search approach is also introduced into genetic algorithms to produce high

quality individuals into the population. In the guided search technique, the best

parts of selected individuals from the current population are stored in an extra mem-

ory (or data structure) and are re-used to guide the generation of new individuals

for subsequent populations.

In addition to solving university course timetabling problems as a single-objective op-

timisation problem, we also tackle the multi-objective university course timetabling

problem. We integrate the above proposed approaches into multi-objective evo-

lutionary algorithms and propose a framework of multi-objective evolutionary al-

gorithms based on local search and guided search strategies for the multi-objective

university course timetabling problem. This framework is then instantiated into a set

of multi-objective evolutionary algorithms for the multi-objective university course

timetabling problem based on a set of multi-objective evolutionary algorithms that

are typically used for general multi-objective optimisation problems.

Computational results based on a set of well-known university course timetabling

benchmark instances, show the effectiveness of the proposed approaches for both

single- and multi-objective university course timetabling problems.

Acknowledgements

In the name of Almighty God, the Most Gracious, the Most Merciful, I thank to

God, who always bless me and provided me great people to work with them. I thank

them all who made this thesis possible.

First, I would like to express my heartfelt gratitude to my supervisor, Dr Shengxiang

Yang. He provided me invaluable guidance, encouragement and fantastic support

throughout my PhD study. His guidance, help and suggestion made me more confi-

dent to overcome many difficulties during my research. He has surely made a great

impact upon me, which shall be with me throughout the future. Without him, this

thesis would not have been possible. I am very great full of gratitude to him.

I also express my sincere gratitude to Prof. Thomas Erlebach and Dr. Fer-Jan

de Vries for their advice, encouragement, support and assessing my yearly reports

presented to them. I would like to say special thank to Prof. Thomas Erlebach for

his valuable comments on the completion of Chapter 7 of this thesis. Special thanks

to Prof. Rick Thomas for his kindness and support throughout my study by allowing

me to bring my three year old daughter to university with me during my hard time

of study.

I would like to thanks my examiners, Prof. Graham Kendall and Prof. Rajeev Ra-

man, for enduring the work represented to them and for their recommendations to

steer my thesis to an apprehensible one.

It is my pleasure to acknowledge the University of Sindh, Jamshoro, for their spon-

sorship to my PhD study. I would also like to thanks all the members of the Com-

puter Science Department at the University of Leicester. Special thanks to John

Landamore, Gilbert Laycock, and Richard Grant, for their constant technical help

during this study period.

I express special thanks to all my PhD colleagues and friends with whom I have

spent privileged time during my study in Leicester. Thanks to their kindness and

generousness.

Specially, I want to appreciate the support from my family, my parents, my brothers,

my aunties, and my uncles. Thanks for their prayers, support, and encouragement.

iv

Each of them in their own way contributed actively toward my well-being. Thank

you all for being there for me, as always.

The great thanks go to my daughter Eshal, who is the source of my encouragement.

Thanks to her for her prayers, for her patience, for being understandable and caring

during my PhD period, for all which I need in difficult time.

v

Contents

Declaration of Authorship i

Abstract iii

Acknowledgements iv

List of Figures xi

List of Tables xiii

List of Algorithms xv

Abbreviations xvii

Symbols xix

1 Introduction 1

1.1 Background and Motivation . 3

1.2 Aims and Objectives . 7

1.3 Methodology . 8

1.4 Why Are GAs Used in This Study? 10

1.5 Scientific Contributions . 12

1.6 Thesis Outline . 15

2 University Course Timetabling Problems and Solution Approaches 18

2.1 Introduction . 18

2.2 Timetabling . 19

2.2.1 Educational Timetabling Problems 20

2.2.1.1 School Timetabling 21

2.2.1.2 Examination Timetabling 22

2.2.1.3 University Course Timetabling 22

2.3 University Course Timetabling Problems 23

vi

Contents

2.3.1 Constraints . 23

2.3.1.1 Hard Constraints . 23

2.3.1.2 Soft Constraints . 24

2.3.2 Quality of Solutions . 25

2.3.3 Types of UCTPs . 25

2.3.3.1 Post Enrolment Based Course Timetabling 25

2.3.3.2 Curriculum Based Course Timetabling 26

2.3.4 Modelling UCTPs . 26

2.3.5 Why are UCTPs Difficult to Solve? 30

2.4 Approaches for Solving UCTPs . 31

2.4.1 Constraint-Based Methods . 32

2.4.2 Sequential Heuristics . 35

2.4.3 Meta-heuristic Approaches . 36

2.4.3.1 Genetic Algorithms (GAs) 38

2.4.3.2 Ant Colony Optimisation (ACO) 41

2.4.3.3 Tabu Search (TS) 43

2.4.3.4 Simulated Annealing (SA) 46

2.4.3.5 The Great Deluge (GD) 48

2.4.4 Hybrid Meta-heuristics . 49

2.4.5 Hyper-heuristic Approaches 50

2.4.6 Other Approaches . 51

2.4.7 Multi-Objective Approaches 55

2.4.7.1 MOEAs for General MOOPs 56

2.4.7.2 Solving the UCTP as a MOOP 65

2.5 Chapter Summary . 67

3 Benchmark Timetabling Problem Instances 68

3.1 Introduction . 68

3.2 The University Course Timetabling Problem (UCTP) 69

3.2.1 Problem Definition . 69

3.2.2 Problem Formulation . 70

3.2.3 Benchmark Dataset . 73

3.2.3.1 Best Known Results on the UCTP Benchmark In-
stances . 74

3.3 The Post Enrolment Course Timetabling Problem (PECTP) 82

3.3.1 Problem Description . 82

3.3.2 Problem Formulation . 84

3.3.3 Benchmark Dataset . 87

3.3.3.1 Best Known Results on the PECTP Benchmark In-
stances . 87

3.4 The Multi-Objective UCTP (MOUCTP) 92

3.4.1 Basic Concepts of General MOOPs 92

vii

Contents

3.4.2 Problem Definition of the MOUCTP 93

3.4.3 Benchmark Dataset . 94

3.5 Chapter Summary . 95

4 Memetic Algorithms for University Course Timetabling 96

4.1 Introduction . 96

4.2 The Proposed Memetic Algorithm . 98

4.2.1 Local Search (LS) Strategies 100

4.2.1.1 LS Strategy 1 (LS1) 100

4.2.1.2 LS Strategy 2 (LS2) 102

4.2.2 Genetic Operators . 104

4.2.2.1 Selection . 104

4.2.2.2 Crossover . 105

4.2.2.3 Mutation . 105

4.3 Experimental Study . 105

4.3.1 Sensitivity Analysis of the Parameter tp 106

4.3.2 The Effect of LS2 on the MA 107

4.3.3 Comparison with State-of-the-Art Algorithms 109

4.4 Chapter Summary . 112

5 Genetic Algorithms with Guided and Local Search for UCTPs 114

5.1 Introduction . 114

5.2 The Guided Search (GS) Strategy . 115

5.2.1 The MEM Data Structure 116

5.2.2 Generating a Child by the GS Strategy 119

5.3 GAs with GS and LS Strategies for the UCTP 120

5.3.1 The Basic Framework of Investigated GAs 120

5.3.2 The Guided Search Genetic Algorithm (GSGA) 121

5.3.3 Extended Guided Search Genetic Algorithm (EGSGA) 123

5.3.4 GA with Both LS Strategies (GALS) 123

5.4 Experimental Study . 124

5.4.1 The Sensitivity of Key Parameters of GSGA 125

5.4.2 Comparative Experiments . 131

5.4.3 Comparison with Algorithms from the Literature 136

5.5 Chapter Summary . 143

6 Hybrid Approaches for Post-Enrolment Course Timetabling 145

6.1 Introduction . 145

6.2 The Proposed Hybrid Approach for the PECTP 146

6.2.1 The Enhanced GSGA – Phase I of HGATS 148

6.2.1.1 Initialisation of the Population 150

6.2.1.2 The MEM Data Structure 151

viii

Contents

6.2.1.3 Generating a Child by the GS Strategy 153

6.2.1.4 Crossover . 154

6.2.1.5 Mutation . 155

6.2.1.6 Local Search Strategies 155

6.2.2 The Tabu Search Heuristics – Phase II of HGATS 160

6.3 Experimental Study . 163

6.3.1 Sensitivity Analysis of Key Parameters of HGATS 164

6.3.2 Comparison with Relevant Algorithms 168

6.3.3 Comparison with Algorithms from the Literature 174

6.4 Chapter Summary . 177

7 Multi-Objective Approaches to University Course Timetabling 179

7.1 Introduction . 179

7.2 The Framework of MOEAs for the MOUCTP 180

7.2.1 Basic Structure . 182

7.2.2 The LS Strategies . 183

7.2.3 The GS Strategy . 186

7.2.3.1 Data Structures MEMi (i = 1, 2, 3) 186

7.2.3.2 Generating a Child by the GS Strategy 188

7.2.4 Genetic Operators . 189

7.2.4.1 Objective Functions and Constraints Handling 189

7.2.4.2 Selection Mechanism 190

7.2.4.3 Crossover . 190

7.2.4.4 Mutation . 190

7.3 Instantiated MOEAs for the MOUCTP 191

7.3.1 Guided Search NSGA-II (GSNSGA) 192

7.3.2 Guided Search PAES (GSPAES) 194

7.3.3 ε-Guided Search MOEA (ε-GSMOEA) 197

7.3.4 Guided Search SPEA-II (GSSPEA) 199

7.4 Experimental Study . 202

7.4.1 Parameter Setting . 203

7.4.2 Performance Measures . 204

7.4.3 The Effect of Different Components of Proposed Algorithms . 206

7.4.3.1 Key Parameters of the GS Strategy 209

7.4.3.2 Effect of the GS and LS Strategies 212

7.4.3.3 Performance of Investigated MOEAs 213

7.4.4 Comparison with Other Algorithms 218

7.5 Chapter Summary . 224

8 Conclusions and Future Work 227

8.1 Technical Contributions . 227

8.2 Conclusions . 234

ix

Contents

8.3 Future Work . 237

A The t-Test Results 240

Bibliography 253

x

List of Figures

2.1 The graph colouring model: (a) an undirected graph, and (b) a simple
timetabling problem represented by the graph colouring model. 27

4.1 Comparing the performance of the MA with different tp values on the
problem instances: (a) S1 and (b) M3. 107

5.1 Illustration of the data structure MEM 117

5.2 Comparison on the effect of parameters on the performance of GSGA
on different problem instances: (a) M1 with β = 0.3, γ = 0.8 and
τ = 20, (b) S2 with α = 0.2, γ = 0.8 and τ = 20, (c) S5 with α = 0.2,
β = 0.3 and τ = 20, and (d) S4 with α = 0.2, β = 0.3 and γ = 0.8. . . 128

5.3 Comparison of EGSGA with other algorithms regarding the average
performance on (a) small instances and (b) medium instances. 131

5.4 Dynamic performance of algorithms on different problem instances:
(a) S1, (b) S3, (c) M5, and (d) L. 134

6.1 Comparison on the effect of parameters on the performance of HGATS
on different problem instances: (a) 2007-21 with β = 0.3, γ = 0.8 and
τ = 20, (b) 2007-17 with α = 0.2, γ = 0.8 and τ = 20, (c) 2007-11
with α = 0.2, β = 0.3 and τ = 20, and (d) 2007-03 with α = 0.2,
β = 0.3 and γ = 0.8. 165

6.2 Dynamic performance of algorithms on PECTP 2007-01 to 2007-15. . 171

6.3 Dynamic performance of algorithms on PECTP 2007-16 to 2007-24. . 172

7.1 Dynamic performance of algorithms on different problem instances. . 208

7.2 Comparison of NSGA-II, NSGA-LS, and GSNSGA regarding the achieved
objective values on problem instances S1, M1, and L. 213

7.3 Comparison of algorithms regarding obtained non-dominated solu-
tions on the MOUCTP instance S1. 216

7.4 Comparison of algorithms regarding obtained non-dominated solu-
tions on the MOUCTP instance S1. 217

7.5 Comparison of algorithms regarding obtained non-dominated solu-
tions on the MOUCTP instance M2. 218

7.6 Comparison of algorithms regarding obtained non-dominated solu-
tions on the MOUCTP instance M2. 219

xi

List of Figures

7.7 Comparison of algorithms regarding obtained non-dominated solu-
tions on the MOUCTP instance M5. 220

7.8 Comparison of algorithms regarding obtained non-dominated solu-
tions on the MOUCTP instance M5. 221

xii

List of Tables

3.1 Features of UCTP instances [196] . 74

3.2 Features of the ITC-2007 PECTP instances 88

4.1 The t-test results of comparing MA against EA 108

4.2 Comparison of MA and EA on different problem instances 108

4.3 Comparison of the proposed MA with state-of-the-art approaches on
small and medium problem instances 110

5.1 Parameter settings in GSGA . 126

5.2 Average best value of 50 runs of GSGA with different parameter set-
tings on the test problem instances 127

5.3 Comparison of algorithms on different problem instances 132

5.4 The t-test values of comparing algorithms on different problem instances135

5.5 Comparison of algorithms on different problem instances 140

5.6 Comparison of algorithms on ITC-2002 problem instances 142

6.1 Parameter settings in HGATS . 164

6.2 Comparison of algorithms on different problem instances 169

6.3 The t-test values of comparing algorithms on different ITC-2007 PECTP
instances . 173

6.4 Percentage of feasible solutions achieved by HGATS after Phase I and
Phase II over 50 runs on each ITC-2007 PECTP instance 173

6.5 Comparison of algorithms from the literature on different ITC-2007
PECTP instances . 176

7.1 Feasibility ratio achieved by algorithms 206

7.2 Performance of algorithms on different problem instances 207

7.3 Parameter settings in GSGA . 210

7.4 Average best value of 10 runs of GSSPEA with different parameter
settings on the test problem instances S1, M1, and L 211

7.5 Hypervolume of different MOEAs on the MOUCTP instances 215

7.6 D matrics of comparing MOEAs on the MOUCTP instances 215

7.7 Statistical comparison of algorithms 222

7.8 Comparison of algorithms on problem instances 223

xiii

List of Tables

A.1 The performance data of 50 runs of the Evolutionary Algorithm (EA)
for the t-test results shown in Table 4.1 on different problem instances 241

A.2 The performance data of 50 runs of the Memetic Algorithm (MA) for
the t-test results shown in Table 4.1 on different problem instances . . 242

A.3 The performance data of 50 runs of the Tabu Search (TS) for the
t-test results shown in Table 5.4 on different problem instances 243

A.4 The performance data of 50 runs of the Steady-State Memetic Algo-
rithm (SSMA) for the t-test results shown in Table 5.4 on different
problem instances . 244

A.5 The performance data of 50 runs of the Guided Search Genetic Algo-
rithm (GSGA) for the t-test results shown in Table 5.4 on different
problem instances . 245

A.6 The performance data of 50 runs of the Extended Guided Search
Genetic Algorithm (EGSGA) for the t-test results shown in Table 5.4
on different problem instances . 246

A.7 The Df values of 50 runs of the TS for the t-test results shown in
Table 6.3 on different problem instances (2007-1 – 2007-12) 247

A.8 The Df values of 50 runs of the TS for the t-test results shown in
Table 6.3 on different problem instances (2007-13 – 2007-24) 248

A.9 The Df values of 50 runs of the GALS for the t-test results shown in
Table 6.3 on different problem instances (2007-1 – 2007-12) 249

A.10 The Df values of 50 runs of the GALS for the t-test results shown in
Table 6.3 on different problem instances (2007-13 – 2007-24) 250

A.11 The Df values of 50 runs of the HGATS for the t-test results shown
in Table 6.3 on different problem instances (2007-1 – 2007-12) 251

A.12 The Df values of 50 runs of the HGATS for the t-test results shown
in Table 6.3 on different problem instances (2007-13 – 2007-24) 252

xiv

List of Algorithms

1 The Conventional Genetic Algorithm 39

2 Elitist Non-dominated Sorting Genetic Algorithm (NSGA-II) 58

3 Pareto Archived Evolutionary Strategy (PAES) 59

4 Improved Strength Pareto Evolutionary Algorithm (SPEA-II) 61

5 ε-Multi-Objective Evolutionary Algorithm (ε-MOEA) 63

6 Steady State Genetic Algorithm (SSGA) 97

7 The Proposed Memetic Algorithm (MA) 98

8 Local Search Strategy 1 (LS1) . 101

9 Local Search Strategy 2 (LS2) . 103

10 Crossover() . 104

11 ConstructMEM() . 118

12 GuidedSearch() . 119

13 Steady State Memetic Algorithm (SSMA) 120

14 Guided Search Genetic Algorithm (GSGA) 122

15 Proposed Hybrid Approach – HGATS 148

16 InitializeIndividual(i) . 150

17 ConstructMEM2() . 151

18 GuidedSearch2() . 153

19 BiasedCrossover() . 154

20 Local Search Strategy 3 (LS3) . 157

21 Local Search Strategy 4 (LS4) . 159

22 TabuHeuristics() – Phase II of HGATS 161

23 Local Search Strategy 5 (LS5) . 184

24 ConstructMEM3(P) – Constructing data structures 187

25 GuidedSearch3() – Generating a child by GS 188

26 Guided Search NSGA-II (GSNSGA) 191

xv

List of Algorithms

27 Guided Search PAES (GSPAES) . 195

28 ε-Guided Search MOEA (ε-GSMOEA) 196

29 Guided Search SPEA-II (GSSPEA) 199

xvi

Abbreviations

EA Evolutionary Algorithm

EGSGA Extended Guided Search Genetic Algorithm

ε-GSMOEA ε-Guided Search Multi-Objective Evolutionary Algorithms

ε-MOEA ε-Multi-Objective Evolutionary Algorithms

GA Genetic Algorithm

GS Guided Search

GSGA Guided Search Genetic Algorithm

GSNSGA Guided Search Non-dominated Sorting Genetic Algorithm

GSPAES Guided Search Pareto Archived Evolutionary Strategy

GSSPEA Guided Search Strength Pareto Evolutionary Algorithm

HGATS Hybrid Genetic Algorithm Tabu Search Approach

ITC-2002 the 2002 International Timetabling Competition

ITC-2007 the 2007 International Timetabling Competition

LS Local Search

MA Memetic Algorithm

MOEA Multi-Objective Evolutionary Algorithms

MOOP Multi-Objective Optimization Problem

MOUCTP Multi-Objective University Course Timetabling Problem

NSGA-II Elitist Non-dominated Sorting Genetic Algorithm

PAES Pareto Archived Evolutionary Strategy

PECTP Post Enrollment Course Timetabling Problem

SPEA-II Improved Strength Pareto Evolutionary Algorithm

xvii

Abbreviations

SSGA Steady State Genetic Algorithm

SSMA Steady State Memetic Algorithm

TS Tabu Search

UCTP University Course Timetabling Problem

xviii

Symbols

α percentage of best individuals selected from the current population to

construct the MEM data structure

β percentage of the total number of events that are used to create an offspring

through guided search

ε minimum allowable tolerance used in ε-MOEA and ε-GSMOEA

γ probability that indicates whether an offspring is created through the guided

search strategy or crossover

λ number of offspring created in each generation in ε-MOEA and ε-GSMOEA

m number of objectives in an MOOP (m = 3 for the MOUCTP in this thesis)

MEM MEMory or data structure used for the guided search strategy

N population size

Pc crossover probability

Pm mutation probability

smax local search step size (maximum number of steps per local search operation)

tmax maximum allowable time for an algorithm to run once on a problem

τ frequency of updating the MEM data structure in the guided search strategy

xix

Dedicated to my family. . .

xx

Chapter 1

Introduction

Timetabling is a common scheduling problem, which can be described as the allo-

cation of resources for tasks under predefined constraints so that it maximizes the

possibility of allocation or minimizes the violation of constraints [200]. Timetables

are usually necessary to organise tasks and resources in different areas of life, such

as education, transportation, industries, hospital, and entertainment. This organi-

sation of tasks becomes very challenging when resources (such as time, people, and

space) are limited, which usually occurs in our daily life. Timetabling problems are

often made complicated by the details of a particular timetabling task. In addition,

it is a problem that people of different fields have to face on a fairly regular basis.

For example, university timetables often have to be scheduled at the beginning of

the semester, and transport timetables have to be modified according to the addition

of new bus stops, etc.

1

Chapter 1. Introduction

Effective timetables greatly affect different real-world problems, and are essential to

the growth of work in many fields. Therefore, it is essential constructing such a good

or optimal timetable. However, to construct such a good or optimal timetables is a

very difficult task due to the highly constrained nature of the problem. A general

algorithm approach to one problem may turn out to be not suitable for another

problem, because certain special constraints are required in a particular instance of

that problem.

Typical timetabling are include educational timetabling [13, 208], sports timetabling

[133], transport timetabling [28] and employee timetabling [43], etc. Educational

timetabling can be divided into school timetabling, exam timetabling, and course

timetabling. In a university context, the course timetabling problem (UCTP) is

complex since events (e.g., subjects and courses) have to be allocated into a number

of time slots and rooms while satisfying various constraints. It is very difficult

to find a general and effective solution for the UCTP due to the diversity of the

problem, the variance of constraints, and the particular requirements that change

from university to university according to their individual characteristics. There

is no known deterministic polynomial time algorithm for the UCTP since it is an

NP-hard combinatorial optimization problem [96].

2

Chapter 1. Introduction

1.1 Background and Motivation

The application of computers to timetabling problems has a long and active history,

which dates back almost to the time computers were first built [191, 213]. Con-

ventional computer based timetabling methods are closely related to timetabling by

hand. They concern themselves more with simply finding and maintaining the lists

of periods to tables [191]. However, these methods are insufficient to satisfy all the

required constraints. The solution to such problems using knowledge based or oper-

ation research based approaches is also hard to develop. These approaches are often

slow and can be inflexible because they are based on specific assumptions about the

nature of the problem [24, 35, 191]. The first generation of computer timetabling

programmes developed in the early 1960s were largely an attempt to reduce the as-

sociated administration work [120]. Thereafter, programs were soon presented with

the aim of fitting classes and teachers to periods. In 1964, Broder [41] and Cole [72]

both presented heuristic approaches to timetabling. In 1967, Welsh and Powell [206]

pointed out the similarity between the timetabling problem and colouring the nodes

of a graph. Colouring the graph amounts to placing courses in appropriate periods.

The algorithm they presented was similar to Broder’s algorithm [41].

Researchers have proposed various timetabling approaches by using constraint-based

methods [10], meta-heuristic methods (e.g., tabu search (TS) [185], simulated an-

nealing (SA) [95], genetic algorithms (GAs) [17], ant colony optimization (ACO)

[152, 196], particle swarm optimisation (PSO) [131], great deluge [195]), variable

3

Chapter 1. Introduction

neighbourhood search (VNS) [13], hybrid meta-heuristics, and hyper-heuristic [47]

approaches, etc. In the last decade, numerous research papers have been published.

The earliest algorithms are based on graph colouring heuristics. These algorithms

are very efficient when solving small instances of timetabling problems, but have

not proved to be very efficient for large problem instances [109, 135, 208]. Later,

meta-heuristic algorithms, such as GAs, SA, and TS, etc., were introduced to solve

timetabling problems [43].

Generally speaking, there are two types of meta-heuristic algorithms [22]: local area

based algorithms and population-based algorithms. Each type has some advantages

and disadvantages. A local area based algorithm starts from an initial state/solution

and tries to find a better solution in the space of candidate solutions until a stopping

criterion is met [105]. Local area based algorithms differ from each other in the

method that is used to find a neighbourhood solution in the search space and the

criterion to stop the search. Local area based algorithms include SA [20, 204], very

large neighbourhood search [13, 14], TS [21, 150], and many more. Usually, local

area based algorithms focus more on exploitation (i.e., using collected information

to direct further search to the promising search area) rather than exploration (i.e.,

discovery of new regions in the search space) [22, 71]. They usually work in a

non-systematic way that may lead to finding a solution in one direction without

performing a wider scan of the search space [22, 105]. Population-based algorithms

start with a set of solutions and try to refine them in the hope of obtaining optimal

solution(s) in the whole search space and, hence, are global area based algorithms.

4

Chapter 1. Introduction

Population-based algorithms that are commonly used to tackle timetabling problems

include evolutionary algorithms (EAs) [73], ACO algorithms [196], and artificial

immune systems (AISs) [151], etc.

In recent years, GAs have been used to solve the UCTP. GAs were first used for

timetabling in 1990 [73]. Since then, there have been a number of researchers who

have investigated and applied GAs for the UCTP [69, 205]. Generally speaking,

when a simple GA is employed for timetabling problems, it may generate invalid

timetables that have duplicate and/or missing events. Researchers have enhanced

the performance of traditional GAs by using modified genetic operators, heuristics

operators, and local search (LS) strategies. For example, Erben and Keppler [97] pro-

posed a GA for constructing weekly course timetables. They used a problem-specific

chromosome representation and knowledge-augmented genetic operators. These op-

erators can avoid building invalid timetables. Their approach was tested on real

data. Sigl et al. [194] used 3D cubes, corresponding to room, day, and time slot,

to model the timetable. They enhanced the performance of GAs by using modified

genetic operators and tested their algorithm on small and large problem instances.

In general, the quality of a solution produced by population-based algorithms, in-

cluding GAs, may not be better than that produced by local area based algorithms.

There are many reasons behind this. One major reason is due to the premature

convergence problem. In that situation, the solving procedure of population-based

algorithms is trapped in the sub-optimal state and is unable to generate offspring

that are superior to their parents. The main reason for this premature convergence

5

Chapter 1. Introduction

problem in population-based algorithms is due to the high selection pressure used

within them. Another reason is that population-based algorithms are usually more

concerned with exploration than exploitation [22]. Population-based algorithms per-

form search in the whole search space without strictly focusing on the good part of

an individual within a population, which may lead to the loss of useful information

in a good individual [11]. Population-based algorithms have another drawback of re-

quiring more time [71]. However, GAs have several advantages when compared with

other optimisation techniques [176]. For example, GAs perform a multi-directional

search using a set of candidate solutions [115].

In order to address the problems faced by both local area and global area based

algorithms for timetabling problems, various combinations of local area and global

area based algorithms have been reported in the literature with some promising re-

sults [18, 44, 128, 181, 200]. Basically, GAs do not require any domain knowledge

about the problems for which they are deployed to solve. Recently, however, signif-

icant interest has been shown in the use of genetic algorithms with domain-specific

information because of their flexibility and robustness [37].

So far, most research has treated the UCTP as a single-objective optimization prob-

lem. However, inherently, the UCTP has different objectives or constraints. It is

very difficult to satisfy all the constraints that vary from university to university.

Hence, this complexity requires that the UCTP should also be treated as a multi-

objective optimization problem (MOOP), i.e., the multi-objective university course

timetabling problem (MOUCTP) needs to be studied.

6

Chapter 1. Introduction

In this thesis, we aim to combine the good properties of local and global area based

algorithms to solve the UCTP of both single-objective and multi-objective versions.

We try to make a balance between the exploration ability (global improvement) of

GAs and the exploitation ability (local improvement) of LS strategies. In addition,

we will introduce a guided search (GS) strategy to enhance the performance of GAs

for the UCTP.

1.2 Aims and Objectives

This thesis investigates GAs to solve the UCTP. The overall aim of the thesis is to

develop and apply GAs to produce solutions of good quality for the single-objective

UCTP as well as the MOUCTP. In order to accomplish this primary aim, several

objectives are outlined as follows:

• To learn the concepts of the timetabling problem in general and the UCTP in

particular, to understand the challenges behind these problems, and to review

relevant approaches that researchers have developed to solve these problems.

• To carry out an experimental analysis of the effectiveness and efficiency of tra-

ditional GAs and memetic algorithms (i.e., GAs enhanced with LS strategies)

for solving the UCTP.

• To investigate LS strategies to enhance the exploitation ability of GAs for the

UCTP and develop memetic algorithms for the UCTP.

7

Chapter 1. Introduction

• To develop a GS strategy to increase the quality of children in GAs and develop

GAs with the GS strategy for the UCTP.

• To develop hybrid GAs that integrate the above GS and LS strategies and

other heuristics to solve the UCTP.

• To model the UCTP as a MOOP and design multi-objective EAs (MOEAs)

to solve the MOUCTP.

• To implement the above developed GAs and relevant algorithms for the UCTP

and MOUCTP, respectively, using the GNU C++ programming language,

and to carry out a systematic experimental study based on the implemented

algorithms.

• To present a solution methodology that is generic, robust and able to produce

good solutions, when compared against the state of the art.

1.3 Methodology

Timetabling in general and university course timetabling in particular are challeng-

ing problems due to their highly-constrained nature. In this thesis, we aim to develop

efficient approaches, especially efficient GAs, to solve the UCTP. To improve the

performance of traditional GAs for solving the UCTP, several different approaches

are proposed in this thesis to avoid some disadvantages of GAs and enhance their

searching power, e.g., applying LS strategies to enhance GA’s exploitation capacity,

8

Chapter 1. Introduction

developing a GS strategy to speed up GA’s ability to locate good solutions and

balance its exploration and exploitation capacities, and introducing multi-objective

approaches to address the UCTP as an MOOP to reflect the nature of multiple

objectives in real-world UCTPs, respectively.

In order to develop efficient GAs to tackle a complicated problem such as the UCTP,

it is quite natural for us to follow a spiral procedure, starting from the basic case and

eventually making progress towards complicated cases. So, we will start the research

from studying the performance of traditional GAs for the simple benchmark UCTP.

Then, we will develop and add strategies, e.g., LS and GS strategies, to enhance

the performance of traditional GAs for the standard UCTP and a more challenging

specialised UCTP, the post enrolment course timetabling problem (PECTP). With

LS strategy, we try to enhance GA’s exploitation capacity and with a GS strategy

we try to speed up GA’s ability to locate good solutions and balance its exploration

and exploitation capacities. Finally, we will address the UCTP as an MOOP and

utilise the above developed LS and GS strategies to enhance the performance of

MOEAs that are used for general MOOPs to solve the MOUCTP, which is a more

real-world oriented UCTP.

It is very hard to give a formal analysis of the performance of GAs (e.g., the conver-

gence property and the ability to achieve optimality within a reasonable amount of

time) for the UCTP due to the stochastic features in GAs and the complexity of the

UCTP. However, even if we cannot give a formal analysis of GAs for the UCTP, we

can experimentally analyse some search behaviour of GAs for solving the UCTP.

9

Chapter 1. Introduction

An important method of testing the performance of an algorithm for the UCTP is to

carry out experimental studies based on benchmark problem instances. Normally,

to test an algorithm’s performance, we are required to choose benchmarks with

different properties. In this thesis, all proposed GAs are tested on a certain number

of state-of-the-art UCTP benchmarks. In addition, comparing the performance of

an algorithm with other state-of-the-art algorithms under the same conditions is

also a useful method to test the algorithm. This is because, usually, the state-

of-the-art algorithms have been examined by many researchers and they normally

have some distinguished performance on some benchmark problems. Therefore, the

performance of an algorithm can be shown by comparison with these state-of-the-

art algorithms. All algorithms proposed in the thesis are experimentally compared

with other state-of-the-art algorithms for solving the UCTP to further evaluate their

performance.

1.4 Why Are GAs Used in This Study?

Before we go into details, the question may arise here as to why we chose GAs to

solve the UCTP. In the literature, stochastic search methods, such as GAs, simulated

annealing (SA), and tabu search (TS), have been deemed particularly suitable for

solving hard and complex combinatorial optimization problems [164]. The following

are some advantages of GAs over traditional optimization methods that make them

10

Chapter 1. Introduction

more suitable for tackling the UCTP, which is a complex combinatorial optimization

problem.

• GAs are parallel, direct, stochastic methods for global search and optimization.

Due to the nature of the UCTP, it is often impossible to search the whole so-

lution space with traditional optimization methods. Traditional optimization

methods are usually sequential and explore the solution space to a problem in

one direction at a time. For these methods, if a sub-optimal solution is found,

then usually all previous work is abandoned and the process starts again. GAs

maintain and evolve a population of solutions. They are intrinsically parallel

and can explore the solution space to a problem in multiple directions at the

same time. If they find a path with a dead end, they simply remove or elimi-

nate it and continue to work on other paths. This approach gives them more

opportunities to find optimal solutions [84]

• GAs are very useful for complex or loosely defined problems. The inductive

nature of GAs makes them more suitable for optimization problems like the

UCTP because this problem usually has no predefined definition and it varies

from department to department. The inductive nature of GAs means that

they do not need to know any rules of the problem. GAs usually work by their

own internal rules via genetic operators [130].

11

Chapter 1. Introduction

• GAs work very well on mixed (continuous and discrete) combinatorial prob-

lems. They are less susceptible to getting stuck at local optima than gradient

and other search methods [130].

• One more advantage of using GAs is that bad proposals do not significantly

affect the end solution negatively, as in every generation the least fit members

of the population are less likely to get selected for reproduction and are simply

discarded or die out, so the chance of getting a global optimum is increased in

each generation [108].

• Through GAs, we can scan a vast search space, as they are able to scan a large

solution set of problems. In a single run, we are able to get multiple solutions

to a problem because GAs work with a set (population) of potential solutions

instead of trying to improve a single solution [188].

• GAs are typically characterized as applying probabilistic transition rules, in-

stead of deterministic rules [211].

1.5 Scientific Contributions

The majority of the scientific investigation in this thesis will be conducted using

well-known benchmark UCTP instances, which will be described in Chapter 3. This

thesis examines the performance of different algorithms, including those GAs devel-

oped in this thesis, based on these UCTP instances.

12

Chapter 1. Introduction

From our studies, the following scientific contributions are made:

• An experimental analysis concerning the suitability of GAs for the UCTP is

conducted. From this analysis, we conclude that traditional GAs with simple

crossover and mutation operators and without any LS strategies behave in

quite different ways with different problem sizes. For example, for the small

problem instances, GAs are able to produce good solutions, but for medium

and large sizes, the performance is not quite so good. Hence, we introduce a

new LS strategy for the GA for solving the UCTP. This LS strategy finds the

high penalty time slot in a timetable and tries to rearrange the events of the

time slot. This powerful LS strategy prevents the GA from getting stuck in

local optima.

• A new GS strategy is proposed for GAs to address the UCTP. This GS strategy

uses an extra memory (data structure) to store the best parts of solutions

found during the searching process and reuses them to guide the generation

of new offspring for the subsequent generations. The developed GSGA is

investigated on different benchmark UCTP instances and is compared with

other approaches from the literature. The results show that GSGAs are able

to produce good results on different benchmark UCTP instances.

• A hybrid GA that integrates the above LS and GS strategies into a standard

GA is proposed to solve the UCTP. This hybrid GA is able to generate some

13

Chapter 1. Introduction

of the best quality solutions for the benchmark UCTP instances used in the

experimental study.

• A two-phase approach is developed to solve the PECTP. The first phase con-

sists of a GA with the GS and LS strategies and a new heuristic crossover

operator. The second phase employs a TS method that tries to improve the

solution obtained from the first phase. The research shows that the proposed

algorithm is good enough to tackle the more real-world hard problem instances

and that generated solutions are good across all standard benchmarks of the

2007 International Timetabling Competition (ITC-2007)1 PECTP instances.

• The UCTP is also investigated as an MOOP and a framework of integrating

the above LS and GS strategies into general MOEAs is proposed to tackle the

MOUCTP.

• The above proposed framework of MOEAs for the MOUCTP is instantiated

into several MOEAs based on state-of-the-art MOEAs for general MOOPs to

solve the MOUCTP. The obtained MOEAs are tested on different MOUCTP

instances and the results show that these MOEAs are good choices for solving

the MOUCTP.

1For more details, see the ITC-2007 website at http://www.cs.qub.ac.uk/itc2007.

14

Chapter 1. Introduction

1.6 Thesis Outline

This thesis consists of eight chapters. This chapter presents the background, mo-

tivation, aims and objectives, and methodology of the research. It also highlights

some scientific contributions that are made during this research. The remainder of

this thesis is structured as follows.

Chapter 2 provides an introduction to the timetabling problem in general and the

UCTP in particular. The reasons why the UCTP is often hard to solve will be

discussed. A review and analysis of various approaches that have been proposed in

the literature for the UCTP will then be provided.

In Chapter 3, several special versions of the UCTP, which have recently been used as

benchmark instances for a number of relevant works in the literature, are presented.

These benchmark instances include the general UCTP instances, the PECTP in-

stances, and the MOUCTP instances, respectively. They will also be used in the

experiments carried out in the subsequent chapters in the thesis.

In Chapter 4, an experimental analysis of a simple steady-state GA for the UCTP

is conducted. A memetic algorithm that integrates two LS strategies into the GA

to enhance the quality of solutions is presented. The possible limitations of the

proposed memetic algorithm for the UCTP are also investigated.

In Chapter 5, a guided search strategy is introduced to enhance the searching power

of GAs for the UCTP. Based on this GS strategy and the LS strategies described

15

Chapter 1. Introduction

in Chapter 4, several GA variants for solving the UCTP are presented. Based on

a set of benchmark UCTP instances, a number of experiments are carried out to

investigate and analyse the effect of the GS and LS strategies. The proposed GAs

are also experimentally compared with a number of state-of-the-art approaches from

the literature for the UCTP.

Chapter 6 is intended to move this work from the benchmark UCTP instances

considered in previous chapters towards more real-world oriented problems. The

ITC-2007 PECTP instances are used to test our approaches. A two-phase hybrid

approach is proposed for the PECTP. The first phase employs a GA with guided

and local search strategies and tries to find feasible or optimal solutions for the

PECTP. The second phase employs a tabu heuristic to further improve the quality

of solutions found by the first phase. In this chapter, arguments are also proposed

as to why the two-stage approach may be an effective way of tackling the PECTP.

Moving away from single-objective UCTPs, in Chapter 7, attention is focused on

solving the UCTP as an MOOP. In this chapter, a framework of integrating the

developed GS and LS strategies with multi-objective EAs (MOEAs) to solve the

MOUCTP is presented. This framework is then instantiated to construct several

MOEAs for the MOUCTP based on a set of MOEAs that are typically used for

general MOOPs. The instantiated MOEAs are then experimentally validated using

several benchmark MOUCTP instances and performance metrics that are taken from

the literature on MOEAs.

16

Chapter 1. Introduction

Finally, Chapter 8 concludes this thesis by providing a summary of the major tech-

nical contributions made from the research carried out in this thesis to the domain of

UCTP research and the major conclusions that can be drawn from the experimental

studies carried out in the thesis. Some ideas about possible directions for further

research are also discussed in this chapter.

17

Chapter 2

University Course Timetabling

Problems and Solution

Approaches

2.1 Introduction

In this chapter, we give a general overview of the timetabling problem, especially the

university course timetabling problem (UCTP) and relevant constraints that need

to be considered. We will also review the methods that are used for solving the

UCTP in the literature.

This chapter has four sections. Section 2.2 describes definitions of timetabling and

the educational timetabling problem along with its different types. Section 2.3

18

Chapter 2. University Course Timetabling Problems and Solution Approaches

describes the UCTP in detail and discusses some fundamental research aspects to

solve this problem. In Section 2.4, we review key approaches that have been utilised

to handle the UCTP. A summary of the chapter is given in Section 2.5.

2.2 Timetabling

Timetabling problems are a specific type of scheduling problem [214]. Sometimes,

the terms “timetabling” and “scheduling” are loosely used as if they were synony-

mous. However, it has been shown in the literature [48, 208, 214] that there are

certain distinctions between them. According to Wren [214], “scheduling” is:

“the allocation, subject to constraints, of resources to objects being

placed in space-time, in such a way as to minimise the total cost of

some set of the resources used.”

From the above definition, we can say that scheduling will normally include all the

information necessary for a process to be carried out. Scheduling in the broadest

sense can be described as the process of solving practical problems related to the

allocation of resources (subject to constraints) to objects being placed in space-time.

For example, a production scheduling problem concerns the allocation of resources

(materials, labour, and equipments, etc) to tasks over time on the basis of some

constraints [174]. In employee scheduling, we need to place resources into slots in

19

Chapter 2. University Course Timetabling Problems and Solution Approaches

a pattern, under given constraints, where the pattern denotes a set of legal shifts

defined in terms of work to be done [214].

On the other hand, “timetabling”, according to Wren [214], is defined as:

“the allocation, subject to constraints, of given resources to objects being

placed in space and time, in such a way as to satisfy as nearly as possible

a set of desirable objectives.”

Based on the above definition, for timetabling problems, we need to consider, whether

there are adequate resources available for the given events (people, activities, and

vehicles, etc) to take place at their predefined time as well as which resources are

allocated. In the real world, timetabling problems may arise in connection with such

issues as educational requirements, transport or sport.

In the following sub-section, we describe education timetabling problems, particu-

larly the course timetabling problem.

2.2.1 Educational Timetabling Problems

In general, an educational timetabling problem can be defined as the task of assigning

a number of events, such as lectures, exams, meetings, and so on, to a limited number

of resources, while satisfying different constraints. Schearf [190] classified educational

timetabling into the following three main categories:

20

Chapter 2. University Course Timetabling Problems and Solution Approaches

• School timetabling

• Examination timetabling

• University course timetabling

They share the same basic characteristics of the general timetabling problem but

can still have significant differences between them. Each one of them has its own

constraints, requirements, and rules. More details on educational timetabling can

be found in different survey papers, see [48, 142, 190]. In the following sub-sections,

different kinds of educational timetabling problems and their properties are briefly

discussed.

2.2.1.1 School Timetabling

According to Schearf [190], the school timetabling problem is defined as:

“the weekly scheduling for all the classes of a school, avoiding teachers

meeting two classes at the same time, and vice versa.”

The school timetabling problem is concerned with the weekly scheduling for all the

lessons of a school. The problem consists of a set of teachers, classes, subjects/-

lessons, and weekly periods. These weekly periods are pre-defined. This problem

tries to assign lessons to periods and, each teacher to a particular class at a given

time while satisfying a set of constraints in order to produce a feasible timetable.

21

Chapter 2. University Course Timetabling Problems and Solution Approaches

2.2.1.2 Examination Timetabling

According to Carter and Laporte [60], the examination timetabling problem is de-

fined as:

“the assigning of examinations to a limited number of available time

periods in such a way that there are no conflicts or clashes.”

The examination timetabling problem refers to the assignment of timeslots and

rooms so that students can take examinations without clashes.

2.2.1.3 University Course Timetabling

According to Carter and Laporte [69], the UCTP is defined as:

“a multi-dimensional assignment problem, in which students and teach-

ers (or faculty members) are assigned to courses, course sections or

classes, and events (individual meetings between students and teachers)

are assigned to classrooms and timeslots”.

The UCTP is the problem of scheduling a set of events to specific timeslots such

that no person or resource is expected to be in more than one location at the

same time and there is enough space available in each location for the number of

people expected to be there. It should also be kept in mind that all classes of one

22

Chapter 2. University Course Timetabling Problems and Solution Approaches

subject should be dispersed throughout the week to provide a conducive learning

environment.

This thesis focuses on the UCTP. The details of the UCTP are discussed below.

2.3 University Course Timetabling Problems

2.3.1 Constraints

UCTPs, as well as other scheduling problems, define a class of hard-to-solve combi-

natorial optimization problems, which are usually highly constrained [184]. There

are two types of constraints, soft constraints and hard constraints, defined in a

UCTP. These are described below:

2.3.1.1 Hard Constraints

Hard constraints are those constraints that have to be satisfied for a feasible solution

and should never be violated by any cost. The following are some typical examples

of hard constraints in a UCTP:

• Lectures having students in common cannot take place at the same time.

• Lectures must take place in a room suitable for them in term of facilities and

student capacity

23

Chapter 2. University Course Timetabling Problems and Solution Approaches

• No two lectures can take place at the same time in the same room.

• No teacher may be assigned to different events at the same time.

• There must be a maximum number of time periods per day, which may not

be exceeded.

2.3.1.2 Soft Constraints

Soft constraints are less important than hard constraints, and it is not necessary to

satisfy them all. If both hard and soft constraints are satisfied in a solution, then

we would say that the solution is an optimal solution. Following are some typical

examples of soft constraints in a UCTP:

• Every teacher has their own availability schedule or submits a plan with de-

sirable time periods that suits them best.

• Every teacher has a minimum and maximum limit of weekly work hours.

• Lectures on the same subject should be dispersed across the week to provide

a conducive learning environment.

• A student or teacher should not attend more than two lectures in a row.

• Students should not have one lecture in any given day.

• Some timeslots are reserved for specific activities (non-academic or outside

class activities such as sports); therefore, they are not available for lectures.

24

Chapter 2. University Course Timetabling Problems and Solution Approaches

• The travel time of teachers and students between rooms within the campus

should be minimised.

2.3.2 Quality of Solutions

From the explanation of constraints, a solution to the problem can be described as

feasible, infeasible, and optimal solution. A feasible solution means that the solution

satisfies all hard constraints of a problem but not necessarily all soft constraints. An

infeasible solution is one that fails to satisfy all hard constraints. An optimal solution

fulfils all requirements of the constraints and there is no violation of soft and hard

constraints. Throughout this thesis, we will use these terms to represent the quality

of a solution.

2.3.3 Types of UCTPs

According to the ITC-2007 organisers, UCTPs can be divided into two tracks: post

enrolment-based course timetabling and curriculum-based course timetabling. These

two tracks are distinct and are used in institutes with varying constraints.

2.3.3.1 Post Enrolment Based Course Timetabling

This track is also called “class timetabling”, “event timetabling”, or “general uni-

versity course timetabling”. It is the only track of course timetabling problems in

25

Chapter 2. University Course Timetabling Problems and Solution Approaches

the 2003 International Timetabling Competition. In this type of UCTPs, after stu-

dent enrolment, the timetable is constructed in such a way that all students can

attend the events on which they are enrolled. According to the organisers of the

competition, this UCTP has extra hard constraints that move this type further in

the direction of real-world timetabling.

2.3.3.2 Curriculum Based Course Timetabling

The curriculum-based courses timetabling problem (CBCTP) deals with the weekly

scheduling of lectures for several university courses within a given number of rooms

and time periods, where conflicts between courses are set according to the curricula

published by a university and not on the basis of the enrolment data.

In this thesis, basically we only deal with the PECTP, with either three or five hard

constraints, which are called UCTPs and PECTPs, respectively. Soft constraints on

both problem definitions are the same. We will not deal with the CBCTP in this

thesis.

2.3.4 Modelling UCTPs

In this sub-section, we describe the models of UCTPs. De Werra [207, 208] has

carried out research to model a timetabling problem in different ways. The most

common and well-known models of timetabling problems are the “graph colouring”

model and the mathematical model [202, 210, 214]. In the graph colouring model, a

26

Chapter 2. University Course Timetabling Problems and Solution Approaches

(a) (b)

Figure 2.1: The graph colouring model: (a) an undirected graph, and (b) a
simple timetabling problem represented by the graph colouring model.

simple undirected graph G is used, which has a set of n vertices V = {v1, v2, · · · , en}

and a set of t edges E = {e1, e2, · · · , et}. Figure 2.1(a) shows the representation

of an undirected graph on the vertex set {A,B,C,D,E, F,G} and the edge set

{(A,D), (A, F), (D,E), (F,C), (E,C), (B,G), (B,E)}. In a graph colouring prob-

lem, vertices need to be coloured in such a way that: (a) no pair of vertices, that are

connected with the same edge, are assigned the same colour, and (b) the number of

colours being used is minimised.

For a better understanding of the relationship between the graph colouring problem

and the timetabling problem, we take a simple timetabling problem as an example.

Figure 2.1(b) shows a simple course timetabling problem represented using the graph

colouring model. In Figure 2.1(b), there are seven different courses, denoded as A,

B, C, D, E, F, and G, respectively. One possible goal is to find the minimum number

27

Chapter 2. University Course Timetabling Problems and Solution Approaches

of timeslots that are needed to schedule the seven courses, where some events have

clashes with each other on time and cannot be placed on the same timeslot. A set of

edges {(A,D), (A, F), (D,E), (F,C), (E,C), (B,G), (B,E)} represents the clashes

between courses. If there is an edge between two vertices, it means that these two

courses cannot be scheduled in the same timeslot.

Figure 2.1(b) shows a possible assignment of three timeslots to the seven events,

where the events are represented with three colours/patterns: white, black, and

filled. These three patterns represent different timeslots. As we can see, event A

cannot be placed at the same timeslot as event D and F, so these three events

can be coloured as black, white, and filled, respectively. Now, event E cannot be

scheduled on the same timeslot as C and D, so we can give E a different colour

from C and D. However, C can be scheduled on the same timeslot as D, so C

can use the same colour as D, and so on. From Figure 2.1(b), we can see that

the placement of timeslots/colours is according to the constraints of events. The

minimum number of timeslots that can be used is three for this example. This

model can be further extended for more constraints. Many researchers have proposed

graph colouring heuristics that can produce clash-free timetables for small problem

instances [207, 209, 210].

Many others have also presented mathematical models for a general timetabling

problem [202, 207]. Tripathy [202] formulated the problem using an integer lin-

ear programming formulation. Mulvey [163] proposed a classroom/time assignment

model for this problem. The simplest one given here is taken from De Werra [207].

28

Chapter 2. University Course Timetabling Problems and Solution Approaches

Suppose there are a set of p courses E = {E1, E2, · · · , Ep}, where each course Ee

consists of ke lectures, a set of r course groups G = {G1, G2, · · · , Gr}, where each

course group Gi (i = 1, 2, · · · , r) consists of those courses that have common stu-

dents and hence must be scheduled in different timeslots, a set of q periods/timeslots

T = {t1, t2, · · · , tq}, and lk is the maximum number of lectures (i.e., the number of

rooms available at timeslot k) that can be scheduled at period k. The formulation

of a timetabling problem can be given as follows:

find xek (e = 1, · · · , p; k = 1, · · · , q) (2.1)

s.t.

q
∑

k=1

xek = ke (e = 1, · · · , p) (2.2)

p
∑

e=1

xek ≤ lk (k = 1, · · · , q) (2.3)

∑

e∈Gl

xek ≤ 1 (l = 1, · · · , r; k = 1, · · · , q) (2.4)

xek = 0 or 1 (e = 1, · · · , p; k = 1, · · · , q), (2.5)

where xek = 1 if a lecture of course Ee is scheduled at period k, and xek = 0,

otherwise. Eqs. (2.2), (2.3), and (2.4) represent different constraints of the problem.

Eq. (2.2) enforces that each course is composed of a correct number of lectures.

Constraint 2.3 shows that for each timeslot there are no more events than rooms.

Eq. (2.4) ensures that courses that have the same students must be placed in different

periods. The work of other researchers can be found in [40, 193, 203].

29

Chapter 2. University Course Timetabling Problems and Solution Approaches

2.3.5 Why are UCTPs Difficult to Solve?

There are two major reasons for the question why UCTPs are difficult to solve.

Firstly, as there is no unified definition of the problem, any solver will only address

some of the many possible variants. As we discussed earlier, the problem itself

does not have a widely approved definition; different universities have their own

idiosyncratic sets of constraints. These variations in constraints from university to

university make this problem different to most others. The problem definition of

one university may directly oppose to that of another university. From the research

point of view, this distinguishing nature of the problem makes it difficult to give a

meaningful and general formulation for the problem [143].

Secondly, almost all variants of UCTPs are NP-complete and therefore difficult to

solve computationally. We can say that problems that can be solved by a deter-

ministic computer in polynomial time (depending on the input size of the problem)

are called “P-problems”. Similarly, those problems that can be solved by a non-

deterministic computer in polynomial time according to the input size are called

“NP-problems”. More importantly, any problem that can be solved in deterministic

polynomial time can also be solved in non-deterministic polynomial time. So, P is a

subset of NP. However, there are many problems in NP for which no deterministic

polynomial time algorithm is known. The hardest problems in NP, in the sense that

any other problem in NP can be reduced to such a problem in polynomial time, are

called NP-complete. It is widely believed that NP-complete problems do not admit

30

Chapter 2. University Course Timetabling Problems and Solution Approaches

polynomial time deterministic algorithms.

The UCTP has been proved to be NP-complete [96, 111, 112, 190] in most of its

variants. Like all NP-complete problems, the solution space for UCTP is too large

to be explored through exhaustive search. Let’s take an example of a university that

has 1500 events to be placed in 45 timeslots and 100 rooms. The possible number

of timetables is (45 ∗ 100)1500 and most of them are infeasible. As the timetabling

problem is NP-complete, we do not know any efficient methods for finding the best

solution in this huge search space in polynomial time. In contrast, if a university

has a small number of events that need to be placed in an abundant number of

rooms, then it is possible that good or optimal solution(s) can be found easily in the

search space. Thus, for difficult or harder (in the sense of complexity or constraints)

problems, it is difficult to find the solution in a reasonable time. Hence, a powerful

or robust approach is required to tackle these problems.

2.4 Approaches for Solving UCTPs

UCTPs are generally complex, large scale, constrained, and multi-objective in na-

ture. Researchers have developed different approaches to address UCTPs. Several

survey papers have been published that classify or discuss major solution method-

ologies for them [55, 69, 178, 190, 207]. Carter and Laport [69] discussed the major

approaches and divided them into four catagories. Schaerf [190] also conducted a

31

Chapter 2. University Course Timetabling Problems and Solution Approaches

survey on this problem along with mathematical description of variants of the prob-

lem and solution methodologies. Subsequently, Petrovic and Burke [173] presented

two approaches to solve UCTPs. Based on the survey papers discussed above, we

divide the solving methodologies into the following groups.

2.4.1 Constraint-Based Methods

Generally, a constraint-based method models a problem by a set of n variables xi

(i = 1, · · · , n) with a corresponding set of domains Di that declare the allowable

values for each variable xi, and a set of e constraints cj (j = 1, · · · , e) over the

variables which restrict the allowable combinations of variable values [33]. More

precisely constraint-based methods deal with the assignment of constraints from its

domain to each variable such that all constraints are satisfied [38].

For the solution of timetabling problems, a problem is modelled as a set of variables

(i.e., events) to which values (i.e., resources such as rooms and time periods) have

to be assigned to satisfy a number of constraints. Some rules are also defined for

assigning values to events. When no rule is applicable to the current partial solution,

a backtracking operation is performed until a solution is found that satisfies all con-

straints [161]. Constraint-based solution methods, such as constraint propagation,

domain reduction, and backtracking, are well suited for many industrial applications

[103]. These methods are combined with classic techniques, such as linear, integer,

32

Chapter 2. University Course Timetabling Problems and Solution Approaches

and mixed integer programming, to yield powerful tools for solving constraint-based

problems [103].

Considerable research has been carried place to solve timetabling problems as a

constraint satisfaction problem. Abdennadher and Marte [10] applied constraint-

handling rules (i.e. a powerful special-purpose declarative programming language

for writing application-oriented constraint solvers) and created a solver to generate

a timetable for the Department of Computer Science at Munich University. First,

they modelled the problem as a constraint satisfaction problem. They, then used

constraint-handling rules to implement a finite domain solver, which performs hard

and soft constraints propagation. One of the main characteristics of their work is

that, they clearly distinguished between hard and soft constraints, which could not

be possible in traditional constraint satisfaction approaches. This limitation usually

forces us to treat soft constraints as hard constraints, which sometimes leads an

over-constrained constraint satisfaction process, ending up without solutions.

Many researchers have applied constraints logic programming to solve this problem.

Zervoudakis and Stamatopoulus [217] applied a constraint programming generic

object-oriented model using the ILOG SOLVER C++ library for the UCTP. They

used real data instances from the Department of Informatics and Telecommunica-

tions at the University of Athens to test their approach. A variety of search methods

(for example, the depth first search) and variable ordering heuristics were used in

their technique. The quality of solution depends on the search methods. Of all of

33

Chapter 2. University Course Timetabling Problems and Solution Approaches

the search methods, although the depth first search was capable of finding feasi-

ble solutions in the early stage of search, no further improvement were seen in the

solutions even when the algorithm was run for a long time.

Deris et al. [87] modelled the timetabling problem as a constraint satisfaction prob-

lem and then used a constraint-based reasoning technique (any reasoning technique

that utilizes an arc-consistency algorithm for the purpose of constraint propagation

in problem solving) to solve the problem. In order to facilitate the search for solu-

tions, timetabling problems were represented as a graph tree organization. Due to

the large search space, they used a backtracking search method incorporated with

constraint propagation. They also employed variable orderings (variable ordering

helps to find a solution faster by reducing the search space explored during the

search process) based on the size of the domain and the number of constraints of

the variables to speed up the search process. Rather than choosing benchmark in-

stances for testing, they tested their approach on real data instances and were able

to produce some feasible results within a reasonable time.

Zhang and Lau [218] developed a constraint satisfaction problem model for the

UCTP. They used a simple case study of the problem. Implementing a constraint

satisfaction approach using the ILOG scheduler and ILOG solver and using different

goals in ILOG to investigate the performance of their approach, they achieved some

good results regarding the time factor.

34

Chapter 2. University Course Timetabling Problems and Solution Approaches

2.4.2 Sequential Heuristics

The early work on timetabling problems is based on sequential heuristics. According

to Reeves [179], a heuristic is:

“a technique which seeks good (i.e. near optimal) solutions at a reason-

able computational cost without being able to guarantee either feasibility

or optimality, or even in many cases to state how close to optimality a

particular feasible solution is.”

Sequential heuristic methods are normally divided into two phases: a construction

phase and an improvement phase [59]. The construction phase orders events using

domain heuristics and then assigns the events sequentially into the first feasible slot

or valid timeslot so that no events are in conflict with each other. The second phase

is the improvement phase, which makes modifications and improvements. Usually,

backtracking is used to undo some of the previous decisions and the assignment

process can be re-applied [59]. This type of method may not, however, always

converge toward a feasible solution and care must be taken to avoid cycling [69].

Some work on these methods can be found in [75, 104, 171].

Most of these heuristics stem from heuristics for solving the graph colouring problem

due to the close link between the timetabling problem and the graph colouring

problem. Graph colouring heuristics are often called sequential heuristics because

their main idea is to schedule events to timeslots sequentially or one by one [60].

35

Chapter 2. University Course Timetabling Problems and Solution Approaches

Timetabling has been widely investigated as a graph colouring problem [207, 208].

De Werra [207, 209] first transferred a course timetabling problem into graph colour-

ing. Subsequently, Selim [192] also employed a graph colouring approach for the

faculty timetable problem. Real data from the Faculty of Science of the American

University in Cairo was used to test the approach. The events/courses were split in

order to reduce the timeslots number.

Burke et al. [51] applied a graph-based hyper-heuristics with the tabu search ap-

proach to solve optimisation problems. They also tested their approach on the

UCTP. The key feature of this approach is that they used tabu search (TS) approach

to change the permutations of six graph colouring heuristics before constructing a

timetable. The approach works more efficiently when a larger number of low-level

heuristics are used. Although this approach gave good solutions on all problem in-

stances, it was unable to give new best solutions, perhaps due to the fact that this

approach was designed to deal with general optimisation problems, not specially for

the UCTP.

2.4.3 Meta-heuristic Approaches

Meta-heuristics are a class of heuristic techniques. The term “meta-heuristic” was

coined by Fred Glover in 1986 [116]. Meta-heuristics have become a leading edge

among heuristic approaches for solving a wide range of complex combinatorial opti-

misation problems. According to Osman and Kelly [167], a meta-heuristic is:

36

Chapter 2. University Course Timetabling Problems and Solution Approaches

“an iterative generation process which guides a subordinate heuristic by

combining intelligently different concepts for exploring and exploiting

the search spaces using learning strategies to structure information in

order to find efficiently near-optimal solutions.”

Glover and Kochenberger [118] made the following comments:

“meta-heuristics, in their original definition, are solution methods that

orchestrate an interaction between local improvement procedures and

higher level strategies to create a process capable of escaping from local

optima and performing a robust search of a solution space.”

Meta-heuristics approaches are usually based on local-area based searches and pop-

ulation based searches. A local-area based search explores the solution space by

a gradual improvement of the current solution. Some examples of local-area based

searching techniques are tabu search and simulating annealing, etc. These techniques

iteratively calculate a candidate solution or the neighbourhood from a current so-

lution and replace the current solution by a solution in its neighbourhood. The

construction of a neighbouring solution is called move. These techniques differ from

each other on the basis of different parameters such as the process to generate moves

or the control scheme for selecting a new neighbourhood solution, etc. Population

based techniques perform the search by maintaining a population of candidate solu-

tions. These methods explore the neighbourhood of a whole population rather than

exploring that of a single solution [175].

37

Chapter 2. University Course Timetabling Problems and Solution Approaches

In this section, we will review widely used meta-heuristic approaches to course

timetabling.

2.4.3.1 Genetic Algorithms (GAs)

Genetic algorithms (GAs) are stochastic search methods which were popularised by

Holland [125], who derived GAs from Darwin’s theory of evolution, which is based

on the theory of survival of the fittest due to natural selection. Before Holland

[125], different researchers had developed evolution-inspired algorithms for function

optimization based on the principles of natural selection and genetics [39, 100], but

their work attracted little follow-up. All the essential elements like recombination

and mutation were used by Fraser’s simulations [100] . Similarly, Bremermann [39]

also adopted a population of solutions to optimization problems, undergoing recom-

bination, mutation, and selection. Holland was the first researcher who explicitly

proposed crossover and other recombination operators. Later, GAs were widely used

in a broad variety of fields to solve optimization and search problems, such as in as-

tronomy [70], electrical engineering [25], routing and scheduling [54, 122], and many

more.

Algorithm 1 shows the framework of a conventional GA. GAs are population based

heuristic methods, which start from an initial population of usually random solu-

tions for a given problem. Each solution in the population is called an individual.

Each individual is evaluated according to a problem-specific objective function, usu-

ally called the fitness function. After evaluation, there is a selection phase in which

38

Chapter 2. University Course Timetabling Problems and Solution Approaches

Algorithm 1 The Conventional Genetic Algorithm

1: Initialise a population of solutions
2: Evaluate the individuals in the population
3: while the termination condition is not reached do
4: Select parents through a selection scheme
5: Crossover the parents to create offspring
6: Apply mutation to offspring
7: Replace the worst member(s) of the population for the next generation
8: end while

possibly good individuals will be chosen by a selection operator to undergo the re-

combination process. In the recombination phase, crossover and mutation operators

are used to create new individuals in order to explore the solution space. The newly

created individuals replace old individuals, usually the worst ones, of the population

based on their fitness. This process is repeated until a stopping criterion is reached,

which may be the maximum number of generations or a time limit.

In 1990, GAs were used for the first time by Colorni et al. [73] for the timetabling

problem. Since then, there have been a number of researchers who have investigated

and applied GAs for the UCTP [69, 205]. Colorni et al. [73, 74] proposed a timetable

for an Italian high school with the help of EAs. They encoded a timetable as a matrix

where columns represent timeslots and each row represents a teacher involved with

the timetable. They used a weighted sum function to distinguish between hard and

soft constraints. A novel crossover operator was used to create individuals. After the

crossover operation, they used a genetic repair procedure to fix hard constraints if

their violation was raised to an above predefined threshold level. The main advantage

of this approach is that it is able to produce a large number of different good quality

timetables in a single run.

39

Chapter 2. University Course Timetabling Problems and Solution Approaches

Erben and Keppler [97] applied a GA to deal with a weekly-course timetabling prob-

lem to schedule classes, teachers, course modules and rooms to a number of timeslots

in a week. A large data sample was used to test the algorithm. The experiments

carried out show that the algorithm was able to obtain promising results. Lewis

and Paechter [145] produced a grouping GA for the UCTP. They only considered

hard constraints to be solved and grouped the events according to timeslots. A fea-

sible timetable is one where all the events have been assigned into feasible timeslots,

where feasible timeslots are those that have no conflict events, and all events are in

their suitable rooms. They used recombination and grouping mutation operators.

Sixty problem instances were tested and their approach was able to produce feasible

solutions for 23 instances out of these 60 instances.

Lewis and Paechter [144] proposed a number of different crossover operators for

GAs to solve a UCTP. They applied a genetic repair function to regain feasibility

during the crossover and mutation process. They used different crossover operators,

for example, sector-based, day-based, student-based, and conflict-based crossover

operators. Their algorithm was tested on twenty problem instances from the first

international timetabling competition [1] and the conflict-based crossover operator

gave good results. They concluded that effective crossover operators and efficient

GAs are also able to produce a large number of diverse and feasible timetables in a

reasonable amount of time.

Many researchers combined GAs with other approaches, called memetic algorithms

(MAs), to solve the UCTP. The term of MA was coined by Moscato [159] from

40

Chapter 2. University Course Timetabling Problems and Solution Approaches

Dawkin’s [85] term “meme”. The term “meme” is different from the term “gene”

in the sense that memes are ideas or concepts that are passed around and can be

altered to the environment but genes pass from generation to generation without

alteration [85]. A MA [159, 160] is an EA that uses knowledge of the problem in

the form of, for example, approximate algorithms, local search techniques, heuristics

or specialised recombination operators [132]. It is generally believed that MAs are

successful because they combine the exploitive search ability of LS methods and

the explorative search ability of recombinative EAs [49, 73]. Many researchers have

applied MAs to address timetabling problems by combining GAs and LS techniques.

Some well-known examples are, Paechter et al. [170], Rossi-Doria et al. [181, 182],

Alkan and Ozcan [23], Abdullah et al. [15], and Chiarandini et al. [71].

2.4.3.2 Ant Colony Optimisation (ACO)

Ant colony optimisation is a population-based searching technique. The idea is

based on the mechanism of “food collection” used in an ant colony. In this process,

once an ant finds a food source, it will lay a chemical substance (called pheromone)

during the path. Pheromones help other ants to find the same food source because

every ant relies on pheromones trails, that were added every time when an ant passed

through the path. The more ants that have passed the same path, the higher the

probability that this path will be chosen by future ants. All the pheromone trails

laid by the whole ant colony thus optimise the time and effort spent on the food

collection of the colony. Dorigo et al. [90] were the first to employ this idea in

41

Chapter 2. University Course Timetabling Problems and Solution Approaches

a search meta-heuristic. In an ACO algorithm, an ant constructs a solution for a

given problem, and a population of ants is maintained. During the evolving process,

useful information is kept as the pheromone, which will be updated and used in

the creation of the next generation of individuals [88, 89]. Over the last decade,

several ACO algorithms have been proposed in the literature. Stützle and Hoos

[198] proposed the MAX-MIN Ant System, whose main characteristics are that only

the best ant updates the pheromone trails and that the value of the pheromone is

bounded. Several successful applications of ACO on different optimization problems

can be found in [7, 8, 36, 91, 155].

Socha et al. [196] applied a MIN-MAX ant system [198] for the UCTP. They trans-

formed the problem into an optimal path problem which can be tackled by generat-

ing a construction graph. The assignment of courses to timeslots was dependent on

the pheromone value within the bounds. They concluded that the MIN-MAX ant

system performs better than an iterative local search method.

Rossi-Doria et al. [181] presented a comparative study of five different meta-heuristic

algorithms applied to a UCTP, of which the ant colony was one algorithm. In the

studied ACO approach, an ant constructs a timetable using a sequential strategy.

An ant chooses a course from a pre-defined list and assigns it to a timeslot in a

probabilistic manner. They concluded that the performance of ACO is slightly

worse than simulated annealing and tabu search. However, it is better than a GA

for the UCTP.

42

Chapter 2. University Course Timetabling Problems and Solution Approaches

2.4.3.3 Tabu Search (TS)

TS is a powerful tool for solving difficult optimisation problems. The idea of TS was

first proposed by Glover [117]. Glover and Laguna [119] defined TS as follows:

“Tabu search is a meta-heuristic that guides a local heuristic search pro-

cedure to explore the solution space beyond local optimality.”

TS is a local-area based search method that guides a heuristic search to explore the

solution space beyond local optimality by including “intelligent” features. The main

“intelligent” feature of TS is the use of adaptive memory. According to Burke et

al. [47],

“tabu search is an intelligent search technique that uses a memory func-

tion in order to avoid being trapped at a local minimum.”

The TS algorithm starts from an initial solution and then iteratively explores a

subset of the neighbourhood of the current solution. The next move will be cho-

sen after evaluating all neighbourhood solutions of the current solution. A worse

intermediate solution can be accepted as long as its solution quality is the best

among all neighbourhood solutions. This process may lead to cycling, i.e., moving

repeatedly between small portions of the search space. To avoid cycling, TS uses

memory to store a tabu list. If a new solution is found to be in a tabu list, then

it is called a “tabu solution” and the next best solution in the neighbourhood of

43

Chapter 2. University Course Timetabling Problems and Solution Approaches

the current solution is considered, and so on. The tabu list allows the algorithm to

escape from local optima and globally search the solution space [119]. Moves in the

tabu list are prohibited for a predefined number of iterations, called “tabu tenure”,

and for some tabu restrictions. Tabu restrictions are used to avoid repetition within

the search space. TS methods can be classified according to the intensification

and/or diversification [119]. “Intensification” means intensive exploration of the

search area, where good solutions were previously yielded. “Diversification” means

search towards un-explored areas. TS has been successfully used to solve different

combinatorial optimization problems. More details and relevant applications can be

found in [34, 119, 186].

Extensive research has been done on solving timetabling problems by using the TS

heuristics. Hertz [123, 124] first presented a TS approach to solving large-scale

course timetabling problems. His algorithm starts from a random initial solution.

A move is defined as moving a single random event to a new time slot. As the

neighbourhood size using this criterion becomes too large for practical problems,

the algorithm only calculates a fraction of the neighbourhood, that is proportional

to the number of events. The size of the tabu list is restricted to 7, where a full state

of previously visited solutions are not stored. The tabu list stores a move in terms of

event and time slot pairs (e, t) rather than solutions, where e represents an event and

t represents the previous time slot where the event e was scheduled. An event present

in the tabu list is not allowed to be scheduled on the stated time slot until the pair is

removed or expired off from the tabu list. The author concluded that this approach

44

Chapter 2. University Course Timetabling Problems and Solution Approaches

produces satisfactory results on both exam and course timetabling problems. The

main advantage of this approach is that, by allowing the most promising tabu move,

the searching process is speeded up, which is important when solving large-scale

problems.

Costa [77] used TS for constructing different real course schedules. Two tabu lists

were introduced. The first one is a list of lectures which are moved from one timeslot

to another and the second one is a list of pairs (l, t), which represent information

about a lecture and the previous timeslot with the aim that lecture l cannot be re-

placed at timeslot t while the pair remains on the list. The author also introduced a

diversification strategy that drives the search to other areas that are not examined.

Experimental results showed that the algorithm was able to obtain satisfactory so-

lutions to the timetabling problem. However, there are several parameters that need

to be tuned in the algorithm, such as those for the diversification and the lengths of

the tabu lists.

Colorni et al. [74] presented an investigation of three different meta-heuristics, i.e.,

simulated annealing (SA), TS, and GA, on the high school timetabling problem

instance. A variable size of tabu list where the length of the list is changed after a

constant number of iterations is used. A relaxation procedure is also incorporated

into the TS algorithm. Their experimental results show that TS was consistently

the best performing algorithm when compared against the tested SA and GA.

45

Chapter 2. University Course Timetabling Problems and Solution Approaches

Bellio et al. [185] analysed a dynamic TS algorithm for the UCTP, where the tabu

list changes continuously according to the shape of the cost function in an adaptive

way. This way, they allow for the possibility of passing infeasible states and visiting

states that have different structures from the previously visited ones.

Aladağ and G. Hocaoğlu [21] applied a TS algorithm to solve the UCTP. They argued

that, in the literature, the problem formulation does not contain the constraint that

there should be no conflicts between lessons in the same section. They gave a new

mathematical formulation of the problem and also proposed TS to solve the problem.

They used a real data set from the Statistical Department of Hacettepe University

to test their TS algorithm. Their experimental results show that TS produced clash

free timetables.

2.4.3.4 Simulated Annealing (SA)

SA is based on the idea of the Metropolis algorithm [156] for statistical mechanics.

The Metropolis algorithm simulates the change in system energy, subject to the

cooling process, until it converges to a steady or frozen state. Annealing is the

process of cooling material in a heat bath. First, the material or solid is heated to

a high energy (where the state frequently changes) so that its molecules and atoms

are set randomly. Then, it is gradually cooled down to a low energy (where the

state rarely changes) so that its molecules reach the state of the minimum energy.

The decreasing of the temperature is made slowly because if the cooling process

is too fast, unstable structures might appear instead of those with the minimum

46

Chapter 2. University Course Timetabling Problems and Solution Approaches

energy. This method of decreasing the temperature is called “the cooling schedule”.

Kirkpatrick et al. [134] first introduced this concept to solve optimization problems.

Later, Černý [61] also applied SA to the travelling salesman problem. They suggested

that SA could search feasible solutions, where the objective is to converge to an

optimum state [134].

An SA algorithm starts by calculating the neighbourhood moves at random. The

temperature and the change in the evaluation function determine whether to accept

the worse moves. A high temperature gives a high acceptance probability and a low

temperature rejects moves with a high probability. The acceptance probability is

defined as exp(−δ/t), where δ is the change in the solution quality and t is the current

temperature. An SA algorithm proceeds, the temperature decrease according to the

cooling schedule. The performance of SA is dependent on the cooling schedule and

the choice of the neighbourhood structure [9].

Elmohamed et al. [95] applied an SA algorithm with different cooling schedules

(geometric, adaptive and adaptive with reheating) for a UCTP. They tested their

approach on real data at Syracuse University. Their experimental results show

that the SA with the adaptive cooling and reheating algorithm outperformed other

methods.

Frausto-Solis et al. [101] proposed extended SA algorithms for the UCTP. An initial

solution was created by adding extra timeslots into the timetable in order to make a

feasible solution. They used a geometric cooling function as the temperature cooling

47

Chapter 2. University Course Timetabling Problems and Solution Approaches

schedule. Their experimental results show that the extended SA algorithms are able

to produce feasible results on many of the problem instances that have not been

reported previously in the literature.

2.4.3.5 The Great Deluge (GD)

The GD algorithm is a local search method proposed by Dueck [94]. The GD

algorithm explores neighbouring solutions in such a way that these solutions are

accepted only if they are better than the best solution so far or if the detriment

in quality is not larger than the current water level [195]. The GD method was

introduced as an alternative to SA. Apart from accepting a move that improves

the solution quality, like SA, GD may accept a degrading move, i.e., a move that

decreases the solution quality. In the acceptance criterion of GD, a degrading move

is accepted if the fitness of the new solution is less than or equal to some given

upper boundary value, referred to as the “water-level”. Its value is initially set to be

equal to the penalty of the initial solution and at every iteration it is lowered by a

fixed decay rate. The decreasing of the water level could be thought of as a control

process, which drives the search towards a desirable solution.

Burke et al. [42] were the first to employ the GD approach to the UCTP. This

approach involves two parameters, i.e., the estimated search time and the level of

the solution quality. They tried to reduce the soft constraint violations while staying

in the feasible region of the search space. The method was tested on the UCTP from

an international timetabling competition and was confirmed as an effective method

48

Chapter 2. University Course Timetabling Problems and Solution Approaches

among 21 compared algorithms, where 7 out of 20 best-known results were obtained.

The main advantage of this search is that it uses an estimated search time parameter,

which enables the algorithm to adapt the intensity of the search and will only start

to converge on local (or global) optimum when the estimated search time limit is

being approached.

Subsequently, Landa-Silva and Obit [195] proposed an extended version of the GD

algorithm with a non-linear decay rate. The approach produced 4 best results out of

11 problem instances. Later, McMullan [154] proposed an extended GD algorithm,

which allows re-heating, similar to SA, and gives 5 new results out of the 11 problem

instances.

2.4.4 Hybrid Meta-heuristics

In recent years, optimization problems have been of great importance for the scien-

tific and industrial world. Many techniques (meta-heuristic and classical techniques

such as branch and bound, dynamic programming, and gradient-based methods,

etc.) are used to solve different optimization problems. The combination of a meta-

heuristic with other optimization techniques (such as, operation research and artifi-

cial intelligence techniques) is called “hybrid meta-heuristics”. It has become evident

that hybrid meta-heuristic approaches show more efficient behaviour and higher flex-

ibility when dealing with real-world and large-scale problems. It combines the com-

plementary strengths of meta-heuristics (directly applicable to complex problems

49

Chapter 2. University Course Timetabling Problems and Solution Approaches

with relatively few modifications) with the strength of more classical optimization

techniques [199]. Generally, hybrid meta-heuristic approaches can be classified as

collaborative combinations and integrative combinations [65]. Collaborative com-

binations are based on the exchange of information between a meta-heuristic and

another optimization technique that is running in parallel. Integrative combinations

utilize another optimization technique as a subordinate part of a meta-heuristic.

More details and relevant applications can be found in [46, 65, 78, 199]

Kostuch [139] employed a three-phase approach, which combines graph colouring

and SA, for the UCTP. In the first phase, an initial feasible timetable is generated

using the graph colouring heuristics. Improvement is made in the second phase using

an SA algorithm. The final phase is applied to make further improvement using an

LS method guided by SA. The approach was able to produce 13 best solutions out

of 20 instances taken from the 2003 International Timetabling Competition.

2.4.5 Hyper-heuristic Approaches

The hyper-heuristic is considered to be an emerging methodology in search and

optimisation [45]. Burke et al. [45] defined a hyper-heuristic as:

“The process of using meta-heuristics to choose (meta) heuristics to solve

the problem in hand.”

50

Chapter 2. University Course Timetabling Problems and Solution Approaches

A hyper-heuristic is a powerful approach that can be thought of as a high level

heuristic that modifies the solution quality by employing a set of low level heuristics.

This is unlike most meta-heuristics that modify solutions directly. We can therefore

say that it operates on the search space of heuristics rather than on the search

space of candidate solutions. The main difference between hyper-heuristics and

meta-heuristics in timetabling is that hyper-heuristics may use meta-heuristic from

a variety of different heuristics to solve timetabling problems.

Burke et al. [47] investigated a TS hyper-heuristic approach for the UCTP and nurse

rostering problems. The approach consists of choice function, tabu list, and a set

of low-level heuristics. In this algorithm, a set of six low-level heuristics compete

with each other. The change in the cost function value from the previous solution

to a new solution is noted when heuristics are needed to be applied. A variable

length dynamic tabu list prevents some heuristics from being used for some time

during the search. The status of the heuristics in the tabu list will be changed

from tabu active to non-tabu active if there is an improvement in the cost function.

Experimental results showed that this technique is able to produce good quality

solutions for UCTPs as well as different types of optimisation problems.

2.4.6 Other Approaches

Burke et al. [52] investigated a case-based reasoning (CBR) approach to solve the

UCTP. Leake [141] described CBR as:

51

Chapter 2. University Course Timetabling Problems and Solution Approaches

“In CBR, new solutions are generated not by chaining, but by retrieving

the most relevant cases from memory and adapting them to fit the new

situations.”

In CBR, all the problems are represented as cases. A case has two parts: one is the

problem itself and the other is the solution to the problem or the lesson it will reach

[141].

Burke et al. [52] modelled the UCTP as an attribute graph where nodes and edges

represent courses and conflicts, respectively. The attributes on both nodes and edges

represent information about the problem structure. The most similar case(s) from

the target problem and candidate cases are selected for adaptation. The adaptation

process is carried out by using a graph heuristic approach that is used to minimise

constraint violations. Later, Burke et al. [53] investigated a multi-retrieval CBR ap-

proach to solve large-scale problem instances of UCTPs. This approach partitions

a large problem into small solvable sub-problems by recursively inputting the un-

solved part of the graph into the decision tree for retrieval. The adaptation combines

the retrieved partial solutions of all the sub-problems, which, after graph heuristic

method, construct the whole solution for the new case. They concluded that the

proposed approach gives good results on different problem instances.

Gaspero and Schaerf [106] investigated a multi-neighbourhood search approach to

solve the course timetabling problem. They used three neighbourhood structures,

i.e., neighbourhood union, neighbourhood composition, and token ring search, in

52

Chapter 2. University Course Timetabling Problems and Solution Approaches

the LS technique. They proposed a set of operators that can automatically compose

the neighbourhood function to a more complex one. Weighted objective function

was used in order to penalise the occurrence of hard constraint violations. They also

used a constraint technique in the exploration of a large neighbourhood to prune

the list of candidates. To test the proposed approach, they used a real data set

from the Department of Mathematics and Information, University of Udine, and

concluded that the composition of neighbourhood gave much better results than the

traditional LS method. The key aspect of their work is that their neighbourhood

union operator chooses a random neighbourhood to perform a random movement

within this chosen neighbourhood to produce a new solution in each step of the

algorithm. This method explores a large search space and produces good results.

Malim et al. [151] proposed three artificial immune algorithms (AISs) for the UCTP.

AIS are intelligent methodologies inspired by theoretical immunology and observed

immune functions, principles, and models, toward real-world problem solving [82].

Malim et al. [151] proposed three immune algorithms to solve this problem. They are

the clonal selection algorithm (CSA), the negative selection algorithm (NSA), and

the immune network algorithm (INA). CSA uses selection, cloning, and mutation

operators; INA uses cloning and mutation; and NSA uses negative deletion, cloning,

and mutation. Malim et al. tested their approaches on the examination and course

timetabling problems and their approaches are competitive in producing good results

but on different time scales.

53

Chapter 2. University Course Timetabling Problems and Solution Approaches

Asmuni et al. [29] applied a fuzzy multiple heuristic ordering method for the course

timetabling problem. The fuzzy meta-heuristic was introduced by Zadeh in 1965

[216]. Asmuni et al. [29] used ordering of events by simultaneously considering

three heuristics (large degree, saturation degree, and largest enrolment) using a

fuzzy approach. The proposed technique was tested on 11 problem instances and

the results showed that this approach is able to produce good results with a low

requirement for rescheduling.

Abdullah et al. [13] employed a variable neighbourhood search (VNS) method for

course timetabling and tested it on standard benchmark problems. The VNS method

was proposed by Mladenovic and Hansen [157]. In VNS, more than one neighbour-

hood structure is systematically changed during the LS process to explore a variety

of possible new search areas. Abdullah used twelve neighbourhood structures that

explore the search space. VNS was investigated with the exponential Monte Carlo

acceptance criterion [31] and tabu list. Their experimental results showed that VNS

is able to produce some good results on small and medium problem instances on the

cost of significant computational time. Later, Abdullah et al. [14] used eleven neigh-

bourhood structures to investigate a randomised iterative improvement approach.

In the iterative improvement algorithm, all neighbourhood structures were applied

on each iteration on a solution and the best among all neighbourhood solutions was

selected. If the selected solution is better than the current best solution, then it is

treated as the current solution; otherwise, the Monte Carlo criterion [31] is applied.

This approach also accepts a worse solution with a certain probability. The approach

54

Chapter 2. University Course Timetabling Problems and Solution Approaches

was able to produce competitive results on small problem instances.

Al-Betar [22] applied a new population-based meta-heuristics, called “harmony search”

(HS), to solve the UCTP. Geem et al. [114] introduced the HS heuristic, that is based

on the natural phenomenon of the behaviour of musicians when they play their mu-

sical instruments together to achieve a harmony. The proposed approach is able to

integrate exploitation and exploration in a parallel optimisation environment. The

experimental results showed that HS is able to give feasible solutions on small and

medium problem instances.

Anh et al. [26] presented LS methods to solve course timetabling. Their approach

works in two phases: the first phase consists of the creation of an initial solution that

satisfies all hard constraints, while the second phase uses the iterative improvement

method to minimise the soft constraints violations. The second phase was devel-

oped according to the requirements of the real data instances at Ho Chi Minh City

University. The approach produced good timetables.

2.4.7 Multi-Objective Approaches

In this section, we will first describe the general concept of multi-objective optimiza-

tion problems (MOOPs) along with some multi-objective EAs (MOEAs) for solving

general MOOPs. These MOEAs will be used later in Chapter 7 to solve the UCTP.

We will then see how different researchers have solved the UCTP as a MOOP.

55

Chapter 2. University Course Timetabling Problems and Solution Approaches

2.4.7.1 MOEAs for General MOOPs

Many real-world problems have multiple conflicting objectives, where improvement

of one objective may degrade one or more other objectives. The model of a general

MOOP can be simply described as follows:

Max/Min F (~x) = (f1(~x), f2(~x), · · · , fM(~x)) (2.6)

subject to : ~x = (x1, x2, · · · , xn) ∈ X (2.7)

where ~x is called an n-dimensional decision vector, representing a solution for the

MOOP, X is called the parameter space, solution space, or search space. F (~x)

is the image of ~x in the M-dimensional objective space, and each function fi(·),

i = 1, · · · ,M , represents one objective to be maximized or minimized.

Given two decision vectors ~a and ~b ∈ X , and, without loss of generality, assuming a

maximization problem, then ~a is said to dominate ~b if and only if the following two

conditions hold:

∀i ∈ {1, 2, · · · ,M} : fi(~a) ≥ fi(~b) (2.8)

and

∃j ∈ {1, 2, · · · ,M} : fj(~a) > fi(~b) (2.9)

We can write ~a � ~b to mean that ~a dominates ~b.

Given a set of solutions, all solutions which are not dominated by any other solution

56

Chapter 2. University Course Timetabling Problems and Solution Approaches

in this set are called non-dominated regarding this set. The solutions that are

non-dominated within the whole search space are called “Pareto optimal”. These

solutions constitute the Pareto optimal set or Pareto optimal front for an MOOP.

The purpose of a multi-objective optimization algorithm is to find solutions that

are as close to the Pareto optimal set as possible and as diverse as possible in the

obtained non-dominated front [79].

EAs, as a class of population-based approaches, are well suited to solve these MOOPs

because they possess several characteristics that are good for solving them [110, 137].

For example, an EA simultaneously searches different regions of the solution space,

making it possible to find a diverse set of solutions; an EA has the ability to optimise

multiple objectives simultaneously and requires minimal prior knowledge to solve an

MOOP; and the performance of an EA is not affected by the shape and continuity

of the search space [188].

The first multi-objective EA (MOEA), called “vector evaluated GA” (VEGA), was

proposed by Schaffer [189]. Since then, a number of MOEAs [67, 99, 126, 187, 215,

222, 223], e.g., the elitist non-dominated sorting GA (NSGA-II) [80], the strength

Pareto EA (SPEA) [221], and the ε-multi-objective EA (ε-MOEA) [81], have been

developed and successfully applied for MOOPs.

NSGA-II was introduced in [80] based on the concepts of non-dominated sorting and

crowding distance. The pseudo-code of NSGA-II is shown in Algorithm 2. Initially,

a random population of size N is created and sorted based on the non-dominated

57

Chapter 2. University Course Timetabling Problems and Solution Approaches

Algorithm 2 Elitist Non-dominated Sorting Genetic Algorithm (NSGA-II)

1: input: A problem instance I

2: set the generation counter g := 0
3: initialise a population Pg of N solutions
4: evaluate the individuals in Pg

5: assign rank and crowding distance for individuals in Pg

6: while the termination condition is not reached do

7: create a child population Qg from Pg using the crowded tournament selection,
crossover, and mutation

8: evaluate the child solutions in Qg

9: merge the child and parent populations into a combined population Rg := Pg
⋃

Qg

10: assign rank and crowding distance for individuals in Rg

11: create a new population from Rg based on rank and crowding distance
12: g := g + 1
13: end while

14: output: Non-dominated set of solutions

sorting [80]. Then, at each generation g, a child population Qg is created from the

parent population Pg by using the crowded tournament selection (two individuals

are randomly selected from Pg and the tournament winner among them is decided

according to their ranks and crowding distance values), crossover, and mutation

operators. Next, the child population Qg and Pg are merged together in Rg (so,

Rg has 2N individuals) and the rank and crowding distance values of individuals

in Rg are calculated. Finally, based on the ranks and crowding distances, the best

N solutions are picked up from Rg to form a new population Pg+1 for the next

generation. Thus, at the end of each generation, the set of non-dominated solutions

so far are obtained.

Knowles and Corne [136] introduced PAES based on a (1+1)-ES, as shown in Al-

gorithm 3. PAES uses an archive A of a fixed size to store the best so far solutions

during the solving process. The archive A is initially empty. As the searching

58

Chapter 2. University Course Timetabling Problems and Solution Approaches

Algorithm 3 Pareto Archived Evolutionary Strategy (PAES)

1: input: A problem instance I

2: set the generation counter g := 0
3: initialise a solution Pg and evaluate the solution
4: copy Pg to the archive Ag

5: while the termination condition is not reached do

6: apply mutation to Pg to produce a child Cg

7: evaluate Cg

8: if Pg dominates Cg then

9: discard Cg

10: else if Cg dominates Pg then

11: add Cg to Ag and replace Pg with Cg

12: else if Cg is dominated by any member of Ag then

13: discard Cg

14: else if Cg dominates some members of Ag then

15: remove those members dominated by Cg from Ag

16: add Cg to Ag and replace Pg with Cg

17: else

18: if Ag is not full then
19: add Cg to Ag

20: if Cg resides in a less crowded region of Ag than Pg then

21: replace Pg with Cg

22: end if

23: else

24: if Cg resides in the most crowded region of Ag then

25: discard Cg

26: else

27: replace a random member from the most crowded region of Ag with Cg

28: if Cg resides in a less crowded region of Ag than Pg then

29: replace Pg with Cg

30: end if

31: end if

32: end if

33: end if

34: g := g + 1
35: end while

36: output: Non-dominated set of solutions in A

progresses, good solutions are added to A and updated.

At first, the parent P is created and added to archive A. Then, at each generation

g, the parent Pg is mutated to create a child Cg. If the parent Pg dominates child

Cg,then child is discarded and if the child Cg dominates parent Pg, the child is

59

Chapter 2. University Course Timetabling Problems and Solution Approaches

replaced as the new parent and added to archive. If Cg and Pg do not dominate

each other, then the child Cg is compared with members in Ag. If Cg dominates

any member of Ag, then it is replaced with child Cg and the child is also used as

a parent. If Cg does not dominate any member in the archive, both parent and

offspring belong to the same non-dominated front to which the archive solutions

belong. In this case, there are two scenarios. In the first one, if the archive is not

full, Cg is copied to Ag, and is accepted as the parent for the next generation if it is

in the less crowded region1 in the parameter space among the members of the archive

than the parent. In the second scenario (i.e., the archive is full), if Cg resides in the

most crowded region in the parameter space among the members of the archive, it

is discarded; otherwise, Cg will replace one random member of Ag from the most

crowded region, and is accepted as the parent for the next generation if it is in the

less crowded region in the parameter space among the members of the archive than

the parent.

Another MOEA that is used to solve different optimization problem is the improved

strength pareto evolutionary algorithm (SPEA-II). SPEA-II was introduced by Zit-

zler et al. in [221]. The pseudo-code of SPEA-II is shown in Algorithm 4. SPEA-II

uses two populations: one regular population P of size N and one archive A of size

N̄ . First, a population P with N random solutions and an empty archive A are

created. After that, each individual in P is first evaluated according to its objective

values and then assigned a fitness value. In order to calculate the fitness value of an

1See [136] for the definition of regions constructed by the solutions in the archive. A region is
more crowded if it has more archive solutions within it.

60

Chapter 2. University Course Timetabling Problems and Solution Approaches

Algorithm 4 Improved Strength Pareto Evolutionary Algorithm (SPEA-II)

1: input: A problem instance I

2: set the generation counter g := 0
3: initialise a population Pg of N solutions
4: create an empty archive Ag of size N̄

5: while the termination condition is not reached do

6: calculate the fitness values of individuals in Pg and Ag

7: merge Pg and Ag

8: perform the environmental selection on the merged population to form Ag

9: perform the mating selection on Ag to form a mating pool
10: create the child population Pg by applying crossover and mutation operators to the

mating pool
11: g := g + 1
12: end while

13: output: Non-dominated set of solutions

individual, it is first assigned a strength value S(i), which is defined as follows:

S(i) =| {j | j ∈ Pg + Ag ∧ i � j} | (2.10)

where “||” denotes the cardinality of a set, “+” stands for multiset union, and “�”

corresponds to the Pareto dominance relation. Based on the strength value, the raw

fitness R(i) of individual i is calculated as follows:

R(i) =
∑

j∈Pg+Ag,j�i

S(j) (2.11)

Hence, this raw fitness value is calculated using the strengths of the dominators in

both the archive and population sets.

In the event that individuals have the same raw fitness values, a density estimation

technique is used. The density D(i) corresponding to individual i is calculated as

61

Chapter 2. University Course Timetabling Problems and Solution Approaches

follows:

D(i) =
1

σk
i + 2

(2.12)

For each individual i, the distances in the objective space to all individuals j in the

archive and population are calculated and stored in a list. After sorting the list in

increasing order, the k-th element gives the distance sought, denoted as σk
i , where

k is equal to the square root of the sample size, i.e., k = (N + N̄)1/2. Finally, the

fitness value F (i) of individual i is calculated on the basis of density and raw fitness

as:

F (i) = R(i) +D(i) (2.13)

After finding the fitness of individuals, archive and population are merged for en-

vironmental selection [221] to form a new archive for the next generation. In the

process of environmental selection, all non-dominated individuals in the merged pop-

ulation are selected to re-fill the archive. If the number of non-dominated individuals

is equal to the predetermined archive size N̄ , we copy them to the archive and stop

the archive update operation; otherwise, there can be two situations: If the archive

is bigger than the non-dominated set in size, we copy all non-dominated individuals

and some dominated individuals from the previous archive and population into the

archive up to the size N̄ ; otherwise, if the archive is smaller than the non-dominated

set, then a truncation method is used to remove individuals from the non-dominated

set one by one as follows. The individual which has the minimum distance to an-

other individual in the remaining non-dominated set is chosen to be removed. If

62

Chapter 2. University Course Timetabling Problems and Solution Approaches

Algorithm 5 ε-Multi-Objective Evolutionary Algorithm (ε-MOEA)

1: input: A problem instance I

2: set the generation counter g := 0
3: initialize a population Pg of N solutions
4: evaluate the individuals in Pg

5: copy non-dominated solutions in Pg to the archive Ag

6: while the termination condition is not reached do

7: select two parents: one from Pg and one from Ag

8: mate the two parents to create a set C of children via crossover and mutation
9: evaluate each child in C

10: update Pg according to C using the dominance measure
11: update Ag according to C using the ε-dominance measure
12: g := g + 1
13: end while

14: output: Non-dominated set of solutions in A

there is more than one individual with the same minimum distance, the tie is bro-

ken by considering the second smallest distances, and so on. The process continues

until there are N̄ individuals left in the non-dominated set, which are copied to

form the archive. After the environmental selection, only members of the archive

participate in the mating selection process using the binary tournament selection

with replacement to create the mating pool. The child population is then created

by applying crossover and mutation to the mating pool. This process is continued

until the termination condition is reached.

Another MOEA is ε-MOEA, proposed by Deb et al. [81] based on [140], as shown

in Algorithm 5. In ε-MOEA, the search space is divided into a number of grids

(or hyper-boxes) and diversity is maintained by ensuring that a hyper-box can be

occupied by only one solution [81]. Two co-evolving populations were used: one EA

population P and one archive population A. The EA population P is initialized

with N random solutions, which are evaluated. All non-dominated individuals in

63

Chapter 2. University Course Timetabling Problems and Solution Approaches

P are copied into the archive A. In each generation, a child is created through two

parents. One parent is chosen from A randomly. Another parent is chosen from P as

follows: two individuals are selected randomly from P and compared. If one solution

dominates the other, the dominating solution is chosen; otherwise, one is randomly

chosen as the parent. After two parents are selected, they are mated to create a set

of children C = {C1, C2, · · · , Cλ} via crossover and mutation operations, where λ is

a parameter of ε-MOEA. After the set of children are created and evaluated, both

P and A are updated according to C as follows.

For updating P , each child Ci, i = 1, · · · , λ is compared with all members in P . If

Ci dominates any member in P , then it replaces that member. Otherwise, if any

member of P dominates Ci, then Ci is not included in P . If both of the above

tests fail, then Ci replaces a random individual from P . For updating A, each

child Ci is compared with each member of A using the concept of ε-dominance

[81]. In this process, each individual in A is assigned an identification array ~B =

{B1, B2, · · · , BM}, where M is the total number of objectives. The identification

array ~B is defined as follows:

Bj(~f) =















b(fj − fmin
j)/εjc, for minimizing fj

d(fj − fmin
j)/εje, for maximizing fj

(2.14)

where fj is the j-th objective value of the individual, fmin
j is the minimum possible

value of the j-th objective, and εj is the allowable tolerance in the j-th objective,

below which two values are not significant to the user [140]. The identification

64

Chapter 2. University Course Timetabling Problems and Solution Approaches

arrays divide the whole objective space into hyper-boxes with the size εj in the j-th

objective. The child Ci enters A according to its position in the hyper-boxes as

described in [81]. In the end, A has the solutions obtained.

Comprehensive reviews, references, and recent research directions on MOEAs can

be found in [6, 16, 98, 220].

2.4.7.2 Solving the UCTP as a MOOP

In the real world, the UCTP has multiple conflicting objectives. Some researchers

have also investigated MOEAs for examination and school timetabling problems

[62, 64, 172]. However, so far, only a few researchers have applied multi-objective

optimization techniques to solving the multi-objective UCTP (MOUCTP). Burke et

al. [50] proposed a hyper-heuristic approach for MOOPs and tested their approach on

the space allocation problem and UCTP. Carrasco and Pato [58] used a bi-objective

GA to solve the class teacher timetabling problem. They minimized the constraints

violation of teachers and classes as two separate objectives.

Carrasco and Pato [58] used a bi-objective GA to solve the class teacher timetabling

problem. They minimized the constraints violations of teachers related objective

and classes oriented objective as two separate objectives. As these two objectives

are basically in conflict with each other, the authors decided to apply MOEAs to

solve this problem. A timetable is represented as a room and timeslot matrix. The

initial population is generated by a constructive heuristic. After that, individuals

65

Chapter 2. University Course Timetabling Problems and Solution Approaches

are evaluated according to both objective values. Carrasco and Pato used their own

genetic operators together with the non-dominated sorting approach [197], and an

archive population to store the non-dominated solutions. They tested their approach

on real data instances and concluded that their approach produces better timetables

than manual timetables. The main advantage of their approach is that a user may

be provided with a range of trade-off solutions with regard to the two competing

objectives.

Datta et al. [83] used NSGA-II to solve the UCTP. They developed a bi-objective

model to minimize soft-constraint violations, applied one crossover and four muta-

tion operators into their algorithm, and tested the performance of their algorithm on

real-world data. They concluded that the performance of their algorithm depends

on user defined mutation probabilities and initial solutions.

Badri [32] formulated a multi-objective method for course scheduling for the United

Arab Emirates University. This is a two-stage optimisation problem. Firstly, the

model tries to maximise faculty course preferences when assigning faculty members

to courses. Secondly, when allocating courses to timeslots, the approach tries to

maximise faculty time preferences. Experimental results show that the model was

able to offer an assignment that fulfils departmental policies, course offerings, and

personnel preferences.

Abdullah et al. [19] proposed a multi-objective approach for the PECTP. They

used NSGA-II with a variable population size. They gave individuals a life time

66

Chapter 2. University Course Timetabling Problems and Solution Approaches

at the time of its birth, the main purpose of assigning a life time being to ensure

that only the good quality solutions will always be kept in the population pool.

Their experimental results showed that this approach improves the performance of

traditional NSGA-II.

2.5 Chapter Summary

In this chapter, we have described various types of timetabling problems, especially

the UCTP. We also discussed many approaches that have been applied to solve

the timetable problem. Each approach has its own advantages and disadvantages.

Heuristic-based methods achieve good timetables quickly, but rely on a good choice

of heuristics. Constraint logic programming has the ability to cope with different

constraints to the system, but has a limited optimisation capability. It may be

the case that some approaches are more suitable than others for certain types of

problems/situations and user requirements.

We notice that many researchers tested their approaches on their own institutes’

data or real data instances. As a result, it sometimes becomes very difficult to

judge or assess how well an algorithm performs in comparison with other algorithms.

Therefore, in this field, there is a great need for some standardised UCTP instances

that can be used for the effective analysis and comparison of various timetabling

algorithms. Hence, we will look at some well-known UCTP instances in the next

chapter for this purpose.

67

Chapter 3

Benchmark Timetabling Problem

Instances

3.1 Introduction

In this chapter, we will describe the specification of different versions of university

course timetabling problems (UCTPs) that have been tested or used in the experi-

mental study of the proposed approaches. We also present the formulation of these

problem instances. In our research, we will use different benchmarks for the experi-

mental studies, which are also mentioned here. These benchmarks are different from

each other in terms of constraints or objective functions, etc. Detailed description

are given later in this chapter. We will also look at various algorithms that have

been proposed for these problem instances.

68

Chapter 3. Benchmark Timetabling Problem Instances

For the sake of descriptive convenience, throughout this chapter, we will use the

acronyms UCTP (University Course Timetabling Problem), PECTP (Post Enrol-

ment Course Timetabling Problem) and MOUCTP (Multi-objective University Course

Timetabling Problem), to refer to these problem versions. In addition, unless ex-

plicitly stated otherwise, these acronyms will also apply throughout the remainder

of the thesis. This chapter is organised as follows: Section 3.2 describes the spec-

ification for the UCTP, including the problem definition, formulation, benchmark

dataset, and the state-of-the-art results for these benchmark problems. Section 3.3

describes the PECTP, including the problem definition, formulation, benchmark

dataset, and the state-of-the-art results for these benchmarks used in the research.

In Section 3.4, we first present the basic concepts of general MOOPs, then describe

the MOUCTP, including the problem definition and benchmark dataset used in the

research. Section 3.5 summarises this chapter.

3.2 The University Course Timetabling Problem

(UCTP)

3.2.1 Problem Definition

This version of course timetabling was originally defined in 2001 so that it could

be used for various research purposes by the meta-heuristics network [3], and was

69

Chapter 3. Benchmark Timetabling Problem Instances

intended to overcome some of the common ambiguities and inconsistencies that

existed in the study of automated course timetabling [143].

In this problem version, we deal with the following hard constraints:

• H1: No student attends more than one event at the same time;

• H2: The room is big enough for all the attending students and satisfies all the

features required by the event;

• H3: Only one event is in a room at any time slot.

There are also soft constraints, which are equally penalised by the number of their

violations and are described as follows:

• S1: No student should be required to attend an event in the last time slot of

a day;

• S2: No student should sit more than two events in a row;

• S3: No student should have a single event in a day.

3.2.2 Problem Formulation

In a UCTP, we assign an event (course, lecture) into a time slot and also assign a

number of resources (students and rooms) in such a way that there is no conflict

between the rooms, time slots, and events. As mentioned by Rossi-Doria et al. [181],

70

Chapter 3. Benchmark Timetabling Problem Instances

the UCTP consists of a set of n events (classes, subjects) E = {e1, e2, ..., en} to be

scheduled into a set of p time slots T = {t1, t2, ..., tp}, a set of m available rooms R =

{r1, r2, ..., rm} in which events can take place, a set of k students S = {s1, s2, ..., sk}

who attend the events, and a set of l available features F = {f1, f2, ..., fl} that are

satisfied by rooms and required by events.

In addition, interrelationships between these sets are given by five matrices.

• The first matrix Ak,n, called the Student-Event matrix, shows which event is

attended by which students. In Ak,n, the value of ai,j is 1 if student i ∈ S

should attend event j ∈ E; otherwise, the value is 0.

• The second matrix Bn,n, called the Event-Conflict matrix, indicates whether

two events can be scheduled in the same time slot or not.

• The third matrix Cm,l, called the Room-Features matrix, gives the features

that each room possesses, where the value of a cell ci,j is 1 if i ∈ R has a

feature j ∈ F ; otherwise, the value is 0.

• The fourth matrix Dn,l, called the Event-Features matrix, gives the features

required by each event. It means that event i ∈ E needs feature j ∈ F if and

only if dij = 1.

• The last matrix Gn,m, called the Event-Room matrix, lists the possible rooms

to which each event can be assigned. Through this matrix, we can quickly

identify all rooms that are suitable in size and feature for each event.

71

Chapter 3. Benchmark Timetabling Problem Instances

Usually, a matrix is used for assigning each event to a room ri and a time slot ti.

Each pair of (ri, ti) is assigned a particular number which corresponds to an event.

If a room ri in a time slot ti is free or no event is placed, then “-1” is assigned to

that pair. In this way, we assure that there will be no more than one event assigned

to the same pair so that one of the hard constraints will always been satisfied.

For the room assignment, we use a matching algorithm described by Rossi-Doria

[181]. For every time slot, there is a list of events taking place in it and a pre-

processed list of possible rooms to which the placement of events can occur. The

matching algorithm uses a deterministic network flow algorithm and gives the max-

imum cardinality matching between rooms and events.

In general, the solution to a UCTP can be represented in the form of an ordered

list of pairs (ri, ti), of which the index of each pair is the identification number of an

event ei ∈ E (i = 1, 2, · · · , n). For example, the time slots and rooms are allocated

to events in an ordered list of pairs like:

(2, 4), (3, 30), (1, 12), · · · , (2, 7),

where room 2 and time slot 4 are allocated to event 1, room 3 and time slot 30 are

allocated to event 2, and so on.

The goal of the UCTP is to minimize the soft constraint violations of a feasible

solution (a feasible solution means that no hard constraint violation exists in the

solution). The objective function f(s) for a timetable s is the weighted sum of

72

Chapter 3. Benchmark Timetabling Problem Instances

the number of hard constraint violations #hcv and soft constraint violations #scv,

which was used in [180], as defined below:

f(s) := #hcv(s) ∗ C +#scv(s) (3.1)

where C is a constant, which is larger than the maximum possible number of soft-

constraint violations. In all the experiments carried out in later chapters for the

UCTP, we set C = 106. If the objective function value shown in the experimental

results exceeds 106, it means that the results contain infeasible solutions.

3.2.3 Benchmark Dataset

The experiments for the UCTP to be discussed in some chapters of this thesis were

tested on the eleven benchmark UCTP instances proposed by Socha et al. [196]. In

these problem instances, we need to schedule 100-400 events/courses into 45 time

slots, corresponding to 5 days of 9 hours each day. By assigning events we have to

satisfy room constraints and student constraints. These eleven problem instances

are divided into three groups: five small instances, five medium instances, and one

large instance. In the experimental studies to be carried out in the following chapters

on this dataset, we use “S1” to “S5” to represent small instance 1 to small instance

5, respectively, “M1” to “M5” to represent medium instance 1 to medium instance

5, respectively, and “L” to represent the large instance. Table 3.1 presents different

parameter values of these problem instances.

73

Chapter 3. Benchmark Timetabling Problem Instances

Table 3.1: Features of UCTP instances [196]

Class Small Medium Large

Number of events 100 400 400
Number of rooms 5 10 10
Number of features 5 5 10
Per room approximate features 3 3 5
Percentage (%) of features used 70 80 90
Number of students 80 200 400
Maximum events per student 20 20 20
Maximum students per event 20 50 100

3.2.3.1 Best Known Results on the UCTP Benchmark Instances

These problem instances were used in the First International Timetabling Compe-

tition (ITC-2002). A number of good papers have been published regarding this set

of UCTP benchmark instances. In this sub-section, we will review some of the most

notable works on this set of UCTP benchmark instances.

Burke et al. [47] proposed a tabu-based hyper-heuristic search (THHS) method and

tested it on the UCTP and nurse rostering problems. They introduced a hyper-

heuristics where 6 low-level heuristics compete with each other. They used a ranking

mechanism to dynamically rank each low-level heuristics. When a heuristic has been

applied, the change in the cost function value is recorded. If the low-level heuristic

does not lead to any improvement of the current solution quality, then this heuristic

will not be allowed to be selected for several following iterations. Burke et al. [47]

used variable length dynamic tabu list and the status of the heuristics in the tabu list

is changed from tabu active to non-tabu active if there is an improvement in the cost

function. Their experimental results showed that their approach gives the best or

similar results on 7 out of 11 problem instances in comparison with other algorithms.

74

Chapter 3. Benchmark Timetabling Problem Instances

A noticeable aspect of their approach is that, although it is not especially designed

for timetabling problems, it proves to be capable of producing acceptable solutions

for this problem, and hence, shows robustness for other optimization problems.

Rossi-Doria et al. [181] applied a genetic algorithm (GA) to solve the UCTP. They

proposed a steady state GA along with a local search (LS) technique. In their al-

gorithm, a population of random solutions is first generated. Each individual then

undergoes an LS process and then is evaluated according to an objective function.

Crossover and mutation operators are applied with a probability 0.8 and 0.5, re-

spectively. They compared different heuristics and found that the GA is not a very

effective approach in comparison with other heuristics towards solving this problem

regarding the objective value.

Socha et al. [196] developed the first ant colony optimization (ACO) algorithm (AA)

with the help of a construction graph and a pheromone model appropriate for the

UCTP. They presented two ant based systems, an ant colony system and a MAX-

MIN ant system. In both systems, an ant first constructs a complete assignment of

events to time slots using the heuristic and pheromone information. The authors set

an upper and lower bound for the value of each pheromone trail. An LS operator is

then applied [180] to further improve the solution quality. A qualitative comparison

is provided between the two ant colony algorithms. The only difference between

the two algorithms lies in the interpretation and updating procedure of pheromones.

Socha et al. compare their algorithms with a random restart LS scheme that starts

75

Chapter 3. Benchmark Timetabling Problem Instances

from a random solution and keeps trying to find a better solution in its neighbour-

hood solutions. They generated 11 problem instances (described above) using a

problem instance generator. Their experimental results showed that the ant colony

algorithm based on the MAX-MIN ant system achieved better results than the LS

scheme.

Asmuni et al. [29] proposed a fuzzy algorithm (FA) for the UCTP. In their work,

they focused on the issue of ordering events by simultaneously considering three

different heuristics using fuzzy methods. They used the combinations of two of the

three heuristics, i.e., the Largest Degree (the degree of an event is the number of

events that have the same students enrolled and conflict with the event), the Largest

Enrolment (the number of students enrolled for each event), and the Saturation

Degree (the number of time slots available to order the events). They compared

their results with five single heuristics. Their experimental results showed that

better and more feasible solutions could be obtained by combining more heuristics.

Abdullah et al. [13] used a variable neighbourhood search (VNS) approach based

on a random-descent LS with an exponential Monte Carlo acceptance criterion for

the UCTP. In their approach, the algorithm starts with a solution, initialized by

constructive heuristics. The LS operator, which only accepts improved solutions, is

then applied, 12 neighbourhood structures for the VNS were used. A worse move

is accepted based on the Monte Carlo acceptance scheme [31]. TS was also used

76

Chapter 3. Benchmark Timetabling Problem Instances

to penalize neighbourhood structures that are not performed. Ordered and non-

ordered VNSs1 were investigated and it was concluded that the ordered VNS gives

better results on small and medium instances, but is unable to get a feasible solution

on the large instance.

Later, Abdullah et al. [14] proposed a randomised iterative improvement method

(RIIA). They used 11 neighbourhood structures that are applied one by one to an

initial solution and the best result among all neighbourhood structures is selected.

They also used an acceptance criterion [31] for choosing a worse move. The main

advantage of their approach is that different neighbourhood structures help the

algorithm explore different areas of the search space. Their experimental results

showed that their approach is able to produce good results on small and medium

problem instances.

Abdullah et al. [15] also investigated a randomised improvement algorithm with EA

and proposed a hybrid EA (HEA). They tested a light mutation operator followed

by a randomised iterative improvement algorithm on the UCTP. The light mutation

operator is applied on some individuals in the population. The algorithm will ter-

minate if the penalty cost is zero or the number of iterations reaches 200,000 and

1In a non-ordered VNS, if any improvement is found during the search with the current neigh-
bourhood structure, then the VNS continues its search with the current neighbourhood structure
rather than going back to the first (neighbourhood structure) one. In an ordered VNS, the neigh-
bourhood structures are sequenced in the order of increasing size. Each time an improvement is
found or a worse solution is accepted by the acceptance criterion, the search will go back to the
first neighbourhood structure. If no improvement is found, the next neighbourhood structure is
used to search.

77

Chapter 3. Benchmark Timetabling Problem Instances

takes approximately ten hours per run on each data set. Their experimental results

showed that their approach is able to produce good results on all problem instances.

A graph-based hyper-heuristic (GBHH) was proposed by Burke et al. [51]. They

employed TS with graph-based hyper-heuristics on the UCTP and the examination

timetabling problem. TS is employed to search for the list of low-level heuristics.

Low-level heuristics consist of permutations of graph heuristics and a random or-

dering method. A move in TS is to pick a new heuristic list, which is obtained by

randomly changing two of the heuristics in the previous heuristic list. The newly

visited heuristic lists are added into the tabu fixed length list. Here, TS finds the

heuristic list that gives the best quality solution under consideration. Burke et al.

tested their approach on 11 benchmark problem instances [196]. Their experimental

results showed that their approach is able to find good solutions while maintaining

the generality of the hyper-heuristic framework. This research shows that effective

results on the UCTP can be achieved when a large number of low-level heuristics

are used.

Kostuch [138] proposed a simulated annealing (SA) based heuristic. This approach is

divided into two stages. First, it finds a feasible timetable via simple graph colouring

heuristics. Second, it uses an SA scheme to improve the timetable according to an

objective function. An algorithm’s time limit was used to calculate a temperature

decrement rate. The advantage of this approach is that it allows a cooling that is as

slow as possible and spends sufficient time at low temperature for possible movement

toward a near-optimal solution in the search space. One interesting feature of the

78

Chapter 3. Benchmark Timetabling Problem Instances

research is that 40 instead of 45 time slots were used to place the events because the

last time slot of every day is associated with one soft constraint. These time slots

were only used if the feasibility of a timetable was effective. The algorithm was run

on 20 problem instances of the ITC-2002 and became a winning entry.

An efficient timetabling solution (ETTS) with TS approach was proposed by Cordeau

et al. [76]. They developed a tabu heuristic that first finds a feasible solution and then

improves the quality of the solution by reducing soft constraints. Their algorithm

allows the breaking of some hard constraints while dealing with soft constraints.

The weighted sum function is used to penalize the occurrence of hard constraints. A

parameter is used to penalize the hard constraints and the value of this parameter

varies so that, when the number of hard constraints in the timetable rises above a

certain amount, no further in-feasibilities will be allowed further. One advantage of

this approach claimed by authors is that it allows free movements about the search

space. Their algorithm is able to produce very good results on 20 problem instances

of the ITC-2002 [1].

Bykov [56] used a great deluge LS algorithm (GDLS) to solve the problem. His

algorithm is based on the approach by Burke et al. [42]. Bykov used a modified

Brelaz sequential algorithm to initialize an initial solution, where the event with

the minimum number of available time slots is scheduled first. The author reported

that most of the time, the initial solution is feasible. After the initialization phase,

a great deluge LS operator is applied to minimize soft-constraint violations. The

neighbourhood randomly chooses an event and a new time slot for it. A move is

79

Chapter 3. Benchmark Timetabling Problem Instances

accepted if it is feasible and satisfies the great deluge acceptance condition. The

most noticeable thing about Bykov’s algorithm is that subroutines are used to allo-

cate rooms in a timetable. His algorithm produced good results on 20 benchmark

instances of the ITC-2002 [1].

Gaspero and Schaerf [113] used a three-stage LS paradigm (TSLS). Their LS method

consists of hill climbing, TS, and multi-swap shake stages. In the hill climbing stage,

they used a set of three neighbourhood (i.e., change time, change room, and swap

time). A move is accepted if it improves or leaves unchanged the value of the

objective function. In the TS stage, they used a variable length short-term tabu

mechanism. Only one neighbourhood that moves an event in a different time slot

and different room is considered here. In the multi-swap shake stage, only one single

move, in which all events in a time slot are moved to a different time slot was allowed.

Results were reported on the basis of 20 trails for 20 instances of the ICT-2003 [1].

Gaspero and Schaerf’s algorithm won fourth place among all competition entries.

Arntzen and Løkketangen [27] described a two-stage TS-based approach (AMLS).

In the first stage, their algorithm uses a constructive heuristic procedure to build

an initial feasible timetable, which takes a very small amount of time to execute

and which operates by taking events one by one and assigning them to feasible

places in the timetable, according to some specialised heuristics that also take into

account the potential number of soft constraint violations that such assignments

might cause. Their constructive heuristic dynamically inserts events into the current

partial timetable. Their heuristic finds a feasible solution without restarting the

80

Chapter 3. Benchmark Timetabling Problem Instances

process. In the second stage, they used a TS heuristic with simple neighbourhoods

in order improve the soft constraints. In this stage, they maintain the feasibility.

When an event is moved to a possible time slot, they mark the event as tabu. Their

search is guided by tabu mechanisms based on recency and frequency of certain

attributes of previous moves. When a long sequence of moves has been performed

without improving the solution, they use an ejection chain process to move the

search into another part of the search space. Their approach produced good results

on 20 instances of the ITC-2002 [1].

Dubourg et al. [93] also proposed a TS approach (DTS) to solve the UCTP. They

used a greedy algorithm for the initial configuration. The neighbourhood consists

of swapping of two variables. The tabu list size varies according to the number of

conflicts in terms of students attending an event. They concluded that lists which

are too long can prohibit the visiting of unexplored regions of the search space.

Tabu list records the couple of events previously swapped and their position in the

configuration. Their approach is able to produce good results on 20 UCTP instances

of the ITC-2002 [1].

81

Chapter 3. Benchmark Timetabling Problem Instances

3.3 The Post Enrolment Course Timetabling Prob-

lem (PECTP)

The UCTP can be further divided into two categories as proposed by the organizers

of ITC-2007 [2]: the post enrolment course timetabling problem (PECTP) [146]

and the curriculum base course timetabling problem (CBCTP). The main difference

between them lies in the fact that in the CBCTP, courses are scheduled according to

the curricula published by the university while in the PECTP, courses are scheduled

according to the student enrolment data [150]. In this thesis, we also deal with the

PECTP, which is similar to the ITC-20022 UCTP problem, but having additional

new hard constraints. According to Lewis [146], these new hard constraints make

it very difficult to find a feasible solution in the search space and make the PECTP

not dissimilar to a real-world timetabling problem.

3.3.1 Problem Description

The PECTP consists of assigning university courses to time slots and rooms ac-

cording to student enrolment data, where each assignment has to fulfil various con-

straints. Among these constraints, some are hard and some are soft. The PECTP

deals with the following hard constraints [146]:

• H1: No student attends more than one event at the same time;

2For details, see http://www.idsia.ch/Files/ttcomp2002/oldindex.html.

82

Chapter 3. Benchmark Timetabling Problem Instances

• H2: The room is big enough for all the attending students and satisfies all the

features required by the event;

• H3: Only one event is in a room at any time slot;

• H4: Events should only be assigned to time slots that are predefined as avail-

able for those events;

• H5: Where specified, events should be scheduled to occur in the correct order.

A solution is feasible if all hard constraints are satisfied by the solution. Accord-

ing to the organisers of the ITC-2007, a timetable is required to satisfy all hard

constraints. Due to the fact that it may be very difficult to achieve this hard con-

straints feasibility, it was suggested that some events may be left unassigned in a

timetable if necessary, and they introduced the notion of “distance to feasibility

(Df)” [146], which is defined as the number of students that are affected by unas-

signed events, was introduced. Given a solution, if there is any event that causes

any hard-constraint violation, it needs to be removed (i.e., unassigned) from the

timetable, and as a consequence, some students who have to take this event will

suffer from its removal. The Df of the given solution is calculated by identifying

the number of students that are required to attend each of the unassigned events

and then simply adding these values together. For example, if a solution has three

events that need to be unassigned to prevent any violation of the hard constraints,

and the number of students that need to attend each of these events is 2, 3, and

83

Chapter 3. Benchmark Timetabling Problem Instances

1, then the Df of the solution is (2 + 3 + 1) = 6. With the notion of “distance to

feasibility”, an infeasible solution can be characterized by its Df .

In the PECTP, there are also soft constraints, which are penalized equally by their

occurrences

• S1: No student should be required to attend an event in the last time slot of

a day;

• S2: No student should sit more than two events in a row;

• S3: No student should have a single event in a day.

The soft constraint penalty value is denoted as SCP when we deal with the PECTP

later in this thesis.

3.3.2 Problem Formulation

In a PECTP, we assign an event (courses, lectures) into a time slot and also assign

a number of resources (students, rooms) in such a way that there is no conflict

between the rooms, time slots, and events. The PECTP consists of a set of n

events (classes, subjects) E = {e1, e2, ..., en} to be scheduled in a set of p time slots

T = {t1, t2, ..., tp}, a set of m available rooms R = {r1, r2, ..., rm} in which events

can take place, a set of k students S = {s1, s2, ..., sk} who attend the events and a

set of l available features F = {f1, f2, ..., fl} that are satisfied by rooms and required

by events.

84

Chapter 3. Benchmark Timetabling Problem Instances

In addition, interrelationships between these sets are given by the following seven

matrices:

• The first matrix Ak×n, called the Student-Event matrix, shows which event is

attended by which students. The value of a cell aij ∈ Ak×n is 1 if student

si ∈ S should attend event ej ∈ E; otherwise, the value is 0.

• The second matrix Bn×n, called the Event-Conflict matrix, indicates whether

two events can be scheduled in the same time slot or not. It helps to quickly

identify events that can be potentially assigned to the same time slot.

• The third matrix Cm×l, called the Room-Feature matrix, gives the features

that each room possesses, where the value of a cell cij is 1 if ri ∈ R has a

feature fj ∈ F ; otherwise, the value is 0.

• The fourth matrix Dn×l, called the Feature-Event matrix, gives the features

required by each event. It means that event ei ∈ E needs feature fj ∈ F if

and only if dij = 1.

• The fifth matrix Gn×m, called the Event-Room matrix, lists the possible rooms

to which each event can be assigned. Through this matrix, we can quickly

identify all rooms that are suitable in size and feature for each event.

• The sixth matrix Hn×t is called the Event-Availability matrix, where the value

of a cell Hij is 1 if event ei ∈ E should take place at time slot tj ∈ T ; otherwise,

the value is 0.

85

Chapter 3. Benchmark Timetabling Problem Instances

• The last matrix In×n is called the Event-Preference matrix, where the value of

cell Iij is 1 if ei ∈ E has to be schedule before ej ∈ E, or -1 if ei ∈ E has to

be placed in the timetable after ej ∈ E; otherwise, the value is 0 if there is no

restriction of precedence between ei ∈ E and ej ∈ E.

In addition to the above matrices, we create an array EE of lists. Each element

EEi ∈ EE is a list of events that have to be scheduled in a timetable after event

ei. This information helps to satisfy the hard constraint H5 in the execution of an

algorithm. We also create a list ET of event time slots. Each element ETi ∈ ET is

a list of possible time slots where event ei has to be scheduled. There is also a set

E ′

e of events that are not subject to any time restriction. Similarly, there is a set T ′

s

of time slots that have no restriction of any event.

Usually, a matrix is used for assigning each event to a room ri and a time slot ti.

Each pair of (ri, ti) is assigned a particular number which corresponds to an event.

If a room ri in a time slot ti is free or no event is placed, then “-1” is assigned to

that pair. This way, we assure that there will be no more than one event assigned

to the same pair so that one of the hard constraints will always be satisfied.

For room assignment, we use a matching algorithm described by Rossi-Doria et

al. [181]. For every time slot, there is a list of events taking place in it and a

pre-processed list of possible rooms to which events can be assigned. The match-

ing algorithm uses a deterministic network flow algorithm and gives the maximum

cardinality matching between rooms and events.

86

Chapter 3. Benchmark Timetabling Problem Instances

In general, the solution to a PECTP can be represented in the form of an ordered

list of pairs (ri, ti) as described in Section 3.2.2 for UCTP.

The goal of the PECTP is to minimise the number of hard- and soft-constraint

violations. The objective function f(s) for a timetable s is the weighted sum of the

number of hard-constraint violations #hcv and soft-constraint violations #scv (we

refer to #scv as SCP later in this chapter), which was also used in [182], as defined

below:

f(s) := #hcv(s) ∗ C +#scv(s) (3.2)

where C is a constant larger than the maximum possible number of soft-constraint

violations.

3.3.3 Benchmark Dataset

The organisers of the ITC-2007 proposed 24 problem instances for the PECTP [146].

Table 3.2 presents the features of these PECTP instances3. These PECTP instances

will be used later in the experimental study later in Chapter 6.

3.3.3.1 Best Known Results on the PECTP Benchmark Instances

In this subsection, we will review some of the most notable works on these PECTP

benchmark instances, which were used in the ICT-2007.

3Details about these PECTP instances can be found at the official ITC-2007 website
http://www.cs.qub.ac.uk/itc2007/postenrolcourse/course post index.htm.

87

Chapter 3. Benchmark Timetabling Problem Instances

Table 3.2: Features of the ITC-2007 PECTP instances

ITC-2007 Instance 1 2 3 4 5 6 7 8 9 10 11 12

Number of events 400 400 200 200 400 400 200 200 400 400 200 200

Number of rooms 10 10 20 20 20 20 20 20 10 10 10 10

Number of features 10 10 10 10 20 20 20 20 20 20 10 10

Number of students 500 500 1000 1000 300 300 500 500 500 500 1000 1000

Max students per event 33 32 98 82 19 20 43 39 34 32 88 81

Max events per student 25 24 15 15 23 24 15 15 24 23 15 15

Mean features per room 3 4 3 3 2 3 5 4 3 3 3 4

Mean features per event 1 2 2 2 1 2 3 3 1 2 1 23

ITC-2007 Instance 13 14 15 16 17 18 19 20 21 22 23 24

Number of events 400 400 200 200 100 200 300 400 500 600 400 400

Number of rooms 20 20 10 10 10 10 10 10 20 20 20 20

Number of features 10 10 20 20 10 10 10 10 20 20 30 30

Number of students 300 300 500 500 500 500 1000 1000 300 500 1000 1000

Max students per event 20 20 41 40 195 65 55 40 16 22 69 41

Max events per student 24 24 15 15 23 23 14 15 23 25 24 15

Mean features per room 2 3 2 5 4 4 3 3 3 3 5 5

Mean features per event 1 1 3 3 2 2 1 1 1 2 3 3

Cambazard et al. [57] proposed a mixed meta-heuristic approach (MMA), which in-

cludes tabu mechanism and simulated annealing in conjunction with various neigh-

bourhood operators. Pure random configuration was used to start the algorithm. A

feasible solution was found using LS by considering a unit cost per hard constraint

violation. Six neighbourhood structures were used. Moves were run according to the

solution quality and computational hardness. A move was included in the neighbour-

hood at a given iteration depending on a probability decreasing with its complexity.

A tabu mechanism was also applied to prevent cycling. After finding a feasible solu-

tion. SA was used to minimize the cost of soft constraints. The initial temperature

was chosen dynamically as the average of the variation of the objective function

when running the SA at a temperature of 1. A standard cooling scheme was ap-

plied. A move was only selected if it preserved the feasibility. They also intended to

combine their LS with constraints programming but their LS alone gives very good

results on the PECTP with 10 optimal solutions out of 24 problem instances. They

88

Chapter 3. Benchmark Timetabling Problem Instances

won first place in the ITC-2007 [2].

Mitsunori et al. [30] proposed a technique that is a combination of a general purpose

constraint satisfaction solver, TS, and iterated LS techniques (CTI). They treated

the PECTP instances as instances of CSP and applied a general purpose CSP solver

to find their solutions. As a CSP solver, they used TS and iterative LS. Their

solver is based on Nonobe and Ibaraki’s work [165], with additional quadratic 0-1

constraints handling capabilities. They assigned different initial weights to soft and

hard constraints and the weights were dynamically controlled during the computa-

tion to improve the quality of solutions. Their algorithm produced very good results

on the PECTP instances and achieved the second place in the ITC-2007 [2].

Chiarandini et al. proposed a hybrid algorithm (HA), that combines a constructive

procedure for achieving the feasibility, followed by LS and simulated annealing for

satisfying the soft constraints. The algorithm consists of several heuristic modules

that have been tuned and assembled using an automated algorithm configuration

procedure, called ParamILS [127]. The advantage of their solver lies in that it is

able to explore a large design space of the hybrid stochastic LS algorithm. Their

algorithm consists of two main steps. In the first step, hard constraints are dealt

with and in the second step, it tries to minimize the occurrence of soft constraints

violations. The first step is a constructive phase followed by a LS phase. The

second step is applied to the assignment returned by the first phase. It consists

89

Chapter 3. Benchmark Timetabling Problem Instances

of LS using four neighbourhood structures (1-exchange, 2-exchange, swap-of-time-

slots, and Kempe chain4). They achieved very good results on the PECTP instances,

winning third place in the ITC-2007 [2].

In [166], Nothegger et al. proposed an ACO algorithm in conjunction with a local

improvement search routine. They proposed ACO with the help of two types of

pheromones: one represents the probabilities of assigning an event to time slots

and the other represents the probabilities of assigning an event to rooms. These

pheromones are the main characteristics of their algorithm. The advantage of this

approach is that it avoids the usage of a much larger data structure implied by a

more traditional encoding that uses individual pheromone values for all time slot,

room and event combinations. It also contains more information than the exclusive

use of event-time slot pheromones. By considering the pheromone information,

events are assigned to feasible rooms and time slots in a greedy randomized way.

An LS procedure was also used to further improve solutions, and an improvement

heuristic was employed which tries to move costly events (involved in soft constraint

violations) to other time slots until suitable places are found or the search limit is

reached. Their approach gained fourth place in the ITC-2007.

4The Kempe chain is a neighbourhood structure used in [158, 201]. In the Kempe chain neigh-
bourhood structure, the assignment of events and time slots can be represented as a colouring of
the graph. A feasible colouring is a partition of the graph into independent sets. A Kempe chain
K is a set of vertices that form a maximal connected component in the sub-graph S of G induced
by the vertices that belong to two different independent sets Ii and Ij , i 6= j. A Kempe chain
interchange produces a new feasible partition by swapping the colours assigned to the vertices
belonging to K, i.e. replacing Ii with (Ii\K) ∪ (Ij ∩K) and Ij with (Ij\K) ∪ (Ii ∩K).

90

Chapter 3. Benchmark Timetabling Problem Instances

Müller [162] used an LS based algorithm (LSA) with routines taken from the Con-

straint Solver Library5. Various neighbourhood search algorithms were also used

to eliminate violations of hard- and soft-constraints. His algorithm consists of two

phases: the construction phase and the heuristic phase. In the construction phase,

an iterative forward search algorithm is used to create an initial solution. Each

event is assigned a room and a time slot. If there is any hard-constraint viola-

tion, then the event remains unassigned. A conflict-based statistics is also used to

prevent repetitive assignment of the same rooms and time slots to events. In the

heuristic phase, different meta-heuristics, such as hill climbing, great deluge, and

SA, are used. Firstly, the hill climbing algorithm is applied with a problem-specific

neighbourhood to find the local optimum. In this process, a move is only accepted

when it does not worsen the overall solution value. This process is finished when

no improvement is found after a specified number of iterations. Secondly, the great

deluge algorithm is applied, which allows some oscillations of the bound value that

is imposed on the overall solution value. The process starts with the bound value

B = GDub × Sbest, where GDub is the upper bound coefficient (a problem specific

parameter) and Sbest is the best solution value so far. Moves are only accepted when

the value of the solution does not exceed the bound. This bound is decreased at

every iteration because of the decrease in the cooling rate. When the cooling rate

reaches its minimum level, then the bound is reset to its upper starting limit. The

advantage of this process is that it widens the search space and helps the algorithm

to get out of local minimum if there is no improvement found. Depending on the

5Available at http://cpsolver.sf.net.

91

Chapter 3. Benchmark Timetabling Problem Instances

solution quality, an optional SA process may be applied between the bound oscilla-

tions of the great deluge heuristic. Müller’s approach outperformed other algorithms

on exam timetabling but was awarded fifth place in the ITC-2007 [2].

3.4 The Multi-Objective UCTP (MOUCTP)

3.4.1 Basic Concepts of General MOOPs

Most real world problems have multiple objectives, where improvement in one objec-

tive performance may degrade the performance of one or more other objectives. The

MOOP is also known as a multi-criteria optimization, multi-performance, or vector

optimization problem. According to Osyczka [169], a MOOP can be described as:

“a vector of decision variables which satisfies constraints and optimizes a

vector function whose elements represent the objective functions. These

functions form a mathematical description of performance criteria which

are usually in conflict with each other. Hence, the term ‘optimize’ means

finding such a solution which would give the values of all the objective

functions acceptable to the decision maker”.

92

Chapter 3. Benchmark Timetabling Problem Instances

3.4.2 Problem Definition of the MOUCTP

According to Carter and Laporte [69], the UCTP is a multi-dimensional assign-

ment problem, in which students and teachers (or faculty members) are assigned to

events (individual meetings between students and teachers, e.g., courses, lectures,

or classes) and events are assigned to classrooms and time slots under different con-

straints. As discussed before, the real-world UCTP consists of different constraints:

some are hard constraints and some are soft constraints.

Most researchers have tackled the UCTP as a single-objective optimisation problem.

Researchers combine multiple criteria into a single scalar value and minimise the

weighted or unweighted sum of constraints violations as the only objective function.

But, inherently, the UCTP has many different objectives or constraints, such as

minimizing the number of consecutive classes, minimizing the occurrence of classes

in the last time slot or maximizing the usage of resources, and many more. All

these and many other constraints lead the scheduling of a university timetabling to

an optimization problem. On the other hand, it is very difficult, or may even be

impossible to satisfy all the hard and soft constraints for complex or large UCTP

instances [83]. According to Rudová and Murray [184], this complexity requires the

scheduling of timetables to be treated as finding a solution over hard constraints,

which is then to be optimized over soft constraints. To this aim, the UCTP should

be treated as a MOOP, i.e., we need to study the MOUCTP with different soft

constraints taken as different objective functions.

93

Chapter 3. Benchmark Timetabling Problem Instances

So far, there are no particular published benchmarks for the MOUCTP in the lit-

erature. Due to this deficiency, in this thesis, we tackle the UCTP described in

Section 3.2 as a MOUCTP. In this thesis, the three soft constraints in the problem

(described in Section 3.2.1) are taken as three objectives f1(x), f2(x), and f3(x),

respectively, where x is a solution to the MOUCTP. These three objectives are to

be minimized in a timetable, while satisfying all hard constraints.

3.4.3 Benchmark Dataset

Since there is no particular published benchmark of the MOUCTP for researchers

to test their approaches, most probably due to lack of research in the area, many re-

searchers tested their proposed techniques on real data instances. Some researchers

[13, 50, 181] used the benchmark dataset proposed in [196], as described in Section

3.2.3, for testing their approaches for the MOUCTP. We will also use these bench-

mark instances to test the performance of our proposed MOEAs for the MOUCTP

in this thesis. The objective function of the MOUCTP is to minimize all three soft

constraints while satisfying hard constraints. The experimental results shown later

in this thesis on all these benchmark problem instances are based on average values

of 100% feasible solutions runs, unless otherwise stated explicitly.

94

Chapter 3. Benchmark Timetabling Problem Instances

3.5 Chapter Summary

In this chapter, we described the specification of three versions of the university

course timetabling problem (UCTP), namely the general UCTP, the post enrolment

course timetabling problem (PECTP), and the multi-objective UCTP (MOUCTP).

We gave the definition and formulation of these problems. We also introduced the

benchmark problem instances (datasets) for the general UCTP, the PECTP, and

the MOUCTP, which are typically used by researchers in the literature, e.g., the

ITC-2007 PECTP instances.

In the following chapters of this thesis, we will use these benchmark problem in-

stances to test the performance of investigated approaches for different UCTPs.

95

Chapter 4

Memetic Algorithms for

University Course Timetabling

4.1 Introduction

In [181], Rossi et al. compared different metaheuristics that are used to solve the

university course timetabling problem (UCTP). They concluded that conventional

genetic algorithms (GAs) do not give good results among a number of approaches

developed for the UCTP. Hence, conventional GAs need to be enhanced to solve the

UCTP. As a starting point of our research, we examine the behaviour of a simple

GA for the UCTP. This chapter presents an initial investigation into a steady state

GA (SSGA). The SSGA, which is one simple model of GAs, was originally developed

by Whitley in [212]. The pseudo-code of the SSGA is shown in Algorithm 6.

96

Chapter 4. Memetic Algorithms for University Course Timetabling

Algorithm 6 Steady State Genetic Algorithm (SSGA)

1: randomly initialise a population of solutions
2: evaluate the individuals in the population
3: while the termination condition is not reached do
4: select two parents through a selection scheme
5: crossover the parents to create a child with a probability Pc

6: apply mutation to the child with a probability Pm

7: replace the worst member of the population by the child
8: end while

SSGA is based on the conventional GA in Algorithm 1, and the italicised parts in

Algorithm 6 show the changes from the conventional GA.

In SSGA, usually, one offspring is generated via reproduction each iteration (genera-

tion). It starts from a random initial population of possible solutions for a problem.

Each solution in a population is called an individual of the population. Each indi-

vidual is evaluated according to a problem-specific objective function, usually called

the fitness function. After evaluation, there is a selection phase in which two pos-

sibly good individuals will be chosen as parents by a selection operator to undergo

the recombination process. In the recombination phase, crossover and mutation op-

erators are used to create a new individual in order to explore the solution space.

The newly-created individual replaces an old individual, usually the worst one, of

the population based on fitness. This process is repeated until a stopping criterion

is reached, which may be the maximum number of generations or a time limit.

In this chapter, we present a memetic algorithm (MA) based on the SSGA. In the

proposed MA, two local search (LS) methods are integrated into the SSGA to solve

the UCTP. These two LS methods use their exploitive search ability to improve the

97

Chapter 4. Memetic Algorithms for University Course Timetabling

Algorithm 7 The Proposed Memetic Algorithm (MA)

1: input : A problem instance I

2: for i = 1 to population size do

3: construct random initial solution si.
4: apply LS1 to the solution si
5: apply LS2 to the solution si
6: end for

7: sort population by fitness
8: while termination condition not reached do

9: select two parents through a selection scheme
10: crossover the parents to create a child s with a probability Pc

11: apply mutation to the child s with a probability Pm

12: apply LS1 to the child s

13: apply LS2 to the child s

14: child solution s replaces the worst member of the population
15: sort population by fitness
16: found best solution sbest in the population
17: end while

18: output : The best solution sbest achieved for I

explorative search ability of the SSGA. The evaluation of the MA is undertaken

by presenting a series of computational results on the benchmark UCTP instances

described in Chapter 3 (Section 3.2).

This chapter is organised as follows: Section 4.2 describes the pseudo-code of the

proposed MA, including different components of the MA in detail. The experimental

study and experimental results are presented and discussed in Section 4.3. Finally,

Section 4.4 presents a summary of the chapter.

4.2 The Proposed Memetic Algorithm

In this section, we present our proposed MA that integrates some new LS approaches

into the conventional SSGA to enhance the searching ability of the SSGA for the

98

Chapter 4. Memetic Algorithms for University Course Timetabling

UCTP. Algorithm 7 shows the outline of the MA proposed for the UCTP. The

proposed MA is based on the SSGA. The changes that have been made in the SSGA

are shown in italics fonts in Algorithm 7.

In the proposed MA, we first initialize the population by randomly creating each

individual, via assigning a random time slot for each event according to a uniform

distribution and applying the matching algorithm to allocate rooms for events. Two

LS strategies, LS strategy 1 (LS1) and LS strategy 2 (LS2), which will be described

in Section 4.2.1, are then applied in order to each member of the population. LS1,

developed by Rossi et al. [180], uses three neighbourhood structures, denoted as N1,

N2, and N3, which will also be described in Section 4.2.1, to move events to time

slots and then uses the matching algorithm to allocate rooms to events and time

slots. With LS2, we take the time slot with the worst penalty value from a set of

randomly selected time slots and seek to improve it by trying to move each event

in that time slot to another one in the neighbourhood structure N1 and then using

the matching algorithm for room allocations for those involved events.

After the initialization of the population, we use the SSGA model as mentioned

in [71], where only one child solution is generated with selection, crossover, and

mutation at each generation. The child is then improved by LS1 and LS2. In the

end, the worst population member is replaced with the new child individual. The

iteration continues until one termination condition is reached, e.g., a present time

limit tmax is reached.

99

Chapter 4. Memetic Algorithms for University Course Timetabling

In the following sub-sections, we describe the components of the MA, including the

LS strategies and genetic operators, respectively.

4.2.1 Local Search (LS) Strategies

In the proposed MA, after an initial solution or a new offspring solution is created,

two LS operators are applied to the solution one after the other. These two LS

strategies are based on three neighbourhood structures, N1, N2, and N3, which are

described as follows:

• N1: the neighbourhood defined by an operator that moves one event from a

time slot to a different one

• N2: the neighbourhood defined by an operator that swaps the time slots of

two events

• N3: the neighbourhood defined by an operator that permutes three events in

three distinct time slots in one of the two possible ways other than the existing

permutation of the three events.

4.2.1.1 LS Strategy 1 (LS1)

Algorithm 8 shows the pseudo-code of LS1. LS1 works on all events of an individual.

Here, we suppose that each event is involved in soft and hard constraint violations.

LS1 works in two steps. In the first step (lines 3-13 in Algorithm 8), it checks the

100

Chapter 4. Memetic Algorithms for University Course Timetabling

Algorithm 8 Local Search Strategy 1 (LS1)

1: input : Individual I selected from the population
2: while Termination condition not reached do

3: for i = 1 to the total number of events do
4: if event i is infeasible then

5: if there is untried move left then
6: calculate the next move (first in N1, then in N2, and finally in N3)
7: apply the matching algorithm to the time slots affected by the move and

delta-evaluate the result.
8: if the move reduces hard constraint violation then

9: make the move
10: end if

11: end if

12: end if

13: end for

14: if any hard constraint violations remain then

15: terminate LS1
16: else

17: for i = 1 to total number of events do
18: if event i has soft constraint violation then

19: if there is untried move left then
20: calculate the next move (first in N1, then in N2, and finally in N3)
21: apply the matching algorithm to the time slots affected by the move and

delta-evaluate the result
22: if the move reduces soft constraints violation then

23: make the move
24: end if

25: end if

26: end if

27: end for

28: end if

29: end while

30: output : A possibly improved individual I

hard constraint violations of each event while ignoring its soft constraint violations.

If there are hard constraint violations for an event, LS1 tries to resolve them by

applying moves in the neighbourhood structures N1, N2, and N3 in order1 until a

1For the event being considered, potential moves are calculated in a strict order. First, we try
to move the event to the next time slot, then the next, then the next, etc. If this search in N1 fails,
we then search in N2 by trying to swap the event with the next one in the list, then the next one,
and so on. If the search in N2 also fails, we try a move in N3 by using one different permutation
formed by the event with the next two events, then with the next two, and so on.

101

Chapter 4. Memetic Algorithms for University Course Timetabling

termination condition is reached, e.g., an improvement is reached or the maximum

number of steps smax is reached, which is set to different values for different problem

instances. After each move, we apply the matching algorithm to the time slots

affected by the move and try to resolve the room allocation disturbance and delta-

evaluate the result of the move (i.e., calculate the hard and soft constraint violations

before and after the move). If there is no untried move left in the neighbourhood

for an event, LS1 continues to the next event. After applying all neighbourhood

moves on each event, if there is still any hard constraint violation, then LS1 will

stop; otherwise, LS1 will perform the second step (line 17-27 in Algorithm 8).

In the second step, after reaching the state of a feasible solution, LS1 then deals

with soft constraints and again performs a similar process as in the first step on

each event to reduce its soft constraint violations. For each event, LS1 tries to make

moves in the neighbourhood N1, N2 and N3 in order without violating the hard

constraints. For each move, the matching algorithm is applied to allocate rooms

to affected events and the result is delta-evaluated. When LS1 finishes, we get a

possibly improved and feasible individual. We then apply LS2 on this individual.

4.2.1.2 LS Strategy 2 (LS2)

Algorithm 9 shows the pseudo-code of LS2. The basic idea of LS2 is to choose a

high penalty time slot that may have a large number of events involving hard and

soft constraints. LS2 first randomly selects a tp percentage of time slots from the

total time slots of T . Rather than choosing a worst time slot out of all the time

102

Chapter 4. Memetic Algorithms for University Course Timetabling

Algorithm 9 Local Search Strategy 2 (LS2)

1: input : Individual I after LS1 is applied
2: S := randomly select a tp percentage of time slots from the total time slots of T
3: for each time slot ti ∈ S do

4: for each event j in time slot ti do
5: calculate the penalty value of event j
6: end for

7: sum the total penalty value of events in time slot ti
8: end for

9: select the time slot wt with the biggest penalty value from S

10: for each event i in wt do

11: calculate a move of event i in the neighbourhood structure N1
12: apply the matching algorithm to the time slots affected by the move
13: compute the penalty of event i and delta-evaluate the result
14: end for

15: if all the moves together reduce hard or soft constraint violations then
16: apply the moves
17: else

18: delete the moves
19: end if

20: output : A possibly improved individual I

slots, we randomly select a set of time slots and then choose the worst. This is

because, for each selected time slot, we need to calculate its penalty value, which

costs time. Through selecting a set of time slots instead of all time slots, we try

to balance between the computational time and the quality of the algorithm. We

then compute the penalty of each selected time slot and choose the time slot wt that

has the biggest penalty value for the LS operation. In this way, LS2 aims to help

improve the existing result of LS1.

After taking the worst time slot, LS2 tries a move in the neighbourhood N1 for each

event of wt and checks the penalty value of each event before and after applying the

move. If all moves in wt together reduce the hard and/or soft constraint violations,

we then apply all the moves; otherwise, we do not make the moves. In this way,

103

Chapter 4. Memetic Algorithms for University Course Timetabling

Algorithm 10 Crossover()

1: input : The current population
2: Select parents P1 and P2 by the binary tournament selection scheme
3: for each event ei of the child Ch do
4: if rand(0, 1) < 0.5 then
5: ei of Ch← the time slot allocated to ei of P1
6: else
7: ei of Ch← the time slot allocated to ei of P2
8: end if
9: end for
10: allocate rooms to all occupied time slots using the matching algorithm
11: output : A new child generated using Crossover()

LS2 can not only check the worst time slot but also reduce the penalty value for

some events by moving them to other time slots. In general, LS2 can enhance the

individuals of the population and increase the quality of the feasible timetable by

reducing the number of constraint violations.

4.2.2 Genetic Operators

The proposed MA uses the SSGA model. One offspring is generated from the cur-

rent population at each generation using following genetic operators and relevant

parameters, which were also used in [181].

4.2.2.1 Selection

The binary tournament selection is used, where two parents are randomly selected

from the population and the fitter one is used as a parent. At each generation, the

tournament selection is applied twice to select two parents for reproduction.

104

Chapter 4. Memetic Algorithms for University Course Timetabling

4.2.2.2 Crossover

A uniform crossover operator is used with a probability Pc = 0.8. It first randomly

assigns a time slot from one of the two parents to each event in the offspring and

then allocates rooms to events in each non-empty time slot. The pseudo-code of the

crossover operator is as shown in Algorithm 10.

4.2.2.3 Mutation

A mutation operator is used with a probability Pm = 0.5. It randomly selects a

neighbourhood structure N1, N2, or N3, and makes a move in the selected neigh-

bourhood to mutate an individual.

4.3 Experimental Study

The proposed MA was implemented in GNU C++ with version 4.1 and run on a

3.20 GHz PC. We used the set of benchmark problem instances that were described

in Section 3.2 of Chapter 3 to test our algorithm and ran our algorithm on 11

problem instances that were divided into three groups: 5 small, 5 medium, and 1

large instance. Table 3.1 represents the data of the timetabling problem instances

of the three different groups. In LS1 of our MA, the maximum number of steps per

LS operation smax was set to different values for different problem instances (200 for

small instances, 1000 for medium instances, and 2000 for the large instance).

105

Chapter 4. Memetic Algorithms for University Course Timetabling

Two sets of experiments were carried out in this study. The first set of experiments

are devoted to finding the appropriate value for the parameter tp in the MA and

the second set of experiments compares the performance of the MA without LS2.

For both sets of experiments, there are 50 runs of each algorithms on each problem

instance. For each run, the maximum run time tmax was set to 90 seconds for

small instances, 900 seconds for medium instances, and 9000 seconds for the large

instance. In the end, we compare the experimental results of our MA with current

state-of-the-art methods from the literature on the tested 11 timetabling problem

instances.

4.3.1 Sensitivity Analysis of the Parameter tp

The performance of LS2 depends upon the tp parameter. This is the percentage

of the time slots that are used to find the worst time slot among them. We test

the tp value in the set of 10%, 20%, 40%, 60%, 80%, and 100%. Figure 4.1 shows

the performance of the MA with different values of tp on the S1 and M3 problem

instances.

From Figure 4.1, it can be seen that increasing the value of tp from 10% to 20%

improves the performance of the MA on both the S1 and M3 problem instances.

However, when we further increase the value of tp from 20% to other larger values,

the performance of the MA degrades. The reason may be that there is a larger per-

centage of time cost and under the predefined time (e.g., for small problem instances

106

Chapter 4. Memetic Algorithms for University Course Timetabling

 0

 50

 100

 150

 200

 250

 0 500 1000 1500 2000 2500 3000 3500 4000

O
bj

ec
ti

ve
 v

al
ue

Number of evaluations

tp=10%
tp=20%
tp=40%
tp=60%
tp=80%

tp=100%

 2.35

 2.4

 2.45

 2.5

 2.55

 2.6

 2.65

 2.7

 2.75

 2.8

 4000 6000 8000 10000 12000 14000 16000

O
bj

ec
ti

ve
 v

al
ue

 (
lo

g 1
0)

Number of evaluations

tp=10%
tp=20%
tp=40%
tp=60%
tp=80%

tp=100%

(a) (b)

Figure 4.1: Comparing the performance of the MA with different tp values on
the problem instances: (a) S1 and (b) M3.

90 sec) MA is not able to produce a good solution. Figure 4.1 suggests that 20% of

time slots is able to make a good balance between the time cost and the quality of

the solution.

4.3.2 The Effect of LS2 on the MA

In this experiment, we investigate the effect of LS2 on our proposed MA for the

UCTP. We compare the proposed MA with the EA proposed by Rossi-Doria et

al. [181], which is the same as our MA but with LS2 switched off. Table 4.2 compares

MA and EA in terms of the best, average, standard deviation, and worst penalty

value over the 50 runs on the problem instances. The results of statistical comparison

of our MA against the EA by Rossi-Doria et al. [181] using the t-test on the small and

medium problem instances are shown in Table 4.1. Details of this t-test are provided

in Appendix A. In Table 4.1, the t-test results were based on the average population

fitness data of 50 runs of our MA and EA on each instance, and were calculated with

107

Chapter 4. Memetic Algorithms for University Course Timetabling

Table 4.1: The t-test results of comparing MA against EA

UCTP S1 S2 S3 S4 S5 M1 M2 M3 M4 M5

MA − EA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

Table 4.2: Comparison of MA and EA on different problem instances

UCTP Alg Best Ave Std Worst

S1 MA 0 3 5.13 15

EA 0 7 7.10 15

S2 MA 0 8 5.46 19

EA 3 11 8.67 31

S3 MA 0 5 3.60 19

EA 0 7 5.41 26

S4 MA 0 1 2.41 7

EA 0 7 7.01 24

S5 MA 0 3 2.84 7

EA 0 4 6.80 19

M1 MA 212 240 14.67 271

EA 267 307 19.68 345

M2 MA 171 208 23.15 267

EA 175 218 29.97 294

M3 MA 222 253 22.83 357

EA 254 309 25.90 378

M4 MA 132 165 18.83 206

EA 237 269 25.04 328

M5 MA 197 227 23.42 287

EA 230 270 31.17 347

98 degrees of freedom at a 0.05 level of significance. In Table 4.1, the t-test result of

comparing two algorithms is shown as “s+” when the first algorithm is significantly

better than the second algorithm (the data used for these t-test results are shown

in Table A.1 and Table A.2, respectively). From Table 4.2 and Table 4.1, it can be

seen that our MA performs significantly better than the EA by Rossi-Doria et al.

[181] on all small and medium problem instances. The reason for this result is that

LS2 in the MA works well to further improve the quality of solutions obtained by

the MA. This result shows the importance of introducing LS2 into our MA for the

UCTP.

108

Chapter 4. Memetic Algorithms for University Course Timetabling

4.3.3 Comparison with State-of-the-Art Algorithms

Table 4.3 gives the comparison of the experimental results of our MA with the avail-

able results of other algorithms in the literature on the small and medium timetabling

problem instances. In Table 4.3, the term “%ln” represents the percentage of runs

that failed to obtain a feasible solution, and “Best” represents the best result among

a number of runs. We present the best of all the algorithms in bold font. The

algorithms compared in the table are described in detail in Chapter 3 Section 3.2.

Here we describe them briefly as follows:

• GA: traditional GA without any LS strategy.

• MA: our MA proposed in this study

• RIIA: The randomised iterative improvement method of Abdullah et al. [14].

They presented a composite neighbourhood structure with a randomised iter-

ative improvement algorithm.

• VNS: The variable neighbourhood search of Abdullah et al. [13]. Abdullah et

al. used a variable neighbourhood search approach based on a random-descent

LS with an exponential Monte Carlo acceptance criteria.

• THHS: The tabu-based hyper-heuristic search of Burke et al. [47]. They in-

troduced a TS hyper-heuristics where a set of low-level heuristics compete

with each other. This approach was tested on the UCTP and nurse rostering

problems.

109

C
h
a
p
ter

4
.
M
em

etic
A
lgo

rith
m
s
fo
r
U
n
iversity

C
o
u
rse

T
im

eta
blin

g

Table 4.3: Comparison of the proposed MA with state-of-the-art approaches on small and medium problem instances

Datasets MA RIIA HEA GBHH VNS THHS LS EA AA FA GA
Best Median Best Median Best Best Best Best Median Best Median Best Best

S1 0 1 0 0 0 6 0 1 8 0 1 10 4
S2 0 8.5 0 0 0 7 0 2 11 3 3 9 12
S3 0 1 0 0 0 3 0 0 8 0 1 7 3
S4 0 0 0 0 0 3 0 1 7 0 1 17 2
S5 0 0 0 0 0 4 0 0 5 0 0 7 1
M1 212 239 242 245 221 372 317 146 199 267 195 243 445
M2 171 208 161 162.6 147 419 313 173 202.5 175 184 325 80%In
M3 222 243 265 267.8 246 359 357 267 77.5%In 254 248 249 92%In
M4 132 162.5 181 183.6 165 348 247 169 177.5 237 164.5 285 467
M5 197 220 151 152.6 130 171 292 303 100%In 230 219.5 132 100%In

110

Chapter 4. Memetic Algorithms for University Course Timetabling

• EA: The EA with LS1 of Rossi-Doria et al. [181] that was applied for the

UCTP.

• HEA: The hybrid EA of Abdullah et al. [15]. They tested a light mutation

operator followed by a randomised iterative improvement algorithm on the

UCTP.

• LS: The LS method of Socha et al. [196]. They used a random restart LS

strategy for the UCTP and compared it with an ant algorithm.

• AA: The ant algorithm of Socha et al. [196]. They developed the first ACO

algorithm with the help of a construction graph and a pheromone model ap-

propriate for the UCTP.

• FA: The fuzzy algorithm of Asmuni et al. [29]. In their paper, they focused

on the issue of ordering events by simultaneously considering three different

heuristics using fuzzy methods.

• GBHH: The graph-based hyper-heuristic of Burke et al. [51]. They employed

TS with graph-based hyper-heuristics on the UCTP and examination timetabling

problem.

From Table 4.3, it can be seen that our proposed MA is better than the fuzzy

algorithm [29] and the graph based approach [51] on 9 out of the 10 small and

medium problem instances (except on M5). Our algorithm also obtained better

results than VNS [13] and EA [181] on all of the medium problem instances and tied

111

Chapter 4. Memetic Algorithms for University Course Timetabling

on some or all of the small problem instances. It also gives better results than LS

[196] on 9 of the 10 problem instances and is better than the ant algorithm [196] on

7 of the data set (with one tie on S5). When comparing with the result of HEA [15]

and RIIA [14], it is interesting to note that our approach is better on 3 of the same

medium problem instances (except on M2 and M5) and ties on all small problems.

Finally, the results of our approach are better than the tabu-based hyper-heuristic

search [47] on most of the problem instances.

The proposed MA did not achieve a feasible result on the large instance within

the running time of 9000 seconds within 50 runs. On this large instance, other

algorithms from the literature also failed to give a feasible result with the exception

of [51], [15], [196], and [29]. This result indicates that the neighbourhood structures

may need further improvement to give feasible results for the large instance.

To summarise, the performance of our MA was tested on the benchmark problem

instances [4]. When compared with other published works, it can be seen that our

proposed MA is capable of producing some of the best results.

4.4 Chapter Summary

This chapter presented a MA for solving the UCTP. The MA combines the SSGA

with two LS techniques, LS1 and LS2. With LS1 only, the MA does not perform

well in the experiments as mentioned in [181]. However, we have enhanced the power

112

Chapter 4. Memetic Algorithms for University Course Timetabling

of the MA by introducing a second LS method. Based on the experimental results,

it is clear that, with the help of the powerful LS methods, the proposed MA can

obtain high quality solutions that satisfy different kinds of timetabling constraints.

The proposed MA is capable of finding a near optimal solution for the test problem

instances. These results also show that by integrating appropriate neighbourhood

moves, GAs can get the best solutions for the UCTP.

In this chapter, we can see that for hard problem instances, the proposed MA does

not work well. We are even unable to get feasible solutions. Hence, we need some

powerful search algorithms that cope across a much wider range of problem instances.

Finding appropriate advanced genetic operators, heuristics, and evaluation routines

will be the main aim of the next chapter.

113

Chapter 5

Genetic Algorithms with Guided

and Local Search for UCTPs

5.1 Introduction

In the previous chapter, one of the main observations made in our experimental study

was that the performance of the memetic algorithm (MA) with the local search (LS)

strategies is generally good for the university course timetabling problem (UCTP)

on most problem instances, but is not satisfactory on the large problem instance.

The MA cannot even produce feasible solutions for the large problem instance.

We hypothesise that, although LS1 and LS2 try to help a genetic algorithm (GA)

escape from local optima, if the individuals are not of good quality, then the GA can

quickly get stuck in them. If there is a good population, then the chance of creating a

114

Chapter 5. Genetic Algorithms with Guided and Local Search for UCTPs

feasible and optimal solution can be increased. To test our hypothesis, we intend to

create children through some methods other than crossover operators. One reason for

this is that, a good deal of research has been carried out on crossover operators and

different crossover operators are useful for different problem constraints. However,

we want to develop some method that is useful to create children for UCTPs of

different characteristics. To this aim, we propose a guided search (GS) strategy to

be used within GAs for solving the UCTP.

In this chapter, we first present the proposed GS strategy. Then, we present several

GAs with the GS strategy and the LS strategies described in Chapter 4 for the

UCTP. The GS strategy can be used to create offspring of good quality into the

population based on a data structure that stores information extracted from previous

good individuals. The LS strategies can be used to improve the quality of individuals.

Finally, based on a set of benchmark UCTP instances, we experimentally investigate

the proposed GAs in comparison with a set of state-of-the-art methods from the

literature for the UCTP.

5.2 The Guided Search (GS) Strategy

One of the important concepts of GAs is the notion of population. Unlike traditional

search methods, GAs rely on a population of candidate solutions [188]. In the GS

strategy, we use an extra memory or data structure, denoted MEM , to store and re-

use useful information. This data structure is constructed from the best individuals

115

Chapter 5. Genetic Algorithms with Guided and Local Search for UCTPs

taken from the population and hence stores useful information that can be used to

guide the generation of good offspring into the next populations.

The main advantage of this data structure is that it maintains partial information of

good solutions which otherwise may be lost in the selection process. In the following

sub-sections, we describe in detail the key components of the GS strategy, including

the MEM data structure and its construction and the generation of offspring via

the GS strategy, respectively.

5.2.1 The MEM Data Structure

There is a number of research papers in the literature on using extra data structure

or memory to store useful information in order to enhance the performance of GAs

and other meta-heuristic methods for optimisation and search [11, 12, 148]. Rosin

and Belew [183] introduced a hall of fame to store elitists in time. In this process,

they store the best individual of each generation into the hall of fame. A new

individual of the current generation replaces the worst or oldest individual. Louis

and McDonnall [149] also incorporated problem specific knowledge into GAs. They

used a case-based memory of the past problem for better performance on a set of

similar problems. In the GS strategy, we also use a data structure (memory) MEM

to guide the generation of offspring. This strategy introduces some parts of the best

individuals into the next generation (to maintain the diversity in the population)

rather than injecting whole individuals. This MEM is used to provide further

116

Chapter 5. Genetic Algorithms with Guided and Local Search for UCTPs

2

e 6

e h

e

(r 1 1, t)
6

, t)
6

(r 2 2

,

,

,(r 1 1, t) , t)
h h

(r 2 2

(r , t N6 N6
 6

(r , t Nh Nh

)
 6

 h
)

 h h

 6 6

2
(r 1 1, t) (r N2

 2
 , t N2

 2
)

 2
l2

l6

lh h

Figure 5.1: Illustration of the data structure MEM .

direction to exploration and exploitation in the search space. It aims to increase the

quality of a child solution by re-introducing part of best individuals from previous

generations.

Figure 5.1 shows the details of the MEM data structure, which is a two-level list.

The first level is a list of events while the second is a list li of room and time slot

pairs corresponding to each event ei in the first level list. In Figure 5.1, Ni represents

the total number of pairs in the second level list li.

The MEM data structure is regularly reconstructed, e.g., every τ generations. Al-

gorithm 11 shows the outline for constructing the MEM . When the MEM is due

to be reconstructed, we first select α×N best individuals from the population P to

form a set Q, where N denotes the population size. After that, for each individual

Ij ∈ Q, each event is checked by its penalty value, i.e., the hard and soft constraint

violations associated with this event. If an event has a zero penalty value, then we

store the information corresponding to this event into the MEM .

117

Chapter 5. Genetic Algorithms with Guided and Local Search for UCTPs

Algorithm 11 ConstructMEM()

1: input : The whole population P
2: sort the population P according to the fitness of individuals
3: Q← select the best α×N individuals in P
4: for each individual Ij in Q do
5: for each event ei in Ij do
6: calculate the penalty value of event ei from Ij
7: if ei is feasible (i.e., ei has a zero penalty) then
8: add the room and time slot pair (ri, ti) assigned to ei into the list li
9: end if
10: end for
11: end for
12: output : The data structure MEM

For example, if the event e2 of an individual Ij ∈ Q is assigned room 2 at time slot 13

and has a zero penalty value, then we add the pair (2, 13) into the list l2. Similarly,

the events of the next individual Ij+1 ∈ Q are also checked by their penalty values.

If the event e2 in Ij+1 has a zero penalty, then we add the pair of room and time

slot assigned to e2 in Ij+1 into the existing list l2. If for an event ei, there is no list

li existing yet, then the list li is added into the MEM data structure.

A similar process is carried out for the selected Q individuals and finally the MEM

data structure stores pairs of room and time slot corresponding to those events with

zero penalty of the best individuals of the current population. This MEM data

structure is then used to guide the generation of offspring for the next τ generations.

We update MEM every τ generations instead of every generation in order to make

a balance between the solution quality and the computational time cost of a GA

that uses this GS strategy.

118

Chapter 5. Genetic Algorithms with Guided and Local Search for UCTPs

Algorithm 12 GuidedSearch()

1: input : The MEM data structure
2: Es := randomly select β ∗ n events
3: for each event ei in Es do
4: randomly select a pair of room and time slot from the list li in MEM
5: assign the selected pair to event ei for the child
6: end for
7: for each remaining event ei not in Es do
8: assign a random time slot and room to event ei
9: end for
10: output : A new child generated using MEM

5.2.2 Generating a Child by the GS Strategy

Using the GS strategy, a child can be created through the MEM data structure, by

calling GuidedSearch() in Algorithm 12. The procedure is described as follows. We

first select a set Es of β ∗ n random events to be generated from MEM . Here, β is

a percentage value and n is the total number of events. After that, for each event

ei in Es, we randomly select a pair of (rji , t
j
i), j = 1, · · · , Ni, from the list li that

corresponds to the event ei, and assign the selected pair to ei for the child. If there

is an event ei in Es but there is no list li in the MEM , then we randomly assign

a room and time slot from possible rooms and time slots to ei for the child. This

process is carried out for all the events in Es. For those remaining events that are

not present in Es, they are assigned random rooms and time slots.

119

Chapter 5. Genetic Algorithms with Guided and Local Search for UCTPs

Algorithm 13 Steady State Memetic Algorithm (SSMA)

1: randomly initialise a population of solutions
2: evaluate the individuals in the population
3: apply the LS strategy LS1 to each individual of the population
4: while the termination condition is not reached do
5: select two parents through a selection scheme
6: crossover the parents to create a child with a probability Pc

7: apply mutation to the child with a probability Pm

8: apply LS1 to the child
9: replace the worst member of the population by the child
10: end while

5.3 GAs with GS and LS Strategies for the UCTP

In this section, we present several GAs that are integrated with the GS and LS

strategies for the UCTP. We first introduce the basic framework of these GAs and

then describe several GA variants that are investigated in this chapter for the UCTP.

5.3.1 The Basic Framework of Investigated GAs

The basic framework of GAs investigated in this chapter is based on a steady-state

memetic algorithm, denoted as SSMA. The SSMA combines the SSGA, which has

been described in Algorithm 6 in Chapter 4, with the LS strategy LS1, which has

been described in Algorithm 8 in Chapter 4. The pseudo-code of SSMA is shown in

Algorithm 13, where the italicised lines show the changes that have been made from

the SSGA in Algorithm 6. We are not using LS2 in the SSMA because we want to

see the effect of LS2 separately as well as with guided operator.

120

Chapter 5. Genetic Algorithms with Guided and Local Search for UCTPs

With this basic framework, GAs start from an initial population of solutions that

are randomly generated (i.e., events are randomly assigned to rooms and time slots

for each solution). It is reasonable to expect that the quality of the initial solutions

would affect the quality of the final solutions. However, we start from random initial

solutions. Then, in each generation, one individual is generated as follows.

First, two parents are selected using the binary tournament selection. Then, crossover

is carried out with a probability Pc to generate one child via exchanging the time

slots between the two parents and allocating rooms to events in each non-empty time

slot using the matching algorithm. After crossover, the child undergoes the mutation

operation with a probability Pm. The mutation operator first randomly selects one

of the three neighbourhood structures N1, N2, and N3 (as described in Section 4.2.1

in Chapter 4) and then makes a move within the selected neighbourhood structure.

After mutation, LS is performed on the child. Finally, the newly-generated child is

used to replace the worst individual from the current population.

5.3.2 The Guided Search Genetic Algorithm (GSGA)

The pseudo-code of GSGA for the UCTP is shown in Algorithm 14. In GSGA, we

first initialise the population by randomly creating each individual via assigning a

random time slot for each event according to a uniform distribution and applying

the matching algorithm to allocate a room for the event. Then, the LS1 method,

121

Chapter 5. Genetic Algorithms with Guided and Local Search for UCTPs

Algorithm 14 Guided Search Genetic Algorithm (GSGA)

1: input : A problem instance I
2: randomly initialise a population of solutions
3: evaluate the individuals in the population
4: apply the LS strategy LS1 to each individual of the population
5: set the generation counter g := 0
6: while the termination condition is not reached do
7: if (g mod τ) == 0 then
8: apply ConstructMEM() to construct MEM
9: end if
10: create a child using GuidedSearch() or Crossover() with a probability γ
11: apply mutation to the child with a probability Pm

12: evaluate the child solution
13: apply LS1 to the child
14: replace the worst member of the population by the child
15: g := g + 1
16: end while
17: output : The best solution sbest achieved for I

as described in Algorithm 8 in Chapter 4, is applied to each member of the initial

population, using the three neighbourhood structures.

After the initialisation of the population, a data structure MEM (described in

Section 5.2.1) is constructed, which stores a list of room and time slot pairs (r, t)

for each event that has a zero penalty (i.e., no hard and soft violation at this event)

of individuals selected from the population. After that, the MEM can be used to

guide the generation of offspring for the following generations. The MEM data

structure is re-constructed every τ generations. In each generation of GSGA, one

child is first generated either by the GS strategy or the crossover operator, depending

on a probability γ. That is, when a new child is to be generated, a random number

ρ ∈ [0.0, 1.0] is first generated. If ρ < γ, Algorithm 12, i.e., GuidedSearch(),

will be used to generate the new child; otherwise, a crossover operation, by calling

122

Chapter 5. Genetic Algorithms with Guided and Local Search for UCTPs

Crossover() (see Algorithm 10 in Chapter 4), is used to generate the new child.

After that, the child will be mutated by a mutation operator with a probability

pm, followed by the LS1 strategy. Finally, the worst member in the population is

replaced by the newly generated child individual. This iteration continues until one

termination condition is reached, e.g., a present time limit tmax is reached.

5.3.3 Extended Guided Search Genetic Algorithm (EGSGA)

We also want to test the effect of the LS strategy LS2 that was described in Algo-

rithm 9 in Chapter 4 on the performance of GSGA for the UCTP. To this purpose,

we propose an extended version of GSGA, denoted EGSGA in this chapter, in which

LS2 is added into GSGA, for the UCTP. In EGSGA, whenever LS1 is applied to an

individual, LS2 is applied to that individual immediately after LS1 is finished.

5.3.4 GA with Both LS Strategies (GALS)

In order to investigate the effect of the GS strategy in GSGA and EGSGA, we also

investigate a steady-state GA with the two LS strategies LS1 and LS2 and without

the GS strategy. This GA is denoted GALS in this chapter. In Chapter 4, we also

use both LS strategies in MA. But, the difference between GALS and MA is that

the crossover probability Pc is 0.8 in MA and 1.0 in GALS. This probability tells us

the behaviour of the algorithm if we do not use the GS strategy.

123

Chapter 5. Genetic Algorithms with Guided and Local Search for UCTPs

In each generation of GALS, one child is first generated through selection, crossover

(Algorithm 10 in Chapter 4), and mutation. Then, the two LS strategies, LS1

and LS2, are applied in order to the child. In the end, the worst individual in

the population is replaced by this new child. That is, GALS is an SSMA with

the integration of LS2. This will also allow us to check the effect of LS2 on the

performance of SSMA for the UCTP. GALS differs from EGSGA with γ = 0.0 in

that in GALS, crossover is carried out with a probability Pc, while in EGSGA with

γ = 0.0, crossover is carried out with a probability 1.0. In other words, EGSGA

with γ = 0.0 is equivalent to GALS with Pc = 1.0.

5.4 Experimental Study

In this section, we experimentally investigate the performance of the proposed meth-

ods GALS, GSGA and EGSGA in addition with SSMA and a TS method proposed

by Rossi et al. [181] for the UCTP.

All algorithms were coded in GNU C++ under version 4.1 and run on a 3.20 GHz

PC. To test the algorithms, We use a set of benchmark UCTP instances which were

described in Chapter 3. Table 3.1 in Chapter 3 presents the data of these UCTP in-

stances in three different groups: five small instances, five medium instances, and one

large instance. As mentioned before, the basic framework of all GAs we investigate

(SSMA, GALS, GSGA and EGSGA) is a steady-state MA. The basic parameters

124

Chapter 5. Genetic Algorithms with Guided and Local Search for UCTPs

for GAs were set as follows: the population size N was set to 50, the mutation prob-

ability Pm was set to 0.5, and the crossover probability Pc was set to 0.8 in SSMA

and 1.0 in GALS. The value of the constant C in the objective function was set to

106.

Two sets of experiments were carried out in this study. The first set of experiments

were devoted to analysing the sensitivity of parameters for the performance of GSGA

for the UCTP. The second set compared the performance of investigated GAs with or

without the GS strategy on the test UCTP instances. For both sets of experiments,

there were 50 runs of each algorithm on each problem instance. Following other

works [181, 196], for each run of an algorithm on a problem, the maximum run time

tmax was set to 90 seconds for small instances, 900 seconds for medium instances,

and 9000 seconds for the large instance based on the fact that larger UCTP instances

are more complex and have more conflicting constraints and a larger search space as

compared to smaller UCTP instances and therefore require more processing time.

In the end, we compared our experimental results of EGSGA with a set of current

state-of-the-art methods from the literature on the above set of test UCTP instances

and another set of UCTP instances taken from the ITC-2002 [1].

5.4.1 The Sensitivity of Key Parameters of GSGA

The performance of the GS strategy depends on the parameters and operators used.

Through our previous work [129], we found that α, β, γ, and τ are key parameters

125

Chapter 5. Genetic Algorithms with Guided and Local Search for UCTPs

Table 5.1: Parameter settings in GSGA

Parameter Settings

α 0.2 0.4 0.6 0.8
β 0.1 0.3 0.5 0.7 0.9
γ 0.0 0.2 0.4 0.6 0.8 1.0
τ 20 40 60 80 100

that can greatly affect the performance of GSGA for the UCTP, where α is the

percentage of best individuals selected from the current population for creating the

data structure MEM , β is the percentage value of the total number of events that

are used to create a child through the data structure MEM , γ is the probability that

indicates whether a child is created through MEM or crossover, and τ decides the

frequency of updating MEM (i.e., MEM is updated every τ generations). Hence,

we test our algorithm GSGA with different settings of these parameters.

Table 5.1 shows different parameters and their settings that were tested in our

experiments. In order to find out which parameter settings have a greater effect on

the performance of GSGA, we ran GSGA 50 times for all parameter combinations

in Table 5.1. In total, 600 combinations of parameter settings were observed. Here,

we only present some of those that seem to have a great effect on the performance

of GSGA. We chose two α values 0.2 and 0.6, three β values 0.1, 0.3, and 0.7, three

γ values 0.2, 0.4, and 0.8, and two τ values 20 and 60. The experimental results

with respect to the average objective value of GSGA with these selected parameter

settings are presented in Table 5.2. Table 5.2 shows that different parameter settings

give different results (we explain the reasons later), because the performance of the

proposed approach depends on these key parameters.

126

Chapter 5. Genetic Algorithms with Guided and Local Search for UCTPs

Table 5.2: Average best value of 50 runs of GSGA with different parameter
settings on the test problem instances

α β γ τ S1 S2 S3 S4 S5 M1 M2 M3 M4 M5 L

0.2 0.1 0.2 20 6 9 5 9 4 221 146 211 178 126 726

0.2 0.1 0.2 60 11 10 11 21 5 247 148 217 178 142 803

0.2 0.1 0.4 20 2 3 6 14 3 271 101 192 143 112 716

0.2 0.1 0.4 60 6 10 4 11 3 225 133 201 166 114 806

0.2 0.1 0.8 20 0 2 4 3 1 192 110 203 98 107 645

0.2 0.1 0.8 60 2 3 5 4 0 195 125 221 101 115 669

0.2 0.3 0.2 20 7 6 8 4 4 178 126 183 116 108 722

0.2 0.3 0.2 60 11 11 10 9 4 190 130 187 163 126 812

0.2 0.3 0.4 20 2 6 4 3 4 176 119 178 153 113 647

0.2 0.3 0.4 60 6 4 8 4 5 182 124 185 161 118 654

0.2 0.3 0.8 20 0 0 1 2 0 152 108 121 101 96 637

0.2 0.3 0.8 60 1 2 1 1 2 161 109 155 121 111 675

0.2 0.7 0.2 20 8 6 8 4 5 181 172 162 321 139 856

0.2 0.7 0.2 60 12 11 8 4 5 192 210 175 343 142 881

0.2 0.7 0.4 20 14 7 13 6 4 183 161 154 219 128 778

0.2 0.7 0.4 60 9 2 9 5 5 190 184 162 232 132 811

0.2 0.7 0.8 20 2 0 1 3 5 170 139 218 123 116 664

0.2 0.7 0.8 60 8 5 6 5 6 191 142 225 135 118 679

0.6 0.1 0.2 20 11 8 21 13 7 322 152 223 181 128 834

0.6 0.1 0.2 60 13 15 24 13 8 340 156 231 182 162 888

0.6 0.1 0.4 20 22 17 12 14 3 271 101 192 143 112 716

0.6 0.1 0.4 60 12 10 6 11 3 228 142 211 164 117 764

0.6 0.1 0.8 20 5 3 4 6 5 196 111 220 101 112 652

0.6 0.1 0.8 60 11 12 8 6 3 201 122 247 121 126 689

0.6 0.3 0.2 20 11 10 9 8 5 181 127 198 132 128 722

0.6 0.3 0.2 60 11 11 10 9 4 190 130 200 163 126 812

0.6 0.3 0.4 20 7 7 11 9 5 179 125 181 173 153 647

0.6 0.3 0.4 60 9 11 17 10 5 184 129 185 219 164 712

0.6 0.3 0.8 20 2 4 3 5 0 156 113 132 116 103 645

0.6 0.3 0.8 60 5 3 4 6 3 159 128 161 124 123 663

0.6 0.7 0.2 20 13 21 12 9 7 209 180 167 245 184 912

0.6 0.7 0.2 60 15 21 21 22 9 234 194 197 289 190 934

0.6 0.7 0.4 20 14 9 11 8 7 189 175 161 189 134 781

0.6 0.7 0.4 60 14 11 13 9 10 211 191 186 194 143 792

0.6 0.7 0.8 20 5 4 6 4 5 163 151 192 126 112 670

0.6 0.7 0.8 60 6 4 8 6 10 178 172 212 129 128 705

In order to help understand the experimental results of different parameter settings,

Figure 5.2 shows the dynamic performance regarding the average objective value

against the number of evaluations over 50 runs of GSGA with one parameter chang-

ing while the other parameters are kept constant on different UCTP instances. Fig-

ure 5.2(a) shows the effect of changing α on M1 with β = 0.3, γ = 0.8, and τ = 20.

Figure 5.2(b) shows the effect of changing β on S2 with α = 0.2, γ = 0.8, and

τ = 20. Figure 5.2(c) shows the effect of changing γ on S5 with α = 0.2, β = 0.3,

and τ = 20. Figure 5.2(d) shows the effect of changing τ on S4 with α = 0.2, β = 0.3,

127

Chapter 5. Genetic Algorithms with Guided and Local Search for UCTPs

and γ = 0.8. From Table 5.2 and Figure 5.2, several results can be observed and are

analysed below.

 100

 200

 300

 400

 500

 600

 700

 800

 0 1000 2000 3000 4000 5000 6000 7000 8000

O
bj

ec
ti

ve
 v

al
ue

Number of evaluations

α=0.2
α=0.4
α=0.6
α=0.8

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 500 1000 1500 2000 2500 3000 3500

O
bj

ec
ti

ve
 v

al
ue

Number of evaluations

β=0.1
β=0.3
β=0.5
β=0.7
β=0.9

(a) (b)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 500 1000 1500 2000 2500 3000

O
bj

ec
ti

ve
 v

al
ue

Number of evaluations

γ=0.0
γ=0.2
γ=0.4
γ=0.6
γ=0.8
γ=1.0

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 500 1000 1500 2000 2500 3000

O
bj

ec
ti

ve
 v

al
ue

Number of evaluations

τ=20
τ=40
τ=60
τ=80

τ=100

(c) (d)

Figure 5.2: Comparison on the effect of parameters on the performance of GSGA
on different problem instances: (a) M1 with β = 0.3, γ = 0.8 and τ = 20, (b) S2
with α = 0.2, γ = 0.8 and τ = 20, (c) S5 with α = 0.2, β = 0.3 and τ = 20, and

(d) S4 with α = 0.2, β = 0.3 and γ = 0.8.

First, the parameter α has a significant effect on the performance of GSGA for the

UCTP. The performance of GSGA drops when the value of α increases from 0.2

to 0.8, see Figure 5.2(a) for reference. This occurs because when a small part of

the population is chosen to create the MEM data structure, MEM can provide a

strong guidance during the genetic operations and help GSGA exploit the area of the

search space that corresponds to the best individuals of the population sufficiently.

128

Chapter 5. Genetic Algorithms with Guided and Local Search for UCTPs

This sufficient exploitation can ensure that GSGA quickly achieves better solutions.

In contrast, when a large part of the population is taken to create or update MEM ,

then MEM loses its effect of guiding GSGA to exploit promising areas of the search

space. In other words, when α is set to large values, GSGA tends to be SSMA and

hence the performance will drop or be weak. This can be observed in Figure 5.2(a):

when the value of α increases, the best solution of GSGA cannot improve after a

certain number of evaluations, e.g., after about 4000 evaluations when α = 0.6 and

after about 1500 evaluations when α = 0.8.

Secondly, regarding the effect of β, it can be seen that setting this parameter to a

very small or very large value affects the penalty value. This result can be observed

from the interesting behaviour of GSGA on the S2 problem instance with α = 0.2,

γ = 0.8, τ = 20, and different β values in Figure 5.2(b). From Figure 5.2(b), it can

be seen that when the value of β increases from 0.1 to 0.3, the performance of GSGA

improves due to the enhanced effect of theMEM data structure. However, when the

value of β is further raised, the performance of GSGA drops. This occurs because

if a large portion of individuals is created through MEM , e.g., when β = 0.9, the

chance of creating a similar child may be increased every generation, and after a few

generations, GSGA may be trapped in a sub-optimal state and hence cannot obtain

the optimal solution. From Figure 5.2(b), it can be seen that setting the value of

β to 0.7 or 0.9 leads to an earlier stagnation in the performance of GSGA in the

solving process.

Third, regarding the effect of γ on the performance of GSGA, from Table 5.2, it

129

Chapter 5. Genetic Algorithms with Guided and Local Search for UCTPs

can easily be seen that increasing the value of γ results in near-optimal solutions.

The reason lies in the fact that a small value of γ leads to the proposed GSGA

algorithm acting as the conventional SSMA. Figure 5.2(c) shows the behaviour of

GSGA on the S5 problem instance with α = 0.2, β = 0.3, τ = 20, and different

values of γ. It is quite obvious that a large value of γ, e.g., γ = 0.8, leads to an

optimal solution quickly. The effect of γ also shows the importance of the MEM

data structure. From Figure 5.2(c), it can also be seen that when γ = 1.0, the

performance of GSGA drops in comparison with when γ = 0.8. This result shows

that the use of crossover helps improve the performance of GSGA for the UCTP.

Fourth, regarding the effect of τ , it can be seen from Table 5.2 and Figure 5.2(d) that

setting τ to 20 gives a better objective value than setting τ to other values (i.e., 40,

60, 80, and 100). That is, updating the MEM data structure every small number

of generations gives a better performance of GSGA. This is because when MEM is

updated more frequently, the information extracted from the best individuals of the

population can be more timely used to guide the generation of offspring and hence

gives a greater chance to create better individuals. The difference is significant when

τ is set to 20 over 100. The effect of τ also shows the importance of the MEM data

structure for the performance of GSGA.

Based on the above parameter analyses, in the following experiments, we set the

parameters for GSGA and EGSGA as follows: α = 0.2, β = 0.3, γ = 0.8, and

τ = 20.

130

Chapter 5. Genetic Algorithms with Guided and Local Search for UCTPs

Figure 5.3: Comparison of EGSGA with other algorithms regarding the average
performance on (a) small instances and (b) medium instances.

5.4.2 Comparative Experiments

This set of experiments compares the performance of EGSGA with other imple-

mented algorithms (TS, SSMA, GALS, and GSGA). The parameter settings identi-

fied by the previous experiments were used for all results presented in this section.

The same set of parameters was used for GAs in order to have a fair comparison of

the performance of algorithms.

Figure 5.3 presents the comparison of EGSGA with other algorithms with respect to

the average performance over 50 runs on small and medium UCTP instances. Table

5.3 compares all algorithms in terms of the best, average, standard deviation, and

worst penalty value over the 50 runs on the 11 problem instances, where “–” means

that no feasible solution was found by the corresponding method.

From Figure 5.3 and Table 5.3, it can be seen that EGSGA produces a lower average

and standard deviation of the objective value on most of the UCTP instances and

that the worst objective values produced by EGSGA are by far the best of all the

131

Chapter 5. Genetic Algorithms with Guided and Local Search for UCTPs

Table 5.3: Comparison of algorithms on different problem instances

UCTP Alg Best Ave Std Worst

S1 TS 0 2.06 3.35 9

SSMA 0 6.75 8.27 15

GALS 0 3.43 5.12 15

GSGA 0 2.11 3.33 9

EGSGA 0 1.71 2.42 4

S2 TS 1 14.5 9.6 27

SSMA 3 11.3 8.66 32

GALS 0 8.43 5.21 19

GSGA 0 2.32 5.59 16

EGSGA 0 2.01 3.71 11

S3 TS 0 8.53 7.56 22

SSMA 0 7.26 5.40 26

GALS 0 5.32 6.60 19

GSGA 0 2.2 3.21 11

EGSGA 0 1.8 1.53 2

S4 TS 2 9.26 7.34 22

SSMA 0 6.81 7.01 24

GALS 0 1.24 2.41 7

GSGA 0 1.84 2.20 11

EGSGA 0 0.63 1.89 5

S5 TS 0 5.58 6.42 16

SSMA 0 3.49 7.00 19

GALS 0 2.53 2.89 7

GSGA 0 0.51 1.86 5

EGSGA 0 0.55 0.82 3

M1 TS 211 220.5 27.64 267

SSMA 280 302 36.117 321

GALS 227 229.5 10.65 256

GSGA 240 247 9.02 260

EGSGA 139 142 6.384 202

M2 TS 185 230.5 21.59 273

SSMA 188 225.2 20.01 290

GALS 180 203 20.62 256

GSGA 162 172.4 14.49 209

EGSGA 92 112 10.96 134

M3 TS 280 286 8.170 301

SSMA 249 330 23.45 389

GALS 235 249.2 10.21 300

GSGA 242 247 6.021 290

EGSGA 122 128.4 4.832 160

M4 TS 176 187 18.38 241

SSMA 247 256 21.86 321

GALS 142 160.1 16.90 203

GSGA 158 162.7 17.01 212

EGSGA 98 100.2 5.451 112

M5 TS 255 276 20.45 365

SSMA 232 245.6 15.32 343

GALS 200 212.2 24.77 298

GSGA 124 128.5 23.67 200

EGSGA 116 121.3 13.29 151

L TS – – – –

SSMA – – – –

GALS – – – –

GSGA 801 858.2 40.35 921

EGSGA 615 648.5 19.11 670

algorithms. This is a really good result, and means that EGSGA is much more

reliable than the other algorithms. EGSGA produces good solutions due to the

132

Chapter 5. Genetic Algorithms with Guided and Local Search for UCTPs

usage of the GS and LS strategies. As mentioned earlier, this is due to the fact that

we assign to an event a pair of room and time slots extracted from one of the best

individuals of a previous population. This means that the pair satisfies different

constraints that are suitable to that event. The LS technique further helps EGSGA

find the local optimum around an individual. By doing so, we increase the chance

of getting better and better solutions during the solving process.

Figure 5.4 shows the dynamic behaviour of algorithms against the number of eval-

uations on Tsome problem instances, where the x-axis represents the number of

evaluations and the y-axis represents the average objective value over 50 runs. Fig-

ures 5.4(a) and 5.4(b) show the performance of different algorithms on small UCTP

instances S1 and S3, respectively. Figure 5.4(c) represents the performance of al-

gorithms on the medium UCTP instance M5, where the y-axis shows the objective

value expressed in the log scale. Figure 5.4(d) shows the performance of GSGA and

EGSGA on the large UCTP instance, where the y-axis is also expressed in the log

scale.

From Figure 5.4, it can be seen that on the small instances, SSMA and TS reach

near-optimal solutions as the number of evaluations increases and that GALS and

GSGA perform similarly to each other. We notice that when the two strategies in

EGSGA are used independently, GALS and GSGA are not significantly better than

each other, but when they are combined in EGSGA, we see a great improvement in

performance of EGSGA. The penalty value of EGSGA is reduced at the beginning

of the search and gives the optimal solution between 1000 and 1500 evaluations,

133

Chapter 5. Genetic Algorithms with Guided and Local Search for UCTPs

 0

 50

 100

 150

 200

 250

 0 500 1000 1500 2000 2500 3000

O
bj

ec
ti

ve
 v

al
ue

Number of evaluations

TS
SSMA
GALS
GSGA

EGSGA

 0

 50

 100

 150

 200

 250

 0 500 1000 1500 2000 2500 3000

O
bj

ec
ti

ve
 v

al
ue

Number of evaluations

TS
SSMA
GALS
GSGA

EGSGA

(a) (b)

 2

 3

 4

 5

 6

 7

 8

 9

 0 1000 2000 3000 4000 5000 6000 7000 8000

O
bj

ec
ti

ve
 v

al
ue

 (
lo

g 1
0)

Number of evaluations

TS
SSMA
GALS
GSGA

EGSGA

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 0 10000 20000 30000 40000 50000 60000 70000

O
bj

ec
ti

ve
 v

al
ue

 (
lo

g 1
0)

Number of evaluations

GSGA
EGSGA

(c) (d)

Figure 5.4: Dynamic performance of algorithms on different problem instances:
(a) S1, (b) S3, (c) M5, and (d) L.

while GSGA and GALS give near-optimal solution after 2000 evaluations. On the

M5 medium problem instance, a considerable fall in the penalty value can be noticed

in the performance of EGSGA. EGSGA quickly generates a feasible solution after

a few evaluations and makes positive movement towards the near-optimal solution

by exploring the search space as the number of evaluations increases. On the other

hand, GALS and GSGA achieve a feasible solution over 1000 evaluations. It can be

observed from Figure 5.4(d) that the search speed of EGSGA on the large problem

instance is better than that of GSGA. We anticipate this result because partial

solutions from good individuals provide more efficient solutions when combined with

134

Chapter 5. Genetic Algorithms with Guided and Local Search for UCTPs

Table 5.4: The t-test values of comparing algorithms on different problem in-
stances

UCTP S1 S2 S3 S4 S5 M1 M2 M3 M4 M5 L

SSMA − TS s− s+ + s+ s+ s− + s− s− s+ In
SSMA − GALS s− s− s− s− − s− − s− s− s− In
SSMA − GSGA s− s− s− s− s− s− s− s− s− s− In
SSMA − EGSGA s− s− s− s− s− s− s− s− s− s− In
GALS − GSGA − s− s− s+ s− s+ s− + + s− In
EGSGA − GALS s+ s+ s+ + s+ s+ s+ s+ s+ s+ In
EGSGA − GSGA + + s+ s+ + s+ + s+ s+ + s+
TS − GALS − s− s− s− s− s+ s− s− s− s− In
TS − GSGA − s− s− s− s− s+ − s− − s− In
TS − EGSGA − s− s− s− s− s− s− s− s− s− In

the LS strategy LS2.

The t-test results of statistically comparing investigated algorithms are shown in

Table 5.4 (details of the t-test are presented in Appendix A). The average perfor-

mance values over 50 runs of all algorithms on all problem instances are used for the

t-test (the data used for the t-test are presented in Tables A.3, A.4, A.5, and A.6,

respectively). The t-test statistical comparison was carried out with 98 degrees of

freedom at a 0.05 level of significance and the results are shown in Table 5.4, where

the t-test results of comparing two algorithms are shown as “s+”, “s−”, “+”, or

“−” when the first algorithm is significantly better than, significantly worse than,

insignificantly better than but better than (the mean value difference is not statisti-

cally significant), or insignificantly worse but worse than (the mean value difference

is not statistically significant) the second algorithm, respectively. In Table 5.4, “In”

means that one or both of the algorithms being compared failed to find a feasible

solution for the corresponding problem instance.

From Table 5.4, it can be seen that the performance of EGSGA is significantly better

than that of all other algorithms on all medium and large problem instances and

135

Chapter 5. Genetic Algorithms with Guided and Local Search for UCTPs

that the performance of EGSGA is significantly better than that of GSGA on most

small, medium, and large problem instances. These results show that the integration

of proper LS strategies with the GS strategy can greatly improves the performance

of GAs for the UCTP.

5.4.3 Comparison with Algorithms from the Literature

In this section, we compare the experimental results of our algorithms with the

available results of other algorithms described in Section 3.2. Here we briefly describe

those approaches:

• EGSGA: The EGSGA proposed in this chapter. The results reported here

were derived from 50 runs with each run lasting for 90 seconds for small UCTP

instances, 900 seconds for medium instances, and 9000 seconds for the large

instance.

• RIIA: The randomized iterative improvement method of Abdullah et al. [14].

They presented a composite neighbourhood structure with a randomized it-

erative improvement algorithm. The results were reported out of 5 runs with

each run lasting for 200,000 evaluations.

• HEA: The hybrid evolutionary approach of Abdullah et al. [15] consists of

an EA that uses a light mutation operator followed by a randomized iterative

improvement algorithm. The results were reported out of 5 runs with 200,000

evaluations per run.

136

Chapter 5. Genetic Algorithms with Guided and Local Search for UCTPs

• GBHH: The graph-based hyper-heuristic of Burke et al. [51]. They employed

TS with graph-based hyper-heuristics for the UCTP and examination timetabling

problems. The results were reported out of 5 runs with 12000 evaluations per

run for the small problem instances, 1200 evaluations per run for the medium

problem instances, and 5400 evaluations per run for the large problem instance,

respectively.

• THHS: Burke et al. [47] introduced a TS hyper-heuristics for the UCTP, where

a set of low level heuristics compete with each other. This approach was tested

on the course timetabling and nurse rostering problems. The results were

reported out of 5 runs with 12000 evaluations per run for the small problem

instances, 1200 evaluations per run for the medium problem instances, and

5400 evaluations per run for the large problem instance, respectively.

• LS: The LS method of Socha et al. [196]. They used a random restart LS

method for the UCTP and compared it with an ant algorithm. The results

were reported out of 50 runs with each run lasting for 90 seconds for small

UCTP instances, 40 runs with each run lasting for 900 seconds for medium

instances, and 10 runs with each run lasting for 9000 seconds for the large

instance.

• GA: The GA of Rossi-Doria et al. [181]. They used a LS method with the GA

to solve the UCTP and also compared several meta-heuristics methods on the

UCTP. The results were reported out of 50 runs with each run lasting for 90

137

Chapter 5. Genetic Algorithms with Guided and Local Search for UCTPs

seconds for the small problem instances, 900 seconds for the medium problem

instances, and 9000 seconds for the large problem instance, respectively.

• AA: The ant algorithm used of Socha et al. [196]. They developed an ant

colony optimisation algorithm with the help of a construction graph and a

pheromone model appropriate for the UCTP. The results were reported out

of 50 runs with each run lasting for 90 seconds for small UCTP instances, 40

runs with each run lasting for 900 seconds for medium instances, and 10 runs

with each run lasting for 9000 seconds for the large instance.

• FA: The fuzzy algorithm of Asmuni et al. [29]. In [29], Asmuni et al. focused

on the issue of ordering events by simultaneously considering three different

heuristics using fuzzy methods. The results were reported from one run for

each problem instance but the stopping criterion for each run on a problem

instance was not clearly mentioned in the paper.

All the above compared algorithms have different conditions under which their re-

sults were reported. However, these approaches have been frequently used by other

researchers to compare the performance of their algorithms. Strictly speaking, it

is not entirely fair to use the results reported in the literature since the conditions

involved are not the same for all algorithms. However, the results reported can give

us a rough understanding of how good or bad an algorithm is in comparison with

existing methods. Hence, we also follow the trend in the literature and roughly

compare our algorithm EGSGA with the above state-of-the-art methods using the

138

Chapter 5. Genetic Algorithms with Guided and Local Search for UCTPs

reported results. Table 5.5 gives the comparison results, where the term “%In” rep-

resents the percentage of runs that failed to obtain a feasible solution, and “Best”

and “Med” indicate the best and median result of 50 runs, respectively. We present

the best result from all the algorithms for each UCTP instance in the bold font.

From Table 5.5, it can be seen that EGSGA performs better than the fuzzy algo-

rithm [29], LS [196], and graph-based approach [51] on all the 11 problem instances.

EGSGA outperforms RIIA [14], and GA [181] on all the medium problem instances

and ties with them on some or all of the small problem instances. EGSGA also gives

better results than the ant algorithm [196] on 10 problem instances and equals it

on S5. When compared with the tabu-based hyper heuristic search [47], EGSGA

performs better or equally well on all the problem instances. Finally, the result of

EGSGA is better than that of HEA [15] on all medium problem instances and ties it

on small instances. On the whole, EGSGA beats all algorithms on medium problem

instances and gives promising results on the large problem.

We also ran EGSGA according to the ITC-2002 rules [1] on the set of 20 UCTP

instances. There were 50 runs of EGSGA on each problem instance. For each run

on a problem instance, the maximum run time tmax was set to 900 seconds. The

results of the algorithms we compared were taken from the ITC-2002 website [1]. A

detailed description of these algorithms can be found in Chapter 3, Section 3.2, but

we describe them here briefly as follows:

• SA: The simulated annealing based heuristic of Kostuch [138]. This approach

139

C
h
a
p
ter

5
.
G
en

etic
A
lgo

rith
m
s
w
ith

G
u
id
ed

a
n
d
L
oca

l
S
ea
rch

fo
r
U
C
T
P
s

Table 5.5: Comparison of algorithms on different problem instances

EGSGA RIIA HEA GBHH THHS LS GA AA FA
UCTP Best Med Best Best Best Best Med Best Med Best

S1 0 0 0 0 6 1 8 0 1 10
S2 0 0 0 0 7 2 11 3 3 9
S3 0 0 0 0 3 0 8 0 1 7
S4 0 0 0 0 3 1 7 0 1 17
S5 0 0 0 0 4 0 5 0 0 7
M1 139 143 242 221 372 146 199 280 195 243
M2 92 96.5 161 147 419 173 202.5 188 184 325
M3 122 124 265 246 359 267 77.5%In 249 248 249
M4 98 101 181 165 348 169 177.5 247 164.5 285
M5 116 119.5 151 135 171 303 100%In 232 219.5 132
L 615 622.5 100%In 529 1068 80%In 100%In 100%In 851.5 1138

140

Chapter 5. Genetic Algorithms with Guided and Local Search for UCTPs

is divided into two stages. First, it finds a feasible timetable them it uses a

simulated annealing scheme to improve the timetable according to an objective

function value.

• ETTS: The efficient timetabling solution with TS of Cordeau et al. [76]. They

developed a tabu heuristic that first finds a feasible solution and then improves

the quality of the solution by reducing soft constraints.

• GDLS: Bykov [56] used a great deluge local search algorithm to solve the

problem.

• TSLS: Gaspero and Schaerf [113] used a three-stage local search paradigm.

Their local search method consists of hill climbing, TS, and multi-swap shake

stages.

• AMLS: Arntzen and Løkketangen [27] proposed a simple adaptive memory

search to improve the quality of an initial solution. The search is guided

by TS mechanisms based on recency and frequency of certain attributes of

previous moves.

• DTS: Dubourg et al. [93] proposed a TS approach to solve the UCTP.

Table 5.6 shows the comparison of EGSGA with other results from the literature

on the ITC-2002 test set, where “comp01” represents the first benchmark instance,

“comp02” represents the second benchmark instance, and so on. Table 5.6 shows the

best result (soft constraints violation) achieved by each algorithm, where the best

141

Chapter 5. Genetic Algorithms with Guided and Local Search for UCTPs

Table 5.6: Comparison of algorithms on ITC-2002 problem instances

UCTP EGSGA SA ETTS GDLS TSLS AMLS DTS

comp01 54 45 61 85 63 132 148
comp02 25 25 39 42 46 92 101
comp03 44 65 77 84 96 170 162
comp04 132 115 160 119 166 265 350
comp05 97 102 161 77 203 257 412
comp06 3 13 42 6 92 133 246
comp07 12 44 52 12 118 177 228
comp08 23 29 54 32 66 134 125
comp09 21 17 50 184 51 139 126
comp10 53 61 72 90 81 148 147
comp11 46 44 53 73 65 135 144
comp12 96 107 110 79 119 290 182
comp13 69 78 109 91 160 251 192
comp14 13 52 93 36 197 230 316
comp15 35 24 62 27 114 140 209
comp16 12 22 34 300 38 114 121
comp17 104 86 114 79 212 186 327
comp18 39 31 38 39 40 87 98
comp19 63 44 128 86 185 256 325
comp20 2 7 26 0 17 94 185

result among all algorithms for each UCTP instance is represented in bold. From

Table 5.6, it can be seen that EGSGA is able to produce good results on all problem

instances. It gives the best result on 9 out of 20 problem instances. However, there

is still a room for improvement in the proposed approach to obtaining an optimal

solution on hard problem instances.

From the above experimental results, it can be seen that the GS strategy and proper

LS strategies used in GSGAs can help minimize the objective function value and

give better results for the UCTP compared to other population-based algorithms

employed in the literature. The experimental results also shows that due to the

good solutions that are created through the GS strategy in GSGAs, the chance of

getting feasible and optimal solutions is increased.

142

Chapter 5. Genetic Algorithms with Guided and Local Search for UCTPs

5.5 Chapter Summary

This chapter introduced a guided search (GS) strategy to enhance the searching

power of GAs for solving the UCTP. The GS strategy uses a memory (data structure)

to store useful information, i.e., a list of room and time slot pairs for each event that

is extracted from the best individuals selected from the population and that has a

zero penalty value. This data structure is used to guide the generation of offspring

into the following populations. The main advantage of the GS strategy lies in that it

improves the quality of individuals by storing part of former good solutions, which

otherwise would have been lost in the selection process, and reusing the stored

information in the following generations. This can enable a GA to quickly retrieve

the best solutions corresponding to the previous and new populations.

Based on the above GS strategy and two LS strategies described in Chapter 4, we

presented several GA variants based on the steady-state GA model, including two

versions of guided search GAs, i.e., GSGA and EGSGA, for solving the UCTP. In

order to test the performance of proposed GAs for the UCTP, experiments were

carried out to analyse the sensitivity of parameters within the GS strategy and the

effect of the GS strategy for the performance of GSGAs based on a set of benchmark

UCTP instances. The experimental results of EGSGA were also compared with

several state-of-the-art methods from the literature on the tested UCTP instances.

The experimental results show that the proposed EGSGA is competitive and works

well across the tested problem instances in comparison with other state-of-the-art

143

Chapter 5. Genetic Algorithms with Guided and Local Search for UCTPs

approaches taken from the literature. Generally speaking, with the help of the GS

and LS strategies, EGSGA is able to efficiently find optimal or near-optimal solutions

for the UCTP and hence can act as a powerful tool for the UCTP.

To our knowledge, this study is the first time GAs have been applied with the

GS strategy to address timetabling problems. In this chapter, we investigated the

performance of GSGAs under simplified benchmark UCTP instances. We also want

to test the performance of our approaches on more harder or near to the real-world

UCTP instances. Consequently, the next chapter will be based on the question of

how the GS strategy works on the post-enrolment course timetabling problem, which

is a harder and nearer-to-the real-world UCTP.

144

Chapter 6

Hybrid Approaches for

Post-Enrolment Course

Timetabling

6.1 Introduction

In the previous chapter, we presented a guided search (GS) strategy to enhance

the performance of genetic algorithms (GAs) for the university course timetabling

problem (UCTP) and tested the performance of two versions of guided search GAs

(GSGAs) based on the ITC-2002 benchmark UCTP instances. In this chapter, we

move forward towards the more difficult or nearer to real-world UCTP instances,

the post enrolment course timetabling problem (PECTP). The PECTP is one type

145

Chapter 6. Hybrid Approaches for Post-Enrolment Course Timetabling

of UCTP, in which a set of events has to be scheduled in time slots and located in

suitable rooms according to the student enrolment data.

In this chapter, we propose a hybrid two-phase approach to solve the PECTP. In

the first phase, a GSGA is applied to solve the PECTP. In the second phase, a tabu

search (TS) heuristic is further used on the best solution obtained by the first phase

to improve the optimality of the solution, if this is possible. The proposed hybrid

approach is tested on a set of benchmark PECTP instances taken from the ITC-2007

compared with a set of state-of-the-art methods from the literature.

This chapter consists of four sections. The next section describes the proposed hybrid

approach and its components. The experimental results obtained by comparing the

proposed hybrid approach with other algorithms from the literature are reported and

discussed in Section 3. Finally, Section 4 concludes this chapter with discussions on

the proposed hybrid approach for the PECTP.

6.2 The Proposed Hybrid Approach for the PECTP

A hybrid approach is proposed based on the GSGA (described in Chapter 5) and

a TS heuristic to solve the PECTP. The proposed hybrid approach works in two

phases. In the first phase, the GSGA for the UCTP is adapted and applied to solve

the PECTP. This GSGA integrates the GS strategy and some LS strategies, where

the GS strategy uses a data structure that stores useful information extracted from

146

Chapter 6. Hybrid Approaches for Post-Enrolment Course Timetabling

previous good individuals to guide the generation of offspring into the population,

and where the LS strategies are used to improve the quality of individuals. In

addition to the original LS strategy LS1 [181], some new neighbourhood structures

and relevant LS strategies are integrated into the proposed hybrid approach for the

PECTP. Given that finding a feasible solution for the PECTP can be a challenging

task [146], the hybrid approach employs a second phase, where a TS heuristic is

further used on the best solution obtained by GSGA in the first phase to improve

the optimality of the solution, if this is possible. In order to investigate the effect of

parameters on the performance of the hybrid approach for the PECTP, a sensitivity

analysis of key parameters of GSGA is carried out by systematic experiments based

on a set of ITC-2007 benchmark PECTP instances.

The pseudo-code of the proposed hybrid GA and TS approach, denoted HGATS,

for the PECTP is shown in Algorithm 15. HGATS works in two phases. In the first

phase, the GSGA which uses genetic operators, a GS strategy, and two powerful

LS techniques, is used to evolve a population of candidate solutions towards better

and better solutions, ideally finding the optimal solution. Usually, GAs are able to

locate promising regions for global optima in the search space, but sometimes, like

other meta-heuristics, GAs have difficulty in finding the exact optimum of highly

constrained problems [108]. Several examples can be found from the literature where

a solution obtained from a GA is improved by another optimisation technique [121].

In this chapter, we also use this technique in HGATS to try to find an optimal

solution for the PECTP. Considering the hardness of the PECTP, if only feasible

147

Chapter 6. Hybrid Approaches for Post-Enrolment Course Timetabling

Algorithm 15 Proposed Hybrid Approach – HGATS

1: input : A problem instance I
2: set the generation counter g := 0
3: for i := 1 to population size do
4: si ← InitializeIndividual(i)
5: si ← solution si after applying LS strategy LS1
6: si ← solution si after applying LS strategy LS3
7: end for
8: while the termination condition is not reached do
9: if (g mod τ) == 0 then
10: apply ConstructMEM2() to construct MEM
11: end if
12: s ← child by applying GuidedSearch2() or BiasedCrossover() with a prob-

ability γ
13: s← child after mutation with a probability Pm

14: s← child after applying LS1
15: s← child after applying LS3
16: replace the worst individual of the population by s
17: g := g + 1
18: end while
19: if s is an optimal solution then
20: go to line 24
21: else
22: s← Apply TabuHeuristic() on the best solution obtained in the first phase
23: end if
24: output : The best solution sbest achieved for the problem instance I

solutions are found during the first phase of HGATS, the second phase is executed,

which uses a TS heuristic inspired by [181] to improve the feasible solution toward

the optimal solution. Below we describe the two phases of the proposed HGATS in

detail, respectively.

6.2.1 The Enhanced GSGA – Phase I of HGATS

The first phase of HGATS uses the GSGA, which is adapted and enhanced according

to the PECTP, to solve the PECTP (as described in Section 3.3, Chapter 3). The

148

Chapter 6. Hybrid Approaches for Post-Enrolment Course Timetabling

framework of the GSGA is based on a steady state GA, where one child solution is

generated per iteration (or per generation) [102, 177]. GSGA starts from an initial

population of individuals that are randomly generated, where events are assigned

to rooms and time slots for each solution based on the property of each event.

Usually, for GAs, the quality of the initial solutions affects the final solutions and

researchers have shown that good initial solutions usually produce good or required

results within less computational time [83, 147, 188]. Hence, we want to create a

good initial population that would help GSGA to evolve quickly towards the optimal

solution quickly. For this purpose, two LS strategies are applied to each individual

of the initial population. The LS strategies use six neighbourhood structures, which

will be described in Section 6.2.1.6, to first move events to time slots and then use

the matching algorithm to allocate rooms and time slots to events.

After the initialisation of the population, a data structure MEM is constructed,

which stores a list of room and time slot pairs (r, t) for all the events in the set E ′

e

that have zero penalty (i.e., no hard- and soft-constraint violation at these events)

of good individuals selected from the population. After that, MEM can be used

to guide the generation of offspring for the following generations. The MEM data

structure is re-constructed regularly, e.g., every τ generation. In each generation of

GSGA, one child is first generated either by usingMEM or by applying the crossover

operator, depending on a probability γ. The child will then undergo the mutation

operation followed by the LS strategies for potential improvement. Finally, the worst

member in the population is replaced with the newly generated child individual. This

149

Chapter 6. Hybrid Approaches for Post-Enrolment Course Timetabling

Algorithm 16 InitializeIndividual(i)

1: input : The index i of individual Ii
2: for each event ej of Ii do
3: if event ej ∈ E ′

e then
4: assign a random time slot from T ′

s to ej
5: assign a random room from a list of suitable rooms
6: else
7: assign a random time slot from ETj to ej
8: assign a random room from a list of suitable rooms
9: end if
10: end for
11: output : The generated individual Ii

iteration continues until one termination condition is reached, e.g., a present time

limit tmax is reached or the best solution found has no soft- and hard-constraint

violations.

In the following sub-sections, we will describe in detail the key components of the

adapted GSGA in turn, including the initialisation of the population, the MEM

data structure and its construction, the guided search strategy, the crossover and

mutation operators, and the two LS strategies.

6.2.1.1 Initialisation of the Population

Each individual Ii of the initial population is created by Algorithm 16. We divide

the set of events E into two classes: events in E ′

e (the set of events that have no time

slot restriction, as described in Section 3.3.2 of Chapter 3) and events not in E ′

e. If

an event has no particular time slot restriction, it is allocated a random time slot

t from the set T ′

s of time slots that have no restriction of any event and a suitable

room; otherwise, the event is allocated a random time slot from the element time

150

Chapter 6. Hybrid Approaches for Post-Enrolment Course Timetabling

Algorithm 17 ConstructMEM2()

1: input : The whole population P with the population size N
2: sort the population P according to the fitness of individuals
3: Q← select the best α×N individuals in P
4: for each individual Ij in Q do
5: for each event (ei ∈ E ′

e) in Ij do
6: calculate the penalty value of event ei from Ij
7: if ei is feasible (i.e., ei has zero penalty) then
8: add the room and time slot pair (ri, ti) assigned to ei into the list li
9: end if
10: end for
11: end for
12: output : The data structure MEM

slot list of ET corresponding to the event, and is randomly allocated a room among

suitable rooms. This way, each individual generated will satisfy the hard constraints

H2 and H4, described in Section 3.3.1 of Chapter 3. However, it is not guaranteed to

be feasible. An infeasible individual will be checked by LS strategies (to be described

in Section 6.2.1.6), which will try to make it feasible.

6.2.1.2 The MEM Data Structure

In GSGA, we use a data structure MEM to guide the generation of offspring by re-

introducing the best part of good individuals from previous generations. ThisMEM

data structure is used to provide further direction of exploration and exploitation in

the search space. It is a two-level structure as described in Section 5.2.1 of Chapter

5. The first level is a list of events and the second level is a list li of room and

time slot pairs corresponding to each event ei in the first level list. The MEM data

structure is regularly re-constructed every τ generations. Algorithm 17 shows the

151

Chapter 6. Hybrid Approaches for Post-Enrolment Course Timetabling

outline of constructing MEM in the GSGA used in the hybrid approach. Here,

the construction of MEM is slightly different from what we described in Section

5.2.1, because we consider only those events which are not restricted to be placed in

pre-defined time slots.

When MEM is due to be re-constructed, we first select α×N best individuals from

the population P to form a set Q, where N denotes the population size. After that,

for each individual Ij ∈ Q, we check each event ei ∈ E ′

e
1 by its penalty value, i.e.,

the hard- and soft-constraint violations associated with this event. If an event has

a zero penalty value, then we store the information corresponding to this event into

MEM . For example, if the event e2 of an individual Ij ∈ Q is assigned room 2 at

time slot 13 and has a zero penalty value, then we add the pair (2, 13) into the list

l2. Similarly, the events of the next individual Ij+1 ∈ Q are also checked by their

penalty values. If the event e2 in Ij+1 has a zero penalty, then we add the pair of

room and time slot assigned to e2 in Ij+1 into the existing list l2. If for an event ei,

there is no list li existing yet, then the list li is added into the MEM data structure.

Similar process is carried out for the selected Q individuals and finally MEM stores

pairs of room and time slot corresponding to those events with zero penalty of the

best individuals of the current population. This newly re-constructed MEM data

structure is then used to guide the generation of offspring for the next τ generations.

1We only check those events that are not directly involved with H4 because other events must
have been assigned in pre-specified time slots. It is worthless to assign and evaluate those events
since they do not help to increase the diversity of the GSGA.

152

Chapter 6. Hybrid Approaches for Post-Enrolment Course Timetabling

Algorithm 18 GuidedSearch2()

1: input : The MEM data structure
2: Es := randomly select β ∗ |E ′

e| events from E ′

e

3: for each event ei in Es do
4: randomly select a room and time slot pair from the list li in MEM
5: assign the selected pair to event ei for the child
6: end for
7: for each remaining event ei not in Es do
8: if ei ∈ ET then
9: assign a particular time slot and suitable room to ei
10: else
11: assign a random time slot and room to ei
12: end if
13: end for
14: output : A new child generated using MEM

6.2.1.3 Generating a Child by the GS Strategy

In GSGA, a child is created through the GS strategy or crossover with a probability

γ. When a new child is to be generated, a random number ρ ∈ [0.0, 1.0] is first

generated. If ρ < γ, GuidedSearch2() (as shown in Algorithm 18) will be used

to generate the new child; otherwise, a crossover operator BiasedCrossover() (as

shown in Algorithm 19) will be used.

If a child is to be created using the GS strategy, we first select a set Es of β ∗ |E ′

e|

random events from E ′

e to be generated from the MEM data structure. Here, β is

a percentage value and |E ′

e| is the size of the set E ′

e. We randomly select a pair of

(rji , t
j
i), j = 1, · · · , Ni, from the list li that corresponds to the event ei and assign

the selected pair to ei for the child. If there is an event ei in Es but there is no list li

in MEM , then we randomly assign a room and time slot from possible rooms and

time slots to ei for the child. This process is carried out for all the events in Es.

153

Chapter 6. Hybrid Approaches for Post-Enrolment Course Timetabling

Algorithm 19 BiasedCrossover()

1: input : The current population
2: Select parents P1 and P2 by the binary tournament selection
3: for each event ei of the child Ch do
4: if penalty value of ei of P1 < penalty value of ei of P2 then
5: ei of Ch← the time slot and room allocated to ei of P1
6: else
7: ei of Ch← the time slot and room allocated to ei of P2
8: end if
9: end for
10: output : A new child generated using crossover

For those remaining events that are not present in Es, we assign time slots and

rooms according their particular requirements for the child.

6.2.1.4 Crossover

If a child is to be generated using the crossover operator, we first select two individ-

uals from the current population as the parents via the binary tournament selection

scheme. A child is then generated as follows: for each event, we first select the

parent that has the smaller penalty value corresponding to that event, and then

allocate the corresponding room and time slot pair to the event of the child.

Note that the crossover operator here is different from the one shown previously

in Algorithm 10. Here, for each event of a child, the crossover is biased toward

the parent that does better for that event (assuming that a good parent that has

fewer violations related to the chosen event may result in good children in the next

generation), while in Algorithm 10 the crossover is uniform or unbiased regarding

each parent for each event of a child.

154

Chapter 6. Hybrid Approaches for Post-Enrolment Course Timetabling

6.2.1.5 Mutation

After a child is generated by using either the GS strategy or crossover, a mutation

operator is used on the child solution with a probability Pm. The mutation operator

first randomly selects one from four neighbourhood structures N1, N2, N3, and N4,

which will be described below in Section 6.2.1.6, and then makes a move within the

selected neighbourhood structure.

6.2.1.6 Local Search Strategies

When a child solution is generated after the mutation operation, two LS strategies,

denoted LS3 and LS4 respectively, are applied to the solution for possible improve-

ment. We allocate the name LS3 and LS4 because LS1 and LS2 were described

in Chapter 4. LS3 works on all events of a solution while LS4 works on a set of

events of a solution. Here, we suppose that each event is involved with soft- and

hard-constraint violations.

The two LS strategies are based on six neighbourhood structures, denoted as N1,

N2, N3, N4, N5, and N6, respectively. The first three neighbourhood structures N1,

N2, and N3 are the same as defined previously in Section 4.2.1.1 of Chapter 4. The

other three neighbourhood structures N4, N5, and N6 are defined as follows:

155

Chapter 6. Hybrid Approaches for Post-Enrolment Course Timetabling

• N4: the neighbourhood defined by an operator that takes two random events

from the set E ′

e and replaces their time slots by random ones from T ′

s, where

E ′

e and T ′

s are as defined in Section 3.3.2 of Chapter 3.

• N5: the neighbourhood defined by an operator that takes each event ei from

the list of EE and tries to find a place in the timetable before all the events

in EEi, where EE and EEi are as defined in Section 3.3.2 of Chapter 3.

• N6: the neighbourhood defined by an operator that takes a subset of time

slots from all occupied time slots. Among this subset, the worst time slot (that

contains events that collectively have the highest penalty value) is selected and

its events are moved to another randomly chosen time slot in the subset.

The pseudo-code of LS3 is shown in Algorithm 20, where the italicised parts show

the changes that differentiate between LS1 and LS3. Comparing LS3 with LS1 (see

Algorithm 8 in Section 4.2.1.1 of Chapter 4), we can see that LS3 is similar to LS1,

except that LS3 now uses four neighbourhood structures instead of three as used

in LS1. Like LS1, LS3 also works on all events and is based on two steps. In the

first step (Lines 3-13), LS3 checks the hard-constraint violations of each event while

ignoring its soft-constraint violations. If there are hard-constraint violations for an

event, LS1 tries to resolve them by applying moves in the neighbourhood structures

N1, N2, N3, and N4 in order as follows. First, we try to move the event to the

next time slot, then the next, then the next, etc. If this search in N1 fails, we then

search in N2 by trying to swap the event with the next one in the list, then the next

156

Chapter 6. Hybrid Approaches for Post-Enrolment Course Timetabling

Algorithm 20 Local Search Strategy 3 (LS3)

1: input : Individual I selected from the population
2: while Termination condition not reached do

3: for i = 1 to the total number of events do
4: if event i is infeasible then

5: if there is untried move left then
6: calculate the next move (first in N1, then in N2, then in N3, and finally in

N4)
7: apply the matching algorithm to the time slots affected by the move and

delta-evaluate the result.
8: if the move reduces hard constraint violation then

9: make the move
10: end if

11: end if

12: end if

13: end for

14: if any hard constraint violations remain then

15: terminate LS3
16: else

17: for i = 1 to total number of events do
18: if event i has soft constraint violation then

19: if there is untried move left then
20: calculate the next move (first in N1, then in N2, then in N3, and finally

in N4)
21: apply the matching algorithm to the time slots affected by the move and

delta-evaluate the result
22: if the move reduces soft constraints violation then

23: make the move
24: end if

25: end if

26: end if

27: end for

28: end if

29: end while

30: output : A possibly improved individual I

one, and so on. If the search in N2 also fails, we try a move in N3 by using one

different permutation formed by the event with the next two events, then with the

next two, and so on. If the search in N3 also fails, we try a move in N4 by replacing

the time slots of two random events that are in the set E ′

e with random time slots

from T ′

s, then the next two, and so on, until a termination condition is reached, e.g.,

157

Chapter 6. Hybrid Approaches for Post-Enrolment Course Timetabling

an improvement is reached or the maximum number of steps smax is reached, which

is set to different values for different problem instances in the experimental study.

After each move, we apply the matching algorithm to the time slots affected by

the move and try to resolve the room allocation disturbance and delta-evaluate the

result of the move (i.e., calculate the hard- and soft-constraint violations before and

after the move). If there is no untried move left in the neighbourhood for an event,

LS1 continues to the next event. After applying all neighbourhood moves on each

event, if there is still any hard-constraint violation, then LS3 will stop; otherwise,

LS3 will perform the second step (lines 17-27 in Algorithm 20).

In the second step, after reaching a feasible solution, LS3 performs a similar process

as in the first step on each event to reduce its soft-constraint violations. For each

event, LS3 tries to make moves in the neighbourhood N1, N2, N3, and/or N4 in

order without violating the hard constraints. For each move, the matching algorithm

is applied to allocate rooms to affected events and the result is delta-evaluated.

Algorithm 21 describes the second LS strategy, LS4, used in GSGA. LS4 works

on a set of events with N5 (corresponding to lines 2-9 in Algorithm 21) and N6

(corresponding to lines 10-27 in Algorithm 21). The basic idea of LS4 is that it first

tries to place an event ei (involved in the precedence constraint H5) in a time slot

before the corresponding list of events EEi.

After moving a concerned event into a new time slot in the neighbourhood structures

N1 and N2 every time, the new penalty value of the event is calculated. If the move

158

Chapter 6. Hybrid Approaches for Post-Enrolment Course Timetabling

Algorithm 21 Local Search Strategy 4 (LS4)

1: input : Individual I after LS1 is applied
2: for each event ei of I in EE do

3: for each event ej in EEi do

4: try to place event ej in the timetable after the time slot of ei by calculating a
move of ei in the neighbourhood N1 and N2

5: apply the matching algorithm to the time slots affected by the move
6: compute the penalty of ei and delta-evaluate the result
7: apply the move if it reduces hard- or soft-constraint violations
8: end for

9: end for

10: S := randomly pick a percentage of occupied time slots from T

11: for each time slot ti ∈ S do

12: for each event ej in the time slot ti do
13: calculate the penalty value of event ej
14: end for

15: sum the total penalty value of events in the time slot ti
16: end for

17: select the time slot wt with the biggest penalty value from S

18: for each event ei in wt do

19: calculate a move of ei in the neighbourhood N1
20: apply the matching algorithm to the time slots affected by the move
21: compute the penalty of ei and delta-evaluate the result
22: end for

23: if all the moves of events in wt together reduce hard- or soft-constraint violations
then

24: apply the moves
25: else

26: delete the moves
27: end if

28: output : A possibly improved individual I

reduces the penalty value, then it is saved; otherwise, it is not.

After applying N5, LS4 applies N6. It first randomly selects a percentage of time

slots2 from the total time slots in T . The penalty value of each selected time slot is

then calculated and the time slot wt that has the biggest penalty value is selected for

2Rather than choosing the worst time slot out of all time slots, we randomly select a set of time
slots and then choose the worst time slot from the set. This is because for each selected time slot
we need to calculate its penalty value, which costs time. By selecting a set of time slots instead of
all time slots, we try to balance between the computational time and the quality of the algorithm.

159

Chapter 6. Hybrid Approaches for Post-Enrolment Course Timetabling

LS operation. This way, LS4 aims to help improve the existing result. After taking

the worst time slot, LS4 tries a move in the neighbourhood structure N1 for each

event of wt and checks the penalty value of each event before and after applying the

move. If all moves in wt together reduce the hard- and/or soft-constraint violations,

then we apply all the moves; otherwise, we do not make the moves. This way, LS4

can not only place the events according to their precedence but also check the worst

time slot and reduce the penalty value for some events by moving them to other

time slots.

In general, LS4 is expected to enhance the individuals of the population and increase

the quality of the feasible solution by reducing the number of constraint violations.

When LS4 finishes, we get a possibly improved and feasible individual.

At the end of each generation of GSGA, the obtained child solution replaces the

worst member of the population to make a better population in the next generation.

By the end of Phase I, GSGA may produce several different optimal or near-optimal

solutions.

6.2.2 The Tabu Search Heuristics – Phase II of HGATS

We try to find an optimal solution using the above proposed GSGA. However, due to

the hardness of the PECTP, after the first phase of HGATS, sometimes an optimal

or feasible solution may not be obtained. In order to further improve the quality

of the solution obtained by GSGA, a simple TS heuristic, TabuHeuristics(), shown

160

Chapter 6. Hybrid Approaches for Post-Enrolment Course Timetabling

Algorithm 22 TabuHeuristics() – Phase II of HGATS

1: input : The best solution sbest from Phase I (GSGA)
2: s← sbest
3: if s is not feasible then
4: remove all events that involve hard-constraint violations
5: end if
6: TL← ∅
7: while the termination condition is not reached do
8: for i := 0 to 10% of the neighbours do
9: si ← s after the i-th move
10: compute the objective value f(si)
11: end for
12: if ∃sj |f(sj) < f(s) and f(sj) ≤ f(si)∀i then
13: s← sj
14: TL← TL ∪ Ei where Ei is the set of events moved to get sj
15: else
16: s← the best non-tabu moves among all si
17: TL ← TL ∪ Eb where Eb is the set of events moved by the best non-tabu

move
18: end if
19: sbest ← the best solution so far
20: end while
21: output : The optimised solution sbest

in Algorithm 22, is applied as the second phase of HGATS in the hope of getting

an improved and feasible solution from the best solution obtained from Phase I. TS

is a kind of heuristic methods, which has the advantage of having internal memory

[107]. This internal memory prevents TS from revisiting previously visited areas

of the search space. Therefore, it is easier to escape from the local optimum and

approach the global or near-global optimum in a short time [66]. TS is usually

known to be a powerful tool for all types of timetabling problems [47].

The TS heuristic used in HGATS is similar to the TS scheme described in [181]. We

first check the best solution obtained from the first phase. If it is optimal, Phase

161

Chapter 6. Hybrid Approaches for Post-Enrolment Course Timetabling

II will not be executed. Otherwise, if it is a feasible solution, then we improve the

solution by applying the TS heuristic. If a solution is not feasible, we first remove

all events that involve hard-constraint violations and re-consider them if and only if

they satisfy all hard constraints during the neighbourhood search.

We apply N1, N2, and N4 as neighbourhood structures for moving a solution. A

move of a solution is defined as moving one random event of the solution using N1,

swapping two random events of the solution using N2, or swapping two specific

events of the solution to time slots using N4, in order. The reason for not applying

N5 and N6 in the move is that using them takes time and extra work in removing

a hard-constraint violation.

A move is a tabu move if at least one of the events involved has been moved less

than l steps before, where l is the length of the tabu list TL. The tabu list length

is set to the number of events divided by a constant K (K = 100 as described in

[181]). In order to decrease the probability of generating cycles of moves and to

enhance the exploration, a variable neighbourhood set is applied, as suggested in

[181], where every move uses the neighbourhood N1, N2, or N4 with a probability

0.1. In order to explore the search space more efficiently, we accept a tabu move if

it improves the best solution ontained so far.

In summary, the TS heuristic considers a variable neighbourhood set and performs

the best move that improves the best solution obtained so far; otherwise, it performs

the best non-tabu move chosen among those that belong to the current variable set

162

Chapter 6. Hybrid Approaches for Post-Enrolment Course Timetabling

of neighbours. The TS heuristic continues until a time limit is reached or the best

solution obtained so far has no soft- and hard-constraint violation (i.e., an optimal

solution is obtained).

6.3 Experimental Study

In this section, we experimentally investigate the performance of the proposed hybrid

approach for the PECTP compared with several other algorithms. All algorithms

were coded in GNU C++ under version 4.1 and run on a 3.20 GHz PC. We used 24

benchmark PECTP instances to test the algorithms, which were proposed in [146]

for the ITC-2007. Table 3.2 presents the features of these PECTP instances3.

Two sets of experiments were carried out in this study. The first set of experiments

were devoted to analysing the sensitivity of key parameters for the performance of

HGATS for the PECTP. The second set of experiments compared the performance

of HGATS with two relevant algorithms on the test PECTP instances. Finally,

we compared our experimental results with current state-of-the-art methods from

the literature on the tested instances. All the figures in experimental study show

objective function values of the problem.

3Details about these PECTP instances can be found at the website
http://www.cs.qub.ac.uk/itc2007/postenrolcourse/course post index.htm.

163

Chapter 6. Hybrid Approaches for Post-Enrolment Course Timetabling

Table 6.1: Parameter settings in HGATS

Parameter Settings

α 0.2 0.4 0.6 0.8
β 0.1 0.3 0.5 0.7
γ 0.2 0.4 0.6 0.8
τ 20 40 60 80

6.3.1 Sensitivity Analysis of Key Parameters of HGATS

The performance of the proposed hybrid approach depends on the parameters and

operators used, especially in GSGA. Through our previous work [129], we found

that α, β, γ, and τ are key parameters that can greatly affect the performance of

GSGA for the UCTP, where α is the percentage of best individuals selected from

the current population for creating the data structure MEM , β is the percentage of

the total number of events that are used to create a child through the data structure

MEM , γ is the probability that indicates whether a child is created through MEM

or crossover, and τ decides the frequency of updating MEM (i.e., MEM is updated

every τ generations). Hence, we test our algorithm HGATS with different settings

of these parameters. Table 6.1 shows the different parameters and their settings

that were tested in our experiments. Some other parameters for HGATS were set as

follows: the population size N was set to 50 and the mutation probability Pm was

set to 0.5.

In order to find out which parameter settings have a greater effect on the performance

of HGATS, we ran HGATS 50 times for all parameter combinations in Table 6.1.

Here, we report some typical results in Figure 6.1, where the dynamic performance of

164

Chapter 6. Hybrid Approaches for Post-Enrolment Course Timetabling

 2

 3

 4

 5

 6

 7

 8

 0 2000 4000 6000 8000 10000 12000 14000

O
bj

ec
tiv

e
va

lu
e

 (l
og

10
)

number of evaluations

α=0.2
α=0.4
α=0.6
α=0.8

 1

 2

 3

 4

 5

 6

 7

 8

 0 2000 4000 6000 8000 10000 12000 14000

O
bj

ec
tiv

e
va

lu
e

 (l
og

10
)

number of evaluations

β=0.1
β=0.3
β=0.5
β=0.7

(a) (b)

 2

 3

 4

 5

 6

 7

 8

 9

 0 5000 10000 15000 20000

O
bj

ec
tiv

e
va

lu
e

 (l
og

10
)

number of evaluations

γ=0.2
γ=0.4
γ=0.6
γ=0.8

 7.6

 7.7

 7.8

 7.9

 8

 8.1

 8.2

 8.3

 0 500 1000 1500 2000

O
bj

ec
tiv

e
va

lu
e

 (l
og

10
)

number of evaluations

τ=20
τ=60
τ=80

τ=100

(c) (d)

Figure 6.1: Comparison on the effect of parameters on the performance of
HGATS on different problem instances: (a) 2007-21 with β = 0.3, γ = 0.8 and
τ = 20, (b) 2007-17 with α = 0.2, γ = 0.8 and τ = 20, (c) 2007-11 with α = 0.2,

β = 0.3 and τ = 20, and (d) 2007-03 with α = 0.2, β = 0.3 and γ = 0.8.

HGATS regarding the average objective value against the number of evaluations over

50 runs with one parameter changing while the other parameters are kept constant

on different PECTP instances is shown. Figure 6.1(a) shows the effect of changing

α on the 2007-16 problem instance with β = 0.3, γ = 0.8, and τ = 20. Figure 6.1(b)

shows the effect of changing β on 2007-17 with α = 0.2, γ = 0.8, and τ = 20.

Figure 6.1(c) shows the effect of changing γ on 2007-11 with α = 0.2, β = 0.3,

and τ = 20. Figure 6.1(d) shows the effect of changing τ on 2007-3 with α = 0.2,

β = 0.3, and γ = 0.8.

165

Chapter 6. Hybrid Approaches for Post-Enrolment Course Timetabling

From Figure 6.1, several results can be observed and are analysed below. First, the

parameter α has a significant effect on the performance of HGATS for the PECTP.

The performance of HGATS drops when the value of α increases from 0.2 to 0.8,

see Figure 6.1(a) for reference. This occurs because when we choose a small part of

population to create the MEM data structure, MEM can provide strong guidance

during the genetic operations and help HGATS exploit the area of the search space

that corresponds to the best individuals of the population sufficiently.

This sufficient exploitation can ensure that HGATS achieves better solutions quickly.

In contrast, when a large part of the population is taken to create or update MEM ,

then MEM will lose its effect of guiding HGATS to exploit promising areas of the

search space. In other words, when α is set to large values, HGATS tends to be

GALS and, hence, the performance will drop or be weak. This can be observed

from Figure 6.1(a): when the value of α increases, the best solution of HGATS can

not improve after a certain number of evaluations, e.g., after about 4000 evaluations

when α = 0.6 and after about 2000 evaluations when α = 0.8.

Secondly, regarding the effect of β, an interesting behaviour of HGATS can be

observed on the 2007-17 problem instance with α = 0.2, γ = 0.8, τ = 20, and

different β values in Figure 6.1(b). From Figure 6.1(b), it can be seen that when

the value of β increases from 0.1 to 0.3, the performance of HGATS improves due

to the enhanced effect of the MEM data structure. However, when the value of

β is further raised, the performance of HGATS drops. This occurs because if a

large proportion of individuals is created through MEM , e.g., when β = 0.7, the

166

Chapter 6. Hybrid Approaches for Post-Enrolment Course Timetabling

chance of creating a similar child may be increased every generation, and after a few

generations, HGATS may be trapped in a sub-optimal state and hence be unable

to obtain the optimal solution. From Figure 6.1(b), it can be seen that setting the

value of β to 0.5 or 0.7 leads to an earlier stagnation in the performance of HGATS

during the solving process.

Third, regarding the effect of γ, from Figure 6.1(c), it can easily be seen that in-

creasing the value of γ results in better solutions. The reason lies in the fact that

the small value of γ leads to the proposed GSGA acting as the conventional GA.

The effect of γ also shows the importance of introducing the MEM data structure.

Finally, regarding the effect of τ , it can be seen from Figure 6.1(d) that updating

MEM every 20 generations gives a better performance for HGATS than updating it

every 80 generations. This is due to the fact that in the former case the search space

is explored more than in the latter case, which increases the diversity and offers a

greater chance of creating better individuals. The difference is significant when τ is

set to 20 over 100. This is because increasing the value of τ slows down the updating

of the MEM data structure and hence degrades the efficiency of MEM .

As a result of the above parameter analyses, in the following experiments, we set

the parameters for HGATS as follows: α = 0.2, β = 0.3, γ = 0.8, and τ = 20.

167

Chapter 6. Hybrid Approaches for Post-Enrolment Course Timetabling

6.3.2 Comparison with Relevant Algorithms

This set of experiments compares the performance of HGATS with two relevant al-

gorithms. One is the same as the proposed GSGA, except that the GS strategy is

switched off i.e. it is the standard steady state GA with LS3 and LS4, denoted GALS

in this study. For GALS, the crossover operator is applied with a crossover probabil-

ity Pc = 0.8. The second algorithm is the TS algorithm. The basic framework of the

TS algorithm tested is inspired by [181] with the same new neighbourhood struc-

tures as used by the tabu heuristics in HGATS. The parameter settings identified for

HGATS by the previous experiments were used in HGATS and GALS (if relevant)

in this section. The InitializeIndividual() procedure is used for initial solutions for

all algorithms in order to have a fair comparison of the performance of algorithms.

There were 50 runs of each algorithm on each problem instance. The run time for

each run of an algorithm on each problem instance was set to tmax = 600 seconds

based on the time allocation used by the ITC-2007. Other parameter settings are as

follows: the population size N was set to 50 and the mutation probability Pm was

set to 0.5.

Algorithms are evaluated on the basis of two values, Df (distance to feasibility, see

Section 3.3.1) and SCP (soft constraint penalty). Table 6.2 presents the results of

the algorithms in terms of the best, worst, average, and standard deviation of Df

and SCP values over the 50 runs on the 24 problem instances. From Table 6.2, it

can be seen that HGATS produces a lower average and standard deviation of the

168

Chapter 6. Hybrid Approaches for Post-Enrolment Course Timetabling

Table 6.2: Comparison of algorithms on different problem instances

Best Worse Average Std

PECTP Alg Df SCP Df SCP Df SCP Df SCP

2007-1 TS 0 1069 51 1732 11.33 1202.6 17.55 257.04

GALS 0 641 12 976 3.44 704.89 5.13 152.33

HGATS 0 501 12 842 0 587 1.84 108.61

2007-2 TS 0 989 72 2213 25.87 1191.22 17.44 386.77

GALS 0 747 50 2311 8.78 1005.11 16.87 504.79

HGATS 0 342 0 695 0 476.2 0 96.94

2007-3 TS 0 756 18 821 5.89 794.33 5.84 21.9

GALS 0 509 0 801 0 697.44 0 129.53

HGATS 0 3770 432 0 0 407.78 0 19.73

2007-4 TS 0 794 76 1130 18.33 910.5 29.44 141.45

GALS 0 521 11 791 2 669 4.09 46

HGATS 0 234 4 524 0 369 0.33 26.72

2007-5 TS 0 496 65 678 22 544.2 9.62 884

GALS 0 98 20 310 8.62 154 9.62 78

HGATS 0 0 0 325 0 118 0 88.05

2007-6 TS 0 218 0 788 0 428 0 272.93

GALS 0 10 0 430 0 207 0 134.18

HGATS 0 0 0 342 0 201 0 139.5

2007-7 TS 0 84 198 508 82 258 66.59 183.74

GALS 0 275 70 489 25.5 381.75 35.20 89.531

HGATS 0 0 2 543 0.53 418 1.62 98.404

2007-8 TS 0 0 0 751 0 481 0 315.7

GALS 0 0 0 424 0 322 0 193.1

HGATS 0 0 0 309 0 257.12 0 120.78

2007-9 TS 0 1711 152 2361 40.12 1797 53.04 294.85

GALS 0 1547 115 2141 28.87 1237 39 412.37

HGATS 0 989 42 1183 4.5 1002 20.09 81.12

2007-10 TS 0 763 0 1978 0 999 0 406

GALS 4 548 26 1040 5 850 9 154

HGATS 0 499 0 810 0 614 0 117

2007-11 TS 0 680 0 1980 0 968 0 414

GALS 0 701 0 984 0 897 0 84

HGATS 0 246 0 691 0 452 0 121

2007-12 TS 0 373 56 1563 17 702 23 393

GALS 0 444 0 984 0 576 0 178

HGATS 0 172 13 546 1.625 226 0.59 129

2007-13 TS 0 624 20 1873 6.37 1230 9.1 380

GALS 0 201 0 1639 0 852 0 392

HGATS 0 0 0 717 0 616 0 249

2007-14 TS 0 241 17 416 4.75 287 7.62 76

GALS 0 61 0 104 0 78.2 0 17

HGATS 0 0 0 19 0 4.125 0 7.29

2007-15 TS 0 101 0 164 0 135 0 33

GALS 0 14 0 97 0 69 0 21

HGATS 0 0 0 37 0 26 0 6.54

2007-16 TS 0 109 0 1158 0 563 0 161

GALS 0 168 0 771 0 377 0 195

HGATS 0 0 0 270 0 168 0 115.27

2007-17 TS 0 0 0 42 0 32 0 10

GALS 0 0 0 21 0 5 0 7.4

HGATS 0 0 0 11 0 2.5 0 4.65

2007-18 TS 0 0 0 1241 0 924 0 420.52

GALS 0 0 0 842 0 631 0 270

HGATS 0 0 0 572 0 446 0 108

2007-19 TS 147 1078 346 1867 138 1372 110 334

GALS 0 1015 430 2693 174 1612 154 673.65

HGATS 0 84 319 1900 133 810 115 513.7

2007-20 TS 40 348 113 1192 71 1100 29 133

GALS 0 318 138 1942 67 1199 86 439

HGATS 0 297 234 2305 75 1274 95 622

2007-21 TS 0 137 261 1162 69.5 805 96 267

GALS 0 0 10 621 22.5 305 4.6 241

HGATS 0 0 15 1359 2.5 780 2 422

2007-22 TS 91 1742 102 2439 97.37 2051 4.47 260.6

GALS 42 1579 188 2466 94 1715 42 396

HGATS 0 1142 73 1315 33.125 1196 38 243

2007-23 TS 0 2062 34 5556 362 1604 16 8.75

GALS 11 1001 43 1291 81 1193 13 20

HGATS 0 963 16 1896 1.2 1152 3.6 2

2007-24 TS 0 629 0 2309 0 1407 0 541

GALS 0 368 9 2007 2.25 1112 4.16 463.6

HGATS 0 274 0 2142 0 1002 0 519

169

Chapter 6. Hybrid Approaches for Post-Enrolment Course Timetabling

objective value on most of the PECTP instances. HGATS produces good solutions

due to the usage of the MEM data structure and LS schemes. As mentioned earlier,

this is due to the fact that we assign to an event a pair of room and time slot that

was extracted from one of the best individuals of previous populations. This means

that the pair satisfies different constraints that are suitable to that event. The local

and tabu search techniques further help find the local optimum of an individual. By

doing so, we increase the chance of getting better and better solutions during the

solving process.

Figures 6.2 and 6.3 show the dynamic performance of different algorithms regarding

the objective value in the log scale against the number of evaluations. From these

figures, it can be seen that on the 2007-14 and 2007-17 problem instances, HGATS

and TS reach a solution as the number of evaluations increases. HGATS remarkably

decreases in the objective value and gives an optimal solution after 9000 and 4000

evaluations, respectively.

The t-test results of statistically comparing investigated algorithms with 98 degrees

of freedom at a 0.05 level of significance are shown in Table 6.3 (details of this t-test

are presented in Appendix A). The average performance values over 50 runs of all

algorithms on all problem instances are used for the t-test and are shown in Tables

A.7, A.8, A.9, A.10, A.11, and A.12, respectively. In Table 6.3, the t-test result is

shown as “s+”, “s−”, “+”, “−”, or “∼” when the first algorithm is significantly

better than, significantly worse than, not significantly better but better than, not

170

Chapter 6. Hybrid Approaches for Post-Enrolment Course Timetabling

 2

 3

 4

 5

 6

 7

 8

 9

 0 5000 10000 15000 20000 25000

O
b
je

ct
iv

e
v
al

u
e

(l
o
g

1
0
)

number of evaluations

2007-01

TS
GALS

HGATS

 2

 3

 4

 5

 6

 7

 8

 9

 0 5000 10000 15000 20000 25000

O
b
je

ct
iv

e
v
al

u
e

(l
o
g

1
0
)

number of evaluations

2007-02

TS
GALS

HGATS

 2

 3

 4

 5

 6

 7

 8

 9

 0 5000 10000 15000 20000 25000 30000

O
b
je

ct
iv

e
v
al

u
e

(l
o
g

1
0
)

number of evaluations

2007-03

TS
GALS

HGATS

 2

 3

 4

 5

 6

 7

 8

 9

 0 5000 10000 15000 20000 25000

O
b
je

ct
iv

e
v
al

u
e

(l
o
g

1
0
)

number of evaluations

2007-04

TS
GALS

HGATS

 2

 3

 4

 5

 6

 7

 8

 9

 0 5000 10000 15000 20000

O
b
je

ct
iv

e
v
al

u
e

(l
o
g

1
0
)

number of evaluations

2007-05

TS
GALS

HGATS

 2

 3

 4

 5

 6

 7

 8

 9

 0 5000 10000 15000 20000

O
b
je

ct
iv

e
v
al

u
e

(l
o
g

1
0
)

number of evaluations

2007-06

TS
GALS

HGATS

 2

 3

 4

 5

 6

 7

 8

 9

 0 5000 10000 15000 20000 25000

O
b
je

ct
iv

e
v
al

u
e

(l
o
g

1
0
)

number of evaluations

2007-07

TS
GALS

HGATS

 2

 3

 4

 5

 6

 7

 8

 9

 0 5000 10000 15000 20000 25000

O
b
je

ct
iv

e
v
al

u
e

(l
o
g

1
0
)

number of evaluations

2007-08

TS
GALS

HGATS

 3

 4

 5

 6

 7

 8

 9

 0 10000 20000 30000 40000 50000

O
b
je

ct
iv

e
v
al

u
e

(l
o
g

1
0
)

number of evaluations

2007-09

TS
GALS

HGATS

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10000 20000 30000 40000 50000

O
b
je

ct
iv

e
v
al

u
e

(l
o
g

1
0
)

number of evaluations

2007-10

TS
GALS

HGATS

 2

 3

 4

 5

 6

 7

 8

 9

 0 2000 4000 6000 8000 10000 12000 14000

O
b
je

ct
iv

e
v
al

u
e

(l
o
g

1
0
)

number of evaluations

2007-11

TS
GALS

HGATS

 2

 3

 4

 5

 6

 7

 8

 9

 0 5000 10000 15000 20000

O
b
je

ct
iv

e
v
al

u
e

(l
o
g

1
0
)

number of evaluations

2007-12

TS
GALS

HGATS

 2

 3

 4

 5

 6

 7

 8

 9

 0 2000 4000 6000 8000 10000 12000 14000

O
b
je

ct
iv

e
v
al

u
e

(l
o
g

1
0
)

number of evaluations

2007-13

TS
GALS

HGATS

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 5000 10000 15000 20000

O
b
je

ct
iv

e
v
al

u
e

(l
o
g

1
0
)

number of evaluations

2007-14

TS
GALS

HGATS

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 5000 10000 15000 20000

O
b
je

ct
iv

e
v
al

u
e

(l
o
g

1
0
)

number of evaluations

2007-15

TS
GALS

HGATS

Figure 6.2: Dynamic performance of algorithms on PECTP 2007-01 to 2007-15.

171

Chapter 6. Hybrid Approaches for Post-Enrolment Course Timetabling

 2

 3

 4

 5

 6

 7

 8

 9

 0 5000 10000 15000 20000

O
b
je

ct
iv

e
v
al

u
e

(l
o
g

1
0
)

number of evaluations

2007-16

TS
GALS

HGATS

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 5000 10000 15000 20000

O
b
je

ct
iv

e
v
al

u
e

(l
o
g

1
0
)

number of evaluations

2007-17

TS
GALS

HGATS

 2

 3

 4

 5

 6

 7

 8

 9

 0 5000 10000 15000 20000

O
b
je

ct
iv

e
v
al

u
e

(l
o
g

1
0
)

number of evaluations

2007-18

TS
GALS

HGATS

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10000 20000 30000 40000 50000

O
b
je

ct
iv

e
v
al

u
e

(l
o
g

1
0
)

number of evaluations

2007-19

TS
GALS

HGATS

 8.4

 8.45

 8.5

 8.55

 8.6

 8.65

 8.7

 8.75

 0 2000 4000 6000 8000 10000 12000 14000

O
b
je

ct
iv

e
v
al

u
e

(l
o
g

1
0
)

number of evaluations

2007-20

TS
GALS

HGATS

 2

 3

 4

 5

 6

 7

 8

 9

 0 10000 20000 30000 40000 50000

O
b

je
c
ti

v
e
 v

a
lu

e
 (

lo
g

1
0
)

number of evaluations

2007-21

TS
GALS

HGATS

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0 10000 20000 30000 40000 50000

O
b
je

ct
iv

e
v
al

u
e

(l
o
g

1
0
)

number of evaluations

2007-22

TS
GALS

HGATS

 3

 4

 5

 6

 7

 8

 9

 0 10000 20000 30000 40000 50000

O
b
je

ct
iv

e
v
al

u
e

(l
o
g

1
0
)

number of evaluations

2007-23

TS
GALS

HGATS

 8.3

 8.35

 8.4

 8.45

 8.5

 8.55

 8.6

 8.65

 8.7

 8.75

 8.8

 0 5000 10000 15000 20000 25000

O
b
je

ct
iv

e
v
al

u
e

(l
o
g

1
0
)

number of evaluations

2007-24

TS
GALS

HGATS

Figure 6.3: Dynamic performance of algorithms on PECTP 2007-16 to 2007-24.

significantly worse but worse than, or statistically equivalent to the second algorithm,

respectively.

From Table 6.3, it can be seen that the performance of HGATS is significantly better

than the performance of the other two algorithms on most problem instances. It

can also been observed that the performance of GALS is significantly better than

the performance of TS on most problem instances. This result indicates that a

single heuristic is not enough for solving a PECTP. It can also be observed that

172

Chapter 6. Hybrid Approaches for Post-Enrolment Course Timetabling

Table 6.3: The t-test values of comparing algorithms on different ITC-2007
PECTP instances

PECTP Df SCP
HGATS−GALS HGATS−TS GALS−TS HGATS−GALS HGATS−TS GALS-TS

2007-1 − s+ s+ + s+ s+
2007-2 s+ s+ s+ s+ s+ +
2007-3 ∼ + + s+ s+ s+
2007-4 + s+ s+ s+ s+ +
2007-5 ∼ ∼ ∼ + + +
2007-6 s+ s+ s+ s+ s+ +
2007-7 ∼ ∼ ∼ + s+ s+
2007-8 s+ s+ + + s+ +
2007-9 + ∼ − + s+ s+
2007-10 ∼ ∼ ∼ s+ s+ +
2007-11 s− s+ s+ s+ s+ +
2007-12 ∼ s+ s+ s+ s+ +
2007-13 ∼ s+ s+ + s+ s+
2007-14 ∼ s+ s+ s+ s+ s+
2007-15 ∼ ∼ ∼ s+ s+ s+
2007-16 ∼ ∼ ∼ s+ s+ s+
2007-17 ∼ ∼ ∼ + s+ s+
2007-18 ∼ ∼ ∼ + s+ +
2007-19 + + + s+ s− s−
2007-20 + + + s− s− +
2007-21 s+ s+ s+ s− + s+
2007-22 s+ s− s− s+ s+ s+
2007-23 s+ ∼ s+ s+ s+ s+
2007-24 s+ ∼ s− + s+ +

Table 6.4: Percentage of feasible solutions achieved by HGATS after Phase I
and Phase II over 50 runs on each ITC-2007 PECTP instance

Problem Instances
HGATS Phase 1 2 3 4 5 6 7 8 9 10 11 12

Phase I (GSGA) 52% 64% 92% 96% 82% 78% 78% 100% 48% 52% 100% 80%
Phase II (TS) 92% 100% 100% 98% 100% 100% 94% 100% 82% 100% 100% 96%

Problem Instances
HGATS Phase 13 14 15 16 17 18 19 20 21 22 23 24

Phase I (GSGA) 86% 86% 100% 90% 100% 100% 20% 26% 30% 48% 48% 50%
Phase II (TS) 100% 100% 100% 100% 100% 100% 54% 68% 94% 70% 96% 100%

the integration of proper LS with guided search techniques can greatly improve the

performance of GAs for the PECTP.

In order to show the benefit of introducing the second phase (i.e., the TS heuristics)

in HGATS, we also recorded the percentage of feasible solutions obtained by HGATS

173

Chapter 6. Hybrid Approaches for Post-Enrolment Course Timetabling

after Phase I and Phase II over 50 runs on each PECTP instance. The results are

shown in Table 6.4. From Table 6.4, it can be seen that the TS heuristics greatly

improves the percentage of feasible solutions achieved on top of Phase I of HGATS

on most PECTP instances. Hence, the TS heuristics is beneficial to the performance

of HGATS, which justifies the two-phase hybrid approach for the PECTP.

6.3.3 Comparison with Algorithms from the Literature

In this section, in order to justify the performance of our proposed algorithm, we

compare the experimental results of HGATS with the available results of other al-

gorithms on the ITC-2007 PECTP instances. Another reason for comparing our

results to the available results is that we are interested in seeing the behaviour of

GAs for highly constraint PECTPs among different heuristic and optimisation meth-

ods, since this has not yet been investigated yet in the literature. The algorithms

compared are described in detail in chapter 3 section 3.3. Here, we briefly described

them as follows:

• HGATS: The hybrid approach proposed in this chapter.

• The mixed meta-heuristic approach (MMA): In their paper [57], Hadrien et

al. proposed the MMA, which includes TS and simulated annealing used in

conjunction with various neighbourhood operators.

174

Chapter 6. Hybrid Approaches for Post-Enrolment Course Timetabling

• CTI: Mitsunori et al. [30] proposed this technique, which is the combination

of a general purpose constraint satisfaction solver, TS, and iterated LS tech-

niques.

• The hybrid algorithm (HA): In their paper [63], Chiarandini et al. proposed

a HA that combines a constructive procedure for achieving the feasibility,

followed by LS and simulated annealing for satisfying the soft constraints.

• ACO: In their paper [166], Nothegger et al. proposed an ACO algorithm in

conjunction with a local improvement search routine.

• the LS based algorithm (LSA): Müller [162] used an LSA with routines taken

from the Constraint Solver Library. Various neighbourhood search algorithms

are also used to eliminate violations of hard and soft constraints.

Table 6.5 gives the comparison results, where the term “Df” represents the distance

to feasibility and “BSCP” means the best SCP value over 10 runs. One thing to

note is that the ITC-2007 competition results of other algorithms were based on 10

runs per instance. For fair comparison, we also show our results based on 10 runs

per instance here.

From Table 6.5, it can be seen that our proposed HGATS achieved feasibility on all

of the problem instances over 10 runs. It can also be seen that the chance of HGATS

achieving optimal solutions is higher than other algorithms. HGATS achieved the

optimal solution on 10 out of 24 problem instances. It gives the best result on prob-

lem instances 2007-4, 2007-5, 2007-16, and 2007-20 over all the compared algorithms.

175

Chapter 6. Hybrid Approaches for Post-Enrolment Course Timetabling

Table 6.5: Comparison of algorithms from the literature on different ITC-2007
PECTP instances

HGATS CTI MMA HA ACO LSA
PECTP Df BSCP Df BSCP Df BSCP Df BSCP Df BSCP Df BSCP

2007-1 0 523 0 61 0 571 0 1482 0 15 0 1861
2007-2 0 342 0 547 0 993 0 1635 0 0 39 2174
2007-3 0 379 0 382 0 164 0 288 0 391 0 272
2007-4 0 234 0 529 0 310 0 385 0 239 0 425
2007-5 0 0 0 5 0 5 0 559 0 34 0 8
2007-6 0 0 0 0 0 0 0 851 0 87 0 28
2007-7 0 0 0 0 0 6 0 10 0 0 0 13
2007-8 0 0 0 0 0 0 0 0 0 4 0 6
2007-9 0 1102 0 0 0 1560 0 1947 0 0 162 2733
2007-10 0 515 0 0 0 2163 0 1741 0 0 161 2697
2007-11 0 246 0 548 0 178 0 240 0 547 0 263
2007-12 0 241 0 869 0 146 0 475 0 32 0 804
2007-13 0 0 0 0 0 0 0 675 0 166 0 285
2007-14 0 0 0 0 0 1 0 864 0 0 0 110
2007-15 0 0 0 379 0 0 0 0 0 0 0 5
2007-16 0 0 1 91 0 2 0 1 0 41 0 132
2007-17 0 0 0 1 0 0 0 5 0 68 0 72
2007-18 0 0 0 0 0 0 0 3 0 26 0 70
2007-19 0 121 267 1862 0 1824 0 1868 0 22 197 2268
2007-20 0 304 0 1215 0 445 0 596 665 2735 0 878
2007-21 0 36 0 0 0 0 0 602 0 33 0 40
2007-22 0 1154 0 0 0 29 0 1364 0 0 0 889
2007-23 0 963 0 430 0 238 0 688 11 1275 0 436
2007-24 0 274 0 720 0 21 0 822 0 30 0 372

From the results, we can see that the GS strategy and appropriate combination of

local and tabu search approaches can help HGATS to optimise the objective values

and that HGATS gives better results for the ITC-2007 PECTP instances in com-

parison with other population-based and heuristics-based algorithms taken from the

literature.

176

Chapter 6. Hybrid Approaches for Post-Enrolment Course Timetabling

6.4 Chapter Summary

This chapter presented a two-phase hybrid approach, which combines a guided search

genetic algorithm (GSGA) and a tabu search heuristic, to solve the post-enrolment

course timetabling problem (PECTP). In the GSGA, a GS strategy uses a data

structure to store useful information, i.e., a list of room and time slot pairs for each

event that is extracted from the best individuals selected from the population and

that has a zero penalty value. This data structure is used to guide the generation

of offspring into the next population. The main advantage of this data structure

lies in the fact that it provides parts of former good solutions, which otherwise

would have been lost in the selection process, and reuses the stored information

in the following generations. This can enable the algorithm to quickly retrieve the

best solutions corresponding to the previous and new populations. In the proposed

HGATS algorithm, two LS techniques are used to improve the quality of individuals

through searching six neighbourhood structures. At the second phase of HGATS, a

TS heuristic is used to further improve the best solution obtained by GSGA in the

first phase.

In order to test the performance of HGATS for the PECTP, experiments were car-

ried out to analyse the sensitivity of parameters and the effect of the guided search

strategy for the performance of HGATS based on a set of benchmark ITC-2007

PECTP instances. The experimental results of HGATS were also compared with

several state-of-the-art methods from the literature on these benchmark ITC-2007

177

Chapter 6. Hybrid Approaches for Post-Enrolment Course Timetabling

PECTP instances. The experimental results show that the proposed hybrid ap-

proach is competitive and work well across all test PECTP instances in comparison

with other approaches studied in the literature.

In this chapter, we also analysed the Df values of solutions obtained by algorithms

on different PECTP instances. If the Df value of a solution is zero, it means the

corresponding algorithm is able to give a feasible solution while trying to minimise

the soft constraints. However, if we want to minimise the soft constraints while

satisfying all hard constraints, why cannot a UCTP be effectively solved as a MOOP?

What would be the better way to solve the problem? As a single-objective or multi-

objective optimisation problem? The next chapter of this thesis aims to address the

above questions.

178

Chapter 7

Multi-Objective Approaches to

University Course Timetabling

7.1 Introduction

Up until this point in the thesis, we have tackled the university course timetabling

problem (UCTP) as a single-objective optimisation problem. As discussed in Chap-

ter 2, for more than forty years, the UCTP has been studied as a single-objective

optimisation problem and yet there is no formulated general solving technique for

the problem due to the complex and highly-constrained nature of the problem. It

is very difficult to find a general and effective solution for timetabling owing the

diversity of the problem, the variance of constraints, and special objectives from

university to university according to their own particular characteristics.

179

Chapter 7. Multi-Objective Approaches to University Course Timetabling

In this part of our research, we will now switch our effort over to solve the problem

as a multi-objective optimisation problem (MOOP) in the hope of dealing with

multiple and conflicting objectives simultaneously for the UCTP. In this chapter,

we first develop a framework of multi-objective evolutionary algorithms (MOEAs)

to solve the multi-objective university course timetabling problem (MOUCTP), as

defined in Section 3.4 of Chapter 3, based on the guided search (GS) and local search

(LS) strategies developed in previous chapters. we then present several new MOEAs

instantiated from the proposed framework using some typical MOEAs to solve the

MOUCTP. The proposed MOEAs are validated using several problem instances and

performance metrics taken from the literature on MOEAs for general MOOPs.

The chapter is organised as follows. Section 7.2 presents the proposed framework of

MOEAs for the MOUCTP, where the basic structure as well as the detailed compo-

nents are described. Section 7.3 describes in detail several MOEAs that are instanti-

ated from our framework to solve the MOUCTP. Experimental results of comparing

the proposed MOEAs and corresponding algorithms on a set of benchmark prob-

lem instances are reported and discussed in Section 7.4. Section 7.5 concludes this

chapter.

7.2 The Framework of MOEAs for the MOUCTP

As mention earlier in the thesis, most of the research carried out on the UCTP was

based on single-objective optimisation problems. Researchers combined multiple

180

Chapter 7. Multi-Objective Approaches to University Course Timetabling

criteria into a single scalar value, and then minimised the weighted or unweighted

sum of constraints violations as the only objective function. However, the UCTP is

inherently based on many different objectives or constraints, such as minimising the

number of consecutive classes, minimising the occurrence of classes in the last time

slot, maximising the usage of resources, and many more [83]. Consequently, it is

very difficult to satisfy all the constraints as these vary from university to university.

Hence, this complexity requires that a UCTP must be treated in such a way, that

by removing/adding constraints should not effect the solution methods, hence all

these problems lead the UCTP to being solved as an MOOP.

In order to solve the UCTP as an MOOP, this chapter investigates the integration

of the GS strategy and two LS strategies (as described in Chapter 4 and Chapter

5) into MOEAs to enhance their performance for the MOUCTP. A framework for

integrating the GS and LS strategies into MOEAs for the MOUCTP is introduced.

The framework is then instantiated onto several widely-used MOEAs, including the

elitist non-dominated sorting GA (NSGA-II) [80], the ε-multi-objective evolutionary

algorithm (ε-MOEA) [81], the improved SPEA (SPEA-II) [221], and the Pareto

archived evolution strategy (PAES) [136], to construct corresponding new MOEAs

to solve the MOUCTP.

In the following sub-sections, we first introduce the basic structure of the proposed

framework of MOEAs for the MOUCTP. We will then describe the key components

of the proposed framework, including the involved LS strategies involved, the GS

strategy, and common genetic operators, respectively.

181

Chapter 7. Multi-Objective Approaches to University Course Timetabling

7.2.1 Basic Structure

The framework of proposed approaches is based on the integration of the GS strat-

egy developed in Chapter 5 and LS strategies into general MOEAs to solve the

MOUCTP. Hence, the structure of an instantiated MOEA is similar to the MOEA

used to instantiate the framework. In the framework, the GS strategy is used to

create offspring to increase the rate of highly-fit individuals in the population while

the LS strategies are used to further improve individuals to find non-dominated solu-

tions. Here, we describe the common structure that is used in all proposed MOEAs

(if MOEAs use them).

All proposed algorithms are based on GAs. First, we initialise a population of so-

lutions randomly. Each random solution is created via assigning a random time

slot for each event according to a uniform distribution and applying the matching

algorithm to allocate a room for the event. As random initial solutions have mini-

mal chances of producing a feasible solution, two LS strategies are used to convert

these individuals into feasible or near feasible solutions. The LS strategies use four

neighbourhood structures, which will be described in Section 7.2.2, to move events

among time slots, and then uses the matching algorithm to allocate rooms to events

and time slots. After the initialisation of the population, individuals are evaluated

by their objective values and evolve according to the particular MOEA used.

The proposed framework uses three data structures, denoted as MEMi (i = 1, 2, 3),

which will be described in Section 7.2.3.1. These data structures are re-constructed

182

Chapter 7. Multi-Objective Approaches to University Course Timetabling

regularly and are used to guide the generation of offspring for the following gen-

erations. In each generation, children are first generated either by using the data

structures (see Section 7.2.3.2) or by crossover, depending on a probability γ. For

the crossover operation, parents are first selected as per MOEA, and then a child is

created by exchanging the time slots between parents and allocating rooms to events

in each non-empty time slot. After crossover, mutation is performed on each child

with a probability Pm. After that, the child population is treated as per MOEA.

The iteration continues until a termination condition holds, e.g., a time limit tmax

is reached.

7.2.2 The LS Strategies

In the EA and MOEA literature, LS strategies are widely used to enable solutions

to search around their local areas in the search space and have shown promising

effects in many cases. In our proposed framework of MOEAs for the MOUCTP,

we also include two LS strategies. The first LS strategy, denoted LS5, is based on

four neighbourhood structures. The first three are the same as N1, N2, and N3,

which have been defined previously in Section 4.2.1.1 in Chapter 4. The fourth one

is denoted N7 (for denotation consistency with the three neighbourhood structures

N4, N5, and N6 defined in Section 6.2.1.6 in Chapter 6), and is defined as follows:

• N7: the neighbourhood defined by an operator that swaps the time slots of

two consecutive events with the time slots of another two consecutive events.

183

Chapter 7. Multi-Objective Approaches to University Course Timetabling

Algorithm 23 Local Search Strategy 5 (LS5)

1: input : Individual I selected from the population
2: while Termination condition not reached do

3: for i = 1 to the total number of events do
4: if event i is infeasible then

5: if there is untried move left then
6: calculate the next move (first in N1, then in N2, then in N3, and finally in

N7)
7: apply the matching algorithm to the time slots affected by the move and

delta-evaluate the result.
8: if the move reduces hard constraint violation then

9: make the move
10: end if

11: end if

12: end if

13: end for

14: if any hard constraint violations remain then

15: terminate LS3
16: else

17: for i = 1 to total number of events do
18: if event i has soft constraint violation then

19: if there is untried move left then
20: calculate the next move (first in N1, then in N2, then in N3, and finally

in N7)
21: apply the matching algorithm to the time slots affected by the move and

delta-evaluate the result
22: if the move reduces soft constraints violation then

23: make the move
24: end if

25: end if

26: end if

27: end for

28: end if

29: end while

30: output : A possibly improved individual I

The pseudo-code of LS5 is shown in Algorithm 23. After a child solution is generated

once the mutation operation or an initial solution is randomly created, LS5 is applied

to the solution for possible improvement. LS5 works on all events of a solution in a

similar way to LS1 as described in Section 4.2.1.1 in Chapter 4. The only difference

(shown in italics in Algorithm 23) is that LS5 uses an additional neighbourhood

184

Chapter 7. Multi-Objective Approaches to University Course Timetabling

structure N7 after N1, N2, and N3 in the LS operation. This neighbourhood

structure tries to explore the search space quickly. The rest of the LS5 works the

same as mentioned in Algorithm 8.

As LS1, LS5 also works on all events of a solution in two steps. In the first step

(Lines 3-13), LS5 checks the hard-constraint violations of each event while ignoring

its soft-constraint violations. If there are hard-constraint violations for an event,

LS1 tries to resolve them by applying moves in the neighbourhood structures N1,

N2, N3, and N7 consecutively as follows. First, we try to move the event to the

next time slot, then the next, then the next, etc. If this search in N1 fails, we then

search in N2 by trying to swap the event with the next one in the list, then the

next one, and so on. If the search in N2 also fails, we try a move in N3 by using

a different permutation formed by the event with the next two events, then with

the next two, and so on. If the search in N3 also fails, we try a move in N7 by

replacing the time slots of two consecutive events with the time slots of another two

consecutive events, then the next two, and so on, until a termination condition is

reached, e.g., an improvement is reached or the maximum number of steps smax is

reached.

After each move, we apply the matching algorithm to the time slots affected by

the move and try to resolve the room allocation disturbance and delta-evaluate the

result of the move (i.e., calculate the hard- and soft-constraint violations before and

after the move). If there is no untried move left in the neighbourhood for an event,

LS5 continues to the next event. After applying all neighbourhood moves on each

185

Chapter 7. Multi-Objective Approaches to University Course Timetabling

event, if there is still any hard-constraint violation, then LS5 will stop; otherwise,

LS5 will perform the second step (lines 17-27 in Algorithm 23).

In the second step, after reaching a feasible solution, LS5 performs a similar process

as in the first step on each event to reduce its soft-constraint violations. For each

event, LS5 tries to make moves in the neighbourhood N1, N2, N3, and/or N7

consecutively without violating the hard constraints. For each move, the matching

algorithm is applied to allocate rooms to affected events and the result is delta-

evaluated.

The second LS strategy used in our framework is the same as the LS strategy LS2,

as described previously in Section 4.2.1.2 of Chapter 4. LS2 is used immediately

after LS5 on a solution. It chooses a high penalty time slot that may have a large

number of events involving hard and soft constraint violations and tries to reduce

the penalty values of involved events.

7.2.3 The GS Strategy

7.2.3.1 Data Structures MEMi (i = 1, 2, 3)

All comparative studies on MOEAs agree that elitism and diversity preservation

mechanisms improve the performance of MOEAs for MOOPs [16]. In the proposed

framework of MOEAs for the MOUCTP, we also create extra memories (data struc-

tures) to store the best parts of individuals in the current population in order to

186

Chapter 7. Multi-Objective Approaches to University Course Timetabling

Algorithm 24 ConstructMEM3(P) – Constructing data structures

1: input: The input population P of size N

2: Q← select the best α×N individuals in P

3: for each individual Ij in Q do

4: for each objective i do

5: if fi(Ij) = 0 then

6: for each event ek in Ij do

7: calculate the penalty value of event ek from Ij
8: if ek is feasible (i.e., ek has zero constraint violation) then
9: add the pair of room and time slot (rek , tek) assigned to ek into the list lek

in MEMi

10: end if

11: end for

12: end if

13: end for

14: end for

15: output: Updated data structures MEMi (i = 1, 2, 3)

guide the generation of offspring in the subsequent populations. We create three data

structures MEMi (i = 1, 2, 3). Each data structure is the same as the data struc-

ture shown in Figure 5.1 in Section 5.2.1 of Chapter 5, but stores useful information

according to one of the three objectives, i.e., MEMi (i = 1, 2, 3) is associated with

the i-th objective. In MEMi, there is a list of events and each event ek again has a

list lek of room and time slot pairs. The data structures are regularly re-constructed,

e.g., every τ generations.

Algorithm 24 shows the outline of the construction or re-construction of the data

structures. When the data structures are due to be constructed or re-constructed,

we first select α × N best individuals in terms of dominance rankings from the

population P (the unique parameter given to ConstructMEM3(P)) to form a set

Q, where N is the population size of P . After that, for each individual Ij ∈ Q, we

check its objective values. If any of its objectives, say fi(Ij), has a zero value, then

187

Chapter 7. Multi-Objective Approaches to University Course Timetabling

Algorithm 25 GuidedSearch3() – Generating a child by GS

1: input: The data structures MEMi(i = 1, 2, 3)
2: randomly select one data structure MEMj

3: Es := randomly select β ∗ n events
4: for each event ek in Es do

5: randomly select a pair of room and time slot from the list lek in MEMj

6: assign the selected pair to event ek for the child
7: end for

8: for each remaining event ek not in Es do

9: assign a random time slot and room to event ek
10: end for

11: output: A child generated using MEMi(i = 1, 2, 3)

each event of Ij is checked by its penalty value (hard and soft constraints associated

with this event). If an event has a zero penalty value, then we store the information

corresponding to this event into corresponding data structure MEMi.

7.2.3.2 Generating a Child by the GS Strategy

In the proposed framework, a child is created by the GS strategy or crossover with

a probability γ. That is, when a child is to be generated, a random number ρ ∈

[0.0, 1.0] is first generated if ρ < γ, the GS strategy is used to generate the child;

otherwise, a crossover operation is used. If a child is to be created by the GS strategy,

then we apply Algorithm 25.

In Algorithm 25, we first randomly select one data structure, say, MEMj , as the

base. We then select a set Es of β ∗ n random events to be generated from MEMj .

Here, β is the percentage of the total number of events. After that, for each event ek

in Es, we randomly select a pair (rek , tek) from the list lek inMEMj that corresponds

to the event ek and assign the selected pair to ek for the child. If an event ek in

188

Chapter 7. Multi-Objective Approaches to University Course Timetabling

Es has no list lek in MEMj , then we randomly assign a room and a time slot from

possible rooms and time slots to ek for the child. This process is carried out for

all events in Es. For those remaining events not present in Es, available rooms and

time slots are randomly assigned to them to get a complete child.

7.2.4 Genetic Operators

7.2.4.1 Objective Functions and Constraints Handling

As we described in Section 3.4 of Chapter 3, our aim is to minimise the three kinds

of soft constraints, defined as the three objective functions in the MOUCTP studied

in this chapter, subject to resolving all hard constraints.

The MOUCTP is a highly-constrained optimisation problem. All proposed algo-

rithms adopt the constraint handling mechanism used by NSGA-II [80] based on

the concepts of feasibility and non-dominance when comparing solutions. A solu-

tion ~a is said to constrained-dominate another solution ~b if any of the following

conditions holds.

• Solution ~a is feasible and ~b is infeasible;

• Both solutions are feasible and ~a dominates ~b;

• Both solutions are infeasible, but ~a dominates ~b.

189

Chapter 7. Multi-Objective Approaches to University Course Timetabling

7.2.4.2 Selection Mechanism

The selection scheme depends on the base MOEA that is used for instantiating

the framework and there may be different choices. A typical choice is the binary

tournament selection without replacement.

7.2.4.3 Crossover

After two parents are selected from the population by the selection scheme defined

in the corresponding MOEA, we apply the crossover to create an offspring directly

(i.e., with a crossover probability Pc = 1). Here, a uniform crossover operator, as

shown in Algorithm 10 of Chapter 4, is used. It first randomly assigns to each event

in the offspring a time slot from one of the two parents randomly and then allocates

rooms to events in each non-empty time slot in the offspring, using the matching

algorithm.

7.2.4.4 Mutation

A mutation operation is applied on a newly created child with a probability Pm. It

applies a randomly selected neighbourhood structure N1, N2, N3, or N7 to make

a move.

190

Chapter 7. Multi-Objective Approaches to University Course Timetabling

Algorithm 26 Guided Search NSGA-II (GSNSGA)

1: input: A problem instance I

2: set the generation counter g := 0
3: initialise a population Pg of N solutions
4: apply LS1 and LS2 to individuals in Pg

5: evaluate the individuals in Pg

6: assign rank and crowing distance for individuals in Pg

7: while the termination condition is not reached do

8: if (g mod τ) == 0 then

9: apply ConstructMEM3(Pg) to construct MEMi (i = 1, 2, 3)
10: end if

11: create a child population Q: use GuidedSearch3() or crossover with a probability γ

to generate each child independently, followed by mutation with a probability Pm

12: apply LS1 and LS2 to individuals in Qg

13: evaluate the child solutions in Qg

14: merge the child and parent populations into a combined population Rg := Pg
⋃

Qg

15: assign rank and crowding distance for individuals in Rg

16: create a new population from Rg based on rank and crowding distance
17: g := g + 1
18: end while

19: output: Non-dominated set of solutions

7.3 Instantiated MOEAs for the MOUCTP

The framework proposed in the above section can be easily be instantiated onto

MOEAs for general MOOPs to construct new MOEAs for solving the MOUCTP. In

this section, we present four new MOEAs for the MOUCTP. These are instantiated

from the framework, based on four state-of-the-art MOEAs from the literature, i.e.,

NSGA-II [80], PAES [136], ε-MOEA [81], and SPEA-II [221], respectively. In the

following subsections, all proposed algorithms show our contribution in italics.

191

Chapter 7. Multi-Objective Approaches to University Course Timetabling

7.3.1 Guided Search NSGA-II (GSNSGA)

GSNSGA is constructed based on NSGA-II, which was introduced in [80] based on

the concepts of non-dominated sorting and crowding distance. The pseudo-code

of GSNSGA is shown in Algorithm 26. Initially, a random population of size N

is created. After the initial or child population is generated, each solution in the

initial or child population undergoes the LS strategies for potential improvement.

This population is then sorted, based on the non-dominated sorting.

In the non-dominated sorting, for each individual Pi in a population, we calculate

two values: the domination count nPi
(the number of solutions which dominate the

solution Ii) and SPi
(a set of solutions that the solution Pi dominates). After that,

we identify the non-dominated fronts in the population according to the domination

counts of individuals. All solutions with their domination count as zero belong to

the first non-dominated front and are assigned the rank value of 1 (1 is the best

rank). For each solution Pi with nPi
= 0, we visit each member r in its set SPi

and

reduce the domination count nPr
by one. For any member r, if its domination count

becomes zero, it is put into a list L, and all the members in this list belong to the

second front and are assigned the rank value of 2. The above procedure is continued

in the list L to find the third front, and so on, until all fronts are identified. After

ranking, the crowding distance of each front of the population can be calculated. The

crowding distance is used for density estimation for each individual. The crowding

distance of a solution Pi within a front is the average distance of two solutions from

192

Chapter 7. Multi-Objective Approaches to University Course Timetabling

the same front on either side of the solution along each of the objectives [80].

In GSNSGA, every τ generations, including the initial generation, the MEMi (i =

1, 2, 3) data structures are constructed/reconstructed to store parts of solutions cor-

responding to the best individuals in the current population Pg, which will be used

for the GS strategy for the next τ generations.

Then, at each generation g, a child population Qg is created. Each child in the child

population Qg is now created either by the GS strategy or by crossover, depending

on the probability γ. If the GS strategy is used, the GuidedSearch3() procedure

in Algorithm 25 is called; otherwise, two individuals are first selected from Pg as

the parents by using the crowded tournament selection scheme (for each parent, two

individuals are randomly selected and the tournament winner among them is decided

according to their ranks and crowding distance values), which are then crossovered

to generate a child. In both cases, the created child then undergoes a mutation

operation with a probability Pm, as described in Section 7.2.4.4. Next, the child

population Qg and Pg are merged together in Rg (so, Rg has 2N individuals) and

the rank and crowding distance values of individuals in Rg are calculated. Finally,

based on the ranks and crowding distances, the best N solutions are picked up from

Rg to form a new population Pg+1 for the next generation. So, at the end of each

generation, the set of non-dominated solutions so far are obtained.

This process is carried out until a termination condition e.g., a certain time limit is

reached.

193

Chapter 7. Multi-Objective Approaches to University Course Timetabling

7.3.2 Guided Search PAES (GSPAES)

In GSPAES, we use the basic structure of PAES developed by Knowles and Corne

[136]. They introduced PAES based on a (1+1)-ES. PAES uses an archive A of a

fixed size to store the best solution so far during the solving process. The archive

A is initially empty. As the searching progresses, good solutions are added to A

and updated (due to the fixed size of the archive). The pseudo-code of GSPAES is

shown in Algorithm 27.

At first, we randomly create a solution, called the parent P , apply LS strategies

to it, and add it to the archive A after evaluation. Since GSPAES is basically a

(1+1)-MOEA (as is PAES [136]), we use the archive A in the ConstructMEM3()

procedure to update MEMi data structures. Then, at each generation g, a child Cg

is created either by the GS strategy or the mutation operator with a probability γ.

If the child Cg dominates Pg, it is accepted as the next parent (i.e., Pg := Cg) and

added to Ag, and the iteration continues. If Pg dominates Cg, then Cg is discarded

and the iteration continues by creating a new child by mutating Pg.

If Cg and Pg do not dominate each other, then the child Cg is compared with

members in Ag. If Cg dominates any member of Ag, then the dominated solutions

are eliminated from Ag, and Cg is copied to Ag and is also accepted as the new

parent (i.e., Pg := Cg). If Cg does not dominate any member in the archive, both

parent and offspring belong to the same non-dominated front to which the archive

solutions belong. In this case, there are two scenarios. In the first one, if the archive

194

Chapter 7. Multi-Objective Approaches to University Course Timetabling

Algorithm 27 Guided Search PAES (GSPAES)

1: input: A problem instance I

2: set the generation counter g := 0
3: initialise a solution Pg

4: apply LS1 and LS2 on Pg

5: evaluate the individual Pg

6: copy Pg to the archive Ag

7: while the termination condition is not reached do

8: if (g mod τ) == 0 then

9: apply ConstructMEM3(Ag) to construct MEMi (i = 1, 2, 3)
10: end if

11: apply GuidedSearch3() or mutation to Pg with a probability γ to produce a child Cg

12: apply LS1 and LS2 on Cg

13: evaluate Cg

14: if Pg dominates Cg then

15: discard Cg

16: else if Cg dominates Pg then

17: add Cg to Ag and replace Pg with Cg

18: else if Cg is dominated by any member of Ag then

19: discard Cg

20: else if Cg dominates some members of Ag then

21: remove those members dominated by Cg from Ag

22: add Cg to Ag and replace Pg with Cg

23: else

24: if Ag is not full then
25: add Cg to Ag

26: if Cg resides in a less crowded region of Ag than Pg then

27: replace Pg with Cg

28: end if

29: else

30: if Cg resides in the most crowded region of Ag then

31: discard Cg

32: else

33: replace a random member from the most crowded region of Ag with Cg

34: if Cg resides in a less crowded region of Ag than Pg then

35: replace Pg with Cg

36: end if

37: end if

38: end if

39: end if

40: g := g + 1
41: end while

42: output: Non-dominated set of solutions in A

195

Chapter 7. Multi-Objective Approaches to University Course Timetabling

Algorithm 28 ε-Guided Search MOEA (ε-GSMOEA)

1: input: A problem instance I

2: set the generation counter g := 0
3: initialise a population Pg of N solutions
4: apply LS1 and LS2 on solutions in Pg

5: evaluate the individuals in Pg

6: copy non-dominated solutions in Pg to the archive Ag

7: while the termination condition is not reached do

8: if (g mod τ) == 0 then

9: apply ConstructMEM3(Pg) to construct MEMi (i = 1, 2, 3)
10: end if

11: create a set C of children by using GuidedSearch3() or crossover with a probability
γ

12: apply mutation to each child in C with a probability Pm

13: apply LS1 and LS2 on each child in C

14: evaluate each child in C

15: update Pg according to C using the dominance measure
16: update Ag according to C using the ε-dominance measure
17: g := g + 1
18: end while

19: output: Non-dominated set of solutions in A

is not full, Cg is copied to Ag, and is accepted as the parent for the next generation

if it is in the less crowded region1 than the parent in the parameter space among

the members of the archive. In the second scenario (i.e., the archive is full), if Cg

resides in the most crowded region in the parameter space among the members of

the archive, it is discarded; otherwise, Cg will replace one random member of Ag

from the most crowded region, and is accepted as the parent for the next generation

if it is in the less crowded region than the parent in the parameter space among the

members of the archive.

1See [136] for the definition of regions constructed by the solutions in the archive. A region is
more crowded if it has more archive solutions within it.

196

Chapter 7. Multi-Objective Approaches to University Course Timetabling

7.3.3 ε-Guided Search MOEA (ε-GSMOEA)

The ε-MOEA by Deb et al. [81] is also used to instantiate our framework to con-

struct the ε-GSMOEA for solving the MOUCTP. The pseudo-code of ε-GSMOEA

is shown in Algorithm 28. In ε-MOEA and ε-GSMOEA, the search space is divided

into a number of grids (or hyper-boxes) and diversity is maintained by ensuring that

a hyper-box can be occupied by only one solution [81]. There are two co-evolving

populations: one EA population P and one archive population A. The EA popu-

lation P is initialised with N random solutions, followed by LS strategies and then

evaluated. All non-dominated individuals in P are copied into the archive A. In

ε-GSMOEA, the MEMi (i = 1, 2, 3) data structures are created from P for the

initial generation and thereafter for every τ generations.

In each generation, a set of children C = {C1, C2, · · · , Cλ} is created via either the

GS strategy or crossover depending on the probability γ. If the set of children are to

be created by crossover, a child is created as follows. One parent is chosen from A

randomly. Another parent is chosen from P as follows: two individuals are randomly

selected from P and compared. If one solution dominates the other, the dominating

solution is chosen; otherwise, we choose one randomly as the parent. Once two

parents are selected, they are mated to create a set of children C = {C1, C2, · · · , Cλ}

via crossover operator. After a child is created, we apply mutation on it, followed

by LS1 and LS2 operations.

Next, both P and A are updated according to C as follows. To update P , we compare

197

Chapter 7. Multi-Objective Approaches to University Course Timetabling

each child Ci, i = 1, · · · , λ, with all members in P . If Ci dominates any member in

P , then it replaces that member. Otherwise, if any member of P dominates Ci, then

Ci is not included in P . If both of the above tests fail, then Ci replaces a random

individual from P .

For updating A, each child Ci is compared with each member of A using the concept

of ε-dominance [81]. In this process, each individual in A is assigned an identification

array ~B = {B1, B2, · · · , BM}, where M is the total number of objectives. The

identification array ~B is defined as follows:

Bj(~f) = b(fj − fmin
j)/εjc (7.1)

where fj is the j-th objective value of the individual, fmin
j is the minimum possible

value of the j-th objective, and εj is the allowable tolerance in the j-th objective,

below which two values are not significant to the user [140]. The identification

arrays divide the whole objective space into hyper-boxes with the size εj in the j-th

objective. The child Ci enters A according to its position in the hyper-boxes as

described in [81]. The above procedure is continued until a termination condition is

met (e.g., the maximal allowable time is reached). Finally, we arrive at the solutions

obtained in A.

198

Chapter 7. Multi-Objective Approaches to University Course Timetabling

Algorithm 29 Guided Search SPEA-II (GSSPEA)

1: input: A problem instance I

2: set the generation counter g := 0
3: initialise a population Pg of N solutions
4: apply LS1 and LS2 on individuals in Pg

5: create an empty archive Ag of size N̄

6: while the termination condition is not reached do

7: if (g mod τ) == 0 then

8: apply ConstructMEM3(Pg) to construct MEMi (i = 1, 2, 3)
9: end if

10: calculate the fitness values of individuals in Pg and Ag

11: merge Pg and Ag

12: perform the environmental selection on the merged population to form Ag

13: perform the mating selection on Ag to form a mating pool
14: create the child population Pg: use GuidedSearch3() or crossover of individuals from

the mating pool with a probability γ to generate each child independently, followed
by mutation with a probability Pm

15: apply LS1 and LS2 on each child in Pg

16: g := g + 1
17: end while

18: output: Non dominated set of solution

7.3.4 Guided Search SPEA-II (GSSPEA)

GSSPEA is the fourth MOEA that is instantiated in this chapter from our proposed

framework based on SPEA-II introduced by Ziztler et al. [221]. In SPEA-II [221]

and GSSPEA, we used two populations: one regular population P of size N and

one archive A of size N̄ . A represents the external or archive set that will contain

the non-dominated solutions, and some dominated solution if the number of non-

dominated solutions is less than N̄ , during the searching process. Algorithm 29

shows the pseudo-code of GSSPEA. As in the above three instantiated MOEAs,

GSSPEA differs from SPEA-II [221] only in the GS and LS strategies.

In Algorithm 29, we first initialize P with N random solutions and create an empty

archive A. After applying LS strategies on each individual in P , we then construct

199

Chapter 7. Multi-Objective Approaches to University Course Timetabling

(and thereafter re-constructed every τ generations) the MEMi (i = 1, 2, 3) data

structures to guide the creation of offspring into next generations. Each individual

in P is evaluated according to its objective values and then assigned a fitness value

as follows. In order to calculate the fitness value of an individual i in P , it is first

assigned a strength value S(i), which is defined as follows:

S(i) =| {j | j ∈ Pg + Ag ∧ i � j} | (7.2)

where “| |” denotes the cardinality of a set, “+” stands for multiset union, and “�”

corresponds to the Pareto dominance relation. Based on the strength value, the raw

fitness R(i) of individual i is calculated as follows:

R(i) =
∑

j∈Pg+Ag,j�i

S(j) (7.3)

Hence, this raw fitness value is calculated using the strengths of the dominators in

both the archive and population sets.

In the event that individuals have the same raw fitness values, a density estimation

technique is used. The specific estimation technique is a simple inverse distance of

the k-th nearest neighbour [221]. For each individual i, the distances in the objective

space to all individuals j in the archive and population are calculated and stored in a

list. After sorting the list in the increasing order, the k-th element gives the distance

sought, denoted as σk
i , where k is equal to the square root of the sample size, i.e.,

k =
√
N + N̄ . The density D(i) corresponding to individual i is then calculated as

200

Chapter 7. Multi-Objective Approaches to University Course Timetabling

follows:

D(i) =
1

σk
i + 2

(7.4)

Finally, the fitness value F (i) of individual i is calculated as:

F (i) = R(i) +D(i) (7.5)

After finding the fitness of individuals, we merge the archive and population and

perform environmental selection to form a new archive for the next generation from

the merged population. In the process of environmental selection, all non-dominated

individuals in the merged population are selected to re-fill the archive. If the number

of non-dominated individuals is equal to the predetermined archive size N̄ , we copy

them to the archive and stop the archive update operation; otherwise, there can be

two situations: If the archive is bigger than the non-dominated set in size, we copy

all non-dominated individuals and some dominated individuals from the previous

archive and population into the archive up to the size N̄ ; otherwise, if the archive

is smaller than the non-dominated set, then a truncation method is used to remove

individuals from the non-dominated set one by one as follows. The individual which

has the minimum distance to another individual in the remaining non-dominated set

is chosen for removel. If there is more than one individual with the same minimum

distance, the tie is broken by considering the second smallest distances, and so on.

The process continues until there are N̄ individuals left in the non-dominated set,

which are then copied to form the archive.

201

Chapter 7. Multi-Objective Approaches to University Course Timetabling

After the environmental selection, only members of the archive participate in the

mating selection process using the binary tournament selection with replacement

to create the mating pool. Child population is created by using the GS approach

or the crossover operator. In both cases, the created population then undergoes a

mutation operation with a probability Pm followed by local search techniques. This

process is continued until the termination condition is reached.

7.4 Experimental Study

In this section, we experimentally investigate the performance of the MOEAs in-

stantiated in this chapter from our proposed framework and their corresponding

original versions for the MOUCTP. The programs are coded in GNU C++ with

version 4.1 and run on a 3.20 GHz PC. Since there is no formulation or benchmark

of the MOUCTP, many researchers have tested their proposed techniques on real

data instances. Due to this deficiency, we study multi-objective instances of the

MOUCTP that are adapted from well-known single-objective instances that were

proposed in [4] (described in Section 3.2 of Chapter 3) and which have received a

lot of attention from researchers [13, 181].

202

Chapter 7. Multi-Objective Approaches to University Course Timetabling

7.4.1 Parameter Setting

In Section 3.2.2 in Chapter 3, we discussed the problem instances of three different

groups for the UCTP. We run our proposed approaches on them. After some pre-

liminary results, the key parameters for the proposed MOEAs were set as follows:

α = 0.2, β = 0.4, γ = 0.6, τ = 20, and Pm = 0.6. We tried to use the same values for

other parameters that have already been used for the state-of-the-art MOEAs in the

literature. The population size N was set to 48 for NSGA-II, GSNSGA, SPEA-II,

and GSSPEA, 1 for PAES and GSPAES, and 40 for ε-MOEA and ε-GSMOEA. The

archive size was set to 10 for PAES and GSPAES, 40 for SPEA-II and GSSPEA, and

was non-fixed for ε-MOEA and ε-GSMOEA. For PAES and GSPAES, we used the

depth value 5, which means the number of recursive sub-divisions of the objective

space carried out in order to divide the objective space into a grid (this value is

the best for 3 objectives, according to [136]). For ε-MOEA and ε-GSMOEA, the

minimum possible value of the j-th objective fmin
j is 0, the parameter λ was set

to 2, and the minimum allowable tolerance ε was randomly set to 5, 10, 15 for the

small, medium, and large problem instances, respectively, according to the search

space, a larger ε value for a larger search space.

In the initialisation of the population, the maximum number of steps per LS opera-

tion smax was set to different values for different problem instances, namely 300 for

small instances, 1500 for medium instances, and 2500 for the large instance, respec-

tively. There were 20 runs of an algorithm for each problem instance. For each run,

203

Chapter 7. Multi-Objective Approaches to University Course Timetabling

the maximum run time tmax was set to 100 seconds for small instances, 1000 seconds

for medium instances, and 10000 seconds for the large instance based on the fact

that a larger dataset contains more conflicting constraints as compared to smaller

datasets and therefore requires more processing time.

As in previous chapters, in all tables and figures reported in this chapter, “S1”

represents small problem instance 1, “S2” represents small problem instance 2, and so

on, “M1” represents medium problem instance 1, “M2” represents medium problem

instance 2, and so on, and “L” represents the large problem instance. In all figures,

the scale was set according to objective function values and is not fixed.

7.4.2 Performance Measures

The performance measure for MOEAs may include many aspects, such as the quality

of the outcome or scalability, etc. Here, the quality of solutions is investigated. As

the true Pareto front of the problems is unknown, we use two performance measures,

the hypervolume or S matric [219] and theD metric [219], which are not based on the

true Pareto front. The first measure concerns the size of the objective space which

is covered by a set of non-dominated solutions. The higher the value, the larger

the dominated volume in the objective space and hence the better an algorithm’s

performance. The hypervolume measure or S metric was originally proposed by

Zitzler and Thiele [219], who called it the size of the space covered by a set of non-

dominated solutions or the size of the dominated space. Zitzler and Thiele noted

204

Chapter 7. Multi-Objective Approaches to University Course Timetabling

that this measure prefers convex regions to non-convex ones [219]. Coello et al. [68]

described it as the Lebesgue measure Λ of the union of hypercubes ai defined by a

non-dominated point mi and a reference point xref as follows:

S(M) := Λ({
⋃

i

ai | mi ∈M}) = Λ(
⋃

m∈M

{x | m ≺ x ≺ xref}) (7.6)

Hypervolume has been used in several comparative studies of MOEAs to measure

the population covered by the Pareto front, e.g., see [81, 219, 221]. The D metric

measure between two non-dominated sets A and B gives the relative size of the

region in the objective space that is dominated by A but not by B, and vice versa.

It also gives information about whether either set totally dominates the other set,

e.g., D(A,B) = 0 and D(B,A) > 0 means that A is totally dominated by B.

Since in this chapter the focus is on finding the Pareto optimal set rather than

obtaining a uniform distribution over a trade-off surface, we do not consider the

online performance of MOEAs but consider the offline performance. Hence, the

Pareto optimal set regarding all individuals generated over all generations is taken

as the output of an MOEA. The performance of a particular algorithm on a test

problem was calculated by averaging over all 20 runs.

205

Chapter 7. Multi-Objective Approaches to University Course Timetabling

Table 7.1: Feasibility ratio achieved by algorithms

Prob. NSGA-II GSNSGA PAES GSPAES ε-MOEA ε-GSMOEA SPEA-II GSSPEA

S1 100% 100% 100% 100% 100% 100% 100% 100%
S2 100% 100% 100% 100% 100% 100% 100% 100%
S3 100% 100% 100% 100% 100% 100% 100% 100%
S4 100% 100% 100% 100% 100% 100% 100% 100%
S5 100% 100% 100% 100% 100% 100% 100% 100%
M1 75% 100% 100% 100% 60% 100% 100% 100%
M2 85% 100% 100% 100% 75% 100% 100% 100%
M3 90% 100% 100% 100% 80% 100% 100% 100%
M4 100% 100% 100% 100% 80% 100% 100% 100%
M5 80% 100% 100% 100% 65% 100% 100% 100%
L 30% 100% 85% 100% 20% 95% 82% 100%

7.4.3 The Effect of Different Components of Proposed Al-

gorithms

We carried out experiments with the four MOEAs instantiated from our proposed

framework and the corresponding base MOEAs, i.e., NSGA-II and GSNSGA, PAES

and GSPAES, ε-MOEA and ε-GSMOEA, SPEA-II and GSSPEA. Table 7.1 presents

the percentage of feasible solutions obtained by all algorithms over 20 runs. Table

7.2 shows the best objective value, average objective value, and standard deviation

values of all algorithms on the small, medium, and large problem instances. Figure

7.1 shows the performance of all algorithms in box-plots.

From the figure and tables, we can see the effect of the GS and LS strategies inte-

grated within different MOEAs on the objective function values. In the following

sub-sections, we discuss these results and analyse the effect of GS and LS strategies

on MOEAs. We also discuss the behaviour of different MOEAs.

206

Chapter 7. Multi-Objective Approaches to University Course Timetabling

Table 7.2: Performance of algorithms on different problem instances

Alg. UCTP Best Average Stdv

f1 f2 f3 f1 f2 f3 f1 f2 f3

NSGA-II S1 4 5 59 9.43 23.22 87.61 2.23 11.82 11.72

S2 5 3 72 9.17 21.83 90.94 2.09 9.01 10.01

S3 5 3 72 8.52 24.42 85.79 2.48 12.31 8.75

S4 4 1 91 8.88 7.54 111.74 2.07 4.6 13.11

S5 6 22 52 9.71 48.54 72.06 1.96 15.01 10.82

M1 38 249 61 44.24 312.78 81.94 2.82 28.29 8.27

M2 38 277 61 44.67 317.25 82.46 2.93 19.93 8.36

M3 38 277 58 44.06 346.92 80.94 3.5 26.95 8.47

M4 38 234 66 44.23 309.79 80.73 2.87 30.09 8.54

M5 38 234 66 44.23 309.79 80.73 2.87 30.09 8.54

L 39 497 131 44.48 601.88 160.54 3.52 49.55 12.65

GSNSGA S1 0 0 0 1.33 6.74 9.91 0.94 3.9 4.66

S2 0 0 0 1.63 5.75 5.9 1.35 4.12 3.51

S3 0 0 0 0.65 2.06 7.38 0.76 2.17 5.51

S4 0 0 0 1.02 1.14 20.46 0.93 1.48 8.86

S5 0 0 0 1.52 2.04 15.1 1.52 2.22 6.84

M1 3 95 15 8.74 138.76 32.52 3.75 23.25 11.55

M2 7 104 15 13 176.6 21 2.73 24.68 2.73

M3 1 95 5 6.9 145.81 16.69 2.33 20.29 2.88

M4 0 38 2 7.15 88.81 22.38 5.36 20.29 15.44

M5 5 94 25 23.15 150.4 43.15 9.72 25.71 9.72

L 30 221 89 39.72 345.94 124.64 5.46 73.62 21.1

PAES S1 0 0 3 0 0 8.2 0 0 3.43

S2 0 0 5 0 0 16.8 0 0 8.04

S3 0 0 3 0 0 9.5 0 0 5.35

S4 0 0 0 0 1.2 8.4 0 1.69 3.86

S5 0 0 0 0.1 1.2 3.3 0.32 1.87 2.67

M1 23 139 10 31.4 147.1 14.2 8.6 5.69 3.55

M2 29 167 12 35.09 192.64 17.36 4.11 22.17 4.15

M3 35 225 15 37.83 283.42 31.33 2.59 39.66 8.82

M4 37 182 7 38.17 213.67 17.25 1.34 19.54 6.36

M5 26 151 17 33.9 219.7 35.3 7.53 72.29 18.67

L 42 546 84 44.65 716.24 135.71 1.58 85.02 28.87

GSPAES S1 0 0 0 0 0 0.4 0 0 0.7

S2 0 0 0 0.1 0.2 0 0.32 0.63 0

S3 0 0 0 0 0 0 0 0 0

S4 0 0 0 0 0 1.8 0 0 2.49

S5 0 0 0 0 0 0 0 0 0

M1 19 60 0 23.2 90.4 3 4.1 22.84 2.21

M2 18 82 3 17.09 80.91 4.45 0.79 8.65 1.91

M3 9 65 2 3 8.3 1 8.61 10.92 4.36

M4 20 50 3 27.4 66.2 5.6 4.6 14.23 1.51

M5 14 42 2 22.8 58.6 4.5 4.66 12.89 1.51

L 21 234 5 30.36 275.18 10.45 4.01 24.24 2.98

ε-MOEA S1 5 3 72 9.17 21.83 90.94 2.09 9.01 10.01

S2 5 9 70 9.23 32.42 86.06 1.94 11.84 8.88

S3 4 2 75 8.73 14.98 96.19 2.61 8.65 10.23

S4 3 0 71 7.3 5.02 94.86 2.57 3.61 14.21

S5 4 14 37 4.4 15.34 28.86 2.31 12.83 8.84

M1 38 247 60 44.35 312.73 79.03 2.96 24.72 8.89

M2 39 241 61 44.35 312.73 79.03 2.97 22.6 9.85

M3 37 245 67 44 298.89 83.67 2.87 19.82 8.72

M4 37 263 67 44 313.56 81.28 2.98 27.83 9.55

M5 36 213 55 44.67 275.52 85.19 2.87 19.82 8.72

L 39 522 121 43.57 601.66 163.34 2.78 35.23 14.9

ε-GSMOEA S1 4 3 52 8.7 11.2 68.2 2.87 5.27 11.56

S2 6 10 43 9.34 20.01 65 1.96 11.57 7.8

S3 3 2 56 9.39 11.61 76.5 2.78 9.68 13.26

S4 3 0 40 6.45 4.45 71.73 2.3 2.54 19.32

S5 1 8 14 6.67 30.11 35.56 3.01 14.19 12.01

M1 38 176 29 45.23 210.9 53.03 3.44 24.62 9.77

M2 40 236 39 43.63 271.21 60.26 2.85 26.56 8.03

M3 21 195 37 42.9 266.54 58.05 5.78 38.54 12.65

M4 37 146 63 2.87 26.52 8.35 44.45 199.1 78.94

M5 22 140 55 42.35 196 70.05 5.89 34.47 8.19

L 11 446 71 41.39 573.21 101.39 18.02 52.99 18.02

SPEA-II S1 0 0 37 1.26 2.82 55.3 1.08 3.4 13.39

S2 0 0 0 4.38 12.86 62.72 2.01 6.45 20.49

S3 1 0 38 2.6 1.54 51.82 1.25 1.62 8.72

S4 0 0 38 0.44 1.24 41.64 0.5 1.29 2.2

S5 2 16 43 5.56 33.1 55.36 2.15 13.55 8.26

M1 10 71 22 24.46 128.08 42.62 8.84 27.83 12.86

M2 5 105 35 18.12 152.46 56.46 10.45 28.65 14.7

M3 7 94 46 26.64 192.14 60.16 14.5 72.48 12

M4 4 80 31 32 209.12 50.6 14.23 57.98 13.5

M5 5 57 42 31.92 172.3 60.12 14.65 92.91 17.93

L 28 370 125 33.42 494.46 152.74 4.45 71.25 17.86

GSSPEA S1 0 0 0 0.52 1.66 13.9 0.76 2.09 4.28

S2 0 0 0 1.94 2.28 29.3 1.78 2 15.62

S3 0 0 0 1.24 1.24 13.08 1.3 2.33 4.76

S4 0 0 9 0.36 1.28 10.46 0.48 2.3 0.71

S5 0 0 9 1.42 2.02 13.88 1.28 2.61 4.63

M1 3 68 35 7.36 105.08 53.48 2.21 36.48 12.73

M2 8 70 32 11.08 84.82 43.88 2.35 10.04 7.84

M3 6 80 24 20.94 116.32 37.98 8.53 36.79 16.07

M4 3 67 35 20.26 153.94 47.3 18.47 98.7 9.73

M5 2 43 38 17.02 93.04 50.16 10.76 32.44 10.96

L 35 217 55 39.56 285.7 82.74 3.54 34.72 17.86

207

Chapter 7. Multi-Objective Approaches to University Course Timetabling

Figure 7.1: Dynamic performance of algorithms on different problem instances.
208

Chapter 7. Multi-Objective Approaches to University Course Timetabling

7.4.3.1 Key Parameters of the GS Strategy

The parameters of the GS strategy were determined experimentally for each MOEA

over all problem instances. First, we checked the effect of parameters on all proposed

algorithms over all problem instances. Then, the parameter setting which yielded

the best results regarding the size of the space covered was selected.

The performance of the GS strategy depends on the parameters and operators used.

We found that α, β, γ, and τ are key parameters that can greatly affect the perfor-

mance of MOEAs for the MOUCTP, where α is the percentage of best individuals

selected from the current population for constructing the data structures MEMi, β

is the percentage value of the total number of events that are used to create a child

through the data structures MEMi, γ is the probability that indicates whether a

child is created through the GS strategy or crossover, and τ decides the frequency

of updating MEMi (i = 1, 2, 3).

Table 7.3 shows different parameters and their settings that were tested in our

experiments. In order to find out which parameter settings have the greatest effect

on the performance of proposed algorithms, we ran all algorithms 10 times for all

parameter combinations in Table 7.3. Here, we only present some of parameter

combinations that seem to have a substantial effect on the performance of proposed

algorithms. We chose two α values 0.2 and 0.6, three β values 0.1, 0.3, and 0.5, three

γ values 0.4, 0.6, and 0.8, and two τ values 20 and 80. Table 7.4 shows the objective

values achieved by GSSPEA according to different parameter settings for the GS

209

Chapter 7. Multi-Objective Approaches to University Course Timetabling

Table 7.3: Parameter settings in GSGA

Parameter Settings

α 0.2 0.4 0.6 0.8
β 0.1 0.3 0.5 0.7 0.9
γ 0.2 0.4 0.6 0.8
τ 20 40 60 80 100

strategy. All other proposed algorithms give more or less similar values on these

parameters. In Table 7.4, one parameter changes while the other parameters are

kept constant on different MOUCTP instances. From Table 7.4, several significant

results can be observed and are analysed below.

First, the parameter α has a significant effect on the performance of GSSPEA for

the MOUCTP. The performance of GSSPEA drops when the value of α increases

from 0.2 to 0.8. This occurs because when we choose a small part of the population

to create MEMi (i = 1, 2, 3), the data structures can provide a strong guidance

during the genetic operations and help GSSPEA sufficiently exploit the area of the

search space that corresponds to the best individuals of the population sufficiently.

This sufficient exploitation can ensure that GSSPEA achieves better solutions more

quickly. In contrast, if a large part of the population is taken to create or update

MEMi (i = 1, 2, 3), then the data structures will lose its effect of guiding GSSPEA

to exploit promising areas of the search space.

Second, regarding the effect of β, it can be seen that setting this parameter to a very

small or very large value affects the penalty values. When the value of β increases

from 0.1 to 0.3, the performance of GSSPEA improves due to the enhanced effect of

MEMi (i = 1, 2, 3). However, when the value of β is further raised, the performance

210

Chapter 7. Multi-Objective Approaches to University Course Timetabling

Table 7.4: Average best value of 10 runs of GSSPEA with different parameter
settings on the test problem instances S1, M1, and L

Parameters S1 M1 L
α β γ τ f1 f2 f3 f1 f2 f3 f1 f2 f3

0.2 0.1 0.4 20 3 5 26 12 98 31 38 321 81
0.2 0.1 0.4 80 9 16 70 7 111 37 45 301 108
0.2 0.1 0.6 20 8 8 69 14 78 34 37 294 78
0.2 0.1 0.6 80 7 26 80 10 101 31 38 312 72
0.2 0.1 0.8 20 10 13 78 9 90 28 38 347 78
0.2 0.1 0.8 80 6 28 101 13 114 31 41 341 92
0.2 0.3 0.4 20 1 2 10 17 78 33 32 281 72
0.2 0.3 0.4 80 7 3 12 11 92 30 30 293 70
0.2 0.3 0.6 20 1 0 0 8 82 28 30 231 69
0.2 0.3 0.6 80 1 0 3 7 87 31 30 242 73
0.2 0.3 0.8 20 1 0 4 18 93 29 32 232 69
0.2 0.3 0.8 80 2 3 12 11 101 29 36 281 76
0.2 0.5 0.4 20 5 0 56 14 195 44 44 403 97
0.2 0.5 0.4 80 7 2 60 26 247 46 45 478 90
0.2 0.5 0.6 20 2 1 12 14 209 40 44 372 82
0.2 0.5 0.6 80 3 4 12 13 222 41 42 437 85
0.2 0.5 0.8 20 7 0 30 28 198 44 40 501 103
0.2 0.5 0.8 80 1 20 60 29 175 48 39 511 90
0.6 0.1 0.4 20 2 13 72 68 198 55 44 403 72
0.6 0.1 0.4 80 11 8 110 88 289 60 46 791 91
0.6 0.1 0.6 20 8 0 14 10 104 28 43 354 69
0.6 0.1 0.6 80 11 26 85 10 210 39 47 322 124
0.6 0.1 0.8 20 3 9 48 8 101 39 43 359 76
0.6 0.1 0.8 80 4 1 52 13 117 52 44 419 74
0.6 0.3 0.4 20 2 8 67 11 145 29 31 295 96
0.6 0.3 0.4 80 3 1 80 9 196 38 43 314 72
0.6 0.3 0.6 20 4 0 12 6 160 28 34 322 71
0.6 0.3 0.6 80 11 0 52 15 165 42 47 360 74
0.6 0.3 0.8 20 11 2 14 15 170 24 34 354 103
0.6 0.3 0.8 80 16 1 23 11 208 47 33 460 81
0.6 0.5 0.4 20 5 18 60 43 200 49 40 846 93
0.6 0.5 0.4 80 2 26 63 81 313 53 48 823 103
0.6 0.5 0.6 20 3 11 42 49 180 42 46 791 91
0.6 0.5 0.6 80 7 0 52 30 215 47 42 807 83
0.6 0.5 0.8 20 4 7 63 48 212 47 43 789 82
0.6 0.5 0.8 80 5 11 90 64 243 45 44 855 75

of GSGA drops. This occurs because if a large portion of individuals is created

through MEMi (i = 1, 2, 3), e.g., when β = 0.9, the chance of creating a similar

child may be increased every generation and after a few generations GSGA may be

trapped in a sub-optimal state and hence be unable to obtain the optimal solution.

211

Chapter 7. Multi-Objective Approaches to University Course Timetabling

Third, regarding the effect of γ, from Table 7.4, it can easily be seen that increasing

the value of γ results in near-optimal solutions. The reason lies in the fact that a

small value of γ leads to the proposed algorithms creating children with the crossover

operator only while a very large value reduces the diversity due to the creation of

children over certain generation through the same data structures. The effect of γ

also shows the importance of the data structures.

Fourth, regarding the effect of τ , it can be seen from Table 7.4 that updating MEMi

(i = 1, 2, 3) every 20 generations gives a better penalty value than updating them

every 80 generations. This is due to the fact that in the former case, the search

space is explored more than in the latter case, which increases the quality and gives

a greater chance of creating better individuals. This is because increasing the value

of τ decreases the exploration ability of GSSPEA because the pairs of room and

time slot obtained from potentially promising solutions additionally increases the

diversification of GSSPEA.

7.4.3.2 Effect of the GS and LS Strategies

Usually, crossover leads the population to converge by making the chromosome alike,

and mutation re-introduces genetic diversity back into the population and assists the

algorithm to escape from local optima [16]. The ability of GAs to simultaneously

search different regions of the search space makes it possible to find a diverse set of

solutions for difficult and highly constrained problems.

212

Chapter 7. Multi-Objective Approaches to University Course Timetabling

Figure 7.2: Comparison of NSGA-II, NSGA-LS, and GSNSGA regarding the
achieved objective values on problem instances S1, M1, and L.

In GSNSGA, we create a population not only by crossover but also with the GS

strategy, which re-introduces the best parts of previous good solutions along with

new parts (random assignments), thus preventing the population from getting stuck

in local optima. The GS strategy uses the best part of individuals with respect

to different objectives to create new non-dominated solutions in un-explored parts

of the Pareto front. Keeping individuals from many non-dominated fronts in the

population help the GS strategy to create solutions with diversity. Figure 7.2 shows

the effect of the GS strategy. We tested the performance of GSNSGA and NSGA-II

with the LS strategies but without the GS strategy (denoted NSGA-LS). Figure

7.2 shows the performance of NSGA-II, NSGA-LS, and GSNSGA on S1, M1 and L

problem instances. GSNSGA seems to be effective since new individuals with better

genetic information are re-introduced into the new population.

7.4.3.3 Performance of Investigated MOEAs

The main objective of MOEAs is to provide a Pareto optimal set of solutions from

which the timetable maker can make a decision. We can see the performance of

213

Chapter 7. Multi-Objective Approaches to University Course Timetabling

proposed MOEAs from different aspects. Table 7.5 and Table 7.6 show the hy-

pervolume values and D metrics of different MOEAs on the MOUCTP instances.

Figure 7.3 to 7.8 show the obtained non-dominated solutions of MOEAs obtained on

problem instances S1, M2, and M5, respectively. Each point in the plots is a point

in the objective domain. The scales of the plots are not fixed and differ according

to the objective values of MOEAs. To study the trends clearly, objective functions

have also been projected in two-dimensional planes regarding f1− f2, f1− f3, and

f2− f3, respectively.

Generally speaking, Figure 7.3 to 7.8, and Table 7.2 show that all MOEAs with the

GS and LS strategies do better than MOEAs without the GS and LS strategies. We

can see that the inclusion of the GS and LS strategies in MOEAs is vital to the

success of the algorithms. If we consider the performance of different MOEAs we

can see that GSPAES mostly covers the other MOEAs and created trade-off front

by giving greater hypervolume. GSNSGA and GSSPEA also perform well on all

problem instances if we compare them to ε-GSMOEA.

We also statistically tested the performance of MOEAs using the Corne and Knowler

approach [136]. Table 7.7 shows the statistical test values of different MOEAs with

two rows for each problem instance. The first “unbeaten” row shows the percentage

of the objective space on which the performance of a corresponding algorithm is

UNBEATEN by any of the other algorithms compared, i.e, the percentage of the

objective space (based on a non-parametric test – The Mann-Whitney Rank test

[136]) for which we cannot be 95% confident that any other algorithm beats it. On

214

C
h
a
p
ter

7
.
M
u
lti-O

bjective
A
p
p
roa

ch
es

to
U
n
iversity

C
o
u
rse

T
im

eta
blin

g

Table 7.5: Hypervolume of different MOEAs on the MOUCTP instances

MOUCTP S1 S2 S3 S4 S5 M1 M2 M3 M4 M5 L

GSNSGA 8.0×106 7.9×106 8.0×106 7.9×106 7.9×106 9.7×107 9.4×107 9.9×107 1.1×108 9.4×107 3.1×108
GSPAES 8.0×106 8.0×106 8.0×106 8.0×106 8.0×106 1.0×108 1.0×108 1.0×108 1.0×108 1.1×108 3.5×108
ε-GSMOEA 5.1×106 4.5×106 4.8×106 6.2×106 6.9×106 7.0×107 5.5×107 6.6×107 6.7×107 6.1×107 1.9×108
GSSPEA 8.0×106 8.0×106 7.2×106 7.6×106 7.6×106 9.9×107 9.8×107 9.8×107 9.9×107 1.0×108 3.3×108

Table 7.6: D matrics of comparing MOEAs on the MOUCTP instances

Compared Algo S1 S2 S3 S4 S5 M1 M2 M3 M4 M5 L

GSNSGA – ε-GSMOEA 2.8×106 3.4×106 3.1×106 1.7×106 1.0×106 2.6×107 3.8×107 3.2×107 4.7×107 2.2×107 1.2×108
GSNSGA – GSPAES 0 0 0 0 0 3.0×106 1.9×106 1.4×106 7.5×106 1.4×106 7.0×106
GSNSGA – GSSPEA 0 0 7.6×105 3.6×105 3.5×105 4.0×106 3.3×106 4.5×106 1.5×106 2.4×106 2.1×106
GSPAES – ε-GSMOEA 2.8×106 3.4×106 3.1×106 1.7×106 1.0×106 3.5×107 4.4×107 3.9×107 4.0×107 4.9×107 1.5×108
GSPAES – GSNSGA 0 639 0 2199 7174 1.1×107 7.7×106 8.1×106 6.4×104 1.8×107 4.0×106
GSPAES – GSSPEA 0 0 7.6×105 3.6×105 3.6×105 9.7×106 5.8×106 8.4×106 1.1×107 9.3×106 2.8×107
ε-GSMOEA – SPEA 0 0 0 0 0 8.1×105 0 0 0 0 4.8×106
ε-GSMOEA – GSNSGA 0 0 0 2199 0 0 0 0 0 0 7.5×106
ε-GSMOEA – GSPAES 0 0 0 0 0 0 0 0 0 0 1.8×106
GSSPEA – ε-GSMOEA 2.8×106 3.4×106 2.4×106 1.3×106 6.6×105 2.9×107 4.3×107 3.1×107 3.2×107 4.2×107 1.3×107
GSSPEA – GSNSGA 0 639 0 0 0 5.9×106 7.4×106 3.3×106 0 1.2×107 1.6×107
GSSPEA – GSPAES 0 0 0 0 0 3.1×106 4.6×106 5.2×105 3.3×106 2.4×106 9.3×106

215

Chapter 7. Multi-Objective Approaches to University Course Timetabling

0
5

10
15

0
20

40
60
40

60

80

100

120

f1

NSGA−II−S1

f2

f3

4 6 8 10 12 14 16
0

10

20

30

40

50

60

f1

NSGA−II−S1

f2

4 6 8 10 12 14 16
40

60

80

100

120

f1

NSGA−II−S1

f3

0 10 20 30 40 50 60
40

60

80

100

120

f2

NSGA−II−S1

f3

0
1

2
3

0

10

20
0

5

10

15

20

f1

GSNSGA−S1

f2

f3

0 0.5 1 1.5 2 2.5 3
0

5

10

15

20
GSNSGA−S1

f1

f2

0 0.5 1 1.5 2 2.5 3
0

5

10

15

20
GSNSGA−S1

f1

f3

0 5 10 15 20
0

5

10

15

20
GSNSGA−S1

f2

f3

0

2

4

0

10

20
0

5

10

15

f1

PAES−S1

f2

f3

0 1 2 3 4
0

2

4

6

8

10

12

f1

PAES−S1

f2

0 1 2 3 4
2

4

6

8

10

12

14

f1

PAES−S1

f3

0 2 4 6 8 10 12
2

4

6

8

10

12

14

f2

PAES−S1

f3

0

0.5

1

0

0.5

1
0

0.5

1

1.5

2

f1

GSPAES−S1

f2

f3

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
GSPAES−S1

f1

f2

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2
GSPAES−S1

f1

f3

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2
GSPAES−S1

f2

f3

Figure 7.3: Comparison of algorithms regarding obtained non-dominated solu-
tions on the MOUCTP instance S1.

the other hand, the second “beaten all” row gives the percentage of the objective

space on which we can be 95% confident that the corresponding algorithm BEATS

ALL of the other algorithms compared. For example, for the S1 problem instance,

GSPAES was not beaten anywhere in the objective space, and it crushed the other

three algorithms for sure on 23.45% of the space. Similarly, for the M5 problem

216

Chapter 7. Multi-Objective Approaches to University Course Timetabling

5

10

15

0
20

40
60
60

80

100

120

f1

ε−MOEA−S1

f2

f3

4 6 8 10 12 14
0

10

20

30

40

50
ε−MOEA−S1

f1

f2

4 6 8 10 12 14
70

80

90

100

110

120
ε−MOEA−S1

f1

f3

0 10 20 30 40 50
70

80

90

100

110

120
ε−MOEA−S1

f2

f3

0
5

10
15

0

10

20
60

70

80

90

100

f1

ε−GSMOEA−S1

f2

f3

4 6 8 10 12 14
0

5

10

15

20
ε−GSMOEA−S1

f1

f2

4 6 8 10 12 14
65

70

75

80

85

90

95

100
ε−GSMOEA−S1

f1

f3

0 5 10 15 20
65

70

75

80

85

90

95

100
ε−GSMOEA−S1

f2

f3

0

2

4

0
10

20
30
20

40

60

80

100

f1

SPEA−II−S1

f2

f3

0 1 2 3 4
0

5

10

15

20

25
SPEA−II−S1

f1

f2

0 1 2 3 4
30

40

50

60

70

80

90
SPEA−II−S1

f1

f3

0 5 10 15 20 25
30

40

50

60

70

80

90
SPEA−II−S1

f2

f3

0

1

2

0

5

10
5

10

15

20

25

f1

GSSPEA−S1

f2

f3

0 0.5 1 1.5 2
0

2

4

6

8

10
GSSPEA−S1

f1

f2

0 0.5 1 1.5 2
5

10

15

20

25
GSSPEA−S1

f1

f3

0 2 4 6 8 10
5

10

15

20

25
GSSPEA−S1

f2

f3

Figure 7.4: Comparison of algorithms regarding obtained non-dominated solu-
tions on the MOUCTP instance S1.

instance, all algorithms have unbeatable performance except that ε-GSMOEA has

a 0% unbeatable space. All algorithms, e.g., GSSPEA and GSNSGA, had regions

in which they perform well, but GSPAES won by having 55% of the space, which is

better than all other algorithms.

217

Chapter 7. Multi-Objective Approaches to University Course Timetabling

35
40

45
50

55

250
300

350

400
60

70

80

90

100

f1

NSGA−II−M2

f2

f3

38 40 42 44 46 48 50 52
260

280

300

320

340

360

380

f1

NSGA−II−M2

f2

38 40 42 44 46 48 50 52
60

65

70

75

80

85

90

95

100

f1

NSGA−II−M2

f3

260 280 300 320 340 360 380
60

65

70

75

80

85

90

95

100

f2

NSGA−II−M2

f3

0
10

20
30

100

200

300
15

20

25

30

f1

GSNSGA−M2

f2

f3

5 10 15 20 25
100

120

140

160

180

200

220

f1

GSNSGA−M2

f2

5 10 15 20 25
15

20

25

30

f1

GSNSGA−M2

f3

100 120 140 160 180 200 220
15

20

25

30

f2

GSNSGA−M2

f3

25
30

35
40

150

200

250
10

15

20

25

f1

PAES−M2

f2

f3

28 30 32 34 36 38 40
160

180

200

220

240

260

f1

PAES−M2

f2

28 30 32 34 36 38 40
12

14

16

18

20

22

24

f1

PAES−M2

f3

160 180 200 220 240 260
12

14

16

18

20

22

24

f2

PAES−M2

f3

18

19

20

80

100

120
2

4

6

8

f1

GSPAES−M2

f2

f3

18 18.5 19 19.5 20
80

85

90

95

100

105

110

115

f1

GSPAES−M2

f2

18 18.5 19 19.5 20
3

4

5

6

7

8

f1

GSPAES−M2

f3

80 90 100 110 120
3

4

5

6

7

8

f2

GSPAES−M2

f3

Figure 7.5: Comparison of algorithms regarding obtained non-dominated solu-
tions on the MOUCTP instance M2.

7.4.4 Comparison with Other Algorithms

As mentioned before, most researchers have dealt with the single-objective UCTP.

In this chapter, we tackle the UCTP as a MOOP. It is interesting to see whether the

solutions produced by our algorithms are competitive with those obtained with other

218

Chapter 7. Multi-Objective Approaches to University Course Timetabling

30
40

50
60

200
250

300
350

60

80

100

120

f1

ε−MOEA−M2

f2

f3

35 40 45 50 55
240

260

280

300

320

340
ε−MOEA−M2

f1

f2

35 40 45 50 55
60

70

80

90

100

110
ε−MOEA−M2

f1

f3

240 260 280 300 320 340
60

70

80

90

100

110
ε−MOEA−M2

f2

f3

40
45

50
55

200
250

300
350

20

40

60

80

f1

ε−GSMOEA−M2

f2

f3

40 42 44 46 48 50 52
220

240

260

280

300

320

340
ε−GSMOEA−M2

f1

f2

40 42 44 46 48 50 52
30

40

50

60

70

80
ε−GSMOEA−M2

f1

f3

220 240 260 280 300 320 340
30

40

50

60

70

80
ε−GSMOEA−M2

f2

f3

0
20

40
60

100
150

200
250

20

40

60

80

100

f1

SPEA−II−M2

f2

f3

0 10 20 30 40 50
100

120

140

160

180

200

220

240
SPEA−II−M2

f1

f2

0 10 20 30 40 50
30

40

50

60

70

80

90
SPEA−II−M2

f1

f3

100 150 200 250
30

40

50

60

70

80

90
SPEA−II−M2

f2

f3

5
10

15
20

60
80

100
120

30

40

50

60

f1

GSSPEA−M2

f2

f3

8 10 12 14 16
70

80

90

100

110
GSSPEA−M2

f1

f2

8 10 12 14 16
30

35

40

45

50

55

60
GSSPEA−M2

f1

f3

70 80 90 100 110
30

35

40

45

50

55

60
GSSPEA−M2

f2

f3

Figure 7.6: Comparison of algorithms regarding obtained non-dominated solu-
tions on the MOUCTP instance M2.

methods that tackle the UCTP as a single-objective optimisation problem. For this

purpose, we transfer the results of proposed MOEAs into single-objective results by

weighted aggregation of the three objective values into one objective value. Note that

this measure is widely used in the literature for the single-objective UCTP. Table

7.8 presents the comparison of our results with those published results obtained by

219

Chapter 7. Multi-Objective Approaches to University Course Timetabling

30
40

50
60

200

300

400
60

80

100

120

f1

NSGA−II−M5

f2

f3

30 35 40 45 50 55
200

250

300

350

400

f1

NSGA−II−M5

f2

30 35 40 45 50 55
70

80

90

100

110

120

f1

NSGA−II−M5

f3

200 250 300 350 400
70

80

90

100

110

120

f2

NSGA−II−M5

f3

0
20

40
60

0

200

400
20

40

60

80

f1

GSNSGA−M5

f2

f3

0 10 20 30 40 50
80

100

120

140

160

180

200

220

f1

GSNSGA−M5

f2

0 10 20 30 40 50
20

30

40

50

60

70

f1

GSNSGA−M5

f3

50 100 150 200 250
20

30

40

50

60

70

f2

GSNSGA−M5

f3

20
30

40
50

0

200

400
0

50

100

f1

PAES−M5

f2

f3

25 30 35 40 45
150

200

250

300

350

f1

PAES−M5

f2

25 30 35 40 45
10

20

30

40

50

60

70

f1

PAES−M5

f3

150 200 250 300 350
10

20

30

40

50

60

70

f2

PAES−M5

f3

10

20

30

40

60

80
2

4

6

8

10

f1

GSPAES−M5

f2

f3

10 15 20 25 30
40

50

60

70

80

f1

GSPAES−M5

f2

10 15 20 25 30
2

3

4

5

6

7

8

9
GSPAES−M5

f1

f3

40 50 60 70 80
2

3

4

5

6

7

8

9

f2

GSPAES−M5

f3

Figure 7.7: Comparison of algorithms regarding obtained non-dominated solu-
tions on the MOUCTP instance M5.

the following algorithms.

• The guided search GA (GSGA): The guided search GA proposed in [129],

where a guided search technique is used to solve the UCTP.

220

Chapter 7. Multi-Objective Approaches to University Course Timetabling

30
40

50
60

200

300

400
50

100

150

f1

ε−MOEA−M5

f2

f3

35 40 45 50 55
200

250

300

350
ε−MOEA−M5

f1

f2

35 40 45 50 55
40

60

80

100

120
ε−MOEA−M5

f1

f3

200 250 300 350
50

60

70

80

90

100

110
ε−MOEA−M5

f2

f3

20
30

40
50

200

300

400
60

80

100

f1

ε−GSMOEA−M5

f2

f3

20 25 30 35 40 45 50
200

250

300

350
ε−GSMOEA−M5

f1

f2

20 25 30 35 40 45 50
60

70

80

90

100
ε−GSMOEA−M5

f1

f3

200 250 300 350
60

70

80

90

100
ε−GSMOEA−M5

f2

f3

0
20

40
60

0

200

400
40

60

80

100

f1

SPEA−II−M5

f2

f3

0 10 20 30 40 50
50

100

150

200

250

300
SPEA−II−M5

f1

f2

0 10 20 30 40 50
40

50

60

70

80

90

100
SPEA−II−M5

f1

f3

50 100 150 200 250 300
40

50

60

70

80

90

100
SPEA−II−M5

f2

f3

0
10

20
30

0

100

200
20

40

60

80

f1

GSSPEA−M5

f2

f3

0 5 10 15 20 25 30
40

60

80

100

120

140
GSSPEA−M5

f1

f2

0 5 10 15 20 25 30
30

40

50

60

70

80

f1

GSSPEA−M5

f3

40 60 80 100 120 140
30

40

50

60

70

80

f2

GSSPEA−M5

f3

Figure 7.8: Comparison of algorithms regarding obtained non-dominated solu-
tions on the MOUCTP instance M5.

• The variable neighbourhood search (VNS): In [13], Abdullah et al. used a

VNS approach based on the random-descent LS with an exponential Monte

Carlo acceptance criteria.

• The fuzzy algorithm (FA): Asmuni et al. proposed a FA in [29]. They focused

on the issue of ordering events by simultaneously considering three different

221

Chapter 7. Multi-Objective Approaches to University Course Timetabling

Table 7.7: Statistical comparison of algorithms

MOUCTP Performance GSNSGA GSPAES ε-GSMOEA GSSPEA

S1 unbeaten 0 100 0 0
beaten all 0 23.45 0 0

S2 unbeaten 59 100 0 95
beaten all 0 3.88 0 0

S3 unbeaten 96.03 100 0 51.25
beaten all 0 0 0 3.97

S4 unbeaten 54.11 100 0 59.65
beaten all 0 40.43 0 0

S5 unbeaten 0 100 0 50.6
beaten all 0 49.4 0 0

M1 unbeaten 36.84 61.03 0 31.4
beaten all 19.4 44.14 0 7.85

M2 unbeaten 30.19 52.17 0 41.64
beaten all 11.73 42.7 0 22.35

M3 unbeaten 58.08 71.93 0 16.25
beaten all 26.78 35.27 0 0

M4 unbeaten 100 100 100 100
beaten all 0 0 0 0

M5 unbeaten 17.73 64.27 0 29.82
beaten all 9.88 55.5 0 23.27

L unbeaten 13.76 100 21.8 18.93
beaten all 0 57.99 0 0

heuristics using fuzzy methods.

• The graph-based hyper-heuristic (GBHH): Burke et al. [51] proposed the GBHH.

They employed tabu search with graph-based hyper-heuristics for the UCTP

and examination timetabling problems.

• The tabu search roulette wheel (TSRW) hyper-heuristic: Burke et al. [50]

proposed the multi-objective TSRW hyper-heuristic to solve a UCTP as a

MOOP. They used three objectives to be minimised. They chose one objective

at a time during the search by the roulette wheel selection.

• The tabu search hyper-heuristic (TSHH): Burke et al. [47] introduced a TSHH

for the UCTP, where a set of low-level heuristics compete with each other. This

222

C
h
a
p
ter

7
.
M
u
lti-O

bjective
A
p
p
roa

ch
es

to
U
n
iversity

C
o
u
rse

T
im

eta
blin

g

Table 7.8: Comparison of algorithms on problem instances

GSNSGA GSPAES ε-GSMOEA GSSPEA GSGA TSRW VNS GBHH FA LS TSHH
UCTP Best Best Best Best Best Best Best Best Best Best Best

S1 0 0 72 0 0 – 0 6 10 8 1
S2 0 0 95 0 0 – 0 7 9 11 2
S3 0 0 81 0 0 – 0 3 7 8 0

S4 0 0 43 9 0 – 0 3 17 7 1
S5 0 0 23 9 0 – 0 4 7 5 0

M1 113 79 243 106 129 – 317 372 243 199 146
M2 126 103 315 110 160 173 313 419 325 202.5 173
M3 101 76 253 110 242 224 357 359 249 77.5%ln 267
M4 42 73 246 105 158 160 247 348 285 177.5 169
M5 124 58 287 83 124 – 292 171 132 100%ln 303
L 340 260 528 307 801 – 100%ln 1068 1138 100%ln 80%ln

223

Chapter 7. Multi-Objective Approaches to University Course Timetabling

approach was tested on the course timetabling and nurse rostering problems.

• The LS: Socha et al. [196] introduced an LS method. They used a random

restart LS method for the UCTP and compared it with an ant algorithm.

All the above algorithms except TSRW tackled the single objective UCTP. In Table

7.8, “–” means that there is no result available in the literature for a corresponding

algorithm, and “%ln” indicates the percentage of infeasible solutions for a corre-

sponding problem instance.

From Table 7.8, it can be seen that GSPAES, GSSPEA, and GSNSGA outperform

other algorithms on all medium and large problem instances. GSPAES and GSNSGA

also perform well on small problems. ε-GSMOEA also give good results on most

medium problems in comparison with FA [29], GBHH [51], and VNS [13].

From Table 7.8, it can also be seen that Pareto optimal techniques give good re-

sults on all of the problem instances because they provide a better coverage of the

objective space and is more effective in minimising the total number of constraint

violations during the running [172].

7.5 Chapter Summary

In this chapter, we tackled the UCTP as a MOOP. To solve the MOUCTP, we pro-

posed a framework of combining a guided search technique and local search strategies

224

Chapter 7. Multi-Objective Approaches to University Course Timetabling

with general MOEAs to solve the MOUCTP. The GS strategy uses memories (data

structures) to store useful information, i.e., a list of room and time slot pairs for

each event that is extracted from the best individuals selected from the population

and which has a zero penalty value. These data structures are used to guide the

generation of offspring into the following populations. The main advantage of these

data structures lies in the fact that they help improve the quality of individuals by

storing part of former good solutions, which otherwise would have been lost in the

selection process, and reusing the stored information in the following generations.

This can enable the algorithm to quickly retrieve the best solutions corresponding

to the previous and new populations.

In order to test the performance of proposed MOEAs for the MOUCTP, experiments

were carried out to analyse the performance of MOEAs based on a set of well-

known benchmark UCTP instances [196] (described in Section 3.4 of Chapter 3) and

the performance metrics that are taken from the literature on MOEAs for general

MOOPs. The experimental results of proposed algorithms were also compared with

several state-of-the-art methods from the literature on the tested UCTP instances.

The experimental results show that the proposed methods are competitive and work

reasonably well across all problem instances in comparison with other approaches

studied in the literature. It was found that all proposed algorithms obtained good

results and produced a population of non-dominated solutions. Hence, the user

is able to choose the most appropriate solutions from the final population, rather

than being restricted to a single solution. We can say that the proposed MOEAs are

225

Chapter 7. Multi-Objective Approaches to University Course Timetabling

efficient because they take considerably less time to produce a course timetable than

real cases, which often take months to produce one before a new semester starts.

The proposed MOEAs are scalable because they have effectively tackled the large

scale problem instance as well as small scale problem instances.

226

Chapter 8

Conclusions and Future Work

In this chapter, we summarise the major developments achieved by the work pre-

sented in this thesis, including the main technical contributions and major conclu-

sions that can be drawn from the experimental studies carried out in the thesis. We

also discuss further research directions that may be undertaken in the future.

8.1 Technical Contributions

Timetabling is one of the common challenging scheduling problem, in which we need

to maximise the allocation of resources and minimise the violation of constraints.

Timetabling problems are often made complicated by the details of a particular

timetabling task, and are often considered to be NP-hard problems. The university

course timetabling problem (UCTP) is one type of timetabling problems. This

227

Chapter 8. Conclusions and Future Work

problem has attracted significant research interest over the past decades and is

considered to be very difficult to solve due to its highly-constrained nature and

the exponential growth of the size of the search space with the problem size.

The UCTP does not have a single agreed definition and varies in its structure ac-

cording to the particular requirements of different universities, which contributes

to making UCTPs a difficult class of problems, offering some serious research chal-

lenges. From a practical point of view, they are also very important problems since

the quality of solutions to these problems often has a significant impact on the insti-

tutions concerned. Hence, it is of great value to investigate the UCTP and develop

efficient solvers.

In this thesis, we address the UCTP with the tool of GAs. As mentioned in the

introduction to the thesis (Section 1.3 in Chapter 1), in order to develop efficient

GAs to tackle the UCTP, in this thesis, we have followed a spiral procedure: first

we studied traditional GAs for the simple UCTP, and then developed and added

LS and GS strategies to enhance the performance of traditional GAs for solving the

UCTP and the more challenging PECTP. Finally, we addressed the more real-world

oriented MOUCTP with MOEAs that are enhanced with the LS and GS strategies

developed in this thesis. Hence, in this thesis, we investigated various versions of

GAs for the UCTP.

Chapter 1 outlined the motivation for the work for this thesis by introducing the

need for combining population-based and local area-based algorithms for the UCTP.

228

Chapter 8. Conclusions and Future Work

It also highlighted the need for the development of new techniques to enhance the

solution quality for the UCTP. Chapter 2 described the complicated nature of uni-

versity course timetabling and also described different methodologies used in the

existing literature to solve this problem. Chapter 3 presented the specification of

data sets that were used to test the proposed GAs in this thesis. Then, in the re-

maining chapters, we proposed several techniques and developed a number of GAs

for solving the UCTP, the PECTP, and the MOUCTP.

The major technical contributions achieved in this thesis toward the research domain

of UCTPs are summarised as follows:

• A new memetic algorithm (MA) for the UCTP: A new LS strategy

(LS2) was proposed to remove or minimise the penalty cost related to time

slots. Based on this LS strategy, we presented a new MA for solving the UCTP.

The MA combines the steady state GA with two LS strategies, LS1 and LS2.

We established in Chapter 4 that GAs do not work very well even with a

traditional LS strategy (LS1) within a limited time. With LS1 only, the MA

does not perform well for the UCTP benchmark instances in the experiments,

as also observed in [181]. However, we have enhanced the search power of

the MA for solving the UCTP by introducing a second LS strategy, LS2, into

its structure. LS2 tries to improve the individuals by minimising violation of

constraints on a particular time slot and enables the MA to escape from local

optima.

229

Chapter 8. Conclusions and Future Work

In order to investigate the effect of the new LS strategy, i.e., LS2, experiments

were carried out to test the performance of a simple GA and the proposed MA

in two aspects: one is the comparison of performance on the 11 benchmark

UCTP instances in terms of the t-test results; the other is the comparison of

the performance with other approaches in the literature within the same time

scale. Based on the experimental results, it is clear that, with the help of

the powerful LS strategy, the proposed MA can obtain high quality solutions

that satisfy different constraints. The proposed MA is capable of finding near-

optimal solutions for the test problem instances.

• A novel guided search (GS) strategy: A novel GS strategy was proposed

to enhance the searching power of GAs for solving the UCTP. The GS strategy

uses a memory (data structure) to store useful information, i.e., a list of room

and time slot pairs for each event that is extracted from the best individuals

selected from the population and has a zero penalty value. This data structure

is used to guide the generation of offspring into the following populations. The

main advantage of the GS strategy is that it improves the quality of individuals

by storing parts of former good solutions, which otherwise would have been

lost in the selection process, and reusing the stored information in the following

generations. This can enable a GA to quickly retrieve useful information from

the best solutions of previous populations to generate new good solutions into

the current population.

230

Chapter 8. Conclusions and Future Work

In Chapters 5, 6 and 7, we have proposed different GAs with the help of the

GS strategy, which produced some of the best known solutions for the UCTP

and PECTP benchmark instances used in this thesis.

• Several guided search GAs for the UCTP: Hybridisations of LS and GS

strategies were applied to GAs to solve the UCTP. We integrated LS strategies

with the GS strategy and presented several GA variants based on the steady-

state GA model, including two versions of guided search GAs (i.e., GSGA and

EGSGA) for solving the UCTP. In the proposed GSGAs, two LS strategies

were used to improve the individuals in the population around the local areas

in which they resided, and the GS strategy is used to guide the generation

of good quality solutions into the population. The experimental results of

GSGAs on the benchmark UCTP instances show that the proposed EGSGA is

competitive and works well across the tested problem instances in comparison

with other state-of-the-art approaches taken from the literature and hence can

act as a powerful tool for the UCTP.

In order to test the performance of the proposed GSGAs for the UCTP, ex-

periments were carried out to analyse the sensitivity of parameters within the

GS strategy and the effect of the GS strategy on the performance of GSGAs

based on a set of benchmark UCTP instances. The experimental results of

EGSGA were also compared with several state-of-the-art methods from the

literature on the tested UCTP instances. The results show that the proposed

EGSGA is competitive and works well across the tested problem instances in

231

Chapter 8. Conclusions and Future Work

comparison with other state-of-the-art approaches taken from the literature.

Generally speaking, with the help of the GS and LS strategies, EGSGA is able

to efficiently find optimal or near-optimal solutions for the UCTP and hence

can act as a powerful tool for the UCTP.

To our knowledge, this study is the first time GAs have been applied together

with the GS strategy to address timetabling problems.

• An efficient two-phase hybrid approach for the PECTP: A two-phase

hybrid approach, denoted HGATS, was presented for solving the PECTP,

which is a specialised but more challenging UCTP. This hybrid approach com-

bines the GSGA and tabu search, and tries to strike a balance between their

exploitation and exploration abilities. In the first phase of HGATS, the GSGA

uses the GS and LS strategies to try to find feasible solutions for the PECTP.

Due to the challenge of the PECTP, after the first phase, HGATS may not

be able to find feasible or good enough solutions. Hence, the second phase is

introduced to HGATS, where a TS scheme is used to further improve the best

solution obtained by the GSGA in the first phase.

In order to test the performance of the proposed HGATS for the PECTP,

experiments were carried out to analyse the sensitivity of parameters and the

effect of the GS strategy on the performance of HGATS based on a set of

benchmark ITC-2007 PECTP instances. The experimental results of HGATS

were also compared with several state-of-the-art methods from the literature

232

Chapter 8. Conclusions and Future Work

on these benchmark instances. The experimental results showed that the pro-

posed hybrid approach is competitive and works well across all test PECTP

instances in comparison with other approaches studied in the literature. Gen-

erally speaking, with the help of the guided, local, and tabu search strategies,

HGATS is able to efficiently find optimal or near-optimal solutions for the

PECTP and hence can act as a powerful tool for the PECTP.

• Multi-objective approaches to the UCTP: In this thesis, the UCTP has

also been tackled as a MOOP, i.e., the MOUCTP. To solve the MOUCTP,

we presented a framework for combining the above GS and LS strategies with

general MOEAs. The GS strategy uses memories (data structures) to store

useful information, i.e., a list of room and time slot pairs for each event that is

extracted from the best individuals selected from the population and which has

a zero penalty value. These memories help to improve the quality of individuals

by reusing the stored information in the following generations, which otherwise

would have been lost in the selection process.

From the proposed framework, it is easy to construct new MOEAs for the

MOUCTP using MOEAs for general MOOPs. In the thesis, we have instanti-

ated this framework onto several widely-used MOEAs, including NSGA-II [80],

ε-MOEA [81], SPEA-II [221], and PAES [136], to construct corresponding new

MOEAs to solve the MOUCTP.

The experimental results of proposed MOEAs on benchmark MOUCTP in-

stances show that they obtained good results and produced a population of

233

Chapter 8. Conclusions and Future Work

non-dominated solutions for the benchmark MOUCTP instances. Hence, the

user is able to choose the most appropriate solutions from the final population,

rather than being restricted to a single solution. Our proposed MOEAs also

gave a non-dominated set of solutions that are better than the corresponding

state-of-the-art MOEAs in three aspects: one is the comparison of the perfor-

mance in terms of the statistical test results; the second is the comparison of

the performance regarding the hyper-volume of the obtained non-dominated

solutions; and the third is the measurement of D-metric between two non-

dominated sets obtained by the MOEAs.

To our knowledge, this study was the first time guided search GAs have been

applied to address the MOUCTP.

8.2 Conclusions

In order to justify the algorithms we developed in this thesis, we have carried out

several sets of experiments systematically and analysed the experimental results

regarding the performance of algorithms in comparison with other state-of-the-art

approaches for the UCTP taken from the literature. Here, we summarise the major

conclusions based on the experimental results and relevant analyses carried out in

this thesis as follows.

• The new LS strategy (i.e., LS2, proposed in Chapter 4) enables the MA to

escape from local optima and hence greatly enhance the performance of the

234

Chapter 8. Conclusions and Future Work

MA for the UCTP. The results show that by integrating LS with appropriate

neighbourhood moves, GAs can get the best solutions for the UCTP.

• We observed that the GS strategy is able to produce solutions of good quality

into the population and significantly enhances the performance of GAs for

the UCTP and the PECTP. The GS strategy also tries to balance between

the exploration and exploitation abilities of GAs. The process of randomly

creating children through the extra data structure(s) achieves a good balance

between the exploitation and exploration properties of GAs. Reusing the best

part of previous populations’ individuals, for creating some part of a child,

enhances the exploitation ability of GAs, and randomly creating some part

of the child explores the search space more widely and hence enhances the

explorative ability of GAs.

• From the experimental results in Chapter 5, LS strategies with different proper-

ties, when integrated with the GS strategy, give significantly improved results.

The GS strategy can be used to create good quality solutions on the basis of

previous good solutions and to explore the search space as much as possible.

The LS operators can enhance the quality of an individual by finding the lo-

cal optimum of that individual. Consequently, the cooperation of GS and LS

strategies with each other can guide a GA to locate optimal or near-optimal

solutions.

235

Chapter 8. Conclusions and Future Work

• We also noticed that the GS strategy works well with another meta-heuristic

(TS) in the two-phase hybrid approach, which is also very effective towards

solving the PECTP. Experimental results in Chapter 6 show that although the

TS and GS approaches work well on all problem instances separately, when

combined together, the results are then remarkably improved. We also noticed

that the biased crossover operator and improved neighbourhood structures

have an ability to explore a huge search space.

• We found that the UCTP can be well handled as an MOOP. The proposed

framework of integrating the GS and LS strategies with MOEAs works well.

The instantiated MOEAs from state-of-the-art MOEAs are able to solve the

MOUCTP and give good quality solutions. We also observed that the GS and

LS framework works well with Pareto Optimal techniques, provides a better

coverage of the objective space and is more effective in minimising the total

number of constraint violations. From this observation, we can conclude that

MOEAs can effectively solve the UCTP.

Generally speaking, from the experimental results, we can conclude that the GS

and LS strategies proposed in this thesis greatly improve the performance of GAs

for both the UCTP and the MOUCTP.

236

Chapter 8. Conclusions and Future Work

8.3 Future Work

As mentioned before, we followed a spiral procedure to develop efficient GAs for

solving the UCTP. Whilst this thesis presented some new heuristics and searching

approaches for the improvement of the state-of-the-art of the UCTP research do-

main, and the results show that these approaches are able to produce some of the

best results, there are nevertheless some general further research questions that arise

from this research at each step of the spiral procedure. Here, we discuss them along

with some suggestions for future work.

• As we have seen in Chapter 4, LS2 alone is not enough to help the tradi-

tional GA obtain a feasible solution for hard problem instances. LS2 could be

improved if we introduce more neighbourhood structures that emphasise the

placement of time slots or rooms in a more efficient way.

• The observation made in Chapter 5 and 6 regarding the GS strategy showed

that the performance of the GS strategy is strongly dependent on the param-

eter settings. This effect can be slightly different for different UCTPs. It is

worthwhile to investigate the performance on different optimisation problems

in order to find the limitations of this approach. In the future, we might also

be able to create new ways of finding the appropriate parameter values for

different problems. For example, using adaptive techniques to adjust the key

parameters of GSGAs during the searching progress may further improve the

performance of GSGAs for the UCTP.

237

Chapter 8. Conclusions and Future Work

• We discovered that the GS strategy works well in the two-phase hybrid ap-

proach for the PECTP along with tabu search. The resultant two-phase hybrid

approach is able to produce 100% feasible solutions on some problem instances

in the first phase. We can, however, improve its performance in the first phase

by using new genetic operators or by developing new neighbourhood tech-

niques, based on different problem constraints. We believe that the GS strat-

egy will further help GAs to improve their performance by applying advanced

genetic operators, heuristics, and evaluation routines. Better understanding

of the inter-relationships between these techniques and proper placement of

these techniques in an algorithm may lead to even better results.

• In Chapter 7, we created three data structures for the minimisation of the three

objectives for solving the MOUCTP. It is noted that, in real-world situations,

there may be many objectives and creating a data structure for each one of

them may not be a good idea. A worthwhile future endeavour could be to

investigate the best ways of solving UCTPs with more than three objectives

using the memory based GS strategy. It might be that grouping objectives

according to their properties or creating a data structure according to time

slot, event and room properties gives better solutions for MOUCTPs with

many objectives. However, it would be interesting to investigate the limitations

of the memory data structures in algorithms for solving the UCTP.

We also intend to test our developed MOEAs on the ICT-2007 benchmark

instances in particular and other problem instances that are available in the

238

Chapter 8. Conclusions and Future Work

literature in general.

• It would also be instructive to see how our proposed approaches for the single-

objective UCTP and the MOUCTP cope with various other scheduling prob-

lems, such as exam timetabling and sports timetabling.

In summary, the GS and LS strategies are effective in enhancing traditional GAs for

solving the UCTP. Nevertheless, more work is greatly needed to develop a power-

ful general technique or a general framework of techniques to solve the UCTP. We

believe that UCTPs can be effectively solved as MOOPs. Hybridisation of different

MOEAs with other meta-heuristics and some domain knowledge might be able to

give some general intelligent framework for solving the UCTP, along with the ad-

vantage of obtaining a set of non-dominated solutions rather than a single solution.

We also believe that the proposed methods are open to different extensions and hy-

bridisation. More advanced search mechanisms, appropriate genetic operators, and

heuristics and knowledge-based evaluation routines, are greatly needed to develop

efficient intelligent algorithms for UCTPs in particular and timetabling problems in

general.

239

Appendix A

The t-Test Results

The t-test evaluates the differences in means between two populations in relation

to the variation in the data (expressed as the standard deviation of the difference

between the means). The t-test determines a p-value that shows how likely we could

have gotten these results by chance. By convention, if there is less than 0.05 chance

of getting the observed difference by chance, we reject the null hypothesis and say

we found a statistically significant difference between the two groups [5].

In this thesis, for all our t-test in the experimental studies in Chapters 4, 5 and 6, we

have used the 2-sample independent t-test. The null hypothesis is that “the means

of two compared algorithms are equal”. We carried out t-test to “reject the null

hypothesis”, which shows whether the difference between two compared algorithms

is statistically significant.

240

Appendix A. The t-Test Results

Following tables show the data of different algorithms on different problem instances

used for the t-test in the experimental studies.

Table A.1: The performance data of 50 runs of the Evolutionary Algorithm
(EA) for the t-test results shown in Table 4.1 on different problem instances

S1 S2 S3 S4 S5 M1 M2 M3 M4 M5

0 11 12 1 0 311 198 329 328 327

0 9 26 20 0 319 224 324 309 237

0 7 5 4 0 275 192 365 259 298

0 17 0 3 11 318 194 294 285 265

14 9 7 1 0 300 214 314 248 249

14 19 2 3 15 289 215 315 254 235

0 6 16 3 0 308 241 341 250 248

15 28 2 3 0 320 291 271 253 254

0 3 9 0 0 327 198 378 256 319

15 23 8 0 0 323 213 313 321 301

13 10 5 24 0 315 224 324 257 238

0 3 6 7 0 290 229 329 256 259

0 4 0 4 0 285 245 345 273 316

0 13 22 2 17 313 224 324 306 266

0 16 6 10 0 292 180 280 319 301

15 29 14 6 0 304 205 305 267 340

0 3 9 10 0 305 234 334 254 258

15 10 7 8 0 338 202 302 278 279

0 30 4 9 0 334 223 323 246 235

15 4 18 9 1 339 198 268 278 303

14 8 0 10 0 321 243 343 323 262

14 26 7 7 1 275 200 300 245 295

0 16 6 7 0 304 199 279 256 250

0 11 10 17 0 298 192 292 257 244

0 23 6 9 0 309 187 287 237 244

0 3 10 7 17 277 194 294 256 300

14 8 4 0 0 341 189 289 322 240

15 7 10 0 17 289 212 312 259 256

0 10 9 18 17 338 207 307 307 300

15 31 3 3 0 295 227 327 290 285

12 10 4 0 1 328 192 292 268 239

0 5 9 16 0 267 191 291 282 268

0 14 9 10 1 321 197 275 270 245

13 3 13 2 0 324 234 334 265 256

11 3 7 23 0 320 189 271 258 249

0 24 3 3 0 285 206 306 267 271

0 5 13 0 18 303 239 339 246 260

15 23 9 0 1 285 208 308 249 247

0 4 0 0 0 290 175 275 254 256

13 3 4 20 19 299 196 296 254 347

15 5 3 24 1 290 195 295 265 341

13 10 8 0 0 321 277 277 262 246

0 26 1 1 18 299 289 347 249 302

0 8 6 9 0 311 276 326 256 256

15 3 4 3 0 345 208 308 248 254

0 4 8 11 0 324 212 308 245 257

15 3 5 2 19 324 210 310 275 245

1 5 5 0 0 295 219 319 313 281

11 4 0 11 0 278 278 254 249 230

15 5 9 0 1 291 294 309 246 243

241

Appendix A. The t-Test Results

Table A.2: The performance data of 50 runs of the Memetic Algorithm (MA)
for the t-test results shown in Table 4.1 on different problem instances

S1 S2 S3 S4 S5 M1 M2 M3 M4 M5

0 0 12 0 0 224 229 237 149 287

14 15 0 0 6 245 223 243 165 278

0 0 5 6 0 238 182 232 155 258

0 8 10 0 0 232 194 248 164 221

3 0 3 0 0 225 214 243 162 227

1 0 17 5 5 248 215 263 156 207

1 10 0 0 7 229 241 300 206 205

0 12 0 0 0 217 171 286 179 209

12 14 17 0 6 233 171 294 145 205

14 0 0 0 0 256 213 234 184 223

1 9 1 6 3 227 224 245 165 209

6 8 0 0 6 231 229 233 143 200

4 10 19 0 0 243 245 264 179 199

0 6 0 0 0 249 224 275 168 212

0 6 5 7 4 245 180 265 156 221

0 7 0 0 0 223 205 263 156 249

4 6 14 0 0 254 234 275 168 258

0 7 0 0 6 240 202 263 156 215

4 14 9 0 4 269 223 290 183 233

3 11 0 5 6 228 185 301 200 224

1 11 0 0 0 225 243 228 185 232

1 8 14 0 2 234 200 235 183 238

0 9 0 0 0 255 179 291 143 276

1 10 0 0 0 257 192 235 153 262

13 6 0 0 7 243 187 243 184 256

0 7 1 7 0 256 194 357 154 204

0 12 17 6 0 227 189 301 204 199

0 6 0 0 0 243 212 232 163 225

0 6 0 0 0 260 207 237 163 232

0 10 1 0 4 248 227 257 152 254

15 8 11 0 0 238 192 239 132 254

0 15 1 5 0 225 191 234 206 222

1 19 0 0 6 227 175 233 191 221

0 12 0 0 2 217 234 232 169 197

15 0 0 6 0 231 171 252 185 227

10 18 0 0 0 257 206 222 201 219

1 10 5 0 0 249 239 253 153 211

13 12 19 0 6 260 208 243 154 218

0 8 15 0 6 254 175 234 154 208

1 0 10 3 7 253 196 236 143 207

0 14 3 6 6 227 195 243 165 219

15 0 9 0 7 262 177 230 162 212

0 2 9 0 0 271 247 242 143 215

0 13 5 0 7 226 226 234 143 254

4 17 16 0 0 230 208 278 156 274

0 2 1 0 0 224 208 234 168 219

9 5 0 0 4 228 210 242 174 210

0 12 16 0 2 254 219 238 141 214

0 9 0 0 0 243 267 228 154 213

3 16 1 0 7 212 209 230 145 202

242

Appendix A. The t-Test Results

Table A.3: The performance data of 50 runs of the Tabu Search (TS) for the
t-test results shown in Table 5.4 on different problem instances

S1 S2 S3 S4 S5 M1 M2 M3 M4 M5

0 2 15 8 1 212 234 281 254 279

5 25 0 3 0 222 256 278 260 292

0 7 3 18 15 227 240 227 256 294

6 21 3 2 14 211 213 262 242 281

0 24 5 2 0 287 222 280 238 289

0 1 3 2 15 263 216 288 236 284

0 26 4 2 15 218 255 281 230 303

0 20 22 6 0 225 212 265 216 308

8 1 2 20 6 213 243 268 214 311

9 1 0 2 1 218 265 298 187 309

2 24 17 9 0 214 266 281 176 275

0 22 0 2 0 220 242 279 171 236

9 2 16 20 16 219 245 279 166 265

0 1 0 2 0 218 198 298 231 300

0 20 1 2 0 261 188 271 187 273

0 8 19 14 6 262 234 272 212 234

0 17 6 2 5 216 198 286 202 303

0 22 0 2 0 217 274 287 234 307

5 1 14 12 1 211 243 285 212 301

0 7 22 22 11 230 246 266 198 300

0 20 1 2 0 212 234 263 176 288

0 20 1 14 0 214 202 276 175 308

0 5 16 3 9 214 205 274 189 301

0 27 10 20 2 234 218 279 197 282

4 20 6 6 0 216 276 283 167 290

1 9 7 7 0 216 234 267 188 311

0 18 12 12 16 213 243 298 256 326

0 20 9 6 9 224 277 276 217 353

4 22 3 6 1 212 234 266 235 302

0 8 10 20 12 257 275 278 233 247

0 25 8 9 15 221 212 281 251 353

0 22 15 21 1 214 263 289 232 273

2 20 20 8 6 214 272 292 189 284

0 1 21 20 0 218 272 281 256 281

0 2 0 2 0 212 199 284 186 296

9 4 1 18 10 212 204 280 197 282

9 27 7 7 0 244 185 291 241 300

0 11 15 17 12 222 189 265 245 307

1 20 13 9 3 214 198 276 186 320

0 22 0 2 16 211 198 267 175 275

0 1 14 18 0 218 189 278 187 308

9 1 11 3 2 212 187 278 189 251

0 25 0 2 0 245 256 264 188 296

0 22 20 3 0 211 257 286 190 238

9 22 21 21 13 212 186 283 187 285

0 3 14 7 0 212 215 272 176 246

9 23 1 5 16 219 254 276 178 302

0 27 0 20 14 240 277 287 185 246

0 1 0 2 0 214 221 280 183 256

2 26 18 21 16 219 212 297 182 312

243

Appendix A. The t-Test Results

Table A.4: The performance data of 50 runs of the Steady-State Memetic Al-
gorithm (SSMA) for the t-test results shown in Table 5.4 on different problem

instances

S1 S2 S3 S4 S5 M1 M2 M3 M4 M5

0 11 12 1 0 311 198 329 328 327

0 9 26 20 0 319 224 324 309 237

0 7 5 4 0 275 192 365 259 298

0 17 0 3 11 318 194 294 285 265

14 9 7 1 0 300 214 314 248 249

14 19 2 3 15 289 215 315 254 235

0 6 16 3 0 308 241 341 250 248

15 28 2 3 0 320 291 271 253 254

0 3 9 0 0 327 198 378 256 319

15 23 8 0 0 323 213 313 321 301

13 10 5 24 0 315 224 324 257 238

0 3 6 7 0 290 229 329 256 259

0 4 0 4 0 285 245 345 273 316

0 13 22 2 17 313 224 324 306 266

0 16 6 10 0 292 180 280 319 301

15 29 14 6 0 304 205 305 267 340

0 3 9 10 0 305 234 334 254 258

15 10 7 8 0 338 202 302 278 279

0 30 4 9 0 334 223 323 246 235

15 4 18 9 1 339 198 268 278 303

14 8 0 10 0 321 243 343 323 262

14 26 7 7 1 275 200 300 245 295

0 16 6 7 0 304 199 279 256 250

0 11 10 17 0 298 192 292 257 244

0 23 6 9 0 309 187 287 237 244

0 3 10 7 17 277 194 294 256 300

14 8 4 0 0 341 189 289 322 240

15 7 10 0 17 289 212 312 259 256

0 10 9 18 17 338 207 307 307 300

15 31 3 3 0 295 227 327 290 285

12 10 4 0 1 328 192 292 268 239

0 5 9 16 0 267 191 291 282 268

0 14 9 10 1 321 197 275 270 245

13 3 13 2 0 324 234 334 265 256

11 3 7 23 0 320 189 271 258 249

0 24 3 3 0 285 206 306 267 271

0 5 13 0 18 303 239 339 246 260

15 23 9 0 1 285 208 308 249 247

0 4 0 0 0 290 175 275 254 256

13 3 4 20 19 299 196 296 254 347

15 5 3 24 1 290 195 295 265 341

13 10 8 0 0 321 277 277 262 246

0 26 1 1 18 299 289 347 249 302

0 8 6 9 0 311 276 326 256 256

15 3 4 3 0 345 208 308 248 254

0 4 8 11 0 324 212 308 245 257

15 3 5 2 19 324 210 310 275 245

1 5 5 0 0 295 219 319 313 281

11 4 0 11 0 278 278 254 249 230

15 5 9 0 1 291 294 309 246 243

244

Appendix A. The t-Test Results

Table A.5: The performance data of 50 runs of the Guided Search Genetic
Algorithm (GSGA) for the t-test results shown in Table 5.4 on different problem

instances

S1 S2 S3 S4 S5 M1 M2 M3 M4 M5

0 0 2 0 0 262 212 230 189 124

0 0 4 6 1 269 214 254 155 145

0 0 0 2 4 245 205 241 183 138

6 0 0 2 0 267 194 253 166 123

0 2 0 0 0 240 156 264 172 125

0 12 0 3 0 249 205 255 200 148

0 1 0 2 0 248 204 241 206 199

0 0 2 0 0 249 171 272 165 167

0 0 0 3 0 259 207 278 157 151

9 0 1 3 0 243 213 243 167 193

0 0 1 3 0 265 204 264 165 128

6 0 0 2 0 260 163 259 208 131

7 0 7 0 0 245 166 253 156 131

0 15 8 2 0 243 156 244 164 129

0 0 0 4 0 269 180 281 190 145

0 0 0 0 0 256 205 285 156 123

8 0 6 0 5 267 185 265 166 193

0 0 7 0 0 248 178 252 166 140

7 0 0 4 0 242 165 245 192 163

0 0 0 4 0 267 168 268 178 128

9 16 1 0 5 241 204 253 162 125

0 0 0 1 0 254 200 278 163 187

0 0 0 0 0 243 179 254 154 166

0 0 2 0 0 245 192 254 165 172

1 0 1 0 0 270 187 278 155 143

0 15 0 4 0 254 194 244 155 142

0 0 9 4 0 253 189 289 204 127

8 0 10 2 0 254 202 265 183 134

0 0 6 0 5 247 207 267 155 155

0 0 9 4 0 265 204 256 157 148

8 0 10 0 0 245 192 256 154 141

0 16 0 1 0 267 190 291 206 154

0 0 0 3 0 253 175 276 156 127

0 0 0 0 0 242 203 272 169 120

0 0 0 1 0 240 171 246 158 129

8 10 7 0 0 266 206 246 201 172

0 15 4 0 0 267 204 239 154 194

6 0 0 0 0 248 165 278 156 126

0 0 0 0 0 250 175 275 156 142

1 0 0 1 0 255 169 294 206 153

3 0 0 5 0 250 156 295 155 190

1 0 0 5 0 262 166 254 163 164

0 0 2 4 0 266 201 246 172 149

7 0 1 0 0 244 212 252 162 126

0 0 0 2 2 250 167 253 165 162

0 0 5 0 0 245 201 254 166 150

9 14 0 1 3 270 210 256 162 153

0 0 5 3 0 255 190 265 172 154

1 0 0 11 0 245 187 267 172 143

0 0 0 0 0 240 156 265 158 212

245

Appendix A. The t-Test Results

Table A.6: The performance data of 50 runs of the Extended Guided Search
Genetic Algorithm (EGSGA) for the t-test results shown in Table 5.4 on different

problem instances

S1 S2 S3 S4 S5 M1 M2 M3 M4 M5

2 0 2 0 1 156 102 129 108 126

0 2 0 0 0 132 96 125 102 161

3 4 2 0 0 145 98 163 128 117

1 1 0 0 1 142 103 135 103 116

0 3 0 0 0 146 100 127 109 119

4 1 0 5 0 172 113 138 99 152

3 1 2 0 0 139 109 142 112 119

3 2 2 0 1 156 130 161 123 112

0 8 0 0 0 194 98 128 109 124

0 0 0 1 0 152 97 135 102 157

0 1 2 0 0 146 99 125 102 123

0 6 2 0 0 139 107 129 99 129

0 4 0 0 0 160 126 145 102 127

0 0 2 0 1 134 111 124 103 127

0 0 2 0 3 157 102 148 102 119

0 0 2 5 0 163 103 135 112 117

4 4 2 0 0 163 101 134 112 129

0 0 0 0 1 157 98 129 112 117

0 4 2 4 0 182 99 123 128 117

0 4 0 0 3 132 111 168 105 134

4 0 1 0 0 145 145 136 121 120

4 0 2 0 0 152 112 200 102 117

0 4 0 0 1 152 98 145 112 120

4 0 0 0 0 143 106 157 112 124

4 0 2 0 0 139 98 128 121 141

4 2 0 4 0 161 116 124 109 134

0 0 0 0 0 160 116 189 109 137

4 4 1 0 0 178 115 174 105 128

3 4 0 0 1 175 125 132 102 116

3 0 2 4 0 152 128 127 102 117

3 1 2 0 0 134 98 122 112 128

3 9 0 4 0 134 102 132 112 124

4 1 2 0 1 145 114 127 98 117

0 1 0 0 0 143 126 136 108 117

2 0 2 0 0 134 121 121 112 145

2 0 0 0 0 156 109 126 105 119

0 11 2 0 2 134 98 138 106 124

3 0 0 0 0 165 142 127 123 117

0 1 2 5 0 145 109 125 121 117

3 0 0 4 2 134 112 126 108 126

3 4 0 5 0 142 112 155 124 125

0 11 2 0 0 142 99 156 124 123

4 0 2 4 0 189 112 147 102 128

4 2 0 5 2 152 139 145 135 127

0 4 0 3 0 145 116 128 102 158

3 0 0 0 1 167 112 128 128 162

0 0 2 0 2 162 115 120 102 158

0 0 0 0 1 143 107 129 112 145

5 1 0 0 1 143 102 136 106 152

4 2 0 0 0 140 112 178 106 142

246

Appendix A. The t-Test Results

Table A.7: The Df values of 50 runs of the TS for the t-test results shown in
Table 6.3 on different problem instances (2007-1 – 2007-12)

2007-1 2007-2 2007-3 2007-4 2007-5 2007-6 2007-7 2007-8 2007-9 2007-10 2007-11 2007-12

0 10 5 0 15 0 24 0 50 0 0 0

51 50 18 34 20 0 45 0 10 0 0 40

0 40 0 0 0 0 67 0 0 0 0 10

0 53 0 76 20 0 65 0 100 0 0 10

20 0 0 76 17 0 66 0 50 0 0 0

0 40 17 0 20 0 12 0 0 0 0 0

33 0 0 0 30 0 12 0 0 0 0 0

32 72 18 0 20 0 23 0 100 0 0 47

0 25 17 76 10 0 34 0 0 0 0 56

10 20 0 0 20 0 24 0 10 0 0 6

0 40 10 0 32 0 23 0 100 0 0 22

0 16 8 0 0 0 28 0 149 0 0 44

0 40 8 0 30 0 19 0 0 0 0 56

51 7 0 0 0 0 9 0 0 0 0 0

0 50 0 0 20 0 3 0 100 0 0 53

29 0 5 0 0 0 2 0 0 0 0 0

0 10 0 24 25 0 16 0 0 0 0 0

0 30 10 60 20 0 70 0 50 0 0 45

40 15 0 0 36 0 170 0 10 0 0 56

0 15 0 10 32 0 180 0 0 0 0 0

50 21 8 0 29 0 197 0 50 0 0 0

0 10 6 69 22 0 70 0 50 0 0 0

0 10 0 0 31 0 189 0 1 0 0 45

0 10 2 0 0 0 70 0 50 0 0 0

0 20 9 0 0 0 56 0 0 0 0 45

0 17 5 0 26 0 12 0 0 0 0 0

0 20 9 0 0 0 23 0 0 0 0 0

0 20 9 3 22 0 198 0 152 0 0 50

49 20 0 10 30 0 189 0 0 0 0 0

0 20 8 0 34 0 70 0 0 0 0 0

0 17 4 0 35 0 82 0 149 0 0 0

45 70 10 55 33 0 82 0 0 0 0 50

0 15 3 0 22 0 160 0 152 0 0 0

15 20 8 0 26 0 70 0 100 0 0 0

29 45 7 69 30 0 178 0 0 0 0 0

0 32 0 76 32 0 70 0 149 0 0 56

0 13 0 0 30 0 189 0 50 0 0 0

0 13 0 76 26 0 70 0 152 0 0 0

0 16 0 0 30 0 189 0 100 0 0 33

0 15 10 70 20 0 160 0 0 0 0 0

0 50 18 0 15 0 160 0 0 0 0 49

0 24 7 59 30 0 0 0 50 0 0 0

0 28 0 61 65 0 10 0 40 0 0 0

5 28 15 9 15 0 140 0 10 0 0 0

24 56 10 0 24 0 156 0 0 0 0 56

40 37 12 0 30 0 145 0 12 0 0 40

0 20 0 0 15 0 110 0 10 0 0 0

8 44 7 0 20 0 83 0 0 0 0 0

30 5 12 0 21 0 80 0 0 0 0 0

4 41 0 0 20 0 0 0 0 0 0 0

247

Appendix A. The t-Test Results

Table A.8: The Df values of 50 runs of the TS for the t-test results shown in
Table 6.3 on different problem instances (2007-13 – 2007-24)

2007-13 2007-14 2007-15 2007-16 2007-17 2007-18 2007-19 2007-20 2007-21 2007-22 2007-23 2007-24

20 17 0 0 0 0 147 40 0 102 21 0

0 0 0 0 0 0 338 50 40 91 23 0

0 16 0 0 0 0 147 78 0 101 0 0

20 0 0 0 0 0 322 40 10 102 0 0

20 0 0 0 0 0 189 89 100 101 30 0

0 0 0 0 0 0 163 40 0 102 0 0

0 0 0 0 0 0 294 40 0 91 15 0

0 17 0 0 0 0 331 40 0 102 34 0

13 0 0 0 0 0 159 40 0 101 33 0

0 16 0 0 0 0 152 78 187 100 0 0

0 0 0 0 0 0 147 60 0 91 33 0

17 17 0 0 0 0 147 67 10 91 33 0

0 0 0 0 0 0 155 44 256 96 0 0

0 17 0 0 0 0 147 56 0 91 0 0

20 0 0 0 0 0 290 78 190 102 34 0

0 0 0 0 0 0 239 40 259 91 0 0

0 17 0 0 0 0 312 89 0 102 0 0

0 0 0 0 0 0 285 40 200 98 0 0

18 0 0 0 0 0 148 40 244 96 33 0

0 16 0 0 0 0 152 40 0 100 31 0

0 0 0 0 0 0 148 40 100 99 0 0

20 0 0 0 0 0 169 78 0 91 33 0

0 0 0 0 0 0 289 67 0 102 5 0

0 0 0 0 0 0 152 67 0 100 0 0

0 0 0 0 0 0 338 50 137 100 0 0

0 0 0 0 0 0 331 109 0 102 22 0

20 0 0 0 0 0 171 112 0 91 0 0

18 17 0 0 0 0 346 40 261 100 34 0

0 0 0 0 0 0 147 46 238 91 34 0

0 0 0 0 0 0 200 100 0 100 34 0

0 0 0 0 0 0 340 73 0 99 0 0

0 17 0 0 0 0 147 40 200 96 0 0

20 0 0 0 0 0 300 100 0 91 29 0

13 0 0 0 0 0 331 109 0 100 12 0

20 0 0 0 0 0 300 100 260 102 0 0

0 0 0 0 0 0 147 100 0 97 34 0

0 17 0 0 0 0 167 112 220 100 34 0

20 17 0 0 0 0 346 78 0 95 0 0

0 0 0 0 0 0 325 40 0 102 33 0

0 0 0 0 0 0 300 89 0 92 0 0

0 17 0 0 0 0 147 102 200 102 32 0

19 0 0 0 0 0 300 112 0 90 0 0

0 0 0 0 0 0 147 113 100 91 0 0

0 0 0 0 0 0 338 100 85 98 34 0

20 0 0 0 0 0 300 78 8 102 0 0

0 17 0 0 0 0 198 67 89 95 0 0

20 0 0 0 0 0 321 67 0 100 17 0

0 0 0 0 0 0 300 78 0 98 34 0

0 0 0 0 0 0 341 95 0 102 33 0

0 0 0 0 0 0 270 99 80 91 34 0

248

Appendix A. The t-Test Results

Table A.9: The Df values of 50 runs of the GALS for the t-test results shown
in Table 6.3 on different problem instances (2007-1 – 2007-12)

2007-1 2007-2 2007-3 2007-4 2007-5 2007-6 2007-7 2007-8 2007-9 2007-10 2007-11 2007-12

0 40 0 0 20 0 70 0 115 26 0 0

12 0 0 0 4 0 0 0 0 0 0 0

0 10 0 0 0 0 60 0 0 0 0 0

10 0 0 0 20 0 0 0 34 0 0 0

0 0 0 0 0 0 70 0 0 0 0 0

12 3 0 0 15 0 0 0 0 22 0 0

1 0 0 0 0 0 70 0 109 20 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 20 0 0 0 0 0 0 0

0 0 0 0 0 0 70 0 78 20 0 0

12 34 0 0 20 0 70 0 78 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 18 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 25 0 0

11 0 0 0 18 0 0 0 112 0 0 0

0 0 0 0 19 0 0 0 0 0 0 0

9 27 0 0 0 0 0 0 0 0 0 0

0 0 0 0 20 0 0 0 56 13 0 0

12 46 0 0 0 0 0 0 78 0 0 0

0 0 0 0 20 0 0 0 0 5 0 0

0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 20 0 0 0

0 0 0 0 20 0 0 0 0 0 0 0

0 0 0 0 0 0 70 0 0 0 0 0

12 0 0 0 20 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 67 0 0 0

0 0 0 0 0 0 70 0 0 0 0 0

0 0 0 0 20 0 70 0 0 0 0 0

12 0 0 11 18 0 0 0 0 0 0 0

0 46 0 11 20 0 0 0 0 25 0 0

0 48 0 11 20 0 0 0 0 0 0 0

0 0 0 11 0 0 0 0 100 26 0 0

0 10 0 11 0 0 0 0 0 0 0 0

2 0 0 11 19 0 70 0 23 0 0 0

0 0 0 9 0 0 0 0 0 10 0 0

0 0 0 9 0 0 28 0 56 0 0 0

12 51 0 9 20 0 70 0 78 0 0 0

5 0 0 7 0 0 70 0 100 25 0 0

0 0 0 0 20 0 0 0 0 0 0 0

11 35 0 0 0 0 70 0 67 0 0 0

0 47 0 0 20 0 0 0 34 0 0 0

0 3 0 0 0 0 0 0 56 13 0 0

0 0 0 0 0 0 70 0 0 0 0 0

0 0 0 0 18 0 69 0 0 0 0 0

11 0 0 0 0 0 70 0 98 0 0 0

0 39 0 0 0 0 0 0 60 3 0 0

0 0 0 0 0 0 70 0 0 17 0 0

0 0 0 0 20 0 0 0 22 0 0 0

12 0 0 0 0 0 69 0 0 0 0 0

12 0 0 0 2 0 0 0 0 0 0 0

249

Appendix A. The t-Test Results

Table A.10: The Df values of 50 runs of the GALS for the t-test results shown
in Table 6.3 on different problem instances (2007-13 – 2007-24)

2007-13 2007-14 2007-15 2007-16 2007-17 2007-18 2007-19 2007-20 2007-21 2007-22 2007-23 2007-24

0 0 0 0 0 0 172 138 10 57 11 0

0 0 0 0 0 0 179 0 10 101 11 0

0 0 0 0 0 0 123 129 0 97 39 3

0 0 0 0 0 0 143 138 0 78 16 0

0 0 0 0 0 0 136 0 10 42 15 0

0 0 0 0 0 0 0 0 0 130 28 1

0 0 0 0 0 0 430 0 0 42 11 2

0 0 0 0 0 0 0 110 0 70 16 6

0 0 0 0 0 0 289 0 10 100 39 0

0 0 0 0 0 0 234 0 0 56 41 0

0 0 0 0 0 0 0 0 0 42 23 0

0 0 0 0 0 0 278 130 10 110 11 0

0 0 0 0 0 0 378 0 10 67 38 0

0 0 0 0 0 0 0 0 0 85 27 4

0 0 0 0 0 0 0 135 0 50 11 5

0 0 0 0 0 0 400 132 0 100 30 0

0 0 0 0 0 0 0 129 0 50 41 3

0 0 0 0 0 0 0 0 0 96 42 1

0 0 0 0 0 0 179 83 0 88 36 2

0 0 0 0 0 0 256 0 0 42 22 5

0 0 0 0 0 0 0 0 0 85 29 0

0 0 0 0 0 0 172 0 0 90 40 0

0 0 0 0 0 0 0 0 0 67 41 0

0 0 0 0 0 0 123 138 0 50 39 0

0 0 0 0 0 0 143 0 0 62 21 4

0 0 0 0 0 0 136 0 0 73 39 0

0 0 0 0 0 0 0 138 0 42 39 0

0 0 0 0 0 0 430 129 10 90 11 1

0 0 0 0 0 0 400 137 10 74 12 2

0 0 0 0 0 0 289 0 10 60 12 8

0 0 0 0 0 0 234 134 10 90 12 1

0 0 0 0 0 0 256 0 0 90 40 9

0 0 0 0 0 0 278 138 0 86 40 1

0 0 0 0 0 0 378 0 0 80 40 9

0 0 0 0 0 0 354 130 0 90 11 9

0 0 0 0 0 0 0 0 0 80 40 0

0 0 0 0 0 0 345 0 0 100 11 0

0 0 0 0 0 0 0 134 10 89 11 9

0 0 0 0 0 0 378 0 0 178 41 0

0 0 0 0 0 0 0 132 0 187 11 9

0 0 0 0 0 0 0 138 0 150 39 7

0 0 0 0 0 0 273 0 0 187 43 2

0 0 0 0 0 0 410 123 0 186 39 0

0 0 0 0 0 0 378 136 0 187 11 0

0 0 0 0 0 0 0 138 0 179 40 4

0 0 0 0 0 0 0 119 0 135 39 8

0 0 0 0 0 0 0 137 0 112 43 0

0 0 0 0 0 0 0 137 0 107 11 0

0 0 0 0 0 0 256 110 0 115 43 0

0 0 0 0 0 0 279 0 0 89 12 0

250

Appendix A. The t-Test Results

Table A.11: The Df values of 50 runs of the HGATS for the t-test results shown
in Table 6.3 on different problem instances (2007-1 – 2007-12)

2007-1 2007-2 2007-3 2007-4 2007-5 2007-6 2007-7 2007-8 2007-9 2007-10 2007-11 2007-12

0 0 0 0 0 0 2 0 0 0 0 1

0 0 0 0 0 0 2 0 0 0 0 1

0 0 0 0 0 0 2 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 2

0 0 0 0 0 0 0 0 0 0 0 2

0 0 0 0 0 0 2 0 0 0 0 2

0 0 0 0 0 0 2 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 2

0 0 0 0 0 0 0 0 0 0 0 2

0 0 0 0 0 0 0 0 0 0 0 2

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 2 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 2

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 2

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 2

12 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 2

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 3

0 0 0 0 0 0 0 0 0 0 0 13

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 4 0 0 0 0 0 0 0 2

0 0 0 0 0 0 2 0 0 0 0 2

0 0 0 0 0 0 0 0 0 0 0 2

0 0 0 0 0 0 2 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 2

0 0 0 4 0 0 0 0 40 0 0 2

0 0 0 1 0 0 0 0 40 0 0 2

0 0 0 2 0 0 2 0 0 0 0 2

0 0 0 1 0 0 0 0 0 0 0 1

5 0 0 0 0 0 2 0 0 0 0 2

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 40 0 0 0

0 0 0 0 0 0 0 0 20 0 0 2

0 0 0 0 0 0 1 0 42 0 0 2

2 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 42 0 0 2

0 0 0 0 0 0 0 0 0 0 0 2

0 0 0 0 0 0 0 0 3 0 0 1

0 0 0 4 0 0 2 0 0 0 0 2

0 0 0 0 0 0 2 0 0 0 0 2

0 0 0 0 0 0 0 0 0 0 0 0

251

Appendix A. The t-Test Results

Table A.12: The Df values of 50 runs of the HGATS for the t-test results shown
in Table 6.3 on different problem instances (2007-13 – 2007-24)

2007-13 2007-14 2007-15 2007-16 2007-17 2007-18 2007-19 2007-20 2007-21 2007-22 2007-23 2007-24

0 0 0 0 0 0 23 189 6 69 0 0

0 0 0 0 0 0 67 199 5 0 0 0

0 0 0 0 0 0 54 190 5 58 0 0

0 0 0 0 0 0 98 0 6 73 0 0

0 0 0 0 0 0 0 0 7 0 0 0

0 0 0 0 0 0 46 213 5 0 0 0

0 0 0 0 0 0 112 0 6 70 0 0

0 0 0 0 0 0 23 213 8 0 0 0

0 0 0 0 0 0 55 90 6 56 0 0

0 0 0 0 0 0 12 0 5 0 0 0

0 0 0 0 0 0 0 0 5 70 0 0

0 0 0 0 0 0 211 0 6 53 0 0

0 0 0 0 0 0 209 200 5 0 0 0

0 0 0 0 0 0 267 0 5 0 0 0

0 0 0 0 0 0 245 0 5 0 0 0

0 0 0 0 0 0 297 100 0 63 0 0

0 0 0 0 0 0 26 0 0 0 0 0

0 0 0 0 0 0 275 0 0 0 0 0

0 0 0 0 0 0 0 220 0 72 0 0

0 0 0 0 0 0 112 190 0 70 0 0

0 0 0 0 0 0 145 0 0 69 0 0

0 0 0 0 0 0 132 202 0 0 0 0

0 0 0 0 0 0 111 0 0 0 0 0

0 0 0 0 0 0 0 43 0 0 0 0

0 0 0 0 0 0 24 0 0 73 0 0

0 0 0 0 0 0 17 0 0 73 0 0

0 0 0 0 0 0 312 14 0 73 0 0

0 0 0 0 0 0 276 0 5 0 16 0

0 0 0 0 0 0 25 0 2 67 0 0

0 0 0 0 0 0 277 0 2 0 0 0

0 0 0 0 0 0 0 213 3 0 0 0

0 0 0 0 0 0 112 0 2 69 5 0

0 0 0 0 0 0 11 202 2 0 5 0

0 0 0 0 0 0 223 0 2 0 5 0

0 0 0 0 0 0 267 0 2 65 11 0

0 0 0 0 0 0 0 213 0 69 1 0

0 0 0 0 0 0 0 0 2 72 3 0

0 0 0 0 0 0 299 213 2 0 16 0

0 0 0 0 0 0 287 220 2 0 0 0

0 0 0 0 0 0 312 0 2 61 0 0

0 0 0 0 0 0 100 100 0 67 0 0

0 0 0 0 0 0 301 0 2 0 0 0

0 0 0 0 0 0 309 0 1 69 0 0

0 0 0 0 0 0 300 200 1 0 0 0

0 0 0 0 0 0 155 234 1 47 0 0

0 0 0 0 0 0 200 0 1 55 0 0

0 0 0 0 0 0 190 0 1 0 0 0

0 0 0 0 0 0 40 100 2 73 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 100 10 0 0 0 0

252

Bibliography

[1] http://www.idsia.ch/Files/ttcomp2002 (Website of the 2002 International

Timetabling Competition ITC-2002).

[2] http://www.cs.qub.ac.uk/itc2007 (Website of the 2007 International Time-

tabling Competition ITC-2007).

[3] http://www.wiwi.uni-jena.de/Entscheidung/binpp/index.htm (Scholl’s

library of bin packing problem instances).

[4] http://iridia.ulb.ac.be/supp/IridiaSupp2002-001/index.html

[5] http://www.graphpad.com/quickcalcs/ttest1.cfm

[6] http://www.lania.mx/∼ccoello/EMOO/EMOObib.html (References of multi-

objective evolutionary algorithms)

[7] http://www.aco-metaheuristic.org (The official website of the ant colony meta-

heuristic)

[8] http://www.metaheuristics.net (Website of the metaheuristics network)

253

Bibliography

[9] E. Aarts and J. Korst. Simulated Annealing and Boltzman Machines, Wiley,

1998.

[10] S. Abdennadher and M. Marte. University course timetabling using constraints

handling rules. Applied Artificial Intelligence, 14(4): 311–326, 2000.

[11] A. Acan and Y. Tekol. Chromosome reuse in genetic algorithms. Proceedings

of the Genetic and Evolutionary Computation Conference (GECCO 2003),

pp. 695–705, 2003.

[12] A. Acan. An external memory implementation in ant colony optimization.

Proceedings of the 4th International Workshop on Ant Colony Optimization

and Swarm Intelligence (ANTS 2004), pp. 73–82, 2004.

[13] S. Abdullah, E. K. Burke, and B. McCollum. An investigation of variable

neighbourhood search for university course timetabling. Proceedings of the

2nd Multidisciplinary Conference on Scheduling: Theory and Applications,

pp. 413–427, 2005.

[14] S. Abdullah, E. K. Burke, and B. McCollum. Using a randomised iterative

improvement algorithm with composite neighbourhood structures. Proceedings

of the 6th International Conference on Meta-heuristic, pp. 153–169, 2007.

[15] S. Abdullah, E. K. Burke, and B. McCollum. A hybrid evolutionary approach

to the university course timetabling problem. Proceedings of the 2007 IEEE

Congress on Evolutionary Computation, pp. 1764–1768, 2007.

254

Bibliography

[16] K. Abdullah, D. W. Coit, and A. E. Smith. Multi-objective optimisation using

genetic algorithms: a tutorial. Reliability Engineering and System Safety,

91: 992–1007, 2006.

[17] S. Abdullah and H. Turabieh. Generating university course timetable using

genetic algorithm and local search. Proceedings of the 3rd International Con-

ference on Hybrid Information Technology, pp. 254–260, 2008.

[18] S. Abdullah, K. Shaker, B. McCollum, and P. McMullan. Incorporating great

deluge with Kempe chain neighbourhood structure for the enrolment-based

course timetabling problem. Proceedings of the 5th International Conference

on Rough Set and Knowledge Technology, LNAI 6401, pp. 70–77, 2010.

[19] S. Abdullah, H. Turabieh, B. McCollum, and P. McMullan. A multi-objective

post enrolment course timetabling problems: a new case study. Proceedings

of the 2010 IEEE Congress on Evolutionary Computation, pp. 1–7, 2010.

[20] D. Abramson. Constructing school timetables using simulated annealing: se-

quential and parallel algorithms. Management Science, 37(1): 98–113, 1991.

[21] Ç. H. Aladağ and G. Hocaoğlu. A tabu search algorithm to solve a

course timetabling problem. Hacettepe Journal of Mathematics and Statis-

tics, 36(1): 53–64, 2007.

[22] M. A. Al-Betar, A. T. Khader, and A. T. Gani, A harmony search algorithm for

university course timetabling. Proceedings of the 7th International Conference

on the Practice and Theory of Automated Timetabling, pp. 18–22, 2008.

255

Bibliography

[23] A. Alkan and E. Ozcan. Memetic algorithms for timetabling evolutionary

computation. Proceedings of the 2003 IEEE Congress on Evolutionary Com-

putation, vol. 3, pp. 1796–1802, 2003.

[24] M. Almond. An algorithm for constructing university timetables. The Com-

puter Journal, 8: 331–340, 1965.

[25] E. Altshuler and D. Linden. Design of a wire antenna using a genetic algorithm.

Journal of Electronic Defence, 20(7): 50–52, 1997.

[26] D. T. Anh, V. H. Tam, and N. Q. V. Hung. Generating complete university

course timetables by using local search method. Conference Internationale

Associant Chercheurs Vietnamiens et Francophones en Informatique, pp. 67–

74, 2006.

[27] H. Arntzen and A. Løkketangen, A local search heuristic for a university

timetabling problem. The 2002 International Timetabling Competition (TTC

2002), 2003.

[28] J. A. Atkin, E. K. Burke, J. Greenwood, and D. Reeson. Hybrid meta-

heuristics to aid runway scheduling at London Heathrow airport. Transporta-

tion Science, 41(1): 90–106, 2007.

[29] H. Asmuni, E. K. Burke, and J. M. Garibaldi. Fuzzy multiple heuristic ordering

for course timetabling. Proceedings of the 5th UK Workshop on Computational

Intelligence, pp. 302–309, 2005.

256

Bibliography

[30] M. Atsuta, K. Nonobe, and T. Ibaraki. ITC2007 Track 2, An approach using

general CSP solver. www.cs.qub.ac.uk/itc2007

[31] M. Ayob and G. Kendall. A monte carlo hyper-heuristic to optimise component

placement sequencing for multi head placement machine. Proceedings of the

International Conference on Intelligent Technologies, pp. 132–141, 2003

[32] M. A. Badr. A two-stage multiobjective scheduling model for faculty-course-

time assignments. European Journal of Operational Research, 94(1): 16–28,

1996.

[33] P. Baptiste, C. Le Pape, and W. Nuijten, Incorporating efficient operations

research algorithms in constraint based scheduling. First International Joint

Workshop on Artificial Intelligence and Operations Research, 1995.

[34] R. Battiti and G. Tecchiolli. The reactive tabu search. Journal on Computing,

6(2): 126–140, 1994.

[35] J. R. Blakesley. Automation in college management. College and University

Business, 27: 39–44, 1959.

[36] C. Blum. Beam-ACO—Hybridizing ant colony optimization with beam search

an application to open shop scheduling. Computers and Operations Research,

32(6): 1565–1591, 2005.

257

Bibliography

[37] P. P. Bonissone, R. Subbu, N. Eklund, and T. R. Kiehl, Evolutionary algo-

rithms + domain knowledge = real-world evolutionary computation. IEEE

Transactions on Evolutionary Computation, 10(3): 256–280, 2006.

[38] S. C. Brailsford, C. N. Potts, and B. M. Smith. Constraint Satisfaction Prob-

lems: Algorithms and Applications. European Journal of Operational Re-

search, 119: 557–581, 1999.

[39] H. J. Bremermann. The evolution of intelligence. The nervous system as a

model of its environment. Technical Report No. 1, Department of Mathematics,

University of Washington, 1958.

[40] J. A. Breslaw. A linear programming solution to the faculty assignment prob-

lem. Socio-Economic Planning Science, 10: 227–230, 1976.

[41] S. Broder. Final examination scheduling. Communications of the ACM,

7(8): 494–498, 1964.

[42] E. K. Burke, Y. Bykov, J. Newall, and S. Petrovic. A time-predefined approach

to course timetabling. Yugoslav Journal of Operations Research (YUJOR),

13(2): 139–151, 2003.

[43] E. K. Burke, P. D. Causmaecker, G. V. Berghe, and H. V. Landeghem. The

state of the art of nurse rostering. Journal of Scheduling, 7(6): 441–499, 2004.

258

Bibliography

[44] E. K. Burke, D. G. Elliman, and R. F. Weare. A hybrid genetic algorithm for

highly constrained timetabling problems. Proceedings of the 6th International

Conference on Genetic Algorithms, pp. 605–610, 1995.

[45] E. K. Burke, E. Hart, G. Kendall, J. P. Newall, P. Ross, and S. Schulen-

burg. Hyper-heuristics: An emerging direction in modern search technology.

Handbook of Meta-Heuristics, Chapter 16, Kluwer, pp. 457–474, 2003.

[46] E. k. Burke and G. Kendall. Search Methodologies, Springer, 2005.

[47] E. K. Burke, G. Kendall, and E. Soubeiga. A tabu-search hyper-heuristic for

timetabling and rostering. Journal of Heuristics, 9(6): 451–470, 2003.

[48] E. K. Burke, J. Kingston, K. Jackson, and R. Weare, Automated university

timetabling: the State of the art. The Computer Journal, 40(9): 565–571,

1997.

[49] E. K. Burke and D. J. Landa-Silva. The design of memetic algorithms for

scheduling and timetabling problems. Recent Advances in Memetic Algorithms,

Studies in Fuzziness and Soft Computing, 166: 289–312, 2004.

[50] E. K. Burke, J. D. Landa-Silva, and E. Soubeiga. Multi-objective hyper-

heuristic approaches for space allocation and timetabling. Meta-heuristics:

Progress as Real Problem Solvers, pp. 129, 2003.

259

Bibliography

[51] E. K. Burke, B. McCollum, A. Meisels, S. Petrovic, and R. Qu. A graph-based

hyper heuristic for timetabling problems. European Journal of Operational

Research, 176(1): 177–192, 2007.

[52] E. K. Burke, B. MacCarthy, S. Petrovic, and R. Qu. Structured cases in

CBR-re-using and adapting cases for timetabling problems. Knowledge-based

System, 13(2-3): 159–165, 2000.

[53] E. K. Burke, B. acCarthy, S. Petrovic, and R. Qu. Multiple-retrieval case-

based reasoning for course timetabling problems. Journal of the Operational

Research Society, 57(2): 148–262, 2006.

[54] E. K. Burke and J. P. Newall. A multistage evolutionary algorithm for

the timetable problem. IEEE Transactions on Evolutionary Computation,

3(1): 63–74, 1999.

[55] E. K. Burke and S. Petrovic. Recent research directions in automated

timetabling. European Journal of Operational Research, 140(2): 266–280, 2002.

[56] Y. Bykov. Algorithm description. The 2002 International Timetabling Com-

petition (TTC 2002), 2003.

[57] H. Cambazard, E. Hebrard, B. Ośullivan, and A. Papadopoulos. Local search

and constraint programming for the post enrolment-based course timetabling

problem. Proceedings of the 7th International Conference on the Practice and

Theory of Automated Timetabling, 2008.

260

Bibliography

[58] M. P. Carrasco and M. V. Pato. A multiobjective genetic algorithm for the

class/teacher timetabling problem. Proceedings of the 3rd International Con-

ference on the Practice and Theory of Automated Timetabling, pp. 3–17, 2001.

[59] M. W. Carter A survey of practical applications of examination timetabling

algorithms. Operations Research Society of America, 34(2): 193–202.

[60] M. W. Carter and G. Laporte. Recent developments in practical examination

timetabling. Proceedings of the 1st International Conference on the Practice

and Theory of Automated Timetabling, Lecture Notes in Computer Science

1153, pp. 3–21, 1996.

[61] V. Černý. Thermodynamical approach to the travelling salesman problem: An

efficient simulation algorithm. Journal of Optimization Theory and Applica-

tions, 45: 41–51, 1985.

[62] C. Y. Cheong, K. C. Tan, and B. Veeravalli. A multi-objective evolutionary

algorithm for examination timetabling. Journal of Scheduling, 12(2): 121–146,

2009.

[63] M. Chiarandini, C. Fawcett, and H. H. Hoos. A modular multiphase heuristic

solver for post enrollment course timetabling. Proceedings of the 7th Inter-

national Conference on the Practice and Theory of Automated Timetabling,

2008.

261

Bibliography

[64] L. M. Christine. A multiobjective framework for heavily constrained exam-

ination timetabling problems. Annals of Operations Research, 180(1): 3–31,

2008.

[65] B. Christian, P. Jakob, R. Günther, and R. Andrea. Hybrid metaheuristics in

combinatorial optimization: A survey. Applied Soft Computing, 11(6): 4135–

4151, 2011.

[66] S. C. Chu and H. L. Frang. Genetic algorithm vs. tabu search in timetabling

scheduling. Proceedings of the 3rd International Conference on Knowledge-

Based Intelligent Information Engineering System, 1999.

[67] C. A. Coello and G. Toscano. A Micro-Genetic Algorithm for Multiobjective

Optimization. Proceedings of the 1st International Conference on Evolutionary

Multi-Criterion Optimization, pp. 126–140, 2001.

[68] C. A. Coello, D. A. Van Veldhuizen, and G. B. Lamont. Evolutionary Al-

gorithms for Solving Multi-Objective Problems. Kluwer Academic Publish-

ers, New York, 2002.

[69] M. W. Carter and G. Laporte. Recent developments in practical course

timetabling. Proceedings of the 2nd International Conference on the Practice

and Theory of Automated Timetabling, Lecture Notes in Computer Science

1408, pp. 3–19, 1998.

[70] P. Charbonneau. Genetic algorithms in astronomy and astrophysics. The

Astrophysical Journal Supplement Series, 101: 309–334, 1995.

262

Bibliography

[71] M. Chiarandini, M. Birattari, K. Socha, and O. Rossi-Doria. An effective

hybrid algorithm for university course timetabling. Journal of Scheduling,

9(5): 403–432, 2006.

[72] A. J. Cole. The preparation of examination timetables using a small store

computer. The Computer Journal, 7: 117–121, 1964.

[73] A. Colorni, M. Dorigo, and V. Maniezzo. Genetic algorithms - A new approach

to the timetable problem. In: Akgul et al. (eds.), NATO ASI Series, Com-

binatorial Optimization, Lecture Notes in Computer Science 82, pp. 235–239,

1990.

[74] A. Colorni, M. Dorigo, and V. Maniezzo. Meta-heuristics for high school

timetabling. Computational Optimisation and Applications, 9: 275–298, 1997.

[75] T. B. Cooper and J. H. Kingston. The solution of real instances of the

timetabling Problem. The Computer Journal, 36(7): 645–653, 1993.

[76] J. F. Cordeau, B. Jaumard, and R. Morales, Efficient timetabling solution with

tabu search. The 2002 International Timetabling Competition (TTC 2002),

2003.

[77] D. Costa. A tabu search for computing an operational timetable. European

Journal of Operational Research, 76: 98–110, 1994.

[78] C. Cotta. A study of hybridisation techniques and their application to the

design of evolutionary algorithms. AI Communications, 11(34): 223–224, 1998.

263

Bibliography

[79] K. Deb. Multi-Objective Optimization Using Evolutionary Algorithms, John

Wiley & Sons, New York, 2001.

[80] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A fast elitist non-dominated

sorting genetic algorithm for multi-objective optimization: NSGA-II. Proceed-

ings of the 7th International Conference on Parallel Problem Solving from

Nature, pp. 849–858, 2000.

[81] K. Deb, M. Mohan, and S. Mishra. Towards a quick computation of well-spread

Pareto-optimal solutions. Proceedings of the 2nd International Conference

on Evolutionary Multi-Criterion Optimization, Lecture Notes in Computer

Science 2632, pp. 222–236, 2003.

[82] D. Dasgupta. Artificial Immune Systems and Their Applications, Springer-

Verlag, 1999.

[83] D. Datta, K. Deb, and C. M. Fonseca. Multi-objective evolutionary algorithm

for university class timetabling problem. In K. P. Dahal, K. C. Tan, and

P. I. Cowling (eds.), Evolutionary Scheduling, pp. 197–236, 2007.

[84] L. Davis. Handbook of Genetic Algorithms, Van Nostrand Reinhold, 1991.

[85] R. Dawkins. The Selfish Gene, Oxford University Press, 1976.

[86] R. Dawkins. The Blind Watchmaker: Why the Evidence of Evolution Reveals

a Universe Without Design, W. W. Norton, 1996.

264

Bibliography

[87] S. Deris, S. Omatu, and H. Ohta. Timetable planning using the constraint-

based reasoning. Computers and Operations Research, 27(9), pp. 819–840,

2000.

[88] M. Dorigo and G. Di Caro. The ant colony optimization meta-heuristic. New

Ideas in Optimization, McGraw Hill, pp. 11–32, 1999.

[89] M. Dorigo, G. Di Caro, and L. M. Gambardella. Ant algorithms for discrete

optimization. Artificial Life, 5(2): 137-172, 1999.

[90] M. Dorigo, V. Maniezzo, and A. Colorni. Positive feedback as a search strategy.

Technical Report No. 91-016, Politecnico di Milano, Italy, 1991.

[91] M. Dorigo and T. Stützle. Ant Colony Optimization. MIT Press, Cambridge,

2004.

[92] K. A. Dowsland. Simulated Annealing. In Modern Heuristic Techniques for

Combinatorial Problems, McGraw-Hill, 1995.

[93] A. Dubourg, B. Laurent, E. Long, and B. Salotti, Algorithm description. The

2002 International Timetabling Competition (TTC 2002), 2003.

[94] G. Dueck. New optimization heuristics. Journal of Computational Physics,

104: 86–92, 1993.

265

Bibliography

[95] M. A. S. Elmohamed, P. Coddington, and G. Fox. A comparison of anneal-

ing techniques for academic course scheduling. Proceedings of the 2nd Inter-

national Conference on the Practice and Theory of Automated Timetabling,

Lecture Notes in Computer Science 1408, pp. 92–112, 1998.

[96] S. Even, A. Itai, and A. Shamir. On the complexity of timetable and multi-

commodity flow problems. SIAM Journal on Computing, 5(4): 691–703, 1976.

[97] W. Erben and J. Keppler. A genetic algorithm solving a weekly course

timetabling problem. Proceedings of the 1st International Conference on the

Practice and Theory of Automated Timetabling, Lecture Notes in Computer

Science 1153, pp. 198–211, 1995.

[98] C. M. Fonseca and P. J. Fleming. Genetic algorithms for multiobjective op-

timization: formulation, discussion and generalization. Proceedings of the 5th

international Conference on Genetic Algorithms, pp. 416–423, 1993.

[99] C. M. Fonseca and P. J. Fleming. Multiobjective genetic algorithms. Pro-

ceedings of the IEEE Colloquium on Genetic Algorithms for Control Systems

Engineering, pp. 61–65, 1993.

[100] A. S. Fraser. Simulation of genetic systems by automatic digital computers.

II: Effects of linkage on rates under selection. Australian Journal of Biological

Science, 10: 492–499, 1957.

[101] J. Frausto-Soĺıs, F. Alonso-Pecina, and J. Mora-Vargas. An efficient simulated

annealing algorithm for feasible solutions of course timetabling. Proceedings of

266

Bibliography

the 7th Mexican International Conference on Artificial Intelligence: Advances

in Artificial Intelligence (MICAI’08), pp. 675–685, 2008.

[102] B. Freisleben and P. Merz. A genetic local search algorithm for solving sym-

metric and asymmetric traveling salesman problems. Proceedings of the 1996

IEEE International Conference on Evolutionary Computation, pp. 616–621,

1996.

[103] M. P. J. Fromherz. Constraint-based scheduling. American Control Confer-

ence, vol. 4, pp. 3231–3244, 2001.

[104] O. B. de Gans. A computer timetabling system for secondary schools in the

Netherlands. European Journal of Operation Research, 7: 175–182, 1981.

[105] L. D. Gaspero and A. Schaerf. Tabu search techniques for examination

timetabling. Proceedings of the 3rd International Conference on the Practice

and Theory of Automated Timetabling, Lecture Notes in Computer Science

2079, pp. 104–117, 2001.

[106] L. D. Gaspero and A. Schaerf. Multi-neighbourhood local search for course

timetabling. Proceedings of the 4th International Conference on the Practice

and Theory of Automated Timetabling, pp. 128–132, 2002.

[107] F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, 1997.

[108] D. Goldberg. Genetic algorithms in search, optimisation and machine learning.

Reading, MA: Addison-Wesley, 1989.

267

Bibliography

[109] H. Gunadhi, V. J. Anand, and Y. W. Yong. Automated timetabling using an

object-oriented scheduler. Expert Systems with Applications, 10(2): 243–256,

1996.

[110] Y. Guo, E. C. Keedwell, G. A. Walters, and S. T. Khu. Hybridizing cellular

automata principle and NSGAII for multi-objective design of urban water net-

works. Proceedings of the 4th International Conference on Evolutionary Multi-

Criterion Optimization, Lecture Notes in Computer Science 4403, pp. 546–559,

2007.

[111] M. R. Garey and D. S. Johnson. Computers and Intractability – A guide to NP-

Completeness, First Edition, San Francisco: W. H. Freeman and Company,

1979.

[112] M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified NP-complete

graph problems. Theoretical Computer Science., 1: 237–267, 1976.

[113] L. D. Gaspero and A. Schaerf, Algorithm description. The 2002 International

Timetabling Competition (TTC 2002), 2003.

[114] Z. W. Geem, J. H. Kim, and G. V. Loganathan. A new heuristic optimization

algorithm: harmony search. Simulation, 76(2): 60–68, 2001.

[115] M. Gen and R. Cheng, Genetic Algorithms and Engineering Design, John

Wiley & Sons, Inc., 1997.

268

Bibliography

[116] M. Gendreau. An introduction to tabu search. Handbook of Metaheuristics,

Kluwer Academic Publishers, pp. 37–54, 2003.

[117] F. Glover. Future paths for integer programming and links to artificial intel-

ligence. Computers and Operations Research, 13: 533–549, 1986.

[118] F. Glover, and G. A. Kochenberger. Handbook of Metaheuristics, Kluwer Aca-

demic Publishers, 2003.

[119] F. Glover and M. Laguna. Tabu search, Kluwer Academic Publishers, 19977.

[120] C. C. Gotlieb, The construction of class-teacher timetables. Proceedings of the

International Federation of Information Processing (IFIP) Congress, pp. 73–

77, 1962.

[121] J. A. Hageman, R. Wehrens, H. A. Sprang, and L. M. C. Buydens. Hybrid

genetic algorithm tabu search approach for optimizing multilayer optical coat-

ings. Analytica Chimica Acta, 490: 211–222, 2003.

[122] L. He and N. Mort. Hybrid genetic algorithms for telecommunications network

back-up routeing. BT Technology Journal, 18(4): 42–50, 2000.

[123] A. Hertz. Tabu Search for Large Scale Timetabling Problems. European Jour-

nal of Operational Research, 54: 39–47, 1991.

[124] A. Hertz. Finding a Feasible Course Schedule Using Tabu Search. Discrete

Applied Mathematics, 35: 255–270, 1992.

269

Bibliography

[125] J. H. Holland. Adaptation in Natural and Artificial Systems, University of

Michigan Press, Ann Arbor, MI, 1975.

[126] J. Horn, N. Nafpliotis, and D. E. Goldberg. A niched Pareto genetic algorithm

for multiobjective optimization. Proceedings of the 1st IEEE Conference on

Evolutionary Computation, vol. 1, pp. 82-87, 1994.

[127] F. Hutter, H. H. Hoos, and T. Stützle. Automatic algorithm configuration

based on local search. Proceeding of the Twenty-Second Conference on Artifi-

cial Intelligence, pp. 1152–1157, 2007.

[128] S. N. Jat and S. Yang. A memetic algorithm for the university course

timetabling problem. Proceedings of the 20th IEEE International Conference

on Tools with Artificial Intelligence, vol. 1, pp. 427–433, 2008.

[129] S. N. Jat and S. Yang. A guided search genetic algorithm for the university

course timetabling problem. Proceedings of the 4th Multidisciplinary Interna-

tional Scheduling Conference: Theory and Applications, pp. 180–191, 2009.

[130] G. Jones. Genetic and evolutionary algorithms. In Encyclopaedia of Compu-

tational Chemistry, John Wiley & Sons, Inc., pp. 1127–1136, 1998.

[131] S. F. H. Irene, S. Deris, and S. Z. M. Hashim, A study on PSO-based university

course timetabling problem. Proceedings of the 2009 International Conference

on Advanced Computer Control, pp. 648–651, 2009.

270

Bibliography

[132] G. Kendall. Applying meta-heuristic algorithms to the nesting problem utilising

the no fit polygon. Ph.D. Thesis, School of Computer Science, University of

Nottingham, UK, 2001.

[133] G. Kendall, S. Knust, C. C. Ribeiro, and S. Urrutia. Scheduling in sports:

an annotated bibliography. Computers and Operations Research, 37(1): 1–19,

2010.

[134] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated

annealing. Science, 220(4598): 671–680, 1983.

[135] B. A. Knauer. Solutions of a timetable problem. Computers and Operations

Research, 1(3-4): 363–375, 1974.

[136] J. D. Knowles and D. W. Corne. The Pareto archived evolution strategy: a

new baseline algorithm for Pareto multiobjective optimisation. Proceedings of

the 1999 IEEE Congress on Evolutionary Computation, pp. 98–105, 1999.

[137] O. Komolafe and J. Sventek. RSVP performance evaluation using multi-

objective evolutionary optimisation. Proceeding of the 24th Annual Joint Con-

ference of the IEEE Computer and Communications Societies, vol. 4, pp. 2447–

2457, 2005.

[138] P. A. Kostuch. SA-based heuristic. The 2002 International Timetabling Com-

petition (TTC 2002), 2003.

271

Bibliography

[139] P. Kostuch. The university course timetabling problem with a three-phase

approach. Proceedings of the 5th International Conference on the Practice and

Theory of Automated Timetabling (PATAT V), Lecture Notes in Computer

Science 3616, pp. 109–125, 2005.

[140] M. Laumanns, L. Thieleb, K. Deb, and E. Zitzler. Combining convergence and

diversity in evolutionary multi-objective optimization. Evolutionary Compu-

tation, 10(3): 263–282, 2002.

[141] D. Leake. Case-Based Reasoning: Experiences, Lessons and Future Directions,

AAAI Press, 1996.

[142] R. Lewis. A survey of metaheuristic based techniques for university timetabling

problems. Operation Research Spectrum, 30(1): 167–190, 2008.

[143] R. Lewis. Metaheuristics for university course timetabling. Ph.D. Thesis,

School of Computing, Napier University, Edinburgh, 2006.

[144] R. Lewis and B. Paechter. New crossover operators for timetabling with evolu-

tionary algorithms. Proceedings of the 5th International Conference on Recent

Advances in Soft Computing, pp. 189–195, 2004.

[145] R. Lewis and B. Paechter. Application of the grouping genetic algorithm to

university course timetabling. Proceedings of the 5th European Conference on

Evolutionary Computation in Combinatorial Optimization (EvoCOP 2005),

Lecture Notes in Computer Science 3448, pp. 144–153, 2005.

272

Bibliography

[146] R. Lewis, B. Paechter, and B. McCollum. Post enrolment based course

timetabling: A description of the problem model used for track two of the

second international timetabling competition. Technical Report, Cardiff Uni-

versity, 2007.

[147] Y. H. Liu. Different initial solution generators in genetic algorithms for solv-

ing the probabilistic traveling salesman problem. Applied Mathematics and

Computation, 216(1): 125–137, 2010.

[148] S.J. Louis and G. Li. Augmenting genetic algorithms with memory to solve

travelling salesman problem. Proceedings of the Joint Conference on Informa-

tion Sciences, pp. 108–111, 1997.

[149] S. J. Louis and J. McDonnell. New methods for competitive evolution. IEEE

Transaction on Evolutionary Computation, 8(4): 316–328, 2004.

[150] Z. Lü, and J. K. Hao, Adaptive tabu search for course timetabling. European

Journal of Operation Research, 200(1): 235–244, 2010.

[151] M. R. Malim, A. T. Khader, and A. Mustafa, Artificial immune algorithms

for university timetabling. Proceedings of 6th International Conference on the

Practice and Theory of Automated Timetabling, pp. 234–245, 2006.

[152] A. Masri and J. Ghaith, Hybrid ant colony systems for course timetabling

problems. Proceedings of the 2nd International Conference on Data Mining

and Optimization, pp. 120–126, 2009.

273

Bibliography

[153] B. McCollum. University timetabling: bridging the gap between research and

practice. Proceedings of the 6th International Conference on the Practice and

Theory of Automated Timetabling, pp. 15–35, 2006.

[154] P. McMullan. An extended implementation of the great deluge algorithm for

course timetabling. Proceedings of the International Conference on Computa-

tional Science, pp. 538–545, 2007.

[155] D. Merkle, M. Middendorf, and H. Schmeck. Ant colony optimization for

resource-constrained project scheduling. IEEE Transactions on Evolutionary

Computation, 6(4): 333–346, 2002.

[156] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and

E. Teller. Equations of State Calculations by Fast Computing Machines. Jour-

nal of Chemical Physics, 21(6): 1087–1092, 1953.

[157] N. Mladenovi and P. Hansen. Variable neighbourhood search. Computers and

Operations Research, 24(11): 1097–1100.

[158] C. Morgenstern and H. Shapiro. Coloration neighborhood structures for gen-

eral graph coloring. Proceedings of the 1st Annual ACM-SIAM Symposium on

Discrete Algorithms, pp. 226–235, 1990.

[159] P. Moscato. On evolution, search, optimization, genetic algorithms and martial

art: towards memetic algorithms. Caltech Concurrent Computation Program,

Technical Report, 1989.

274

Bibliography

[160] P. Moscato. Memetic algorithms: A short introduction. New Ideas in Optimi-

sation, Mcgraw-Hill’S Advanced Topics in Computer Science Series, pp. 219–

234, 2005

[161] T. Müller. Constraint-based Timetabling Ph.D. Thesis. Prague, 2005.

[162] T. Müller. ITC2007 Solver Description: A Hybrid Approach. Proceedings of

the 7th International Conference on the Practise and Theory of Automated

Timetabling, 2008.

[163] J. M. Mulvey. A classroom/time assignment model. European Journal of

Operational Research, 9(1): 64–70, 1982.

[164] A. N. Nagar, J. Haddock, and S. Heragu. Multiple and bi-criteria scheduling:

a literature survey. European Journal of Operational Research, 81: 88–104,

1995.

[165] K. Nonobe and T. Ibaraki. An improved tabu search method for the weighted

constraint satisfaction problem. INFOR, 39(2): 131–151, 2001.

[166] C. Nothegger, A. Mayer, A. Chwatal, and G. R. Raidl. Solving the post

enrolment course timetabling problem by ant colony optimization. Proceedings

of the 7th International Conference on the Practice and Theory of Automated

Timetabling, 2008.

[167] I. H. Osman and J. P. Kelly. Meta-heuristics: Theory and Applications, Kluwer

Academic Publishers, 1996.

275

Bibliography

[168] I. H. Osman and G. Laporte. Metaheuristics: a bibliography. Annals of

Operations Research, 63: 513–623, 1996.

[169] A. Osyczka. Multicriteria optimization for engineering design. In J. S. Gero

(editor), Design Optimization, pp. 193–227, 1985.

[170] B. Paechter, A. Cumming, M. G. Norman, and H. Luchian. Extensions to

a memetic timetabling system. Proceedings of the 1st International Confer-

ence on the Practice and Theory of Automated Timetabling, Lecture Notes in

Computer Science 1153, pp. 251–265, 1996.

[171] D. B. Papoulias. The assignment-to-days problem in a school time-table, a

heuristic approach. European Journal of Operation Research, 14: 31–41, 1980.

[172] L. F. Paquete, C. M. Fortseca, and E. L. Pt. A study of examination

timetabling with multiobjective evolutionary algorithms. Proceedings of the

4th Metaheuristics International Conference, pp. 149–154, 2001.

[173] S. Petrovic and E. K. Burke. University timetabling. Handbook of Scheduling:

Algorithms, Models and Performance Analysis, Chapter 45, (Editor: J.Leung),

CRC Press, 2004.

[174] M. Pinedo. Scheduling: theory, algorithms, and systems. Prentice Hall, 2002.

[175] M. Pirlot. General local search methods. European Journal of Operational

Research, 92: 493–511, 1996.

276

Bibliography

[176] P. Pongcharoen, W. Promtet, P. Yenradee, and C. Hicks. Schotastic optimiza-

tion timetabling tool for university course scheduling. International Journal

of Production Economics, 112(2): 903–918, 2008.

[177] S. Prestwich, A. Tarim, R. Rossi, and B. Hnich. A steady-state genetic algo-

rithm with re sampling for noisy inventory control. Proceedings of the 10th

International Conference on Parallel Problem Solving from Nature, Lecture

Notes in Computer Science 5199, pp. 559–568, 2008.

[178] R. Qu, E. K. Burke, B. McCollum, and L. T. G. Merlot, A survey of

search methodologies and automated system development for examination

timetabling. Journal of Scheduling, 12(1): 55–89, 2009.

[179] C. Reeves. Modern heuristics techniques for combinatorial problems, McGraw

Hill, 1995.

[180] O. Rossi-Doria, C. Blum, J. Knowles, M. Sampels, K. Socha, and B. Paechter,

local search for the timetabling problem. Proceedings 4th International Con-

ference on the Practice and Theory of Automated Timetabling, Lecture Notes

in Computer Science 2740, pp. 124–127, 2003.

[181] O. Rossi-Doria, M. Sampels, M. Birattari, M. Chiarandini, M. Dorigo, L. Gam-

bardella, J. Knowles, M. Manfrin, M. Mastrolilli, B. Paechter, L. Paquete, and

T. Stützle, A comparison of the performance of different metaheuristics on the

timetabling problem. Proceedings of the 4th International Conference on the

277

Bibliography

Practice and Theory of Automated Timetabling, Lecture Notes in Computer

Science 2740, pp. 329–351, 2003.

[182] O. Rossi-Doria and B. Paechter. A memetic algorithm for university course

timetabling. Proceedings of Combinatorial Optimization , pp. 56, 2004.

[183] C. D. Rosin and R. K. Belew. New methods for competitive evolution. Evo-

lutionary Computation, 8(1): 1–29, 1997.

[184] H. Rudová and K. Murray. University course timetabling with soft constraints.

Proceedings of the 7th International Conference on the Practice and Theory of

Automatic Timetabling, Lecture Notes in Computer Science 2740, pp. 310–328,

2003.

[185] B. Ruggero, L. D. Gaspero, and A. Schaerf. A statistical analysis of the

features of a dynamic tabu search algorithm for course timetabling problems.

Proceedings of the 7th International Conference on the Practice and Theory of

Automated Timetabling, pp. 1–3, 2008.

[186] S. Salhi. Defining tabu list size and aspiration criterion within tabu search

methods. Computers and Operations Research, 29: 67–86, 2002.

[187] R. Sarker, K. Liang, and C. Newton. A new multiobjective evolutionary

algorithm. European Journal of Operational Research, 140(1): 12–23, 2002.

278

Bibliography

[188] K. Sastry, D. Goldberg, and G. Kendall. Genetic algorithms. Search Method-

ologies: Introductory Tutorials in Optimization and Decision Support Tech-

niques, Chapter 4, pp. 97–125, 2005.

[189] J. D. Schaffer. Multiple Objective Optimization with Vector Evaluated Genetic

Algorithms. Ph.D. Thesis, Vanderbilt University, 1984.

[190] A. Schearf. A survey of automated timetabling. Artificial Intelligence Review,

13(2): 87–127, 1999.

[191] G. Schmidt and T. Ströhlein. Timetable construction an annotated bibliog-

raphy. The Computer Journal, 23(4): 307–316, 1980.

[192] S. M. Selim. Split vertices in vertex colouring and their application in devel-

oping a solution to the faculty timetable problem. The Computer Journal,

30(1): 76–82, 1988.

[193] W. Shin and J. A. Sullivan. Dynamic course scheduling for college faculty via

zero-one programming. Decision Science, 8: 711–721, 1977.

[194] B. Sigl, M. Golub, and V. Mornar. Solving timetable scheduling problem

using genetic algorithms. Proceedings of the 25th International Conference on

Information Technology Interfaces, pp. 519–524, 2003.

[195] D. L. Silva and J. H. Obit, Great deluge with non-linear decay rate for solv-

ing course timetabling problems. Proceedings of the 4th IEEE International

Conference on Intelligent Systems, pp. 811–818, 2008.

279

Bibliography

[196] K. Socha, J. Knowles, and M. Samples. A max-min ant system for the univer-

sity course timetabling problem. Proceedings of the 3rd International Work-

shop on Ant Algorithms, Lecture Notes in Computer Science 2463, pp. 1–13,

2002.

[197] N. Srinivas and K. Deb. Multiobjective optimization using nondominated

sorting in genetic algorithms. Evolutionary Computation, 2: 221–248, 1994.

[198] T. Stützle and H. H. Hoos. MAX–MIN Ant System. Future Generation Com-

puter Systems, 16(8): 889–914, 2000.

[199] E. G. Talbi. A taxonomy of hybrid metaheuristics. Journal of Heuristics,

8(5): 541–565, 2002.

[200] N. D. Thanh. Solving timetabling problem using genetic and heuristics algo-

rithms. Journal of Scheduling, 9(5): 403–432, 2006.

[201] J. Thompson and K. Dowsland. A robust simulated annealing based exami-

nation timetabling system. Computers and Operations Research, 25(7-8): 637–

648, 1998.

[202] A. Tripathy. School timetabling – a case in large binary integer linear pro-

gramming. Management Science, 30: 1473–1489, 1984.

[203] A. Tripathy. Computerised decision aid for timetabling – A case analysis.

Discrete Applied Mathematics, 35(3): 313–323, 1992.

280

Bibliography

[204] M. Tuga, R. Berretta, and A. Mendes, A hybrid simulated annealing with

kempe chain neighborhood for the university timetabling problem. Proceedings

of 6th IEEE/ACIS International Conference on Computer and Information

Science, pp. 400–405, 2007.

[205] H. Turabieh and S. Abdullah. Incorporating tabu search into memetic ap-

proach for enrolment-based course timetabling problems. Proceedings of the

2nd Data Mining and Optimisation Conference, pp. 122–126, 2009.

[206] D. J. A. Welsh and M. B. Powell. An upper bound for the chromatic number of

a graph and its application to timetabling problems. The Computer Journal,

10(1): 85–86, 1967.

[207] D. Werra. Graphs, hypergraphs and timetabling. Methods of Operations Re-

search, 49: 201–213, 1985.

[208] D. Werra. An introduction to timetabling. European Journal of Operations

Research, 19: 151–162, 1985.

[209] D. Werra. Some combinatorial models for course scheduling. Lecture Notes in

Computer Science 1153, pp. 296–308, 1996.

[210] D. Werra. Restricted coloring models for timetabling. DMATH: Discrete

Mathematics, 165/166: 161–170. 1997.

[211] L. D. Whitley. A genetic algorithm tutorial. Statistics and Computing, 4: 65–

85, 1994.

281

Bibliography

[212] D. Whitley and J. Kauth. GENITOR: A different genetic algorithm. Proceed-

ings of the Rocky Mountain Conference on Artificial Intelligence, pp. 118–130,

1998.

[213] D. C. Wood. A technique for coloring a graph applicable to large-scale

timetabling problems. Computer Journal, 12: 317–322, 1969.

[214] A. Wren. Scheduling, timetabling and rostering – a special relationship?

Proceedings of the 1st International Conference on the Practice and Theory

of Automated Timetabling (PATAT I), Lecture Notes in Computer Science,

vol. 1153, pp. 46–75, 1995.

[215] G. G. Yen and H. Lu. Dynamic multiobjective evolutionary algorithm: adap-

tive cell-based rank and density estimation. IEEE Transactions on Evolution-

ary Computation, 7(3): 253–274, 2003.

[216] L. A. Zadeh. Fuzzy sets. Information and Control, 8: 338–353, 1965.

[217] K. Zervoudakis and P. Stamatopoulos. A generic object-oriented constraint-

based model for university course timetabling. Proceedings of the 3rd Interna-

tional Conference on Practice and Theory of Automated Timetabling (PATAT

III), Lecture Notes in Computer Science 2079, pp. 28–47, 2001.

[218] L. Zhang and S. Lau. Constructing university timetable using constraint satis-

faction programming approach. Proceedings of the 2005 International Confer-

ence on Computational Intelligence for Modelling, Control and Automation,

pp. 1–5, 2005.

282

Bibliography

[219] E. Zitzler. Evolutionary Algorithms for Multiobjective Optimization: Methods

and Applications. Ph.D. Thesis, ETH Zurich, Switzerland, 1999.

[220] E. Zitzler, M. Laumanns, and S. Bleuler. A tutorial on evolutionary multiob-

jective optimization. Metaheuristics for Multiobjective Optimisation, Lecture

Notes in Economics and Mathematical Systems 535, pp. 3-38, 2004.

[221] E. Zitzler, M. Laumanns, and L. Thiele. SPEA 2: Improving the strength

Pareto evolutionary algorithm. Proceeding of EUROGEN. Evolutionary Meth-

ods for Design, Optimization and Control with Applications to Industrial Prob-

lems, pp. 1–21, 2001.

[222] E. Zitzler and L. Thiele. Multiobjective evolutionary algorithms: a compar-

ative case study and the strength Pareto approach. IEEE Transactions on

Evolutionary Computation, 3(4): 257–271, 1999.

[223] E. Zitzler, L. Thiele, and J. Bader. SPAM: set preference algorithm for mul-

tiobjective optimization. Proceedings of the 10th International Conference on

Parallel Problem Solving From Nature (PPSN X), Lecture Notes in Computer

Science 5199, pp. 847–858, 2008.

283

	Declaration of Authorship
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Algorithms
	Abbreviations
	Symbols
	1 Introduction
	1.1 Background and Motivation
	1.2 Aims and Objectives
	1.3 Methodology
	1.4 Why Are GAs Used in This Study?
	1.5 Scientific Contributions
	1.6 Thesis Outline

	2 University Course Timetabling Problems and Solution Approaches
	2.1 Introduction
	2.2 Timetabling
	2.2.1 Educational Timetabling Problems
	2.2.1.1 School Timetabling
	2.2.1.2 Examination Timetabling
	2.2.1.3 University Course Timetabling

	2.3 University Course Timetabling Problems
	2.3.1 Constraints
	2.3.1.1 Hard Constraints
	2.3.1.2 Soft Constraints

	2.3.2 Quality of Solutions
	2.3.3 Types of UCTPs
	2.3.3.1 Post Enrolment Based Course Timetabling
	2.3.3.2 Curriculum Based Course Timetabling

	2.3.4 Modelling UCTPs
	2.3.5 Why are UCTPs Difficult to Solve?

	2.4 Approaches for Solving UCTPs
	2.4.1 Constraint-Based Methods
	2.4.2 Sequential Heuristics
	2.4.3 Meta-heuristic Approaches
	2.4.3.1 Genetic Algorithms (GAs)
	2.4.3.2 Ant Colony Optimisation (ACO)
	2.4.3.3 Tabu Search (TS)
	2.4.3.4 Simulated Annealing (SA)
	2.4.3.5 The Great Deluge (GD)

	2.4.4 Hybrid Meta-heuristics
	2.4.5 Hyper-heuristic Approaches
	2.4.6 Other Approaches
	2.4.7 Multi-Objective Approaches
	2.4.7.1 MOEAs for General MOOPs
	2.4.7.2 Solving the UCTP as a MOOP

	2.5 Chapter Summary

	3 Benchmark Timetabling Problem Instances
	3.1 Introduction
	3.2 The University Course Timetabling Problem (UCTP)
	3.2.1 Problem Definition
	3.2.2 Problem Formulation
	3.2.3 Benchmark Dataset
	3.2.3.1 Best Known Results on the UCTP Benchmark Instances

	3.3 The Post Enrolment Course Timetabling Problem (PECTP)
	3.3.1 Problem Description
	3.3.2 Problem Formulation
	3.3.3 Benchmark Dataset
	3.3.3.1 Best Known Results on the PECTP Benchmark Instances

	3.4 The Multi-Objective UCTP (MOUCTP)
	3.4.1 Basic Concepts of General MOOPs
	3.4.2 Problem Definition of the MOUCTP
	3.4.3 Benchmark Dataset

	3.5 Chapter Summary

	4 Memetic Algorithms for University Course Timetabling
	4.1 Introduction
	4.2 The Proposed Memetic Algorithm
	4.2.1 Local Search (LS) Strategies
	4.2.1.1 LS Strategy 1 (LS1)
	4.2.1.2 LS Strategy 2 (LS2)

	4.2.2 Genetic Operators
	4.2.2.1 Selection
	4.2.2.2 Crossover
	4.2.2.3 Mutation

	4.3 Experimental Study
	4.3.1 Sensitivity Analysis of the Parameter tp
	4.3.2 The Effect of LS2 on the MA
	4.3.3 Comparison with State-of-the-Art Algorithms

	4.4 Chapter Summary

	5 Genetic Algorithms with Guided and Local Search for UCTPs
	5.1 Introduction
	5.2 The Guided Search (GS) Strategy
	5.2.1 The MEM Data Structure
	5.2.2 Generating a Child by the GS Strategy

	5.3 GAs with GS and LS Strategies for the UCTP
	5.3.1 The Basic Framework of Investigated GAs
	5.3.2 The Guided Search Genetic Algorithm (GSGA)
	5.3.3 Extended Guided Search Genetic Algorithm (EGSGA)
	5.3.4 GA with Both LS Strategies (GALS)

	5.4 Experimental Study
	5.4.1 The Sensitivity of Key Parameters of GSGA
	5.4.2 Comparative Experiments
	5.4.3 Comparison with Algorithms from the Literature

	5.5 Chapter Summary

	6 Hybrid Approaches for Post-Enrolment Course Timetabling
	6.1 Introduction
	6.2 The Proposed Hybrid Approach for the PECTP
	6.2.1 The Enhanced GSGA – Phase I of HGATS
	6.2.1.1 Initialisation of the Population
	6.2.1.2 The MEM Data Structure
	6.2.1.3 Generating a Child by the GS Strategy
	6.2.1.4 Crossover
	6.2.1.5 Mutation
	6.2.1.6 Local Search Strategies

	6.2.2 The Tabu Search Heuristics – Phase II of HGATS

	6.3 Experimental Study
	6.3.1 Sensitivity Analysis of Key Parameters of HGATS
	6.3.2 Comparison with Relevant Algorithms
	6.3.3 Comparison with Algorithms from the Literature

	6.4 Chapter Summary

	7 Multi-Objective Approaches to University Course Timetabling
	7.1 Introduction
	7.2 The Framework of MOEAs for the MOUCTP
	7.2.1 Basic Structure
	7.2.2 The LS Strategies
	7.2.3 The GS Strategy
	7.2.3.1 Data Structures MEMi (i =1, 2, 3)
	7.2.3.2 Generating a Child by the GS Strategy

	7.2.4 Genetic Operators
	7.2.4.1 Objective Functions and Constraints Handling
	7.2.4.2 Selection Mechanism
	7.2.4.3 Crossover
	7.2.4.4 Mutation

	7.3 Instantiated MOEAs for the MOUCTP
	7.3.1 Guided Search NSGA-II (GSNSGA)
	7.3.2 Guided Search PAES (GSPAES)
	7.3.3 -Guided Search MOEA (-GSMOEA)
	7.3.4 Guided Search SPEA-II (GSSPEA)

	7.4 Experimental Study
	7.4.1 Parameter Setting
	7.4.2 Performance Measures
	7.4.3 The Effect of Different Components of Proposed Algorithms
	7.4.3.1 Key Parameters of the GS Strategy
	7.4.3.2 Effect of the GS and LS Strategies
	7.4.3.3 Performance of Investigated MOEAs

	7.4.4 Comparison with Other Algorithms

	7.5 Chapter Summary

	8 Conclusions and Future Work
	8.1 Technical Contributions
	8.2 Conclusions
	8.3 Future Work

	A The t-Test Results
	Bibliography

