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Sequence Based Memetic Algorithms for Static and Dynamic TSP

Shakeel Arshad

Abstract

Hybridization of genetic algorithms (GAs) with local search techniques has received
significant attention in recent years and is being widely used to solve real-world
problems. These hybrid GAs, also called memetic algorithms (MAs), are able to
incorporate other powerful techniques within the framework of GAs, working as a
single unit and counterbalancing each other’s disadvantages.

In this thesis, we propose a hybrid GA, called Sequence Based Memetic Algorithm
(SBMA) with Inver Over (IO), for solving the travelling salesman problem (TSP).
This is a 2-phase MA. The first phase (SBMA) consists of traditional binary opera-
tors, and the second phase is based on a unary operator. In SBMA, a tour is split
into equal sub-tours. Further, the shortest tour is selected among the sub-tours and
then optimized locally. The sub-tours are stored in the memory and then used to
guide the evolutionary process via a kind of embedded local search. Additionally,
we apply some techniques to adapt the key parameters based on whether the best
individual within the population improves or not while also maintaining the diver-
sity. After the first phase, the hybrid algorithm enters the second phase which is
the Inver Over with elite population. Here, the IO is directed to get a clue from the
elite population by adding and preserving good edges.

We have also shown that the above approach can be extended to handle the dy-
namic TSP. The framework of our hybrid approach, along with the integration of
the nearest neighbour list, applying 2-Opt local search on sub-tours and adaptive
parameter control in the first phase, and the elite population with the rotating gene
pool strategies in the second phase, works well for the DTSP. In order to test the
performance of the proposed approach for the DTSP, experiments were carried out
based on different DTSP test beds. From the study, it has been observed that the
integrated heuristics or meta-heuristics are able to produce good-quality solutions
for the DTSP. We also analysed the effect of the gene pool and immigrants gen-
erated with the nearest neighbour algorithm, which works well with all DTSP test
instances, under different dynamics.
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Chapter 1

Introduction

The Travelling Salesman Problem (TSP) is an example of a combinatorial optimiza-

tion problem. In general, if a salesman starts a journey in which he visits each city

in a given list exactly once, and then returns to the starting point, it is reasonable

for him to select the order in which he visits the cities so that the total length of

his tour is as small as possible (with respect to some measurement such as time or

distance). It would be quite reasonable that, for each pair of cities, the distance

between them would be known to him in advance, and so he can know the cost of

moving from one city to another. In this case, he would have all the data necessary

to find the minimum or maximum distance, but the difficulty for him is how to use

this data in order to get the answer. The situation becomes more complex when the

static problem changes to the dynamic one. In the Dynamic Travelling Salesman

Problem (DTSP), the distances for the salesman change with the passage of time,

and he has to update his route according to the change of the cities in the list or

the change of the distances among them.

The importance of the TSP comes not only from the wealth of applications. The

simple fact is that there are many salesmen clamouring for an algorithm, and some

other cases where the mathematical model of the TSP is applicable to an engineering

or scientific situation where we want to find an optimal path in a reasonable period of
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time. However, the other issue is that TSP is a typical instance of a combinatorial

optimisation problem. We are trying to minimize the total distance, and, if we

consider the problem in this way, the task is a minimization problem.

As TSP is an NP-complete problem, no efficient algorithm is known, and so heuristics

which give a good, but not necessarily optimal, solution are deemed to be sufficient.

TSP heuristics typically fall into two groups: tour construction heuristics, which

create tours from scratch, and tour improvement heuristics, which use the simple

local search heuristics to improve existing tours. A more modern approach is to

use a combination of the above two heuristics, which is called “compound”, i.e., an

approach which first has a constructive phase and then has an improvement phase.

It is a general fact about the TSP that there are many approximate heuristic ap-

proaches, along with the exact ones, for solving it. The main aim of these approxi-

mate heuristics is to efficiently generate very good solutions. They do not necessarily

find the optimal solution; however, these heuristics do have desirable characteristics,

such as short running times, ease of implementation, flexibility and simplicity.

1.1 Background and Motivation

The TSP is an easy problem to state; one does not need to have a mathematical

background to understand the problem. It is an interesting problem to work on, and

it is continuously attracting the attention of researchers, practitioners and problem

solvers. On the other hand, the TSP is resistant to all efforts to find a good algorithm

which results in an optimal solution. So, the TSP has elements that have attracted

mathematicians and computer scientists for centuries, that is, the simplicity of the

statement and the difficulty of the solution. Moreover, the TSP remains an intriguing

problem and there is no reason to believe that this attraction and curiosity will

diminish in the future.
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In general, combinatorial optimization problems have a finite number of candidate

solutions. An exact approach would be to enumerate all the possible candidate

solutions and compare them with each other. However, unfortunately, the search

space becomes gigantic for some of the combinatorial optimization problems. For

some standard cases, the search space is greater than 109259, which is huge when

compared to the estimated number of 1080 atoms in the universe. For handling

some such problems, some fast exact algorithms exist which are much faster than

exhaustive search, and these are called algorithms with polynomial running time.

At the same time, for some combinatorial problems, it is believed that no such

algorithm exists. In recent years, a lot of effort has been put into investigating the

performance of such exact algorithms. Even so, the computational complexity of

such problems is still an open question. The only current answer to the question

of tackling large instances is that approximate heuristic search techniques should

be employed. Although these techniques deliver no guarantee of giving an optimal

solution, a lot of effort has been made in developing such heuristics which aim to

find good quality solutions in a short period of time.

In general, many modern heuristics are based on neighbourhood searching mecha-

nisms, such as various types of local search, tabu search and simulated annealing,

and nature-inspired algorithms, such as genetic algorithms, bee systems, ant colony

optimization, and neural networks. However, there is another possibility, which is to

combine two or more heuristics. These heuristics are termed as hybrids or memetic

algorithms. Memetic algorithms are the combination of genetic algorithms and local

search, or sometimes the combination of local search operators in which each local

search works on a distinct neighbourhood structure. In recent years, researchers

and practitioners have focused on the embedding of domain-specific knowledge into

genetic algorithms in order to move the global search in a guided direction by avoid-

ing moving randomly in the search space. These guided heuristics have been tested

on problems such as TSPs in comparison with alternative approaches. They have

proved to be more effective with respect to the solution quality and time.
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In this thesis, we do not claim that we have found the best heuristics ever developed,

because it is a common belief that there is no such algorithm, i.e., one that is

superior to all other heuristic approaches on the set of all problems. In the two-

phase approach which we propose here, we try to answer the following important

questions. Why is the performance of one approach stand-alone poor, but good when

it works with another approach, even when the second approach also performs poorly

when used by itself? What are the ways to bridge different heuristics which work on

totally dissimilar working mechanisms and various environmental parameters? How

do we cope with major issues such as premature convergence, maintaining diversity

and keeping the candidate solution as flexible as possible for moving around in the

search space?

This thesis is an attempt to investigate the above questions. We have chosen memetic

algorithms as our object of study. The test bed we have chosen is the classical

problem that is the Travelling Salesman Problem. The span of our study is further

extended to the dynamic version of TSP, which is more realistic in modelling real-

world problems. The main motivation for choosing memetic algorithms is that

they are hybrids: domain-specific knowledge can be incorporated into the problem-

independent algorithms. Additionally, memetic algorithms exploit the symbiotic

effects of the combination of two or more memes (different search techniques).

In this thesis, we aim to combine the good properties of local and global search

techniques for solving the static and dynamic TSPs. We have merged together the

binary genetic algorithm with the unary genetic algorithm with an embedded LS

technique. In addition, we have introduced some adaptive parameter control for

bridging the two techniques. We have also extended our approaches for handling

the static TSP to the dynamic TSP. For the DTSP, to respond swiftly to changes,

we introduce a rotating gene pool, which quickly inserts good edges by directing the

search space to take intelligent moves instead of random moves.
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1.2 Aims and Objectives

This thesis investigates GAs to solve the static TSP and DTSP. The overall aim

of this thesis is to develop and apply GAs to produce solutions of good quality for

solving the static TSP as well as for solving the DTSP. In order to carry out this

primary aim, some objectives are outlined as follows:

1. To design new local search operators or memetic algorithms for the TSP and

DTSP.

2. To learn the concept of the local search techniques in general and the neigh-

bourhood structure in particular, understand the challenges behind these prob-

lems and the issues which arise during solving these problems, and review

relevant approaches that researchers have developed to solve these problems.

3. To carry out an experimental analysis of the effectiveness and efficiency of

traditional GAs and memetic algorithms for solving the TSP and extending it

to the DTSP.

4. To investigate local search techniques to enhance the exploitation and explo-

ration ability of GAs for the TSP and DTSP and develop memetic algorithms

for the TSP and DTSP which are composed of several heuristic approaches.

One possibility is that one heuristic could tackle one issue, and the other may

tackle another issue, which may arise during the searching process.

5. To develop multiple phase hybrid GAs or MAs that integrate GAs and LS

strategies and other heuristics to solve the TSP and DTSP. Hybrid GAs or

MAs should be efficient, i.e., they should be capable of producing acceptable

solutions in a short time, because hybrid GAs or MAs are composed of extra

local search routines within the existing framework of GAs (most of the total

CPU time is generally spent in the local search procedure).
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6. To implement the above developed GAs and relevant algorithms for the TSP

and DTSP, respectively, using a programming language, and carry out a sys-

tematic experimental study based on the implemented algorithms, such as

checking the performance of the key parameters of memetic algorithms for

improving the performance of GAs for the TSP and DTSP.

7. To present the efficiency of a solution methodology that is generic, robust and

able to produce good solutions, when compared against the state-of-the-art

methods.

1.3 Methodology

The TSP has a long history of attracting the interest of both researchers and prac-

titioners. The TSP is, to put it simply, “easy to state” but “difficult to solve”.

In this study, we aim to develop an efficient approach to be merged together with

traditional GAs to solve the TSP. Various step-by-step improvements have been

proposed for increasing the performance, and getting good solutions in a short time.

In general, most of the powerful GAs which have been proposed for tackling the

TSP have used many robust heuristic and meta-heuristics. For example, the perfor-

mance has been increased by utilizing intense LS operations after the crossover and

mutation operations. The absence of strong LS techniques raises a question in the

overall performance of GAs. In our proposed approach, we consider
√
n nodes of a

TSP instance, where n is the number of cities/nodes in the instance, by splitting

the candidate solutions into equal parts and then storing them as a sequence and

using it to guide GAs. Additionally, some procedures are applied to maintain the

diversity by reducing the size of the selected sequences (by removing some nodes)

into sub-tours if the best individual of the population does not improve.

Initially, for developing the solution approach, the basic order crossover operator

with the inversion operator is used, and then the greedy local search technique is
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used by inserting the stored sub-sequence into the partial individual resulting in a

complete individual. During the experimental analysis, it has been observed that

the proposed approach has a good convergence speed, but the technique is very

expensive computationally. To avoid this disadvantage, some other approaches are

merged to balance the convergence and computational time. For the same reason,

the existing approach is merged with another operator or another MA; so the current

approach is converted into the two-phase genetic algorithm or memetic algorithm.

In this, the first phase handles the fast convergence and, if the first phase is unable

to bring further gain in improvement, the algorithm is shifted to the second phase.

So we will start our study by studying the basic MA, which is binary; this simply

takes two individuals and performs the evolutionary process. Then we will add other

refinement techniques to enhance the performance of the proposed MA for solving

different TSP problems. The refinement techniques which are utilized in the first

phase are: bringing the nodes near each other by using a Nearest Neighbour list,

applying the simple 2-opt LS on the extracted sub-tours, and, after further breaking,

i.e., reducing the total size of a sequence, increasing and decreasing the intensity

of local search and adaptively increasing the crossover and mutation probabilities.

For the second phase, the performance has been enhanced by making the fast unary

Inver Over operator guided. By default, the Inver Over operator is blind, getting

the clue from an individual which might be better or worse in fitness (the edge which

is added does not guarantee that the result will be an optimal one). The proposed

enhancements for the second phase are the integration of the Elite population ap-

proach, forcing the IO to accept those inversions which contribute to a fitness gain

and the rotating gene pool. We have extended the current two-phase MA to the

DTSP. As our former approach works better in solving static TSP, and gives near

optimal solutions regarding quality and time, we have just introduced the change

operator, which changes the static TSP to the dynamic TSP. The change function,

as mentioned above, introduces new nodes and deletes old nodes; this changes the

existing edges in the problem at hand. The change function takes the optimal state

of the problem to a non-optimal state. For tackling the dynamic TSP, the procedure
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is the same as that mentioned above except that we introduced the new approach

which is integrated with the main IO, namely the gene pool approach generated by

using the Minimum Spanning Tree (MST). By addressing the issue of diversity and

by making use of the strength of gene pool, it is rotated when the IO picks a city

from the existing gene pool. So, for the next iteration, if the same node is under

consideration, we would have a new city to be picked from the gene pool. Further-

more, the switching criterion from Phase-1 to Phase-2 is modified slightly, keeping

with the view of the dynamic TSP.

In the field of evolutionary computation, it is very hard to give any analysis of the

performance of GA/MA like convergence and optimality of the TSP because they are

stochastic in nature. We therefore cannot give a formal analysis of a GA/MA for the

TSP. In order to investigate the performance of the proposed hybrid approach for the

TSP, experiments are carried out on benchmarks, to compare it with other relevant

algorithms on a set of small and medium benchmark TSP instances. Experimental

results show that proposed hybrid approach is superior to the IO algorithm and

some other state of the art algorithms in terms of the convergence speed, as well as

solution quality and time.

1.4 Scientific Contributions

Different enhancement techniques are investigated in this thesis for the improvement

of the overall performance of GA/MA, such as maintaining diversity, speeding up

the convergence, and reducing the computational time. Various experimental results

raise many issues and new directions for producing better methods regarding the

solution quality and computational time.

From our studies and analysis, the following scientific contributions are made in this

thesis:

8



Chapter 1. Introduction

1. The experimental analysis shows that the standard Genetic Algorithm often

suffers from slow convergence for solving combinatorial optimization problems.

In this study, we introduce a sequence based memetic algorithm (SBMA) for

the symmetric travelling salesman problem (TSP). In this method, a set of

sequences are extracted from good individuals which are used to guide the

search of SBMA. Additionally, some procedures are applied to maintain the

diversity by breaking the selected sequences into sub-tours if the best individual

of the population does not improve or if the MA gets stuck in local optima.

2. A new strategy is introduced, which proposes a two-phase hybrid approach for

the travelling salesman problem (TSP). The first phase is based on a sequence

based memetic algorithm (SBMA) which is mentioned above, but we integrated

an embedded local search scheme. Within the SBMA, a memory is introduced

to store better sequences (sub-tours) extracted from previous good solutions,

and the stored sequences are used to guide the generation of offspring via

LS during the evolution of the population. Additionally, we also apply some

techniques to adapt the key parameters based on whether the best individual

of the population improves or not and maintain the diversity. After SBMA

finishes, the hybrid approach enters the second phase, where the inver over (IO)

operator, which is a state-of-the-art algorithm for the TSP, is used to further

improve the solution quality of the population. The experimental results show

that the proposed hybrid approach is efficient in finding good-quality solutions

for the test TSPs.

3. We describe a novel extended hybrid MA of our proposed two-phase approach.

A number of new ideas are integrated in our MA framework. During the anal-

ysis, we have observed that the solution needs to be prevented from inserting

expensive (long) edges, i.e., a set of nodes, which are almost near to each

other, should not include a long edge. To resolve this issue, initially sub tours

are generated for some generations by utilizing the Nearest Neighbour list of

a node and then left for the MA to work in a random manner for the rest
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of the generations. Additionally, when the number of nodes of the sequence

is reduced, it is further optimized by a 2-opt local search; so each time the

inserted sequence of nodes is locally optimal. In phase two the IO is guided

by getting the clue from the elite population which is a fraction of the whole

population. Here, before entering to the IO operator, a kind of unique popu-

lation which is best in fitness is extracted from the main population. Another

enhancement is a kind of random immigrant scheme. In this RI, one third of

the population, along with previous parents and children of the phase one, is

added to maintain diversity for further increasing the exploration capability of

phase two. The experimental results show that the proposed hybridization of

the binary and unary operators and the enhancement strategies are efficient

in finding optimal or near-optimal solutions for the test TSPs.

4. The above two-phase MA is extended to the framework of dynamic TSP. For

the DTSP another heuristic approach which is integrated with the main IO is

the gene pool approach generated by using the Minimum Spanning Tree. By

keeping the issue of diversity, and to make use of the strength of the gene pool,

it is rotated when the IO picks a city from the existing gene pool. So, for the

next iteration, if the same node is under consideration we would be having a

new city to be picked from the gene pool. Furthermore, the switching criteria

from Phase-1 to Phase-2 is modified slightly by keeping the view of DTSP.

The approach is tested on two different dynamic test beds, i.e., main and

spare pool, and by changing the positions of the nodes. In the main and

spare pool the TSP instance is split into two equal parts. After the passage

of time some new nodes come into the main pool, and some nodes go back

out to the spare pool. In the changing node positions, the positions of the

nodes are changed slightly. The experiments are performed on various change

frequencies and severities.
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1.5 Thesis Outline

This thesis consists of eight chapters. Chapter 1 gives the introduction, background

and motivation, aims and objectives of the study, and, finally, the general method-

ology.

Chapter 2 presents the general introduction to the process of optimization, combina-

torial optimization problems and natural evolution. We give common terms used in

genetics and a brief history of evolutionary computation, and describe hybridization

of EAs with other heuristics and various neighbourhood structures.

Chapter 3 contains an account of the history of the TSP. The mathematical treat-

ment of the TSP is also discussed. In addition, various heuristics and meta-heuristics

are briefly explained. A brief description about the dynamic TSP is presented as

well.

In Chapter 4, a description of our proposed algorithm, that is the Sequence Based

Memetic Algorithm, is given. The complete framework of the algorithm is also

discussed. The experimental results suggest that SBMA has a good convergence

power and can tackle small instances of the TSP.

Chapter 5 is about the extension of our SBMA along with the Inver Over approach.

In this chapter we describe some of the deficiencies of SBMA; we also describe how

we cope with the integration of another GA; this is the hybrid two-phase genetic

algorithm. In this we have bridged together the two MAs with an adaptive parameter

control. The span of TSP instances increases from small-scale to medium-scale

instances. The algorithm is also compared with state-of-the art algorithms to show

the comparative performance.

In Chapter 6, we give a Nearest Neighbour Sequence Based Memetic Algorithm

with Elite Population Inver Over for the TSP, which is a further extension of the

above approaches. In this study, we also investigate the performance of SBMA+IO
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Chapter 1. Introduction

with LS techniques for solving the TSP. We describe some factors that improve the

quality of solutions to TSP. This approach suffers from randomness, i.e., sequences

may contain long edges when the sequence size is large. To overcome the drawback

of the above approach, initially sequences/sub-tours are constructed with the help

of the nearest neighbour approach. In this approach
√
n random nodes are first

selected and then from the NN-list,
√
n nodes are selected which are almost near to

each other and which are then optimized with 2-Opt for a few generations. Another

concept which was missing in the approach mentioned in Chapter 5 is that, after re-

ducing the size of the sequence, no optimization of sequences was considered; here,

after the sequence size changes, it is further optimized with 2-Opt. Secondly, we

forced the IO to get the clue only from the elite population of the MA, because fit

individuals are composed of gene fragments or good edges. We should mention that

our approach gets better results than Iterated Local Search with advance 3-Opt, not

only in quality but also in less time. When compared to ILS our technique only car-

ries out optimization on less than
√
n nodes. Experimental results of the sensitivity

analysis of key parameters also reveal that reducing the size of sequences not only

reduces time but also contributes in giving good quality tours. This technique is

represented as “A Guided Two-Phase Hybrid Algorithm for the Travelling Salesman

Problem (GTPHA)”.

Moving away from static to dynamic TSP, in Chapter 7, we focus our attention

on how to extend the SBMA+IO to the DTSP. In this chapter, we present how

the current approach is suited to DTSP. The framework of the static algorithm

is extended to the dynamic version. The dynamic framework is experimentally

validated using several benchmarks created from TSP instances, with the number of

nodes ranging from 150 to 724. The experimental analysis shows that the first phase

achieves fast convergence and then the algorithm enters the second phase where the

guided IO also explores the search space. The integration of the elite population

and the rotating gene pool approaches makes the behaviour more intelligent.

Finally, Chapter 8 summarizes this thesis by describing the major outcomes of the
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Chapter 1. Introduction

study, such as the contributions made from the research for solving the TSP and

dynamic TSP. It also gives some ideas about possible directions for future research.

13



Chapter 2

Combinatorial Optimization and

Evolutionary Algorithms

Optimization is the process of finding the best possible solution(s) to a problem. In

mathematics, this often consists of maximizing or minimizing the value of a certain

function, perhaps subject to some given constraints. In this world, the one and only

primary effort is the search for a favorable and desirable state. Every individual

who exists is striving for perfection in every span of life to get a maximum degree of

benefits with less effort. In our routine life, everyone cherishes a desire in economy;

that profit and sales must be maximized, and costs should be as low as possible.

Therefore, optimization is one of the oldest sciences, and this reaches into our daily

life.

The main goal of optimization is to find a solution to a given problem, which min-

imizes or maximizes some measure of “goodness”. In general, if we have a fitness

function, f : X → R over some closed domain X, the goal of optimization is to find

a value of x∗ ∈ X which minimizes (or maximizes) the value of f . Such a value of

x∗ is called a global optimum of the entire search space. In a more general form, if

we have an optimization problem at hand, then x∗ ∈ X is the minimum if and only

if f(x∗) 6 f(x), ∀ x ∈ X; similarly, x∗ ∈ X is maximum if and only if f(x∗) > f(x),
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∀ x ∈ X. It is notable that there is no efficient algorithm to solve the problem of

global optimization in the combinatorial domain [81].

In general, global optimization algorithms can be classified into two basic classes:

deterministic and probabilistic algorithms, and further each class can be classified

in subclasses as shown in Figure 2.1.

According to [144], deterministic algorithms are widely used if there is a clear relation

between the characteristics of possible solutions and their effect on the objective

value, or there is a simple way in which all solutions can be evaluated. Then the

search space can be efficiently explored using, for example, a divide-and-conquer

scheme.

However, it becomes very difficult for a deterministic algorithm when the relation

between a candidate solution and its fitness is not clear, or the neighborhood and

the dimensionality of the search space is complex. In such cases it turns out to

be harder to solve a problem deterministically. Attempting a deterministic solution

would often result in exhaustive enumeration of the search space, which is not feasible

even for relatively small problems, and for large problems the size of the search space

increases exponentially [144].

Probabilistic methods can be used when the search space is gigantic (having a huge

number of local optima, or the fitness landscape is very complex) or the dimension-

ality of the search space is very high. These methods are used to obtain optimal or

near-optimal solutions within reasonable time by not doing an exhaustive search like

exact algorithms but making guesses that hopefully lead to better solutions. One

of the drawbacks of probabilistic algorithms is that, while having a shorter runtime,

they cannot guarantee finding the optimal solution. This does not mean that the

result obtained by using a probabilistic algorithm is incorrect, but that it can be

inferior or have cost slightly above the cost of the global optimum [144].
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Figure 2.1: Taxonomy of global optimization algorithms, hierarchical diagram
of various deterministic and probabilistic heuristic and meta-heuristic techniques

[144].

In many situations, probabilistic algorithms have the upper hand over deterministic

algorithms due to the properties of straightforwardness and ease of use for finding

good solutions in a complicated search space [144].
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In [99, 114], heuristics as used in global optimization are functions that aid in de-

ciding which one of a set of possible solutions is to be examined next. Heuristics

can be used by both deterministic as well as probabilistic algorithms. Deterministic

algorithms normally utilize heuristics in order to define the processing order of the

solution candidates. Probabilistic approaches, on the other hand, may only consider

those elements of the search space in computations that have been favoured by the

heuristic.

The heuristic comes within the category of optimization algorithms. It uses the

information currently gathered by the algorithm and based on this knowledge base,

it helps the algorithm to decide which solution candidate should be tested next or

how the next individual can be produced. Heuristics are usually dependent on the

problem class.

A meta-heuristic is a heuristic method for solving a very general class of problems.

It integrates objective functions or heuristics in an expectantly productive way to

yield better solutions in short time. Meta-heuristic often works on population-based

techniques. These techniques use a pattern of some natural phenomenon or physical

procedure as heuristic function. For example, simulated annealing determines which

solution candidate is to be evaluated according to the Boltzmann probability factor

of atom configurations of solidifying metal melts. Evolutionary algorithms mimic

the behaviour of natural evolution and deal with solution candidates as individuals

which strive in a virtual environment [144].

In principle, all the probabilistic optimization algorithms that we consider for the

process of optimization as well as some of the deterministic ones come in the category

of meta-heuristics. An important class of probabilistic algoriothms is the class of

Monte Carlo methods, which are a class of computational algorithms that deal with

random estimations, and most stochastic schemes are included in this approach. In

addition to this, the role of heuristics and meta-heuristics is very prominent in almost

all probabilistic algorithms, which on the one hand use the up-to-date information
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or intelligent steps based on experience and learning for creating a new candidate

solution which is hopefully better than the previous one, but on the other hand decide

which decisions should be fruitful for the other candidate solutions. In general, the

approaches which have been mentioned above can use feedback information achieved

from samples in the search space. Usually, they use some abstract models from

natural phenomena. The most important methods are simulated annealing (SA)

and the evolutionary algorithms(EAs) [144].

2.1 Combinatorial Optimization Problems (COPs)

COPs exist in the domains of computer science and other disciplines in which com-

putational techniques are applied [70, 81, 95]. Some of the practical applications

are in the fields of management science, biology, chemistry, physics, engineering

and (especially) computer science. These problems/fields involve finding groupings,

ordering, and assignments of a discrete, finite set of objects that satisfy certain con-

ditions or constraints. The majority of these problems are complex and very hard

to solve. The search space of these problems is usually gigantic, and they do not

reasonably have any helpful mathematical formulation. When solving a combinato-

rial optimization problem, the set of candidate solutions can grow exponentially as

the problem size grows, so that a simple enumeration scheme or algorithm quickly

becomes impractical. The simplest approach for finding the optimal solution to a

COP is to evaluate all the possible solutions, which leads to a kind of exhaustive

search procedure; but, as mentioned above, this is impractical.

There are two ways to find optimum solutions as mentioned above, one of which is

guaranteed and the other not guaranteed. To get guaranteed optimum solutions,

exact methods are used. Exact methods find an optimal solution but are often

time-consuming or computationally expensive. Then other approaches which give

(near) optimal solutions to the optimization problem in reasonable time are heuristic
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methods. As compared to exact methods, heuristic methods do not guarantee to find

an optimum solution, nor do they generally provide a guarantee of finding optimal

values within a certain range.

Heuristic methods with no doubt are of great importance since they can give high-

quality solutions in a reasonable time. These methods are applied on a wide range of

problems. These heuristics can often be modified to account for changes in problems,

and further constraints added to the problem. As exact methods are problematic by

nature regarding the size of the combinatorial space, exact methods are not often

used as an alternative to heuristics.

2.2 Classification and Examples of COPs

COPs can be classified into at least four classes. For each class, some well-known

problems are given [147]:

Assignment Problems: The examples which come under this class include the lin-

ear and quadratic assignment problems and the timetabling problem in which

the assignment of teachers to subjects, students and rooms is involved.

Ordering Problems: The travelling salesman problem (TSP), the linear ordering

problem, the Chinese postman problem, and scheduling problems come in this

category.

Partitioning Problem: The examples in this class include graph partitioning and

the number partitioning problem.

Subset Selection Problem: The knapsack problem, the set partitioning problem,

the set covering problem, the graph bi-partitioning problem and the maximum

cut problem belong to this class of problems.
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It is worth mentioning here that some of the problems fall in more than one class.

One such example is the vehicle routing problem, which is the combination of or-

dering and partitioning problems.

2.3 Natural Evolution

The term evolution can better be defined as a gradual process in which something

changes into a different and (usually) more complex or better form. From the biolog-

ical point of view, evolution is the change in the genetic composition of a population

during successive generations as a result of natural selection acting on the genetic

variation among individuals and resulting in the development of new species [133].

The root of Evolutionary Computation (EC) is strongly linked with Darwin’s theory

of evolution, which is commonly called “Darwinism” [27]. In 1859, Charles Darwin

presented his theory in his book “Origin of Species”. According to his theory, the

concept of evolution is based on three fundamental concepts, which are:

• replication.

• variation.

• natural selection.

As new life is produced from life in the form of replicas by the process of replication,

new offspring are produced which are identical. However, due to changes or muta-

tion (sudden genetic change) during the replication process, a kind of variation is

introduced that leads to the gradual development of new organisms. Another form

of variation results from sexual recombination, in which different genetic materials

from both the parents are participating [132]. Now the resources of the environment

are limited; so, the replication process cannot go infinitely. Individuals of the same

or other species have to compete with each other, and normally only the fittest will
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survive. Thus natural evolution implicitly causes the adaptation of life forms to

their environment since the fittest have a better chance to reproduce. This is called

the “survival of the fittest”.

In [95] it has been mentioned that the natural evolutionary process is a stream

of the huge optimization process as well as dynamic, in which the fitness of the

individuals is maximized with the passage of time and also with their relation to the

environment. In addition, in terms of transferring information from one generation

to the next generation, natural evolution can be regarded as a huge information-

processing system. Every organism possesses huge genetic information, which is

referred as a genotype (the genetic make-up of an organism or group of organisms

concerning a single trait, set of traits, or an entire complex set of traits). The

organism’s traits, which are developed with the passage of time as the organisms

grow up, constitute the phenotype (the appearance of an organism resulting from the

interaction of the genotype and the environment). The genetic information is passed

from one generation to another generation, and the organism can be regarded as the

mortal survival machines of the potentially immortal genetic information. During

the phase of replication, it is combined with variation, which allows the improvement

of genetic information. The natural selection process implicitly evaluates the fitness

of each individual who is indirectly the result of the genetic set-up as well.

2.4 Genetics

Genetics is the branch of biology that deals with heredity, especially the mecha-

nisms of hereditary transmission and the variation of inherited traits among similar

or related organisms [66, 133]. The cell is the basic unit of life. All living things are

composed of cells, inside which there are many substances such as the fluid, called

cytoplasm, in which other cell bodies are contained, and cell centrioles, which con-

trols spindle fibres during the cell division, etc. But the most important structure of
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a cell is the nucleus which contains all the heredity materials, called chromosomes.

Chromosomes are further composed of double spiral like structures, called Deoxyribo

Nucleic Acid (DNA) [139, 143]. The chromosome serves as the mapping1 informa-

tion for an organism. It is also called the “blueprint” or “construction plan”. The

chromosome is further divided into genes. Genes are the biological unit of heredity.

Each gene is located at a particular location in the chromosomes which is called the

locus. In general, we can think that gene is a kind of encoding trait such as colour,

etc. The different (two or more) alternative forms of a gene at the same site in a

chromosome, which determines alternative characters in inheritance, are called alle-

les. Majorities of complex organisms are composed of more than one chromosome in

each cell, e.g., in human beings the numbers of chromosomes are 46. The collection

of chromosomes together is called the genome. A genome is all of a living thing’s

genetic material. It is the entire set of hereditary instructions for building, running,

and maintaining an organism and passing life on to the next generation. In short,

the genome is divided into chromosomes. Chromosomes contain genes and genes are

made of DNA.

There are two types of reproductions or cell divisions found in nature, which are

the asexual reproduction “Mitosis”2 and sexual reproduction “Meiosis”3 [130]. In

Mitosis or asexual reproduction, an organism reproduces itself by cell division and

the chromosomes are replicated. Mutation occurs during this process in which one

or more alleles of genes are changed. Some genes are deleted or they are re-inserted

in another loci within the chromosomes. The other form of cell division is sexual

reproduction, in which genes are exchanged between the chromosomes of two parents

to form a new set of chromosomes. This type of recombination can be thought of

as crossing over of the chromosomes. The fitness of an organism is defined as the

1Mapping is the procedure of building a representative sketch cataloguing the genes and other
features of a chromosome and showing their relative locations.

2Mitosis is a cellular process that replicates chromosomes and produces two identical nuclei in
preparation for cell division. Generally, mitosis is immediately followed by the equal division of
the cell nuclei and other cell contents into two daughter cells.

3Meiosis is the formation of egg and sperm cells. In sexually reproducing organisms, body cells
are diploid, meaning they contain two sets of chromosomes (one set from each parent).
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probability or the capability of living, developing, or germinating under favourable

conditions to reproduce, called viability. Furthermore, the birth-rate of a population,

defined as the number of offspring produced by an organism, is also termed as

fertility.

The genetic changes which occur during mutation or recombination cannot be pre-

dicted due to the effects of gene interaction which is called epistasis. In simpler

terms, epistasis is the interaction between non-allelic genes, especially an interac-

tion in which one gene suppresses the expression of another. Pleiotropy occurs when

a single gene influences multiple phenotypic traits. Consequently, a new mutation

in the gene may affect some or all traits simultaneously. This can become a problem

when selection on one trait favours one specific version of the gene (allele), while the

selection on the other trait favours another allele. When a single phenotypic trait

is influenced by the interaction of multiple genes, it is called polygeny. Table 2.1

presents a brief overview of some of the terminology borrowed from biology and used

in EC.

Biological Terms EC meaning

Chromosomes String of symbols.
Population A set of Chromosomes.
Deme A local population of closely related chromosomes,

a subset of the total population.
Gene A feature, character or detector.
Allele Feature value.
Locus A position in a Chromosome.
Genotype Structure.
Phenotype A set of parameters,

an alternative solution or a decoded structure.

Table 2.1: A summary of biological terms used within EC [130].
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2.5 Brief History of Evolutionary Computation

(EC)

Evolutionary algorithms are designed to mimic the performance of biological sys-

tems. The history of EC can be dated back to the 1940s [41]. In 1948, Turing

proposed a kind of “genetical or evolutionary search” [36]. In 1962, Bremermann

had actually performed some experiments on optimization by using the technique

of evolution and recombination. The real birth of EC started in the 1960s at the

Technical University of Berlin [95], where Rechenberg et al. invented Evolution

Strategies (ESs) [122]. In this approach, they optimized the real-valued parame-

ters for devices such as air-foils. The main focus of ESs was on the optimization

of continuous parameters. The idea of ESs was further enhanced by Schwefel and

is still one of the hot areas of research [128]. Originally, ES comprised recombina-

tion and mutation on a two-member population. Later, it was extended to allow

more than two members in the population. The current ES includes multi-parent

recombination and self-adaptation of parameters.

In the same era another technique, called Evolutionary Programming (EP), was

developed by Fogel, Owens, and Walsh [39]. Initially, EP was proposed for sequence

prediction and producing suitable responses in the light of a given goal. For EP,

it was argued that mutation should be the sole breeding mechanism. EP is one of

the old EC fields, and it was used to evolve individuals in the form of finite-state

machines or finite-state automata (FSA). ES and EP have many things in common.

Genetic algorithms (GAs) were invented by Holland [68] at the University of Michi-

gan in the 1970s. GAs are search-based methods that make use of processes found

in natural and biological evolution. Holland provided a theoretical framework for

adaptation under GAs. GAs search or operate on a given population (a set of can-

didate solutions) to find those that satisfy some predefined criteria. To accomplish

this goal, the algorithm applies the principle of survival of the fittest to find better
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and better approximations. At each step of the GA, a new set of approximations

is created by the process of selecting individuals (potential solutions) according to

some selection criteria and breeding them together using operators borrowed from

Genetics. This process leads to the evolution of a population of individuals that

is better suited to its environment than the individuals which had been created,

i.e., the previous population, just as in the natural adaptation process. GAs in

general make use of three fundamental genetic operations: selection, crossover and

mutation. The pseudo-code of the standard GA is shown in Algorithm 1 and the

flowchart [63] of the standard GA is shown in Figure 2.2.

Algorithm 1 The Simple Genetic Algorithm

1: Initialize: Generate an initial population;
2: while ( Stopping conditions are not satisfied ) do
3: Select set of individuals in the population;
4: Do Crossover and Mutation;
5: end while

Figure 2.2: Flow chart of a simple genetic algorithm (SGA) [36, 63].

As mentioned above, GAs are a class of search and optimization techniques that

work on the principles inspired by nature: “Darwinian Evolution”. It is now well

established in the literature that pure GAs are not well suited for fine tuning search in

complex combinatorial spaces and that hybridization, together with other techniques

can greatly improve the search efficiency of GAs [80]. This technique of combining

GAs with Local Search (LS) give rise to “Memetic Algorithms” (MAs). MAs are
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Figure 2.3: Working of a GA, showing how the population is moving towards
the optimum.

extensions of GAs which apply separate processes that are additional local search

techniques to refine individuals [80, 95]. According to Krasnoger and Smith, from

the optimization point of view, MAs are more efficient, i.e., they take fewer iterations

and evaluations to find optima and are effective and give better solution quality than

traditional GAs for some problem domains [80], as they embed the domain specific

knowledge while (in contrast) GAs are totally blind techniques. As a result, MAs are

gaining a wide acceptance, for solving known combinatorial optimization problems.

So, for a wide variety of issues, MAs can show better results than traditional GAs.

On the other hand, the design of incompetent MAs raises important issues which

need to be investigated in order to see what new insights can be gained [80].

It is worthwhile mentioning here that Moscato, inspired by both Darwinian principles

of natural evolution and the Dawkins notion of a meme, first introduced the term

“Memetic Algorithm” (MA) in his technical report [93] in 1989. The term “meme”

was defined by Dawkins [28] in 1976 as “the basic unit of cultural transmission, or

imitation”, as Dawkins said in [28]:

“Examples of memes are tunes, ideas, catch-phrases, clothes fashions,

ways of making pots or of building arches. Just as genes propagate them-

selves in the gene pool by leaping from body to body via sperms or eggs,
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so memes propagate themselves in the meme pool by leaping from brain

to brain via a process which, in the broad sense, can be called imitation.”

Memetic algorithms can be classified into three main categories. According to

Merz [95], the first category is the combination of genetic algorithm and local search

techniques; the second category is called multi-meme; according to Krasnoger [79]

the memetic material is accompanied by genotype, Kendall et al. gives the idea of

Hyper-heuristic [77] and Ong and Keane reported Meta-Lamarckian MA in [108],

where the set of multiple candidate memes is considered and will compete based on

the performance in previous generations or cycles. Here a kind of reward and penalty

mechanisms is considered looking at which memes do well on which situation. Fi-

nally, in the third category, Smith in [131] gives the concept of a meta-heuristic

search algorithm in which a rule-based representation of local search is co-adapted

together with candidate solutions within the hybrid evolutionary system; this is also

called Co-evolution [67, 112].

The pseudo code of a memetic algorithm is given in Algorithm 2, and a flowchart is

given in Figure 2.4.

Algorithm 2 Procedure Memetic Algorithm

1: Initialize: Generate an initial population;
2: Apply LocalSearch(individual) to population to make it locally optimal;
3: while (Stopping conditions are not satisfied) do
4: Select set of individuals in the population;
5: Do Crossover and Mutation;
6: Apply LocalSearch(individual) to population to make it locally optimal;
7: end while

2.6 The Framework of Genetic Algorithms (GAs)

As the history of this area shows, there are many different variants of evolutionary

algorithms. The main idea behind all these techniques is a common one, however.
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Figure 2.4: Flow Chart of Simple Memetic Algorithm [63]

First, a candidate set of solutions or individuals are provided to the EA or GA, which

is called a population. The individuals in the population are decoded or evaluated

according to a fitness function specified for the given problem. The fitness function is

the main part of the EA; this is also called the objective function. For recombination

and mutation, candidates are selected to compete for the next generation based on

better fitness values. Recombination or crossover is a variation operator applied to

two or more selected candidates (called parents) and results in newer candidates

(called children). Further, another variation operator, mutation, is applied to one or

more candidates and results in new candidates. Individuals are then selected for the

new generation. This process is repeated until a candidate with sufficient quality

is found or the process is terminated using the pre-defined criteria. The typical

procedure of EAs is illustrated in Figure 2.3. The two driving forces of EAs are:

• Variation operators (Crossover and mutation) which produce the necessary

diversity and therefore facilitate newness.

• Selection criteria which act as a kind of force pushing quality. There are

two main selection criteria: one is the selection for variation, which selects

individuals for variation operators, and the second one is selection for survival

in which the EA decides which individuals will go for the new generation.
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2.6.1 Fundamental Components of Evolutionary Algorithm

Modern EAs or GAs can be composed of many of components, procedures and op-

erators. The most basic and important components which form the main framework

of EAs are given below:

1. Chromosomal Representation (real-world problem to the EA world problem.)

2. Initialization.

3. Evaluation function (commonly known as the fitness function /objective func-

tion).

4. Population set of candidate solutions.

5. Selection.

(a) Selection for variation.

(b) Selection for survival.

6. Variation operators, recombination and mutation.

7. Termination condition.

2.6.2 Chromosomal Representation

Before a genetic algorithm can be put to work on any problem, a method is needed to

encode potential solutions to that problem in a form that a computer can process.

In this step, the EA links the “real world” to the “EA world”. This can encode

the appearance, behaviour, and physical qualities of an individual. The following

approaches are in use [130]. The representation of chromosome varies from problem

to problem, but some of the common representations of chromosomes are given in

Table.2.2.
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1. Encoding solutions as binary string sequences of 1′s and 0′s where the digit at

each position represents the value of some aspect of the solution.

2. Encoding solutions as arrays of integers or decimal numbers, allowing for

greater precision and complexity than the comparatively restricted method

of binary numbers.

3. Representing individuals in a GA as strings of letters where each letter again

stands for a specific aspect of the solution.

Chromosomes could be:

Chromosomes Representation

Bit strings (0101, . . . ,1100)
Real numbers (43.2, 33.1,. . . ,0.0 , 89.2)
Permutations of an element (E11, E3, E7, . . . ,E1, E15)
Lists of rules (R1, R2, R3,. . . ,R22, R23)
Tree (Genetic Programming)
Any Data Structure (Depending on the problem)

Table 2.2: Various representations of problems into EA chromosomes.

2.6.3 Evaluation Function

The evaluation function is the objective function which quantifies the optimality

of a solution. This is commonly called the fitness function. The fitness function

is the most vital part of an EA. The fitness function measures assigned quality or

improvement to a genotype. So, for any problem, the fitness function has to be

defined individually. The fitness function ranks the individuals against each other.

On the basis of this fitness function, optimal chromosomes (or, at least chromosomes

which are better) are selected for breeding in the hope that the new generated

chromosome should be better.
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2.6.4 Population Initialization

The initialization of population is a process which provides a set of chromosomes

(potential solutions) to the EA cycle. There are two issues to be considered for

the initialization process; one is population size and the other is the procedure for

initializing the population. It is common that the length of time increases with the

population size when the length of chromosome/problem increases. Recent literature

shows that better results are largely dependent on the size of population. It has been

observed that satisfactory results can be obtained with a small population size with

less time, but the population suffers from premature convergence. On the other

hand, a large population can be more useful, but it is computationally expensive.

So, to keep the balance between time and the quality of solutions deciding the

population size is a crucial point. The population can be initialized in two different

ways. The first one is heuristic initialization and second one is random initialization.

For providing a good start to the EA, problem specific heuristics are employed for

higher fitness. One of the issues which is linked with heuristic initialization is that it

explores a small part of the solution space, i.e., individuals are almost identical and

lack diversity. On the other hand, random individual initialization is more diverse

as compared to the prior approach.

2.6.5 Population

The main role of the population is to represent the potential solutions to a problem.

The population in this sense forms the unit of the evolutionary process. In EAs the

population is the multi-set of genotypes or individuals. The individual itself is a

static entity; it doesn’t change or adapt but it interacts with the other members of

population and goes on doing so. For EAs the size of population is established in

advance. The other core operations of EAs such as selection and variation operators,

work at the population level. In general, the EAs take the whole population into ac-

count and different choices are made relative to it. For example, the best (or better)
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individuals are used to seed the next generation, in addition the worst individuals

are replaced by new ones which are good in fitness quality. There are many issues

linked with the population for the better performance of an EA, such as population

size, how the EA would be affected by choosing large and small population and how

the population is initialized, (i.e., a random one or heuristic based). The key factor

is that the population is diverse enough. There is no single measure for diversity

in the literature; however, to answer this question briefly, people might refer to the

variation in the fitness of the individuals within the population, or the number of

genotypes, or number of different phenotypes present.

2.6.6 Selection

There are two types of selections, one is the selection for variation and the other

is the selection for survival. The role of the first one is that parents are selected

for mating in sets, which is called mating pool. In this scheme, potentially good

parents are selected based on their fitness quality. It has been done in the sense that

good parents should result in good children for the next generation. The latter one

is sometime also called replacement. Survival selection mechanisms are responsible

for pushing quality improvements. In this scheme newly generated offspring replace

some (or all) the parents.

As mentioned above there are in general two forms of selections, one is for variation

and one is for survival [95]. In the first one, individuals are selected for crossover

and mutation; in the latter, the EA decides which individuals would go for the next

generation. The latter is also called replacement, in which the EAs replace a few or

all parents using by some pre-defined criteria. Some of the common ones are given

below:

Fitness Proportionate Selection can be also known as the roulette wheel sampling

[49]. This scheme works like spinning a roulette wheel of Casino, in which everyone
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has a roulette wheel slot sized in proportion to its fitness, i.e., the greater the fitness

the larger the chance of selection (and vice-versa.)

Rank Based Selection is another form of sampling [12]. In this kind of sampling it

first ranks individuals by their fitness and further uses that ranking to determine

the selection probability. In linear ranking, individuals are initially sorted according

to their fitness values; in this the top individual is the worst one and the last one is

the best one. One of the drawbacks of the fitness proportionate selection problem is

when the variance is decreased among the individuals of the population; the selection

then becomes purely random. For this issue, rank based selection has been used for

keeping the selection pressure constant and also independent of the variance of the

fitness values. In this model, the probability of selecting an individual si is given by

the following formula:

P (si) = pmax − (pmax − pmin)(
i− 1

n− 1
) (2.1)

Here n is the size of the total population and pmax, pmin are the maximum and

minimum selection probability respectively.

Tournament selection is a sampling technique [16, 50] where in each step, k indi-

viduals from the population are selected randomly, (independent of the fitness of

the individual) and the best out of the k is selected. The number k is called the

tournament size. The process is repeated m times for selecting m individuals. This

scheme is easily implemented. Other schemes for selection are Stochastic Universal

Sampling [13], which provides zero bias and minimum spread, and Truncation Selec-

tion [16, 103], which is a kind of artificial selection method. which is used when the

population size is very large (in this scheme individuals used for forming the next

generation are formed by breeding only the best individuals in the population).

The strategies for the Selection for Survival are given below.
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Generational Replacement: In this replacement scheme, all the parents are re-

placed by their offspring. This method has remained in common use for genetic

algorithms (along with the fitness proportionate selection to enforce the selec-

tion pressure).

Steady State Selection: In this replacement scheme, not all of the parents are

replaced unlike the above strategy [137]; only the worst (or old) parents are

replaced.

(µ, λ) In this scheme µ parents are replaced by the best λ offspring. Using this

criterion, the EA produces more children in each reproduction step if λ ≥ µ.

The selection pressure can be increased by generating more offspring.

(µ+ λ) In this scheme, µ members of the new population are selected from the

sorted list of the temporary population composed of µ parents and λ children.

Some other selection strategies are elitism [71] based and duplicate checking [38], in

which identical individuals are not selected common to their parent.

2.6.7 Variation Operators

Variation operators in GAs are responsible for producing new individuals from old

ones. In the analogous phenotype space, the variation operators are used to gen-

erate new candidate solutions. In the perspective of generation and test, variation

operators perform the generation step in EAs. It is not necessary that the newly

generated individuals will be always better than the previous one in general. Vari-

ation operators in EAs can be classified based on the arity. A unary arity operator

is commonly known as the mutation and a binary arity operator is a recombination

operator.
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2.6.7.1 Mutation

In biology, a mutation operation occurs when a DNA gene is damaged or changed in

such a way so as to alter the genetic message carried by that gene. In the scenario of

EAs, mutation is a procedure which is applied to one genotype and slightly modifies

the mutant to generate a child or offspring. It is a stochastic operator. It results in a

child who is the outcome of some random choice or a series of random choices. It is

worth noting that an arbitrary unary operator is not necessarily seen as a mutation

operator. Some problem-specific heuristic operator acting on one individual could

also be termed as unary. However, the mutation operator can be considered as to

simply cause random, un-biased change. The job of mutation is different in various

approaches. For example, in genetic programming (GP), there is no concept of

mutation, but, in the GA, mutation is considered as one of the key operators that

gives a new direction to GA for exploring the more diverse region of the search space.

An example of mutation is diagrammatically shown in Figure 2.5.

Figure 2.5: An illustration of a mutation operator (Displacement and Ex-
change).
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2.6.7.2 Recombination

Recombination is a binary variation operator which is sometime also called crossover.

As the name indicates, this operator merges information from two parents genotype

into a single or two offspring genotypes. Like mutation, crossover is stochastic;

the choice of which parts of each parent are merged and the way they are merged

together is totally random. It is also worth mentioning that recombination operators

with a higher arity are mathematically possible and easy to implement, but they are

not common from a biological point of view. This is why they are not commonly

used but research shows that they can have a fruitful impact on the evolution. The

key idea behind the crossover is quite straight forward; by mating two individuals

with different but desirable features, we can get both features. This principle has a

very strong supportive case from the biological perspective, i.e., for higher yields or

other desirable features, selective individuals are bred together. The PMX crossover

operator is illustrated in Figure 2.6. EAs in the evolutionary process create a number

of offspring with different fitness quality, i.e., better and worse. Biologists suggests

that recombination is the most superior form of reproduction, and higher organisms

reproduce sexually as compared to basic organisms, which reproduce asexually.

2.6.8 Termination Condition

EAs are stochastic and there is generally no guarantee that we will reach an optimum,

hence this terminating condition is not satisfied at all and the algorithm suffers from

an infinite execution of the evolutionary process. Some commonly used options for

ensuring termination are the following:

1. The maximum allowed CPU time elapses.

2. The number of fitness evaluations reaches a given limit.
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Figure 2.6: An illustration of Recombination/Crossover (PMX) and repairing.

3. The fitness of the individuals is not improving for some specified number of

generations.

4. The population diversity drops under a given threshold.

5. The disjunction of the optimum value being hit or some other condition x

being satisfied (although in case of no known optimum, there is no need for

the disjunction).

2.7 Hybridizing EAs with Other Heuristics

The term hybridization is the extension of EAs towards the local-searchers [81]. As

mentioned above local-search is an algorithm such as gradient descent or random

hill-climbing which searches only for a local optimum. These methods are not meant

to do any sort of global optimization, they leave that issue to the population and the

conventional genetic operators. The only support which the local search provides

37



Chapter 2.Combinatorial Optimization and Evolutionary Algorithms

to the global optimization process is that, after the crossover and mutation, the

local search further improves the fitness to the local optima, which are then used

for the selection steps. The common view we take is that global optimization is

complemented by local refinement operators. So we expect that the EA, with its

diverse population and recombination operators, can perform global sampling over

the entire search space in a better way.

The performance of a genetic algorithm on any global optimization algorithm de-

pends on two conflicting objectives exploration and exploitation. The genetic algo-

rithm can combine both exploration and exploitation in an optimal way. One of the

advantages of the genetic algorithm is that it can swiftly find the regions in which

the global optimum exists, but GAs take relatively longer time to locate the exact

local optimum in the region of convergence. So, when GAs are hybridized with local

search methods this can speed up the search process by locating the exact optimum.

In this hybrid technique, local search is applied to the solutions that guide the ge-

netic algorithm to the most promising regions and this accelerates the convergence

of the GAs. GAs are random search-based techniques which do not employ or embed

problem specific knowledge. Incorporating local search methods can also reduce the

time needed to reach a global optimum by using domain-specific knowledge [63].

It is not expected in a local search that we search for a large portion of the search

space. However, the immediate potential benefit which is offered by the local search

is that it improves the quality of the candidate solutions, i.e., making the population

(to some extent) locally optimal. So an EA is likely better served by the values at

the local optima than it is by values at random points. One other reason that a

local search can help is that EAs are not efficient hill-climbers [81].

As mentioned above, there are many advantages that can be obtained by incorporat-

ing the global search of EAs into local searching or other approaches for progressing

and refining the population. There are some factors that motivate the hybridization

of EAs into other techniques [63, 80].
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1. Domain-specific knowledge can be incorporated into the “greedy and blind”

variation operators of EAs. It is also possible to use this knowledge to define

local search operators or existing solution improvement techniques within an

EA.

2. One common view is that there are no successful and efficient all-purpose

“Black-box” optimization problem solvers, and empirical evidence and some

theoretical studies such as the No Free Lunch (NFL) theorem [148] strongly

support this view. From the perspective of Evolutionary Computation (EC),

this shows that EAs are not the holy grail for a global search. Experience sug-

gests that making EAs competent needs the incorporation of domain-specific-

knowledge techniques.

3. In practice, EAs are very good for exploration by identifying good areas of

the search space, but they are blunt for refining near optimal solutions,i.e.,

exploitation. From an optimization point of view hybrid-GAs have shown

that they are more accurate than traditional GAs for some problem domains

such as continuous domains and combinatorial domain. It is also argued that

the success of hybrid GAs is due to the trade-off between the exploration

ability of GAs and the exploitation ability of local search. The only outcome

is more fitness evaluation as compared to GAs and loss of diversity within the

population [80].

4. In general, with constraints associated with problems, local search and other

heuristics can be used as a means of repairing infeasible solutions generated

by standard variation operators. Here designing constrained oriented local

search is often considerably simpler and more advantageous as opposed to

trying to find a specialized crossover and mutation operators, which ensures

the feasibility of all offspring.

5. The base motivation for hybridization is Dawkins’ concept of “memes” [28].

Memes can be regarded as units of “Cultural transmission” in analogy with
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genes as the units of biological transmission. Examples of Memes are tunes,

ideas, catch-phrases, clothing fashions, ways of making pots or of building

arches. It is just like genes propagating themselves in the gene pool by trans-

ferring from one body to another body via heredity material in sperm and

eggs. In the same way, Memes propagate, themselves in the Meme pool by

passing on from brain to brain via a process which is called Imitation.

6. Genetic algorithms with local search can help to overcome most of the issues

that arise as a result of finite population. Local search introduces new genes

which can help to combat the genetic drift problem which is caused by the

accumulation of stochastic errors due to finite population [37]. We can also

speed up the search towards the global optimum by increasing the convergence

rate to make it large enough to obstruct the genetic drift issue [8].

7. As discussed in [37], the Parallel Recombination Simulated Annealing (PRSA)

[91] algorithm attempts to prevent the genetic drift problem by combining the

idea of a cooling schedule of Simulated Annealing [78], Boltzman tournament

selection [90] and the genetic operators, e.g., crossover and mutation.

8. Stand-alone genetic algorithms produce low-quality solutions when the size of

population is finite or limited. It is difficult for the operators of the GA to

find the best solution in good regions, because of the inability to make small

moves in the neighbourhood of current solutions. With local search, the GA

can improve the exploiting ability of the search algorithm without affecting the

exploring ability. While designing competent local search, the right balance

between exploration and exploitation capabilities, which are two conflicting

objectives, can be achieved and algorithm can produce high-quality solutions

[58].

9. Genetic algorithm can locate the regions in which the global optima exist

but take a long time to locate exact local optima in the region of convergence

when the problem size is increased. A combination of local search can speed up
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the search to locate the exact global optimum by guiding the GA to explore

the good regions. This reduces the time needed for the GA to reach exact

global optima; also, when local knowledge is used, it accelerates the process of

locating the most promising search regions [119].

10. For solving real-world problems, stand-alone GAs are unable to fine-tune the

control parameters. As discussed in [37], the search ability of GAs is strongly

influenced by the control parameters in solving real-world problems due to the

detrimental influence that wrong parameter settings can have on the trade-off

between exploitation and exploration. Good parameter settings can succeed

in finding a near optimal solution in an efficient way. The problem of choosing

the correct parameters is a time-consuming task. In addition, the use of fixed

parameters does not match the evolutionary spirit of GAs. For this reason,

adaptive local search techniques can be utilized to set the values of these

parameters whilst the search is progressing and the behaviour of the population

is changing [10, 35].

11. The issue of premature convergence can further be controlled with hybridized

GAs. Genetic algorithms may sample bad representatives of a good search

region and good representatives of bad regions due to the limited size of the

population. A local search can ensure balanced representation of the diverse

and different search areas by sampling their local optima; this can reduce the

premature convergence possibility up to some extent.

12. An additional approach which has been inspired by nature for addressing COPs

apart from EC models is the Ant Colony System [30–32]. In Ant Colony Op-

timisation (ACO) a sort of ant system has been developed, which works on

an effective way of finding the shortest path from their nest to a food source

or any marked positions without using visual knowledge. In ACO systems,

while seeking the food, ants deposit pheromones on the surface and follow,

with high probability, the pheromones which have been deposited by earlier
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ants (this means that paths are more likely to be followed if they have been

used by many other ants as well). The ant system operates by ants guessing a

path to a single food source. If there is more than one way to reach the food

source, initially equal probability is given for an ant to choose any path. If

more ants visit the shortest path on average, the maximum level of pheromone

accumulates as they use paths with approximately the same speed. Now if a

new ant arrives at that location and decides which path should be followed

among different paths, it prefers to choose the shorter path with higher prob-

ability, i.e., highly accumulated pheromone level. In ACO systems, a solution

for solving a problem is made by a kind of agent (virtual ant), which uses the

outcome variables by making up a feasible solution step by step. Every alter-

native is represented by a metaphor to real ants, which is a probabilistic choice

proportional to a global variable representing the amount of pheromone. So,

the ants communicate in an indirect fashion by way of a kind of global dis-

tributed memory. The distributed memory is a vector or matrix of pheromone

variables. A local pheromone update-rule is applied for assigning a value to a

component of a solution vector and eventually if one agent (ant) finds a feasible

solution then a global pheromone update rule is applied that takes the objec-

tive function value of the produced solution into account. Ant colony systems

share two significant objectives for solving the TSP. First of all, they have an

effective mechanism for attaining a good balance between intensification and

diversification of the search. Second, before updating the pheromone trials, a

subsidiary local search procedure is applied to the tours constructed by the

ants. For this reason, these algorithms are regarded as hybrid stochastic lo-

cal search procedures, which integrate parablastic solution construction with

standard LS procedures [33].

13. A new class of evolutionary optimization algorithms which are called Esti-

mation of distribution algorithms (EDAs) [18, 83, 89, 101] were developed as
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a natural substitute for genetic algorithms in the last few decades. Estima-

tion of distribution algorithms are a kind of evolutionary algorithms that work

with a multiset (or population) of candidate solutions (points). One main

advantage of EDAs over genetic algorithms is the nonexistence of multiple

parameters that require to be tuned (e.g., crossover and mutation probabili-

ties). Furthermore, in EDA techniques the expressiveness and transparency of

a probabilistic model is used to guide the search process. In addition, EDAs

have been demonstrated to be more suitable for some applications than GAs,

such as for solving challenging bio-informatics problems [5], while attaining

competitive and robust results in the majority of the tackled problems. For

any EDA algorithm, first of all, a random sample of points is generated. These

points are evaluated using a fitness function. The fitness function evaluates

the quality (e.g., accuracy or objective value) of each solution for the given

problem. On the basis of this evaluation, a new subset of points is selected.

In consequence, better points, with better fitness values, have a greater prob-

ability of being selected. Afterwards, a probabilistic model of the selected

solutions is constructed, and a new set of points is sampled from the model.

The process is repeated up to the time when the optimum has been found or

a different termination criterion is satisfied.

2.7.1 Local Search (LS)

Local Search is a method concerned with finding a solution which is good or better

than all the other solutions in its local “neighbourhood”. Such solution is called a

local optimum; it will not necessarily be the global optimum. The basic way of work-

ing of LS is that it gets an initial solution and repeatedly making changes, the choice

of small changes or large changes depend on how the LS explores the neighbourhood.

The process continues until there are no further neighbours available to search. An

43



Chapter 2.Combinatorial Optimization and Evolutionary Algorithms

efficient local search can find the local optima more easily than a global search be-

cause for global optima, the whole search space should be examined. Local Search

is a hill-climbing technique with the difference that the neighbourhood is searched

systematically instead of randomly; Furthermore, the searching of the neighbour-

hood is repeated until an optimal solution is found. The accepting-criterion for such

an improvement is called a pivot rule. The steepest ascent (or best improvement)

pivot rule is a criterion for accepting in which the entire neighbourhood is searched

[63, 81], and the greedy ascent (or first ascent/improvement) pivot rule accepts as

soon as an improvement is found. The general working principle of local search is

given in the following algorithm: Algorithm 3 and Figure 2.8 .

Figure 2.7: Simple Neighbourhoods, Neighbourhood Searching and local hill
climbing.

Algorithm 3 Local Search (s ∈ S) : S

repeat
Generate neighbour solutions s′ ∈ N(s);
if (f(s′) < f(s)) then

s = s′;
end if

until ∀s′ ∈ N(s) : f(s′) ≥ f(s);
return s;
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Figure 2.8: An Illustration of Local Search.

2.7.2 Reactive Search Optimization (RSO)

Reactive Search Optimization (RSO) [14] supports the combination of machine

learning techniques with search heuristics for solving complex optimization prob-

lems. The word reactive suggests that the algorithm must be ready to give a response

to any events. This mainly involves the self-tuning of critical parameters, etc. The

main strength lies in the fact that the searching algorithm will work like the human

brain, such as learning from past experience, learning on the job (e.g., how various

activities are done during the job, recording any new activities which are not part

of its knowledge-base), swift analysis of available alternatives and choices, ability to

manage with deficient knowledge, and quick adaptation to new circumstances and

occurrences.

2.7.3 Guided Mutation

Guided mutation [152] can be considered as a composite of the traditional muta-

tion operator and the EDA offspring generation scheme. Guided mutation simply

combines global information with local information. Guided by a probability model,

guided mutation alters a parent solution to produce a new solution. The resultant
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solution which is generated by using the EDA scheme instead of a random scheme

would be hopefully better and lie in a promising area which is distinguished by the

probability model. Simultaneously, it clearly gets a user-specified percentage of el-

ements from its parent, which is often a better solution found so far. In this way,

the similarity between an offspring and its parent can be controlled to some extent

in terms of maintaining diversity and exploration.

2.8 Neighbourhood Structure

Neighbourhood search is a recent meta-heuristic for solving combinatorial and global

optimization problems whose basic idea is a systematic change of neighbourhood

within a local search. Local search works on neighbourhood structures, which clearly

define what step or move is going in favour of the optimization process. In general,

a neighbourhood structure (or neighbourhood generating function), N on a search

domain S is a function. N : S → 2S which shows the set of neighbours for each

point in the search space. The neighbourhood and simple hill climbing is shown

in Figure 2.7. Related to the landscape metaphor, N (x) is defined as the set of

points that can be reached from x with one application of a move operator such

as bit-flipping search on binary problems. In Figure 2.9 the solutions a, c and h

can be accessed from d on single move. The success of the local search strongly

depends on size and structure of the neighbourhood chosen. There are no well-

defined rules to define the structure of the neighbourhood but, in general, the larger

the neighbourhood the better the local optima that result. Further it means that any

local optima under a given neighbourhood structure N would also be a local optima

under any structure N ′ which is the subset of N in the sense that N ′(x) ⊂ N (x)

for all x. The average local optima found under a given neighbourhood structure

are also referred to as “strength of the neighbourhood structure”. The better the

neighbourhood structure the better would be the solution quality, but this would be

at the expense of computational time [63].
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N (d) = {a, c, h}
Figure 2.9: Simple neighbourhood structure, solution a,c,h could be reached

from d on a single move.

The additional leading decision is the move operator; the choice of the move opera-

tor will have a impressive effect on the efficiency and the quality of the local search

and hence of the resultant Memetic Algorithm. In the majority of cases, domain-

specific knowledge can be used for designing the neighbourhood structure for a local

search. Recent studies also confirm that the optimal choice of the operator may

not be only instance specific within a class of problems, but, when incorporated in

a Memetic algorithm, it can be dependent on the state of the evolutionary search.

During the search process when the move operator is changed it may result in a

means of progression in cases where the points are locally optimal for that specific

given neighbourhood operator because a point may be locally optimal with respect

to one neighbourhood structure but may not be optimal with respect to another

neighbourhood structure (unless the point is globally optimal one). This observa-

tion gave rise to another well-known idea which is called variable neighbourhood

search algorithms (VNS); for further details, readers are referred to [81, 116]. The

illustration of VDNS and VNS is shown if Figure 2.10. VDNS is a neighbourhood

technique, which searches the search space in a variable depth heuristically. For

example, in the different neighbourhood structures, N1, N2, N3, . . . , Nk, the simple

example of N1 is 1-exchange neighbourhood and N2 swaps the values of two variables

or position. In more general form, Nk would consider k exchanges, hence reducing

the time of searching the neighbourhood. One well-known example of VDNS is

47



Chapter 2.Combinatorial Optimization and Evolutionary Algorithms

Figure 2.10: An illustration of the neighbourhood structure, the VDNS operates
on one type of neighbourhood with variable depth, while VNS operates on different
structures of neighbourhood. x is the current solution. While N1, N2, N3, . . . , Nk

represents various neighbourhoods.

Lin-Kernighan algorithm for solving the TSP. The base idea in the LK heuristic

is that we replace n edges when moving a tour T1 to T2. On the other hand, the

VNS operates on different N1, N2, N3, . . . , Nk, where N1 is the structurally different

neighbourhood from N2.

2.9 Chapter Summary

In this chapter, a brief introduction to optimization and the detail of the techniques

which are applied have been given. The historical background of Evolutionary Com-

putation and the origin of the subject have been introduced. The process of natural

evolution, and how the EC is linked with the natural process such as Genetics have

been discussed. We have explained the notions of an evolutionary algorithm, genetic

algorithm and many other evolution strategies and memetic algorithms. A compre-

hensive representation of real-world problems and how it would be transformed to

the world of evolutionary computation processes has been given. The dissection of

the genetic algorithm using initialization, selection, recombination and mutation op-

erators has been explained. One of the weaknesses of the genetic algorithm (which is
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by default the blind algorithm) could be addressed with the incorporation of domain-

specific knowledge. The hybridization of GAs with local search and the impact of

local search on GAs have been described. The main motivation behind local search

is how to structure the neighbourhood and how to exploit useful knowledge in the

minimum time.

In the next chapter, the details of a classic combinatorial problem, the Travelling

Salesman Problem, are discussed and the past well-known heuristics and meta-

heuristics that have been used to solve the problem are also described.
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The Static and Dynamic

Travelling Salesman Problem

In this chapter we describe the problem we will be considering; we first look at

the static Travelling Salesman Problem (TSP)1 and then the Dynamic Travelling

Salesman Problem (DTSP).

The origins of the travelling salesman problem are still a mystery. According to

the handbook “The Travelling Salesman Problem: a Computational Study” [1], the

origin of the name “Travelling Salesman Problem” is not known exactly; there is no

authentic proof available about the creator of TSP. But one of the most prominent

early TSP researchers was Merril Flood of Princeton University and the RAND

Corporation referred to the name “Travelling Salesman Problem” [1].

The role of the TSP is very prominent in research also in a number of application

areas. The study of this problem has been applied by many researchers from differ-

ent fields, e.g., Mathematics, Operations Research, Physics, Biology and especially

in the field of Artificial Intelligence, and there is a vast amount of literature avail-

able, which is very difficult to compile exhaustively. The main reason behind the

1“Official” website of TSP: http://www.tsp.gatech.edu/
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popularity of TSP is the fact that it can be easily formulated and it also shows all

the properties or aspects of combinatorial optimization. The TSP has been served

and still continues to serve as the benchmark problem for designing and testing

new algorithmic ideas like exact algorithms and probabilistic algorithms. There are

many efficient algorithms that have been designed, which has provided a constant

intellectual challenge, and many other important techniques for solving combinato-

rial optimization problems were also developed by keeping the TSP as an example

test bed [123].

One of the interesting properties of TSP is that it is not attractive only from a the-

oretical point of view, but many applicable and real-world problems can be modeled

as TSP or by variants of it. For example, in some of the practical applications, the

number of nodes ranges from some dozens up to even millions, e.g., in case of VLSI

design. Therefore, there is a tremendous need for designing efficient algorithms,

which not only solve the problems but reduce the computational cost [123]. In the

last few decades, outstanding milestones have been achieved for solving TSP to a

satisfactory level of optimality. In 1954, Dantzig et al. solved a 48-city problem. In

1980, Grötschel [56] solved a 120-city problem, and in the same year Crowder and

Padberg [21] solved a 318-city problem. A 532-city problem was solved by Padberg

and Rinaldi [110] in the year 1987. In 1991, Grötschel and Holland [57] touched the

666-city problem, and also a 2392-city problem was solved by Padberg and Rinaldi

[111]. In the same year, Applegate et al. [2] solved a 3038-city problem, a 4461-

city problem in 1993, a 7397-city problem in 1994, and finally in 1998, a 13509-city

problem [3].

In 1991, Reinelt made available a collection of TSP instances in the form of TSPLIB

[124], which is a benchmark library for the TSP. The TSPLIB is composed of more

than 100 instances with up to 85,000 cities. The majority of the TSPLIB instances

stems from influential studies on the TSP, and they mainly originate from practical

and real-world application, such as PCB manufacturing, X-ray crystallography or

finding the shortest trips. In the TSPLIB, the majority of the instances are of
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geographical nature, which means that the inter-vertex distances are derived from

the distances between the cities and towns with given (x, y) coordinates. In addition,

a set of TSP instances derived from problems in VLSI circuits ranging from 131

vertices to 744710 vertices is included [4].

In 1990, Applegate, Bixby, Chvatal and Cook developed a computer program, which

is named “Concorde”. The design of Concorde is mainly focused on the solution of

larger, more difficult, instances of the problem, rather than, say, concentrating on

the fastest solution of small examples. The full source code and documentation are

available at:

http://www.tsp.gatech.edu/concorde/index.html

Even so, regardless of these achievements and improvements, the TSP is a long way

from being solved. There are many angles of the problem which need consideration

to be thought about, and many questions are still there which need acceptable

solutions. First, the algorithms proposed for solving the TSP are able to solve

large instances to optimality in some cases but are not stable in a general sense

because the solution time can be very different for different problems with the same

number of cities, and there is no generalized function depending on the number of

cities which would give a clue for how much time is required to solve a particular

problem. Second, many problems which are considered to be large enough are still

unsuitable for being handled by the exact algorithms which are available nowadays.

On the other hand, good heuristic algorithms may give better and improved solutions

which are only a few percent above the optimal solution. However, these heuristic

algorithms also need improvements to reduce the computational cost. Third, for

certain problem instances the search space is very large, and not enough real time

or CPU time is available to be able to feasibly apply a particular algorithm to solve

them. Furthermore, there is not sufficient real time or man power available to code

an ideal approach which can be applied to all problems given that some of the

theoretical advances are not feasible for a practical implementation [123].
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Among combinatorial optimization problems, the TSP has held a principal role

for many reasons. Firstly, TSP is an NP-hard [46] problem which is very tough to

solve. Secondly, the algorithms which are designed and evaluated for solving the TSP

are not clouded by technicalities that originate from dealing with side constraints,

which are often unyielding to handle. Thirdly, the TSP is a standard test bed for

testing and analyzing new algorithmic ideas. Fourthly, it has received enormous

attention from researcher and practitioner communities, which cannot be turned

down. Finally, the TSP is applied in many real-world applications. Therefore, it has

a significant applicable relevance [70].

Other variations of the TSP that are also common according to [1] include:

• Circuit Riders.

• Knight’s Tour.

• The Grand Tour.

• Farmland Surveys.

• School Bus Routing / Vehicle Routing.

• Watchman.

The travelling salesman problem (TSP) is one of the most widely studied combinato-

rial optimization problems and has attracted a large number of researchers over the

last five decades. For a TSP, a salesman needs to visit each of a set of cities exactly

once, completing a tour by arriving at the city that is the start and by travelling

the minimum distance. In graph theory terminology, the aim is to find a minimum

weight Hamiltonian cycle in a graph.
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3.1 Problem Statement for Static Travelling Sales-

man Problem

The problem statement of TSP is: Given a number of cities and the distance of

travelling from any city to any other city, what is the least distance round-trip route

that visits each city exactly once and then returns to the starting city?

Observation:

In TSP, a salesman will visit n cities, where the number of cities will be n > 2. The

size of the complete search space would be (n− 1)! permutations.

Instances

A set N of n cities, and for each pair of cities ci, cj ∈ N distance d(ci, cj) ∈ R and

d(ci, cj) > 0.

Feasible solution:

A tour that visits each city exactly once (a permutation π of the n cities) .

Objective value: the total length of the tour, i.e., the sum of the distances between

consecutive cities on the tour.

d(π) = d(cπ(n), cπ(1)) +
n−1
∑

i=1

d(cπ(i), cπ(i+1)) (3.1)

or

f(π,D) =
n

∑

i=1

d(cπ(i), cπ((i+1)mod n))

where π(i) denotes the city at the i-th location in the tour, n is the given number

of cities and the TSP requires to search for a permutation π, using a cost matrix

D = [dij ], where dij denotes the distance (assumed to be known by the salesmen) of
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travelling from city i to city j.

Goal: To find a permutation π∗ within the set of all permutations whose total tour

length is minimum:

∀π 6= π∗ d(π) ≥ d(π∗)

Thus an instance I = 〈D〉 of the problem is defined by a distance matrix D = (dij),

and the solution is a tour represented by a permutation π with j = π(i) denoting

the city j to visit at the ith step. One special case of TSP is the Euclidean TSP.

Here the distance between two nodes or cities is defined by the Euclidean distance

between two points in the plane. Furthermore, this assumption does not lead to a

reduction of the complexity and hence the problem remains NP-hard [51].

If the distance matrix is symmetric and π1 and π2 are two tours in which the nodes

are visited in reversed order, that is:

π1 = {i1, i2. . . . , in, i1} , π2 = {i1, in. . . . , i2, i1}

then d(π1) = d(π2).

In general there are (n−1)! possible tours, but, for symmetric matrices only (n−1)!/2

tours need to be considered.

The equation (3.1) can also be defined as finding a shortest Hamiltonian cycle in a

complete weighted graph G = (V,E, d) where the set V = {1, 2. . . . , n} represents

the cities and the edge set E the arcs between them. A weight that corresponds to

the distance dij is assigned to each edge between incident cities. So a solution π is

a subset of E with | π |=| V |= n.

For example, let the matrix X = (xij) be a Boolean matrix with xij = 1, if there is

an arc from i to j in the tour and 0 if not. The TSP is then defined as:
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min l(X) =
n

∑

i=1

n
∑

j=1

dijxij (3.2)

subject to
n

∑

i=1,i 6=j

xij = 1 ∀j ∈ V (3.3)

n
∑

j=1,j 6=i

xij = 1 ∀i ∈ V (3.4)

∑

i∈Q

∑

j∈V−Q

xij ≥ 1 ∀Q ⊂ V (3.5)

Figure 3.1: The Feasible and In-feasible TSP tours.

From the above equations the TSP can be formulated as a zero/one integer pro-

gramming problem. In the first two constraints we ensure that the degree of each

node is two (1 is the in-degree and 1 is the out-degree). Additionally, from the

last constraint, we ensure that the solution does not consist of disjoint sub-tours.

Feasible and infeasible tours are illustrated in Figure 3.1. Figure 3.1(a) represents

a complete tour obeying all of the above constraints. However, the graph in Fig-

ure 3.1(b) does not represent a complete tour because node 3 and node 6 do not have

degree 2, and hence the constraints (3.3) and (3.4) are violated. In Figure 3.1(c) the

graph obeys the constraints (3.3) and (3.4) but violates the constraint (3.5), which

leads to two disjoint sub-tours and not a complete tour. If one eliminates constraint

(3.5) this would lead to a well-known assignment problem which can be solved by a

polynomial-time method which is called the Hungarian method [127].
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An ATSP and STSP example

The following examples of STSP and ATSP are borrowed from [59].

An instance of ATSP with distance matrix:

DATSP =

















0 6 5 10

3 0 3 9

7 4 0 8

12 7 5 0

















Figure 3.2: An instance of ATSP, showing all connected edges along with the
shortest tour.

The connectivity of the cities are shown in the figure 3.2. The total number of

possible tours are (n − 1)!, here, n = 4, so the number of possible tours is 3! = 6

having fitness /weight 29, 27, 30, 23, 27 and 22. The optimal tour with weight 22 is

{1,4,3,2,1}.

An instance of STSP with distance matrix:
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Figure 3.3: An instance of STSP, showing all connected edges along with the
shortest tour.

DSTSP =























0 10 7 7 11

10 0 9 6 5

7 9 0 9 10

7 6 9 0 6

11 5 10 6 0























The connectivity of the cities are shown in the figure 3.3. The total number of

possible tours for STSP is (n − 1)!/2; the graph has 5 nodes, and so there are

4!/2 = 12 tours. In this case the optimal tour is {1,3,2,5,4,1} of weight 34.

3.2 Application of TSP

Since the TSP has a variety of applications in a wide range of areas, such as, drilling

of printed circuits boards (PCBs) of 1700 nodes and more [87, 123], robot control

[123], VLSI-chip fabrication with as many as 1.2 million nodes [95], X-ray crystallog-

raphy with up to 14000 nodes [15], over-hauling of gas turbine engines of air-crafts

[117], computer wiring and clustering of data arrays [84], mask plotting in PCB
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production [55, 95], scheduling and seriation in archaeology, etc, and in a typical

combinatorial optimization problem.

Cox et al. in [22], used the TSP for the radiation hybrid mapping a somatic cell

genetic method for constructing high-resolution maps of mammalian chromosomes.

Grossman and Troitski in [54, 140] used the TSP to route the laser through the

points to minimize the production time.

Carlson used TSP for aiming telescopes and X-rays [19]. Gilmore and Gomory [47]

modelled a machine scheduling problem as a TSP. An interesting feature is that the

application gives a case of the TSP that can be solved easily. Garfinkel in [45] used

the TSP to model a problem in minimizing wall-paper waste. For further detailed

applications we refer the reader to [1].

3.3 A Review of Methodologies for the TSP and

DTSP

The purpose of this section is to highlight some previous research that has taken

place in the area of TSP and to briefly describe some different methods that have

been used for the solution of TSP and DTSP. In general the heuristics algorithms

for TSP can be classified as [65, 107]:

1. Construction Heuristics.

2. Improvement Heuristics.

3. Population based Heuristics.

A large number of techniques and diverse methodologies have been proposed by

many researchers and practitioners for solving TSP. These methods come from a

number of scientific communities. In the handbook [98], Michalewicz mentioned
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several construction algorithms for solving TSP which are nearest neighbour, greedy

algorithm, nearest insertion, farthest insertion and double minimum spanning tree,

as well as algorithms by Karp, Litke and Christofides, etc.[72, 107].

A well-known tour improvement heuristics was proposed by Lin [86] and further

improved by Helsgaun [65]. The 2-opt, 3-opt, Lin-Kernighan(LK) were introduced

and are still used for locally improvement by swapping the nodes i.e., in 2–opt 2

edges are exchanged, in 3–opt three edges and so on.

In [65, 95, 98], we find some other well-known meta-heuristic such as Branch and

Bound, Simulated Annealing and Genetic Algorithm/Memetic Algorithms which

have been used up to near optimality. A brief account of the above is given in the

following sections.

3.3.1 Heuristics for TSP

When solving TSP researchers usually use the following two methods for better

solutions.

1. Construction Heuristics: These attempt to construct a “good” tour from scratch.

2. Improvement Heuristics: These attempt to improve an existing tour, by means

of “local” improvements.

3.3.2 Construction Heuristics

Nearest Neighbour (NN)

One of the most common heuristics for constructing a tour is the nearest-neighbour.

In [126], NN heuristics were discussed and a greedy technique was employed. In this

technique, the greedy algorithm constructs a tour by choosing a random city and
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then chooses the next node to visit,by taking the one that is nearest to the last one

visited. The algorithm stops when all the cities are on the tour. A further extension

to this algorithm is to repeat it with each city as a starting point and then return

the best tour found so far. The pseudo-code Algorithm 4 and the diagrammatic

representation is given below in Figure 3.4.

Figure 3.4: The Nearest Neighbour tour construction with an ATSP instance.
Starting from node 1 moves to node 3 then to node 2, and finally moves to node

4. The total weight is 30 while the best tour is 22.

Algorithm 4 Nearest Neighbour (NN)

1: Input : n× n distance matrix dij and a fixed node i1;
2: Output: TSP tour = {i1, i2. . . . , in, i1};
3: Initialize S := {1, 2, 3, . . . , n} − {i1};
4: for k = 2 to n do
5: choose ik such that dik−1,ik = mins∈S{dik−1,s};
6: S = S − {ik};
7: end for

Greedy (GR)

A second greedy algorithm works on the observation that a vertex-disjoint collection

of paths in ~Kn(Kn) can be extended to a tour in ~Kn(Kn). The pseudo code of the

greedy algorithm is given below in Algorithm 5.
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Algorithm 5 Greedy (GR)

Input : n× n distance matrix dij and a fixed node i1;
Output: ATSP (STSP ) tour as a set S of arcs (edges);
Initialize S := ∅ and m = n(n− 1) for (ATSP) or m = n(n− 1)/2 for (STSP);
sort all the arcs a1, a2, . . . , am in non-decreasing order of weight;
for i = 1 to m do
if (S ∪ ai is the arc set of a collection of vertex- disjoint paths or is the arc
set of a tour) then
S := S ∪ {ai};

end if
end for

Insertion Heuristics

Rosenkrantz et al. in [126] proposed insertion algorithms. In these algorithms, a

tour is started consisting of an arbitrary city and we then choose, at each step, a

city k not yet in the tour. This city is inserted into the existing tour between two

consecutive cities, say i and j, such that the insertion cost (the increase in the tour’s

length) is minimized. The insertion cost for inserting k between i and j is:

d(i, k) + d(k, j)− d(i, j)

The stopping criterion is when a tour contains all the n nodes. The pseudo-code is

given in Algorithm 6.

Let C = {i1, i2, · · · , im, i1} be the vertex sequence of a cycle in Kn such that the ver-

tex v is not contained in C. Consider an arc (a, b) on the cycle C (the cycle represents

a tour on a subset of cities). If the vertex v is inserted in the arc (a, b), this results in

the arcs (a, v) and (v, b). An example is shown in Figure 3.5. The cycle resulting from

C by inserting v in the arc (a, b) is denoted by C(a, v, b). Thus, in general, if (a, b) =

(ik, ik+1), where 1 ≤ k ≤ m − 1, then C(a, v, b) = {i1, i2, · · · , a, v, b, · · · im, i1}, and
if (a, b) = (im, i1), then C(a, v, b) = {i1, i2, · · · , im−1, a, v, b}. Common rules which

are used in Algorithm 6 in line 6 (i.e., rule[∗]) to choose the vertex is for insertion

are given below [59]. For a vertex v and a cycle C in Kn that does not contain v,

d(v, C) denotes the distance from v to C, that is, d(v, C) = minx∈V (C) {dvx}.
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Random or arbitrary insertion: The city is is chosen randomly from all cities

not yet on the tour. This is also termed random vertex insertion (RVI).

Nearest insertion: The city is is chosen in each step in such a way that its distance

to the cycle C is a minimum, that is, d(is, C) = mini/∈V (C) d(i, C).

Farthest insertion: In this kind of insertion the city is to be inserted is chosen

in such a way that its distance to the cycle is maximum, that is, d(is, C) =

maxi/∈V (C) d(i, C).

According to [73], all the vertex insertion heuristics mentioned above gives better

results for Euclidean TSP.

Figure 3.5: Insertion of vertex v in between the arc (a,b)

Algorithm 6 Node/V ertex Insertion (V I)

1: Input : n× n distance matrix dij and a fixed node i1;
2: Output: ATSP (STSP ) tour {i1, i2, · · · , in, i1};
3: Let i1 and i2 be two vertices of ~Kn, selected by some pre-defined rule;
4: Initialize cycle C = {i1, i2, i1};
5: for s = 3 to n do
6: Let is be a vertex not on cycle C, chosen by some rule[∗];
7: Insert vertex is at an arc (a, b) of cycle C = {i1, i2, . . . , is−1, i1};
8: Such that the weight of C(a, is, b) is minimum among the cycles C(a, is, b) for

all arcs (a, b) in C;
9: C := C(a, is, b);
10: end for
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Minimum Spanning tree tour construction heuristics

The construction heuristics based on MST are the Double Minimum Spanning Tree

(DMST) and the Christofides heuristics (CH) [123]. However, the performance of

CH is significantly better then DMST both theoretically and experimentally. In

addition, the insertion technique using the nearest and cheapest corresponds to the

MST algorithm proposed by Prim in 1957 [118]. For TSPs with distances obeying

the triangle inequality, the theoretical upper bound is twice of the optimal tour while

that of CH is 1.5 of the optimal tour. The Pseudo code of the Christofides heuristic

algorithm is given below as Algorithm 7.

Algorithm 7 Christofides Heuristics (CH)

1: Input : n× n distance matrix dij;
2: Output: ATSP (STSP ) tour {i1, i2, . . . , in, i1};
3: Compute a minimum spanning tree;
4: Compute a minimum weight perfect matching on the odd-degree nodes of the

tree and add it to the tree to obtain a Eulerian graph;
5: Compute an Eulerian tour in the graph;
6: And then finally construct a Hamiltonian tour;

3.4 Tour Improvement Heuristics

Tour improvement heuristics come under the category of local search or neighbour-

hood search. In these heuristics, the algorithms try to improve an initial tour (nor-

mally constructed by some construction heuristics) and iteratively improve it by

changing some parts (in case of TSP nodes) at each iteration. These algorithms

are also called “edge exchange” heuristics. In these algorithms, a tour is improved

by replacing k edges (arcs) with k edges (arcs) not in the solution, i.e., inserting k

edges and deleting k edges, which are disjoint.
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Figure 3.6: 2-opt, showing how edges (i, j) and (k, l) replace (i, l) and (j, k)

2-opt 3-opt, or r-opt:

For the TSP, when k = 2 the algorithm is 2-opt [23]. The 2-opt algorithm starts

from an initial tour T and tries to improve the fitness of the tour f(T ) by replacing

two of its non-adjacent edges with two other edges to form another tour T ′. Once the

improvement is obtained it becomes the original tour T . The procedure is repeated

until no further improvement is made; this shows that the tour is locally optimal.

A diagrammatic representation of 2-opt is given in Figure 3.6.

Figure 3.7: Examples of 3-opt local search, in which three edges are removed
and reconnected.

For k = 3, the algorithm is 3-opt [86]. In this case, three edges are removed or

exchanged. The rest of the procedure is the same as for 2-opt. When k = 4, then

the procedure is called double-bridge. In this case, four edges are removed and four

different edges are added. Examples of 3-opt are shown in Figure 3.7.
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Lin-Kernighan

The Lin-Kernighan (LK) [86] algorithm belongs to the class of local optimization

algorithms. The LK does not use fixed k for its k − opt moves, but the choice of

k is variable depending on the gain in fitness. The algorithm uses a sequence of

k− opt moves of 2-opt in a sequential order. It builds up a sequence of 2-opt moves,

checking after each additional move, whether a stopping rule or criterion is met.

After this the part of the sequence which gives the gain in fitness is used. This is

almost equal to a choice of one k -opt move with variable k; this kind of move is

used until the tour T is locally optimal. The other procedure which the LK uses is a

kind of full backtracking through which an optimal solution could always be found,

but this is computationally expensive. However, to deal with this issue, only limited

backtracking is allowed; this helps in better fitness gain. The general working of LK

is given below.

Let T be the current tour. At each iteration step the algorithm tries to find two sets

of links, X = {x1, x2, . . . , xr} and Y = {y1, y2, . . . , yr}, such that, if the links X are

deleted from T and the links Y are added to T the result will be a better tour. This

interchange of links is called an r -opt move. In order to get efficiency the links X

and Y should fulfil one of the following criteria:

1. The sequential exchange criterion.

2. The feasibility criterion.

3. The positive gain criterion.

4. The disjunctive criterion.

The LK local search is still considered to be the state-of-the-art algorithm. LK pro-

duces solutions very close to the optimal tour. Although LK can be applied to STSP,

it can also be applied to ATSP when transformed to STSP. For the transformation

of an ATSP instance to STSP instance, for details refer to the source [70].
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Branch and Bound

Eastman [34], Little et al. [88] and Shapiro [129] developed the branch and bound

algorithm. Furthermore, Hatfield and Pierce [64] used the branch and bound al-

gorithm for the job sequencing problem, which is closely related to the TSP, but

more constraints are added because job deadlines have to be satisfied as well. The

main difference between the work of Little et al. and Shapiro is that the method of

Little et al. is a tour building algorithm while that of Shapiro is a tour elimination

algorithm. The work of Eastman is also an example of a tour elimination algorithm.

The Eastman algorithm is further extended by Shapiro using a kind of search tech-

nique in which the set of tours is partitioned into subsets and which then calculate

the lower bounds on the cost of all tours in a subset. The initial bound is found

by solving the associated assignment problem (AP). The bound is considered as the

value of the solution to AP. If the solution of the AP is not feasible to the TSP

because of the sub-tours, then k further branches of the problem are made (sub-

problems), where k is the number of arcs in one of the sub tours. For example, if the

sub tour is (i1, i2, . . . , ik, i1) for sub-problem 1, let ci1,i2 = ∞, for sub-problem 2, let

ci2,ci3 = ∞ . . . For sub-problem k, let cik,i1 = ∞. The subsets then are the set of all

tours in which arc (i1, i2) is prohibited, etc. The branch and bound technique is used

successfully for the ATSP case. Shapiro found this approach very difficult for STSP;

for this reason he adopted a new approach of integer programming formulation.

The algorithm of Little, et al. [88] uses a different approach for branching and

bounding. Their approach is referred to as a matrix reduction.

Branch and Cut

Another well known exact algorithm for solving the TSP is based on linear program-

ming [24]. The main idea is to find the relaxation in form of a linear program with

the same optimal solution as the original problem [95]. For finding the optimum
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solution to the (LP) an efficient algorithm, known as the simplex algorithm [24, 25]

is used. The simplex algorithm always provides the optimum solution. For TSP,

branch and cut showed enormous progress in the last decades. In 1954, Dantzig,

Fulkerson and Johnson solved TSP instance up to 48 nodes for which the size of the

search space S exceeded 1059 [26]. In 1998, Applegate, Bixby, Chvatal and Cook

[3] solved TSP instances with up to 13509 nodes for which the size of the search

space S exceeded 1049931. The search space is composed of candidate solutions

(|S| = (N − 1)!/2).

Simulated Annealing

Simulated Annealing was first proposed by Metropolis et al. [97], and further uti-

lized by Kirkpatrick et al. [78] for the process of optimization. The basic working

principle of SA is adapted from the condensed physics processes where a low-energy

state of a solid is sought by an annealing process. The analogy with combinatorial

optimization arises when we consider that the optimal solution to the combinatorial

optimization problem corresponds to the lowest energy of the solid, and the opti-

mization process with that of annealing the solid. Thus, SA perturbed the solution

of the problem and the neighbour solution is accepted with the probability according

to Boltzman distribution, which is given below:

P (accept uphill moves) = exp(−△E
ek∗t

)

Here△E represent the two solution states f(s′)−f(s), k is the scaling parameter and

t is the temperature of the process. When t is high, the solution is more perturbed,

i.e., it allows moves resulting in solutions of worse quality than the current solution.

When the temperature is low then the search process accepts the improving moves

only. When the t is further decreased it possible to freeze the annealing schedule.

The pseudo code is shown below in Algorithm 8
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Algorithm 8 Simulated Annealing (s ∈ S)

1: t = T (0), n = 1;
2: Best solution sbest = s;
3: repeat
4: Generate s′ ∈ N(s);
5: △E = f(s)− f(s′);
6: if (△E ≤ 0) OR (exp(−△E

ek∗t
) > random[0, 1]) then

7: s = s′;
8: end if
9: if f(s) > f(sbest) then
10: sbest = s;
11: end if
12: t = T (n);
13: n = n+ 1;
14: until (Termination Criteria fulfilled)
15: Return sbest;

Tabu Search

The basic idea of Tabu Search method was described by Glover, Taillard and de

Werra [48]. One of the drawbacks of the neighbourhood search algorithm is the

greedy approach; not accepting the less greedy moves results in the optimization

process getting stuck in local optima. The Tabu-Search will also allow moves with

the negative gain criteria by not getting positive gain criteria. Thus, tabu-search

escapes from locally optimal but not globally optimal solution, and, to prevent

considering the moves which cause cycling, moves are stored in a list which is called

Tabu list. The moves of Tabu search are based on the short-term and long-term

memory of the sequence of the moves that were used to achieve the certain state of

the search. In most of the cases, the whole solution is marked as tabu, but a tabu

move can be overridden if it satisfies the criteria which are called aspiration criteria.

By this criterion, we might include the case which, by removing a move from the

tabu list, may lead to a solution which is the best obtained so far. A big problem

with tabu search is that it is computationally expensive. The pseudo code of simple

tabu search is given below in Algorithm 9.
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Algorithm 9 Tabu Search (s ∈ S)

1: Tabu list T = 0;
2: Best solution sbest = s;
3: repeat
4: Find the best solution s′ ∈ N(s), s′ /∈ T ;
5: △f = f(s)− f(s′);
6: T = T ∪ s;
7: if f(s) > f(sbest) then
8: sbest = s;
9: end if
10: until (Termination Criteria fulfilled)
11: Return sbest;

3.5 Population Based Heuristics

Researchers are often trying to imitate nature when solving complex problems. Two

such methods are Ant Colony Optimization (ACO) and Genetic Algorithms.

ACO is an optimization methodology based on ant behaviours. The term ACO

system was first introduced by Colorni et al. in 1992 [20]. Gambardella and Dorigo

in [44] implemented ACO on the TSP, and also the quadratic assignment problem.

The TSP has become one of the standard test bed problems for the GAs commu-

nity. In [82, 98], various encoding schemes for TSP were proposed such as binary,

adjacency, matrix, ordinal and path. The path representation is the most natural

one and it is widely used by researchers and practitioners. In GAs for the TSP the

chromosome representing the route is a permutation of the N cities. The population

size is known in advance. First the population is initialized, then some subset of

individuals is selected from the population by using a selection scheme and then

crossover and then mutation is performed on them.

It is now well established that pure GAs are not well suited for fine tuning the search.

So the use of local search operators has been introduced into traditional operators

of GAs; therefore the resulting algorithms are called hybrid GAs or simply Memetic
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Algorithms which we have explained in previous sections. We can also conclude

from the study of Grefenstette [52] that:

“Finally, it is widely recognized that GAs are not well suited to perform-

ing finely tuned local search Once the high performance regions of the

search space are identified by the GA, it may be useful to invoke a local

search routine to optimize the members of the final population.”

A wide range of representation schemes have been proposed for encoding the TSP

tour. It is now well understood, in the GA community, that the binary representation

of tours is not well suited for the TSP. The reason is that the binary representation

would require special repair algorithms, since a change of a single bit may result in

an illegal tour. As observed in [145]:

“Unfortunately, there is no practical way to encode a TSP as a binary

string that does not have ordering dependencies or to which operators

can be applied in a meaningful fashion. Simply crossing strings of cities

produces duplicates and omissions. Thus, to solve this problem some

variation on standard genetic crossover must be used, the ideal recom-

bination operator should recombine critical information from the parent

structures in a non-destructive, meaningful manner”

Some genetic operators for solving TSPs are mentioned in [82, 98, 109].

3.5.1 Crossover Operators in GAs for TSPs

Partially mapped Crossover (PMX) was suggested by Goldberg and Lingle and ex-

plained in [82]. PMX falls into the category of blind operators. First it selects two

cutting points in both parents. In PMX a portion of one parent is mapped to the

corresponding portion of another parent.
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Another variation of PMX is Maximal Preservative Crossover (MPX) proposed by

Muhlenbein et al. in [102]. It first selects a portion of string whose length is at most

the problem size divided by 2. This constraint on the length of the sub-string assures

that there is enough information exchange between the parent strings without losing

too much information from any of the parents. Further, all the nodes of the chosen

string are removed from the other parent, i.e., the second parent. After this the

nodes chosen from the first parent are copied to the first part of the child and the

end of the child is filled with cities in the same order as they appear in second

parent [82], MPX preserves maximum distance from both the parents and loses a

limited number of edges.

In [29], Order Crossover–1 (OX1) was proposed by Davis and Order Based Crossover–

2 (OX2) by Syswerda [134] . The main idea behind order crossover is that it is the

order of the cities which is important not their position. In OX1 we select a set

of cities and preserve the relative order of the other parent, while, in OX2 random

cities are selected. This operator is relatively fast and easy to implement.

In [105], Nagata and Kobayashi introduced a powerful Edge Assembly Crossover

(EAX) which was able to solve large scale TSP instances.

In [138], Tao and Michalewicz introduced a unary operator called the Inver-over

Operator (IO) which has the features of both mutation and crossover. Inver-Over

is considered to be one of the fastest operators which has been introduced so far.

In [96], Merz and Freisleben introduced a Distance Preserve Operator (DPX) with

local refinement by using LK search.

In [82], Larranaga et al. introduced an Alternate Position Crossover (AP) by se-

lecting alternately, the next element of the first parent and the next element of

the second parent into the child but not considering those nodes which are already

present in a child.
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Other crossover operators mentioned in [82] are Cycle Crossover (CX) proposed

by Oliver in 1987, Smith and Holland in 1987, Voting Recombination Crossover

(VR) proposed by Muhlenbein in 1989, and Heuristic Crossover (HEU) proposed by

Grefenstette in 1987. For further details we refer the reader to [109].

Many hybrid GAs have been proposed for the TSP. A hybrid GA is also called

a memetic algorithm or genetic local search (GLS). GLS can combine the global

search ability of the GA with local search ability of heuristics. Tsai et al. [141]

proposed a new hybrid GA for TSP, called the heterogeneous selection evolutionary

algorithm (HeSEA) by integrating the edge assembly crossover (EAX) [104, 105]

with Lin-Kernighan (LK) [86] through family competition and heterogeneous pairing

selection.

Nguyen et al. proposed a hybrid GA which is based on a parallel implementation

of a multi population steady-state GA involving variant of maximal preservative

crossover, double bridge move mutation and Lin-Kernighan heuristics as a local

search [106].

Xie and Liu in [149] proposed a nature-inspired method which is called the multi

agent optimization system (MAOS), which supports cooperative search by the self-

organization of a group of compact autonomous agents placed in an environment

with certain public sharing of limited declarative knowledge.

3.5.2 Mutation Operators in GAs for TSPs

Mutation operators play a vital role in introducing diversity. In [68], Holland pro-

posed Simple Inversion Mutation (SIM). In SIM two random points are selected

with in a path and inverted. In [98], Michalewicz proposed Displacement Mutation

(DM). In this operator a sub-path is selected and then inserted in another location.
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In [40], Fogel introduced Insertion Mutation (ISM), which works like DM but reverses

the selected path. In [134], Syswerda proposed Scramble Mutation (SM); this scheme

selects a random tour and scrambles the nodes.

3.6 Evolutionary Approach for DTSP

If in the TSP problem, the cost between nodes, or the number of node changes with

time then such a kind of TSP problem is termed as a dynamic TSP (DTSP). A

“dynamic” TSP has some additional properties such as the fact that the number

of nodes or cities n may change with time: some cities may appear and some old

ones may disappear. Secondly, the city location changes geographically or the cost

matrix may change with time as well. Mathematically for dynamic TSP the cost

matrix could be formulated as:

D(t) = dij(t)n(t)×n(t)

where dij(t) is the cost from city i to city j at time t, n(t) is the number of cities at

time t, and t is the real-world time. So, we want to find a tour π(t) = π1, π2, . . . , πn(t)

which minimizes

l(π)(t) =

n(t)
∑

i=1

dπi,πi+1
(t)

where l(π)(t) is a permutation over the set {1, 2, . . . , n(t)} and πn(t)+1 = π1

The DTSP is a more challenging (and realistic) problem as compared with the static

version.

Many real-world problems are dynamic in nature such as in the fields of communica-

tion, routing choice, robot control and vehicle routing. For example, a distributing

salesman/vehicle wants to distribute some goods to different cities from one starting

point. He has to visit all the cities in a suitable order regarding time and energy.

For the same reason,the salesman must choose an optimal path, but it may happen
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that, with the passage of time, the salesman must make some changes, i.e., he may

skip some cities or, due to traffic jams, may alter the pre-existing route; in other

words, the salesman must re-route his plan.

In recent years, the DTSP is a hotspot of research in the field of dynamic optimiza-

tion. One of the variants of DTSP, the dynamic vehicle routing problem, was first

put forward by Psaraftis in 1988 [120]. His work was mainly focused on defining the

problem, designing the algorithm, performance estimation and test-bed construc-

tion. The DTSP can be defined as the TSP problem whose distance matrix will

change with time. For example, the change, in the distance matrix results from

inserting a node, deleting a node or changing the node position.

A wide variety of algorithms have been proposed for the dynamic TSP, such as ant

algorithms [17, 60–62], competitive algorithms (on-line algorithms) [9] and dynamic

Inver-over evolutionary algorithms [153]. Yang et al. in [151] proposed the concept

of multi-objective approach for solving DTSP based on Pareto optimality, partially

mapped crossover (PMX) and IO. Mavrovouniotis and Yang in [94] proposed a

memetic algorithm for DTSP which is based on population ACO framework and

adaptive Inver-Over; they also utilized the concept of random immigrants to address

the premature convergence.

In the following text we will discuss why EAs are effective for solving the DTSP.

We will then focus on Memetic Algorithm because MAs can overcome some of the

deficiencies of other EAs for the TSP and DTSP. We propose MAs with advanced

and fine-tuned local search methods, promising results can be achieved for TSP and

DTSP in terms of speed, quality, and diversity. MAs use their exploitive search

ability to improve the explorative search ability of GAs.
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3.6.1 Why Is the Evolutionary Approach Suitable for DTSP?

As mentioned in [153], the principal objective for a dynamic-problem-solving al-

gorithm for problems including the DTSP is the speed, that is, we want to solve

dynamic problems in real time. In [153] the drastic change and gradual change

in time are mentioned. For the DTSP with a drastic changing cost matrix D(t),

D(ti) may be very (even completely) different from D(ti−1). For such DTSP we can

hardly use the information in the time window [ti−1, ti] to speed up the optimization

process in [ti, ti+1]. The problem may degenerate to a series of static optimization

problems which have no relationship with each other if the change is drastic enough,

(say random change). For a gradual changing of matrices, which is a very common

situation in the real world, EAs are suitable for solving the DTSP with gradual

changing matrices for the following two reason [153]:

1. EAs make use of knowledge of the current population and use it for the next

generation. Simply, the next generation is dependent on the previous genera-

tion up to some extent (or completely).

2. The population policy has the potential for the individuals to retain diverse

information.

The goal of this study is to overcome up to some extent the above two reasons for de-

signing efficient evolutionary algorithms for DTSP. Most of evolutionary algorithms

for the static TSP can be modified into DTSP algorithms by integrating the newly

designed operators so that the static and dynamic approaches synergistically work

together and perform well; such an approach has already been applied in Dynamic

Inver-over evolutionary algorithm (DIOEA) [153]. DIOEA was further extended by

Lishan and Li; for further details see [75, 85]. Obviously, the performance of the base

static TSP algorithm is very important for the performance of the DTSP algorithm.

In DIOEA the base Inver-Over operator is very efficiently used and it is converted

into a dynamic one by introducing three dynamic operators INSERT, DELETE and
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CHANGE and they are combined together into DIOEA. A brief description of these

algorithms is given below, for more details see [138].

From the above description, we have indicated that evolutionary algorithms for static

TSP can be modified into DTSP algorithm by integrating the dynamic operators.

However, this research is still in an embryonic stage as to how to trade off the

optimization speed and the qualities of the results (in most cases, the speed is

probably more important than the quality); this is still an open question (and will

be for real time speed).

1. It has been also observed from the above approach [138] that, in order to

exploit the useful information of the previous population as fully as possible to

accelerate the optimization process in the new environment, it is important to

adopt MAs. A memetic recombination operator can exhibit several properties.

One of the most important properties of a memetic algorithm is that it can

incorporate domain-specific knowledge into EAs to make the search effective

[52, 96]. There are possibilities to achieve this hybridization with other local

search techniques. MAs with Baldwinian effect and Lamarckian evolution

[42, 146] can better exploit the neighborhood. In the Baldwinian effect, the

improvements or changes made by the parent are not saved in the individual,

thus the learned traits during the lifetime of the parents are not inherited

by their offspring. This property shows similarity with the natural evolution

in which the acquired characteristics or traits of the individuals during the

training in their lives have no effect on the genetic makeup. In conflict to this

form of evolution, in Lamarckian evolution the acquired traits of an organism

influence the genetic code of the organism [95]. However, it may be possible

that the acquired traits which an individual obtained during its life time as

a form of learning may affect the newly created individuals, which may be

totally different from the previous generation.
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2. In case of maintaining population diversity, robustness is a key element in the

development of any meta-heuristic. Hence a method that shows an effective.

behaviour, namely attaining very near optimal solutions in short CPU time re-

gardless of the instance size (and the particular type of instance) being solved,

is highly desirable. Compared with other GAs already proposed for the TSP,

the population size in DIOEA [153] for DTSP is remarkably small, but this

makes it possible to perform a much larger number of generations in the same

time span. Since, however, the population is likely to lose diversity rapidly, the

MA implementation here makes use of several specific procedures. It has been

known that MA must overcome the issue of premature convergence [95]. This

is usually prevented by two means, both of them termed disruptive [95, 100]:

restarting the population and keeping high mutability rates. While both ap-

proaches can be used together, they implement fundamentally different ways

in preventing convergence.

3. To trade off the optimizations speed and quality of the results, a kind of fast

local search techniques can be designed which can speed up the process to

some extent by designing Guided Local Search (GLS) [142] and Fast Local

Search (FLS) [142]. As GLS sits on top of local search heuristics and has, as

a main aim, to guide these procedures in exploring (efficiently and effectively)

the vast search spaces of combinatorial optimization problems such as TSP.

GLS can be combined with the neighbourhood reduction scheme of FLS which

significantly speeds up the operations of the algorithm [142].

3.7 Conclusion of the Chapter

In this chapter, the historical background of the travelling salesman problem has

been addressed. The general definitions of TSP and the mathematical treatment

have been discussed. The most important issue is why TSP has remained a test bed
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by the practitioners and researchers from different directions. There is a plethora of

solving techniques for handling the TSP (and other variations of TSP); to discuss

everything is beyond the scope of this text. Solving techniques such as exact and

approximate ones including Branch and Bound, Branch and Cut, and many more

were briefly discussed. With regard to approximate algorithms, various construction

and improvement heuristics like 2-opt, 3-opt and the state-of-the-art Lin-Kernighan

algorithm along with other well-known local search techniques such as Simulated

Annealing and Tabu search were discussed as well.

Moreover, population-based heuristic which can now compete with exact techniques

by giving near optimal solutions were also briefly discussed. Many crossover and

mutation techniques which bring life to GAs were discussed. The transition of

GA algorithm to MAs regarding the integration of local search techniques was put

forward. The Dynamic Travelling Salesman Problem and the reasons why EAs are

well suited for the treatment of various issues such as the use of previous knowledge

and maintaining diversity are briefly explained.

Finally, the applications of TSP are described briefly. For further study, please refer

to [1]. Interested readers can also refer to the TSP website (http://www.tsp.gatech.edu).

In the coming chapter, we will present an overview of our Sequence Based Memetic

Algorithm. It is a sub-tours approach which is extracted from the population and

stored in a memory. These sub-sequences or sub-tours are further used to guide the

genetic search. We have also introduced a Local Search, which inserts the sequences

into a proper location in the genome.
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A Sequence Based Memetic

Algorithm for the Travelling

Salesman Problem

4.1 Introduction

It is common that a standard genetic algorithm (GA) often suffers from slow conver-

gence for solving combinatorial optimization problems. In this chapter, we present

a sequence based memetic algorithm (SBMA) for solving the travelling salesman

problem (TSP). SBMA uses a reverse approach of fragment assembly in DNA se-

quencing. In DNA sequencing, all possible base pairs of genome are put together

in pieces that match and the sequence becomes bigger and bigger [113, 115]. In

the proposed SBMA, the reverse approach occurs. In our proposed SBMA, a set of

sub-tours, called sequences, are extracted from the top individuals, which are used

to guide the search of SBMA. Some of the additional characteristics of SBMA are

the following:
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1. According to the building-block hypothesis, the current SBMA approach dis-

covers (by generating the sub-tours or sequences) and puts together (by in-

serting the sequences back into the genome, and also in the second phase by

combining the genes by considering the knowledge-base of the whole popu-

lation) blocks which are in some sense part of global optima or near optima

[36, 98].

2. The current approach also shows a crossover of multiple parents. The sequence

which is extracted before the crossover (also in mutation as well) has been ex-

tracted from another parent which has come from the set of better individuals

(having comparatively better fitness). In general, two parents are selected to

mate, which is the binary approach, while the sequence which is inserted back

is part of a third individual. So the approach is in a sense a ternary one.

In our proposed SBMA, first, a set of best individuals are selected from the popu-

lation. The individuals are broken into sub-tours of equal size that have the same

number of cities. The sub-tour with the shortest length is selected, further optimized

by a 2-Opt improver [86], and then stored in a sequence set. This set of sequences

are further used to guide the crossover, mutation, and local search operators. A

random sequence is selected from the set of sequences for crossover, mutation, and

local search in every iteration. Similar work has been done by Ray et al. in [121],

where an individual is broken into parts and then reconnected in a random way.

Additionally, some procedures are applied in SBMA to maintain the diversity by

reducing the size (by removing some nodes) of the selected sequences into sub-tours

if the best individual of the population does not improve.

The proposed SBMA is compared with the inver-over algorithm [138], a state-of-

the-art algorithm for the TSP, on a set of benchmark TSP instances. Experimental

results show that SBMA is superior to the inver-over algorithm in terms of the

convergence speed and achieves a similar solution quality as the inver-over algorithm

on the test TSP instances.
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4.2 Sequence Based Memetic Algorithm (SBMA)

for the TSP

In this section, the proposed SBMA for solving the TSP is described in detail.

Several new operators, like the Sequence Based Local Search (SBLS), Sequence

Based Order Crossover (SBOX), and Sequence Based Inversion Mutation (SBIM)

are presented. The structure of the proposed SBMA is shown in Algorithm 10.

Algorithm 10 Sequence Based Memetic Algorithm (SBMA)

1: Initialize adaptive parameters (e.g., pc, pm, ninv, sseq, and SBLSstepsize) to their
default values;

2: Pop := Initialize a population of popsize random individuals;
3: for each individual indi ∈ Pop do
4: indi := 2-Opt(indi, n);
5: end for
6: GenerateSequence(Nseq);
7: repeat
8: mating pool := perform tournament selection from Pop;
9: //Crossover
10: for j := 0 to popsize do
11: Select two parents ia and ib from the mating pool;
12: if rand(0, 1) < pc then
13: Create childa and childb by SBOX(ia, ib);
14: Apply SBLS(childa) and SBLS(childb);
15: Add childa and childb to Poptmp;
16: end if
17: end for
18: //Mutation
19: for each individual indi ∈ Poptmp do
20: if (rand(0, 1) < pm) then
21: SBIM(indi, ninv);
22: end if
23: end for
24: AdaptParameters();
25: Pop := SelectNewPop(Pop+ Poptmp);
26: until (Termination condition = true)

The first step of SBMA is to initialize a population of popsize random individuals. A

simple 2-Opt improver [86] is applied to each initial individual indi for K iterations
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to give a nice start to SBMA. The 2-Opt improver simply takes an individual and

tries K random swaps in the hope to improve the individual. For each swap tried,

we calculate the gain in fitness FitnessGain, i.e., the difference of the fitness before

and after the tried swap. If the fitness gain is greater than zero, i.e., an improvement

is found from swapping two nodes, the swap is accepted; otherwise, it is rejected.

The pseudo-code of the 2-Opt improver is given in Algorithm 11. Note that the

2-Opt improver is called with different values of K in different places of SBMA. For

example, K is set to the number of nodes of the individual (i.e., the problem size)

after the initialization of the population, while in the sequence-based local search

(SBLS) scheme (to be described later on), K is the step size of SBLS, which is an

adaptive variable adjusted by the diversity maintaining mechanism (to be described

later on). The FitnessGain can be calculated as:

remove = d(i, i+ 1) + d(j, j + 1)

add = d(i, j) + d(i+ 1, j + 1)

FitnessGain = add− remove

In the above statements for calculating the FitnessGain, some edges are removed

and some are added. If FitnessGain < 0 then improvement has been found and

nodes would be arranged accordingly. Here, d(i, j) denotes the distance between

node i and node j.

Algorithm 11 2-Opt(indi, K)

1: for i := 0 to K do
2: Select two random edges within indi;
3: Swap the positions of the two selected edges;
4: Calculate the fitness gain FitnessGain from the swapping of the two edges;
5: if FitnessGain > 0 then
6: accept the swap;
7: else
8: reject the swap;
9: end if
10: end for
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After the initialization of the population, SBMA evolves the population generation

by generation. For each generation, Nseq sequences are first generated from a set

of best individuals that are selected from the population. Then, a mating pool is

generated using the tournament selection with a certain tournament size. There-

after, crossover is carried out with the guidance of the set of sequences, followed by

sequence based local search and mutation operations. The details of each operation

are given in the following subsections, respectively.

4.2.1 Sequence Generation

In each generation of SBMA, the first step is to generate a set of sequences to be

stored in an archive, also called memory. The procedure of generating sequences is

as shown in Algorithm 12. For the sequence generation, a number of the best indi-

viduals from the population are selected. For each of these selected best individuals,

we generate a sequence as follows.

Algorithm 12 GenerateSequence(Nseq)

1: Select Nseq best individuals from Pop and store them into a set Bestindi[ ];
2: for i := 0 to Nseq − 1 do
3: Break Bestindi[i] cyclically into n equal sub-tours, of which each sub-tour has

sseq nodes;
4: Calculate the length of each sub-tour;
5: Further optimize the sub-tour with the minimum length by a 2-Opt improver

with K set to sseq;
6: Store the sub-tour into the set of sequences, i.e., the memory;
7: end for

First, a node in the individual solution is selected as the initial node. Then, the

individual is broken into equal sequences (sub-tours) with the same number of nodes

in each sequence as follows: starting from the initial node (i = 0), we slide a scale

of size sseq, one node a time to get a sub-tour, until we come back to the initial

node. Here, sseq represents the number of nodes in a sub-tour (i.e., the size of the

sequence). In this breaking procedure, one node comes into the scale and one goes
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out cyclically. So, every node participates. This way, we will get n sub-tours in total,

where n is the number of cities in the problem. Finally, we find the shortest sub-tour

among the candidate sub-tours, apply the 2-Opt improver to further optimize it, and

store it in the memory.

For example, given an individual ABCDEFGHIJKLMNOP and the number of nodes

of a sequence sseq = 4, then the candidate sub-tours in this individual are ABCD,

BCDE, . . ., OPAB, and PABC. Let’s suppose the shortest sub-tour is BCDE.

It is then further optimized by the 2-Opt improver to, say, CDBE. Finally, the

sequence CDBE is stored in the memory for our future use.

According to the above description, the number of sequences generated equals the

number of best individuals that are selected from the population to generate these

sequences. If all individuals from the population are used, then the total number of

sequences would be equal to the population size.

4.2.2 Sequence Based Order Crossover (SBOX)

The Order Crossover (OX) operator [29, 82] is a sexual reproduction operator. It is

a variant of the “two-point crossover”. It is a classical “blind” heuristic, which does

not depend on the local city-to-city distance information, but only on the global

“whole genome” fitness to achieve progress. It is observed to be one of the best in

terms of quality and speed, and is simple to implement.

Our modified OX operator, SBOX, works as follows. First, a random sequence

Ssel is selected from the set of sequences. Two individuals are selected from the

mating pool, which is created through the tournament selection as mentioned above.

If the crossover condition is satisfied, then the nodes within the selected sequence are

removed from both the parents. Then, the available number of nodes for crossover

is (n− sseq). The pseudo-code of SBOX is given in Algorithm 13.
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Algorithm 13 SBOX(ia, ib)

1: Ssel := randomly select a sequence from the memory;
2: Remove the nodes of Ssel from individuals ia and ib, resulting in iatmp

and ibtmp
,

respectively;
3: Perform Order Crossover on iatmp and ibtmp to generate childa and childb, re-

spectively;
4: Re-insert Ssel into childa and childb at a random location, respectively;
5: Evaluate childa and childb;

The following example shows how the above algorithm is implemented. Let P1 =

ABCDEFGHIJKLMNOP and P2 = PONMLKJIHGFEDCBA represent two par-

ents, i.e., ia and ib, and C1 and C2 represent the two children, i.e., childa and

childb, respectively, and assume the sequence Ssel to be selected is (CDBE). The

crossover performs as follows:

Before crossover

P1 = ABCDEFGHIJKLMNOP

P2 = PONMLKJIHGFEDCBA

After removing the sequence (CDBE)

P1temp = AFG | H I J K | LMNOP

P2temp = PON | M L K J | IHGFA

After order crossover (OX)

C1temp = GFAHIJKPONML

C2temp = NOPMLKJAFGHI

After inserting (CDBE) at a random location

C1 = GFAHIJKCDBEPONML

C2 = NOPMLKJACDBEFGHI
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4.2.3 Sequence Based Inversion Mutation (SBIM)

After crossover, each offspring undergoes mutation with a small probability pm. For

the TSP, the Simple Inversion Mutation (SIM) operator is one of the best performers

[82]. In our SBIM approach, we perform inversions on an offspring, after the removal

of a selected sequence from the offspring, for a certain number of times, and preserve

those inversions which have positive effect on the performance. This increases the

convergence speed although involving an extra overhead on the mutation operator.

The pseudo-code of SBIM is shown in Algorithm 14.

Algorithm 14 SBIM(im, ninv)

1: Ssel := randomly select a sequence from the memory;
2: S ′

sel := reverse selected Ssel;
3: itemp := remove the cities in Ssel from individual im;
4: for i := 0 to ninv do
5: Randomly select two points, denoted p1 and p2 such that p1 < p2;
6: i′temp := invert cities in between points p1 and p2 of itemp;
7: if f(i′temp) < f(itemp) then
8: itemp := i′temp;
9: end if
10: end for
11: Insert S ′

sel into itemp at a random location;
12: Evaluate itemp;
13: im := itemp;

The overall procedure of SBIM is similar to that of SBOX. The difference lies in that

SBIM inverts the sequence before inserting it in the individual. Here, SBIM will be

executed as follows. First, a random sequence Ssel is selected from the memory,

which is inverted into S ′
sel, and the nodes in Ssel are removed from the individual

im to be mutated, resulting in an partial individual itemp. Then, we carry out ninv

inversions on the partial individual itemp. For each inversion operation, two random

positions in itemp are first selected and the sequence of those nodes in between these

two selected positions is then inverted, which transfers itemp into i′temp. Then, the

fitness f(i′temp) of i
′
temp is calculated. If it is better than the fitness f(itemp) of the

individual before inversion, the inversion is made permanent; otherwise, the inversion
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is rejected. After the inversion iterations, S ′
sel is re-inserted into itemp at a random

location. Our approach tries to produce fruitful individuals as the sequence Ssel to

be inserted is optimized.

Below, we use a simple example to illustrate the mutation operation. We denote the

individual before mutation as P = ABCDEFGHIJKLMNOP (i.e., im in SBIM),

the randomly selected sequence as ECDB, and the child as C (i.e., itemp), and as-

sume the number of inversions ninv = 1. The mutation procedure is shown as follows:

Before mutation

P = ABCDEFGHIJKLMNOP

After removing (ECDB) and selecting two random positions

Ptemp = AFG | HIJKLMN | OP

After inversion

Ctemp = AFG | MNLKJIH |OP

After re-insertion of the inverted sequence

C = AFGMNLKJIHBDCEOP

4.2.4 Sequence Based Local Search (SBLS)

Local search algorithms are effective heuristic techniques for a lot of combinatorial

optimization problems [96]. In our approach SBMA, information is gathered from

various good individuals and stored in the set of sequences, which is used in the SBLS

to guide the generation of children towards promising area of the search space. The

pseudo-code of SBLS on a given individual X is shown in Algorithm 15.

In the algorithm, Linc is calculated for the insertion of the sequence in a location,

where the increase of length in the route is the minimum. The SBLS scheme simply

takes the i-th individual and the sequence which is going to be inserted Ssel. In

the above algorithm, the distance between the first and last node of the sequence is
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Algorithm 15 SBLS(X)

1: Ssel := randomly select a sequence from the memory;
2: X ′ := remove the nodes of Ssel from individual X;
3: X ′ := 2-Opt(X ′, SBLSstepsize);
4: Find the best position best position of X ′ which gives the minimum length

increase after inserting Ssel, according to the following equation:

Linc = Minj=n−M
j=0 (dist[Ssel[0]][X

′
j ] + dist[Ssel[M − 1]][X ′

j+1]− dist[X ′
j][X

′
j+1]);

where n is the total number of cities of the test problem and M is the number
of cities of Ssel

5: Insert Ssel into X ′ at position best position;
6: X := X ′;
7: Evaluate X;

calculated from the distance matrix relevant to the adjacent nodes of the individual

where the sequence will be inserted. The SBLS procedure in the SBMA is quite

simple, just like the crossover and mutation operators explained before. Similarly,

the nodes of the selected sequence are removed from the individual and the 2-Opt

improver is applied to the rest of nodes with the step size SBLSstepsize for possible

gain in the fitness. Finally, the best location is searched and Ssel is inserted in that

location. In SBLS, the step size SBLSstepsize shows how many random swaps SBLS

will perform in the 2-Opt improver and hence controls the intensity of local search.

4.2.5 Adaptive Parameters

A number of researchers have recommended different constant values for key pa-

rameters in EAs in order to find good solutions for a particular fitness landscape

[11, 53, 71]. These parameter settings are derived from experience or by trial-and-

error, and are fixed before the execution of algorithms. However, it is very difficult, if

not impossible, to find appropriate parameter settings for the optimal performance of

EAs, and the approach of finding proper parameters is also time-consuming. More-

over, static values are eventually discouraged by the EA researchers because different

values of parameters and different operators may be suitable at different stages of
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the evolutionary process of an EA. So, no common optimal parameter setting can

be found initially [148]. In order to address this deficiency, researchers have diverted

their attention towards adapting the parameters during the evolutionary process for

finding better solutions to the problem in hand.

Maintaining the diversity of the population throughout the run is a major approach

to avoiding the premature convergence problem [125]. This section describes some

techniques used in SBMA to adapt some key parameters to prevent the premature

convergence to local optima. These considerations work by avoiding the loss of

genetic diversity of the whole population, and in principle, will not damage the

convergence process. The pseudo-code of adapting parameters in SBMA is shown

in Algorithm 16. The relevant parameters are adapted as follows.

Algorithm 16 AdaptParameters()

1: if (the best fitness changes) then
2: Reset SBLSstepsize, ninv, pc, and pm to their default values;
3: Reset MaxLSrunning := MaxLS;
4: sseq := ⌊√n⌋;
5: GenerateSequence(Nseq);
6: else
7: ninv := min{ninv + 1, sseq};
8: pc := min{pc + δpc , 1.0};
9: pm := min{pm + δpm , 1.0};
10: if SBLSstepsize > SBLSmaxstepsize then
11: Reset SBLSstepsize to its default value;
12: Decrease MaxLSrunning by 1;
13: else
14: SBLSstepsize := SBLSstepsize + 5;
15: end if
16: if ((0.5×MaxLS) < MaxLSrunning ≤ (0.75×MaxLS)) then
17: sseq := ⌊0.75×√

n⌋;
18: else if ((0.25×MaxLS) < MaxLSrunning ≤ (0.5×MaxLS)) then
19: sseq := ⌊0.5×√

n⌋;
20: else if (0 < MaxLSrunning ≤ (0.25×MaxLS)) then
21: sseq := ⌊0.25×√

n⌋;
22: else if (MaxLSrunning ≤ 0) then
23: sseq := 2; // that is, a sequence becomes an edge
24: end if
25: end if
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Figure 4.1: Showing the effect of static pc and pm against adaptive pc and pm.

Firstly, the crossover probability pc and mutation probability pm are adapted accord-

ing to whether the best fitness of the population changes or not after a generation.

If the best fitness changes, pc and pm are reset to their default values; otherwise, a

small value δpc and a small value δpm will be added to pc and pm, respectively, which

are both upper bounded to 1.0. The effect using adaptive pc and pm is shown in

Figure 4.1.

Secondly, the number of inversions, i.e., ninv, within an SBIM operation is dependent

on whether the best fitness changes. If the best fitness changes after each generation,

then ninv is reset to 0; otherwise, ninv will be incremented by 1 until it reaches sseq.

So, the number of inversions comes in the range [0, sseq], i.e., the maximum value of

ninv will not be more than the size of the selected sequence.

Thirdly, in SBLS, the step size SBLSstepsize is also an adaptive parameter, whose

value changes according to whether the best fitness of the generation changes. If the

best fitness changes, then SBLSstepsize is reset to its default value (which is 5 in this

study); otherwise, SBLSstepsize is increased by an amount of 5 until it reaches the

maximum step size SBLSmaxstepsize (which is set to 20 in this study). If SBLSstepsize

becomes greater than SBLSmaxstepsize it is reset to the default value.
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Finally, the sequence size sseq is also an adaptive parameter in SBMA, which is

defaulted to
√
n and reduced with time according to whether the best fitness changes.

To adapt sseq, we introduce an associated iteration counting variable, MaxLSrunning,

which is defaulted to MaxLS. If the best fitness changes, MaxLSrunning is reset to

MaxLS; otherwise, MaxLSrunning is decreased by 1 if SBLSstepsize becomes greater

than SBLSmaxstepsize, and depending on situation, the sequence size sseq is reduced

based on the following criteria. If (MaxLSrunning ≤ (MaxLS × 75%)), then sseq

will be set to 75% of its default value (⌊√n⌋). When the sequence size is changed,

in the next generation, all sequences will be generated with the new sequence size

and stored in the memory. For example, suppose that the CHN144 TSP instance

is studied (i.e., the default sequence size is 12), MaxLS = 20, and MaxLSrunning

is currently reduced to 15. Then, sseq will become 9 at the next generation. If

MaxLSrunning becomes equal to 0, the sequence size will become two, which means

an edge and SBLS will search for the shortest edge for re-insertion at a proper

location.

For selecting a new population from Pop and Poptmp, we use the social disaster

technique (SDT), called packing. That is, among all the individuals that have the

same fitness value, only one remains unchanged and the other individuals are fully

randomized [125].

4.3 The Inver Over (IO) Algorithm

The Inver Over (IO) operator was proposed in [138] for solving the TSP. In this

thesis, we will use the Inver Over (IO) operator [138] either as a comparative algo-

rithm or as a component to be integrated into our approaches. Here, we give the

description of the IO operator. The pseudo-code of the IO operator for the TSP is

shown in Algorithm 17.
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The IO operator is a smart operator based on simple inversions. IO is an unary

operator since the inversion is applied to a segment of a single individual. However,

the selection of a segment to be inverted is population-driven, i.e., taking knowledge

from other individuals in the population. Thus, the IO operator displays some

characteristics of crossover/recombination. It works with only two parameters, the

population size and the probability of random inversion p, which was set to p = 0.02

in [138].

Algorithm 17 The Inver Over Algorithm – IO(Pop(t))

1: for each individual routei in Pop(t) do
2: route∗ := routei;
3: Randomly select a city C from route∗;
4: while TRUE do
5: if rand(0, 1) < p then
6: Select the city C∗ from the remaining cities in route∗;
7: else
8: Select randomly a route from the population;
9: Assign to C∗ the next city to C in the selected route;
10: end if
11: if (the next or previous city of city C is C∗ in route∗) then
12: Exit from the while loop;
13: end if
14: Inverse the section from the next city of city C to city C∗ in route∗;
15: C := C∗;
16: end while
17: if (Length(route∗) < Length(routei)) then
18: routei := route∗;
19: end if
20: end for

In this chapter, we also study the combined approach of SBMA and IO, denoted

SBMA+IO, by shifting the control from SBMA to IO under a certain condition.

The pseudo-code of SBMA+IO is shown in Algorithm 18, where if the best fitness

of SBMA does not change for consecutive T generations, the control is shifted from

SBMA to the IO algorithm. In our study, the value of T is set to 100.
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Algorithm 18 SBMA+ IO()

1: no change count := 0;
2: while (no change count < T ) do
3: Perform SBMA for one generation;
4: if the best fitness changes then
5: no change count := 0;
6: else
7: no change count++;
8: end if
9: end while
10: Perform IO for the remaining generations;

4.4 Experimental Study

4.4.1 Experimental Setting

In order to test the performance of our proposed SGBA, experiments are carried out

to compare our proposed SBMA algorithm, the IO algorithm, and their combination

in SBMA+IO, on a set of benchmark TSP instances. The compared algorithms have

been implemented in C++.

All test TSP instances (except CHN144)1 were chosen from TSPLIB [124]. The

number of cities in these TSP instances varies from 51 to 144. The distance between

two cities has been determined by calculating the Euclidean distance as a floating

point number. Note that the optimal tours provided by TSPLIB (and their tour

lengths) are given with respect to Euclidean distances that have been rounded to

the nearest integer, whereas our experiments have been carried out with distances

that have not been rounded to integers. This means that the value of the “global

optimum” listed in our result tables is for instances with slightly different distances

between cities, but the effect is small and does not affect the conclusions.

The parameters for the algorithms were set as follows. The population size was

set to 50 for the first four TSP instances, and 20 for the remaining TSP instances.

1CHN144 is a Euclidean instance generated from the positions of 144 major cities in China.
The positions of the 144 cities (xi, yi), i = 1, 2, · · · , 144, are mentioned in [74] and listed in [75].
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The tournament size in SBMA was set to a slightly high value 7 in order to give

a high selection pressure. The default crossover probability was set to pc = 0.25

and the increment value to pc was δpc = 0.05, The default mutation probability

pm = 0.0025 and the increment value to pm is δpm = 0.0005. The values for the

parameters are arbitrarily chosen, as in SBMA the initial set of parameters are

increasing for mutation and crossover by a small value to maximum value less than

1 when the fitness does not change. If the best fitness value changes, the values of

these parameters are reset to their initial values. For local search, MaxLS = 20 and

the step size was initially set to the default value 5 and the upper maximum limit

for the step size was set to SBLSmaxstepsize = 20 for each TSP instance. The SBMA

was executed for 5000 generations for each run on a TSP instance.

4.4.2 Experimental Results and Analysis

In Table 4.1, we present the results of IO, SBMA+IO, and SBMA over 20 indepen-

dent runs. In this table, the results of “best” rows show the best tour found and

“Avg” rows show the average result (fitness) found over 20 runs. The “Err” rows

give the relative deviation to the global optimum (fitness), which is listed in the

table after the instance name (recall that the global optimum is with respect to in-

stances where the distances between cities have been rounded to the nearest integer).

Table 4.2 shows the acceleration ratio of SBMA over the IO algorithm, which is the

ratio of the number of generations needed to gain the specified fitness. The second

column gives the arbitrarily chosen fitness value that has been used to evaluate for

both approaches the number of generations that is necessary to reach that fitness

value. The third column shows the number of generation taken by SBMA, while the

fourth column shows the number of generations that IO takes to achieve the fitness

value given in the second column. For example, in case of EIL51, the fitness 501

is achieved by SBMA in 153 generations while IO takes 512 generations. The fifth

column shows the ratio of the number of generations of SBMA and IO.
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Table 4.1: Comparison of results of Inver-Over, SBMA+IO, and SBMA

Instance Results IO SBMA+IO SBMA

Best 429.53 439.184 429.48
EIL51 Err 0.0083 0.0309 0.0082
(426) Avg 430.66 439.84 437.80

Err 0.0109 0.0325 0.0277
Best 552.22 579.194 562.97

EIL76 Err 0.0264 0.0766 0.0464
(538) Avg 552.37 571.56 570.7

Err 0.0267 0.0624 0.0608
Best 654.26 675.2 650.89

EIL101 Err 0.0402 0.0741 0.0348
(629) Avg 656.78 685.7 666.6

Err 0.0442 0.0902 0.0598
Best 21285.4 22193 21282

KROA100 Err 0.0002 0.0428 0.00
(21282) Avg 22392.10 2239 2.10 22382

Err 0.0522 0.0522 0.0492
Best 20820 21647.3 21008

KROC100 Err 0.0034 0.0433 0.0125
(20749) Avg 20888.10 21942.10 21903.6

Err 0.0067 0.0575 0.0560
Best 21517 22180 21317

KROD100 Err 0.0105 0.0416 0.0011
(21294) Avg 21523.00 22504.30 22674.6

Err 0.0108 0.0568 0.0648
Best 14432.6 14491.8 14782

LIN105 Err 0.0037 0.0078 0.0280
(14397) Avg 14510.90 15531.20 15118.0

Err 0.0092 0.0801 0.0514
Best 31253 32613.3 31782

CHN144 Err 0.0299 0.0747 0.0473
(30347) Avg 31542.90 33268.20 32513.6

Err 0.0394 0.0963 0.0714

A plot of the tour length against the number of generations is shown in Figure 4.2.

When comparing the experimental results between SBMA and the IO operator,

from Table 4.1, it can be seen that SBMA achieves better solutions than IO on 5
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Figure 4.2: Experimental results of IO, SBMA+IO, and SBMA
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Table 4.2: Experimental results regarding the acceleration ratio (AR) of SBMA
over IO

Instance Fitness SBMA IO AR

EIL51 501 153 512 3.35
EIL76 627 450 1110 2.50
EIL101 745 600 1801 3.00
KROA100 30225 448 1277 2.85
KROC100 30310 298 1241 4.16
KROD100 26870 595 1521 2.55
LIN105 19818 456 1386 3.03
CHN144 49953 174 1687 9.7

test instances, while slightly worse solutions on the other instances. However, from

the results of Table 4.2 and Figure 4.2, it can be seen that SBMA outperforms

IO regarding the convergence speed. The acceleration ratios of SBMA over IO in

the early stage of the evolutionary process on all test instances are from 2.5 to

9.7, respectively (i.e., SBMA is from 2.5 to 9.7 times faster than IO regarding the

convergence speed to achieve a certain fitness level).

It is also confirmed that SBMA can compete to the maximum level of optimality

and most of the runs SBMA keep the control within itself. It has been shown that

SBMA has almost the same characteristics on different benchmark TSP instances.

The combined effect of SBMA+IO shows the same level of optimization with both

the operators applied together one after another, which shows that if SBMA applied

at the initial level of optimization process which do fast convergence and then control

given to IO can thus enhance the performance and solution quality. Simply at the

early stage of evolution, SBMA can drive the population to local optimum more

rapidly and then IO is further applied so that the number of generations could

be reduced as the IO has the ability to increase the population diversity, avoiding

diversity loss in common crossover operators.

Further improvement of solutions requires greater computational efforts in terms of

98



Chapter 4. A Sequence Based Memetic Algorithm for the TSP

the number of generations. For example, the best result SBMA got for Chn144 is

31086.4 (Err = 0.0243648) when we increase the number of generations to be more

than 5000 generations. In Figure 4.2, this improvement is sensible for the instances of

TSPLIB [124], respectively, which is a good indication of the convergence behaviour

of SBMA.

4.5 Chapter Summary

In this chapter, we presented a sequence-based genetic algorithm (SBMA) with

local search for solving the TSP. The basic idea behind SBMA is to make use of

information extracted from the population to guide the crossover, mutation and local

search operators. Some effective ideas are proposed for preserving the population

diversity, preventing premature convergence, and enhancing the speed of convergence

at the initial stage of SBMA. Our proposed mutation operator takes SBMA to

promising areas of the search space as well as contributing in the fitness increase.

The crossover operator exhibits a behaviour of displacement mutation, but here the

extracted sub-tour is an optimized one. Our concept is totally dependent on the

formation of the set of sequences, which is an area that should be further improved.

Experiments were carried out to compare the performance of SBMA with the Inver

Over algorithm on a set of benchmark TSP instances. The results show that SBMA

can converge very fast at the initial stage of evolution. However, one does not intend

to claim that SBMA can compete with other state-of-the-art algorithms because in

case of SBMA, its running time is still a big question, and improvement is needed

in this direction.

The proposed SBMA works well for solving small and medium scale TSP instances.

However, for larger scale instances, the computational cost is very high for SBMA

and the speed of SBMA is comparatively slow. In the coming chapter, we will present

some of the limitations of the SBMA approach which arose during the study. We
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will argue some of the potential improvement that has been proposed to tackle the

limitation, and also the current heuristics should be enhanced by integrating new

heuristic approaches.
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Chapter 5

A Two-Phase Hybrid Algorithm

for the Travelling Salesman

Problem

5.1 Introduction

In the previous chapter, we have observed that the Sequence Based Memetic Algo-

rithm (SBMA) is good in obtaining good results for the Travelling Salesman Prob-

lem (TSP), but is computationally expensive. So, in this chapter, we hybridize the

previous SBMA with the fast Inver Over (IO) operator to develop a two-phase hy-

brid approach (TPHA) to solving the TSP. In the first phase, the SBMA with an

embedded local search scheme is applied to solve the TSP. Additionally, some pro-

cedures are applied to maintain the diversity by breaking the selected sequences into

sub-tours if the best individual of the population does not improve. After SBMA

finishes, the hybrid approach enters the second phase, where the IO operator [138],

which is a state-of-the-art algorithm for the TSP, is used to further improve the

solution quality of the population. In order to investigate the performance of the
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proposed hybrid approach for the TSP, experiments are carried out to compare it

with other relevant algorithms on a set of small and large benchmark TSP instances.

Experimental results show that the proposed hybrid approach is superior to the IO

algorithm in terms of the convergence speed as well as the solution quality.

5.2 Two-Phase Hybrid Algorithm (TPHA)

This chapter proposes a TPHA to solving the TSP. The framework of TPHA is

shown in Algorithm 19. In the first phase, the SBMA, which was proposed in [7],

is used. Within the SBMA, a memory is used to store good sequences (sub-tours)

extracted from previous good solutions. The stored sequences are used to guide the

generation of offspring during the crossover, mutation, and local search operations.

In this chapter, we use an embedded local search scheme into SBMA, where the

word “embedded” means that the local search technique is applied before the final

evaluation of the individual within crossover and mutation. After each crossover and

mutation operation, local search runs to improve the fitness of newly created child

based on the set of sequences stored in the memory. Additionally, some procedures

are applied to maintain the diversity by breaking the selected sequences into sub-

tours if the best individual of the population does not improve.

After SBMA finishes, the hybrid approach enters the second phase. The criterion

of switching from phase one to phase two is shown in Algorithm 20. In the second

phase, the IO operator [138], which is a state-of-the-art algorithm for the TSP, is

used to further improve the quality of solutions in the population. The IO operator

belongs to a kind of blind operators. Along with its good adaptive power, IO suffers

from random inversions which do not give better individuals finally. In this chapter,

we modify the original IO operator by making the inversions restrictive: only those

inversions that give better fitness scores will be retained and replace the original

tour, i.e., a kind of local refinement with IO is used here. In this study, we set
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Algorithm 19 Two-Phase Hybrid Algorithm (TPHA)

1: Initialise adaptive parameters (e.g., pc, pm, ninv, sseq, and SBLSstepsize) to their
default values;

2: no change count := 0;
3: Phase1 := true;
4: Pop := Initialise a population of popsize random individuals;
5: for each individual indi ∈ Pop do
6: indi := 2-Opt(indi, n);
7: end for
8: GenerateSequence(Nseq);
9: repeat
10: if Phase1 = true then
11: mating pool := perform tournament selection from Pop;
12: // Crossover
13: for j := 0 to popsize do
14: Select two parents ia and ib from the mating pool;
15: if (rand(0, 1) < pc) then
16: Create childa and childb by e-SBOX(ia, ib, Finsert);
17: Add childa and childb to Poptmp;
18: end if
19: end for
20: // Mutation
21: for each individual indi ∈ Poptmp do
22: if (rand(0, 1) < pm) then
23: e-SBIM(indi, ninv, Finsert);
24: Add indi to Poptmp;
25: end if
26: end for
27: AdaptParameters();
28: Pop := SelectNewPop(Pop+ Poptmp);
29: if Switch Criteria(no change count) ≥ γ then
30: Phase1 := false;
31: IOpopsize := 3× popsize;
32: PopIO := Insert popsize random individuals into Pop+ Poptmp for IO;
33: end if
34: else
35: for each individual indi ∈ PopIO do
36: RIO(indk);
37: end for
38: end if
39: until (termination condition = true)
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Algorithm 20 Switch Criteria(no change count)

1: if (best fitness changes) then
2: no change count := 0;
3: else
4: no change count++;
5: end if
6: return(no change count);

γ = 100, which means that if the best fitness does not change for consecutive γ

generations, then the shifting criterion would be satisfied and the control would be

given to RIO.

It is worth noting that our approach could also be used in general for combining any

two different optimisation methods. The approach is presented here with just two

phases, but based on different parameter settings, it could also be extended to more

than two phases. It may be desirable to construct a pool of crossover and mutation

operators along with many other local search methods. A kind of intelligent shifting

scheme could be employed which first analyses the fitness landscape and then takes

action or calls the appropriate operators or executes a complete phase of a suitable

type. Similar work has been done by Gabrys and Ruta [43] on classifier fusion of

different classifier models, where each classifier system can handle different types of

data at hand.

In the following sub-sections, we first describe the modified SBMA and then de-

scribe the modified IO operator used in the proposed two-phase hybrid approach

respectively.

5.2.1 Phase I: Modified SBMA (SBMA-II)

In this hybrid approach, the working principle of the modified SBMA, denoted

SBMA-II, is similar to that of the SBMA, which has been described in Chapter

4. In the previous SBMA, after the crossover and mutation, the selected sequence
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is inserted at a random position, and then SBLS is further applied, within which a

kind of exhaustive technique is used since it searches all the locations to find the best

location for inserting a selected sequence, which is the main cause for our previous

approach to be computationally expensive.

In SBMA-II, we do not apply SBLS after crossover and mutation. Instead, we

apply the SBLS operation within crossover and mutation that deal with partial

individuals. By making these partial individuals into a complete one, we check

Finsert of random locations instead of all the locations as in SBMA and select the

best location among these locations and insert the sub-tour and then evaluate the

individual. Thus, local search is the embedded part of crossover and mutation. The

parameter Finsert supplied to the crossover and mutation operator represents the

percentage of positions (to the size of the individual we want to insert a sequence)

that are selected as the candidate positions for the insertion of a selected sequence

Ssel. The value of Finsert varies from 5% to 15% to the size of a TSP instance.

For example, for the eil101 TSP instance used in the experimental study, 5 random

locations will be checked if Finsert = 5% since there are 101 cities in the eil101 TSP

instance.

5.2.1.1 Sequence Based Order Crossover with Embedded Local Search

(e-SBOX)

The e-SBOX crossover operator is based on the SBOX operator, which has been de-

scribed in the previous chapter. However, the working principle is slightly different.

The pseudo-code of e-SBOX is shown in Algorithm 21. In e-SBOX, after crossing

over the partial parent solutions, local search operations are carried out on them

directly to generate complete children solutions.
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Algorithm 21 e-SBOX(ia, ib, Finsert)

1: Ssel := randomly select a sequence from the memory;
2: Remove the nodes of Ssel from individuals ia and ib, resulting in i′a and i′b,

respectively;
3: Perform Order Crossover on i′a and i′b to generate children childa and childb,

respectively;
4: Apply SBLS-II(childa, Ssel, Finsert) and SBLS-II(childb, Ssel, Finsert);
5: Evaluate childa and childb;

5.2.1.2 Sequence Based Inversion Mutation with Embedded Local Search

(e-SBIM)

Similarly, the mutation operator e-SBIM is based on the SBIM mutation operator

described in Chapter 4. The pseudo-code of e-SBIM is shown in Algorithm 22. In

e-SBIM, after mutating the partial parent solution, local search is carried out on the

partial solution directly to generate a complete child solution.

Algorithm 22 e-SBIM(im, ninv, Finsert)

1: Ssel := randomly select a sequence from the memory;
2: S ′

sel := reverse selected Ssel;
3: itemp := remove the cities in Ssel from individual im;
4: for i := 0 to ninv do
5: Randomly select two positions p1 and p2 such that 0 < p1 < p2 < |itemp|,

where |itemp| denotes the number of cities in itemp;
6: i′temp := inverse cities in between positions p1 and p2 of itemp;
7: if f(i′temp) < f(itemp) then
8: itemp := i′temp;
9: end if
10: end for
11: Apply SBLS-II(itemp, S

′
sel, Finsert);

12: Evaluate itemp;
13: im := itemp;

5.2.1.3 Modified Sequence Based Local Search (SBLS-II)

Local search is an efficient heuristics for combinatorial optimization problems [96].

In SBMA, the set of sequences stored in the memory is applied in the LS to guide
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the generation of children towards promising area of the search space.

As we have mentioned above, in SBMA-II, the working principle of the SBLS is

changed. The only difference lies in that SBLS is a kind of exhaustive search tech-

nique, which searches all locations to insert a selected sequence into an individual

and hence is computationally expensive. In the modified SBLS-II, we only check a

limited subset of locations, which reduces the computational time a lot.

Algorithm 23 SBLS-II(indi, Ssel, Finsert)

1: X := 2-Opt(indi, SBLSstepsize);
2: Create a set of |X| ×Finsert random locations, where |X| denotes the number of

cities in X;
3: Find the best position best position among the selected locations in X which

gives the minimum length increase after inserting Ssel, according to the following
equation:

Linc = Minj=n−M
j=0 (dist[Ssel[0]][Xj ] + dist[Ssel[M − 1]][Xj+1]− dist[Xj][Xj+1]);

where n is the total number of cities in the TSP and M is the number of cities
in Ssel

4: indi := insert Ssel into X at position best position;
5: Evaluate indi;

The pseudo code of SBLS-II is shown in Algorithm 23. SBLS-II takes an individual

indi and first performs 2-Opt improver for K times. Then, SBLS-II finds the best

position from a set of randomly selected positions to insert a selected sequence into

indi. The distance between the first and last nodes of the sequence Ssel is calculated

according to the distance matrix relevant to the adjacent nodes of the individual indi

where the sequence may be inserted. The position corresponding to the minimum

length increase value Linc is used to insert the sequence Ssel to indi.

5.2.1.4 Adapting Parameters and Maintaining the Diversity

As in the SBMA, we use adaptive techniques in SBMA-II to adapt several key

parameters, including the step size SBLSstepsize for the 2-Opt improver used in

SBLS, the size of sequences sseq, and the crossover and mutation probabilities.
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For the first parameter, SBLSstepsize is initially set to 5. When the best fitness of

the population does not improve, the value of SBLSstepsize is increased by 5 until it

reaches 20. If the best fitness of the generation improves, SBLSstepsize is reset to 5.

The size of sequences sseq stored in the memory is adapted also according to whether

the best fitness of the generation has been improved. Initially, sseq is set to the value

of ⌊√n⌋, where n is the total number of cities in the TSP and ⌊x⌋ returns an integer

nearest or equal to x. We use a variable tus to denote when to update sseq, which

is initialized to 20. When the best fitness of the population does not improve, tus is

decreased by one. When tus = 15, we set sseq := ⌊0.75 ×√
n⌋. When tus is further

reduced to 10, we set sseq := ⌊0.5 ×√
n⌋. When tus is further reduced to 5, we set

Sseq := ⌊0.25 × √
n⌋. When tus is further reduced to 0, sseq := 2, which means a

sequence will become an edge (i, j) and SBMA searches for the shortest edge and

re-inserts it in a proper position of an individual in SBLS. If the best fitness of the

population improves, tus is reset to 20 and sseq is reset to ⌊√n⌋. The algorithm of

adapting parameters has been given in the previous Chapter 4 as Algorithm 16, in

this pseudo code MaxLSrunning refers to tus of the above text.

We also adapt the crossover probability pc and mutation probability pm as follows.

Initially, we set pc = 0.55 and pm = 0.05. If the best fitness of the population does

not improve, we increase pc with a step size δpc = 0.05 until it reaches 0.8 and pm

with a step size δpm = 0.005 until it reaches 0.5. If the best fitness of the population

improves, pc and pm are reset to their initial values.

5.2.2 Phase 2: Modified Inver Over (IO) Algorithms

We propose two simple modifications to the original IO algorithm [138], which has

been described in Chapter 4 as Algorithm 17. The modifications are described as

follows.
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Algorithm 24 RIO(route)

1: p = 0.02
2: route∗ := route;
3: select randomly a city C from route∗;
4: while (TRUE) do
5: if (rand(0, 1) < p) then
6: select the city C∗ from the remaining cities in route∗;
7: else
8: select randomly a route from the population;
9: assign to C∗ the next city to C in the selected route;
10: end if
11: if (the next or previous city of city C is C∗ in route∗) then
12: exit from the while loop;
13: end if
14: inverse the section from the next city of city C to city C∗ in route∗;
15: C := C∗;
16: if (Length(route∗) < Length(route)) then
17: route := route∗;
18: end if
19: end while

5.2.2.1 Restricted IO Algorithm

It is clear from Algorithm 17 that the main loop terminates and only if the next or

previous city of city C is C∗ in route∗, then it exits from the main loop. It does

not consider which inversion contributes in fitness gain or not. We have made the

inversion restricted by shifting the evaluating part of Algorithm 17 into the main

while() loop before the assignment of C := C∗. The pseudo-code of the modified IO

algorithm, called the restricted inver over (RIO) algorithm, is shown in Algorithm

24.

At the first glance, it seems to be an extra overhead on the IO and this would

increase the execution time. But, it is interesting to see in the experimental results

that comparing with the original IO, the proposed restricted IO not only decreases

the computational time but also contributes to obtain a good solution quality.
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5.2.2.2 Restricted IO with Partial Random Initialization

As mentioned above, SBMA performs well at the early stage of evolution and has

fast convergence, which can get good fitness but reduces the diversity as well. So,

when IO is employed in the second phase of our hybrid approach, it not only brings

diversity but also contributes better in obtaining good results in terms of fitness.

Since the diversity of the population affects the performance of IO greatly, in our

hybrid approach, before giving control to IO, along with previous parent and child

populations, some percentage of random individuals are injected into the population.

If the popsize is 30, then the total size of the population for IO in the second phase

will be 90 (30 parents, 30 children, and 30 random individuals respectively) and for

large benchmark problems, the population size is 60 (20 parents, 20 children, and 20

random individuals respectively). This approach is denoted by TPHA+RI in this

thesis.

5.3 Experimental Study

5.3.1 Experimental Setting

In this section, we present the experimental results of the proposed hybrid approach

TPHA+RI in comparison with other three relevant algorithms, which are the IO

algorithm [138], the original SBMA proposed in Chapter 4, and TPHA that is the

proposed hybrid approach but without adding random individuals into the popula-

tion when the second phase (i.e., IO) is started.

The proposed approach was implemented in C++ on a 2.66 GHz PC under the

Windows Visual Studio environment. All TSP problem instances (except CHN144)

are obtained from TSPLIB1 for the symmetric TSP. The number of cities in these

1Available from http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
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cases varies from 51 to 144 for small problems and from 318 to 1173 for large prob-

lems. The SBMA is not performed for large problems, because it takes longer time

which can be seen from Table: 5.1. The parameters for the algorithms were set

as follows. The population size was set to 30 for the first eight TSP instances in

the four techniques. For IO and TPHA the population size is 60 in large problems.

And for TPHA+RI algorithm, initially the population size was set to 20 for the first

phase and for second phase the population size was increased to 60 for making the

population size consistent for the three techniques. The crossover probability and

mutation probability were initially set to pc = 0.55 and pm = 0.055, respectively,

which are adapted by a small value to a maximum value when the best fitness of

the generation does not change. The percentage of random locations to insert a

sequence, Finsert, was set to 5% for these experiments. The number of generations

for small instances such as eil76, eil101, lin105, kroA100, kroC100 and chn144 is

10000 and for medium instances such as lin318, pcb442, rat783, u724, vm1084 and

pcb1173 is 50000.

5.3.2 Experimental Results and Analysis

In Table 5.1, we present the averaged results of IO, SBMA, TPHA, and TPHA+RI

over 30 independent runs. In this table, “Best” denotes the best tour found and

“Avg” denotes the average fitness over 30 runs. The “Err” rows give relative devia-

tion to the global optimal fitness listed in the table after the instance name. Finally,

“Avg Time” is the average time used by algorithms in seconds. Figure 5.1 and 5.2

show the dynamic performance of algorithms regarding the average fitness against

the number of generations.

From Figure 5.1 and Figure 5.2, it can be seen that TPHA and TPHA+RI gives

a better convergence speed at the initial stage of the solving progress, which is the

SBMA part of our hybrid approach. The convergence speed is also visible from

Figure 5.3, which is plotted from 10,000 evaluations of both the algorithms for
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Instance Measure IO SBMA TPHA TPHA+RI

Best 544.369 553.097 546.886 544.369
EIL76 Err 0.0118 0.0280 0.0165 0.0118
(538) Avg 550.304 557.2756 556.401 548.294

Err 0.0228 0.0358 0.0342 0.0191

Avg Time 6.50 19.00 4.80 5.7
Best 644.275 663.867 645.919 645.205

EIL101 Err 0.0242 0.0554 0.0268 0.0257
(629) Avg 652.851 677.73 653.879 651.444

Err 0.0379 0.0774 0.0395 0.0356

Avg Time 6.80 23.00 5.60 6.3
Best 21285.4 21890.66 21285.4 21285.4

KROA100 Err 0.0001 0.0285 0.0001 0.0001
(21282) Avg 21328.8 21896.66 21430.5 21321.7

Err 0.0021 0.0288 0.0069 0.0018

Avg Time 6.80 23.09 5.60 6.16
Best 20769.9 21732.1 20750.8 20750.8

KROC100 Err 0.0010 0.0473 0.00001 0.00001
(20749) Avg 20879.1 21884.96 20921.7 20822.1

Err 0.0062 0.0547 0.0083 0.0035

Avg Time 6.70 23.00 5.40 6.2
Best 14397 14755 14397 14397

LIN105 Err 0 0.0248 0 0
(14397) Avg 14446.5 15276.7 14505.2 14426.4

Err 0.0034 0.0611 0.0075 0.0020

Avg Time 6.90 24.50 5.60 5.7
Best 31388.1 32169 30661.1 30353.9

CHN144 Err 0.0343 0.0600 0.0103 0.0002

(30347) Avg 31681.6 33470.9 30953.9 30698.7

Err 0.0439 0.1029 0.0199 0.0115

Avg Time 6.96 17.00 5.00 7.00
Best 43045.5 – – 42831.6 42964.4

LIN318 Err 0.02419 – – 0.01909 0.0222

(42029) Avg 43174.8 – – 42955.8 43070

Err 0.0272 – – 0.0220 0.0247

Avg Time 47.35 – – 47.84 37.36
Best 55625.7 – – 51868.3 51866.9

PCB442 Err 0.0954 – – 0.0214 0.0214

(50778) Avg 55868.9 – – 52013.46 52236.8

Err 0.1002 – – 0.0243 0.0287

Avg Time 74.26 – – 61.78 55.36
Best 12096 – – 7018.98 7031.91

RAT575 Err 0.7859 – – 0.0363 0.03822

(6773) Avg 12721.4 – – 7031.45 7048.58

Err 0.8782 – – 0.0381 0.0406

Avg Time 110.36 – – 98.08 76.29
Best 34093.5 – – 9526.48 9218.27

RAT783 Err 2.8716 – – 0.05115 0.0468

(8806) Avg 34946.3 – – 9267.84 9244.28

Err 2.9684 – – 0.05244 0.0497

Avg Time 190.57 – – 72.33 106.06
Best 140569 – – 43304.2 43441

U724 Err 2.3540 – – 0.0332 0.0365

(41910) Avg 145847 – – 43519.3 43485.8

Err 2.4800 – – 0.03839 0.0376

Avg Time 157.80 – – 139.94 92.84
Best 2.26e+06 – – 250757 252305

V1084 Err 8.4344 – – 0.0478 0.0543

(239297) Avg 2.29e+06 – – 251469 252955

Err 8.5698 – – 0.0508 0.0570

Avg Time 332.80 – – 196.98 159.20
Best 432382 – – 60223.4 60055.9

PCB1173 Err 6.5880 – – 0.0568 0.0539

(56982) Avg 440485 – – 60476 60481

Err 6.7302 – – 0.0613 0.0614

Avg Time 347.17 – – 217.36 172.37

Table 5.1: The experimental results of IO, SBMA, TPHA, and TPHA+RI
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Figure 5.1: Experimental results of IO, SBMA,TPHA, and TPHA+RI. The
effect of our approach has more additive improvements over the original IO.

chn144 and pcb1173. Then, it behaves similar to the IO operator. In terms of the

number of evaluations, the ratio between IO and SBMA is 1:3, as SBMA uses the

traditional binary operator with an additional embedded SBLS. But, due to the

adaptive behaviour of IO, it gives a better solution quality at the later stage of the

hybrid approach. The hybrid approach combines both the features of SBMA and

IO. First, SBMA brings the fitness to a near-optimal level in a few generations and

then IO further works and improves the fitness to give a better solution quality.
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Figure 5.2: Experimental results of IO,TPHA, and TPHA+RI. The effect of
our approach is more prominent in larger problems.

It can also be observed that when the new population is selected from parent and

child, lots of information is lost. So, by keeping parent and child population and in-

troducing some random individuals,the TPHA+RI outperforms SBMA and TPHA.

From Table 5.1, it can be seen that TPHA+RI achieves better solutions than IO

on all test instances, while TPHA is slightly worse (first eight small and medium

instances), but comparatively better then SBMA. However, from the results of Ta-

ble 5.1 and Figures 5.1 and 5.2, we can see that our hybrid approach TPHA+RI
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Figure 5.3: Evaluation results of IO,SBMA. The which best fitness evaluation
within 100 fitness evaluations is recorded. The total evaluation for each algorithm

are 10000, which shows the convergence of SBMA vs IO.

outperforms IO regarding both the convergence speed and solution quality and time.

It should be interesting to compare the original IO operator and our modified IO

approaches which have been described before. Figures 5.1 and 5.2 plot the average

tour length against the number of generations for 13 TSP instances. The three

types of refinement can enhance the performance, both converged more rapidly than

original IO. The use of SBMA, restrictive IO and RI also have additive effects on

the performance gain and the contribution is dominating. From these preliminary

results, one may speculate that our approach is more effective and increases the

“Adaptive Power” of the IO which are not fully contributed by the original IO in

case of small as well as in large TSPs instances.

In terms of the computational time, it is obvious that performing extra steps in

our proposed approaches increases the execution time. But, from Table 5.1, the

characteristics are totally opposite. The IO takes longer time on all the instances,

either small or large. In cases of rat575, rat783, u724, v1084, and pcb1173, the IO

operator is unable to achieve acceptable fitness, but due to the additive effect of our

approaches with IO, it not only gets better fitness but also reduces the execution

time remarkably. We may speculate that most of the time is wasted in inversions

which are not fruitful regarding the fitness gain.
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From Figure 5.1 and Figure 5.2, various algorithms are shown in different line styles.

It is obvious from the plots that our proposed approaches are not overlapping. This

means that each refinement can contribute to additional performance gain. These

contributions are more effective for large problems. However, these refinements

not only decrease the error rate but also reduce the CPU time on almost all test

instances.

5.4 Chapter Summary

This chapter proposed a two-phase hybrid approach for the TSP based on a sequence

based genetic algorithm (SBMA) and the inver over (IO) operator. In the first phase,

SBMA is used with an embedded local search scheme to solve the TSP. Within the

SBMA, a memory is introduced to store good sequences extracted from previous

good solutions. The stored sequences are used to guide the generation of offspring

during the crossover and mutation operations. After each crossover and mutation

operation, a sequence based local search scheme runs to improve the fitness of newly

created child. Some effective ideas are proposed for adapting the key parameters and

maintaining the population diversity. After SBMA finishes, the second phase uses

the IO algorithm [138], which is a state-of-the-art algorithm for the TSP, with some

extra refinements, i.e., restrictive inversions and a random immigrants like scheme,

to further improve the quality of solutions of the population.

In order to investigate the performance of the proposed hybrid approach for the

TSP, experiments were carried out to compare it with three relevant algorithms on

a set of benchmark TSP instances. Experimental results show that the proposed

hybrid approach is superior to the IO algorithm and the original SBMA regarding

both the convergence speed and solution quality on most test TSP instances.

The next chapter would be based on further refining some issues which arise during

this study. The first one is to consider how to prevent the sequences from inserting
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long edges. Secondly, we need to consider how the inver over, which takes blind

decisions of inversions, should be made more intelligent or guided. Finally, the

sensitivity analysis of key parameters will be carried out.
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Chapter 6

A Guided Two-Phase Hybrid

Algorithm for the Travelling

Salesman Problem

6.1 Introduction

In this chapter, we move forward toward a bit deeper analysis of our previous ap-

proaches, which have been described in the previous two chapters. We further

increase the convergence speed of the first phase of our sequence based memetic

algorithm (SBMA) by integrating some heuristics, e.g., the nearest neighbours of

a node, which ultimately brings the nodes near to each other by preventing long

edges. This work leads to a guided two-phase hybrid algorithm (GTPHA), which

is the combination of the Nearest Neighbour Sequence Based Memetic Algorithm

(NN-SBMA) and the Restricted Elite Population Inver Over (REIO) operator, for

solving the travelling salesman problem (TSP).

Similarly, in the first phase of GTPHA, a set of sequences/sub-tours are generated

and stored in a memory and are used to guide the evolutionary process via local
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search. Additionally, we apply some techniques to adapt the key parameters based

on whether the best individual of the population improves or not and maintains the

diversity. After the first phase, GTHPA enters the second phase, which is the REIO

operator. Here, REIO is directed to get the clue from the elite (best) population

by adding and preserving good edges. The GTPHA includes some other refinement

approaches for employing the local search information and various mechanisms for

achieving the balance between the two phases.

Different experiments are carried out to investigate the performance of the hybrid

approach in comparison with several relevant state-of-the-art algorithms on a set of

benchmark TSP instances. The experimental results show the proposed hybridiza-

tion of various binary and unary operators are efficient in finding optimal or near-

optimal solutions for the TSP test instances. Experimental results of the sensitivity

analysis of key parameters also reveals that adjusting the size of sequences not only

reduces the computational time but also contributes to obtaining good quality tours.

6.2 The Guided Two-Phase Hybrid Algorithm

The framework of the GTPHA is similar to the two-phase hybrid algorithm (TPHA)

described in Chapter 5. The pseudo-code of GTPHA is shown in Algorithm 25.

The TPHA approach suffered from including expensive edges as sequences were

generated in a totally random manner. In the current guided TPHA, we have made

the process more intelligent by incorporating the behavior of the nearest neighbor

algorithm by generating the sequences using a nearest neighbor list with the hope

that it would decrease the computational time. The mutation operator is replaced by

a double bridge move operator which has been addressed by many other practitioners

[65, 96]. Additionally, we introduced a complete 2-opt local search instead of a partial

2-opt, which was doing onlyK swaps while here it is doing as many swaps as possible

until no further improvement is impossible. In Phase-2, we have tried to force the
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Algorithm 25 Guided Two-Phase Hybrid Algorithm (GTPHA)

1: Create Distance Matrix() according to the problem instance;
2: nnListsize := ⌊√n⌋;
3: nnListn×⌊√n⌋ := GenerateNearestNeighbourList(nnListsize);
4: Set parameters, e.g., pc, pm, ninv, sseq, α, Finsert, γ, and tus, to their default values;
5: no change count := 0;
6: Phase1 := true
7: Pop := Initialise a population of popsize random individuals;
8: GenerateNearestNeighbourSequence(Nseq);
9: repeat
10: if (Phase1 = true) then
11: mating pool := TournamentSelect(Pop);
12: // Crossover
13: for j := 0 to popsize do
14: Select two parents ia and ib from the mating pool;
15: if ((rand(0, 1) < pc)) then
16: Create childa and childb by e-SBOX(ia, ib, Finsert);
17: Add childa and childb to Poptmp;
18: end if
19: end for
20: // Mutation
21: for each individual indi ∈ Poptmp do
22: if ((rand(0, 1) < pm)) then
23: e-SBDB(indi, ninv, Finsert);
24: Add indi to Poptmp;
25: end if
26: end for
27: AdaptParameters(α, tus, Genrunning);
28: Pop := SelectNewPop(Pop+ Poptmp);
29: if (Switch Criteria(no change count) ≥ γ) then
30: Phase1 := false;
31: IOpopsize = 3× popsize;
32: PopIO := add nearest neighbour based random individuals into Pop+Poptmp;
33: end if
34: else
35: ElitePop[ ] := GenerateElitePop(PopIO);
36: for each individual indi ∈ PopIO do
37: REIO(indi, ElitePop[ ]);
38: end for
39: end if
40: Genrunning++;
41: until (Genrunning ≥ MaxGen)

IO operator to add the segment which yields better results, and the concept of an

elite population introduced.
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The first phase of the GTPHA is the NN-SBMA. In NN-SBMA, a population of

solutions is first randomly initialised. Then, a set of Nseq sequences are generated

as follows. A set of best individuals are selected from the population. In TPHA,

each selected individual is then broken into sub-tours, and the sub-tour with the

shortest length is selected, further optimized by a 2-Opt improver [86], and then

stored in the memory. In GTPHA, sequences are generated in two different ways,

which will be further explained below. After the construction of sequences, a mating

pool is generated using the tournament selection with the tournament size 3. Then,

crossover and mutation are performed based on the sequences stored in the memory

to generate offspring. Here, e-SBOX, as described in Algorithm 21, is used as the

crossover operator, and the mutation operator is a new one, which will be further

described in Section 6.2.2. In GTPHA, we integrate the local search operator as

a part within crossover and mutation as in our previous study for TPHA. Simply,

local search runs after each crossover and mutation operation to improve the fitness

of a newly created child. In GTPHA, when NN-SBMA does not give any further

improvement for a number of generations, GTPHA enters the second phase, which

is the REIO part. The switching criterion is the same as the one used in the TPHA,

see Algorithm 20.

In the following sub-sections, we mainly focus on describing the different aspects of

GTPHA from TPHA.

6.2.1 Sequence Generation

The purpose of constructing sequences from the population is to guide the SBMA.

But, our previous sequence generation approach, see Algorithm 12, suffers from

randomness, i.e., sometimes a sequence may contain long edges, especially when the

size of the sequence is large, as illustrated in Figure 6.1. To overcome this drawback,

in the GTPHA, we use two different ways to generate sequences/sub-tours, which

are denoted nearest neighbour sequence generation and random sequence generation,
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Figure 6.1: A sequence generated by Algorithm 12 may contain long edges,
especially when the sequence size is large. The feasible node would be the x one

but node 5 is connected which is expensive.

respectively. The first approach helps in generating sequences that contain nodes

near to each other while the second approach helps in creating random optimal

sequences by making the sequences/sub-tours a little bit more diverse.

In the GTPHA, for a few initial generations, e.g., 0.05% of the total number of gen-

erations for a run, sequences are generated based on the nearest neighbour concept,

and for the rest of generations, sequences are generated based on random sequences.

After the set of sequences are initialized, we update the set of sequences when the

fitness of the best individual of the population improves. For the generation or up-

date of the set of sequences, a certain percentage of the best individuals from the

population are selected. The construction of sequences using both approaches are

described as follows.

6.2.1.1 Nearest Neighbour Sequence Generation

As mentioned above, during the early generations, sequences/sub-tours are con-

structed with the help of the nearest neighbour approach. In the nearest neighbour
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sequence generation approach, we need first to construct a two-dimensional nearest

neighbour list, denoted NN List, as shown in Algorithm 26.

Algorithm 26 GenerateNearestNeighbourList(nnListsize)

1: for node := 0 to n− 1 do
2: for i := 0 to n− 1 do
3: DistToNode[i] := distMatrix[node][i] // Copy the distances from node to

remaining n nodes;
4: DistToNodeindex[i] := i;
5: end for
6: DistToNode[node] := ∞; // a city is not nearest neighbour to itself;
7: Sort the distances DistToNode[ ] in an ascending order and arrange

DistToNodeindex[ ] accordingly;
8: for k := 0 to nnListsize do
9: nnList[node][k] := DistToNodeindex[k];
10: end for
11: end for
12: return(nnList);

First, the algorithm receives a parameter nnListsize, which is the size of the second

level list in NN List. In our experiments, we have kept the value of nnListsize equal

to the size of sequences, i.e., sseq. In the next step, the distances from the node to

all other nodes are stored in a vector DistToNode[ ] and the indexes of the nodes

are also stored in another vector DistToNodeindex[ ]. Then, the vector of distances

is sorted in the ascending order and also the vector of indexes is set accordingly. The

distance from a node to itself is set to a maximum distance such as ∞. So, a node

is not considered to be the nearest neighbour of itself. Finally, the number of nodes

equal to the size of the sequence are stored in a two-dimensional list, where the first

dimension represents the total number of nodes of the instance and the second one

goes from 0 to the size of sequences sseq. The generated nearest neighbour list is

returned to the main program where it is further used for the generation of nearest

neighbour sequences.

When the NN-list is constructed, it can be used to construct sequences as follows.

First, Nseq random nodes are selected from the TSP problem instance. For each of

the Nseq selected nodes, we construct one sequence as follows. We take the node
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Algorithm 27 GenerateNearestNeighborSequence(Nseq, nnList)

1: Select Nseq random nodes to Randomnodes[ ] from the whole nodes of the instance;
2: for i := 0 to Nseq do
3: for j := 1 to sseq − 1 do
4: Seqi.blockj = nnList[Randomnodes[i]][j]]; // copy the sseq−1 nearest nodes from nnList;
5: end for
6: Seqi.blockj=0 := Randomnodes[i]; // copy the node Randomnodes[i] to Seqi;
7: Calculate the length of Seqi;
8: Seqi := 2-Opt(Seqi); // Further optimize the sequence by the 2-Opt improver
9: Store the sequence Seqi into the memory Sseq;
10: end for

as the initial one and the remaining sseq − 1 nodes are selected from the NN-list,

which are the nearest neighbours of the node. The obtained sequence is further

optimized with the 2-Opt improver. The nearest neighbour sequence generation is

performed for some percentage of the total number of generations. The main aim

of this approach is to bring the nodes nearer to each other up to some extent. The

process is shown diagrammatically in Figure 6.2.

Figure 6.2: A sequence generated with the nearest neighbour technique does
not contain long edge(s).

6.2.1.2 Random Sequence Generation

For random sequence generation, the process is similar to the sequence generation

process in Chapter 5. We also select Nseq best individuals from the current popula-

tion to create Nseq sequences. But, here, in order to generate a new sequence from
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Algorithm 28 GenerateRandomSequence(Nseq)

1: Select the Nseq best individuals from the population and store them in Bestindi[ ];
2: for i := 0 to Nseq do
3: Random nodes[ ] := Select

√
n random nodes as starting points within Bestindi[i];

4: for j := 0 to
√
n do

5: Seqj := Copy sseq consecutive nodes starting from node Random nodes[j] within
Bestindi[i];

6: Calculate the length of Seqj ;
7: end for
8: Select the sequence Seqsel with the minimum length among the set of

√
n sequences;

9: Seqsel := 2-Opt(Seqsel) // Further optimize the sequence by the 2-Opt improver;
10: Store Seqsel into the memory Sseq;
11: end for

each selected individual Bestindi[i], we first select
√
n random nodes as the start-

ing nodes to extract
√
n sub-tours from Bestindi[i]. Each sub-tour starts from one

selected random node and contains sseq − 1 consecutive nodes within the same indi-

vidual Bestindi[i]. Among these
√
n sub-tours, the one with the minimum length is

selected as a candidate sequence, and is then further optimized via a 2-Opt improver

before stored in the memory.

In the current NN-SBMA approach, we have kept the crossover operator the same

as in our previous approach, i.e., the e-SBOX in Algorithm 21 is used. However,

we have replaced the mutation operator e-SBIM in the TPHA with an embedded -

Sequence Based Double Bridge (e-SBDB) mutation operator. The detail of this

operator is explained below. The SBLS operator is the same as the previous approach

in Chapter 5.

6.2.2 Embedded Sequence Based Double Bridge (e-SBDB)

Mutation

In the current approach, we replace the embedded sequence based inversion mu-

tation (e-SBIM) with the simplest non-sequential move, which is a 4-opt move, so

called “Double Bridge” [86], on an individual for some iterations, and preserve those
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Algorithm 29 e-SBDB(indi, ninv, Finsert)

1: Ssel := randomly select a sequence from the memory;
2: itemp := remove the cities in Ssel from individual indii;
3: for i := 0 to ninv do
4: Randomly remove four different edges from itemp such as (gk, gk+1), (hk, hk+1),

(ik, ik+1), and (jk, jk+1);
5: i′temp := re-connect the four broken sub-tours into a complete tour;
6: if (f(i′temp) < f(itemp)) then
7: itemp := i′temp;
8: end if
9: end for
10: Apply SBLS-II(itemp, S

′
sel, Finsert);

11: Evaluate itemp;
12: indii := itemp;

Figure 6.3: Illustration of the double-bridge move operator.

moves which have a positive effect on the performance. This increases the conver-

gence speed although involving an extra overhead on the mutation operator. The

number of iterations of moves in e-SBDB depends on whether the best fitness of the

population changes. If the best fitness changes for each generation, e-SBDB will not

execute. The details of e-SBDB are shown in Algorithm 29. Figure 6.3 illustrates a

double bridge move. In Figure 6.3, let e1 = (gk, gk+1), e3 = (hk, hk+1), e5 = (ik, ik+1),

and e7 = (jk, jk+1), respectively. If these edges are broken, e1, e3, e5, and e7 are

rewired as an 4-opt move, the resulting rewired edges would become e1 = (gk, ik+1),

e3 = (hk, jk+1), e5 = (ik, gk+1), and e7 = (jk, hk+1).
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6.2.3 Adapting Parameters and Maintaining the Diversity

The mechanism of adapting parameters for maintaining the diversity remains the

same as the previous approach, see Algorithm 30. The change made here is that we

adapt the crossover probability pc and mutation probability pm as follows. Initially,

we set pc = 0.65 and pm = 0.025. If the best fitness of the population does not

improve, we increase pc with a step size δpc = 0.05 until it reaches 0.75 and pm with

a step size δpm = 0.005 until it reaches 0.05. If the best fitness of the population

improves, pc and pm are reset to their initial values.

The nearest neighbour sequence generation and random sequence generation are

based on setting the parameter δNNseq
%, which works as follows: initially for some

generations we generate nearest neighbour sequences while for the rest of generations

we generate random sequences as in our previous approaches. So, the condition

(Genrunning ≤ (Maxgeneration × δNNseq
%)) would enforce that when and which type

of sequences would be generated. For example, if Genrunning is less than or equal

to (Maxgeneration × δNNseq
%), then the sequences would be generated based on the

nearest neighbour approach. For example, if Maxgeneration = 5000 and δNNseq
=

0.5%, then for the initial 25 generations, the sequences would be generated based

on the nearest neighbour approach as mentioned earlier.

The size of sequences sseq stored in the memory is also adapted according to whether

the best fitness of generation improves. Initially, sseq is set to the value of ⌊√n⌋,
where n is the total number of cities in the TSP and ⌊x⌋ returns an integer nearest

or equal to x. We use a variable tus to denote when to update sseq, which is for

example initialized to 20. When the best fitness of the population does not improve,

tus is decreased by one. When tus = 15, we set sseq := ⌊0.75 × √
n⌋. When tus is

further reduced to 10, we set sseq := ⌊0.5 × √
n⌋. When tus is further reduced to

5, we set sseq := ⌊0.25 × √
n⌋. When tus is further reduced to 0, sseq := 2, which

means a sequence will become an edge (i, j) and SBMA searches for the shortest

edge and re-inserts it in a proper position of an individual in SBLS. If the best
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Algorithm 30 AdaptParameters(Nseq,MaxLS,Genrunning)

1: if (the best fitness changes) then
2: Reset ninv, pc, and pm to their default values;
3: Reset tus := MaxLS;
4: sseq := ⌊√n⌋;
5: if (Genrunning ≤ (Maxgeneration × δNNseq

%)) then
6: GenerateNearestNeighborSequence(Nseq);
7: else
8: GenerateRandomSequence(Nseq);
9: end if
10: else
11: ninv := min{ninv + 1, sseq};
12: pc := min{pc + δpc , 0.75};
13: pm := min{pm + δpm , 0.05};
14: Decrease tus by 1;
15: if (0.5×MaxLS) < tus ≤ (0.75×MaxLS) then
16: sseq := ⌊0.75×√

n⌋;
17: Apply2−opt := TRUE;
18: else if ((0.25×MaxLS) < tus ≤ (0.5×MaxLS)) then
19: sseq := ⌊0.5×√

n⌋;
20: Apply2−opt := TRUE;
21: else if (0 < tus ≤ (0.25×MaxLS)) then
22: sseq := ⌊0.25×√

n⌋;
23: Apply2−opt := TRUE;
24: else if (tus ≤ 0) then
25: sseq := 2; // that is, a sequence becomes an edge;
26: end if
27: if (Apply2−opt = TRUE) then
28: for i := 0 to Nseq do
29: Seqi := 2-Opt(Seqi, sseq);
30: end for
31: Apply2−opt := FALSE;
32: end if
33: end if
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fitness of the population improves, tus is reset to default value and sseq is reset to

⌊√n⌋. We have experimented different parameters for tus which will be explained

in the following sections. The procedure on how to adapt different parameters is

given in Algorithm 30. Finally, if the size of sequences sseq is reduced, then the

variable Apply2−opt is set to true and the sequences in the memory are truncated

(i.e., removing some nodes from the sequences) and further optimized via the 2-Opt

improver. This is a new feature in the GTPHA, which is different from the TPHA

in Chapter 5, where no optimization of sequences was considered.

In this chapter, we apply 2-opt1 local search, as shown in Algorithm 31 [70], when

the size of sequences changes. In this study for the iterative improvement, we use

a 2-opt local search method for making the sequences optimal when created and

also when the algorithm adapts the size of sequences. The 2-opt is based on the

k-exchange neighbourhood relation, in which candidate solutions s and s′ are direct

neighbours if and only if s′ can be obtained from s by deleting a set of k edges and

rewiring the resulting sub-tours into a complete sequence by inserting a different

set of k edges. For this iterative improvement algorithm, we use a fixed k-exchange

neighbourhood relation with k = 2. The implementation of a 2-exchange iterative

improvement algorithm considers in each step all possible combinations of the k

edges to be removed and added. After removing k edges from a given candidate

sequence s, the number of ways in which the resulting sub-tours can be reconnected

into a candidate sequence different from s depends on k, which is 2 in this case.

After removing the two edges (ui, uj) and (uk, ul), the only way to re-connect the

two partial tours into a different complete sequence is by introducing the edges

(ui, uk) and (ul, uj). If an exchange yields gain in fitness, the exchange is made

permanent. The procedure is repeated until no improvement is possible.

1The 2-Opt implementation used for these experiments is available from ( http://www.sls-
book.net/implementations.html )
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Algorithm 31 2-Opt(tour, sseq)

1: improvement := TRUE;
2: dim := sseq;
3: while (improvement) do
4: improvement := FALSE;
5: Maxgain := 0;
6: for i := 0 to dim− 2 do
7: if (i > 0) then
8: innerloop := dim;
9: else
10: innerloop := dim− 1;
11: end if
12: for j := i+ 2 to innerloop do
13: remove := dist[tour[i]][tour[i+ 1]] + dist[tour[j]][tour[(j + 1)%dim]]
14: add := dist[tour[i]][tour[j]] + dist[tour[i+ 1]][tour[(j + 1)%dim]]
15: gain := add− remove
16: if (gain < Maxgain) then
17: improvement := TRUE;
18: Maxgain := gain;
19: h := i+1;
20: l := j
21: end if
22: end for
23: end for
24: if (improvement) then
25: while (l ≥ h) do
26: temp := tour[h];
27: tour[h] := tour[l];
28: tour[l] := temp
29: h++;
30: l −−;
31: end while
32: end if
33: end while
34: return (tour);

6.2.4 Phase 2: Restricted Elite Population Inver Over (REIO)

Algorithm

In GTPHA, we enforce the IO to get clue only from the elite population of the SBMA

because fit individuals are usually composed of good gene fragments or edges. In

this regard, the key parameter for IO is reduced from p = 0.02 to p = 0.005 in order

to reduce the mutation/inversion and get more and more clue from elite population.

In Chapter 5, we have added two simple extra modifications to the original IO

algorithm. In this chapter, we further improve the restricted IO (RIO) described in
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Chapter 5 in two ways: restricted IO with partial nearest neighbour initialization,

and IO with elite population. The criteria for switching the control from phase 1 to

phase 2 is shown in Algorithm 20, where the control is shifted to phase 2 depending

on the basis of parameter γ. For example, if γ = 20 and the best fitness does not

change for consecutive 20 generations, then the control should be given to REIO.

We have also experimented different values of γ which mainly affect the execution

time, i.e., how to keep the balance between the two phases.

Algorithm 32 REIO(route, ElitePop[ ])

1: p = 0.005;
2: route∗ := route;
3: select randomly a city C from route∗;
4: while (TRUE) do
5: ptmp := rand(0, 1.0);
6: if (ptmp < p) then
7: select the city C∗ from the remaining cities in route∗;
8: else
9: select randomly an individual routeselect from the elite population ElitePop[ ];
10: while (routeselect = route∗) do
11: select randomly an individual routeselect from the elite population ElitePop[ ];
12: end while
13: assign to C∗ the next city to C in the selected routeselect;
14: end if
15: if (the next or previous city of city C is C∗ in route∗) then
16: exit from the while loop;
17: end if
18: invert the section from the next city of city C to city C∗ in route∗;
19: C := C∗;
20: if (Length(route∗) < Length(route)) then
21: route := route∗;
22: end if
23: end while

The working of REIO is straightforward, as shown in Algorithm 32. It receives an

individual, denoted route, and copies all its nodes to a temporary route route∗.

From route∗, a random city C is selected. In the main loop, REIO is divided into

two main procedures: one is mutation and the other one exhibits the behaviour of

crossover. The decision is based on a random number ptmp ∈ [0, 1]. If ptmp is less

than p, then mutation is performed; otherwise, a random individual is selected from

the elite population instead of the plain population. Within that individual, the

location of previously selected city C is identified. Then, the city that is next to C,
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denoted C∗, is identified. Again in route∗, the location of city C∗ is identified and

C∗ is brought next to C if and only if that C is not the same city as C∗. If C and

C∗ are the same, the main loop is terminated.

Let’s demonstrate the procedure of the REIO algorithm by a simple example which

has been adapted from the original source [138]. The main procedure of REIO is

divided into two parts, depending on whether p is greater than the random value

or less than the random value. When it is greater, then an inversion mutation is

carried out, else a kind of inversion that mirrors crossover as part of a pattern of two

cities of the second individual appears in the offspring. Here, the other individual is

selected from an elite population. Now assume we have a tour

route∗ = {2,3, 9, 4, 1, 5, 8, 6, 7}

and the current city C is 3.

If (ptmp < p), another city C∗ from the same individual route∗ is selected, for example

C∗ = 8, and the segment is inverted. The resulting tour route∗ becomes:

route∗ = {2, 3,8,5,1,4,9,6, 7}.

If (ptmp ≥ p), then another individual is selected from the population randomly, say:

routeselected = {1, 6, 4, 3, 5, 7, 9, 2, 8}.
This individual is searched for C∗ “next” to city 3, which is 5 in this case. So,

5 would be searched in route∗ and the corresponding segment would be inverted,

giving:

route∗ = {2, 3,5,1,4,9,8, 6, 7}, where the substring (3–5) arrived from routeselected.

Suppose that after many inversions this process terminates when the next city C∗

(to the current city C) in the randomly selected individual is also the “next city” in

the original individual. For example, assume that after some inversions, the existing
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individual route∗ becomes

route∗ = {9, 3, 6, 8, 5, 1, 4, 2, 7}

and the current C is 3. If (ptmp ≥ p), a ‘next’ city is recovered from a randomly

selected individual from the population, say it is city 6 (if (ptmp < p), a random city

is selected, so it may also happen that city 6 was chosen). So we have that C is 3

and C∗ is 6. Since city 6 already follows city 3, according to the condition whether

the next city or the previous city of C in route∗ is C∗, the loop of inversions would

be terminated, and the fitness of route∗ will be evaluated and compared with the

fitness of route. If the fitness of the individual route∗ resulting from the IO process

is better, it will replace the original route.

The main difference between the original IO operator and our REIO operator is that

after inversion, we find the fitness of newly generated individual from route. If any

improvement is found, then the original route is replaced by route∗. However, this

procedure is performed after the termination of the main loop in the original IO. On

the one hand, this procedure missed all those inversions which bring gain in fitness.

Additionally, it does not guarantee that route∗ which is the result of many inversions

may or may not be better than route. So, our REIO seems to be greedier than the

original IO and catches those inversions which bring in gain in fitness. Another

difference between the original IO and REIO is that the original IO gets the clue

from a random individual, but REIO gets the clue from an elite population which

mainly contains good edges. In REIO, we also guarantee that candidate individuals

selected from the elite population should be different from route.

6.2.4.1 Restricted Inver Over with Partial Nearest Neighbour Initializa-

tion

As mentioned above, NN-SBMA performs well at the early stage of evolution and

converges quickly, which can get good fitness but reduces the diversity as well. So,
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when IO is employed in the second phase of our hybrid approach, it not only brings

diversity but also contributes better in obtaining good results in terms of fitness.

Since the diversity of the population affects the performance of IO greatly, in our

hybrid approach, before giving control to IO, along with previous parent and child

populations, some percentage of nearest neighbour individuals are injected into the

population. For example, if the popsize is 30, then the total size of the population

for REIO in the second phase will be 90 (30 parents, 30 children, and 30 random

individuals constructed based on nearest neighbours, respectively) and for large

benchmark the population size is 60 (20 parents, 20 children, and 20 random

individuals respectively). This approach is denoted by GTPHA+NNRI in this study.

6.2.4.2 Inver Over with Elite Population

The concept of elite population comes from nature where a population is divided into

sub-populations, e.g., a small elite and a large plain, based on their fitness difference

[92]. To keep balance between the quality of tour and the computational time, we

introduce the concept of Elite Population to the REIO operator. The original IO

by [138] gives better performance when the number of nodes is under 1000.

Through observations, it has been found in [6] that IO is good in exploring but the

convergence ability is weaker although it has better edge recombination ability. The

fitness of a tour strongly depends on good edges. IO gets clue from the whole popu-

lation which may be composed of both good and bad individuals. Good individuals

contain good edges which are the part of global optimum. If IO is enforced to get

clue from good individuals instead of bad one, it can transfer good traits to off-

spring instead of bad traits. Many approaches [65, 86, 95, 96] have strongly focused

on “preserving good edges and adding good edges”. So, we integrate the concept of

elite population into REIO in order to explore the search space in a better way with

less computational time. The elite population for REIO is selected from PopIO.

Only 1/3 of individuals which are different from each other in fitness are selected as
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the elite population. For duplicate individuals only a single one is selected into the

elite population. The procedure of generating the elite population is illustrated in

Figure 6.4 and the pseudo-code is given in Algorithm 33.

Figure 6.4: Elite population is extracted from the plain population and then
REIO evolves the plain population by getting clue from the elite population.

Algorithm 33 GenerateElitePop(PopIO)

1: Sort the individuals in the population PopIO;
2: for i := 0 to popsize/3 do
3: ElitePop[i] := assign the top unique individual among the remaining individ-

uals of the sorted population;
4: end for
5: return (ElitePop[ ]);
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6.3 Experimental Study

6.3.1 Experimental Settings

The proposed GTPHA+NNRI approach was experimented on 14 TSP benchmark

instances, in which the number of cities varies from 100 to 1300. The method was

implemented in C++ on a 2.66 GHz PC under the Visual Studio Environment. All

the TSP benchmark instances were obtained from the TSPLIB except CHN144.

Each algorithm on a problem instance was run 20 times and the results were averaged

over the 20 runs. The population size was set to 20 for all problem instances initially

for Phase 1 and when switched to Phase 2 the population size was increased to 60

individuals including 20 parents, 20 children, and 20 newly created individuals based

on the Nearest Neighbour algorithm. The default crossover probability was set to

pc = 0.65 and the default mutation probability pm = 0.025. The crossover and

mutation probabilities were increased to 0.75 and 0.5 when the best fitness does not

show any gain. The switching criteria from Phase 1 to Phase 2 was set to 50 (in

Chapters 4 and 5 it was 100). This means that if the best fitness does not change for

50 consecutive generations, then the algorithm is switched to Phase 2. For Phase 2,

the key parameter p = 0.005 as in the IO operator. The total number of generations

was set to 1000 to 3000 for small problem instances with fewer than 200 nodes and

to 20000 to 30000 for other problem instances with 300 to 1291 nodes.

The GTPHA+NNRI was compared to five different approaches, including MAX-

MIN ACO [135], Iterative Local Search with fixed radius and candidate list (ILS 3-

opt-fl-cl), LK-Helsgaun [65], Inver Over, and our previous Random SBMA approach.

These methods are considered as state of the art for solving the TSP. The ILS-3-

opt uses the fast 3-opt local search [69], MAX-MIN ACO uses the ant colony with

additional local search, LK-Helsgaun gives the excellent performance and uses one

variant of LK using the iterated local search (ILS), alpha candidate list, and double

bridge moves.
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Two sets of experiments were performed in this study along with some other ex-

periments to show the effect of various approaches like nearest neighbour sequence

construction, applying 2-opt on sequence when created, and the concept of getting

clue from the elite population. The first set of experiments is devoted to analysing

the sensitivity of parameters of NN-SBGA. In the second set of experiments, GT-

PHA+NNRI was compared with the afore-mentioned state of the art algorithms for

the TSP.

6.3.2 Sensitivity Analysis of Key Parameters of NN-SBMA

The performance of our two phase approach (GTPHA+NNRI) depends on the pa-

rameters of Phase 1 internally, the parameters of Phase 2, and when to switch the

control from Phase 1 to Phase 2. The key parameters for phase one are as follows:

how many generations the Nearest Neighbour technique should use; by which cri-

teria Phase 1 should be switched to Phase 2. For this reason, for the first set of

experiments, we use the nearest neighbour sequence generation approach for the ini-

tial 0.5% of the total number of generations and use the random sequence generation

approach for the rest of generations to maintain the diversity.

Table 6.1 and Figure 6.5 show the fitness and time of the algorithm for 500 gener-

ations, averaged over 20 runs. The observation shows that when the sequences are

created totally randomly, the average error is 7.40 above the optimum for the TSP

instance pcb1173. But, when sequences are generated with the nearest neighbour

approach for the first 0.5% to 80% of generations, the fitness goes from 7.00 to 0.93

with a little increase in time. From the observation, we can clearly say that the

concept of generating sequences based on the nearest neighbour approach works.

But, when we go from low to high values for δNNseq
, the individuals suffer from

likeliness and may be prematurely converged. So, we set δNNseq
to the low value,

i.e., δNNseq
= 0.5%, in our experiments.
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Table 6.1: Comparison results of applying nearest neighbour sequence gener-
ation and random sequence generation with different δNNseq

(% of generations
using the nearest neighbour sequence generation approach for pcb1173.)

δNNseq
Avg-Error Avg-Time

0.0 (Random) 7.40 6.74sec
0.5 7.00 6.87sec
10 3.61 7.14sec
30 1.45 7.23sec
50 1.05 7.20sec
80 0.93 7.15sec
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Figure 6.5: The effect of sequence generation methods, i.e., SBMA Rand (se-
quences generated in a random way), NNSBMA 0.5% (sequences generated with
δNNseq

= 0.5% of total generations), and NNSBMA with δNNseq
= 10%, 30%,

50%, and 80%.

The efficiency of Phase 1 is totally dependent on several key parameters regarding

the solution quality and computational time. Table 6.2 shows the setting of key

parameters of Phase 1 in our experiments on the sensitivity analysis of the effect

of key parameters on the performance of our GTPHA. The parameter α is the

percentage of individuals that are selected from the current population for sequence

generation. Here, the value of α was set to 50% and 100%, respectively. β is called

the frequency of insertion for the sequence, i.e., (Finsert), which determines how many

locations are checked for sequence insertion. The value of β was set to 5%, 30%, and
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Table 6.2: Parameter settings in NN SBMA

Parameter Values
α 50 100 –
β 5 30 60
γ 20 50 100
tus 10 20 30
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Figure 6.6: Comparison of reducing the size of sequences, without reducing size
of sequences, and reducing the size of sequences but applying no 2-opt.

60%, respectively. The parameter γ is the switching parameter, which controls when

to switch from Phase 1 to Phase 2. Here, γ was set to 20, 50, and 100, respectively.

And the parameter tus decides when to reduce the size of sequences. The value of

tus was set to 10, 20, and 30, respectively.

In order to help understand the experimental results, Figure 6.6 shows the dynamic

performance of the algorithm regarding the fitness gain with and without the 2-Opt

improver, and with and without reducing the size of sequences. From Figure 6.6,

it can be seen that when we set tus = 10, 20, and 30 with the 2-Opt improver, the

fitness obtained by the algorithm drops down towards the optimum. Furthermore,

the difference between the algorithm with reducing the size of sequences and the

algorithm without reducing the size of sequences is quite obvious.
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Figure 6.6 shows the effect of reducing the size of the sequences and applying 2-Opt

or not applying 2-Opt. The experiments are performed on three different non-zero

parameter values for the initial value of tus, which are 10, 20 and 30. These values

affect the intensity of reducing the size of the sequences, e.g., if MaxLS is 10 and

assigned to the tus variable. During the course of the execution, if the fitness does not

improve then tus is decremented after each generation and will be checked against

MaxLS. If the condition is satisfied for one of the different ranges, then the size

of the sequences would be reduced accordingly. In Figure 6.6, if reducing the size

of the sequences along with applying 2-Opt is considered, then the performance is

better in the cases when tus is 10, 20 and 30 with 2-Opt. However, when tus is 0 (the

size of the sequences will not be reduced and will remain equal to
√
n throughout

the run), which means that the set of sequences is generated and 2-Opt is applied,

the performance is not good. In another case, when tus is 10 (meaning that the size

of the sequences is reduced over time), but the sequences that have been reduced in

size are not optimised (without applying 2-Opt), the performance is slightly worse

than in the former case (i.e., tus=0). From this we can observe that not only does

reducing the size of the sequences helps in gaining fitness, but also optimising the

sequences that have been reduced in size gives better results.

Tables 6.4 and 6.5 show the experimental results of our algorithm with different

parameter settings. In these tables, “A-Fitness” denotes the average fitness over 20

runs, “Avg-Err” denotes the relative deviation to the global optimal fitness, which is

listed in the tables after the instance name, and “Avg -Time” is the average time in

seconds used by the algorithm. In order to find out which parameter settings have a

great effect on the performance of GTPHA+NNRI, we run the algorithm for different

possible 26 combinations based on the settings in Table 6.2, which are named from

configuration 1 to configuration 26, respectively. Although many combinations are

possible, here we focus on some key parameter settings for the experiments.

We analyse the results using two criteria: one is the average best fitness and the

other is the average computational time. In Tables 6.4 and 6.5, the best result
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Table 6.3: Number of generation for each instance used for the sensitive analysis
of key parameters of NN-SBMA experiments in Table 6.4 and 6.5.

Instance Global Optima Alloted Generations

eil101.tsp 629 5000
kroA100.tsp 21282 5000
kroB200.tsp 29437 5000
lin105.tsp 14397 5000
chn144.tsp 30347 5000
d198.tsp 15780 5000
lin318.tsp 42029 25000
pcb442.tsp 50778 25000
d493.tsp 35002 25000
rat783.tsp 8806 25000
u724.tsp 41910 25000
vm1084.tsp 239297 40000
d1291.tsp 50801 40000
pcb1173.tsp 56892 40000

regarding the average best fitness and the average computational time achieved by

the algorithm with different configurations for each TSP instance are marked using

the symbol “ ” and the symbol “�”, respectively. For example, for the problem

instance lin318, the algorithm under configuration 2 (i.e., α = 50, β = 5, tus = 10,

and γ = 50) achieved the average error 0.0092 and the average best fitness 42416 with

the average computational time 23.6 seconds, which is the best average best fitness

achieved by the algorithm with different configurations. This result shows that when

the size of sequences is reduced more often and the frequency of insertion is less,

the algorithm is more efficient regarding the fitness performance measure. Table 6.3

shows the number of generations used for each instance in the experiments to show

the sensitivity analysis of key parameters of NN-SBMA.

For the second criterion of the computational time, the parameter configuration

scenario 19, i.e., α = 100, β = 5, γ = 20, and tus = 30, gives the best performance.

For this set, the algorithm takes only 18.5 seconds with the fitness error 0.0168. From

this configuration, we can easily observe that there is more balance of breaking as

tus = 30, i.e., this will sustain the same size of sequences for a long time before

reduction occurs and the algorithm can have more chance to insert more diverse

sequences in proper locations as α = 100. The other configurations that give similar
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Table 6.4: Averaged best value of GTPHA+NNRI with different parameter
settings on the TSP instances with 100 to 442 nodes

Set
Parameter

Measure chn144 d198 eil101 kroA100 kroB200 lin105 lin318 pcb442
α β tus γ

A-Fitness 30742.3 15912.5 629.5 21282 30092.9 14410 42846.9 51426.1
1 50 5 10 20 Avg-Err 0.013 0.0083  0.0007  0 0.0222 0.0009 0.0194 0.0127

A-Time 3.5 3.8 2.7 �2.8 4 3 18.7 30.6
A-Fitness 30800.2 15985.4 631.2 21282 30069 14504.6 42416 51502.2

2 50 5 10 50 Avg-Err 0.0149 0.013 0.0034 0 0.0214 0.0074  0.0092 0.0142
A-Time 5 6.5 3.5 4.5 5.4 3.7 23.6 25.7
A-Fitness 30892.5 15914 630.3 21286.6 30123.4 14476.3 43008.2 51495.2

3 50 5 10 100 Avg-Err 0.0179 0.0084 0.002 0.0002 0.0233 0.0055 0.0232 0.0141
A-Time 6.3 8.4 4.6 4.9 7.3 4.3 24 35.3
A-Fitness 30833.4 16017.2 630.8 21282 30155.1 14458.2 42771 51483

4 50 30 10 20 Avg-Err 0.016 0.015 0.0028 0 0.0243 0.0042 0.0176 0.0138
A-Time 3.5 4.8 2.9 3.1 4.3 2.9 20.5 33.1
A-Fitness 31045.4 15984.6 631.9 21284.3 30139.3 14440.7 43085.9 51434.6

5 50 30 10 50 Avg-Err 0.023 0.0129 0.0046 0.0001 0.0238 0.003 0.0251 0.0129
A-Time 3.9 5.2 2.8 3 5.2 3.1 21.4 29.9
A-Fitness 31002 15944.5 631.8 21296 30168.9 14498.1 43131.1 51534.7

6 50 30 10 100 Avg-Err 0.0215 0.0104 0.0044 0.0006 0.0248 0.007 0.0262 0.0149
A-Time 4.4 5.7 3.3 3.7 5.6 3.7 23.1 34.9
A-Fitness 30959.4 15943 629.5 21330.5 30095.4 14495.8 42897.1 51484.3

7 50 60 10 20 Avg-Err 0.0201 0.0103 0.0007 0.0022 0.0223 0.0068 0.0206 0.0139
A-Time 4 4.4 2.7 3.2 5.3 3.3 21.7 28.3
A-Fitness 30954.8 15938.6 631 21284 30080.8 14430.6 42893 51408

8 50 60 10 50 Avg-Err 0.02 0.01 0.0031 0 0.0218 0.0023 0.0205 0.0124
A-Time 3.6 4.9 3 3.1 4.7 3.7 23.4 35
A-Fitness 31121 16037 634 21330.5 29973 14577 42887.8 51473

9 50 60 10 100 Avg-Err 0.0255 0.0162 0.0079 0.0022 0.0182 0.0125 0.0204 0.0136
A-Time 4.3 5.6 3.5 3.3 5.5 4.9 23.1 31.6
A-Fitness 30710.2 15930.4 633.5 21282 30184 14397 42691.2 51447

10 50 60 20 20 Avg-Err 0.0119 0.0095 0.0071 0 0.0253 0 0.0157 0.0131
A-Time 3.4 4.5 3.4 3.1 4 3.2 19.1 28.9
A-Fitness 30971 16125 631 21288.6 30135 14486 43118.6 51481

11 50 60 20 50 Avg-Err 0.0205 0.0218 0.0031 0.0003 0.0237 0.0061 0.0259 0.0138
A-Time 4.2 7 3.5 3.7 7.2 3.6 24.4 42.6
A-Fitness 30983 16042 630 21288 30567 14533.2 42895.4 51312

12 50 60 20 100 Avg-Err 0.0209 0.0166 0.0015 0.0002 0.0383 0.0094 0.0206 0.0105
A-Time 5.1 6.6 3.7 4 5.8 4 25.7 40.8
A-Fitness 30792.3 15896.7 630 21284 30222 14397.3 42754.3 51501

13 50 60 30 20 Avg-Err 0.0146 0.0073 0.0015 0 0.0266 0 0.0172 0.0142
A-Time 3.6 �3.7 3.2 3.1 3.4 2.6 19.1 21.8
A-Fitness 30990 16036 631 21282 29999 14426 43035 51599.3

14 50 60 30 50 Avg-Err 0.0211 0.0162 0.0031 0 0.019 0.002 0.0239 0.0161
A-Time 5 7.6 4.2 3.8 6.2 4.3 27.1 36.3
A-Fitness 31063 16135 631 21305 30459 14442 42979 51688

15 50 60 30 100 Avg-Err 0.0235 0.0224 0.0031 0.001 0.0347 0.0031 0.0226 0.0179
A-Time 7.8 6.7 4.6 5 9 4.8 21.2 32.7
A-Fitness 31048 15985 630 21282 30245 14412 42498 51268

16 100 30 30 20 Avg-Err 0.023 0.0129 0.0015 0 0.0274 0.001 0.0111  0.0096
A-Time 3.2 4 2.8 3.6 4.2 2.8 19.3 �20.4
A-Fitness 31140.6 16044.4 634.4 21301.4 30399.6 14469.2 43541 51455

17 100 30 30 50 Avg-Err 0.0261 0.0167 0.0085 0.0009 0.0327 0.005 0.0359 0.0133
A-Time 6 8.8 3.9 4.8 8.5 4.8 34.3 38.2
A-Fitness 30983.8 15974.2 632.6 21294.2 30362 14469.4 43236.6 51573

18 100 30 30 100 Avg-Err 0.0209 0.0123 0.0057 0.0005 0.0314 0.005 0.0287 0.0156
A-Time 6.1 9.5 4.2 5.1 9 5.5 29 34.9
A-Fitness 30665.6 15894.4 629.6 21282 30170.4 14397.4 42739 51510.6

19 100 5 30 20 Avg-Err  0.0104 0.0072 0.0009 0 0.0249 0 0.0168 0.0144
A-Time �3.1 3.9 2.7 2.8 �3.3 �2.6 �18.5 21
A-Fitness 30949.2 16013 631.8 21288.6 30235.8 14433.8 43195.8 51395.8

20 100 5 30 50 Avg-Err 0.0198 0.0147 0.0044 0.0003 0.0271 0.0025 0.0277 0.0121
A-Time 5.6 7.1 3.7 4.3 6.8 3.7 26.5 29.9
A-Fitness 31014.2 15953.2 630.6 21319.6 30142.6 14464.4 43039.2 51414.2

21 100 5 30 100 Avg-Err 0.0219 0.0109 0.0025 0.0017 0.0239 0.0046 0.024 0.0125
A-Time 9.1 12.1 5.4 6.5 10.8 6.2 34.6 48.3
A-Fitness 30745.8 15882.4 630.6 21282 30018 14397 42703.6 51509.6

22 100 5 20 20 Avg-Err 0.0131 0.0064 0.0025 0 0.0197  0 0.016 0.0144
A-Time 3.4 4.1 �2.6 2.9 3.8 3 18.8 22.5
A-Fitness 30826.8 15910.8 630 21286.6 30064.2 14450.8 42853 51500.8

23 100 5 20 50 Avg-Err 0.0158 0.0082 0.0015 0.0002 0.0213 0.0037 0.0196 0.0142
A-Time 6.8 6.9 4 4.8 6.5 3.8 25.5 31.6
A-Fitness 31078.4 15972 630 21306 30207 14397 43133.8 51527.2

24 100 5 20 100 Avg-Err 0.0241 0.0121 0.0015 0.0011 0.0261 0 0.0262 0.0147
A-Time 9.2 8.6 5.6 5.6 8 5.8 31.8 40.2
A-Fitness 30768.4 15863.4 630.4 21282 29799.6 14404.2 42759 51494.8

25 100 5 10 20 Avg-Err 0.0138  0.0052 0.0022 0  0.0123 0.0005 0.0173 0.0141
A-Time 3.4 3.9 2.9 2.9 4.1 2.9 19.2 21.8
A-Fitness 30875.6 15975.8 630.4 21282 30206.8 14554.2 42912.4 51473.2

26 100 5 10 50 Avg-Err 0.0174 0.0124 0.0022 0 0.0261 0.0109 0.021 0.0136
A-Time 5.5 7 3.3 4.1 6.5 4.4 22.9 38.9
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Table 6.5: Averaged best value of GTPHA+NNRI with different parameter
settings on the TSP instances with 500 to 1291 nodes

Set
Parameter

Measure d493 u724 rat783 vm1084 pcb1173 d1291
α β tus γ

A-Fitness 35569 43450.3 9108.2 248284 59958.5 53440.3
1 50 5 10 20 Avg-Err 0.0161 0.0367 0.0343 0.0375 0.0539 0.0519

A-Time 31.8 42.7 39 59.3 67.9 73.9
A-Fitness 35737.4 43371.6 9107.4 248073 59633 53443

2 50 5 10 50 Avg-Err 0.021 0.0348 0.0342 0.0366  0.0481 0.052
A-Time 43.7 42.5 52.5 71.1 78.6 82.3
A-Fitness 35692.1 43265.6 9084.5 247385 59886.9 53283.6

3 50 5 10 100 Avg-Err 0.0197 0.0323  0.0316 0.0337 0.0526 0.0488
A-Time 37.3 43.3 57.9 75.1 90.7 90.4
A-Fitness 35644.6 43286.8 9095.5 248379 59828.5 53490.2

4 50 30 10 20 Avg-Err 0.0183 0.0328 0.0328 0.0379 0.0516 0.0529
A-Time 39.6 53.5 54.3 83.1 101.3 96.1
A-Fitness 35714.4 43419.8 9103.1 247201 59806.9 53455.3

5 50 30 10 50 Avg-Err 0.0203 0.036 0.0337 0.033 0.0512 0.0522
A-Time 46.8 53.3 62.8 79.9 106.4 102.4
A-Fitness 35660.7 43363.2 9107.9 248188 59845 53480.9

6 50 30 10 100 Avg-Err 0.0188 0.0346 0.0342 0.0371 0.0519 0.0527
A-Time 48.6 56.9 63.7 84.3 103.6 103.8
A-Fitness 35680.7 43139 9095 247315 59832.5 53472.1

7 50 60 10 20 Avg-Err 0.0193  0.0293 0.0328 0.0335 0.0516 0.0525
A-Time 41.1 63.4 64 111.1 115.7 114.7
A-Fitness 35730.4 43369 9120.6 247111 59744.4 53381

8 50 60 10 50 Avg-Err 0.0208 0.0348 0.0357  0.0326 0.0501 0.0507
A-Time 41.9 53.1 89.1 98.9 159.1 117.9
A-Fitness 35759 43233 9099.6 248276 59698.4 53339

9 50 60 10 100 Avg-Err 0.0216 0.0315 0.0333 0.0375 0.0493 0.0499
A-Time 59.5 54.1 85 122.3 173.4 182.7
A-Fitness 35663.4 43348.4 9106.8 248964 60020.4 53509.4

10 50 60 20 20 Avg-Err 0.0188 0.0343 0.0341 0.0403 0.0549 0.0533
A-Time 29.7 45.1 38.4 74.3 71.2 90.7
A-Fitness 35695.8 43678 9127 248264 59794.2 53698

11 50 60 20 50 Avg-Err 0.0198 0.0421 0.0364 0.0374 0.051 0.057
A-Time 48.8 84 73.7 104.8 178.4 132.5
A-Fitness 35559.5 43364.8 9101.4 247997 59867 53475

12 50 60 20 100 Avg-Err  0.0159 0.0347 0.0335 0.0363 0.0522 0.0526
A-Time 77.6 70 87.6 172.7 165.2 180.2
A-Fitness 35717.3 43307.7 9101.33 247818 60256.8 53212

13 50 60 30 20 Avg-Err 0.0204 0.0333 0.0335 0.0356 0.0591 0.0474
A-Time �29.6 43.2 �36.1 67.3 68.7 86.3
A-Fitness 35703 43259.3 9124 247704 60333 53766.5

14 50 60 30 50 Avg-Err 0.02 0.0321 0.0361 0.0351 0.0604 0.0583
A-Time 72.9 63.8 105.4 163.7 125.5 184
A-Fitness 35670 43194 9104.33 248020 59996 53287

15 50 60 30 100 Avg-Err 0.019 0.0306 0.0338 0.0364 0.0545 0.0489
A-Time 81.2 67.2 105.2 200.5 234.9 187
A-Fitness 35764 43674 9138.67 248300 60456 53367.5

16 100 30 30 20 Avg-Err 0.0217 0.042 0.0377 0.0376 0.0626 0.0505
A-Time 31.2 44 36.6 67.4 67.6 94.6
A-Fitness 35877 43864 9170 248475 60113 53582

17 100 30 30 50 Avg-Err 0.0249 0.0466 0.0413 0.0383 0.0566 0.0547
A-Time 82.3 92.1 115 161.4 215.4 188.6
A-Fitness 35893 43687 9183.67 248596 60222 53213.5

18 100 30 30 100 Avg-Err 0.0254 0.0424 0.0428 0.0388 0.0585 0.0474
A-Time 69.6 113.6 141.2 174.7 305.7 277.8
A-Fitness 35711 43462 9115.67 247737 60439 53492.5

19 100 5 30 20 Avg-Err 0.0202 0.037 0.0351 0.0352 0.0623 0.0529
A-Time 31.9 �37.4 36.6 60.7 62.4 �73.1
A-Fitness 35646.2 43239.3 9116 248285 59643.8 53251.2

20 100 5 30 50 Avg-Err 0.0184 0.0317 0.0352 0.0375 0.0483 0.0482
A-Time 50 79.8 63.3 87.4 113 112.6
A-Fitness 35864.2 43472 9144.8 247486 60027 53203

21 100 5 30 100 Avg-Err 0.0246 0.0372 0.0384 0.0342 0.0551 0.0472
A-Time 75.1 102.8 100.3 126.8 163.7 164.6
A-Fitness 35684.8 43499.3 9087.6 249218 60167.8 53854.8

22 100 5 20 20 Avg-Err 0.0195 0.0379 0.0319 0.0414 0.0575 0.0601
A-Time 34 42.9 37 �58.7 �61.5 76.2
A-Fitness 35684.4 43359.7 9159.8 247770 59751 53158

23 100 5 20 50 Avg-Err 0.0194 0.0345 0.0401 0.0354 0.0502  0.0463
A-Time 52 64.3 70.6 74 102.7 97.1
A-Fitness 35659.4 43298.7 9121.6 247849 59886.8 53443.4

24 100 5 20 100 Avg-Err 0.0187 0.0331 0.0358 0.0357 0.0526 0.052
A-Time 60.3 98.7 95.2 137 148.2 173.1
A-Fitness 35724.2 43450.7 9101 249618 60103 53442.4

25 100 5 10 20 Avg-Err 0.0206 0.0367 0.0334 0.0431 0.0564 0.0519
A-Time 35.6 42.2 38.5 60.3 66.9 75.6
A-Fitness 35709.2 43290.7 9101 248142 59717 53582.8

26 100 5 10 50 Avg-Err 0.0202 0.0329 0.0334 0.0369 0.0496 0.0547
A-Time 50.9 66.1 62.3 74.9 87.9 98
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Table 6.6: Comparison results of the original IO with p = 0.02, RIO with
p = 0.02, REIO with p = 0.005, and REIO with p = 0.7. Each algorithm runs for

5000 generations and the results are averaged over 20 runs

Inver Over Variations Avg-Error Avg-Time

Inver Over with p=0.02 13.32 8.73sec
Inver Over + LS (RIO) with p=0.02 3.32 23.32sec
Inver Over+LS+Elite (REIO) with p=0.005 2.58 13.31sec
Inver Over+LS+Elite (REIO) with p=0.7 6.28 118.49sec

results are configuration 1 and configuration 22, which have the similar parameter

settings as configuration 19 with the only difference in tus. The configurations 1,

22 and 19 take around 18 seconds but the fitness of configuration 22 is slightly

better among the three configurations. From this, we can observe that reducing

the sequence size can affect the fitness a lot, by introducing or exposing the first

and last node of sequences and thus making sequences more diverse, because when

the size of a sequence is reduced then the first and last node also change, making

them different from the first and last node before reducing the size of the sequence.

For a given problem instance, the solution quality achieved by the algorithm mainly

depends on the parameters tus and α, while the other two parameters β and γ can

affect the running time of NN-SBMA via inserting the sequences and switching to

Phase 2.

Table 6.6 shows the experimental results on the refinements of the original IO oper-

ator, which further enhance the performance regarding the solution quality and the

computational time under the TSP instance pcb1173. Figure 6.7 shows the dynamic

performance of relevant algorithms regarding the average fitness against the number

of generations. For Inver Over (IO) and Restricted IO (RIO), the fitness difference

was 13.32 to 3.32, which shows that via restricting the operation of IO, which is

random and blind, the solution quality increases but the computational time also

increases from 8.73 seconds to 23.32 seconds. By the introduction of elite population

into the former two approaches, REIO not only increases the solution quality but

also enormously reduces the time to 13.31 seconds. And changing the value of p
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Figure 6.7: Comparison of IO with p = 0.02, RIO with p = 0.02, REIO with
p = 0.005, and REIO with p = 0.7.

from 0.005 to 0.7, which allows IO more chances to do mutation and keeps it away

from getting guidance from the elite population, not only worsens the fitness but

also extremely lengthens the computational time.

6.3.3 Comparative Experiments

The GTPHA+NNRI was compared to five different approaches, including MAX-

MIN ACO [135], ILS 3-opt-fl-cl [69], LK-Helsgaun [65], Inver Over [138], and our

previous TPHA approaches. These methods are considered as state of the art for

solving TSP instances [70]. The source code of ILS 3-opt-fl-cl for this experimental

comparison has been downloaded from the website [70], and the source code for

MAX-MIN ACO with additional local search has been downloaded from [136].

Figure 6.8 presents the comparison of GTPHA+NNRI with other algorithms on

different TSP benchmark instances. Table 6.7 compares all algorithms in terms of

the average best fitness, the average error, and the average computational time over

20 runs. From Figure 6.8 and Table 6.7, it can be seen that GTPHA+NNRI gives a

better convergence speed at the initial stage of the solving progress. In terms of the

number of evaluations, the ratio between IO and SBMA is 1:3, as GTPHA+NNRI
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Figure 6.8: Experimental results of IO, TPHA, TPHA+RI, and GT-
PHA+NNRI. The efficiency of our approach GTPHA+NNRI is more prominent

for larger problems.

uses the traditional binary operator with an additional embedded SBLS. But due

to adaptive behaviour of IO, it gives a better solution quality at the later stage

of the hybrid approach. The hybrid approach combines both the features of NN-

SBMA and IO. First, NN-SBMA brings the fitness to a near-optimal level in a few

generations and then REIO further works and shows progress in the fitness to give

a better solution quality.

However, from the results in Table 6.7, GTPHA+NNRI outperforms IO, MAX-MIN

ACO and ILS-3-opt-fl-cl on some TSP instances regarding both the convergence

speed and the solution quality. The five types of refinements can enhance the per-

formance; both converged more rapidly than original IO. The use of NN-SBMA,

restrictive IO, RI, and elite population also has additive effects on the performance

gain and the contribution is dominating. From these results, one may speculate that
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Table 6.7: Comparison results of GPTHA with other well-known algorithms.

Instance Measure ILS-3-opt-fr-cl Max-Min ACO LK-H Inver Over TPHA+RI GTPHA+NNRI

CHN144 A-Fitness 31083 30773 30347 50401.6 30645 30634
(30347) Avg-Err 0.0242 0.014 0 0.6608 0.0098 0.0094

A-Time 6 1.09 0.2 1.49 2.4 2.3
EIL101 A-Fitness 648 641 629 1351.6 637 633.8
(629) Avg-Err 0.0302 0.019 0 1.1488 0.0127 0.0076

A-Time 2.7 0.5 0.05 0.37 0.7 0.5
KROA100 A-Fitness 21767 21360 21282 47544.6 21324.8 21282

(21282) Avg-Err 0.0227 0.0036 0 1.234 0.002 0
A-Time 4 0.9 0.1 0.59 0.9 0.9

LIN318 A-Fitness 43414 42035 42029 46579.8 42980.2 42781.5
(42029) Avg-Err 0.0329 0.0001 0 0.1082 0.0226 0.0179

A-Time 26 18 3.7 11.8 14.9 15
PCB442 A-Fitness 52597 50875 50778 69664.2 51586.3 51214
(50778) Avg-Err 0.0358 0.0019 0 0.3719 0.0159 0.0085

A-Time 17 31 3.5 16.22 19.6 20
RAT575 A-Fitness 7025 6974 6773 14250 7102.3 6953
(6773) Avg-Err 0.0372 0.0296 0 1.1039 0.0486 0.0265

A-Time 38 0.05 5.5 20.77 25.9 26
RAT783 A-Fitness 9144 9072 8806 31935 9270.4 9035
(8806) Avg-Err 0.0383 0.0302 0 2.6265 0.0527 0.026

A-Time 58 0.07 18.3 24.91 36.1 35
U724 A-Fitness 43395 42019 41910 141619 43786.4 42902

(41910) Avg-Err 0.0354 0.0026 0 2.3791 0.0447 0.0236
A-Time 53 2.5 20.3 23.72 49.4 38

V1084 A-Fitness 249134 239384 239359 1501480 251821 246350
(239297) Avg-Err 0.0411 0.0003 0.0002 5.2745 0.0523 0.0294

A-Time 103 43 113 50.8 93.1 69
PCB1173 A-Fitness 59697 59697 59697 311256 61641.7 59616
(56892) Avg-Err 0.0493 0.0493 0.0493 4.4709 0.0834 0.0478

A-Time 90 37 15 48.61 91.3 66

our approach is more effective and increases the “Adaptive Power” of the IO which

is not fully contributed by the original IO in case of small as well as in large TSPs

instances. In terms of the computational time, it is obvious that GTPHA+NNRI

does not perform better than LK-H.

In Figure 6.8, algorithms are shown in different line styles. It is obvious from the

plots that our proposed approaches are not overlapping. This means that each

and every refinement can contribute to some additional performance gain. These

contributions are more effective for large problems. These refinements not only

decrease the error rate but also reduce the CPU time used in almost all problem

instances.
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6.4 Chapter Summary

It is well-known that it is very hard for a pure genetic algorithm to fine tune the

search in complex spaces, especially in a combinatorial search space, and hybridiza-

tion with other techniques can greatly improve the performance of GAs. In this

regard, we have proposed the idea of nearest neighbour sequence based memetic

algorithm into a two phase hybrid algorithm, denoted GTPHA+NNRI, to solve the

TSP. An evolutionary algorithm for solving the TSP should include mechanisms for

fast convergence, reducing the computational time, and maintaining the diversity

of population. The above mentioned approach integrates the binary order crossover

operator, the double bridge mutation operator, the embedded local search, and the

techniques which can increase the adaptive power of the unary Inver Over opera-

tor. The integration of binary and unary approaches improves the overall search

capability.

In order to test the performance of GTPHA+NNRI for the TSP, experiments were

performed to analyse the sensitivity of parameters and the effect of various refine-

ment strategies for the performance of GTPHA+NNRI based on a number of TSP

instances. The experimental results of GTPHA+NNRI were also compared with

several state-of-the-art algorithms from the literature on the test TSP instances.

The experimental results also confirmed that the proposed approach is competitive

and shows reasonable efficiency. In general, with the hybridization of various op-

erators and local search strategies, GTPHA+NNRI is able to find optimal or near

optimal results for the tested TSP instances.

In the next chapter, we will extend the current GTPHA to solve the dynamic TSP.
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Chapter 7

A Guided Two-Phase Hybrid

Algorithm for the Dynamic

Travelling Salesman Problem

7.1 Introduction

Memetic algorithms (MAs) have attracted an expressive curiosity in recent years

and are being progressively used to solve real-world problems. Many real-world

optimization problems are time-dependent and can be modelled as dynamic opti-

mization problems (DOPs). One typical example is the travelling salesman problem

(TSP) which could be modelled as a dynamic TSP (DTSP). In the DTSP, the num-

ber of cities may change over time and the cost matrix may also change over time.

So, the DTSP becomes one of the harder versions of the static TSP, which is an

NP-hard problem.

For DOPs, an MA needs to promptly adapt to the environment. One important

factor is to provide some diversity schemes to address the problem of premature

convergence. It is also quite beneficial for an MA to get good-quality solutions
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quickly. This requirement may be achieved by integrating some domain-specific

knowledge in the evolutionary process to track the dynamic optima in a short time

and further guide an MA to explore the search space.

To address the above issues or considerations, we investigate a two-phase MA

(TPMA) to improve the performance of MAs for solving the DTSP. In the first

phase, the TPMA contributes in fitness gain by adding good edges. When phase

one is unable to improve the performance, the control is shifted to the second phase

with the introduction of some random immigrants scheme and some additional struc-

tures, which further guides the MA to take the knowledgeable decisions instead of

the random one. We also investigate in this study how to bridge the two phases in a

better way to get the good-quality solution in the minimum time. The experimental

results show that our proposed approach is effective in solving the DTSP and has

the potential to be extended for other dynamic combinatorial optimization problems

as well.

7.2 Modelling the DTSP

The TSP is a well-known classic Combinatorial Optimization Problem (COP). The

static TSP can be shortly stated as: given a set of n cities and the geographical dis-

tances between them, the travelling salesman has to find the cheapest tour of visiting

all the cities exactly once and returning to the starting city. In the mathematical

form, the length of a tour is calculated as follows:

l(π) =
n−1
∑

i=1

dπ(i),π(i+1) + dπ(n),π(1)

where dij is the distance between city i and city j, and π is a permutation of

1, 2, . . . , n. Thus, an instance I is defined by a distance matrix D = (dij) and a

solution to the TSP is a vector π with j = π(i) denoting city j to visit at the i-th

step.
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If the cost between cities (or nodes), or the number of cities in the TSP problem

changes with time, then the TSP becomes a DTSP. A DTSP has some additional

properties like the number of nodes or cities n may change with time: some cities

may appear and some old ones may disappear. Secondly, the city location may geo-

graphically change or the cost matrix may change with time as well. Mathematically,

for the DTSP, the cost matrix can be formulated as follows:

D(t) = dij(t)n(t)×n(t)

where dij(t) is the cost from city i to city j at time t, n(t) is the number of cities

at time t, and t is the real-world time. So, the aim of the DTSP is to find a tour

π(t) = π1, π2, . . . , πn(t) in order to minimize

l(π)(t) =

n(t)
∑

i=1

dπi,πi+1
(t),

where l(π)(t) is the length of the tour π(t), which is a permutation over the set

{1, 2, . . . , n(t)}, and πn(t)+1 = π1.

The DTSP is more challenging and realistic as compared to its static version. Many

real-world TSPs are dynamic in nature. For example, a distributing salesman/vehi-

cle wants to distribute some goods to some different cities from one starting point.

He has to visit all the cities in a proper order regarding the time and energy. For the

same reason, the salesman must choose an optimal path, but it may happen that

with a passage of time the salesman must face some changes, i.e., he may skip some

cities, or due to traffic jams the existing route may be affected and the salesman

must re-route his plan.

For our experimental analysis, we have designed two test beds. The first one uses

a main pool of cities and a spare pool of cities. The second one is via changing the

positions of nodes. The description of these test beds is given as follows:
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Figure 7.1: Illustration of constructing the DTSP using a Main Pool and a Spare
Pool.

Main Pool and Spare Pool (MS): We divide the number of cities of the original

TSP problem into two equal sets: aMain Pool and a Spare Pool. The algorithm

works on the nodes of the Main Pool. However, when a change occurs, some

percentage of nodes from the Main Pool are swapped with the same number

of nodes from the Spare Pool. This way, the number of nodes remains the

same throughout the process. This DTSP test bed is generated as follows:

Every f generations m percentage of random nodes are swapped between the

Main Pool and the Spare Pool. Here, f denotes the frequency of changes and

m denotes the severity of changes. Figure 7.1 illustrates the basic idea of

constructing the DTSP using the Main Pool and Spare Pool.

Changing the Positions of Nodes (PN): In this test bed, the total number of

nodes remains the same. Every f generations, m percentage of random nodes

are selected and their geographical positions are changed. For example, sup-

pose that node1 is located at (x1, y1) before a change. After the change, the

coordinates of node1 are changed by a random function, which simply moves

the node to a new location (x′
1, y

′
1). Figure 7.2 illustrates the basic idea of

constructing the DTSP based on moving the nodes.
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Figure 7.2: Illustration of constructing the DTSP via changing the positions of
nodes.

For handling the dynamic TSP we have kept the number of cities equal before and

after the change. In the real-world situation, for example in the wireless sensor

network, the number of nodes may not remain the same after a change for some

reasons like power issues, etc. By keeping this view in mind it is desirable that

the current approach should be capable enough to handle situations in which the

number of nodes may vary from one change to another change. In that situation, a

kind of repair algorithm would be required to remove or add the nodes within the

existing chromosomes of the population.

7.3 Proposed Approach for Solving the DTSP

In this chapter, we extend our guided two phase hybrid approach (GTPHA), de-

scribed in Chapter 6, to solve the DTSP. The extended algorithm is called dynamic

GTPHA (DGTPHA), of which the pseudo-code is given in Algorithm 34. Similar

to GTPHA, DGTPHA also consists of two phases: the first phase is based on the

Nearest Neighbour Sequence Based Memetic Algorithm (NNSBMA) and the second

phase is based on the Restricted Elite Population Inver Over (REIO) operator. In

the first phase, the NNSBMA brings gain in fitness. When the first phase is unable
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to give any further improvement in fitness, then control is shifted to the second

phase, which is mainly based on the Inver Over (IO) operator.

Here, the traditional IO operator is strengthened by integrating some techniques.

The first one is the elite population approach, which means that, instead of getting

the clue from random individuals from the population, the IO operator gets the

clue from an elite population, of which the individuals are extracted from the main

population and have good fitness. The second technique which is integrated with

the main IO operator is the gene pool, which is generated based on the concept of

the Minimum Spanning Tree (MST).

Furthermore, the switching criterion from Phase-1 to Phase-2 in DGTPHA is mod-

ified a little in the view of the DTSP. The following considerations are made:

1. Base Criterion (BC): If Phase-1 is not able to improve the best fitness of the

population after γ = 10 consecutive iterations, then Phase-1 will be shifted to

Phase-2.

2. Assuming that the change frequency is f , i.e., the problem changes every f

generations, then Phase-1 is allowed to run up to ρphase 1 × f generations,

where ρphase 1 is the percentage of the maximum number of generations Phase-

1 can run to the total number of generations between two changes. This

shifting criterion aims to keep the balance between Phase-1 and Phase-2. For

example, if f = 100 and ρphase 1 = 50%, when the number of generations of

Phase-1 reaches 50, the control will be shifted to Phase-2.

3. When a change occurs, the key parameters are reset to their default settings,

and the control is given to Phase-1 again.

In the following sections, the refinements within the DGTPHA over the GTPHA to

solve the DTSP are described in details. We first present the overall picture of the

NNSBMA, and then present the integration of elite population and rotating gene

pool within the second phase.

154



Chapter 7. A Guided Two-Phase Hybrid Algorithm for the Dynamic TSP

Algorithm 34 Dynamic Guided Two-Phase Hybrid Algorithm (DGTPHA)

1: Set parameters, e.g., pc, pm, ninv, sseq, α, β, γ, and tus to their default values;
2: if (Change Type = MS) then
3: copy randomly half of all n nodes to the Main Pool and Spare Pool;
4: n := n/2;
5: end if
6: Create Distance Matrix according to the problem instance;
7: Gene Pool := GenerateGenePool();
8: nnListsize := ⌊√n⌋ ;
9: nnListn×⌊√n⌋ := GenerateNearestNeighborList(nnListsize);
10: no change count := 0;
11: Changeproblem := 0;
12: Finsert := β;
13: Phase1 := true;
14: Pop := Initialise a population of popsize individuals;
15: GenerateNearestNeighborSequence(Nseq, nnList);
16: repeat
17: if (Phase1 = true) then
18: call NNSBMA();
19: if (Switch Criteria(no change count)≥ γ) OR (Changeproblem ≥ (ρphase 1 × f))

then
20: Phase1 := false;
21: IOpopsize = 3× popsize;
22: PopIO := add nearest neighbor based random individuals into Pop+ Poptmp;
23: end if
24: else
25: ElitePop[ ] := GenerateElitePop(PopIO); // generate the elite pop for r-REIO

26: for each individual indi ∈ PopIO do
27: r-REIO(indi, ElitePop[ ], Gene Pool);
28: end for
29: end if
30: if (Changeproblem ≥ f) then
31: if (Change Type = MS) then
32: ChangeProblem MS(change severity);
33: else
34: ChangeProblem PN(change severity);
35: end if
36: Changeproblem := 0;
37: Phase1 := true;
38: Reset parameters, e.g., pc, pm, ninv, and sseq to their default values;
39: end if
40: Genrunning ++;
41: Changeproblem ++;
42: until (Genrunning ≥ MaxGen)
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Algorithm 35 NNSBMA()

1: mating pool := TournamentSelect(Pop);
2: // Crossover
3: for j := 0 to popsize do
4: Select two parents ia and ib from the mating pool;
5: if (rand(0, 1) < pc) then
6: Create childa and childb by e-SBOX(ia, ib, Finsert);
7: Add childa and childb to Poptmp;
8: end if
9: end for
10: // Mutation
11: for each individual indi ∈ Poptmp do
12: if (rand(0, 1) < pm) then
13: e-SBDB(indi, ninv, Finsert);
14: Add indi to Poptmp;
15: end if
16: end for
17: AdaptParameters(α, tus, Genrunning);
18: Pop := SelectNewPop(Pop+ Poptmp);

7.3.1 Phase-1: NNSBMA

As mentioned above, we extend our previous approach in Chapter 6 to solve the

DTSP. The procedures of Phase-1 and Phase 2 remain almost the same. The only

modification that we have made lies in Phase 2, where the rotating gene pool ap-

proach is introduced in order for the adaptive IO to be able to add and preserve

more and more good edges.

The pseudo-code of one generation of NNSBMA is given in Algorithm 35. The

crossover (e-SBOX), mutation (e-SBDB), local search (SBLS) operators, and the

procedure for adapting the parameters for maintaining the diversity are the same as

those we proposed for tackling the static TSP in Chapter 6.

7.3.2 Phase-2: REIO with Rotated Gene Pool (r-REIO)

For Phase-2, the following changes are made in the framework of DGTPHA over

GTPHA in Chapter 6. Integrating domain-specific knowledge through an efficient
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heuristic can affect the performance of algorithms for the DTSP. To make the IO

operator more efficient, we introduce the concept of gene pool. Similar concept has

also been employed and recommended by other researchers [85, 150, 151]. We have

adapted the idea of gene pool proposed by Yang et al. in [150]. This idea indicates

that some good gene fragments can be obtained from the minimum spanning tree.

But in our approach, we rotate the set of edges associated with a node to avoid

repetition in order for the IO operator to have higher chances to explore more and

more options for inversion. The pseudo-code of the r-REIO algorithm is given in

Algorithm 36.

Algorithm 36 r-REIO(route, ElitePop[ ], Gene Pool)

1: p := 0.02;
2: route∗ := route;
3: Select randomly a city C from route∗;
4: while (TRUE) do
5: ptmp := rand(0, 1);
6: if ptmp < p then
7: Select the city C∗ from the remaining cities in route∗;
8: else
9: if (ptmp > p) and (ptmp <= 0.33) then
10: Select the city C∗ from the gene pool Gene Pool of C and rotate Gene Pool accord-

ingly;
11: else
12: Select randomly an individual routeselect from the elite population ElitePop[ ];
13: while (routeselect = route∗) do
14: Select randomly an individual routeselect from the elite population ElitePop[ ];
15: end while
16: Assign to C∗ the next city to C in the selected route;
17: end if
18: end if
19: if (the next or previous city of city C is C∗ in route∗) then
20: Exit from the while loop;
21: end if
22: Invert the section from the next city of city C to city C∗ in route∗;
23: C := C∗;
24: if (Length(route∗) < Length(route)) then
25: route := route∗;
26: end if
27: end while

The procedure of generating the gene pool is shown in Algorithm 37. First, a

minimum spanning tree is generated over the working set of nodes. Then, the nodes

which are linked with any specific node in the minimum spanning tree are stored in
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Algorithm 37 GenerateGenePool()

1: Generate a Minimum Spanning Tree T ;
2: for node := 0 to n do
3: Find the edges in T which are connected to node;
4: Copy the edges connected to node to Gene Pool[node][ ];
5: end for
6: return(Gene Pool);

Figure 7.3: (a) Graph; (b) the Minimum Spanning Tree (MST); (c) Gene pool
showing connected edges to each node, e.g., Gene Pool[B] → {D,C,E}, which

means that nodes D, C, and E are connected to node B in the MST.

a gene pool. The structure of this gene pool is similar to the nearest neighbor list

nnList. The only difference is that, in the gene pool, the number of nodes which are

linked to a node is variable, i.e., there may be one or more of them, while in nnList,

each node has a fixed number of neighbors, i.e.,
√
n neighbors. For example, Figure

7.3 illustrates the generation of the gene pool from a given graph.

In r-REIO, we slightly modify the gene pool concept. In order to maintain the

diversity and make use of the strength of the gene pool, when the IO operator picks

a city from the existing gene pool, the corresponding list is rotated. So, for the next

iteration, if the same node is under consideration, a new city would be picked from

the gene pool. For example, Figure 7.3 (c) represents an edge list. If in an iteration,

city1 = B, city2 = D would be selected for the next city within the individual.

Then, the gene pool list B → D,C,E would be rotated to B → C,E,D for the next

iteration.
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7.3.3 The Change Functions

The dynamic changes are also represented in Algorithm 34, where Change Type =

MS means that the change function is based on the main and spare pools and

Change Type = PN means that the change function is based on positions of nodes.

Every f generations, a change occurs: m percentage of nodes are changed and the

distance matrix, the nearest neighbor list, and the gene pool are also updated. De-

tails of the change functions ChangeProblem MS(m) and ChangeProblem PN(m)

are given in Algorithm 38 and Algorithm 39, respectively. In these two algorithms,

GenerateNearestNeighborList(nnListsize) has been defined in Algorithm 26 and

GenerateGenePool() has been defined in Algorithm 37.

Algorithm 38 ChangeProblem MS(m)

1: m′ := n×m%;
2: Select randomly a set of m′ nodes from the main pool;
3: Swap the m′ selected nodes with m′ random nodes from the spare pool;
4: Update Distance Matrix;
5: Genepool := GenerateGenePool();
6: nnListn×⌊√n⌋ := GenerateNearestNeighborList(nnListsize);
7: Evaluate the population;

The main difference between the two functions lies in that, in ChangeProblem MS(m),

m% nodes are swapped between the spare pool and the main pool. However, in

ChangeProblem PN(m), m% nodes are first randomly selected. Then, the posi-

tion of each selected node is moved slightly. In the Algorithm 39, first the ran-

dom function generates a random value to x and y then it is checked that the

newly generated co-ordinates lies in between the xupr and xlwr. The procedure

is the same for y i.e., xlwr ≤ x ≤ xupr, if not then the else part is executed

nodei.x = rand(xlwr + 1, xupr − 1). The procedure is the same for moving the y

co-ordinates as well. We have used the τ which mainly effect the movement of (x, y)

co-ordinates, if τ is low the movement or jump of the node is short, but if it is high

the movement or jump of the node is high. We kept the value τ = 0.9 for these

experiments.
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Algorithm 39 ChangeProblem PN(m)

1: m′ := n×m%;
2: Select randomly a set of m′ nodes;
3: for i := 0 to m′ do
4: x := nodei.x+ (τ × (xupr − xlwr)× rand(−1, 1));
5: y := nodei.y + (τ × (yupr − ylwr)× rand(−1, 1));
6: if ((x ≤ xupr) AND (x ≥ xlwr)) then
7: nodei.x := x;
8: else
9: nodei.x = rand(xlwr + 1, xupr − 1);
10: end if
11: if ((y ≤ yupr) AND (y ≥ ylwr)) then
12: nodei.y := y;
13: else
14: nodei.y := rand(ylwr + 1, yupr − 1);
15: end if
16: end for
17: Update Distance Matrix;
18: Genepool := GenerateGenePool();
19: nnListn×⌊√n⌋ := GenerateNearestNeighborList(nnListsize);
20: Evaluate the population;

7.4 Experimental Study

7.4.1 Experimental Setting

To examine the performance, all the algorithms were tested on the DTSP instances

that are constructed from chn144, krob200, lin318, pcb442 and u724, which are

taken from the TSPLIB except the first one. The experiments were performed with

two values of f and 4 values of m, which gives overall 8 combinations of f and m.

The value of f was set to 50 and 100, while the value of m was set to 10, 25, 50,

and 75, respectively.

Each algorithm on a problem was run 30 times, and the results are averaged over

30 runs. The population size was set to 20 for all problems initially for Phase-1

and when switched to Phase-2, the population size was increased to 60 individuals

including 20 parent, 20 children, and 20 newly created immigrant individuals (RI:
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generated randomly, or NNRI: generated with nearest neighbour algorithm). The

crossover probability was set to pc = 0.65 and the mutation probability pm = 0.025.

The crossover and mutation probabilities were increased (by Adapting Parameters

as in Algorithm 30) until they reach 0.85 and 0.075, if the best fitness does not show

any improvement. The switching criterion from Phase-1 to Phase-2 was kept γ = 10;

this means that if the best fitness does not change for 10 consecutive generations

while handling DTSP, then the algorithm is switched to Phase-2. For Phase-2, the

key parameter p = 0.02 was kept the same as in the original IO operator. The

number of generations was kept 500 for all problems.

The performance of our DGTPHA depends on the parameters of Phase-1 internally,

the parameters of Phase-2 and when to switch the control from Phase-1 to Phase-2.

The key parameters for Phase-1 are: how many generations the nearest neighbour

technique should be used, and under which criteria Phase-1 should be switched

to Phase-2. For this reason, we set the following parameters. For the first set of

experiments, we set 10% of the total generations for the nearest neighbour sequence

generation and the rest of generations for random sequence generation to maintain

the diversity.

Table 7.1 shows the internal setting of parameters of Phase-1 and the efficiency of

the first phase is totally dependent on these parameters regarding the fitness quality

and computational time. The parameter α is the percentage of individuals that are

selected from the current population for sequence generation. Here, the value of α

was set to 100%. The parameter β (i.e., (Finsert)) determines how many locations

are checked for sequence insertion. The value of β was set to 5% of the total nodes of

the individual. The parameter γ controls when to switch from Phase-1 to Phase-2.

Here, γ was set to 10, which means that the algorithm would switch to Phase-2 when

the best fitness does not change for consecutive 10 generations. In addition, to keep

the balance between Phase-1 and Phase –2, when Phase-1 reaches 50% of the change

frequency in between two changes, control is shifted to Phase-2 automatically. And
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the parameter tus decides when to reduce the size of sequences. The value of tus was

set to 10.

Table 7.1: Parameter Settings in NNSBMA

Parameter Setting
α 100
β 5
γ 10
tus 10

The internal parameters of Phase-2 were set as follows. The key parameter p = 0.02

was kept the same as that of the original IO operator. A random number ptmp is

generated randomly in the range [0, 1]. If (ptmp < p), the mutation part of IO would

be used, e.g., city2 would be selected at random. Otherwise, if (p < ptmp < 0.33),

then city2 would be selected from the gene pool. If (ptmp > 0.33), city2 would be

selected from any elite individual.

In the following experimental studies, we will show the effect of various heuristic

techniques and key parameters on the performance of our proposed approach for the

DTSP.

7.4.2 Effect of Sequence Generation Methods

Figure 7.4 shows the comparison between the DGTPHA with sequences generated

with the nearest neighbor list and the DGTPHA with sequences generated without

the nearest neighbor list on chn144 with f = 100 and m = 10%. It can be seen

that using the nearest neighbor list, which ultimately brings the nodes nearer to

each other during the first phase of our MA, contributes a lot to the overall better

results.
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Figure 7.4: The effect of sequences generated with and without the nearest
neighbor list within the first phase of DGTPHA.

7.4.3 Effect of Immigrants Schemes in Phase-2

In case of tackling the DTSP, the time between two changes is very limited. To get

a better solution quality, we analyse the effect of two different immigrants schemes

when the second phase is started. When the control is given to the second phase, we

add immigrants generated by the nearest neighbor algorithm or immigrants gener-

ated randomly. Figure 7.5 shows the effect of immigrants generated randomly and

generated by the nearest neighbor algorithm, where a change occurs every 100 gener-

ations, during which in DGTPHA the Phase-1 will run for the first 50 generations at

most (i.e., ρphase 1 = 50%), while the Phase-2 runs for the remaining 50 generations

at least. In Figure 7.5, “BC+50” means that the base criterion with γ = 10 and

ρphase 1 = 50% are used for shifting Phase-1 to Phase-2, but Phase-2 starts with-

out immigrants. “BC+50+RI” means that Phase-2 starts with random immigrants.

Moreover, “BC+50+NNRI” means that Phase-2 starts with immigrants generated

based on the nearest neighbor algorithm.

From Figure 7.5, it can be seen that when immigrants are generated through the
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Figure 7.5: The comparison of the algorithms with random immigrants and
nearest neighbour based immigrants schemes.

Nearest Neighbour algorithm it can give better performance, but it makes the in-

dividuals rigid for further improvement. On the contrast, if the immigrants are

generated in a random way, it may take a longer time to converge but may guaran-

tee to give better solutions at the end.

7.4.4 Effect of Shifting Parameter to Phase-2

In general, key parameters affect the performance of algorithms. The performance of

our approach strongly depends on the shifting parameter from Phase-1 to Phase-2.

In this experiment, we analyse how many generations should be given to Phase-

1 (SBMA with nearest neighbour sequences) and how many generations should be

given to Phase-2 (REIO) since the first phase is clearly time consuming and it would

be better to keep the balance between the two phases. The first phase in general

collects useful information and knowledge for the second phase and the second phase

integrates the knowledge extracted by the SBMA algorithm.
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Figure 7.6: The effect of when to shift from Phase-1 to Phase-2.

In order to show how much the shifting criterion affects the overall performance of

our algorithm, we carry out experiments with different shifting criteria in our algo-

rithm. Figure 7.6 shows the performance of the algorithm under various conditions

of shifting over to Phase-2. In the figure, BC means that only the base criterion of

shifting is used, i.e., if Phase-1 is un-able to change the fitness for consecutive γ = 10

generations, control is shifted to Phase-2. Here, there is no restriction regarding how

many generations Phase-1 will run. For example, if in the first phase the fitness is

continuously changing and the base criterion is never fulfilled, then the control will

not be shifted to Phase-2. In Figure 7.6, “BC+X” has the similar meaning as we

explained before for “BC+50”. For example, “BC+25” means that the first phase

will run for up to 25 generations if the BC is not fulfilled, given that f = 100.

From Figure 7.6, it can be seen that when less time is given to Phase-1 instead of

Phase 2, the overall performance of the algorithm increases. This is because the

second phase has more time to get better solutions before the next environmental

change takes place. From the experimental analysis, it is obvious that it is not

necessary that more time should be given to Phase 1 and less time should be given

to the Phase-2.
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Figure 7.7: The comparison of algorithms with and without the gene pool on
the DTSP test bed based on (a) the change of positions of nodes, and (b) the

main pool and spare pool.

7.4.5 Effect of the Gene Pool

The purpose of the gene pool is to preserve the edges that may be promising edges

of optimal solutions and may further guides the evolution of the population toward

better fitness. So, the gene pool stores useful information from time to time from

the problem when a change occurs. The useful information is extracted by creating

the edge list from the minimum spanning tree (MST). In most of the cases, over

70% edges of the MST are part of the global optima [150]. The previous gene pool

is further updated with the new edge list and further guide the second phase along

with the elite population. The basic idea behind the gene pool is that it prevents the

individuals from adding an edge which results in bad fragments up to some extent.

Figure 7.7 shows the comparison of algorithms with and without the gene pool on

the DTSP test beds. It can be seen that the concept of gene pool contributes to the

fitness gain for the second phase due to reducing the randomness of IO and that the

effect of the gene pool on both test beds is prominent.
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7.4.6 Experiments on Comparing Different Algorithms

The experimental results of comparing different algorithms on the test bed using

main and spare pools are given in Table 7.2 and Figures 7.8, 7.9, and 7.10. The

experimental results of comparing different algorithms on the test bed with changing

positions of nodes are given in Table 7.3 and Figures 7.11, 7.12, and 7.13. In these

tables and figures, the number of nodes in the TSP instances varies from 144 to 724.

The overall best average performance before the change is given for each combination

of f and m.

From the Tables 7.2 and 7.3, it can be observed that the execution time of the DGT-

PHA algorithm is very high as compared to the other three algorithms. Actually,

in the DGTPHA algorithm, the control is not given to the second phase, so this is

only the first phase (NNSBMA) of our hybrid algorithm. However, for the other

algorithms, along with the base criteria after 50% of the generations the control is

given to the second phase. Furthermore, among the DGTPHA+RI and the DGT-

PHA+NNRI, the execution time of DGTPHA+NNRI is slightly higher. This is due

to the generation of random individuals by the nearest neighbor algorithm.

From the experimental results, several observations can be made by comparing the

behaviour of the algorithms. The proposed DGTPHA+NNRI outperforms other al-

gorithms on all test cases regarding small and drastic changes in terms of the change

frequency f and change severity m. In small changes, the performance of both

DGTPHA and DGTPHA+RI is almost the same, but with RI the performance is

increased. However, when the change happens, the performance of Phase-1 (SBMA

with nearest neighbour sequences generation) degrades while the approach with RI

is consistent. But when the change is gradual where f is 100 the performance of

DGTPHA+RI is better as compared to when f is 50. Which shows that the Phase-

2 has more time to take the fitness into the optimal range. One of the features of

Phase-1 in DGTPHAs is that it converges very rapidly but is unable to show any

further performance. Simply, Phase-1 gets stuck in the local optima and cannot
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escape further but when the MA is shifted to the Phase-2 it escapes the algorithm

from local optima and explores the search space because the IO by default is an

inversion operator.
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Figure 7.8: Experimental results of DGTPHA+RI (DGTPHA with random im-
migrants), DIO (Dynamic IO operator), DGTPHA, and DGTPHA+NNRI (DGT-
PHA with nearest neighbor based random immigrants) on the test bed using main
and spare pools (MS), where f was set to 50 and 100, and m was set to 10%, 25%,

50%, and 75% for the TSP instance chn144 with 144 nodes.
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Figure 7.9: Experimental results of DGTPHA+RI (DGTPHA with random im-
migrants), DIO (Dynamic IO operator), DGTPHA, and DGTPHA+NNRI (DGT-
PHA with nearest neighbor based random immigrants) on the test bed using main
and spare pools (MS), where f was set to 50 and 100, and m was set to 10%, 25%,

50%, and 75% for the TSP instance lin318 with 318 nodes.
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Figure 7.10: Experimental results of DGTPHA+RI (DGTPHA with random
immigrants), DIO (Dynamic IO operator), DGTPHA, and DGTPHA+NNRI
(DGTPHA with nearest neighbor based random immigrants) on the test bed
using main and spare pools (MS), where f was set to 50 and 100, and m was set

to 10%, 25%, 50%, and 75% for the TSP instance u724 with 724 nodes.
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Table 7.2: Experimental results on the test bed with the main and spare pools, regarding the best average performance of
DGTPHA (with RI and NNRI) and other MAs with the traditional Inver Over.

Test Bed Based on Main Pool and Spare Pool

Algorithm chn144 kroB200 lin318 pcb442 u724

f=50, m ⇒ 10% 25% 50% 75% 10% 25% 50% 75% 10% 25% 50% 75% 10% 25% 50% 75% 10% 25% 50% 75%

DGTPHA+RI 34694 37746 39198 39289 44944 50646 54715 56227 92784 107610 116000 114921 128248 150049 165720 165749 152714 180089 198480 195487
Time in seconds 0.37 0.38 0.4 0.4 0.41 0.44 0.43 0.45 0.51 0.53 0.55 0.53 0.66 0.66 0.66 0.68 1.09 1.04 1.05 1.04
DIO 61130 66932 69662 69694 95858 105475 110969 112235 202320 216175 222200 221610 284367 299952 307094 307660 339378 355417 361508 358470
Time in seconds 0.17 0.18 0.18 0.18 0.19 0.22 0.22 0.24 0.27 0.26 0.26 0.27 0.33 0.32 0.35 0.38 0.52 0.51 0.52 0.5
DGTPHA 44797 47235 50159 49692 55018 62380 67156 68171 106581 121926 131481 131523 140753 164998 180698 182154 162432 187931 208391 204072
Time in seconds 0.65 0.62 0.66 0.66 0.67 0.61 0.62 0.6 0.73 0.71 0.71 0.7 0.97 0.87 0.89 0.87 1.39 1.41 1.43 1.29
DGTPHA+NNRI 24564 24608 24361 24459 24716 24557 24791 24693 37119 37265 37142 37302 43334 43168 43080 43080 35957 36043 35825 35963
Time in seconds 0.41 0.43 0.45 0.43 0.43 0.55 0.48 0.54 0.63 0.56 0.56 0.66 0.68 0.69 0.71 0.72 1.16 1.19 1.12 1.14

f=100, m ⇒ 10% 25% 50% 75% 10% 25% 50% 75% 10% 25% 50% 75% 10% 25% 50% 75% 10% 25% 50% 75%

DGTPHA+RI 28934 30676 31268 31254 36578 39170 41263 41941 73254 81217 85225 85087 101146 113138 121141 122780 120473 135555 145207 146567
Time in seconds 0.37 0.38 0.38 0.4 0.41 0.41 0.43 0.42 0.47 0.49 0.51 0.5 0.59 0.59 0.59 0.6 0.87 0.88 0.89 0.88
DIO 52120 57394 59708 59988 84696 92269 97382 99053 183343 196015 201897 201641 262552 275157 283551 283618 317957 330970 335936 335021
Time in seconds 0.17 0.21 0.17 0.2 0.19 0.24 0.2 0.23 0.22 0.24 0.24 0.28 0.28 0.28 0.33 0.33 0.38 0.4 0.39 0.45
DGTPHA 39369 41157 42171 42818 47509 51282 53973 53973 89342 97509 102287 103045 115775 129682 138501 139892 130580 146554 158330 154755
Time in seconds 0.65 0.57 0.56 0.61 0.59 0.6 0.62 0.62 0.68 0.77 0.69 0.76 0.83 0.93 0.87 0.89 1.25 1.25 1.23 1.33
DGTPHA+NNRI 23760 24029 24095 23997 24316 24270 24320 24364 36688 36839 36724 36824 42997 42663 42786 42520 35619 35896 35778 35606
Time in seconds 0.37 0.4 0.41 0.48 0.4 0.43 0.45 0.51 0.51 0.51 0.52 0.61 0.6 0.64 0.64 0.67 0.88 0.94 0.95 0.96
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Figure 7.11: Experimental results of DGTPHA+RI (DGTPHA with random
immigrants), DIO (Dynamic IO operator), DGTPHA, and DGTPHA+NNRI
(DGTPHA with nearest neighbor based random immigrants) on the test bed
based on changing the position of nodes (PN), where f was set to 50 and 100,
and m was set to 10%, 25%, 50%, and 75% for the TSP instance chn144 with 144

nodes.
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Figure 7.12: Experimental results of DGTPHA+RI (DGTPHA with random
immigrants), DIO (Dynamic IO operator), DGTPHA, and DGTPHA+NNRI
(DGTPHA with nearest neighbor based random immigrants) on the test bed
based on changing the position of nodes (PN), where f was set to 50 and 100,
and m was set to 10%, 25%, 50%, and 75% for the TSP instance lin318 with 318

nodes.
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Figure 7.13: Experimental results of DGTPHA+RI (DGTPHA with random
immigrants), DIO (Dynamic IO operator), DGTPHA, and DGTPHA+NNRI
(DGTPHA with nearest neighbor based random immigrants) on the test bed
based on changing the position of nodes (PN), where f was set to 50 and 100,
and m was set to 10%, 25%, 50%, and 75% for the TSP instance u724 with 724

nodes.
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Table 7.3: Experimental results on the test bed based on changing the positions of nodes, regarding the best average
performance of DGTPHA (with RI and NNRI) and other MAs with the traditional Inver Over.

Test Bed Based on Changing Node Positions

Algorithm chn144 kroB200 lin318 pcb442 u724

f=50,m ⇒ 10% 25% 50% 75% 10% 25% 50% 75% 10% 25% 50% 75% 10% 25% 50% 75% 10% 25% 50% 75%

DGTPHA+RI 86014 99105 110242 115922 88433 103636 116723 124454 190165 221818 255952 274629 257138 307027 355886 386014 313120 378072 441451 480795
Time in seconds 0.49 0.50 0.51 0.52 0.60 0.62 0.64 0.64 0.89 0.92 0.89 0.93 1.29 1.29 1.32 1.30 2.58 2.57 2.59 2.60
DIO 193337 208982 222293 226142 210344 225432 234976 241001 435667 467172 481868 489329 607164 639595 656056 663875 697892 719505 739569 748222
Time in seconds 0.24 0.24 0.25 0.25 0.30 0.31 0.31 0.31 0.42 0.43 0.43 0.45 0.62 0.62 0.62 0.65 1.23 1.21 1.24 1.22
DGTPHA 101492 114835 125946 133245 98866.2 114685 126735 136941 203108 234246 267515 289754 271206 368346 394744 227148 314085 381407 442334 473425
Time in seconds 0.65 0.74 0.78 0.7 0.92 0.92 0.81 0.92 1.17 1.15 1.18 1.16 1.76 1.75 1.71 1.59 3.49 3.5 3.5 3.43
DGTPHA+NNRI 43068 43553 43595 43304 35844 35456 35533 35655 56179 55990 56425 56438 63598 63372 63759 63241 51141 50701 50818 50836
Time in seconds 0.52 0.52 0.52 0.54 0.63 0.63 0.66 0.67 0.92 0.96 0.97 0.98 1.35 1.39 1.39 1.41 2.73 2.78 2.81 2.81

f=100, m ⇒ 10% 25% 50% 75% 10% 25% 50% 75% 10% 25% 50% 75% 10% 25% 50% 75% 10% 25% 50% 75%

DGTPHA+RI 72090 78735 84493 86812 73016 81126 87771 91802 156028 175769 194399 204449 213990 241693 269626 287112 264389 293537 341485 365360
Time in seconds 0.46 0.47 0.49 0.48 0.54 0.55 0.55 0.55 0.79 0.78 0.79 0.79 1.12 1.1 1.11 1.12 2.08 2.09 2.14 2.14
DIO 176210 189276 198934 207256 196716 206031 215057 218878 415437 431385 447355 455927 579568 605101 619439 629698 665546 689910 700887 712655
Time in seconds 0.22 0.22 0.23 0.28 0.26 0.27 0.27 0.32 0.35 0.36 0.35 0.36 0.47 0.47 0.48 0.48 0.83 0.83 0.84 0.92
DGTPHA 87488 95019 101857 104837 85236 92332 100879 105981 172794 189964 209535 222500 227148 257010 283062 300922 272049 304656 338928 365957
Time in seconds 0.76 0.71 0.82 0.81 0.88 0.79 0.78 0.79 1.11 1.11 1.06 1.04 1.59 1.61 1.6 1.57 3.07 3.08 3.06 3.09
DGTPHA+NNRI 42526 42847 43111 43185 34847 35367 35616 35401 55776 56029 56065 56385 62973 63012 62990 63353 51052 50588 50767 50956
Time in seconds 0.44 0.47 0.49 0.51 0.5 0.56 0.61 0.68 0.73 0.81 0.84 0.93 1 1.19 1.2 1.27 2.02 2.17 2.26 2.25
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First, DGTPHA with RI and NNRI has a more rapid and robust convergence ca-

pability than the other two approaches, which are the DGTPHA (this approach

considers only base criteria) without RI and DIO. On all dynamic scenarios, i.e., for

gradual and drastic change, the proposed approach rapidly reached the near optimal

value. This is because of the enforcement learning mechanism in the two phases of

our guided MA. In Phase-1, distant nodes (cf. expensive edges, shown in Chapter

6 in Figure 6.1) are brought together and optimal sub-tours instead of non-optimal

sub-tours are inserted. In Phase-2, random immigrants bring diversity along with

preserving the parent and child population (containing better edges), and there is

also the guidance provided by the gene pool which is generated with MST and elite

population (i.e., individuals with better fitness).

Second, the joint behaviour of two algorithms in the proposed approach yields better

exploitation and exploration ability than the stand alone approaches.
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Figure 7.14: (a) Shows the learning effect of MS, which can accommodate the
change when severity is 10, 25, 50, and 75. (b) Shows the learning effect of PN,

which can accommodate the change when severity is 10, 25, 50 and 75.

The algorithm slightly shows a kind of learning behaviour as well, as can be observed

from the figures with f = 100 andm = 10, i.e., small changes. The algorithm collects

good edges, so that as the algorithm proceeds and when the change happens, the

Phase-1 almost copes with the effect of NNRI which is quite prominent in the first

change (which is indicated by the arrow sign in Figure 7.14). The Phase-1 almost

collects the nodes which ultimately balance the effect of NNRI. This behaviour shows
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that the algorithm obtains a pool of better genes, which are, on the other hand, parts

of the building block. On the other hand, this effect is not visible when the change

is drastic.

In order to further elaborate the learning effect of the Phase-1, we have performed

some analysis to show the learning behaviour, by changing the frequency f to 200 and

the severity to 10, 25, 50, and 75, respectively. The experimental results are shown

in Figure 7.14. From Figure 7.14, it can be seen that for the first static environment

(i.e., from generation 0 to generation 200) for all m, the performance is the same

before Phase 2 starts. The start of Phase 2 is shown by an arrow pointing to the

adding of random individuals generated through the nearest neighbours algorithm.

When the algorithm proceeds to the next change environment, that is, from 200

to 400, and so on, the gradual change for which m is 10 or 25 can accommodate

the change by using the knowledge from the previous change, nearly cancelling the

effect of NNRI which was absolutely visible in the first change. The performance

increases further when m is 25. However, for m = 75, when the change is drastic

and the problem changes almost completely, the first phase could hardly manage

to accommodate the change. For the test bed with changing positions of nodes in

Figure 7.14(b), the gradual change with m = 25 or m = 50 nearly cancels the effect

of NNRI, which supports the concept of bringing the nodes near to each other in

the Phase-1.

The t-test1 results of statistically comparing investigated algorithms with 58 degrees

of freedom at a 0.05 level of significance are shown in Table 7.4 and Table 7.5. In

Table 7.4 and Table 7.5, the t-test result is shown as “s+”, “s−”, “+”, “−“, or

“∼” when the first algorithm is significantly better than, significantly worse than,

insignificantly better than, insignificantly worse than, or statistically equivalent to

the second algorithm, respectively. From Table 7.4 and Table 7.5, it can be seen that

the performance of DGTPHA+NNRI is significantly better than the performance of

1For the t-test, we have used the GraphPad Prism software. Online available:
(http://www.graphpad.com/prism/prism.htm)
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the other three algorithms on all problem instances with different change frequencies

f and change severitiesm. It can also be observed that the performance of DGTPHA

is significantly better than the performance of DIO on all problem instances. This

result indicates that a single heuristic is not enough for solving a DTSP. These results

show that the integration of domain-specific knowledge and suitable LS and guided

search techniques can greatly improve the performance of MAs for the DTSP.
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Table 7.4: The t–test results of comparing algorithms of MS on problem instances with different values of f and m.

t-Test Results of Main and Spare Pool Experiments

Algorithm chn144 kroB200 lin318 pcb442 u724

f=50,m ⇒ 10% 25% 50% 75% 10% 25% 50% 75% 10% 25% 50% 75% 10% 25% 50% 75% 10% 25% 50% 75%

DGTPHA+RI ⇔ DIO s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
DGTPHA+RI ⇔ DGTPHA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
DGTPHA+NNRI ⇔ DGTPHA+RI s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
DGTPHA+NNRI ⇔ DGTPHA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
DIO ⇔ DGTPHA+NNRI s− s− s− s− s− s− s− s− s− s− s− s− s− s− s− s− s− s− s− s−
DGTPHA⇔ DIO s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

f=100,m ⇒ 10% 25% 50% 75% 10% 25% 50% 75% 10% 25% 50% 75% 10% 25% 50% 75% 10% 25% 50% 75%

DGTPHA+RI ⇔ DIO s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
DGTPHA+RI ⇔ DGTPHA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ +
DGTPHA+NNRI ⇔ DGTPHA+RI s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
DGTPHA+NNRI ⇔ DGTPHA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
DIO ⇔ DGTPHA+NNRI s− s− s− s− s− s− s− s− s− s− s− s− s− s− s− s− s− s− s− s−
DGTPHA ⇔ DIO s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

Table 7.5: The t–test results of comparing algorithms of PN on problem instances with different values of f and m.

t-Test Results of Position Based Experiments

Algorithm chn144 kroB200 lin318 pcb442 u724

f=50,m ⇒ 10% 25% 50% 75% 10% 25% 50% 75% 10% 25% 50% 75% 10% 25% 50% 75% 10% 25% 50% 75%

DGTPHA+RI ⇔ DIO s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
DGTPHA+RI ⇔ DGTPHA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ ∼ ∼ ∼ +
DGTPHA+NNRI ⇔ DGTPHA+RI s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
DGTPHA+NNRI ⇔ DGTPHA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
DIO ⇔ DGTPHA+NNRI s− s− s− s− s− s− s− s− s− s− s− s− s− s− s− s− s− s− s− s−
DGTPHA ⇔ DIO s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

f=100,m ⇒ 10% 25% 50% 75% 10% 25% 50% 75% 10% 25% 50% 75% 10% 25% 50% 75% 10% 25% 50% 75%

DGTPHA+RI ⇔ DIO s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
DGTPHA+RI ⇔ DGTPHA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ + s+ s+ s+ + + ∼ s+ s+ ∼
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From the above analysis, it can be observed that the winner is DGTPHA+NNRI

and the runner up is DGTPHA+RI. From Figures 7.8 – 7.13, and Tables 7.2 and

7.3, it is quite clear that the suggested approach is far better than the traditional

IO operator. It is obvious from Tables 7.2 and 7.3, the computational time of IO

is much less than that of our proposed approaches. From the tables, we can get

the observation that the Phase-1 algorithm is computationally expensive among

all the approaches. However, from the plots, we can also observe that after some

generations of running, the performance of Phase-1 is degraded and is unable to show

any further progress towards the fitness gain. So, we have employed the Phase-2

which is based on the IO operator. From the results of the tables, the time and

quality of our proposed DGTPHA+NNRI are well balanced together, which is quite

clear from the execution time (measured in seconds) of each algorithm. It is a

matter of fact that we have integrated several heuristic approaches to the existing

framework, which should result in increase in the execution time. However, instead

of increasing, the execution time is reduced a lot.

7.5 Chapter Summary

Different approaches have been applied to address dynamic travelling salesman prob-

lems (DTSPs). In this chapter, we have extended the framework of our two-phase

hybrid memetic algorithm for the static travelling salesman problem (TSP) to solve

the DTSP. Our approach is based on two phases: the first phase is based on tradi-

tional binary crossover and mutation operators, and the second phase is based on

unary Inver Over (IO) operator. The first phase supports the second phase and

makes the approach suitable not only for the static TSP but also for the DTSP. Our

approach makes use of the knowledge of the current population for future genera-

tions. Simply, the next generation is dependent on the previous generation up to

some extent or totally when the change is slight not drastic.
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In the proposed approach, two techniques are used in the first phase, and three

techniques are used in the second phase. In the first phase, the Nearest Neigh-

bour technique is utilized to bring the nodes near to each other, and then the real

essence of the evolutionary process is considered, which means that the algorithm

can proceed in an open way to stabilize itself. The second approach applies local

optimization on a small set of nodes instead of all the nodes in an individual in order

to reduce the computational time.

In the second phase, a kind of domain-specific knowledge is used in the shape of

gene pool generated by the minimum spanning tree. Another technique is the en-

forcement of the Inver Over operator to get the clue from the best individuals of the

population, as it is quite natural that top individuals could contain good edges in-

stead of bad ones. Finally, the traditional IO operator works in a fashion that when

it gets an individual, it performs various inversions, which are not known unless the

termination criteria of the local operator apply. We have changed the set-up of the

traditional Inver Over by making it greedier, and it catches those inversions which

go in favour of fitness gain. Although it puts a kind of extra load on the IO, but it

results in better individuals at the end.

In order to test the performance of DGTPHA for the DTSP, experiments were per-

formed to analyse the sensitivity of parameters and the effect of a few heuristic

strategies for the performance of DGTPHA+NNRI based on a number of DTSP

instances. The experimental results of DGTPHA+NNRI were also compared with

several algorithms on the test DTSP instances. The experimental results also con-

firmed that the proposed approach is efficient for solving the DTSP. In general,

with the hybridization of various operators, local search, and heuristic strategies,

DGTPHA+NNRI is able to find good results for the tested DTSP instances.

The next chapter will conclude the work carried out in this thesis. Also, some future

research directions are considered.

182



Chapter 8

Conclusions and Future Work

In this chapter, we conclude the thesis with a summary of the main technical con-

tributions and major conclusions that can be made from the experimental studies

carried out in the thesis. We will also discuss further research directions in the end,

which should be undertaken in the future.

8.1 Technical Contributions

As mentioned in the beginning chapters of this thesis, there is no ending boundary

for tackling the travelling salesman problem (TSP), which is an NP-hard problem.

This problem has attracted significant research interests for the past several decades.

Many researchers have had tremendous milestones, e.g., solving the TSP by keeping

two issues in mind, which are the search space size (the exponential growth of the

size of the search space with the problem size) and the computational time. There

are so many solving techniques, which have been discussed in this thesis and in

the literature. However, it is still an open problem for research and the wheel of

investigation is moving faster.
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Nowadays. it is a well-established fact that local search (LS) is useful within the

framework of genetic algorithms (GAs). We have addressed the static TSP and

dynamic TSP (DTSP) with the tool of GAs. In order to enhance the optimisation

performance, a simple LS scheme based on sequences (sub-tours) is introduced into

the GA to solve the TSP. The basic motivation of the LS scheme used in this thesis

is quite simple and straightforward. In the proposed approaches, the major result

emerging from the experiments is that LS can pass good traits on from one generation

to another with the progress of the GA from the start to the end.

The proposed approach is composed of two phases. Each phase alone does not show

good performance at the end. However, when the two phases are merged together

as a hybrid algorithm, both approaches shoulder each other and the end product

regarding the solution quality and time is optimal or near optimal. The algorithm

in a sense allows the local and global components to influence each other at a finer

granularity. The hypothesis here is that our LS scheme can find the building blocks

that are very difficult for the recombination operator to obtain.

From the literature, we can conclude that in addition to crossover, mutation is also

a big issue. According to Land in his dissertation [81], when Lamarckian evolution

is considered, small mutation does not help a lot but large mutation helps a lot. In

our approach, we slightly consider this issue. For example, when the algorithm gets

stuck or the existing set of sequences or memory is unable to bring further changes,

a kind of mutation is performed by reducing the size of sequences from a large set of

nodes to an edge at the extreme in a sequence. This hypothesis worked to a great

extent in the first phase of our approach.

For the second phase of our approaches, the fast Inver Over (IO) operator is em-

ployed. However, the original IO operator is blind in nature since it does not consider

whether the clue obtained from the population is good or bad. Hence, we have in-

troduced some techniques to reduce the blindness of IO. The first one, the parent

and child populations of the last generation of the first phase are a kind of gene
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pool of good edges. These valuable populations are kept and provided to the IO to

further work on. Some random immigrants are also inserted, which enable the IO

operator to explore the search space further. Additionally, the current approach is

validated and examined by inserting immigrants constructed based on the nearest

neighbour algorithm. Furthermore, IO is forced to get the clue from the elite pop-

ulation because good individuals in the elite population participate in adding and

preserving good edges. In fact, this property is the key soul of solving the TSP in

the best way. Along with this, a rotating technique is also introduced with the gene

pool for solving the DTSP.

The major contributions achieved in this study in the domain of applying sub-tour

approaches to the TSP and DTSP are summarised as follows:

1. A Sequence Based Memetic Algorithm (SBMA) for the TSP: In the

proposed SBMA, a set of good sequences (sub-tours) are stored in the memory

and further utilized to guide the algorithm. In our SBMA, a new local search

scheme is introduced, which inserts a sequence, randomly selected from the

memory, into the location of an individual, which results in the minimum

increase in the total length of the individual.

2. A Novel Technique of Hybridising Traditional Binary and Unary

Operators: A new memetic algorithm which is composed of binary crossover

and inversion mutation are merged together with a unary operator which ex-

hibits the characteristics of crossover and mutation. In addition, an embedded

LS scheme is introduced. Here, the concept of embedded LS means that LS

contributes in converting the partial individual to a complete individual by

inserting a sub-tour in an optimal location. One of the traditional drawbacks

that a GA suffers from is getting stuck in local optima. This is resolved by

employing the IO operator. To keep the balance between exploration and ex-

ploitation and maintain the diversity, we also apply some techniques to adapt
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the key parameters based on whether the best individual of the population im-

proves or not. The proposed MA is capable of finding near optimal solutions

for the test TSP instances.

3. Embedding Several Heuristics with SBMA and IO: The Nearest Neigh-

bour approach is considered one of the best heuristics for constructing individ-

uals. We utilized the NN-List of a node by bringing the nodes nearer to each

other and prevent the MA to insert node, which is not in the neighbourhood

of a node. Additionally, all the sequences before and after reducing the size

were locally optimized by a traditional 2-opt improver. In addition, the second

phase is strengthened by introducing the concept of an elite population. In

this approach, IO is further guided by avoiding getting a random clue. The

restricted inversion also plays a vital role. In this scheme, fruitful inversions

are welcomed while those inversions that do not contribute in fitness gain

are discarded. Moreover, preserving the characteristics of parent and child

populations is also considered to be inherited in other individuals. Random

immigrants are also beneficial to find good feasible solutions. It is worthwhile

that all these considerations to our two phase, on the one hand, dramatically

decrease the computational time but on the other hand, improved the overall

performance by giving good-quality solutions.

4. A Dynamic Guided Two Phase Hybrid Algorithm (DGTPHA) for

the DTSP: In this study, we have also tackled the DTSP as many real-world

TSPs are time dependent and can be modelled as a DTSP. For solving the

DTSP, the framework of the Guided Two Phase Hybrid Algorithm (GTPHA)

for solving the static TSP is extended into the DGTPHA by combining the

change operator. The DTSP requires the DGTPHA to quickly respond to the

changes. For the DTSP, the time is very limited between the two changes. So,

fast convergence and maintaining the diversity are the main concerns. The

convergence speed in the second phase is further strengthened by introducing

a rotating gene pool constructed based on the minimum spanning tree.

186



Chapter 8. Conclusions and Future Work

8.2 Conclusions

In order to justify the algorithms we developed in this thesis, we have carried out

several sets of experiments systematically and analysed the experimental results

regarding the performance of algorithms in comparison with other state-of-the-art

approaches for the TSP taken from the literature. Here, we summarise the major

conclusions based on the experimental results and relevant analyses carried out in

this thesis as follows.

• The new LS technique (i.e., the sequenced based LS, proposed in Chapter 4)

enables the SBMA to escape from local optima and hence greatly enhances the

performance of the SBMA for the static TSP. The initial results show that,

by integrating sequences/sub-tours within the GA framework and adaptively

changing the size of sequences, GAs can get better solutions for the TSP.

• From the experimental analysis in Chapter 5, the sequence based local search

with different properties (i.e., generating a sequence set and inserting it back

to somewhere else in the individual with better fitness gain), and additionally

when integrated with the IO operator, give significantly improved results. The

sequence based strategy can be used to create good quality solutions based on

previous good solutions and further guide the exploration of the search space as

much as possible. The LS operator can enhance the quality of an individual by

finding the local optimum around the individual. So, the cooperation between

the sequence based approach and the IO operator can enhance the two phase

hybrid approach (TPHA) to locate optimal or near-optimal solutions.

• We also noticed that the performance of TPHA can be enhanced with other

heuristics as well, e.g., the nearest neighbour list and applying the 2-opt into

the first phase. Moreover, in the second phase, further guiding the IO operator

with the elite population (i.e., getting clues from good individuals instead of
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random ones) is very efficient to solve the TSP. Experimental results in Chap-

ter 6 show that when the sequence based strategies and the elite population

based IO operator are combined together, the performance is remarkably im-

proved. We, furthermore, noticed that sequences constructed from the nearest

neighbour list and 2-opt local search operator bring the nodes nearer to each

other while the random sequence generation mechanism has the ability to ex-

plore a huge search space and collect useful knowledge, which can be further

utilized by the second phase, i.e., the IO operator.

• We have shown that the above TPHA can be extended to handle the DTSP.

In the proposed framework of DGTPHA, the integration of the nearest neigh-

bour list, 2-Opt and adaptive parameter control in the first phase and the elite

population with the rotating gene pool strategies in the second phase works

well for the DTSP. In order to test the performance of the proposed approach

for the DTSP, experiments were carried out based on two different DTSP test

beds: one is based on the main pool and spare pool, and the other is based

on changing the positions of nodes. From the study, it has been observed that

the integrated heuristics or meta-heuristics are able to produce good quality

solutions for the DTSP. We also observed the effect of the gene pool and immi-

grants generated with the nearest neighbour algorithm, which works well with

all DTSP instances under different change frequencies and change severities.

Generally speaking, from the experimental results, we can conclude that the se-

quence based strategies and LS strategies proposed in this thesis greatly improve

the performance of GAs for both static and dynamic TSPs.

8.3 Future Work

As Wolpert and Macreadys [148] stated “no search algorithm is superior on all

problems”. Due to this “No Free Lunch” theorem, one approach or one set of
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parameters cannot be suitable for all problems. At the moment, the SBMA approach

tackles two objectives. For example, the first phase does fast convergence but with

the drawback of getting stuck in local optima and a bit computationally expensive.

In the second phase, time could be controlled as it is fast in operation. For our study,

we have followed a software engineering model that is called the spiral model. First,

we have developed MAs by employing the basic GA operators: the order crossover

was proposed in 1985, and the mutation operators are simple inversion and double

bridge move operators. The experimental results show that the proposed approaches

are able to produce some best results on small benchmark TSP instances. However,

there are still some general research questions that arise from this research in each

step of the spiral procedure. Here, we discuss them along with some suggestions on

the future work.

1. We have observed in Chapter 4 that the SBMA can work better for solving

small and medium-scale TSP instances. However, for large-scale instances,

the solving speed is comparatively slow. On the behaviour of SBMA, one

further improvement would be to make it more exploitable by making use of

information extracted from the population, e.g., by creating an optimal set of

sequences/sub-tours.

2. The observation that is made when we extended/merged the SBMA with IO

showed that the IO phase is strongly dependent on the performance of the first

phase to provide a good knowledge for the second phase. It is worthwhile to in-

vestigate the performance of some different heuristics which may build a better

knowledge base for solving the TSP. We will also consider adaptive techniques

to adjust key parameters for the SBMA during its searching progress.

3. In the approach mentioned in Chapter 6, we integrated many other heuristics,

e.g., the nearest neighbor list, 2-opt for optimizing the sequences, adaptive

parameter control, new shifting criteria from phase one to phase two, the

elite population, RI and NNRI. All these heuristics are running in predefined
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sequence. We do not consider any criteria regarding when to use which one

during the course of execution of the algorithm. We feel the need that the

current approach should be extended to a multi-phase MA instead of two-

phase MA. It would be more desirable to introduce the concept of multi-meme

and then fine-tune the parameters such that the algorithm should be intelligent

enough to first analyse the landscape and then take the decision to select the

most suitable heuristic among the other heuristics.

4. For tuning the current SBMA with IO for tackling the DTSP, it is necessary to

enhance the response of the algorithm to tackle the dynamic changes because

the dynamic characteristics of the problem may be gradual or drastic or may

be of other kinds in nature.

In summary, the SBMA with IO and LS is productive for enhancing the tradi-

tional GA for solving the static and dynamic TSPs. The experimental results also

confirmed that the proposed approach is competitive. In general, with the use of

hybridization of various operators and local search strategies, NNSBMA can find

optimal and near optimal results for the TSP instances. There are several other

directions to pursue in the future as well. One future work would be further to

extend it to large symmetric and asymmetric TSPs. We will also investigate how

to further integrate advanced heuristics, meta-heuristics, and adaptive techniques

to enhance the construction of better sequences/sub-tours and their insertion in

proper locations of individuals. Furthermore, we will also consider making the se-

quence based strategies more generalized towards other crossover operators instead

of the order crossover. It would be also interesting to extend the existing framework

to other combinatorial optimization problems that are similar to or other variations

of the TSP, e.g., the sequential ordering, capacitated vehicle routing, and many

other real-world problems, etc.
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