
Development and Evaluation of

Neural Network Models

For

Cost Reduction in Unmanned Air Vehicles

Thesis submitted for the degree of

 Doctor of Philosophy

at the University of Leicester

by

Ihab Samy Abou Rayan

Department of Engineering

University of Leicester

Leicester, LE1 7RH, UK.

May 2009

2

Abstract

With a growing demand for cost reduction in unmanned air vehicles (UAVs), there has
been considerable interest in exploiting existing aircraft technologies. This thesis
focuses on two technologies: model-based sensor fault detection, isolation and
accommodation (SFDIA) schemes and flush air data sensing (FADS) systems. In the
aerospace industry, SFDIA is traditionally based on physical (sensor) redundancy.
Unfortunately this approach can be inadequate in UAVs due to cost, weight and space
implications. Consequently researchers have found the concept of ‘virtual’ sensor
redundancy (i.e. model-based methods) an invaluable alternative to physical
redundancy. Current model-based SFDIA schemes rely on linear time-invariant (LTI)
models. In nonlinear, time-varying systems (such as aircraft), LTI-based methods can
sometimes fail to give satisfactory results. New approaches make use of neural network
(NN) models due to their nonlinear and adaptive structure. In this thesis, a NN-based
SFDIA scheme is designed to detect single and multiple sensor faults in a nonlinear
UAV model. The proposed scheme has been shown to be robust to system and
measurement noise and sensitive to a wide range of fault types. In the second part of
this thesis, a FADS system is designed and tested on a mini air vehicle (MAV). With
the primary goal of most air vehicle manufacturers being the reduction of costs,
researchers found the concept of air data measurements using a matrix of pressure
orifices to be a cheaper alternative to the standard air data boom. The concept of FADS
systems is not new and has been quite popular in several NASA projects. However few
applications consider MAVs where weight and cost implications can restrict the use of
air data booms. The FADS system designed in this thesis has been shown to produce
accurate air data estimations but more importantly has reduced instrumentation weight
and cost by almost 80% and 97% respectively in comparison to a standard air data
boom. The conclusions drawn from this thesis are clearly outlined at the end of each
chapter and future work is also brought together in the final chapter.

3

Acknowledgments

I would like to first thank Allah (s.w.t.) for guiding me through these years. I would also

like to thank Ian Postlethwaite and Da-Wei Gu for their endless support, patience and

constant motivation. They have made my years in Leicester memorable and words are

not enough to express my appreciation.

I am grateful to John Green from BBSR Ltd, Emmanuel Prempain, Chris Edwards and

Paul Williams from Leicester University for their technical support and the regular

discussions on topics of common interest. I am also grateful to all my friends for their

constant support.

Last but definitely not least I would like to thank my family; Effat, Samy and Hazem

Abou Rayan for their patience while being away from them for many years. I owe them

much more than I can express in words and wish them a happy and healthy life.

4

Dedicated to my parents;

Effat and Samy Abou Rayan

5

Table of Contents

Abstract ... 2

Acknowledgments .. 3

Chapter 1 Introduction .. 19

1.1 Research objectives ... 19

1.2 Thesis contributions .. 21

1.3 Thesis structure ... 22

Chapter 2 Fault detection and isolation (FDI) .. 24

Introduction ... 24

2.1 Model-based FDI .. 27

2.1.1 Parity space .. 29

2.1.2 Observer-based ... 30

2.1.3 Fault detection filter ... 33

2.1.4 Parameter estimation .. 34

2.1.5 Neural networks ... 34

2.2 Performance criteria .. 35

2.3 Examples and trends ... 37

Conclusions ... 37

Chapter 3 Introduction to FADS systems ... 40

Introduction ... 40

3.1 Air data boom .. 41

3.2 Background and history .. 45

3.3 FADS system model ... 46

Conclusions ... 49

Chapter 4 Neural Networks .. 50

Introduction ... 50

4.1 NN structure and training .. 51

4.1.1 RBF NN ... 51

4.1.2 EMRAN RBF NN .. 53

4.1.3 NN training algorithm .. 55

4.2 Application to the SFDIA scheme and FADS system .. 56

Conclusions ... 58

6

Chapter 5 SFDA-Single sensor faults ... 59

Introduction ... 59

5.1 General SFDA outline and terminologies ... 60

5.2 UAV used in the SFDA schemes .. 62

5.3 UAV model ... 63

5.3.1 Longitudinal equations of motion .. 64

5.3.2 Longitudinal trim ... 65

5.3.3 The unknown inputs ... 66

5.4 Extended Kalman Filter (EKF) ... 67

5.5 Residual structures .. 71

5.5.1 Residual generation and evaluation (RGE) .. 71

5.5.2 Residual generation, padding and evaluation (RGPE) ... 71

5.6 NN and EKF input/output structure .. 75

5.7 Sensor fault types .. 78

5.8 SFDA application to UAV model ... 79

5.8.1 NN training .. 79

5.8.2 SFDA test outline ... 79

5.8.3 SFDA performance indicators .. 83

Results ... 84

Discussion ... 87

Conclusions ... 91

Chapter 6 SFDIA-Multiple sensor faults .. 112

Introduction ... 112

6.1 General SFDIA outline and terminologies .. 113

6.2 NNs input/output structure .. 115

6.3 Sensor fault types .. 116

6.4 SFDIA application to UAV model .. 117

6.4.1 NN training .. 117

6.4.2 SFDIA test outline ... 118

6.4.3 SFDIA performance indicators .. 121

Results ... 121

Discussion ... 123

Conclusions ... 126

7

Chapter 7 FADS system applied to a MAV ... 140

Introduction ... 140

7.1 The mini air vehicle (MAV) ... 140

7.2 CFD simulations (2D) ... 142

7.2.1 Background and terminologies .. 142

7.2.2 Results .. 145

7.3 Location of the matrix of pressure orifices (MPO) ... 150

7.4 CFD simulations (3D) ... 152

7.5 Wind tunnel and instrumentation .. 157

7.6 Wind tunnel test procedure ... 161

7.7 Wind tunnel data ... 162

7.8 FADS system results ... 166

7.8.1 Static tests .. 166

7.8.2 Fault accommodation ... 168

7.8.3 CFD vs. Wind tunnel.. 171

7.8.4 Dynamic tests ... 172

7.8.3 FADS system via LUTs ... 176

Conclusions ... 185

Chapter 8 Conclusions and Future Work .. 191

List of publications ... 197

Bibliography ……………………………………………………………………………...... 198

8

List of Figures
Fig 1.1 Thesis road map ... 23

Fig 2.1 FDI methods …….25
Fig 2.2 Model‐based FDI scheme ... 28
Fig 2.3 Luenberger observer .. 31
Fig 2.4 Trends in FDI method ... 38
Fig 2.5 Trends in fault type .. 38

Fig 3.1 The relation of the critical air data (ܲ∞, ܲ0, ܶ∞, ,ߙ to all other air data 43 (ߚ
Fig 3.2 (a) Pitot‐static tube, (b) Mechanical Vane (see 100386 mini vane [122]) 44
Fig 3.3 Air data boom (Top view) [123].. 44
Fig 3.4 Definition of cone (ߣ) and clock angle (߮) for a spherical nosecap with 5 pressure ports. 49

Fig 4.1 Fully connected RBF NN. x, λ, ݕ are inputs, weights and output respectively 53
Fig 4.2 Error surface showing the method used to train the EMRAN RBF NN 56

Fig 5.1 General SFDA outline for a fault in Sensor‐y1. ... 61
Fig 5.2 The UAV and location of the control surfaces .. 62
Fig 5.3 UAV orientation and relevant motion variables .. 63
Fig 5.4 Classical EKF equations [141] ... 70
Fig 5.5 EKF and NN input/output structure. Dotted lines indicate parameters required for NN
training. Sensor faults can be present only in Sensor‐q. ... 77
Fig 5.6 Additive faults in Sensor‐q (ignore fault magnitude). Top plot, middle plot and bottom
plot are soft additive (TR = 4s), hard additive (TR = 1s) and step type (TR ؆ 0s) faults
respectively. ... 78
Fig 5.7 Tree‐diagram showing the different SFDA tests. 7 configurations, 8 fault types and 4
different SFDA schemes. Overall there are 244 separate tests. .. 81
Fig 5.8 Flow chart for one SFDA test. ... 82
Fig 5.9 Residual examples (no units used). Fault introduced at 615s and detected at 616s. 83
Fig 5.10 UAV model flight data .. 94
Fig 5.11 NN offline training error history. (EKF and KF estimation errors also shown) 97
Fig 5.12 NN hidden neuron pattern during offline training (shown only for first 2000 epochs) 97
Fig 5.13 Mean execution times per data sample. Mean calculated for first 100 data samples
and then repeated for 100 iterations. ... 98
Fig 5.14 NN and EKF estimations and estimation errors (basic difference, ݈ܽ݁ݎݍ െ Purple .(ݍ
line is the NN and EKF estimates.. 99
Fig 5.15 Residual plots for Configuration 1. (RGE on the left, RGPE on the right) 108
Fig 5.16 Residual plots for Configuration 4. ... 109
Fig 5.17 Residual plots for Configuration 7. ... 110
Fig 5.18 NN fault accommodation plots for Configuration 1. All faults introduced at 615s; faulty
(dotted), ideal (black), NN estimate (purple). .. 111

9

Fig 6.1 General SFDIA outline for faults in Sensor‐y1, Sensor‐y2…Sensor‐ym. 115
Fig 6.2 q‐NN, α‐NN and az‐NN input/output structures. Sensor faults can be present only in
Sensor‐q, Sensor‐ α and Sensor‐ az. ... 116
Fig 6.3 Fault sequence ݍ ՜ Top plot, middle plot and bottom plot .(ignore fault magnitude) ߙ
are soft additive (TR = 4s), hard additive (TR = 1s) and step type (TR ؆ 0s) faults. 117
Fig 6.4 Tree‐diagram showing the different SFDIA tests. 1 configuration, 3 fault types, 10 fault
sequences and 1 SFDIA scheme. Overall there are 30 separate tests. .. 119
Fig 6.5 Flow chart for SFDIA tests. ... 120
Fig 6.6 Mean execution times per data sample. Mean calculated for first 100 data samples and
then repeated for 100 iterations. .. 128
Fig 6.7 Fault detection results for the different fault sequences and fault types. The horizontal
line in each cell indicates which residual (q‐RGPE, α‐RGPE, az‐RGPE) exceeded its threshold and
in what order. FD (Fault detected), FD‐FA (Fault detected but False alarm present in other
residuals), FND (Fault not detected). See Results section for more detailed explanation of
figure. ... 130
Fig 6.8 (a) Residual and (b) NN estimations when faults are not present Note in plot (b): purple
(NN), black (ideal) ... 133
Fig 6.9 (a) Residual and (b) NN estimations for ݍ ՜ sequence, soft additive fault. Note in plot ߙ
(b): dotted (faulty), purple (NN), black (ideal) ... 134
Fig 6.10 ݍ ՜ hard additive fault. Note in plot (b): dotted (faulty), purple (NN), black (ideal) 135 ߙ
Fig 6.11 ݍ ՜ step fault. Note in plot (b): dotted (faulty), purple (NN), black (ideal) 136 ߙ
Fig 6.12 ܽݖ ՜ ߙ ՜ soft fault. Note in plot (b): dotted (faulty), purple (NN), black (ideal) 137 ݍ
Fig 6.13 ܽݖ ՜ ߙ ՜ hard fault. Note in plot (b): dotted (faulty), purple (NN), black (ideal) 138 ݍ
Fig 6.14 ܽݖ ՜ ߙ ՜ step fault. Note in plot (b): dotted (faulty), purple (NN), black (ideal) 139 ݍ

Fig 7.1 MAV (courtesy of BBSR Ltd.) .. 141
Fig 7.2 Top view of the wing section (c is the wing chord). ... 141
Fig 7.3 Aircraft terminologies [121]. .. 144
Fig 7.4 Gambit 2D, 12240 quadrilateral cells ... 145
Fig 7.5 Velocity distribution for ܸ∞ = 20m/s, 0 = ߙdeg. .. 147
Fig 7.6 Pressure distribution for ܸ∞ = 20m/s, 0 = ߙdeg .. 147
Fig 7.7 Cp plot for ܸ∞ = 20m/s, 8 ,6 ,4 ,2 = ߙ degs.. 148
Fig 7.8 Zooming into Fig 7.7 ... 148
Fig 7.9 Cp plot for ܸ∞ = 12, 15, 18, 20m/s and 2 = ߙ deg ... 149
Fig 7.10 Zooming into Fig 7.9 ... 149
Fig 7.11 Top view of wing and MPO (with pressure ports P1, P2, P3, P4, P5), MPO not shown to
scale.. 152
Fig 7.12 3D‐wing section built in Gambit ... 153
Fig 7.13 3D‐wing and meshed grid built in Gambit (meshed with 1042950 hexahedral cells) 154
Fig 7.14 Zooming into Fig 7.13. .. 154
Fig 7.15 Velocity profile of 3D‐wing. ܸ∞ = 15m/s, 0=ߙdeg and 0=ߚdeg .. 156
Fig 7.16 Change in pressure coefficient vs sideslip for each part of the wing leading edge.
Increments are in approx 3mm starting from wing root to wing tip. ܸ∞ = 15m/s, 0=ߙdeg. 156
Fig 7.17 As in Fig 7.16 but moving backwards from the wing leading edge at x/c=0.006. 157
Fig 7.18 Low speed wind tunnel at Leicester University laboratory .. 159

10

Fig 7.19 Wind tunnel settings and instrumentation .. 160
Fig 7.20 Wind tunnel static tests. 7 different β settings (in 3deg increments), 3 different V∞
settings, and 12 different α (in 2deg increments) settings. Overall there are 252 separate static
tests. ... 161
Fig 7.21 Port pressure distribution for three different speeds and fixed β=0° (a) V=12 m/s (b)
V=15 m/s (c) V=20 m/s ... 163
Fig 7.22 NN training/testing RMS estimation errors ... 167
Fig 7.23 RBF NN with 5‐3‐3 structure. λ’s are the weights. P’s represent the pressure ports in
Fig 7.11 ... 167
Fig 7.24 NN RMS estimation errors in the presence of total sensor failure. (a) P1 faulty, (b) P1,
P5 faulty, (c) P1, P3, P5 faulty .. 170
Fig 7.25 (a) CFD and wind tunnel data for pressure port P3 (ܸ∞ = 15m/s, 0=ߙdeg) 172
(b) Same as Fig 7.25(a) but also changing the airspeed ܸ∞ = 12, 15, 18 m/s 172
Fig 7.26 RBF NN estimation (ߙ) for DT1 ... 175
Fig 7.27 RBF NN estimation (ߙ) for DT2 ... 175
Fig 7.28 Domain of validity test for P1, P2, P3. If P1, P2, P3 lie outside the domain of validity, a
value of 25, 20, 15 is plotted respectively, otherwise a value of zero is plotted. NN residual also
shown (solid blue) .. 176
Fig 7.29 2D LUT example for angle of attack ... 178
Fig 7.30 Surface fit for 2D‐ LUT in Fig 7.29 (a) Data points are shown, (b) Data points
triangulated to generate a surface, (c) Rotating Fig 7.30(b) .. 178
Fig 7.31 Three LUTs used in the FADS system ... 179
Fig 7.32 Dirichlet tessellation (dotted lines) and resulting Delaunay triangulation (solid lines)
for 8 data points N1, N2....., N8 [156]. ... 180
Fig 7.33 Surface fit example using Delaunay triangulation ... 183
Fig 7.34 Surface fits for (a) LUT 1 (b) LUT 2 (c) LUT 3, (dotting points are testing data lying
outside convex hull) ... 187
Fig 7.35 LUT and NN average estimation error for the test data set, TeD .. 188
Fig 7.36 Mean execution times: Mean taken for all ‘test’ data and then repeated for 100
iterations. ... 188
Fig 7.37 NN estimation errors at different wind tunnel setting: (a) Alpha estimation errors (b)
Static pressure estimation errors (c) Speed estimation errors. (Note only positive β range
shown here) ... 189
Fig 7.38 LUT estimation errors at different wind tunnel setting: (a) Alpha estimation errors (b)
Static pressure estimation errors (c) Speed estimation errors. (Note only positive β range
shown here) ... 190

11

List of Tables
Table 2.1 Examples of model‐based FDI applications published in the 21st century 39

Table 5.1 UAV configurations .. 63
Table 5.2 UAV model trim condition ... 65
Table 5.3 System noise standard deviations ... 67
Table 5.4 Measurement (sensor) noise standard deviations .. 67
Table 5.5 Parameter uncertainties .. 67
Table 5.6 Summary of NN, EKF structures and RGE, RGPE structures .. 96
Table 5.7 NN mean estimation error (MEE in deg/s) at the end of offline training for the test
data set. EKF and KF errors also shown. .. 97
Table 5.8 NN, EKF and KF mean estimation error (MEE, in deg/s) and estimation error variance
(VEE, in deg2/s2) for the SFDA tests when no faults are present. .. 98
Table 5.9 Fault Detection results summary ... 100
Table 5.101 Fault detection time in seconds for Configuration 1 ... 101
Table 5.102 Fault detection time in seconds for Configuration 2 ... 101
Table 5.103 Fault detection time in seconds for Configuration 3 ... 102
Table 5.104 Fault detection time in seconds for Configuration 4 ... 102
Table 5.105 Fault detection time in seconds for Configuration 5 ... 103
Table 5.106 Fault detection time in seconds for Configuration 6 ... 103
Table 5.107 Fault detection time in seconds for Configuration 7 ... 104
Table 5.111 Fault detectability ratio (DR) for Configuration 1 .. 104
Table 5.112 Fault detectability ratio (DR) for Configuration 2 .. 105
Table 5.113 Fault detectability ratio (DR) for Configuration 3 .. 105
Table 5.114 Fault detectability ratio (DR) for Configuration 4 .. 106
Table 5.115 Fault detectability ratio (DR) for Configuration 5 .. 106
Table 5.116 Fault detectability ratio (DR) for Configuration 6 .. 107
Table 5.117 Fault detectability ratio (DR) for Configuration 7 .. 107
Table 5.12 Fault Accommodation results summary. MEE and VEE are calculated from the time
the fault is detected until the end of the data set. .. 111

Table 6.1 Fault isolation logic .. 119
Table 6.2 Summary of NN and RGPE structures .. 127
Table 6.3 Offline training errors .. 128
Table 6.4 Fault detection time (seconds) for the different fault sequences and faulty types. E.g.
for ݍ ՜ sequence, soft additive fault type, the q‐NN detects Sensor‐q fault in 1.86s and α‐NN ߙ
detects Sensor‐α fault in 2.86s. ‘False’ denotes a false alarm. .. 129
Table 6.5 Fault detection time (seconds) for ܽݖ ՜ ߙ ՜ fault sequence. .. 131 ݍ
Table 6.6 Fault accommodation results. Estimation errors calculated for data between 626‐
635s and shown in deg/s, deg and m/s2 for q‐NN, α‐NN and az ‐NN respectively. 131
Table 6.7 Summary of the fault detection and accommodation results ... 132

Table 7.1 Some of the MAV characteristics ... 141
Table 7.2 Pressure port locations (also refer to Fig 7.11) .. 151

12

Table 7.3 Wind tunnel static test data. Note that all pressures are referenced to atmospheric
pressure (101.3kPa) ... 164
Table 7.4 EMRAN RBF NN tuning parameters ... 167
Table 7.5 Percentage increase in estimation error when one of the ports has failed and is
replaced with neighbouring port ... 188

13

Nomenclature

AA-NN Autoassociative NN

ADC Analogue to digital converter

AR Aspect ratio

BBSR BlueBear Systems Research Ltd

BP Backpropagation

CL Lift coefficient

CD Drag coefficient

CM Pitching moment coefficient

CBL Large constant bias fault

CBS Small constant bias fault

CFD Computational fluid dynamics

CH Convex hull

Cp Pressure coefficient

DAQ Data acquisition

DOS Dedicated observer scheme

DR Detectability ratio

DT1 Dynamic test 1

DT2 Dynamic test 2

E1 NN estimation error threshold

E2 NN RMS estimation error threshold

E3 Minimum distance between NN input vector and hidden unit centres

EBPA Extended error back-propagation algorithm

EKF Extended Kalman filter

EMRAN Extended Minimum Resource Allocating Network

FADS Flush air data sensing

FAA Federal Aviation Authority

FA False alarm

FD Fault detected

FD-FA Fault detected but false alarms present

FND Fault not detected

FDI Fault detection and isolation

14

FDF Fault detection filter

FTCS Fault tolerant control system

GD Gradient descent

GOS Generalised observer scheme

GPS Global positioning system

HAL Large hard additive fault

HAS Small hard additive fault

INS Inertial navigation system

KF Kalman filter

LMS Least mean square

LUT Lookup table

M Pitching moment

MAV Mini air vehicle

MEE Mean estimation error

Min Minimum function

MLP Multilayer perceptron

MMKF Multiple model Kalman filtering

MPO Matrix of pressure orifices

MSE Mean squared error

MT Mean detection time

NAS National Airspace

NN Neural networks

P1 Pressure port 1

P2 Pressure port 2

P3 Pressure port 3

P4 Pressure port 4

P5 Pressure port 5

RBF Radial basis function

Re Reynolds number

RGE Residual generation and evaluation

RGPE Residual generation, padding and evaluation

RMS Root mean square

∆RMS Rate of change in RMS

SAL Large soft additive fault

15

SAS Small soft additive fault

STL Large step-type fault

STS Small step-type fault
SFDIA Sensor fault detection, isolation and accommodation

TeD NN testing data set

TrD NN training data set

UAV Unmanned air vehicle

UD Number of undetected faults

VEE Variance estimation error

X Axial force

Z Normal force

tfa Total false alarm duration (s)

rpr Maximum residual magnitude prior to fault detection

raf Residual magnitude at fault detection

 ҧ Basic residualݎ

Ω Residual averaging size (in samples)

rkRGE Residual using RGE method

rkRGE Residual using RGPE method

߸ Residual weight

ppad Number of padding points

q-NN Pitch rate NN

α-NN Angle of attack NN

az-NN Normal acceleration NN

λ NN connecting weights

μ RBF centre

σ RBF width

μrk Centre of hidden neuron closest to the input vector

 ௠௔௫ Initial E3 thresholdߝ

 ௠௜௡ Final E3 thresholdߝ

 ௗ௬ Decay factor for E3 thresholdߛ

݁௞ NN estimation error

kop NN overlap factor

16

Nmax Maximum number of hidden neurons

θ Vector of NN free parameters

 NN learning rate ߜ

TR Fault ramp duration

tfault Fault start time

A Fault magnitude

p pressure

 ௜ Surface pressure݌

 ௜ Flow incidence angleߠ

 ௜ Angle the normal to the surface at port i makes with the longitudinal axisߣ

of the nosecap

߶௜ Clockwise angle looking aft around the axis of symmetry starting at the

bottom of the nosecap

 Calibration parameter ߝ

E Instantaneous squared error

∞ܲ Freestream static pressure

଴ܲ Total pressure

 Angle of attack ߙ

 Sideslip ߚ

 ௘௙௙ Local angle of attackߙ

 ௘௙௙ Local angle of sideslipߚ

∞ܶ Freestream temperature

q Pitch rate

 Freestream dynamic pressure ∞ݍ

S Wing area

b Wing span

ܿӖ Mean aerodynamic chord

m Mass

xcg Centre of gravity location (with respect to nose)

I x Roll inertia

Iy Pitch inertia

Iz Yaw inertia

Ixz Product inertia

17

u Axial velocity

w Normal velocity

v Lateral velocity

p Roll rate

r Yaw rate

q Pitch rate

Φ Roll angle

θ Pitch angle

ψ Yaw angle

Pn North position in earth axis

Pe East Position in earth axis

h Altitude

ρ Air density

Vt Airspeed

zt z-axis coordinate of the engine thrust line

τ Throttle setting

௑ܶ Thrust

 Flight path angle ߛ

 Elevator angle ߟ

 ௚௨௦௧ Gaussian gust disturbances acting on the angle of attackߙ

 ௚௨௦௧ Gaussian gust disturbances acting on the angle of sideslipߚ

ax Axial acceleration

ay Lateral acceleration

az Normal acceleration

 ௅ഀ Lift coefficient due to angle of attackܥ

 ௅ആ Lift coefficient due to elevator demandܥ

∞ܸ Freestream airspeed

ܸ Airspeed

߱ System noise

x୳ Axial force due to axial velocity

x୵ Axial force due to normal velocity

x୯ Axial force due to pitch rate

xθ Axial force due to pitch angle

18

x/c Normalised wing chord

t/c Thickness to chord ratio

v Measurement noise vector

Q System noise variance

R Measurement noise covariance matrix

ܓොܠ
ି Predicted (a priori) state estimate

 Corrected (a posterior) state estimate ܓොܠ

 State estimation error covariance matrix ܓ۾

 Kalman Gain ܓ۹

Subscripts

real Real sensor measurement
෡ Estimate

NN Neural Network estimate

EKF Extended Kalman filter estimate

Ideal Sensor measurement when no faults are present

∞ Freestream

19

Chapter 1 Introduction

1.1 Research objectives

Nowadays unmanned air vehicles (UAVs) are used in applications deemed dangerous or

unreachable by manned air vehicles. It is estimated that nearly 8000 UAVs (worth $3.9

billion) were produced worldwide between 1994 and 2003 [1]. Their applications have

been widespread and included: the agricultural industry, environmental control, mineral

exploration, news broadcasting, unexploded mine exploration and other military related

applications [2]. Furthermore the design of UAVs has been widespread ranging from

simple fixed-wing aircraft [3, 4] to complex quadrotor air vehicles [5, 6]. One of the

reasons behind this growing interest, especially in the military industry, is that UAVs

are relatively cheap to manufacture in comparison to current fighter aircraft.

UAVs are quite popular in the military industry due to the dangerous terrains

experienced. However current trends in UAV design have shown that cheap and low

weight UAVs are also likely to be accepted by the civil aviation industry [7]. This thesis

therefore aims to exploit existing manned air vehicle technologies to reduce the

instrumentation costs and weight of UAVs. Two technologies are investigated: model-

based sensor fault detection, isolation and accommodation (SFDIA) schemes and flush

air data sensing (FADS) systems.

Traditionally SFDIA schemes are based on physical redundancy where multiple

sensors are used to measure the same flight parameter. Sensor faults are then detected

based on a simple voting scheme. Despite its simplicity this approach can be expensive

to implement especially if multiple sensors are used on board the air vehicle. As an

alternative, research has shown that model-based SFDIA schemes (analytical

redundancy) can perform just as well as physical redundancy techniques, but with fewer

incurred costs. The concept of ‘virtual’ sensors has been around for over 40 years [8].

Examples of popular survey papers and books in this field include [8-18]. Most of the

work carried out so far has considered fixed, linear model-based approaches, with

parameter estimation and observer-based methods being the most popular [8]. While

proving to be successful they are generally limited to linear time-invariant (LTI)

systems. Novel approaches include nonlinear, online adaptive schemes where the model

is continuously tuned to best fit the time-varying system. An example of such methods

20

is neural network (NN)-based SFDIA schemes due to their nonlinear structures and

online training capabilities. In the famous survey paper by Isermann and Balle [8], it

was noted that NN-based SFDIA schemes were steadily growing in number especially

in nonlinear applications. Examples of such methods include [19-28]. However few

have been extended to UAV applications. SFDIA via sensor redundancy may not be an

option in UAVs (such as mini air vehicles (MAVs)) due to cost, weight and space

restrictions. Therefore NN-based SFDIA schemes are an invaluable solution to UAV

applications.

The second part of this thesis investigates the use of FADS systems for air data

measurements. One of the most popular instruments used for air data measurements is

the air data boom. Air data booms consist of Pitot-static tubes which measure the

airspeed, and mechanical vanes which measure the aircraft aerodynamic orientation (i.e.

angle of attack and sideslip). Air data booms can be too heavy for small UAVs (as will

be discussed in Chapter 7, Conclusions section). Furthermore with the primary goal of

most UAV manufacturers being the reduction of costs, researchers found the concept of

air data measurements using a matrix of pressure orifices to be a cheaper alternative to

air data booms. The concept of FADS systems is not new and has been implemented by

several research groups over the past 30 years [29-45]. However, as far as the author is

aware, the FADS system has not yet been tested on MAVs. MAVs are found within the

spectrum of UAVs and are characterised by their low costs, small size and low weight.

As such, air data booms may not be suitable in MAVs and therefore the FADS system is

a promising alternative for air data measurements in MAVs. In this thesis we design and

test a FADS system on a MAV (supplied by BlueBear Systems Research (BBSR) Ltd.).

Our work is distinct from previous research in that: 1) A FADS system is designed and

implemented on the wing of a MAV which flies at speeds as low as Mach 0.07 and 2)

an extended minimum resource allocating network (EMRAN) radial basis function

(RBF) NN is trained to model the aerodynamic relationships in the FADS system.

The work presented in this thesis has resulted in the following articles, which have

been published or have been submitted for publication [46-51].

21

1.2 Thesis contributions

The main aim of this thesis is to exploit existing aircraft technologies for the reduction

of costs and weight in UAVs. The objectives and contributions of this thesis can be

summarised as follows:

1. To apply existing aircraft technologies to UAVs. The technologies include NN-based

SFDIA schemes and FADS systems.

2. To compare the SFDIA performance of NN-based methods to traditional fixed

model-based methods. An extended Kalman filter (EKF) is chosen as a

representative of fixed (nonlinear) model-based approaches which rely on a

mathematical description of the real system.

3. To design and implement a NN-based SFDIA scheme to detect single and multiple

sensor faults in UAVs. A nonlinear UAV model is used as a test bed and the

performance of the NN-based SFDIA scheme is investigated under different levels of

system and measurement noise and different sensor fault types.

4. To improve the robustness and sensitivity of model-based SFDIA schemes to

unknown inputs (e.g. measurement noise) and incipient faults (small and slow

drifting faults) respectively. A novel residual processing technique referred to as

residual padding is proposed. Residual padding aims to reduce the false alarm rates

and number of undetected faults in current model-based SFDIA schemes.

5. To investigate the feasibility of using a FADS system on a MAV. As far as the

author is aware the FADS system has so far been applied to large, manned air

vehicles. Moreover most applications tend to place the FADS system at the nosecap

of the aircraft. This may not be an option in MAVs due to the presence of a nose

propeller. Alternatively we consider mounting the FADS system on the wing leading

edge.

6. Traditional approaches to modelling the relationship between aircraft surface

pressure and air data are based on aerodynamic models or lookup tables. In this

thesis a NN is trained to relate the surface pressure to the air data states. The NN-

based FADS system results are also compared to a standard lookup table approach.

7. FADS systems are based on pressure measurements from orifices drilled into the

aircraft surface. As most MAVs are flown at low altitudes, the orifices are

22

susceptible to blockage from poor weather conditions and atmospheric debris. For

this reason we investigate the robustness of the FADS system to faults and propose

several methods for fault accommodation purposes.

1.3 Thesis structure

This thesis is organised as follows (see road map, Fig 1.1): In Chapter 2 we discuss the

general background of fault detection and identification (FDI) schemes, the

terminologies used and the pioneers in this vast field. In Chapter 3 we introduce the

concept of FADS systems. In Chapter 4 the NN model used in both the SFDIA scheme

and the FADS system is outlined. Chapters 5-7 are the application chapters. Chapters 5

and 6 present the SFDIA tests carried out for single and multiple sensor fault scenarios

respectively, while Chapter 7 presents the FADS system designed for the MAV. Finally,

Chapter 8 concludes the work in this thesis and proposes the future work that can help

to better understand and extend the work carried out here.

23

Fig 1.1 Thesis road map

24

Chapter 2 Fault detection and isolation (FDI)

Introduction

With the growing use of complex systems, there has been considerable interest in the

development of techniques to detect and isolate faults. An undetected fault in a system

can have catastrophic effects such as loss of human life, environmental pollution and

financial losses. Examples of places where FDI schemes can be useful are hospitals and

manufacturing companies. In hospitals, staff would need to be aware of faults in health

monitoring equipment (e.g. electrocardiographs) to avoid incorrect patient health

diagnosis. On the other hand an undetected fault in a production line can eventually

require overall plant shutdown, which can be costly. The literature and effort gone into

the field of FDI is overwhelming. It still remains one of the most active areas of

research today. Owing to this, one can expect the terminology to be quite misleading as

different authors assign different terms to describe similar concepts. To address this

problem, in 1997 the IFAC Technical Committee: SAFEPROCESS (Fault detection,

supervision and safety for technical processes) grouped commonly accepted definitions

that seem to be consistent throughout the field [8]:

• Unknown inputs: These include unmodelled disturbances (system noise),

measurement (sensor) noise, modelling uncertainties and system parameter

variations [9].

• Fault: An unpermitted deviation of at least one characteristic property or

parameter of the system from the acceptable/usual condition.

• Residual: A fault indicator, based on a deviation between real measurements

and model- based estimates.

• Fault detection: Determination of the faults present in a system and the time of

detection.

• Fault isolation: Determination of the location/cause of a fault. Follows fault

detection.

• Fault accommodation: Means by which system safe operation is maintained in

the event of a fault. It follows fault isolation.

25

• Analytical redundancy: Use of two ways to determine a variable, where one

way uses a model in analytical form (i.e. a computer program).

In general most FDI methods can be divided into two groups (Fig 2.1) [10]:

- One that makes use of a plant model

- One that does not make use of a plant model

Fig 2.1 FDI methods

Traditional FDI methods rely on redundant hardware (e.g. sensors) where fault

detection is based on some sort of voting scheme. This approach is known as FDI via

physical redundancy. Examples of such applications can be found in [52, 53].

Another popular approach is based on simple limit-value checking of characteristic

variables (e.g. temperature) [11]. Limit-value checking remains one of the most widely

implemented FDI methods in industry, due to its simplicity [10]. Tolerances (also

referred to as thresholds) are either recommended by product manufacturers or defined

from experience. Unfortunately, limit-value checking techniques are only reliable if

faults are large or long-lasting. This is because thresholds are set at high levels to avoid

false alarms caused by random system fluctuations. Furthermore in closed loop systems,

the control laws tend to dampen the effects of faults and so simply checking the size of

the output signals does not give a reliable insight into overall system health. Shortly

before the catastrophic disaster of the Challenger Space Shuttle in 1986, the FDI

scheme of the main engine was outlined in [54]. It was noted how limit value checking

26

methods were mainly used for engine health monitoring and suggested that advanced

failure detection systems are needed [54].

Frequency analysis of measured signals can also give invaluable insight into

machine health. These methods are extremely popular if faults cause an increase in

machine vibration. The frequency spectrum of these vibrations can therefore be used for

FDI purposes. A good survey paper discussing vibration-based FDI methods can be

found in [55].

The use of expert systems (knowledge-based methods) is another popular FDI

approach. Expert systems rely on what are known as heuristic symptoms (e.g.

measurable symptoms, machine performance history, etc.) to detect and isolate faults.

Fault detection is based on qualitative information which can be provided from

knowledge of the system health history (e.g. former faults, maintenance performed etc.),

or from human observations (e.g. smell, sound etc.). Fault isolation is then based on IF-

THEN logic or pattern classification techniques using neural networks [8, 10]. Expert

systems have received considerable attention over the years and [5] pointed out that

analytical redundancy can be combined with expert systems for a more informative FDI

scheme. The reader is referred to the chapter of Tzafestas in [9] for an introduction to

expert systems, and [56, 57] for examples of such systems.

Over the years, strong interest in control theory has brought about powerful

techniques in mathematical modelling which have been made feasible due to the

progress of modern computer technology [12]. Consequently researchers found the use

of such models, as direct replacements of redundant hardware (i.e. physical

redundancy), a cost and weight effective approach to FDI. Moreover these models are

capable of estimating states that are often non-measurable which can give an invaluable

insight into plant operation and simplify the fault isolation process. Collectively these

approaches are known as FDI via analytical redundancy or model-based FDI. Over the

past 30-40 years, FDI via analytical redundancy has experienced a wide variety of

theoretical contributions and applications. However the great variety of proposed

methods can be brought down to a few well known techniques. Some of these will be

discussed in section 2.1. Popular survey papers include [8, 10, 12-15, 58, 59].

Model-based FDI systems naturally lead on from the theories of control systems

[60]. Both of them are initially designed using plant models with the desire that they

will be robust to modelling errors when applied to the real system. An inadequate

control law can result in instability in the real system while an inadequate FDI scheme

27

can result in high false alarm rates and undetected faults. The combination of a FDI

scheme and a control system is known as a fault tolerant control system (FTCS). FTCS

can benefit from the ability to compensate for faults (detected and isolated by the FDI

scheme) while maintaining satisfactory system performance [61].

Despite the extensive research gone into model-based FDI methods, one will find

that unlike control theory, they have not been utilised much in industry. Blanke and

Patton suggest that this is due to the scarcity of realistic examples [62]. Survey papers

and books in the field of FDI are widespread but real industrial applications are not.

One reason may be that despite the attractive theory developed over the years,

practitioners found that physical redundancy and traditional limit-value checking

techniques can deliver satisfactory results with less theoretical effort. For example in

spacecraft where production costs are high, the addition of redundant sensors for sensor

FDI (SFDI) may not be significant in comparison to the effort required to model such a

complex system. However, there are some applications where physical redundancy may

not be an option and so model-based FDI schemes become an invaluable alternative.

This is true of UAVs which have limited onboard space, weight restrictions and demand

low production costs.

2.1 Model-based FDI

A plant can generally be divided into three subsystems (Fig 2.2); actuators, the process

(i.e. components) and sensors. For example in an aircraft, the actuators include the

control surfaces (elevators, ailerons, rudders), the process would include the actual

airframe, and the sensors would be the instrumentation onboard the aircraft. Chow and

Willsky first defined model-based FDI schemes to involving two stages; residual

generation and residual evaluation (Fig 2.2) [63]. A system model is used to generate a

residual which is usually a function of the difference between the model estimate and

the real measurement. This stage is referred to as residual generation. The FDI decisions

are then carried out in the residual evaluation stage. It is important to note that in most

cases the method of residual evaluation is greatly dependent on the method of residual

generation. This will become clearer when we discuss the different residual generation

approaches in sections 2.1.1-2.1.5.

28

In general, faults in a plant can be divided into three categories:

1) Actuator faults (additive)

2) Process faults (additive or multiplicative)

3) Sensor faults (additive)

Fig 2.2 Model-based FDI scheme

Actuator faults can for example cause a malfunction in the engine of an industrial

process or a fault in the control surface of an aircraft. They are additive faults in the

sense that they influence the system with an additive term. Sensor faults are also

additive faults but influence the instrumentation (sensors) of the system. For example

they may include sensor biases, total sensor failures or sensor drifts. On the other hand,

process faults can be either additive or multiplicative. Parametric faults are examples of

multiplicative process faults, i.e. the faults influence the plant output by the product of

another variable [16]. They result in changes in the plant parameters. For example the

deterioration of an aircraft’s airframe would be considered a parametric fault. Process

faults can also be additive. They include unmeasured disturbances acting on the plant

which are normally zero e.g. plant leaks [10]. It is important to classify the different

fault categories. This is because different FDI schemes are better suited for different

types of faults. So for example parameter estimation methods (section 2.1.4) are best

29

suited for parametric faults while observer-based schemes (section 2.1.2) are more

popularly used to detect actuator and sensor faults. In fact each fault category is a

research field in its own right; actuator FDI (AFDI), component FDI (CFDI) and sensor

FDI (SFDI) [9].

In addition to the different fault categories, faults can also be; abrupt (quick-

varying) or incipient (slow-varying) [64]. Abrupt faults cause a sudden change in the

nominal (fault-free) behaviour of the system while incipient faults have drift-type

effects. For example constant bias sensor faults can be considered as abrupt faults

whereas soft additive faults have a much slower effect on the sensor measurements and

are therefore referred to as incipient faults. Incipient faults are usually caused by

temperature drifts, calibration problems or worn equipment. In the short term they may

not cause significant performance degradation. As such there are generally no tight

constraints on their fault detection time. However they could prove catastrophic if left

undetected for too long [9].

From the literature one will realise that there are a wide variety of model-based FDI

methods. However most of them can be brought down to a few well-known techniques

[8, 12]:

1) Parity space

2) Observer-based

3) Fault detection filter (FDF)

4) Parameter estimation

5) Neural networks

There are of course many other model-based FDI methods which deserve similar, if

not more, attention. Examples include; FDI via eigenstructure assignment first proposed

by [65], and FDI via sliding mode observers proposed in [66]. Fortunately the literature

in this field is widespread and the reader is referred to [11, 17] for a general

introduction.

2.1.1 Parity space

A popular class of model-based FDI schemes is the parity space approach. Some of the

first pioneers in FDI via parity equations were Chow and Willsky [63], and Lou et al.

30

[67]. Other contributors include [18, 68-74]. Parity equations are residual generators

which generate the residuals by direct manipulation of the plant observables (i.e.

measured inputs and outputs). In this approach, a number of plant observables are

sampled from previous time instants to a current time instant. The residual generated is

then calculated as a function of these sampled measurements and a user-defined matrix.

By suitably designing this matrix, the residual can equal zero when no faults are present

and nonzero when a fault is present.

2.1.2 Observer-based

Observer-based methods are one of the most popular approaches to model-based FDI

[8]. Observers are often used in control systems to estimate non-measurable states

(required in e.g. health monitoring systems or control laws). An observer is essentially a

system model, and can fall into one of two categories: a Luenberger observer (used in a

deterministic setting) or a Kalman filter (used in a stochastic setting) which were

originally proposed in [75] and [76] respectively. The estimation errors of the

Luenberger observer (often simply referred to as observer) or the innovation sequence

of the Kalman filter can be used as residuals for FDI purposes. Consider the following

state-space system with additive faults included:

ሻݐሶሺݔ ൌ ሻݐሺݔܣ ൅ ሻݐሺݑܤ ൅ ܮ ௅݂ሺݐሻ (2.1)

ሻݐሺݕ ൌ ሻݐሺݔܥ ൅ ܯ ெ݂ሺݐሻ (2.2)

where ݔ א ࣬௡, ݕ א ࣬௣, ݑ א ࣬௠, input and output additive faults are represented by the

fault vectors fL and fM respectively, and L and M are distribution matrices for the input

and output faults respectively. A Luenberger observer for the system in (2.1)-(2.2) can

be designed as in Fig 2.3 and defined as:

ොሶݔ ሺݐሻ ൌ ሻݐොሺݔܣ ൅ ሻݐሺݑܤ ൅ ሻݐሺݕ൫ܪ െ ሻ൯ (2.3)ݐොሺݕ

ሻݐොሺݕ ൌ ሻ (2.4)ݐොሺݔܥ

where ݕො and ݔො are the observer state and output estimates respectively, H is a user-

defined feedback matrix and the following are the state and output estimation errors:

31

ߝ ൌ ݔ െ ො (2.5)ݔ

 ݁௬ ൌ ݕ െ ො (2.6)ݕ

System states are often non-measurable and therefore the output estimation error ݁௬ is

instead used as the residual. Substituting (2.1)-(2.4) into (2.5)-(2.6) the following can be

defined:

ሶߝ ൌ ሺܣ െ ߝሻܥܪ ൅ ܮ ௅݂ െ ܯܪ ெ݂ (2.7)

 ݁௬ ൌ ߝܥ ൅ ܯ ெ݂ (2.8)

The residual in (2.8) is a function of the additive faults (fL and fM) and therefore, with

the proper design of H, the residual can be made non-zero only in the event of a fault. It

is important to note that observers designed for control systems have different purposes

than for FDI schemes. In FDI applications, a non-zero ݁௬ triggers a fault alarm which

fulfils the purpose of the observer, while in control systems this would not be ideal as

accurate state estimations are consistently needed in the feedback control laws.

x̂

ŷ

Fig 2.3 Luenberger observer

32

A potential problem with the observer in Fig 2.3 is that a single fault seen in the

output measurement vector y, can contaminate all observer estimates through the

feedback matrix H. This therefore complicates the fault isolation process. To tackle this

problem, several well-known observer-based FDI schemes have been proposed:

a) Simplified instrument FDI: This was originally proposed in [77] for FDI of sensor

faults. One observer driven by only one sensor, yi, is used to estimate all system

outputs. Therefore if yi is faulty then all residuals will be non-zero. On the other

hand if the other sensors are faulty (i.e. any sensor except yi) then only the

corresponding residual will be non-zero. In principle this approach can detect

simultaneous faults (i.e. where more than one sensor can fail at a time) as long as

the faulty sensor is not yi. Note that the observer used can be a Luenberger observer,

a Kalman filter or an unknown input observer (UIO) [11]. In [78], Clark shows an

example which makes use of a Kalman filter in the event of unmodelled

disturbances.

b) Dedicated observer scheme (DOS): This was again suggested by Clark in [79] for

FDI of simultaneous sensor faults. It is an extension to a) in that a bank of observers

(also referred to as an observer scheme) are used instead of one observer. Each

observer is dedicated to only one sensor, i.e. driven by only one sensor. In the event

of a fault the corresponding observer will produce inaccurate estimates and therefore

all of its residuals will be non-zero. DOSs can also be used for FDI of actuator

faults, if the faults are associated with direct changes in the input signal u(t) [9].

This time each observer is driven by all sensor measurements but only one input

measurement, ui.

c) Generalised observer scheme (GOS): In [80], Frank suggested the use of a GOS

for FDI of sensor faults. As in the DOS, this method makes use of a bank of

observers. However this time each observer is driven by all sensor measurements

except for one. In principle this allows the detection and isolation of a single fault

(i.e. only one sensor can fail at a time) but with improved robustness to unknown

inputs.

33

d) Hypothesis testing: These methods were popular in the 1970’s and 1980’s [13].

Mehra and Peschon [81] suggested that the statistical properties (e.g. mean,

variance) of the Kalman filter innovation sequence (difference between the

measured system outputs and the Kalman filter estimates) change when a fault is

present and so by observing this change, one can in principle detect the fault.

However this method lacked the ability to isolate the fault and was shown simply to

be an alarm system [23]. In [82] and [83] Willsky and Jones suggested an extension

to this approach where the innovation sequence is compared to pre-determined fault

hypotheses, i.e. fault isolation is made possible by using a priori knowledge of the

different effects the failures have on the innovation sequence. Another popular

method was also published in [84] and [85]. It was referred to as the multiple model

Kalman filtering (MMKF) approach. This time a bank of Kalman filters are used

where each filter represents one specific failure mode and faults are isolated using a

multiple hypotheses test. Despite their popularity these methods were deemed quite

computationally complex. Moreover if the real system fails in a way which is

different than the pre-determined failure models, the fault will pass by undetected.

As a result some of these techniques have lost much of their popularity over the

years [10]. However, excellent research is still being carried out [86-89].

Observer-based methods can be of full order (see e.g. [90]) or reduced order (see

e.g.[79]) and can be designed for application in nonlinear systems where for example

an extended Kalman filter (EKF) can be used instead of the linear Kalman filter, see e.g.

[91]. Another famous observer-based method, originally proposed by Edwards and

Spurgeon, is the sliding mode observer [66]. For a wider introduction to observer-based

FDI schemes the reader is referred to [11] and [17].

2.1.3 Fault detection filter

Originally proposed in Beard [77] and redefined in Jones [78], this technique heavily

relies on the design of a feedback matrix H (Fig 2.3) so that each fault causes the

residual to lie in a specific direction. The faults are then isolated by observing the

direction in which the residual propagates. The FDF is a powerful and popular method

for FDI schemes and in some publications is included under observer-based methods as

34

it also relies on an observer as in Fig 2.3.The reader is referred to [11], [13], [17] [92,

93], for a wider introduction to FDFs.

2.1.4 Parameter estimation

Parameter estimation methods are a popular approach to FDI of parametric faults [14].

In contrast to observer-based methods, they assume that the system model is unknown.

The input/output measured signals are instead used to estimate the process model and its

associated parameters. The benefit from this is that the parameter estimates are in fact

related to what are known as process coefficients which are in turn related to the faults.

Examples of process coefficients include; stiffness, length, mass, resistance, speed etc.

Once estimated, process coefficients are then compared to pre-defined reference values

(e.g. a fixed threshold) for fault detection purposes. Fault isolation is then implemented

based on the knowledge of the relationship between the faults and the process

coefficients. A simple example is a resistor in a circuit, which increases in resistance

when faulty. Therefore if we can estimate and monitor this resistance, we can detect the

faults in the resistor. For examples of FDI via parameter estimation and a general

discussion the reader is referred to [58], [9] and [94], [18].

2.1.5 Neural networks

A NN-based FDI scheme uses a NN to replace traditional models which rely on a

detailed mathematical description of the system (such as observers or Kalman filters,

section 2.1.2). They are nonparametric models in the sense that they build their structure

purely from training data. In the early stages of FDI, one will find that most of the

literature does not propose NN-based solutions to FDI [9, 10, 12, 13]. This is despite the

fact that NNs have been around since 1943 when the first model was proposed by

McCulloch and Pitts [95]. One reason for this lack of interest is the bad media coverage

that NNs received after Minsky’s and Papert’s publication on the limitations of NNs

[96]. At that time the NN was seen as only being applicable to pattern classification

problems which must be linearly separable (e.g. the popular XOR mapping problem

could not be solved, see [97]). Moreover multilayered NNs were shown to suffer from

what is known as the credit assignment problem [98]. To explain this further, consider a

NN with only one hidden layer and one output layer. The desired NN output is usually

35

known and therefore parameters in the output layer can be tuned accordingly. On the

other hand the desired output of the hidden layer is unknown and so it can be difficult to

correctly tune the hidden layer parameters. This is known as the credit assignment

problem and was originally suggested by Minsky in [98]. However to address this issue

Rumelhardt & McClelland published their famous book which proposed the well known

backpropagation (BP) training algorithm for training multilayered perceptrons (MLPs)

[97]. The MLP NN trained via the BP algorithm remains one of the most popular NN

architectures today [97]. Other architectures also include the radial basis function (RBF)

NN which will be discussed in Chapter 4. Since then NNs have slowly found their way

into a wide variety of engineering applications and eventually into FDI applications. In

the late 1980’s and early 1990’s they became quite popular for FDI in chemical

processes [100-102] and in the famous survey paper by Isermann and Balle, it was

noted that NN-based FDI schemes were gradually increasing [8]. NN models can be

used as pattern classifiers in FDI applications where each fault type has a different

symptom. Alternatively NN models can be used in the same layout as other model-

based FDI schemes except that the NN would replace the corresponding model. For

example in the GOS (section 2.1.2), a NN model can replace each observer (see e.g.

[19]). Another example is in parameter estimation FDI schemes (section 2.1.4). In this

case, a NN can be trained to estimate the chosen parameters (see e.g. [20]). For more

examples of NN-based FDI schemes and for a wider introduction to NNs, the reader is

referred to [19-28] and [97, 103, 104] respectively.

2.2 Performance criteria

In section 2.1 we discussed some of the popular model-based FDI methods. Choosing

the ‘best’ method is not an easy task and generally depends on the application (e.g.

parameter estimation methods are better suited to detect parametric faults). Furthermore

assessing the performance of each method requires a universally accepted benchmark

which can be difficult to define. However there are a set of performance criteria that

have repeatedly emerged in the literature which allow us to compare the different FDI

schemes:

1) Fault detection time

2) False alarm rate

36

3) Number of undetected faults

4) Ability to isolate the fault

A low fault detection time is desirable if we are to avoid any permanent damage in the

system. However its level of importance depends on the application. For example in

aerospace applications, faulty sensor measurements used in the control laws can

potentially result in flight instability and therefore it is desirable to detect the fault as

early as possible. The drawback of designing the FDI method based purely on its fault

detection time is that other performance criteria (particularly the false alarm rate) are

often compromised. For example selecting a low residual threshold can reduce the fault

detection times but it can also increase the false alarm rate.

The robustness of a model-based FDI scheme to unknown inputs can be generally

judged based on its false alarm rate. For example observer-based methods which rely on

a linearised state space description of the plant will be prone to linearization errors.

Similarly a Kalman filter which assumes stationary (i.e. fixed statistics) noise signals

will be prone to modelling errors when applied to a real system where noise is generally

non-stationary. These modelling errors can cause the residuals to be non-zero even

when a fault is not present resulting in what is known as a false alarm. A FDI scheme

with high false alarm rates leads to a lack of confidence in the detection system and

therefore the lower the false alarms the more robust the FDI scheme is to the unknown

inputs. There have been several methods suggested in the literature which are

specifically designed to improve the robustness of model-based FDI schemes such as;

unknown input observers (which attempt to decouple the effects of unknown inputs on

the residual) [105], eigenstructure assignment [65] and adaptive thresholds [106].

A strongly related performance criterion is the sensitivity of the FDI scheme to

different fault types. The higher this sensitivity the lower the number of undetected

faults and therefore the more reliable the fault detection system. Fault types which are

generally difficult to detect include incipient faults (small and slow varying faults)

which are typical of worn equipment [9]. Such faults can be difficult to detect as they

initially cause minimal damage to the real system. To detect incipient faults, the FDI

scheme must be adequately tuned. However this can also have the counter-effect of

increasing the false alarm rates. For example lowering a residual threshold can increase

the FDI scheme’s sensitivity to incipient faults but it can also increase the false alarm

37

rate. A trade-off is usually required between the desire to reduce the number of

undetected faults and lowering the false alarm rate.

Finally, the ability to isolate (i.e. locate) the fault is important if appropriate

maintenance action is to be designated. In other words fault accommodation is only

possible if the fault is correctly isolated. Most of the work carried out has focused on

FDI schemes. However the fault accommodation stage is equally important and often

necessary. For example in aircraft a faulty sensor used in the control loops must be

quickly replaced in order to avoid flight instability. In model-based FDI schemes the

model estimate can replace the faulty sensor and overall such schemes are referred to as

FDI and accommodation (FDIA) schemes.

2.3 Examples and trends

For a complete introduction to FDI schemes, one must be aware of the research trends,

i.e. the popularity of each method and its applications. In 1997, Isermann and Balle [8]

published their famous paper which discussed such trends, some of which will be re-

iterated here (Fig 2.4-2.5). From Fig 2.4, we note that observer-based methods have

been more frequently applied. This could be as a result of the already well-established

observer (and Kalman filter) theory. Almost 70% of FDI schemes use observer-based or

parameter estimation methods while NN-based FDI schemes were rarely applied (Fig

2.4). However applications which make use of NNs have mainly targeted nonlinear

applications. In fact the applications to linear processes were decreasing while nonlinear

applications using NN-based methods were increasing in comparison to other FDI

methods [8]. In Table 2.1 we show some of the FDI applications published in the 21st

century.

Conclusions

This chapter is an introduction to FDI schemes with particular emphasis on; the

terminology, model-based FDI methods, performance criteria and research trends. The

efforts gone into the field of FDI is overwhelming. Despite this, there is yet to be a wide

acceptance of FDI in industry which could be due to several reasons. Firstly it could be

that traditional physical redundancy and limit-value checking approaches are simpler to

implement. An additional reason is that current model-based methods are generally

38

based on linear-time invariant models which can have very limited application in real

systems. In contrast, NN-based FDI applications are gradually increasing due to their

nonlinear structure and their ability to adapt to time-varying systems. In Chapters 5 and

6 a NN-based SFDIA scheme is designed and tested on an UAV application.

Fig 2.4 Trends in FDI method [8]

Fig 2.5 Trends in fault type [8]

0

10

20

30

40

50

Observer Parameter
estimation

Parity
space

Neural
networks

Frequency
spectral
analysis

Co
nt
ri
bu

ti
on

 (%
)

FDI method

0

10

20

30

40

50

Process Sensor Actuator Control
loop

Co
nt
ri
bu

ti
on

 (%
)

Fault type

39

Table 2.1 Examples of model-based FDI applications published in the 21st century

Application FDI method Comments

Steam generator Parity space Sensor FDI of real steam generator data [107]

DC motor Parity space Sensor and actuator FDI applied to nonlinear

simulation of DC motor [108]

Automotive (car) Parity space Sensor FDI using real driving data [109]

Aerospace (UAV) Parity space Actuator FDI demonstrated on nonlinear

aircraft model [110]

Aerospace Observer Actuator FDI, using a multiple-model

hypothesis test approach, demonstrated on an

aircraft model [111]

Thermoforming

Process

Observer Actuator FDI, using both dedicated and

generalised Kalman filter schemes, applied to a

nonlinear model [112]

Mechanical engineering

(simply supported beam)

Observer (fault

detection filter)

Structure fault detection using a fault detection

filter, applied in simulation [113]

Satellite Parameter

estimation

Actuator FDI applied to a nonlinear model

[114]

DC Motor Parameter

Estimation

Process FDI applied in both simulation and

experimentally [115]

Automotive (car engine) Neural

networks

Sensor FDI using real sensor data from a Fiat

engine [116]

Automotive (heavy-duty

diesel engine)

Neural

networks

Sensor FDI using real data obtained from a

vehicle tested in urban and highway roads [117]

Aerospace Neural

networks

Sensor FDI using radial basis functions, applied

to nonlinear aircraft model [118]

40

Chapter 3 Introduction to FADS systems

Introduction

Traditionally, critical air data are measured using air data booms protruding from the

aircraft local flow field; freestream static pressure (∞ܲ) and total pressure (଴ܲ) are

measured using a Pitot-static tube while angle of attack (α) and angle of sideslip (ߚ) are

measured using small vanes mounted on the air data boom. Using these four basic air

data quantities (∞ܲ, ଴ܲ, ,ߙ) as well as temperature (ߚ ∞ܶ), most other air data of interest

can be directly calculated such as; airspeed, altitude and rate of climb. In this thesis we

are interested in measuring the critical air data; ∞ܲ, ଴ܲ, ,ߙ Different designs and .ߚ

applications may exist, however the basic air data boom remains one of the most

popular method for such air data measurements [35].

Despite their popularity, air data booms are known to have measurement

disadvantages in addition to possible malfunctions: accuracy may be adversely affected

by boom bending and vibration, probe size and geometry, and by the flow interference

due to the probe itself. Furthermore, in military-related applications, external

instrumentation is undesirable in stealth vehicles. As a result, in recent years more

research has been carried out to find alternative solutions to air data booms. One

example is optical air data system, which measures the atmosphere outside of an air

vehicle and provides information regarding the environment ahead of the flight vehicle

[119]. These systems are very accurate and more importantly are not affected by

weather conditions external to the aircraft such as icing or plugging. However, with the

primary goal of most air vehicle manufacturers being the reduction of costs, researchers

have found the concept of air data measurements using a matrix of pressure

orifices/ports to be a cheaper alternative to optical systems and booms.

The measurement of flush surface pressures to estimate air data parameters has been

known for some time and is referred to as a Flush Air Data Sensing (FADS) system.

The first FADS system was developed and tested on the NASA X-15 hypersonic

aircraft [29, 30]. It consisted of a hemispherical nose (mounted with 4 pressure ports)

which was steered into the wind vector to measure the air data. Results were promising,

however the concept of the steered nose was considered too complex. Consequently,

over the years the FADS system experienced many modifications and successful

41

applications some of which will be discussed in section 3.2. Most aeronautical

applications of the FADS system originate from the initial tests carried out by NASA in

the early 1980s. Examples include [31-33]. Recently the FADS system was

implemented on the NASA Dryden F-18 Systems Research Aircraft [34]. This system

uses 11 pressure ports in the radome of the aircraft and was tested at speeds up to Mach

1.6, α up to 80° and ±20° =ߚ. Other applications of the FADS system include [35-37].

From the literature we find that few examples have been extended to mini

(unmanned) air vehicles (MAVs). This motivated the investigation of such an

application. MAVs are found within the spectrum of UAVs and are characterised by

their small size and low weight. Several military missions have taken advantage of this

feature to use them in applications which can only be attained at great risk. The FADS

system is an invaluable alternative to air data booms especially for MAV applications.

This is because current air data booms can be too heavy and expensive for use on a

MAV. Additionally, due to the dangerous and secretive environments that they can be

exposed to, external instrumentation is best avoided.

Most applications tend to mount the FADS system near the aircraft nosetip mainly

for two reasons. Firstly the aerodynamic model relating the surface pressure and air data

states is derived around a blunt body, and so is most valid at the nosecap which can be

approximated as a sphere. Secondly the nosetip has been used traditionally as the air

data measurement location for air data booms. Unfortunately many MAVs (as it is in

our case) are driven by a nose-propeller which can obstruct the FADs system. Therefore

as an alternative we consider placing the FADS system at the wing leading edge. In fact

in [41] it was reported that the aerodynamic model developed for a FADS system

mounted at the spherical nosecap, is equally applicable to the wing leading edge.

This chapter is organised as follows. In section 3.1 the popular air data boom is

discussed and in section 3.2 the FADS system is introduced. Section 3.3 defines the

FADS system model used to relate the aircraft surface pressure to the critical air data

∞ܲ, ଴ܲ, ,ߙ Note that this chapter introduces the background and history of FADS .ߚ

systems while Chapter 7 presents an application to a MAV.

3.1 Air data boom

Air data are derived from the air surrounding the aircraft and include; indicated and

true airspeed, pressure altitude, ambient air temperature, angles of attack and sideslip,

42

Mach number and rate of climb [120]. Such air data can be directly calculated based on

only five critical air data [35]:

‐ Freestream static pressure (∞ܲ): Pressure measured far ahead of the aircraft

where the air is undisturbed from aircraft motion.

‐ Total pressure (଴ܲ): Also referred to as the stagnation pressure. This is the

pressure measured at a stagnation point in the airflow (i.e. where airflow is

decelerated to approximately zero airspeed).

‐ Temperature (∞ܶ): Temperature of the atmosphere far ahead of the aircraft.

‐ Aerodynamic orientation: Includes aircraft angle of attack (ߙ) and sideslip (ߚ).

Fig 3.1 shows how these five basic air data quantities can be used to measure all other

air data where [120]; indicated airspeed is the airspeed of the aircraft relative to a static

atmosphere and assuming constant air density (i.e. incompressible flow), true airspeed

is the indicated airspeed corrected for instrumentation errors and air density

assumptions, Mach number is the ratio of true airspeed to the speed of sound in air,

pressure altitude is the altitude of the aircraft based on the atmospheric pressure and the

pre-defined International Standard Atmosphere look up table and rate of climb is the

rate of change of the aircraft altitude.

In this thesis we are interested in only four of the five critical air data; ∞ܲ, ଴ܲ, ,ߙ .ߚ

Traditionally these parameters are measured using what is known as an air data boom.

An air data boom (Fig 3.3) can be divided into two components; a Pitot-static tube (Fig

3.2(a)) and a mechanical vane structure (Fig 3.2(b)).

43

Fig 3.1 The relation of the critical air data (ࡼ∞, ,૙ࡼ ,∞ࢀ ,ࢻ to all other air data (ࢼ

The well known Pitot-static tube measures two pressures; ଴ܲ and ∞ܲ. To measure ଴ܲ,

the front end of the Pitot-static tube is open to the air and directly faces the airflow (Fig

3.2(a)). This design acts as a direct blockage and therefore decelerates the airflow to

approximately zero airspeed. On the other hand the static port is used to measure ∞ܲ and

is located at the tube surface, i.e. in parallel to the airflow (Fig 3.2(a)). Pitot-static tubes

are the most popular method for calculating the aircraft speed [121]. The difference

between ଴ܲ and ∞ܲ can be used to calculate the indicated airspeed based on Bernoulli’s

equation which will be discussed in detail in Chapter 7. However note that ଴ܲ and ∞ܲ

can be individually used to calculate other data (e.g. pressure altitude can be calculated

based on ∞ܲ) and so it is important that ଴ܲ and ∞ܲ are both measured and not just their

difference.

The air data boom also consists of two mechanical vanes used to measure ߙ and ߚ.

Fig 3.2(b) shows an example of such a vane. Vanes are aligned in the direction of zero

 and if the aircraft aerodynamic orientation is perturbed the vanes pivot (ߚ or) ߙ

accordingly. The amount of rotation is then measured via a potentiometer.

44

The air data boom (Fig 3.3) must extend beyond the aircraft surface for two main

reasons. Firstly, the Pitot-static tube needs to measure the freestream pressures, i.e. the

pressure far ahead of the aircraft where the air is undisturbed by aircraft motion.

Secondly the mechanical vanes must be located ahead of the aircraft since they should

be the first part of the aircraft to be affected by the airflow. The latter condition can be

justified by recalling that ߙ and ߚ are defined based on the angles the aircraft makes

with the freestream airspeed vector. Therefore the mechanical vanes must be placed far

ahead of the aircraft, i.e. at freestream conditions. Traditionally air data booms are

located at the fuselage nose or wing tip.

Air data booms can come in different sizes and weights. For example, SpaceAge

Control (popular air data boom manufacturer) produces air data booms (designed

especially for UAVs) which can cost up to £2500 and weigh almost 170g (see 100400

air data boom for UAVs [123]). However the MAV used in this thesis (Chapter 7,

section 7.1) is cheap to manufacture and weighs only 450g. Therefore traditional air

data booms can often be impractical for MAVs and so FADS systems can be an

invaluable alternative for measuring air data.

(a) (b)

Fig 3.2 (a) Pitot-static tube, (b) Mechanical Vane (see 100386 mini vane [122])

Fig 3.3 Air data boom (Top view) [123]

Mechanical vane

Pitot‐static tube

45

3.2 Background and history

FADS systems convert aircraft surface pressure (measured from pressure orifices drilled

into the aircraft surface) to air data such as ∞ܲ, ଴ܲ, ,ߙ ,For reasons discussed earlier .ߚ

this approach to air data measurement is preferred to traditional air data booms.

Furthermore the FADS system can be more robust to faults in comparison to air data

booms. For example if a FADS system consists of 100 pressure ports then a fault in one

of the ports should not significantly degrade the air data estimation accuracy. On the

other hand a blockage in the ଴ܲ port (Fig 3.2(a)) of an air data boom completely

eliminates the availability of a total pressure measurement. The fault tolerant property

of FADS systems was noted and tested in [46, 36].

However the FADS system can also suffer several drawbacks. The fundamental

purpose of an intrusive air data boom is to measure air data far ahead (i.e. freestream) of

the aircraft local flow fields. On the other hand the pressure orifices of a FADS system

are located on the surface of the aircraft and must therefore be carefully calibrated for

any locally induced flow fields. Furthermore the pressure orifices are prone to blockage

caused by e.g. icing effects and atmospheric debris. Therefore it is important that FADS

systems are rigorously flight tested and compared to an air data boom prior to

implementation.

The FADS system was developed for the NASA X-15 program [29]. In this case the

pressure ports were located on a hemispherical nose which was actively steered through

the air to measure air data. The mechanical design of this concept was deemed too

complicated and was subsequently abandoned. In the 1980’s a more advanced approach,

the shuttle entry air data system, was developed for the space shuttle program at the

NASA Langley Research Center [39]. The motivation behind this project was that a

space shuttle experiences high temperatures (during the re-entry stage) which can

destroy most air data booms. The non-intrusive FADS systems were therefore seen as

an invaluable alternative. It consisted of 20 pressure ports fixed to the shuttle surface.

This design avoided the complications of the steered nose concept developed for the X-

15 program. Aeronautical applications of the FADS systems were also carried out at the

NASA Dryden Flight Research Center [32, 33]. The FADS system tests proved that

aircraft surface pressure can be related to the air data states. This relationship was

empirically determined from wind tunnel tests and real flight tests and results were

tabulated in terms of surface pressure ratios and the corresponding air data state [33].

46

However there was no attempt to define this relationship in terms of a mathematical

model. It was not until the flight testing programs, carried out at NASA Dryden Flight

Research Center, that such a model was developed [40, 41]. The FADS system was

named the high angle attack FADS (HI-FADS) system as it was designed for an F-18

aircraft which was capable of reaching angle of attacks of more than 50 deg. Since then

different research groups have proposed different design methods which differed in

terms of e.g. pressure port location, number of pressure ports used and the FADS

system model used [34-36, 38, 40-46].

3.3 FADS system model

The relationship between the aircraft surface pressure and the air data (∞ܲ, ଴ܲ, ,ߙ is (ߚ

known as the FADS system model or the air data model. The standard air data model

used in the FADS system is defined in many parts of the literature [34, 38, 40-43]. It

can be derived based on three airflow assumptions; irrotational (potential) flow,

incompressible flow and airflow over a blunt body (e.g. sphere). Irrotational flow

assumes that air simply translates over the body with no rotation, i.e. with zero angular

velocity, while incompressible flow assumes that the air density is constant everywhere

in the atmosphere. Blunt bodies have the property that most of the aerodynamic drag is

caused by perpendicular forces instead of tangential forces [124]. For example a vertical

plate can be categorised as a blunt body while a streamlined aerofoil is not a blunt body

as most of the drag will be due to tangential (‘tugging’) forces. The blunt body assumed

in the air data model is a sphere, as the pressure ports are generally located at the

nosecap of the aircraft which has an almost spherical shape. Together these assumptions

greatly simplify the air data model [43]. For a complete derivation of irrotational flow

over a sphere the reader is referred to [124, 125].

The air data model can be defined as [43]:

௜ሻߠ௜ሺ݌ ൌ ௜ߠሾcosଶ∞ݍ ൅ ௜ሿߠsinଶߝ ൅ ∞ܲ (3.1)

where ݌௜ is the surface pressure measured at port i, ߠ௜ is the flow incidence angle

between the surface normal at the i’th port and the airspeed vector, ݍ∞ is the freestream

dynamic pressure (section 7.2.1) and ߝ is a calibration parameter which is empirically

47

determined to account for the assumptions mentioned earlier (e.g. incompressible flow).

The angle ߠ௜ can be defined in terms of the local angle of attack and sideslip

,௘௙௙ߙ) :௘௙௙) as follows [43]ߚ

cosሺߠ௜ሻ ൌ cos൫ߙ௘௙௙൯ cos൫ߚ௘௙௙൯ cosሺߣ௜ሻ ൅ sin൫ߚ௘௙௙൯ sinሺ߶௜ሻ sinሺߣ௜ሻ ൅

 sin൫ߙ௘௙௙൯ cos൫ߚ௘௙௙൯ cosሺ߶௜ሻ sinሺߣ௜ሻ (3.2)

where ߣ௜ is the angle the normal to the surface at port i makes with the longitudinal axis

of the nosecap and the clock angle (߶௜ሻis the clockwise angle looking aft around the

axis of symmetry starting at the bottom of the nosecap (Fig 3.4). Combining (3.1) and

(3.2) we can define the overall air data model relating a vector of surface pressure

measurements ܑܘ, to the air data states as:

,ሺԄ୧ܑܘ λ୧ሻ ൌ ሺ࢏ࢌ ∞ܲ, ଴ܲ, ,௘௙௙ߙ ,௘௙௙ߚ ,ߝ Ԅ୧, λ୧ሻ (3.3)

where i=1,2,....N and N is the total number of pressure ports in the FADS system. The

air data model (3.3) is also applicable if the FADS system is located at the wing leading

edge [38].

Equation (3.3) is quite complex and can be difficult to solve. Furthermore, ߙ௘௙௙ and

 ௘௙௙ are local flow angles influenced by the aircraft-induced wash [35]. Therefore theyߚ

must be calibrated so that the true freestream aerodynamic orientation (ߚ ,ߙ) is

calculated. To further complicate (3.3), the calibration parameter ߝ is itself dependant

on the air data (e.g. ߝ would change with airspeed). There are two popular methods,

cited in the literature, to solve (3.3); nonlinear regression methods and the triples

algorithm. The nonlinear regression approach substitutes the measured ܑܘ into (3.3) and

air data states are then estimated using a nonlinear least squares regression algorithm.

Applications of such a method can be found in [34, 40, 41]. This method has known to

suffer from stability problems (i.e. solutions can often diverge) but more importantly

can be computationally demanding due to its iterative approach. In fact the same

authors who proposed this method for solving (3.3), acknowledged that it was too risky

to be used in real time and was subsequently abandoned [43]. As an alternative however

they proposed the triples algorithm [43]. The triples algorithm is a clever way to solving

(3.3). It strategically selects 3 pressure ports to decouple ߙ௘௙௙, ,ܲ∞ ௘௙௙ fromߚ ଴ܲ, .ߝ

48

Therefore it is important that ߣ௜ and ߶௜ are carefully selected. In other words the

pressure ports are not randomly distributed over the aircraft surface, but are instead

placed at specific angles (ߣ௜ and ߶௜) so that some terms in (3.1) and (3.2) are cancelled

out. So for example if we place a pressure port at ߣ௜ ൌ 0 ሺݎ݋ േ 180 degሻ then we can

see that the term in (3.2) is greatly simplified. The triples algorithm can be difficult to

implement in MAV applications as the exact pressure port locations cannot be

accurately defined in such small air vehicles. An application of the triples algorithm can

be found in [43].

The air data model defined in (3.3) is based on several assumptions (such as

spherical shapes) and is therefore susceptible to modelling errors. Simpler approaches to

modelling (3.3) are via lookup tables, where calibration data (from either wind tunnels

tests or real flight) is used to build the lookup table. This is the simplest of methods but

it also suffers from high memory usage and slow execution times.

As an alternative, we investigate the feasibility of using NNs to model the air data

system model. NNs provide a means of modelling linear or nonlinear systems without

the need of detailed system knowledge. They primarily rely on sufficient training data

from which they can develop their structure. This makes them an attractive modelling

solution to applications where the theory is poor but the relevant data is plentiful. An

advantage of NNs is that it is possible to implement them in just a few lines of code

which is suitable in MAV applications where computational power may be limited. A

drawback however is that its structure is purely based on available system input/output

data. Therefore the training algorithm and its implementation is a crucial step in NN

design. The two most popular NN architectures are the multilayer perceptron (MLP)

and the radial basis function (RBF) NN. MLP NNs trained with error backpropagation

algorithms have been successfully implemented in a FADS system by several authors

[35, 36, 44, 45]. Instead, we consider a RBF NN trained with the extended minimum

resource allocating network (EMRAN) algorithm (Chapter 4).

49

Fig 3.4 Definition of cone (ࣅ) and clock angle (࣐) for a spherical nosecap with 5
pressure ports.

Conclusions

In this chapter we have discussed the background of FADS systems. Flight data

monitoring systems are an important part of aircraft and can be used for many purposes

such as air traffic control, flight performance analysis, health monitoring, post air-crash

analysis etc. In this thesis we are interested in a section of the flight data known as the

critical air data (∞ܲ, ଴ܲ, ,ߙ Traditionally such air data are measured using an air data .(ߚ

boom protruding from the aircraft. However new research trends have shown that air

data computed from a matrix of pressure orifices distributed on the surface of an aircraft

can be a cheaper alternative to booms. FADs systems convert aircraft surface pressure

to the critical air data states. Moreover they are an invaluable solution to air data

measurement in MAVs due to the cost and weight implications associated with

traditional air data booms. It was also noted that the critical air data estimated from the

FADS system along with temperature (∞ܶ) are sufficient to calculating any other air data

quantity of interest such as Mach number, true airspeed, pressure altitude and rate of

climb. The standard FADS system model was also defined and popular methods for

solving such a model were discussed. However it was noted that such models are

derived based on several assumptions (e.g. spherical shapes, incompressible flow) and

can be quite difficult to solve. Alternatively the benefits of using NN models to relate

the surface pressure to the critical air data (∞ܲ, ଴ܲ, ,ߙ -have been suggested. A NN (ߚ

based FADS system will be designed and tested on a MAV in Chapter 7.

50

Chapter 4 Neural Networks

 Introduction

In 1943, McCulloch and Pitts first proposed the feedforward perceptron and since then

neural networks have found their way into a variety of applications [103, 104]. Artificial

neural networks (NNs) consist of a large number of simple processing elements called

neurons which are interconnected together via channels called connections. This

structure is in fact inspired by the structure of the brain’s biological nervous system

[103].

One of the benefits of NNs is their highly interconnected structure which can make

them fault tolerant, i.e. performance is not significantly degraded if one of its links or

neurons is faulty. For example if thousands of inputs are connected to only one neuron

then the output of this neuron is likely to be robust to faults in one or more of its inputs.

However the main property of NNs which has often made them superior to traditional

modelling methods is their online adaptive capabilities. Using an appropriate training

algorithm a NN can update its structure, in real time, to better suit the input/output data.

In particular, a NN trained to operate in a specific environment can be easily re-trained

to deal with minor changes in the operating conditions. This property is especially

useful when modelling time-varying systems. For a general introduction to NNs and

their developments, since McCulloch and Pitts first proposed the feedforward

perceptron in 1943, the reader is referred to [97, 103, 104, 126].

Due to their highly interconnected structure it can be difficult to visualise and predict

the performance of a NN [97]. It is therefore important that the NN model chosen is

rigorously tested before implementation. Due to their nonparametric modelling

approach, they are best suited in applications were the theory is poor but the training

data is plentiful.

NNs are considered to be an interdisciplinary field due to their application in a wide

variety of fields. For example Faro et al. make use of NNs for traffic monitoring

purposes [127]. Using inputs from humans and webcams the NN computes important

traffic parameters such as traffic flow, density, and car speeds etc. [127]. [128] use NNs

in the field of finance. Using past gold prices and past Dow Jones indices, the NNs are

designed for one-step predictions of the price of gold. Each NN is a multilayer

51

perceptron (MLP) and real gold price data is used to train and test the NNs. In a

different application, Wang et al. make use of NNs in space research [129]. A MLP NN

(3-3-1 structure) trained with the conventional backpropagation algorithm is used to

model the solar activity of the sun. The model receives information regarding the solar

magnetic field properties of the sun and estimates its solar productivity. The concept is

tested using real satellite data. Further industrial applications of NNs can also be found

here [130].

In our case the NNs are used as nonlinear function approximators in the SFDIA

schemes and the FADS system. In the SFDIA scheme (Chapters 5-6) the NNs model the

relationship between a group of sensors while in the FADS system (Chapter 7) the NN

is used to model the functional relationship between wing surface pressure and air data

(e.g. airspeed, angle of attack, sideslip). There have been several publications which

have made use of NNs in SFDIA schemes and FADS systems. Examples of these

include the work published by the group of Napolitano which have demonstrated the

use of NN-based SFDIA schemes in large manned aircrafts [118, 24-28]. MLP NNs

have also been successfully implemented in FADS systems [35, 36, 44, 45]. However

few applications have been extended to UAVs.

4.1 NN structure and training

4.1.1 RBF NN

The two most popular NN architectures are the MLP NN and the RBF NN [97]. Over

the past years there has been a particular interest in RBF NNs due to their good

generalisation performance [131, 132]. Good generalisation performance is important in

SFDIA schemes and FADS systems as NN training is eventually switched off (i.e. the

NN structure is frozen) and therefore the accuracy of the future NN estimates greatly

depends on the NN’s ability to generalise to ‘new’ data.

 A typical 2-layered RBF NN consisting of the inputs, a hidden layer and an output

layer is shown in Fig 4.1. The inputs [x1, x2…,xn] are not counted as a layer as no

computations are performed. Also note that weights are not found between the inputs

and the hidden layer. The hidden layer consists of the nonlinear RBFs which form a

localised response to the input vector [x1 x2…xn], based on the distance between the

input vector and the RBF centres. The smaller this distance the larger the output of the

52

hidden neuron (i.e. the higher the activation) and in principle each hidden neuron can be

tuned to be sensitive to only one specific input pattern. Theoretical analysis and

practical results have shown that the choice of nonlinearity in the hidden layer is

generally not crucial to the performance of the RBF NN [133]. Gaussian functions are

typically used. The output layer then performs a simple linear combination of the

hidden layer outputs (Fig 4.1).

A single output RBF NN with N hidden neurons can be expressed as follows:

ොݕ ൌ ଴ߣ ൅ ෍ ௡ߣ

ே

௡ୀଵ

exp ቈ
െ||ܠ െ ଶ||࢔ૄ

௡ߪ
ଶ ቉

 (4.1)

where ݕො is the NN estimate of target y, ܠ is the input vector, ߣ are the individual weights

found between the hidden and output layer, and ૄ and ߪ are the centres and widths of

the Gaussian functions (hidden neurons) respectively. ||.|| is the Euclidean norm.

In the conventional implementation of the RBF NN, N in (4.1) is fixed and assumed

to be known a priori. The training algorithm is then used to update only the weights of

the RBF NN, i.e. the centres and widths of the Gaussian functions are fixed. This

approach is appealing as well-established linear optimisation methods such as the least

mean square (LMS) algorithm could be used to update the linearly connected weights.

However fixing the centres and widths of the hidden neurons has shown to result in

large NN structures (as in principle we would require one hidden neuron for each input

pattern). This dimensionality problem can significantly increase the NN processing time

[133]. Moreover, heuristically selecting a suitable number of hidden neurons as well as

their respective centres and widths can be a challenging task. To overcome the

drawbacks of conventional RBF NNs, a more advanced network was developed by Li et

al. in [132] known as the EMRAN RBF NN which is in fact an extension to the RAN

RBF NN originally proposed by Platt in 1991 [134].

53

Fig 4.1 Fully connected RBF NN. x, λ, ෝ࢟ are inputs, weights and output respectively

4.1.2 EMRAN RBF NN

The RAN algorithm proceeds as follows (only considering a single output RBF NN as

in (4.1) and Fig 4.1). Initially the RBF NN starts with no hidden neurons and ߣ଴ ൌ ,଴ݕ

where ݕ଴ is the target output at sample k = 0. It then adds hidden neurons if all three of

the following criteria are met:

 ݁௞ ൌ ௞ݕ െ ො௞ݕ ൐ (4.2) 1ܧ

 ݁ோெௌ௞ ൌ ඩ ෍ ௝݁
ଶ

ܯ

௞

௝ୀ௞ିሺெିଵሻ

൐ 2ܧ

(4.3)

 ݀௞ ൌ ܓܠ|| െ ||ܓܚૄ ൐ (4.4) 3ܧ

where μrk is the centre of the hidden neuron closest to the input vector ܓܠ. E1, E2 and

E3 are fixed thresholds and 3ܧ ൌ max ൛ߝ௠௔௫. ௗ௬ߛ
௞ , ௗ௬is a positive decayߛ ௠௜௡ൟ whereߝ

constant (0 ൏ ௗ௬ߛ ൏ 1). E1 and E2 ensure that the estimation error and the root mean

square (RMS) estimation error for the past M samples are below a pre-defined

threshold, i.e. they check if the NN estimates are sufficiently accurate. E3 checks if the

minimum distance between the current input vector and the centers of the hidden

neurons is significantly small (i.e. so that there is at least one hidden neuron which is

54

sensitive to the current input vector pattern). If all three criteria in (4.2)-(4.4) are

satisfied then a new hidden neuron with the following properties is added:

 ߣ ൌ ݁݇ (4.5)

 ߤ ൌ ܓܠ (4.6)

 ߪ ൌ ܓܠห|݌݋݇ െ |หܓܚૄ (4.7)

Specifying the weight and centre as in (4.5)-(4.6) allows us to remove the error ݁௞

experienced at sample instant k, i.e. ݁௞ (not ݁௞ାଵ as this would then depend on ݕ௞ାଵ)

would equal to zero if we would have included a hidden neuron as in (4.5)-(4.7) at

sample instant k. The overlap between the new hidden neuron and the hidden neuron

with centre ૄܓܚ is based on (4.7) where kop is the overlap factor.

If less than three of the criteria in (4.2)-(4.4) are met then a new hidden neuron is

not added (i.e. it is assumed that the NN performance is not significantly poor) and

instead a chosen training algorithm (section 4.1.3) updates all existing free parameters;

i.e. centres (μ), widths (σ) and weights (λ). The resulting NN is referred to as a RAN

RBF NN and was originally developed to overcome the dimensionality problems

associated with the conventional RBF NN [134].

This can be extended to a MRAN RBF NN by pruning (removing) the hidden

neurons which contribute the least to the network output and substituting them with

more appropriate hidden neurons. However this is only implemented once the

maximum number of hidden neurons allowed (Nmax, defined by the user) is reached. The

process of pruning is as follows. If the three criteria (4.2)-(4.4) are met and N = Nmax

then the MRAN algorithm adds a new hidden neuron in place of the hidden neuron with

the lowest activation (i.e. lowest output).

A drawback of the MRAN RBF NN is that all free parameters are updated during

training which can be time consuming especially if there are many hidden neurons, i.e.

Nmax is large.

Consequently [132] proposed the EMRAN RBF NN which updates the free

parameters of only one ‘winner’ neuron in an attempt to speed up the training process

while maintaining the same approximation characteristics of the MRAN RBF NN. The

neuron with the centre closest to the data input vector ܓܠ is chosen as the ‘winner’

55

neuron as it will probably have the highest activation, i.e. will contribute the most to the

NN output.

4.1.3 NN training algorithm

The EMRAN algorithm is a set of conditions which decide how the RBF NN structure

should be adapted to better suit the training data. However we are yet to define a

training algorithm to update (only when directed by the EMRAN algorithm) the NN

free parameters. Good characteristics of the chosen training algorithm include; faster

execution times, lower estimation errors, and a compact structure i.e. if the training

algorithm is poor then more hidden neurons may be needed. Most NN training

algorithms are based on gradient descent optimisation methods where the NN free

parameters are updated in a way which minimises the output estimation error. For

example the standard LMS algorithm is typically used in the conventional RBF NN

(section 4.1.1) to update the linearly connected weights. This technique would benefit

from linear optimisation but as we have mentioned earlier, the NN can sometimes suffer

from the curse of dimensionality. Other popular examples are the error back-

propagation algorithm (BPA) and its extension, the extended BPA (EBPA) which are

both used to train the famous MLP NN. However in this case, as the MLP NN has

nonlinear neurons in its output layer and hidden layer, the process of training is a

nonlinear optimisation problem and as such there are risks of being trapped in local

minima. There have also been examples where an extended Kalman filter (EKF) is used

to update the NN free parameters [135].

The gradient descent training algorithm often used to train the EMRAN RBF NN is

as follows [118], Fig 4.2:

 ીܓା૚ ൌ ીܓ ൅ ∆ી(4.8) ܓ

 ∆ીܓ ൌ െߜ
ܧ߲
߲ીฬ

௞

 (4.9)

where θ is the vector of free parameters (made up of centres, widths and weights), ߜ is

the learning rate and E is the instantaneous squared error (cost function):

ܧ ൌ ଵ
ଶ

݁ଶ (4.10)

56

where e is the NN estimation error as in (4.2). During each iteration the NN free

parameters are adjusted in a direction opposite to the gradient in (4.9), i.e. towards the

minimum squared error. The hidden layer of the EMRAN RBF NN consists of

nonlinear neurons (Gaussian functions) and therefore the gradient descent training

algorithm in (4.8) is a nonlinear optimisation problem i.e. we run the risk of being

trapped in local minima. As such the NNs used in the SFDIA scheme and FADS system

must be rigorously tested and the parameters [E1, E2, εmax, εmin,ߛௗ௬, M, kop] (4.2)-(4.7),

must be carefully tuned until we achieve acceptable performance (e.g. low estimation

errors and fast execution times). This is also the case when choosing the NN learning

rate as a high learning rate guarantees good estimations but it also degrades the global

approximation capability of the NN.

k

E
θ∂

∂

Fig 4.2 Error surface showing the method used to train the EMRAN RBF NN

4.2 Application to the SFDIA scheme and FADS system

The NNs used in the SFDIA scheme and FADS system are trained based on the

estimation error e (4.2), i.e. the free parameters are updated in such a way which

reduces the estimation error (see training algorithm, section 4.1.3). Therefore the

desired (i.e. target) NN outputs must be defined a priori so that the estimation error e

can be calculated at each time step. This method of training is more formally known as

supervised training. Supervised training can be either implemented online or offline. In

offline training the NN is trained and once satisfactory performance (e.g. by judging the

accuracy and generalisation capability of the NN) the NN structure is frozen and used

on board the aircraft with no further training. On the other hand online training

57

continuously updates the NN structure in real time and is generally preferable in time-

varying systems. However online training can also be computationally slow. Moreover

it requires additional instrumentation on board the aircraft to measure the target outputs,

which can be inadequate in applications where instrumentation costs are to be reduced.

The methods used to train the NNs in the SFDIA scheme and FADS system are as

follows:

- SFDIA scheme: Both offline and online training. Offline training is carried out to

initialise the NN structure. Once pre-defined stopping criteria (to be defined later)

are satisfied, offline training is stopped and the NN is used in the SFDIA scheme.

During the SFDIA application, the NN is continuously trained (i.e. online training)

using the available sensor measurements as the target outputs.

- FADS system: Only offline training. In our case the purpose of the FADS system is

to provide an alternative way to measuring the air data in a MAV, i.e. to avoid using

an air data boom. To be able to train the NN online (i.e. on-board the aircraft) we

would require an extra air data sensor (such as an air data boom) to provide the

target outputs. This therefore contradicts the purpose of the FADS system. As such,

the NN is trained offline and once pre-defined stopping criteria are satisfied, the NN

structure is frozen and used on-board the MAV with no further training.

A common problem with NNs is that of over-fitting (overtraining) the training data.

In this case the NN estimations are accurate during the training process but are poor

when exposed to ‘new’ data, i.e. the NN generalisation capabilities are poor. To

overcome this problem, it is common practice to query the NN using a ‘testing’ data set

as it is trained. NN training can then be stopped once the test set error starts to increase

(as this indicates that the NN has been overtrained). In our case the offline training

stopping criteria chosen are based on checking NN convergence as well as avoiding the

over-fitting phenomenon. Two data sets are used to do so:

- Train data set: This is used to train the NN with learning switched on.

- Test data set: This is used to query the NN with learning switched off.

NN offline training is then stopped based on two criteria:

58

- Criterion 1: If the RMS estimation error of the test data set increases for more than

100 consecutive epochs.

- Criterion 2: If the rate of change of RMS per epoch (∆RMS) is less than 0.1% for

more than 100 consecutive epochs for both the test and train data sets [97].

One epoch represents one pass through the whole data set, Criterion 1 is the over-fitting

criterion and Criterion 2 checks if the NN has converged. Note that in the SFDIA

scheme the offline training stage initialises the NN structure while in the FADS system,

the offline training stage builds the final NN structure to be used on-board the aircraft.

Conclusions

In this chapter, we have presented the NN structure to be used in the SFDIA scheme and

the FADS system. The EMRAN RBF NN is chosen due to its good generalisation

capabilities, compact structure and fast execution times as reported in several parts of

the literature (see e.g. [24, 118, 132]). One of the reasons for choosing a NN model is

their online adaptive capabilities in comparison to traditional approaches which rely on

a fixed mathematical model, such as Kalman filters. The online training capabilities of

the NN will be investigated in the following chapters, and in Chapter 5, the performance

of the NN in comparison to the Kalman filter is also considered. The method used to

train the NN has also been discussed in this chapter and it was noted that online training

in the FADS system is not practically possible due to the requirement of additional

instrumentation such as an air data boom. Finally, the NN training stopping criteria

were defined based on the need to check for NN convergence and to avoid over-fitting

the NN structure.

59

Chapter 5 SFDA-Single sensor faults

 Introduction

In this chapter, a NN-based and EKF-based sensor fault detection and accommodation

(SFDA) scheme are proposed and compared under different levels of unknown inputs

and fault types. The schemes are tested on a nonlinear UAV model. The EKF is chosen

as a representative of nonlinear (fixed) model-based SFDA schemes which rely on a

mathematical description of the real system. On the other hand, the NN is chosen due to

its adaptive structure and online training capabilities. To test their robustness to

unknown inputs, different levels of system and measurement noise are considered in the

UAV model. Parameter uncertainties are also included in the EKF equations to

investigate the performance of such methods to modelling errors. The work presented in

this chapter has resulted in the following publications [46, 47, 50].

The sensitivities of the SFDA schemes to the type of fault are also investigated. Fault

types include; constant bias, step-type, hard and soft additive faults. In this chapter, it is

assumed that the sensor can fail only once and the faults are only present in the pitch

gyro (Chapter 6 considers multiple sensor fault scenarios). Furthermore in an attempt to

reduce the false alarm rates and number of undetected faults a novel residual generator

is proposed which will be referred to as residual generation, padding and evaluation

(RGPE). RGPE is compared to a standard residual generator which will be referred to as

residual generation and evaluation (RGE).

The NN design chosen is the EMRAN RBF NN discussed in Chapter 4 and tests are

implemented in a Matlab/Simulink environment. To the author’s knowledge, the only

work similar to the one presented here, is by Napolitano et. al [136]. In [136] a MLP

NN trained via the EBPA is compared to a KF at linear conditions. However the same

author suggested in [24] that the EMRAN RBF NN generally outperforms the MLP NN

in terms of estimation accuracy and generalisation capabilities [24].

This chapter is organised as follows. In section 5.1 we introduce the notations and

terminologies used throughout the chapter as well as the general outline of model-based

SFDA schemes. In sections 5.2 and 5.3 we discuss the real UAV and its nonlinear

model. In section 5.4 the EKF is discussed and in section 5.5 we introduce the RGE

and RGPE methods. The input/output structure of the NN and EKF used in the SFDA

60

schemes is presented in section 5.6. In section 5.7 we define the sensor fault types

which are considered in the SFDA tests. In section 5.8 the SFDA test conditions and

procedures are outlined in detail followed by the Results, Discussion and Conclusion

sections. Note that all results (tables, graphs etc.) are grouped together at the end of the

chapter to facilitate their analysis.

5.1 General SFDA outline and terminologies

The following notations are used in this chapter. Sensor ‘x’ is referred to as Sensor-x.

For example the pitch gyro is referred to as Sensor-q. The sensor measurements (i.e.

UAV model outputs) are denoted by a subscript ‘real’. For example the Sensor-q

measurements are referred to as qreal. However in some cases we may drop the subscript

‘real’ for simplicity purposes. The estimate of these measurements are denoted by ‘ ෡ ’

and a subscript which depends on the method of estimation. For example if a NN or

EKF is used, then the estimate of qreal is referred to as ݍොேேand ݍොா௄ி respectively.

Finally the ideal sensor measurement (i.e. the measurement if no faults are present) is

denoted by a subscript ‘ideal’.

In general SFDA of single sensor faults can be divided into two stages. Consider Fig

5.1 where only Sensor-y1 can be faulty. Stage 1 involves system modelling where y1real

is estimated to give ݕො1 using the available m-1 sensor measurements (y2real,

y3real,…,ymreal). Stage 2 involves residual processing which consists of a residual

generator and simple threshold logic. Fault detection and fault accommodation are

implemented as follows:

- Fault detection: A fault alarm is triggered if the residual exceeds its threshold.

- Fault accommodation: If a fault is detected, the faulty sensor is replaced with the

model estimate. Therefore in Fig 5.1 the switch would shift so that the output is now

ො1ݕ ො1, where ideallyݕ ൌ 1௜ௗ௘௔௟ݕ

In our application, the sensor can only fail once, and this failure is permanent.

Therefore in Fig 5.1 the SFDA scheme is terminated once the fault is detected and

accommodated. For analysis purposes we can then compare ݕො1 and 1ݕ௜ௗ௘௔௟ to judge the

NN fault accommodation performance. In our tests, 4 SFDA schemes are compared:

61

- NN-RGE

- NN-RGPE

- EKF-RGE

- EKF-RGPE

For example, the notation NN-RGE indicates that a NN is used for system modelling,

and the RGE approach is used for residual processing. Note that in NN-based SFDA

schemes, NN training is switched off once a fault is detected to avoid learning faulty

measurements.

To summarise the notations used in this chapter consider the following statement:

“In this chapter four SFDA schemes are implemented, NN-RGE, NN-RGPE, EKF-RGE,

EKF-RGPE. Faults in Sensor-q are only considered and the residual compares qreal and

 replaces qreal, for fault (ොா௄ிݍ or) ොேேݍ In the event of fault detection .(ොா௄ிݍ or) ොேேݍ

accommodation purposes, and in the ideal scenario ݍොேே ൌ qideal.”

Fig 5.1 General SFDA outline for a fault in Sensor-y1

62

5.2 UAV used in the SFDA schemes

The UAV is based on the Eclipse class vehicle [3] and is powered by a small gas turbine

engine. It has three wing trailing edge devices (A, C, D) either side of the centre line

(Fig 5.2):

- A: aileron type device (for roll control)

- B: fixed surface

- C: flap type device

- D: elevator type device (for pitch control)

 (The fixed surface B is included for other parts of the project which are not considered

here). A typical rudder type device is also located at the trailing edge of the fin for yaw

control. The basic wing configurations and other properties are defined in Table 5.1.

Fig 5.2 The UAV and location of the control surfaces

63

Table 5.1 UAV configurations

Component Symbol Value

Wing area S 2.365 m2

Wing span b 2.2 m

Mean aerodynamic chord ܿӖ 1.34 m

Aspect ratio AR 2.047

Mass m 39.7 kg

Centre of gravity location
(with respect to nose)

xcg 1.217 m

Roll inertia Ix 1.5 kgm2

Pitch inertia Iy 10.43 kgm2

Yaw inertia Iz 11.41 kgm2

Product inertia Ixz -0.14 kgm2

5.3 UAV model

A nonlinear decoupled, 6DoF model (open-loop, i.e. no stability augmentation) of the

UAV was designed at Cranfield University and implemented in a Simulink environment

[4]. Aircraft motion is defined by a body axis system (origin at aircraft centre of

gravity) with respect to a fixed (inertial) earth axes (Fig 5.3). The UAV is assumed to be

symmetric and rigid, and flight dynamics are described by the standard twelve first

order differential equations; force, moment, kinematics and navigation equations. The

twelve state variables include the components of velocity (u, v, w), angular rates (p, q,

r), attitude (Φ, θ, ψ) and position (Pn, Pe, h) relative to the earth axes.

Fig 5.3 UAV orientation and relevant motion variables (shown in the x-z plane)

64

5.3.1 Longitudinal equations of motion

UAV longitudinal motion is only considered in the SFDA tests; zero roll, yaw and

sideslip angles (Φ, ψ, β = 0). The remaining lateral motion variables are also zero (v = p

= r = 0) and aircraft motion is fully described by the axial force X, normal force Z and

pitching moment M (Fig 5.3). The decoupled longitudinal equations of motion can be

described as (Note: the lateral equations of motion can be found in [4]):

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
+

++
+++
−++

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

θθ
θθ

θ

cossin
sincos

/)(
/)(
/)(

wu
wu

q
IMMM
qumZZZ
qwmXXX

h
P

q
w
u

ygravitythrustaero

gravitythrustaero

gravitythrustaero

n
&

&

&
&

&

&

 (5.1)

X, Z and M are assumed to be due to aerodynamic, power and gravitational effects and

are defined as follows:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+
−

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

Mt

LDt

LDt

aero

aero

aero

CcSV
CCSV
CCSV

M
Z
X

2

2

2

5.0
)cossin(5.0
)sincos(5.0

ρ
ααρ
ααρ

 (5.2)

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

tthrust

t

thrust

thrust

thrust

zX

hVT

M
Z
X

0
),(τ

 (5.3)

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡−
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

0
cos
sin
θ
θ

mg
mg

M
Z
X

gravity

gravity

gravity

 (5.4)

where ρ is the air density, Vt is the airspeed, α is the angle of attack, τ is the engine

throttle setting, zt is the z-axis coordinate of the engine thrust line (which is parallel to

the oxb axis, Fig 5.3) relative to aircraft body axis. The lift, drag and pitching moment

coefficients in (5.2) are functions of the following variables:

65

 ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

),,,(
),(
),(

wqC
C
C

C
C
C

M

D

L

M

D

L

&ηα
ηα
ηα

 (5.5)

The engine output thrust is assumed to act only along the axial body axis of the aircraft

and is described by a simple relationship between throttle setting (߬) and available

thrust, ௑ܶ:

 ௑ܶ ൌ ߬Tሺ ௧ܸ, ݄ሻ (5.6)

where the available thrust is described by the lookup table Tሺ ௧ܸ, ݄ሻ and is a function of

airspeed (Vt) and altitude (h). Equation 5.1 along with the system output equation can be

summarised as follows:

ሻݐሶሺܠ ൌ fሺܠሺݐሻ, ሻሻ (5.7)ݐሺܝ

ሻݐሺܡ ൌ gሺܠሺݐሻ, ሻሻ (5.8)ݐሺܝ

where x is the state vector [ߠ ݍ ݓ ݑ ேܲ ݄ ሿ், u is the control input vector [ߟ ߬ሿ் and y is

the user-defined output vector. Together (5.7) and (5.8) describe the longitudinal motion

of the UAV.

5.3.2 Longitudinal trim

Initially, all longitudinal flight tests assume steady state (non-accelerating), trimmed

and rectilinear flight. Therefore all initial translational and rotational accelerations are

zero (ݑሶ , ሶݓ , ሶݍ ൌ 0), the initial sum of the forces and moments acting on the aircraft are

zero (i.e. X = Z = M = 0) and the initial angular velocities are also zero (q = 0). The

remaining flight variables at trim condition, for all flight tests, are as defined in Table

5.2.

Table 5.2 UAV model trim condition

 (deg) ߟ ߬ Vt (m/s) h (m) (deg)ߛ (deg)ߙ

7.55 0 32 1000 0.20 -12.98

66

5.3.3 The unknown inputs

To test the robustness of the SFDA schemes to unknown inputs we must be able to

incorporate such inputs in the UAV model. Three types of unknown inputs are

considered:

- Wind gust disturbances (system noise)

- Measurement (sensor) noise

- Parameter uncertainty

Wind gust disturbances are modelled as zero mean white, Gaussian gust disturbances

acting on the angle of attack and angle of sideslip (ߙ௚௨௦௧, ௚௨௦௧ሻ. The statisticalߚ

properties of the gust disturbances are defined in Table 5.3. The wind disturbance model

presented here is not intended to accurately model the wind disturbances experienced

during UAV flight. For example in our model we assume that ߙ௚௨௦௧ is always in the

direction of the aircraft’s angle of attack orientation, however instead it may be applied

at an angle and so we would need to consider the x-y components of ߙ௚௨௦௧. However we

are more interested in analyzing the robustness of the SFDA schemes in the presence of

a disturbance with known statistical properties, than accurately modelling the

disturbance. Similarly we introduce measurement noise in the output parameters of the

UAV model to simulate noise-corrupted sensors. Measurement noise is modelled as

zero mean, white, Gaussian noise with statistical properties shown in Table 5.4.

Note that gyro sensor noise is not considered here. This is important as it simplifies

the analysis of the EKF-based and NN-based SFDA schemes. If we were to add a large

amount of noise on the pitch gyro, then the SFDA schemes will be highly susceptible to

false alarms regardless of the accuracy of the EKF or NN pitch rate estimations. On the

other hand including sensor noise in the parameters (as in Table 5.4) which are used as

inputs to the EKF and NN is important, as it allows us to investigate the accuracy of the

estimations under noise-corrupted inputs. Parameter uncertainties are also considered in

the EKF equations but not in the NN, as the NN does not rely on a mathematical

description of the system. Table 5.5 shows the parameter uncertainties which will have

corresponding effects on the EKF system matrices (section 5.4).

67

Table 5.3 System noise standard deviations

Parameter Standard deviation

 ௚௨௦௧ 0.10 degߙ

 ௚௨௦௧ 0.10 degߚ

Table 5.4 Measurement (sensor) noise standard deviations

Parameter Standard deviation

Vt 0.42 m/s

ax, ay, az 0.07 m/s2

α 0.03 deg

ሶݑ , ሶݒ , ሶݓ 0.03 m/s2

Table 5.5 Parameter uncertainties

Parameter Description Uncertainty from nominal

m Aircraft mass (kg) ±10%

xcg Aircraft centre of gravity (m) ±5%

Iy Pitch inertia (kgm2) ±10%

 ௅ഀ Aircraft lift curve slope (rad-1) ±20%ܥ

 ௅ആ Elevator lift effectiveness (rad-1) ±20%ܥ

5.4 Extended Kalman Filter (EKF)

The KF was first proposed by R.E. Kalman in 1960 [76]. Since then the KF has seen an

overwhelming variety of applications [137]. Popular applications include the navigation

field, where measurements from a global positioning system (GPS) and an inertial

navigation system (INS) are combined into a KF measurement error model to provide

an improved measurement. Another common example is their use in control

applications as linear state estimators, where a KF is used to estimate otherwise

immeasurable parameters required in control feedback loops [99]. KFs have also been

68

widely applied in the FDI field where either the KF state estimations are directly used to

generate a fault residual [78], or the statistical properties (e.g. mean) of the KF

innovation sequence (i.e. difference between sensor measurements and KF estimates)

are analysed for any unexpected deviations caused by the faults [81]. The KF is

essentially a set of linear equations which are designed to produce optimum estimates of

a vector of parameters by minimising the mean-squared estimation error at each

iteration. In addition to the different KF applications, there have been a large variety of

KF designs proposed over the years [139]. However the extended KF (EKF) remains

one of the most popular approaches for nonlinear applications [138]. For a general

introduction to KFs the reader is referred to [137-139].

The classical EKF relies on the discrete form of the system equations. Re-writing the

UAV longitudinal motion equations (5.7)-(5.8) in discrete form and including the

system and measurement noise (section 5.3.3), we can define the following (excluding

the navigation equations):

ܓܠ ൌ fሺିܓܠ૚, ,૚ିܓܝ ߱௞ିଵሻ (5.9)

ܓܡ ൌ hሺܓܠሻ ൅ (5.10) ܓܞ

where k is the sampling instant, ܠ ൌ ሾߠ ݍ ݓ ݑ ሿ், ܝ ൌ ሾߟ ߬ሿ், ߱ = αgust and v is the

measurement noise vector. The system noise (߱) and measurement noise vector (v) are

assumed to be uncorrelated and are as defined in section 5.3.3 with variance Q and

covariance structure R respectively; Q = 0.01 deg (Table 5.3) and R is a diagonal matrix

with variances from Table 5.4 forming the diagonal elements. Additionally it is

assumed that the system and measurement noise are stationary, i.e. they have constant

variances.

The EKF is essentially a discrete Kalman filter which is continuously linearised

about its estimated trajectories, i.e. state estimates ܠො[139] ܓ. The standard EKF

equations are described in Fig 5.4 where the following Jacobians are calculated at each

time step:

௞ۯ ൌ
߲f
ฬܠ߲

ష૚,଴ܓܝ,ష૚ܓොܠ

69

۵௞ ൌ
߲f
߲߱ฬ

ష૚,଴ܓܝ,ష૚ܓොܠ

۱௞ ൌ
߲h
ฬܠ߲

ܓොܠ
ష,଴

where:

ܓොܠ -
ି is the predicted (a priori) state estimate

 is the corrected (a posteriori) state estimate ܓොܠ -

-are the mean ܓ۾ is the state estimation error covariance matrix. The diagonals of ܓ۾ -

squared state estimation (ܠොܓ) error.

 is the Kalman gain which is designed so as to minimise the diagonal elements of ܓ۹ -
 .ܓ۾

From Fig 5.4 we can see that at each iteration, the EKF executes two main steps; a

prediction and a correction step. Firstly the states are predicted by using the available

state equation (5.9), but setting the system noise (߱) to zero (as it can be difficult to

predict). This gives the a priori state estimate ܠොܓ
ି. Secondly this estimate is corrected by

using the available sensor measurements ܓܡ. The final outcome is the a posteriori state

estimate ܠොܓ. Therefore in our case, as we are interested in estimating the pitch rate, ݍොா௄ி

is simply the third element in the state vector ܠොܓ ൌ ሾݑො ݓෝ ݍො ߠ෠ሿ. In section 5.6 we define

the input/output structure of the EKF used in the SFDA scheme.

If the state vector ܠ୩ in (5.9) includes angle of attack (ߙ), then we can simply define

vector Gk from matrix Ak instead of calculating Gk separately at each iteration. Ignoring

the sampling instants for now, we know that for small perturbations about some

operating point [x0, u0], ߙ can be approximated as ߙ ≈ w /Vt where w is the normal

velocity and Vt is the total airspeed [140]. Therefore the state vector in (5.9) can be

approximated as ܠ ൌ ሾݑ ሺߙ ௧ܸሻ ߠ ݍ ሿ். If we apply appropriate scalar changes to matrix

A the state vector can now be written as ܠ ൌ ሾߠ ݍ ߙ ݑ ሿ்; for example if the first row of

A includes the aerodynamic derivatives [x୳ x୵ x୯ x஘ ሿ then this row would now

become [x୳ ሺx୵ ௧ܸሻ x୯ x஘ ሿ . Once the appropriate changes have been made to matrix

A, G is simply the second column vector of A, i.e. the column where α is seen to

influence the state vector x.

70

It is well-known that the EKF estimations can diverge especially if the initial state

vector estimate (ܠො૙, defined by the user) is inaccurate and/or the sensor measurements

are significantly contaminated with noise [139]. This is because the EKF matrices, Ak,

Ck and Gk are continuously updated based on the filter’s state estimations and therefore

inaccurate state estimates have a cumulative effect on filter performance. On the other

hand, the KF has a fixed set of system equations and is therefore less susceptible to

divergence problems. Consequently, it is common practice to first apply a KF and only

if performance is poor, should a EKF be used. Additionally, it is important that the KF

and EKF are appropriately tuned before application. This stage is known as filter tuning

and is necessary regardless of whether there is a theoretical rationale for setting the

variances Q and R, and the initial conditions ܠො૙, ૙. Filter tuning is applied until۾

accurate state estimations (ܠොܓ) as well as filter convergence are achieved, i.e. the state

estimation error variances (diagonal of Pk) have settled to almost constant values.

Fig 5.4 Classical EKF equations [141]

ܓොܠ
ି ൌ fሺܠොିܓ૚, ,૚ିܓܝ 0ሻ

ܓ۾
ି ൌ ܓۯ૚ିܓ۾ܓۯ

܂ ൅ ܓQ۵ܓ۵
 ܂

Time Update (predict)

ܓ۹ ൌ ܓ۾
ܓ۱ି

ܓ۾ܓሾ۱܂
ܓ۱ି

܂ ൅ ሿିଵ܀

ܓොܠ ൌ ܓොܠ
ି ൅ ܓܡሾܓ۹ െ ܓොܠሺܐ

ିሻሿ

ܓ۾ ൌ ሺ۷ െ ܓ۾ሻܓ۱ܓ۹
ି

Measurement Update (correct)

 ૙۾ & ො૙ܠ
Initial estimates:

71

5.5 Residual structures

5.5.1 Residual generation and evaluation (RGE)

A residual is a fault indicator which is based on a deviation between the real sensor

measurements and its model estimates. In its simplest form, a residual is generally the

squared difference between sensor measurement (ݕ௥௘௔௟) and model estimate (ݕො) [142]:

ҧ௞ݎ ൌ ሺݕ௥௘௔௟௞ െ ො௞ሻଶ (5.11)ݕ

where ݎҧ is the residual at sample instant k. Ideally the model estimates and sensor

measurement are equal (׵ ҧݎ ൌ 0) and only in the event of a fault is ݎҧ ് 0. In this case a

threshold close to zero is suitable for fault detection. However due to the presence of

residual noise (which is caused by the unknown inputs, section 5.3.3) the residual will

be non-zero even when no faults are present, i.e. ݕො ് ҧݎ ׵ ௥௘௔௟ andݕ ് 0. This can result

in false alarms and a simple solution is to raise the threshold. However this also

increases the risk of not detecting the faults. Alternatively we can improve the basic

residual generator in (5.11) so that residual noise is sufficiently dampened.

This is quite commonly done by computing the moving average of the residual in

(5.11) [63]. In our case the arithmetic mean is chosen as the average and the weighted

moving average of the past Ω residuals generated in (5.11), are calculated as follows

(for ݎҧ௝ ൌ 0, ݆ ൑ 0):

௞ோீாݎ ൌ
߸
Ω

෍ ҧ௝ݎ

௞

௝ୀ௞ିሺΩିଵሻ

 (5.12)

where rkRGE is the residual generated at sample instant k and ߸ is the weight. The

residual rkRGE can then be evaluated against a pre-defined threshold for fault detection

purposes. Overall this method of residual processing will be referred to as residual

generation and evaluation (RGE).

5.5.2 Residual generation, padding and evaluation (RGPE)

This method is designed to further reduce the effects of unknown inputs on the residual

(i.e. residual noise) in comparison to the RGE approach so that false alarms and the

72

number of undetected faults are reduced. It consists of the same steps as the RGE

method however the residuals are now padded with artificial data. More specifically the

Ω residuals (ݎҧ) in (5.12) are extended with padding data before the weighted moving

average is calculated:

௞ோீ௉ாݎ ൌ
߸

Ω ൅ ௣௔ௗ݌
቎ ෍ ҧ௝ݎ

௞

௝ୀ௞ିሺΩିଵሻ

൅ ҧ௞ିሺΩିଵሻ:୩ൟ቏ݎ௣௔ௗmin൛݌

(5.13)

where rkRGPE is the residual generated at sample instant k, ppad is the number of padding

points to be added and ‘min’ is the minimum function. Note that if padding is not

applied then ppad = 0 and rkRGPE = rkRGE as expected.

Residual padding manages to extend the Ω samples in (5.12) with ppad artificial data

points before the weighted moving average is calculated. Each artificial data point

added is equal to the minimum value in the original Ω samples. So for example if Ω = 4

and the residual samples are ݎҧ௞ିଷ:௞ ൌ ሼ1 0 3 4ሽ, then these would be extended to

ሼ1 0 3 4 0 0ሽ where two extra zeros (ppad = 2) are added. This extended residual set can

then be used to calculate the residual in (5.13) where ݎ௞ோீ௉ா ൌ ధ
ସାଶ

ሾ1 ൅ 0 ൅ 3 ൅ 4 ൅

2ሺ0ሻሿ ൌ ଼
଺

߸. (Note that the line under the zeros is only to clarify which data points are

padding data points).

Residual padding is designed to reduce the overall average of each residual set so

that the effects of unknown inputs are minimised. The ‘min’ function is used instead of

simply adding ‘zeros’ because the latter would damp all the residuals (including ones

caused by faults) while the former is more specific to the individual residual sets.

Consider this simple example to demonstrate the benefits of residual padding.

Referring to (5.11)-(5.13) the following assumptions are made (no units are used):

1. Ω ൌ 4

ҧ௞ିଷ:௞ݎ .2 ൌ ሼ0 0 0 0ሽ if there are no faults or unknown inputs

ҧ௞ିଷ:௞ݎ .3 ൌ ሼ6 6 6 6ሽ if there is a fault present

ҧ௞ିଷ:௞ݎ .4 ൌ ሼ12 12 0 0ሽ if there are unknown inputs present.

5. Only 2 padding points can be added, i.e. ppad = 2

6. The weight ߸ is set to 1.

7. The residual threshold is set to 5.

73

In this example we have assumed that a fault has a continuous effect on the residual

(assumption 3) while the unknown input has a spike-type effect and then settles to zero

(assumption 4). This spike-type behaviour is quite common of residual noise. However

in reality these spikes may be drifting and can eventually settle to a non-zero value.

Let us now consider three typical scenarios; Scenario 1 is when faults and unknown

inputs are not present and therefore ideally the threshold is not exceeded, Scenario 2 is

when only a fault is present and therefore the threshold should be exceeded, Scenario 3

is when only unknown inputs are present and therefore the threshold should not be

exceeded (otherwise this results in a false alarm).

In Scenario 1, ݎҧ௞ିଷ:௞ ൌ ሼ0 0 0 0ሽ and therefore using (5.12), rkRGE = 0. Padding the

group of residuals would give ሼ0 0 0 0 0 0ሽ and so using (5.13) the residual rkRGPE is

also zero, ݎ௞ோீ௉ா ൌ ଵ
ସାଶ

ሾ0 ൅ 0 ൅ 0 ൅ 0 ൅ 0 ൅ 0ሿ ൌ 0 . Therefore in both cases (i.e. with

or without padding) the threshold is not exceeded as desired.

In Scenario 2, ݎҧ௞ିଷ:௞ ൌ ሼ6 6 6 6ሽ and rkRGE = 6. Padding the data would give

ሼ6 6 6 6 6 6ሽ and so rkRGPE is also 6. Therefore in both cases the threshold is exceeded

and the fault is successfully detected.

The final scenario is when unknown inputs are present. ݎҧ௞ିଷ:௞ ൌ ሼ12 12 0 0ሽ and so

rkRGE = 6 which exceeds the threshold resulting in an undesired false alarm. However if

we extend the residual with padding data we get the set ሼ12 12 0 0 0 0ሽ. rkRGPE is now 4

and so the false alarm is successfully avoided. Therefore residual padding has managed

to damp the effects of the residual noise so that false alarms are avoided, but at the same

time it avoided damping the fault effects on the residual (Scenario 2) so that the faults

are detected.

This is obviously a simple example with no consideration to scenarios such as

drifting faults, large residual noise spikes, or long-lasting unknown input patterns (i.e.

consecutive noise patterns which do not instantly settle to zero). However the

underlying concepts are the same. Residual padding attempts to damp the effects of

unknown inputs on the residual. The assumption is that residual noise has a fast spike-

type effect and then settles to a close-to-zero value. Therefore the artificial padding data

(using the minimum function) added to the original residual set also has a close-to-zero

value and so the overall residual average is reduced, i.e. damped. On the other hand it is

assumed that faults (e.g. constant bias faults) have permanent effects on the residual, i.e.

the residual does not settle back to a close-to-zero once the fault is introduced.

74

Therefore the padding data added would not be close-to-zero (especially once the fault

has reached its maximum value) and so the residual average may be reduced but not

significantly. For example, a slow-drift fault will continue to increase and once it

reaches its maximum value it will remain at that value and will not drop to zero (or a

small value). However the opposite of the latter scenario are intermittent failures which

occur on a periodic basis. If not careful residual padding may treat such failures as noise

and therefore damp their effects on the residual. Intermittent failures are not considered

in the SFDA tests carried out in this thesis. However it is important to test the sensitivity

of the RGPE to intermittent failures if it is to be applied in a real system (see Chapter 8).

If residual noise can be sufficiently damped then it is also possible to amplify the

overall residual (e.g. by selecting a larger weight value ߸) so that small and slow-drift

faults are detected, without running the risk of increasing the false alarm rate. However

it is important that excessive padding and amplification are avoided as this can increase

the fault detection time (or even completely damp the faults) and increase the false

alarm rate respectively. Therefore the RGPE parameters as well as the RGE (section

5.5.1) parameters must be carefully tuned. The tuning parameters include, the residual

threshold, ppad, ߸ and Ω. The RGE and RGPE structures used in the SFDA tests are

defined in Table 5.6.

In conclusion, residual padding is an algorithm designed to reduce the overall

average of a residual set when residual noise is present. This in turn reduces the chances

of the residual exceeding the threshold and resulting in false alarms. Residual padding

reduces the average by extending the residual set with artificial data which is equal to

the minimum data value in the residual set. The average of this extended residual set

can then be taken. So far, residual padding assumes that residual noise has a spike-type

effect and then settles to zero. The minimum value is therefore always close to zero and

so padding the residual with zeros will reduce the overall average and the chances of

false alarms. However for a more complete analysis, further work (as will be discussed

later) will have to consider the performance of residual noise, when; the minimum value

due to residual noise is not close-to-zero, faults also have the same pattern as residual

noise (i.e. spike-type effects, also known as intermittent failures).

75

5.6 NN and EKF input/output structure

The NN and EKF outputs are the estimated pitch rates ݍොேே and ݍොா௄ி respectively,

which should each follow qreal and qideal in the non-faulty and faulty case respectively

(section 5.1). We have not yet defined which flight data variables are used in the NN

and EKF input set. Note that the input set of the EKF includes the parameters in the

control vector u and the sensor measurement vector y (Fig 5.4, section 5.4). As we are

only considering longitudinal motion, only the longitudinal flight variables are to be

used in the NN and EKF input set. As discussed in section 5.3.1, aircraft longitudinal

motion can be fully described by the axial force X, normal force Z and pitching moment

M equations. These can be derived from Newton’s second law of motion as follows

[140]:

 ݉ܽ௫ ൌ ܺ (5.14)

 ݉ܽ௭ ൌ ܼ (5.15)

ሶݍ௬ܫ ൌ (5.16) ܯ

The individual contributions to X, Z and M were defined in (5.2)-(5.4) and so if we

substitute them into (5.14)-(5.16) we can define the full set of longitudinal variables

describing the UAV longitudinal motion:

• Airspeed, Vt

• Angle of attack, α

• Altitude, h

• Pitch angle, θ

• Pitch rate, q

• Angular acceleration, ݍሶ

• Translational (normal) acceleration, ݓሶ

• Normal acceleration, az

• Axial acceleration, ax

To decide which of the above variables are sufficient to give accurate estimates ݍොேே

and ݍොா௄ி, three criteria must be considered:

76

1. Pitch rate (as well as ݍሶ) must not be included in the input sets of the NN and

EKF

2. The input set of the NN and EKF must be the same

3. The input set chosen depends on the EKF and not the NN structure.

Criterion 1 is important for two reasons (see for example Fig 5.1 where y1real is not

included in the input set). The first reason is that the NN and EKF estimates are more

likely to closely follow the sensor measurements ݍ௥௘௔௟ even if it is faulty, i.e. ݍොேே ؆

ොா௄ிݍ ௥௘௔௟ andݍ ؆ ௥௘௔௟. This can make fault detection difficult as the residual would beݍ

close to zero even if a fault is present in Sensor-q. Secondly when Sensor-q is faulty, its

measurements may quickly contaminate the NN structure before training can be

switched off and this can degrade the fault accommodation properties of the NN.

Criterion 2 is necessary for fair comparisons of the NN and EKF. Note that the input set

to the NN is chosen to be the same as the parameters in the EKF measurement vector y

and not the parameters in control input vector u because the latter forms a necessary,

pre-defined part of the EKF system equations while the former can be tuned by the user

i.e. a set of EKF models applied to the same system model, must have the same control

input vector u but their different measurement vectors y is what differentiates their

performances. Criterion 3 is not so obvious but is important if the EKF is to produce

accurate estimations. The reason for this is that the NN is only required to estimate the

pitch rate. On the other hand, the EKF must estimate the entire state vector xk = [u α q

θ]T accurately as the EKF updates its system equations (i.e. matrices A, G and C, Fig

5.4) based on the state estimate, ܠොܓ. Therefore if we base the choice of the input set on

the NN structure then the EKF may give poor estimations of the state vector xk. (Note

that if a KF is used instead of the EKF then the inaccurate estimation of some

parameters in the state vector may be tolerated as the KF has fixed system equations).

In conclusion the following steps are carried out to define the relevant longitudinal

flight variables to be used in the NN and EKF (to estimate the pitch rate):

1. Define the full set of longitudinal variables (see above)

2. Attempt different combinations in the y matrix of the EKF.

3. The combination which results in the lowest EKF pitch rate estimation error

is chosen as the final set which will be used in the EKF and NN.

The resulting NN and EKF input/output structures are as follows:

77

ොேே௞ݍ ൌ ܰܰሺߙ௞ିଵ, ܽ௭௞ିଵ, ሶݓ ௞ିଵ, ௧ܸ௞ିଵሻ (5.17)

ොா௄ி௞ݍ ൌ ,௞ߙሺܨܭܧ ܽ௭௞, ሶݓ ௞, ௧ܸ௞, ,௞ିଵߟ ߬௞ିଵሻ (5.18)

Note that the inputs to the EKF consist of the vector parameters yk at sample instant k

and the control input vector uk-1 at instant k-1 (Fig 5.4). The final NN and EKF

input/output structures are shown in Fig 5.5 (note that the subscript ‘real’ for the sensor

measurements is omitted for simplicity purposes) and are also defined in Table 5.6.

NNkq̂
EKFkq̂

kw&

Fig 5.5 EKF and NN input/output structure. Dotted lines indicate parameters required
for NN training. Sensor faults can be present only in Sensor-q.

78

5.7 Sensor fault types

The sensor fault types considered in the SFDA tests are as follows:

- Constant bias faults: The sensor output gets stuck and outputs a constant bias.

- Additive faults: Additive faults are very common. A term is added to the normal

sensor value as a result of temperature changes or calibration problems.

Additive faults are described by ramp functions (drift) and can be of step, soft or hard

nature depending on the duration of the ramp duration TR. TR is approximately 0s, 1s

and 4s for step-type, hard-additive and soft-additive faults respectively (Fig 5.6) [143].

An additive fault can be defined as follows [24]:

⎪
⎩

⎪
⎨

⎧

+≥
+<<−

<
=

Rfault

RfaultfaultRfault

fault

TttA
TtttTttA

tt
tF /)(

0
)(

 (5.19)

where the fault is introduced at tfault and A is the fault magnitude. Incipient faults (small

and/or slow drift faults) have a small A and/or a large ramp duration TR. For large and

small faults in Sensor-q it assumed that A = 2.4 deg/s and A = 1.2 deg/s respectively.

The full list of fault types considered in the SFDA tests will be outlined in section 5.8.2.

Fig 5.6 Additive faults in Sensor-q (ignore fault magnitude). Top plot, middle plot and
bottom plot are soft additive (TR = 4s), hard additive (TR = 1s) and step type (TR ؆ 0s)

faults respectively.

615 616 619 Time (s)

615 616 619

615 616 619

Fault in Sensor-q

Fault in Sensor-q

Fault in Sensor-q

79

5.8 SFDA application to UAV model

5.8.1 NN training

The NN structure chosen in the SFDA tests is the EMRAN RBF NN discussed in

Chapter 4. Prior to any SFDA test, the NN must be initialised to avoid poor initial

estimations. This stage is referred to as NN offline training (Chapter 4, section 4.2).

Note that as this stage is only to initialise the NN structure, no fault scenarios are

considered in the training data. Once the NN offline training stopping criteria is

achieved, the NN structure is frozen and used in the SFDA tests where it can then

continue training (online training). Note that the offline and online training algorithms

are the same (Chapter 4, section 4.1.3) but will have different tuned parameters (e.g.

learning rates). (225s of flight data is used during the offline training stage).

5.8.2 SFDA test outline

Four SFDA schemes are designed and compared. These include NN-RGE, EKF-RGE,

NN-RGE and EKF-RGPE. The NN and EKF input/output structures chosen are as

discussed in section 5.6 and the SFDA tests are carried out on the UAV model

presented in section 5.3. The SFDA tests consider different levels of unknown inputs

(section 5.3.3) and faulty types (section 5.7) and in each test, Sensor-q is only allowed

to fail once. Overall there are 244 separate SFDA tests (800s of flight data each) which

include; 7 unknown input configurations, 8 fault types and 4 SFDA schemes. Note

that the NN is initialised (via offline training) only once using the Configuration 1

settings (to be defined).

The 7 configurations considered are as follows:

- Configuration 1: No unknown inputs, i.e. the system and measurement noise

standard deviations are as in Tables 5.3 and 5.4 with correct Q and R variance

structures in the EKF and no parameter uncertainties.

- Configuration 2: Parameters in Table 5.5; mass, xcg, Iy, ܥ௅ഀ, ܥ௅ആ are underestimated

by 5%, 2.5%, 5%, 10%, 10% in the EKF equations.

- Configuration 3: System and measurement noise standard deviations (Tables 5.3

and 5.4) are doubled in the UAV model.

80

- Configuration 4: Configurations 2 and 3 are combined.

- Configuration 5: Same as Configuration 2 but underestimation of 10%, 5%, 10%,

20%, 20%.

- Configuration 6: Same as Configuration 3 but 10 times larger standard deviations.

- Configuration 7: Configurations 5 and 6 combined.

The reasons for choosing these configuration settings are as follows:

- Configuration 1: To investigate the general modelling and SFDA performance

capabilities when the EKF system equations are perfectly modelled and when the NN

is initialised using the same data statistical properties (i.e. same system and

measurement noise standard deviations) used during offline training.

- Configuration 2: To investigate the robustness of the EKF to parameter uncertainties.

As will be discussed in Chapter 8, future work must also investigate the performance

of the NN when parameter uncertainties are present in the UAV model.

- Configuration 3: To investigate the robustness of the NN and EKF to an increase in

system and measurement noise. Therefore we consider the scenario when the NN is

initialised (via offline training) using one set of data (i.e. with Configuration 1

settings), but then during application the system and measurement noise increase.

This configuration can also be seen as an underestimation of the variances in the Q

and R matrices of the EKF equations (section 5.4).

- Configuration 4: To simulate the real scenario when both parameter uncertainties are

present in the EKF equations and the system and measurement noise levels have

increased.

- Configurations 5, 6 and 7: These are repetitions of Configurations 2, 3 and 4

respectively except that the unknown inputs have increased.

It is important to note that parameter uncertainties are only associated with the EKF

equations and not in the UAV model. This is because we are mainly interested in

investigating the robustness of the SFDA schemes, which are based on a mathematical

description of the system, to parameter uncertainties. However future work must also

consider the scenario when parameter uncertainties are present in the UAV model, and

test the NN performance in such scenarios (discussed in Chapter 8). On the other hand,

changes in the system and measurement noise levels are considered in the UAV model

81

(Configurations 3 and 6). This is to demonstrate the real scenario where the statistical

properties of noise are generally unknown and time-varying. For this reason, NN

offline training is implemented only once, using the Configuration 1 settings, and this

initial structure is then used in all SFDA tests. In other words we consider the scenario

when the NN is developed using one set of data but then during application the noise

statistics changes. In theory, unlike the EKF, the NN should be able to adapt (via online

training) to the time-varying system.

The 8 fault types considered are as follows (refer to section 5.7):

- CBL: Constant bias large (A=2.4 deg/s)

- STL: Step-type large (A=2.4 deg/s)

- HAL: Hard additive large (A=2.4 deg/s,TR=1s).

- SAL: Soft additive large (A=2.4 deg/s, TR=4s)

- CBS: Constant bias small (A=1.2 deg/s)

- STS: Step-type small (A=1.2 deg/s)

- HAS: Hard additive small (A=1.2 deg/s, TR=1s)

- SAS: Soft additive small (A=1.2 deg/s, TR=4s)

Fig 5.7 shows a tree-diagram of the different SFDA tests where each full branch is 1

SFDA test. For example one of the branches is the SFDA test which uses Configuration

4 data settings and the NN-RGE scheme to detect a CBL fault.

Fig 5.8 shows the flowchart for the SFDA tests where 1 pass through the flow chart

(i.e. from Start to End) represents 1 SFDA test. Note that as we are assuming that the

sensor can only fail once, the fault alarm is triggered only once, which is why we set the

residuals (RGE and RGPE) to zero once a fault is detected (see last section of the

flowchart).

Fig 5.7 Tree-diagram showing the different SFDA tests. 7 configurations, 8 fault types

and 4 different SFDA schemes. Overall there are 244 separate tests.

82

Fig 5.8 Flow chart for one SFDA test (Note: one pass through the flowchart per sample
instant, k).

End

Start

Run NN
(or EKF)

Compute RGE
(or RGPE)

STEP 1

No

End of data? Yes

Fault type (e.g. CBL)

UAV MODEL DATA (Configuration 1 or 2…7)

GO TO
Step 1

RGE (or
RGPE) ≥
threshold

For ALL remaining data:
1) Stop NN training

2) Replace ݍ௥௘௔௟ with

ggݍොேே (or ݍොா௄ி)
3) RGE (or RGPE) =0

FAULT
ALARM

No

Yes

Fault
Detection

Fault
Accommodation

5.

To

(F

FA

th

in

O

ra

be

ty

re

in

of

de

fa

.8.3 SFDA p

o assess the

Fig 5.9):

A is a false

hreshold prio

ndicates the

n the other

atio between

efore the fau

ype, raf is ca

esidual = thr

ntroduced at

f the estima

etection,

ault accomm

Fig 5.9 Re

 performan

e performan

alarm indic

or to fault d

percentage

hand, DR is

n the main r

ult is introd

alculated as

reshold) and

t 615s. Addi

tion errors (

 and

modation sta

(

esidual exam

nce indica

nces of the S

cator where

detection, an

of time fals

s a fault sen

residual mag

duced (rpr). N

the maximu

d before it s

itionally, th

(VEE) are c

 are compa

age) the esti

(a)
mples (no un

8

tors

SFDA schem

fail

fa

t
t

FA =

DR

tfa is the tot

nd tfailure is t

se alarms ar

nsitivity (de

gnitude at f

Note that as

um residual

starts to sett

he mean (ab

calculated w

ared to qreal,

imations are

nits used). F

83

mes, two ind

%100x
lure

fa

prr
raf=

tal time the

the time at w

re present b

tectability)

fault detectio

s the effect o

 value reach

tle or decrea

solute) estim

wherever sui

and follow

e compared

Fault introd

dicators are

residual rem

which the fa

before the fa

indicator (F

on (raf) and

of a fault on

hed after fau

ase. In our t

mation erro

itable. Note

ing fault de

to qideal (se

duced at 615

e calculated

mains above

ault is gener

ault is actual

Fig 5.9). It c

the maximu

n the residua

ult detection

ests all faul

or (MEE) an

e that prior t

etection (i.e.

ction 5.1).

 (b)

5s and detec

for each tes

(5.20)

 (5.21)

e the

rated. FA

lly detected

calculates th

um residual

al is of ramp

n (i.e. after

lts are

nd the varian

to fault

. during the

cted at 616s

st

d.

he

l

p-

nce

.

84

Results

The NN and EKF as well as the RGE and RGPE structures are outlined in detail in

Table 5.6 and some of the UAV flight data is shown in Fig 5.10. Note that the NN input

parameters are the same as the EKF output vector y (refer to section 5.6). Together

Tables 5.6-5.12 and Figs 5.10-5.19 display the SFDA results. A careful analysis of the

results reveals the following:

- Table 5.7, Figs 5.11 and Fig 5.12: These show the NN offline training results.

Offline training is only associated with the NN which is why MEE for the EKF (and

KF) is constant in Fig 5.11. It is only included for comparative reasons. The number

of epochs elapsed before NN offline training is stopped is 2411 (1hr 25mins offline

training time when implemented on a 1.6GHz Pentium processor). From Fig 5.11 it

can be seen that the steep error gradients occur at the initial stages of training. This is

expected as the EMRAN RBF NN starts with zero hidden units and gradually

develops its structure with further training (Fig 5.12). The MEE decreases with more

training epochs to a value close to the MEE of the EKF. On the other hand, the KF has

a comparatively much larger MEE. Fig 5.12 shows the hidden neuron pattern for the

EMRAN RBF NN during the offline training stage. The maximum number of hidden

neurons achieved is 8, which is reached after almost 200 training epochs. Training

beyond this point only consists of updating the free parameters (weights, centres,

widths) but the number of hidden neurons will remain fixed.

- Table 5.8: This shows the estimation errors during the SFDA tests (when no faults are

present). In general we notice that the MEE for the NN and EKF are close in value for

Configurations 1-5. However for Configurations 6-7 the MEE increases significantly

for the EKF but not for the NN. We also notice that the KF estimation performance is

generally poor for all configurations.

- Fig 5.13: This plots the mean execution times for the first 100 data samples of the

SFDA test (considered only for Configuration 1 settings and when no faults are

introduced). The process is repeated for 100 iterations and the mean is then calculated

which resulted in 1.90 ms, 0.69 ms and 0.21 ms mean execution times for the EKF,

NN and KF respectively. (Note that the programs were run on a 1.6GHz Pentium

processor). As expected, the KF has the fastest execution time as it consists of a fixed

set of equations while the EKF system equations are continuously linearised at each

85

time step and the NN structure must be updated via the training algorithm. It can also

be seen that it takes less time to train the NN than to update the EKF equations.

However in general the processing time per data sample for all 3 modelling

techniques is lower than the flight data sampling time (0.02s).

- Fig 5.14: This plots ݍොேே and ݍොா௄ி for both Configurations 1 and 6. We only show the

NN-RGE and EKF-RGE schemes as it is the method of modelling (EKF vs. NN) and

not the residual structure which is important for the analysis carried out here. The

corresponding estimation errors (i.e. [qreal - ݍොேே] & [qreal - ݍොா௄ி]) for each estimation

plot are also shown. In general we notice that for Configuration 6, where the system

and measurement noise is maximum (section 5.8.2), the EKF-RGE estimation errors

increase significantly (Fig 5.14d) in comparison to the NN-RGE (Fig 5.14c). This

shows that 1) The EKF performance is poor when the system and measurement noise

are incorrectly modelled in the EKF equations, 2) The NN online training algorithm

has suitable adapted to the increase in system and measurement noise.

- Tables 5.9-5.11: These show the fault detection results for all SFDA tests, where

Tables 5.10-5.11 and Table 5.9 are a breakdown of the results and a summary of the

results respectively. Comparing NN-RGE and NN-RGPE we will notice, from Table

5.9, that the NN-RGE has 4 undetected faults (UDs) regardless of the configuration

settings. These faults were found to be mainly the hard and soft additive faults; SAL,

STS, HAS and SAS. On the other hand the NN-RGPE detects such faults with almost

no UDs. It also has on average a higher detectability ratio (DR). For example in Table

5.111, the NN-RGE does not detect the SAS fault but the NN-RGPE detects the fault

with a DR of 1.81. Comparing the fault types we will notice, from Tables 5.10 and

5.11, that all constant bias faults (CBL and CBS) are successfully detected, regardless

of the configuration settings or SFDA scheme used. They are also detected much

quicker (Table 5.10) and result in higher DR (Table 5.11) in comparison to other fault

types. Comparing the NN-based and EKF-based schemes we will notice from Table

5.9, that EKF-based schemes have fewer cases of undetected faults (i.e. lower UD).

However they also have a higher percentage of false alarms (FA). So for example in

Table 5.9 (Configuration 7), the EKF-RGE has a FA of 2.32% while the NN-RGE has

a FA of only 0.09%. Comparing the NN-based and EKF-based schemes for the

different configuration settings we will notice, from Table 5.9, that for Configurations

1-5, the EKF-RGPE has a much higher DR than the NN-RGPE. For example in Table

5.9 (Configuration 1), DR=104.72 for the EKF-RGPE but is nearly 3 times smaller

86

(DR=40.23) for the NN-RGPE. On the other hand, for Configurations 6-7 the DR for

the EKF-based schemes reduce significantly in comparison to the NN-based schemes.

For example in Table 5.9 (Configuration 7), DR=0.06 and DR=23.40 for EKF-RGPE

and NN-RGPE respectively. A DR of less than 1 shows that the residual peak due to a

fault is actually smaller than the residual noise present prior to fault detection, i.e.

raf>rpr (section 5.8.3). This is one indication that the EKF estimation performance

degrades for configurations with higher amounts of system and measurement noise. In

summary, from Table 5.9, we will find that RGPE-based schemes increase the mean

detection time (MT) by 120% but they also decrease the false alarms by almost 60%

and have a 6 times greater detectability ratio than RGE-based schemes. Additionally

in comparison to EKF-based schemes, NN-based schemes have a higher number of

undetected faults but they also result in higher detectability rations and lower false

alarm rates for large amounts of system and measurement noise, i.e. Configurations 6

and 7.

- Figs 5.15-5.17: To demonstrate the results obtained in Table 5.9 more clearly, the

residual plots (RGE and RGPE) for some of the tests are shown in Figs 5.15-5.17.

Results for only HAL (large hard additive) and SAS (small soft additive) faults, and

Configurations 1, 4 and 7 are shown. Note that in these figures the residual is not set

to zero and NN training is not switched off if the fault is detected (which should be

the case as discussed in section 5.1). However, this is only the case for Figs 5.15-5.17,

so that the residual patterns are clearer. As we observed earlier in Table 5.9, we notice

that the NN-RGE does not detect the SAL fault (Figs 5.15c, 5.16c, 5.17c) while the

NN-RGPE detects the fault successfully (Fig 5.15b, 5.16b, 5.17b). Furthermore for

Configuration 7, the NN-RGE is unable to avoid false alarms (Figs 5.17a and 5.17c)

in comparison to the NN-RGPE (Figs 5.17b and Fig 5.17d). We can of course raise

the RGE threshold so that the false alarms are avoided, but this would also increase

the number of undetected faults (UD). So for example in Fig 5.17a, we note that the

peak when the fault is detected and the maximum peak before the fault is detected are

very close in value, i.e. raf ؆ rpr (section 5.8.3). In fact the DR is less than 1 (DR= 0.76,

Table 5.117). Therefore if we raise the threshold to avoid the false alarms we may

consequently not detect the fault. If on the other hand we observe the same scenario in

Fig 5.17b, we notice that the RGPE magnifies the difference between these peaks with

a much higher DR of 4.59 (Table 5.117). This magnified difference allows us to

amplify the residual sufficiently so that the fault is detected but at the same time the

87

false alarms are avoided. On the other hand the EKF-based schemes successfully

detect both HAL and SAL faults regardless of the configuration or residual structure

used (Fig 5.15e-h, Fig 5.16e-h, Fig 5.17e-h). This was also seen in Table 5.9 where

UD was generally zero for EKF-based schemes. However they are also more

susceptible to false alarms in comparison to NN-based schemes especially for

Configuration 7 (Fig 5.17e-h).

- Table 5.12 and Fig 5.18: These assess the NN fault accommodation properties. Fig

5.18 shows the NN fault accommodation results for large faults (CBL, STL, HAL and

SAL) while Table 5.12 summarises the results for all fault types and residual

structures. From Fig 5.18a we notice that the large constant bias fault (CBL) has

resulted in poor NN fault accommodation performance in comparison to other fault

types. This is despite the faster fault detection times found earlier in Table 5.10 for

constant bias faults, i.e. despite the fact that we manage to detect the fault much

quicker and therefore switch off NN learning before the NN structure is contaminated

with faulty data. From Table 5.12 we notice that MEEs and VEEs for the NN are

almost constant for all configurations while for the EKF they increase significantly for

Configurations 6-7. For example in Table 5.12 the EKF-based schemes have a VEE of

3.28 for Configuration 7 while the VEE for the NN-based schemes is almost 30 times

smaller (VEE = 0.11).

Discussion

In comparison to the EKF and NN we find that the KF shows poorer estimation

performance (Table 5.8). It is well known that the KF equations are designed to give the

minimum estimation error variance; however, this is only true if there are no modelling

errors. For nonlinear applications, the KF will generally perform well within a certain

operating range, i.e. close to the operating points about which the KF is linearised. From

our tests it is clear that the EKF outperforms the KF with lower MEEs and VEEs but this

is also at the cost of increasing the execution time (Fig 5.13). For one sample of data the

KF reduces the execution time by nearly 89% in comparison to the EKF. Therefore a

logical question would be whether the KF estimation errors can be tolerated with the

benefit of increasing the execution time onboard the aircraft. To answer this let us

consider the MEE for the KF in Table 5.8 (Configuration 1). The MEE is 1.28deg/s. In

88

comparison to the small faults which have a magnitude of 1.2deg/s (A=1.2 deg/s,

section 5.7), the MEE for the KF is actually higher. This can make it difficult for the

SFDA scheme to differentiate between routine estimation errors and small magnitude

faults. In SFDA applications the estimation errors must be as low as possible to avoid

any false alarms and a reasonable guideline is that the MEE must be significantly lower

than the smallest expected magnitude of a fault so that the SFDA scheme can be made

sensitive to such faults. Therefore whilst having the lowest execution time, the KF is not

suitable in our SFDA application. On the other hand the NN-based schemes and the

EKF-based schemes may have larger execution times but they also have an average

MEE of only 0.21 deg/s and 0.22 deg/s respectively.

The NN must be given sufficient offline training time before it can be used in the

SFDA tests. This was seen in the offline training stage where the NN required 2411

training epochs before the stopping criterion was satisfied. There are no time limits on

how long the NN should be trained offline as this stage is not done during the flight

tests. Additionally in our case the NN was trained offline with randomly selected data

sets, however in real implementation it can be more robust to train the NN with a larger

data set, as well as data which covers the entire domain of validity of the flight tests, i.e.

training data which covers the entire flight envelope.

In general it can be seen that NN-based schemes start to significantly outperform the

EKF-based schemes for Configurations 6-7, i.e. when the system and measurement

noise are significantly increased. This was seen in different parts of the results. Firstly,

this was seen in Table 5.8 were the MEE for the EKF increased by almost 50% from

Configuration 5 to Configuration 6-7 while the MEE for the NN remained almost

constant. Secondly this was seen in Table 5.9, where the false alarm properties (FA) are

higher for the EKF and the detectability ratio (DR) is lower in comparison to the NN-

based schemes. Thirdly this was seen in Fig 5.14 where the estimation errors for the

EKF increased significantly for Configuration 6 (Fig 5.14d) in comparison to the NN

(Fig 5.14c). Finally this was also seen in the fault accommodation results (Table 5.12)

where MEE and VEE increased significantly for the EKF but remained more or less

constant for the NN-based schemes. Two important conclusions can therefore be drawn.

One conclusion is that the EKF seems to be robust to small and large amounts of

parameter uncertainties and robust to small amounts of system and measurement noise.

Another conclusion is that, provided the NN structure has been suitably initialised

during the offline training stage, the NN online training algorithm allows it to suitably

89

adapt to time-varying systems, with better SFDA performances than the EKF as well as

faster execution times (Fig 5.13).

In general, however, the EKF-based schemes outperform the NN-based schemes in

terms of the fault detection properties (i.e. in terms of the fault detectability ratios and

number of undetected faults). From Table 5.9 we will notice that the NN generally has

smaller DRs (especially for the RGPE structures) than the EKF for Configurations 1-5

and a higher number of undetected faults (UD). In fact the NN-RGE did not detect soft

additive faults and most of the small magnitude faults (i.e. incipient faults), regardless

of the configuration settings. The reason for this is that the NN online training algorithm

is not designed to differentiate between flight data which it should adapt from and faulty

data which it should avoid. Consequently it can learn the fault and if this fault is not

sufficiently large, the residual generated may not be high enough to exceed the

threshold. This is clearly seen in Fig 5.15c where a peak at around 615s (i.e. around the

time the fault is introduced) is visible but is not large enough to exceed the threshold.

The EKF on the other hand does not suffer from this as we can see from Fig 5.15g

where the fault is successfully detected. Therefore, the same property (online training

algorithm) which makes the NN superior to the EKF is the same property which causes

the NN-based SFDA schemes to have higher numbers of undetected faults and lower

detectability ratios. However we can tune the online learning rate and more importantly

improve the residual generator so that the incipient faults are detected. This was seen

from the NN-RGPE results where the number of undetected faults was generally zero

and the detectability ratio was increased in comparison to NN-RGE.

Let us now compare the different residual structures RGE and RGPE. In general we

can see from Table 5.9 that the RGPE results in lower FA and UD than the RGE

approach for all configurations. In fact in a separate test where Ω (i.e. averaging size) in

(5.13) was increased and the median function was used instead of the arithmetic mean,

the RGE approach still had higher FAs and UDs than the RGPE approach. Therefore

RGPE manages to successfully damp the effects of unknown inputs on the residual and

at the same time amplify the residual so that incipient faults are more easily detected.

This is best seen in Fig 5.17c and Fig 5.17d where for the RGE approach the fault peak

(at around 615s) is not large enough to exceed the threshold and false alarms are

present, while for the RGPE approach the fault peak has been sufficiently amplified to

exceed the threshold and false alarms are avoided.

90

The drawback of the RGPE approach is the increase in fault detection times. For

example in Table 5.9 (Configuration 7), the mean detection time (MT) for the EKF-

RGE is 1.74s and for the EKF-RGPE it increases by almost 191% to 5.06s. This is

expected because residual padding (associated with the RGPE) essentially dampens the

residual which can consequently delay fault detection if not carefully tuned. However in

comparison to other work, the fault detection times remain within acceptable limits [24-

26, 142, 143].

In conclusion, the benefits of the RGPE are the reduction of the false alarms rates

and number of undetected faults but its drawback is the increase in fault detection time.

Therefore for faults which are detected successfully by the RGE approach (such as

constant bias faults) and in applications where false alarm rates are low, it is not

necessary to use the RGPE method as it increases the fault detection time. Of course in

reality one would not know a priori which sensor fault classes are more likely to occur

and so a trade-off is required where sufficient amounts of padding and amplification can

be chosen to detect the incipient faults and avoid false alarms, but at the same time high

amounts of padding are avoided to keep the fault detection times within acceptable

limits (generally dictated by the user). Similarly a suitable threshold must be selected

based on experience. In our case a ppad of 50 samples (1s), an amplification of 40 (߸ =

40) and a threshold of 0.004 (rad/s)2 were found most suitable (Table 5.6). As we

discussed earlier, the choice of the NN learning rate is also crucial. In general the offline

learning rate is set to be higher than the online learning rate. This is because a high

online learning rate can cause the NN to learn the faulty measurements while in the

offline training stage, a high learning rate is required to adequately build the NN

structure. An offline and online learning rate of 0.04 and 0.0007 respectively, were

found most suitable for our tests.

From the results we also found that constant bias faults are more easily detected than

any other fault class. This is expected as the fault pattern is significantly different than

the sensor measurements while additive faults simply result in a fixed offset from the

sensor measurement. The question is which fault classes should be detected faster than

others? Despite their drift-type effect, incipient faults can eventually severely damage

the plant if left undetected for too long [9]. However a slow fault detection time for

incipient faults can be tolerated. On the other hand large and constant bias faults must

be quickly detected. There are two reasons for this. The obvious reason is that they can

cause instant damage to plant performance especially if the sensor measurements are

91

used in a control feedback loop. The second reason is that the NN structure can be

significantly contaminated from the faulty measurements and consequently degrade the

fault accommodation performance. This was seen in Fig 5.18. In Fig 5.18a the NN

accommodated estimate (i.e. the NN estimate after the fault was detected) is poorer in

comparison to other scenarios such as STL faults in Fig 5.18b. Therefore, the NN would

require a fast fault detection times so that training is switched off before the NN

structure is contaminated. This sensitive dependency on the fault detection time

generally results in larger accommodation errors than the EKF as seen in Table 5.12.

The effects of NN contamination will be clearer when multiple sensor faults are

considered in Chapter 6, as in this case the NN accommodated estimate is feedback to

other NN models.

Conclusions

The aim of this chapter was to demonstrate a NN-based SFDA scheme on a UAV

model, where only single sensor faults are considered. For comparative reasons, an

EKF-based approach was also implemented. Tests were implemented on a nonlinear

UAV model and faults were assumed to occur only in the pitch gyro. The tests were

carried out under different levels of system and measurement noise and the EKF

equations included parameter uncertainties. The following conclusions can be drawn:

- The EKF outperforms the NN, simply as a fault detector. By this we are implying

that if we are only interested in detecting the faults and not the overall SFDA

performance, then EKF-based schemes generally outperform NN-based schemes as

the online training algorithm of NNs can potentially learn the faults. This was

shown by the generally higher detectability ratios and the lower number of

undetected faults for EKF-based SFDA schemes.

- On the other hand, NN-based SFDA schemes have lower false alarm rates than

EKF-based SFDA schemes. This is because of the NN adaptive capabilities (via

online training) which result in more accurate estimates.

- The NN has shown to be more robust to system and measurement noise than the

EKF (provided that sufficient amount of offline training is implemented). This is

due to their adaptive capabilities which allow them to adapt suitably to the time-

varying system.

92

- A general guideline is that the average model estimation errors should be lower than

the smallest expected sensor fault magnitude. This allows the residual generator to

differentiate between a fault and a routine modelling error. In our tests only the EKF

and the NN (but not the KF) were able to fulfil this criterion.

- NN-based SFDA schemes struggle to detect incipient faults as the NN inevitably

learns the faulty measurements during training. Nevertheless with an appropriate

residual generator, incipient faults can be successfully detected.

- In our case a weighted moving average (RGE) was used to compute the residual.

Additionally a novel residual generator was proposed (RGPE) which was similar to

the standard RGE approach but included a novel processing technique referred to as

padding. Overall RGPE outperformed RGE with fewer false alarms and undetected

faults as well as higher fault detectability ratios. This observation was true for all

levels of unknown inputs, as well as the method of modelling (i.e. NN or EKF).

- The performance of NN-based SFDA schemes can be highly dependent on the fault

detection time. A slow fault detection time can result in significant contamination of

the NN structure (due to the faulty data). The contaminated NN can in turn degrade

the fault accommodation accuracy.

- Constant bias faults are generally detected more quickly than incipient faults and

result in higher detectability ratios. On the other hand constant bias faults can also

contaminate the NN faster than incipient faults resulting in poorer fault

accommodation performance. Methods which can be applied to avoid this include;

tuning the NN, e.g. by lowering the learning rate so its global approximation

capabilities are improved, tuning the residual generator, decreasing the fault

detection time by lowering the threshold level (however we must also avoid

increasing the false alarm rate).

Some of the flight conditions we consider in this chapter are not realistic of real

flight. For example, the repeated 3-2-1-1 input demand is not realistic, as the pilot may

consider other input patterns such as; ramp up/down and fixed elevator demands.

However in this chapter the resulting flight data (e.g. pitch rate, normal acceleration

etc.) are different for the NN training set and the NN testing set. This is arguably more

important at this stage than testing realistic flight conditions, as we are primarily

interested in the performance of the NN when it is queried with new data. However

further work (as will be discussed later) can consider more realistic flight scenarios. The

93

EKF was chosen here as a representative of SFDA schemes which are based on a

mathematical description (fixed) of the system. In a number of occasions we have seen

how the NN adaptive capabilities make them superior to the EKF. However it must be

noted that satisfactory performance of an SFDA application depends on a number of

contradicting properties and as such a trade-off will always be necessary. For example

while the NN-based SFDA schemes have more accurate estimations which result in

lower false alarms rates, the EKF-based SFDA schemes generally have fewer

undetected faults. Furthermore a trade-off is generally required between the need to

lower the residual threshold (to avoid undetected faults) and the need to raise the

threshold (to avoid false alarms). In this chapter we have managed to tune an EMRAN

RBF NN and design a novel residual generator (RGPE) so as to achieve on average;

zero false alarm rate, no undetected faults, a 1.33s fault detection time, a fault

accommodation error of 0.41 deg/s and an execution time of 0.69ms per sample of data

(when implemented on a 1.6GHz Pentium processor). As a general remark, the

conclusions drawn from this chapter are not intended to demonstrate the superiority of

NNs to all mathematical-model based approaches. Rather the EKF was chosen due to its

popularity and is used as a benchmark for which the NN performance can be compared

to. In the next chapter, we use the NN and the residual structure designed here (NN-

RGPE) to carry out a more realistic SFDA application where multiple sensor fault

scenarios are considered.

94

Fig 5.10(a) UAV model flight data for SFDA tests (Configuration 1, shown only for first
100s)

0 20 40 60 80 100
-16

-14

-12

-10

-8

Time (s)

E
le

va
to

r
de

m
an

d
(d

eg
)

0 20 40 60 80 100
-0.2

-0.1

0

0.1

0.2

Time (s)

Th
ro

ttl
e

de
m

an
d

0 20 40 60 80 100
950

1000

1050

1100

1150

Time (s)

A
lti

tu
de

 (
m

)

0 20 40 60 80 100
-30

-20

-10

0

10

20

30

Time (s)

P
itc

h
ra

te
 (d

eg
/s

)

0 20 40 60 80 100
-15

-10

-5

0

5

10

15

Time (s)

N
or

m
al

 a
cc

el
er

at
io

n
(m

/s2)

0 20 40 60 80 100
2

4

6

8

10

12

14

Time (s)

A
ng

le
 o

f a
tta

ck
 (

de
g)

0 20 40 60 80 100
-15

-10

-5

0

5

10

15

Time (s)

w
do

t (
m

/s2)

0 20 40 60 80 100
10

20

30

40

50

Time (s)

A
irs

pe
ed

 (m
/s

)

95

Fig 5.10(b) UAV model flight data for NN training (Configuration 1, 225s of flight data)

0 50 100 150 200
-15

-14

-13

-12

-11

Time (s)

El
ev

at
or

 d
em

an
d

(d
eg

)

0 50 100 150 200
0.19

0.2

0.21

0.22

0.23

0.24

Time (s)

Th
ro

ttl
e

de
m

an
d

0 50 100 150 200
1000

1200

1400

1600

1800

Time (s)

Al
tit

ud
e

(m
)

0 50 100 150 200
-10

-5

0

5

10

Time (s)

Pi
tc

h
ra

te
 (d

eg
/s

)

0 50 100 150 200
-4

-2

0

2

4

Time (s)

N
or

m
al

 a
cc

el
er

at
io

n
(m

/s2)

0 50 100 150 200
5

6

7

8

9

10

Time (s)

An
gl

e
of

 a
tta

ck
 (d

eg
)

0 50 100 150 200
-4

-2

0

2

4

Time (s)

w
do

t (
m

/s
2)

0 50 100 150 200
25

30

35

40

Time (s)

Ai
rs

pe
ed

 (m
/s

)

96

Table 5.6 Summary of NN, EKF structures and RGE, RGPE structures

NN & EKF STRUCTURE

 NN EKF

Input parameters: ሾߙ ܽ௭ ሶݓ ௧ܸሿ ሾߙ ܽ௭ ݓሶ ௧ܸ ߟ ߬ሿ௔

Output parameter: ݍොேே௞ ݍොா௄ி௞
௕

No. of input neurons: 0 -

No. of hidden neurons (max): 9 -

No. of output neurons: 1

Input data normalisation: 0-1 -

NN learning rate: 0.0007 -

ሾߝ 2ܧ 1ܧ௠௔௫ :ௗ௬ ݇௢௣ሿ௖ߛ ௠௜௡ߝ [1e-4 0.01 0.6 0.3 0.997 1e-6] -

RESIDUAL STRUCTURE

 RGE RGPE

Weight (߸) d: 1 40

Averaging size (Ω) d: 50 50

Padding points (ppad) d: - 50

Threshold: 0.001 (rad/s)2 0.004 (rad/s)2

-: Inapplicable
a: This is made up of the EKF output vector yk and input vector uk-1 (Fig 5.4)
b: This is obtained from the EKF state vector estimate ܠොܓ
c: Refer to Chapter 4, Eq. (4.11)-(4.16).
d: Refer to Eq. (5.10)-(5.11)

97

Table 5.7 NN mean estimation error (MEE in deg/s) at the end of offline training for the test

data set. EKF and KF errors also shown.

 NN EKF KF

 Epoch MEE MEE MEE

Config. 1 2411 0.26 0.22 1.12

Fig 5.11 NN offline training error history. (EKF and KF estimation errors also shown)

Fig 5.12 NN hidden neuron pattern during offline training (shown only for first 2000 epochs)

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Epoch

M
E

E
 (d

eg
/s

)

NN
EKF
KF

0 1 10 100 1000 2000
0

1

2

3

4

5

6

7

8

9

10

Epoch

N
um

be
r o

f h
id

de
n

ne
ur

on
s

98

Table 5.8 NN, EKF and KF mean estimation error (MEE, in deg/s) and estimation error

variance (VEE, in deg2/s2) for the SFDA tests when no faults are present.

 NN EKF KF

 MEE VEE MEE VEE MEE VEE

Config. 1 0.21 0.06 0.22 0.12 1.28 5.24

Config. 2 0.21 0.06 0.23 0.13 1.28 5.24

Config. 3 0.21 0.05 0.29 0.22 1.29 5.21

Config. 4 0.21 0.05 0.30 0.23 1.29 5.21

Config. 5 0.21 0.06 0.31 0.76 1.28 5.24

Config. 6 0.22 0.06 0.63 1.13 1.31 4.99

Config. 7 0.22 0.06 0.61 1.35 1.31 4.99

Fig 5.13 Mean execution times per data sample. Mean calculated for first 100 data samples

and then repeated for 100 iterations.

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

E
xe

cu
tio

n
tim

e
(m

s)

Iteration

EKF
NN
KF

NOTE: Mean times (ms):
EKF = 1.90
NN = 0.69
KF = 0.21

99

(a) NN-RGE, Config. 1 (b) EKF-RGE, Config. 1

(c) NN-RGE, Config. 6 (d) EKF-RGE, Config. 6

Fig 5.14 NN and EKF estimations and estimation errors (basic difference, ࢒ࢇࢋ࢘ࢗ െ ෝ). Purpleࢗ
line is the NN and EKF estimates

0 5 10 15 20
-20

-15

-10

-5

0

5

10

15

20

Time (s)

q
(d

eg
/s

)

0 5 10 15 20
-20

-15

-10

-5

0

5

10

15

20

Time (s)

q
(d

eg
/s

)

0 5 10 15 20
-10

-8

-6

-4

-2

0

2

4

6

8

10

Time (s)

Es
tim

at
io

n
er

ro
r(d

eg
/s

)

0 5 10 15 20
-10

-8

-6

-4

-2

0

2

4

6

8

10

Time (s)

Es
tim

at
io

n
er

ro
r (

de
g/

s)

0 5 10 15 20
-20

-15

-10

-5

0

5

10

15

20

Time (s)

q
(d

eg
/s

)

0 5 10 15 20
-20

-15

-10

-5

0

5

10

15

20

Time (s)

q
(d

eg
/s

)

0 5 10 15 20
-10

-8

-6

-4

-2

0

2

4

6

8

10

Time (s)

Es
tim

at
io

n
er

ro
r (

de
g/

s)

0 5 10 15 20
-10

-8

-6

-4

-2

0

2

4

6

8

10

Time (s)

Es
tim

at
io

n
er

ro
r (

de
g/

s)

100

Table 5.9 Fault Detection results summary

Performance
Indicator

Config 1 Config 2 Config 3 Config 4 Config 5 Config 6 Config 7

NN-RGE

NN-RGPE

EKF-RGE

EKF-RGPE

4

0

0

0

4

0

0

0

4

0

0

0

4

0

0

0

4

0

3

0

4

1

0

0

4

1

0

0

NN-RGE

NN-RGPE

EKF-RGE

EKF-RGPE

12.27

40.23

11.33

104.72

12.27

40.23

12.01

98.77

11.96

31.32

6.57

93.92

11.96

31.32

6.45

53.48

12.27

40.23

11.74

103.45

7.25

23.40

1.40

16.19

7.25

23.40

0.24

0.06

NN-RGE

NN-RGPE

EKF-RGE

EKF-RGPE

0.63

1.29

1.74

3.04

0.63

1.29

1.70

2.80

0.64

1.35

1.74

3.12

0.64

1.35

1.68

3.10

0.64

1.29

1.36

3.19

0.67

1.54

1.21

4.75

0.67

1.21

1.74

5.06

NN-RGE

NN-RGPE

EKF-RGE

EKF-RGPE

0

0

0.09

0

0

0

0.25

0

0

0

0.20

0

0

0

0.41

0

0

0

1.14

0

0.09

0

1.68

0.77

0.09

0

2.32

1.23

UD: Number of undetected faults
DR: Detectability ratio (see Eq. 5.20)
MT: Mean detection time in seconds
FA: Percentage false alarm (see Eq. 5.21)

UD

DR

MT

FA

101

Table 5.101 Fault detection time in seconds for Configuration 1

Fault type NN-RGE NN-RGPE EKF-RGE EKF-RGPE

CBL 0.50 1.00 0.48 1.00

STL 0.50 1.00 0.50 1.00

HAL 1.04 1.16 1.10 1.36

SAL - 1.42 2.68 3.10

CBS 0.50 1.00 0.48 1.00

STS - 1.00 2.86 5.62

HAS - 1.36 2.86 5.62

SAS - 2.42 3.00 5.62

-: Fault not detected

Table 5.102 Fault detection time in seconds for Configuration 2

Fault type NN-RGE NN-RGPE EKF-RGE EKF-RGPE

CBL 0.50 1.00 0.48 1.00

STL 0.50 1.00 0.50 1.00

HAL 1.04 1.16 1.06 1.36

SAL - 1.42 2.46 3.56

CBS 0.50 1.00 0.48 1.00

STS - 1.00 2.86 4.82

HAS - 1.36 2.86 4.82

SAS - 2.42 2.94 4.82

-: Fault not detected

102

Table 5.103 Fault detection time in seconds for Configuration 3

Fault type NN-RGE NN-RGPE EKF-RGE EKF-RGPE

CBL 0.50 1.00 0.48 1.00

STL 0.50 1.00 0.50 1.00

HAL 1.08 1.18 1.10 1.52

SAL - 1.52 2.72 3.58

CBS 0.50 1.00 0.48 1.00

STS - 1.00 2.82 5.62

HAS - 1.38 2.82 5.62

SAS - 2.74 2.96 5.62

-: Fault not detected

Table 5.104 Fault detection time in seconds for Configuration 4

Fault type NN-RGE NN-RGPE EKF-RGE EKF-RGPE

CBL 0.50 1.00 0.48 1.00

STL 0.50 1.00 0.50 1.00

HAL 1.08 1.18 1.08 1.36

SAL - 1.52 2.42 3.58

CBS 0.50 1.00 0.48 1.00

STS - 1.00 2.80 5.62

HAS - 1.38 2.80 5.62

SAS - 2.74 2.90 5.62

-: Fault not detected

103

Table 5.105 Fault detection time in seconds for Configuration 5

Fault type NN-RGE NN-RGPE EKF-RGE EKF-RGPE

CBL 0.50 1.00 0.48 1.00

STL 0.50 1.00 0.50 1.00

HAL 1.04 1.16 1.22 1.36

SAL - 1.42 4.14 4.28

CBS 0.50 1.00 0.48 1.00

STS - 1.00 - 5.62

HAS - 1.36 - 5.62

SAS - 2.42 - 5.62

-: Fault not detected

Table 5.106 Fault detection time in seconds for Configuration 6

Fault type NN-RGE NN-RGPE EKF-RGE EKF-RGPE

CBL 0.50 1.00 0.48 1.00

STL 0.50 1.00 0.50 4.82

HAL 1.18 1.20 1.12 4.82

SAL - 1.78 2.40 4.82

CBS 0.50 1.00 0.48 1.00

STS - 1.00 2.40 7.20

HAS - 1.52 2.40 7.20

SAS - - 2.54 7.20

-: Fault not detected

104

Table 5.107 Fault detection time in seconds for Configuration 7

Fault type NN-RGE NN-RGPE EKF-RGE EKF-RGPE

CBL 0.50 1.00 0.48 1.00

STL 0.50 1.00 0.50 5.62

HAL 1.18 1.20 1.22 5.62

SAL - 1.78 2.78 5.62

CBS 0.50 1.00 0.48 1.00

STS - 1.00 2.84 7.20

HAS - 1.52 2.84 7.20

SAS - - 2.80 7.20

-: Fault not detected

Table 5.111 Fault detectability ratio (DR) for Configuration 1

Fault type NN-RGE NN-RGPE EKF-RGE EKF-RGPE

CBL 51.13 173.62 47.05 482.13

STL 1.92 16.93 2.16 76.13

HAL 1.68 2.37 1.83 11.67

SAL - 2.69 0.88 6.32

CBS 43.43 116.81 35.46 219.93

STS - 4.64 0.99 13.85

HAS - 3.00 0.99 13.85

SAS - 1.81 1.31 13.85

-: Fault not detected

105

Table 5.112 Fault detectability ratio (DR) for Configuration 2

Fault type NN-RGE NN-RGPE EKF-RGE EKF-RGPE

CBL 51.13 173.62 49.50 443.17

STL 1.92 16.93 2.35 73.84

HAL 1.68 2.37 2.03 12.26

SAL - 2.69 0.85 41.32

CBS 43.43 116.81 37.35 203.42

STS - 4.64 1.18 5.37

HAS - 3.00 1.18 5.37

SAS - 1.81 1.67 5.37

-: Fault not detected

Table 5.113 Fault detectability ratio (DR) for Configuration 3

Fault type NN-RGE NN-RGPE EKF-RGE EKF-RGPE

CBL 49.94 144.01 26.99 446.86

STL 1.77 11.67 1.20 62.15

HAL 1.44 1.67 1.04 18.18

SAL - 1.78 0.50 13.28

CBS 42.51 84.81 20.26 179.13

STS - 3.42 0.74 10.58

HAS - 2.05 0.74 10.58

SAS - 1.18 1.10 10.58

-: Fault not detected

106

Table 5.114 Fault detectability ratio (DR) for Configuration 4

Fault type NN-RGE NN-RGPE EKF-RGE EKF-RGPE

CBL 49.94 144.01 26.70 251.64

STL 1.77 11.67 1.24 37.64

HAL 1.44 1.67 1.08 4.15

SAL - 1.78 0.48 12.08

CBS 42.51 84.81 20.08 101.69

STS - 3.42 0.76 6.88

HAS - 2.05 0.76 6.88

SAS - 1.18 0.52 6.88

-: Fault not detected

Table 5.115 Fault detectability ratio (DR) for Configuration 5

Fault type NN-RGE NN-RGPE EKF-RGE EKF-RGPE

CBL 51.13 173.62 49.50 443.17

STL 1.92 16.93 2.35 73.84

HAL 1.68 2.37 2.03 12.26

SAL - 2.69 2.72 54.66

CBS 43.43 116.81 37.35 203.42

STS - 4.64 - 13.42

HAS - 3.00 - 13.42

SAS - 1.81 - 13.42

-: Fault not detected

107

Table 5.116 Fault detectability ratio (DR) for Configuration 6

Fault type NN-RGE NN-RGPE EKF-RGE EKF-RGPE

CBL 30.54 104.27 5.95 87.12

STL 0.85 11.02 0.09 1.62

HAL 0.76 4.59 0.20 1.62

SAL - 1.59 0.13 1.62

CBS 25.83 60.61 4.45 32.73

STS - 2.50 0.12 1.60

HAS - 2.63 0.12 1.60

SAS - - 0.12 1.60

-: Fault not detected

Table 5.117 Fault detectability ratio (DR) for Configuration 7

Fault type NN-RGE NN-RGPE EKF-RGE EKF-RGPE

CBL 30.54 104.27 0.88 0.18

STL 0.85 11.02 0.01 0.02

HAL 0.76 4.59 0.02 0.02

SAL - 1.59 0.05 0.02

CBS 25.83 60.61 0.65 0.07

STS - 2.50 0.04 0.06

HAS - 2.63 0.04 0.06

SAS - - 0.02 0.06

-: Fault not detected

(a)

(c)

(e)

(g)

Fig 5.1

) NN-RGE

) NN-RGE

) EKF-RGE

) EKF-RGE

15 Residual

E, (HAL)

E, (SAL)

E, (HAL)

E, (SAL)

 plots for C

1

Configuratio

08

 (b) NN-

 (d) NN-

 (f) EKF

 (h) EKF

n 1. (RGE o

-RGPE, (HA

-RGPE, (SA

F-RGPE, (H

F-RGPE, (S

on the left, R

AL)

AL)

AL)

SAL)

RGPE on th

he right)

(a)

(c)

(e)

(g)

) NN-RGE

) NN-RGE

) EKF-RGE

) EKF-RGE

E, (HAL)

E, (SAL)

E, (HAL)

E, (SAL)

Fig 5.16 R

1

Residual plo

09

 (b) NN-

 (d) NN-

 (f) EKF

 (h) EKF

ots for Conf

-RGPE, (HA

-RGPE, (SA

F-RGPE, (H

F-RGPE, (S

figuration 4.

AL)

AL)

AL)

SAL)

.

(a)

(c)

(e)

(g)

) NN-RGE

) NN-RGE

) EKF-RGE

) EKF-RGE

E, (HAL)

E, (SAL)

E, (HAL)

E, (SAL)

Fig 5.17 R

1

Residual plo

10

 (b) NN-

 (d) NN-

 (f) EKF

 (h) EKF

ots for Conf

-RGPE, (HA

-RGPE, (SA

F-RGPE, (H

F-RGPE, (S

figuration 7.

AL)

AL)

AL)

SAL)

.

111

Table 5.12 Fault accommodation results summary. MEE and VEE are calculated from the

time the fault is detected until the end of the data set.

 NN-based EKF-based
 MEE VEE MEE VEE

Config. 1 0.39 0.12 0.27 0.20

Config. 2 0.39 0.12 0.30 0.23

Config. 3 0.42 0.12 0.36 0.36

Config. 4 0.42 0.12 0.38 0.39

Config. 5 0.39 0.12 0.49 1.98

Config. 6 0.42 0.11 0.77 1.84

Config. 7 0.42 0.11 0.83 3.28

(a) NN-RGPE, (CBL) (b) NN-RGPE, (STL)

(c) NN-RGPE, (HAL) (d) NN-RGPE, (SAL)

Fig 5.18 NN fault accommodation plots for Configuration 1. All faults introduced at 615s;
faulty (dotted), ideal (black), NN estimate (purple).

610 615 620 625 630
-25

-20

-15

-10

-5

0

5

10

15

20

25

q
(d

eg
/s

)

Time (s)

Fault accommodated
at 616s

Fault introduced
 at 615s

610 615 620 625 630
-25

-20

-15

-10

-5

0

5

10

15

20

25

q
(d

eg
/s

)

Time (s)

Fault introduced
 at 615s

Fault accommodated
at 616s

610 615 620 625 630
-25

-20

-15

-10

-5

0

5

10

15

20

25

q
(d

eg
/s

)

Time (s)

Fault introduced
 at 615s

Fault accommodated
at 616.16s

610 615 620 625 630
-25

-20

-15

-10

-5

0

5

10

15

20

25

q
(d

eg
/s

)

Time (s)

Fault accommodated
at 616.42s

Fault introduced
 at 615s

112

Chapter 6 SFDIA-Multiple sensor faults

Introduction

A NN-based SFDIA scheme is proposed for the detection of multiple sensor faults in a

nonlinear UAV model. In general, a group of sensors can fail simultaneously or

consecutively (i.e. one at a time). In this chapter, we consider the latter scenario where a

1s time gap is allowed between consecutive sensor faults. However as before we

assume that once a sensor has failed it cannot recover from the fault. With reference to

Chapter 5, the NN-RGPE approach is implemented on the same nonlinear UAV model

however sensor faults are now introduced in the pitch gyro, angle of attack sensor and

normal accelerometer. The tests are carried out under different sensor fault types (step-

type, hard and soft additive faults) but only using Configuration 1 settings (refer to

Chapter 5, section 5.8.2).

In multiple sensor fault applications it is important that the faults are isolated

(located) and not simply detected. This allows us to designate appropriate maintenance

action such as replacing the faulty sensor with a redundant ‘healthy’ sensor. As such the

overall scheme is more conveniently referred to as sensor fault detection, isolation and

accommodation (SFDIA).

In general it is unlikely that only one sensor will fail in a real system. Therefore it is

important that the SFDIA scheme is designed to detect multiple sensor faults. There are

already several well-established SFDIA schemes in the literature, some of which have

been discussed in Chapter 2. These include the dedicated observer scheme (DOS),

generalised observer scheme (GOS) and the multiple model Kalman filter (MMKF).

SFDIA schemes based on NNs have also been proposed particularly by the research

group around Napolitano [118, 24-28]. In [143], the author suggests the use of a main

NN (MNN) to detect a fault and a decentralised NN (DNN) to isolate the fault. In a

design similar to the GOS, the ith-DNN is driven by all sensors except the ith sensor.

Therefore if the ith sensor is faulty, the MNN and only the ith-DNN trigger a fault

alarm. Other SFDIA applications using NNs include [19, 21, 23, 142]. Few however

have implemented an EMRAN RBF NN to a UAV model. In Chapter 1 we emphasised

that NN-based SFDIA schemes can be an invaluable alternative (in UAV applications),

113

to physical redundancy due to space, weight and cost implications. Furthermore NN-

based methods benefit from online learning capabilities, in comparison to traditional

approaches such as the EKF (see Chapter 5), which can be useful in time-varying

systems.

This chapter follows the same format as Chapter 5 (i.e. with the same subheadings

and figures) for clarity purposes. As before, the results are grouped at the end of the

chapter.

6.1 General SFDIA outline and terminologies

As in Chapter 5 (section 5.1), a sensor ‘x’ is referred to as Sensor-x, a sensor

measurement is denoted by subscript ‘real’, a NN estimate is denoted by a ‘ ෡ ’ and a

subscript NN, and an ideal (non-faulty) sensor measurement is denoted by a subscript

‘ideal’.

SFDIA of multiple sensor fault scenarios can be divided into 2 stages. Consider Fig

6.1 where any of the m sensors can be faulty. Stage 1 involves modelling the different

sensors where for example system model m includes all sensor measurements except

Sensor–ym. This method of connection is in fact the well known GOS discussed in

Chapter 2 except that a NN is used instead of an observer and the fault decision logic is

different. Stage 2 is the residual processing stage which consists of a residual generator

and simple threshold logic. SFDIA is implemented as follows (with reference to Fig

6.1):

- Fault detection: A fault in one sensor results in its corresponding residual to exceed

the threshold. So for example a fault in Sensor-y1 will cause the first residual to

trigger a fault alarm.

- Fault isolation: The sensor fault can be isolated by identifying which residual

exceeded its threshold. For example if the first residual triggers a fault alarm then

Sensor-y1 is faulty. The assumption behind this simple fault isolation logic is that if

Sensor-y1 is faulty then the first residual will exceed the threshold before the faulty

measurements contaminate system models 2, 3…m and cause the residuals 2, 3…m

to also exceed their thresholds.

- Fault accommodation: Once a fault is detected and isolated, NN training is

switched off and the faulty sensor is replaced with the NN estimate. So for example

114

if Sensor-y1 is faulty, then system model 1 stops training and the first switch in Fig

6.1 shifts so that y1real =ݕො1 , where ideally ݕො1 = y1ideal. The ݕො1 estimates are then

used in the inputs of system models 2, 3…m.

There are three assumptions considered in our SFDIA tests. Firstly it is assumed that

a sensor can only fail once, and this failure is permanent. Secondly, sensors can only

fail one at a time with a 1s time gap between the consecutive faults. Finally for each

test, it is assumed that all sensor fault types are the same. So for example if a step-type

fault is introduced in Sensor-y1 then the next fault (e.g. in Sensor-y2) must also be step-

type. This is assumed so that we can investigate the influence of each fault type

separately.

In this chapter, sensor faults are assumed in Sensor-q, Sensor-α and Sensor- az. There

are therefore 3 parallel NNs (system models) and 3 parallel residual processing units

(i.e. consider Fig 6.1 with m = 3) which will be referred to as q-NN, α-NN, az-NN and

q-RGPE, α-RGPE, az-RGPE respectively. Note that x-NN can refer to the SFDIA

scheme performance as well as the NN model structure (see last two sentences in the

statement below). To summarise the terminologies used in this chapter consider the

following statement:

“If Sensor-q is faulty, then the difference between ݍොேே and ݍ௥௘௔௟ should cause q-RGPE

to exceeds its threshold. ݍ௥௘௔௟ is then replaced with ݍොேே in the inputs of ߙ -NN, az -NN

and in the ideal scenario ݍොேே ൌ ௜ௗ௘௔௟. It was found that q-NN had a fault detectionݍ

time of 1s. It was also found that q-NN consisted of 10 hidden neurons.”

115

Fig 6.1 General SFDIA outline for faults in Sensor-y1, Sensor-y2…Sensor-ym.

6.2 NNs input/output structure

There are 3 NNs in the overall SFDIA scheme (section 6.1) which include q-NN, α-NN,

az-NN and their outputs ݍොேே, ߙොேே, ොܽ௭ேே respectively. To maintain consistency, the

same longitudinal flight variables defined in Chapter 5 (section 5.6) are used in the

input sets of the NNs here. The resulting NN input/output structures are as follows (the

structures are also displayed in Fig 6.2 and defined in Table 6.2):

ොேே௞ݍ ൌ ܰܰሺߙ௞ିଵ, ܽ௭௞ିଵ, ሶݓ ௞ିଵ, ௧ܸ௞ିଵሻ (6.1)

ොேே௞ߙ ൌ ܰܰሺݍ௞ିଵ, ܽ௭௞ିଵ, ሶݓ ௞ିଵ, ௧ܸ௞ିଵሻ (6.2)

 ොܽ௭ேே௞ ൌ ܰܰሺݍ௞ିଵ, ,௞ିଵߙ ሶݓ ௞ିଵ, ௧ܸ௞ିଵሻ (6.3)

116

NNkα̂ zNNkâNNkq̂

kw&

Fig 6.2 q-NN, α-NN and az-NN input/output structures. Sensor faults can be present
only in Sensor-q, Sensor- α and Sensor- az.

6.3 Sensor fault types

Large additive faults are only considered in the SFDIA tests which include step-type (TR

؆ 0s), soft (TR = 4s) and hard (TR = 1s) additive faults. The magnitude of the fault (i.e.

A) depends on which sensor is faulty. In Chapter 5 (section 5.7) a large fault in Sensor-q

was assumed to have A=2.4 deg/s. For a ±30 deg/s pitch gyro sensor range this is 8% of

the positive sensor range. Therefore to maintain consistency, an 8% sensor fault

magnitude for Sensor-α and Sensor-az were considered resulting in A= 2.4 deg and

A=1.25 m/s2 respectively.

As discussed earlier (section 6.1) it is assumed that if the first sensor faulty type is

e.g. step type then the second, third, etc. will also be step-type. Fig 6.3 shows an

example of a ݍ ՜ .fault sequence (i.e. Sensor-q faulty followed by Sensor-α faulty) ߙ

Note how a 1s time gap is allowed between the time the first fault reaches its maximum

value and the time the second fault is introduced. Unlike Chapter 5 where a fault is

117

introduced at 615s, we now introduce the first fault at 626s to check the consistency of

the fault detection scheme.

Fig 6.3 Fault sequence ࢗ ՜ Top plot, middle plot and .(ignore fault magnitude) ࢻ

bottom plot are soft additive (TR = 4s), hard additive (TR = 1s) and step type (TR ؆ 0s)
faults.

6.4 SFDIA application to UAV model

6.4.1 NN training

The NN structure chosen in the SFDIA scheme is the EMRAN RBF NN discussed in

Chapter 4. It is important that each of the NN models (q-NN, α-NN, az-NN) is

initialised to avoid any poor initial estimations. Therefore each of the NN models is

initialised separately via offline training based on the stopping criteria defined in

Chapter 4 (section 4.2) and using 225s of UAV flight data. They are then used in the

SFDIA scheme where their structures are continuously updated via online training.

626 627 628 629 630 631 635
Time (s)

626 627 628 629 630 631 635

626 627 628 629 630 631 635

Fault in Sensor-q

Fault in Sensor-q

Fault in Sensor- α

Fault in Sensor- α

Fault in Sensor-q

Fault in Sensor- α

118

6.4.2 SFDIA test outline

Flight data from Configuration 1 (Chapter 5, section 5.8.2) is used in the SFDIA tests

and only 3 fault types are tested; large step-type, hard additive and soft additive faults

(STL, HAL, SAL respectively). The following 10 fault sequences are implemented,

where each sequence is considered a separate test:

- Fault sequence 1: none

- Fault sequence 2: ݍ ՜ ݁݊݋݊

- Fault sequence 3: ߙ ՜ ݁݊݋݊

- Fault sequence 4: ܽ௭ ՜ ݁݊݋݊

- Fault sequence 5: ݍ ՜ ߙ

- Fault sequence 6: ߙ ՜ ݍ

- Fault sequence 7: ݍ ՜ ܽ௭

- Fault sequence 8: ܽ௭ ՜ ݍ

- Fault sequence 9: ߙ ՜ ܽ௭

- Fault sequence 10: ܽ௭ ՜ ߙ

where for example ݍ ՜ ݍ implies that only Sensor-q is faulty, while ݁݊݋݊ ՜ implies ߙ

that Sensor-q followed by Sensor-α are faulty. Fig 6.3 shows an example of the ݍ ՜ ߙ

fault sequence.

In conclusion there are 30 separate tests (1 configuration x 3 fault types x 10 fault

sequences x 1 SFDIA scheme) and the NN-RGPE structure (defined in Chapter 5) is

used in the SFDIA scheme but with different tuned parameters than in Chapter 5 (Table

6.2). Fig 6.4 shows a tree-diagram for the different tests where each full branch

represents one test. So for example one of the branches is the test where Sensor-q

followed by Sensor-α (ݍ ՜ .sequence) are faulty and both fault types are HAL ߙ

Fig 6.5 shows the flowchart for the SFDIA tests where 1 pass through the flow chart

(i.e. from Start to End) represents one test. Note that as we are assuming that each

sensor can only fail once, the fault alarm is triggered only once for each sensor, which is

why we set RGPE to zero once a fault is detected (see last section of the flowchart).

This is important if we are to isolate the fault according to the fault isolation logic in

Table 6.1 (i.e. so that consecutive faults are detected).

119

Fig 6.4 Tree-diagram showing the different SFDIA tests. 1 configuration, 3 fault types,

10 fault sequences and 1 SFDIA scheme. Overall there are 30 separate tests.

Table 6.1 Fault isolation logic

 Sensor-q failure Sensor-α failure Sensor-az failure

q-RGPE exceeds? YES NO NO

α-RGPE exceeds? NO YES NO

az-RGPE exceeds? NO NO YES

120

Fig 6.5 Flow chart for SFDIA tests (one pass through the flowchart per sample instant)

End

Start

Run q‐NN, α‐NN,
az‐NN

Compute q‐RGPE,
α‐RGPE, az ‐RGPE

STEP 1

No

End of data? Yes

Fault sequence (e.g. ݍ ՜ (ߙ

UAV MODEL DATA (Configuration 1)

az‐FAULT
ALARM

GO TO
Step 1

q‐RGPE ≥
threshold

For ALL remaining data:
1) Stop q‐NN training
2) Replace Sensor‐q
ggwith q‐NN estimate
3) q‐RGPE=0

q‐FAULT
ALARM

No

Yes

GO TO
Step 1

α‐RGPE ≥
threshold

For ALL remaining data:
1) Stop α‐NN training
2) Replace Sensor‐ α
ggwith α‐NN estimate
3) α‐RGPE=0

α‐FAULT
ALARM

No

Yes

GO TO
Step 1

az‐RGPE ≥
threshold

For ALL remaining data:
1) Stop az‐NN training
2) Replace Sensor‐ az
ggwith az‐NN estimate
3) az‐RGPE=0

No

Yes

121

6.4.3 SFDIA performance indicators

The MEE and VEE used in Chapter 5 (section 5.8.3) are also used here to assess the NN

estimation performance. There are 3 possible outcomes from each SFDIA tests.

Outcome 1 is when all faults are detected and isolated successfully; in this case we refer

to the result as FD. Outcome 2 is when all faults are detected and isolated successfully

but there is also a false alarm in one (or more) of the other residuals; in this case we

refer to the result as FD-FA. Outcome 3 is when one (or more) of the faults are not

detected; in this case we refer to the result as FND. These terms are only used in Fig 6.7

where FD is the ideal outcome and FND is the worst case scenario.

Results

The three NN models and RGPE structures used in the SFDIA scheme are outlined in

Table 6.2. Together Tables 6.2-6.7 and Figs 6.6-6.14 display the SFDIA results:

- Table 6.3: This shows the number of training epochs required before the offline

training stopping criteria (Chapter 4, section 4.2) are satisfied. A higher learning rate

was used to train α-NN which could be the reason for α-NN requiring the least

number of training epochs (only 1000 epochs). Sensor- α includes both system (gust

disturbances) and measurement noise (Chapter 5, section 5.3.3) in comparison to

other sensors which only include measurement noise. Therefore, α-NN must be

designed with a higher learning due to the highly, noise-corrupted Sensor- α.

- Fig 6.6: As in Fig 5.13 (Chapter 5) this shows the mean execution times of each

NN. In general we find that q-NN, α-NN and az-NN have almost the same execution

times. More importantly the maximum execution time of the 3 NNs (working in

parallel) must be less than the flight data sampling time if we are to avoid any time

delays. α-NN had the highest processing time per data sample (0.55 ms) which is

lower than the flight data sampling time (0.02s).

- Table 6.4 and Fig 6.7: These show the FDI results. In Table 6.4 the fault detection

times are shown and a false alarm is denoted by ‘False’. For example in the step-

type ݍ ՜ sequence (i.e. where Sensor-q is first faulty followed by Sensor-α) the ߙ

fault in Sensor-q is not detected, the Sensor-α fault is detected (in 1.00s) and a false

alarm is present in the az-NN branch (i.e. az-RGPE exceeds its threshold). Fig 6.7

122

displays the same results, but graphically (to make it easier to visualise the FDI

patterns). Three outcomes are possible in Fig 6.7 as discussed in section 6.4.3; FD

(fault detected), FD-FA (fault detected but false alarm also present) and FND (fault

not detected). Each cell in Fig 6.7 displays the FDI pattern (i.e. the order at which

the residuals, q-RGPE, α-RGPE, az-RGPE, exceed their thresholds) for one fault

scenario. For example in the soft-additive ݍ ՜ ܽ௭ sequence, q-RGPE exceeds its

threshold followed by az-RGPE. Therefore in this case the sensor faults are both

detected (FD outcome). On the other hand consider the step-type ߙ ՜ .sequence ݍ

In this case α-RGPE first exceeds its threshold, followed by az-RGPE, followed by

q-RGPE. Therefore the faults in Sensor- α and Sensor-q are detected however az -

RGPE also shows a false alarm (FD-FA outcome). The ideal outcome is FD, and the

worst case scenario is FND. In general we can see that step-type faults result in a

larger number of false alarms and undetected faults (78% of the step-type tests

resulted in FD-FA or FND outcomes) in comparison to soft and hard additive faults.

- Table 6.5: This shows the fault detection results for a three fault sequence ܽ௭ ՜

ߙ ՜ Two fault magnitudes are considered in Sensor-q; 2.4 deg/s or a large 15 .ݍ

deg/s. First we notice that faults in Sensor- az and Sensor-α are always detected.

However only the 15 deg/s fault in Sensor-q is detected. It was found that the

accommodated measurement from az-NN (i.e. in the event when az-NN estimates

replace Sensor- az) had a large influence on the fault detection performance of q-

NN. In fact if the az-NN accommodated measurements were replaced with nominal

(fault-free) measurements then the 2.4 deg/s faults in Sensor-q are detected. In

conclusion the performance of q-NN greatly depends on the performance of az-NN

and vice versa.

- Table 6.6: This shows the fault accommodation results. The SFDIA tests are run

and at the end of each test, the difference between the NN estimate (e.g. ݍොேே) and

ideal (e.g. qideal) measurement is calculated. For example in Table 6.6, the q-NN

estimations are poor for the hard additive, ߙ ՜ ܽ௭ fault sequence (estimation error

of 7.12 deg/s).

- Table 6.7: This summarises the fault detection and accommodation results. For

example q-NN on average detected soft additive faults in 1.82s. In general step-type

faults result in faster fault detection times but poorer fault accommodation

performance in comparison to soft additive and hard additive faults.

123

- Fig 6.8-6.14: These show the residual (q-RGPE, α-RGPE and az-RGPE) and NN

estimation plots for the ݍ ՜ and ܽ௭ ߙ ՜ ߙ ՜ fault sequences. Ideally the NN ݍ

estimates (purple lines) should closely follow the fault-free measurements (black

lines). The dotted lines are the faulty measurements. In Fig 6.8 we find that the

residuals do not exceed their thresholds when faults are not present. This indicates

that 1) The NN estimations are accurate 2) The SFDIA scheme is robust to system

or measurement noise (otherwise false alarms would be present).

Discussion

To avoid confusion let us first re-iterate the SFDIA sequence of operation when a fault

is present in one of the sensors. Consider the SFDIA scheme in Fig 6.2. Let us assume

that a fault in Sensor-q is introduced. Therefore the following would be the sequence of

operation in the ideal scenario:

1. The fault in Sensor-q is seen in the feedback (training) connection of q-NN.

Therefore q-NN would react to the fault by suddenly outputting inaccurate

estimations. These inaccurate estimations along with the faulty sensor

measurements will cause q-RGPE to exceed its threshold and a fault alarm to be

triggered. Therefore the fault in Sensor-q is successfully detected.

2. Similarly the fault in Sensor-q is seen in the input set of α-NN and az-NN.

However as the fault is only seen in the input set (and not the feedback

connection as in q-NN), the performance of α-NN and az-NN may not be

significantly degraded. Therefore the residuals α-RGPE and az-RGPE will not

exceed the thresholds as desired, i.e. no false alarms.

3. So far q-RGPE has triggered a fault alarm. The next step would involve fault

accommodation. In this case q-NN would stop training, and its estimates (ݍොேே)

would replace Sensor-q. Note that ݍොேே must be sufficiently accurate as it will be

used (in place of Sensor-q) in the input set of α-NN and az-NN.

The last step shows how the NN-based SFDIA scheme is interconnected, i.e. the

performance of one NN greatly affects the performance of other NNs especially during

the fault accommodation stage.

124

In general step-type and constant bias faults are more quickly detected than drift-type

faults. This is expected as the former have a more abrupt effect on the residual in

comparison to drifting faults. This observation was clearly seen in Chapter 5 (see for

example Tables 5.10 and 5.11) where step-type and constant bias faults were detected

faster and with a higher detectability ratio than hard and soft additive faults. Again, this

was also seen here (see e.g. Table 6.7) where step-type faults had faster fault detection

times. However a side-effect which could not be seen in Chapter 5 was that step-type

faults can result in poor fault detection and accommodation performances of the overall

SFDIA scheme, i.e. a step-type fault in Sensor-q greatly affects the performance of α-

NN and az-NN and not only q-NN. To explain this further, note the following two

possible outcomes (referring to the SFDIA scheme, Fig 6.2):

Temporary NN contamination:

1. Sensor-q is faulty

2. q-RGPE has not yet exceeded its threshold

3. In the mean time α-NN and az-NN are gradually being contaminated from the

faulty Sensor-q

4. q-RGPE exceeds its threshold and a fault alarm is triggered

5. q-NN stops training and its estimates (ݍොேே) replace Sensor-q

6. As a result α-NN and az-NN are now receiving non-faulty measurements (i.e.

 .ොேே) and can recover from their temporarily contaminated structureݍ

Permanent NN contamination:

1. Sensor-q is faulty

2. q-RGPE has not yet exceeded its threshold

3. In the mean time α-NN and az-NN are gradually being contaminated from the

faulty Sensor-q

4. This contamination causes α-RGPE to exceed its threshold resulting in a false

alarm.

5. Because α-RGPE has exceeded its threshold, α-NN stops training and its

structure is frozen. Therefore α-NN has become permanently contaminated.

Again, from the above we can see how the NN-based SFDIA scheme is highly

interconnected and the ideal scenario would be to detect the faults as quickly as possible

125

before they result in permanent NN contaminations. Therefore we can expect step-type

faults to cause more damage to the SFDIA scheme due to their abrupt effect in

comparison to incipient faults. This was repeatedly seen in our tests where 1) Fig 6.7

showed that step-type faults result in more false alarms and undetected faults 2) Table

6.7 showed that step-type faults result in larger fault accommodation errors, in

comparison to soft and hard additive faults.

From the results we noted earlier that the performance of az -NN greatly depends on

the performance of q-NN and vice versa. This dependency is best explained from the

aircraft equations of motion. Normal acceleration is calculated as ܽ௭ ൌ ሶݓ െ .[140] ݑݍ

Therefore we can see that normal acceleration is dependent on the pitch rate and vice

versa. This could be why az-NN is sensitive to faults in Sensor-q and similarly q-NN is

sensitive to faults in Sensor-az.

There are several design solutions which we can adopt in order to reduce this

sensitivity as well as improve the overall SFDIA scheme performance (e.g. so that step-

type faults do not result in NN permanent contamination):

1. We can re-tune the residual structures RGPE so that faults are detected

quicker.

2. We can increase the memory storage in the NN input (e.g.[qk-1 qk-2 qk-n]

instead of [qk-1]) so that the NN is less sensitive to abrupt deviations in its

inputs. However we must avoid increasing the NN processing time.

3. We can increase the number of NN input parameters so that the NN is less

sensitive to one specific input parameter. However we must avoid increasing

the NN processing time.

4. We can change the normalisation ranges of each parameter used in the NN

input set. For example if the normalisation range for parameter ‘q’ (used in

the input set of az –NN), is greatly increased then az -NN will become less

sensitive to parameter ‘q’. As a result of this sensitivity reduction, az -NN

may not degrade in performance (i.e. no significant contamination) if Sensor-

q is faulty.

The latter solution was in fact implemented in a separate test and it was found that if the

normalisation limit (which was originally set to 0-1 in Table 6.2) is set at 0-10 (only for

126

parameter ‘q’ used in the az-NN input set), then no false alarms were present in az-NN

when faults were introduced in Sensor-q.

In general it was found that in addition to the SFDIA scheme structure, the

performance of the SFDIA scheme greatly depends on the fault sign (i.e. positive or

negative) and the time at which the fault is introduced. Due to insufficient time, the tests

carried out in Chapter 5 and 6 only consider positive fault signs and faults were

introduced randomly between 600-700s. However it is important that the SFDIA

scheme is rigorously tested before implementation in a real system.

Conclusions

In this chapter we design and test a NN-based SFDIA scheme for the detection of

multiple sensor faults in a nonlinear UAV model. In this chapter we also extend the

single sensor fault scenarios carried out in Chapter 5. The results showed that for 30

separate SFDIA tests, on average; faults were detected in 1.53s, the fault

accommodation errors were 1.65 deg/s, 0.71deg, 0.88 m/s2 for q-NN, α-NN and az -NN

respectively, 11 false alarms and 2 undetected faults were present overall and the

execution time was 0.55ms per data sample.

In general it was concluded that a NN-based SFDIA scheme is highly interconnected

especially during the fault accommodation stage, as the output from one NN is used in

the input of the other NNs. As a result the performance of the NN-based SFDIA scheme

is greatly dependant on the fault detection time. Large fault detection times can result in

permanent NN contamination. The RGPE method proposed in Chapter 5 is desirable if

we are to reduce the false alarm rates and number of undetected faults. However it also

increases the fault detection time which can significantly contaminate interconnected

NN models and degrade the overall SFDIA performance. Additionally it was found that

whilst step-type faults and constant bias faults can be detected much quicker than hard

and soft additive faults, the former can result in permanent NN contamination while the

latter generally results in temporary NN contamination. There are several solutions to

improve the NN-based SFDIA performance which include tuning the RGPE algorithm

(e.g. by reducing the averaging size Ω or number of padding points ppad) so that faults

are detected much faster, or the NN can be redesigned to be less sensitive to faults seen

in its input set. Examples of the latter include increasing the number of parameters and

memory storage used in the NN input set.

127

Table 6.2 Summary of NN and RGPE structures

 NN STRUCTURE

 q-NN α-NN az-NN

Input parameters: ሾߙ ܽ௭ ሶݓ ௧ܸሿ ሾߙ ܽ௭ ሶݓ ௧ܸሿ ሾߙ ܽ௭ ݓሶ ௧ܸሿ

Output parameter: ݍො ߙො ොܽ௭

No. of input neurons: 0 0 0

No. of hidden neurons (max): 10 20 17

No. of output neurons: 1 1 1

Input data normalisation: 0-1 0-1 0-1

NN learning rate: 0.00005 0.00006 0.000001

ሾߝ 2ܧ 1ܧ௠௔௫ ߝ௠௜௡ ߛௗ௬ ݇௢௣ሿ௔: [1e-2 0.01 0.6

0.3 0.997 1e-6]

[1e-3 0.01 0.6

0.3 0.997 1e-6]

[1e-3 0.01 0.6 0.3

0.997 1e-6]

 RESIDUAL STRUCTURE

 q-RGPE α-RGPE az-RGPE

Weight (߸) b: 91 200 15

Averaging size (ߗ) b: 1 1 1

Padding points (ppad) b: 1 1 1

Threshold: 0.004 (rad/s)2 0.02 (rad)2 0.2 (m/s2) 2

a: Refer to Chapter 4, Eq. (4.11)-(4.16)
b: Refer to Chapter 5, Eq. (5.10)-(5.11)

128

Table 6.3 Offline training errors

 q-NN α-NN az-NN

Training epochs 2411 1000 3209

Estimation error 0.26 deg/s 0.39 deg 0.29 m/s2

Fig 6.6 Mean execution times per data sample. Mean calculated for first 100 data
samples and then repeated for 100 iterations.

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration

Ex
ec

ut
io

n
tim

e
(m

s)

q-NN
α-NN
az-NN

NOTE: Mean times (ms):
q-NN = 0.53
α-NN = 0.55
az-NN = 0.54

129

Table 6.4 Fault detection time (seconds) for the different fault sequences and faulty

types. E.g. for ࢗ ՜ sequence, soft additive fault type, the q-NN detects Sensor-q fault ࢻ

in 1.86s and α-NN detects Sensor-α fault in 2.86s. ‘False’ denotes a false alarm.

Fault
Seq.

Soft additive

Hard additive

Step-type

 q-NN α-NN az-NN q-NN α-NN az-NN q-NN α-NN az-NN
none - - - - - - - - -

ݍ ՜ False - 1.00 - - 1.24 - - 1.86 ݁݊݋݊

ߙ ՜ - 1.00 - - 1.16 - - 1.86 - ݁݊݋݊

ܽ௭ ՜ False - 0.96 1.52 - - 3.18 - - ݁݊݋݊

ݍ ՜ False 1.00 - - 1.68 1.24 - 2.86 1.86 ߙ

ߙ ՜ `False 1.40 1.16 False 0.98 1.00 False 1.86 1.70 ݍ

ݍ ՜ ܽ௭ 1.86 - 2.74 1.24 - 3.02 1.00 - False

ܽ௭ ՜ False - 0.96 1.52 - 0.66 3.18 - - ݍ

ߙ ՜ ܽ௭ False 1.86 1.64 False 1.16 1.40 False 1.00 0.32

ܽ௭ ՜ 0.96 1.00 - 1.52 1.22 - 3.18 2.12 - ߙ

-: Fault not detected

130

Fig 6.7 Fault detection results for the different fault sequences and fault types. The
horizontal line in each cell indicates which residual (q-RGPE, α-RGPE, az-RGPE)

exceeded its threshold and in what order. FD (Fault detected), FD-FA (Fault detected
but False alarm present in other residuals), FND (Fault not detected).

131

Table 6.5 Fault detection time (seconds) for ࢠࢇ ՜ ࢻ ՜ .fault sequence ࢗ

 Fault
Seq.

Soft additive

Hard additive

Step-type

 q-NN α-NN az-NN q-NN α-NN az-NN q-NN α-NN az-NN

ܽ௭ ՜ ߙ ՜ a - 2.12 3.18 - 1.22 1.52 - 1.00 0.96ݍ

ܽ௭ ՜ ߙ ՜ b 4.18 2.12 3.18 3.90 1.22 1.52 1.00 1.00 0.96ݍ

a: 2.4 deg/s fault magnitude for Sensor-q
b: 15 deg/s fault magnitude for Sensor-q

Table 6.6 Fault accommodation results. Estimation errors calculated for data between

626-635s and shown in deg/s, deg and m/s2 for q-NN, α-NN and az -NN respectively.

 Fault
Seq.

Soft additive

Hard additive

Step-type

 q-NN α-NN az-NN q-NN α-NN az-NN q-NN α-NN az-NN

none 0.16 0.35 0.19 0.16 0.35 0.19 0.16 0.35 0.19

ݍ ՜ 1.44 0.90 2.57 0.31 0.35 0.16 0.24 0.34 0.16 ݁݊݋݊

ߙ ՜ 0.19 0.35 0.20 0.19 0.35 0.19 0.19 0.35 0.17 ݁݊݋݊

ܽ௭ ՜ 1.38 0.93 2.77 0.19 0.36 0.45 0.19 0.34 0.46 ݁݊݋݊

ݍ ՜ 1.18 0.71 2.13 0.34 0.36 0.19 0.23 0.34 0.15 ߙ

ߙ ՜ 3.22 2.13 6.27 1.29 1.10 2.43 1.03 0.70 2.01 ݍ

ݍ ՜ ܽ௭ 0.62 0.47 0.37 2.32 0.76 1.22 2.57 0.90 1.44

ܽ௭ ՜ 1.37 0.92 2.76 1.28 0.86 2.66 0.37 0.27 0.90 ݍ

ߙ ՜ ܽ௭ 2.16 0.76 1.02 7.12 2.37 3.55 6.27 2.11 3.15

ܽ௭ ՜ 0.19 0.36 0.44 0.19 0.36 0.49 0.19 0.35 0.46 ߙ

132

Table 6.7 Summary of the fault detection and accommodation results

 Soft additive Hard additive Step-type

q-NN

α -NN

az-NN

1.82

2.11

2.78

1.16

1.28

1.80

0.99

1.00

0.80

q-NN

α -NN

az-NN

0.72

0.43

0.40

1.62

0.72

0.88

2.61

0.97

1.38

a: Mean detection time (MT) in seconds
b: Mean fault accommodation errors shown in deg/s, deg and m/s2 for q-
NN, α-NN and az -NN respectively.

a

b

133

(a) Residuals

(b) NN estimations

Fig 6.8 (a) Residual and (b) NN estimations when faults are not present. Note in plot (b):
purple (NN), black (ideal)

626 627 628 629 630 631 632 633 634 635
0

0.005

0.01

q-
R

G
PE

 (
ra

d/
s)

 2

626 627 628 629 630 631 632 633 634 635
0

0.02

0.04

α
-R

G
P

E
(r

ad
) 2

626 627 628 629 630 631 632 633 634 635
0

0.5

1

Time (s)

a z-R
G

P
E

(m
/s2) 2

NOTE: NO Fault introduced
NOTE: NO False alarm

NOTE: NO Fault introduced
NOTE: NO False alarm

NOTE: NO Fault introduced
NOTE: NO False alarm

626 627 628 629 630 631 632 633 634 635
-20

-10

0

10

20

q
(d

eg
/s

)

626 627 628 629 630 631 632 633 634 635
0

5

10

15

α
 (

de
g)

626 627 628 629 630 631 632 633 634 635
-10

-5

0

5

a z (
m

/s2)

Time (s)

134

(a) Residuals

(b) NN estimations

Fig 6.9 (a) Residual and (b) NN estimations for ࢗ ՜ sequence, soft additive fault. Note in ࢻ
plot (b): dotted (faulty), purple (NN), black (ideal)

625 626 627 628 629 630 631 632 633 634 635
0

0.005

0.01

q-
R

G
PE

 (
ra

d/
s)

 2

625 626 627 628 629 630 631 632 633 634 635
0

0.02

0.04

α
-R

G
P

E
(r

ad
) 2

625 626 627 628 629 630 631 632 633 634 635
0

0.5

1

Time (s)

a z-R
G

P
E

(m
/s2) 2

NOTE: Fault introduced at
631s.
NOTE: Fault detected at
633.86s

NOTE: NO Fault introduced
NOTE: NO False alarm

NOTE: Fault introduced at
626s.
NOTE: Fault detected at
627.86s

626 627 628 629 630 631 632 633 634 635
-20

-10

0

10

20

q
(d

eg
/s

)

626 627 628 629 630 631 632 633 634 635
0

5

10

15

α
 (

de
g)

626 627 628 629 630 631 632 633 634 635
-10

-5

0

5

a z (
m

/s2)

Time (s)

135

(a) Residuals

(b) NN estimations

Fig 6.10 ࢗ ՜ hard additive fault. Note in plot (b): dotted (faulty), purple (NN), black ࢻ
(ideal)

626 627 628 629 630 631 632 633 634 635
0

0.005

0.01

q-
R

G
PE

 (
ra

d/
s)

 2

626 627 628 629 630 631 632 633 634 635
0

0.02

0.04

α
-R

G
P

E
(r

ad
) 2

626 627 628 629 630 631 632 633 634 635
0

0.5

1

Time (s)

a z-R
G

P
E

(m
/s2) 2

NOTE: Fault introduced at
626s.
NOTE: Fault detected at
627.24s

NOTE: Fault introduced at
628s.
NOTE: Fault detected at
629.68s

NOTE: NO Fault introduced
NOTE: NO False alarm

626 627 628 629 630 631 632 633 634 635
-20

-10

0

10

20

q
(d

eg
/s

)

626 627 628 629 630 631 632 633 634 635
0

5

10

15

α
 (

de
g)

626 627 628 629 630 631 632 633 634 635
-10

-5

0

5

a z (
m

/s2)

Time (s)

136

(a) Residuals

(b) NN estimations

Fig 6.11 ࢗ ՜ step fault. Note in plot (b): dotted (faulty), purple (NN), black (ideal) ࢻ

626 627 628 629 630 631 632 633 634 635
0

0.005

0.01

q-
R

G
PE

 (
ra

d/
s)

 2

626 627 628 629 630 631 632 633 634 635
0

0.02

0.04

α
-R

G
P

E
(r

ad
) 2

626 627 628 629 630 631 632 633 634 635
0

0.5

1

Time (s)

a z-R
G

P
E

(m
/s2) 2

NOTE: Fault introduced at
626s.
NOTE: Fault not detected

NOTE: Fault introduced at
627s.
NOTE: Fault detected at
628s

NOTE: NO fault introduced
NOTE: False Alarm at 626.96

626 627 628 629 630 631 632 633 634 635
-20

-10

0

10

20

q
(d

eg
/s

)

626 627 628 629 630 631 632 633 634 635
0

5

10

15

α
 (

de
g)

626 627 628 629 630 631 632 633 634 635
-10

-5

0

5

a z (
m

/s2)

Time (s)

137

(a) Residuals

(b) NN estimations

Fig 6.12 ࢠࢇ ՜ ࢻ ՜ soft fault. Note in plot (b): dotted (faulty), purple (NN), black (ideal) ࢗ

626 628 630 632 634 636 638 640 642 644
0

0.005

0.01

q-
R

G
PE

 (
ra

d/
s)

 2

626 628 630 632 634 636 638 640 642 644
0

0.02

0.04

α
-R

G
P

E
(r

ad
) 2

626 628 630 632 634 636 638 640 642 644
0

0.5

1

Time (s)

a z-R
G

P
E

(m
/s2) 2

NOTE: Fault introduced at
636s.
NOTE: Fault detected at
640.18s

NOTE: Fault introduced at
631s.
NOTE: Fault detected at
633.12s

NOTE: Fault introduced at
626s
NOTE: Fault detected at
629.18

626 628 630 632 634 636 638 640 642 644
-40

-20

0

20

40

q
(d

eg
/s

)

626 628 630 632 634 636 638 640 642 644
0

5

10

15

20

α
 (

de
g)

626 628 630 632 634 636 638 640 642 644
-20

-10

0

10

a z (
m

/s2)

Time (s)

138

(a) Residuals

(b) NN estimations

Fig 6.13 ࢠࢇ ՜ ࢻ ՜ hard fault. Note in plot (b): dotted (faulty), purple (NN), black (ideal) ࢗ

626 628 630 632 634 636 638 640 642 644
0

0.005

0.01

q-
R

G
PE

 (
ra

d/
s)

 2

626 628 630 632 634 636 638 640 642 644
0

0.02

0.04

α
-R

G
P

E
(r

ad
) 2

626 628 630 632 634 636 638 640 642 644
0

0.5

1

Time (s)

a z-R
G

P
E

(m
/s2) 2

NOTE: Fault introduced at
630s.
NOTE: Fault detected at
633.90s

NOTE: Fault introduced at
628s.
NOTE: Fault detected at
629.22s

NOTE: Fault introduced at
626s
NOTE: Fault detected at
627.52

626 628 630 632 634 636 638 640 642 644
-40

-20

0

20

40

q
(d

eg
/s

)

626 628 630 632 634 636 638 640 642 644
0

5

10

15

20

α
 (

de
g)

626 628 630 632 634 636 638 640 642 644
-20

-10

0

10

a z (
m

/s2)

Time (s)

139

(a) Residuals

(b) NN estimations

Fig 6.14 ࢠࢇ ՜ ࢻ ՜ step fault. Note in plot (b): dotted (faulty), purple (NN), black (ideal) ࢗ

626 628 630 632 634 636 638 640 642 644
0

0.005

0.01

q-
R

G
PE

 (
ra

d/
s)

 2

626 628 630 632 634 636 638 640 642 644
0

0.02

0.04

α
-R

G
P

E
(r

ad
) 2

626 628 630 632 634 636 638 640 642 644
0

0.5

1

Time (s)

a z-R
G

P
E

(m
/s2) 2

NOTE: Fault introduced at
628s.
NOTE: Fault detected at
629s

NOTE: Fault introduced at
627s.
NOTE: Fault detected at
628s

NOTE: Fault introduced at
626s
NOTE: Fault detected at
626.96

626 628 630 632 634 636 638 640 642 644
-40

-20

0

20

40

q
(d

eg
/s

)

626 628 630 632 634 636 638 640 642 644
0

5

10

15

20

α
 (

de
g)

626 628 630 632 634 636 638 640 642 644
-20

-10

0

10

a z (
m

/s2)

Time (s)

140

Chapter 7 FADS system applied to a MAV

Introduction

In this chapter a FADS system is designed and wind tunnel tested on a MAV wing

(supplied by BlueBear Systems Research, BBSR Ltd). For an introduction to FADS

systems the reader is referred to Chapter 3. The aim in this chapter is to design a FADS

system which can convert aircraft surface pressure to 3 air data states; ∞ܲ, ∞ܸ, The .ߙ

ideal location of the pressure ports (orifices) on the MAV wing must be first

investigated via CFD simulation to avoid placing the ports at areas where surface

pressure is insensitive to the desired air data. In our case both 2D and 3D CFD

simulations are implemented, wind tunnel tests are carried out at Leicester University

and the flight data is processed (offline) using an EMRAN RBF NN (Chapter 4). This

chapter has resulted in the following publications [46, 49, 51].

This chapter is organised as follows. The MAV is presented in section 7.1. Section

7.2 discusses the 2D CFD simulations applied to a section of the MAV wing (i.e. an

aerofoil) and the results are used to conclude a suitable location of the pressure ports.

The final pressure port locations are outlined in section 7.3. In section 7.4 a 3D CFD

simulation of the wing is also carried out to explain how the sideslip (ߚ) cannot be

accurately estimated based on the pressure port locations chosen. Sections 7.5-7.7

discuss the wind tunnel tests and section 7.8 is the results section where the FADS

system is analysed in terms of; estimation accuracies for wind tunnel static and dynamic

tests, fault tolerance performance and performance in comparison to a standard lookup

table (LUT) approach.

7.1 The mini air vehicle (MAV)

The MAV used to test the FADS system is shown in Fig 7.1. The MAV uses a MH64

wing section [144] and flies at a maximum speed of 20m/s. From Fig 7.1 we can see

that the MAV is driven by a nose propeller and therefore mounting a FADS system at

the wing leading edge is more suitable than the nose. Furthermore the wing leading

cannot be approximated as a sphere and therefore a NN modelling approach in the

FADS system, is more appropriate than the aerodynamic model (which is derived based

on spherical shape assumptions) defined in Chapter 3, section 3.3. Some of the MAV

141

properties are shown in Table 7.1. However note that only the wing section (Fig 7.2) is

used in the wind tunnel and CFD tests.

Fig 7.1 MAV (courtesy of BBSR Ltd.)

Table 7.1 Some of the MAV characteristics

Characteristic Value

Speed range 8-20 m/s

Mass 450 g

Wing span 488 mm

Wing root chord 250 mm

Wing tip chord 200 mm

Wing thickness (t/c) 8.61%

Fig 7.2 Top view of the wing section (c is the wing chord).

142

7.2 CFD simulations (2D)

CFD simulations were performed on the MAV wing using the MH64-wing coordinates

defined in [144]. In general it is useful to perform CFD simulations prior to the actual

tests as they allow us to tune and test our designs with minimal incurred costs.

A CFD analysis of the pressure distribution over a wing can help us identify which

parts of the wing would be most suitable for mounting the pressure ports in the FADS

system. The purpose of a FADS system is to convert surface pressure to air data states,

and it is therefore important that the pressure ports are mounted in areas which are

highly sensitive to the air data. In our case the air data only includes; ∞ܲ, ∞ܸ, .ߙ

7.2.1 Background and terminologies

An aerofoil is any section of the wing cut by a plane perpendicular to the wing (Fig 7.3).

It is 2D and can be normalised (i.e. chord length is set to 0-1) to investigate the general

aerodynamic properties of the wing (i.e. lift, drag, pressure distribution etc.). 2D CFD

simulations of an aerofoil can have some limitations. For example we are unable to

investigate the aerodynamic properties vs. sideslip. In more advanced applications, a 2D

aerofoil would be unsuitable if the wing tip vortices are of interest to the engineers.

However in our case we are only interested in approximating the pressure distributions

in order to locate the steep pressure gradients at the wing leading edge. Therefore as we

are not interested in simulating the exact air flow over the wing and calculating the

exact pressure magnitudes, a 2D CFD simulation is suitable and more importantly strict

convergence criteria are not necessary.

The air flow simulated over an aerofoil and indeed the whole aircraft can be

categorised according to; its viscosity and compressibility [124]. Air flowing past an

aerofoil is essentially viscous. Viscosity effects are caused by the friction between the

air and the aerofoil, the thermal conduction between areas of high and low temperature

and the mass diffusion when fluid concentration gradients are present [124]. Air is also

compressible which implies that it would consistently change its density (ߩ) as it

expands and contracts throughout flow. However for most low speed flights (speeds less

than ൎ 100 m/s), it can be assumed that the air flow is inviscid and incompressible

[145]. This is mathematically convenient and can simplify the CFD simulation. In

theory however, such a flow does not exist. For example the Reynolds number (Re) is a

143

dimensionless number which is essentially the ratio of inertial forces to viscous forces.

Therefore an inviscid flow requires an infinite Re which cannot exist in reality.

Furthermore the frictional forces of the viscous air flow are a major contribution to the

aerodynamic drag and therefore assuming inviscid flow cannot on its own predict the

total drag.

Assuming inviscid, incompressible flow, a well-known equation can be used to relate

the pressure (p) and airspeed (V) anywhere in the flow field [124]:

݌ ൅ ଵ
ଶ

ଶܸߩ ൌ constant (7.1)

Equation 7.1 is the well-known Bernoulli equation were p is the local pressure, ߩ is the

(constant) air density and V is the airspeed. The Bernoulli equation states that at any

point in the air flow, if the velocity increases then the local pressure at that point

decreases and vice versa. It is important to note that (7.1) would only be applicable in

inviscid, incompressible flows where there is no energy dissipation due to viscous

effects (e.g. friction) and the air density is constant.

There are several useful parameters and relationships that can be derived from (7.1).

These include the pressure coefficient (Cp) and the relationship between total pressure

(଴ܲ), freestream static pressure (∞ܲ) and dynamic pressure (ݍ∞). Using (7.1) we can

define the relationship between any two points (1 and 2) in the air flow as:

ଵ݌ ൅ ଵ
ଶ

ߩ ଵܸ
ଶ ൌ ଶ݌ ൅ ଵ

ଶ
ߩ ଶܸ

ଶ (7.2)

As defined in Chapter 3 (section 3.1), ଴ܲ is the pressure measured when V ≈ 0.

Therefore if point 1 in (7.2) is taken to be at ଴ܲ then:

 ଴ܲ ൅ ଵ
ଶ

ሺ0ሻଶߩ ൌ ଶ݌ ൅ ଵ
ଶ

ߩ ଶܸ
ଶ (7.3)

 ଴ܲ ൌ ଶ݌ ൅ ଵ
ଶ

ߩ ଶܸ
ଶ (7.4)

If point 2 in (7.4) is measured far ahead from any flow disruptions (due to the aerofoil)

then any aerodynamic property measured at that point is referred to as freestream. For

example the airspeed measured at the surface of an aerofoil would not be freestream as

the air would be either accelerated or decelerated as it collides with the surface of the

144

aerofoil. Therefore referring back to (7.4), if point 2 is measured far ahead of the

aerofoil then:

 ଴ܲ ൌ ∞ܲ ൅ ଵ
ଶ

∞ߩ ∞ܸ
ଶ (7.5)

where subscript ∞ indicates freestream and:

∞ݍ ൌ ଵ
ଶ

∞ߩ ∞ܸ
ଶ (7.6)

We can also define the pressure coefficient (Cp) as [124]:

C୮ ൌ
݌ െ ∞݌

∞ݍ

 (7.7)

where p is the local pressure. Equations (7.5)-(7.7) are useful when analysing the air

flow in CFD simulations as well as real applications. For example a Pitot-static tube

measures ଴ܲ and ∞ܲ, and therefore using (7.5), ∞ܸ can be calculated. However note that

the airspeed calculated using (7.5) would be the indicated airspeed, i.e. we are assuming

ߩ ൌ ஶ everywhere (incompressible flow). Cp is also an important parameter as mostߩ

pressure distribution curves found in the aerodynamic literature are defined in terms of

this dimensionless number instead of the pressure magnitude.

Fig 7.3 Aircraft terminologies [121].

145

7.2.2 Results

The software package Gambit is used to build the MH64 aerofoil which is later

analysed in the CFD software, Fluent. Fig 7.4 shows the aerofoil build in Gambit. The

quadrilateral ‘cells’ are generated during the meshing stage. The aerodynamic properties

anywhere in a cell are constant. Meshing is the process where a large domain is

subdivided into small sections and each section is then analysed separately. This

reduces the modelling complexities. Increasing the number of cells can increase the

accuracy of the CFD simulations but it can also increase the processing time. In our

case, the domain around the aerofoil was divided into 12240 cells (Fig 7.4).

Fig 7.4 Gambit 2D, 12240 quadrilateral cells

The aerofoil designed in Gambit can then be uploaded into Fluent. In our case the air

flow was assumed to be inviscid and incompressible. Standard sea-level atmospheric

conditions were also considered and pressures were referenced to the atmospheric

pressure (101.325 kPa). The convergence criterion was set to 1e-5 for all CFD

simulations, and tests were carried out at ∞ܸ =12, 15, 18, 20 m/s and 8 ,6 ,4 ,2 ,0 =ߙ deg.

Figs 7.5 and 7.6 show an example of the velocity and pressure distributions

respectively, for ∞ܸ=20m/s and 0=ߙdeg. From Fig 7.5 we can see that the airspeed far

away from the aerofoil is almost 20 m/s. This is expected, as the freestream airspeed is

in fact, ∞ܸ ൌ 20m/s. As the air approaches the aerofoil, the airspeed changes due to the

146

collision of the air with the aerofoil surface. So for example we can see from Fig 7.5

that the flow is accelerated over the upper surface of the aerofoil (as it is pushed along

the surface). On the other hand at the leading edge we will find that the airspeed is at its

minimum. This is in fact the stagnation area of the aerofoil where the air is decelerated

to approximately zero airspeed and is also where the total pressure ଴ܲ can be measured.

Fig 7.6 can be related to Fig 7.5 via the Bernoulli equation (7.1). For example we

will notice that at areas where the airspeed is accelerated (ܸ ൐ ∞ܸ in Fig 7.5), the

corresponding pressure decreases (ܲ ൏ ∞ܲ in Fig 7.6). If we carefully observe Fig 7.6

we will also notice that despite both being negative, the pressure at the upper surface of

the aerofoil is lower than the pressure on the lower surface. This net pressure imbalance

is in fact what gives the lifting property of aircraft wings.

In our investigation we are interested in locating the pressure gradients on the

aerofoil surface. For this purpose we require an x-y plot of aerofoil surface pressure vs.

chord. As discussed in section 7.2.1, it is more convenient to plot Cp (7.7) instead of

the pressure magnitude. The Cp plots are displayed in Figs 7.7-7.10. To better

understand the Cp plots let us re-define Cp in (7.7) in terms of the ratio of local airspeed

(V) to freestream airspeed (∞ܸ):

௣ܥ ൌ 1 െ ሺ
ܸ
ஶܸ

ሻଶ (7.8)

Note that (7.8) is only applicable in inviscid, incompressible flows [124]. From (7.8) we

can arrive at the following:

- Cp~1 at the stagnation point (i.e. where V~0).

- Cp൏1 if the flow is accelerated (i.e. V > ∞ܸ).

- Cp൐1 if the flow is decelerated (i.e. V < ∞ܸ).

The pressure ports of the FADS system must be mounted on the wing in areas where:

1. There are steep pressure gradients

2. There are strong variations between the upper and lower surface pressures.

This offers a wealth of non-redundant information from which the air data values may

be estimated [38]. From Fig 7.7 we can see that criteria 1 and 2 are satisfied for x/c <

0.1. If we zoom into Fig 7.7 (Fig 7.8) we can conclude that most of the ‘action’ occurs

147

at x/c < 0.01 and Cp is almost constant for x/c > 0.01. Therefore initially we can

conclude that the pressure ports must be located at x/c < 0.01.

We must next consider the variation of pressure with ∞ܸ. However in this case Cp

would not change for a change in ∞ܸ. This is because the ratio ܸ/ ∞ܸ would remain the

same and therefore Cp in (7.8) would be constant. Instead we consider the static

pressure on the surface of the aerofoil (Fig 7.9-7.10). Once again from Fig 7.10 we find

that the steep pressure gradients occur at x/c < 0.01.

Fig 7.5 Velocity distribution for ࢂஶ = 20m/s, 0 = ࢻdeg

Fig 7.6 Pressure distribution for ࢂஶ = 20m/s, 0 = ࢻdeg

148

Fig 7.7 Cp plot for ࢂஶ = 20m/s, 8 ,6 ,4 ,2 = ࢻ degs

Fig 7.8 Zooming into Fig 7.7

149

Fig 7.9 Cp plot for ࢂஶ = 12, 15, 18, 20m/s and 2 = ࢻ deg

Fig 7.10 Zooming into Fig 7.9

150

7.3 Location of the matrix of pressure orifices (MPO)

The number of pressure ports (orifices) must be chosen as a compromise between the

need to accurately estimate the air data states and the need to reduce instrumentation

costs. Choosing a large number of pressure ports can improve the fault tolerance

properties of the FADS system and its robustness to noise caused by e.g. air turbulence

or instrumentation noise. However not only do a large number of pressure ports increase

the instrumentation cost, but in MAVs we must take into account the space and weight

limitations. In our case there are 3 air data states to be estimated (∞ܲ, ∞ܸ, and therefore (ߙ

a minimum of three pressure ports are required. Two extra ports are added in order to

improve the redundancy options and the noise sensitivity of the FADS system. We will

from now on refer to these five pressure ports collectively as the matrix of pressure

orifices (MPO) which include P1, P2, P3, P4, and P5 (Fig 7.11).

It is important that the MPO are distributed in such a way that 1) ports close to each

other give different pressure measurements (this avoids having redundant information)

and 2) the pressures measured are sensitive to variations in the air data states ∞ܲ, ∞ܸ, . ߙ

In section 7.2.2 we concluded that the latter criterion is satisfied at x/c <0.01. Taking

this into account, two pressure ports were placed on the upper surface of the wing, two

on the lower surface and one close to the tip of the wing leading edge (see ‘Side-View’

of Fig 7.11). The latter port is included as a stagnation pressure source (i.e. for

approximate measurements of ଴ܲ).

As far as the author is aware, there is no universally accepted standard for the

minimum hole spacing (i.e. the distance between adjacent pressure ports) and indeed the

size of the pressure ports (i.e. the diameter of the pressure orifices). For example [146],

[32], [147], [43] use a hole diameter of 0.76, 0.79, 6.40, 5.00 mm and a minimum hole

spacing of 1.08, 15.25, 61, 406 mm respectively. In general it was found from the

literature that a minimum hole spacing of 1mm and a hole diameter of 0.5mm were

suitable.

Distributing the pressure ports along the wing span (see ‘Front-View’ of Fig 7.11)

can help increase the hole spacing. This is important, for two reasons. Firstly this avoids

having redundant information. Secondly it can avoid any flow interference between the

adjacent ports. Pressure orifices drilled into the surface of the wing will result in uneven

edges around the port and so the air flow over the orifices will not be smooth. This

disruption of the air flow can consequently affect the pressure measurements of adjacent

151

ports. This flow interference effect between adjacent ports is one of the main reasons

why pressure ports in FADS systems must be suitably spaced.

Consider the ‘Side-View’ of Fig 7.11. To increase the hole spacing we could of

course spread the ports over the whole aerofoil (i.e. shifting the pressure ports towards

the trailing edge). However, by doing so we would no longer fulfil the criterion that

ports must be placed at x/c<0.01. Therefore instead we distribute them along the wing

span (see ‘Front-View’ of Fig 7.11).

In conclusion there are three important criteria when choosing the locations of the 5

pressure ports:

1. They must all be located at x/c <0.01.

2. A minimum hole spacing of 1mm and hole diameter of 0.5 mm must be used.

3. The MPO must be placed far enough from the wing root and tip.

The latter criterion is important if we are to avoid the effects of flow separation at the

wing tip and the turbulent air behind the nose propeller, i.e. the nose propeller wash. For

this reason the middle port P3 (Fig 7.11) was placed at a span of 200mm from the wing

root (i.e. 44mm from the wing tip). Table 7.2 shows the locations of the 5 pressure ports

in terms of x/c and Fig 7.11 shows the MPO mounted on the MAV wing where 0.50

mm hole diameter and 5.00 mm hole spacing were used.

Table 7.2 Pressure port locations (also refer to Fig 7.11)

Port x/c position

P1 0.009

P2 0.003

P3 0.001

P4 0.003

P5 0.009

152

Fig 7.11 Top view of wing and MPO (with pressure ports P1, P2, P3, P4, P5), MPO not
shown to scale

7.4 CFD simulations (3D)

The locations of the five pressure ports (P1, P2, P3, P4, P5) have been chosen so that 3

air data states (∞ܲ, ∞ܸ, can be estimated from the FADS system. Therefore a 2D CFD (ߙ

simulation was sufficient to conclude the areas of steep pressure gradients at the wing

leading edge (section 7.2-7.3). However we have not yet considered the possibility of

estimating the sideslip, ߚ. To investigate this further, a 3D CFD simulation of the whole

wing must be implemented, with constant ∞ܸ and ߙ and changing ߚ.

z X

153

3D CFD simulations of a body can be accurately implemented only if the exact body

coordinates (dimensions) are known. Fortunately, the required simulation accuracy is

highly dependent on the application and in our case, as we are mainly interested in

locating the steep pressure gradients and not estimating the exact pressure magnitudes,

the geometrical model built in Gambit can be greatly simplified.

Three assumptions were considered when building the wing in Gambit (compare the

Gambit model in Fig 7.12 with the real wing in Fig 7.11):

1. The winglet at the wing tip is not included

2. The indent at the leading edge close to the wing root (Fig 7.11) is not included

3. The wing thickness was assumed constant across the wing span

As designed in section 7.3, the MPO of the FADS system is located far away from the

wing root and wing tip. Therefore assumptions 1 and 2 above should not significantly

affect the CFD results. The final assumption is quite extreme and can result in

inaccurate CFD simulations. However we should still be able to roughly identify the

pressure gradients vs. sideslip. Furthermore the MPO (Fig 7.11) is confined to a small

section on the wing leading edge and therefore the change in thickness, and indeed the

chord length, within this small section is not large. The wing built in Gambit and the

meshed grid is shown in Fig 7.12 and Figs 7.13-7.14 respectively. In comparison to the

2D aerofoil (Fig 7.4, section 7.2.2), 1042950 hexahedral cells were used. As a result the

3D CFD simulations were much slower with one test taking over six hours to complete.

Fig 7.12 3D-wing section built in Gambit

154

Fig 7.13 3D-wing and meshed grid built in Gambit (meshed with 1042950 hexahedral
cells)

Fig 7.14 Zooming into Fig 7.13.

As in the 2D CFD simulations, the air flow was assumed inviscid and

incompressible. The tests were carried out in Fluent at a fixed ∞ܸ=15m/s and 0=ߙdeg,

and only the sideslip was varied between 0-10=ߚdeg. The 3D CFD simulation results

are shown in Figs 7.15-7.17.

The velocity profile of the wing is shown in Fig 7.15. As we earlier observed in Fig

7.5, we notice that the airflow is decelerated as it collides with the wing leading edge

(ܸ ൏ ∞ܸ) and then accelerated (ܸ ൐ ∞ܸ) over the upper surface of the wing. Figs 7.16-

7.17 are the Cp plots vs. ߚ and can be used to identify which parts of the wing are

sensitive to changes in sideslip.

155

Let us first consider Fig 7.16. There are 84 separate lines representing different parts

of the wing leading edge. Note that the wing leading edge is assumed to be a line at the

front end of the wing (see Fig 7.2). This line is divided into 84 sections and the pressure

is measured separately at each section. The Cp plot for each section is shown in Fig

7.16. So for example in Fig 7.16, the line at the top of the plot represents the section at

the wing root while the bottom line represents the section at the wing tip. The length of

the leading edge is 249 mm (see Fig 7.2) and therefore each section is 2.96mm wide

(249mm/84). From Fig 7.16 we notice that Cp varies almost linearly with ߚ for areas

close to the wing root and tip. On the other hand in areas far away from the wing root

and wing tip, Cp is almost constant for ߚ ൐ 3deg. Therefore ideally we would want to

place the pressure ports closer to the wing root and wing tip due to the almost linear

relationship of Cp and ߚ. From Fig 7.16 we can calculate that for parts of the wing

leading edge which are between 0-30mm and 225-249mm (represented by a tick) there

are almost linear variations of the pressure with the sideslip. Therefore ideally we would

want to place the pressure ports in the areas where the tick is marked in Fig 7.16.

Again, Fig 7.17 investigates the variation of Cp with ߚ but this time we move

backwards from the wing leading edge i.e. moving towards the trailing edge. In Fig 7.17

we have shifted backwards from the wing leading edge (x/c= 0.006) and again as in Fig

7.16, plotted Cp vs. ߚ for 84 different sections of the wing span. As we can see the

changes in Cp vs ߚ are very small. So for example, at the wing tip (top line), Cp only

changes by approximately 0.025 between 0=ߚdeg and 10=ߚdeg. Therefore we can

conclude that the further back we go from the wing leading edge the less sensitive the

pressure ports would be with sideslip.

In conclusion to estimate the sideslip, the ideal location of the pressure ports is:

1. Close to the wing leading edge

2. In areas marked by a tick in Fig 7.16, i.e. close to the wing root and wing tip.

The first criterion is expected as we have already seen in the 2D CFD simulations

(section 7.2) that most of the steep pressure gradients occur at the wing leading edge.

The problem with placing the pressure ports close to the wing root and wing tip is that

there can be significant disruptions to the air flow caused by the nose-propeller wash

and the wing tip vortices respectively. It is for this reason that the MPO was located far

away (P5 was 200mm from the wing root, Fig 7.11) from the wing root and wing tip at

156

the cost of not being able to accurately estimate the sideslip, ߚ. Further improvements to

the design proposed here will be discussed in the Future Work chapter (Chapter 8).

Fig 7.15 Velocity profile of 3D-wing. ࢂஶ = 15m/s, 0=ࢻdeg and 0=ࢼdeg

Fig 7.16 Change in pressure coefficient vs sideslip for each part of the wing leading
edge. Increments are in approx 3mm starting from wing root to wing tip. ࢂஶ = 15m/s,

 .0deg=ࢻ

0 1 2 3 4 5 6 7 8 9 10
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

β (deg)

C
p

 0 mm
(Wing Root)

30 mm

225 mm

249 mm
(Wing tip)

157

Fig 7.17 As in Fig 7.16 but moving backwards from the wing leading edge at
x/c=0.006.

7.5 Wind tunnel and instrumentation

The MAV wing mounted with the FADS system was wind tunnel tested at Leicester

University. The wind tunnel is an open-ended subsonic wind tunnel capable of reaching

speeds of 40 m/s and has a working section of 0.46m x 0.46m (see Fig 7.18 and Fig

7.19). The MAV wing is sting mounted in the wind tunnel and an external balance is

used to support the wing via the sting bar. The sting bar is connected close to the wing

centre of gravity so that for zero angle of attack settings (set from the balance), the wing

would also be at zero angle of attack. The balance supporting the sting bar included a

scaled-turning knob (calibrated in deg) which allowed variations in wing α (Fig 7.19).

To allow for sideslip variations the standard sting bar was slightly modified (see

‘Modified section’ in Fig 7.11). The part allowing the sideslip comprises two

rectangular pieces of metal with one end rounded to a semicircle. The straight edge of

one piece is connected to the sting bar and the straight edge of the other is connected to

a bar fixed to the wing. The two plates can rotate about a hole through which passes a

bolt to lock them together at the chosen angle. The rounded ends carry a scale to

indicate the wing ߚ. Wind tunnel instrumentation includes:

1. Pitot-static tube

2. 6 pressure transducers

0 1 2 3 4 5 6 7 8 9 10
-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

β (deg)

C
p

0 mm
(Wing Root)

249 mm
(Wing tip)

158

3. Potentiometer

4. Data acquisition (DAQ) card

5. PC with LabView installed

A Pitot-static tube was mounted in the wind tunnel ahead of the wing and connected to

a differential pressure transducer to measure the difference between ଴ܲ and ∞ܲ. Using

this pressure difference, we can calculate ∞ܸ via (7.5) (assuming inviscid,

incompressible flow). The remaining 5 pressure transducers are connected via pressure

tubing to the 5 pressure orifices (0.50mm diameter each) where the pressure measured

is differential (i.e. with respect to room pressure). It is important to keep the tubing

distance to a minimum to avoid any time lags. The pressure transducer board was

therefore placed as close as possible to the wind tunnel giving an approximate tubing

length of 0.38 m. The pressure transducers have a pressure range of ±5”H20 and an

accuracy of 0.15% of the full scale. The pressure transducer measurements are read in

by a PC-based DAQ card at a sampling frequency of 50Hz where the DAQ card

consisted of a 16-bit analogue to digital (ADC) converter and the software used to log

the wind tunnel data for each test was LabView. To measure applied wing angle of

attack, a potentiometer was connected to the turning knob of the external balance. The

potentiometer is wired to the DAQ card and the angle of attack settings are recorded in

LabView. The sideslip ߚ was simply recorded from the scale on the sting bar (Fig 7.11).

Digital acquisition of ߚ settings was not necessary as dynamic tests were implemented

for changes in α and not ߚ.

 In conclusion using the available instrumentation, the following parameters can be

individually recorded (or calculated); pi, P0, P∞, V∞, α, ߚ where pi is the pressure

measured from orifice i and i=1,2...,5. All wind tunnel data was filtered using a 2nd

Butterworth low pass filter (implemented in LabView). To comply with the Nyquist

sampling theorem, the cutt-off frequency chosen must be smaller than half the sampling

frequency. With a sampling frequency of 50Hz, the cutt-off frequency was heuristically

chosen to be 1.5Hz.

159

Fig 7.18 Low speed wind tunnel at Leicester University laboratory

Working
Section

160

Fig 7.19 Wind tunnel settings and instrumentation

161

7.6 Wind tunnel test procedure

Two types of wind tunnel tests were carried out; static and dynamic. Static tests involve

fixing the wind tunnel settings (i.e. ∞ܸ, ߚ ,ߙ settings) and recording the data only once

the measurements have reached a steady-state value. The data can then be stored (in

LabView) and analysed offline in Matlab/Simulink. The static tests carried out are

outlined in Fig 7.20. Overall there are 252 separate tests with different ∞ܸ, ߚ ,ߙ settings.

So for example, in Fig 7.20 one of the tests would consider β=0°, ஶܸ=15m/s and 9°-= ߙ.

The second group of tests are dynamic tests where ߙሶ ് 0. Static tests are useful as a

first step towards analysing the NN modelling capabilities and to investigate whether or

not the wing surface pressure can be related to the air data states (∞ܲ, ∞ܸ, as predicted (ߙ

by the CFD simulations (section 7.2). However in real flight, static test results are of

little use as the aerodynamic state of the aircraft rarely stays constant. For this reason it

is important to perform dynamic tests. In our case this was considered by continuously

varying the angle of attack for each test (i.e. ߙሶ ് 0) and fixing the airspeed and sideslip

at V∞=15m/s and β=0° respectively. The wing angle of attack is randomly varied at

different ߙሶ and waveforms; square-wave, sine-wave and ramp-type. Note that certain

time evolutions of ߙሶ may not be feasible in real flight, but were necessary to analyze

the modelling capabilities of the NN.

Fig 7.20 Wind tunnel static tests. 7 different β settings (in 3deg increments), 3 different

V∞ settings, and 12 different α settings (in 2deg increments). Overall there are 252
separate static tests.

162

7.7 Wind tunnel data

As discussed in section 7.3 it is important that 1) the pressure ports (P1, P2, P3, P4, P5)

give different pressure measurements and 2) these pressure measurements vary

significantly with the air data states (∞ܲ, ∞ܸ, Fig 7.21 and Table 7.3 show some of the .(ߙ

wind tunnel data recorded during the tests:

‐ Fig 7.21: This plots the changes in the port measurements (P1, P2, P3, P4, P5) with a

change in ߙ and ∞ܸ. From Fig 7.21 we notice:

a) Ports give different pressure measurements which is important to avoid

having redundant information

b) Steep pressure gradients are observed at each port for a change in angle

of attack setting

c) For fixed angle of attack the pressure measurements at each port vary

with the different airspeed settings.

‐ Table 7.3: This shows some of the wind tunnel data for two different sideslip

settings; β=0deg and β=9deg. The observations made from Fig 7.21 are also seen in

Table 7.3:

a) For example in the first row of Table 7.3(a) we can see that the pressures

measured from P1, P2, P3, P4, P5 are different

b) The pressure measured from each port varies significantly with a change

in angle of attack setting, e.g. compare the first two rows of Table 7.3(a)

where for example P3=4.01 Pa for α=-9.12deg and when alpha is

changed to α=-7.02deg , then P3=26.87Pa

c) Compare the first row of Table 7.3(a) with the 13th row (i.e. when the

airspeed is changed to 15 m/s), we will notice that pressure port

measurements have changed significantly, e.g. P4 =-215.66 Pa for

V∞=12.73 and when airspeed is increased to V∞=15.50, then P4=-324.31

Pa.

163

(a)

(b)

(c)

Fig 7.21 Port pressure distribution for three different speeds and fixed β=0° (a) V∞=12 m/s (b)
V∞=15 m/s (c) V∞=20 m/s

-10 -5 0 5 10 15
-500

-400

-300

-200

-100

0

100

P
or

t
P

re
ss

ur
e

(P
a)

Alpha (deg)

P1
P2
P3
P4
P5

-10 -5 0 5 10 15
-500

-400

-300

-200

-100

0

100

P
or

t
P

re
ss

ur
e

(P
a)

Alpha (deg)

P1
P2
P3
P4
P5

-10 -5 0 5 10 15
-500

-400

-300

-200

-100

0

100

P
or

t
P

re
ss

ur
e

(P
a)

Alpha (deg)

P1
P2
P3
P4
P5

164

Table 7.3 Wind tunnel static test data. Note that all pressures are referenced to atmospheric

pressure (101.3kPa)

(a) β=0deg

P1 (Pa) P2(Pa) P3(Pa) P4(Pa) P5(Pa) V∞(m/s) α(deg) P∞(Pa) P0(Pa)

46.01 32.04 4.01 -215.66 -199.08 12.73 -9.12 -46.64 52.67

44.19 46.65 26.87 -166.03 -187.43 12.41 -7.02 -47.82 46.53

29.97 43.46 38.64 -119.69 -152.14 12.82 -4.90 -45.04 55.68

16.58 40.26 43.61 -67.17 -111.41 12.73 -2.93 -46.06 53.17

-3.39 32.43 46.26 -21.05 -72.24 12.35 -0.93 -48.20 45.14

-27.51 13.72 41.34 5.11 -40.16 12.58 1.36 -47.94 48.96

-60.72 -15.19 29.10 25.75 -10.14 12.71 3.15 -47.84 51.06

-95.50 -56.72 7.23 41.66 15.10 12.71 4.94 -47.98 50.92

-133.68 -96.94 -35.98 45.97 27.19 12.69 7.25 -47.02 51.54

-175.33 -149.28 -88.04 42.64 40.42 12.65 9.51 -47.96 50.10

-235.38 -222.57 -165.47 28.81 47.75 12.42 11.57 -47.14 47.36

-283.01 -286.07 -230.47 11.58 42.49 12.56 13.60 -47.12 49.46

62.29 46.95 -4.18 -324.31 -293.70 15.50 -9.04 -71.37 75.74

54.58 59.03 31.52 -252.55 -276.24 15.25 -7.08 -70.21 72.27

45.60 61.92 53.03 -185.86 -234.63 15.21 -4.77 -69.97 71.67

22.49 62.54 62.42 -103.36 -166.32 15.34 -2.89 -69.99 74.14

-6.58 46.60 61.29 -38.15 -103.26 15.31 -1.13 -70.23 73.24

-38.05 19.77 60.57 9.12 -59.29 15.49 1.12 -70.07 76.89

-83.32 -20.91 45.28 35.15 -22.11 15.23 3.28 -69.65 72.33

-135.96 -69.59 10.08 55.60 14.96 15.38 5.20 -70.55 74.26

-190.69 -136.18 -46.80 62.33 41.91 15.23 7.41 -69.55 72.52

-262.42 -219.20 -120.42 62.86 54.43 15.06 9.44 -69.97 68.95

-328.49 -307.18 -217.25 56.43 64.30 15.48 11.66 -70.77 75.93

-396.84 -392.77 -312.03 21.83 65.12 15.35 13.81 -69.41 74.89

165

(b) β=9deg

P1 (Pa) P2(Pa) P3(Pa) P4(Pa) P5(Pa) V∞(m/s) α(deg) P∞(Pa) P0(Pa)

49.34 37.93 1.29 -225.80 -208.08 12.50 -8.85 -47.54 48.21

46.54 46.24 25.94 -172.69 -186.84 12.76 -6.88 -47.18 52.55

33.43 42.00 43.16 -116.38 -153.00 12.63 -4.94 -47.32 50.42

19.73 42.83 48.96 -66.42 -110.23 12.67 -2.95 -48.80 49.51

-1.09 35.27 46.48 -21.85 -71.61 12.67 -1.00 -48.26 50.05

-23.90 11.59 36.98 2.57 -33.01 12.61 0.81 -39.31 58.01

-57.33 -15.34 32.51 34.61 -7.34 12.50 3.08 -48.08 47.67

-95.23 -52.34 5.36 41.26 14.75 12.77 5.26 -46.88 52.92

-138.50 -99.94 -34.89 47.48 33.48 12.79 7.40 -47.64 52.49

-185.47 -156.36 -90.87 45.79 46.79 12.44 9.17 -48.44 46.32

-235.97 -220.61 -159.09 35.29 47.97 12.76 11.31 -46.90 52.75

-291.17 -289.49 -236.02 20.01 51.80 12.62 13.55 -47.62 49.94

68.87 56.75 1.50 -330.86 -302.98 15.28 -9.12 -70.21 72.85

62.09 62.67 35.62 -255.38 -284.35 15.31 -7.02 -70.43 73.04

49.07 72.72 64.33 -171.84 -228.99 15.15 -5.13 -70.67 69.91

25.13 64.25 69.06 -100.46 -168.45 15.51 -3.31 -71.65 75.63

-3.79 51.31 71.45 -36.83 -111.44 15.17 -1.04 -69.67 71.23

-39.70 23.96 61.78 7.15 -62.97 15.34 1.03 -71.23 72.82

-87.02 -20.57 47.24 45.48 -13.75 15.60 3.05 -70.03 78.99

-139.10 -75.51 11.12 63.71 20.59 15.19 4.90 -70.73 70.67

-195.88 -146.55 -48.46 68.10 41.97 15.20 7.20 -69.73 71.84

-274.12 -267.31 -222.35 -125.01 64.47 15.49 9.27 -70.25 76.62

-347.09 -314.72 -221.40 57.82 69.16 15.27 11.55 -69.41 73.32

-417.379 -424.246 -331.232 30.46 72.484 15.424 13.627 -70.49 75.22

166

7.8 FADS system results

7.8.1 Static tests
`

The wind tunnel data (some of which have been shown in Fig 7.21 and Table 7.3) is analysed

offline in a Matlab/Simulink environment. The 252 static tests (Fig 7.20) were divided into a

NN training set and a NN testing set by taking α slices, giving:

‐ TrD: This is the training set which includes the alpha settings of -9°, -5°, -1°, 3°, 7°,

11°.

‐ TeD: This is the testing set which includes the alpha settings of -7°, -3°, 1°, 5°, 9°,

13°.

Note that in each case all the β settings (-9 to 9deg) and V∞ settings (12, 15, 20m/s) are

considered. Therefore 126 static tests are used to train the NN with learning switched on, and

the remaining 126 are used to query the trained NN with learning switched off. Note that the

NN is trained according to the criteria defined in Chapter 4, section 4.2.

In conclusion NN training is stopped if ∆RMS< 0.1% for more than 100 consecutive

epochs (for both TrD and TeD) and/or the RMS estimation error for TeD increases for more

than 100 consecutive epochs. These criteria check for NN structural convergence and avoid

the over-fitting phenomenon respectively (Chapter 4, section 4.2).

The NN learning rate chosen is also crucial as a high learning rate guarantees good

estimations but it also degrades the global approximation capability of the network. There is

no formal guideline to defining the optimum learning rate and other tuning parameters in a

NN [35]. The designer must apply a heuristic-based approach when choosing the NN tuning

parameters. Satisfactory performance is judged based on the estimation characteristics and

execution speed of the NN. The EMRAN RBF NN tuning parameters used in our case are

defined in Table 7.4.

Fig 7.22 shows the NN training stage. Note that the estimation error units are not included

as it constitutes mixed NN outputs (i.e. the average of the estimation error for ෠ܲ∞, ෠ܸஶ, .(ොߙ

Training is stopped after 582 epochs and the NN structure frozen. The resultant NN is a fully

connected 5-3-3 NN shown in Fig 7.23.

The NN testing stage involves querying the 5-3-3 NN (Fig 7.23) with the testing data set

TeD. The results are broken down in Fig 7.37. Overall, the NN RMS estimation errors were;

0.44 lb/ft2, 0.62 m/s and 0.51° for ෠ܲ∞, ෠ܸஶ, .ො respectivelyߙ

167

Table 7.4 EMRAN RBF NN tuning parameters

Tuning parameter Value

Learning rate 0.2

E1 0.2

E2 0.1

 ௠௔௫ 0.6ߝ

 ௠௜௡ 0.3ߝ

 ௗ௙ 0.997ߛ

݇௢௣ 1e-6

Fig 7.22 NN training/testing RMS estimation errors

Fig 7.23 RBF NN with 5-3-3 structure. λ’s are the weights. P’s represent the pressure ports in
Fig 7.11

0 100 200 300 400 500 600 700 800 900
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

N
N

R
M

S
Es

tim
at

io
n

Er
ro

r

Epoch

Training error
Testing error

Stop Training
(ΔRMS <0.1% for >100 epochs)

168

7.8.2 Fault accommodation

In general FADS systems can be more robust to noisy pressure measurements in comparison

to conventional air data booms [41]. This is due to the fact that multiple pressure ports are

used in the FADS system and therefore averaging redundant measurements can reduce the

effects of noise, while in air data booms there are only two pressure ports (total and static

pressure, Chapter 3, section 3.1). Furthermore using a large matrix of pressure measurements

can improve the fault tolerance capabilities of the FADS system. For example one can

imagine that if 50 pressure ports, distributed over the aircraft surface, are used to compute the

angle of attack then a fault in one of the ports should not significantly degrade the estimation

capabilities of the FADS system.

In Chapter 2 we discussed that real systems are prone to faults (sensor, actuator faults,

etc.). We also proposed the different approaches for detecting, isolating and accommodating

such faults. FADS systems will also be prone to faults such as; pressure orifice blockage due

to environmental conditions, pressure transducer faults and electrical wiring failures. Fault

detection, isolation and accommodation (FDIA) is important if the air data are to be

constantly available throughout the entire flight and especially if they are required in feedback

control loops. There have been several methods cited in the literature which propose to detect

faults in the pressure ports. The simplest of methods involves fault detection via physical

redundancy [148]. In this case the pressure ports are divided into groups. Each group would

individually estimate the same air data quantity. Their estimates can then be compared via a

simple voting scheme for fault detection purposes. This technique would require a minimum

of three pressure port groups to be able to implement the voting scheme. Other techniques

involve statistical methods which check for the consistency of the air data estimates [43, 41,

149]. In this case the estimated air data states are re-inserted into the air data system model

(see Eqs. 3.10-3.11 in Chapter 3, section 3.3) and the calculated pressure measurements are

compared to the real pressure measurements to give the mean squared estimation error

(MSE). The MSE of one set of pressure ports, and the MSE of another set of redundant

pressure ports are compared, and the set with the lowest MSE is chosen in the FADS system

[43].

As we can see most of the techniques for FDIA in FADS systems are based on physical

redundancy. However, as discussed in Chapter 2, physical redundancy can suffer several

drawbacks, such as cost, space and weight implications (which must be taken into account

especially in small MAVs). As a result, new research trends have made use of model-based

FDIA techniques; e.g. observers, Kalman filters, NNs etc. (see Chapter 2). The concept of

169

model-based FDIA can also be applied in the FADS system. In this section we will compare

two fault accommodation techniques: physical redundancy and NN-based approaches. Note

that we are only interested in the fault accommodation stage of FDIA, i.e. we have assumed

that the fault has already been detected and isolated. This is because we have already

discussed and applied different FDI algorithms in Chapters 5-6. So for example we could use

a NN model (an autoassociative NN, discussed later) to estimate the pressure measurements

from each port (P1, P2, P3, P4, P5). The model estimates and the real pressure measurements

can then be used to compute a fault residual which can be checked against a pre-defined

threshold for fault detection purposes. However in this section we are only interested in the

fault accommodation stage; i.e. how can we accommodate for the faulty pressure port to

maintain accurate estimation performance of the NN in Fig 7.23.

To investigate this further, we artificially introduce faults in the NN testing data set TeD.

The fault type considered is a total sensor failure. In this case the sensor stops working and

outputs a constant zero. As we are so far considering only static tests, the time evolution of

the fault is not of interest.

The trained 5-3-3 NN structure (Fig 7.23) is queried with TeD but this time; 1, 2 or 3 of the

NN inputs are set to zero (simulating single and multiple sensor failures). Three fault

accommodation techniques are then compared:

1. No correction: Faulty inputs are not accommodated.

2. Next port: In this case we simply accommodate the fault by replacing the faulty port

with a neighbouring non-faulty port.

3. AA-NN: The faulty port is replaced with the corresponding estimate from an

autoassociative NN (AA-NN).

The ‘No correction’ method represents the scenario when the fault is unaccommodated. The

‘Next port’ method represents the physical redundancy technique for fault accommodation

purposes. So for example in Fig 7.11 if P1 is faulty, then measurements from P2 can replace

it. The NN in Fig 7.23 will therefore have pressures ports; P2, P2, P3, P4 and P5 as inputs. If

P1, P3 and P5 are faulty then the NN inputs would be P2, P2, P4, P4 and P4. The ‘AA-NN’

method for fault accommodation represents the model-based approach. An AA-NN is one

which simply reproduces its inputs at its output [97]. In other words the AA-NN would be

trained to receive measurements from P1, P2, P3, P4, P5 and produce the corresponding

estimates P෡1, P෡2, P෡3, P෡4, P෡5. Fault accommodation via AA-NN is then implemented by

replacing the faulty port with the corresponding estimate from the AA-NN. This method of

170

fault accommodation was originally proposed in [36] and shown to improve the FADS system

robustness to sensor faults. In our case, the AA-NN designed is a fully connected 5:10:5

EMRAN RBF NN.

Fig 7.24 shows the results for the fault accommodation tests. In general we notice that if

the fault is not accommodated (i.e. the ‘No Correction’ option), the NN RMS estimation

errors increase significantly especially in the presence of multiple faults (with alpha RMS

error reaching 14° for three faults, Fig 7.24 (c)). However in the ‘Next Port’ option,

estimation errors are reduced significantly. In our case using the ‘Next port’ option resulted in

an average 50.39% decrease in the NN RMS estimation errors. On the other hand using the

‘AA-NN’ option resulted in a larger reduction of 69.6%. The AA-NN greatly improves the

robustness of the FADS system to faults.

A drawback of using the AA-NN is the further memory usage required onboard the air

vehicle. On the other hand, the ‘Next Port’ option does not suffer from this and is simpler to

implement which is why in many cases the FADS system is pre-designed with a slight degree

of pressure port redundancy. In our case (Fig 7.11) we can see that the pairs P1, P2 and P4,

P5 could be considered as redundant port locations as 1) They are close to each other 2) They

have similar pressure distributions as seen in Fig 7.21.

In conclusion, including redundant pressure ports in the FADS system improves the

robustness of the overall system to faults. Furthermore it can mitigate the effects of system

noise. However in applications where space onboard the vehicle is limited or instrumentation

costs need to be low, an AA-NN can be designed to reproduce the faulty (or noise-corrupted)

pressure measurements.

Fig 7.24 NN RMS estimation errors in the presence of total sensor failure. (a) P1 faulty, (b)
P1, P5 faulty, (c) P1, P3, P5 faulty

0

5

10

15

(a)

0

5

10

15

R
M

S
 E

st
im

at
io

n
E

rro
r

(d
eg

, l
b/

ft 2 , m
/s

)

(b)

Alpha Static Pressure Speed
0

5

10

15

(c)

No Correction
Next Port
AA-NN

171

7.8.3 CFD vs. Wind tunnel

In section 7.2 we concluded that the pressure ports P1, P2, P3, P4, P5 were insensitive to

changes in the sideslip β (Fig 7.16 and Fig 7.17). To validate the CFD results we can also plot

Cp vs β from the wind tunnel data. Such a plot is shown in Fig 7.25(a) where the CFD

predictions and the wind tunnel data are both plotted for pressure measured from P3. There

are two important observations to make from Fig 7.25(a):

1. CFD and wind tunnel data are almost similar: There will be some differences due to

the assumptions considered in the CFD simulations (e.g. inviscid flow and the

dimensional assumptions such as constant wing thickness, see section 7.4).

2. Both the CFD and wind tunnel data show that the variation of pressure with sideslip is

insignificant.

Fig 7.25(b) also shows the wind tunnel data for a change in β for 3 airspeed settings. From

both Fig 7.25(a) and Fig 7.25(b) we can conclude (as we had earlier predicted from the 3D-

CFD results, section 7.4) that the pressure ports located as in Fig 7.11 are insensitive to

changes in sideslip. Therefore it can be difficult to define a NN model which relates the

surface pressure to the sideslip, as this relationship is almost constant (see Fig 7.25).

(a)

0 1 2 3 4 5 6 7 8 9 10
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

β (deg)

C
p

CFD
WT

172

(b)

Fig 7.25 (a) CFD and wind tunnel data for pressure port P3 (ࢂஶ = 15m/s, 0=ࢻdeg)
(b) Wind tunnel data when changing the airspeed ࢂஶ = 12, 15, 18 m/s

7.8.4 Dynamic tests

The 5-3-3 NN structure concluded in Fig 7.23 is used in the dynamic tests. At a fixed β=0°

and ∞ܸ= 15 m/s, the wing angle of attack is varied continuously (i.e. ߙሶ ് 0) and the NN

estimate ߙො recorded. An overall alpha RMS estimation error of 0.58° was achieved.

Fig 7.26 and 7.27 show the NN estimation characteristics for two of the dynamic tests

carried out. Let us refer to them as dynamic test 1 (DT1) and dynamic test 2 (DT2)

respectively. Let us now investigate the estimation characteristics of DT1 in detail (Fig 7.26).

It can be seen that at certain time frames the NN estimations are significantly poor. For

example at around 120 seconds, where α>15°, the NN underestimates α by almost 10 deg. At

first it may seem that this is simply due to random estimation error patterns, i.e. the NN

performance is generally accurate except for some random time frames. However if we

observe the estimations from DT2 (Fig 7.27) we notice that at approximately 75 seconds,

where again α>15°, the NN underestimates α by almost 10deg. This shows that the NN

performance is in fact poor for specific α settings, such as α>15°.

One explanation for this observation is related to the NN domain of validity [35]. The

RBF-NN is essentially a multidimensional interpolator. The accuracy of the surface fit to

‘new’ data (i.e. its ability to generalise) is highly dependent on the location of this data in the

input space, i.e. the location of that point relative to the domain of validity of the NN where

the domain of validity defines the boundaries of the data set used to train the NN [150]. A

general rule is that when the NN is queried with data which lies outside these boundaries (i.e.

outside the domain of validity), the NN estimations would be poor or in other words the

extrapolation properties of the NN are poorer than its interpolation properties. This can be

0 3 6 9
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

β (deg)

C
p

12 m/s
15 m/s
18 m/s

173

better explained by re-iterating the RBF NN structure (Chapter 4). The fundamental principle

of the RBF NN is that the output of each RBF found in the hidden layer (i.e. the output of

each hidden neuron) is proportional to the distance between the input vector and the centre of

that hidden neuron. So for example in our case we chose a Gaussian- RBF. Therefore data

which lies far from the centre of the Gaussian function will output a close-to-zero value.

These centres are tuned based on the training data set, TrD. Therefore testing data which is far

away from the domain of TrD will also lie far from the centres of the Gaussian functions and

so the NN output will always be close to zero. In other words the NN estimations will be poor

for testing data lying outside the domain of TrD, i.e. outside the domain of validity.

For this reason it is important that the NN is trained with as much flight data as possible,

and more importantly with data which covers the entire flight data range. This reduces the

likelihood of the testing data lying outside the NN domain of validity. In our case, the method

of dividing the training (TrD) and testing (TeD) data sets was chosen for ease of presentation.

However, a more robust approach is needed to define TrD, so that the domain of validity

encompasses all possible input data patterns. This is particularly important in our case as the

NN structure is frozen after the offline training stage and will not be further trained during

actual flight.

In conclusion, a more robust approach to training the NN must include the following:

1. Collecting all the possible flight data (this would depend on previous flight

experience)

2. Defining the domain of validity of the collected flight data

3. Including the outermost values of the domain of validity to train the NN.

A good survey paper for the different methods to defining the domain of validity can be found

in [151]. The simplest approach is by defining the minimum and maximum of each NN input

parameter (in our case that would be each pressure port). Testing data which lies outside these

limits is said to be outside the domain of validity. Despite its simplicity, unfortunately this

method overestimates the domain of validity. More complex methods involve defining the

convex hull (CH) of the training data set. The vertices of this convex hull can then be used to

determine the exteriority of a new input pattern. Patterns which lie outside the CH have an

exteriority greater than zero, and ones which are in the CH have an exteriority equal to zero.

A convex hull is a multidimensional surface which tightly encompasses a set of

multidimensional data [35]. There are several techniques to defining the convex hull and its

vertices. They are generally based on iterative mathematical algorithms which continuously

check the exteriority of a new input pattern. If this exteriority is greater than zero then the

174

input pattern is included in the convex hull and so on. See for example Chapter 4.4 in [35] for

a code which calculates the vertices of the convex hull. Another method of calculating the

domain of validity is by defining a sphere which encompasses all the input data patterns. Data

patterns which lie outside the sphere are considered to be outside the domain of validity [150].

As in the min/max method, this approach is simple to implement as we would only need to

know the radius of the sphere to define whether the input pattern lies outside the domain of

validity. However, similar to the min/max method, this technique can grossly overestimate the

domain of validity.

Regardless of the technique used to defining the domain of validity, the important thing to

note is that once it has been defined, the vertices (i.e. the outermost values) of the domain of

validity must be included in the NN training set as this greatly reduces the need for NN

extrapolation. As wind tunnel tests generally investigate only a group of flight test conditions,

it is difficult to define the domain of validity based on only the wind tunnel data.

To demonstrate the importance of carefully selecting the NN training set TrD, we will

reconsider the NN estimations for DT1 in Fig 7.26. For simplicity purposes, let us define the

domain of validity using the min/max approach described earlier. We will assign pressure

from TrD and DT1 the subscripts ‘_TrD’ and ‘_DT1’ respectively. The following code

(shown for P1 only) can be used to indicate (graphically), whether a pressure input is outside

the domain of validity defined by P1_TrD (i.e. defined by the min/max range of the pressure

from P1 in the training set TrD):

P1_TrD is the pressure from port 1 in the training set TrD
P1_DT1 is the pressure from port 1 in the dynamic test DT1

IF P1_DT1 is less than the minimum value in P1_TrD or P1_DT1 is greater than the

maximum value in P1_TrD THEN
 This indicates that P1_DT1 is outside the domain of validity.

Therefore plot the number 25.
ENDIF

The code states that if pressure from P1_DT1 exceeds the bounds defined by P1_ TrD then

plot a value of 25. The plot value is not meaningful, it is chosen simply for ease of

representation. Similarly the code above can be implemented for the remaining pressure ports

P2, P3, P4 and P5 but with plot values of 20, 15, 10 and 5 respectively.

Fig 7.28 shows the results from this task. We have also included the residual from DT1

which was calculated simply as the difference between the NN estimates ߙො, and the measured

(real) value ߙ. Note also that the plots, in Fig 7.28, for P4 and P5 cannot be seen as they do

not exceed any limits.

175

From Fig 7.28 we notice how the residual significantly increases (i.e. NN estimations are

poor) only when the pressure input patterns lie outside the NN domain of validity. So for

example the residual is highest at 120 seconds when pressure from ports P1, P2 and P3

exceed the min/max limits, i.e. they lie outside the domain of validity.

The simple domain of validity test presented here has confirmed the importance of

appropriately selecting the NN training set. Different approaches exist for doing so and it is

up to the designer to choose a suitable method. It is perhaps also important to note that

training data is best obtained from real flight tests as the FADS system will eventually be used

during real flight. BBSR Ltd has already purchased a suitable air data boom for the MAV

which can be mounted on the MAV and used to collect real flight data. This data can then be

used to train the NN.

Fig 7.26 RBF NN estimation (ࢻෝ) for DT1

Fig 7.27 RBF NN estimation (ࢻෝ) for DT2

0 20 40 60 80 100 120 140 160
-20

-15

-10

-5

0

5

10

15

20

A
lp

ha
 (d

eg
)

Time (s)

Real
NN-Estimation

0 20 40 60 80 100 120 140 160
-20

-15

-10

-5

0

5

10

15

20

A
lp

ha
 (d

eg
)

Time (s)

Real
NN Estimation

176

Fig 7.28 Domain of validity test for P1, P2, P3. If P1, P2, P3 lie outside the domain of
validity, a value of 25, 20, 15 is plotted respectively, otherwise a value of zero is plotted. NN

residual also shown (solid blue line~’1)

7.8.3 FADS system via LUTs

Introduction

The RBF NN designed for the FADS system is a static model i.e. the NN structure is frozen

when used onboard the air-vehicle. On the other hand the NN models used in the SFDIA

applications (Chapters 5-6) were dynamic, i.e. the NN structure was continuously updated via

online training. Therefore as we are no longer benefiting from the adaptive capabilities of the

NN we must also consider alternative static input-output mapping techniques for the FADS

system model. The most popular being the lookup table (LUT). LUTs are based on storing

(user-defined) input/output training patterns in memory. If the testing data patterns are

exactly equal to the training patterns then the LUT simply recalls the corresponding pattern

from memory. Therefore in this case, LUTs would most certainly outperform an RBF NN.

However the two methods must be compared in terms of their generalisation capabilities, i.e.

how they would perform when exposed to ‘new’ data.

A common misconception is that LUTs must visually look like a table, i.e. they have

structures similar to a table. However in some cases there may be table elements which are

not available or do not physically exist. So for example, the thrust from an engine can be

defined by a 2D lookup table with Mach number and altitude as the independent variables. In

this case, there exists a unique engine thrust value for every Mach-Altitude combination. Now

consider our FADS system application. Let us assume that the row vector is the

measurements from P2, the column vector is measurements from P1 and the output is the

0 20 40 60 80 100 120 140 160
0

5

10

15

20

25

30

35

40

A
lp

ha
 E

st
im

at
io

n
E

rr
or

 (d
eg

)

Time (s)

Residual
P1 exceedance
P2 exceedance
P3 exceedance

P2 exceeds

P1 exceeds

P3 exceeds

177

angle of attack (Fig 7.29). In Fig 7.29, a cross implies that an angle of attack value does not

exist for the specified P1-P2 combination. This could be because the wind tunnel tests did not

consider these angle of attack settings, or simply that the pressure combination cannot

physically exist in the FADS system.

The data used to build the LUT will be referred to as training data and the data used to

query the LUT will be referred to as testing data (to maintain consistency with the NN

terminology).

The LUT elements (Fig 7.29) can also be plotted in a xyz Cartesian coordinate (Fig 7.30). The

generalisation capability of the LUT is judged based on its performance (i.e. output accuracy)

when the testing data does not coincide with the training data e.g. if P1=95.1 and P2=45.1 in

the LUT (Fig 7.29). In this case, there is no pre-defined value for the output. To tackle this

problem, LUTs are generally interpolated between the data points. For example in Fig 7.30, a

2D surface can be fitted so that there is an output for all P1-P2 combinations lying between

the training data set, see e.g. Fig 7.30(b)-(c). This approach is referred to as surface fitting (or

curve fitting in the 1D case) and belongs to the field of computational geometry [152, 153]. In

our case, as we are considering LUTs, an important criterion is that the surface fit must pass

through all the data points (otherwise known as strict interpolation [97]). So for example in

Fig 7.30, the surface fit must pass through all the data patterns defined in Fig 7.29 and shown

in Fig 7.30(a).

The following terminology is used throughout this section:

‐ Data point/Input: A specific LUT input pattern (e.g. P1=90, P2=40 in Fig 7.29). Also the

x-y coordinate of a surface fit such as Fig 7.30. Inputs to the LUTs are the independent

variables.

‐ Output: This is the scalar output of the LUT (e.g. for input P1=90, P2=40 the output is

1deg in Fig 7.29). Also the z coordinate of a surface fit (e.g. angle of attack in Fig 7.30).

Outputs of a LUT are the dependent variables.

178

Column vector

Row
vector

 P1

P2

90 95 100

40 1deg 3deg

45 2deg

50 4deg

Fig 7.29 2D LUT example for angle of attack

(a)

 (b) (c)

Fig 7.30 Surface fit for 2D- LUT in Fig 7.29 (a) Data points are shown, (b) Data points
triangulated to generate a surface, (c) Rotating Fig 7.30(b)

Application

LUTs can be multidimensional, i.e. they can have more than one independent variable. For

example the LUT in Fig 7.29 is 2D where there are two independent variables (P1 and P2)

and one dependant variable (angle of attack). It is generally uncommon to find LUTs with

dimensions higher than 3D. This is because they can be computationally demanding and

require large amounts of memory onboard the aircraft. Instead we can divide one LUT into

several low-dimension LUTs (each dedicated to estimating only one air data variable).

90

95

100

40

45

50
0

1

2

3

4

P1P2

A
ng

le
 o

f A
tta

ck

90

95

100

40

45

50
1

2

3

4

P1P2

A
ng

le
 o

f A
tta

ck

90

95

100

40
45

50
1

2

3

4

P1
P2

A
ng

le
 o

f A
tta

ck

179

The FADS system consists of five independent variables (P1, P2, P3, P4, P5) and three

dependent variables (angle of attack, airspeed, freestream static pressure). To simplify the

problem we will design three separate 2D-LUTs (one for each dependent variable). The

design is summarised in Fig 7.31.

To justify the choice of the pressure ports in Fig 7.31, let us refer back to Fig 7.11. P3 is

the middle pressure port and is where the total pressure can be measured. As total pressure is

a function of airspeed and static pressure (via Eq. (7.5)), port P3 will also be sensitive to

airspeed and static pressure. For this reason P3 is included in LUT 2 and LUT 3. From the

CFD simulations (section 7.2, see e.g. Fig 7.8), we concluded that most of the steep pressure

gradients vs. angle of attack occur close to the wing leading edge, i.e. at x/c<0.01. The ports

closest to the wing leading edge (other than P3 as it has already been used in LUT 2 and LUT

3) are P2 and P4, and are therefore included in LUT 1.

Fig 7.31 Three LUTs used in the FADS system

Popular univariate interpolation methods (i.e. 1D problems where there is only one

independent variable) include linear interpolation (where a straight line is fitted through all

the data points), polynomial interpolation (fitting a polynomial curve of specified order),

linear splines (multiple straight lines are fitted to the data where each line connects 2 adjacent

data points), cubic splines (3rd order polynomials connecting every 2 adjacent data points),

linear regression (a curve is fitted, such as a polynomial, to the data in such a way that

180

minimises the squared estimation error). Collectively these methods are referred to as curve

fitting approaches [152]. For a wider introduction to such methods and multidimensional

fitting approaches, the reader is referred to [152-155].

In our case there are two independent variables for each LUT (Fig 7.31) and so we are

considering 2D surface fitting problems such as the example in Fig 7.30(b)-(c). Surface fitting

can be a challenging task as experimental data is often randomly scattered on a plane and

therefore it is not clear how they should be connected, i.e. in what pattern. One popular

technique is via triangulation [152]. Triangulation is the process of generating multiple

triangles where each triangle has vertices coinciding with three data points. The benefits of

this and how the generated surface can be used to generalise will be discussed later. More

formally, the triangulation technique to be used is known as Delaunay triangulation and is in

fact the 2D data gridding technique used in most Matlab functions.

Delaunay triangulation is based on a Dirichlet tessellation of the plane so that the generated

triangles are as close to equilateral triangles as possible [156]. One reason for this is that

equilateral triangles have the property that all three sides are equal in length. Therefore the

three data points on the vertices of the triangle would be at the same distance from each other.

This localises the triangulation to data points which are close to each other, i.e. to every three

data points which are in close proximity. Dirichlet tessellation first divides a plane into tiles

and then triangulates between data points which share the same tile ‘edge’. Fig 7.32 shows

such a tessellation and the resulting Delaunay triangulation. Note that in Fig 7.32 the convex

hull of the 8 data points would be the outer-boundary N1N2N3N4N5N6. For a more formal,

mathematical introduction to Dirichlet tessellation and Delaunay triangulation the reader is

referred to [157, 158].

Fig 7.32 Dirichlet tessellation (dotted lines) and resulting Delaunay triangulation (solid lines)
for 8 data points N1, N2....., N8 [156].

One of the motivations for triangulating a surface (as in Fig 7.32) is that each triangle can

be described as a linear equation [153]:

ݖ ൌ ܽ଴ ൅ ܽଵݔ ൅ ܽଶ(7.9) ݕ

181

where z is the output (i.e. the z-axis of a surface fit, output of the LUT), x and y are the inputs

(i.e. the x-y coordinates of the surface fit, inputs to the LUT). Note that in for example Fig

7.32, each data point (N1, N2,..., N8) would have a corresponding x-y coordinate. Therefore

for any three data points, the coefficients in (7.9) can be derived as long as the three data

points are not collinear [152]. The resulting linear equation describes a triangle with vertices

at these three data points. So for example in Fig 7.32, the x-y coordinates of the data points

N5, N7, N4 can be used to derive the coefficients a0, a1, a2 in (7.9) so that the resulting triangle

connects these three data points. The interpolated (triangular) surface N5N7N4 is then used to

calculate the output (i.e. z coordinate) of any ‘new’ data point which lies on the edge (or

inside) this triangle. The latter is the process of ‘generalisation’ and one can imagine that the

denser the triangulation (i.e. the surface is divided into many triangles) the more localised the

surface patterns are, and therefore the better the generalisation capabilities of the surface fit.

An example of a triangulated surface fit is shown in Fig 7.31; the x and y coordinates would

be the input to a 2D LUT and the z-coordinate is the output of the LUT. Note that if we are to

refer to the 2D LUTs in Fig 7.31 as surface fits, an important criterion is that the fitted surface

passes through all the data points.

The surface fit discussed so far interpolates through all the data points so that data lying

inside or on the edge of the convex hull is approximated by the linear triangle equation (7.9).

The problem occurs when the data lies outside the convex hull (e.g. outside N1N2N3N4N5N6 in

Fig 7.32). The generalisation performance of a surface fit to data points lying outside the

convex hull is then defined by its extrapolation properties. Earlier in section 7.8.3 we

concluded that the NN performance is poorer when data lies outside the NN domain of

validity (e.g. outside its convex hull), i.e. extrapolation was poorer than interpolation. The

same is true for the surface fit such as Fig 7.33. The reason for this is that there are no local

data patterns outside the convex hull from which we can triangulate the data. Therefore we

must apply different techniques to defining the output when the input data points lie outside

the convex hull. Ideally however, as discussed in section 7.8.3, we would want the training set

to encompass as much of the flight data range as possible so that most of the testing data lies

inside the triangulated convex hull. This avoids the need for extrapolation.

Part of the extrapolation process is to search for the closest training data points. If these

data points are significantly far from the testing data point, then we would expect poor

extrapolation performance. So for example in Fig 7.33, if we query the surface fit with

P1=1000 Pa and P2=1000 Pa we can expect the estimated angle of attack to be inaccurate, as

the P1 and P2 have a data range of only 0-15 Pa. On the other hand if the query data point is

182

P1=15.01 Pa and P2=15.01 Pa, then this data point lies very close to the limits (i.e. convex

hull) of the surface fit in Fig 7.33.

The same methods used in interpolation can also be applied to the extrapolation process.

So for example once we have found the closest training data points to the testing data point,

we can then fit a polynomial equation through these training data points and use it to

approximate the testing data in close proximity.

In conclusion the method used to generate an interpolated surface fit for the training data

points is as follows:

1. Triangulate the data points via Dirichlet tessellation so that each triangle connects 3

three data points (to satisfy the LUT criterion)

2. For each triangle use the xyz coordinate of the 3 data points to derive a linear equation

as in (7.9)

3. Store the set of linear equations.

Once the interpolated surface is generated, the testing data is used to query the surface fit as

follows (regardless of whether the data point lies inside or outside the convex hull):

1. Define the testing data point.

2. Find the closest triangle and its associated equation as in (7.9).

3. Use this linear equation to define the output of the testing data point

Therefore with these conditions we can define the following outcome:

1. If the testing data point is exactly equal to one of the training data points then it will

share the same output value, i.e. the estimation error is zero. This satisfies the LUT

criterion.

2. If the testing data point lies inside, on the edge, or outside the convex hull then the

output value will depend on the closest data pattern, i.e. the closest triangle. Therefore

both the interpolation and extrapolation methods are based on searching for the closest

triangle.

Prior to analysing the results it must be noted that the methods chosen here are not

necessarily superior to all other interpolation/extrapolation techniques. For example we may

fit only one polynomial equation to approximate all the data patterns. This will be much

simpler and quicker than triangulating the surface and solving (7.9) for every local triangle. In

general one cannot predict the best methods by simply observing the data patterns. Different

techniques must be first applied and based on specific merits (such as time consumption,

183

memory usage, estimation accuracies, extrapolation properties etc.) we can only then define

the most suitable method.

Fig 7.33 Surface fit example using Delaunay triangulation

Results

The results for the three LUTs (Fig 7.31) are shown in Figs 7.34-7.36, Fig 7.38 and Table 7.5.

A fault accommodation test was also implemented to investigate the fault tolerance

capabilities of the LUTs. The tests were similar to the ones carried out in section 7.8.2 but the

method of fault accommodation only involved the ‘Next port’ option. A careful analysis of

the results reveals the following:

‐ Fig 7.34: This shows the surface fit for all three LUTs. The outer-boundary of each plot is

the convex hull and testing data lying outside the convex hull are shown as black ‘dots’.

On average 20% of all testing data lied outside the convex hull or in other words, 20% of

the data had to be extrapolated. The triangulation of the surface can be clearly seen,

however we notice that the triangles are quite large. This reduces the accuracy of the

surface fit as it is desirable to build a dense surface fit in order to increase the sensitivity to

local patterns (see for example Fig 7.33).

‐ Fig 7.35: This summarises the overall estimation error of the LUT. In comparison to the

LUT, the NN (except for static pressure estimations) outperforms the LUT. One reason for

this is that the surface fit generated by triangulation does not produce a dense surface. This

could be improved by increasing the amount of training data.

‐ Table 7.5: A fault accommodation test was implemented and the LUT and NN results

tabulated. The table shows the percentage increase in estimation error when a pressure port

is replaced with a neighbouring port. We notice that in some cases the LUT has a 0%

change in estimation error. This is because the faulty pressure port is not used in the input

0

5

10

15

0

5

10

15
-8

-6

-4

-2

0

2

4

6

8

P1P2

An
gl

e
of

 A
tta

ck

184

of the LUT, while the NN on the other hand uses all 5 pressure ports. For this reason the

LUT has shown to be more robust than the NN to faults (as shown by a generally smaller

mean %).

‐ Fig 7.36: This shows the average execution time for one sample of data (1.6 GHz Pentium

processor used). The LUT tends to be faster than the NN. There are two possible reasons

for this. Firstly, if the testing data is equal to the training data, the LUT simply recalls the

data pattern from memory, i.e. no computations are required. If the testing data is not equal

to the training data the LUT searches for the closest triangle and its linear equation (7.9). It

then substitutes the testing data value into this equation to compute the output value.

Equation 7.9 has only 4 basic mathematical operators (i.e. 2 additions and 2

multiplications). On the other hand the 5-3-3 NN involves much more mathematical

computations (see Eq. 4.10 in Chapter 4) and therefore takes longer to execute. In general

however both LUT and NN had a mean execution time per data sample lower than the

flight data sampling time (0.02s).

In general the NN was found to outperform the LUT in terms of estimation accuracy. The

main drawback of the LUT is its extrapolation properties which accounted for 20% of the

testing data. In section 7.8.3 we also suggested that the 5-3-3 NN had poor extrapolation

performance. The reason for this is that the RBF-NN outputs are based on the distance of the

input data to the local centres of the RBFs. Therefore if the testing data are far away from any

centres then the activation of each RBF would be small and the output would be close to zero.

To avoid data extrapolation it is important that the training data set, used to build the LUT (or

train the NN), encompasses all possible data patterns. This reduces the possibility of the

testing data to lie outside the convex hulls. The size of the training set is also important. In our

case, only 126 different test conditions were used to build the NN and LUT structures. In

general, especially for NN applications, it is not uncommon to use thousands of different

training patterns e.g. in our SFDA application (Chapter 5, section 5.8.1) we trained (offline)

the NN with 225s of flight data which is equivalent to 11250 training samples (for a sampling

time of 0.02s).

It was also found that the LUT has faster execution times than the NN. This is because the

mathematical operations performed per data sample are much less for the LUT in comparison

to the NN.

Therefore at first we may conclude that the LUT outperforms the NN according to several

criteria; execution time, fault tolerance and simplicity. A logical question therefore is what

can we benefit from using the 5-3-3 NN in the FADS system. Firstly, despite pointing out

earlier that air data booms are not to be used in our MAV (due to weight and cost

185

restrictions), in many other manned air-vehicles (or even large UAVs), the FADS system will

operate in parallel (i.e. as a back-up) to the air data boom. This gives the option of NN online

training as we now have reference air data from the boom. Although look-up tables can also

be designed to be adaptive, it is the online training capability of NNs which make them

extremely popular. An additional reason is that LUTs are at most 3D while it is not

uncommon to find NNs using more than 50 inputs and can therefore be more robust to input

faults and measurement noise in comparison to the LUT. Finally while a NN can be

implemented in a few lines of code, the LUT demands much higher memory usage especially

if the training data set is large.

Conclusions

- A FADS system was designed for a MAV and tested in a wind tunnel to estimate the

angle of attack, static pressure and airspeed (∞ܲ, ∞ܸ, .(ߙ

- The FADS system included 5 pressure orifices placed at the wing leading edge.

- The CFD results were shown to match the wind tunnel tests. However some

differences were present due to assumptions considered in the CFD simulations. This

was not a problem as the CFD simulations were only used to approximate the pressure

gradients on the MAV wing.

- A NN approach is used to model the aerodynamic relationship between vehicle

surface pressure and air data to avoid the slow executions times associated with

conventional lookup table approaches and the complexity associated with nonlinear

regression methods implemented in [33, 40, 41].

- NN training was terminated according to two stopping criteria. Criterion 1 considered

the rate of change of the RMS training estimation error (∆RMS). If the ∆RMS

remained below 0.1% for more than 100 consecutive epochs, the NN is said to have

converged and training is stopped. Criterion 2 considered the increase in the RMS

testing estimation error. If this error increased for more than 100 consecutive epochs,

training is stopped to avoid over-fitting the NN.

- The stopping criteria were satisfied after 582 epochs of NN training resulting in a 5-3-

3 EMRAN RBF NN.

- Air data RMS estimation accuracies of 0.44 lb/ft2, 0.62 m/s and 0.51° for ෠ܲ∞, ෠ܸஶ, ොߙ

respectively were achieved for static tests where ߙሶ ൌ ሶߚ ൌ ሶܸ = 0.

- A fault accommodation test on the 5-3-3 RBF NN revealed that a 50% reduction in

NN estimation errors is possible if redundant pressure ports were considered. Similar

186

tests showed that a 70% reduction is possible if an autoassociative NN was used

instead.

- Dynamic tests (where ߙሶ ് 0) were carried out in a wind tunnel and a 5-3-3 NN

structure was used to estimate ߙ. An RMS estimation accuracy of 0.58° was achieved.

- A simple logic test showed that the NN estimation error is large when NN input

patterns lie outside the NN domain of validity (defined here by the maximum and

minimum limits of the training data set). This observation proved the importance of

carefully selecting the NN training data set to avoid NN extrapolation.

- The FADS system model was also implemented as three separate LUTs. In general it

was found that the LUT has faster execution times and was more robust to faults in

comparison to the 5-3-3 NN. However this was only the case for a simple test where

only one sensor can be faulty. On the other hand it was pointed out that LUTs are at

most 3D (i.e. 2 inputs), while it is not uncommon to find NNs with more than 50

inputs. This can improve the fault tolerance capabilities of the NN especially if there

are multiple sensor faults. Furthermore while a NN is implemented in a few lines of

code, the LUT requires high memory usage which may not be available in our MAV.

- The FADS system designed here was insensitive to changes in sideslip. Solutions to

this problem will be discussed in Chapter 8.

UAVs are currently ineligible for a standard airworthiness certificate, and are only

assigned a special airworthiness certificate in the experimental category for research and

development purposes [159]. However it is highly feasible that these restrictions will

eventually be removed and UAVs will be integrated into the National Airspace System

(NAS). One of the policies that for example the FAA adopts for regulators to issue an

airworthiness certificate is based on the air-vehicle’s potential to do damage. This categorises

the air-vehicles in terms of weight, size, speed etc. Ultimately weight has relevance for

airworthiness risks, and the FADS system suggested here takes this into consideration. Our

FADS system weighed approximately 35g while the mini air data boom typically used by

BBSR Ltd for their UAVs, weighs 170g (which can be too heavy for the MAV used in this

thesis, as suggested by the engineers at BBSR Ltd). In this case, a reduction in weight of 135g

may not seem significant, but relatively speaking, an 80% reduction in weight can be crucial

in large unmanned air vehicles for both flight and airworthiness purposes. In addition, the

FADS system’s overall cost is almost £75 (£15 for each pressure sensor) in comparison to the

air data boom which costs almost £2500. This large cost reduction is mainly of benefit to the

military industry where UAVs are more likely to be destroyed during mission.

187

(a)

(b)

(c)

Fig 7.34 Surface fits for (a) LUT 1 (b) LUT 2 (c) LUT 3, (black dots are testing data lying
outside convex hull)

-250 -200 -150 -100 -50 0 50 100

-600
-500

-400
-300

-200
-100

0
100
-10

-5

0

5

10

15

P2 (Pa)P4 (Pa)

A
lp

ha
 (d

eg
)

-300-250-200-150-100-50 0 50 100

-500
-400

-300
-200

-100
0

100
13

14

15

16

17

18

P3 (Pa)P1 (Pa)

Sp
ee

d
(m

/s
)

-300-250-200-150-100-50 0 50 100

-600
-500

-400
-300

-200
-100

0
100

-120

-100

-80

-60

P3 (Pa)P5 (Pa)

S
ta

tic
 P

re
ss

ur
e

(lb
/ft

2)

188

Fig 7.35 LUT and NN average estimation error for the test data set, TeD

Fig 7.36 Mean execution times: Mean taken for all ‘test’ data and then repeated for 100
iterations.

Table 7.5 Percentage increase in estimation error when one of the ports has failed and is

replaced with neighbouring port

Faulty
pressure

port

NN (%) LUT (%)
Alpha Speed Static Alpha Speed Static

Pressure Pressure
P1 14.82 110.05 0.88 0.00 154.97 0.00

P2 15.50 15.62 -0.22 68.45 0.00 0.00

P3 465.27 241.14 18.38 0.00 183.75 24.45

P4 588.24 379.27 4.81 336.69 0.00 0.00

P5 46.25 145.63 -0.40 0.00 0.00 5.64

Mean (%) 226.0 % 178.4 % 4.7 % 81.0 % 67.7 % 6.0 %

Alpha Speed Static Pressure
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

R
M

S
er

ro
r

 (d
eg

, m
/s

, l
b/

ft2)

LUT
RBF-NN

1.32

0.51

0.88

0.62

0.11

0.44

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration

Ex
ec

ut
io

n
tim

e
(m

s)

NN
LUT

NOTE: Mean times (ms):
NN = 0.32
LUT = 0.11

F

Fig 7.37 NN
Static pres

N estimation
ssure estima

errors at di
ation errors

1

(

(

(

ifferent win
(c) Speed e

shown

89

(a)

b)

(c)

nd tunnel set
estimation e
n here)

tting: (a) Al
errors. (Note

lpha estima
e only posit

tion errors (
tive β range

(b)
e

190

(a)

 (b)

 (c)
Fig 7.38 LUT estimation errors at different wind tunnel setting: (a) Alpha estimation errors
(b) Static pressure estimation errors (c) Speed estimation errors. (Note only positive β range

shown here)

191

Chapter 8 Conclusions and Future Work

This thesis aims to exploit existing aircraft technologies to reduce costs in UAVs. The

technologies include a NN-based SFDIA scheme tested on a nonlinear UAV model, and

a FADS system tested on a MAV.

In industry, sensor faults are generally detected based on physical redundancy and/or

limit value checking techniques. However such methods can suffer from high

instrumentation costs, slow fault detection times and a high sensitivity to sensor noise.

Over the years model-based SFDIA schemes have been proposed to overcome the

drawbacks of traditional SFDIA methods. However the theory has generally targeted

linear, fixed model based methods. Unfortunately such methods can be limited to linear,

time-invariant (LTI) systems. Novel methods, as suggested by the survey carried out in

[8], consider the use of NNs due to their nonlinear and adaptive structures. Fault

detection techniques have been applied to large manned aircrafts [24-26, 143, 160],

underwater vehicles [161], and autonomous helicopters [142], while few have been

extended to fixed wing UAVs. Work carried out using NN-based methods includes [19-

23, 24-28]. The work presented in this thesis is distinct from previous research in that a

NN-based SFDIA scheme is tested on a UAV application. Model-based methods are an

invaluable alternative to traditional approaches (such as physical redundancy) especially

for UAVs due to weight and cost restrictions. The conclusions drawn from this thesis

are as follows:

• The online training capabilities of NNs make them superior to most fixed, model-

based approaches (such as EKFs) in terms of robustness to system and

measurement noise. However too high a learning rate can cause the NN to learn

the faults and therefore increase the number of undetected faults. In our case a

learning rate of 0.0007 for an EMRAN RBF NN was found suitable.

• The EMRAN RBF NN was chosen due to its good generalisation capabilities and

more importantly due to its ability to adapt its structure so that a minimum

number of hidden neurons are used.

• The performance of a NN-based SFDIA scheme greatly depends on the residual

structure implemented. In general a trade-off is required (when tuning the

192

residual) in terms of the need to reduce the false alarms and the need to increase

sensitivity to incipient faults.

• A novel residual generator referred to as RGPE was proposed to dampen the

residual noise (caused by system and measurement noise). The method has proved

successful as it reduced the false alarms in comparison to a traditional residual

generator (RGE). Furthermore by damping the residual noise we were able to

amplify the residual and subsequently reduce the number of undetected faults.

• It was noted that residual padding may not perform as expected in the event of

intermittent failures. Moreover if the minimum value in the data window to be

padded, is not close-to-zero, then residual padding may not sufficiently reduce the

residual average as desired.

• The RGPE approach must be carefully tuned in order to avoid damping the fault

effects on the residual. In our case a residual averaging size of 50 samples, and a

padding size of 50 samples, were found most suitable.

• The proposed NN-based SFDA managed to achieve the following when tested on

a nonlinear UAV model; zero false alarm rate, zero undetected faults, 1.33s fault

detection time, fault accommodation error of 0.41 deg/s (pitch gyro) and 0.69ms

processing time per data sample (flight data sampling time was set at 20ms).

• To consider a more realistic application, multiple sensor fault scenarios were

tested. The NN-based SFDIA scheme has a similar structure to the well-known

GOS scheme with one NN model dedicated to only one sensor. The proposed NN-

based SFDIA scheme was designed to detect faults in the pitch gyro, angle of

attack sensor and the normal accelerometer.

• The NN-based SFDIA managed to achieve the following when tested on a

nonlinear UAV model; 1.53s fault detection times, fault accommodation errors of

1.65 deg/s, 0.71deg, 0.88 m/s2 for q-NN, α-NN and az -NN respectively, 11 false

alarms, 2 undetected faults and a maximum processing time per data sample of

0.55 ms (flight data sampling time was set at 20ms).

• The NN-based SFDIA scheme was found to be highly sensitive to the fault

detection time, due to its interconnected structure. Large fault detection times can

result in permanent NN contamination while incipient faults result in only

temporary NN contamination.

193

• As expected, step-type and constant bias faults are detected much quicker than

incipient faults. However one observation which could not be made from the

single fault tests was that step-type faults can severely damage the NN structures

in the SFDIA scheme. This in turn can increase the false alarm rates. To avoid

this, the fault detection time must be much lower than the results obtained here. A

solution to this problem is to redesign the NNs so that they are less sensitive to

faults seen in its input set e.g. by increasing the memory storage for each NN

input parameter and/or increasing the number of NN input parameters.

• The study carried out here has confirmed the feasibility of using a NN-based

SFDIA scheme on a UAV application. The NN processing time was on average

97% lower than the flight data sampling time (when implemented on 1.6 GHz

Pentium processor). The NN online training capabilities allowed them to suitably

adapt to the non-stationary flight dynamics. However it was noted that abrupt

faults (such as step-type and constant bias faults) can severely damage the NN-

based SFDIA performance.

The second part of this thesis investigates the application of a FADS system to a

MAV. MAVs can be found within the spectrum of UAVs and are categorised by their

low costs and weight. Traditionally air data such as airspeed and angle of attack are

measured using air data booms protruding from the aircraft local flow fields. However

air data booms can be too expensive and heavy for use in MAVs. As an alternative we

investigate the use of a FADS system. FADS systems make use of cheap off-the-shelf

pressure sensors, to convert aircraft surface pressure to air data and are an invaluable

alternative to air data booms, especially for MAV applications. The concept of a FADS

system is not new and has been implemented by several research groups [29-45].

However, as far as the author is aware, the FADS system has not yet been tested on

MAVs (only 488mm wing span and flies at speeds as low as 8m/s). The conclusions

drawn from this thesis are as follows:

• Traditionally the aerodynamic model used to relate the aircraft surface pressure to

the air data is derived based on several assumptions (such as spherical nose

shapes). Furthermore the model is highly nonlinear and can be difficult to solve.

Instead, a NN model was proposed. A 5-3-3 EMRAN RBF NN was designed and

194

shown to give estimation accuracies of 0.44 lb/ft2, 0.62 m/s and 0.51° for ෠ܲ∞, ෠ܸஶ, ොߙ

respectively.

• The ideal pressure port locations were first investigated via 2D CFD simulations

and it was found that the wing leading edge was suitable for mounting the FADS

system.

• The FADS system has reduced instrumentation costs and weight by almost 97%

and 80% respectively, in comparison to the air data boom used for our MAV.

• The robustness of the NN-based FADS system was investigated for faults in the

pressure ports (e.g. due to port blockage, electrical wiring failure). It was found

that an autoassociative-NN can significantly improve the fault accommodation

performance of the FADS system in comparison to traditional methods which

make use of redundant pressure ports.

• In this thesis, the NN training data was chosen for ease of presentation. However

it was found that the NN must be robustly trained and ideally the outermost values

of flight data range should be included in the NN training set. This is best

implemented using real flight data as wind tunnel tests are limited to specific

flight conditions.

• On average the NN processing time per data sample (0.32ms) was much lower

than the flight data sampling time (20ms).

• The FADS system designed here is insensitive to changes in the sideslip. This was

confirmed in the wind tunnel tests and the CFD simulations. Solutions to this will

be discussed below.

The work carried out in this thesis has confirmed the feasibility of using NN-based

SFDIA schemes and FADS systems in UAV applications. However future work must

be carried out in order to validate and/or extend the work carried out so far. The future

research directions are as follows:

• A limitation of the work carried out in Chapter 5, is that parameter uncertainties

are only considered in the EKF equations and not the UAV model. In real

applications, parameter uncertainties are likely to be present in the UAV model,

and therefore it is important that the NN is tested for its robustness to such

uncertainties.

195

• The flight conditions considered in the SFDA scheme, mainly considered 3-2-1-1

elevator input demands, as a first step towards analysing the NN performance.

However future work must consider more realistic flight scenarios.

• Prior to fault detection, the NN-SFDIA scheme is simply a health monitoring

system, i.e. a fault alarm system. However once the fault is detected, the NN

estimates must replace the faulty sensor. In this case, the NN estimates can be

used in the control feedback loops. Therefore the stability of the control system to

NN estimations must be investigated.

• Real flight data can help validate the robustness of the NN and RGPE structures to

system and measurement noise. Artificial faults can be added to the sensor data

and the sensitivity of the NN-based SFDIA scheme to incipient faults can be

further investigated. Furthermore, multiplicative faults (we have mainly

considered additive faults) can be considered.

• The RGPE method suggested here assumes that faults have a permanent effect on

the residual. However intermittent failures are not considered. It is important to

investigate the sensitivity of RGPE to intermittent failures if it is to be applied in a

real system.

• The FADS system can be implemented on both wings of the MAV. We can then

average the air data estimations from both sets. This way we can improve the fault

tolerance capabilities and sensitivity to noise of the overall FADS system.

• The MAV (instead of just the wing) can be tested in a wind tunnel prior to any

flight tests.

• The FADS system must be tested in real flight to gain more confidence in their

estimations accuracies, execution speeds and stability to fluctuating pressure

measurements (caused by e.g. atmospheric debris partially blocking the pressure

ports). The FADS system can be flight tested in parallel to an air data boom and

the latter can be used to validate the performance of the FADS system.

• In Chapter 7 we suggested that wind tunnel data is not ideal to train the NN, for

several reasons; 1) Altitude cannot be changed 2) Certain flight conditions (e.g.

high angle of attack rates) could not be investigated 3) Environmental conditions

experienced during real flight (e.g. poor weather conditions) cannot be considered

in the wind tunnel. These three conditions are extremely important if the NN is to

be robustly trained and therefore real flight data is required.

196

• If the FADS system is successful in real flight, then we can investigate the

possibility of combining the FADS system and air data boom for a more accurate,

fault tolerant and robust (to sensor noise) air data system. Furthermore the air data

boom can be used to train (online) the NN-FADS system. A suitable air data

boom (worth approximately £600) has already been purchased from SpaceAge

Control and has been mounted on the MAV. The air data measurements from the

boom, can therefore be used to verify the performance of the FADS system.

• The study presented in this thesis has investigated the fault accommodation

performance of the NN-based FADS system. However we have not yet

investigated the fault detection performance. This is important, as fault

accommodation is only possible if the fault is detected. We can use our

knowledge of SFDIA (Chapters 5-6) to design a SFDIA scheme for the FADS

system.

• As pointed out in Chapter 7, estimating the sideslip (with our current design) can

be difficult. However, from the 3D CFD simulations, it was found that pressure

close to the wing root and wing tip is sensitive to sideslip. Instead of re-designing

the entire FADS system, we can simply add extra pressure ports so that sideslip

can be estimated. This is feasible for several reasons; 1) There is sufficient space

and weight left on the MAV to mount extra pressure sensors, 2) The NN

processing time is currently 98% lower than the flight data sampling time and

therefore increasing the number of pressure ports should not cause any significant

time delays 3) The 3D CFD simulations in Chapter 7 show that the pressure varies

almost linearly with sideslip for ports located close to the wing leading edge 4)

Pressure sensors are cheap (£15 each) and therefore increasing the number of

pressure ports will not be costly. Another approach which could be implemented

to estimate sideslip, is if we place a pressure port at the tip of each wing and take

the differential pressure of the two pressure measurements.

197

List of publications

Conference publications:

[1]. I. Samy, I. Postlethwaite and D. Gu, “Neural network sensor validation

scheme demonstrated on a UAV model”, IEEE Proceedings of CDC, Cancun,

Mexico, pp. 1237-1242, Dec. 2008.

[2]. I. Samy, I. Postlethwaite and D. Gu, “Detection of additive sensor faults in a

UAV model using neural networks”, IET Proceedings of UKACC,

Manchester, UK, Sept. 2008.

[3]. I. Samy, I. Postlethwaite and D. Gu, “Wind tunnel investigation of a flush air

data sensing system with application on a fixed wing micro-air vehicle”,

Springer Proceedings of International Symposium on UAVs, Florida, USA,

2008.

Journal publications:

[1]. I. Samy, I. Postlethwaite and D. Gu, “Subsonic tests of a flush air data

sensing system applied to a fixed-wing micro air vehicle”, Journal of

Intelligent and Robotics Systems, Springer, Vol. 54, No.1-3, pp. 275-295,

2008.

[2]. I. Samy, I. Postlethwaite and D. Gu, “Sensor fault detection and

accommodation using neural networks with application to a nonlinear UAV

model”, IMechE Journal of Aerospace Engineering, 2008 (accepted).

[3]. I. Samy, I. Postlethwaite, D. Gu and J. Green, “EMRAN RBF NN based flush

air data sensing system-demonstrated on a mini air vehicle,” AIAA Journal of

Aircraft, 2009 (submitted).

[4]. I. Samy, I. Postlethwaite, D. Gu, ‘Neural network based fault detection

scheme using a novel residual generator-applied to a UAV model’, IET

Control theory and Applications, 2009 (submitted)

[5]. I. Samy, I. Postlethwaite, D. Gu, ‘Detection of multiple sensor faults in

UAVs using artificial intelligence’ Control Engineering Practice, 2009

(submitted)

198

Bibliography

[1]. K.C. Wong, “Aerospace industry opportunities in Australia-unmanned aerial

vehicles (UAVs)”, Department of Aeronautical Engineering, University of

Sydney, 2007.

[2]. K.C. Wong, C. Bil, D. Gordon and P.W. Gibbens, “Study of the unmanned

aerial vehicle (UAV) market in Australia”, Department of Aeronautical

Engineering, University of Sydney, 1997.

[3]. A. Buonanno and M.V. Cook, “An aerodynamic simulation model of the

Eclipse UAV”, Internal Report FLAV-A01-002, 29 April 2005.

[4]. A. Buonanno and M.V. Cook, “Flight dynamics model of the flying

demonstrator UAV”, Internal Report FLAV-A01-003, 13 June 2005.

[5]. J. F. Whidborne, I.D. Cowling and O.A. Yakimenko, “A direct method for

UAV guidance and Control,” 23rd International Conference on Unmanned air

vehicle systems, Bristol, UK, pp. 37.1-37.13, April 2008.

[6]. A.K. Cooke, I.D. Cowling, S.D. Erbsloeh, and J.F. Whidborne, “Low cost

system design and development towards an autonomous rotor vehicle,” 22nd

International Conference on Unmanned Air Vehicle Systems, Bristol, UK, pp.

28.1-28.9, April 2007.

[7]. P. La Franchi, “Grand designs: An EC-funded research project has unveiled

its proposals for a new generation of aircraft that are intended to give Europe

the edge in the civil UAV sector”, Flight International, pp. 109-114, 2005.

[8]. R. Isermann and P. Balle, “Trends in the applications of model-based fault

detection and diagnosis of technical processes”, Control Engineering

Practice, Vol. 5, No. 5, pp. 709-719, 1997.

[9]. R. J. Patton, P.M. Frank and R.N. Clark, “Fault diagnosis in dynamic

systems- theory and applications”, Prentice Hall: London, 1989.

[10]. J. Gertler, “Survey of model-based failure detection and isolation in complex

plants”, IEEE Control Systems magazine, Vol. 8, pp. 3-11, 1988.

[11]. J. Chen and R.J. Patton, “Robust model-based fault diagnosis for dynamic

systems”, Kluwer Academic Publishers, USA, 1999.

199

[12]. P. M. Frank, “Fault diagnosis in dynamic systems using analytical and

knowledge-based redundancy- A survey and some new results”, Automatica,

Vol. 26, No. 3, pp. 459-474, 1990.

[13]. A. S. Willsky, “A survey of design methods for failure detection in dynamic

systems,” Automatica, Vol. 12, No. 6, pp. 601-611, 1976.

[14]. R. Isermann, “Model based fault detection and diagnosis- Status and

applications”, 16th Symposium on Automatic Control in Aerospace, St.

Petersburg, 2004.

[15]. G. Betta and A. Pietrosanto, “Instrument fault detection and isolation: State of

the art and new research trends”, IEEE transactions on instrumentation and

measurement, Vol. 49, No. 1, pp. 100-107, 2000.

[16]. R. Isermann, “Supervision, fault detection and fault diagnosis methods. An

introduction”, Control Engineering Practice, Vol. 5, No. 5, pp. 639-652,

1997.

[17]. S. Simani, C. Fantuzzi and R. J. Patton, “Model-based fault diagnosis in

dynamic systems using identification techniques”, Springer-Verlag, London,

2003.

[18]. J. Gertler, “Fault detection and diagnosis in engineering systems”, Marcel

Dekker Inc., New York, 1998.

[19]. R. Perla, S. Mukhopadhyay, and A. N. Samantam, “Sensor fault detection and

isolation using artificial neural networks”, IEEE Region Conference

TENCON, Vol. 4, pp. 676-679, 2004.

[20]. R. G. Fernandes, D. Silva, L. Oliveira and A. Neto, “Faults detection and

isolation based on neural networks applied to a levels control system”,

International Joint Conference on Neural Networks, Florida, USA, 2007.

[21]. D. Capriglione, C. Liguori, A. Pietrosanto, “Real-time implementation of

IFDIA scheme in automotive systems”, IEEE Transactions on

Instrumentation and Measurement, Vol. 56, No. 3, pp. 824-830, 2007.

[22]. R. Li, J.H. Olson and D. L. Chester, “Dynamic fault detection and diagnosis

using neural networks”, Proceedings of the IEEE International Symposium in

Intelligent Control, Vol. 2, pp. 1169-1174, 1990.

[23]. S. Naidu, E. Zafiriou, T. J. McAvoy, “Use of neural networks for sensor

failure detection in a control system”, IEEE Control Systems Magazine, Vol.

10, No. 3, pp. 49-55, 1990.

200

[24]. G. Campa, M. L. Fravolini, M. Napolitano and B. Seanor, “Neural networks

based sensor validation for the flight control system of a B777 research

model”, Proceedings of the American Control Conference, Vol. 1, pp. 412-

417, 2002.

[25]. M. Napolitano, Y. An, B. Seanor., S. Pispistos and D. Martinelli,

“Application of a neural sensor validation scheme to actual Boeing B737

flight data,” Proceedings of the AIAA Guidance Navigation and Control

Conference, 1999.

[26]. M. Napolitano, Y. An and B. Seanor, “A fault tolerant flight control system

for sensor and actuator failures using neural networks,” Aircraft Design, Vol.

3, pp. 103-128, 2000.

[27]. M. Napolitano, C. Neppach, V. Casdorph, S. Naylor, S. Innocenti, and M.,

Silvestri, “Neural network based scheme for sensor failure detection

identification and accommodation”, Journal of Guidance, Control and

Dynamics, Vol.18, No. 6, pp. 1280-1286, 1995.

[28]. M. Fravolini, G. Campa, M. Napolitano and M. Perhinschi, “Learning based

sensor validation scheme within flight control laws”, Journal of Guidance,

Control and Dynamics, Vol. 27, No. 2, pp. 307-310, 2004.

[29]. J. P. Cary and E. R. Keener, “Flight evaluation of the X-15 Ball-Nose Flow –

Direction sensor as an airdata system”, NASA TN D-2923, 1965.

[30]. C. H. Wolowicz and T. D., Gosett, “Operational and performance

characteristics of the X-15 spherical hypersonic flow direction sensor”,

NASA TN D-3076, 1965.

[31]. T. J. Larson and P. M. Siemers III, “Subsonic tests of an All-Flush-Pressure-

Orifice air data system”, NASA TP-1871, 1981.

[32]. T. J. Larson, S. A. Whitmore, L. J. Ehernberger, J. B. Johnson and P.M.

Siemers III, “Qualitative evaluation of a flush air data system at transonic

speeds and high angles of attack”, NASA TP-2716, 1987.

[33]. T. J. Larson, T. R. Moes, P. M. Siemers III, “Wind tunnel investigation of a

flush airdata system at Mach numbers from 0.7 to 1.4”, NASA TM-101697,

1990.

[34]. S. A. Whitmore, R. J. Davis and J. M. Fife, “In flight demonstration of a real

time flush airdata sensing system”, NASA TM-104314, 1995.

201

[35]. T. Rohloff, “Development and evaluation of neural network flush air data

sensing systems”, PhD thesis, Department of Mechanical Engineering,

University of California, 1998.

[36]. W. J. Crowther and P. J. Lamont, “A neural network approach to the

calibration of a flush air data system”, Aeronautical Journal, Vol. 105, No.

1044, pp. 85-95, 2001.

[37]. E. N. Brown, C.A. Friehe and D. H. Lenschow, “The use of pressure

fluctuations on the nose of an aircraft for measuring air motion”, Journal of

Climate and Applied Meteorology, Vol. 22, pp. 171-180, 1983.

[38]. S. A. Whitmore, T. R. Moes, M. W. Czerniejewski and D. A. Nichols,

“Application of a Flush Airdata Sensing System to a Wing leading edge (LE-

FADS)”, NASA TM-104267, 1993.

[39]. P. M. Siemers III, H. Wolf and M.W. Henry, “Shuttle Entry Air Data System

(SEADS)-Flight Verification of an Advanced Airdata System Concept”,

AIAA-88-2104, 1998.

[40]. S. A. Whitmore, A. Stephen, T. R. Moes, R. Timothy and T. J. Larson,

“Preliminary Results From a Subsonic High Angle-of-Attack Flush Airdata

Sensing (HI–FADS) System: Design, Calibration, and Flight Test

Evaluation”, NASA TM-101713, 1990.

[41]. S. A. Whitmore and T. R. Moes, “Failure Detection and Fault Management

Techniques for a Pneumatic High-Angle-of-Attack Flush Airdata Sensing

(HI–FADS) System”, NASA TM-4335, 1992.

[42]. B. R. Cobleigh, S. A. Whitmore, E. A. Haering, J. Borrer and V. E. Roback,

“Flush Airdata Sensing (FADS) system calibration procedures and results for

blunt forebodies”, NASA TP-209012, 1999.

[43]. S. A. Whitmore, B. R. Cobleigh, E. A. Haering, “Design and Calibration of

the X-33 Flush Airdata Sensing (FADS) System”, NASA TM-206540, 1998.

[44]. O. Rediniotis, R. Vijayagopal, “Miniature multihole pressure probes and their

neural network based calibration”, AIAA Journal, Vol. 37, No. 6, pp. 666-

674, 1999.

[45]. O. Rediniotis and G. Chrysanthakopoulos, “Application of neural networks

and fuzzy logic to the calibration of the seven-hole probe” Journal of Fluids

Engineering- Transactions of the ASME, Vol. 120, No. 1, pp. 95-101, 1998.

202

[46]. I. Samy, I. Postlethwaite and D. Gu, “Subsonic tests of a flush air data

sensing system applied to a fixed-wing micro air vehicle”, Journal of

Intelligent and Robotics Systems, Springer, Vol. 54, No.1-3, pp. 275-295,

2008.

[47]. I. Samy, I. Postlethwaite and D. Gu, “Neural network sensor validation

scheme demonstrated on a UAV model”, IEEE Proceedings of CDC, Cancun,

Mexico, pp. 1237-1242, Dec. 2008.

[48]. I. Samy, I. Postlethwaite and D. Gu, “Detection of additive sensor faults in a

UAV model using neural networks”, IET Proceedings of UKACC,

Manchester, UK, Sept. 2008.

[49]. I. Samy, I. Postlethwaite and D. Gu, “Wind tunnel investigation of a flush air

data sensing system with application on a fixed wing micro-air vehicle”,

Springer Proceedings of International Symposium on UAVs, Florida, USA,

2008.

[50]. I. Samy, I. Postlethwaite and D. Gu, “Sensor fault detection and

accommodation using neural networks with application to a nonlinear UAV

model”, IMechE Journal of Aerospace Engineering, 2008 (to appear).

[51]. I. Samy, I. Postlethwaite, D. Gu and J. Green, “EMRAN RBF NN based flush

air data sensing system-demonstrated on a mini air vehicle,” AIAA Journal of

Aircraft, 2009 (submitted).

[52]. C. Favre, “Fly-by-wire for commercial aircraft: the Airbus experience”,

International Journal of Control, Vol. 59, No. 1, pp. 139-157, 1994.

[53]. J. Gilmore and R. Mckern, “A redundant strap-down inertial system

mechanization- SIRU”, AIAA Guidance, Control and Flight Mechanics

Conference, California, USA, 1970.

[54]. H. A. Cikanek III, “Space shuttle main engine failure detection”, IEEE

Control Systems Magazine, Vol. 6, No. 3, pp. 13-18, 1986.

[55]. E. P. Carden, “Vibration based condition monitoring: A review”, Structural

health monitoring, Vol. 3, No. 4, pp. 355-377, 2004.

[56]. B. Hakami and J. Newborn, “Expert systems in heavy industry: An

application of ICLX in a British a steel corporation works”, ICL Technical

Journal, Vol. 3, No. 4, pp. 347-359, 1983.

203

[57]. H. Kumamoto, K. Ikenchi, K. Inoue and E. J. Henley, “Application of expert

system techniques to fault diagnosis”, The Chemical Engineering Journal,

Vol. 29, No. 1, pp. 1-9, 1984.

[58]. R. Isermann, “Process fault detection based on modeling and estimation

methods: A survey”, Automatica, Vol. 20, pp. 387-404, 1984.

[59]. V. Venkatasubramanian, R. Rengaswamy, K. Yin and S. N. Kavuri, “A

review of process fault detection and diagnosis Part I: Quantitative model

based methods”, Computers and Chemical Engineering, Vol. 27, pp. 293-

311, 2003.

[60]. F.W. Poon, “Observer based robust fault detection: Theory and Rolling mill

Case study”, PhD thesis, Department of Engineering, University of Leicester,

2000.

[61]. R. J. Patton, “Fault-tolerant control. The 1997 situation”, IFAC

SAFEPROCESS’97, Vol. 2, pp. 1033-1055, 1997.

[62]. M. Blanke and R. J. Patton, “Industrial actuator benchmark for fault detection

and isolation”, Control Engineering Practice, Vol. 3, No. 12, pp. 1727-1730,

1995.

[63]. E. Y. Chow and A.S. Willsky, “Analytical redundancy and the design of

robust detection systems”, IEEE Transactions Automatic Control, Vol. 29,

No. 7, pp.603-614, 1984.

[64]. C. P. Tan, “Sliding mode observers for fault detection and isolation”, PhD

thesis, Department of Engineering, University of Leicester, 2002.

[65]. R. J. Patton, S. W. Willcox and J. S. Winter, “A parameter insensitive

technique for aircraft sensor fault analysis”, Journal of Guidance Control and

Dynamics, Vol. 10, No. 3, pp. 359-367, 1987.

[66]. C. Edwards and S. K. Spurgeon, “On the development of discontinuous

observers”, Int. Journal of Control, 59 (5), pp. 1211-1229, 1994.

[67]. X. Lou, A. S. Willsky and G. Verghese, “Optimal robust redundancy

relations for failure detection in uncertainty systems”, Automatica, Vol. 22,

No. 3, pp. 333-344, 1986.

[68]. L. A. Mironovski, “Functional diagnosis of linear dynamic systems”, Automn

Remote Control, Vol. 41, pp. 1122-1143, 1979.

204

[69]. M. Desai and A. Ray, “A fault detection and isolation methodology-theory

and application”, American Control Conference, San Diego, California, USA,

1984.

[70]. M. A. Massoumnia and W. Velde, “Generating parity relations for detecting

and identifying control system component failures”, Journal of Guidance,

Control and dynamics, Vol. 11, No. 1, pp. 60-65, 1988.

[71]. R. J. Patton and J. Chen, “A review of party space approaches to fault

diagnosis”, Preprints of IFAC/IMACS Symposium: SAFEPROCESS’ 91,

Baden-Baden, Vol. 1, pp. 239-255, 1991.

[72]. J. Gertler, “Analytical redundancy methods in failure detection and isolation”,

Preprints of IFAC/IMACS Symposium: SAFEPROCESS ’91, Baden-Baden,

Vol. 1, pp. 9-21, 1991

[73]. M. Staroswiecki, J. P. Cassar and V. Cocquempot, “Generation of optimal

structured residuals in the parity space”, Preprints of the 12th IFAC World

Congress, Australia, Vol. 8, pp. 299-305, 1993.

[74]. X. Ding, L. Guo and T. Jeinsch, “A characterization of parity space and its

application to robust fault detection”, IEEE Transactions on Automatic

Control, Vol. 44, No. 2, pp.337-343, 1999.

[75]. D. J. Luenberger, “An introduction to observers”, IEEE Transactions on

Automatic Control, Vol. 16, No. 6, pp. 596-602, 1971.

[76]. R.E. Kalman, “A new approach to linear filtering and prediction problems”,

Journal of Basic Engineering, Vol. 82, pp. 35-45, 1960.

[77]. R. N. Clark, “A simplified instrument failure detection scheme”, IEEE

Transactions on Aerospace and Electronic Systems, Vol. 14, No. 4, pp 558-

563, 1978.

[78]. R. N. Clark and W. Setzer, “Sensor fault detection in a system with random

disturbances”, IEEE Transactions on Aerospace and Electronic Systems, Vol.

16, No. 4, pp. 468-473, 1980.

[79]. R. N. Clark, “Instrument fault detection”, IEEE Transactions on Aerospace

and Electronic Systems, Vol. 14, No. 3, pp. 456-465, 1978.

[80]. P. M. Frank, “Advanced fault detection and isolation schemes using nonlinear

and robust observers”, 10th IFAC Congress on Automatic Control, Munchen,

Vol. 3, pp. 63-68, 1987.

205

[81]. R. K. Mehra and J. Peschon, “An innovations approach to fault detection and

diagnosis in dynamic systems”, Automatica, Vol. 7, pp. 637-643, 1971.

[82]. A. S. Willsky and H. L. Jones, “A generalized likelihood approach to state

estimation in linear systems subjected to abrupt changes”, Proceedings of

CDC, Arizona, USA, 1974.

[83]. A. S. Willsky and H. L. Jones, “A generalized likelihood ratio approach to the

detection and estimation of jumps in linear systems” IEEE Transactions on

Automatic Control, Vol. 21, pp. 108-121, 1976.

[84]. A. S. Willsky, J. J. Deyst and B.S. Crawford, “Adaptive filtering and self-test

methods for failure detection and compensation” American Control

Conference, Austin, USA, 1974.

[85]. R.C. Montgomery and A.K. Caglayan, “Failure accommodation in digital

flight control systems by Bayesian decision theory”, Journal of Aircraft, Vol.

13, No. 2, pp. 69-75, 1976.

[86]. S. G. Tzafestas and K. Watanabe, “Modern approaches to system/sensor fault

detection and diagnosis”, Journal A, Vol. 31, No. 4, pp. 42-57, 1990.

[87]. M. Basseville, “Information criteria for residual generation and fault

detection and isolation”, Automatica, Vol. 33, No. 5, pp. 783-803, 1997.

[88]. P. Eide and B. Maybeck, “An MMAE failure detection system for the F-16”,

IEEE Transactions on Aerospace and Electronic Systems, Vol. 32, No. 3, pp.

1125-1136, 1996.

[89]. L. Berec, “A multi-model method to fault detection and diagnosis: Bayesian

solution. An introductory treatise”, International Journal of Adaptive Control

and Signal Processing, Vol. 12, No. 1, pp. 81-92, 1998.

[90]. E. Y. Shapiro and H. E. Decarli, “Analytical redundancy for flight control

sensors on the Lockheed L-1011 Aircraft”, Proceedings of CDC, San Diego,

USA, 1979.

[91]. J. J. Deyst and J. C. Deckert, “Maximum likelihood failure detection

techniques applied to the shuttle RCS Jets”, Journal of Spacecraft and

Rockets, Vol. 13, pp. 65-74, 1976.

[92]. R. V. Beard, “Failure accommodation in linear systems through self

reorganization”, PhD thesis, Massachusetts Institute of Technology,

USA,1971.

206

[93]. H. L. Jones, “Failure detection in linear systems”, PhD Thesis, Department of

Aeronautics, Massachusetts Institute of Technology, USA, 1973.

[94]. P. C. Young, “Parameter estimation for continuous time models –a survey”,

Automatica, Vol. 17, No. 1, pp. 23-29, 1981.

[95]. W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in

nervous activity”, Bulletin of Mathematical Biophysics, Vol. 5, pp. 115-133,

1943.

[96]. M. L. Minsky and S.A. Papert, “Perceptrons”, Cambridge, MA: MIT Press,

1969.

[97]. S. Haykin, “Neural networks: a comprehensive foundation”, Macmillan

College Publishing Company, USA, 1994.

[98]. M. L. Minsky, “Steps towards artificial Intelligence”, Proceedings of the

Institute of Radio Engineers, Vol. 49, pp. 8-30, 1961.

[99]. S. Skogestad and I. Postlethwaite, “Multivariable feedback control analysis

and design”, John Wiley & Sons Ltd., West Sussex, UK, 2005.

[100]. J. C. Hopkins and D. M. Himmelblau, “Artificial neural network models for

knowledge representation in chemical engineering”, Computers Chemical

Engineering, Vol. 12, No. 9/10, pp. 881-890, 1988.

[101]. V. Venkatasubramanian and K. Chan, “A neural network methodology for

process fault diagnosis”, AIChE Journal, Vol. 35, No. 12, pp. 1993-2001,

1989.

[102]. J. C. Hoskins, K. M. Kaliyur and D. M. Himmelblau, “Fault diagnosis in

complex chemical plants using artificial neural networks”, AIChE Journal,

Vol. 37, No. 1, pp. 137-141, 1991.

[103]. R. Beale and T. Jackson, “Neural computing: an introduction”, IOP

Publishing Ltd., Bristol, UK, 1992.

[104]. L. Fausett, “Fundamentals of neural networks: architectures, algorithms and

applications”, Prentice Hall International Inc., New Jersey, USA, 1994.

[105]. U. Watanabe and D. M. Himmelblau, “Instrument fault detection in systems

with uncertainties”, International Journal of System Science, Vol. 13, pp.

137-158, 1982.

[106]. A. E. Emami-Naeini, M. M. Akhter and S. M. Rock, “Effect of model

uncertainty on failure detection: the threshold selector”, IEEE Transactions

on Automatic Control, Vol. 33, No. 2, pp. 1106-1115, 1988.

207

[107]. M. A. Djeziri, A. Aitouche and B. Bouamama, “Sensor fault detection of

energetic system using modified parity space approach”, Proceedings of

CDC, New Orleans, LA, USA, 2007.

[108]. C. W. Chan, S. Hua and Z. Yue, “Application of fully decoupled parity

equation in fault detection and identification of DC motors”, IEEE

Transactions on Industrial Electronics, Vol. 53, No. 4, pp. 1277-1284, 2006.

[109]. S. Schneider, N. Weinhold, S. X. Ding and A. Rehm, “Parity space based FDI

scheme for vehicle lateral dynamics”, IEEE Conference on Control

Applications, Toronto, Canada, 2005.

[110]. P. Halder, S. K. Chaudhuri and S. Mukhopadhyay, “Online sensor fault

detection, isolation and accommodation in tactical aerospace vehicle”, IEEE

Region Conference TENCON, Vol. 4, No. 21-24, pp. 684-686, 2004.

[111]. W. Dan, W. Zhiliang, Y. Yubin, N. Xiaobing, “An FDI approach for aircraft

actuator partial failure”, IEEE Chinese Control Conference, Hunan, China,

2007.

[112]. N. Aouf and B. Boulet, “Fault diagnosis techniques: application to the

thermoforming process”, 4th International Conference on Control and

Automation, Montreal, Canada, 2003.

[113]. S. Liberatore, J. L. Speyer and A. Hsu, “Fault detection filter applied to

structure health monitoring”, Proceedings of CDC, Hawaii, USA, 2003.

[114]. T. Jiang, K. Khorasani and S. Tafazoli, “Parameter estimation based fault

detection, isolation and recovery for nonlinear satellite models”, IEEE

Transactions on Control Systems Technology, Vol. 16, No. 4, pp. 799-808,

2008.

[115]. O. Moseler and R. Isermann, “Application of model-based fault detection to a

brushless DC motor”, IEEE Transactions on Industrial Electronics, Vol. 47,

No. 5, pp. 1015-1020, 2000.

[116]. D. Capriglione, C. Liguori, C. Pianese and A. Pietrosanto, “Online sensor

fault detection, isolation and accommodation in automotive engines”, IEEE

Transactions on Instrumentation and Measurement, Vol. 52, No. 4, pp. 1182-

1189, 2003.

208

[117]. G. Campa, M. Krishnamurty, M. Gautam, M.R. Napolitano and M.

Perhinschi, “A neural network based sensor validation scheme for heavy-duty

diesel engines”, 14th Mediterranean Conference on Control and Automation,

Ancona, Italy, 2006.

[118]. M. L. Fravolini, G. Campa, K. Napolitano and Y. Song, “Minimal resource

allocating networks for aircraft SFDIA”, IEEE International Conference on

Advanced Intelligent Mechatronics, Como, Italy, 2001.

[119]. D. Andersen and D. Haley, “NASA tests new laser air data system on SR-71

Blackbird”, NASA: http://www.nasa-usa.de/home/hqnews/1993/93-163.txt.

Accessed 17 September 1993.

[120]. A. Edward and Jr. Haering, “Airdata Measurement and Calibration”, NASA

TM-104316, 1995.

[121]. J. D. Anderson, “Introduction to flight”, McGraw Hill, USA, 2008.

[122]. http://www.spaceagecontrol.com/Adpmain

[123]. SpaceAge Control Inc., “Calibration of SpaceAge Control 100400 Mini air

data boom”, SpaceAge Control Report X004A(NC), 2001.

[124]. J. D. Anderson, “Fundamentals of Aerodynamics- 2nd Edition”, McGraw-

Hill, USA, 1991.

[125]. E. L. Houghton and P. W. Carpenter, “Aerodynamics for engineering

students-5th Edition”, Butterworth-Heinemann, Oxford, UK, 2003.

[126]. P.S. Churchland, “Neurophilosophy: Toward a unified science of the

mind/brain”, Cambridge, MA: MIT Press, 1986.

[127]. A. Faro, D. Giordano and C. Spampinato, “Evaluation of the traffic

parameters in a metropolitan area by fusing visual perceptions and CNN

processing of webcam images”, IEEE Transactions on Neural Networks, Vol.

19, No. 6, pp. 1108-1129, 2008.

[128]. A. Parisi, F. Parisi and D. Diaz, “Forecasting gold price changes: Rolling and

recursive neural network models”, Journal of multinational financial

management, Vol. 18, pp. 477-487, 2008.

[129]. H. N. Wang, Y. M. Cui, R. Li, L. Y. Zhang and H. Han, “Solar flare

forecasting model supported with artificial neural network techniques”,

Advances in Space Research, Vol. 42, pp. 1464-1468, 2008.

[130]. P. Gallinari, “Industrial applications of neural networks”, World Scientific

Publishing Co. Pte. Ltd, Singapore, 1998.

209

[131]. M. J. D. Powell, “Radial basis function for multivariable interpolation: a

review”, in J. C. Mason, M.G. Cox, “Algorithms for approximation”,

Clarendon Press, Oxford, UK, pp. 143-167,1987.

[132]. Y. Lu, N. Sundararajan and P. Saratchandran, “Analysis of minimal radial

basis function network algorithm for real-time identification of nonlinear

dynamic systems”, IEE Proceedings on Control Theory and Applications,

Vol. 147, No. 4, pp. 476-484, 2000.

[133]. S. Chen, F. N. Cowan and P.M. Grant, “Orthogonal least squares learning

algorithm for radial basis function networks”, IEEE Transactions on Neural

Networks, Vol. 2, pp. 302-309, 1991.

[134]. J. C. Platt, “A resource allocating network for function interpolation”, Neural

Computing, Vol. 3, pp. 213-225, 1991.

[135]. V. Kadirkamanathan and M. Niranjan, “A function estimation approach to

sequential learning with neural networks”, Neural Computing, Vol. 5, pp.

954-975, 1993.

[136]. M. R. Napolitano, D. A. Windon J. L. Casanova, M. Innocenti and G.

Silvestri, “Kalman filters and neural network schemes for sensor validation in

flight control systems”, IEEE Transactions on Control Systems Technology,

Vol. 6, No. 5, pp. 596-611, 1998.

[137]. H. W. Sorenson, “Kalman Filtering: Theory and Application”, IEEE Press,

New York, USA, 1985.

[138]. P. Maybeck, “Stochastic models, estimation and control-Volume 1”,

Academic Press, London, UK, 1979.

[139]. R. G. Brown, “Introduction to random signal analysis and Kalman filtering”,

Wiley, USA, 1983.

[140]. M. V. Cook, “Flight dynamics principles”, Great Britain: Arnold, 1997.

[141]. G. Welch and G. Bishop, “An introduction to the Kalman filter”, University

of North Carolina at Chapel Hill, NC 27599-3175, 2006.

[142]. G. Heredia, A. Ollero, R. Mahtani, V. Remub and M. Mausial, “Detection of

sensor faults in autonomous helicopters,” Proceedings of the 2005 IEEE

International Conference on Robotics and Automation, pp. 2229-2234, 2005.

210

[143]. Y. An, “A design of fault tolerant flight control systems for sensor and

actuator failures using on-line learning neural networks,” PhD thesis,

Department of Mechanical and Aerospace Engineering, West Virginia

University, USA, 1998.

[144]. MH64 airfoil: http://www.mh-aerotools.de/airfoils/mh64koo.htm

[145]. E. L. Houghton and N.B. Carruthers, “Aerodynamics for engineering

students- 3rd Edition”, Edward Arnold, London, UK, 1982

[146]. T. J. Larson, S.G. Flechner and P.M. Siemers, “Wind tunnel investigation of

an all flush orifice air data system for a large subsonic aircraft”, NASA TP

1642, May 1980.

[147]. E. N. Brown, C.A. Friehe and D.H. Lenschow, “The use of pressure

fluctuations on the nose of an aircraft for measuring air motion”, Journal of

Applied Meteorology, Vol. 22, No. 1, pp. 171-180, 1983.

[148]. C.V. Sastry, K.S. Raman and L.B. Babu, “Failure management scheme for

use in a flush air data system”, Aircraft Design, Vol. 4, No. 4, pp. 151-162,

2001.

[149]. S. A. Whitmore, “Development of a pneumatic high angle of attack flush

airdata sensing system”, NASA Technical Memorandum 104241, Nov. 1991.

[150]. P. Courrieu, “Three algorithms for estimating the domain of validity of

feedforward neural networks”, Neural Networks, Vol. 7, No. 1, pp. 169-174,

1994.

[151]. I. S. Helliwell, M.A. Torega and R.A. Cottis, “Accountability of neural

networks trained with ‘Real World’ data”, 4th International Conference on

Artificial Neural Networks, pp. 218-222, 1995.

[152]. P. Lancaster and K. Salkauskas, “Curve and surface fitting an introduction”,

London: Academic Press, 1986.

[153]. G. M. Phillips, “Interpolation and approximation by polynomials”, Springer-

Verlag New York, USA, 2003

[154]. A. Cohen, C. Rabut and L.L. Schumaker, “Curve and surface design: Volume

1”, Proceedings of Conference on Approximation Theory, Saint-Malo,

France, July 1999.

[155]. PJ. Laurent, P. Sablonniere and L.L. Schumaker, “Curve and surface design:

Volume 2”, Proceedings of Conference on Approximation Theory, Saint-

Malo, France, July 1999.

211

[156]. M. Farrashkhalvat and J. P. Miles, “Basic structured grid generation with an

introduction to unstructured grid generation: With an introduction to

unstructured grid generation”, Butterworth-Heinemann, UK, 2003.

[157]. C.A. Rogers, “Packing and Covering”, Cambridge University Press,

Cambridge, 1964.

[158]. P.J. Green and R. Sibson, “Computing Dirichlet tessellations in the plane”,

Computing Journal, Vol. 21, pp. 168-173, 1978.

[159]. FAA: Unmanned Aircraft Systems (UAS) Certifications and Authorizations.

US Department of Transportation.

http://www.faa.gov/aircraft/air_cert/design_approvals/uas/cert/ (2007).

Accessed 5 November 2007.

[160]. P. Motyka, W. Bonnice, S. Hall and E. Wagner, “The evaluation of failure

detection and isolation algorithms for restructurable control”, NASA

Contractor Report 177983, 1985.

[161]. A. Alessandri, M. Caccia and G. Veruggio, “Fault detection of actuator faults

in unmanned underwater vehicle,” Control Engineering Practice, Vol. 7, pp.

357-368, 1999.

