THE STRUCTURES AND ABUNDANCE OF TRANSPOSABLE ELEMENTS CONTRIBUTING TO GENOME DIVERSITY IN THE DIPLOID AND POLYPLOID BRASSICA AND MUSA CROPS

Thesis submitted for the degree of Doctor of Philosophy at the University of Leicester

by

Faisal Nouroz
Department of Biology,
University of Leicester, United Kingdom

March, 2012

Declaration

I hereby declare that no part of this thesis has been previously submitted to this or any other University as part of the requirements for a higher degree. The content of this thesis is result of my own experimentation and data analysis otherwise acknowledged in the text or by reference.

The work was conducted in the department of Biology, University of Leicester, during the period March, 2008 to March 2012.

Signed \qquad

Faisal Nouroz.

Dedication

I wish to wholeheartedly dedicate this thesis to my parents Mr. Nouroz Khan and Mrs. Khursheed Nouroz and my lovely and caring wife Shumaila Noreen, who supported me in research work as well as at home at each step on my way.

Acknowledgements

It is a pleasure to thanks all those who made this work possible for me. First of all I am thankful to Almighty Allah, the most merciful who gave me the strength and courage to reach this stage and helped me at every step in my life.

My deep gratitude goes to my supervisor Prof. J.S (Pat) Heslop Harrison, whose encouragement, supervision and support from the preliminary to the concluding level enabled me to develop the understanding of my project. I am very thankful for his useful suggestions and caring at times when I needed them the most. I am also thankful to Dr. Trude Schwarzacher for her valuable assistance, moral support and help in learning the molecular techniques in the Lab.

My special gratitude goes to Dr. Richard Gornall for his valuable discussions and suggestions to improve and understand this work. My sincere thanks to members of biology dept Jean Liggins, Penny Butler, Lory Francescut and Jacqueline Frost for their assistance. I would also like to thanks Dr. John Bailey and my fellows in the lab, Niaz Ali for his help and support from the first day as we joined the lab together, Farah Badakshi and Mateus Mondin for their suggestions during my work and Nauf, Basma, Zuxin, Stuart, Chetan and other lab members for nice and friendly environment. My sincere gratitude goes to Gurpreet, Steven and Lidiya for their contribution in experimental work under my supervision.

I take the chance to thank all my family members. My parents whose prayers remained with me at every moment, as I was away from home for my studies. My wife Shumaila Noreen, whose love and support made my stay very easy in UK both at home and in University and her favour in my data analysis. I am also thankful to my sisters and brothers for their continuous support and understanding.

This thesis would not been possible without the funding provided by Hazara University, Mansehra and Higher Education Commission (HEC) of Pakistan for my stay in UK. I would like to thank the Staff of HRI, Warwick for providing the seeds for Brassica and Ashalatha (Asha) for providing banana DNA for analysis.

It is not possible to mention the names of all those people who contributed to this piece of work but I fully appreciate your valuable contributions. I therefore wish to sincerely thank all such people and may God bless them all.

The structures and abundance of transposable elements contributing to genome diversity in the diploid and polyploid Brassica and Musa crops

Faisal Nouroz

Abstract

Mobile DNA sequences - transposable elements (TEs) that amplify and move within genomes represent a high proportion of the DNA in most eukaryotes. The present study aimed to define TE nature, structure and abundance in two contrasting groups of diploid and polyploids crop genera, Brassica (dicotyledon) and Musa (monocotyledon). Rather than starting with known TE sequences, a sequence-data driven approach was used, comparing homologous and homoeologous BAC pairs. Over $\sim 100 \mathrm{~kb}$ regions, any stretch of sequence was characterized that was inserted or deleted in the evolutionary time since divergence of the two BAC genomic sequences. Almost all the sequences were indeed TEs, representatives of existing and a few novel superfamilies. Polymorphisms due to activity were measured by PCR with flanking primers in 40 (Brassica) or 96 (Musa) accessions, and some families were localized on chromosomes by fluorescent in situ hybridization. Autonomous and non-autonomous TEs were found; class I retrotransposons like Copia and Gypsy (LTR) predominated in both genera, while SINEs and LINEs (NonLTR) were abundant in Brassica genomes. Large retrotransposon derivatives (LARDs) were in both genera, with a very few terminal-repeat in miniature (TRIM) elements. Class II DNA transposons included CACTA, hAT, Harbinger, Mariner and Mutator like MITEs in Brassica, while CACTA and Mutator were uncommon in Musa. Among miniature inverted-repeat transposable elements (MITEs), Stowaway, Tourist, and Mutator-like MITEs were abundant with several novel families identified and characterized. In diploid and allopolyploid Brassica species, A- or C-genome specific elements were found while others were more active. PCR enabled accession identification and phylogenetic reconstruction in Brassica and Musa. As well as known element families, few novel types of TEs were identified, including several variable, short elements with characteristic structural features. The analysis provides insight into the nature and diversity of TEs as an important genomic component; results are useful for genome annotation and understanding evolution and variation within these crops and the associated pool of wild germplasm.

	Abbreviations
aa	amino acids
AFLP	Amplified fragment length polymorphism
AP	Aspartic protease
ATP	A type transposase
BAC	Bacterial artificial chromosomes
Bo	Brassica oleracea
Bp	Base pair
Br	Brassica rapa
C	Current
C4	Calcutta 4
CDD	Conserved domain database
CHR	Chromatin organization modifier (chromodomain)
Cm	Centimeter
CMV	Cauliflower mosaic virus
CTAB	Cetyltrimethylammonim bromide
Cv	Cultivar
CYP	Cystein protease
DIRs	Dictyostelium intermediate repeat sequence
DNA	deoxyribonucleic acid
EBI	European bioinformatics institute
EMBL	European molecular biology laboratory
EN	Endonuclease
ENV	Envelop
ERV	Endogenous retrovirus sequences
EST	Expressed sequence tags
ETS	Extra transcription factor
FAO	Food and agriculture organization of the United nations
FITC	Fluorescein Isothiocyanate
g	gram
GAG	gag-nuclocapsid
GMGC	Global Musa genomics consortium
GSS	Genome survey sequence
GyDB	Gypsy database
HARB	Harbinger
Hel	Helicase
HP	Haemthiolate proteins
HVP	Tymovirus proteins
INT	Integrase

IPTG	isopropyl- β-thiogalactosid
IRAPs	Inter-retrotransposon amplification polymorphisms
Kb	Kilo base
1	Liter
LARDs	Large retrotransposons derivatives
LB	Luria-Bertani
LINEs	Long interspersed nuclear elements
LRR	Leucine rich repeat
LTR	long terminal repeat
M	Molar
Ma	Musa acuminata
Mb	Musa balbisiana
Mbp	Mega base pair
MFS	Major Facilitating Factor
Min	Minutes
MAP	MITE amplification polymorphism
MITE	Miniature inverted-repeat transposable elements
M1	Milliliter
mM	milli molar
MT	Mannosyl transferase
Mu	Mutator
Mya	Millions years ago
NAM	No apical meristem-associated
NCBI	National centre for biotechnology information
ND5	NADH dehydrogenase subunit
NJ	Neighbour-joining
${ }^{\circ} \mathrm{C}$	Degree celsius
ORFs	Open reading frames
PBS	Primer binding sites
PCR	Polymerase chain reaction
PIF	P instability factor
PKW	Pisang Klutuk Wulung
PLE	Penelope-like elements
PMV	Phage virion morphogenesis
POL B	B DNA polymerase
Pol	Polymerase
PPT	Polypurine tract
PRK	2^{\prime}-Phosphodiesterase/3'-nucleotidase precursor protein
PRP	Pre-mRHA-splicing factor
PRV	Pararetrovirus
RAPD	Random Amplified Polymorphic DNA

RBIP	Retrotransposon-based insertion polymorphisms
REMAP	Retrotransposons-microsatellite amplified polymorphism
RFLP	Restriction fragment length polymorphism
Rep	Replication initiator
RNA	Ribonucleic acid
RP	Retropepsin
RPA	Replication protein A
RRM	RNA recognition motif
RT	Reverse transcriptase
RTAP	Reverse transcriptase amplification polymorphisms
Sec	Seconds
SINEs	Small interspersed nuclear elements
SLG	S locus glycoprotein
SNP	Single nucleotiode polymorphism
Spp.	Species
SSAP	Sequence-specific amplification polymorphism
SSR	Single sequence repear
TAE	Tris-Acetyl-EDTA buffer
TAP	Transposase amplification polymorphism
TEs	Transposable elements
TIP	Transposon insertional polymorphism
TIR	Terminal inverted repeat
TNP	Transposase
TPRT	Target primed reverse transcription
TR	Transcriptional regulator
TRIMs	Terminal-repeat retrotransposons in miniature
tRNA	Transfer RNA
TRX	Thioredoxin
TSD	Target site duplication
UD	Undetermined
UKP	Unknown proteins
UN	Unknown
UTR	Untranslated regions
UV	Ultra violet
V	volt
v/v	Volume per volume
w/v	Weight per volume
WGS	Whole genome shotgun
ZF	Zinc finger
ZK	Zinc knuckle
$\mu \mathrm{l}$	Microliter

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 Brassica
01

1.1.1 Polyploidy and phenotypic evolution in Brassica 03
1.2 Musa (Banana) 05
1.3 Transposable elements (TEs) 07
1.4 Outline of transposable elements (TEs) classification system 07
1.5 Autonomous and non-autonomous transposable elements 10
1.6 Class I transposable elements 10
1.6.1 Structural characteristics of LTR Retrotransposons 11
1.6.1.1 Ty1/Copia 11
1.6.1.2 Ty3/Gypsy 12
1.6.1.3 Retroviruses and related elements 13
1.6.1.4 Large retrotransposon derivatives (LARDs) 13
1.6.1.5 Terminal-repeat retrotransposons in miniature (TRIM) 14
1.7 Non-LTR retrotransposons 15
1.7.1 Long interspersed nuclear elements (LINEs) 15
1.7.2 Small interspersed nuclear elements (SINEs) 16
1.8 Class II transposable elements 17
1.8.1 Ac/Ds-hAT 17
1.8.2 Tc1-Mariner 18
1.8.3 Mutator 18
1.8.4 En/Spm-CACTA 19
1.8.5 PIF-Harbinger 20
1.9 Miniature inverted-repeat transposable elements (MITEs) 21
1.10 Impact of Transposable elements (TEs) 22
1.10.1 TEs and evolution 22
1.10.2 TEs as mutagens 22
1.10.3 Transposon Tagging 22
1.10.4 TEs as genetic markers 23
1.11 Aims and objectives of the study 24

CHAPTER 2

MATERIAL AND METHODS

2.1 Plant material for Brassica 26
2.2 Plant material for Musa 26
2.3 Solutions 29
2.4 Extraction of genomic DNA 30
2.5 DNA quantification 31
2.6 Development of new molecular markers for retrotransposons amplification polymorphisms 31
2.7 Designing the primers for DNA transposons and MITEs 32
2.8 Polymerase chain reactions (PCR) 33
2.8.1 Agarose Gel electrophoresis 34
2.8.2 Isolation and purification of gel bands 34
2.8.3 DNA sequencing and analysis 35
2.9 Fluorescent in situ hybridization 35
2.10 Bioinformatics and computational analysis 36
2.10.1 Dot plot analysis for identification of retrotransposons 36
2.10.2 Computational analysis and data mining for retrotransposons 40
2.10.3 Characterization, classification and naming of retrotransposons 42
2.10.4 Analysis of structural domains in retrotransposons 43
2.10.5 Multiple sequence alignment and phylogenetic analysis 44
2.10.6 Estimation of copy numbers 44
2.11 Material and Methods for DNA transposons and MITEs 46
2.11.1 Identification \& genome wide analysis of DNA transposons/MITEs 46
2.11.2 Sequence analysis and manipulation 47
2.11.3 Phylogenetic analysis for autonomous and non-autonomous DNA transposons 48
2.11.4 Copy number estimation of DNA transposons 48
2.12 Characterization and nomenclature of DNA transposons and MITEs 49
CHAPTER 3
IDENTIFICATION AND CHARACTERIZATION OF NOVEL LTR
RETROTRANSPOSON FAMILIES FROM BRASSICA
Summary
3.1 Introduction 50
3.2 Results 52
3.2.1 Strategy for mining and characterizing LTR retrotransposons in Brassica 52
3.2.2 Distribution of LTR retrotransposons in Brassica BACs 53
3.2.3 Diversity of LTR retrotransposons in Brassica genomes 55
3.2.4 Phylogenies of LTR retrotransposons from Brassica and other plant genomes 57
3.2.5 Structural features of Ty1/copia elements identified from Brassica rapa. 60
3.2.5.1 Structural features of Ty1/copia elements identified from Brassica oleracea 62
3.2.5.2 Protein domain organization of gag-pol genes in Copias 64
3.2.5.3 PBS and PPT of Brassica Copia elements 66
3.2.5.4 Diversity and distribution of Copia retrotransposons in Brassica accessions 67
3.2.5.5 Evolutionary relationship of Brassica Copia elements 70
3.3 Overview of Gypsy retrotransposons 72
3.3.1 Characterization and structural features of Gypsy superfamily 72
3.3.2 Domain organization in intact Gypsy elements 74
3.3.3 PBS and PPT of Gypsy elements 75
3.3.4 Analysing diversity and distribution of Gypsy elements by RTAP markers 75
3.3.5 Phylogenetic analysis of Brassica Gypsy RT segregated two groups 77
3.4 Diversity of Large Retrotransposon Derivatives (LARDs) in Brassica 79
3.4.1 Structural features of LARDs like elements 79
3.4.2 PCR amplification of LARDs elements 80
3.5 Terminal-Repeat Retrotransposons in Miniature (TRIM) 81
3.6 Discussion 81
3.6.1 LTR retrotransposons are highly diverse and abundant inBrassica crops81
3.6.2 LTR retrotransposon landscape in different plant genomes 81
3.6.3 Reverse transcriptase in most conserved region among LTRretrotransposons82
3.6.4 LARDs lack internal coding regions but are active elements 83
3.6.5 TRIM are less active LTR retrotransposons 84
3.7 Conclusion 84
CHAPTER 4
CHARACTERIZATION OF LINEs and SINEs: UBIQUITOUS COMPONENTS OF BRASSICA CROP GENOMES
Summary
4.1 Introduction 89
4.2 Results 91
4.2.1 Identification and general features of Brassica LINEs 91
4.2.2.1 Characterization and structural features of Rehan family of LINEs 91
4.2.2.2 Structural features of Faizan family of LINEs 92
4.2.2.3 Identification and characterization of Furqan family of LINEs 93
4.2.2.4 Structural features of Nouman family of LINEs 93
4.3.3 Open reading frames and domain organization of Brassica LINEs 94
4.2.4 Identification and characterization of non-autonomous LINEs in Brassica 98
4.2.5 Sequence analysis and phylogenetic relationship of RT from Brassica and other plant LINEs 101
4.2.6 PCR amplification of RT from Brassica Rehan LINEs family 101
4.2.7 Faizan LINE family is proliferating in A and C-genome Brassica 103
4.2.8 Furqan LINE family is proliferating in C-genomes 103
4.2.9 Diversity and distribution of Nouman LINE family among Brassica cultivars 104
4.2.10 Transoson insertional polymorphisms (TIPs) of non-autonomous LINEs in Brassica genomes 105
4.2.11 Copy number estimation of autonomous LINEs 107
4.3 Identification of novel families of SINEs in Brassica genomes 107
4.3.1 SINE identification by comparative sequence analysis 107
4.3.2 Estimation of full length SINE copy numbers from whole Brassica genomes 108
4.3.3 Structural features of Brassica SINEs 108
4.3.4 Structural features of low and high copy number SINE families 110
4.3.5 Transposon insertional polymorphisms (TIPs) of SINEs in Brassica genomes 111
4.4 Discussion 114
4.4.1 Reverse transcriptase is the most conserved region among plants LINEs 114
4.4.2 RNase H containing LINEs are dominant in Brassica 115
4.4.3 SINEs display a conserved motif before poly(A) tail 115
4.4.4 Target Site Preference of Brassica SINEs 115
4.4.5 Brassica SINEs are ancient retroposons in Brassicaceae 116
4.4.6 SINEs as molecular markers in phylogenetic studies 117
4.5 Conclusions 118
CHAPTER 5
CACTA AND HARBINGER DNA TRANSPOSONS: CHARACTERIZATION AND IMPACT ON BRASSICA GENOMES
Summary
5.1 Introduction 119
5.2 Results 121
5.2.1 CACTA identification and characterization by Dot plot and BLASTN analysis 121
5.2.2 Structural features of Brassica oleracea CACTA elements 121
5.2.3 Molecular characterization of Brassica rapa CACTA elements 123
5.2.4 Identification of CACTA in Brassica allotetraploids 124
5.2.5 Protein domain organization in plant CACTA 125
5.2.6 Brassica CACTA captures an ATHILA ORF-1 domain 128
5.3.7 Characterization of non-autonomous Brassica CACTA 128
5.2.8 PCR amplification of ATHILA ORF-1 insertion in Brassica 130
5.2.9 PCR amplification of Brassica CACTA transposase_21 (TNPD) 130
5.2.10 Phylogeny of Brassica CACTA transposons 132
5.3 Identification of Harbinger transposons in Brassica 137
5.3.1 Detailed structural analysis of Brassica Harbinger 137
5.3.2 Structural features of non-autonomous Harbinger in Brassica 139
5.3.3 Insertional polymorphism of non-autonomous Harbinger in Brassica141
5.3.4 PCR amplification of Harbinger transposase in Brassica 142
5.3.5 Insertional polymorphism of BrHARB5 in Brassica genomes 143
5.3.6 The phylogenetic relationship of Brassica and other plant Harbinger 144
5.4 Discussion 147
5.4.1 CACTA transposons are actively proliferating in Brassicaceae Genomes 147
5.4.2 CACTA are diverse and an abundant superfamily of transposons 148
5.4.3 Terminal inverted repeats are conserved in Brassica and other plant CACTAs 149
5.4.4 Harbinger transposons are less active in Brassica genomes 151
5.4.5 Harbinger capture additional protein domains 151
5.5 Conclusion 152
CHAPTER 6
NON-AUTONOMOUS DNA TRANSPOSONS \& NOVEL INSERTIONS IN BRASSICA CROPS: DIVERSE AND ABUNDANT
Summary
6.1 Introduction 153
6.2 Results and Discussion 155
6.2.1 hAT Elements 155
6.2.1.1 Identification of non-autonomous hAT transposons in Brassica 155
6.2.1.2 General features of Brassica hATs 155
6.2.1.3 Diversity and abundance of Brassica hATs 156
6.2.1.4 Structural characterization of Brassica hAT transposons 158
6.2.1.5 TIP markers to study hAT polymorphisms in Brassica accessions 160
6.2.2 Mutator-like elements 163
6.2.2.1 Identification of Mutator like elements (MULEs) 163
6.2.2.2 Molecular characterization of Shahroz family of MULEs 163
6.2.2.3 Shahroz is A-genome specific non-autonomous Brassica MULEs family 164
6.2.2.4 Shahroz is an ancient, defective and low copy number family of MULEs 166
6.2.3 Mobile insertions of unknown superfamilies 167
6.3 Conclusions 170
CHAPTER 7
POPULATION DYNAMICS OF MINIATURE INVERTED-REPEATTRANSPOSABLE ELEMENTS (MITEs) IN BRASSICA
Summary
7.1 Introduction 171
7.2 Results 172
7.2.1 Identification of MITE families in Brassica 172
7.2.2 Characterization and classification of Brassica MITEs 173
7.2.3 Structural features of Brassica Stowaway-like MITEs 176
7.2.3.1 Transposon Insertional polymorphism of Stowaway-like MITEs 178
7.2.4 Characterization of Brassica Tourist-like MITEs 181
7.2.4.1 Brassica Tourist MITE insertion polymorphism among Brassica cultivars 183
7.2.5 Molecular characterization of Mutator-like MITEs in Brassica 185
7.2.5.1 Mutator derived MITEs: Insertional polymorphism in Brassica 187
7.2.5.2 Fluorescent in situ hybridization of BoMuMITE1 189
7.2.6 Structural features of a novel MITE family (BoXMITE1) in Brassica 190
7.2.7 Estimation of genome-wide copy numbers of Brassica MITEs 190
7.2.8 Phylogenetic analysis of Stowaway, Tourist and unknown MITEs 191
7.3 Discussion 192
7.3.1 Insertional polymorphism of MITEs, a tool to study diversity and evolution 194
7.3.2 Brassica MITEs have highly AT rich regions 194
7.3.3 Evolutionary implications of MITEs in plant genomes 195
7.4 Conclusion 196
CHAPTER 8
THE LTR RETROTRANSPOSON LANDSCAPE IN MUSA GENOMES
Summary
8.1 Introduction 197
8.2 Results 199
8.2.1 Strategy for characterizing and mining LTR retrotransposons in Musa 199
8.2.2 The LTR retrotransposons landscape in Musa 202
8.2.3 Phylogeny and families of LTR retrotransposons in Musa by
RT analysis 203
8.2.4 Characterization of Musa Gypsy retrotransposons 206
8.2.4.1 Structural features of the Gypsy superfamily 207
8.2.4.2 Nested structures of Gypsy LTR retrotransposons in Musa 209
8.3.4.3 The gag-pol polyprotein organization in Gypsy elements 210
8.2.4.4 PBS and PPT pattern of Gypsy elements 212
8.2.4.5 RTAP markers to study diversity of Gypsy elements in Musa genomes 213
8.2.5 Structural features of Copia superfamily 214
8.2.5.1 Nested structures of Copia LTR retrotransposons in Musa 216
8.2.5.2 The gag-pol domain organization in intact Copia elements 217
8.2.5.3 PBS and PPT organization of Copia elements 217
8.2.5.4 Diversity and distribution of Copia in Musa 218
8.2.6 Structural features and diversity of a pararetrovirus like retrotransposon in Musa 219
8.2.7 Characterization and structural features of LARD like elements 220
8.2.7.1 Domain patterns and organization in LARD like elements 221
8.3 Discussion 222
8.4 Conclusion 224
CHAPTER 9
MOLECULAR CHARACTERIZATION OF DNA TRANSPOSONS AND NOVEL MOBILE INSERTIONS IN MUSA
Summary
9.1 Introduction 225
9.2 Results 227
9.2.1 Transposon identification by comparison of homoeologous BAC sequences 227
9.2.2 The hAT transposons diversity in Musa 231
9.2.2.1 Structural features and characterization of non-autonomous hATs 231
9.2.2.2 Structural features and characterization of autonomous hATs 233
9.2.2.3 Insertional polymorphisms of non-autonomous hATs 235
9.2.2.4 Fluorescent in situ Hybridization (FISH) of hAT sites on Musa chromosomes 239
9.2.2.5 Phylogeny of hATs in Musa 239
9.2.2.6 The hAT transposon diversity and copy number estimation 240
9.2.3 Identification and characterization of MITEs in Musa 243
9.2.3.1 MaMITE1 diversity in Musa genome by TIP based molecular markers 245
9.2.4 Structural features of novel transposons with unknown superfamilies 246
9.2.5 Mobile insertions/deletions without TIRs 247
9.3 Discussion 248
9.3.1 Non-autonomous hATs are dominant in Musa genomes 249
9.3.2 The hATs are an ancient and abundant superfamily of transposons in Musa 249
9.4 Conclusion 250
CHAPTER 10
CONCLUSIONS
10.1 Conclusions structure 251
10.1.1 Mobile elements in diploid and polyploid Musa and Brassica crops 251
10.1.2 Small mobile element structures 251
10.1.3 Autonomous transposable element families 252
10.1.4 Transposon marker development and exploitation 252
10.2 Dot plot: a highly effective method for transposable element Identification 253
10.3 Total copy numbers TE superfamilies in Brassica genome 257
10.4 Relative percentages of TE superfamilies in the Brassica genome 258
10.5 Future developments 260

LIST OF TABLES

Table 2.1 List of Brassica species and accessions with their accessions and crop names.

27
Table 2.2 Set A. List of Musa species and accessions with accession names and numbers.

Table 2.3 Set B. List of various Musa species and accessions with their accession names and genome compositions.
Table 2.4 List of 90 Brassica Bacterial Artificial Chromosomes (BACs) used for the identification of various TEs. 39

Table 2.5 List of 46 Musa Bacterial Artificial Chromosomes (BACs) used for the identification of various TEs. 40
Table 2.6 List of 75 LTR retrotransposons (Copia, Gypsy and Pararetrovirus (PRV) superfamilies) collected from Gypsy Database.45

Table 3.1 List of Copia, Gypsy, LARDs, and TRIM with their sizes, TSDs, TIRs, positions and orientations in BAC clone sequences. 59
Table 3.2 List of Brassica retrotransposons with PBS, PPT motifs and gag-pol gene protein domains.
Table 3.3 List of Primers to amplify the RT regions of Brassica Copia, Gypsy and LARDs like LTR retrotransposons.

70
Table 4.1 List of Brassica autonomous and non-autonomous LINEs with BAC accessions, sizes, TSDs, poly(A) tail, ORFs and protein domains. 97
Table 4.2 List of primers with their names, sequences and sizes of the expected products to amplify the LINEs and SINEs elements in Brassica. 102
Table 4.3 Full length SINEs identified by comparative Dot plot analysis of Brassica BAC sequences.
Table 4.4 Average lengths, TSDs, Pre-tail motifs and estimated copy numbers of each SINEs family in Brassica.

Table 5.1 List of Brassica CACTA elements with BAC sequences, sizes, number of TSDs, TIRs and orientation. 126

Table 5.2 Protein domain organizations and TIRs of Brassica and other plant CACTA elements.

Table 5.3 List of Brassica CACTA and Harbinger primers with, size of the elements, size of the products, names and sequence of primers

Table 5.4 Harbinger transposons studied in Brassica with sizes, TSDs, TIRs and positions in BAC sequences 140

Table 5.5 List of non-autonomous Bo-N-HARB1 and its homologues studied in Brassica with sizes, TSDs and TIRs 140

Table 5.6 Size and protein domains organization of Brassica and other plants Harbingers. 145
Table 6.1 List of non-autonomous hAT transposons with accessions numbers of Brassica. 157

Table 6.2 List of non-autonomous Mutator transposons with accessions numbers, sizes, TSDs, TIRs, positions in the BAC sequences.

Table 6.3 List of various mobile insertions of unknown superfamilies with accessions numbers, sizes, TSDs and TIRs. 169

Table 6.4 List of Brassica hAT and Mutator SSAP primers with size of the elements, size of the expected products, names and sequences of primers. 169
Table 7.1 MITEs families identified from Brassica BAC sequences with names of elements, sizes, TSDs and TIRs. 175
Table 7.2 List of estimated copy numbers and AT\% of Brassica MITEs families. 178

Table 7.3 List of Brassica MITEs primers with, size of the elements, size of the expected products, names and sequence of primers.
Table 8.1 List of Copia, Gypsy, LARDs, and TRIMs with their sizes, TSDs, TIRs, positions and orientations in BAC clone sequences.
Table 8.2 List of Musa retrotransposons with PBS, PPT motifs and gag-pol gene protein domains.
Table 8.3 List of primers to amplify the RT region of Gypsy and Copia and LTRs of LARD elements.
Table 9.1 List of various autonomous and non-autonomous DNA transposons, MITEs and novel insertion from unknown families identified from Musa BAC sequences.
Table 9.2 List of primers for amplification of various DNA transposons in Musa.

CHAPTER 1

INTRODUCTION

1.1 Brassica

The genus Brassica (family Brassicaceae) includes many important crops such as oilseed rape (canola), brown mustard, Chinese cabbage, turnip, cabbage, cauliflower, broccoli, Brussels sprouts, collards, kale and kohlrabi, and is a close relative of the model plant Arabidopsis. Brassicas are a valuable and long-standing food source in both developing and industrialized countries (Monteiro and Lunn, 1999). Brassica oil production is rapidly increasing worldwide and accounts for 12% of global vegetable oils (after only soybean and cotton), with Brassica rapa, Brassica oleracea, Brassica juncea and Brassica carinata all used for oil (FAOStat database, 2012). The six most economically important Brassica species include three diploids and three allotetraploids. The evolutionarily-recent polyploidy events led to the formation of three tetraploid species from the diploids Brassica rapa $(2 \mathrm{n}=2 \mathrm{x}=20)$, Brassica nigra $(2 \mathrm{n}=2 \mathrm{x}=16)$ and Brassica oleracea ($2 \mathrm{n}=2 \mathrm{x}=18$), forming the "Triangle of U" (U.N, 1935), where the three allotetraploid species Brassica juncea ($2 \mathrm{n}=4 \mathrm{x}=36$), Brassica napus $(2 \mathrm{n}=4 \mathrm{x}=38)$ and Brassica carinata $(2 n=4 x=34)$ represent hybrids of each pair of the three diploid species (Figure 1.1).

The haploid genomes of Brassica rapa, Brassica nigra and Brassica oleracea have been named A, B and C , respectively and the resulting amphidiploids become AB, AC and BC for Brassica juncea, Brassica napus and Brassica carinata respectively. Other nondomesticated Brassica taxa have been described, with at least ten related to Brassica oleracea (Ostergaard and King, 2008). The genome of Brassica has shown close relation to the model plant Arabidopsis, as they are the close genera of the same family. It is estimated that Brassica diverged from the Arabidopsis thaliana lineage between 20-24 million years ago (Mya) (Koch et al., 2000), or based on nucleotide substitution rate as recently as 14.5-20 Mya (Yang et al., 1999). While the common ancestor itself involves polyploidy, a 2.2 Mbp region from Brassica oleracea with a high homology to Arabidopsis thaliana has been used to show that gene loss occurred after the separation of Brassica oleracea and Arabidopsis so some polyploidy events occurred more recently (Town et al., 2006). With the emerging demands of Brassica crops as vegetables and oil, the scientific community is thinking to develop latest methodologies for its improvement.

Figure 1.1: The genetic relationship and origin of allotetraploids from diploid Brassica species of the "Triangle of U". Diploid species are represented by black and allotetraploids (amphidiploids) species with blue colour. The genome and chromosome numbers are also indicated. (Molecular Cytogenetics Lab, University of Leicester photographs).

The Multinational Brassica Genome Project (MBGP) (Brassica.info; http://www.Brassica.info/index.php) was established in 2002 to gather the international research community working on Brassica. A number of genetic maps have been produced, along with SSR markers, EST and BAC end libraries, and the Brassica rapa sequencing project is in its final stages. Well established clone libraries, genetic maps, genetic markers, proteomics, sequencing data and many other databases are available providing significant information about Brassica genomic structures, biodiversity and polyploidy. A standard Gene Nomenclature was proposed by Ostergaard and King (2008) which will distinguish the alleles associated with the various genomes, and various paralogous loci. Several other projects are in progress and many are in pipeline to fully explore the genomic structure of several Brassica crops. The Korean Brassica genome project aims to sequence chromosome 1 of Brassica rapa; the sequenced chromosome 1 shows several conserved regions with Arabidopsis chromosomes, and as high as 82% homology was found by comparing five Brassica rapa sequenced BACs with Arabidopsis chromosome sequences (Yang et al., 2005).

In 2011, the analysis and annotation of the draft genome sequence of Brassica rapa Chiifu-401-402 (Chinese cabbage) was published. Around 41174 protein coding genes were detected in Brassica rapa genome, which underwent genome triplication after splitting from Arabidopsis thaliana (itself used an out group to investigate the genome triplication). This Brassica rapa genome sequence is providing insight to the evolutionary mechanism of polyploids and genetic improvement of Brassica crops and its oil yield (Wang et al., 2011). Single nucleotide polymorphism (SNP) linkage maps of the tetraploid Brassica napus, were constructed comprising 23037 markers, which were used to align the Brassica napus genome with its related species Arabidopsis thaliana and to genome sequence of its progenitor species, Brassica rapa and Brassica oleracea. Transcriptome SNP assays can be successfully used across the mapping populations to develop SNPbased linkage maps and transcriptome sequencing will increase the efficiency of predictive breeding even without fully sequenced genome (Bancroft et al., 2011).

1.1.1 Polyploidy and phenotypic evolution in Brassica

Polyploidy or whole genome duplication (WGD) has played a major role in the evolution of higher plants, with about 70% of the angiosperms experiencing one or several events of
polyploidization during their evolutionary phases (Heslop-Harrison, 2010). This polyploidy is the result of doubling the chromosomes within a species (autopolyploidy) or by the combination of chromosomes sets from two different but related species (allopolyploidy). Both polyploid types are frequent and may be well adapted and genetically stable, and fertile where diploid chromosome behaviour is regained. However, synthetic polyploids or neo-allopolyploids may show genetic instability, low fertility and low embryonic viability (Osborn et al., 2003; Comai, 2005; Chen, 2007; Ge et al., 2009; Heslop-Harrison, 2012). The events of polyploidy played a major role in the tribe Triticeae and polyploidy events are well studied in these crops (Ma and Gustafson, 2008). The impact of ploidy events on gene expression and phenotypic characters have been carefully studied in Brassica allotetraploids including Brassica napus (Gaeta et al., 2007). Like most angiosperms, there have been several rounds of polyploidy or whole genome duplication during evolution of Brassica species (Van de Peer et al., 2009). Evolution of hexaploid Brassica progenitors advanced by several events, which occurred sequentially at different times (Ziolkowski et al., 2006). Van de Peer et al (2009) have reviewed the evidence for three whole genome duplications occurring during the origin of the Brassica group (including Brassica and Arabidopsis): the gamma duplication early in evolution sometime after separation of angiosperms from gymnosperms, while the beta and alpha duplication are more recent.

Polyploidy contributes to phenotypic variation and the ability for genome mutation through several mechanisms: new phenotypes with new gene control, transpositions, altered regulatory interactions or changes that affect the expression of gene and cause phenotypic variation. Continued research on Brassica, cereal crops and related species should provide insight into the relative importance of these evolutionary mechanisms for generating novel variation in polyploids (Osborn et al., 2003; Heslop-Harrison and Schwarzacher, 2011; Heslop-Harrison, 2012). The allopolyploid Brassica species can be resynthesized by crossing diploid species and doubling the chromosomes of the hybrids. Resynthesized Brassica polyploids are ideal for studying polyploid evolution in action, because the exact diploid progenitors are known and completely homozygous polyploids can be created by chromosome doubling of amphihaploids. Studies of resynthesized Brassica polyploids provided the first molecular evidence of novel phenotypic variation in newly formed polyploids (Schranz and Osborn, 2000; Barker et al., 2009).

1.2 Musa (Banana)

Banana and plantains are the fourth most important tropical crop of the world; there is no botanical distinction, but often 'banana' describes the dessert fruit and 'plantains' the form cooked as a vegetable. They are upto 3 meter tall herbaceous monocotyledonous plants from genus Musa, family Musaceae and order Zingiberales (Tomlinson, 1969). There are more than 1000 banana cultivars with a high genomic diversity and variability; most of the cultivated species are triploids, while diploids and tetraploids are also common (HeslopHarrison and Schwarzacher, 2007). The genus Musa is classified into four sections on the basis of morphology and chromosomes numbers as Eumusa ($\mathrm{n}=11$), Rhodochlamys ($\mathrm{n}=11$), Callimusa ($\mathrm{n}=9 / 10$) and Australimusa ($\mathrm{n}=10$).

Most edible bananas belong to section Eumusa and are diploid or triploid hybrids from Musa acuminata (A-genome) alone, or in combination with B-genome diploid banana Musa balbisiana (Perrier et al., 2011); cultivars have multiple origins from cultivated and wild cultivars by hybridisation (Hippolyte et al., 2012). Cultivated bananas are mostly sterile and parthenocarpic (fruit formation without seeds and fertilization) and are mostly triploid ($2 \mathrm{n}=3 \mathrm{x}=33$) having the genome constitution of $\mathrm{AAA}, \mathrm{AAB}, \mathrm{ABB}$. Most cooking types are interspecific hybrids (AAB or ABB) while sweet dessert bananas are mostly triploid Musa acuminata i.e. AAA (Pollefeys et al., 2004; Heslop-Harrison, 2011). This triploidization occurred independently in various areas between the diploids and from various parental combinations, and new triploids and tetraploids can be synthesized in breeding and selection programmes. Three well established subgroups from triploids are African AAA 'Mutika Lu-jugira', AAB 'African Plantains' and AAB 'Pacific Plantains'. Other seedless cultivated bananas include diploids with a genome set of $A A$ and $A B$ and tetraploids with a genome constitution of AAAA, AAAB, AABB and ABBB (HeslopHarrison and Schwarzacher, 2007; Perrier et al., 2011).

The Global Musa Genomics Consortium (GMGC) is an international network of scientists, working for the improvement in breeding and management of banana by genomic techniques. Comparative genomics is a valuable tool to investigate genomic evolution and Musa is considered as an interesting model crop for understanding genomic evolution. The consortium is working to improve and explore the genomic structure of Musa including Musa Genome Resource Centre (MGRC), Genotyping Centre and

Bioinformatics databases and a germplasm resource centre. The research is in progress in areas including banana bioinformatics, genetic diversity, mapping, sequencing, expression, validation, proteomics and pathogen genomics (GMGC website; http://www.Musagenomics.org/home_page.html). In recent years bacterial artificial chromosomes (BAC), expressed sequence tags (EST) and several other DNA marker sequences have been generated within the GMGC framework: in total 51 BACs from various Musa accessions were recently sequenced and annotated for genes and TEs with automated approaches (Guignon et al., 2012). The BAC end sequences were searched against several databases and high homology was observed against various repetitive sequences and transposons (30%). Approximately 600 BAC end-sequences contained protein sequences that were not found in the existing available Musa ESTs, repeat or transposon databases. These results suggested that these BAC end sequences from Musa acuminata had shown significant homology to Oryza sativa and Arabidopsis genome sequences (Cheung and Town, 2007).

After a great development in Musa BAC sequencing, there is huge progress in whole genome sequencing of Musa and investigating the repetitive part of the genome. The repetitive part of banana was investigated by sequencing the Musa acuminata 'Calcutta4' genome. The major components from transposable elements were the LTR retrotransposons, from which more than 16% of the genome is composed of Copia, while 7% is represented by Gypsy elements. The phylogenetic study of the elements indicate that the majority of the Copia elements belong to the SIRE/maximus lineage (13\%), while the remainder belongs to Angela, Tntl and Hopscotch lineages. Most of the Gypsy elements (87%) belonged to the lineage of chromoviruses. The non-LTR retrotransposon component of banana was very rare with only 1% genome composition covered by LINE elements. No SINEs were found actively proliferating in the genome, while the DNA transposons were found to be very rare, covering less than 1% of total 'Calcutta 4 ' genome. Very few hAT-like elements were identified due to their low copy number. In addition to retrotransposons and DNA transposons, two satellite repeats were also identified, which were considered as best cytogenetic markers. A specific Musa repeat database was created to assist the banana sequence annotation (Hribova et al., 2010).

1.3 Transposable elements (TEs)

Transposable elements (TEs) also termed as mobile genetic elements, jumping genes, or transposons are a major component of all eukaryotic genomes, representing 40% of the entire genome in humans (Mills et al., 2006) and $50-90 \%$ in important agricultural crops like maize, wheat, barley, rye and sugar beet (Pearce et al., 1997; Kubis et al., 1998; Wicker and Keller, 2007; Wicker et al., 2007; Kapitonov and Jurka, 2008). The larger genomes are made up of abundant tandemly repetitive sequences and transposable elements, which compose a major proportion of DNA, sometimes representing more than half of the DNA (Heslop-Harrison and Schwarzacher, 2011). The first transposable element to be described, the Ac element of maize, was discovered by Barbara McClintock in the early 1950s (McClintock, 1950). With the advancement in computer-assisted analyses and genome-sequencing projects, it is now known that TEs are important components of all eukaryotic genomes and play a major role in their evolution (Flavell et al., 1997; Wicker et al., 2007).

1.4 Outline of Transposable Elements (TEs) classification system

The first classification system of transposable elements (TEs) was proposed by David Finnegan in 1989. His classification system distinguished the TEs in two major classes on the basis of their transposition intermediate. Class I or retrotransposons transpose via an RNA intermediate and Class II or DNA transposons transpose directly from DNA with a transposase. By analogy with computer word-processing programs, the Class I transposition mechanism is called "copy and paste" and that of Class II, "cut and paste" (Finnegan, 1989). Another detailed classification and nomenclature based on the Finnegan (1989) classification was proposed by Capy et al. (2005). In general, all the eukaryotic TEs were classified into two major types by many authors; retrotransposons and DNA transposons based on their copy and paste and cut and paste transposition mechanism respectively (Jurka et al., 2007; Kaptinov and Jurka, 2008), although this system must be adjusted for miniature inverted-repeat elements (MITEs), which copy and paste without an RNA intermediate or a transposase in the genome. The grouping of TEs in two classes is still the most accepted system of classification used by many authors (Hansen and HeslopHarrison, 2004; Wicker et al., 2007).

The TE classification system proposed by Wicker et al. (2007) includes (in hierarchical order) the levels of class, subclass, order, superfamily, family and subfamily. This classification is adopted and followed in the present work. The highest level of the hierarchy is the class, which divides TEs into two classes by the presence or absence of an RNA transposition intermediate. Subclass is used to distinguish elements that copy themselves for insertion from those that leave the donor site to reintegrate elsewhere. The Order in this system is used for Class I elements or retrotransposons, which are divided into 5 orders as LTR, DIRS, PLE, LINEs, SINEs. The order LTR is composed of five superfamilies as Copia, Gypsy, Bel-Pao, Retrovirus and ERV. The order LINE consists of R2, RTE, Jockey, L1 and I type superfamilies, while SINEs constitute 3 superfamilies. The Class II or DNA transposons are divided into two sub-classes. Sub-class 1 is composed of common superfamilies as Tc1-Mariner, hAT, Mutator, Merlin, Transib, P, PiggyBac, PIF-Harbinger, CACTA and Crypton, while sub-class 2 includes the superfamilies of Helitron and Meverick elements (Figure 1.2) (Wicker et al., 2007).

A second TE classification system, differing at some levels, was proposed by Kapitonov and Jurka (2008), where TEs are classified into two major types (retrotransposons and DNA transposons) and five major classes as LTR retrotransposons, non-LTR retrotransposons, cut-and-paste DNA transposons, rolling-circle DNA transposons (Helitrons) and self-synthesizing DNA transposons (Polintons). These classes are further divided into superfamilies, which in turn are composed of numerous families of TEs. Thus the class LTR retrotransposons is composed of the Gypsy, Copia, BEL and DIRS superfamilies including the ERV1, ERV2 and ERV3 superfamilies. The non-LTR retrotransposons class includes several superfamilies as CR1, CRE, I, Jockey, L1, NeSL, Penelope, R2, R4, RandI, Rex1, RTE, Tx1 (LINEs) and SINE1, SINE2, SINE3 (SINEs) superfamilies. The DNA transposons consist of 15 superfamilies as Chapaev, CACTA, hAT, Harbinger, ISL2EU, Kolobok, Mariner, Merlin, MuDR, Mutator, Novosib, P, PiggyBac, Mirage, Rehavkus, Tourist and Stowaway. The fourth and fifth class is composed of Helitron and Polintons superfamilies respectively, which are not common and well proliferated like other TEs (Kapitonov and Jurka, 2008).

Classification		Structure	TSD	Code	Occurrence
Order	Superfamily				
Class I (retrotransposons)					
LTR	Copia	\rightarrow GAG AP INT RT RH \longrightarrow	4-6	RLC	P.M.E.O
	Gypsy	\rightarrow GAG AP RT RH $\mathrm{NT}^{\longrightarrow}$	4-6	RLG	P.M.F.O
	Bel-Pao	\rightarrow GAG AP RT RH NT \longrightarrow	4-6	RLB	M
	Retrovirus	\rightarrow GAG AP RT RH NT ENV \longrightarrow	4-6	RLR	M
	ERV	\rightarrow GAG AP RT RH NT ENV \longrightarrow	4-6	RLE	M
DIRS	DIRS	GAG AP RT RH YR	0	RYD	P. M. F.O
	Ngaro	\rightarrow GAG AP RI RH YR \longrightarrow	0	RYN	M, F
	VIPER	\rightarrow GAG AP RT RH YR $\longrightarrow \longrightarrow$	0	RYV	\bigcirc
PLE	Penelope	\longleftrightarrow RT EN \longrightarrow	Variable	RPP	P. M, F.O
UNE	R2	RT EN -	Variable	RIR	M
	RTE	APE RT	Variable	RIT	M
	Jockey	- ORF - APE RT -	Variable	RIJ	M
	L1	- ORF - APE RT -	Variable	RIL	P, M, F, O
	I	- ORH - APE RT RH	Variable	RII	P, M, F
SINE	tRNA		Variable	RST	P, M, F
	7SL	$\underline{\square}$	Variable	RSL	P.M.F
	5 S	$\underline{\square}$	Variable	RSS	M.O
Class II (DNA transposons) - Subclass 1					
TIR	TC1-Mariner	\geq Tase ${ }^{\circ}$	TA	DIT	P.M.F.O
	hat	\geqslant Tase ${ }^{\circ}$	8	DIA	P.M.E.O
	Mutator	\geqslant Tase	9-11	DTM	P, M, F,O
	Merlin	\geqslant Tase*	8-9	DTE	M, O
	Transib	\geq Tase -4	5	DTR	M, F
	P	\geqslant Tase	8	DIP	P, M
	PiggyBac	\geqslant Tase -	TM	DTB	M.O
	PIF-Harbinger	\geqslant Tase ${ }^{*}$ ORF2	3	DTH	P, M, F,O
	CACTA	\rightarrow Tase - ORT2	2-3	DTC	P, M, F
Crypton	Crypton	- $\mathrm{YR}^{\text {- }}$	0	DYC	F
Class II (DNA transposons) - Subclass 2					
Helitron	Helitron	$-\mathrm{RPA}-\mathrm{Y} 2 \mathrm{HEL}-\mathrm{L}$	0	DHH	P, M,F
Maverick	Maverick	$\geqslant \mathrm{CTNT}-\mathrm{ATP}-$ CYP -POLB	6	DMM	M. F.O

Structural features							
\longrightarrow Long terminal repeats \longrightarrow Terminal inverted repeats \longrightarrow Coding region \longrightarrow Non-coding region							
Diagnostic feature in non-coding region							
Protein coding domains							
AP, Aspartic proteinase		APE. Apurinic	donuclease	ATP, Packaging ATPase	C-INT, C-integrase	CYP,	EN. Endonuclease
ENV, Envelope protein		GAG. Capsid		HEL. Helicase	$\mathbb{N T}$, Integrase	ORF. 0	of unknown function
POL B, DNA polymease B R		RH, RNase H		RPA, Replication protein A (found only in plants)		RT, Rev	
Tase, Transposase (* with DDE motif)				YR. Tyrosine recombinase		Y2.YR	
Species groups							
P. Plants	M. Metazoans	F. fungi	0. Others				

Figure 1.2: Classification system for transposable elements from Wicker et al., (2007). This scheme was adopted in the present work. The system includes (in hierarchical order) the levels of class, subclass, order, superfamily, family and subfamily. The transposable elements are divided into two major classes (retrotransposons and DNA transposons) by the presence or absence of an RNA transposition intermediate. The Copia and Gypsy are the only LTR retrotransposons present in plants, while a few LINEs and many SINEs are present in plant genomes. Among DNA transposons, Tc-1 Mariner, hAT, Mutator, PIF-Harbinger and CACTA are frequent in plant genomes. Origional image taken from Wicker et al., (2007).

1.5 Autonomous and non-autonomous transposable elements

Retrotransposons and DNA transposons are further classified as autonomous and nonautonomous based on presence or absence of the genes encoding the enzymatic machinery required for their transposition. DNA transposons possess a transposase, which assists in transposition and integration of the element. In autonomous retrotransposons, gag-pol genes are organized to encode the proteins necessary for retroelement transposition. The gag gene catalyses the production of virus like particles, while pol gene encodes polyproteins (RT, RH, INT), where RT and INT catalyse the transposition and integration of newly synthesized copy into a new site. In contrast the non-autonomous elements lack the necessary encoded proteins in their internal regions. The non-autonomous elements transpose by borrowing the enzymatic machinery of autonomous relative belonging to the same superfamily. Almost all the superfamilies from retrotransposons and DNA transposons have autonomous and non-autonomous elements which may differ by as little as a single frameshift or base pair change, or may have major deletions (Feschotte et al., 2002; Jurka et al., 2007; Vukich et al., 2009).

1.6 Class I transposable elements

In maize 70% of the nuclear DNA is contributed by retrotransposons (SanMiguel and Bennetzen, 1998), a typical result for many species. The genomic and extra-chromosomal copies proliferate by an RNA intermediate copied into DNA by reverse transcriptase (Feschotte et al., 2002; Kapitonov and Jurka, 2008; Kapitonov et al., 2009). Retroelements have been categorized on the basis of phylogeny of their reverse transcriptase (RT), gag-pol domain organization, proliferating devices and structural features into long terminal repeat retrotransposons (LTRs), long interspersed nuclear elements (LINEs), short interspersed elements (SINEs), DIRs-like elements and Penelopelike elements. The LTR retrotransposons are further classified into superfamilies as Ty1/copia, Ty3/gypsy, Bel-Pao, Retrovirales and ERV-like elements (Figure 1.2). Copia and Gypsy elements are the most abundant and diverse group of retrotransposons studied in several organisms (Wicker et al; 2007).

1.6.1 Structural characteristics of long terminal repeat (LTR) retrotransposons

LTR retrotransposons are bounded by long terminal repeats (LTRs) ranging in sizes from a few hundred base pairs to 5 kb . They are predominant in plants and their size ranges from a few kb to 25 kb . Upon insertion, they generate target site duplications (TSDs) of 46 bp and their flanking LTRs usually have the conserved termini as $5^{\prime}-\mathrm{TG}-3^{\prime}$ and 5^{\prime}-CA3^{\prime}. They contain open reading frames (ORFs) for gag-pol genes and sometime have one or more additional ORFs of unknown function. The gag gene is a structural protein for virus like elements, which encodes proteins aiding in maturation and packaging of retroelement RNA and proteins required for genome integration. The pol gene is a long ORF having polyprotein domains like aspartic protease (AP), reverse transcriptase (RT), RNase H (RH) and integrase (INT). RT is the most conserved domain present in all the retrotransposons and helps in the transposition mechanism of the element with the association of RH. The LTR retrotransposons exhibit the primer binding site (PBS) downstream to 5^{\prime} LTR and a polypurine tract (PPT) towards the upstream of 3^{\prime} LTR. Some other specific signals are also present in LTR retrotransposons for packaging, dimerization, reverse transcription and integration of the elements into new sites. LTR retrotransposons are further divided into orders and superfamilies. Five well known families are characterized from LTR retrotransposons (Kumar and Bennetzen, 1999; Wicker et al., 2007; Vukich et al., 2009). The LTR retrotransposons are described below.

1.6.1.1 Ty1/Copia

Ty1/copia elements are abundant elements present in most organisms including plants. They differ from Ty3/gypsy elements in the order of protein domains encoded by pol gene. In Copia the INT is towards the upstream of RT, whereas in Gypsy INT is downstream to the RT and RH domains (Figure 1.2). They range in size from few kb to many kb, flanked by LTRs and displayed the PBS and PPT motifs. The canonical Ty1/copia element is flanked by LTRs, displays PBS and PPT towards downstream and upstream of 5^{\prime} LTR and 3^{\prime} LTR respectively, and has internal gag-pol genes, which encode the proteins as 5^{\prime}-GAG-INT-RT-RH-3'. Some elements also encode some additional protein domains of known or unknown nature in their pol gene and their copy numbers vary in various host species (Flavell, 1992; Flavell et al., 1997; Wicker et al., 2007).

The Copia elements are a diverse and heterogeneous group of LTR retrotransposons present in almost all eukaryotic genomes including the model fly Drosophila (Flavell, 1984), amphibians, reptiles (Flavell and Smith, 1992; Flavell et al., 1995) and in higher plant genomes (Flavell et al., 1992a). The chromosomal localization of Copia elements have been studied by fluorescent in situ hybridization (FISH) in Beta vulgaris showing their massive distribution on Beta chromosomes (Schmidt et al., 1995) and Arabidopsis (Heslop-Harrison et al., 1997). More recently the Copia retrotransposons have been studied in several plants including wheat, barley, rice and Arabidopsis (Wicker and Keller, 2007; Tsukahara et al., 2009; Tomita et al., 2010), sugarcane (Muthukumar and Bennetzen, 2004), cotton (Hawkins et al., 2008), jute (Ahmed et al., 2011), grapevine (Moisy et al., 2008), melon (Ramallo et al., 2008), tomato (Tam et al., 2007; Cheng et al., 2009), cassava (Gbadegesin et al., 2008), tomato (Karlov et al., 2010), sunflower (Vukich et al., 2009; Kawakami et al., 2010), pea (Macas et al., 2007), sweet potato (Okpul et al., 2011), Medicago truncatula (Wang and Liu, 2008) and Arabidopsis (Tsukahara et al., 2009). The characterization of Copia from higher plants revealed their abundance and distribution among plant genomes (Flavell et al., 1992b).

1.6.1.2 Ty3/Gypsy

Ty3/gypsy elements constitute a superfamily of LTR retrotransposons, which are widely distributed among fungi, animals and plants. They are characterized by generating 4-6 bp TSDs, LTRs ranging from few hundred bp to few kb, internal regions displaying gag-pol genes encoding protein domains and a PBS and PPT towards downstream and upstream of 5^{\prime} LTR and 3' LTR respectively. On the basis of structural features, they resemble Copia except in the order of INT in the pol gene. In Gypsy elements INT is present downstream to RT and RH, while in Copia; it is upstream to RT and RH domains (Figure 1.2). This significant difference separates the two major groups of LTR retrotransposons. On the basis of presence or absence of another protein domain chromatin modifier organizer (Chromodomain; CHR), they are further divided into chromodomain-bearing Gypsy and non-chromodomain Gypsy elements (Kumar and Bennetzen, 1999; Malik et al., 1999).

The Gypsy elements are actively proliferating in plant genomes and have shown diversity and abundance in several plants like wheat (Tomita et al., 2010; Salina et al., 2011), sorghum (Muthukumar and Bennetzen, 2004), pinus (Rocheta et al., 2007), jute (Ahmed
et al., 2011), citrus (Bernet and Asins, 2003), soybean (Du et al., 2010), pepper and tomato (Park et al., 2011), tomato (Peters et al., 2009), sweet potato (Okpul et al., 2011), chickpea (Rajput and Upadhyaya, 2009), sunflower (Staton et al., 2009; Ungerer et al., 2009) and Arabidopsis (Tsukahara et al., 2009). This suggests the diversity, abundance and distribution of Gypsy elements and their impact on plant genome duplication and diversification.

1.6.1.3 Retroviruses and related elements

Retroviruses are similar to LTR retrotransposons from the evolutionary point of view. They are considered to be evolved from the Ty3/gypsy elements that adopted a viral lifestyle by gaining an envelope protein (ENV) and some other regulatory proteins. As a parasitic mode of reproduction, they are mostly present in vertebrates. They are classified as the superfamily of LTR retrotransposons; otherwise they were classified as viruses for a long time. Retroviruses can be transferred into LTR retrotransposons by losing or deleting their extra domains (Capy, 2005). Retroviruses are more similar to Ty3/gypsy elements as both exhibits the similar pol domain organization, while gag gene differs in retroviruses by encoding matrix functions and an extra capsid, which is not present in Gypsy-gag. The main characteristics of viruses is the retaining of envelop (ENV) domian, that has both surface and transmembrane units (Wicker et al., 2007).

1.6.1.4 Large retrotransposon derivatives (LARDs)

LARDs are non-autonomous LTR retrotransposons, which do not encode the gag or pol gene proteins necessary for transposition. They were discovered in maize, where large non-autonomous elements ($5.5-8.5 \mathrm{~kb}$) were found flanked by large LTRs, 4-6 bp TSDs but display non-coding internal regions, due to which the elements were named 'large retrotransposons derivatives' (LARDs). The non-autonomous Dasheng and Zeon-1 elements from maize genome are each represented by around 1000 copies (Hu et al., 1995; Jiang et al., 2002). They are mobilized in trans by using the proteins from the autonomous elements residing nearby. The internal region of these elements contains a long conserved non-coding DNA segment that may provide the important secondary structure to the mRNA, although it is unclear how these non-coding sequence works in the life cycle of the elements (Havecker et al., 2004). The well known Sukkula elements are also LARDs
elements having a large internal non-coding region, flanked by LTRs. All these elements are considered as non-autonomous due to the lack of gag-pol protein domains. They exhibit the PBS and PPT, which serves as minus and plus strand of the primary sites for reverse transcription of the elements as observed in Copia and Gypsy elements (Kalendar et al., 2004). The LARDs-like elements were identified in many plants and have more or less similar features. The LARDs identified in barley and members of the Triticale have well characterized LTRs of 4.5 kb and an internal region of 3.5 kb (Kalendar et al., 2004).

1.6.1.5 Terminal-repeat retrotransposons in miniature (TRIM)

TRIM are considered as non-autonomous LTR retrotransposons due to structural similarities with them. TRIM are small in size, generate 5 bp TSDs, flanked by 100-250 bp LTRs and display a PBS and PPT downstream and upstream of 5' LTR and 3' LTR respectively (Witte et al., 2001; Antonius-Klemola et al., 2006). TRIM have been studied in many monocot and dicot plant families including Poaceae, Brassicaceae, Solanaceae, and Fabaceae. The highest TRIM from monocots were studied in Oryza sativa, while from dicots, they were investigated in Arabidopsis thaliana. A total of 43 TRIM-like elements were identified from Arabidopsis thaliana (Witte et al., 2001). By the pairwise comparison of homoeologous BAC sequences, TRIM elements were detected in Brassica rapa. The elements were named $\operatorname{Br} 1, B r 2, B r 3$ and $B r 4$, which are $364,385,536-654$ and 1311 bp in sizes and flanked by LTRs of $119,125,210$ and 255 bp respectively. The Br 3 element is largest in size with 807 bp non-coding region inner to flanking LTRs. The copy numbers of TRIM in Brassica rapa and Brassica oleracea were also estimated as 530 and 660 copies respectively (Yang et al., 2007). The structure of Malus (apple) TRIM was also similar to TRIM described in other plants. The apple TRIM was flanked by about 306 bp LTRs with a short internal non-coding domain. The terminal ends of both LTRs have a 10 bp terminal inverted repeat. Downstream to 5^{\prime} LTR of these TRIM is the PBS complementary to $\mathrm{tRNA}_{\text {Met, }}$ while a PPT is present upstream to the 3^{\prime} LTR (AntoniusKlemola et al., 2006).

1.7 Non-LTR retrotransposons

Non-LTR retrotransposons or retroposons are characterized by having short LTR ranging from $1-50 \mathrm{bp}$. They are further divided into two groups on the basis of their sizes and presence or absence of their internal region encoding the domains. The larger elements encoding the RT, RH or an additional domain are called long interspersed nuclear elements (LINEs), while the small elements without coding regions are called small interspersed nuclear elements (SINEs). Both elements are present in plants (Kubis et al., 1998) but LINEs are more abundant in mammals including the humans (Jurka et al., 2007).

1.7.1 Long interspersed nuclear elements (LINEs)

LINEs lack LTRs and range in length from a kb to several kilobases. Upon insertion to a new site, they generate TSDs, one or two open reading frames (ORFs) and an internal RNA polymerase II promoter in its 5^{\prime} terminal region, which facilitate the retrotransposons in its transcription. The ORFs of the elements sometimes overlap by the frameshifts and the untranslated regions (UTRs) can be flanked at both ends of the coding regions (Xiong and Eickbush, 1990; Jurka et al., 2007). Autonomous LINEs encode at least an RT and a nuclease in their pol ORF for their transposition (Figure 1.2). The most conserved domain present in all the autonomous LINEs is RT, which shows the amino acid conservation in seven domains, characteristic of retroviral RNA-directed DNA polymerases. However, lack of the LTRs and the presence of a poly(A) fragment distinguish the LINEs from the retroviruses. In may LINEs, a zinc finger (ZF) domain is present in gag or pol ORFs. The mechanism of mobilization and integration of the LINEs was studied in detail in a coupled process called target primed reverse transcription (TPRT) (Xiong and Eickbush, 1990; Malik et al., 1999; Jurka et al., 2007).

Few LINE elements have been investigated and characterized in plants till now, although the number of reported LINEs is growing with the advancement in genome sequences (Kubis et al., 1998; Noma et al., 1999). The first well characterized plant LINE was Cin4 detected in the A1 gene of Zea mays (maize), as an insertion in the 3^{\prime} untranslated region. Later on, many more copies identical to Cin4 were detected with variable sizes and variability in their 5' end. The chromosomal localization of LINEs in Beta species and
five gymnosperms revealed their abundance and distribution (Kubis et al., 1998). The well characterized LINEs from plants are Karma from Oryza sativa (Komatsu et al., 2003), Llb described in Ipomoea batatas genome (Yamashita and Tahara, 2006), BLIN from Hordeum vulgare (Vershinin et al., 2002), del2 from Lilium speciosum (Leeton and Smyth, 1993) and ATLN from Arabidopsis thaliana (Noma et al., 2001). A LINE family named $B N R$ was described from the genome of Beta vulgaris having 3 well characterized elements (BNRI-BNR3). The elements range in size from 6.4-9.3 kb, flanked by 7-22 bp TSDs and exhibiting two non-overlapping ORFs. BNR1 in $6.7 \mathrm{~kb}, B N R 2$ is 6.4 , and $B N R 3$ is 9.3 kb in size. BNR elements harbour an extra domain in ORF1 named as RNA recognition motif (RRM) (Heitkam and Schmidt, 2009).

1.7.2 Small interspersed nuclear elements (SINEs)

The small interspersed nuclear elements (SINEs) are small Non-LTR retrotransposons ranging in size from 100-500 bp having internal promoters for RNA polymerase III (Okada et al., 1997; Kapitonov and Jurka, 2003). They have a complex structure, with a 5^{\prime} region similar to tRNA genes, or 7SL RNA genes, an internal polymerase III promoter, non-tRNA region of variable sizes, or 3' region with similarity to the terminal regions of LINEs, a short segment of A or T at their 3' terminal end and presence of flanking direct repeats. The SINEs are non-autonomous elements, as they lack their own reverse transcriptase protein necessary for transposition. Despite their non-autonomous nature they are mobile elements and utilize the enzymatic machinery of LINEs for their transposition. Like LINEs, they also generate TSDs upon integration to a new site (Deragon and Zhang, 2006; Kramerov and Vassetzky, 2011). The SINEs elements have been described in several plants (Cheng and Ling, 2006), PCR amplified in several species of Gramineae, Fabaceae and Solanaceae (Fawcett et al., 2006) and well characterized in other plants as S1 described in Brassica (Deragon et al., 1996). The members of the S1 family are $\sim 170 \mathrm{bp}$ in size and widely distributed among Brassicaceae family. Another well characterized family named BoS, has shown around 4290 copies in the Brassica oleracea genome covering 0.16% of the total genome (Deragon and Zhang, 2006). Recently a novel SINE Au element (GmAu1) was characterized from Glycine max (Shu et al., 2011).

1.8 Class II transposable elements

Class II transposable elements or controlling elements constitute the major component of eukaryotes genomes. They are DNA fragments with an ability to insert in chromosomal sites, and generate duplicate copies during transposition. Class II transposable elements directly transpose via DNA and were first studied in plants. In size, they have shown an immense variability and start from a few hundred bases to about 10 kb . They have short terminal inverted repeats (TIRs), which are variable in different superfamilies. The classification proposed by Wicker et al., (2007) divides Class II elements into two subclasses. Sub-class 1 is composed of common superfamilies as Tc1-Mariner, hAT, Mutator, Merlin, Transib, P, PiggyBac, PIF-Harbinger, CACTA and Crypton, while sub-class 2 includes the superfamilies of Helitron and Meverick elements (Figure 1.2). Out of these only Tc1-Mariner, hAT, CACTA, PIF-Harbinger and Mutator superfamilies are common in plants (Wicker et al., 2007) and are described here.

1.8.1 Ac/Ds-hAT

The first mobile DNA element to be discovered was the maize transposon Activator (Ac). Ac is an autonomous element while its non-autonomous partner Ds was identified soon after the discovery of the Ac element (McClintock, 1950). After that, many other transposons were studied and investigated in many species, sharing similarity to $A c$-like elements suggesting their diverse nature and distribution in different organisms. The elements were named hAT after the discovery of hobo elements from Drosophila, Ac from maize, and Tam3 from snapdragon (Rubin et al., 2001). The terminal inverted repeats (TIRs) of hAT elements are short and ill defined ranging from 5-27 bp long, generate 8 bp target TSDs upon transposition and exhibit transposase protein that catalyze the DNA breakage and rejoining reactions required for transposition. Several elements lack transposase and are non-autonomous transposons (Kempken and Windhofer, 2001). The transposase displays significant amino acid sequence similarity, with the highest primary structure conservation at their C-termini. The transposase is highly specific in hAT elements, which is composed of conserved blocks of amino acids and a DDE motif. A total of 147 hAT-related sequences in plants, animals, and fungi were studied and phylogenetic analysis and clustering of hAT sequences suggest that the hAT superfamily is very ancient, probably predating the plant-fungi-animal separation (Rubin et al, 2001).

Plant genomes contain multiple different members of the hAT superfamily. In maize, three distinct types of hAT element were investigated in addition to $A c$, while rice exhibit four and Arabidopsis thaliana harbour five different types of hAT families. Some of these form loose phylogenetic clades, suggesting an ancient diversification of the superfamily before the monocot-dicot separation (Xu and Dooner, 2005). The hATs were studied in several plants like maize (Shimatani et al., 2009; Du et al., 2011; Fujino and Sekiguchi, 2011), sugarcane (de Jesus et al., 2012), sugar beet (Menzel et al., 2012), Petunia hybrid, Phaseolus, Brassica napus (De Keukeleire et al., 2004) and Arabidopsis (Bundock and Hooykaas, 2005).

1.8.2 Tc1-Mariner

Tc1-Mariner elements move via DNA cut and paste mechanism. They are flanked by a 2 bp TSDs (TA), TIRs ranging from few to 33 bp and internal region encoding a transposase having characteristic amino acids designated as DDE/D motif. This motif consists of two aspartic acids and a glutamic acid residue (or a third D) with specific spacing of the nucleotides between the residues. A highly conserved domain of 150 aa surrounding the DDE/D motif is present in almost all the Tc1-Mariner elements. This conserved motif has established the evolutionary relationship of the Tc1-Mariner elements. The phylogenetic analysis of conserved regions of transposase and the distance between DDE/D motifs of Tc1-Mariner elements distinguished them into three monophyletic groups: Tc1-like, mariner-like and pogo-like (Doak et al., 1994; Plasterk and van Luenen, 1997; Feschotte and Wessler, 2002). The Tc1-Mariner elements are abundant in animal genomes but their presence in plant genomes was investigated recently. The plant Tc1-Mariner elements have a long ORF, which is similar to the ORF of Tc1-Mariner elements from animals. The complete Tc1-Mariner element Osmarl (5259 bp) was studied in Oryza sativa (Tarchini et al., 2000), Soymarl (3491 bp) in Glycine max (Jarvik and Lark, 1998) and Vulmarl (3909 bp) in Beta vulgaris (Jacobs et al., 2004).

1.8.3 Mutator

Mutator (Mu) transposons are known to be the most mutagenic plant transposons and are widespread among angiosperms. They can capture the genetic sequences of the host and can mobilize the captured fragments to new sites causing evolution (Xian-Min, 2006). The

Mutator transposons are characterized by 9 bp target site duplications, $170-220 \mathrm{bp}$ terminal inverted repeats and sometime have additional direct or indirect repeat sequences in their genomes. TIRs and TSDs are also conserved in these elements and remained constant with continued transposition activity, while internal regions are highly variable with no similarity to each other (Jiang et al., 2004; Xian-Min, 2006). Pack-MULEs are the non-autonomous Mutator elements capturing the host genes or gene fragments. Analysing the public EST data demonstrates that MULEs are not only important component of rice genome but they are also active in the genomes of other plants like wheat, sugar cane, rice and barley (Jiang et al., 2004b). The maize Mu transposable elements are regulated by an autonomous element, MuDR encoding two genes, MuDRA and MuDRB. These two genes transcribe two segments from the opposite strands and produce 2.8 and 1.0 kb transcripts respectively (Lisch, 2002; Jiang et al., 2004b).

Mutator family is a diverse family divided further into subfamilies including the Mu1/Mu2, Mu3, Mu4, Mu6/7, Mu8 and Mu9/Mu5. About 120-220 bp conserved terminal inverted repeats (TIRs) are shared within the subfamilies, while the internal sequences are variable and distinct (Lisch, 2002). Many Mutator-like elements are investigated and recently Pack-MULEs, which contain fragments of genes, were discovered. These MULEs are distributed among several species of Gramineae including wheat, barley, rice, sorghum and bamboo (Lisch et al., 2001). The genome of rice harbour ~ 8000 copies of MULEs in their genomes, Out of which, 24% showed similarity to the coding regions of the other genes unrelated to transposons, indicating the capturing of genes (Juretic et al., 2005). A complete (12089 bp) MuDR-like element designated as CUMULE was detected from Cucumus melo which were also investigated in Arabidopsis genome (van Leeuwen et al., 2007).

1.8.4 En/Spm-CACTA

The En/Spm (Enhancer/Suppressor) elements are called CACTA due to their highly conserved motif in the termini of TIRs. The En/Spm are the autonomous CACTA elements while I/dSpm (Inhibitor/dSpm) are their non-autonomous counterparts. Both En and Spm are the autonomous elements due to possession of an active transposase. In contrast, their matching partners, the non-autonomous inhibitor and the defective Spm (dSpm) are the deletion derivatives of the autonomous elements (Gierl et al., 1985; Pereira
et al., 1986). CACTA elements have 3 bp TSDs, flanked by short TIRs of $10-28 \mathrm{bp}$, widespread sub-terminal repeats and internal region encoding transposase. They are mostly recognised by their specific transposase, and 5'-CACTA.....TAGTG-3' terminal motifs in their TIRs, due to which they are called as CACTA elements. Many subfamilies of CACTA superfamily have been described from the grass family as Baldwin, Casper, Enac, Isaac, Jorge, Mandrake and TAT-1. The internal sequences of the elements are highly divergent but 20-30 bp TIRs including CACTA motif are similar. They are not easily identified by computer aided database searches (Wang et al., 2003; Wicker et al., 2003; Tian, 2006). Generally, the autonomous CACTA elements contain a transposase protein but another additional protein in frequently present. One protein is named as TNPD, which is the transposase of the CACTA, responsible for its transposition and integration while the other is called as TNPA, a factor performing multiple functions (Gierl and Saedler, 1989; Trentmann et al., 1993). The CACTA elements are investigated in several plants including maize and sorghum (Lee et al., 2005), rice (Kwon et al., 2006), temperate grasses and cereals (Langdon et al., 2003), Triticaceae members (Wicker et al., 2003), Arabidopsis (Miura et al., 2004; Marsch-Martinez and Pereira, 2011), Brassica (Alix et al., 2008), Glycine max (Zabala and Vodkin, 2008) and Manihot esculenta (Gbadegesin and Beeching, 2010).

1.8.5 PIF-Harbinger

PIF-Harbinger is a superfamily of DNA transposons characterized by generating 3 bp TSDs, flanked by 14-25 (50 bp in few elements) bp TIRs and a DDD/E transposase, which is the enzymatic machinery required for their transposition. The first Harbinger was identified in Arabidopsis thaliana (Kapitonov and Jurka, 1999), which showed similarity to maize P instability factor (PIF) elements (Zhang et al., 2001; Zhang et al., 2004). The diverse PIF-Harbinger elements are easily distinguishable into two subgroups, named PIF and Pong (Zhang et al., 2004). Harbinger superfamily is highly diverse and its members are present in protists, insects, worms, vertebrates and plants. This is the only superfamily of DNA transposons where the autonomous elements encode two protein domains; the first is the superfamily specific transposase and the second is a DNA-binding protein domain. The DNA binding domain is characterized by having different conserved motifs as SANT/myb/trihelix ($\sim 70 \mathrm{aa}$), while the other region of DNA binding domain showed no significant similarities studied in different species (Kapitonov and Jurka, 2004). The
most conserved domain in all the Harbingers is the transposase, which is composed of 5 conserved motifs. The Harbingers are flanked by TAA target site duplications, but few families generate other TSDs. The most unusual feature of the Harbingers is the presence of second protein, which is not observed in any other superfamily of DNA transposons (Jurka and Kapitonov, 2001; Kapitonov and Jurka, 2004). Harbingers are identified from few plants like Medicago truncatula (Grzebelus et al., 2007), carrot (Grzebelus et al., 2006; Grzebelus and Simon, 2009) and Arabidopsis (Kapitonov and Jurka, 2004).

1.9 Miniature inverted-repeat transposable elements (MITEs)

Miniature inverted-repeat transposable elements are small elements present almost in many eukaryotic genomes. They are $<600 \mathrm{bp}$ in size, generate TSDs, flanked by TIRs of variable lengths and lack any ORF encoding protein domains. For their mobility, they rely on the activity in trans of transposases encoded by the nearest autonomous transposons. It is believed that the full length DNA transposons are the evolutionary progenitors of the MITEs, based on the similarity of TSDs and TIRs of the MITEs with other DNA transposons (Jiang et al., 2004b). A 128 bp insertion in a mutant maize waxy gene was the first element, which led to the identification of a diverse group of elements named Tourist from various grass species (Bureau and Wessler, 1992; Bureau and Wessler, 1994a). Another 257 bp element from sorghum was the originator of second family of elements called Stowaway, which was laterally studied in many other plants. Majority of the Stowaway elements described are small in size (70-350), have conserved termini of 11 bp and have a TA dinucleotide preference for insertion (Bureau and Wessler, 1994b).

Tourist and Stowaway MITEs share some structural features like their sizes and short TSDs but their sequences are distinct. The members of both elements range in size from ~100-500 bp, flanked by conserved terminal inverted repeats (TIRs), terminated by target site repeats and no coding domain in their internal regions. The Stowaway elements generate 2 bp TSDs 'TA', whereas the Tourist elements generate a 3 bp 'TAA' TSDs upon integration to a new site. Due to the high copy numbers and uniformity of Tourist, Stowaway and other similar elements in many species, they were collectively brought under a same group called MITEs (Wessler et al., 1995; Bureau et al., 1996). MITEs are highly diverse and abundant group of TEs identified from several plants including Spring MITE from crops from Gramineae (Park et al., 2003), barley (Takahashi et al., 2006;

Lyons et al., 2008), rice (Oki et al., 2008; Lu et al., 2012), potato (Momose et al., 2010), pea (Macas et al., 2005), apple (Han and Korban, 2007), peanut (Shirasawa et al., 2012), grapevine (Benjak et al., 2009), Medicago truncatula (Grzebelus et al., 2009), Beta vulgaris (Menzel et al., 2006), Pennisetum glaucum, (Remigereau et al., 2006), Arabidopsis (Santiago et al., 2002) and Brassica (Sarilar et al., 2011).

1.10 Impact of Transposable elements (TEs)

1.10.1 TEs and evolution

Almost all the TEs have a wide range of activities within the genomes, being related to chromosomal breakage, chromosomal rearrangements, altered gene regulations, insertional mutations, sequence amplification and duplication (Bennetzen, 2000). Studies in various plant genomes have shown that TEs have played a major role in plant genome evolution (Flavell et al., 1994). The activity of retrotransposons is one of the sources of evolution in yield-related trait variations in introgressed line populations of Brassica napus (Zou et al., 2011).

1.10.2 TEs as mutagens

TEs are powerful mutagens that can alter any potential gene by their insertion in the coding region of the gene and produce the altered expression patterns by insertions into the regulatory regions. The positions of the TE insertions in the mutant genes can be identified by using the TEs as probes. The insertions can be PCR amplified by designing one oligonucleotide primer from the gene and other from the transposon insertion (Reviewed by Kunze et al., 1997).

1.10.3 Transposon Tagging

Transposon tagging is a tool to investigate and study the localization of the genes and is very useful technique to locate the position of the genes or the insertional patterns of TEs in various genes. Transposon insertions into various gene loci cause several types of mutations and even the non-functioning of the normal genes. This integration of transposon insertion in the gene can cause the appearance of phenotypically new
phenotype. Excision of same insertion partially or completely restores the normal genes and wild type. However, reversion events often are followed by small mutations such as leaving small finger prints like TSDs or small segments of the element, or few bases of sequences produced either by illegitimate conversion or other forms of repair of the excision site. Thus the mutations in the genes are caused by both insertions and excisions of the transposons, although insertions contributed more than the excision (reviewed by Kunze at al., 1997; Doring and Starlinger, 1986; Bennetzen, 2000). By using the transposon probe, the changes can be observed as restriction fragment length polymorphism (RFLPs). These transposon probes can be used to see their activity and integration in various genes as recently investigated in Arabidopsis (Marsch-Martinez and Pereira, 2011).

1.10.4 TEs as genetic markers

Because of their mobility and activity, transposons have proved to be valuable markers for genetic diversity and variability. In particular, use of outward facing primers to amplify around pairs of insertion sites, the IRAP technique, (or between retroelements and simple sequence repeats, the ISSR method) first developed by Schulman, (2004) has been useful to provide multi-locus anonymous markers. The detailed protocols, uses and application of SSAP, IRAP, REMAP and RBIP markers were described recently. The SSAP, IRAP and REMAP methods are multiplex and are used to generate several anonymous marker bands, while RBIP targets the individual loci. REMAP markers are also applicable in several phylogenetic and biodiversity studies. Retrotransposon-based insertional polymorphisms (RBIP) have been developed, with the advantages of being a co-dominant markers (Flavell et al., 1998; Schulman et al., 2004; Kalendar and Schulman, 2006; Schulman et al., 2012). These markers are now used in several studies to observe biodiversity and phylogenetic relations of the species and to investigate the retrotransposons. 'Sequence-specific amplification polymorphism' (SSAP) markers, first developed to locate the BARE-1 in barley genome (Waugh et al., 1997) and lateral developed methods (Syed and Flavell, 2006) are now extensively used to detect the presence/absence of various transposons at specific loci of the organisms. More recently, SINE mobility has been used to measure relationships of potato varieties (Seibt et al., 2012). MITEs are considered as best molecular markers based on their presence/absence polymorphisms for biodiversity and phylogenetic studies (Lyons et al., 2008). The genetic
diversity among Triticum and Aegilops species was studied by MITE-based markers, which revealed the clustering of the species based on genus, genome composition and ploidy level and a genetic divergence was observed between diploids versus polyploids (Yaakov et al., 2012).

1.11 Aims and objectives of the study

With the advancement in genome sequencing, the knowledge of the structure and composition of genomes is rapidly increasing. Due to the abundance and diversity of TEs in different genomes, the identification, annotation, localization and proper classification of TEs is most important. The aims of the study were

* To identify and characterize all different types of mobile elements: transposable elements from Class I (retrotransposons and non-LTR retrotransposons) and Class II (DNA transposons) elements in two reference genera Brassica and Musa by using bioinformatics and molecular methodologies.
* To investigate the small non-autonomous transposable elements (TEs), both retrotransposons and DNA transposons with special emphasis on small novel insertions, which are structurally different from known superfamilies, given less importance and not investigated in detail previously due to their small sizes and difficulty in their identification and characterization.
* To identify the autonomous TEs from all major superfamilies of retrotransposons (Copia, Gypsy, LINEs, SINEs) and DNA transposons (Tc1-Mariner, CACTA, hAT, Harbinger, Mutator) in diploid and polyploid Musa and Brassica genomes. To compare structures of newly discovered transposons with the known elements and study their evolutionary relationships. To identify progenitors of nonautonomous retrotransposons (LARDs, TRIM) and MITEs.
* To develop novel transposon-based molecular markers as previously developed by several research workers such as 'retrotransposons-based insertion polymorphism' (RBIP), 'sequence-specific amplification polymorphisms' (SSAP) and 'simple sequence repeat' (SSR) like molecular markers. The main emphisis was on
developing new co-dominant markers targeting the insertional/empty sites (presence/absence) of TEs. Similarly to develop markers to analyse the insertional polymorphism of MITEs, SINEs, non-autonomous TEs and novel insertions.
* To study the biodiversity, phylogenetic relationship and genetic linkage of various Brassica/Musa genomes by using these newly developed genetic markers and to study distribution and abundance of the transposons from a group of genomes in Brassica and Musa. This will give a new insight into the abundance and distribution of TEs in both genomes by utilizing these genetic markers.

Overall, these aims will allow identification, characterization, naming and annotation of TEs and their use to study the mechanism and pattern of evolution in different diploid and polyploid Brassica and Musa species and their cultivars.

CHAPTER 2

MATERIAL AND METHODS

2.1 Plant material for Brassica

The DNAs from 40 Brassica accessions/cultivars were used in the present study. Seeds from 32 Brassica accessions were brought from Warwick Research Institute (WRI), Warwick, UK. Two Brassica juncea accessions (NARC-1, NARC-II) and one Brassica carinata accession (NARC-PK) were brought from Institute of Agri-Biotechnology and Genetic Resources, National Agriculture and Research Center (NARC), Islamabad, Pakistan. Seeds for one commercial variety Brassica juncea accession (NATCO) were bought from Asian store at Leicester. The DNA from four synthetic allohexaploids (2n=6x) Brassica (Ge et al., 2009) were provided by Xianhong Ge (University of Wuhan, China). The seeds were grown in a green house at Department of Biology, University of Leicester, UK. The names, accessions, genome constituent and ploidy level of all genomes investigated are listed in Table 2.1.

2.2 Plant material for Musa

A total of 48 Musa accessions (Set A) were maintained in a heated greenhouse at Botanical Garden of University of Leicester, UK. These plants were obtained in tissue culture from the International Transit Centre (ITC) of Bioversity, Leuven, Belgium and transferred to pots in the greenhouse. The DNA was extracted from the young and fresh leaves from these plants. Another collection of 48 Musa genomes (Set B) were kindly provided by Professor Ashalatha (Asha) Nair, University of Kerala, India, former research associate at Cytogenetics lab, Department of Biology, University of Leicester, UK. The names, accessions, genome constituent and ploidy level of all Musa genomes are listed (Set A: Table 2.2; Set B: Table 2.3).

Table 2.1: List of Brassica species and accessions with their accessions and crop names. ND: Not Determine

Sr.No.	Accession No.	Species	Accession Name	Crop name
1	HRIGRU 2488	B. rapa chinensis	Pak Choy	Chinese cabbage
2	HRIGRU 2741	B. rapa pekinensis	Chinese Wong Bok	Chinese cabbage
3	HRIGRU 7574	B. rapa chinensis	San Yue Man	Pak choi
4	HRIGRU 11698	B. rapa rapa	Hinona	Turnip
5	HRIGRU 13174	B. rapa rapa	Vertus	Turnip
6	ND	B. rapa	Suttons	Turnips (Snow balls)
7	HRIGRU011011	B. nigra	ND	Wild Species
8	HRIGRU010978	B. nigra	ND	Wild Species
9	HRIGRU010919	B. nigra	ND	ND
10	PK- 001722	B. juncea	NARC-I	ND
11	ND	B. juncea	NATCO	ND
12	PK-001325	B. juncea	NARC-II	ND
13	HRIGRU 2203	B. oleracea gemmifera	De Rosny	Brussels sprout
14	HRIGRU 5108	B. oleracea	Kai Lan	ND
15	HRIGRU2859	B. oleracea	Early Snowball	Cauliflower
16	HRIGRU 7518	B. oleracea italica	Precoce Di Calabria Tipo Esportazione	Broccoli
17	HRIGRU 3211	B. oleracea capitata	Cuor Di Bue Grosso	Cabbage
18	GK97361	B. oleracea	ND	ND
19	HRIGRU 2487	B. juncea	Kai Choy	Mustard cabbage
20	HRIGRU 7563	B. juncea	Megarrhiza	Large rooted mustard
21	HRIGRU 11702	B. juncea	Tsai Sim	Chinese mustard
22	HRIGRU 11974	B. juncea	W3	Indian oilseed
23	HRIGRU 12818	B. juncea	Giant Red Mustard	Japanese greens
24	ND	B. juncea	Varuna	ND
25	HRIGRU 11967	B. napus	New	Hakuran
26	HRIGRU 12685	B. napus oleifera	Mar	Oilseed rape
27	HRIGRU 12800	B. napus biennis	Last and Best	Kale
28	HRIGRU 13554	B. napus napoB.	Fortune	Swede
29	ND	B. napus	Drakker	ND
30	ND	B. napus	Tapidor	ND
31	HRIGRU 2485	B. carinata	Addis Aceb	Ethiopian mustard
32	HRIGRU 6232	B. carinata	Patu	Ethiopian mustard
33	HRIGRU 6986	B. carinata	Tamu Tex-sel Greens	Ethiopian mustard
34	HRIGRU 13160	B. carinata	Mbeya Green	Ethiopian mustard
35	R.G.F 32275	B. carinata	Aworks-67	ND
36	PK- 0085490	B. carinata	NARC-PK	ND
37	ND	B. napus x B. nigra	ND	ND
38	ND	B. carinata \times B. rapa	ND	ND
39	ND	B. napus x B. nigra	ND	ND
40	ND	B. napus x B. nigra	ND	ND

Table 2.2: Set A. List of Musa species and accessions with accession names and numbers. ND: Not Determine.

Sr.No.	Reference	Genome	Accession	Country	ITC Number
1	Eumusa	AAB	Lady Finger	India	ITC. 0582
2	Eumusa	AAB	Foconah	Cameroon	ITC. 0649
3	Eumusa	AAB	Prata Ana	Brazil	ITC. 0962
4	Eumusa	balbisiana	P. Klutuk Wulung,	Indonesia	ITC. 1063
5	Eumusa	balbisiana	P. Batu, IDN 080	Indonesia	ITC. 1156
6	Eumusa	acuminata	Banksii 623	Papua new guinea	ND
7	Eumusa	acuminata	Borneo	Malaysia, Borneo	ITC. 0253
8	Eumusa	acuminata	Calcutta 4	Calcutta, India	ITC. 0249
9	Eumusa	ABB	THA 020	Thailand	ITC. 0652
10	Eumusa	AAB	Orishele	Nigeria	ITC. 1325
11	Eumusa	ABB	Pelipita	Philippines	ITC472
12	Eumusa	ABB	Dole	ND	ITC. 0767
13	Eumusa	AAA	Grande Naine	Guadeloupe	ND
14	Eumusa	AAA	Pisang Kayu, (IDN098)	Indonesia	ITC0420
15	Eumusa	acuminata	Agutay	Philippines	ITC. 1028
16	Eumusa	acuminata	Khae (Phrae), THA 015	Thailand	ITC. 0660
17	Eumusa	AAB	Figue Pomme Géante	Guadeloupe	ITC. 0769
18	Eumusa	ABB	Saba	Philippines	ITC. 1138
19	Eumusa	AAA	Pisang bakar, IDN106	Indonesia	ITC. 1064
20	Eumusa	ABB	Monthan	India	ITC0046
21	Eumusa	balbisiana	Tani	ND	ND
22	Eumusa	acuminata	Long Tavoy pied	ND	ITC. 0283
23	Eumusa	AB cv	Safet Velchi	India	ITC. 0245
24	Eumusa	AAA	Petite Naine	ND	ITC. 0654
25	Eumusa	acuminata	Paliama, PNG067	Papua New Guinea	ITC. 0766
26	Eumusa	AAA	Poyo	Nigeria	ND
27	Eumusa	AAB	Popoulou	Cameroon	ITC. 0335
28	Eumusa	ABB	Simili Radjah	India through Zaire	ND
29	Eumusa	AAA	Gros Michel	Guadeloupe	ND
30	Eumusa	AS	Wompa, PNG063	Papua New Guinea	ITC. 1152
31	Eumusa	AB cv	Kunnan	India, Kerala	ITC. 1034
32	Eumusa	AAcv (18)	P. Jari Buaya/BS312	Malaysia, Thailand	ITC. 0312
33	Eumusa	AAcv (2)	P. mas / Figue Sucrée	Malaysia	ITC. 0653
34	Eumusa	AAB	P. Raja Bulu, IDN 093	Indonesia	ITC. 0843
35	Eumusa	AAA	Leite	ND	ITC. 0277
36	Eumusa	ABB	Ice Cream	ND	ITC020
37	Eumusa	acuminata	Zebrina	Indonesia	ITC. 1177
38	Eumusa	AAcv	Tomolo, (PNG023)	East New Britain	ITC. 1187
39	Eumusa	balbisiana	Honduras	seeds from Honduras	ITC. 0247
40	Eumusa	balbisiana	Lal Velchi	India	ND
41	Eumusa	ABB	Namwa Khom, THA011	Thailand	ITC0659
42	Eumusa	AAA	Mbwazirume	Burundi	ITC. 0084
43	Eumusa	AAA	Intokatoke	Burundi	ITC. 0082
44	Eumusa	AAA	Yangambi KM5	Cameroon	ITC. 1123
45	Eumusa	AAB	Red Yade	ND	ITC. 1140
46	Eumusa	AAB	P. Rajah	Brazil	ITC. 0243
47	Eumusa	ABBB	Yawa 2, PNG 072	East New Britain	ITC1238
48	Eumusa	AAB	P. Ceylan	Thailand	ITC1441

Table 2.3: Set B. List of various Musa species and accessions with their accession names and genome compositions.

Sr. No.	Reference	Genome	Accession Name	Sr. No.	Reference	Genome	Accession Name
1	Eumusa	AA	Calcutta 4	25	Eumusa	AAB	Karimkadali
2	Eumusa	AA	Sannachenkadali	26	Eumusa	AAB	Perumadali
3	Eumusa	AA	Pisanglilin	27	Eumusa	AAB	Kunoor ettan
4	Eumusa	AA	Kadali	28	Eumusa	AAB	Palyamcodan
5	Eumusa	AA	Matti	29	Eumusa	AAB	Mysoreettan
6	Eumusa	AA	Cherukadali	30	Eumusa	AAB	Krisnavazhai
7	Eumusa	BB	PKW1	31	Eumusa	AAB	Poovan
8	Eumusa	BB	PKW2	32	Eumusa	AAB	Doothsagar
9	Eumusa	BB	Javan	33	Eumusa	AAB	Charapadati
10	Eumusa	BB	Klutuk	34	Eumusa	AAB	Kumbillakannan
11	Eumusa	BB	Tani	35	Eumusa	AAB	Velipadati
12	Eumusa	BB	Batu	36	Eumusa	AAB	Vellapalayamcodan
13	Eumusa	AB	Njalipovan	37	Eumusa	AAB	Ettapadati
14	Eumusa	AB	Adukkan	38	Eumusa	AAB	Padati
15	Eumusa	AB	Padalamukili	39	Eumusa	AAB	Chinali
16	Eumusa	AAA	Manoranjitham	40	Eumusa	AAB	Nendran
17	Eumusa	AAA	Grandnain	41	Eumusa	AAB	Poomkalli
18	Eumusa	AAA	Grow-michel	42	Eumusa	AAB	Kamaramasengi
19	Eumusa	AAA	Greenred	43	Eumusa	ABB	Kosta bontha
20	Eumusa	AAA	Red	44	Eumusa	ABB	Peyan
21	Eumusa	AAA	Monsmari	45	Eumusa	ABB	Kanchikela
22	Eumusa	AAA	Robusta	46	Eumusa	ABB	Boothibale
23	Eumusa	AAA	Dwarf cavendish	47	Eumusa	ABB	Monthan
24	Eumusa	AAB	Motta povan	48	Eumusa	ABB	Karpooravali

2.3 Solutions

1L 50X TAE stock

242 g of Tris base
57.1 ml of glacial acetic acid

100 ml of 0.5 M EDTA (pH 8.0)

6X loading buffers

0.25\% Bromophenol Blue
0.25\% Xylene cyanol FF

60\% Glycerol

1L 5X TBE stock

54 g of Tris base
27.5 g of boric acid

20 ml of 0.5 M EDTA (pH 8.0)

10X Enzyme Buffer

40 ml 100 mM Citric acid
60 ml 100 mM Tri-Sodium citrate
Store at $4{ }^{\circ} \mathrm{C}$. Dilute $1: 10$ for 1 x
solution

10X TE Buffer
100 M Tris-HCl (pH 8.0)
0.5 M EDTA

10 mM EDTA (pH 8.0)

DNA Wash Buffer
76\% Ethanol
10 mM NH4ac

EDTA 500 mM (pH 8.0)

186.1g disodium EDTA. $2 \mathrm{H}_{2} \mathrm{O}$
812.9 ml ml of water

Laboratory chemicals were obtained from Sigma-Aldrich except where noted. Water for buffers and large volumes was obtained from a double-deionization system (building deionization followed by Elgastat in the laboratory). For PCR, restriction digestions, dissolving DNA or other molecular biology, water supplied with reagents or Molecular Biology grade water from Sigma-Aldrich ("Sigma water") was used.

2.4 Extraction of genomic DNA

Genomic DNA was extracted from the young and fresh leaves of Musa and Brassica plants with a slight modification of the Doyle and Doyle standard cetyltrimethylammonium bromide (CTAB) isolation protocol (Doyle and Doyle, 1990). The frozen leaves were ground with mortar and pestle to powder form adding liquid nitrogen to prevent enzymatic degradation and release of phenolic compounds. The powder was added to a tube containing preheated CTAB buffer (2% CTAB, 20 mM EDTA, 100 mM Tris-Cl at $\mathrm{pH}: 8.0,1.4 \mathrm{M} \mathrm{NaCl}$, and 0.2% marcaptoethanol) @ 5 ml per gram fresh weight of leaf tissue. After mixing well, the slurry mixture was incubated for 60 minutes at $60^{\circ} \mathrm{C}$. An equal volume of chloroform/iso-amyl alcohol (24:1) was added, mixed for 3-5 minutes and all contents were transferred to narrow bore centrifuge tubes. After balancing by adding extra chloroform/iso-amyl alcohol, the mixture was spun at $5,000 \mathrm{rpm}$ for 10 min . The supernatant was removed and chloroform extraction was repeated. DNA was precipitated with 0.66 volume of cold isopropanol, collected by centrifugation or spooled out by glass rod and transferred to DNA wash buffer for 20 minutes. DNA was air dried briefly and $250-500 \mu 1$ of TE was added and left overnight before adding $1 \mu \mathrm{l}(10 \mathrm{ng} / \mathrm{ml})$ RNase to each $1 \mathrm{ml} \mathrm{TE} / D N A$ mixture and incubating for 45 minutes at $37^{\circ} \mathrm{C}$. DNA was spooled out; air dried and re-suspended in 0.5 to 1 ml T.E. (824 hours; final concentration c. 0.1 to $1 \mu \mathrm{~g} / \mathrm{ul}$) and stored frozen at $-20^{\circ} \mathrm{C}$.

2.5 DNA quantification

DNA was quantified by using a diode array scanning spectrophotometer (Amersham Biosciences) after dilution with distilled water 1:40 - i.e. $5 \mu 1$ of DNA $+195 \mu 1$ of distilled water to make $200 \mu \mathrm{l}$ final solution. Using the spectrophotometer, $200 \mu \mathrm{l}$ of de-ionized water was added in black flask and reference was clicked until 0.000 was displayed. Water was removed from the cuvette and a DNA sample was loaded and the absorption readings were taken at 260 nm and 280 nm . The DNA concentration was measured by the formula: DNA $n g / \mu \mathrm{l}=\mathrm{A}_{260} \times 50 \times 40$, where A_{260} is the absorption reading, 50 is convertion factor ($50 \mathrm{ng} / \mu \mathrm{l}$), and 40 is the dilution factor. The ratio of the absorbance at 260 nm and 280 nm were used to determine the purity of the DNA samples. Samples with ratio of 1.8 or greater were used for PCR amplification. The DNA samples were also run on 1% agarose gel and quality and quantity of DNA was approximately observed by comparing the bands with already known markers.

2.6 Development of new molecular markers for retrotransposons amplification polymorphisms

Several new molecular markers were developed based on the modification of previously described genetic markers. For the amplification of autonomous LTR retrotransposons (Copia, Gypsy) and non-LTR retrotransposons (LINEs), the primers were designed from the most conserved region of their reverse transcriptase (RT) around the D-DD triad (Flavell et al., 1992a) between block III-V by Primer3 (v.0.4.0) (http://frodo.wi.mit.edu/primer3/), which we called 'reverse transcriptase amplification polymorphism’ (RTAP) markers (Figure 2.1). For non-autonomous LTR retrotransposons or LARDs elements, 'LARDs amplification polymorphism' (LAP) markers (primers) were designed from 5' LTRs. Genetic markers to amplify non-autonomous LINEs and SINEs were designed from the regions flanking the TEs, which were named 'transposon insertional polymorphism' (TIP) markers (Figure 2.1). Both RTAP and TIP are codominant markers designed to indicate presence/absence polymorphisms of the TEs at specific insertional sites/loci. The degenerate primers to amplify LTR retrotransposons (Copia, Gypsy) and non-LTR retrotransposons (LINEs, SINEs) from Brassica and Musa are listed in respective chapters.

2.7 Designing PCR primers (markers) for DNA transposons and MITEs

For the autonomous DNA transposons, the primers were designed from the conserved regions of transposase around DDD/E triad by Primer3 (v.0.4.0) (http://frodo.wi.mit.edu/primer3/) and were named 'transposase amplification polymorphism' (TAP) markers (Figure 2.1). For non-autonomous DNA transposons and MITEs, the TIP molecular markers were designed in forward and reverse directions on upstream and downstream of each transposable element from the flanking regions to amplify the insertional or pre-insertional (or empty) sites. The list of primers amplifying various transposon insertions are given in respective chapters.

Figure 2.1: Schematic representation of positions of primers designed for different autonomous and nonautonomous transposable elements. The black arrows indicate the positions of primers to amplify various regions of TEs. The primers for autonomous retrotransposons were designed from their most conserved RT region by reverse 'transcriptase amplification polymorphism' (RTAP) markers. For LARDs, the primers were designed from LTRs to amplify the single LTR or whole element by LARDs amplification polymorphism markers (LAP). The 'transposon insertional polymorphisms' (TIP) markers (primers) were developed from the flanking regions of non-autonomous LINEs, SINEs, DNA transposons and MITEs to amplify the insertional sites/loci or empty sites. The primers for autonomous DNA transposons were designed from conserved transposase regions by 'transposase amplification polymorphism' (TAP) markers. In a few cases, alternative domains were used to design the primers to amplify other regions.

2.8 Polymerase chain reactions (PCRs)

Polymerase chain reaction (PCR) was used for the amplification of fragments derived from various transposable elements. Total volume of reaction mixture varied and ranged from $15-25 \mu$ l. The genomic DNA was used @ $50-75 \mathrm{ng} / \mu \mathrm{l}$ with 10X Kapa Taq buffer A (Kapa Biosystems, UK), additional $1.0 \mathrm{mM} \mathrm{MgCl}, 200-250 \mu \mathrm{M}$ dNTP ($2-2.5 \mathrm{mM}$; YORKBIO), $10 \mu \mathrm{M}$ (10 pmoles) of each primer (SIGMA-ALDRICH) and $0.5-1 \mathrm{U}$ of $5 \mathrm{U} / \mu \mathrm{l}$ Taq polymerase (Kapa Biosystems, UK). The master mix was mixed well and was kept in ice to keep the DNA and Taq polymerase stable. The PCR conditions were optimized with some minor modifications in time, annealing and extension temperatures and gradient was set in TGradient Thermocycler (Biometra) to gain best amplification. The reaction mixture volume and temperatures are described below.

PCR reaction $(\mathbf{1 5} \mu \mathrm{l})$	Volume
DNA $(50-75 \mathrm{ng})$	$1-1.5 \mu \mathrm{l}$
Kapa Buffer A $(10 \mathrm{X})$	$2 \mu \mathrm{l}$
$\mathrm{MgCl}_{2}(25 \mathrm{mM})$	$1 \mu \mathrm{l}$
$\mathrm{dNTPs}(2.5 \mathrm{mM})$	$1 \mu \mathrm{l}$
Forward Primer $(10 \mu \mathrm{M})$	$0.75-1 \mu \mathrm{l}$
Reverse Primer $(10 \mu \mathrm{M})$	$0.75-1 \mu \mathrm{l}$
Kapa Taq $(5 \mathrm{U} / \mu \mathrm{l})$	$0.1 \mu \mathrm{l}$
Sigma water	$8 \mu \mathrm{l}$

PCR Program for retrotransposons

$\left.\begin{array}{lcl}\text { Initial denaturation } & 94^{\circ} \mathrm{C} & 3 \mathrm{~min} \\ \text { Denaturation } & 94^{\circ} \mathrm{C} & 45 \mathrm{sec}-1 \mathrm{~min} \\ \text { Annealing } & \text { Primer dependent } & \begin{array}{l}45 \mathrm{sec}-1 \mathrm{~min} \\ \text { Elongation }\end{array} \\ \begin{array}{l}\text { 2 }\end{array} \\ \text { Final Elongation } & 72^{\circ} \mathrm{C} & 45 \mathrm{sec}-1 \mathrm{~min}\end{array}\right\} \quad 34$ cycles

PCR Program for DNA transposons

$\left.\begin{array}{lcl}\text { Initial denaturation } & 94^{\circ} \mathrm{C} & 5 \mathrm{~min} \\ \text { Denaturation } & 94^{\circ} \mathrm{C} & 1 \mathrm{~min} \\ \text { Annealing } & \text { Primer dependent } & 1 \mathrm{~min} \\ \text { Elongation } & 72^{\circ} \mathrm{C} & 1 \mathrm{~min} \\ \text { Final elongation } & 72^{\circ} \mathrm{C} & 10 \mathrm{~min} \\ \text { Pause } & 16^{\circ} \mathrm{C} & \infty\end{array}\right\} 34$ cycles

2.8.1 Agarose gel electrophoresis

DNA fragments were separated on the basis of their sizes by agarose gel electrophoresis. A 3-5 $\mu 1$ of $6 x$ loading buffer was added into PCR product depending on the quantity of PCR product ($15-25 \mu \mathrm{l})$. A 1-1.5\% (w / v) agarose gel was prepared according to the size of expected DNA fragments. For the clear visibility of DNA bands, 0.75-1.5 μ ethidium bromide ($10 \mathrm{mg} / \mathrm{ml}$) was added according to the volume of 1X TE used. The DNA samples were run and the amplicons were separated by agarose gel electrophoresis typically at c. $5 \mathrm{~V} / \mathrm{cm}$. DNA bands were observed and images were captured with the Gene Flash gel documentation system (Syngene, UK).

2.8.2 Isolation and purification of gel bands

The gel bands were isolated and purified by using protocol of MinElute Gel Extraction Protocol from Qiagen Quick Gel Extraction Kit (Qiagen, Hilden, Germany). The sharp bands were cut out with a sterilized and sharp scalpel or disposable blades. The gel slice was weighed in colourless microcentrifuge tubes and 3 volumes of buffer QG was added. Samples were incubated at $50^{\circ} \mathrm{C}$ for 10 minutes and were mixed by vortexing the tube every 2-3 minutes during incubation. A 1 gel volume of cold isopropanol was added to the sample and mixed well by inverting the tubes. A MinElute column was placed in 2 ml collection tubes; samples were transferred to these MinElute columns and centrifuged for 1 minute. Flow-through was discarded and MinElute columns were placed back in the same collection tube. A $500 \mu 1$ of buffer QG was added and centrifuged for 1 minute. After discarding flow-through, $750 \mu \mathrm{l}$ of buffer PE was added to MinElute columns and centrifuged for 1 minute. This step was repeated again to clean the samples from any contamination of salts or buffers. MinElute columns were placed in clean 1.5 ml
centrifuged tubes, $10-15 \mu 1$ of Sigma or distilled deionised water was added to the centre of membrane to elute the DNA and centrifuged twice for 1 minute to collect all DNA.

2.8.3 DNA sequencing and analysis

The amplicons after purification by MinElute gel extraction kit protocol were sent to DNA sequencing Enterprise Limited at John Innes Center Genome Laboratory, Norwich by sending the forward primers (1.5 pmol) with samples for sequencing. The resulting DNA sequence chromatograms were opened using the bioinformatics software Chromas version 1.45 (Conor McCarty, Griffith University, Australia). They were exported in FASTA format using sequence export tool present in Chromas version 1.45. The high quality sequences were retained, while sequences with poor quality were removed. The sequences were aligned with the transposon insertions and homology and differences between the query and sequenced element were studied.

2.9 Fluorescent in situ hybridization

Geminated root tips from 2-3 days seeds were used for the preparation of mitotic chromosomes. The complete DNA transposons/MITEs or the conserved regions of autonomous retrotransposons (RT) and DNA transposons (transposase) were PCR amplified, gel separated and cleaned with standard Qiagen Gel Extraction Protocol. The DNA was labelled with digoxigenin or biotin with random primers labelling protocol and used as probes. FISH of Brassica/Musa chromosomes was performed according to the protocol described by Schwarzacher and Heslop-Harrison, (2000). Chromosomes were counterstained with $0.2 \mathrm{mg} / \mathrm{ml}$ DAPI (4', 6-diamidino-2-phenylindole) diluted in McIlvaine's buffer pH 7 and mounted in antifade solution (Citifluor). The probe mixture contained $50 \%(\mathrm{v} / \mathrm{v})$ formamide, $20 \%(\mathrm{w} / \mathrm{v})$ dextran sulfate, $2 \times \mathrm{SSC}, 25-100 \mathrm{ng}$ probe, 20 mg of salmon sperm DNA and 0.3% sodium dodecyl sulphate (SDS) as well as 0.12 mM ethylene-diamine-tetraacetic acid (EDTA). Hybridization and washing were carried out at low stringency. Examination of slides was carried out with Zeiss epifluorescence microscope single band pass filters equipped with a CCD camera (Optronics, model S97790). The images were refined using only functions that affect the whole image equally and printed using Adobe Photoshop CS3 software.

2.10 Bioinformatics and computational analysis

Several computation methods were used to identify, characterize and classify novel transposable elements into their respective superfamilies and families and study their evolutionary relationships.

2.10.1 Dot plot analysis for identification of retrotransposons

In the present study, a novel approach was developed for the identification of TEs named 'Dot plot characterization of TEs' (DPCTE). This method is highly effective for the identification and characterization of various types of TEs (autonomous, non-autonomous) as well as small insertions/deletions within the genomic sequences. The approach is based on the dot plot comparison of homoelogous and homologous BAC/genomic sequences, where it indicate the gap-insertion pairs or parallel or vertical lines across the central diagonal line (showing homology between the two sequences). The TEs are indicated by gaps in continuous line showing homology, which are confirmed by analysing their TSDs at flanking ends. The LTR retrotransposons are represented by having two parallel lines (indicating LTRs) across the central diagonal line (Figure 2.2 \& 2.3; also see Conclusion; Figure 10.1-10.3).

A total of 90 Brassica BAC sequences (Table 2.4), 84 from National Center for Biotechnology Information (NCBI: http://www.ncbi.nlm.nih.gov/) and 6 from European Bioinformatics Institute (EBI: http://www.ebi.ac.uk) databases were randomly collected to screen various types of retrotransposons. To investigate the retrotransposons among Musa genomes, 46 BAC sequences were collected from NCBI (Table 2.5). Initially the candidates of full length LTR retrotransposons were identified by running each BAC genomic sequence against itself in dot plot analysis in the Dotter program (Sonnhammer and Durbin, 1995). The central diagonal line extending from one corner of the dot plot to the diagonally opposite corner represented the homology of the sequence. The LTRs on both termini are represented by 2 small diagonal lines at opposite corners indicating 5 and 3 LTRs (Figure $2.3 \& 2.4$). The $5^{\prime}-$ TG....CA- 3^{\prime} termini of LTRs were defined by dot plot analysis by scrolling bar to the terminal ends of the line showing the LTRs. The number of nucleotides in LTRs was counted and TSDs were searched by visual inspection.

The initial identification of the novel non-LTR retrotransposons or retroposons (LINEs, SINEs) in Brassica species was done by the comparison of homoeologous BAC sequences in Dotter program, where LINEs or SINEs were identified as gap-insertion pairs in the diagonal line indicating the highly homologous region between two sequences. Four pairs of Brassica rapa and Brassica oleracea homoeologous BAC sequences (AC189298.1 x EU642504.1; AC155341.2 x AC240089.1; AC155344.1 x AC240081.1 and CU984545.1 x EU579455.1), with one additional pair, were plotted against each other to identify novel LINEs, SINEs and several other DNA and novel TEs (see Conclusion; Figure 10.1-10.3).

Figure 2.2: Dot plot identification of LTR retrotransposons (Copia, Gypsy, LARDs, TRIM) and MITEs. The (synthetic) BAC sequence is plotted against itself to show a complete line of homology running from one corner to diagonally opposite corner. The parallel lines across the central diagonal lines are indicating the LTRs. The inverted cross lines represent the large TIRs of Mutator-like MITEs. The elements are considered LTR retrotransposons or MITEs, if they possess the TSDs and other structural features.

Figure 2.3: Dot plot identification of DNA transposons and MITEs (Stowaway, Tourist). The two (synthetic) homoeologous BACs sequences (A x B) were plotted against each other with a line of homology running from one corner to diagonally opposite corner with gap-insertion pairs. The parallel lines across the central diagonal lines indicate LTRs of retrotransposons. The gaps in the line indicate recent activity of transposon insertion in one sequence.

Figure 2.4: Dot plot graphs indicating characteristic features (arrows) of three different types of TEs. a) LTR retrotransposon with small parallel lines indicating LTRs at diagonally opposite corners. b) DNA transposon with TIRs at corners c) MITEs with long TIRs starting from corners to the central diagonal lines.

Chapter 2

Table 2.4: List of 90 Brassica Bacterial Artificial Chromosomes (BACs) used for the identification of various TEs.

Sr.No.	Species	BAC Accessions	Size	Sr.No.	Species	BAC Accessions	Size
1	B. oleracea	AC122543.1	101563	46	B. rapa	AC189233.2	128372
2	B. oleracea	AC149635.1	96718	47	B. rapa	AC189237.1	105067
3	B. oleracea	AC152123.1	82329	48	B. rapa	AC189263.2	135260
4	B. oleracea	AC183492.1	236640	49	B. rapa	AC189298.1	133068
5	B. oleracea	AC183493.1	284024	50	B. rapa	AC189300.2	101741
6	B. oleracea	AC183494.1	285752	51	B. rapa	AC189364.2	95384
7	B. oleracea	AC183495.1	356505	52	B. rapa	AC189375.2	151784
8	B. oleracea	AC183496.1	385314	53	B. rapa	AC189415.2	126831
9	B. oleracea	AC183498.1	353037	54	B. rapa	AC189430.2	158169
10	B. oleracea	AC189656.2	106028	55	B. rapa	AC189446.2	126053
11	B. oleracea	AC240078.1	86917	56	B. rapa	AC189458.2	106248
12	B. oleracea	AC240079.1	6684	57	B. rapa	AC189472.2	153817
13	B. oleracea	AC240080.1	84518	58	B. rapa	AC189475.2	159384
14	B. oleracea	AC240081.1	108570	59	B. rapa	AC189496.2	130819
15	B. oleracea	AC240082.1	85043	60	B. rapa	AC189529.2	145402
16	B. oleracea	AC240083.1	108105	61	B. rapa	AC189592.2	133598
17	B. oleracea	AC240084.1	114384	62	B. rapa	AC232508.1	135661
18	B. oleracea	AC240085.1	94292	63	B. rapa	AC232512.1	140229
19	B. oleracea	AC240087.1	104293	64	B. rapa	AC232514.1	147357
20	B. oleracea	AC240088.1	84128	65	B. rapa	AC232592.1	123616
21	B. oleracea	AC240089.1	96237	66	B. rapa	AC234770.2	123583
22	B. oleracea	AC240090.1	117741	67	B. rapa	AC237303.1	110934
23	B. oleracea	AC240091.1	77461	68	B. rapa	AC237304.1	117696
24	B. oleracea	AC240092.1	87435	69	B. rapa	AC241035.1	103153
25	B. oleracea	AC240093.1	85407	70	B. rapa	AC241108.1	86592
26	B. oleracea	AC240094.1	96771	71	B. rapa	AC241138.1	149767
27	B. oleracea	EU568372.1	74376	72	B. rapa	AC241191.1	104793
28	B. oleracea	EU579454.1	92449	73	B. rapa	AC241194.1	119416
29	B. oleracea	EU579455.1	104071	74	B. rapa	AC241195.1	60300
30	B. oleracea	EU581950.1	71205	75	B. rapa	AC241196.1	103665
31	B. oleracea	EU642504.1	109794	76	B. rapa	AC241197.1	177500
32	B. oleracea	EU642505.1	86024	77	B. rapa	AC241198.1	128488
33	B. oleracea	EU642506.1	39495	78	B. rapa	AC241199.1	111007
34	B. rapa	AC155337.1	125390	79	B. rapa	AC241200.1	124586
35	B. rapa	AC155338.1	137697	80	B. rapa	AC241201.1	134414
36	B. rapa	AC155340.2	143518	81	B. rapa	CU695254.1	141917
37	B. rapa	AC155341.2	106476	82	B. rapa	CU695282.1	153759
38	B. rapa	AC155342.2	151550	83	B. rapa	CU914557.1	120113
39	B. rapa	AC166739.1	16947	84	B. rapa	CU984545.1	137597
40	B. rapa	AC166740.1	100288	85	B. rapa	FP340380.1	107018
41	B. rapa	AC166741.1	132099	86	B. rapa	FP340381.1	146501
42	B. rapa	AC189183.2	99407	87	B. rapa	FP340382.1	104976
43	B. rapa	AC189218.2	128973	88	B. rapa	FP340534.1	131483
44	B. rapa	AC189222.1	163034	89	B. rapa	FP340535.1	128773
45	B. rapa	AC189225.2	116064	90	B. rapa	FP565592.1	141962

Table 2.5: List of 46 Musa Bacterial Artificial Chromosomes (BACs) used for the identification of various TEs.

Sr. No.	Species	BAC Accession	BAC size	Sr. No.	Species	BAC Accession	BAC size
1	M. acuminata	AC226031.1	61335	24	M. acuminata	AC186752.1	80932
2	M. acuminata	AC226032.1	91293	25	M. acuminata	AC186753.1	54106
3	M. acuminata	AC226033.1	92078	26	M. balbisiana	AC186754.1	142973
4	M. acuminata	AC226034.1	76327	27	M. acuminata	AC186955.1	102232
5	M. acuminata	AC226035.1	104637	28	M. balbisiana	AC226054.1	124336
6	M. acuminata	AC226036.1	37847	29	M. balbisiana	AC226055.1	106121
7	M. acuminata	AC226037.1	71163	30	M. acuminata	AC226196.1	110853
8	M. acuminata	AC226038.1	124825	31	M. balbisiana	AP009325.2	133047
9	M. acuminata	AC226039.1	86265	32	M. balbisiana	AP009334.1	131526
10	M. acuminata	AC226040.1	108948	33	M. acuminata	AY484588.1	73268
11	M. acuminata	AC226041.1	58704	34	M. balbisiana	FN396604.1	137100
12	M. acuminata	AC226042.1	73023	35	M. balbisiana	FN396605.1	141036
13	M. acuminata	AC226043.1	95303	36	M. acuminata	AC186747.2	141025
14	M. acuminata	AC226044.1	74174	37	M. acuminata	AC186748.1	113519
15	M. acuminata	AC226045.1	95242	38	M. acuminata	AC186746.1	105019
16	M. acuminata	AC226046.1	180124	39	M. acuminata	AC186749.1	29567
17	M. acuminata	AC226047.1	87766	40	M. acuminata	AC186751.1	96443
18	M. acuminata	AC226048.1	134662	41	M. acuminata	AC186750.2	148170
19	M. acuminata	AC226049.1	92303	42	M. acuminata	AY484589.1	82723
20	M. acuminata	AC226050.1	177729	43	M. balbisiana	AC186755.1	154246
21	M. balbisiana	AC226051.1	152711	44	M. balbisiana	AP009326.1	119244
22	M. balbisiana	AC226052.1	198395	45	M. balbisiana	FN396606.1	253366
23	M. balbisiana	AC226053.1	135110	46	M. acuminata	AC186954.2	144091

2.10.2 Computational analysis and data mining for retrotransposons

The intact or full length elements identified by dot plot analysis are named as reference elements as they are full length elements belonging to different superfamilies and families of retrotransposons. The reference elements were further used to conduct BLASTN searches against the Brassica or Musa Nucleotide Collection (nr/nt) database using 'somewhat similar sequences' option in NCBI. In the database, the searches for LTR retrotransposons were performed in several steps to identify the intact, truncated, partial elements, solo LTRs and remnants (Figure 2.5). First the LTRs were used as a query to find the solo LTRs, which were counted by any single copy in a BAC sequence or multiple copies without any internal region. The intact elements were counted by having two complete LTRs with internal region >2 kb. In the second step, the complete elements
were used as query to find the full length copies, truncated elements, partial or deleted elements and remnants, which were defined with small modifications according to the recommendations of Ma et al., 2004. An intact element is one that is terminated by well characterized TSDs and LTRs, with an internal region encoding one or more protein domains from gag-pol genes, and exhibiting the identified PBS and PPT sites. Solo LTR refers to an LTR with TSD, or LTRs truncated with small deletions exhibiting >80\% query coverage and homology. Truncated elements are defined as elements having deletions at 5^{\prime} or 3^{\prime} ends of LTRs. These include elements with one partially or completely deleted LTR, elements with both LTRs partially deleted and the elements with one partially and one completely deleted LTRs. Partial sequences are deletion derivatives showing $>40-80 \%$ query coverage, with or without LTRs and one or more conserved domains (PBS, AP, RT, RH, INT, PPT) in them. The term remnants describe all the small fragments showing $1-40 \%$ query coverage with strong or weak identity to the retrotransposon sequences. The remnants sometimes include the deleted LTRs, any intact domain and internal region from an element (Figure 2.5).

Figure 2.5: Homology matches of an element. Red lines represent intact elements, green lines truncated elements, blue lines indicate deletion derivatives, pink solo LTRs and black represents the remnants. Only complete elements were used to estimate the copy numbers in whole BrassicalMusa genomes.

The novel non-LTR retrotransposons (LINES, SINEs) identified by dot plot analysis were run against the Brassica Nucleotide Collection database in NCBI. The sequences showing $>75 \%$ of the query coverage with $>80 \%$ identity in their entire lengths were retrieved and
analysed. The number of the TSDs and the poly(A) tail at 3^{\prime} ends were counted manually. Where necessary the TSDs and TIRs were identified by the use of the online dot plot program Dotlet (http://myhits.isb-sib.ch/cgi-bin/dotlet) (Junier and Pagni, 2000).

2.10.3 Characterization, classification and naming of retrotransposons

The online ORF finder program (http://www.ncbi.nlm.nih.gov/projects/gorf/) was used to detect any ORF structure from the identified elements. The Repbase database (http://www.girinst.org/repbase/index.html) (Jurka et al., 2005), Repeat masker of Censor software (http://www.girinst.org/censor/index.php) implemented in Genetic Information Research Institute (GIRI) and Gypsy database (http://gydb.org/index.php/Main_Page) (Llorens et al., 2008; Llorens et al., 2011) were used to characterize the retrotransposons on the basis of homology to the known elements. Elements that failed to be characterized by the above searches against TE databases were characterized by visual inspection on the basis of their hallmark motifs such as TSDs, LTRs, PBS, PPT and organization of their gag-pol encoding proteins. The retrotransposons are classified as Copia, if they display pol gene as 5 -INT-RT-RH-3, Gypsy as 5 -RT-RH-INT-3, LARDs if they exhibit large non-coding internal regions and TRIMs, if they only have LTRs and small internal noncoding region ($<1 \mathrm{~kb}$). The families were defined by using the same criteria adopted by other workers for the characterization of families of Copia, Gypsy, Pararetroviruses and Bel-Pao superfamilies. The sequences showing $>85 \%$ identity at their nucleotide level over at least 1000 bp in their coding regions were considered belonging to the same family. If the homology is $>95 \%$, they were considered as copies of single element (Wicker et al., 2007; Minervini et al., 2009).

A novel TE family is declared, when no homology of the family was found with any known LTR retrotransposon, a full set of intact elements were evident with LTRs, internal protein domains for its transposition and the last discriminator was the presence of strong hits to at least another member excluding the reference query (Wang and Liu, 2008). The identified elements were classified into respective superfamilies and families by the recommendations of Wicker et al., 2007. The names to the novel elements are given on the recommendations of Capy, 2005. The names are given as GsXXXN, where ' G ' represent genus, small letter ' s ' represent species names, $X X X$ indicate first 3 letters of retrotransposons superfamily and ' N ' indicate the number. Thus in $\mathrm{BrCOP1}$; Br indicate

Brassica rapa, COP represent Copia and 1 indicate the number of identified element. MaGYP1 represent Musa acuminata Gypsy element 1 and MaLAR1 indicate $1^{\text {st }}$ Musa acuminata LARDs-like element. In all cases, the names of the elements and their respective families are written in italics.

The LINEs were characterized on the basis of displaying LINE specific EN-RT domains and poly(A) tail at C-terminus. For LINEs homologous copies showing $>75 \%$ identity at their nucleotide level in their coding regions were collected and considered as members of the same family. For SINEs (small non-coding sequences), the sequences were considered belonging to the same family, if the homology is $>80 \%$ in their entire lengths. The retroposons (LINEs, SINEs) were named on same pattern, as LTR retrotransposons were named. Thus BrLINE1-1 is indicating the first member of Brassica rapa LINE family 1. Similarly, BoSINE1-1 represents the first member of Brassica oleracea SINE family 1.

2.10.4 Analysis of structural domains in retrotransposons

For the identification of conserved domains in intact elements, the nucleotide sequences were investigated in 'conserved domain database' (CDD) of NCBI (http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml) with default parameters. The gagpol gene encoding proteins (GAG, AP, RT, RH, INT) and additional domains in each element were detected by CDD. The primer binding site (PBS) and polypurine tract (PPT) were detected in the LTR_FINDER by using the parameter 'Predict PBS by using which tRNA database' against Arabidopsis thaliana tRNA database in case of Brassica LTR retrotransposons, while against Zea mays and Oryza sativa tRNA database in case of Musa LTR retrotransposons. In the first step all elements were screened against the Zea mays tRNA database to detect PBS and PPT. If no hits were found for PBS or PPT, than the elements were blast against Oryza sativa tRNA database to detect PBS and PPT. The sequence and positions of PBS and PPT is marked and type of tRNA was also detected.

The program ORF finder (http://www.ncbi.nlm.nih.gov/projects/gorf/) was used to identify the open reading frames in the LINE elements. The proteins domains and their patterns were detected by using the 'conserved domain database' (CDD) at NCBI (http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml). For the comparison of tRNA head region of the SINEs, the tRNA sequences were retrieved from Arabidopsis Genomic
tRNA Database (http://gtrnadb.ucsc.edu/Athal) (Chan and Lowe, 2009). Frequency plots indicating the insertional preference of SINEs families were generated in WebLogo (http://weblogo.berkeley.edu/logo.cgi).

2.10.5 Multiple sequence alignment and phylogenetic analysis

The reverse transcriptase (RT) sequences from 75 elements belonging to three superfamilies (Copia, Gypsy and Pararetroviruses) of known LTR retrotransposons were collected from Gypsy database (http://gydb.org/index.php/Main_Page) (Llorens et al., 2011), listed in Table 2.6. The conserved ($\sim 200 \mathrm{aa}$) RT regions from identified elements from Brassica/Musa were aligned with known elements in CLUSTALW multiple alignments implemented in BioEdit (Hall, 1999). The sequences after alignment were visually inspected and edited manually, if needed. Small insertions and deletions were removed and single deletions were filled by simple majority rule. Frameshifts were introduced to bring the sequences in the same frame. All RT regions were included in alignment, even if they have stop codons or frameshift mutations. In all the cases, the orientations of elements were converted to $5^{\prime}-3^{\prime}$ for alignment and phylogenetic analysis. The phylogenetic analysis was performed by constructing the tree by the NeighbourJoining method with 1000 bootstrap replicates. The Tamura-Nei (1973) and Jukes-Cantor models were used to calculate genetic distance for nucleotides and amino acid sequences respectively. The trees were generated in Geneious Pro 5.5.6 program (Drummond et al., 2011).

2.10.6 Estimation of copy numbers

The numbers of strong hits against the reference queries with $>75 \%$ query coverage and identity were extrapolated after getting output from BLASTN searches. Only intact elements were counted, while partial elements and remnants were not included. The following formula was used to estimate the copy number of intact retrotransposons: copy no. $=$ no. in database x genome size/database size as used to estimate TEs (Tu, 2001). The percentage of each TE superfamily in whole genome is calculated as: Estimated copies x average size $=\mathrm{N}$, percentage $=\mathrm{N} /$ total of all N values x 100 . ' N ' is the total size in bp of each superfamily identified here.

Table 2.6: List of 75 LTR retrotransposons (Copia, Gypsy and Pararetrovirus (PRV) superfamilies) collected from Gypsy Database (Llorens et al., 2011) for various phylogenetic studies. NG: Not given.

Sr. No.	Superfamily	Elements Name	Name in detail	Element Size	Identified from
1	Copia	SIRE1-4	NG	9.8 Kb	Glycine max
2	Copia	Opie-2	NG	11.7 Kb	Zea mays
3	Copia	Endovirl-1	NG	9.1 Kb	Arabidopsis thaliana
4	Copia	ToRTL1	NG	9.7 Kb	Lycopersicon esculentum
5	Copia	TSI-9	NG	9.3 Kb	Setaria italica
6	Copia	Araco	NG	4.9 Kb	Arabidopsis thaliana
7	Copia	Orycol-1	NG	4.9 Kb	Oryza sativa ssp. japonica
8	Copia	Viticol-1	NG	4.6 Kb	Vitis vinifera
9	Copia	Poco	NG	4.3 Kb	Populus trichocarpa
10	Copia	Orycol-2	NG	4.9 Kb	Oryza sativa ssp japonica
11	Copia	Melmoth	NG	4.8 Kb	Brassica spp.
12	Copia	Viticol-2	NG	4.8 Kb	Vitis vinifera
13	Copia	Retrofit	NG	4.9 Kb	Oryza longistaminata
14	Copia	Koala	NG	5.0 Kb	Oryza australiensis
15	Copia	Hopscotch	NG	4.8 Kb	Zea mays
16	Copia	Ttol	NG	5.3 Kb	Nicotiana tabacum
17	Copia	Batata	NG	4.2 Kb	Ipomoea batatas
18	Copia	Sto-4	NG	7.2 Kb	Zea mays
19	Copia	Fourf	NG	7.0 Kb	Zea mays
20	Copia	Tork4	NG	4.9 Kb	Lycopersicon esculentum
21	Copia	RTvr2	NG	7.8 Kb	Vigna radiata
22	Copia	V12	NG	5.4 Kb	Vitis vinifera
23	Copia	Tnt-1	NG	5.3 Kb	Nicotiana tabacum
24	Copia	Copia	NG	5.2 Kb	Drosophila spp.
25	Copia	TylB	NG	6.0 Kb	Saccharomyces cerevisiae
26	Copia	Ty2	NG	6.0 Kb	Saccharomyces cerevisiae
27	Copia	Ty4	NG	6.2 Kb	Saccharomyces cerevisiae
28	Copia	Osser	NG	4.9 Kb	Volvox carteri
29	Gypsy	Ty3-1	NG	5.5 Kb	Saccharomyces cerevisiae
30	Gypsy	Del	NG	9.3 Kb	Lilium henryi
31	Gypsy	Galadriel	NG	6.2 Kb	Lycopersicon esculentum
32	Gypsy	Tntom1	NG	6.0 Kb	Nicotiana tomentosiformis
33	Gypsy	Cereba	NG	11.6 Kb	Hordeum vulgare
34	Gypsy	CRM	NG	7.6 Kb	Zea Mays
35	Gypsy	Beetle1	NG	6.7 Kb	Beta vulgaris
36	Gypsy	Tma	NG	7.3 Kb	Arabidopsis thaliana
37	Gypsy	Reina	NG	5.4 Kb	Zea Mays
38	Gypsy	Gloin	NG	5.4 Kb	Arabidopsis thaliana
39	Gypsy	Legolas	NG	7.5 Kb	Arabidopsis thaliana
40	Gypsy	Monkey	NG	6.3 Kb	Musa acuminata
41	Gypsy	Ifg7	NG	5.9 Kb	Pinus radiata
42	Gypsy	Peabody	NG	7.9 Kb	Pisum sativum
43	Gypsy	Retrosat-2	NG	12.7 Kb	Oryza sativa
44	Gypsy	Athila4-1	NG	14.0 Kb	Arabidopsis thaliana
45	Gypsy	Cyclops-2	NG	12.2 Kb	Pisum sativum
46	Gypsy	Diaspora	NG	11.7 Kb	Glycine max
47	Gypsy	Ogre	NG	22.7 Kb	Pisum sativum
48	Gypsy	Bagy-1	NG	14.4 Kb	Hordeum vulgare
49	Gypsy	RIRE2	NG	11.2 Kb	Oryza sativa
50	Gypsy	RetroSorl	NG	13.4 Kb	Sorghum bicolor
51	Gypsy	Cinful-1	NG	8.6 Kb	Zea mays
52	Gypsy	Grandel-4	NG	13.8 Kb	Zea diploperennis
53	Gypsy	Tat4-1	NG	11.9 Kb	Arabidopsis thaliana
54	Gypsy	Tft2	NG	13.2 Kb	Arabidopsis thaliana
55	Gypsy	Gypsy	NG	7.4 Kb	Drosophila melanogaster

Table 2.6: Continued

Sr.	Super-	Elements	Name in detail	Element	Identified from
No.	family	Name		Size	
56	PRV	CaMV	Cauliflower mosaic virus	8.0 Kb	Brassicaceae
57	PRV	CERV	Carnation etched ring virus	7.9 Kb	Dianthus caryophyllus
58	PRV	MiMV	Mirabilis mosaic virus	7.9 Kb	Mirabilis spp.
59	PRV	FMV	Figwort mosaic virus	7.7 Kb	Scrophularia californica
60	PRV	CSVMV	Cassava vein mosaic virus	8.2 Kb	Manihot spp.
61	PRV	TVCV	Tobacco vein clearing virus	7.8 Kb	Nicotiana edwardsonii
62	PRV	BSVAV	Banana streak virus	7.8 Kb	Musa spp.
63	PRV	BSGFV	Banana streak virus	7.3 Kb	Musa spp.
64	PRV	KTSV	Kalanchoë top-spotting virus	7.6 Kb	Kalanchoë blossfeldiana
65	PRV	BSMyV	Banana streak virus	7.6 Kb	Musa spp.
66	PRV	PVCV	Petunia vein clearing virus	7.2 Kb	Petunia xybrida cv
67	PRV	RTBV	Rice tungro bacilliform virus	8.0 Kb	Oryza sativa
68	PRV	$C S S V$	Cacao swollen shoot virus	7.2 Kb	Theobroma cacao
69	PRV	$C Y M V$	Citrus yellow mosaic virus	7.5 Kb	Citrus spp.
70	PRV	DBV	Dioscorea bacilliform virus	7.3 Kb	Dioscorea spp.
71	PRV	TaBV	Taro bacilliform virus	variable	Colocasia esculenta
72	PRV	BSOLV	Banana streak virus	7.4 Kb	Musa spp.
73	PRV	DrMV	Dracaena mottle virus	variable	Dracaena sanderiana
74	PRV	BsCVBV	Bougainvillea spectabilis	8.8 Kb	Bougainvillea spectabilis
75	PRV	ComYMV	Commelina yellow mottle virus	7.5 Kb	Commelina diffusa

2.11 Material and Methods for DNA transposons and MITEs

2.11.1 Identification and genome wide analysis of DNA transposons and MITEs

Homoeologous BAC clone pairs from either Brassica/Musa species were compared against each other in dot plot analyses. The central diagonal line running from one corner of the dot plot to other represented the homology between the two sequences. The gaps in the homologous line indicated the insertions-deletion pairs, which were characterized (Figure 2.3; see conclusion figures 10.1-10.3). The TSDs and TIRs flanking the insertions were inspected manually and if present, the elements were characterized as mobile transposons and further categorized to define the respective superfamily. The identified transposons were used to query BLASTN searches against Brassica/Musa Nucleotide Collection database ($\mathrm{nr} / \mathrm{nt}$) available in NCBI by using the 'somewhat similar sequences' parameter. The resultant hits covering $>60 \%$ of entire query sequences were collected and characterized. The TSDs and TIRs of the elements were defined by manual inspections and their positions in BAC clone sequences were defined by BLAST hits. Protein domain structures and organization of the elements were studied in 'conserved domain database' (CDD: http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml) available in NCBI.

For identification of MITEs, two different approaches were followed. The small Marinerlike (Stowaway) and Harbinger-like (Tourist) MITEs were identified by the comparison of homoeologous BAC sequences, by the same approach as used for the identification of autonomous and non-autonomous DNA transposons. The other approach was used for the identification of Mutator-like MITEs having long TIRs, where BAC sequence is plotted against itself. The perpendicular line nearly intersecting the diagonal line showed the TIRs (Figure 2.4c), which were further investigated for MITE derived superfamily identification. In any of these approaches, the collected sequences were inspected manually for the presence of TSDs and TIRs and only those sequences were considered as MITEs, which showed well defined TSDs and TIRs. The homologous copies were collected from nucleotide collection database of respective specie (http://www.ncbi.nlm.nih.gov) using BLASTN program (Altschul et al., 1997). Only those sequences were collected which showed high homology with query sequences, having size $<2.5 \mathrm{~kb}$ and showing precise boundaries with flanking TSDs. The dot plot graphs of the MITEs to represents the TIRs in the sequences were drawn in Dotter (Sonnhammer and Durbin, 1995) or Dotlet software (http://myhits.isb-sib.ch/cgibin/dotlet) (Junier and Pagni, 2000) by plotting the sequence against itself.

2.11.2 Sequence analysis and manipulation

The protein domain organizations of autonomous DNA transposons were performed by blast against the known protein database in 'conserved domains database' (CDD; http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml). The GC and AT contents of the DNA transposons were calculated using the online program 'GC Calculator' (http://www.genomicsplace.com/gc_calc.html). The sequence logos of TSDs and TIRs were generated online with WebLogo (http://weblogo.berkeley.edu/logo.cgi). For autonomous DNA transposons, the most conserved transposase regions around DDD/E triad ranging in sizes from 630-680 bp (210-228 aa) were collected. The known DNA transposons (hAT, CACTA, Harbinger, Mutator) were collected from Repbase database (Jurka et al., 2005) (http://www.girinst.org/repbase/update/browse.php) and transposase regions were aligned with the transposase regions of our identified DNA transposons. They were trimmed to gain the equal lengths and where necessary frameshifts were introduced to maintain the aligned reading frames. Multiple alignments were generated
with CLUSTALW available in the BioEdit program and small insertions were removed without altering the frame of the elements.

2.11.3 Phylogenetic analysis for autonomous and non-autonomous DNA transposons

The phylogenetic analysis of autonomous DNA transposons was performed by using the Neighbour-Joining (NJ) methods with Janker-Cantor genetic distance model. The highly conserved catalytic triad DDD/E regions (180-210 aa) from the transposase genes were aligned to generate the CACTA and Harbingers transposons phylogeny. The tree was constructed in the Geneious Pro 5.5.6 (Drummond et al., 2011) with a bootstrap value of 1000 repetitions.

The complete sequences from non-autonomous transposons and MITEs were collected from dot plot and blast analysis. They were aligned in CLUSTALW implemented in BioEdit and manually edited. The phylogenetic analysis of various superfamilies of DNA transposons and MITEs were done separately. To generate the tree for non-autonomous hATs, 200 bp from 5' TIRs were used. For MITEs phylogeny, the TIRs were used for the construction of tree. The tree is generated in Geneious program (Drummond et al., 2011) using Neighbour-Joining method with 1000 bootstraps replicates. The Genetic distance was calculated with Tamura-Nei (1973) model.

2.11.4 Copy number estimation of DNA transposons

The copy number estimation was performed in the same way, as done for the copy number estimation of retrotransposons. The numbers of strong hits against the reference queries with >60 query coverage and 70% identity were collected after getting output from BLASTN searches against Brassica/Musa Nucleotide Collection database available at NCBI. The following formula was used to estimate the copy number of DNA transposons: copy no. $=$ no. in database x genome size/database size (Tu, 2001). The percentage of each DNA transposon superfamily in whole genome is calculated as: Estimated copies x average size $=\mathrm{N}$, percentage $=\mathrm{N} /$ total of all N values x 100 . Where ' N ' is representing the total size (bp) of each superfamily.

2.12 Characterization and nomenclature of DNA transposons and MITEs

For the proper characterization of DNA transposons and MITEs, both homology and structural based approaches were used to characterize the elements. In the homology based approach, the sequences were blasted against the Repeat Masker of Repbase database (http://www.girinst.org/censor/index.php) and Plants Repeats database (http://plantrepeats.plantbiology.msu.edu/) (Ouyang and Buell, 2004) to detect homology of query sequences against any known element. If the element was not characterized on the basis of homology based searches, the structural features and hallmarks (TSDs, TIRs and internal coding regions) of transposons were studied. The numbers of TSDs and TIRs were found to be the best criteria to allocate DNA transposons and MITEs to their superfamily and family, from which they have derived.

The names to the DNA transposons and MITEs were given systematically as recommended by Capy (2005). The first letter indicates genus, second small letter indicate species, 3-4 letters represent superfamily, first digit represent individual insertion or a family and second digit represent its homologue such as BoCACTA1, where ' B ' represent genus, small letter (o) indicate specie and number after CACTA indicate the first identified CACTA in present study. For non-autonomous transposons after genus and species name, letter ' N ' indicate non-autonomous element such as MaN-hAT1, where ' M ' stands for genus Musa, small letter (a) indicate acuminata, ' N ' indicate the non-autonomous hAT and digit ' 1 ' represent $1^{\text {st }}$ investigated hAT insertion in this study. The MITEs are named in the similar way such as BrSTOW1-1, where ' B ' stands for genus Brassica, second small letter (r / o) represents species name (rapa/oleracea), 4 capital letters (STOW/TOUR) indicate the transposon superfamily, from which MITEs are derived, the first number after the superfamily name indicate the family and number followed by hyphen represents the number of the respective member of that family. For Mutator-like MITEs such as BrMuMITE1-1, 'Mu' represents Mutator and in MITES with unknown superfamily such as BrXMITE1-1, X indicates unknown superfamily of MITEs, while rest pattern for naming is the same. The family names were given on the basis of first element identified or on the basis of highly abundant element from the respective family. Thus BrSTOW1 is the family representing BrSTOW1-1 to BoSTOW1-5 elements. Similarly, BrMuMITE5-1 and BoMuMITE5-9 are treated in the same family BrMuMITE5. The names of the elements and their families were represented by italics.

CHAPTER 3

IDENTIFICATION AND CHARACTERIZATION OF NOVEL LTR RETROTRANSPOSON FAMILIES FROM BRASSICA

Summary

By using computational and molecular methods, 280 intact LTR retrotransposons were identified from Brassica by dot plot analysis and data mining. The Copia elements were dominant (206), followed by Gypsy (56), while non-autonomous retrotransposons LARDs (16) and TRIM (1) were much less. Around 1596 Copia, 540 Gypsy, 110 LARDs and 25 TRIM elements were estimated from Brassica rapa and 7540 Copia, 780 Gypsy, 760 LARDs with no TRIM from Brassica oleracea whole genomes. The results indicated that Copia outnumbered Gypsy by a ratio of $4: 1$. Several truncated or partial homologues of the elements were found dispersed in the genomes. PCR amplification based on conserved RT regions revealed their abundance and distribution among Brassica species and cultivars. The evolutionary relationship of Brassica TEs with other known elements clearly splits them into three main lineages; Copia, Gypsy and Pararetrovirus. Brassica elements clustured into 41 families, of which 35 are Copia and 6 are Gypsy. The analysis also confirmed that the majority of the families are novel, as no significant homology was observed with other known elements in other species. The detailed analysis of the reverse transcriptase region of Brassica and several other known LTR retrotransposons revealed few conserved regions among all elements investigated.

3.1 Introduction

Long terminal repeat retrotransposons (LTR retrotransposons) are characterized by 4 to 6 bp TSDs, 100-5000 bp LTRs, internal regions encoding gag-pol protein domains and PBS and PPT at 5^{\prime} LTR and 3^{\prime} LTR respectively. The LTRs are homologous and generally have conserved termini ($5^{\prime}-$ TG-----CA- 3^{\prime}). The LTRs carry the promoter elements, TATA box, polyadenylation signals and enhancers, which regulate the transposition mechanism of LTR retrotransposons. The gag-pol encodes protein domains necessary for transposition and integration mechanisms, while PBS and PPT act as minus and plus priming sites for RNA transcription (Kumar and Bennetzen, 1999; Wicker and Keller, 2007; Wicker et al., 2007; Vukich et al., 2009).

Copia and Gypsy are two major superfamilies of LTR retrotransposons dispersed in plants that differ in order of protein domains encoded by pol gene. The canonical Ty1/copia exhibit TSDs, LTRs, display PBS and PPT and has internal gag-pol genes which encode the proteins as 5'-GAG-INT-RT-RH-3' (Flavell et al., 1992b; Flavell et al., 1998; Kumar and Bennetzen, 1999; Hansen and Heslop-Harrison, 2004; Wicker et al., 2007). Few elements encode additional domains of known or unknown nature in their pol gene. Ty3/gypsy elements constitute a superfamily of LTR retrotransposons. They display 5 bp TSDs, LTRs and internal region encoding gag-pol protein domains as 5^{\prime}-GAG-RT-RH-INT-3', or have some additional domains. On the basis of presence or absence of chromodomain, they are further divided into chromodomain bearing Gypsy and nonchromodomain Gypsy elements. The chromodomain bearing Gypsy are common in several plants (Novikova et al., 2008; Novikova, 2009). The gypsy elements are diverse and abundant group of retrotransposons dispersed in several plants.

LARDs are non-autonomous LTR retrotransposons, which mobilized in trans by using the proteins from the autonomous elements. The internal regions of these elements contain conserved non-coding DNA segments that may provide the important secondary structure to mRNA, although it is not clear how these non-coding sequences work in the life cycle of the elements (Kalendar et al., 2004). Due to lack of internal gag-pol coding genes and large sizes (5.5 to 8.5 kb), the non-autonomous Dasheng elements from maize genome were named as 'Large Retrotransposons Derivatives' (LARDs). The non-autonomous Dasheng and Zeon-1 elements from maize genome are represented by around 1000 copies each (Hu et al., 1995; Jiang et al., 2002). Another group of small sized elements with flanking LTRs are described from several plants and are named 'Terminal-Repeat Retrotransposons in Miniature' (TRIM). TRIM are small in sizes, have TSDs, LTRs, short non-coding internal regions, PBS and PPT motifs. They are studied in many monocot and dicot plant families including Gramineae, Brassicaceae, Solanaceae, and Fabaceae (Witte et al., 2001), apple (Antonius-Klemola et al., 2006) and Brassica (Yang et al., 2007).

With the aim of studying the identification of novel retrotransposons, their genetic diversity, distribution, activity and evolutionary impacts on Brassica genomes, bioinformatic and molecular approaches were used to characterize the mobile elements in the genome.

3.2 Results

3.2.1 Strategy for mining and characterizing LTR retrotransposons in Brassica

Ninety Brassica BACs (Table 2.4) were screened by dot plot analysis to identify repetitive elements by plotting each BAC against itself. An unbroken diagonal line crossing from one corner to the other shows the homology of the sequence. Two small lines drawn parallel on both sides of the central diagonal line indicates 5^{\prime} and 3^{\prime} LTRs (Figure 3.1) and their associated TSDs were identified by visual inspection. The termini of LTRs were identified, with most having 5^{\prime}-TG....CA- 3^{\prime} termini observed in 95% elements investigated in present work. Total sizes of full length elements and the size of $5^{\prime} / 3^{\prime}$ LTRs were counted and tabulated (Table 3.1). The elements were characterized by structural features and homology basis with known elements. For homology based characterization, the elements were BLAST searched against transposon databases such as Repbase, Gypsy database and Plant Repeat database (TIGR) to characterize them on the basis of homology to the known elements. The Repeat masker of CENSOR software implemented in 'Genetic Information Research Institute’ (GIRI) was used to see the occupancy of elements with known elements.

Very few elements were characterized by homology searches against TE databases and were characterized on the basis of their TSDs, LTRs, organization of PBS and PPT and protein domain organizations. The elements were defined by the same criteria as adopted by several other workers for the characterization of Copia, Gypsy, Pararetroviruses and LARDs-like LTR retrotransposons. The sequences showing $>85 \%$ identity at their nucleotide level over at least 85% in their coding regions were considered belonging to the same family. If the homology was $>95 \%$, they were considered as copies of single element (Wicker et al., 2007; Minervini et al., 2009). A novel family was defined when no homology was identified with known elements, there were complete LTRs, internal protein domains and there was homology to at least another (uncharacterized) sequence (Wang and Liu, 2008). For the nomenclature of identified LTR retrotransposons and new families, the recommendations of Capy, (2005) were followed. Thus BoCOP1 indicates Copia 1 member from Brassica oleracea, BrGYP5 indicates the $5^{\text {th }}$ Gypsy element from Brassica rapa and BoLAR3 represents $3{ }^{\text {rd }}$ LARD element from Brassica oleracea.

Seventy seven full length (intact) retroelements (Table 3.1) from Brassica rapa and Brassica oleracea BAC clones were identified by dot plot analysis belonging to Copia (55), Gypsy (15), LARDs (6) and TRIM (1). These reference elements were used to conduct BLAST searches against the Brassica Nucleotide Collection (nr/nt) database in NCBI before January, 2012. In the database, the searches were performed in several steps to identify the intact, truncated, partial elements, solo LTRs and remnants. First the LTRs were used as a query to find the solo LTRs, which were counted by any single copy in a BAC or multiple copies without any internal region. The intact elements were counted by having two complete LTRs with internal region $>2 \mathrm{~kb}$. In the second step, the complete elements were used as a query to find the full length copies, truncated elements, partial or deleted elements and remnants, which were defined according to the recommendations of Ma et al., (2004). An intact element is one that is terminated by well characterized TSDs and LTRs, with an internal region encoding one or complete protein domains from gagpol genes, and exhibiting identified PBS and PPT sites. Solo LTR refers to an LTR with TSD, or LTRs truncated with small deletions exhibiting $>80 \%$ query coverage and homology. Truncated elements are defined as elements having deletions at 5^{\prime} or 3^{\prime} ends or both ends of LTRs. Partial sequences are the deletion derivatives showing 40-70\% query coverage, with or without LTRs and one or more conserved domains. The term remnants describe the small fragments showing 1-40\% query coverage with strong or weak identity to the retrotransposon sequences. The remnants sometimes include the deleted LTRs, any intact domain or internal region from an element and sometimes many pseudo copies (Figure 2.3). The copy numbers for each superfamily were estimated by the formula. Copy no. $=$ no. in database x genome size/database size (Tu, 2001).

3.2.2 Distribution of LTR retrotransposons in Brassica BACs

The dot plot analysis revealed that some BAC sequences have shown a high activity of LTR retrotransposons, while others have only one or two copies in them or even no copies. It depends on the region of the chromosomes, from where the BAC clone is sequenced. LTR retrotransposons are present both in Brassica rapa and Brassica oleracea BAC clones but maximum activity is seen in Brassica oleracea. The maximum number of elements were observed in BAC AC240090.1, where five Copia and one Gypsy element was detected. The total size of the AC240090.1 is 117.7 kb , while the total size of five elements harbouring in this BAC is $33.3 \mathrm{~kb}, 28.5 \%$ of total BAC sequence (Figure 3.1).

Another BAC clone AC183496.1 contains 4 individual copies of elements, 3 Copia (5063 $\mathrm{bp}, 4616 \mathrm{bp}$ and 4001 bp) and a Gypsy element (11275 bp). The total size of the BAC clone sequence is 385 kb and the total lengths of elements are 25 kb , covering 15.5% of total BAC sequence.

The analysis of each retrotransposon sequence against itself in the dotplot indicated the LTRs, which are variable in sizes in various supefamilies (Copia, Gypsy and LARDs) (Figure 3.2).

Figure 3.1: Dot plot of Brassica oleracea (AC240090.1) BAC sequence against itself to identify LTR retrotransposons. The central diagonal line running from one corner to other shows the homology of the sequence to itself. The boxes on the diagonal line show the position of LTR retrotransposon insertions with LTRs. Five Copia and one Gypsy elements are inserted, with a total size of 33.3 kb out of 117.7 kb BAC size covering 28.5% of total BAC sequence (scales indicate base numbers).

3.2.3 Diversity and abundance of LTR retrotransposons in Brassica genomes

The diversity, evolution and abundance of LTR retrotransposons in Brassica genomes was studied by a combination of bioinformatics and molecular genetics approaches. The reference full length elements (77) and their solo LTRs were used as query against the Brassica Nucleotide Collection (nr/nt) database from NCBI before January 2012, and all full length, truncated, partial elements and their remnants were counted. Around 14904 copies of elements and their fragments belonging to Copia, Gypsy, LARDs and TRIMlike elements were counted. Out of 14904 elements, only 280 are intact elements, of which 206 elements belongs to Copia, 56 from Gypsy, 16 from LARDs and 1 TRIM superfamily (Figure 3.3). A total of 178 truncated elements, 857 partial copies, 101 solo LTRs and 13488 remnants were counted. The ratio of intact elements to solo LTRs in Brassica BAC sequences is $\sim 2: 1$. The remnants covered more than 90% of the copies identified in this study, but due to small sizes they cover less percentage of the genome as compared to intact or truncated copies. A total of 857 partial copies of LTR retrotransposons are present, which approximately cover the same size as full length elements. A total of 16 full lengths and 8 truncated copies of LARDs were collected from blast searches. We have not any precise sequence alignment for the partial copies, truncated elements and the remnants due to their high numbers and degraded sequences but have an approximate estimation of partial copies and fragments based on the length of retrieved sequences against the reference element.

The copy numbers of intact elements from Brassica rapa and Brassica oleracea whole genomes were estimated. A total of 1596 Copia, 540 Gypsy, 110 LARDs and 25 TRIM were estimated for Brassica rapa, while 7540 Copia, 780 Gypsy and 760 LARDs with no TRIM were estimated for Brassica oleracea whole genomes (Figure 3.3). Collectively, 11351 copies of LTR retrotransposons including LARDs and TRIM were estimated from Brassica rapa and Brassica oleracea. The results indicated that Copia superfamily is more diverse and abundant in Brassica as compared to Gypsy followed by LARDs and TRIM (Figure 3.3).

Figure 3.2: Dot plot graphs showing the LTRs in Copia, Gypsy and LARDs. The sequences from elements are plotted against themselves. The central diagonal line showed the homology of the sequences. The parallel lines at the corners are indicating the LTRs. The parallel diagonals line in BrLAR5 indicates ~200bp tandem repeats in that specific region.

Figure 3.3: The graphic representation of copy numbers for each group of LTR retrotransposons identified in Brassica. The strong BLASTN hits for intact elements against Brassica Nucleotide Collection database in NCBI (left) and their estimated copy numbers in whole Brassica rapa and Brassica oleracea genomes (right) are represented.

3.2.4 Phylogenies of LTR retrotransposons from Brassica and other plant genomes

The phylogenetic relationship of 110 reverse transcriptase (RT) domains from Brassica and other known retrotransposons from plants were analysed. Out of 110 RT sequences, 63 were from Brassica LTR retrotransposons identified in this study. The other 47 RT sequences belonging to well known Copia, Gypsy and Caulimovirideae (Pararetoviruslike) superfamilies were collected from Gypsy database having sequences from all types of retrotransposons (Table 2.6). Of 63 Brassica RT, 53 sequences were from Copia and 10 from Gypsy superfamily. The protein sequences from RT regions of all these elements were aligned in CLUSTALW, which have shown some conserved amino acid motifs (Figure 3.13). The tree showed two main lineages separating the Copia and Gypsy superfamilies. A total of 76 families from 110 RT domains were observed. A family is defined when two or more members share $>85 \%$ RT region. The 63 Brassica elements fall into 41 families, of which 35 are Copia and 6 are Gypsy based families. The known elements from different plants assemble into 35 families. The tree generated 9 clades, 6 from Copia and 3 from Gypsy superfamily. The members in a clade range from 5 to 22 elements. The members of Brassica Gypsy are found distributed within the Gypsy clade, with one Brassicaceae specific group and others making family specific subgroups. The Brassica gypsy BoGYP1 share a family with Arabidopsis 'Legolas' while the nonchromodomain elements (BrGYP3, BrGYP4, BrGYP5, BrGYP6, BrGYP7) clustered together with Arabidopsis 'Tat4-1' and 'Tf2' elements (Figure 3.4) suggesting the origin of these elements predating the separation of two genera $\sim 19-20$ Mya.

In contrast to Gypsy, the Copia elements are highly abundant in Brassica genomes. The evolutionary study of Copia RT sequences suggested the clustering of Brassica specific groups. One group of 10 related Brassica (9 B. oleracea, 1 B. rapa) elements were identified in a deep branch, forming a sister group to Vitis vinifera 'Viticol' element. Another group of 12 elements share a Brassica specific clade, where Oryza sativa 'Orycol-2' make an out group. $\mathrm{BrCOP} 4, \mathrm{BrCOP5}, \mathrm{BrCOP17}$ and BoCOP32 share a same group, where BrCOP 4 and BoCOP 32 share a single family, while BrCOP 5 and BrCOP 17 share another family. Another Brassica specific group is observed, where Solanum (Lycopersicon) esculentum 'Tork-4' makes a sister family with BoCOP36 (Figure 3.4). Two Brassica Copia elements share the family with known elements; $\operatorname{BrCOP20}$ shares a family with Brassica Copia 'Melmoth' and BoCOP45 shares a family with 'Araco', a 4.8
kb element from Arabidopsis thaliana. The evolutionary analysis indicated that despite of homology in RT regions, the Brassicaceae members showed genera or species specific clusters (Figure 3.4). The tree also revealed that the known retrotransposons from other plants mostly formed outgroups from Brassica, suggesting only ancient common ancestors.

Figure 3.4: Phylogenetic relationships of LTR retrotransposon families identified in Brassica and other plant LTR retrotransposons. The RT sequences of 110 individual elements were used to construct the phylogenetic tree, which was rooted using the RT sequences of Copia element TylB of Saccharomyces cerevisiae. Out of 110, 63 RT sequences are from Brassica and the remaining 47 are from known retrotransposons collected from Gypsy database (Table 2.6). Neighbour-Joining tree was constructed with 1000 bootstrap replicates in Geneious Pro5.5.6 program. The consensus percentages are given at each node. Two main lineages separate the Gypsy and Copia, where 9 clades are represented and sub-clades are shown by different colours. About 75 families were identified; of which 49 are Copia and remaining 26 are Gypsy. The arrows mark the separation of Copia and Gypsy lineages. Br: Brassica rapa. Bo: Brassica oleracea. Bn: Brassica napus. COP: Copia. GYP: Gypsy. The details for the known elements are given in table 2.6.

Table 3.1: List of Copia, Gypsy, LARDs, and TRIM with their sizes, TSDs, TIRs, positions and orientations in BAC clone sequences. ND: not determined. O.I BAC: Orientation in BAC

Element Name	Superfamily	Accession	Species	Size	TSDs	LTRs	Position in BACs	$\begin{aligned} & \hline \text { O.I. } \\ & \text { BACs } \end{aligned}$
BrCOP1	Copia	AC189222.1	B. rapa	5366	GTGAA	539/541	54707-60072	3'-5'
BrCOP 2	Copia	AC189222.1	B. rapa	4828	ATAAT	312/312	96814-101614	5'-3'
BrCOP3	Copia	AC189446.2	B. rapa	5778	CCTTT	493/493	74000-79760	5'-3'
$\mathrm{BrCOP4}$	Copia	AC166739.1	B. rapa	6020	GTCAT	599/599	2956-8975	3'-5'
BrCOP5	Copia	AC155341.2	B. rapa	4807	CCGTC	180/180	67278-72084	5'-3'
BrCOP6	Copia	AC189472.2	B. rapa	5029	AGTTG	159/159	51849-56877	5'-3'
BrCOP7	Copia	AC189496.2	B. rapa	4481	ATTAG	152/152	72529-77009	3'-5'
BrCOP8	Copia	AC189496.2	B. rapa	4971	CCCTG	385/385	86234-91204	3'-5'
$\mathrm{BrCOP9}$	Copia	AC241035.1	B. rapa	5313	GGATG	407/488	77808-83120	3'-5'
BrCOP10	Copia	AC241108.1	B. rapa	6489	AACCT	306/299	74968-81456	5'-3'
BrCOP11	Copia	AC241191.1	B. rapa	5630	ATTAA	304/304	60038-65667	3'-5'
BrCOP12	Copia	AC241195.1	B. rapa	4672	TATCT	147/147	5590-10261	5'-3'
BrCOP13	Copia	AC241195.1	B. rapa	4117	GTAAG	127/127	54558-58674	3'-5'
BrCOP14	Copia	AC241196.1	B. rapa	4595	AACTT	228/230	2514-29738	5'-3'
BrCOP15	Copia	AC241196.1	B. rapa	4585	CTCTA	172/172	80837-85421	3'-5'
BrCOP16	Copia	AC241197.1	B. rapa	4940	CTCTT	345/345	134939-139878	5'-3'
BrCOP17	Copia	AC241198.1	B. rapa	5010	GAACC	170/170	17376-22385	5'-3'
BrCOP18	Copia	AC241200.1	B. rapa	6096	AAAGT	399/399	46476-52571	3'-5'
BrCOP19	Copia	AC241200.1	B. rapa	4196	CACAA	121/121	61155-65350	5'-3'
BrCOP20	Copia	AC241201.1	B. rapa	4838	GAGGT	182/182	35112-39949	3'-5'
BrCOP21	Copia	AC241201.1	B. rapa	5089	ATAAT	266/266	95924-101012	3'-5'
BoCOP22	Copia	AC149635.1	B. oleracea	8922	TAGCT	579/582	23364-32285	3'-5'
BoCOP23	Copia	AC149635.1	B. oleracea	3757	GACTA	296/296	71762-75458	5'-3'
BoCOP24	Copia	AC183496.1	B. oleracea	5063	GAAGT	429/425	34468-39530	5'-3'
BoCOP25	Copia	AC183496.1	B. oleracea	4616	TCC	221/221	146660-151275	3'-5'
BoCOP26	Copia	AC183496.1	B. oleracea	4001	GTGTA	425/425	251315-255315	3'-5'
BoCOP27	Copia	AC183492.1	B. oleracea	4790	CCCCC	368/368	38224-43014	3'-5'
BoCOP28	Copia	AC183492.1	B. oleracea	6395	CATAC	333/333	50944-57338	5'-3'
BoCOP29	Copia	AC183498.1	B. oleracea	6576	ATATT	288/318	162553-169128	5'-3'
BoCOP30	Copia	AC240087.1	B. oleracea	4682	AGTTT	268/253	71136-75817	5'-3'
BoCOP31	Copia	AC240089.1	B. oleracea	6230	ACAAT	249/249	11346-17575	3'-5'
BoCOP32	Copia	EU568372.1	B. oleracea	6160	TGAAC	577/587	31626-37785	5'-3'
BoCOP33	Copia	EU568372.1	B. oleracea	4660	ACTTT	201/252	56936-61595	5'-3'
BoCOP34	Copia	EU579454.1	B. oleracea	6060	ATTAT	233/244	48881-54940	5'-3'
BoCOP35	Copia	EU579455.1	B. oleracea	4769	ACTAA	392/392	61558-66325	3'-5'
BoCOP36	Copia	AC240081.1	B. oleracea	5108	GCACT	366/366	41065-46172	5'-3'
BoCOP37	Copia	AC240081.1	B. oleracea	4879	TTGTA	170/170	59406-64283	3'-5'
BoCOP38	Copia	AC240082.1	B. oleracea	7097	TAAAT	313/313	2322-9418	3'-5'
BoCOP39	Copia	AC240082.1	B. oleracea	5371	TACAG*	304/293	61467-66837	3'-5'
BoCOP40	Copia	AC240083.1	B. oleracea	4778	AAGAG	370/370	43143-47920	3'-5'
BoCOP41	Copia	AC240084.1	B. oleracea	4690	CCTTA	300/303	66766-71455	5'-3'
BoCOP42	Copia	AC240085.1	B. oleracea	4656	GAACA	264/264	71673-76328	5'-3'
BoCOP43	Copia	AC240087.1	B. oleracea	4682	AGTTT	268/253	71136-75817	5'-3'
BoCOP44	Copia	AC240088.1	B. oleracea	4802	CATTG	321/320	48706-53507	3'-5'
BoCOP45	Copia	AC240088.1	B. oleracea	4706	GACAT	400/400	57933-62638	3'-5'
BoCOP46	Copia	AC240090.1	B. oleracea	4450	CTTTT	366/366	8583-13032	3'-5'
BoCOP47	Copia	AC240090.1	B. oleracea	4616	CTATA	366/366	42364-46979	5'-3'
BoCOP48	Copia	AC240090.1	B. oleracea	6096	TAAAT	257/248	90035-96130	3'-5'
BoCOP49	Copia	AC240091.1	B. oleracea	6096	ATTTA	248/257	28774-34869	5'-3'
BoCOP50	Copia	AC240090.1	B. oleracea	4748	AAGCA	263/263	63073-67820	5'-3'
BoCOP51	Copia	AC240091.1	B. oleracea	4748	TGCTT	263/263	57085-61832	3'-5'
BoCOP52	Copia	AC240092.1	B. oleracea	4763	GAGAC	288/288	15999-20762	3'-5'
BoCOP53	Copia	AC240092.1	B. oleracea	5887	AATAG	200/198	71126-77012	3'-5'
BoCOP54	Copia	AC240093.1	B. oleracea	4703	TATCG	273/273	41973-46475	5'-3'
BoCOP55	Copia	AC240094.1	B. oleracea	6131	AATTA	251/250	36442-41571	3'-5'
BoGYP1	Gypsy	AC240090.1	B. oleracea	9161	CAAAA	2004/2035	27208-36368	3'-5'
BoGYP2	Gypsy	AC183496.1	B. oleracea	11275	GCTGA	1140/1272	283163-294437	3'-5'
BoGYP3	Gypsy	AC183498.1	B. oleracea	11845	GTGTT	471/476	257711-269554	5'-3'
BrGYP4	Gypsy	AC241108.1	B. rapa	11744	GATTC	480/480	31686-43429	5'-3'
BrGYP5	Gypsy	AC189430.2	B. rapa	11872	CTAGG	480/480	107900-119771	5'-3'
BoGYP6	Gypsy	EU579455.1	B. oleracea	11576	ATGGC	508/509	13914-25488	3'-5'

Table 3.1: Continued

Element Name	Super- family	Accession	Species	Size	TSD	LTR	Position	O.I. BAC
BrGYP7	Gypsy	AC232508.1	B. rapa	11664	ATCTT	$506 / 506$	$118772-130435$	$3^{\prime}-5^{\prime}$
BrGYP8	Gypsy	AC241108.1	B. rapa	5094	TGGGG	$331 / 331$	$74345-79439$	$5^{\prime}-3^{\prime}$
BrGYP9	Gypsy	AC241195.1	B. rapa	5900	GATTG	$346 / 339$	$43731-49630$	$3^{\prime}-5^{\prime}$
BrGYP10	Gypsy	AC189263.2	B. rapa	5221	CAAGA	$346 / 346$	$38008-43228$	$5^{\prime}-3^{\prime}$
BrGYP11	Gypsy	AC189218.2	B. rapa	5173	CTCTA	$340 / 343$	$68590-73762$	$5^{\prime}-3^{\prime}$
BrGYP12	Gypsy	AC155338.1	B. rapa	5163	CTTAA	$360 / 360$	$110515-115677$	$5^{\prime}-3^{\prime}$
BoGYP13	Gypsy	AC240081.1	B. oleracea	4168	TGCGC	$199 / 200$	$89533-93700$	$3^{\prime \prime-5}$
BrGYP14	Gypsy	AC189233.2	B. rapa	7195	ATCAT	$1553 / 1553$	$66972-74166$	$3^{\prime}-5^{\prime}$
BrGYP15	Gypsy	CU984545.1	B. rapa	5140	GGGAA	$369 / 369$	$74632-79771$	$5^{\prime}-3^{\prime}$
BoLAR1	LARDs	AC149635.1	B. oleracea	6183	TAATA	$313 / 322$	$8183-14365$	ND
BoLAR2	LARDs	AC183498.1	B. oleracea	6008	TTGTC	$231 / 231$	$301636-307643$	ND
BoLAR3	LARDs	AC183498.1	B. oleracea	5816	CAAAC	$720 / 707$	$337911-343726$	ND
BrLAR4	LARDs	AC189415.2	B. rapa	5670	CATAT	$666 / 666$	$59818-65487$	ND
BrLAR5	LARDs	AC241138.1	B. rapa	7991	GGTGA	$1319 / 1319$	$34978-42986$	ND
BrLAR6	LARDs	AC241195.1	B. rapa	3819	CGATG	$347 / 347$	$36606-40424$	ND
BrTRI1	TRIM	AC155342.2	B.rapa	1323	GAAAT	$257 / 262$	$10377-11697$	ND

3.2.5 Structural features of Ty1/copia elements identified from Brassica rapa

The dot plot analysis of BAC sequences against themselves led to the identification of 55 Copia elements. The Copia are generally smaller than Gypsy elements with a size of $3.7-$ 8.9 kb and average of $4.5-5.5 \mathrm{~kb}$. BrCOP1 was identified from Brassica rapa accession 'AC189222.1'. It is 5.3 kb element generating 5 bp TSDs, flanked by 5 '-541/539-3' bp LTRs (Table 3.1) and has both PBS and PPT down and upstream to 5^{\prime} LTR and 3^{\prime} LTR respectively. The genomic sequence of the element is AT rich (57%), where internal regions are more AT rich as compared to its LTRs (54\%). The gag-pol genes display the 5'-GAG-INT-RT-RH-3' structure (Figure 3.5). A 4.8 kb large element BrCOP 2 was also identified from the Brassica rapa accession 'AC189222.1' flanked by 312 bp LTRs, and displays 5'-GAG-AIR1-ZK-INT-RT-RH-3', where an Arginine methyltransferaseinteracting protein and Zinc knuckle (ZK) motif is present.

BrCOP 3 is 5.7 kb in size displaying PBS and PPT sites and domain organization as 5^{\prime} -GAG-ZK-INT-RT-RH-3', where an extra ZK like motif is incorporated before the integrase (Figure 3.5). BrCOP 4 is 6.0 kb in size, including the 599 bp LTRs and a PBS on downstream of 5^{\prime} LTR and PPT motif towards the upstream of 3^{\prime} LTR. The pol gene encodes domains (5^{\prime}-INT-RT-RH-3'), which clearly characterize this element to Copia superfamily. BrCOP 5 is 4.8 kb in size, flanked by 180 bp LTRs, exhibit the PBS and PPT motifs and a typical Copia domain organization (5'-GAG-INT-PRK-RT-RH-3'). Additionally to typical gag-pol coding domains, $\operatorname{BrCOP5}$ and its homologues show an
extra protein domain between INT and RT called PRK, which is a 2^{\prime} phosphodiesterase $/ 3^{\prime}$-nucleotidase precursor protein (Table 3.2). BrCOP6 is similar to $\mathrm{BrCOP5} 5$ but larger in size with small LTRs and lacking additional PRK domain.

BrCOP7 and $\operatorname{BrCOP8}$ are 4.4 and 4.9 kb in size and flanked by 152 and 385 bp LTRs respectively (Table 3.1). BrCOP7 exhibit both PBS and PPT motifs, while PBS is not detected in BrCOP8. Their domain organization is 5^{\prime}-GAG-INT-PRK-RT-RH-3'. BrCOP9 is 5.3 kb in size, flanked by $488 \mathrm{bp} 5^{\prime} \mathrm{LTR}$ and $407 \mathrm{bp} 3^{\prime} \mathrm{LTR}$. It displays the PBS and a PPT with typical Copia gag-pol genes encoding protein domains as 5^{\prime}-GAG-HVE-INT-RT-RH-3' (Table 3.2). It harbours a Herpes virus envelop-like (HVE) protein domain, which is not observed in any of the other Copia elements investigated (Figure 3.5). The genome of BrCOP 10 is 6.5 kb in size including the $306 \mathrm{bp} 5^{\prime}$ LTR and 299 bp 3^{\prime} LTR. It exhibit PBS and PPT motifs and gag-pol genes encoding the sequences as 5^{\prime} -GAG-INT-RT-RH-3'. The two elements BrCOP 11 and BrCOP 18 showed $>90 \%$ similarity in their RT-domains and are 5.6 and 6.1 kb in size respectively. Both display the PBS and PPT towards downstream and upstream of 5^{\prime} LTR and 3^{\prime} LTR and have the similar protein domain organization of 5^{\prime}-GAG-INT-RT-RH-3'. BrCOP 12 and BrCOP 13 display a genome of about 4.6 and 4.1 kb and are flanked by 147 and 127 bp respectively. Both display typical gag-pol Copia-like polyprotein domains but an extra Phage virion morphogenesis (PVM) protein is incorporated between RT and RH domains in BrCOP 13 (5'-GAG-INT-RT-PVM-RH-3'). BrCOP 14 and BrCOP 15 are same sized Ty1/copia elements identified in Brassica rapa accession 'AC241196.1'. They are 4.6 kb in size, includes the 230 and 172 bp LTRs respectively (Table 3.1).

BrCOP 16 and BrCOP 17 share few structural features. The sizes of the elements are 4.9 and 5.0 kb , including LTRs of 345 and 177 bp respectively. They have PBS next to 5^{\prime} LTR complimentary to $\mathrm{RRNA}_{\mathrm{Met}}$, and 15 bp PPT adjacent to $3^{\prime} \mathrm{LTR}$. BrCOP 19 is a 4.2 kb long element including short LTRs of 121 bp . The gag-pol gene (5^{\prime}-GAG-INT-ETS-RT-RH3^{\prime}) showed the presence of an extra transcription factor (ETS) domain. Two elements BrCOP20 and BrCOP21 were identified in Brassica rapa accession 'AC241201.1'. They are phlogenetically distinct, with different mode of gag-pol domain organization, different types of PBS and PPT motifs and LTRs of variable sizes. BrCOP 20 is 4.8 and BrCOP 21 in 5.0 kb in size and are flanked by 182 and 266 bp LTRs respectively (Table 3.1).

3.2.5.1 Structural features of Ty1/copia elements identified from Brassica oleracea

Interestingly, the largest (BoCOP22) and smallest (BoCOP23) Copias were identified from the same Brassica oleracea accession 'AC149635.1'. BoCOP22 is 8.9 kb , including flanking LTRs of $5^{\prime}-582 / 579-3$ ' bp. It displays a PBS next to 5^{\prime} LTR and a PPT adjacent to 3'LTR with an extra AIR1 domain (5^{\prime}-GAG-AIR1-INT-RT-RH-3'). An additional unrelated sequence/insertion was found towards the C-terminus of RT and RH domains (Figure 3.5). BoCOP23 is 3.7 kb in size, flanked by 296 bp LTRs and 5^{\prime}-RT-RH-3' domains in it. Three retrotransposons were identified from Brassica oleracea accession 'AC183496.1 named BoCOP24, BoCOP25 and BoCOP26, which are 5.0, 4.6 and 4.0 kb in size, flanked by LTRs of 525, 221 and 525 bp respectively. The PBS of BoCOP24 and BoCOP26 are similar and complementary to $\mathrm{tRNA}_{\text {Met }}$ but BoCOP25 exhibits $\mathrm{RNA}_{\text {Trp }}$. The typical gag-pol gene polyproteins domain organization (5^{\prime}-GAG-INT-RT-RH-3') is observed in all except BoCOP25 (Table 3.2). The BoCOP27 have a genome of 4.8 kb including 368 bp LTRs and terminated by a perfect 5^{\prime}-CCCCC- 3^{\prime} TSDs. BoCOP28 and BoCOP29 are 6.4 and 6.6 kb in sizes, flanked by 333 bp and $5^{\prime}-288 / 318-3^{\prime}$ bp LTRs respectively. They exhibit PBS and PPT motifs in their structures and have pol protein gene encoding domains as 5^{\prime}-INT-RT-RH-3'. The genome of BoCOP30 is also similar to BoCOP29, but it is a member of another family. BoCOP31 is 6.3 kb large, terminated by 249 bp LTRs, and displays the PBS and PPT downstream and upstream of 5^{\prime} LTR and 3'LTR respectively (Figure 3.5; Table 3.2).

Brassica oleracea BAC clone 'EU568372.1' harbour BoCOP32 and BoCOP33, which are 6.1 and 4.6 kb in sizes terminated by 5 bp TSDs. Their 5^{\prime} and 3^{\prime} LTRs are variable in numbers, which are $5^{\prime}-577 / 587-3^{\prime}$ bp in BoCOP32 and $5^{\prime}-201 / 252-3^{\prime}$ bp in BoCOP33. The difference in sizes of 5^{\prime} LTR and 3^{\prime} LTR in both elements is due to short insertions/deletions in their other LTRs. Both display the similar type of PBS and PPT motifs with similar gag-pol proteins organization (5'-GAG-INT-RT-RH-3') (Table 3.2). A similar Copia element BoCOP34 was studied from Brassica oleracea accession 'EU579454.1'. The genomic organization of the element display 6.0 kb long element, flanked by $5^{\prime}-233 / 244-3^{\prime}$ bp LTRs. BoCOP35 is a Copia element from Brassica with an average size of 4.8 kb , including the perfect 392 bp LTRs. No identifiable PBS and PPT motifs were detected in this element with 5^{\prime}-GAG-DUF-ZK-INT-RT-RH-3' domain organization (Table 3.2).

Two retroelements BoCOP36 and BoCOP37 were found in Brassica oleracea accession 'AC240081.1', which are 5.1 and 4.9 kb in sizes, flanked by 366 and 170 bp LTRs respectively. The Brassica oleracea accession 'AC240082.1' harbours two elements named BoCOP38 and BoCOP39, which are 7.1 and 5.3 kb long. The elements have LTRs of 313 bp and $5^{\prime}-293 / 304-3^{\prime}$ bp respectively. No PBS was detected in BoCOP38, while BoCOP39 exhibit both PBS and PPT motifs (Table 3.2). BoCOP41, BoCOP42 and BoCOP43 are around 4.6 kb in sizes, flanked by 300, 264 and 268 bp LTRs respectively. They have gag-pol protein domains 5^{\prime}-GAG-INT-RT-RH-3' and exhibit PBS next to 5^{\prime} LTR and PPT adjacent to 3^{\prime} LTR, but PBS is lacking in BoCOP43. While screening the Brassica oleracea BAC clone accession 'AC240088.1', two Copia elements named BoCOP44 and BoCOP45 were identified displaying 4.8 and 4.7 kb sizes, flanked by 320 and 400 bp LTRs respectively. The LTRs flanked the internal region displaying a typical PBS and a PPT strand towards the downstream of 5^{\prime} LTR and adjacent to 3^{\prime} LTR. They exhibit a typical Copia-like pol domain structures 5^{\prime}-INT-RT-RH-3', where an additional unknown protein (UKP) is present in BoCOP44 and a ZK motif in BoCOP45 (Table 3.2).

The elements BoCOP46, BoCOP47, BoCOP48 and BoCOP50 are detected in Brassica oleracea accession AC240090.1 (Figure 3.1). BoCOP46 and BoCOP47 are about 4.5 and 4.6 kb in size, belonging to the same family and are flanked by 366 bp LTRs. BoCOP48 and BoCOP49 are similar elements present in opposite orientations in two different Brassica oleracea accession (AC240090.1, AC240091.1). These elements represent a genomic size of about 6.1 kb flanked by LTRs of $5^{\prime}-248 / 257-3^{\prime} \mathrm{bp}$. They display a similar PBS and PPT motifs with pol region encoding RH domain only (Table $3.1 \& 3.2$). This indicates that the other protein domains were lost by during the rearrangement of the element in the evolutionary phases. The members of BoCOP50, BoCOP51 and BoCOP52 were identified from Brassica oleracea accessions 'AC240090.1', 'AC240091.1' and 'AC240092.1' respectively. BoCOP50 and BoCOP51 are homologous and share same family, while BoCOP52 makes a sister family. The genome of these elements is 4.7 kb in size, including LTRs of 263-288 bp and showing the typical PBS and PPT motifs. The PBS used the $\mathrm{tRNA}_{\text {Met }}$ in all the three elements. The gag-pol domain organization is 5^{\prime} -GAG-INT-RT-RH-3'. The genome of BoCOP53, BoCOP54 and BoCOP55 is about 5.9, 4.7 and 6.3 kb in sizes, including LTRs of about 200, 273 and 251 bp respectively with an internal region having gag-pol gene polyproteins (5^{\prime}-GAG-INT-RT-RH-3') with additional 'DUF' in BoCOP55 (Figure 3.5; Table 3.2).

Figure 3.5: Structures of Copia elements in Brassica. The red discs at the ends represent the TSDs. LTRs are shown in blue. The gag and pol regions are drawn with their protein domains. The scale below is measuring the lengths of the elements (bp). Additional insertions are highlighted by green. AP: Aspartic protease. RT: Reverse transcriptase. INT: integrase. GAG: gag-nucleocapsid. ZK: zinc knuckle. DUF: domain of unknown function. AIR1: Arginine methyltransferase-interacting protein. UN: unknown.

3.2.5.2 Protein domain organization of gag-pol genes in Brassica Copias

The genome organization of gag-pol proteins were analyzed in 55 intact Copia elements (Table 3.2) identified here. Two major types of gag/pol domain organization were observed with other 8 sub-patterns with one or other additional or deleted domains in pol regions. The canonical Copia elements have 5'-GAG-INT-RT-RH-3' domain organization. Out of 55 elements, 50 showed this arrangement with or without other additional domains. The other main type of domain organization is observed in elements, which lack gag gene but exhibit pol only. The sub-patterns include an additional domain in pol or lack of one or more domains. The domain organization such as 5^{\prime}-RT-3', 5^{\prime}-RH$3^{\prime}, 5^{\prime}$-RT-RH-3' and 5^{\prime}-INT-RT- 3^{\prime} was shown by few elements. The elements displaying this kind of domain organizations are considered as deleted elements, with deletion of one or more domains by chromosomal rearrangement or other factors. If the elements have lost their RT region, then they are considered as non-autonomous as they cannot further replicate and move within the genome. Around 16% of elements have shown an extra ZK domain in gag gene upstream to INT domain (5^{\prime}-GAG-ZK-INT-RT-RH-3'), while the remaining elements have shown extra protein domain within pol polyprotins as 5^{\prime}-INT-ETS-RT-RH-3', 5'-DUF-INT-RT-RH-3' and 5'-INT-UTP-RT-RH-3' (Table 3.2).

Table 3.2: List of Brassica retrotransposons with PBS, PPT motifs and gag-pol gene protein domains. AP: Aspartic protease. RT: reverse transcriptase. INT: integrase. ZK: zinc knuckle. ZF: zinc finger. CHR: Chromodomain. HVE: Herpes virus envelop. CHR: Chromatin organization modifier. PVM: Phage virion morphogenesis. ETS: ETS-domain transcription factor. UKP: Unknown protein. DUF: Protein of Unknown function. AIR1: Arginine methyltransferase-interacting protein. NAD: NADH dehydrogenase subunit. PRK: bifunctional 2', 3'-cyclic nucleotide 2'-phosphodiesterase/3'-nucleotidase precursor protein. HVW: Herpes virus major outer envelope glycoprotein (BLLF1); TLC: TLC domain. CL: Copia-like.

Element Name	tRNA type	PBS ($5^{\prime}-3^{\prime}$)	Position	PPT (5'-3')	Position	Domain Structure (5'3')
BrCOP1	Met	TATCAGAGCCAGGTT	572-586	AGAGAAAGATGGAAG	4803-4817	GAG,INT,RT,RH
BrCOP2	Thr	GCTTTACGTTTGAGAG	328-347	ATGATTAAGGAGGAG	4497-4511	$\begin{aligned} & \text { GAG,AIR1,ZK,INT,RT, } \\ & \text { RH } \end{aligned}$
BrCOP3	Met	TATCAGAGCACAGTTGATCG	504-524	GAGAGACGAAGTAGA	5219-5233	GAG,ZK,INT,RT,RH
BrCOP 4	Met	TATCAGAGCCAGGTT	608-622	AAGCTTGAGGGGGAG	5402-5416	GAG,INT,RT,RH
BrCOP5	Tyr	TCCGCTACCAAAAGTTCG	236-255	GGAGTATTAGGAAAG	4634-4802	GAG,INT,PRK RT,RH
BrCOP6	Met	GTATCAGAGCATTTCTTT	267-284	CATCTTGAGGGGGGG	4851-4865	GAG,INT,RT,RH
BrCOP7	Thr	AGACTGTTCTTGAATGAGTTG	195-216	AGAAGAGCAGAGAAG	4236-4250	GAG,INT,RT,RH
BrCOP8	ND	----		AGAGATGGAGGAGCG	4537-4551	GAG,INT,RT,RH
BrCOP9	Gln	AGGTCTTCACCGGTAAGGATT	262-282	GGTTGAGAGTATAGA	4544-4558	GAG,HVE,INT,RT,RH
BrCOP10	*Trp	TAAATCCCTGAGACCTAAATC	333-353	GAATGTTATAAAGAA	6182-6196	GAG,INT,RT,RH
BrCOP11	*Pro	TATAGTTGATAGAATCTTG	310-327	AGAGAGGTGAAGACA	5233-5247	GAG,ZK,INT,RT,RH
BrCOP12	Met	AACCTCTCTCCCGTGCCCA	212-220	CCTCCACCCCTTCTC	4444-4458	GAG,INT,RT,RH
BrCOP13	*Thr	TGCCTCCAAGCTAAAACGAT	170-190	AAGACTGCGGGGGAg	3971-3985	GAG,INT,RT,PVM,RH
BrCOP14	Leu	GAGCATTCTATTGAATT	247-264	TAAGGGGGAGAATGT	4349-4363	GAG,INT,RT,RH
BrCOP15	Gln	AGCGTTCCAAACCGAGTCCTT	225-245	ATGGATCGAAAGGTG	4383-4397	GAG,INT,RT,RH
BrCOP16	*Met	TATCAGAGCTCAGCAAGT	354-371	GAGTTTGCGAGGGGA	4576-4590	GAG,INT,RT,RH
BrCOP17	Met	TATCAGAGCACAAAATTC	179-196	CAACTTGAGGGGGAG	4821-4835	GAG,INT,RT,RH
BrCOP18	Met	TATCAGAGCCAGGTT	410-424	AGAGAGACGGAGAAG	5644-5658	GAG,ZK,INT,RT,RH
BrCOP19	Val	GGCTTCGTCATGGTGTCG	201-218	GGTCTAGGAGCAAAG	4045-4059	GAG,INT,ETS,RT,RH
BrCOP20	Arg	ATCTTGCCAATGAGTGCG	224-241	AGCGAGAAAAAGAAA	4590-4604	GAG,INT,RT,RH
BrCOP21	Met	TATCAGAGCCAGGTT	277-292	TATCAGAGCCAGGTT	4751-4765	GAG,INT,RT,RH
BoCOP22	Leu	GACAGCTACAGTGAGATGTT	652-672	TAAAAAGGGGGAGAT	8324-8334	GAG,AIR1,INT,RT,RH
BoCOP23	ND		----	ND	----	RT,RH
BoCOP24	Met	TATCAGAGCCTGAGTTACG	440-458	AAGACAGAAGACAGA	4593-4607	GAG,INT,RT,RH
BoCOP25	Trp	CATCTCTTTGAATTTG	284-301	GATATCAATAAGAAG	4375-4389	GAG,ZK,INT,RT,RH
BoCOP26	Met	TATCAGAGCTGAGGTT	437-452	AGGACAAGGAGGAGA	3555-3569	RT,RH
BoCOP27	ND			GGGAAGGGGGAGATT	4404-4418	GAG,ZK,INT,RT,RH
BoCOP28	Arg	CGGTCCCCAAGGAGAGT	378-394	CCTCTACTATTATTT	5964-5978	GAG,INT,RT,RH,
BoCOP29	Ser	CGTTATCAGCACGATCG	294-311	GCATCAAAGGGGGAG	6239-6253	GAG,INT,RT,RH
BoCOP30	ND		----	GAAGTAAAGGAAGAA	4678-4682	GAG,INT,RT,RH
BoCOP31	Lys	ATCACTCTGCGATTCG	268-284	GAGAGCGGATAGTGA	5942-5956	GAG,DUF,INT,RT,RH
BoCOP32	Met	TATCAGAGCCAGGTT	586-600	AAGCTTGAGGGGGAG	5554-5568	GAG,INT,RT,RH
BoCOP33	Met	TATCAGAGCAAAATCT	262-277	AAGGAGATGCGAGAG	4670-4674	GAG,INT,RT,RH
BoCOP34	Thr	CGTTATCAGCACGATT	234-254	ACATCCAAGGGGGAG	5797-5811	GAG,INT,RT,RH
BoCOP35	ND		----	ND		$\begin{aligned} & \text { GAG,DUF,ZK,INT,RT, } \\ & \text { RH } \end{aligned}$
BoCOP36	Met	TATCAGAGCTTCGGGTT	378-394	AGTCAAGGTGGGGAG	4722-4736	GAG,INT,RT,RH
BoCOP37	Met	TATCAGAGCAGAAAGATTC	179-197	CAACTTGAGGGGGAG	4689-4703	GAG,INT,RT,RH
BoCOP38	ND		--	AGGTGGAGAGCACAA	6751-6765	GAG,INT,RT,RH
BoCOP39	Ser	CGTTGTCAGCACGATTACG	299-317	GCATCCAAGGGGGAG	5048-5062	GAG,INT,RT
BoCOP40	Met	TATCAGAGCCAGGTT	381-395	GGGAAGGGGGAGATT	4389-4403	GAG,ZK,INT,RT,RH
BoCOP41	Met	TATCAGAGCCTGAGTT	301-316	AAGGAAATGAGAGAC	4324-4338	GAG,INT,RT,RH
BoCOP42	Met	TATCAGAGCGTTAGGTTACG	275-294	AGCTCAAGAGAGAGA	4390-4404	GAG,INT,RT,RH
BoCOP43	ND		----	GAAGTAAAGGAAGAA	4387-4401	GAG,INT,RT,RH
BoCOP44	ND		----	GGAAAGGGATAAGGG	4416-4430	GAG,INT,UKP,RT,RH
BoCOP45	Met	TATCAGAGCTACAAGTTCC	409-427	AAGTTTAAGAGGGGG	4284-4298	GAG,ZK,INT,RT,RH
BoCOP46	Met	TATCAGAGCTTCGGTTT	378-395	AGTCAAGGTGGAGAA	4064-4078	RT
BoCOP47	Met	TATCAGAGCTTCGGGTT	378-394	AAGTCAAGATGGAGA	4229-4243	GAG,ZK,RT
BoCOP48	Leu	TGTCATAACCATATAGGGTTT	275-295	AAGGGCCGGAAGAGA	5761-5775	RH
BoCOP49	Leu	TGTCATAACCATATAGGGTTT	275-295	AAGGGCCGGAAGAGA	5761-5775	RH
BoCOP50	Met	TATCAGAGCCATTCA	274-290	AAAGAGATGAGAGAC	4413-4427	GAG,INT,RT,RH
BoCOP51	Met	TATCAGAGCCATTCA	274-290	AAAGAGATGAGAGAC	4413-4427	GAG,INT,RT,RH
BoCOP52	Met	TATCAGAGCTCCAGGTTTCG	298-317	AATTAAGGGGGAGAA	4457-4471	GAG,INT,RT,RH
BoCOP53	*Met	TGTCATAACCATACAGGGATT	218-238	AAACATAAAGAGTCA	5659-5673	GAG,INT,RT,RH
BoCOP54	Met	TATCAGAGCAACTAGGT	284-300	AAAGAAGATATGAAG	4397-4411	GAG,INT,RT,RH
BoCOP55	Pro	TATCATGTTATAATTG	313-331	AAGAGCGGATAGTGA	5880-5854	GAG,DUF,INT,RT,RH

Table 3.2: Continued

Element Name	tRNA type	PBS ($5^{\prime}-3^{\prime}$)	Position	PPT (5'-3')	Position	Domain Structure ($5^{\prime}-3^{\prime}$)
BoGYP1	Met	TATCAGAGCGGGTTCCG	2107-2124	ATTAGTGGGGGAGAA	7138-7152	GAG,TLC,AP,RT,RH,INT
BoGYP2	Cys	AGGTCCCAATGCGTGGT	1185-1201	ND	----	GAG,AP
BoGYP3	Lys	CGCCCATCGTGGGGCT	486-501	GTGAACTGGAGGGGA	11345-11359	GAG,AP,RT,RH,INT
BrGYP4	Lys	CGCCCACCGTGGGGCT	491-506	GAACTGGGGGGGGAC	11241-11255	GAG,AP,RT,RH,INT
BrGYP5	Lys	CGCCCACCGTGGGACCG	491-508	GAACTGGGGGGGGAC	11369-11383	GAG,AP,RT,RH,INT
BoGYP6	Lys	CGCTCACCGTGGGATCA	520-537	ACTGGGGGGGGGGGG	11044-11058	GAG,RT,RH,INT
BrGYP7	Lys	CGCCCACCGTGGGGC	517-531	GATGGACTGGGGGGA	11134-11148	GAG,AP,RT,RH,INT
BrGYP8	Phe	TGCGGTGACTCGATCG	343-360	AAGCTTGAGGACAAG	4722-4736	GAG,AP,RH,INT, CHR
BrGYP9	Tyr	TTCGAACCTCGGAATC	361-378	GGGAGAAGAAGAAGC	5452-5466	GAG,AP,RT,RH,INT,CHR
BrGYP10	Tyr	TTCGAACCTCGGAATC	368-385	GGGAGAAGAAGAAGC	4773-4787	GAG,AP,RT,RH,INT,CHR
BrGYP11	Arg	CGATTCTACTCGTGATC	371-387	GTACGGGAGGGGACC	4814-4828	GAG,AP,RT,RH,INT,CHR
BrGYP12	Met	TATCAGAGACCTTTAAATTA	371-390	GTACGGGAGGGGACC	4784-4798	GAG,ZK,AP,RT,RH,ZF,INT
BoGYP13	Tyr	CGGATGAGCAGCGGCTGTG	196-214	AAGTAAAAGAATAAG	3939-3953	GAG,AP
BrGYP14	ND	----	----	AAAAGAAAATAAAAA	5552-5566	GAG,AP
BrGYP15	-Ser	CGAATCCTTCT-CACCCG	4742-4759	GCTTTGCTACGCTCC	388-402	GAG,AP,RT,RH,INT
BoLAR1	ND	----	----	GCATCCAAAGGAGAG	5842-5856	UD
BoLAR2	ND	----	----	ND	----	UD
BoLAR3	Met	TATCAGAGCGCTGGTT	718-733	AAAGGAAGGTAGAGA	5047-5061	UD
BrLAR4	Met	TATCAGAGCGCTGGTT	677-692	AAGGGAAGGTAGAGC	4955-4969	UD
BrLAR5	ND	----	----	ND	----	UD
BrLAR6	Cys	GGTCCCTCCGGGTTTG	353-369	AAGACACACAAATAA	3377-3391	UD
BrTRII	Lys	TGTTCATTGGTGGTG-TTG	331-349	GGGGAGTATTAGAGA	1056-1070	UD

3.2.5.3 PBS and PPT of Brassica Copia elements

The PBS towards the downstream of 5^{\prime} LTR and PPT located adjacent to 3^{\prime} LTR were investigated in all Copia elements (Table 3.2). The PBS and PPT were identified by scanning each intact element with parameter 'Predict PBS by using Arabidopsis thaliana tRNA database' in LTR_FINDER. Out of all the elements investigated for the presence of PBS and PPT, 85% have shown the presence of both PBS and PPT, 12% have shown no PBS and only 3% have shown no PPT. The PBS and PPT from BoCOP23 and BoCOP35 was not detected. No PBS was detected from BrCOP8, BoCOP27, BoCOP30, BoCOP38, BoCOP43 and BoCOP44 by scanning them against Arabidopsis thaliana, Zea mays and Oryza sativa tRNA database'. Eleven different tRNA types were used by PBS of Copia elements. The most frequently use type was $\mathrm{RNAA}_{\text {Met, }}$ which was present in 45% of the elements. The second important primer type was $\mathrm{tRNA}_{\text {Thr, }}$, which was present in 9% of the elements. The nucleotide sequences and positions of both PBS and PPT in all elements were defined and enlisted. It was observed that in majority of the elements, the PBS and PPT starts immediately after ending or before starting the 5^{\prime} LTR and 3^{\prime} LTR respectively, while in few cases, they are few bp to $\sim 200 \mathrm{bp}$ apart from the end and start of LTRs (Table 3.2).

3.2.5.4 Diversity and distribution of Copia retrotransposons in Brassica accessions

The diversity and distribution of various Copia elements among 40 Brassica cultivars/accessions were studied by PCR analysis using newly developed markers (reverse transcriptase amplification polymorphism; RTAP), where RT-specific primers were designed to amplify the elements. Eleven sets of primers (Table 3.3) were designed to amplify the RT regions of respective Copia families among Brassica crops. Primer set BrCOP2F and BrCOP2R was designed to amplify a 710 bp RT region of BrCOP 2 family. The results showed the amplification of RT regions from 37 cultivars from six Brassica diploid and allotetraploid species from the 'Triangle of U ' and hexaploid Brassica (Table 2.1). The amplicons were observed in Brassica rapa (Pak Choy, Chinese Wong Bok, San Yue Man, Hinona, Vertus, Suttons), Brassica oleracea (De Rosny, Kai Lan, Early Snowball, Cuor Di Bue Grosso, Precoce Di Calabria, GK97361), Brassica juncea (NARC-I, NATCO, NARC-II, Kai Choy, Megarrhiza, Tsai Sim, W3, Giant Red Mustard, Varuna), Brassica napus (New, Mar, Fortune, Drakker, Tapidor), Brassica carinata (Addis Aceb, Patu, Tamu Tex-Sel Greens, Mbeya Green, Aworks-67, NARC-PK) and 4 synthetic hexaploids Brassica. No amplification was seen in Brassica nigra except HRIGRU010919, showing absence of these elements and a separate history (Figure 3.6a).

The amplification of $\operatorname{BrCOP5}$ revealed the A-genome specificity of the element. The primer pair BrCOP5F and BrCOP5R amplified 709 bp RT products from 23 Brassica accessions: the A-genome diploids and polyploids (AABB, AACC, AABBCC). All 6 Brassica rapa and 9 Brassica juncea amplified bands, while only 5 Brassica napus amplified the expected bands. No amplification from Brassica oleracea and Brassica carinata except 'NARC-PK' suggests its absence in C-genome. Two hexaploids out of 4 also generated the bands (Figure 3.6b). The amplification polymorphisms of BrCOP 9 and BrCOP11 showed their A-genome specificity, where Brassica rapa and its polyploids amplified the products while C-genome lack these elements. Both elements amplified 26 products from Brassica rapa and its polyploids, with no amplification observed in most Brassica oleracea and Brassica carinata (Figure 3.6c \& d). The amplification of 690 bp RT-products of BrCOP12 revealed its diversity and abundance in almost all Brassica genomes including Brassica nigra (BB) genome. The expected product was amplified from all Brassica diploids and polyploids (40 cultivars), except Brassica nigra 'HRIGRU010978' (Figure 3.6e).

Figure 3.6: PCR analysis for the detection of Copia RT polymorphisms across 40 cultivars in Brassica. Dark arrow heads at right are indicating the expected product sizes. The amplification of a) BrCOP 2 b) BrCOP 5 c) $\mathrm{BrCOP9}$ d) BrCOP 11 e) BrCOP 12 . (PCR figures show reversed images of size-separated ethidium bromide-stained DNA on agarose gels after electrophoresis; ladders show fragments sizes in base pairs; numbers at the base indicate accessions of the species indicated from Table 2.1).

The C-genome specific Copia elements were also observed in our study. The amplification of 703 bp RT region of BoCOP 25 revealed its C-genome specific nature and was amplified by primer pair BoCOP25F and BoCOP25R. Out of 40 Brassica lines tested, the product was amplified from 30 lines. All the Brassica oleracea (De Rosny, Kai Lan, Early Snowball, Cuor Di Bue Grosso, Precoce Di Calabria, GK97361), Brassica napus (New, Mar, Fortune, Drakker, Tapidor), Brassica carinata (Addis Aceb, Patu, Tamu Tex-Sel Greens, Mbeya Green, Aworks-67, NARC-PK) and 4 hexaploids Brassica amplified the element. Weak bands were amplified from Brassica rapa (Hinona, Suttons) and Brassica juncea (NARC-I, Tsai Sim, W3, Giant Red Mustard) cultivars. No amplification in Brassica nigra suggests separate line of evolution (Figure 3.7a). The PCR amplification of BoCOP27 and BoCOP37 revealed their high abundance and distribution among Brassica crops. The elements amplified 39 and 36 products from a collection of 40 Brassica genomes. The BoCOP27 is distributed in all Brassica except 2 Brassica nigra and a Brassica napus cultivar. The BoCOP37 amplified the RT regions from all Brassica species except Brassica nigra (Figure 3.7b \& c).

The amplification polymorphisms of BoCOP44 by primers BoCOP44F and BoCOP44R (Table 3.3) showed its abundance and distribution in all Brassica species. This suggests that the elements are very ancient, which were present in a common ancestor before the separation of B and A/C genomes. Out of 40 cultivars tested, 38 yielded the product while only two (Brassica rapa; 'Hinona' and Brassica nigra; 'HRIGRU011011') failed to generate the products (Figure 3.7d). The amplification of 711 bp RT domain of BoCOP51 indicated its random and patchy distribution among Brassica crops, with a high diversity and proliferation in Brassica oleracea and C-allele containing polyploids. All except 1 Brassica oleracea (Cuor Di Bue Grosso) amplified the expected products. Eight Brassica juncea, four Brassica napus, five Brassica carinata and two synthetic hexaploid Brassica cultivars also generated the RT bands suggesting the abundance and distributions among Brassica genomes. Only 2 Brassica rapa accessions (Chinese Wong Bok, Vertus) amplified the BoCOP51 RT-domain showing weak product signals (Figure 3.7e).

Figure 3.7: PCR analysis for the detection of Copia RT polymorphisms across 40 cultivars in Brassica. Dark arrow heads at right are indicating the expected product sizes. The numbers at the base are indicating the cultivars (Table 2.1). The amplification of a) BoCOP25; b) BoCOP27; c) BoCOP37 d) BoCOP44; e) BoCOP51.

Table 3.3: List of Primers to amplify the RT regions of Brassica Copia, Gypsy and LARDs-like LTR retrotransposons. The expected product sizes and primers sequences are also given.

No.	Superfamily	TE family	Product size	Primer name	Primer Sequence
1	Copia	BrCOP2	710	BrCOP2F	GACGTGGGAACTAGTGGAC
				BrCOP2R	CACTCTTGCTGTCTCGCATC
2	Copia	BrCOP5	709	BrCOP5F	TCTCTCTTCCGAAAGGCAAG
				BrCOP5R	TCCATGGGAATAGTGACTGG
3	Copia	BrCOP9	715	BrCOP9F	AGGGGAGTGGAGACAGGAG
				BrCOP9R	CCTTGGTGCCATATCAACCT
4	Copia	BrCOP11	650	BrCOP11F	CAGCTTTGCAATCTGTCATG
				BrCOP11R	GGGAATTCCAGGAGTTGAAG
5	Copia	BrCOP12	690	BrCOP12F	CATTGTTGGTTGCAGGTGGA
				BrCOP12R	CACATGGGTGTTGGCATAGG
6	Copia	BoCOP25	703	BoCOP25F	CATTGCACGATCCCATTCCG
				BoCOP25R	TGGGATCTCGTTGAACTACC
8	Copia	BoCOP27	720	BoCOP27F	ATGTCCACCAAGTGGAGTGC
				BoCOP27R	CAAAAGGAAAGAGAGCCTT
9	Copia	BoCOP37	722	BoCOP37F	TGAGCTCCACTGGTACATAG
				BoCOP37R	GGAGGTTGCTACTCTTCCTC
10	Copia	BoCOP44	715	BoCOP44F	AGGCAGAGGAGTAGGCATTG
				BoCOP44R	GGTGCCACCAACTGAAGATA
11	Copia	BoCOP51	711	BoCOP51F	GGATTACATTCTGCCATTCC
				BoCOP51R	CAGAACATGGGATCTCGTTG
12	Gypsy	BoGYP1	521	BoGYP1F	AATCACATGGCCCAAAAATC
				BoGYP1R	GGCCGAGTACTTCACTGTGG
13	Gypsy	BrGYP5	562	BrGYP5F	AGGTTACTCGGTGCAGGTTC
				BrGYP5R	TTCCTCGCTGTGTGACAATG
14	Gypsy	BrGYP9	598	BrGYP9F	AACCGCTTTAACCTTGTTAG
				BrGYP9R	GGTTCAAAGTCTGTTGGATG
15	Gypsy	BrGYP12	770	BrGYP12F	CCCCCTTCGAGATATACAGC
				BrGYP12R	AGAAAGAGGCAAGTCCGTGA
16	Gypsy	BrGYP15	421	BrGYP15F	CGAGCAATCAACAAGATAAC
				BrGYP15R	GTACTTCTGAAGCGCCGAAC
17	LARDs	BoLAR3	680	BoLAR3F	TCTATCGGTTTCCTGCAAGC
				BoLAR3R	TCTCTCAGCCAAGGAGAAAG
18	LARDs	BrLAR5	1295	BrLAR5F	CACGACGGAATCAATGTTTTG
				BrLAR5R	GAACCGAAATTCGCACTGTC

3.2.5.5 Evolutionary relationship of Brassica Copia elements

The phylogenetic relationship of 138 Copia-RT sequences was performed by aligning the most conserved regions (Figure 3.8 \& 3.14). The tree was generated by Neighbour-Joining method with 1000 bootstrap values and genetic distance was calculated with Jukes-Cantor model implemented in Geneious software. Arabidopsis thaliana Copia 'Araco' was used to root the tree. Two major clades were found representing 33 and 105 sequences, which further showed 18 sub-clades or groups. Each sub-clade represents the clustering of sister families. The representatives of BrCOP 2 family clustered in one sub-clade. BrCOP 7 and BrCOP 13 clustered together in the same group. $\mathrm{BrCOP} 8, \mathrm{BrCOP} 9$ and BrCOP 16 make sister families. $\mathrm{BrCOP} 1, \mathrm{BrCOP3}, \mathrm{BrCOP11}$,BrCOP 18 and BoCOP26 clustered in the same group representing their respective families. $\mathrm{BrCOP} 4, \mathrm{BrCOP6}$ constitute sister families with $\operatorname{BoCOP} 32$ and sharing the same group. $\mathrm{BrCOP5}, \mathrm{BrCOP} 17$ makes sister
families with $\operatorname{BrCOP} 37$ family. The elements BoCOP30 and BoCOP43 share the same family. The largest group is represented by 15 retroelements, where $\operatorname{BrCOP} 14$, BoCOP25/BrCOP25, BoCOP30, BoCOP33 and BoCOP43 grouped together. BoCOP23, BoCOP41, BoCOP42 and BoCOP52 clustered in one group. BoCOP45 and its homologues from Brassica rapa BrCOP 45 out grouped from other Brassica families and come closer to the Arabidopsis 'Araco' element (Figure 3.8). Due to high homology in the RT regions of various Copia families, few families make their family specific group, while others were distributed in their respective clade. No species specific group was observed, indicating the presence of these elements in A and C-genome predating their separation.

Figure 3.8: Phylogenetic analysis of 138 Brassica Copia-RT sequences. The tree was generated with Neighbour-Joining method implemented in Geneious Pro5.5.6. The tree is based on 1000 bootstrap values (\% value shown at nodes) and a Jukes-Cantor model is used to calculate genetic distance. Arabidopsis thaliana Copia Araco was used to root the tree. Two major lineages split the elements into 18 clades shown by different colours. Br: Brassica rapa. Bo: Brassica oleracea. Bn: Brassica napus. COP: Copia.

3.3 Overview of Gypsy retrotransposons

Fifteen full lengths Gypsy retroelements were detected in Brassica. The elements range in sizes from 4.1 kb to 11.9 kb , with flanking LTRs ranging from 199 to 2035 bp . The 4.1 kb BoGYP13 is a non-autonomous element, while the autonomous Gypsy elements range in sizes from about 5.0 kb up to 11.9 kb . Two major groups of elements can be distinguished on the basis of their sizes, one group representing the small sized elements ($5.0-5.9 \mathrm{~kb}$) and the other group represents large sized Gypsy (11.2-11.9 kb) elements (Table 3.1). Most elements have generated perfect and equally sized LTRs but in a few (BoGYP1 and BoGYP2) variable sized LTRs were detected. This unequal size is due to the uneven activity of small repeat sequences in their 5 'LTR. Almost all the elements have shown the perfect 5 bp TSDs, which in most cases are GC rich in contrast to AT rich Copia TSDs. With the exception of BoGYP2, BoGYP13 and BrGYP14, all other are complete autonomous elements, showing the gag-pol protein domains. Around 95% of the Gypsy elements encode the PBS and PPT in their internal sequences downstream and upstream to 5'LTRs and 3'LTRs respectively.

The knowledge about the diversity of Gypsy in Brassica was further extended by using initially identified 15 reference elements as query in blast searches to find the total numbers of full length elements and their copies. Around 2324 hits were received in BLASTN searches, of which 56 were intact elements, 17 were truncated copies, 103 partial segments, 39 solo LTRs and 2109 remnants. The copy numbers of intact elements for Brassica rapa and Brassica oleracea Gypsy elements were estimated, which were 540 and 780 respectively in the total genomes (Figure 3.3).

3.3.1 Characterization and structural features of Gypsy superfamily

Although less abundant in comparison to Copia, Gypsy elements make a major proportion of Brassica genomes. The sizes of Gypsy elements were found to be 2 fold larger than the Copia elements with largest elements 11.8 kb (BoGYP3) in size while the non-autonomous (pol region deleted) BoGYP13 is only 4.1 kb large in size. A Gypsy was identified from Brassica oleracea accession 'AC240090.1', named as BoGYP1. The structure of BoGYP1 is about 9.1 kb in size, flanked by $2035 \mathrm{bp} 5^{\prime} \mathrm{LTR}$ and $2004 \mathrm{bp} 3^{\prime} \mathrm{LTR}$. The LTRs from this element are considered to be the largest LTRs in Brassica genome in present study
(Figure 3.9; Table 3.1). BoGYP1 displays a PBS complimentary to RRNA $_{\text {Met }}$ towards the downstream of 5^{\prime} LTR and a PPT adjacent to 3^{\prime} LTR, typical Gypsy-like gag-pol polyproteins structures 5^{\prime}-TLC-GAG-AP-RT-RH-INT-3', where an additional TLC domain is integrated downstream to PBS. A defective element (pol region deleted) BoGYP2 is about 11.3 kb in size, flanked by $1272 \mathrm{bp} 5^{\prime}$ LTR and 1140 bp 3 'LTR. The element has shown the deleted pol gene and lacking RT, RH and INT domains (Table 3.1). BoGYP3, BrGYP4 and BrGYP5 are 11.8, 11.7 and 11.8 kb in size with $471-480$ bp LTRs flanking the internal region. The internal regions from the elements display PBS with complimentary to $\mathrm{tRNA}_{\text {Lys. }}$ The typical gag-pol organization of non-chromodomain bearing Gypsy (5^{\prime}-GAG-AP-RT-RH-INT-3') is studied. All the elements display a PPT of 15 bp adjacent to their 3'LTRs (Table 3.2). BoGYP6 and BrGYP7 are about 11.5 and 11.6 kb long elements, flanked by 509 and 506 bp LTRs respectively. BoGYP6 is identified from a Brassica oleracea accession, while BrGYP7 from a Brassica rapa accession. They have a PBS which use $\mathrm{tRNA} A_{\text {Lys }}$ for RNA replication next to their 5^{\prime} LTRs and a PPT of 15 bp upstream to the 3 'LTRs. The typical gag-pol organization of non-chromodomain Gypsy 5'-GAG-RT-RH-INT-3' is observed in the elements, where an unknown domain region was identified from BoGYP6 (Figure 3.9; Table 3.2).

The structural features of chromodomain (CHR) bearing elements showed relative similarity in their structural features. $B r G Y P 1, B r G Y P 8, B r G Y P 9, B r G Y P 10, B r G Y P 11$ and BrGYP12 belong to the chromoviral branch of Gypsy LTR retrotransposons. BrGYP8 is a 5.1 kb element, flanked by 331 bp LTRs and an internal domain displaying typical PBS complementary to tRNA $_{\text {Phe }}$, Open Reading Frames (ORFs) for gag-pol polyproteins as 5^{\prime} 'GAG-AP-RH-INT-CHR-3', where RT is lost during a recent rearrangement phase. The genome of BrGYP9 and BrGYP10 are 5.9 and 5.2 kb , flanked by 346 bp LTRs. They represent similar PBS, typical chromoviral gag-pol genes organization 5'-GAG-AP-RT-RH-INT-CHR-3' and a 15 bp homologous PPT adjacent to 3° LTR. Their similar structural features suggest that they are sister elements belonging to the same family. BrGYP11 and BrGYP12 have shown homologies in their genomic structures. They are 5.1 kb large is size, including the LTRs of 340-360 bps. They are characterized by the presence of a PBS complementary to $\mathrm{tRNA}_{\text {Arg }}$ and $\mathrm{tRNA}_{\text {Met }}$ respectively, with the ORFs for the canonical gag-pol genes presenting 5^{\prime}-GAG-AP-RT-RH-INT-CHR-3', where a CHR is absent in BrGYP12 during the evolutionary scenario. A PPT strand composed of similar nucleotides in both elements indicates their close relationship and a common ancestor. Two non-
autonomous Gypsy BoGYP13 and BrGYP14 were identified from Brassica oleracea and Brassica rapa respectively. They are about 4.1 and 7.2 kb large elements including LTRs of 200 and 1553 bp respectively. The internal region of BoGYP13 represents PBS and a PPT downstream and upstream to the 5^{\prime} LTR and 3^{\prime} LTR respectively, but no recognizable PBS is detected in BrGYP14 (Figure 3.9). The PPT of both elements is a 15 bp segment highly rich in AT contents. Although they have typical Ty3/gypsy-like ORFs for the gagpol genes but their pol polyproteins lost the RT, RH and INT domains in rearrangements during the ancient evolutionary period (Table 3.2).

Figure 3.9: Schematic representation of structures of Gypsy, LARD and TRIM example elements in Brassica. The red discs at the ends represent the TSDs, dark blue indicates LTRs. The gag and pol regions are drawn with their protein domains. The scale below measures lengths of the elements (bp). Additional insertions or unknown sequences are highlighted by light blue. AP: Aspartic protease. RT: reverse transcriptase. INT: integrase. GAG: gag-nucleocapsid. ZK: zinc knuckle. DUF: domain of unknown function. CHR: Chromatin organization modifier. UN: unknown. ND: not detected.

3.3.2 Domain organization in intact Gypsy elements

The organization of gag and pol genes coding protein domains were studied in all the 15 Gypsy elements. All the Gypsy elements (100%) have encoded the gag gene. Five different types of domain organizations were observed in Gypsy elements. The canonical Ty3/gypsy gag-pol organization is 5^{\prime} 'GAG-AP-RT-RH-INT-3', which was observed in
35% of the elements investigated. Gypsy having a chromodomain was the second abundant group covering 28.5% of the total elements with 5^{\prime}-GAG-AP-RT-RH-INT-CHR-3' domain organization. The non-autonomous Gypsy elements were also identified encoding a gag protein but only AP domain from pol gene as 5^{\prime}-GAG-AP-3'. Remaining elements incorporate one or other extra protein in gag or pol genes. In BoGYP1, an extra protein motif called TLC domain is present upstream to the gag protein as 5^{\prime}-TLC-GAG-AP-RT-RH-INT-3'. Two extra domains such as ZK and Zinc finger (ZF) are present after and before GAG and INT domains respectively (5^{\prime}-GAG-ZK-AP-RT-RH-ZF-INT-3') in BoGYP12 element (Table 3.2).

3.3.3 PBS and PPT motifs of Gypsy elements

The PBS and PPT primers necessary for RNA amplification for Gypsy retrotransposons were detected by scanning them against tRNA database using parameter 'Predict PBS by using Arabidopsis thaliana tRNA database' in LTR_FINDER. A total of 93% elements showed the presence of $14-21 \mathrm{bp}$ PBS downstream to the 5 'LTR. BoGYP14 have shown no signs of PBS with Arabidopsis thaliana and Zea mays tRNA database'. Six different tRNA types were observed in all Gypsy elements investigated in the present study. The most frequent tRNA type in Gypsy elements was tRNA $_{\text {Lys, }}$, detected in 35% of the elements; the second important type was $\mathrm{RRNA}_{\mathrm{Tyr}}$, observed in 20% of the investigated elements. Generally the $\mathrm{tRNA}_{\text {Met }}$ is the most frequent type present in LTR retrotransposons but here only 15% of the elements showed this tRNA type. All the other 3 types of tRNA contributed only 7% each of the tRNA type. PPT adjacent to the 3 'LTR was detected in 93% of all Gypsy elements investigated in this study. BoGYP2 was the only element, where no PPT was detected indicating its deletion. All the other elements have 15 bp PPT sequence towards the upstream of 3^{\prime} LTR. The PBS and PPT sequences and their positions in the retrotransposons at 5^{\prime} LTR and 3^{\prime} LTR respectively are tabulated (Table 3.2).

3.3.4 Analysing diversity and distribution of Gypsy elements by RTAP markers

The diversity and distribution of Gypsy retrotransposons in Brassica genomes was investigated by RTAP method using 5 primers pairs (Table 3.3). Although less in numbers compared to Copia, Gypsy elements showed high diversity and distribution among

Brassica genomes. The primer pair BoGYP1F and BoGYP1R was designed to amplify the conserved 521 bp RT region of BoGYP1. The RT regions were amplified from all the 40 Brassica cultivars including Brassica rapa, Brassica nigra, Brassica oleracea, Brassica juncea, Brassica napus, Brassica carinata and four synthetic hexaploids Brassica (Figure 3.10a). The amplification of BoGYP1 family from A, B, and C -genome Brassica suggests its common ancestry. The insertional polymorphism of BrGYP5 also showed same pattern, where it is amplified from all 40 Brassica cultivars (Figure 3.10b).

The amplification of chromodomain containing Gypsy elements were also investigated among Brassica species. Using BrGYP9F and BrGYP9R, a 598 bp amplicon was amplified from 36 out of 40 Brassica lines tested. All Brassica rapa (Pak Choy, Chinese Wong Bok, San Yue Man, Hinona, Vertus, Suttons), Brassica juncea (NARC-I, NATCO, NARC-II, Kai Choy, Megarrhiza, Tsai Sim, W3, Giant Red Mustard, Varuna), Brassica napus (New, Mar, Last And Best, Fortune, Drakker, Tapidor), Brassica carinata (Addis Aceb, Patu, Tamu Tex-Sel Greens, Mbeya Green, Aworks-67, NARC-PK) and hexaploid Brassica cultivars amplified the expected product. Brassica nigra also amplified the product except accession 'HRIGRU010978', whereas three Brassica oleracea (De Rosny, Precoce Di Calabria, Cuor Di Bue Grosso) accessions amplified the BrGYP9 RT regions (Figure 3.10c).

The polymorphisms of BrGYP12 revealed its distribution among all the six diploids and polyploids Brassica species from 'triangle of U' and their cultivars used in present study. By using BrGYP12F and BrGYP12R, 770 bp RT regions were amplified from all Brassica cultivars tested. Brassica nigra also amplified the products, although the signals were weak as compared to A and C-genome Brassica (Figure 3.10d). This confirmed the ancient nature of element and predicts their presence before the separation of B and A/Cgenomes (~ 9 Mya). Similarly BrGYP15 yielded the 421 bp RT domains from all Brassica except Brassica nigra (HRIGRU011011) genomes (Figure 3.10e). The RTAP method used for the amplification of Gypsy elements revealed their diverse nature and distribution among all Brassica species and also indicated their ancient nature and common phylogeny predating the separation of A, B and C -genomic Brassica.

Figure 3.10: PCR analysis showing fragments with and without Gypsy RT regions between the primers. DNA samples were obtained with primers hybridizing to conserved RT regions of various Gypsy families. Dark arrow heads (right) indicate expected product sizes. Numbers underneath indicate accessions (Table 2.1). The amplification of a) $B o G Y P 1$; b) $B o G Y P 5$; c) $B r G Y P 9$; d) $B r G Y P 12$; e) $B r G Y P 15$.

3.3.5 Phylogenetic analysis of Brassica Gypsy RT segregated two major groups

The phylogenetic analysis of 40 RT domains from Brassica Gypsy elements were performed by Neighbor-Joining method with 1000 bootstrap replicates. Arabidopsis Gypsy element 'Tat4-1' was used to root the tree. The tree is generated by (~ 180 amino acids residues) from most conserved D-DD triad of RT (block3-5). Clustering of Brassica Gypsy into two major clades were observed, clearly separating the chromodomain bearing Gypsy (Chromoviruses) and non-chromodomain Gypsy elements. Three clades from chromodomain bearing and 4 from non-chromodomain Gypsy are distinct. The members from BoGYP1, BrGYP9, BrGYP10, BrGYP11 and BrGYP12 share one clade representing the Chromoviruses-like elements, while $B r G Y P 3, B r G Y P 4, B r G Y P 5, B r G Y P 6$ and BrGYP7 come together in other group making the large clade of non-chromodomain holding Gypsy. In first major clade, BrGYP9 and BrGYP10 clustered in one, BrGYP11 and BrGYP12 in other and BoGYP1 in a third sub-clade. The second major clade have also shown 3 sub-clades and groups, where $\operatorname{BrGYP3}$, $\mathrm{BrGYP4} 4, \mathrm{BrGYP5}, \mathrm{BrGYP6}$ and $\mathrm{BrGYP7}$
elements are dispersed suggesting their common ancestry. BrGYP 3 and $\mathrm{BrGYP7}$ are phlogenetically close to each other representing the same family. BrGYP4, BrGYP5 and BrGYP6 develop sister families, sharing lot of homology in their coding regions (Figure 3.11).

Figure 3.11: Phylogenetic tree of 40 Brassica Gypsy elements. Phylogenetic relationships of the Gypsy retrotransposons based on the amino acid alignment of the conserved RT domains ($\sim 180 \mathrm{aa}$). The two main lineages separate the chromodomain containing group from non-chromodomain group. Three clades from chromodomain bearing and four from non-chromodomain Gypsy are distinct represented by different colours or shades. The N-J bootstrap values supporting the internal branches are indicated at the nodes. The tree is out-grouped with Arabidopsis thaliana Tat4-1 element. Br: Brassica rapa. Bo: Brassica oleracea. GYP: Gypsy.

3.4 Diversity of Large Retrotransposon Derivatives (LARDs) in Brassica

The identification of the LTR retrotransposons led to the detection of elements that lack coding capacity for gag-pol genes, but acquired the LTRs, PBS and PPT. They range in size from 3.8 to 8.0 kb , flanked by the LTRs ranging from 231 to 1319 bp . Due to structural similarities with LARDs-like elements studied in other plants; these elements were considered as members of the LARDs. Six intact (reference) elements from LARDs family were identified by dot plot analysis and investigated their copy number by BLASTN searches in NCBI database. A total of 1007 copies were found against the Brassica Nucleotide Collection (nr/nt) database, out of which 16 are full length elements, 08 truncated copies, 39 partial elements, 12 solo LTRs and 932 remnants. The small dispersed fragments (remnants) cover 92% in number but in size they are less than the size of intact copies. The copy numbers of full length elements were estimated from whole genome of Brassica rapa and Brassica oleracea, which were 110 and 760 respectively (Figure 3.3). The gag-pol protein coding regions were investigated, with no recognizable domain. The elements were also investigated for any PBS and PPT towards the downstream and upstream of 5^{\prime} LTRs and 3^{\prime} LTRs respectively. PBS motif was detected in 50% and PPT motif in 65% of the elements.

3.4.1 Structural features of LARDs-like elements

A 6.2 kb long element was identified from the Brassica oleracea accession 'AC149635.1'. The element is named BoLAR1, which generates $5^{\prime}-313 / 322-3^{\prime}$ bp LTRs, and has perfect 5 bp TSDs (Figure 3.9). No recognisable PBS was observed by scanning the sequence against Arabidopsis thaliana and Zea mays tRNA databases. A 15 bp PPT was detected adjacent to the 3^{\prime} LTR from 5842-5856 bp within the element (Table 3.2). A similar element BoLAR2 was detected from Brassica oleracea accession 'AC183498.1'. BoLAR2 is a 6.0 kb large element, generates 5 bp TSDs and flanked by 231 bp LTRs. The internal region shows no identifiable gag-pol polyproteins, and no sign of any PBS or PPT. Two similar elements BoLAR3 and BrLAR4 were detected in Brassica oleracea and Brassica rapa accessions. BoLAR3 and BrLAR4 are 5.8 and 5.6 kb large elements, flanked by 5^{\prime} -707/720-3' bp and 666 bp respectively. They both exhibit PBS motif complementary to tRNA Met towards the downstream of 5^{\prime} LTR and a 15 bp PPT region upstream to 3^{\prime} LTR. The PBS and PPT sequences in both elements are exactly similar indicating them the
sister elements. The screening of Brassica rapa accession 'AC241138.1' for LTR retrotransposons led to the identification of a nearly 8.0 kb large element designated as BrLAR6. It is flanked by large LTRs of 1319 bp with non-coding internal region of 5.4 kb , typical characteristics of LARDs-like elements. The smallest LARDs-like element was identified from the Brassica rapa 'AC241195.1', which is only 3.8 kb in size including the LTRs of 347 each on both terminals and a internal non-coding region of 3.1 kb .

3.4.2 PCR amplification of LARDs elements

The diversity of LARDs elements were studied among Brassica genomes, where they were found abundantly distributed in Brassica species. The degenerative primer pair BoLAR3F and BoLAR3R (Table 3.3) was designed from LTRs to amplify 680 bp LTR regions. The amplification was achieved in Brassica rapa (Pak Choy, Chinese Wong Bok, San Yue Man, Hinona, Vertus, Suttons), Brassica oleracea (De Rosny, Kai Lan, Early Snowball, Precoce Di Calabria, Cuor Di Bue Grosso, GK97361), Brassica juncea (NARC-I, NATCO, NARC-II, Kai Choy, Megarrhiza, Tsai Sim, W3), Brassica napus (New, Mar, Last And Best, Fortune, Drakker), Brassica carinata (Addis Aceb, Patu, Tamu Tex-Sel Greens, Mbeya Green, Aworks-67, NARC-PK) and 4 hexaploid Brassica cultivars (Figure 3.12a). The amplification of 1295 bp LTR regions from BrLAR5 showed high diversity and distribution among Brassica species. All 40 cultivars yielded the products with two bands of the same size indicating the multiple copies on both alleles. The three Brassica nigra also yielded the product with one additional band of $\sim 1200 \mathrm{bp}$ (Figure 3.12b).

Figure 3.12: PCR amplification of LARD-like elements. DNA samples were obtained with primers hybridizing the conserved LTR regions of LARD-like elements. Dark arrow heads at right indicate expected product sizes. The numbers underneath indicate cultivars (Table 2.1). Amplification of a) BoLAR3; b) BoLAR5.

3.5 Terminal-Repeat Retrotransposons in Miniature (TRIM)

TRIM are small elements with TSDs, LTRs and short internal regions (Witte et al., 2001). They can be differentiated from LARDs on the basis of their small sizes. A family of TRIM was identified from Brassica rapa and named BrTRIl. Two complete and 1 truncated copies were retrieved from GenBank database and 25 copies were estimated in Brassica rapa genome. BrTRII is 1323 bp in size including $257 \mathrm{bp} 5^{\prime}$ and $362 \mathrm{bp} 3^{\prime}$ LTRs. The internal region is 800 bp only which are highly AT rich. The element in general in AT rich (66\%) and contain poly(T) repeats dispersed in its central region. It posses PBS and PPT motifs but lack internal gag-pol protein domains (Figure 3.9).

3.6 Discussion

3.6.1 LTR retrotransposons are highly diverse and abundant in Brassica crops

The LTR retrotransposons are highly abundant in plants including Brassica. A total of 206 Copia, 56 Gypsy, 16 LARDs and 2 TRIM were collected from A (51.3 Mbp) and Cgenome (4.7 Mbp) Brassica from available GenBank database. From Brassica rapa, 148 Copia, 50 Gypsy, 10 LARDs and 25 TRIM were retrieved, while 58 Copia, 6 Gypsy and 6 LARDs were collected from Brassica oleracea. A total of 1596 Copia, 540 Gypsy, 110 LARDs and 25 TRIM were estimated for Brassica rapa, while 7540 Copia, 780 Gypsy and 760 LARDs with no TRIM were estimated for Brassica oleracea whole genomes. Collectively, 11351 intact copies of LTR retrotransposons including LARDs and TRIM were estimated from Brassica rapa and Brassica oleracea (Figure 3.3).

3.6.2 LTR retrotransposon landscape in different plant genomes

The PCR analyses revealed the distribution of elements among various Brassica species. The majority of the elements were amplified from all Brassica species including Brassica nigra, while a few elements were found proliferating in A or C -genome alleles. (There are few sequenced BACs from the B-genome to analyse, so the method would not be expected to find A-genome specific sequences). The abundance and diversity of Copia retrotransposons are studied in several plants genomes as conifers (Friesen et al., 2001), wheat, barley, rice and Arabidopsis (Wicker and Keller, 2007; Tsukahara et al., 2009),
wheat (Tomita et al., 2010), rice (Vicient and Schulman, 2002), sugarcane (Muthukumar and Bennetzen, 2004), oil palm (Price et al., 2002), sunflower (Kawakami et al., 2010), sugar beet (Schmidt et al., 1995), jute (Ahmed et al., 2011), grapevine (Moisy et al., 2008), melon (Ramallo et al., 2008), tomato (Tam et al., 2007; Cheng et al., 2009), Medicago (Wang and Liu, 2008), cassava (Gbadegesin et al., 2008) and several other plants. The Gypsy elements are also actively proliferating in plant genomes and showed their diversity and abundance in several plants like wheat (Tomita et al., 2010; Salina et al., 2011), sorghum (Muthukumar and Bennetzen, 2004), jute (Ahmed et al., 2011), citrus (Bernet and Asins, 2003), soybean (Du et al., 2010), pepper and tomato (Park et al., 2011), tomato (Peters et al., 2009), chickpea (Rajput and Upadhyaya, 2009), Glycine max (Yano et al., 2005) and Arabidopsis (Tsukahara et al., 2009). This suggests the diversity, abundance and distribution of retrotransposons and their role in genome size duplication and diversification of plant genomes.

A small number of inconsistent results were found in the RTAP retrotransposon insertion assays, where one or other accession did not include an element present in many other accessions. This could result from mutation in the primer sites, or excision of this genomic region in some accessions. It would be interesting to explore the genomic structure further in the accessions showing no amplification using more distal primers to the insertion to see if there was a different structure in these accessions, which may have arisen as a consequence of the transposon's presence. A few Brassica accessions showed unexpected amplification of transposons (Figure 3.6b \& d; 3.7b \& c), where most did not amplify or the ancestral diploids did not include the element. For example, one Brassica oleracea and a Brassica carinata NARC-PK amplified one element (Figure 3.6d). This could be because of the contrasting origin of the accessions showing phytogeographical polymorphisms, with some regions including lines with elements. For example, Brassica carinata 'NARC-PK' originated from Pakistan around 4,500 miles from the European accessions. It is also notable that the genomic and chromosomal constitution of the diverse Brassica accessions has not been studied in detail.

3.6.3 Reverse transcriptase is the most conserved region in LTR retrotransposons

The reverse transcriptase (RT) of 137 Brassica and 23 other plants Copia were collected and investigated for their most conserved regions. A 'YVDD' motif is found as the most
conserved motif in 98% of Copia elements as previously studied in plants (Flavell et al., 1992b). The region around this 'YVDD' signature is most conserved among all Copia elements, with few other conserved regions dispersed in RT. In Gypsy elements the 'YVDD' motif is observed in nearly half the elements, while others have 'YNDD' signature, where N is any other amino acid. Other conserved regions were found in Gypsy elements from Brassicaceae and other plants. The aspartic acid residue (DD) is most conserved motif observed in almost 100% LTR retrotransposons aligned (Figure $3.13 \&$ 3.14). The detail investigations of gag-pol internal domains of various superfamilies of LTR retrotransposons indicated that the RT is most conserved region among all retrotransposons and DD motif is shared by all superfamilies (Hansen and HeslopHarrison, 2004). The most conserved nature of RT among various superfamilies is confirmed by several other workers. The analysis of 82 RT sequences from various organisms confirmed the conserved nature of RT, where seven common blocks were observed suggesting the highly conserved nature of RT. The analysis also showed that aspartic acid (DD) motif is present in all the sequences aligned (Xiong and Eickbush, 1990).

3.6.4 LARDs lack internal coding regions but are active elements

Several copies of LARDs-like elements were detected in Brassica and amplified bp PCR. No single element has shown any gag-pol protein domains in their internal regions. The structural analysis in the members of Triticaceae revealed this fact that LARDs are nonautonomous retrotransposons (Kalendar et al., 2004). Despite of lacking their internal coding domains, many active copies were found in Brassica genomes. We cannot fully resolve the question which LTR retrotransposon class these LARDs belong to and which superfamily or family is borrowing them their coding domains for transposition and integration to a new site. But the comparison of the elements with known TE sequences in Repbase database indicate that BoLAR1 and BoLAR2 have shown $\sim 40 \%$ homology to the Arabidopsis thaliana Copia elements. In other LARDs, more homology was observed with Gypsy elements on the basis of LTR sizes, PBS and PPT sequences. Around 110 and 760 elements from Brassica rapa and Brassica oleracea respectively (Figure 3.3) were estimated. The study revealed that LARDs-like elements are actively proliferating in plant genomes as identified in barley and members of Triticaceae (Kalendar et al., 2004).

3.6.5 TRIM are less active LTR retrotransposons

Only 2 copies of a TRIM family were identified and estimated 25 copies from Brassica rapa whole genome. No TRIM-like elements were detected from Brassica oleracea suggesting their less abundance in comparison to Copia, Gypsy and LARDs investigated in present study. Only 43 TRIM-like elements belonging to three groups (Katydid-AT1, Katydid-AT2 and Katydid-AT3) were identified from Arabidopsis (Witte et al., 2001), whereas, only three TRIM-like elements were identified from apple (Antonius-Klemola et al., 2006). The estimated copy numbers for 4 families ($\mathrm{Br} 1, B r 2, B r 3$ and Br 4) of TRIM in Brassica rapa and Brassica oleracea are 530 and 660 respectively (Yang et al., 2007).

3.7 Conclusion

The present study has increased the knowledge about the characterization, diversity, distribution, mobilization and evolutionary impacts of Brassica retrotransposons. Studying the characteristics of the different families, it was observed that several families are still autonomous and active with 1-16 copies encoding a single putatively functional gag-pol polyprotein. To our knowledge, this study is the first extensive and detailed compilation of LTR retrotransposons landscape of the Brassica genome. The results enable identification and understanding of the structure and nature of full length elements and their derivatives, including TSDs. The BAC-based approach does not rely only on conserved protein domains most often analysed, and it also ensures that all the families studied have shown activity during their recent evolutionary history within the Brassica genus. The markers derived here will be useful for examining chromosome and genome evolution in Brassica. In the future, it will be important to study B-genome derived BACs in a similar way to identify elements in this genome. It will also be valuable to examine many of the 'wild' Brassica species outside the U triangle, and other related genera, to see the value of the RBIP-type insertional polymorphism markers for identifying alien chromosome and alien genome introgression. These lines are being exploited to transfer new variation into crop Brassicas (Ge et al., 2009) and the identification of the alien chromosomes and particular of introgressed segments using robust and potentially genome-wide markers is critical to directing the exploitation of these valuable lines.

Figure 3.13: Multiple sequence alignment of RT regions of 110 Copia and Gypsy elements; 63 sequences (53 Copia and 10 Gypsy) are from Brassica and remaining 47 are from known retrotransposons collected from Gypsy database. The alignment of RT region was done in CLUSTALW and ~ 190 aa region was extracted from the original alignment and edited manually. Dashes indicate deletions; vertical coloured lines indicate homology in sequences and hence show conserved regions. The names at left identify a individual element followed by accession numbers in Brassica LTR retrotransposons while it gives genus and species name for known elements. Br: Brassica rapa. Bo: Brassica oleracea. Bn: Brassica napus. COP: Copia. GYP: Gypsy

Figure 3.14: Amino acid alignments of conserved region of 138 Copia elements from Brassica. The RT regions were retrieved from databases and aligned using CLUSTALW and then ~ 160 aa region was extracted from the original alignment and edited manually. Dashes indicate deletions; vertical coloured lines indicating homology show conserved regions. The names at left identify individual elements and their database accession numbers.

CHAPTER 4

CHARACTERIZATION OF LINEs AND SINEs: UBIQUITOUS COMPONENTS OF BRASSICA CROP GENOMES

Summary

The non-LTR retrotransposons (retroposons) are abundant in plant genomes including Brassicaceae. Eight novel families of LINEs (four autonomous and four non-autonomous) and ten of SINEs were identified and characterized from Brassica genomes. The autonomous LINEs display two or three open reading frames, ORF1 and ORF2, where the ORF1 domain is a gag protein domain, while ORF2 encodes endonuclease (EN) and a reverse transcriptase (RT). Three out of four families encode an additional RNase H (RH) domain, which is common in ' R ' and ' I ' type of LINEs from Drosophila. The PCR analysis of LINEs and SINEs indicate their diversity and widespread occurrence in Brassica genomes. Database searches revealed the existence of LINE and SINE families in closely related genera including Arabidopsis indicating their origin from common ancestors predating their separation. Comparing the reverse transcriptase of Brassica LINEs with those of known LINEs from other plants, Brassicaceae LINEs clustered in separate clades. Four clades were observed in Brassica LINEs suggesting the separation of four families. Similarly the SINE elements from Brassica clustered into 10 families.

4.1 Introduction

The non-long terminal repeat (Non-LTR) retrotransposons (or retroposons) are subdivided into long interspersed nuclear elements (LINEs) and short interspersed nuclear elements (SINEs) based on their sizes, internal coding/non-coding regions and structural features. The autonomous LINEs are characterized by TSDs of varied lengths, typically possess 1 or 2 (sometimes 3) ORFs and a poly(A) tail at 3^{\prime} terminal end. They possess an endonuclease (EN/APE) and a reverse transcriptase (RT) domain, while a few LINEs exhibit additional domains such as Zinc finger (ZF) and RNase H (RH). The RNase H domain is present in 'TAD', 'R1', 'LOA' and 'I' families of LINEs (Malik et al., 1999; Schmidt, 1999; Jurka et al., 2007). Few LINEs are characterized in plants, although the number of reported plant LINEs is growing with genome sequencing. PCR analysis revealed the presence of LINEs in three Beta (vulgaris, lomatogona, nana) species, Allium cepa, Oryza sativa, Secale cereale, Nicotiana tabacum and Antirrihnum majus (Kubis et
al., 1998). The first well characterized plant LINE Cin4 was detected in the A1 gene of Zea mays as an insertion in the 3^{\prime} untranslated region (Noma et al., 1999). An active LINE element called Karma was characterized from Oryza sativa (Komatsu et al., 2003), while another LINE Llb was described from Ipomoea batatas genome (Yamashita and Tahara, 2006). Well characterized LINEs from plants include BLIN from Hordeum vulgare, del2 from Lilium speciosum, LINE-CS from Cannabis sativa and ATLN from Arabidopsis thaliana (Noma et al., 2001; Vershinin et al., 2002). A LINE family named BNR was described from the genome of Beta vulgaris having 3 well characterized elements (BNRIBNR3). The elements range in size from $6.4-9.3 \mathrm{~kb}$, flanked by 7-22 bp TSDs and exhibiting two non-overlapping ORFs (Heitkam and Schmidt, 2009).

The second group of retroposons designated SINEs are 100-500 bp large elements flanked by variable TSDs, a poly adenosine tail at 3^{\prime} terminus, an internal polymerase III promoter and non-tRNA region of variable sizes (Kapitonov and Jurka, 2003; Deragon and Zhang, 2006; Kramerov and Vassetzky, 2011). The tRNA region of the SINEs displays two well conserved sequence motifs called box A and box B, which served as internal promoter for the transcription of SINEs by RNA polymerase III. The SINEs are non-autonomous elements but are mobile and utilize the enzymatic machinery of LINEs for their transposition. TS family of SINEs was detected as highly repetitive family among Solanaceae crops like Capsicum annum, Solanum (Lycopersicon) esculentum and Solanum tuberosum (Pozueta-Romero et al., 1998). SINE elements named Sl are well characterized in Brassica (Goubely et al., 1999), which are $\sim 170 \mathrm{bp}$ in size and widely distributed among members of Brassicaceae. Another Brassica oleracea specific SINE family (BoS) is distributed in Brassica with ~ 4290 estimated copies belonging to different families (Deragon and Zhang, 2006). The $A u$ SINEs are very diverse elements detected in Gramineae (Aegilops umbellulata, Triticum aestivam, Zea mays), Solanaceae (Nicotina tabacum, Solanum esculentum), Fabaceae (Medicago truncutula, Lotus japonicas, Glycine max) and others (Fawcett et al., 2006). A survey of SINEs in the rice genome led to the identification of 13487 copies of SINEs, of which F524 is the most active SINE in rice with highest (119) intact copies. SINE3_OS have above 7000 copies but only 10 intact elements were identified, the remaining are all truncated copies (Khan et al., 2011).

The present study aimed to identify the range of LINE and SINE elements in sequenced Brassica BACs and characterize their diversity across Brassica germplasms.

4.2 Results

4.2.1 Identification and general features of Brassica LINEs

The comparison of similar regions from Brassica rapa and Brassica oleracea BAC sequences led to the identification of six LINE elements by dot plot analysis. These sequences were further used as query in GenBank database to collect the similar sequences from Brassica and related genera Arabidopsis and 30 full lengths autonomous LINEs including the query sequences (Table 4.1) were collected. The structural features and phylogenetic analysis of these 30 autonomous LINEs split them into four different families. No strong hits against any known LINE family in TE databases were found, so these novel families were named as Rehan, Faizan, Furqan, and Nouman. Out of 30 elements, 10 are members of Rehan (BrLINE1-1 to BrLINE1-10), 6 are members of Faizan (BrLINE2-1 to BrLINE2-6), 4 are representing Furqan (BoLINE3-1 and BrLINE34) and 10 representing Nouman (BrLINE1-1 to BrLINE1-10) family of LINEs. The sizes, host target site duplications, poly(A) signal and the open reading frames of the elements were studied in detail. Rehan is the highest copy number family followed by Nouman with members dispersed in several Brassica and Arabidopsis genomes. In contrast, Furqan is considered to be the family with lowest members, where only 2 complete elements were collected from Brassica Nucleotide Collection database. The other families are intermediate. The autonomous LINEs in Brassica range is sizes from 3361 to 8038 bp. BrLINE1-1 (8038) is the largest LINE, followed by BrLINE3-1, which is a 7313 bp long in size. Almost all the elements identified were flanked by host target site duplications (TSDs) of $5-19 \mathrm{bp}$, the average sizes being 13-15 bp . In all the cases the poly(A) tail is present with a $7-23 \mathrm{bp}$ stretch except BrLINE4-5 element from Nouman family, where 40 bp polyadenylation signals were detected in the tail region with 17 bp TSDs (Figure 4.1; Table 4.1).

4.2.2.1 Characterization and structural features of Rehan family of LINEs

The largest family designated Rehan is represented by 15 full length elements, out of which 10 well characterized elements are listed in table 5.1. BrLINE1-2, a 7232 bp element was the first element of this family identified from Brassica rapa accession 'AC189222.2' while identifying LTR-retrotransposons. The element was inserted in two

LTRs without any other identifiable portion of LTR retrotransposons. The detailed investigation led to the detection of a LINE element integrated in two solo LTRs. The element has two open reading frames, where ORF1 is 258 aa while ORF2 is 940 aa large. ORF2 encode a pol gene with 5^{\prime}-EN-RT-RH-3' domain organization. Computer based homology searches by using 7232 bp BrLINE1-2 sequence against Brassica Nucleotide Collection database gave 10 full length homologues covering $>70 \%$ of the query, while several other partial homologues were identified. The largest element from the family is BrLINE1-1, which is 8038 bp large in size including 8 bp TSDs at both ends and displaying a 7 bp poly(A) tail at its C-terminal end. Two small insertions $\sim 400-500 \mathrm{bp}$ integrated in its central region increase its size and make it defective. The element encodes a typical plant LINE structure 5'-EN-RT-RH-3' (Figure 4.1).

BrLINE1-3 is a 6816 bp in size, flanked by TSDs of 6 bp and 16 bp poly(A) stretch at 3^{\prime} end. It is composed of 132 aa ORF1 encoding the zinc finger (ZF) domain and 1215 aa ORF2 encoding the pol protein domains in 5^{\prime}-EN-RT-RH-3' order. BrLINE1-5 is 5777 bp in size including 5 bp TSDs at both ends and 21 bp poly(A) tail. The ORF1 (348 aa) is in the opposite orientation i.e. downstream to ORF2 (1369 aa). BrLINE1-6 and BrLINE1-7 are 5398 and 5352 bp in sizes including TSDs of 15 and 8 bp respectively. The BrLINE1-6 display a 13 bp poly(A) tail while BrLINE1-7 exhibit the largest (22 bp) poly(A) tail investigated in members of Rehan family. The element is highly A/T rich (60.3\%) with many small poly(T) stretches in its internal region. BrLINE1-8 (5033 bp) was identified from Brassica rapa BAC 'AC189587.2' and has rearranged sequence. It encodes two ORFs in the same frameshift but contains 2 stop codons. BrLINE1-9 is the smallest member of Rehan family with a size of 3867 bp including 9 bp flanking TSDs and 19 bp poly(A) C-terminal end (Table 4.1). Like BrLINE1-2, another element named BoLINE110 was identified as integrated in two LTRs at its both terminal ends on Brassica rapa BAC 'AC183494.1'. It is integrated exactly downstream to 5'-CA-3' termini of 358 bp 5 ' LTR and ends 232 bp upstream to the start of $358 \mathrm{bp} 3^{\prime}$ LTR (Figure 4.1). BoLINE1-10 is a LINE of 5845 bp flanked by a 15 bp target site duplication and 11 bp poly(A) end.

4.2.2.2 Structural features of Faizan family of LINEs

Although the majority of the elements have complete protein domains (5^{\prime}-EN-RT-RH-3'), but BrLINE2-6 (3361 bp) has a deleted RNase $\mathrm{H}(\mathrm{RH})$ region. The largest member of the
family is BrLINE2-1 identified from Brassica rapa BAC 'AC189630.2'. The element is 6382 bp long including flanking TSDs of 15 bp and a poly(A) tail of 10 bp . It has two ORFs; ORF1 is 559 aa while ORF2 is 1338 aa long encoding 5^{\prime}-EN-RT-RH-3' protein domains. BrLINE2-2 is 6299 bp large LINE in Brassica rapa (AC189430.2). It is flanked by 13 bp TSDs and a $15 \mathrm{bp} 3^{\prime}$ poly(A) tail (Figure 4.1). A 5263 bp homologue was identified from Brassica rapa 'AC189651.2' named BrLINE2-3. It has two consecutive ORFs: ORF1 is 256 aa and ORF2 is 1320 aa in size and its 3^{\prime} untranslated region (UTR) has polyadenylation signal of 23 bp , the highest in this family. The element BoLINE2-4 is 5077 bp in size including 11 bp TSDs and 9(A) tail at C-terminus. The element has a long ORF of 1243, which encode the protein domains of a typical LINE element (5'-EN-RT-RH-3'). BrLINE2-5 and BrLINE2-6 are 3867 and 3361 bp in sizes including TSDs of 18 and 8 bp respectively. Their 3^{\prime} UTR have polyadenylation signals of 8 and 15 bp (Table 4.1). BrLINE2-5 has shown the typical LINE pol gene encoding region (5'-EN-RT-RH3^{\prime}), while a RH is deleted from the BrLINE2-6 (Figure 4.1).

4.2.2.3 Identification and characterization of Furqan family of LINEs

The dot plot analysis of Brassica BACs to identify LTR retrotransposons led to the identification of a LINE insertion in Brassica oleracea BAC 'AC240078.1'. The element named BoLINE3-1 is 7313 bp in size, flanked by TSDs of 13 bp . The structural organization of the BoLINE3-1 revealed that it encodes two non-overlapping ORFs, ORF1 is 526 aa and ORF2 is 873 aa in size, although few other small ORFs can be observed in the element in other frameshifts. The domain organization showed the presence of EN and RT, while RH is absent in this family. BrLINE3-2 is a 5414 bp element, flanked by TSDs of 7 bp and a poly(A) tail of 28 bp . Two ORFs are detected with a size of 247 and 942 aa in the same frameshift (Figure 4.1). The element is a defective as endonuclease is deleted during the rearrangement of the sequence during the evolutionary phase. BrLINE3-3 and BrLINE3-4 are 5925 and 4013 bp in sizes, flanked by 13 bp TSDs and having a poly adenosine tail of 17 and 12 bp respectively at their C-terminal end (Table 4.1).

4.2.2.4 Structural features of Nouman family of LINEs

Nouman is a high copy number family of LINEs after Rehan. The first element (BoLINE42) from the family was identified from Brassica oleracea BAC 'AC240089.1' by dot plot
comparison of Brassica rapa (AC155341.2) and Brassica oleracea (AC240089.1) accessions. By using this as a query sequence, several homologues were collected from Brassica genomes and investigated for their hallmarks (TSDs, poly(A), EN and RT). Ten full length elements with $>75 \%$ query coverage and identity were enlisted and described in detail, although many other homologues with less identity were also present. The largest element BrLINE4-1 is 6725 bp in size, generates 19 bp TSDs at both ends and 19 bp polyadenylation signals at 3^{\prime} UTR. The element encodes two ORFs in two frameshifts, ORF1 is 654 aa and ORF2 is 1317 bp in size encoding the 5^{\prime}-EN-RT-RH-3' protein domains. BoLINE4-2 is 6560 bp large having TSDs of 17 bp and 11 bp poly adenosine tail at C-terminal end (Figure 4.3). BrLINE4-3 was described from Brassica rapa BAC 'AP011511.1' having a size of 6553 bp including 19 bp TSDs and 11 bp polyadenylation signal of 11 bp . BoLINE4-4, a 6482 bp LINE generates 8 bp duplications upon integration to the host sites and terminated at 3^{\prime} terminus by polyadenylation signals of 14 bp . A similar sized (6424 bp) element designated BrLINE4-5 was identified from a Brassica rapa (AC232437.1), exhibit 17 bp TSDs and the longest poly(A) signals (40 bp) at their 3^{\prime} untranslated region. The element encodes two ORFs, ORF1 with a size of 595 and ORF2 with a size of 1363 aa encoding typical LINE pol gene (5^{\prime}-EN-RT-RH-3'). BrLINE4-6 is a 5124 bp LINE, flanked by 6 bp TSDs and 16 bp poly(A) tail at 3 ' terminal end. BrLINE47 and BrLINE4-8 are 4740 and 4321 bp LINEs, flanked by 5 bp TSDs, 17 and 11 bp poly adenosine tails at 3^{\prime} terminus. The smallest LINEs from Nouman family are BrLINE4-9 and BoLINE4-10, which are 3846 and 3416 bp respectively. Both elements have a polyadenosine tail of 11 bp but the domain organization of BoLINE4-10 (Figure 4.1) revealed that the EN is deleted from the element during the rearrangement of the element in evolutionary stages.

4.2.3 Open reading frames and domain organization of Brassica LINEs

Two open reading frames (ORF1 and ORF2) were identified in most Brassica LINEs investigated. The ORF1 is a gag protein domain, while ORF2 encodes the pol gene encoding the EN, RT and RH protein domains. In few cases, only single ORF encoding these domains were observed, while in few elements two ORFs are arranged in two different frameshifts. Few LINEs have shown the presence of stop codons in pol polyprotein indicative of a defective element. Five different protein domain organizations were observed as 5^{\prime}-EN-RT-RH-3', 5^{\prime}-(X)-EN-RT-RH-3', 5^{\prime}-EN-RT-3', 5^{\prime}-RT-RH-3'
and $5^{\prime}-\mathrm{RH}-3^{\prime}$; where X is any additional ORF like ZF, unknown protein (DUF) and Pre-mRNA-splicing factor (PRP). About 80% elements showed a typical 'R' or 'I' (5'-EN-RT-RH-3') type LINE domain organization, while the others have either an extra domain in them or deleted EN or RH domain. A 7.3 kb BoLINE3-1 has shown a typical plant L1 LINE structure, where EN is followed by a reverse transcriptase. In its closely similar relative BrLINE3-3 and BrLINE3-4, EN and RT domains are observed lacking a RH domain. All the LINE families have a RH domain in them with the exception of members from Furqan family, where only EN and RT domains are present (Table 4.1: Figure 4.1).

4.2.4 Identification and characterization of non-autonomous LINEs in Brassica

The dot plot comparison of Brassica rapa BAC 'AC189298.1' with its homoeologous Brassica oleracea BAC 'EU642504.1' exposed some insertion sites, which after detail investigations were found to be the non-autonomous LINEs. Three elements were inserted in Brassica oleracea (EU642504.1), while one LINE was found inserted in Brassica rapa accession (AC189298.1). The non-autonomous LINE elements were named Bo-N-LINEX, where Bo stands for Brassica oleracea, N indicate non-autonomous and X after LINE represent the number. Bo-N-LINE1 was identified from Brassica oleracea (EU642504.1) at position 108339-108982 bp. The element is 690 bp in size, generating TSDs of 7 bp and polyadenosine signals of 19 bp . Bo-N-LINE2 is a 1016 bp large element with 9 bp TSD and a tail of 10 nucleotides, out of which 7 are Adenine (A) and three are Guanine (G) nucleotides. The element is a low copy number with no significant hits to any known TEs from Repbase and Plant Repeat databases of TEs. Another non-autonomous LINE-like element designated as Bo-N-LINE3 was identified from Brassica oleracea (EU642504.1). The element was 1080 bp in size generating 13 bp TSDs and having 11 bp polyadenosine tail at its 3 terminal end. The BLAST results against Repbase TE database retrieved significant hits ($\sim 60 \%$) to Arabidopsis 'ATLINEs'. This suggests that this non-autonomous LINE is the defective element of ATLINE-like elements. Another LINE-like element (Br-N-LINE4) was detected residing in Brassica rapa (AC189298.1) accession, while absent in its homoeologous Brassica oleracea BAC (EU642504.1). The element is 914 bp in size including the 13 bp TSDs at both ends and terminated by a 10 polyadenosine nucleotides at 3 terminal end (Figure 4.2).

Figure 4.1: Structure and organization of LINE retroposons in Brassica. Red arrows indicate target site duplications, while a black line near the 3^{\prime} terminus shows the poly(A) tail with its length. Two open reading frames are indicated in different colours: ORF1 encoding a nucleocapsid protein (gag), and ORF2 encoding an endonuclease (EN) and the reverse transcriptase (RT). An additional RNase H (RH) domain encoded by ORF2 is present in most LINEs near the 3^{\prime} end. The location and protein domain organizations of LINEs is indicated. ORFs are flanked by untranslated regions (UTR), present at both termini. The scale below (bp) shows lengths.

Bo-N-LINE3

Figure 4.2: Schematic representation of non-autonomous LINEs in Brassica. Red arrowheads indicate target site duplications, while a black line near the 3' terminus shows the poly(A) tail and its length. The names in the centre of the element are representing the LINE family. No protein domains are present indicating these are non-autonomous LINEs. The scale below shows lengths (bp).

Table 4.1: List of Brassica autonomous and non-autonomous LINEs with BAC accessions, sizes, TSDs, poly(A) tail, ORFs and protein domains. Nucleotide sequences of representative elements are available in Appendices (attached CD).

| No. | Element | name | Family | BAC Accession | Species | Size | TSD | Orienta- | Domain Structure |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| (5'-3') | | | | | | | | | |

4.2.5 Sequence analysis and phylogenetic relationship of RT from Brassica and other plant LINEs

A total of 60 LINE RT domains were analysed, out of which 40 were collected from Brassica, 14 from Arabidopsis and 6 from Repbase database of TEs. The most conserved region of the RT ($\sim 200-210$ aa) around the DD conserved motif is considered for comparative analysis. The similarity among various sequences is much higher ($>75-95 \%$) within the members of the same family as compared to other families. The sequence analysis of RT region from Brassica and other plant LINEs showed high homology and some conserved regions. The most conserved motif is $\mathrm{D}-\mathrm{DD}$, where D is 45 aa upstream to DD (D45DD). This motif is present in all RT sequences from Brassica, Arabidopsis, Hordeum vulgare (KARIN, PAULA), Triticum turgidum (L1_TD) and Zea mays (COLONIST2). A seven amino acid signature (HLLFADD) including the DD motif is conserved in all RT sequences. Another conserved motif (GLRQGD) 45 aa upstream to DD is present in all Brassica, Arabidopsis, Triticum, Hordeum and Zea mays RT sequences aligned. A conserved signature (KTDMSKAY/FD) is also observed in all LINE RT sequences, whereas several other regions with 1-6 aa conserved regions are shared by various RT (Figure 4.3).

Based on the alignment, the phylogeny of Brassica LINEs among themselves and other plant LINEs were investigated by constructing Neigbour-Joining tree with 1000 bootstrap repetitions in Geneious program. The LINE elements clustered into 5 family specific clusters, where all LINEs from Triticale clustered in a clade, while all other families make family-specific clade. The RT regions from Brassica and Arabidopsis LINEs clusterd together in same families, which indicate their origin from a common ancestor. The largest family Rehan contains 17 elements, of which 12 were Brassica and 5 were from Arabidopsis. In contrast, the smallest family Furqan contains 9 elements, 6 from Brassica and remaining 3 from Arabidopsis. Similarly the Faizan and Nouman families also include the Brassica and Arabidopsis LINE elements together. The sharing of same family from Brassica and Arabidopsis LINEs suggest that the LINE elements are old elements and were present in the ancestral genome before the separatiuon of two genera (Figure 4.4).

Figure 4.3: Alignment of reverse transcriptase (RT) regions of Brassica and other LINEs including Arabidopsis. Approximately 200 aa from RT was aligned in CLUSTALW. The alignment shows several conserved motifs underlined by grey lines and highlighted by vertical coloured bars of conserved amino acids. The DD motif is most conserved and present in almost all the LINEs. Brassica and Arabidopsis LINEs show high homology in RT regions.

Figure 4.4: Phylogenetic tree of reverse transcriptase of Brassica, Arabidopsis and known plant LINEs. The tree was constructed on ~ 200 amino acid conserved region around DD motif (192 upstream and 6 aa downstream) by the Neighbour-Joining method with 1000 bootstrap replicates using the Geneious Pro program. Zea mays LINE COLONIST2 was used to root the tree. The bootstrap support is shown near the nodes. The known LINEs represented by black colours were obtained from Repbase database of eukaryotic transposable elements. The sequences clustered into five clades representing four LINE families from Brassicaceae and one clade representing LINEs from other plants from Triticeae.

4.2.6 PCR amplification of RT from Brassica Rehan LINEs family

Degenerate oligonucleotide primers pair BoLINE1F 5'-GTTGACCTGAAACCATCTCA-3' and BoLINE1R 3^{\prime}-CAACTAGGATGACGGAACTG-5' were designed by inspection of conserved amino acid sequences of the reverse transcriptase. PCR amplification of a 645 bp RT region was performed from 40 Brassica cultivars. The results showed
amplification of the RT region from 30 diploid and polyploid Brassica crops. Brassica rapa (Pak Choy, Chinese Wong Bok, San Yue Man, Hinona) amplified the product, while no amplification was observed from 'Vertus' and 'Suttons' accessions. No amplification from Brassica nigra accessions suggested a separate evolutionary line in B vs A-Cgenomes. Among C-genomes, Brassica oleracea cultivars (De Rosny, Kai Lan, Early Snowball, Cuor Di Bue Grosso, GK97361) amplified the RT regions, while no amplification was seen in Brassica oleracea italica 'Precoce Di Calabria'. All Brassica juncea '(NARC-I, NATCO, NARC-II, Kai Choy, Megarrhiza, Tsai Sim, W3, Giant Red Mustard, Varuna) amplified the products except Brassica juncea (TSAI SIM). All the six Brassica napus cultivars (New, Mar, Last and Best, Fortune, Drakker, Tapidor) and five Brassica carinata (Addis Aceb, Patu, Tamu Tex-Sel Greens, Mbeya Green, Aworks-67, NARC-PK) yielded the expected product indicating the distribution of Rehan family members (Figure 4.5a). The four resynthesized hexaploid Brassica cultivars also generated bands suggesting the diversity, abundance and distributions of LINEs among Brassica genomes.

Table 4.2: List of primers with their names, sequences and sizes of the expected products to amplify the LINEs and SINEs elements in Brassica.

Sr.No.	Family	TE Size	Product Size	Primer Name	Primer Sequence
1	Rehan	7132	645	BoLINE1F	GTTGACCTGAAACCATCTCA
				BoLINE1R	CAACTAGGATGACGGAACTG
2	Faizan	6382	694	BoLINE2F	GTTCGATTGATTCCCAAAGG
				BoLINE2R	CGACTTCAGCAGGTTGATCC
3	Furqan	7313	724	BoLINE3F	TGTAGCCTTTGGGACTACCG
				BoLINE3R	CACGCTTGAAACCTGAGATG
4	Nouman	6560	726	BoLINE4F	CCATCGCTCTCTGCAATGTC
				BoLINE4R	CGGTACCTCCCTCTTTCTGG
5	BoNAL1	690	906	BoNLINE1F	CAAAATTAACCCAAATGAGG
				BoNLINE1R	TGGCATCAAACTTGAACGAA
6	BoNAL2	914	1144	BoNLINE2F	GGATTTAAGGAAATAGTGGT
				BoNLINE2R	TGTATACGGATAGATGAAAC
7	BoNAL3	1016	1265	BoNLINE3F	GAGGTTGCTTCGTATCTTAC
				BoNLINE3R	CGTCTTATGATCATTGTCCG
8	BrNAL4	1080	1286	BrNLINE4F	CTGTATTGAGAAATCCTCTA
				BrNLINE4R	ACGAGTTGTTCTACCATTTG
9	BoSINE2	219	365	BoSINE2F	GAACAAGAAAAATGCAGGG
				BoSINE2R	CGTACCATCACATCTCTTTC
10	BoSINE3	272	585	BoSINE3F	TTCGTTCAAGTTTGATGCCA
				BoSINE3R	AAAGATCCTCACTGGAATCA
11	BoSINE9	524	735	BoSINE9F	AGCTATTACCATGTCGTTCC
				BoSINE9R	ACATAACATTGATACTCCGC
12	BrSINE10	376	615	BrSINE10F	CAAACACTACAAGTGAATAC
				BrSINE10R	GCAAGGTGGAGAAGATAAG

4.2.7 Faizan LINE family is proliferating in A and C-genome Brassica

The diversity and distribution of Faizan LINE family among various Brassica crops were tested by using primer pair BoLINE2F 5'-GTTCGATTGATTCCCAAAGG-3' and BoLINE2R 3'-CGACTTCAGCAGGTTGATCC-5' amplifying a 694 bp RT region. The product was amplified from all Brassica rapa (Pak Choy, Chinese Wong Bok, San Yue Man, Hinona, Vertus, Suttons) and Brassica oleracea (De Rosny, Kai Lan, Early Snowball, Precoce Di Calabria, Cuor Di Bue Grosso, Gk97361) cultivars suggesting its proliferation in A and C-genomes. No amplification from Brassica nigra suggests its absence from B-genome. From nine Brassica juncea cultivars tested, all except two (NATCO, Varuna) amplified the RT regions of Faizan family suggesting its distribution among different cultivars. Similarly, all Brassica napus and Brassica carinata and 4 hexaploids Brassica (AABBCC) amplified the 694 bp RT product indicating the abundance and distribution of the LINE in almost all A and C-genome diploids and polyploids (Figure 4.5b).

4.2.8 Furqan LINE family is proliferating in C-genomes

The diversity and distribution pattern of Furqan family of LINEs among Brassica genomes is performed by PCR analysis. The degenerative primer pair BoLINE3F 5'-TGTAGCCTTTGGGACTACCG-3' and BoLINE3R 3^{\prime}-CGACTTCAGCAGGTTGATCC-5' were design from conserved region of LINE RT to amplify a 724 bp product. Out of 40 cultivars tested, 19 C -genome specific diploids and polyploids produced the bands. The amplification pattern yielded no expected products from any of A or B-genome Brassica. Strong bands of ~ 724 bp products were amplified from all six cultivars of Brassica oleracea (De Rosny, Kai Lan, Early Snowball, Precoce Di Calabria, Cuor Di Bue Grosso, GK97361). Again no amplification from Brassica juncea (AABB) strengthens the hypothesis of absence of this LINE from A and B-genomes. One Pakistani origin Brassica juncea (NARC-II) amplified the band, whose authenticity was unclear and we assume that it is a mixed hybrid having the introgression of C-genome chromosomes by cross hybridization of species common in Pakistan and Indian regions. The allotetraploids (AACC, BBCC) and hexaploids (AABBCC) yielded the expected products from all the genomes (Figure 4.5 c). This suggests the proliferation of Furqan LINE family in Cgenome species and its hybrids.

4.2.9 Diversity and distribution of Nouman LINE family among Brassica cultivars

The diversity and distribution of Nouman family was confirmed by PCR analysis of 726 bp RT region from 40 Brassica cultivars. The primer pair BoLINE4F 5'-CCATCGCTCTCTGCAATGTC-3' and BoLINE4R 3'-CGGTACCTCCCTCTTTCTGG-5' was designed from conserved regions of the transposase. Products were amplified from 34 (1 weak), out of 40 cultivars tested. The PCR analysis revealed that Brassica rapa cultivars (Pak Choy, Chinese Wong Bok, San Yue Man, Hinona, Vertus, Suttons) amplified the bands, while very weak band was amplified in cultivar 'Pak Choy'. The amplification from all six Brassica oleracea (De Rosny, Kai Lan, Early Snowball, Precoce Di Calabria, Cuor Di Bue Grosso, GK97361) accessions indicate its distribution among various oleracea crops. Out of nine Brassica juncea tested, 6 amplified the RT, while 3 (NARC-I, Giant Red Mustard, Varuna) showed no amplification. The allotetraploid crops (AABB, BBCC) and hexaploid (AABBCC) amplified the RT bands revealing the high diversity and distribution of LINE in nearly all cultivars tested (Figure 4.5d).

Figure 4.5: PCR amplification of Brassica LINEs. a) BoLINE1; b) BoLINE2; c) BoLINE3; d) BoLINE4. The upper bands indicated by arrowheads represent the amplification of LINEs RT region from various Brassica. (This and subsequent PCR figures show reversed images of ethidium-bromide stained agarose gels following size separation by electrophoresis of PCR products; ladder band sizes shown in bp; numbers below identify DNA accessions listed in Table 2.1.)

4.2.10 Transoson insertional polymorphisms (TIPs) of non-autonomous LINEs in Brassica genomes

To observe whether these insertions are sequence specific or across various Brassica genomes, four pairs of TIP markers were designed to target insertion including flanking ends (Table 4.2) from the homologous flanking sequences upstream and downstream to these insertions. The amplification patterns of these insertions have showed polymorphisms. By using the oligonucleotide primer pair (BoNLINEF + BoNLINER) flanking the non-autonomous Bo-N-LINE1 insertion, 22 bands were amplified from various Brassica accessions including Brassica oleracea (De Rosny, Kai Lan, Early Snowball, Precoce Di Calabria, Cuor Di Bue Grosso, GK97361), Brassica napus (New, Mar, Last And Best, Fortune, Drakker, Tapidor), Brassica carinata (Addis Aceb, Patu, Tamu Tex-Sel Greens, Mbeya Green, Aworks-67, NARC-PK) and four hexaploids Brassica (AABBCC). The amplification pattern showed the insertion amplification from all Brassica oleracea, Brassica napus, Brassica carinata and four hexaploids Brassica genomes indicating the C-genome specificity of insertion. In all Brassica oleracea accessions, only upper band with insertion was observed, while in Brassica napus, Brassica carinata and hexaploids Brassica, both upper (insertion) and lower bands (preinsertion sites) were amplified. This suggests that the Brassica rapa (AA), Brassica nigra (BB) and Brassica juncea (AABB) have amplified only lower bands amplifying preinsertion sites only (Figure 4.6a).

The insertion polymorphisms of Bo-N-LINE2 revealed its proliferation in C-genome and its polyploids. A 1265 bp band was amplified from 18 Brassica accessions including six Brassica oleracea accessions (De Rosny, Kai Lan, Early Snowball, Precoce Di Calabria, Cuor Di Bue Grosso, GK97361), two Brassica napus (New, Tapidor), six Brassica carinata (Addis Aceb, Patu, Tamu Tex-Sel Greens, Mbeya Green, Aworks-67, NARCPK) and 4 hexaploids Brassica accessions. All the six Brassica oleracea (CC) and six Brassica carinata (AACC) amplified the upper bands only while two Brassica napus and four hexaploids Brassica (AABBCC) amplified the upper and lower bands representing two different genomic alleles; one with insertion and other without insertion. A ~150 bp flanking sequence (lower band) was amplified from Brassica rapa (AA) and Brassica juncea (AABB) but not from any Brassica nigra cultivar (BB) (Figure 4.6b).

PCR amplification of 1080 bp Bo-N-LINE3 was performed from Brassica genomes. A total of 23 bands amplifying the insertions were obtained from C-genome specific Brassica cultivars from Brassica oleracea, Brassica napus, Brassica carinata and 4 synthetic hexaploids Brassica accessions. In contrast, lower bands (210 bp) amplifying the pre-insertion sites were obtained from all Brassica rapa, Brassica nigra and Brassica napus genomes (Figure 4.6c). The primers (BRLINE4F + BRLINE4R; Table 4.2) flanking the Br-N-LINE4 insertion successfully amplified 38 bands ($\sim 920-1144 \mathrm{bp}$) from Brassica rapa, Brassica nigra, Brassica napus, Brassica carinata and 3 hexaploid Brassica cultivars (B. napus x B. nigra). In majority of the genomes, an 1144 bp band was amplified, while is few cases ~ 920 bp band was amplified. This lower ~920 bp band is BB-genome specific, as observed in its polyploids, such as Brassica napus (AABB) and Brassica carinata (BBCC) (Figure 4.6d).

Figure 4.6: Insertional polymorphisms of Brassica non-autonomous LINEs showing presence or absence in various Brassica accessions. PCR products were obtained with primers hybridizing to the flanking regions of each of the four members a) Bo-N-LINE1; b) Bo-N-LINE2; c) Bo-N-LINE3; d) Bo-N-LINE4. The upper bands indicated by arrowheads represent amplification of LINEs, while lower bands lack the amplicons (pre-insertion sites).

4.2.11 Copy number estimation of autonomous LINEs

Approximately 412 and 1026 LINEs from four families were estimated from Brassica rapa and Brassica oleracea whole genomes respectively. The estimated members from Rehan family are 134 and 260 in Brassica rapa and Brassica oleracea respectively. The Faizan family is represented by 104 and 240 copies in A and C-genomes. Furqan family of LINEs is considered as low copy number family with 50 and 136 estimated copies in Brassica rapa and Brassica oleracea respectively. The largest family Nouman is estimated to have 124 and 390 copies in Brassica rapa and Brassica oleracea genomes. It was concluded that the Brassica oleracea genomes harbour more than 1 fold LINEs in its genome as compared to Brassica rapa. We also speculate that the number of LINEs in Brassica rapa and Brassica oleracea is more than this estimate, as several truncated and partial LINEs were found distributed in Brassica genomes.

4.3 Identification of novel families of SINEs in Brassica genomes

4.3.1 SINE identification by comparative sequence analysis

Novel SINE insertions were identified from Brassica genomes by homoeologous BAC sequence comparison and their homologues were collected from the GenBank database. By comparing Brassica rapa and Brassica oleracea accessions (AC189298.1 x EU642504.1), a SINE insertion was detected in Brassica rapa and 4 SINEs in Brassica oleracea. Similarly, the comparison of Brassica rapa (AC155341.2) x Brassica oleracea (AC240089.1) and Brassica rapa (CU984545.1) x Brassica oleracea (EU579455.1) led to the identification of 4 and 1 SINE insertions respectively (see Conclusion; Figure 10.110.3). The newly identified SINEs (reference) were used as query in BLASTN searches to identify other relatives residing in Brassica species. The sequences were considered as members of the same family, if they generate host TSDs, poly(A) tail at 3^{\prime} terminus and $>75 \%$ coverage in entire lengths. The phylogenetic analysis of all collected SINEs revealed that they clustered into 10 different groups or families. The families were named as BoSINE1-BrSINE10 (Table 4.3).

4.3.2 Estimation of full length SINE copy numbers from whole Brassica genomes

SINEs are diverse retroposons present in the Brassicaceae. As only 9% and 1% sequence data is available for Brassica rapa and Brassica oleracea respectively (before February, 2012, as complete BAC sequences where there are few gaps compared to the genomic sequence of Brassica rapa available at other websites) in Brassica Nucleotide Collection database at NCBI, 143 intact copies were collected, that displayed $>70 \%$ identity to the query over their entire length. The total numbers of SINEs in Brassica rapa and Brassica oleracea are estimated as 1440 and 2210 respectively. The copy number of each SINE family was also estimated and low, middle and high copy number families were identified. BrSINE10 is the largest and highly diverse family of SINEs with 505 and 450 copies in Brassica rapa and Brassica oleracea respectively. It is the only family where estimated number of copies is higher in A-genome compared to C -genome. BoSINE8 is considered to be the second abundant family displaying 356 and 510 intact copies from A and C-genomes. BoSINE9 is the smallest family with 26 and 74 estimated copies in Brassica rapa and Brassica oleracea whole genomes followed by BoSINE7 (Table 4.4).

4.3.3 Structural features of Brassica SINEs

Like other SINEs described in various plants, the Brassica SINEs are small in sizes with typical SINE features displaying TSDs, head regions, internal regions (body) of variable sizes and a poly(A) tail at the 3^{\prime} terminus. The structural features of all Brassica SINE families are more or less similar. The smallest SINE investigated is a member of BoSINE2 family, which is 206 bp in size, while larger elements belong to BoSINE9. BoSINE1 has 10 members from 213-225 bp, flanked by TSDs of 7-14 bp and terminated with a 3^{\prime} poly(A) tail of 19-21 bp. The first SINE (BoSINE1-1) from this family was identified as an insertion residing in Brassica oleracea (EU642504.1) sequence. The size of the BoSINE1-1 is 216 bp , terminated by 5^{\prime}-CAAAAAAAAAAAAAAAAAA-3' Cterminal end and flanked by 14 by TSDs (Figure 4.7). The BoSINE2 family presents a low copy number family with members having sizes from 206-219 bp, flanked by TSDs of 13-18 bp and polyadenylation signals of $10-27 \mathrm{bp}$ at their 3^{\prime} terminal end. A 206 bp smallest SINE (BoSINE2-3) belongs to this family. The first element (BoSINE2-1) from this family was identified in Brassica oleracea (EU642504.1), where a 219 bp insertion was found flanked by 18 bp TSDs and a tail terminating with CTT(A) 8 (Table $4.3 \& 4.4$).

The family BoSINE3 presents the members ranging in sizes from 256-277 bp including TSDs of $10-17 \mathrm{bp}$ and terminating by a poly(A) $)_{9-11}$ tail at their carboxylic terminal ends. The well characterized member is a 272 bp BoSINE3-1 having a 13 bp TSDs and 9 bp poly(A) tail. The members of family BoSINE4 generally range in sizes from 361-397 bp with the exception of BoSINE4-1. The elements are flanked by TSDs of 07-15 bp (except BoSINE4-1) and terminated with $8-34 \mathrm{bp}$ poly(A) tail. BoSINE4-1 is the first element described from this family as an insertion of 442 bp residing in Brassica oleracea (EU579455.1) accession. It generates largest TSD of 42 bp , but another inner 15 bp TSDs are also present in its genome. With 42 bp TSDs the size of the element is 442 bp while with short TSDs (15 nt), the size of the element is 361 bp . It was concluded that the longest TSDs might be the result of an error during the 5^{\prime} and 3^{\prime} host DNA nicking and integration of the element to a new site. Fourty two bp TSDs were identified by viewing the flanking regions of insertion in dot plot analysis, otherwise the other homologues of BoSINE4-1 generates 8-17 bp TSDs (Table 4.3 \& 4.4).

The sequences from BoSINE5 are similar in sizes (225-229 bp), flanked by short TSDs (3-4 bp) and a poly(A) tail of 8-11 bp. The first element was characterized from Brassica oleracea (AC240089.1) as a 225 bp insertion including 4 bp TSDs and 5'-CAAAAAAAA-3' C-terminal tail. BoSINE6 family of Brassica SINEs represents 321335 bp large members generating TSDs (05-11) and having poly(A) tail. BoSINE6-1 is the first and well characterized member of the family with a size of 335 bp including 11 bp TSDs at both ends and an 18 bp polyadenylation tail at its C-terminal end. A low copy number family BoSINE7 is characterized by having representatives ranging in sizes from 392-401 bp, including TSDs (3-8 bp) and a poly(A) 11-13 (Table $4.3 \& 4.4$). The first identified member from the family is BoSINE7-1 from Brassica oleracea (AC240089.1) residing as an insertion. The element is 401 bp in size including 8 bp TSDs at both ends and polyadenylation signals of 8 nucleotides. The second largest family of Brassica SINEs BoSINE8 represents diverse members dispersed in Brassica rapa and Brassica oleracea genomic sequences. The elements range in sizes from 480-506 bp including the host target site duplications ($5-13 \mathrm{bp}$) and poly(A) ${ }_{11-28}$ tail adjacent to C-terminal end. Generally the terminal tail have 11-19 bp poly(A) stretch but few elements generate a longer stretch (21-27 bp). BoSINE8-1 represents the first identified member of the family from Brassica oleracea (AC240089.1) accession with 13 bp TSDs and a 5'-CAAAAAAAAAAA-3' C-terminal tail (Figure 4.7; Table 4.3 \& 4.4).

Table 4.3: Full length SINEs identified by comparative dot plot analysis of Brassica BAC sequences.

No.	Reference Elements	Family	BAC Accession	Species	Size	TS D	Poly (A) Tail	GC\%
1	BoSINE1-1	BoSINE1	EU642504.1	B.oleracea	216	14	CAAAAAAAAAAAA AAAAAA	52.0
2	BoSINE2-1	BoSINE2	EU642504.1	B.oleracea	219	18	CTTAAAAAAAA	48.4
3	BoSINE3-1	BoSINE3	EU642504.1	B.oleracea	272	13	CAAAAAAAAA	47.1
4	BoSINE4-1	BoSINE4	EU579455.1	B.oleracea	443	44	CAAAAAAAA	37.0
5	BoSINE5-1	BoSINE5	AC240089.1	B.oleracea	225	04	CAAAAAAAA	37.3
7	BoSINE6-1	BoSINE6	AC240089.1	B.oleracea	335	11	CAAAAAAAAAAAA	37.3
8	BoSINE7-1	BoSINE7	AC240089.1	B.oleracea	401	08	CAAAAAAAAAAA	41.6
9	BoSINE9-1	BoSINE9	EU642504.1	B.oleracea	524	11	CAAAAAAAAAA	48.1

4.3.4 Structural features of low and high copy number SINE families

A 524 bp insertion (BoSINE9-1) flanked by 11 bp TSDs and a poly(A) tail yielded no significant hits but the NCBI EST database yielded two sequences with $>85 \%$ identity in their entire lengths. The retrieved sequences were Brassica napus cDNA, mRNA sequences and designated as BnSINE9-2 and BnSINE9-3. The elements were 558 bp in sizes generating 6 bp TSDs and a largest poly(A) tail comprising 50 adenine and a single guanine nucleotide. The copy number estimation in Brassica rapa (26) and Brassica oleracea (74) suggests that this is the lowest copy number family of SINEs studied in present work. The largest family is BrSINE10 with 505 and 450 members in A and Cgenomes respectively. BrSINE10-1 is a 376 bp large SINE including 13 bp TSDs and a 5'-CGTTAAAAAAAAAA-3' tail. The BLASTN searches against GenBank database retrieved about 50 full length elements, of which 47 were from Brassica rapa and 3 were from Brassica oleracea BAC sequences. The high copy numbers in Brassica rapa is due to the availability of high percentage of available sequenced data (51.3 Mbp) as compared to Brassica oleracea (4.7 Mbp). The representative of BrSINE10 family range is sizes from 368-378 bp including TSDs (5-15 bp) and a poly(A) tail of $9-15 \mathrm{bp}$. A 5 bp conserved motif (TCAGC) was observed in majority of the elements adjacent to poly(A) tail of the elements (Table 4.4).

4.3.5 Transposon insertional polymorphisms (TIPs) of SINEs in Brassica genomes

The distribution and abundance of SINEs in various Brassica species was investigated by TIP based PCR markers. A total of 40 Brassica accessions/cultivars were tested for the presence or absence of SINEs at a particular site/locus. The collinear sequences from A and C-genome Brassica are highly similar with few gap points indicating an insertion in one but lacking in other. Based on this, higher bands were amplified with insertions and lower bands amplifying the pre-insertion sites (flanking regions). Four set of primers were used to amplify four SINE families among various Brassica species. BoSINE2-1 (219 bp) was found inserted in Brassica oleracea (EU642504.1) accession from 51788-52006 bp.

A primer pair BoSINE2F 5'-GAACAAGAAAAATGCAGGG-3' and BoSINE2R 3'-CGTACCATCACATCTCTTTC-5' was designed to amplify it. It gave large (insertion) and small (pre-insertion site) bands in various Brassica accessions. Brassica oleracea (De Rosny, Kai Lan, Early Snowball, Precoce Di Calabria, Cuor Di Bue Grosso and GK97361) and Brassica carinata (Addis Aceb, Patu, Tamu Tex-Sel Greens, Mbeya Green, Aworks-67 and NARC-PK) accessions amplified BoSINE2-1 and lower bands (without insertion) indicating they are heterozygous with a site in the C -genome, while B genomes have the flanking sequence but lack insertions. Weak bands from all the six Brassica napus (New, Mar, Last and Best, Fortune, Drakker, Tapidor) were not further characterized because of time constraints. All the other Brassica LINEs amplified the lower product with pre-insertional sites (Figure 4.8a). A 272 BoSINE3-1 was tested for its presence in various Brassica accessions. The results showed its amplification from all six Brassica oleracea (De Rosny, Kai Lan, Early Snowball, Precoce Di Calabria, Cuor Di Bue Grosso and GK97361) and Brassica carinata (Addis Aceb, Patu, Tamu Tex-Sel Greens, Mbeya Green, Aworks-67, NARC-PK) accessions. Weak bands were detected in 3 Brassica hexaploids (B. napus x B. nigra) (Figure 4.8b). The Brassica rapa, Brassica nigra, Brassica juncea and Brassica napus accessions amplified only pre-insertional sites.

A 524 bp BoSINE9-1 was identified residing in Brassica oleracea (EU642504.1) accession from position 37170-37693 bp. The BLASTN searches against Brassica EST database returned only 3 sequences; one from the same accession (EU642504.1) and two others from Brassica napus cDNA sequences. The primers were designed from the flanking regions and were tested against 40 Brassica genomes. Interestingly, only one Brassica oleracea accession GK97361 produced the expected product size (735 bp). The
amplicon was sequenced and aligned with BoSINE9-1 achieving >98\% identity. All other Brassica accessions except Brassica nigra amplify the pre-insertion sites ($\sim 210 \mathrm{bp}$) (Figure 4.8c). The primers designed from flanking regions of BrSINE10-1 produced upper and lower bands to indicate the presence and absence of BrSINE10 family in 40 Brassica accessions belonging to 6 different species. The PCR results confirmed the abundance of BrSINE10 is various Brassica genomes. The amplification of the BrSINE10-1 was seen in Brassica rapa (AA) species and the their allotetraploids having A-genome in them. Many of the genomes amplified additional bands of varied sizes other than the expected product. The bands after sequencing showed similarity to the BrSINE10 family. It was concluded that multiple copies of the element are dispersed in Brassica rapa genomes (Figure 4.8d).

Table 4.4: Average lengths, TSDs, Pre-tail motifs and estimated copy numbers of each SINEs family in Brassica. The name of the family is given on the basis of the first element identified in Brassica. ECN: Estimated copy numbers.

No.	Family Name	Size of elements	TSDs	Pre-tail Motifs	C (A)n	Strong Hits	ECN in whole B. rapa	ECN in whole B. oleracea
1	BoSINE1	213-225	07-14	TTATC	$\mathrm{C}(\mathrm{A})_{19-21}$	10	92	130
2	BoSINE2	206-219	13-18	TTATC	$\mathrm{C}(\mathrm{A})_{10-17}$	5	55	260
3	BoSINE3	256-277	10-17	TtTTC	$\mathrm{C}(\mathrm{A})_{9-11}$	10	100	135
4	BoSINE4	361-443	07-15/44	TTAGC	$\mathrm{C}(\mathrm{A})_{8-17}$	12	115	145
5	BoSINE5	225-229	03-04	TtTTC	$\mathrm{C}(\mathrm{A})_{08-11}$	5	62	128
6	BoSINE6	321-335	05-11	TTAGC	$\mathrm{C}(\mathrm{A})_{16-18}$	6	25	245
7	BoSINE7	392-401	03-08	TTACC	$\mathrm{C}(\mathrm{A})_{11-13}$	4	52	138
8	BoSINE8	480-506	05-13	TTGTC	$\mathrm{C}(\mathrm{A})_{11-27}$	38	356	510
9	BoSINE9	524-558	05-11	TGATC	$\mathrm{C}(\mathrm{A})_{10-12 / 51}$	3	26	74
10	BrSINEIO	368-378	05-15	TCAGC	$\mathrm{C}(\mathrm{A})_{\text {g-15 }}$	50	505	450
					Total	143	1440	2210

Figure 4.7: Schematic representation of Brassica SINE families. SINEs are composed of a tRNA-derived region (coloured in 5' terminal end), an unrelated DNA sequence (light grey) and a LINE-related region or tail (green box). The variable sized TSDs are represented by red arrows at both terminal ends. Scale in bp.

Figure 4.8: Transposon insertional polymorphism (TIP) of various SINE families: a) BoSINE2; b) BoSINE3; c) BoSINE9; d) BrSINE10. Higher bands indicate amplification of specific SINEs, while lower bands represent the pre-insertion sites (sites without SINE insertions).

4.4 Discussion

The results here show the value of comparison of BAC sequences for identification of the full range of LINE and SINE-like transposable elements on the basis of their activity and homology. Previous methods have required assumptions about motifs and structures; the results show that these methods were efficient in that most elements would have been identified, although a few novel groups not represented in repeat element databases were found here. These will be valuable in annotation and assisting in assembly of whole genome shotgun (WGS) sequencing data in the future. Current WGS approaches have difficulty in assembling LINE and SINE rich regions of the genomes, even using pairedend strategies, where long and duplicated elements, particularly when heterozygous, prevent conting ends from being overlapped unequivocally. In Brassica sequencing projects, due to partial assembly, it is difficult to study the full copies of TEs or novel elements present in the genome; in the assembly of date palm, it is notable that the raw reads include. Here, four novel families of each autonomous and non-autonomous LINEs were detected distributed among Brassica crops. Similarly, 10 SINE families were identified and characterized from Brassica genomes. The structural features and distribution of the elements were studied in detail by computational and molecular analysis. The analysis confirmed that retroposons are a diverse group of TEs scattered among Brassica and closely related genera Arabidopsis.

4.4.1 Reverse transcriptase is the most conserved region among plants LINEs

Higher similarities are observed when comparing amino acid sequences of the RT from various plant LINEs. The overall similarity observed in two variable sequences is $\sim 47 \%$ while the similarity between two close members is $>96 \%$. High homology is observed in the members of Rehan family (83-96\%) at amino acid level. The homology between Brassica and Arabidopsis RT sequences are $>80 \%$, while the homology of Brassica LINEs with grass family is upto 56%. Several conserved motifs were also observed in RT region from Brassica, Arabidopsis and other plants (Figure 4.3). In studies supported by the work here, RT regions of LINEs from various organisms were aligned, which revealed 11 conserved blocks of identity. Of these 11 blocks, 7 blocks are highly conserved among all LINEs collected from various species (Malik et al., 1999).

4.4.2 RNase H containing LINEs are dominant in Brassica

In the present study, the majority of the Brassica LINEs identified display an RH domain at their C-terminal end. Of the four autonomous LINE families, the three families have structures encoding RH in their pol gene except Furqan family, where all the elements encode only EN and a RT in their pol gene. The detail structural features of these LINEs indicate that the RH domain is present in extreme C-terminal end upstream to the poly(A) tail. The RH domain is composed of $\sim 300-400 \mathrm{bp}$ in various members of LINE families. The protein domain analysis of plant LINEs revealed the encoding of EN and RT domains, which is a typical feature of L1 of human LINEs, identified from various plants (Heitkam and Schmidt, 2009). Very few plant LINEs have shown such features encoding an RNase $H(\mathrm{RH})$ domain. In a detail analysis of all LINEs described, it was reported that only four clades designated as Tad, R1, LOA and I contain RNase H domains (Malik et al., 1999). Brassica LINEs encoding an RNase H domain were considered close to Tad, R1, LOA and I clades due to similar structural and domain organization.

4.4.3 SINEs display a conserved motif before poly(A) tail

The SINEs studied from Brassica and Arabidopsis genomes display a conserved motif upstream to their poly(A) tail at 3^{\prime} terminus. The motif is generally AT rich and is highly conserved within the family members and across various families. It mostly starts with T and ends with a C nucleotide (Table 4.4). The structural analysis of other known Brassicaceae SINEs, including the S1, AtSN1/RAtheE3 from Brassica, AtSN2/RAtheE1 and RAthE2 from Arabidopsis thaliana showed a conserved motif upstream to poly(A) tail at 3' terminus (Deragon et al., 1994; Lenoir et al., 2001; Myouga et al., 2001). This suggests that all the SINEs from Brassicaceae share more or less similar motifs at their pre-tail ends. The highly characterized BoS family of SINEs from Brassicaceae exhibit a conserved motif (TTATC) immediately upstream to 3^{\prime} terminal end. Two bp purines residues are located upstream to this motif (Zhang and Wessler, 2005).

4.4.4 Target Site Preference of Brassica SINEs

The SINEs have shown a preference for their insertion to a heavily populated AT rich region. To determine the SINEs insertional preference within the genomes, SINE
insertions with extra 20 bp flanking nucleotides on both ends were collected and aligned to observe their insertion preference. Analysis of insertion SITEs of Brassica SINEs revealed that all the members belonging to 10 families of SINEs have shown an insertion preference in AT rich regions. The 5^{\prime} end of the SINEs displayed the strong preference of AT rich regions as compared to the 3^{\prime} end. BoSINE1 family showed an insertion preference of AT rich regions at both ends like other families. BoSINE3, BoSINE4, BoSINE7 and BrSINE10 families are inserted into highly AT rich regions while BoSINE8 showed purines rich flanking regions (Figure 4.9). The BoS elements from Brassica had shown insertional preference in AT rich regions (Zhang and Wessler, 2005).

Figure 4.9: Frequency plot indicating the insertional preference of five SINE families into AT rich regions. The weblogo indicates the SINE preference for AT rich regions created using 20 bp of aligned sequence flanking the SINE insertions for each family.

4.4.5 Brassica SINEs are ancient retroposons in Brassicaceae

The SINE families investigated in this study are considered to be the old families that were present before the separation of Arabidopsis-Brassica species. This can be confirmed by the high similarity of Brassica SINEs with the Arabidopsis genomes
($\sim 75 \%$). The BLASTN searches against the GenBank database retrieved many sequences from Arabidopsis thaliana and Arabidopsis lyrata. Some of the hits from Arabidopsis showed very high sequence similarity with Brassica SINEs suggesting their common origin from the same ancestor. Brassica SINEs were considered as old as the divergence of Arabidopsis-Brassica (16-19 Mya) occured. It is believed that Arabidopsis-Brassica oleracea diverged 16-19 million years ago (Myo) from a common ancestor (Deragon and Zhang, 2006). BrSINE10 is considered to be the youngest family due to high homology within its members. BoSINE1, BoSINE3, BoSINE4, and BoSINE8 are considered as middle aged families while BoSINE9 is considered to be recently introduced due to fewer copies and high homology (84-88\%) between sequences. The Brassica BoS family is also an old family, whose members are dispersed among various Brassica species suggesting their divergence before the separation of these species. It is thought the oldest members have diverged ~ 20 Mya, whereas the youngest members have originated $\sim 2-3$ million years ago (Zhang and Wessler, 2005).

4.4.6 SINEs as molecular markers in phylogenetic studies

SINEs can be used as molecular markers to investigate the evolutionary relations of species or to trace phylogeny. The SINEs can be used in two different ways in phylogenetic studies. The first approach is the identification of a specific SINE family in species by PCR analysis or dot hybridization. All species which display the presence of a specific SINE family are treated as close to each other than to other species, which lack them. The second approach is the site specific insertional polymorphism, where the PCR primers are designed from the common flanking regions around SINEs. The species having SINE insertions generate higher products, while those who lack generated the shorter product (Deragon and Zhang, 2006). Species sharing the SINE insertions are considered to be close as compared to others, who lack them (Kramerov and Vassetzky, 2011). Similar methodology was use to observed the presence/absence of SINEs at various loci in the present studies. The species amplifying a specific SINE family are more close to the others lacking them. Thus Brassica oleracea (CC) and Brassica carinata (BBCC) are closer to each other as compared to Brassica juncea (AABB), which failed to amplify BoSINE3. The results revealed that the SINEs can be used as molecular markers in evolutionary studies and to trace the phylogeny among various species.

4.5 Conclusions

Non-LTR retrotransposons or retroposons are present in enormous numbers in all eukaryotic genomes. They have played a major role in genome diversification and evolution. Despite the progress in our understanding of retroposon biology, many aspects remain unclear. We set the trends in the field with the identification and characterization of LINEs and SINEs among Brassicaceae, with an emphasis on evolutionary relationships of retroposons from Brassicaceae and other plants. The insertional polymorphisms of retroposons were explored indicating their absence in some species and abundance in other ones and also used them in a wide range of phylogenetic studies. The analysis will help in annotation and characterization of several related retroposons from plant families and will be used as molecular markers to study the diversity among closely related cultivars and varieties.

CHAPTER 5

CACTA AND HARBINGER DNA TRANSPOSONS: CHARACTERIZATION AND IMPACT ON BRASSICA GENOMES

Summary

CACTA and Harbinger are diverse superfamilies of DNA transposons. A combination of dot plot analysis and BLASTN searches led to the identification of 35 autonomous and 7 non-autonomous CACTA, and five autonomous and several non-autonomous Harbinger elements in Brassica. The PCR analysis amplified the CACTA and Harbinger transposases from 40 and 38 Brassica genomes respectively suggesting their abundant distribution among various Brassica crops. A detailed characterization and evolutionary analysis of the identified elements allowed some to be placed in genome-specific groups. The protein domains of transposons from Brassica and other plants revealed similar organizations with minor differences. Both transposases (TNPD, TNPA) are present in most CACTA elements, while a few CACTA harbour an additional ATHILA ORF1-like domain in opposite orientation. The autonomous Harbinger has a transposase and 1 or 2 additional SANT and NAM-like putative DNA-binding protein motifs. The TIRs of both CACTA and Harbinger are highly conserved and can be used to differentiate the superfamilies. The high copy numbers of CACTA and Harbinger in Brassica led to the conclusion that 3 bp generating transposons (CACTA and Harbinger) contribute significantly to genome size and evolution of Brassica genomes.

5.1 Introduction

CACTA, also called En/Spm, elements constitute a diverse group of DNA transposons identified from various plants and include Caspar from Triticum (Sergeeva et al., 2010), Taml and TamRSl from snapdragon (Antirrhinum majus) (Nacken et al., 1991; Roccaro et al., 2007), En/Spm from maize (Gierl, 1996), soybean (Zabala and Vodkin, 2008; Xu et al., 2010), CAC1 from Arabidopsis thaliana (Miura et al., 2001), Ps1 from Petunia hybrida (Snowden and Napoli, 1998), Pis1 from Pisum sativum (Shirsat, 1988), Tnr3 and Tnr1 from Oryza sativa (Motohashi et al., 1996; Han et al., 2000), Caspar from Triticeae (Wicker et al., 2003) and the non-autonomous elements as the maize $d S p m$ (Gierl, 1996). The CACTA superfamily of DNA transposons received its named due to the conserved
'CACTA' DNA sequence signature in termini of their TIRs. CACTA elements are flanked by 3 bp TSDs, $10-28 \mathrm{bp}$ TIRs (with CACTA in their termini) and DDD/E type transposase. En/Spm elements are the autonomous elements, while there non-autonomous partners I/dSpm lack transposase enzyme (Wicker et al., 2003; Tian, 2006). The CACTA elements are used as molecular markers in many crops as in maize, where the markers were developed from TIRs of Issac-CACTA transposons, which distinguished the maize imbred lines (Lee et al., 2005).

The PIF-Harbinger is a superfamily of DNA transposons characterized by generating 3 bp TSDs, flanked by $14-25$ or up to 50 bp TIRs and a DDD/E transposase (Kapitonov and Jurka, 2004). The diverse PIF-Harbinger elements are easily distinguishable into two subgroups, named PIF and Pong (Zhang et al., 2004). Harbinger is highly diverse superfamily of DNA transposons with members distributed among protists, insects, worms, vertebrates and plants. Their autonomous elements encode two protein domains; superfamily specific transposase and DNA-binding domain. The DNA binding domain is characterized by having different conserved motifs as SANT/myb/trihelix (~ 70 aa), while the other region of DNA binding domain showed no significant similarities studied in different species (Kapitonov and Jurka, 2004). Generally, the Harbinger are flanked by TAA/TTA target site duplications, but some families generate other TSDs, as CAG target sites observed in Zebra fish Harbinger2-3_DR. The phylogenetic studies based on Harbinger-transposases suggest their horizontal transfer. As, the transposases from the Arabidopsis and maize Harbinger and PIF elements are more similar to diatom Harbinger 1-2_TP transposase as compared to their closely related rice Pong and Arabidopsis ATIS112A. The PIF and Harbinger were considered as two separate superfamilies prior to 2001, which merged to a single superfamily due to high similarities between the elements (Jurka and Kapitonov, 2001; Kapitonov and Jurka, 2004).

In this chapter, the aim was to identify CACTA and Harbinger class II DNA transposons in Brassica genomic sequences, and to analyse their structures (including the internal regions encoding the protein domains like transposase and its associated domains), the evolutionary diversity, mobility and consequences for Brassica genome organization. The structural and evolutionary relationships of Brassica CACTA and Harbinger were compared with CACTA and Harbinger identified from other crop species.

5.2 Results

5.2.1 CACTA identification and characterization by Dot plot and BLASTN analysis

The identification of transposable elements by dot plot comparison of Brassica homoeologous BAC sequences led to the identification of various insertions flanked by 3 bp TSDs. The detailed structural and molecular analysis revealed the identification of CACTA transposons. A CACTA transposon was identified by comparing Brassica rapa subsp. pekinensis clone KBrB028I01 (AC189298.1) against its homoeologue Brassica oleracea var. alboglabra clone BoB028L01 (EU642504.1). The element was autonomous CACTA and is named as BoCACTA1. Two other I/dSpm or non-autonomous CACTA elements were identified by comparing Brassica rapa (AC155341.2) against its homoeologous Brassica oleracea (AC240089.1). The BLASTN analysis of autonomous BoCACTA1 retrieved several homologues from Brassica rapa and Brassica oleracea with homology of 50-100\%. Our identified elements BoCACTA1, BoCACTA2 and BoCACTA3 were found to be the Bot1-1, Bot1-2, and Bot1-3 elements identified by Karin Alix and her co-authors in Brassica oleracea (Alix et al., 2008). According to their findings, Bot1 elements are Brassica oleracea specific and have played a major role in the divergence of Brassica genomes. Many other homologues of Botl were isolated and characterized from various Brassica BAC sequences on the basis of conserved CACTA TIRs. All identified CACTA from Brassica rapa and Brassica oleracea were collectively included in Botl family due to their similarity with Bot1-1-Bot1-3 elements. A total of 35 autonomous CACTA elements were identified, out of which 19 were from Brassica oleracea, 14 from Brassica rapa and two from Brassica napus BAC clone sequences. Seven nonautonomous CACTA elements were isolated and characterized from different Brassica BAC clone sequences, which were further blast to find their autonomous copies to relate their progenitors. The autonomous elements range in sizes from 3 kb to 11 kb . Nonautonomous CACTA are smaller in sizes ranging from 1.2 kb to 3.2 kb (Table 5.1).

5.2.2 Structural features of Brassica oleracea CACTA elements

The BoCACTA and related homologues display all the characteristics of CACTA transposons including the 3 bp TSDs, TIRs of 15-17 bp (mostly15 bp), CACTA signature in their termini of TIRs and possessing two transposase named TNPD and TNPA. BoCACTA1 (Botl-1) was identified by comparing Brassica rapa accession AC189298.1
against its homeologue Brassica oleracea accession 'EU642504.1', where it is residing from position 20580-29972 bp in $3^{\prime}-5^{\prime}$ orientation. BoCACTA1 is 9399 bp large in size including 3 bp TSDs. It has perfect 15 bp TIRs (5^{\prime}-CACTACAAGAAAACA- ${ }^{\prime}$) and a CACTA signature and its reverse compliment at the termini of TIRs. The element has both transposase TNPD and TNPA at N-terminal and C-terminal ends respectively. A transposase associated domain (TAD) is present towards the N-terminal end of TNPD transposase. Similarly two domains named DUF4218 and DUF4216 are present towards the C-terminal end of TNPD (Figure 5.1). The function of these domains is unknown but their presence in all identified CACTA indicates that they are accessory domains, which aid transposase in the transposition and integration of CACTA elements. The nearest homologues of BoCACTA1 are BoCACTA2 and BoCACTA3, which are synonym of Brassica oleracea Botl-2 and Botl-3 CACTA elements of Alix (Alix et al., 2008). BoCACTA2 was identified from Brassica oleracea accession 'EU642505.1' from position $44789-55702 \mathrm{bp}$ within BAC sequence. It is 10914 bp in size with 3 bp TSDs at both ends and 15 bp 5'-CACTACAAGAAAACA-3' TIRs. The genome of BoCACTA2 displays the presence of both transposase TNPD and TNPA. The transposase associated domain is present in N-terminal of TNPD while DUF4218 and DUF4216 are located at C-terminal end of TNPD and N-termini of TNPA (Figure 5.1; Table 5.1).

The largest Brassica CACTA identified in present study is BoCACTA3, identified from Brassica oleracea accession 'EU642506.1' from 19777-30844 bp (Figure 5.1). The element is 11068 bp including 3 bp TSDs generated at both terminal ends. The element has 15 bp perfect 5^{\prime}-CACTACAAGAAAACA- 3^{\prime} TIRs and several sub-terminal repeats in terminal 80 bp . According to Alix et al., (2008), the Botl-3 has 64 bp TIRs but in present study, first 15 bp were considered as TIRs and the other discontinuous repeats as sub-terminal repeats. This is based on 15 bp conserved TIRs in almost all Brassica CACTA investigated in Brassica. The genome of BoCACTA3 displays only the presence of transposase TNPD. The TAD domain is present in N-terminal end of TNPD, while DUF4218 and DUF4216 are located at C-terminal end of TNPD. There is another extra domain named DUF7241 present in sub-terminal region of 3^{\prime} terminal end (Figure 5.1). Interestingly both elements BoCACTA2 and BoCACTA3 capture an ATHILA ORF-1 domain, which is integral component of Ty3/gypsy LTR retrotransposons identified in Arabidopsis thaliana. The detailed analysis showed that the ATHILA ORF-1 is present in opposite orientations in comparison to the CACTA protein domains (Figure 5.1). Two
other copies of CACTA designated as BoCACTA4 and BoCACTA5 were detected in Brassica oleracea accession 'EU642505.1' from 21474-29678 and 78098-85744 bp respectively. BoCACTA4 and BoCACTA5 are 8205 and 7647 bp in sizes with 3 bp TSDs and TIRs of 15 bp. Two other CACTA named BoCACTA18 and BoCACTA30 are 10682 and 10728 bp respectively display the similar structure with capturing ATHILA ORF-1 domain in opposite orientation of their coding region (Table $5.1 \& 5.2$).

During a dot plot analysis for the identification of retrotransposons, a 7265 bp CACTA element was identified from Brassica oleracea accession 'EU579455.1'. The element is named as BoCACTA19, which posses 3 bp TSDs and 15 bp TIRs similar to other Brassica oleracea CACTA elements. The blast analysis of this sequence provided many other copies from Brassica oleracea. The element display TNPD transposase with its associated domain (TAD) and ATHILA ORF-1 domain in opposite orientations. BoCACTA21 and BoCACTA22 are 8210 and 7170 bp large elements with 3 bp TSDs and 15 bp (5'-CACTACAAGAAAACA-3') TIRs. They encode both transposase proteins TNPD and TNPA with their associated domains without capturing ATHILA ORF-1 domain (5'-TAD-TNPD-DUF4218-DUF4216-TNPA-3'). Brassica oleracea accession (AC183496.1) harbour four complete copies of CACTA (BoCACTA30-BoCACTA33). BoCACTA30 is the largest (10728 bp) with ATHILA ORF-1 domain in its genome while BoCACTA31 and BoCACTA32 are 7157 and 6075 bp large is size including 3 bp TSDs and 15 bp TIRs with internal region encoding both transposase proteins and associated domains (Table 5.1). BoCACTA33 is a 5916 bp CACTA with typical Brassica CACTA TSDs and TIRS but encoding only a TNPD with its associated domain TAD.

5.2.3 Molecular characterization of Brassica rapa CACTA elements

The homologues of BoCACTA1 (Bot1) were also detected in Brassica rapa genomes. The first A-genomic CACTA (BrCACTA9) was identified from Brassica rapa accession 'AC172883.2' as an insertion from 114211-122180 bp with 3 bp TSDs and 15 bp TIRs (5^{\prime}-CACTACAAGAAAACA-3'). The blast searches retrieved many other copies with homology in their internal regions. The elements showing $>60 \%$ homology in their entire lengths and $>70 \%$ homology in coding regions were collected. The 15 bp TIRs and their reverse complements were used to define 5^{\prime} and 3^{\prime} end respectively. Fourteen intact autonomous CACTAs were identified from Brassica rapa genomes (BrCACTA6, BrCACTA7, BrCACTA9-BrCACTA17, BrCACTA26, BrCACTA34 and BrCACTA35).

They have shown similar TIRs as observed in Brassica oleracea CACTA elements. The largest among the Brassica rapa CACTA is BrCACTA6 residing in Brassica rapa accession 'AC189480.2'. The element is 9393 bp in size generating 3 bp TSDs and 15 bp TIRs (5'-CACTACAAGAAAACA-3'). The genome of BrCACTA6 displays the typical features of plant CACTA elements (TAD-TNPD-DUF4218-DUF4216-TNPA) (Table 5.1 \& 5.3). BrCACTA7 is 8288 bp large including 3 bp TSDs at both ends and 15 bp TIRs similar to BrCACTA6. BrCACTAII and BrCACTA16 are 7829 and 5442 bp with perfect protein domain organization (TAD-TNPD-DUF4218-DUF4216-TNPA) in the same frame. A 4952 bp element designated BrCACTA16 was identified from Brassica rapa accession 'AC189360.2'. The element includes 3 bp TSDs and 15 bp TIRs and an internal region coding transposase proteins and associated domains. The smallest autonomous Brassica CACTA is 3029 bp with 3 bp TSDs, perfect 15 bp TIRs and internal region encoding transposase and its associated domain (TAD-TNPD). The average sizes of Brassica rapa CACTA elements range from 7-8 kb (Table $5.1 \& 5.2$).

5.2.4 Identification of CACTA in Brassica allotetraploids

Among Brassica allotetraploids (AABB, AACC, and BBCC) two complete CACTA and several transposase like sequences were retrieved from Brassica napus BAC clones available in GenBank. The first complete Brassica napus CACTA named BnCACTA8 was identified from Brassica napus (AJ245479.1), which is 8164 bp including 3 bp TSDs and 15 bp TIRs (5^{\prime}-CACTACAAGAAAACA- 3^{\prime}). The element is a perfect autonomous element with internal regions encoding transposase and all associated domains necessary for transposition and integration (5^{\prime}-TAD-TNPD-DUF4218-DUF4216-TNPA-3'). Another complete CACTA named BnCACTA27 was identified from Brassica napus accession 'AC236784.1' from 93542-100733 bp. The element is 7192 bp including typical 3 bp TSDs and 15 bp TIRs but its internal region encodes only TNPD with its associated domains (5^{\prime}-TAD-TNPD-DUF4218-DUF4216-3'). Due to the lack or scarcity of available sequence ($<5 \mathrm{Mbp}$) in GenBank database for the allotetraploid Brassica juncea (AABB), Brassica napus (AACC) and Brassica carinata (BBCC) genomes, we cannot build a picture of the CACTA elements from their genomes. However, the diversity and distribution of CACTA in Brassica allotetraploids was confirmed by PCR analysis, with Brassica nigra, Brassica juncea and Brassica carinata which amplified the transposase indicating the diversity of Botl elements.

5.2.5 Protein domain organization in plant CACTA elements

The autonomous CACTA transposons mostly display a single transcriptional unit, which generates four to six protein domains (5^{\prime}-TAD-TNPD-DUF4218-DUF4216-TNPA-3') (Figure 5.1). TNPD and TNPA are the transposase genes required for transposition and integration of CACTA transposons. The transposase associated domain (TAD) is present towards N-terminal end of TNPD. The exact function of TAD is not known but it is the accessory component of TNPD transposase aiding it during transposition. Two domains named DUF4218 and DUF4216 are present towards the C-terminus of TNPD. The exact function of both domains is not known but their presence in almost all plant CACTA suggests their important role in mobilization of these elements. TNPA is localized next to DUF4218 and DUF4216 domains.

The domain pattern and organization of autonomous plant CACTA were investigated. Two major patterns of protein domain organizations were found. The first pattern is exhibited by majority of plant CACTA, where both transposases are present with other domains as 5^{\prime}-TAD-TNPD-DUF4218-DUF4216-TNPA-3'. The second pattern of protein domain organizations is $5^{\prime}-\mathrm{TAD}^{+}-\mathrm{TNPD}^{+}-$DUF4218 ${ }^{+}$-DUF4216 ${ }^{+}$-[ATHILA-ORF1]-$\mathrm{TNPA}^{+}-3^{\prime}$, where signs + and - indicate plus and minus orientations. The first pattern of domain organization was studied in Brassica rapa, Brassica oleracea, Arabidopsis thaliana, Petunia hybrid, Solanum tuberosum, Medicago truncatula, Zea mays, Oryza sativa and few other plants (Table 5.2), while the second pattern of protein domain organization is only observed in Brassica oleracea where an additional ATHILA-ORF1 domain is present in opposite orientation. These two major patterns have a few other subpatterns, where one or more domains are missing: in BoCACTA5, DUF4216 is missing, while in BrCACTA10, BrCACTA17, BoCACTA23, BoCACTA24, BnCACTA27, EnSpm13, EnSpm-10_ZM, EnSpm_OS, EnSpm1_TM, EnSpm-1_TA, EnSpm-1_HV, EnSpm15 _SB, one transposase (TNPA) is missing (5^{\prime}-TAD-TNPD-DUF4218-DUF4216-3'). Few CACTA from the grass family members (Zea mays, Oryza sativa, Triticum monococcum, Triticum aestivum, Hordeum vulgare, Sorghum bicolor) lack transposase (TNPD) is their structures, but still are active and mobile. The simplest type of the protein domain organization is observed in Daucus carota element TDC1 where only two transposase proteins are residing with TAD domain. Similarly, Arabidopsis thaliana ATENSPM1 element only displays a TNPA domain in its molecular structure (Table 5.2).

Table 5.1: Brassica CACTA elements with BAC sequences, sizes, number of TSDs, TIRs and orientation. Nucleotide sequences of representative CACTA elements are available in Appendices (attached CD).

Element Name	BAC Accession	Species	Size	Position	TSD	TIR	Orientation
BoCACTAl	EU642504.1	B. oleracea	9399	20580-29972	3	15	3'-5'
ВoCACTA2	EU642505.1	B. oleracea	10914	44789-55702	3	15	$5^{\prime}-3^{\prime}$
ВоСАСТА3	EU642506.1	B. oleracea	11068	19777-30844	3	15	$5^{\prime}-3^{\prime}$
BoCACTA4	EU642505.1	B. oleracea	8205	21474-29678	3	15	5'-3'
BoCACTA5	EU642505.1	B. oleracea	7647	78098-85744	3	15	$3^{\prime}-5^{\prime}$
BrCACTA6	AC189480.2	B. rapa	9393	87937-97329	3	15	3'-5'
BrCACTA7	AC232490.1	B. rapa	8288	61958-70245	3	15	$5^{\prime}-3^{\prime}$
BnCACTA8	AJ245479.1	B. napus	8164	44881-53044	3	15	$3^{\prime}-5^{\prime}$
BrCACTA9	AC172883.2	B. rapa	7970	114211-122180	3	15	$3^{\prime}-5^{\prime}$
BrCACTAlO	AC189446.2	B. rapa	7861	5462-13322	3	15	5'-3'
BrCACTAl1	AC189321.2	B. rapa	7829	92374-100202	3	15	5'-3'
BrCACTA12	AC189341.2	B. rapa	7802	99395-107196	3	15	$3^{\prime}-5^{\prime}$
BrCACTAl3	AC189496.2	B. rapa	7779	56849-64627	3	15	$5^{\prime}-3^{\prime}$
BrCACTA14	AC189314.1	B. rapa	7669	21683-29351	3	15	$5^{\prime}-3^{\prime}$
BrCACTA15	AC189655.2	B. rapa	6996	39384-46379	3	15	$3^{\prime}-5^{\prime}$
BrCACTA16	AC189360.2	B. rapa	5442	59073-64514	3	15	$5^{\prime}-3^{\prime}$
BrCACTA17	AC229605.1	B. rapa	4952	83111-88062	3	15	5'-3'
BoCACTA18	AC183492.1	B. oleracea	10682	81000-91686	3	15	$3^{\prime}-5^{\prime}$
BoCACTA19	EU579455.1	B. oleracea	7265	82206-89482	6	15	$3^{\prime}-5{ }^{\prime}$
BoCACTA20	AC183495.1	B. oleracea	9661	104704-114364	3	15	$3^{\prime}-5^{\prime}$
BoCACTA21	AC183495.1	B. oleracea	8210	159474-167683	3	15	$3^{\prime}-5^{\prime}$
BoCACTA22	AC183495.1	B. oleracea	7170	237844-245013	3	15	3'-5'
BoCACTA23	AC183493.1	B. oleracea	8072	228710-236781	3	15	$3^{\prime}-5^{\prime}$
BoCACTA24	AC183492.1	B. oleracea	8362	61770-70131	3	16	$5^{\prime}-3^{\prime}$
BoCACTA25	AC183492.1	B. oleracea	3735	183789-187523	3	15	$5^{\prime}-3^{\prime}$
BrCACTA26	AC172883.2	B. rapa	7970	114211-122180	3	15	$3^{\prime}-5^{\prime}$
BnCACTA27	AC236784.1	B. napus	7192	93542-100733	3	15	$3^{\prime}-5^{\prime}$
BoCACTA28	AC240086.1	B. oleracea	8741	29332-38072	3	15	$3^{\prime}-5{ }^{\prime}$
BoCACTA29	AC240092.1	B. oleracea	9900	32432-42331	3	15	$3^{\prime}-5^{\prime}$
BoCACTA30	AC183496.1	B. oleracea	10728	171084-181811	3	15	$3^{\prime}-5^{\prime}$
ВоСАСТАЗ1	AC183496.1	B. oleracea	7157	350861-358017	3	15	3'-5'
ВоСАСТА32	AC183496.1	B. oleracea	6075	302434-308508	3	15	$3^{\prime}-5^{\prime}$
BoCACTA33	AC183496.1	B. oleracea	5916	138717-144632	3	15	$3^{\prime}-5^{\prime}$
BrCACTA34	AC189565.2	B. rapa	5123	57417-62539	3	15	5'-3'
BrCACTA35	AC232476.1	B. rapa	3029	93851-96879	3	15	5'-3'
Bo-N-CACTA1	AC240092.1	B. oleracea	3265	48182-51446	3	15	$3^{\prime}-5^{\prime}$
Br-N-CACTA2	AC155342.2	B. rapa	2559	58153-60711	3	15	$3^{\prime}-5^{\prime}$
Bo-N-CACTA3	AC240087.1	B. oleracea	2662	89991-92652	3	15	$3^{\prime}-5^{\prime}$
Bo-N-CACTA4	AC240080.1	B. oleracea	2773	66450-69222	3	15	$3^{\prime}-5^{\prime}$
Br-N-CACTA5	AC155341.2	B. rapa	1419	29398-30816	3	13	$3^{\prime}-5^{\prime}$
Br-N-CACTA6	AC241034.1	B. rapa	1288	6551-7838	3	13	$3^{\prime}-5^{\prime}$
Br-N-CACTA7	AC189489.2	B. rapa	1288	108610-109897	3	15	$3^{\prime}-5^{\prime}$

Table 5.2: Protein domain organizations and TIRs of Brassica and other plant CACTA elements. TAD: Transposase associated domain. DUF: Domain of unknown function.

Element Name	Plant Species	Size	TIR sequence ($\mathbf{5}^{\prime}-3^{\prime}$)	Domains ($5^{\prime}-3^{\prime}$)
BoCACTA1	Brassica oleracea	9399	CACTACAAGAAAACA	TAD-TNPD-DUF4218-DUF4216-TNPA
BoCACTA2	Brassica oleracea	10914	CACTACAAGAAAACA	TAD-TNPD-DUF4218-DUF4216DUF4271/ATHILA*
ВоСАСТАЗ	Brassica oleracea	11068	CACTACAAGAAAACA	TNPD-DUF4218-DUF4216/TAD*ATHILA*
BoCACTA4	Brassica oleracea	8205	CACTACAAGAAAACA	TAD-TNPD- DUF4218-DUF4216-TNPA
BoCACTA5	Brassica oleracea	7647	CACTACAAGAAAACA	TAD-TNPD-DUF4218-TNPA
BrCACTA6	Brassica rapa	9393	CACTACAAGAAAACA	TAD-TNPD-DUF4218-DUF4216-TNPA
BrCACTA7	Brassica rapa	8288	CACTACAAGAAAACA	TAD-TNPD-DUF4218-DUF4216-TNPA
BnCACTA8	Brassica napus	8164	CACTACAAGAAAACA	TAD-TNPD-DUF4218-DUF4216-TNPA
BrCACTA9	Brassica rapa	7970	CACTACAAGAAAACA	TAD-TNPD-DUF4218-DUF4216-TNPA
BrCACTA10	Brassica rapa	7861	CACTACAAGAAAACA	TAD-TNPD-DUF4218-DUF4216
BrCACTAl1	Brassica rapa	7829	CACTACAAGAAAACA	TAD-TNPD-DUF4218-DUF4216-TNPA
BrCACTA12	Brassica rapa	7802	CACTACAAGAAAACA	TAD-TNPD-DUF4218-DUF4216-TNPA
BrCACTA13	Brassica rapa	7779	CACTACAAGAAAACA	TAD-TNPD-DUF4218-DUF4216-TNPA
BrCACTA14	Brassica rapa	7669	CACTACAAGAAAACA	TAD-TNPD-DUF4218-DUF4216
BrCACTA15	Brassica rapa	6996	CACTACAAGAAAACA	TAD-TNPD-DUF4218-DUF4216-TNPA
BrCACTA16	Brassica rapa	5442	CACTACAAGAAAACA	TAD-TNPD-DUF4218-DUF4216-TNPA
BrCACTA17	Brassica rapa	4952	CACTACAAGAAAACA	TAD-TNPD-DUF4218-DUF4216
ВоСАСTA18	Brassica oleracea	10682	CACTACAAGAAAACA	TAD-TNPD-DUF4218/ATHILA*
BoCACTA19	Brassica oleracea	7265	CACTACAAGAAAACA	TAD-TNPD-/ATHILA*
BoCACTA20	Brassica oleracea	9661	CACTACAAGAAAACA	TAD-TNPD-/ATHILA*
BoCACTA21	Brassica oleracea	8210	CACTACAAGAAAACA	TAD-TNPD-DUF4218-DUF4216-TNPA
ВоСАСTA22	Brassica oleracea	7170	CACTACAAGAAAACA	TAD-TNPD-DUF4218-DUF4216-TNPA
BoCACTA23	Brassica oleracea	8072	CACTACAAAAAAACA	TAD-TNPD-DUF4218-DUF4216
BoCACTA24	Brassica oleracea	8362	CACTACAAGAAAcACA	TAD-TNPD-DUF4218-DUF4216
BoCACTA25	Brassica oleracea	3735	CACTACAAGAAAACA	TAD-TNPD
BrCACTA26	Brassica rapa	7970	CACTACAAGAAAACA	TAD-TNPD-DUF4218-DUF4216-TNPA
BnCACTA27	Brassica napus	7192	CACTACAAGAAAACA	TAD-TNPD-DUF4218-DUF4216
BoCACTA28	Brassica oleracea	8741	CACTACAAGAAAACA	TAD-TNPD-DUF4218-DUF4216-TNPA
BoCACTA29	Brassica oleracea	9900	CACTACAAGAAAACA	TAD-TNPD-DUF4218-DUF4216-TNPA
BoCACTA30	Brassica oleracea	10728	CACTACAAGAAAACA	TAD-TNPD-DUF4218-DUF4216DUF4271/ATHILA*
BoCACTA31	Brassica oleracea	7157	CACTACAAGAAAACA	TAD-TNPD-DUF4218-DUF4216-TNPA
BoCACTA32	Brassica oleracea	6075	CACTACAAGAAAACA	TAD-TNPD-DUF4218-DUF4216-TNPA
BoCACTA33	Brassica oleracea	5916	CACTACAAGAAAACA	TAD-TNPD
BrCACTA34	Brassica rapa	5123	CACTACAAGAAAACA	TAD-TNPD-DUF4218-DUF4216-TNPA
BrCACTA35	Brassica rapa	3029	CACTACAAGAAAACA	TAD-TNPD
Bo-N-CACTA1	Brassica oleracea	3265	CACTACAAGAAAACA	NON-AUTONOMOUS
Br - N -CACTA2	Brassica rapa	2559	CACTACAAGAAAACA	NON-AUTONOMOUS
Bo-N-CACTA3	Brassica oleracea	2662	CACTACAAGAAAACA	NON-AUTONOMOUS
Bo-N-CACTA4	Brassica oleracea	2773	CACTACAAGAAAACA	NON-AUTONOMOUS
Br-N-CACTA5	Brassica rapa	1419	CACTACAAGAAAACA	NON-AUTONOMOUS
Br-N-CACTA6	Brassica rapa	1288	CACTACAAGAAAAagCA	NON-AUTONOMOUS
Br-N-CACTA7	Brassica rapa	1288	CACTACAAGAAAACA	NON-AUTONOMOUS
BRENSPM1	Brassica rapa	7811	CACTACAAGAAAACA	TAD-TNPD-DUF4218-DUF4216-TNPA
Chester-1	Arabidopsis thaliana	8216	CACTACAAGAAATAT	TAD-TNPD-DUF4218-DUF4216-TNPA
Cac1	Arabidopsis thaliana	8479	CACTACAA	TAD-TNPD-DUF4218-DUF4216-TNPA
ATENSPM1	Arabidopsis thaliana	4548	CACTACAAGAAAACAGT CGTTTTGCGAGG	TNPA
TDC1	Daucus carota	5251	CACTACAAGAAAACGCG	TAD-TNPD-TNPA
PSL	Petunia hybrida	9932	CACTACAAAAAA	TAD-TNPD-DUF4218-DUF4216-TNPA
EnSpm-2_STu	Solanum tuberosum	17800	CACTACAAAAAAACCC	TAD-TNPD-DUF4218-DUF4216-TNPA
EnSpm-13	Vitis vinifera	12363	CACTACTACAAAA	TAD-TNPD-DUF4218-DUF4216
EnSpm_MT	Medicago truncatula	8153	CACTACAAGAAAAAT	TAD-TNPD-DUF4218-DUF4216-TNPA
EN1	Zea mays	8287	CACTACAAGAAAA	TAD-TNPD-DUF4218-DUF4216-TNPA
Dopia4_ZM	Zea mays	8463	CACTACAGGAAACGCCT AAATTTTCGTGGGCC	TAD-TNPD-DUF4218-DUF4216-TNPA
EnSpm-10_ZM	Zea mays	8351	CACTACCGGAATCCGGG CTTTGCCGAGTG	TAD-TNPD-DUF4218-DUF4216
EnSpm_OS	Oryza sativa	11265	CACTACTGGAGATGGGA AGGCTCCCGTGTGCAT	TAD-TNPD-DUF4218-DUF4216
Rim2-569	Oryza sativa	20352	CACTGGTGGAGAAACC	TAD-TNPD-DUF4218-DUF4216-TNPA
EnSpm1_TM	Triticum monococcum	9841	CACTACTGGAATCAGCTA GTTTGCC	TAD-TNPD-DUF4218-DUF4216
EnSpm-1_TA	Triticum aestivum	14742	CACTACTAGGGAAAAGC CT	TAD-TNPD-DUF4218-DUF4216
EnSpm-1_HV	Hordeum vulgare	11744	CACTACTGGAATCA	TAD-TNPD-DUF4218-DUF4216
EnSpm-15_SB	Sorghum bicolor	14652	CACTAGTAG	TAD-TNPD-DUF4218-DUF4216

5.2.6 Brassica CACTA captures an ATHILA ORF-1 domain

Brassica CACTA transposons have captured an ATHILA ORF-1 domain in their coding regions. ATHILA ORF-1 domain is the integral part of Arabidopsis thaliana Ty3/gypsy LTR retrotransposons. The Brassica oleracea CACTA showed homology in ~1200-1280 bp (~400-428 aa) region of ATHILA ORF-1 domain from Arabidopsis thaliana Gypsy retrotransposon. The ATHILA ORF-1 domain is present in BoCACTA2, BoCACTA3, BoCACTA18, BoCACTA19, BoCACTA20 and BoCACTA30. All these CACTA elements are larger in sizes from other homologues indicating the presence of ATHILA ORF-1 domain insertions in their sequences. In general, $\sim 3.1 \mathrm{~kb}$ insertion was detected in Brassica CACTA, with $\sim 1.2 \mathrm{~kb}$ region homologous to ATHILA ORF-1 domain. The insertional preference of this insertion is AT rich regions and exact terminal ends of the insertions were not identifiable due to the presence of a lot of direct repeat sequences in its terminal regions (Figure 5.1; Table 5.2).

5.2.7 Characterization of non-autonomous Brassica CACTA

A 2559 bp CACTA was identified from Brassica rapa accession 'AC155342.2' from $58153-60711 \mathrm{bp}$ within BAC sequence. The element generated 3 bp TSDs and 15 bp ($5^{\prime}-$ CACTGGTGGAGAAACC-3') TIRs. The 300 bp terminal regions were used to locate its $\mathrm{En} / \mathrm{Spm}$ or autonomous CACTA and BrCACTA6 and related homologues were found as its descendents. The element is named $\mathrm{Br}-\mathrm{N}-\mathrm{CACTA2}$, where Br specifies Brassica rapa, N indicate non-autonomous, CACTA represents transposons superfamily and 2 indicate the number of identified element. Another 3265 bp non-autonomous CACTA (Bo-NCACTAl) was identified from Brassica oleracea 'AC240092.1' residing from 4818251446 bp with 3 bp TSDs and having 15 bp TIRs (5'-CACTGGTGGAGAAACC-3') similar to other Brassica CACTA transposons (Figure 5.2). Bo-N-CACTA3 and Bo-NCACTA4 are 2662 and 2773 bp in sizes with 3 bp TSDs and 15 bp TIRs identified from Brassica oleracea accessions 'AC240087.1' and 'AC240080.1' respectively. The comparison of Brassica rapa accessions 'AC155341.2' x 'AC189489.2' led to the identification of two non-autonomous CACTA named Br - N -CACTA5 and Br - N -CACTA6, which are 1419 bp and 1288 bp respectively. Br - N -CACTA7 is similar to $\mathrm{Br}-\mathrm{N}-\mathrm{CACTA6}$ in size and homology but present in another Brassica rapa accession 'AC241034.1' (Figure 5.2; Table 5.1).

Figure 5.1: Schematic representation of CACTA elements studied in Brassica. Red arrows at termini represent TSDs, while blue triangles indicate TIRs. Transposases TNPD and TNPA are shown as blue and purple boxes. The transposase associated domain (TAD) is shown in green while three domains of unknown functions DUF4218, DUF4216 and DUF4271 are shown in different colours. ATHILA-ORF1 domain is shown in light blue colour in the opposite orientation. The names and sizes of domains were obtained by blasting the sequences against the known proteins in the conserved domain database of NCBI. The scale below the elements shows sizes in bp.

Figure 5.2: Schematic representation of non-autonomous CACTA elements studied in Brassica. The names given to the elements are printed in their internal regions. TSDs are shown by red arrows, while blue triangles indicate TIRs. The elements have not shown any protein coding domains like transposase or any other protein. The TIRs of the elements were similar to their ancestral autonomous CACTA elements. The scale below the elements shows sizes in bp.

5.2.8 PCR amplification of ATHILA ORF-1 insertion in Brassica

To investigate, whether ATHILA ORF-1 is only captured by Brassica oleracea CACTA or Brassica rapa CACTA elements also harbour this, the primers BoATHILAF (5'-ACATTGAAGGGCTGTTCCAG-3') and BoATHILAR (3'-AGCTTGTACTGGCTGGAGTC5^{\prime}) were designed from the ATHILA ORF-1 domain. Out of 40 Brassica diploids and polyploids lines, a 1 kb ATHILA ORF-1 was amplified from 28 accessions indicating its presence in most of the Brassica genomes. A weak band of $\sim 1 \mathrm{~kb}$ size was amplified from Brassica rapa (Pak Choy, San Yue Man, Vertus, Suttons) accessions. All the three Brassica nigra cultivars failed to amplify ATHILA ORF-1 domain. This revealed that Brassica nigra CACTA lack this domain while Brassica rapa and Brassica oleracea CACTA possess it in their genes. All the six Brassica oleracea cultivars amplified the 1 kb band of ATHILA ORF-1 revealing that this domain is mostly captured by Brassica oleracea CACTAs. Out of nine Brassica juncea genomes (NARC-II, Kai Choy, W3) accessions amplified the product. Strong bands were amplified from Brassica napus cultivars (New, Mar, Last and Best, Fortune, Drakker, Tapidor). Similarly all Brassica carinata accessions amplified the 1 kb band. The amplification of ATHILA ORF-1 in Brassica napus and Brassica carinata indicates that C-genome is the contributor of this domain in allotetraploids Brassica. All the four Brassica hexaploids amplified a strong band of 1 kb suggesting its diversity in these genomes (Figure 5.3b).

5.2.9 PCR amplification of Brassica CACTA transposase_21 (TNPD)

To amplify CACTA transposase, degenerate primers pair BoCACTA1F and (5'-CCTCAGGTGGACCATCAAAC-3') and BoCACTA1R (3^{\prime}-GACGAAAAGGTTGCAGAGGT5^{\prime}) were designed from the conserved DDD/E region of transposase (TNPD). PCR was carried out to amplify the 580 bp ($\sim 190 \mathrm{aa}$) of DDD/E domain region. A total of 40 Brassica genomes were used to amplify the CACTA transposase. Brassica CACTA transposase was successfully amplified from all the 40 diploid and polyploids Brassica lines suggesting its high diversity among Brassica species. A 580 bp strong band was amplified from all A-genome Brassica (Pak Choy, Chinese Wong Bok, San Yue Man, Hinona, Vertus, Suttons), B-genome Brassica nigra (HRIGRU011011, HRIGRU010978, HRIGRU010919), C-genome Brassica oleracea (De Rosny, Kai Lan, Early Snowball, Precoce Di Calabria, Cuor Di Bue Grosso, GK97361), allotetraploid Brassica juncea,

Brassica napus and Brassica carinata accessions. The synthetic hexaploid Brassicas also amplified the CACTA transposase. The amplification of CACTA in all Brassica species indicate its diversity, presence and ancient nature and suggests their amplification before the separation of Brassica nigra and Brassica rapa/Brassica oleracea clades ~ 17 Mya (Figure 5.3a).

Table 5.3: List of Brassica CACTA and Harbinger primers with, size of the elements, size of the expected products, names and sequence of primers.

Sr.No.	TE Superfamily	TE Size	Product Size	Primers	Primer Sequence
1	CACTA	9399	580	BoCACTA1F BoCACTA1R	CCTCAGGTGGACCATCAAAC GACGAAAAGGTTGCAGAGGT
2	CACTA	1200	1000	BoATHILAF BoATHILAR ACATTGAAGGGCTGTTCCAG	AGCTTGTACTGGCTGGAGTC
3	Harbinger	3843	566	BoHARB1F BoHARB1R	CGATGAGTACTTAAGAAGAC GGCAAGATTATGAGAGCATG
4	Harbinger	1521	2672	BrHARB5AF BrHARB5AR	CGCCATTGTTTCATGTGTGT GCATTCAGATGATGTTGTGC
5	Harbinger	1392	2672	BrHARB5BF BrHARB5BR	GCACACACATCATCTGAATGC GTACTGTCTACGTATGG
7	Harbinger	1199	1357	BoNHARB1F BoNHARB1R	ACTAGCCATTTCCATCTTCT GTACTTGTAGTGTTTG
7	Harbinger	819	1100	BrNHARB2F BrNHARB2R	ACATGCATAGATTGCGCTTG TTTCACATTCGGCATGAGT

Figure 5.3: PCR amplification of a) CACTA transposase from 40 Brassica lines. The 580 bp bands amplify the CACTA transposase from all 40 genomes. b) BoATHILA ORF-1 domain: the 1000 bp band shows the presence of this domain in Brassica but in contrast to the CACTA transposase, it is not present in all accessions of Brassica rapa and Brassica juncea. All PCR figures show inverted images of size-separated ethidium bromide stained PCR products following agarose gel electrophoresis; numbers below the lanes identify each cultivar listed in table 2.1 and ladders indicate sizes in bp.

5.2.10 Phylogeny of Brassica CACTA transposons

The alignment of transposase (TNPD) from 35 Brassica, 5 Arabidopsis thaliana and 10 known plant transposase were performed by CLUSTALW available in BioEdit program. The Brassica and Arabidopsis thaliana CACTA transposases were collected from NCBI. The 10 transposases of well known CACTAs from various plants were collected from Repbase database (Jurka et al., 2005) of eukaryotic transposable elements. The alignment of 50 transposases allows the identification of motifs essential for the transposition. The transposase sequences were mostly perfect but few are interrupted by stop codons, small indels, frameshift mutations or lacking the translation initiation codons (Figure 5.4). The highly conserved catalytic triad motif $\mathrm{D}_{93} \mathrm{D}_{39} \mathrm{D}$ was present in all the transposases. In addition to the DDD triad, many other specific conserved amino acid domains are present in CACTA transposases. The amino acid residues around the DDD triad and between the second and third aspartate residue $\left(\mathrm{D}_{39} \mathrm{D}\right)$ is the most conserved region among all plant transposase.

Phylogenetic tree was generated by using 50 transposase sequences (TNPD/Transposase_21) by the Neighbour-Joining method with 1000 bootstrap repititions and the genetic distance was calculated by Jukes-Cantor model (Figure 5.5). The tree was rooted with the grass family CACTA Dopia4_ZM from Zea mays. Phylogenetic analysis using the 210 amino acid sequences from 50 plant CACTA transposases generates two major clades. One clade represents the CACTA from other monocot and dicot plants and the other clade clustered all CACTA from the Brassicaceae family (Brassica and Arabidopsis) except Chester-1 of Arabidopsis thaliana. The first major clade represented by 8 CACTA transposases from variable plants further splits into three sub-clades. The first sub-clade (ENSPM) is represented by the grass family members as EnSpm10_TM from Triticum monococcum, EnSpm10_OS from Oryza sativa and EnSpm10_ZM from Zea mays. In the second sub-clades (CHESTER1), Chester-1 from Arabidopsis thaliana, EnSpm-13 from Vitis vinifera and TGM5 from Glycine max clustered together, while TDC1 from Daucus carota and PSL from Petunia hybrida clustered together by making a third sub-clade (TDC1-DC). This suggests that in spite of high homology in monocot and dicot plant CACTA transposase, there is a divergence in both groups and they follow a different evolutionary pattern.

The second clade is represented by 41 CACTA transposases from Arabidopsis and Brassica suggesting their monophyletic origin from a common ancestor before the separation of two genuses. This major clade further resolved into 3 groups, each representing species-specific sub-clades. Thus all the four Arabidopsis thaliana CACTA elements (ATCACTA1, ATCACTA2, ATCACTA4, ATCACTA5) make a sister group with Brassica oleracea and Brassica rapa whereas ATCACTA3 appears as an out group due to slight mutations in C-terminal end of its transposase. Although the BLASTN searches retrieved many transposase sequences from Arabidopsis thaliana, only 1 transposase from each chromosome was collected and analyzed in this study. Thus ATCACTA1 represents a CACTA located on chromosome 1 and ATCACTA5 on chromosome 5 of Arabidopsis thaliana. The 19 Brassica oleracea with one Brassica rapa (ENSPM1) and one Brassica napus CACTAs clustered in three dispersed groups, in which Arabidopsis thaliana (ATCACTA) and Brassica rapa (BrCACTA) specific groups are intervened between Cgenome specific CACTA (BoCACTA). This suggests that Brassica CACTA Botl family transposases are not only conserved in diploid Brassicas but actively proliferating in allotetraploid Brassicas (B. juncea, B. napus, B. carinata). The high homology in the transposase of Brassica and Arabidopsis CACTA elements suggests their common ancestry and presence before the separation of two genera $\sim 20 \mathrm{Mya}$ (Figure $5.4 \& 5.5$).

	110120	140	150160	$170180 \quad 190 \quad 200$
				PYRRSKTLFTKNKOVEDGPPEEI
				DCHRRELPPDHPYRRSRNLETKNKRVEDSPPPEICGKDLKT
EU642506. 1	CKENF QMRAVLMWT	SGWT THGR	RKTC	DCHRRELPPDHPYRRSRNLFTKNKRVEDS
BoCACTA4-EU642505.1	R,	SGWTT	RKT	RRELPPDHPYRRNKNLF RNNKRVLDTPPPEISGKQLKR
BOCACTA.5-EU642505.1	KENE QMRAMLLWTIS	SGWTT	LKHGRKTC	DCHRRELPPDHPYGRNKNLERNNKMVLDTPPPEISGEQ
BrCACTA6-AC189480. 2	KENE QMRAVLMWTIS	LSGWTTHGRI	LKHGRKTCWF	DCHRRELPPDHPYRRSRNLETKNKRVEDSPPPEIRGKDL
1	TYDVSYKENE ${ }^{\text {L }}$ LRAVLMWTIS	MLSGWTTHGRLS	LKHGRKTCR	DCHRRELPPDHPYRRSRNLETKNKRVEDSPPPEIRGKDL
	ETYDGSYKENEQMRAVLMWTIS	LSGWT THGRLS	TDAF $2 L K H G R K T C W F$	DCHRRELPENHPYRRSMNLETKNKRVEDSPPLEIRGKD
TA9-AC172883	TYDVSCKENFQMRAVLMWTI	ILSGWTTHGRI	TDAFQLKHGRKTC	CHRRFLPPDHPYRRSRNLFTKNKRVFDSPPPEIRGKD
189	NFQMRALLMWT	ILSGWTTHERI	RKTC	RHRRELPPDHPYRR
BrCACTA11-AC189321.2	GAETYDVSCKENE QMRAVLMWTIS	SGWTTHGR	TD	RFLPPDHPYRRSRNLFTKNKRVEDSPPPEIRGKD
				Redsprpel
brCactal3-AC189	ENE QMRAVLMWTI	MLSGWTTHGRI	LKHGRKTC	DCHRRELPPDHPYRRSRNLFTKNKRVEDSSPPEI
	ETYDVSYKENEQMRAVLMWTI	GMLSGWTTHGRI	CQDNTDAFQLKHGRKTC	DCHRRELPPDHPYRRSRNLFTKNKRVEDSPPPEIRGKD
BrCACTA15-AC1896	ENEQMRAVLMWTI	ISGWTTHGRI	RK	CHRRELPPDHPYRRSRNLFTKNKRVEDS
	SYKENEQMRAVLMWTI	ILSGWTTHGRI	DNTDAE QLKHGRK	LPPD
BrCACTA17-AC229605	MWTI			
BOCACTA18-AC1834	ETYDVSCKENE QMRAVLMWT	PAYGME SGWT THGRLS		LPP
			D	LP
BOCACTA20-AC1834	QMQAVLMWT	GMLSGW T THGRI	QDNTDAF QLKHGRKTC	LP
	QAVLM	SGWTTHGRI	TDAFOLK	CHRRELPPD
	VLLWT	MSGWTTHGRL		CHRRELPLV
	M	MLSGWT THGRI	QDNTDAFQLKHGRK	CHKRELPPD
	M	LSGWTTHGK		-krelp
BоСACTA25-AC183492.1	HGEETYDVSRKENE ¢MRAVLM	LSGWTTHGKLS		P
	QGAETYDVSCKENE QMRAVLMWTI	LSGWTTHGRL	DNT	DCHRRELPPDH PYRRSRNLETKNKRVEDSPPPEIRGKDI
	Q1	LSGWTTHGRL	LKHRRK	DCHRRELPPD
		LSGWITHGR		Chrrelmpd
	QGAETYDVSCKENEQMRAVLMWTIS	MLS*WTTHGRI	DNTDAF ${ }^{\text {dKHGR }}$	P1
	VL			
	-	TTHGRI	GSIDAFQLKNGRK	
		TT	LGTTDAFOLKNGRK	
		MLSGWTTHGR		
	LM	LSGWTTHGRI	CQDNTDAF QLKHGRK	LPPDHPYRRSRNLFTKNKRVFDSPPPE
	VLMW'	GWTTHGRI		
		MLSGCTTHGRI	CODNTDAFQLKQGR	HRRWLPEDHPYR*TTTLFXXNKQVEDGPPPEYSGEDMMD
	IGVEAFDVSS*QXEVMRTTLIWTI	ILSGWTTHGRI		LPSNHPYRQSTTLFTKNKKVVYGSPEELDDTY
	FDVSSQQNEVMRAALMWTI	MLSGTJTTHGRL	QNNMMIIS**1L	DLDCREREIDIIDHLRDKPWL*ITCMNHDLYE SEFNLII
STER1 A.thal			KNTDSMWL PNCRK	MSHRKGLPSNHSYQSKKSWEXX
	YDSHTEKEFTMRAAYLW	GDWSGWCVHGRI	INDTDAFRLKHGGKV	DAHRRWT PF KHDERNSLTAFRGGAKIRNGPPKRQTAPQI
	仡	PAY GMLSGWTTHGRI	NGTTDAEXLKNGRKTS	HRRELPI GHPYRRNKNLERHKRVVRDTSPPYLTGE
ENSPM-10 o.sativ	-	PAYGIECGWCVHGKM	MEVLKGRRLK	LPHGHIFRND
		KE		DKHRQELPPDHPERLDIKNETKGVVVTDRPPATMTGAEI
				PGHRRELPCNHPERKQKKAEXXGEQEFRSPPQPLSGEEILR
				Q

Figure 5.4: Multiple alignment of transposase encoded by Brassica and other plant CACTAs. The conserved DDD triad is indicated by the letters at the top. Brassica and Arabidopsis showed very high homology in their transposase, while a small difference was seen in other plant transposases. Several conserved regions are indicated by coloured vertical lines. The conserved ~ 210 aa region around the DDD/E triad is selected and aligned. Frameshifts were introduced if necessary with small insertions/deletions without frameshift. Asterisks in the sequences show stop codons and dashes indicate gaps.

Figure 5.5: Neighbour-Joining tree showing relationship of CACTA family TNPD-transposase (Transposase-21). The phylogenetic tree of Brassica CACTA based on the transposase coding DNA sequence constructed by the Neighbour-Joining method with 1000 bootstrap replicates using the Geneious Pro program. The tree is rooted with DOPIA4 transposase from Zea mays. The bootstrap support (\%) is shown near the nodes. The known CACTA transposase sequences were obtained from Repbase database. The names of the elements are followed by the BAC numbers from which they were identified. Different sub-clades are shown in colours.

5.3 Identification of Harbinger transposons in Brassica

The autonomous and non-autonomous Harbinger from Brassica genomes were identified by dot plot comparison of homeologous BAC sequences. The dot plot comparison of Brassica rapa accession 'AC155344.1' against its homologue Brassica oleracea 'AC240081.1' led to the identification of two Harbinger BoHARB1 and BoHARB2 from Brassica oleracea. Similarly Brassica rapa accession 'AC155341.2' was plotted against its homologue Brassica oleracea accession AC240089.1, which detect a 4 kb autonomous (BoHARB3) and a 514 bp non-autonomous (Bo-N-HARB3) Harbinger in Brassica oleracea (AC240089.1) BAC clone. BoHARB3 was used as query in blast searches to further detect its homologues, but only a 3.5 kb intact Harbinger from Brassica rapa accession 'AC189588.2' was identified. The dot plot sequence comparison of Brassica rapa accession (CU984545.1) against its homoeologous Brassica oleracea accession (EU579455) directed the identification of a 2672 bp insertion terminated by 3 bp TSDs and 17 bp TIRs. The element was named BrHARB5 due to typical hallmarks of Harbinger transposons. Another non-autonomous Harbinger (Br - N -HARB2) was detected in Brassica rapa accession 'AC189298.1' residing within BAC from 46497-47315 bp. The autonomous Harbinger were characterized on the basis of 3 bp TSDs, 15-60 bp TIRs and internal region with a DDD/DDE transposase (TPase), whereas the non-autonomous Harbinger were characterized on the basis of TSDs, TIRs and by comparing their 5^{\prime} and 3' terminal regions with the known Harbinger.

5.3.1 Detailed structural analysis of Brassica Harbinger

The first Harbinger was identified from Brassica oleracea (AC240081.1) from position 5984-9826 bp and was named BoHARB1 (Bo indicate Brassica oleracea, where HARB1 indicate $1^{\text {st }}$ Harbinger from Brassica). The element generates a typical Harbinger-like TAA target site repeat on integration with 42 bp TIRs (Figure 5.6). The BoHARB1 is highly AT rich (60\%), with a high AT rich region (75\%) in the first 350 bp immediately after the 5^{\prime} TIR. The detailed analysis of internal regions of this element revealed that it only exhibits SANT domain and lacks a transposase domain necessary for its transposition and mobilization. The SANT domain is the other protein encoded by Harbinger transposons which is considered to be a part of DNA-binding domains. On the basis of lacking the Harbinger TPase, BoHARB1 is considered to be a defective

Harbinger. Another Harbinger-like insertion was identified from Brassica oleracea accession 'AC240081.1' from position 53192-56946 bp. The 3755 bp insertion exhibit the structural features of Harbinger displaying TTA TSDs and 15 bp TIRs with a mismatch of 2 bp . The element is rich in AT content (63\%) with many small poly A/T sequences dispersed within the molecule. The blast hits gave no significant hits to any other element. The molecular organization of BoHARB2 displays the encoding of two protein domains TRX and ATP11. The thioredoxin (TRX)-like protein superfamily is a highly diverse and large group of proteins containing a TRX domain with a redox active CXXC motif (FC et al., 2012). The other protein (ATP11) is located at sub-terminal region of 3^{\prime} end, and is dispersed in many eukaryotic proteins.

The BoHARB3 was identified from Brassica oleracea accession AC240089.1 starting from 86355 bp and ending at 90417 bp. This 4063 bp large Harbinger is terminated by AAG TSDs and 18 bp imperfect TIRs (5^{\prime}-GCTTAGAGCATGATTATC- 3^{\prime}). The element is A / T rich (62%) with high A / T percentage (76%) in the terminal 400 nucleotides excluding TIRs at 3^{\prime} end. The molecular structure of BoHARB3 revealed that it encodes a transposase protein in sub-terminal region of 3' end. Besides a transposase two other proteins TRX (TRX domain containing family) and a GPCR family are encoded by it. The GPCR is a Serpentine type chemoreceptor family of proteins. This protein is located towards the C-terminal end of SANT protein domain and N-terminal end of transposase (TNP). BrHARB4 is the only autonomous Harbinger identified from the Brassica rapa genome. The element is 3527 bp large in size with typical TAA TSDs and 15 bp TIRs. A ~200 bp 'CT' SSRs are present 250 bp away from the start of 5' TIR (Figure 5.6). The element is A/T rich (60%) with several simple poly(AT) repeats. $B r H A R B 4$ showed $>75 \%$ homology in its entire length and $>90 \%$ homology in transposase region indicating the members of the same family. The protein domain organization of BrHARB4 displays a transposase domain and two other protein domains named SANT and NAM in its structure. NAM is an abbreviation of No apical meristem-associated C-terminal domain. This domain is present in several types of plant proteins including NAM-like proteins. Another Harbinger named BrHARB5 was isolated as an insertion in Brassica rapa accession 'CU984545.1' from 36506-39177 bp. It is flanked by TAA TSDs and 17 bp TIRs with high A/T content (60%) in its molecule. The internal region contains a SANT and NAM associated protein superfamilies (Figure 5.6).

Figure 5.6: Schematic representation of Brassica Harbinger. The 3 bp at termini represent TSDs. Black triangles indicate TIRs. The orange box represents the transposase (TNP). SANT motifs are shown in green, NAM with blue and other domains with different colours. The protein domains were identified by screening these sequences against known proteins in the conserved domain database (CDD). The scale below shows sizes in bp. ATP11: ATP11 protein family. GPCR: Serpentine type 7TM GPCR chemoreceptor. NAM: No apical meristem-associated C-terminal domain. TRX: Thioredoxin protein superfamily.

5.3.2 Structural features of non-autonomous Harbinger in Brassica

In addition to the TPase-containing Harbinger, three elements were identified from Brassica genomes lacking any coding capacity and thus considered as non-autonomous Harbinger. They were characterized as Harbinger on the basis of 3 bp TSDs and TIRs >15 bp. The first non-autonomous Harbinger was detected from Brassica oleracea accession 'EU642504.1' as an insertion from 68290-69477 bp within the BAC sequence. The element is 1199 bp in size and named as Bo-N-HARB1. It is flanked by TTA TSDs and 24 bp perfect TIRs (5^{\prime}-GAGAATCTCCAAAAGAAACTCTAT- 3^{\prime}). The element is highly AT rich (76\%) with dispersed poly AT sequences. It captures a $\sim 500 \mathrm{bp}$ ND5 domain, which is a NADH dehydrogenase subunit. Using Bo-N-HARB1 as a query in GenBank database, 365 sequences showed homology to the element, of which approximately half of the elements have shown $>75 \%$ identity in the entire lengths. The members of this family range in sizes from 1042 bp to 1215 bp all terminated by TAA/TTA TSDs and 2425 bp TIRs, which are highly conserved with the exception of 1-3 bp mismatches (Figure 5.7; Table 5.5). Another non-autonomous Harbinger name Br-N-HARB2 was isolated from Brassica rapa accession 'AC189298.2' from 46497-47315 bp. The element is 819
bp in size terminating with TAC TSDs and 23 bp TIRs. Bo-N-HARB3 is a 514 nucleotides large element identified from Brassica oleracea accession AC240089.1 inserted in position 9672-10185 bp. The element generate 26 bp imperfect TIRs (Table 5.4).

Table 5.4: Harbinger transposons studied in Brassica with sizes, TSDs, TIRs and positions in BAC sequences.

Name	Accession	Host	Size	TSDs	TIR (5'-3')	Position
BoHARB1	AC240081.1	B. oleracea	3843	TAA	CAATAGGTCTGTTCGTTTGGTGCCC	$5984-9826$
BoHARB2	AC240081.1	B. oleracea	3755	TTA	GACCATCATTATCCC	$53192-56946$
BoHARB3	AC240089.1	B. oleracea	4063	AAG	GCTTAGAGCATGATTATC	$86355-90417$
BrHARB4	AC189588.2	B. rapa	3527	TAA	TTAATGGTTGCTTTA	$34915-38440$
BrHARB5	CU984545.1	B. rapa	2672	TAA	GAGCATCTTTATCCATG	$36506-39177$
Bo-N-HARB1	EU642504.1	B. oleracea	1199	TTA	GAGAATCTCCAAAAGAAACTCTAT	$68290-69477$
Br-N-HARB2	AC189298.1	B. rapa	819	TAC	AATATGGTGAATTGAAATAGAAT	$46497-47315$
Bo-N-HARB3	AC240089.1	B. oleracea	514	TCA	ATTGTCAATCTCTAAGACCATCGTT	$9672-10185$

Table 5.5: List of non-autonomous Bo-N-HARB1 and its homologues studied in Brassica with sizes, TSDs and TIRs.

Name	Accession	Species	Size	TSDs	TIR (5'3')
Bo-N-HARB1-1	EU642504.1	B. oleracea	1199	TTA	GAGAATCTCCAAAAGAAACTCTAT
Bo-N-HARB1-2	AC183494.1	B. oleracea	1095	TTA	TAGCATCTCCAAAAGACACTCTAT
Bo-N-HARB1-3	AC183493.1	B. oleracea	1096	TTA	GAGCATCTCCAAAAGACACTCTAT
Br-N-HARB1-4	AC189475.2	B. rapa	1212	TAA	GAGCATCTCCAAAAGAAACTCTAT
Br-N-HARB1-5	AC189364.2	B. rapa	1212	TCA	GAGCATTTCCAAAAGAAACTCTAT
Br-N-HARB1-6	AC189237.1	B. rapa	1215	TTA	GAGCATCTCCAAAAGAAACTCTAT
Br-N-HARB1-7	AC189430.2	B. rapa	1213	TAA	GAGCATCTCCAAAAGAAACTCTAT
Br-N-HARB1-8	AC232512.1	B. rapa	1136	TTA	CAGCATCTCCAAAAGAAACTCTAT
Br-N-HARB1-9	AC189375.2	B. rapa	1102	TTA	GAGCATCTCCAAAAAATATTCTAT
Br-N-HARB1-10	AC189300.2	B. rapa	1086	TAA	GAGCATCTCCAAAAGACACTCTAT
Br-N-HARB1-11	AC189225.2	B. rapa	1063	TAA	GAGTATCTCCAAAAGACACTCTAT
Br-N-HARB1-12	AC232514.1	B. rapa	1208	TAA	GAGCATCTCCAAAAGAAACTCTAT
Br-N-HARB1-13	AC189183.2	B. rapa	1117	TAA	GAGCATCTCCAAAAGAAACTCTAT
Br-N-HARB1-14	AC189592.2	B. rapa	1042	TAA	GAACATCTCCAAAAGAAACTTTAT

Figure 5.7: Pictrogram representing TIRs of non-autonomous Harbinger elements. Fifteen TIRs were used to generate the logo. Nucleotides 1, 3, 4 and 17 are most variable, while others particularly 8 to 14 , are highly conserved among various elements.

5.3.3 Insertional polymorphism of non-autonomous Harbinger in Brassica

The Insertional polymorphisms of Brassica non-autonomous Harbinger were performed by using TIP markers designed from flanking regions of insertions. The higher and lower bands were achieved on the basis of presence or absence of insertions at specific loci. The BoNHARB1F (5^{\prime}-ACTAGCCATTTCCATCTTCT-3') and BoNHARB1R (3^{\prime} ' GTATTCACTTGTAGTGTTTG-5') primers pair was used to amplify 1199 bp Bo-N-HARB1 element with a product size of $\sim 1357 \mathrm{bp}$ including the flanking regions. The amplification of Bo-N-HARB1 was not observed in any of A-genome, but B and C -genome Brassica diploids yielded the expected bands. All the three Brassica nigra (HRIGRU011011, HRIGRU010978, HRIGRU010919) and six Brassica oleracea accessions (De Rosny, Kai Lan, Early Snow Ball, Precoce Di Calabria, Cuor Di Bue Grosso, GK97361) amplified the ~ 1357 bp segments. Similarly, four Brassica napus (Mar, Last And Best, Fortune, Drakker) and six Brassica carinata accessions (Addis Aceb, Patu, Tamu Tex-Sel Greens, Mbeya Green, Aworks-67, NARC-PK) amplified the Br-N-HARB1 elements. One hexaploid Brassica (B.carinata x B.rapa) amplified the expected band (Figure 5.8a). Another primer pair BoNHARB2F (5^{\prime}-ACATGCATAGATTGCGCTTG-3') and BoNHARB2R (3^{\prime}-TTTTCACATTCGGCATGAGT-5') was designed to amplify a 819 bp Bo-N-HARB2 element with a product size of 1100 bp including $\sim 180 \mathrm{bp}$ flanking regions. The primer amplified the desired bands from Brassica rapa (Pak Choy, Chinese Wong Bok) and Brassica juncea (NARC-I, NATCO, W3, Varuna) genomes. Additional bands of $\sim 500 \mathrm{bp}$ were amplified from all genomes except one Brassica nigra and four Brassica juncea lines (Figure 5.8b).

Figure 5.8: Insertional polymorphism of non-autonomous Harbingers. a) Upper bands (1357 bp) amplifying 1199 bp Bo-N-HARB1 b) upper bands (1100 bp) amplifying $819 \mathrm{bp} \operatorname{Br}-\mathrm{N}-\mathrm{HARB} 2$ from various Brassica lines.

5.3.4 PCR amplification of Harbinger transposase in Brassica

The diversity and amplification pattern of Harbinger specific transposase was performed using 40 Brassica cultivars. The oligonuclotide primers were designed from the transposase region around the DDD/E motif. The blast analysis showed a high diversity of Harbinger transposase in Brassica genomes. This was further confirmed by PCR amplification of transposase from various Brassica species. Out of 40 Brassica accessions tested for the presence of Harbinger transposase, a 566 bp TPase region was amplified from 38 diploids and polyploids Brassica. The only genomes failed to amplify the TPase were Brassica rapa chinensis (Pak Choy) and Brassica rapa rapa (Vertus). Very weak band was observed in Brassica rapa pekinensis, where PCR was repeated to gain a strong band at different annealing temperature. The lack of amplification in Brassica rapa accessions (Pak Choy and Vertus) might be due the difference in annealing temperatures or there might be a possibility that the primer specific region of TPase is either variable, defective or absent in these genomes. The expected product size of 566 bp transposase was amplified from the three Brassica nigra accessions (HRIGRU011011, HRIGRU010978, HRIGRU010919) suggesting its presence in B-genome Brassica. In addition to the amplification of expected band, additional bands of $\sim 380 \mathrm{bp}$ were also amplified (Figure 5.9a). Besides amplifying 566 bp products, additional bands of $\sim 550 \mathrm{bp}$ were amplified from all six Brassica oleracea accessions. The 350 bp band was also amplified by all Brassica oleracea lines. All nine Brassica juncea accessions (NARC-I, NATCO, NARC-II, Kai Choy, Megarrhiza, Tsai Sim, W3, Giant Red Mustard, Varuna),

Brassica carinata (AACC) accessions (Addis Aceb, Patu, Tamu Tex-Sel Greens, Mbeya Green, Aworks-67, NARC-PK) and synthetic hexaploids also amplified the Harbinger TPase (Figure 5.9a). The amplification of Harbinger TPase shows that Harbinger transposons are ancient superfamily of DNA transposons and were present in Brassica nigra, Brassica rapa and Brassica oleracea before their divergence from a common ancestor.

5.3.5 Insertional polymorphism of BrHARB5 in Brassica genomes

BrHARB5 was identified from Brassica rapa accession 'CU984545'. The sequence was used as a query in blast searches against the GenBank database to collect the other copies of the element. No significant hits were received from any of Brassica genomes. The question arise: is BrHARB5 unique to Brassica rapa or are other homologues dispersed in various Brassica species? To answer these questions, the markers were developed: one from 5^{\prime} end and insertion and the other from the 3^{\prime} end and insertion amplifying the 1516 bp first half (including 192 bp flanking region) and 1521 bp last half (including 153 bp flanking region) respectively (Figure 5.9d). Both first and last parts of BrHARB5 were amplified in all the six Brassica rapa accessions (Pak Choy, Chinese Wong Bok, San Yue Man, Hinona, Vertus, Suttons). The bands were very strong and amplified the first half and last half indicating the presence of complete BrHARB5 in all Brassica rapa genomes. In contrast, no amplification was observed in any of Brassica nigra (BB genome) and Brassica oleracea (CC genome) accessions. This confirmed the A-genome specificity of BrHARB5. The amplification pattern of BrHARB5 in allotetraploids and hexaploids further strengthens the A-genome specific nature of this element, where only Brassica juncea (AABB), Brassica napus (AACC) and hexaploid Brassica (AABBCC) amplified the products, while Brassica carinata (BBCC) failed to amplify this. Out of 9 Brassica juncea used, only Brassica juncea (Kai Choy and Tsai Sim) amplified the 1516 and 1521 bp first and last part of BrHARB5. All the five Brassica napus accessions except 'Last and Best' amplified both first and last part of BrHARB5. Similarly 2 hexaploids (AABBCC: B. napus x B. nigra) amplified the complete BrHARB5 (Figure 5.9b-d).

Figure 5.9: PCR amplification of a) 566 bp Brassica Harbingers transposase. The transposase is present in most of Brassica genomes except accessions 1 and 5. b) First part of BrHARB5 (1566 bp) c) Last part of BrHARB5 amplified from A-genome and its allotetraploids (AABB, AACC) and hexaploids (AABBCC). d) Showing the position of markers (primers) with product sizes from BrHARB5.

5.3.6 The phylogenetic relationship of Brassica and other plant Harbinger

The transposase domains from 22 Harbingers around DDE domain (~200 aa) region were aligned in CLUSTALW. The alignment revealed that the transposase from various plants showed high homology and several conserved regions with maximum homology within Brassicaceae members. A highly conserved $\mathrm{D}_{88} \mathrm{D}_{38} \mathrm{E}$ triad can be observed in all the transposases except one (HARB1_OS), where ' E ' amino acid is missing due to incomplete transposase analyzed (Figure 5.10). The Zea mays Harbinger (HARB2_ZM) was used to root the tree. The evolutionary tree based on this alignment categorized Brassica and other plant Harbingers into four clades. Four elements, including the previously described elements HARB-1_OS, HARB-1_TA, MTISII2A_MT and HARB-1_MD grouped together in a clade named HARB1_OS. The grass family members clustered together separating from dicot plant Harbingers. The second clade is represented by 3 members: Sorghum bicolor SolHARB-10_SB, Solanum tuberosum element HARB-3_ST and Vitis vinifera Harbinger-1. All the five identified Arabidopsis thaliana Harbinger with 1 known Arabidopsis Harbinger (ATIS112A) cluster together in third clade named ATIS112A
family. The AtHARB3 and AtHARB4 come together while AtHARB1 and AtHARB5 make a same branch. The Brassica Harbingers grouped together in the same clade without any clustering of species-specific group within genus Brassica. The transposase of both Brassica Harbingers have shown high homology in their transposase in their entire lengths. BoHARB3 and BrHARB4 from Brassica oleracea and Brassica rapa respectively constitute the same branch indicating the similar pattern of this Harbingers evolution. Similarly Brassica oleracea Harbinger BoHARB5 and BoHARB6 comes together. Brassica napus Harbinger (BnHARB10) also grouped with Brassica rapa and Brassica oleracea Harbingers. The clustering of monocot and dicot Harbingers in separate clades and genus-specific groups within Brassica and Arabidopsis was observed suggesting their common ancestry (Figure 5.11).

Table 5.6: Size and protein domain organizations of Brassica and other plant Harbingers. The known Harbingers were collected from Repbase database. The letters before the HARB represent the generic and species names. The double prime (") represent 'as above'.

No.	Element Name	Plant Species	Size	Domains (5'-3')	Reference
1	BoHARB1	Brassica oleracea	3837	SANT	Present Study
2	BoHARB2	Brassica oleracea	3749	TRX-ATP11	$"$
3	BoHARB3	Brassica oleracea	4057	SANT-GPCR-TNP	$"$
4	BrHARB4	Brassica rapa	3521	SANT-NAM-TNP	$"$
5	BrHARB5	Brassica rapa Arabidopsis	2672	SANT-NAM	$"$
6	HARBINGER	thaliana	5382	TNP	Repbase database (Jurka et
7	ATIS112A	Arabidopsis thaliana	5099	TNP	al., 2005)
8	HARB-3_STu	Solanum tuberosum	4212	SANT-TNP	$"$
9	Harbinger-1_VV	Vitis vinifera	4378	SANT-TNP	$"$
10	MTISI12A	Medicago truncatula	3914	SANT-TNP	$"$
11	HARB-1_Mad	Malus domestica	2818	TNP	$"$
12	HARB-2_ZM	Zea mays	6231	TNP-NAM	$"$
13	HARB-1_TA	Triticum aestivum	2161	TNP	$"$
14	HARB-1_OS	Oryza sativa	5166	SANT-NAM-TNP	$"$
15	HARB-10_SBi	Sorghum bicolor	5934	TNP-SANT-CVV	$"$

Figure 5.10: Multiple alignment of transposase encoded by Brassica and other plants Harbinger elements. The conserved DDE triad is indicated by the letters at the top. The most conserved regions are underlined with blue colour. The nucleotide sequences were aligned with CLUSTALW, translated to amino acids and ~205 aa region around DDE triad is represented. Small insertions were deleted without altering the frame. Asterisks show the stop codons. The letter X indicates an incomplete codon and dashes represent gaps or ends of incomplete sequences.

Figure 5.11: Neighbour-Joining tree of Brassica Harbinger and other PIF/Harbinger-like elements. Bootstrap (1000 replicates shows as \%) Neighbour-Joining tree of Brassica Harbinger and other PIF/Harbinger-like elements based on a fragment of the deduced amino acid sequences constituting the DDE domain (~ 210) of the transposase. The names show BAC accessions or for non-Brassicaceae elements, species names; family names (right) on the basis of the well known Harbinger.

5.4 Discussion

5.4.1 CACTA transposons are actively proliferating in Brassicaceae genomes

In the present study, 42 CACTA elements and several analogues were detected proliferating in the Brassica genome (Figure 5.1; Table 5.1). It was found that the first identified element in this study has shown 100% homology to the Botl element (Alix et al., 2008), due to which all Brassica CACTA identified in present study were placed in

Botl family. The Botl family of Brassica were also investigated in Arabidopsis, where ~ 110 copies of Botl-like transposase were isolated suggesting their abundance and proliferation in Arabidopsis genomes. This predicts the common origin of Brassica and Arabidopsis transposons from a common ancestor. This was confirmed by computational based comparative analysis of Brassica and Arabidopsis, indicating that both share the same collection of TEs but in varied proportions, the number being greater in Brassica oleracea due to three fold larger genome than Arabidopsis (Zhang et al., 2004). The present study indicates that the CACTA elements from A and C-genome specific Brassica have shown a very high homology with each other especially in TIRs (98100\%). The homology within CACTA sequences remained consistent among Brassica and Arabidopsis. This is in accordance to (Zhang et al., 2004), who analyzed the evolutionary relationship of CACTA transposons in Brassica and Arabidopsis and showed high intra-family homology of Brassica oleracea CACTA with a close relation to Arabidopsis. The molecular analysis of CACTA investigated in present study revealed that it encodes two transposase (TNPD, TNPA) and 1-3 additional proteins. Similar additional proteins were observed in Casper family in Triticeae (Wicker et al., 2003).

5.4.2 CACTA are diverse and an abundant superfamily of transposons

The identification of several autonomous CACTA and their non-autonomous copies revealed their abundance in Brassica genomes. Out of 42 Brassica CACTA characterized, 35 are autonomous and remaining 7 are non-autonomous. All the 35 elements encode transposase TNPD but 15 Brassica CACTA lack the transposase TNPA, but still are active in their mobilization. Although few of these autonomous CACTA have frameshift mutations or in-frame stop codons within their coding regions, but all those elements were considered as autonomous or intact elements which have TSDs, TIRs and a transposase. Out of 35 intact elements, 14 are from Brassica rapa, 19 from Brassica oleracea and 2 from Brassica napus. The mechanism of transposition of non-autonomous elements is not clear but it is likely that they utilize transposase molecules of autonomous CACTA elements.

The copy numbers of CACTA elements were estimated and it was found that Brassica oleracea harbours ~ 3085 copies, whereas ~ 205 copies were estimated for Brassica rapa whole genomes. The high copy numbers in Brassica oleracea suggests its successful
proliferation and distribution in C-genome. Our results based on genome-wide bioinformatic sampling is notably in accordance to Alix et al., (2008), where ~395-910 and 3000 copies of CACTA elements were estimated in A and C-genomes respectively by hybridization to BAC arrays. The diversity and abundance of Botl family of CACTA was investigated in Brassica oleracea genome, where large sized (9.3-11 kb) Botl elements played a vital role in Brassica rapa and Brassica oleracea genome divergence by proliferating in Brassica oleracea (Alix et al., 2008). The new results show parallels with results in the Solanaceae, where the diversity of CACTA elements was investigated (Proels and Roitsch, 2006). A CACTA insertion found in intron I of tomato (Solanum (Lycopersicon) esculentum) extracellular invertase gene Lin5 showed high homology to the transposase of Antirrhinum majus Taml element. Based on these findings, a consensus primers pair from transposase (Tpase) was used for PCR amplification and analysis of TPase-like sequences from Solanum tuberosum, Nicotiana tabacum, and Datura stramonium, showing the distribution and indicating high sequence conservation throughout the family Solanaceae (Proels and Roitsch, 2006). The soybean genome harbours several CACTA elements in their genomes, where nine CACTA elements designated as Tgm1, Tgm2, Tgm3, Tgm4, Tgm5, Tgm6, Tgm7, Tgm-Express1, and Tgmt*, have been reported (Zabala and Vodkin, 2008). The monocot genome is also a hotspot for CACTA identification (Wickler et al., 2003). Approximately, 600-700 copies of Rim2 were reported from rice genomes, while 347 Rim2 elements from the 230 MB of rice genome were identified by data mining and cloning of the amplified genomes. The diversity and distribution of the CACTA elements incorporating the gene fragments were investigated in maize genome (Qing et al., 2008), with 69 elements representing 0.01% of the genome being distributed on all 10 chromosomes.

5.4.3 Terminal inverted repeats are conserved in Brassica and other plant CACTAs

The number and conserved pattern of TIRs specify a DNA transposon superfamily. The TIRs in Brassica CACTA are 15 bp and highly conserved (5'-CACTACAAGAAAACA3') with the exception of 1 autonomous BoCACTA24 and a non-autonomous Br - N CACTA6, where single and two nucleotide insertions were detected upstream to the 3^{\prime} termini (CA) of TIRs. All the autonomous and non-autonomous CACTA identified among Brassica rapa, Brassica oleracea and Brassica napus genomes display the 15 bp highly conserved TIRs (5^{\prime}-CACTACAAGAAAACA-3') among all CACTA studied in

Brassica (Figure 5.12). Similar 15 bp TIRs were generated by CACTA investigated from Brassica rapa and Brassica napus (Alix et al., 2008). The TIRs of Brassica CACTA elements were compared with the TIRs of other plant CACTA transposons collected from Repbase database of transposable elements (Jurka et al., 2005). The known CACTA element BRENSPM1 from Brassica rapa also possess similar 15 bp TIRs (5'-CACTACAAGAAAACA-3'). The closest genera (Arabidopsis thaliana) of Brassica have shown more or less similar TIRs. The 8216 bp large Chester- 1 from Arabidopsis thaliana also displays 15 bp TSDs (5^{\prime}-CACTACAAGAAATAT-3'), of which 13 bp are similar to Brassica CACTA TIRs. In contrast the element CAC1 from Arabidopsis thaliana generates the shortest TIRs (5^{\prime}-CACTACAA- 3^{\prime}), which are completely similar to 5' termini of TIRs. The similarity of TIRs in Brassica and Arabidopsis suggests their common origin from the same ancestral CACTA sequence before the separation of both genera. However, the CACTA superfamily is evolutionarily much older: the TIRs generated by other dicotyledonous plants are nearly homologous with Brassica CACTA TIRs. A 5251 bp CACTA named TDC1 exhibits 18 bp TIRs; PSL element from Petunia hybrida, EnSpm-13_VV element from Vitis vinifera and EnSpm_MT elements from Medicago truncatula exhibit 12, 13 and 14 bp TIRs respectively. A large CACTA element EnSpm-2_Stu (17800 bp) from Solanum tuberosum generated 16 bp TIRs, while TIRs of Tgm1 (Xu et al., 2010) from Soybean showed 30 bp TIRs with first 14 nucleotides similar to other plants (Table 5.2).

The structural features of CACTA TIRs from monocotyledonous plants revealed less homology to Brassicaceae members. The closest TIRs were observed in an 8287 bp EN1 element from Zea mays, where 13 bp TIRs (5^{\prime}-CACTACAAGAAAA-3') are fully homologous to Brassica CACTA TIRs. Zea mays Dopia4_ZM displays 32 bp while EnSpm-10_ZM displays 29 bp TIRs. The largest TIRs (33 bp) were observed in Oryza sativa CACTA EnSpm_OS. A large CACTA element RIM2-569 (20352 bp) exhibits 16 bp TIRs (5^{\prime}-CACTGGTGGAGAAACC-3'), similar to Brassica CACTA TIRs. The TIRs of EnSpm1_TM (Triticum monococcum) and EnSpm-1_TA (Triticum aestivum) are 25 and 19 bp respectively. EnSpm-1_HV elements from Hordeum vulgare and EnSpm-15_SB from Sorghum bicolour displays 14 and 9 bp TIRs. The overall review of plant CACTA revealed that first 5-13 bp of TIRs are highly conserved in almost all plants CACTA (Figure 5.12); the 'CACTA' signature is the most conserved motif present in all the CACTA elements identified from plants (Table 5.2).

Figure 5.12: Pictrogram showing the conserved TIRs based on 42 Brassica CACTA. The CACTA motif is highly conserved and observed in all 100% of TIRs. The height of nucleotides (0 to 2) is proportional to their conservation.

5.4.4 Harbinger transposons are less active in Brassica genomes

In present study, 5 Harbinger transposons with or without active transposase were identified, which showed very less activity as compared to Brassica CACTA elements (abundant elements). The first identified element BoHARB1 is 3843 bp large in size with TAA TSDs and 42 bp TIRs. The 60% AT rich BoHARB1 showed high AT content (75%) in the first 350 bp downstream to 5^{\prime} TIR, while several sub-terminal tandem repeats are present at both ends. It showed structural similarity to a 2.5 kb Harbinger named DcMasterl from Daucus carota, which was found inserted in the first intron of carrot vacuolar acid invertase isozyme-II gene. The insertion was characterized by TTA TSDs and 22 bp TIRs and 43 bp imperfect sub-terminal regions with AT rich region (80%) in 640 bp towards the 5^{\prime} terminal end. Due to the lack of any transposase coding protein, the element is considered as a non-autonomous Harbinger element (Grzebelus et al., 2006).

5.4.5 Harbinger capture additional protein domains

All the major Harbinger encode two proteins as found in several eukaryotic genomes but few encode a third protein domain (Kapitonov and Jurka, 2004). Brassica BoHARB1 only encodes a SANT protein. BoHARB2 lack transposase but captures two other proteins named TRX and ATP11 protein families. BoHARB3 and BrHARB4 encode transposase and SANT proteins with one additional protein GPCR and NAM respectively, while BrHARB5 only encode a SANT and NAM domains. The variability and evolutionary time of origin of these rearranged models will be interesting to study and may assist in understanding the origins of the tetraploid Brassica species. The domain organization of Harbinger elements from other species were investigated and found a similar range of variation in number and nature of ORFs. Examples include the 5.3 kb HARBINGER and
5.0 kb ATIS112 element from Arabidopsis thaliana and 2.8 kb HARB-1_Mad from Malus domestica that only encode a transposase in their molecules. The HARB-3_Stu from Solanum tuberosum, Harbinger-1_VV from Vitis vinifera, and MTISI12A from Medicago truncatula encode transposase and SANT protein domains, which are present in majority of plant Harbinger. A 6.2 kb HARB-2_ZM from Zea mays encodes a transposase and NAM family of proteins. A 2.1 kb large Triticum aestivum Harbinger named HARB-1_TA only encodes a transposase. The HARB-1_OS from Oryza sativa and HARB-10_SBi from Sorghum bicolor encode a SANT domain and a transposase. Besides these typical domains, HARB-1_OS and HARB-10_SBi encode additional domains as NAM and CVV respectively, where CVV is Caulimovirus viroplasmin protein family (Table 5.6).

5.5 Conclusion

The CACTA and Harbinger superfamilies are ancient, abundant and evolutionary active components of the Brassica genome. Our detailed characterization in Brassica shows the diversity in structure of TEs i.e. TSD size and sequence, TIR sizes, length and ORF composition, which are characteristic of TE superfamilies and parallel the structures found in other well-analysed groups such as the Triticeae and Solanaceae. Notably, CACTA elements represent a 10 -fold greater proportion of the Brassica oleracea (genome size 694 Mbp) than the A and B-genome Brassicas (527 and 633 Mbp), or the proportion in Arabidopsis thaliana. Since both CACTA and Harbinger elements found here have been shown to capture extra ORFs (such as the ATHILA-ORF1 protein) and subsequently amplify, they can affect genome evolution by their high copy number, by disruption at the site of insertion, or though the amplication of captured genes. The genome specificities of some of the CACTA (A and C) and Harbinger elements suggest that they will be valuable as probes for in situ hybridization to identify chromosome introgression and recombination events in hybrids (like the C-genome CACTA of Alix et al., 2008), but with the prospect of greater specificity and to the genomes. Since the PCR amplifications from different accessions within single species are sometimes showing polymorphisms, there is the potential to exploit these robust PCR markers for varietal identification, and perhaps for transposon-tagging of genes in appropriate populations as in systems based on $E n / S p m$ and $A c / D s$ elements.

CHAPTER 6

NON-AUTONOMOUS DNA TRANSPOSONS \& NOVEL INSERTIONS IN BRASSICA CROPS: DIVERSITY AND ABUNDANCE

Abstract

Summary

Fifteen hAT transposon families were identified in the present work and estimated ~ 6505 and ~ 4664 copies of them from Brassica rapa and Brassica oleracea genomes respectively. The Mutator-like elements were few, mostly defective and have shown least activity in the Brassica genomes. The study revealed that non-autonomous DNA transposons are abundant compared to their autonomous counterparts. Transposon insertional polymorphism (TIP) markers were developed to study the insertion preference of transposons in diverse Brassica genomes and found that many elements are polymorphic across Brassica accessions. Some elements were A or C-genome specific, while most of them are present in Brassica diploids and allopolyploids. Several mobile insertion/deletions were also identified with or without TIRs and TSDs of varied sizes, not common to known superfamilies of transposons with internal non-coding regions. The detailed study of these insertions revealed that they are novel mobile insertions, which although less in number and small, are playing a role in genome size evolution.

6.1 Introduction

Transposable elements (TEs) are fundamental agents of genome evolution and diversification with the acquisition of functions independent of transposition in genomes. The abundance of whole-genome sequence data and advanced sequencing projects has increased our ability to identify and characterize complete complement of transposons within genomes by variable computational, molecular and cytogenetics studies, leading to a better understanding of the origins of transposons and their relationships within the genomes they reside. The classification of TEs into two major classes; retrotransposons and DNA transposons is quite universal, as first proposed by Finnegan, 1989 and updated later (Kumar and Bennetzen, 1999; Hansen et al., 2005; Wicker et al., 2007). The DNA transposons are further classified into superfamilies, of which Tc1-Mariner, hAT, CACTA, Mutator, Harbingers and P are common in plants, while others are common in animal genomes (Finnegan, 1989; Wicker et al., 2007; Deragon et al., 2008). The hAT
transposons constitute a large superfamily both in their numbers and diversity and there is an increasing interest to investigate their role played in the evolution of the plant species. A number of different active members of this superfamily have been discovered, and much remains to be learned about the activity and regulation of hAT elements, particularly when active forms are introduced into new hosts. In several previous investigation, the point of focused was on the transposons sequences closely related to the Ac, hobo, Tam3, Tol2 and Hermes elements and the conclusion was that this superfamily is very ancient (Kempken and Windhofer, 2001; Rubin et al., 2001). However recent analysis of hAT elements detected in 12 Drosophila species concluded that four clades (or families) of hAT elements could be identified (de Freitas Ortiz et al., 2010). The hATs are recently investigated in several plants including maize (Du et al., 2011), cereal grass (Muehlbauer et al., 2006), sugar beet (Menzel et al., 2012) and Arabidopsis (Bundock and Hooykaas, 2005)

Mutator (Mu) transposable elements are one major superfamily of DNA transposons and display a two- component system, one autonomous MULEs and many non-autonomous Mu elements, which have a mutagenic effect in maize (McCarty et al., 2005). Eight Mutator-like elements (MULEs) are well characterized from maize (Mu1, Mu2/Mu1.7, Mu3, Mu4, Mu5, Mu6/7, Mu8, MULE) and three are classified as Mutator on the basis of 9 bp TIRs. MULEs represents the autonomous group of Mutator system with ~170-220 bp TIRs, while a few MULEs are characterized by 9 bp TSDs, 50-200 bp TIRs, heterogeneous and unrelated internal sequences. Mutator-like elements also named MULEs are identified from Arabidopsis, rice and other crops (Jiang et al., 2011). The non-autonomous elements from other DNA transposon superfamilies are deletion derivatives of autonomous elements, but the internal sequences of $M u$ elements are often unrelated to their progenitors and showed high similarity to their host genome, suggesting a possible gene capture. These $M u$ elements were classified as Pack-MULEs, nonautonomous components of the Mutator transposon superfamily. The presence of PackMULEs was studied in plants which revealed the presence of 2853 elements in rice, 275 in maize, while only 46 Pack-MULEs copies were identified from Arabidopsis (Jiang et al., 2004a; Jiang et al., 2011). Despite of identification of several families of TEs, there are several others which need to be explored and sequencing will help to explore novel insertions.

The present study focussed on the identification and characterization of novel small nonautonomous elements or mobile insertions, which otherwise are not easy to identify by routine computational and molecular analysis i.e. based on homology or amplified by universal primers designed from conserved domains (like transposase, RT, INT). The present study focussed on the identification of small insertions, with or without protein domains in their internal regions.

6.2 Results and Discussion

6.2.1 hAT Elements

6.2.1.1 Identification of non-autonomous hAT transposons in Brassica

The non-autonomous hATs were identified by comparison of homoeologous BAC/genomic sequences. Four BAC pairs were the source of 15 varied types/families of hATs characterized in this study. The BAC pairs were 1) Brassica rapa clone KBrB028I01 (AC189298.1) x Brassica oleracea clone BoB028L01 (EU642504.1), 2) Brassica rapa clone KBrH004D11 (AC155341.2) against its homologue Brassica oleracea clone BOT01-64A15 (AC240089.1), 3) Brassica rapa clone KBrH080A08 (AC155344.2) x Brassica oleracea clone BOT01-121H07 (AC240081.1), 4) Brassica oleracea (EU579455) x Brassica rapa (CU984545) (see Conclusion; Figure 10.1-10.3). The maximum activity of hATs was observed in Brassica oleracea (AC240081.1), where 6 non-autonomous hATs were identified. Three hATs were identified from Brassica oleracea (AC240089.1) and three from Brassica rapa (AC155341.2). Two elements were identified from Brassica rapa accession 'AC189298.1' and one from Brassica oleracea 'EU642504.1'. One element was identified from Brassica oleracea (AC149635.1) accession. The results suggested that the hATs are dispersed in both A and C-genome Brassica and are actively proliferating in their genomes.

6.2.1.2 General features of Brassica hATs

The elements range in sizes from 402-3695 bp with canonical features of hATs i.e. 8 bp TSDs and TIRs ranging from 9-24 bp. The smallest hAT was a 402 bp element (BoNhAT6) identified from Brassica oleracea (EU642504.1), while a 3695 bp large hAT-like
element was identified as insertion in a Brassica oleracea (AC240089.1) accession. All the other hATs range in sizes from 500-1000 bp. Majority of the elements have generated 8 bp TSDs, while few elements (BoN-hAT7, BoN-hAT8, BoN-hAT13) have produced 6-7 bp TSDs upon integration to the host site. The TSDs are AT rich in all the hATs, while TIRs are different and variable in numbers. The shortest TIRs were identified from BoN -hAT11-2 (9 bp), while BrN-hAT3 is flanked by 24 bp TSDs. BoN-hAT6 elements are flanked by $\sim 22 \mathrm{bp}$ TIRs. The average size of TIRs among various Brassica hATs is between $9-15 \mathrm{bp}$. The detailed structural analysis of the elements revealed that no internal transposase related proteins were identified from any hAT suggesting their nonautonomous nature (Figure 6.1; Table 6.1).

6.2.1.3 Diversity and abundance of Brassica hATs

The sequences were used as query against Brassica rapa and Brassica oleracea Nucleotide Collection ($\mathrm{nt} / \mathrm{nr} \mathrm{)} \mathrm{database} \mathrm{available} \mathrm{in} \mathrm{NCBI} \mathrm{and} \mathrm{number} \mathrm{of} \mathrm{complete} \mathrm{copies}$ were identified. It was found that the complete non-autonomous copies were very less as compared to their deleted copies and fossil remnants. The complete copies for each family were counted, which concluded that some elements are highly active as compared to the other hATs. The maximum numbers of complete copies were counted for BoNhAT7 family, which showed 94 and 4 copies of Brassica rapa and Brassica oleracea with an estimated copies of 962 and 553 in Brassica rapa and Brassica oleracea whole genome respectively. The second largest family is BoN-hAT11-1, where 951 and 415 copies were estimated for Brassica rapa and Brassica oleracea respectively (Table 6.1). Few hATs family were found to be genome specific such as $\mathrm{BrN}-\mathrm{hAT1}, \mathrm{BrN}-\mathrm{hAT3}, \mathrm{BrN}-$ hAT4 and BrN-hAT5 were detected only in Brassica rapa, while BoN-hAT14 was only identified among Brassica oleracea accessions. This suggests that some elements are totally genome specific, or showed less activity in one genome but high proliferation in other. Some hATs were middle copy number, while others are low copy number families. The estimated number of copies for BrN-hAT5 and BoN-hAT15 in Brassica rapa were only 10 , in contrast to 962 copies of BoN-hAT7 (high copy number family). A total of 6505 and 4664 non-autonomous hATs were estimated from Brassica rapa and Brassica oleracea respectively belonging to 15 families. The high numbers in Brassica rapa is due to the presence of additional families, absent in Brassica oleracea, otherwise most of the families are common in both A and C-genomes (Table 6.1).

Table 6.1: List of non-autonomous hAT transposons with accessions numbers of Brassica, sizes, TSDs, TIRs, positions in the BAC sequences and estimated copy numbers (ECN) in Brassica rapa and Brassica oleracea genomes. The asterisks followed by TSDs are indicating mismatched TSDs, which are shown in small letters in TSD sequences. The total numbers of estimated hATs are mentioned at the end. Nucleotide sequences of hAT elements are available in Appendices (attached CD).

Family Name	BAC Accessions	Species	Size (bp)	TSD	TSD sequence	TIR (5'-3')	Position	ECN in B. rapa	ECN in B. oleracea
BrN-hAT1	AC189298.1	B. rapa	670	8	AGTATTTT	CTAGGCCTGGGCATT	1727-2396	215	---
BrN-hat2-1	AC189298.1	B. rapa	716	8	GTGTGGAC	TCTATGTTACATGGAA	32998-33712	511	---
BoN-hat2-2	EU642504.1	B. oleracea	702	8*	TttCTCAT	CATACGCGGAA	68287-69477	501	10
BrN-hat3	AC155341.2	B. rapa	620	8*	TaAAATTT	GGCTTTGATTGGTAACATGT AGTA	46457-47076	184	---
BrN-hat4	AC155341.2	B. rapa	786	8	ATATTAGC	TAGGGGTGGG	105234-106019	82	---
BrN-hat5	AC155344.1	B. rapa	979	8	GATAGACA	CAGTGCCGGTCCGG	34806-35784	10	---
BoN-hAT6	EU642504.1	B. oleracea	402	8	AATTGGAG	CAGTGTTTTTAAAACCGGAC CG	88339-88740	256	100
BoN-hat7	AC240081.1	B. oleracea	701	6*	TTTCgg	TAGGGCTGGG	4835-5532	962	553
BoN-hat8	AC240081.1	B. oleracea	998	7	GGAATAC	Tataitttitatt	65232-66229	880	1096
BoN-hat9	AC240081.1	B. oleracea	588	8	CCTAGTGT	TAGGCCTGGGAC	66529-67116	235	830
BoN-hATl0	AC240081.1	B. oleracea	570	8	CTAATAAC	CCCGGTTCGGAAAAC	71911-72481	51	277
BoN-hAT11-1	AC240081.1	B. oleracea	724	8	TAAAAATG	TAGGGGTGGG	87115-87838	931	415
BoN-hAT11-2	AC240081.1	B. oleracea	688	8	TACAAATG	TAGGGGTGG	106545-107232	951	415
BoN-hAT12	AC240089.1	B. oleracea	924	8	CCTACTCT	TAGGGCCGTTCAATATGG	8543-9466	501	415
BoN-hAT13	AC240089.1	B. oleracea	629	7	GCTTAGA	GCATCTCCAA	$24325-24980$	225	277
BoN-hAT14	AC240089.1	B. oleracea	3695	8*	CTTAAAct	tttgantgataicla	59770-63464	---	138
BoN-hAT15	AC149635.1	B. oleracea	595	8	TTTGTAAC	CAGTGTTCTAAAA	52416-53003.	10	138
Total estimated copy numbers:								6505	4664

6.2.1.4 Structural characterization of Brassica hAT transposons

The first identified hAT BrN-hATl was found inserted in Brassica rapa (AC189298.1) accession from 1727-2396 bp. The element was 670 bp in size including 8 bp TSDs and 15 bp TIRs (GC rich), while the internal regions are AT rich (Figure 6.1). Blast searches yielded 21 complete copies, depending on which 215 copies were estimated for Brassica rapa. Another insertion was present in Brassica rapa (AC189298.1) accession starting from 32998-33712 in BAC sequence. The element is designated as $B r N-h A T 2-1$, which display a size of 716 bp including 8 bp TSDs and 16 bp TIRs. A total of 50 copies were retrieved from database searches with an estimation of 511 copies from whole Brassica rapa genome. Another analogue of $\mathrm{BrN}-h A T 2-1$ was identified from Brassica oleracea (EU642504.1) accession, which is named BoN-hAT2-2 (702 bp). BrN-hAT3 and BrN hAT4 were 620 and 786 bp large in sizes with 8 bp TSDs. The largest TIRs (24 bp) in Brassica hATs were identified in BrN-hAT3. BrN-hAT5 is 1 kb element including 14 bp TIRs, identified in Brassica rapa (AC155344.1) (Table 6.1; Figure $6.1 \& 6.2$).

BoN-hAT6 is the smallest hAT element identified from Brassica oleracea (EU642504.1). It is 402 bp in size including 8 bp TSDs and 22 bp TIRs. Brassica oleracea accession 'AC240081.1' harbour six non-autonomous hATs named as BoN-hAT7, BoN-hAT8, BoNhAT9, BoN-hAT10, BoN-hAT11-1 and BoN-hATl1-2 with a size range of 570-1 kb. All the elements generate perfect 8 bp TSDs, but BoN-hAT7 generates 6 bp imperfect TSDs (Table 6.1; Figure 6.1). The detailed analysis of Brassica oleracea BAC accession 'AC240089.1' led to the identification of 3 hAT elements. BoNhAT12 and BoNhAT13 are 924 and 629 bp elements including hAT specific 8 bp TSDs. The TIRs are variable and no homology is observed between two elements representing two different hAT families. The largest hAT-like insertion was investigated in Brassica oleracea accession 'AC240089.1' from position 59770-63464. The element named BoN-hAT14 is 3.7 kb in size with imperfect TSDs (6-8) and flanked by 15 bp TIRs. The internal region showed no coding regions for transposase or any other known proteins. The high AT content (70\%), 6-8 bp TSDs and TIRs of the BoN-hAT14 bring it under hAT superfamily due to similar characteristics with hATs. BoN-hAT15 was found inserted in Brassica oleracea (AC149635.1) accession from 52416-53003 bp. The element is 595 bp in size including the 8 bp TSDs and 13 bp TIRs with non-coding internal region (Table 6.1; Figure 6.1).

Figure 6.1: Schematic representation of non-autonomous hATs in Brassica. Red arrows indicate 8 bp TSDs and blue triangles represent TIRs. The internal regions of the Brassica hATs were highly heterogeneous without any protein coding regions.

Figure 6.2: Dot plot comparison of homoeologous BAC clones Brassica oleracea (EU642504.1) (horizontal) against Brassica rapa (AC189298.1) (vertical) showed a) BrN-hAT2-1 and b) BoN-hAT6 insertion sites in Brassica rapa and Brassica oleracea respectively. The dot plots are shown twice (left and right) with large crosshair showing insertion points with the size, number and sequences of TSDs and TIRs indicated (insets) in the base pair alignments at the termini of the insertion sites.

6.2.1.5 TIP markers to study the hAT polymorphisms in Brassica accessions

Transposon insertional polymorphism (TIP) markers are appropriate to study biodiversity and evolution. Six primer pairs (Table 6.4) were designed from the flanking regions of the insertions to amplify the insertions (higher bands) or the flanking regions without insertions (lower bands). BrNhAT1F 5'-GCTACGTACATAGCAAAGGTG-3' and BrNhAT1R 5'-CGTCAGACGGTTCTGTAAAAG-3' were designed flanking the BrN -hAT1 insertion in Brassica rapa. The insertional loci were amplified from all the six Brassica rapa diploid accessions (Pak Choy, Chinese Wong Bok, San Yue Man, Hinona, Vertus, Suttons) and allopolyploids with A-genome in them as Brassica juncea (NARC-I, NATCO, NARC-II, Kai Choy, Megarrhiza, Tsai Sim, W3, Giant Red Mustard, Varuna), Brassica napus (New, Mar, Last and Best, Fortune, Drakker, Tapidor) and four allohexaploid Brassica. No amplification was detected in C-genome Brassica oleracea and its allopolyploids. This suggests that BrN -hAT1 is A-genome specific and is contributed to its allopolyploids by hybridization of A with B or C-genomes (Figure 6.3a). This was confirmed by blast searches, where no hits were found for Brassica oleracea but several complete copies were collected from Brassica rapa. The primer pair BrNhAT4F 5'-CAAGAAAGCTCAGATTCTTG-3' and BrNhAT4R 5'-CAGGGAAACAAATAATACCC3^{\prime} were designed to amplify BrN-hAT4 (786 bp) insertion sites to amplify 925 expected product. The primers amplified the longer bands (product) from Brassica rapa and its allotetraploid and allohexaploid Brassica (Figure 6.3c).

Many other C-genome specific TIP markers were used to detect the amplification of hAT elements among 6 species comprising 40 accessions. The polymorphism pattern of BoN -hAT2-2 and BoN-hAT6 was nearly similar, but the two elements showed no homology. To amplify the BoN-hAT2-2, the primer pair BoNhAT2F and BoNhAT2R (Table 6.4) was designed to amplify $\sim 1.1 \mathrm{~kb}$ product. The product was amplified from all Brassica oleracea diploid accessions plus allotetraploid and allohexaploid accessions. The bands in Brassica napus (AACC) were weak as compared to other species. Only upper bands (1.1 kb) were amplified from them, while lower bands with empty sites were amplified from Brassica rapa (AA), Brassica juncea (AABB), Brassica napus (AACC) and allohexaploid species (AABBCC) indicating that the short band is contributed by A-genome (Figure 6.3b). BoN-hAT6 was amplified by primer pair BoNhAT6F and BoNhAT6R (Table 6.4) to
amplify a 775 bp hAT insertional site. Amplification was detected in Brassica oleracea and its allotetraploid and allohexaploid genomes (Figure 6.3d).

The BoN-hAT10 was amplified with primer pair BoNhAT10F and BoNhAT10R (Table 6.4). The expected product size was 643 bp including the 570 bp hAT insertion. It was amplified from Brassica oleracea (De Rosny, Kai Lan, Early Snowball, Cuor Di Bue Grosso, Precoce Di Calabria, GK97361), Brassica napus (New, Mar, Last and Best, Fortune, Drakker, Tapidor), Brassica carinata (Addis Aceb, Patu, Tamu Tex-Sel Greens, Mbeya Green, Aworks-67, NARC-PK) and 4 allohexaploid Brassica. No amplification in Brassica rapa and its hybrids showed its absence from the A-genome and post divergence mobility of the BoN-hAT10 element (Figure 6.3e). The insertion polymorphism of BoN hAT13 was observed by designing the primer BoNhAT13F and BoNhAT13R (Table 6.4). The expected product of $\sim 650 \mathrm{bp}$ was detected only from 3 Brassica oleracea (Kai Lan, Precoce Di Calabria, GK97361) and 4 Brassica napus (New, Mar, Last and Best, Fortune). No amplification from any of A-genome or allopolyploids (AABB, BBCC, AABBCC) suggests its recent bursts after the separation of Brassica oleracea crops (Figure 6.3f).

The results show members from hAT superfamily of DNA transposons are abundant in Brassica species, with more non-autonomous hATs than autonomous partners. The present study revealed ~ 6505 and 4664 copies of non-autonomous hATs from 15 hAT families from Brassica rapa and Brassica oleracea respectively (Table 6.1). By using the sequences as query in GenBank databases, the hits failed to retrieve their autonomous partners. This suggested that their autonomous copies are very low as compared to nonautonomous fellows. In a recent study, a total of ~ 610 complete or truncated nonautonomous hATs were detected in sugar beet in comparison to 81 hATs with their transposase coding regions. This suggest the abundance of non-autonomous hATs in Beta vulgaris genome (Menzel et al., 2012). Several other analysis in Drosophila and other animals have shown the dominance and high copy numbers of non-autonomous hATs over their autonomous partners (de Freitas Ortiz et al., 2010). The present study confirms the activity and mobility of the non-autonomous hATs by PCR analysis using 40 Brassica lines. The TIP markers showed different polymorphism patterns from different hAT families. The activity and mobility of the non-autonomous hATs indicates that their autonomous partners are also residing in their close premises, which provide them their
enzymatic machinery for their transposition and mobilization. The hATs are evolutionary an old family, so several degraded or partial fragments can be found dispersed in genomes (Rubin et al., 2001).

Figure 6.3: Transposon insertional polymorphisms of Brassica hATs. a) BrN-hAT1; b) BrN-hAT2-2; c) BrN-hAT4; d) BoN-hAT6; e) BoN-hAT10; f) BoN-hAT13 insertion sites in various Brassica accessions. Long bands indicated by filled arrowheads (right) indicate amplified $h A T$ insertions and short bands amplify the flanking sequences only (open arrowheads). All PCR figures show inverted images of size-separated ethidium bromide stained PCR products following agarose gel electrophoresis; numbers below the lanes identify each cultivar listed in table 2.1 and ladders indicate sizes in bp.

6.2.2 Mutator-like elements

6.2.2.1 Identification of Mutator-like elements (MULEs)

The first Mutator-like element (BrN-MULE1-1) in Brassica was identified by the comparison of two homoeologous BAC pairs Brassica rapa (A-genome; AC189298.1) against Brassica oleracea (C genome; EU642504.1). The element was 2781 bp long, flanked by 9 bp TSDs, 76 bp imperfect TIRs, no internal coding region suggesting a nonautonomous Mutator-like elements (MULE). After the identification of this element, the comparative analysis of Brassica rapa (AC155342.2) against its homologue Brassica rapa (AC146875.2) led to the discovery of a similar element (BrN-MULE1-2) with 9 bp TSDs and 76 bp TIRs. The elements showed high AT contents in their internal regions, which are not observed in other MULEs investigated in rice, maize and Arabidopsis plants. The studies revealed that few MULEs exhibit TIRs from 50-200 bp, so it showed typical features of MULEs by exhibiting 9 bp TSDs and 76 bp TIRs. The elements were used as a query against Nucleotide Collection and Whole-genome shotgun sequences databases in GenBank and retrieved only 6 complete sequences suggesting the low copy number family of MULEs in Brassica. The family of Brassica Mutator elements was named Shahroz.

6.2.2.2 Molecular characterization of Shahroz family of MULEs

The structural features of MULEs identified from Brassica revealed that the elements range in sizes from 2734-3160 bp. The first element was identified from Brassica rapa accession (AC189298.1) from 6034-8806 bp and is named BrN-MULE1-1. The element is 2781 bp in size with 9 bp TSDs 5^{\prime}-GACCAACGA- 3^{\prime} and 76 bp imperfect TIRs (Figure 6.4 \& 6.5). The internal region of the element is AT rich with only 37% GC content. Another element (BrN-MULE1-2) was found inserted in Brassica rapa accession (AC146875.2) from 7268-10179 bp. BrN-MULE1-2 is 2920 bp large in size including 9 bp TSDs (ATCCAGAAG) and 76 bp imperfect TIRs (Figure 6.4). BrN-MULE1-1 and BrN-MULE1-2 were compared and they have shown 52% homology in their entire lengths but the TIRs showed the highest homology. BLASTN searches resulted in the collection of 4 other homologous of similar sizes ($\sim 2.7-3.1 \mathrm{~kb}$). BrN -MULE1-3 is homologous (99\%) to BrN-MULE1-2 except TSDs and was identified from Brassica rapa accession (AC189583.2) from 42105-45024 bp. It is flanked by 9 bp TSDs (TAATTTCAA) and 76 bp TIRs, which are highly conserved among the two sequences (Figure 6.4; table 6.2).

BrN-MULE1-4 is 2734 bp large in size including the 9 bp TSDs and 76 bp imperfect TIRs and residing in Brassica rapa accession AENI01006341.1 from 227056-229789 bp and sequence retrieved from Whole-genome shotgun sequences database of GenBank. This revealed the presence of BrN-MULE1-4 on chromosome number 7 and 8 of Brassica rapa. Two elements designated as BrN-MULE1-5 and BrN-MULE1-6 of 3160 bp sizes were identified from AENI01003197.1 and AENIO1009183.1 accessions indicating their presence on chromosome 4 and 10 respectively (Table 6.2). Both elements are flanked by 9 bp TSDs and 76 bp TIRs (Figure 6.4).

6.2.2.3 Shahroz is A-genome specific non-autonomous Brassica MULEs family

The transposons are sometimes genome specific and showed high proliferation in one organism but not in their relative species. Our data confirms the distribution of Shahroz family of MULEs in A-genome Brassica. This was confirmed by the BLASTN and molecular analysis, where output imported 6 copies from Brassica rapa only and PCR yielded the products in A-genomes and its polyploids (AABB, AACC, AABBCC). To amplify a 3.2 kb product, the element was splitted into two parts and designs the primers; one from flanking region and other from central region of the element to amplify a 1528 and 1514 bp products from 5^{\prime} and 3^{\prime} ends respectively (Figure 6.6). The primers successfully amplified the 1528 and 1514 bp product from Brassica rapa and its allotetraploids (AABB, AACC, AABBCC), but no amplification in C-genome suggested its absence in Brassica oleracea and its allotetraploids (BBCC). A total of 40 Brassica cultivars were used to amplify the Shahroz MULE family. Out of these 40 lines, 6 were each from A and C-genomes, 3 were from B-genome, 9 were AABB, 6 were each AACC and BBCC and 4 were from AABBCC genomes. The 5'-1528 and 1514-3' end products were amplified from two Brassica rapa (Chinese Wong Bok, San Yue Man) accessions among A-genomes. All the six Brassica rapa cultivars generates 2 additional bands of ~ 450 and 380 bp. Brassica nigra accessions showed no amplification. Nine Brassica juncea cultivars (NARC-I, NATCO, NARC-II, Kai Choy, Megarrhiza, Tsai Sim, W3, Giant Red Mustard, Varuna) yielded amplification of both $5^{\prime}-1528$ bp and 1514-3' end products. Among six Brassica napus, 2 cultivars (New, Fortune) amplified the bands. From the four synthetic allohexaploids (AABBCC), 3 yielded weak bands of expected sizes. The insertional polymorphisms of Shahroz family suggest its distribution in Agenome diploids and their allotetraploids but lacking in C-genome (Figure 6.6).

Figure 6.4: Schematic representations of Brassica non-autonomous Mutator-like elements from Shahroz family. Black triangles represent 76 bp TIRs. The TSDs are shown at both termini.

Figure 6.5: Dot plot comparison of homoeologous BAC clones of Brassica identified a) BrN-MULE1-1 b) BrN-MULE1-2 insertion sites in Brassica. The size, TSDs and TIRs are also indicated. The opposing arrows are indicating the TIRs on the sequence alignment insets. Asterisks after the 76 bp TIR indicate the imperfect TIRs.

6.2.2.4 Shahroz is an ancient, defective and low copy number family of MULEs

Shahroz is an ancient family of MULEs and passing the evolutionary stages of its degradation. The comparison and analysis of all the six Brassica MULEs showed very high homology ($60-97 \%$) in their TIRs in comparison to their internal regions (52-55\%). There are many substitutions in their TIRs and conserved and varied regions within TIRs of these elements were found. The 3 bp termini (GAC) at 5^{\prime} and 9 bp termini at 3^{\prime} ends are highly conserved with some internal conserved T rich regions (Figure 6.7). No internal coding regions indicate them non-autonomous or defective elements. It is thought that the high variability and low degrading copies indicate the ancient nature of any family. The substitution rates are also used to count the ages of the elements. Considering this hypothesis, higher the variability within sequences, more ancient the family will be. It is thought that the TIRs of MULEs are responsible for the transposition activity of the elements. This means that the mutated TIRs with small insertions or substitutions indicate the inactive or defective elements (Jiang et al., 2011). The Shahroz is a low copy number family with only 6 elements identified from Brassica databases in GenBank. Seventy copies of MULEs were estimated in Brassica rapa genomes. The low copy numbers of Pack-MULEs in plant genomes by Jiang et al., (2011) is supported by our analysis of presence of low copies of MULEs in Brassicaceae. The short, degrading nature of TIRs, low copy numbers and lack of non-coding regions indicate that Shahroz family is an ancient family in their degradation phase.

Table 6.2: List of non-autonomous Mutator transposons with accessions numbers, sizes, TSDs, TIRs, positions in the BAC sequences.

Name	Family	BAC Accession	Species	Size	TSD	TSD sequence	TIR	Position
$B r N-M U L E 1-1$	Shahroz	AC189298.1	B. rapa	2781	9	GACCAACGA	76	$6034-8806$
$B r N-M U L E 1-2 ~$	Shahroz	AC146875.2	B. rapa	2920	9	ATCCAGAAG	76	$7268-10179$
$B r N-M U L E 1-3$	Shahroz	AC189583.2	B. rapa	2920	9	TAATTTCAA	76	$42105-45024$
$B r N-M U L E 1-4$	Shahroz	AENI01006341.1	B. rapa	2734	9	GACCAACGA	76	$227056-229789$
$B r N-M U L E 1-5$	Shahroz	AENI01003197.1	B. rapa	3160	9	ATTTAATTT	76	$23051-26210$
$B r N-M U L E 1-6$	Shahroz	AENI01009183.1	B. rapa	3160	9	TTGAAATTA	76	$751-3911$

Figure 6.6: Insertion polymorphisms of Mutator elements in Brassica. a-b) The amplification of BrN -MULE1-1 insertion sites by primers in various Brassica accessions: Long bands ($1528 \mathrm{bp} / 1514$) show the amplified element and short bands amplify the pre-insertion (empty) sites only. Many polymorphisms between accessions with the same genome constitution are evident.

Figure 6.7: Pictograms showing the information content of Shahroz family of Mutator DNA transposons indicating a) weak conservation of TSDs; b) strong conservation of half the bases (36/76) in TIRs, with the T conserved motifs dispersed in the TIRs. The height of nucleotides represents the proportion conserved (0 to 2).

6.2.3 Mobile insertions of unknown superfamilies

The dot plot analysis of homoeologous BAC sequences for the identification of various TEs yielded several insertions, which displayed structural features not observed in known superfamilies of TEs. The mobile insertions were detected in the same way as autonomous
and non-autonomous transposons related to known families were identified. The insertions generated perfect TSDs and some are flanked by TIRs, but others lack any TIRs (and hence could be deletions unrelated to transposons). The BLAST results showed that several other copies of these elements are dispersed in Brassica genomes flanked by TSDs only and preliminary, computational, molecular and genetic analysis suggest their mobile nature. They were named BrAT and BoAT in Brassica rapa and Brassica oleracea respectively, where first letter represent genus, second indicate species, letter 'AT' indicate associated transposon. These mobile insertions were detected from several BAC sequences predominating in Brassica oleracea accession 'AC240081.1', where several other hATs and known TE superfamilies were identified. The sizes of the insertions range from 174-2252 bp with displaying heterogeneous sequences. The TSDs starts with 2 bp to 9 bp , but TIRs are either missing or if present are very short (3-4 bp). Brassica rapa accession 'AC155344.1' harbour 2 insertions; a $1423 \mathrm{bp} \mathrm{BrAT1}$ and a small insertion of 174 bp (BrAT2), with 4 and 2 bp TSDs an no TIRs flanking the insertions. A large insertion named BrAT4 (2045) was detected from Brassica rapa accession 'AC155342.2' from 73917-75961 bp. The insertion is flanked by 8 bp TSDs but no TIRs were identified. Two elements with a size of 1422 and 1406 were identified with TAA TSDs, but no TIRs restrict their characterization (Table 6.3).

Two insertions were found embedded in Brassica oleracea accession 'EU642504.1' with a size of 1284 (BoAT8) and 242 bp (BoAT9) and flanked by 7 and 5 bp TSDs with no structural similarities to known TEs. Brassica oleracea accession 'EU579455.1' harbour 2 insertions; 958 bp (BoAT10) and 531 bp (BoAT11) with 4 and 7 bp TSDs and no TIRs. The highest mobility of small insertions is observed in Brassica oleracea accession 'AC240081.1', where six novel insertions of unknown superfamilies were found in addition to several other DNA transposons. The insertions (BoAT12-BoAT17) range in size from 183-2067 bp. A 1684 bp insertion including 2 bp TSDs was only element flanked by 4 bp TIRs, the remaining insertions lack any TIRs or internal coding regions. Three other insertions were detected from Brassica oleracea accession 'AC240089.1', with sizes ranging from $184-2252 \mathrm{bp}$. A 720 bp insertion is flanked by 9 bp TSDs, while the largest insertion (2252 bp) only generated 6 bp TSDs. No TIRs from any of the three insertions indicate that the insertions are novel, and there are several other mobile insertions other than known superfamilies which need further classification (Table 6.3).

Table 6.3: List of various mobile insertions of unknown superfamilies with accessions numbers, sizes, TSDs, TIRs, positions in the BAC sequences.

Sr.No.	BAC Accession	Species	Size	TSD sequence	TIRs	Position	Super- family
BrAT1	AC155344.1	B. rapa	1423	TATC	ND	$41352-42774$	Unknown
BrAT2	AC155344.1	B. rapa	174	TT	ND	$46199-46372$	Unknown
BrAT3	AC155341.2	B. rapa	446	GCTTCTTA	ND	$36040-36485$	Unknown
BrAT4	AC155342.2	B. rapa	2045	AAAACATA	ND	$73917-75961$	Unknown
BrAT5	AC155342.2	B. rapa	643	AGACT	ND	$65743-66385$	Unknown
BrAT6	AC146875.2	B. rapa	1422	TAA	ND	$50164-51585$	Unknown
BrAT7	AC189335.2	B. rapa	1406	TAA	ND	$34792-36197$	Unknown
BoAT8	EU642504.1	B. oleracea	1284	GTTTTTT	ND	$89403-90686$	Unknown
BoAT9	EU642504.1	B. oleracea	242	CTAAT	ND	$107526-107823$	Unknown
BoAT10	EU579455.1	B. oleracea	958	CTCA	ND	$11695-12649$	Unknown
BoAT11	EU579455.1	B. oleracea	531	CCTATAA	ND	$27245-27769$	Unknown
BoAT12	AC240081.1	B. oleracea	1684	GC	AAAC	$16577-18260$	Unknown
BoAT13	AC240081.1	B. oleracea	2067	CTT	ND	$26649-28715$	Unknown
BoAT14	AC240081.1	B. oleracea	1113	TTGTT	ND	$75213-76325$	Unknown
BoAT15	AC240081.1	B. oleracea	183	GA	ND	$77359-77541$	Unknown
BoAT16	AC240081.1	B. oleracea	794	TA	ND	$8243-83228$	Unknown
BoAT17	AC240081.1	B. oleracea	1037	ATCTTTTAA	GGG	$98654-99690$	Unknown
BoAT18	AC240089.1	B. oleracea	184	TGT	ND	$10661-10884$	Unknown
BoAT19	AC240089.1	B. oleracea	720	AATAGAAAT	ND	$48851-49570$	Unknown
BoAT20	AC240089.1	B. oleracea	2252	TTAGAC	ND	$57348-59599$	Unknown

Table 6.4: List of Brassica hAT and Mutator primers with size of the elements, size of the expected products, names and sequences of primers.

Sr. No.	Super- family	TE family	TE Size	Product Size	Primer Name	Primer Sequence
1	hAT	BrN-hAT1	670	863	BrNhAT1F BrNhAT1R	GCTACGTACATAGCAAAGGTG CGTCAGACGGTTCTGTAAAAG
2	hAT	BoN-hAT2-2	715	1090	BoNhAT2F BoNhAT2R GGGCAAAGGCCATCTATGCA	ATGTACGACTCCGTCAATGA
3	hAT	BoN-hAT4	786	925	BoNhAT4F BoNhAT4R	CAAGAAAGCTCAGATTCTTG CAGGGAAACAAATAATACCC
4	hAT	BoN-hAT6	402	775	BoNhAT6F BoNhAT6R	GTGAAAATGGTGGCCAGTCT TTTGGAGGTTTTGGTGAAGG
5	hAT	BoN-hAT10	570	643	BoNhAT10F BoNhAT10R	GACTTTTCAAGTCAAAGCAA CTTTAACATTGATGAGCTGC
6	hAT	BoN-hAT10	629	749	BoNhAT13F BoNhAT13R	CTTCTCCCGTGTAATGAATG CACACAACCTGCACAAATAG
7	Mutator	BrN-MULE1	2781	1528	BrNMULE1F BrNMULE1R	GAACATGGTCACCTTCACTG CATGGTTAGAAACCGTGTGG
8	Mutator	BrN-MULE2	2781	1514	BrNMULE2F BrNMULE2R	CCACACGGTTTCTAACCATG ACGGGGAAATGAAACTGTAG

6.3 Conclusions

With sequencing data, our knowledge of new families of TEs is increasing. It is obvious that some elements are abundant in one species and less active in others, or even active in some specific chromosomal regions and less active in others. Within the genomes, several mobile insertions are actively proliferating. Mobile insertions can be inserted to or near genes and can alter their function as observed by small SINE and MITE-like elements (Bennetzen, 2000; Deragon et al., 2008; Feschotte, 2008). In this study, several insertions of variable sizes and structures embedded in genomes were detected, with or without TIRs and generating TSDs not common in known families (Table 6.3). Although fewer in number and small in size, it is concluded that they have a role in the diversity and evolution of the organisms by their duplications, capturing the host genes and transduplicating them. Non-autonomous DNA transposons are abundant and dispersed in Brassica genomes, with hAT elements most abundant in both Brassica rapa and Brassica oleracea, while Mutator-like elements were rare with degraded copies. Several mobile insertions were identified, which have no structural features of known superfamilies of TEs. The hAT specific TIP markers are highly informative to study the biodiversity and evolution of plant genomes. Overall, this strategy helped us in identification of several non-autonomous DNA transposons, their deletion derivatives and novel mobile insertions with structural features different from known superfamilies of TEs.

CHAPTER 7

POPULATION DYNAMICS OF MINIATURE INVERTED-REPEAT TRANSPOSABLE ELEMENTS (MITEs) IN BRASSICA

Summary

Miniature inverted-repeats transposable elements (MITEs) are an abundant component of plant genomes, contributing to their evolution and diversification. A dot plot based approach was developed for de novo identification of 15 novel families of MITEs in Brassica genomes and systematically their homologues were examined for further analysis. Out of the 15 families discovered, 5 are Stowaway-like MITEs with TA target site duplications (TSDs), 4 Tourist-like with TAA/TTA TSDs, 5 Mutator-like with 9-10 bp TSDs and 1 novel MITE named BoXMITE flanked by 3 bp TSDs. The TIRs in the members of the same family are highly conserved while showing variability in different families. About 29112 MITE-related sequences were estimated in the diploid Brassica species (A and B-genomes). All the MITEs have high AT rich ($\sim 74-82 \%$) regions and have insertional preference in high AT regions, mostly as high copy number families. PCR analyses were performed using TIP based degenerate primers designed from flanking sequences of MITE elements. This analysis detected MITE insertional polymorphism at many insertion sites in Brassica diploids and polyploids. Many of the BLASTN hits yielded strong hits in various genes suggesting that many MITEs reside in gene regions. The identification of Brassica novel MITEs will have broad applications in the analysis and annotation of Brassica genomes and their use as DNA markers and mutagens for the genomics of Brassica and its related species.

7.1 Introduction

Miniature inverted-repeats transposable elements (MITEs) represent a heterogeneous group of short non-autonomous mobile DNA elements, generates flanking TSDs, TIRs or having varied lengths, exhibit high AT-rich sequences and posses high copy numbers. In recent years, their diversity, abundance and distribution has been investigated in plant genomes. They are divided into two major groups based on structural features: Stowawaylike MITEs that generate TA TSDs, and Tourist-like MITEs, which generate TAA TSDs upon integration to a new site (Jiang et al., 2004b; Zhang et al., 2004).

Recent discoveries revealed that MITEs derived from almost all DNA superfamilies including hAT, CACTA, Mutator, PiggyBac (Benjak et al., 2009; Kuang et al., 2009; Menzel et al., 2012). Full length DNA transposons are thought to be the evolutionary progenitors of MITEs by a mechanism of their truncation where they lost their internal coding regions. They are characterized by their progenitors based on sequence conservation between MITEs and autonomous DNA transposons. The TSDs and TIRs are the best source to identify the MITEs (Feschotte and Mouches, 2000; Yang and Hall, 2003; Jiang et al., 2004a). As non-autonomous short elements <600 bp, MITEs lack any protein coding domains including the transposase protein, necessary for their transposition and integration to a new sites. As derivatives of active DNA transposons, several investigations suggest that MITEs could be cross-activated by their autonomous partners from which they have derived (Wicker et al., 2007). The role of MITEs in the gene expression and diversification of important crops like rice (Lu et al., 2012), barley (Lyons et al., 2008) and other plants have been studied in detail in the recent years.

In the present study, dot plot and BLASTN based approaches were used for the de novo identification of different MITE families proliferating in Brassica genomes. The identification, characterization, diversity, distribution and amplification patterns of MITEs were systematically investigated. The effects of MITEs on gene expression and their contribution to the diversity of Brassica were analyzed.

7.2 Results

7.2.1 Identification of MITE families in Brassica

Fifteen novel families of MITEs in Brassica genomes by dot plot sequence comparisons have been identified. The comparison of Brassica rapa (AC189298) x Brassica oleracea (EU642504.1) accessions led to the identification of BrTOUR3-1 (AC189298), BoSTOW3-1 (Figure 7.1a) BoXMITE1-1 and BoMuMITE5-1 (EU642504.1). The comparative analysis of Brassica rapa (CU984545.1) x Brassica oleracea (EU579455.1) gave the detection of BrMuMITE1-1 (Figure 7.1b), BrMuMITE2-1 (CU984545.1), BoMuMITE4-2, BoMuMITE5-2 (EU579455.1). The dot plot sequence comparison of Brassica rapa (AC155341.2) against its homoeologue Brassica oleracea (AC240089.1) revealed the identification of BoSTOW4-1 (AC240089.1). The comparison of Brassica rapa (AC155344.1) accession against its homoeologue Brassica oleracea (AC240081.1)
led to the identification of BrSTOW1-1, BoSTOW2, BrTOUR1-1, BrTOUR2-1, BrMuMITE6-1 (AC155344.1), and BoSTOW5, BoTOUR4 (AC240081.1). After the identification of these MITE sequences, Brassica MITE sequence dataset was extended using the representatives of each family as query in BLASTN searches against Brassica Nucleotide Collection (nr/nt) database in the GenBank. The full length sequences showing $>70 \%$ coverage and identity were retrieved. Due to very high copy number of MITEs, only 5-10 sequences were collected as representatives of each family for detailed analysis (Table 7.1).

7.2.2 Characterization and classification of Brassica MITEs

Based on the structural features (TSDs and TIRs) of the known superfamilies of TEs, the Brassica MITEs were classified into Stowaway, Tourist and Mutator-like MITEs. One MITE family exhibiting 3 bp TSDs remained un-classified due to the lack of any clear marks or strong homology to any known superfamily of MITEs and named BoXMITE. The sizes of the members from various Brassica Stowaway families range in size from 227-580 bp with perfect TA TSDs. Four families of MITEs generate TAA/TTA TSDs, which are typical features of Tourist-like MITEs derived from PIF/Harbinger. The members of Brassica Tourist-like MITEs are also small in sizes ranging from 258-413 bp. Five Mutator-like MITE families were identified, where the sequences exceeds the MITEs length limitations (>600 bp) but they retained the MITE structural features such as TSDs, TIRs, non-coding regions, high AT rich sequences and high copy numbers. The TIRs of these elements are long and starts from terminal regions upto the central regions with perfect 9-10 bp flanking TSDs (Table 7.1). These elements are considered as Mutatorderived MITEs due to similarities in TSDs and TIRs of these elements with Mutator transposons, but no homology to any Mutator element was found.

Figure 7.1: Dot plot comparison of Brassica rapa (vertical) and Brassica oleracea (horizontal) BAC clones for MITE identification. The central diagonal line running from one corner to other indicates the homologous regions between A and C-genomes. The gaps indicate the MITE insertions in Brassica oleracea (a) and Brassica rapa (b). Associated with the MITE activity, the dot plots show other features of genome structural changes including (a) an inversion and (b) duplications. The inset sequence alignments show the TSDs (red) at both ends of the MITE insertions and the TIRs (blue arrows) from the alignment points (left and right parts of dot plots) with the large cross.

Table 7.1: MITE families identified from Brassica BAC sequences with names of elements, sizes, TSDs and TIRs. The asterisks in front of TSDs or TIR indicate a mismatch at 5^{\prime} or 3^{\prime} TSDs or TIRs. Nucleotide sequences of representative MITEs are available in Appendices (attached CD). ND: Not determined.

Element Name.	BAC Accession	Species	Size	TSDs	Terminal inverted repeats (TIRs)	$\begin{aligned} & \text { AT } \\ & \% \\ & \hline \end{aligned}$	MITE Superfamily
BrSTOWI-1	AC155344.1	B.rapa	580	TA	TACCTTTCTGTTCCTAAATATAAGATGTTT	76	MITE/Stowaway
BrSTOWl-2	AC232537.1	B.rapa	329	TA	GACTCAGGGCCGGCTTACAA	68	MITE/Stowaway
BrSTOWl-3	AC232534.1	B.rapa	329	TA	GACTCAGGGCCGGCTTACAA	68	MITE/Stowaway
BrSTOW1-4	AC189530.2	B.rapa	328	TA	GACTCAGGGCCGGCTTACAA	68	MITE/Stowaway
BrSTOW1-5	AC189319.1	B.rapa	324	TA	GCAGGGCCGGCTCAA	68	MITE/ Stowaway
BoSTOW2-1	AC240081.1	B.oleracea	448	TA	GGCGCTAGTCG*	70	MITE/ Stowaway
BoSTOW2-2	EU579455.1	B.oleracea	460	TA	GGTGCTAGTCG*	70	MITE/Stowaway
BoSTOW2-3	AC152123.1	B.oleracea	442	TA	GGCGCTAGTCG*	68	MITE/Stowaway
BoSTOW2-4	AC183493.1	B.oleracea	436	TA	GGCGCTAGTCG*	72	MITE/Stowaway
BrSTOW2-5	AC189511.1	B.rapa	422	TA	GGCACTAGTCG*	73	MITE/ Stowaway
BoSTOW3-1	EU642504.1	B.oleracea	237	TA	AGAGCATCTTTACCG	58	MITE/Stowaway
BoSTOW3-2	AC232493.1	B.oleracea	244	TA	TGAGAGCATCTTT	66	MITE/ Stowaway
BoSTOW3-3	AC229603.1	B.oleracea	243	TA	GAGCATCTTTAAATA*	58	MITE/Stowaway
BoSTOW4-1	AC240089.1	B.oleracea	227	TA	CTGTTTCCGTTTTACAAAGATATACTTTTT	81	MITE/Stowaway
BoSTOW4-2	AB180902.1	B.oleracea	248	TA	CTCCCTCCGTTCGTTAATGATAGAATTTTTTAG	78	MITE/Stowaway
BrSTOW4-3	AC189452.2	B.rapa	256	TA	CTCTCTCCGTTTCGAAAAGATATATATTTTAG	82	MITE/Stowaway
BrSTOW4-4	AC189417.2	B.rapa	253	TA	CTCCTTCCATTTCAAAAAGATAGACTTTTTTAGTA	81	MITE/Stowaway
BrSTOW4-5	AC189322.2	B.rapa	251	TA	CTCCTTCCGTTTCACAAAGATAGACTTTTTTAG	80	MITE/ Stowaway
BrSTOW4-6	AC189444.2	B.rapa	251	TA	CTCCTTCCGTTCCTAAAATATATACTTTTTAG	80	MITE/Stowaway
BrSTOW4-7	AC232543.1	B.rapa	248	TA	CTCCATCCGTCCTAAAAGATAAATTTTTTAG	79	MITE/ Stowaway
BrSTOW4-8	AC232514.1	B.rapa	245	TA*	CTCCATCCGTTTAAAAAAGATAGATGTTTT	79	MITE/Stowaway
BrSTOW4-9	AC189476.2	B.rapa	233	TA	CTCTGTTCTTTAAAAATAGATTTTCTAG	79	MITE/Stowaway
BrSTOW4-10	AC189492.2	B.rapa	218	TA*	CTCCATTCAACAAAAATATATATTTTA	82	MITE/Stowaway
BoSTOW5-1	AC240081.1	B.oleracea	243	TA	TattTCTTCCGTtTCGATtTA	80	MITE/ Stowaway
BoSTOW5-2	AC240087.1	B.oleracea	243	TA	CTCCCTCCGTTTCATATCA	74	MITE/Stowaway
BoSTOW5-3	AC183492.1	B.oleracea	241	TA	CTCCATCCGTTTCATATTA	74	MITE/ Stowaway
BrSTOW5-4	AC232467.1	B.rapa	244	TA	CTCCCTCCGTTTCGATTTA	76	MITE/Stowaway
BrSTOW5-5	AC189391.2	B.rapa	242	TA	CTCTCTCCGTTTCATTTTA	74	MITE/ Stowaway
BnSTOW5-6	AJ291500.1	B.napus	242	TA	CTCCCTCTGTTTCATCATA	74	MITE/Stowaway
BrSTOW5-7	AC241048.1	B.rapa	241	TA	TTCCTTCCGTTTCATTTTA	76	MITE/Stowaway
BrSTOW5-8	AC189207.2	B.rapa	239	TA*	CTCTCTCCGTTTCATTTTA	78	MITE/Stowaway
BrSTOW5-9	AC189417.2	B.rapa	242	TA	CTCCCTCCATTTCATTTTA	72	MITE/ Stowaway
BrSTOW5-10	AC189565.2	B.rapa	245	TA	CTCCCTCCATTTTATAATA	78	MITE/Stowaway
BrTOUR1-1 BrTOUR1-2	$\begin{aligned} & \text { AC155344.1 } \\ & \text { AC232445.1 } \end{aligned}$	$\begin{aligned} & \text { B.rapa } \\ & \text { B.rapa } \end{aligned}$	$\begin{aligned} & 413 \\ & 421 \end{aligned}$	$\begin{aligned} & \text { TTA } \\ & \text { TAA } \end{aligned}$	GGGGGTGTTAGTGGGA GGGGGTGTTAGTG	$\begin{aligned} & 73 \\ & 79 \end{aligned}$	MITE/Tourist MITE/Tourist
BrTOURI-3	AC189390.2	B.rapa	418	TAA	GGGTGTTAGTGGGA	76	MITE/Tourist
BrTOURI-4	AC189314.1	B.rapa	413	TTA	GGAGGGTGTTAGTGGGA	76	MITE/Tourist
BrTOURI-5	AC232479.1	B.rapa	412	TTA	GGGGGTGTTAGTGGGGA	74	MITE/Tourist
BrTOURI-6	AC189261.2	B.rapa	412	TTA	GGGGGTGTTAGTAGGGA	74	MITE/Tourist
BrTOURI-7	AC189219.1	B.rapa	412	TTA	GGGGGTGTTAGTGGG	75	MITE/Tourist
BnTOURI-8	AC236791.1	B.napus	412	TAA	GGGGGTGTTAGTGAGGA	74	MITE/Tourist
BrTOURI-9	AC189415.2	B.rapa	402	TAA	GGGGGTGTTAGTGGG	74	MITE/Tourist
BrTOUR1-10	AC189397.2	B.rapa	392	TTA	TGGGATATGGATTTGTAGTGA	75	MITE/Tourist
BrTOUR2-1	AC155344.1	B.rapa	285	TAA	GAGACACCCCCATTAGTGAAC	63	MITE/Tourist
BrTOUR2-2	AC172859.1	B.rapa	289	TTA	GAGCATCCCCATTAGTGAAC	62	MITE/Tourist
BrTOUR2-3	AC189450.2	B.rapa	287	TAA	GAGCACCCCCATTAGTGAAC	62	MITE/Tourist
BrTOUR2-4	AC189577.2	B.rapa	284	TAA	GAGCACCCCATTAGTAAAC	64	MITE/Tourist
BrTOUR2-5	AC232550.1	B.rapa	273	TTA	GAGCACCCCCATTAGTGAAC	65	MITE/Tourist
BrTOUR3-1	AC189298.1	B.rapa	258	TTA	GGACATCTCCA---(105)	67	MITE/Tourist
BoTOUR3-2	DQ222849.1	B.oleracea	258	TAA	GGACATCTCCA---(106)	66	MITE/Tourist
BoTOUR3-3	DQ222850.1	B.oleracea	258	TTA	GAGCATCTCCA---(106)	66	MITE/Tourist
BnTOUR3-4	FJ384103.1	B.napus	258	TAA	GAGCATCTCCA---(102)	66	MITE/Tourist
BrTOUR3-5	AC189458.2	B.rapa	258	TTA	GAGCATCTCCA---(102)	67	MITE/Tourist

Element Name.	BAC Accession	Species	Size	TSDs	Terminal inverted repeats (TIRs)	$\begin{aligned} & \hline \text { AT } \\ & \% \\ & \hline \end{aligned}$	MITE Superfamily
BrTOUR3-6	AC172875.2	B.rapa	258	TTA	GAGCATCTCCA---(102)	66	MITE/Tourist
BrTOUR3-7	AC189299.2	B.rapa	258	TTA	GGGCATCTCCA---(101)	64	MITE/Tourist
BrTOUR3-8	AC189445.2	B.rapa	258	TTA	GGGCATCTCCA---(103)	67	MITE/Tourist
BrTOUR3-9	AC189370.2	B.rapa	258	TAA	GAGCATCTCCA---(102)	66	MITE/Tourist
BrTOUR3-10	AC155339.1	B.rapa	259	TTA	GAGCATCTCCA---(102)	64	MITE/Tourist
BoTOUR4-1	AC240081.1	B.oleracea	267	TAA*	TACTCACTCTGTTTCATAAATGTCATTCTAACTTTT TT	76	MITE/Tourist
BrTOUR4-2	AC189192.2	B.rapa	332	TTA	CTCCCTCTTCGTAATTAATTACT	77	MITE/Tourist
BrTOUR4-3	AC241150.1	B.rapa	272	TAA*	TATACTCTCTCTATTTTATAATAAGTGTCA	79	MITE/Tourist
BnTOUR4-4	AF136223.1	B.napus	272	TAA	TACTCCATCTGTTTCATATTAAGTGTCATTGTAACA	79	MITE/Tourist
BrTOUR4-5	AC232552.1	B.rapa	272	TTA	CTACTCCTTCCGTTTCTGAATAAGTGTCATTTT	78	MITE/Tourist
BrTOUR4-6	AC189299.2	B.rapa	271	TAA*	TACCCTCTCCATTTCTGAATAACTGTCA	75	MITE/Tourist
BrTOUR4-7	AC189587.2	B.rapa	266	TCA*	TACTCCTTCCGTTTCTAAATAACTGTCA	81	MITE/Tourist
BrTOUR4-8	AC189218.2	B.rapa	264	TAA	TACTCTTTCTGTTTCTAAATAAATATCACTTTGAAG TTTTT	79	MITE/Tourist
BrTOUR4-9	AC189322.2	B.rapa	261	TTA	TACTTCCTCCGTTTCATAAAAAATGTCACT	80	MITE/Tourist
BrTOUR4-10	AC189569.2	B.rapa	255	TAA	TACTCTCTATATTTTTGAAAAAAATATCATTTT	81	MITE/Tourist
BrMuMITE1-1	CU984545.1	B.rapa	551	TATCC TATT	122/125	78	MITE/Mutator
BrMuMITE1-2	AC189475.2	B.rapa	569	$\begin{aligned} & \text { tTTAA } \\ & \text { TGAA } \end{aligned}$	ND	78	MITE/Mutator
BrMuMITE1-3	AC189340.1	B.rapa	559	$\begin{aligned} & \text { TAAAA } \\ & \text { TGAt } \end{aligned}$	ND	78	MITE/Mutator
BrMuMITE1-4	AC232437.1	B.rapa	547	$\begin{aligned} & \text { TTTAC } \\ & \text { ATAA } \end{aligned}$	ND	77	MITE/Mutator
BnMuMITEI-5	AC236785.1	B.napus	527	TATTT aTTaT	ND	77	MITE/Mutator
BrMuMITE2-1	CU984545.1	B.rapa	905	CTTTA GAAAC	427/435	81	MITE/Mutator
BrMuMITE2-2	AC189218.2	B.rapa	1060	TTATT TAAAT	ND	80	MITE/Mutator
BrMuMITE2-3	AC189224.1	B.rapa	1055	TATTT TATTG	ND	80	MITE/Mutator
BrMuMITE2-4	AC189578.2	B.rapa	1052	AACAA TATAG	ND	80	MITE/Mutator
BrMuMITE2-5	AC155345.1	B.rapa	958	TAAAA CTGTG	ND	81	MITE/Mutator
BrMuMITE3-1	AC232530.1	B.rapa	1586	CAAAA AAAAC	717/689	77	MITE/Mutator
BrMuMITE3-2	AC189366.2	B.rapa	1624	AATAA AATAT	ND	78	MITE/Mutator
BrMuMITE3-3	AC232539.1	B.rapa	1575	CATAA TAATT	ND	77	MITE/Mutator
BrMuMITE3-4	AC189401.2	B.rapa	1555	GATTT AATAT	ND	77	MITE/Mutator
BrMuMITE3-5	AC189580.2	B.rapa	1497	$\begin{aligned} & \text { TAAAA } \\ & \text { AGAAC } \end{aligned}$	ND	79	MITE/Mutator
BrMuMITE3-6	AC232458.1	B.rapa	1581	GATTT TCAAG	ND	77	MITE/Mutator
BrMuMITE3-7	AC232562.1	B.rapa	1552	AAAAC AAAAC	ND	77	MITE/Mutator
BoMuMITE3-8	EU642504.1	B.oleracea	1539	GATTA GATTC	649/616	78	MITE/Mutator
BoMuMITE3-9	EU579455.1	B.oleracea	886	TTAAA TgTT	255/243	78	MITE/Mutator
BoMuMITE4-1	AC149635.1	B.oleracea	899	TATAT ATAT	407/446	73	MITE/Mutator
BoMuMITE4-2	EU579455.1	B.oleracea	766	TTGGa TtGT	358/351	77	MITE/Mutator
BrMuMITE4-3	AC172877.1	B.rapa	886	$\begin{aligned} & \text { CTAAA } \\ & \text { ATTA } \end{aligned}$	ND	75	MITE/Mutator
BrMuMITE4-4	AC232459.1	B.rapa	839	ATTTT TCTTT	ND	75	MITE/Mutator
BrMuMITE4-5	AB257127.1	B.rapa	820	TTTTT TTAA	ND	77	MITE/Mutator
BrMuMITE5-1	AC155344.1	B.rapa	1159	TTTAT Taga	354/349	58	MITE/Mutator
BrMuMITE5-2	AC172882.1	B.rapa	1157	TTATT aga	354/348	58	MITE/Mutator
BrMuMITE5-3	AENI01009313.1	B.rapa	1164	AAgAG AAAT	353/357	58	MITE/Mutator
BoXMITE1-1	EU642504.1	B.oleracea	402	TTC	GGCCATGTTCGTTTACGTGTCGCGCGACCTACGA CCTGCGAC	48	MITE/ND
BrXMITE1-2	AENI01000925.1	B.rapa	356	CTC*	TTCATTTACGTATCGCGCGACCTGCGACCTG	52	MITE/ND
BrXMITE1-3	AC189543.2	B.rapa	320	AAT*	GGCCTGTTCCTTACCTGTCTGGC	54	MITE/ND
BrXMITE1-4	AENI01003669.1	B.rapa	320	AAT*	GGCCTGTTCCTTACCTGTCT	54	MITE/ND
BrXMITE1-5	AENI01006359.1	B.rapa	308	CAT*	TCGTTTACGTATCGTGCGACCTGCGACT	58	MITE/ND

7.2.3 Structural features of Brassica Stowaway-like MITEs

Five novel families of Stowaway-like MITEs were detected in Brassica genomes. The elements range in sizes from 218 bp ($\mathrm{BrSTOW4}-10$) to 580 bp ($\mathrm{BrSTOW1-1}$). The average size of the elements range from 230-260 bp. BrSTOWI-1 is the only member exceeding 500 bp , while its homologues range in sizes from 324-329 bp. The Stowaway-like elements show an insertional preference in AT rich regions and are terminated by TA TSDs. The first family is designated as BrSTOW1 due to the identification of its first member from Brassica rapa accession (AC155344.1) from 31584 to 32161 bp . The element is named BrSTOW1-1 and display the longest (30 bp) imperfect TIRs. The BLASTN hits retrieved ~ 52 full length or truncated copies. The total estimated copies from BrSTOW1 family in Brassica rapa and Brassica oleracea are 990. The TIRs of the family members ranges between $15-30$ bp with average TIRs of 18-20 bp (Figure 7.2; table 7.1). BoSTOW2 family represents a low copy number family with an estimation of only 382 copies from Brassica genomes. The first member of this family (BoSTOW2-1) was identified from Brassica oleracea accession 'AC2400081', while its other homologue (BoSTOW2-2) was observed in another Brassica oleracea accession 'EU579455.1'. The elements range in sizes from 436-460 bp, terminated by TA TSDs and 11 bp terminal inverted repeats. BoSTOW3 family is low copy number family with 230 estimated copies from Brassica genomes. The family members range in sizes from 237-244 bp and terminated by TA TSD and terminal inverted repeats of $13-15 \mathrm{bp}$ with conserved 5^{\prime}-GAG3^{\prime} termini. This family showed strong hits against Brassica oleracea sequences only suggesting its proliferation in C-genome (Figure 7.2; Table 7.1).

BoSTOW4 family represents a diverse group of MITEs ranging in sizes from 218-256 bp with average sizes of 251 bp . The representative of the family has 2 bp TSDs and conserved $27-34 \mathrm{bp}$ TIRs with highly conserved 5^{\prime}-CTC- 3^{\prime} termini. The TIRs are highly homologous among the member of the elements with the slight variations of one to few bp. BLASTN hits using BrSTOW4-1 as query sequences yielded 201 sequences as output, of which 120 were considered as full length or truncated elements. Approximately 2294 total copy numbers from Brassica rapa and Brassica oleracea whole genomes is estimated, making it a high copy number family. The fifth family BoSTOW5 is characterized by members having TA TSDs and TIRs of $19-21 \mathrm{bp}$, which are highly conserved among the members of the families. Like other Stowaway investigated in
present study, the TIRs have shown conserved 5^{\prime}-CTC- 3^{\prime} termini. The elements range in sizes from 239 (BrSTOW5-8) to 245 (BrSTOW5-10) bp. The first identified member of the family is BoSTOW5-1, which was detected as an insertion residing in Brassica oleracea accession (AC240081.1) from 32696-32938 bp. Using this as query sequence in BLASTN searches, 309 hits were returned, out of which 170 were considered full elements or truncated elements. The total copy number estimation revealed that ~ 3239 copies are actively proliferating in Brassica rapa and Brassica oleracea genomes.

Table 7.2: List of estimated copy numbers and AT\% of Brassica MITEs families. The average lengths of elements and their average AT\% are given.

Family	TSDs	Length	No. in database	No. in genomes	Average AT\%
BrSTOW1-1	TA	$324-580$	52	990	70
BoSTOW2-1	TA	$422-460$	20	382	71
BoSTOW3-1	TA	$237-244$	12	230	62
BoSTOW4-1	TA	$218-256$	120	2294	80
BoSTOW5-1	TA	$239-245$	170	3239	76
BrTOUR1-1	TNA	$392-421$	85	1624	75
BrTOUR2-1	TNA	$273-289$	64	1224	63
BrTOUR3-1	TNA	$258-259$	205	3918	66
BoTOUR4-1	TNA	$255-332$	128	2446	78
BrMuMITE1	9 bp	$527-569$	256	4892	78
BrMuMITE2	10 bp	$905-1060$	22	420	80
BrMuMITE3	10 bp	$1497-1624$	28	535	78
BoMuMITE4	9 bp	$766-899$	312	5964	75
BrMuMITE5	9 bp	$1152-1164$	6	114	58
BoXMITE1	TTC	$308-402$	12	1229	53

7.2.3.1 Transposon Insertional polymorphism of Stowaway-like MITEs

To investigate the insertion polymorphisms of Brassica Stowaway-like MITEs among 40 Brassica lines, three primer pairs were designed against both flanking sequences of each MITE (Table 7.3). Among the 3 primer pairs tested for three Stowaway MITE families, 63 bands with their respective product sizes (MITEs) were amplified from 40 Brassica lines. The lower band amplified the flanking regions, which are derived from homeologous regions in the A and C -genomes. The BrSTOW1F and BrSTOW1R primer pair (Table 7.3) was used to amplify the 580 bp BrSTOWI MITEs. The expected product size of 682 bp was amplified from Brassica rapa (Chinese Wong Bok, San Yue Man, Hinona, Vertus, Suttons) lines. In the first three lines both upper and lower bands were observed suggesting their heterozygous nature. No upper or lower band was amplified in any of the
three Brassica nigra (BB) genome suggesting the B -genome difference against A and C genomes. No bands were observed in C-genome with the exception of Brassica oleracea gemmifera 'De Rosny', where a upper band was amplified only. A very light band of ~ 550 bp was observed in most of the Brassica oleracea lines. The inserional polymorphism in Brassica juncea displays the amplification of BrSTOW1 in Brassica juncea 'Megarrhiza' and Brassica juncea 'W3' lines while the other four lines only produced the lower band indicating the absence of BrSTOW1 in these genomes. All the six allotetraploid Brassica napus lines (New, Mar, Last and Best, Fortune, Drakker, Tapidor) produced the upper band amplifying the BrSTOW1. No BrSTOW1 amplification observed in any of Brassica carinata genomes. All the three except one Brassica hexaploid produced the expected product amplifying the BrSTOW1 in their genomes (Figure 7.3a). This suggests the availability and distribution of BrSTOW1 in Brassica rapa and its corresponding allotetraploids and hexaploids.

The amplification pattern of 237-244 bp BrSTOW3 was performed by using degenerative primers pair BoSTOW3F and BoSTOW3R (Table 7.3). The primers were designed from flanking regions of MITE shared by both A and C-genomes with a expected product size of 512 bp . Out of 40 Brassica lines, 22 produced the higher bands amplifying the BoSTOW3 insertional loci, while no amplification was observed in other 18 lines, which suggest that MITE BoSTOW3 is not inserted in this specific locus but might be present on other loci within these lines. All the six Brassica oleracea (de Rosny, Kai Lan, Early Snowball, Precoce Di Calabria Tipo Esportazione, Cuor Di Bue Grosso, GK97361) lines produced the larger band only amplifying the MITE BoSTOW3. Similarly all the six lines each from allotetraploid Brassica napus (AACC) and Brassica carinata (BBCC) and 4 hexaploid Brassicas (AABBCC) yielded the product of 512 bp amplifying the BoSTOW3 in their genomes. All these lines also produced the lower band of $\sim 260 \mathrm{bp}$ (Figure 7.3b).

BoSTOW4 insertional polymorphism among the 40 Brassica lines gave nearly similar results as observed in the amplification of BoSTOW3. Out of 40 Brassica lines, 23 amplified the 500 bp BoSTOW3 insertional loci, while no amplification was observed in other 17 lines. One Brassica juncea (NARC-II) amplified the 500 bp band. The BoSTOW4 insertions were amplified from six Brassica oleracea, six Brassica napus, six Brassica carinata and four 6x Brassica lines. All these lines also produced the lower band of ~ 270 bp suggesting the heterozygous nature of Brassicas (Figure 7.3c).

Figure 7.2: Schematic representation of Stowaway, Tourist and novel MITEs in Brassica. Red disks represent 1-3 bp TSDs while black disks of varied sizes represent the TIRs of MITEs. The coloured regions among TIRs indicate the internal non-coding regions. The TIRs and internal regions of all MITEs are AT rich. Scale at base shows sizes in bp.

Figure 7.3: Insertional polymorphism of Brassica Stowaway-like MITEs. a) BrSTOW1; b) BoSTOW3; c) BoSTOW4. Black arrowheads (right) indicate upper bands with amplified loci having MITE insertions while lower bands are amplified from loci without insertions (see Fig. 7.6). PCR figures show reversed images of size-separated ethidium bromide-stained DNA on agarose gels after electrophoresis; ladders show fragments sizes in base pairs; numbers at the base indicate accessions of the species indicated from Table 2.1.

Table 7.3: List of Brassica MITEs primers with size of the elements, size of the expected products, names and sequence of primers.

Sr. No.	Superfamily	Family	Element Size	Product size	Primers	Primer sequence
1	Stowaway	BrSTOW1	$324-580$	682	BrSTOW1F BrSTOW1R	CTTCGTATTCTCTGCAAGAT CGAAATACATAGACGTATAC
2	Stowaway	BoSTOW3	$237-244$	512	BoSTOW3F BoSTOW3R	AGGGTCCAAACATGTGATTA GTTGCAAATAATTGATCGTTG
3	Stowaway	BoSTOW4	227	500	BoSTOW4F BoSTOW4R	CAATACCATCCAGTGTTACA TGTTGTCGTCATTAAGGTGA
4	Tourist	BrTOUR1	$392-421$	530	BrTOUR1F BrTOUR1R	GGGGATAATTACACATCTTG
5	Tourist	BrTOUR2	$273-289$	510	BrTOUR2F BrTOUR2R	AGGGTCCAAACATGTGATGCAAATAATTGATCGTTG GTTGCAATCATC
6	Tourist	BrTOUR3	258	564	BrTOUR3F BrTOUR3R	GGACCATACAGTATATCGTT TGATAACGTTGTTGTTCCC
7	Mutator-like	BrMuMITE1	$527-569$	1016	BrMuMITE1F BrMuMITE1R	CATTGCAGAAGAGCTGGCTGC
CATTTGAGGAGAGATTTG						

7.2.4 Characterization of Brassica Tourist-like MITEs

The Tourist-like MITEs are the derivatives of PIF/Harbinger DNA transposons with TAA/TTA TSDs and small TIRs. The Tourist MITEs are actively proliferating in Brassica genomes. Four families of Tourist (BrTOUR1, BrTOUR2, BrTOUR3 and BoTOUR4) were detected in Brassica genomes. Approximately, 9212 Tourist-like full or nearly full length (truncated) copies was estimated from Brassica (A and C) genomes. The highest copy number Tourist family BrTOUR3 display ~ 3918 sequences followed by ~ 2446 copies in BoTOUR4. The TIRs generally ranges from 11-21 bp with the exception of BoTOUR3 family, where 102-106 bp TIRs were observed flanking by TAA target site duplications. The TIRs are highly conserved within the members of the same family but different from the members of the other families. The TIRs in all the elements are GC rich, while the internal non-coding regions are highly AT rich (Table 7.1).

BrTOUR1 is a family of Tourist-like MITEs ranging in sizes from 392 to 421 bp with TTA/TAA TSDs and TIRs of 13-21 bp. The 5^{\prime} termini of TIRs are highly conserved with 5' GGGGG-3' termini (Figure 7.4). The first identified element of the family was BrTOUR1-1, inserted within Brassica rapa accession ‘AC155344.1’ from 43736-44148 bp . The element is 413 bp with 3 bp TSDs (TTA) and 16 bp TIR. The BLASTN hits using this element as query yielded 85 full length elements, which have shown high homology in their entire lengths. The largest element identified from the family is 421 bp BrTOUR1-

2, while BrTOUR1-10 is only 392 bp in length. The average sizes of the elements in this family are 412-413 bp. BrTOUR2 family proliferating in Brassica genomes exhibit ~ 1224 copies (Table 7.2). The first element discovered from the family was a 285 bp insertion in Brassica rapa accession 'AC155344.1’ residing from 42921-43204 bp. The other homologues of this family range in sizes from 273-289 bp with 3 bp TSDs and TIRs of 19-21 bp. BrTOUR2-5 is 273 bp in size and display 20 bp TIRs flanked by TTA target repeats. BrTOUR3 is high copy number family with ~ 3918 copies distributed among Brassica genomes. All the members of this family exhibit the same size ($258-259 \mathrm{bp}$) with large TIRs of $\sim 102-106 \mathrm{bp}$. There are insertions of 5 and 7 bp at 11 bp downstream and 11 bp upstream of 5^{\prime} and 3^{\prime} terminal ends respectively. Like the members of BrTOUR2, BrTOUR3 family members also generate 5^{\prime}-CATCTCC- 3^{\prime} conserved termini in their TIRs (Figure 7.4). The members of the family are distributed among Brassica rapa, Brassica oleracea and Brassica napus genomes. BnTOUR3-4 is a Tourist-like MITE identified from Brassica napus accession 'FJ384103.1' (Table 7.1).

Figure 7.4: Sequence logos (pictograms) of Brassica MITE TIRs. The logos generated with (n) sequences and letter heights (0 to 2) indicate the information content of nucleotides in the TIRs of a,b) Brassica Stowaway (BrSTOW1, BoSTOW4) and c,d) Tourist-like (BrTOUR1, BrTOUR3) MITE families. The short height nucleotides represent non-conserved motif or insertion. The 5 bp insertion in BrTOUR3 (12-16 bp) represents a 5 bp non-homologous sequence or an insertion.

BoTOUR4 is a family of elements distributed among various Brassica genomes. The first element (BoTOUR4-1) was identified from Brassica oleracea accession 'AC240081.1' as an insertion present in this BAC from 32202-32468 bp. BoTOUR4-1 is a 267 bp element with 3 bp imperfect TSDs and 38 bp imperfect TIRs (Figure 7.2). Using this element as query sequence, several other homologues were collected ranging in sizes from 255-332 bp. Most of the retrieved sequences were from Brassica rapa, which might be is the result of high genome size deposition at GenBank database. Approximately, 2446 copies are estimated from Brassica rapa and Brassica oleracea genomes making it a high copy number family of MITEs in Brassica (Table 7.2). The TIRs of the elements rang is sizes from $\sim 23-41 \mathrm{bp}$, which have shown high similarity among the members of the family with 5'-TACTC-3' like conserved termini. BrTOUR4-2 with a size of 332 bp is the largest member of the family with small insertions in it. The average sizes of the elements are $\sim 272 \mathrm{bp}$, whereas BrTOUR4-10 is the smallest MITE from this family (Table 7.1).

7.2.4.1 Brassica Tourist MITE insertion polymorphism among Brassica cultivars

To study the insertional polymorphism among various Brassica cultivars/lines (40), the primers were designed from the flanking regions of the MITEs. Among the primer pair BrTOUR1F and BrTOUR1R tested for the amplification of BrTOUR1 MITE, 15 generated the expected product with MITE insertion while rest 25 yielded the lower bands without insertions (Figure 7.5a). The BLASTN results have shown the distribution of BrTOUR1 among various Brassica species, mostly in Brassica rapa. This primer set only amplified BrTOUR1 MITEs loci from A-genome accession 'Chinese Wong Bok', which produced both higher and lower bands. No PCR amplification of BrTOUR1 was seen in other A and B-genome species. Out of the six diploid C-genomes, 5 Brassica oleracea accessions (Kai Lan, Early Snowball, Precoce Di Calabria Tipo Esportazione, Cuor Di Bue Grosso, GK97361) amplified the band while no band was observed in Brassica oleracea 'De Rosny'. Five out of 6 Brassica napus genomes (New, Last and Best, Fortune, Drakker, Tapidor) amplified the respective bands ($\sim 530 \mathrm{bp}$). Similarly 3 Brassica hexaploid lines amplified the BrTOUR1 loci. The insertional polymorphism of 237-289 bp BrTOUR2 among 40 Brassica accessions gave various polymorphic bands (Figure 7.5b). The primers BrTOUR2F and BrTOUR2R were used to amplify 510 bp products having MITE insertions and flanking sequences. Out of 3 diploids species (AA, BB, CC), the MITEs insertion loci was only amplified in A-genomes including Brassica rapa
accessions (Pak Choy, Chinese Wong Bok, San Yue Man, Hinona, Vertus, Suttons). No amplification of these loci with BrTOUR2 insertion was seen in diploids B and Cgenomes. All the 9 lines among Brassica juncea (NARC-I, NATCO, NARC-II, Kai Choy, Megarrhiza, Tsai Sim, W3, Giant Red Mustard, Varuna), 6 lines from Brassica napus (New, Mar, Last and Best, Fortune, Drakker, Tapidor) and 4 lines from hexaploid Brassicas yielded the MITE inserted loci.

A 258 bp element BrTOUR3 was amplified from various Brassica lines by using BrTOUR3F and BrTOUR3R primers pair (Table 7.3). The upper bands ($\sim 564 \mathrm{bp}$) showed the amplification of BrTOUR3 MITE, while lower $\sim 300 \mathrm{bp}$ bands amplified flanking regions without the insertion (Figure 7.5c). Of the 3 diploids species tested, only Agenome Brassica rapa accesions (Pak Choy, Chinese Wong Bok, San Yue Man, Hinona, Suttons) yielded the expected band except Brassica rapa (Vertus). All the six A-genomes also produced the lower band of $\sim 300 \mathrm{bp}$. No BrTOUR 3 MITE containing loci amplified in B and C-genomes, where only lower band with flanking regions are yielded. Among 9 Brassica juncea lines tested, only 6 accessions showed expected bands while 3 have shown only lower bands amplifying the flanking regions. All the lines tested from Brassica napus, Brassica carinata and hexaploid Brassicas produced the strong lower bands suggesting the presence of flanking regions without MITE insertions.

Figure 7.5: Insertional polymorphism of Brassica Tourist-like MITEs. a) BrTOUR1; b) BrTOUR2; c) BrTOUR3. The black arrowheads (right) indicate upper bands from loci having MITE insertions (eg ~270 bp in c) while lower bands are amplified from loci without MITE insertion.

7.2.5 Molecular characterization of Mutator-like MITEs in Brassica

The deletion of transposase and internal regions from Mutator DNA transposons led to the formation of Mutator-like MITEs. The present study explained the high diversity, distribution and mobilization of Mutator MITEs among various Brassica species. Five Mutator-like MITE families were identified designated as BrMuMITE1, BrMuMITE2, BrMuMITE3, BoMuMITE4, and BrMuMITE5. These MITEs range in sizes from 527-1624 bp with 9-10 bp TSDs. The TIRs among the members of the various families range from ~100-750 bp with varied lengths in 5^{\prime} and 3^{\prime} TIRs due to insertions/deletions. Approximately 12536 copies of Mutator-like MITEs were estimated from Brassica rapa and Brassica oleracea whole genomes (Table 7.1 \& 7.2). Using the first identified Mutator derived MITEs (reference) as query, other complete elements were collected for each family. Due to very high copy numbers of these MITEs, only five hits with maximum homology were collected and studied in detail.

BrMuMITE1 is a family of Mutator derived MITE, highly distributed among Brassica crops. This is a high copy numbers family with an estimated 4892 copies proliferating in A and C-genome Brassicas. The first element identified from this family was a 551 bp sequence, generates perfect 9 bp TSDs (TATCCTATT) and TIRs of $122 / 125 \mathrm{bp}$. Using this sequence as query, many other copies were collected and characterized from this family. The elements of the family range in sizes from 527-569 bp with 9 bp target repeats with the exception of Brassica napus MITE (BnMuMITE1-5; 10 bp TSDs). The TSDs of the representatives of family are AT rich and the TIRs have shown high homology with each other. BrMuMITE2, a low copy number (~ 420 estimated copies) family is distributed among Brassica genomes with members exhibiting ~905-1060 bp lengths, flanked by 10 bp TSDs and high AT content. TIRs of the various elements are $\sim 400-450 \mathrm{bp}$ in sizes with high homology within the members of the family. BrMuMITE2-2 is the largest member (1060 bp), while 958 bp BrMuMITE2-5 is representing the smaller member with high AT content (81\%). BrMuMITE2-3 and BrMuMITE2-4 are 1055 and 1052 bp elements respectively including 10 bp TSDs (Figure 7.6; Table $7.1 \& 7.2$).

BrMuMITE3 is a middle copy number family with ~ 611 estimated copies within Brassica genomes (A and C). The representatives of the family range in sizes from 886-1624 bp including 9-10 bp TSDs. The TIRs ranges from 250-750 bp with high homology within
the members of the family in their entire regions. A 886 bp MITE named BoMuMITE3-9, was found inserted in Brassica oleracea (EU579455.1) from 1113-1983 bp. In a parallel investigation, another similar element (BrMuMITE3-1) but larger in size (1586 bp) was identified from Brassica rapa (AC232530.1) from 47143-48728 bp. Both sequences showed high homology and suggested the members of the same family. Using these two sequences as query in GenBank database, 7 other full length elements were collected. The largest element was BrMuMITE3-2, which is 1624 bp large including 10 bp TSDs. Most of these elements are $>1500 \mathrm{bp}$ with long TIRs and very small internal non-coding regions. BoMuMITE3-8 is a 1539 bp MITE including 10 bp TSDs and $5^{\prime}-649 / 616-3^{\prime}$ bp TIRs residing from 38719-40252 bp (Figure 7.6; Table 7.1).

Figure 7.6: Structures of Mutator-like MITEs in Brassica. The red arrows represent 9-10 bp TSDs while black filled pentagon of varied lengths represents the long TIRs of Mutator-like MITEs. The light coloured regions between the inverted pentagons indicate the internal non-coding regions. The TIRs and internal regions of all MITEs are AT rich. Scale at base shows sizes in bp.

BoMuMITE4, a family comprising the highest copy numbers (5964) was identified with members distributed among various Brassica crops. Using BoMuMITE4-1 as query returned 2400 hits, of which ~ 312 full length elements were extrapolated. The first identified element BoMuMITE4-2 was 766 bp in size with 9 bp imperfect TSDs and TIRs 5'-358/351-3'. Another 899 bp MITE was detected from Brassica oleracea accession 'AC149635.1' including 9 bp TSDs and $5^{\prime}-407 / 446-3$ ' bp TIRs. The elements of the family range in sizes from 766-899 bp with 9 bp TSDs and large TIRs ($\sim 350-446$). BrMuMITE4-3, BrMuMITE4-4 and BrMuMITE4-5 are Brassica rapa MITEs with 9 bp

TSDs and large TIRs with very high AT rich regions. The BrMuMITE5 represents a low copy numbers family (114 estimated copies), where only 3 copies were collected from Brassica Nucleotide Collection and Whole-genome shotgun contigs (wgs) databases of NCBI. The elements range in sizes from 1152-1167 bp with 9 bp imperfect TSDs. The elements have shown high AT content (58\%) but comparatively very low as compared to other MITE families investigated in Brassica. The first element identified was BrMuMITE5-1, which is 1152 bp including 9 bp TSDs and $5^{\prime}-354 / 349-3^{\prime}$ bp TIRs. The other two elements BrMuMITE5-2 and BrMuMITE5-3 are of the same sizes and showed very high homology with each other (Figure 7.6; Table 7.1).

7.2.5.1 Mutator derived MITEs; Insertional polymorphism among Brassica

The transposon insertional polymorphism assay (TIP) was used to detect the abundance of Mutator MITEs in a diverse set of 40 Brassica accessions/lines from three diploids (AA, BB, CC), three allotetraploids ($\mathrm{AABB}, \mathrm{AACC}, \mathrm{BBCC}$) and 2 resynthesized hexaploid Brassicas (B. napus x B. nigra; B. carinata x B. rapa). PCR oligonuclotide primers flanking a respective MITE yielded a higher and a lower band amplifying with and without MITE Insertional sites respectively. Of the 5 Mutator derived MITE families, two (BrMuMITE1, BoMuMITE4) have shown high diversity and abundance among Brassica genomes. BrMuMITE1 have shown high diversity and distribution among Brassica rapa lines, while BoMuMITE4 have shown high distribution in C -genome specific lines. To confirm this, degenerative primer pairs were designed from the flanking regions common in A and C-genomes. Using BrMuMITE1F and BrMuMITE1R primers (Table 7.3), 1016 bp product with 551 bp BrMuMITE1 insertions were amplified from 23 out of 38 Brassica lines tested. The MITE amplication polymorphisms displayed that 5 Brassica rapa accessions (Pak Choy, Chinese Wong Bok, Hinona, Vertus, Suttons) yielded the ~1016 bp product while accession 'San Yue Man' failed to generate the expected product but yielded $>3 \mathrm{~kb}$ band of unknown nature. No amplification from B and C-genomes except Brassica oleracea 'Early Snowball', suggested the absence of the BrMuMITE1 in comparisons to A-genome, where clear bands amplifying the MITEs were observed. Amongst the classical allotetraploid Brassica species, all the six lines from each Brassica juncea and Brassica napus generated the product with BrMuMITE1 insertions. All the six Brassica carinata lines showed the footsteps of the MITE element. Very strong product bands observed in the two hexaploid Brassica lines suggested the duplication of MITEs from diploid genomes, quite common in polyploids species (Figure 7.7).

The insertional polymorphism of BrMuMITE4 among 40 Brassica lines revealed that 19 have shown strong or weak bands, while the other 21 have shown no amplification signals (Figure 4.7b). The primers designed from conserved flanking regions common in A and C-genome Brassica were tested with six Brassica rapa accessions with no amplification of BoMuMITE4 insertion but loci without it was amplified from all lines. Only one Brassica oleracea italica (Precoce Di Calabria) accession yielded the strong signals of BrMuMITE4 amplification. Another Brassica oleracea line (GK97361) amplified a product of $\sim 1.3 \mathrm{~kb}$, which is $\sim 200 \mathrm{bp}$ larger than the expected product. The amplification pattern among Brassica juncea lines revealed the amplification in seven accessions except 'Kai Choy' and ‘Tsai Sim' accesions. Here a question arose, if none of A and B-genomes amplified the MITE insertions, then why the allotetraploid (AABB) are generating very strong bands? Although the BLASTN searches using BoMuMITE4-1 sequence retrieved many strong hits against Brassica rapa BAC clones. Their might be possibility that the Brassica rapa genomes harbour many BrMuMITE4-like sequences but the priming sites from flanking regions failed to yield the specific site. There is another possibility that no BoMuMITE4 insertion is present at that specific locus but have other copies at variable loci. The presence and absence of BoMuMITE4 insertional bands in 4 (Last and Best, Fortune, Drakker, Tapidor) and 2 (NEW, MAR) Brassica napus lines suggested the polymorphism in AACC genome accessions. It also confirmed the contribution of MITE inserted loci from C-genomes rather than A-genomes.

Figure 7.7: Insertional polymorphism of Brassica Mutator-like MITEs. a) BrMuMITE1; b) BoMuMITE4. The black arrowheads (right) indicate upper bands from loci having MITE insertions while lower bands are amplified from loci without MITE insertions. The primers used in (a) amplify some additional polymorphic sites.

7.2.5.2 Fluorescent in-situ hybridization of BrMuMITE1

The PCR amplification of BrMuMITE1 has shown its amplification in Brassica rapa (Agenome), while no amplification of MITE inserted loci was detected among Brassica nigra and Brassica oleracea (except accession 'Early Snowball') lines. The BLASTN searches in GenBank yielded very strong hits to many full length elements from Brassica rapa and few hits against Brassica junceae and Brassica napus. The element represents a high copy numbered family investigated from Brassica in present study. To study the localization and distribution of BrMuMITE1 on chromosomes, the amplified bands from A-genome were labelled with biotin. The probe was used on an allotetraploid Brassica juncea having both A and B-genome chromosomes. Metaphase chromosomes were used to localize the BrMuMITE1 MITEs and their distribution pattern on chromosomes. Signals with varied intensities were observed on nearly all chromosomes. Strong signals were observed in A-specific chromosomes where they are mostly clustered in telomeric regions (Figure 7.8). In contrast, some chromosomes which were deduced to be without signals (B-specific chromosomes) have shown very weak signals dispersed randomly on all chromosomes. This not only confirmed the presence and distribution of BoMuMITE1 family on Brassica rapa chromosomes but also presents the high diversity, abundance and distribution on both A-specific Brassica crops and their allotetraploids (AABB \& AACC).

Figure 7.8: Fluorescent in situ hybridization showing the widespread genomic distribution of BrMuMITE1 related sequences on Brassica juncea chromosomes. Metaphase chromosomes are stained with DAPI (blue fluorescence in a and c). Hybridization signals are visible as red fluorescent signals (b and purple in c where overlaying blue). Hybridization patterns of the complete BrMuMITE1 (1 kb with flanking region) showed dispersed distribution along all chromosomes with varying signal intensities: signals observed on A-genome chromosomes were stronger than those on B-genome chromosomes. Magnification x2500.

7.2.6 Structural features of a novel MITE family (BoXMITE1) in Brassica

Some identified MITEs have shown no strong structural features to characterize and classify them. These un-characterized elements are placed in a novel MITE family. In present study, a MITE-like element with 3 bp TSDs (TTC) and 42 bp imperfect TIRs but no significant homology to any known MITEs family was identified. The element was named BoXMITE1-1 and represents a low copy number family (BoXMITE1) with only 229 estimated copies within whole Brassica (A, C-genomes). BoXMITE1-1, the first identified element from the family was found inserted in Brassica oleracea accession 'EU642504.1' from 86275-86676 bp. Using this as query sequence against Brassica Nucleotide Collection database in GenBank, only two complete sequences were retrieved, while searching against Brassica Whole-genome shotgun contigs (wgs) database, other 3 full length copies (BrXMITE1-2, BrXMITE1-4, BrXMITE1-5) were also collected, which indicate their localization on chromosome 1, 4 and 7 of Brassica rapa. The elements range in sizes from $\sim 308-402 \mathrm{bp}$ with 3 bp TSDs with single bp mismatch. The TIRs of the family members range from 21-42 bp with few bp mismatches. BoXMITE1-1 is flanked by 42 bp , while BrXMITE1-4 is flanked by 21 bp TIRs (Table 7.1).

7.2.7 Estimation of genome-wide copy numbers of Brassica MITEs

MITEs, generally characterized by high copy numbers have shown diversity in Brassica. We believe that Brassica genomes would contain further high percentage of MITEs, which are undiscovered yet but proliferating in various Brassica crops. To investigate the abundance, distribution and amplification of Brassica MITEs, the reference sequences from each family were used as queries in BLASTN searches against Brassica rapa and Brassica oleracea Nucleotide Collection databases (nr/nt) before February, 2012. The strong hits from the output results were extrapolated to estimate genome-wide copy numbers by the formula. MITEs Copy no. $=$ no. in database x genome size/database size. The genome sizes of Brassica rapa and Brassica oleracea ranges from 527 and 694 Mbp (Bennett and Leitch, 2011) respectively, but the average sizes of the Brassica rapa (535 Mbp) and Brassica oleracea (650 Mbp) genomes were considered for calculations. The Brassica rapa and Brassica oleracea Nucleotide Collection (nr/nt) database size available in GenBank at NCBI before February, 2012 was 51.4 Mbp and 4.7 Mbp respectively, which is 9.5 and 1% of Brassica rapa and Brassica oleracea whole genome respectively.

BLAST searches were performed using reference MITE-like sequences as query against Brassica rapa and Brassica oleracea Nucleotide Collection database at GenBank and sequences with $>70 \%$ coverage and identity were collected. The sequences with less homology were not included to avoid any false positives. We believe in the accuracy of our calculations but also expect errors in our extrapolation, due to the incomplete genome sequence datasets for Brassica species. The total estimated copy numbers from various Brassica MITE families ranges from 114 (BoXMITE1) to 5964 (BoMuMITE4). The estimated copy numbers of Stowaway-like MITE families range in sizes from 230 (BrSTOW3) to 3239 (BoSTOW5) in whole A and C-genomes collectively. The Tourist-like MITEs in total Brassica genomes were estimated from 1224 (BrTOUR2) to 3918 (BrTOUR3) copies. The average and high copy numbers were estimated in BrMuMITE2 (420) and BoMuMITE4 (5964). The second highest copy number were estimated from BrMuMITE1 with 4892 copies among Brassica genomes (Table 7.2). The sharing of MITEs in both Brassica rapa and Brassica oleracea suggest their origin that predates the divergence of both species.

7.2.8 Phylogenetic analysis of Stowaway, Tourist and unknown MITEs

The Neighbour-Joining method with 1000 bootstrap replicates was used to generate the phylogenetic tree of Brassica Stowaway, Tourist and BoXMITE families. The tree is based on genetic distance calculated with Tamura-Nei (1973) genetic model and rooted with Hordeum vulgare Tourist-like element Jura_HV. Due to very high copy numbers of MITEs, five elements from each respective family were used. In the initial effort, full length elements were aligned and a tree was generated, which failed to resolve elements into their respective groups due to very high AT content resulting in similarity of Stowaway and Tourist-like MITEs. The TIRs of the MITEs were collected, aligned in CLUSTALW and tree in generated in Geneious program. Each family of Stowaway, Tourist and BoXMITE MITEs are shown in different colours. The tree revealed that the members of each family clustered together in their respective groups with the exception of few sequences. No clear cut separation of Stowaway or Tourist-like MITEs into two major clades was found but weak clustering of Stowaway or Tourist MITE families together was found (Figure 7.9). The Stowaway MITE families BrSTOW1, BoSTOW2 and BoSTOW3 clustered together, while BoSTOW4 and BoSTOW5 come close to each other. Both these groups were separated by Tourist-like MITE families BrTOUR1, BrTOUR2, BrTOUR3
and BoTOUR4, which come close to each others. Three elements BrTOUR2-1, BrTOUR31 and BrTOUR3-5 are found dispersed in BoSTOW3 clade indicating their misplaced positions due to substitution or replacement of few nucleotide bases in TIRs. Similarly BrTOUR4-5 is not placed in its specific group due to variations in its TIRs. The sequences from the BoXMITE family were clustered together in one group and the family is located between BoSTOW4 and BrSTOW5. Therefore, it was concluded that MITE TIRs can be used to generate weak clustering of family members but there is no specific clustering of Stowaway and Tourist-like elements in two separate lineages. The possible reason might be the high and similar GC content in TIRs of both superfamilies and the short sizes of TIRs, so it is unsuccessful in differentiating the two superfamilies of MITEs.

7.3 Discussion

In the present study, the molecular characterization of 15 novel MITE families was done in Brassica. Including the MITE derivatives of Tc1-Mariner, PIF-Harbinger and Mutatorlike transposon superfamilies, of the 15 elements, 5 are Stowaway, 4 Tourist-like, 5 Mutator-like and 1 a novel MITE family named BoXMITE. Approximately 29112 MITEslike sequences were estimated from Brassica rapa and Brassica oleracea genomes (Figure 7.2 \& 7.6; Table $7.1 \& 7.2$) (Several hAT-like non-autonomous families were also investigated from Brassica, described in previous chapter). BraSto, a well characterized Stowaway MITE family was reported with similar abundance to our family in Brassica (Sarilar et al., 2011). The rice genome harbours rather more elements, with $\sim 178,533$ MITE related sequences clustering into 338 families (Lu et al., 2012). A parallel study in the Solanaceae has also revealed a high level of MITE diversity among the crop species (eg. tomato, potato and tobacco) and 22 families including superfamilies Stowaway, Tourist, hAT, and Mutator-like MITEs. The MiS1 family occurs in high copy numbers in tobacco (>1000), while low copy numbers were observed in tomato and potato (<60). Like high copy numbers of Brassica Mutator-like MITEs, the Mutator-like MITEs (MiS6MiS11) in tomato and potato have shown higher estimated copy numbers ($\sim 400-3200$). The most abundant family was MiS22, which are estimated to have 3516 and 9802 copies in the tomato and potato genomes (Kuang et al., 2009).

Chapter 7

Figure 7.9: Phylogenetic tree of Brassica Stowaway, Tourist and novel MITEs. Tree is based on genetic distance calculated with Tamura-Nei (1973) and constructed with Neighbour-Joining methods with 1000 bootstraps replicates (substitution values shown). Hordeum vulgare Tourist-like element Jura_HV was used to root the tree. Each family of Stowaway, Tourist and novel MITEs are shown in different colours. The arrowheads are indicating misplaced sequences. Stowaway and Tourist superfamilies of MITEs were only poorly resolved on the basis of their small TIRs with high GC content; internal AT-rich regions generated only a weakly supported tree.

7.3.1 Insertional polymorphism of MITEs, a tool to study diversity and evolution

The insertional polymorphism of MITEs is an excellent tool to identify different cultivars and their lineages. MITEs have the ability to transpose into new sites at variable pace in different cultivars or genotypes, building the presence/absence based polymorphism (Lyons et al., 2008) as described for retrotransposons in the RBIP analysis (Flavell et al., 1998). A site is known as empty site (RESite), when the MITE moved from a locus and transposed to a new site (Le et al., 2000). The excision of the MITE from a site causes the presence/absence polymorphism; with few genomes with MITE insertion while the others lacking the insertion. After a MITE transpose and integrates to a new site, the empty donor host site exhibit a foot print having an extra TSD sequence as compared to the locus prior to MITE insertion. This excision is not always normal, sometimes such excisions often generates footprints, including short deletions or the insertions of the unrelated sequences (Kikuchi et al., 2003). Different MITE families have shown different patterns of proliferation. Some MITEs are highly conserved and proliferate only in a genome while others are highly diverse and actively proliferating in various genomes. The high conservations of the MITEs in a genome indicate their recent amplification and burst, while the highly dispersed MITEs families are resulted from the ancient amplification and proliferations (Oki et al., 2008; Zerjal et al., 2012).

The Insertional polymorphism of Brassica Stowaway, Tourist and Mutator derived MITEs was observed among 40 cultivars. The amplification of BrSTOW1 in Brassica rapa and BoSTOW3 and BoSTOW4 in Brassica oleracea suggested the conserved amplification of MITEs in a A and C-genomes respectively and showing RESites in the genomes, where no amplification is observed. Similarly, the amplification of Brassica Tourist and Mutator MITEs yielded products with and without insert displaying the Insertional polymorphism. This polymorphism helped us in the identification and differentiation of many cultivars in Brassica. The MITE insertion polymorphisms concluded that they are excellent molecular markers to study the diversity and evolutionary phenomena in plant genomes.

7.3.2 Brassica MITEs have highly AT rich regions

One of the typical features of MITEs is the presence of highly AT rich sequences (eg. the AhMITEs from Arachis hypogea exhibit an AT content of 70% (Shirasawa et al., 2012), a
characteristic found in all Brassica MITE families. The average AT content within the families ranges from 53\% (BoXMITE1) to 80\% (BoSTOW4, BrMuMITE2). The Stowaway MITEs showed a range of 62-80\% AT content, where BoSTOW3 family showed minimum while BoSTOW4 showed maximum ratios. Tourist-like MITEs are also AT rich with an average 63-78\%. Mutator-like MITEs has shown very high AT rich regions within TIRs and internal regions. The AT content among the families ranges from $75-80 \%$, with the exception of BrMuMITE5 (58\%) (Table $7.1 \& 7.2$)

7.3.3 Evolutionary implications of MITEs in plant genomes

Besides the characteristic features of MITEs with conserved TSDs, TIRs and high copy numbers within the genomes, the MITEs have played a role with functional and evolutionary implications. MITEs can either capture the genes or integrate within the functional genes as many MITE-like copies are an integral part of genes. For example the BoSTOW4 family members are residing in Brassica oleracea S12 SLG gene for S locus glycoprotein. BnSTOW5-6 is homologue of SPH gene, AT4g29040 gene and AT4g29100 gene in Brassica napus. BoTOUR3 members capture Brassica oleracea cultivar Reihou FLC2 gene , Brassica oleracea cultivar Green Comet truncated FLC2 gene and Brassica napus cultivar Westar WRKY transcription factor 18 (WRKY18) allele, BnTOUR4-4 is present in Brassica napus M3.4 protein gene, BrMuMITE3 family members are located in various genes specifying different functions as Brassica rapa BrSRK-8, BrSP11-8, BrSLG-8 genes for S receptor kinase etc. Similarly, other families of the MITEs either capture gene fragments or are proliferating in intergenic regions. The occurrence of MITEs in various genes revealed their ability to alter the genes and playing a prime role in the evolution of new genes and diversity of the organism. This hypothesis was supported by the study of MITEs and their contribution to evolution of gene complexity in members of Solanaceae.

The study revealed that several MITEs have the capacity to modify the genes and playing a role in the evolution of new genes and creating new gene structures by various ways. The MITEs identified from Solanaceae family like MiS1, MiS2, MiS5 and related elements residing in the members of Solanaceae are playing a role in evolutionary properties of the genomes (Kuang et al., 2009). The localization and association of MITEs with plant genes provoked the scientific community to think about the positive role of

MITEs in gene regulation and genomic evolution. Many of the workers have explained the significant role of MITEs in various genomes such as MITEs provides the coding sequences or the poly(A) signals for genes and controlling the host genes in which they are actively proliferating. MITEs are mostly distributed on the chromosomal arms, where they are associated with the functional genes. There is also evidence of transcription of MITE sequences with the plant genes (Oki et al., 2008; Kuang et al., 2009).

7.4 Conclusion

The present work helped in the understanding of various MITE families by their identification, characterization, annotation, distribution and diversity in Brassica genome, as well as investigating their flanking genomic sequences, insertional polymorphisms in various accessions and their transposition ability. These findings will contribute to the scientific community in understanding of Brassica diversity and assist in the progression of genetics, genomics and the breeding of Brassica and its cultivars.

CHAPTER 8
 THE LTR RETROTRANSPOSON LANDSCAPE IN MUSA GENOMES

Summary

Fifty full length LTR retrotransposons in Musa were identified by dot plot analysis and further collected 153 intact copies, 61 truncated and a great number of partial copies and remnants by blast searches from GenBank database. Phylogenetic analysis of 33 autonomous retrotransposons based on RT regions segregated them into 25 families, of which 15 families are Copia, 9 are Gypsy and 1 Pararetrovirus (PRV)-like superfamily. The analysis of 50 elements on the basis of LTR sequences clustered them into 40 families. LARD-like elements were also identified with several copies dispersed among the genomes. The predominant elements are Copia and Gypsy, while Pararetroviruses are very less frequent in Musa genomes. The elements belonging to Copia and Gypsy families were of low, middle and high copy number having intact copies, solo LTRs, deletion derivatives and remnants. The phylogenetic classification of elements was performed on the basis of LTRs and conserved RT domains and a distribution analysis of LTR retrotransposons in the genome of Musa. This phylogeny analysis revealed the clustering of Copia, Gypsy and PRV superfamilies in different clades.

8.1 Introduction

Among transposable elements, the major proportion in plants is represented by LTR retrotransposons, which reverse transcribe their RNA to generate DNA copy integration to new host sites (Eickbush and Jamburuthugoda, 2008). The previous studies reveal that retroviruses and related retro-transcribing viruses have evolved from LTR retrotransposons. Retroviruses and LTR retrotransposons share similar structural features but presence of an envelope (env) gene in retroviruses distinguish them from other LTR retrotransposons (Lerat and Capy, 1999; Llorens et al., 2009). Recent study have shown a high diversity of retroelements in fungi, where several families of Copia, Gypsy and retroviruses are actively proliferating. The Chromovirideae (chromodomain-bearing) Gypsy elements are common in fungi and duplicating in fungal genomes. It was studied that the transposon expansions are the consequences of both increase in copy numbers of the elements and number of the elements types. The gag-pol organization distinguish the

Gypsy and Copia superfamilies, while the evolutionary relationships of pol gene revealed that the protease is the fastest evolving domain in comparison to RT and RNase H domains (Muszewska et al., 2011).

The LTR retrotransposons were investigated in many eukaryotic genomes and after developing the SSAP, IRAP, REMAP and RBIP techniques, it becomes more feasible to study the diversity and landscape of LTR retrotransposons in various organisms (Flavell et al., 1998; Schulman et al., 2004). In the recent years these markers are utilized in several plant genomes to study the biodiversity of plants like wheat (Queen et al., 2004), pea (Jing et al., 2010), Vicia (Sanz et al., 2007) and several other plants. In the last decade, due to their major role in gene and genome evolution and duplication, the LTR retrotransposons are the centre of focus and the scientific community is collecting data to develop their databases.

Repbase is the most informative database comprising almost all different superfamilies of repetitive sequences. Enormous data about various TE superfamilies including LTR retrotransposons, their superfamilies, families and individual elements from various eukaryotic genomes were identified and deposited and more and more data is regularly updated in Repbase Updates (Jurka et al., 2007). Recently Gypsy database (GyDB) is developed with the target to analyze and classify the diversity of mobile genetics elements. GyDB is regularly updating the analysis of Ty3/gypsy, Ty1/copia, Bel-pao and other LTR retrotransposons including the Pararetroviruses. A large amount of LTR retrotransposon sequences are deposited in GyDB including complete copies as well as individual core domains. Seventy five Copia, Gypsy and Pararetroviruses-like elements (Table 2.6) were collected from GyDB in the present study for comparison of identified elements in Musa and Brassica and their evolutionary relationship with them (Llorens et al., 2011).

In this chapter, the study aimed to identify mobile elements with long terminal repeats (LTRs) within sequenced BACs from Musa acuminata and Musa balbisiana to study the complete landscape of LTR retrotransposons in Musa genotypes.

8.2 Results

8.2.1 Strategy for characterizing and mining LTR retrotransposons in Musa

The Musa genome harbours LTR retrotransposons belonging to different superfamilies. They were characterized on the basis of their structural features (TSDs, LTRs), pattern of conserved domains in gag-pol regions (PBS, RT, RH, INT, PPT). In this work, available (~46) Musa BAC sequences >70 kb from NCBI database were collected before June, 2010 (no further BACs were sequenced before March 2012), which were screened for any detectable LTR retrotransposons by using dot plot analysis, where sequences were plotted against themselves. A sharp diagonal line crosses from one corner to the other showed the complete homology of the sequence, whereas two small lines on both corners of the central line indicate 5^{\prime} and 3^{\prime} LTRs (Figure $8.1 \& 8.2$). The LTRs were defined and TSDs were identified by visual inspection. Their 5^{\prime}-TG....CA-3' termini are marked and total sizes of the element were counted and enlisted (Table 8.1). The Repbase and Gypsy database were used to characterize the retrotransposons on homology basis to the known elements, very few retroelements were characterized, while others were characterized by visual inspection on the basis of their TSDs, LTRs, pattern of PBS and PPT and protein domain organizations. The LTR retrotransposons were considered in a family, when they showed $>85 \%$ identity at their nucleotide level in their coding regions or internal domains (Wicker et al, 2007; Minervini et al., 2009). A novel family was reported when no homology was observed with any known LTR retrotransposon, there were LTRs and internal domains for its transposition, and it showed strong hits to at least another sequence excluding the reference query (Wang and Liu, 2008).

Fifty intact (full length) elements were identified initially by dot plot analysis and considered as reference elements. The identified elements were further used to conduct the BLASTN searches against the Musa Nucleotide Collection (nr/nt) database in NCBI. The searches were performed in several steps to identify the intact, truncated, degraded or partial elements, solo LTRs and remnants. An intact element is one that is terminated by TSDs and LTRs, with one or more gag-pol genes domains. Solo LTR refers to an LTR with TSD, or LTRs truncated with small deletions displaying $>80 \%$ query coverage and homology. Truncated elements are defined as elements having deletions at 5^{\prime} or 3^{\prime} ends of LTRs. Partial sequences are the deletion derivatives showing $>40 \%$ query coverage, with

Chapter 8

or without LTRs and one or more conserved domains (PBS, AP, RT, RH, INT, PPT). The term remnants describes all the small fragments showing < 40% query coverage with strong or weak identity to the retrotransposon sequences (see Chapter 2; Figure 2.3).

Figure 8.1: Dot plot of Musa acuminata BAC AC226035.1 against itself to identify LTR retrotransposons. The central diagonal line running from one corner to other shows the homology of the sequence. The coloured boxes on the diagonal line show the position of LTR retrotransposons insertions with LTRs. Five Copia and four Gypsy elements are inserted with a total size of $\sim 60 \mathrm{~kb}$ out of 105 kb BAC size covering 58.5% of total BAC sequence. Uncharacterized elements are not indicated, but account for a further 20-30\% of the BAC. The unlabelled black boxes indicate uncharacterized elements lacking any recognizable internal gag-pol encoding regions. Amplified elements are shown by mobile or transposed copies indicated by arrows. The nested structure of LTR retrotransposon is also shown. The identified elements are followed by numbers. Elements without a number represent elements, which are not listed in the 50 reference sequences.

Figure 8.2: Dot plots showing the LTRs in Gypsy, Copia, Pararetroviruses and LARDs. The sequences from elements are plotted against themselves. The central diagonal line shows sequence identity. Parallel lines at the corners indicate the LTRs. The boxed lines across the diagonal line in MaGYP5 indicate tandem repeats in that specific region. A nested Copia MaCOP1 is integrated in MaCOP3. The largest LTRs are shown by a Pararetrovirus-like element MACVI. The LARDs (MaLAR1) display perfect LTRs and are considered as non-autonomous LTR retrotransposons due to lack of internal coding domains.

8.2.2 The LTR retrotransposons landscape in Musa

Out of the initially identified 50 retrotransposons, 20 elements belong to Gypsy, 19 to Copia, 1 to Caulimoviridae (Pararetroviruses) and 10 to LARD-like elements (Table 8.1). The search was extended by using these reference elements as query in BLASTN searches against Musa genomes in GenBank database and all full length, truncated or partial copies and remnants were counted. A total of 16246 elements and fragments belonging to Copia, Gypsy, Caulimoviridae and LARDs were identified, out of which 153 are intact elements, i.e. 58 elements from Gypsy, 48 from Copia, 1 Pararetrovirus and 46 from LARD-like elements. A total of 61 truncated elements, 635 partial elements, 258 solo LTRs and 15140 remnants were counted from Musa Nucleotide Collection ($\mathrm{nr} / \mathrm{nt}$) database deposited in NCBI (Figure 8.3). The ratio of intact elements to Solo LTRs in Musa BAC sequences is $\sim 2: 3$. Based on retrieved copy numbers from database, total numbers of intact copies were estimated for each Gypsy, Copia and LARDs. The total genome of Musa acuminata and Musa balbisiana was 610 Mbp and 560 Mbp respectively (Kamate et al., 2001). The available genome in Musa nucleotide databases for A and B-genome was 4.1 and 2.1 Mbp respectively before December, 2011. Estimated copy numbers in Musa acuminata for Gypsy, Copia and LARDs were 4800, 6000 and 4650 respectively, while for Musa balbisiana 4400 copies of Gypsy, 4950 copies of Copia and 4125 copies of LARDs were estimated (Figure 8.3).

Figure 8.3: Total number of intact, truncated and partial elements with their fragments in Musa acuminata and Musa balbisiana genomes. Estimated copy numbers were calculated for intact elements. No truncated, partial elements or remnants were used for copy number estimation.

8.2.3 Phylogeny and families of LTR retrotransposons in Musa by RT analysis

The phylogenetic relationship of Musa LTR retrotransposons identified in present study was analyzed. The RT sequences were present in 33 out of 50 elements. The tree was generated with Neighbour-Joining method with 1000 bootstrap replicates. The Saccharomyces cerevisiae Gypsy 'Ty3-1' was used to root the tree (Figure 8.4). Another Copia 'Tyl' from the same plant was used to observe its relationship with Copia elements. Three main lineages separated the Copia, Gypsy and Caulimoviridae (Pararetrovirus) elements with 18, 13 and 2 elements respectively. Again the Musa balbisiana Gypsy element (MbGYP20) come close to a MaCV1 indicating a relation of this Gypsy with Pararetrovirus-like elements. The detailed structural analysis confirmed that MbGYP20 possess nested structure, where another retrotransposon and a DNA transposons is inserted. Their might be a possibility of RT gene insertion from Pararetrovirus-like element in it, which cluserd it together in phylogenetic studies. The alignment of Gypsy and Pararetrovirus RT sequences indicate a close relationship of these two superfamilies and distinct from Copia. The tree clearly resolved the elements to the level of a family. The 33 elements segregated into 25 families, of which 9 are from Gypsy, 1 from Pararetrovirus and 15 from Copia elements (Figure 8.4).

Figure 8.4: Phylogenetic relationships of LTR retrotransposon families from Musa. The RT sequences from 33 reference elements were used to construct the trees, which were rooted using the RT sequences of Ty3-1 (Gypsy) element of Saccharomyces cerevisiae. Neighbour-Joining tree was constructed with 1000 bootstrap replicates in Geneious Pro. Lineages separate the Gypsy, Copia and Pararetrovirus-like elements. About 25 novel families (9 Gypsy, 15 Copia, 1 Pararetrovirus families) were observed. Ma: Musa acuminata. Mb: Musa blabisiana. COP: Copia. GYP: Gypsy. MaCVI: Musa acuminata chromovirideae. Details of each element are given in the table 2.3.

Chapter 8

Table 8.1: List of Copia, Gypsy, LARDs, and TRIMs with their sizes, TSDs, TIRs, positions and orientations in BAC clone sequences. Esterisks after TSD show variable TSDs at $5^{\prime}-3^{\prime}$. Nuclotide sequences of representative elements are available in Appendices (attached CD). ND: Not determined.

Element name	Superfamily	BAC Accession	Species	Size	TSD	LTR	Position	Orient ation
MaGYPI	Gypsy	AC226032.1	M. acuminata	4982	CCCGG	505/505	65772-70752	5'-3'
MaGYP2	Gypsy	AC226033.1	M. acuminata	3802	AGATG	543/527	28867-32673	5'-3'
MaGYP3	Gypsy	AC226035.1	M. acuminata	4567	ATGAG	458/458	27408-31974	5'-3'
MaGYP4	Gypsy	AC226035.1	M. acuminata	4627	TAGGA	458/458	41793-46419	5'-3'
MaGYP5	Gypsy	AC226035.1	M. acuminata	6245	ACTTC	586/586	48237-54481	5'-3'
MaGYP6	Gypsy	AC186752.1	M. acuminata	3015	TATGT*	655/655	62134-65148	$5^{\prime}-3^{\prime}$
MaGYP7	Gypsy	AC226046.1	M. acuminata	5326	AATAT	462/411	116297-121622	3'-5'
MaGYP8	Gypsy	AC226048.1	M. acuminata	5907	TGTTT	473/473	1861-7767	5'-3'
MaGYP9	Gypsy	AC226048.1	M. acuminata	5318	AGACG	481/506	12597-17915	5'-3'
MaGYP10	Gypsy	AC226048.1	M. acuminata	5435	GAGAT	438/438	24477-29911	3'-5'
MaGYP11	Gypsy	AC226048.1	M. acuminata	5319	AGACG	481/519	12597-17915	5'-3'
MaGYP12	Gypsy	AC226048.1	M. acuminata	5760	CTGAC	671/671	36420-42179	3'-5'
MaGYP13	Gypsy	AC226048.1	M. acuminata	5418	AAACT*	1062/1063	123405-128822	3'-5'
MaGYP14	Gypsy	AC186950.2	M. acuminata	11605	CCAGT	624/624	9314-20918	$3^{\prime}-5^{\prime}$
MbGYP15	Gypsy	AC226053.1	M. balbisiana	4940	GTTAA*	883/884	121237-126176	5'-3'
MbGYP16	Gypsy	AC226051.1	M. balbisiana	4014	TAAA	265/264	125881-129840	3'-5'
MaGYP17	Gypsy	AC226196.1	M. acuminata	6436	TCCT	792/792	10198-16633	5'-3'
MbGYP18	Gypsy	AP009325.2	M. balbisiana	7108	GCACC*	374/383	45693-52799	5'-3'
MbGYP19	Gypsy	AP009334.1	M. balbisiana	7368	GGTAT	1105/883	44828-52195	5'-3'
MbGYP20	Gypsy	AP009325.2	M. balbisiana	17804	GCCAC	393/351	79527-97303	3'-5'
MaCOP1	Copia	AC226035.1	M. acuminata	5290	CTGCA	605/605	79036-84325	5'-3'
MaCOP2	Copia	AC226035.1	M. acuminata	4808	TCTCT	358/360	70977-75784	5'-3'
MaCOP3	Copia	AC226035.1	M. acuminata	16242	GAGG	338/299	75834-92033	5'-3'
MaCOP4	Copia	AC226038.1	M. acuminata	4022	CCATA	261/263	35057-39078	3'-5'
MaCOP5	Copia	AC226038.1	M. acuminata	8158	CATAA	1201/1285	63867-72094	$3^{\prime}-5^{\prime}$
MaCOP6	Copia	AC226038.1	M. acuminata	7036	GAATC	452/472	100169-107204	3'-5'
MaCOP7	Copia	AC226041.1	M. acuminata	5012	ACTAA	149/144	2059-7070	3'-5'
MaCOP8	Copia	AC226044.1	M. acuminata	6019	GGATT	499/500	40359-46377	3'-5'
MaCOP9	Copia	AC226047.1	M. acuminata	6959	GGTTT	526/530	68302-75260	5'-3'
MaCOP10	Copia	AC226047.1	M. acuminata	8767	TGTAT	1597/1597	15958-24725	3'-5'
MaCOP11	Copia	AC226051.1	M. acuminata	8478	AAAG	1494/1388	34505-42982	$5^{\prime}-3^{\prime}$
MaCOP12	Copia	AC226051.1	M. acuminata	7176	AGCGA*	1132/1238	118482-125657	$3^{\prime}-5^{\prime}$
MaCOP13	Copia	AC226051.1	M. acuminata	5938	ND	548/573	119071-125008	$3^{\prime}-5^{\prime}$
MaCOP14	Copia	AC186753.1	M. acuminata	6054	GAAAT*	492/548	28872-34925	$3^{\prime}-5^{\prime}$
MbCOP15	Copia	AC226053.1	M. balbisiana	4980	ACCTT	449/449	100799-105778	3'-5'
MaCOP16	Copia	AC226040.1	M. acuminata	5424	GCAAC	438/406	40145-45568	3'-5'
MaCOP17	Copia	AC226196.1	M. acuminata	8084	GATAT*	1024/1000	50839-58921	$3^{\prime}-5^{\prime}$
MbCOP18	Copia	AC226052.1	M. balbisiana	9878	TGTC*	1396/1415	184519-194396	3'-5'
MbCOP19	Copia	AC226055.1	M. balbisiana	5203	TTCA	592/590	26728-31930	5'-3'
MaCVI	(PRV)	AC226046.1	M. acuminata	11077	CTCT	3866/3813	160034-1711104	5'-3'
MaLAR1	LARDs	AY484588.1	M. acuminata	4564	GGTT	447/447	48330-52793	5'-3'
MbLAR2	LARDs	AC226055.1	M. balbisiana	4428	ATAT	445/445	9329-13756	5'-3'
MbLAR3	LARDs	AP009334.1	M. balbisiana	4452	ATGC	383/383	20981-25432	3'-5'
MaLAR4	LARDs	AC186955.1	M. acuminata	4318	GTATT*	607/611	47077-51394	3'-5'
MbLAR5	LARDs	FN396604.1	M. balbisiana	4449	ATAC	382/382	28462-32910	5'-3'
MbLAR6	LARDs	FN396605.1	M. balbisiana	4449	GGAG	382/382	36620-41068	5'-3'
MaLAR7	LARDs	AC186951.1	M. acuminata	4571	ATAT	446/446	92933-97503	3'-5'
MaLAR8	LARDs	AC186753.1	M. acuminata	4550	GTAG	434/437	15832-20381	5'-3'
MbLAR9	LARDs	AC186754.1	M. balbisiana	7712	ATTGT*	626/635	72565-80276	3'-5'
MaLAR10	LARDs	AC226051.1	M. acuminata	4005	TTTC*	974/984	129126-133076	5'-3'

8.2.4 Characterization of Musa Gypsy retrotransposons

The intact elements were analyzed in detail for their structural features, size, number of TSDs, length of LTRs and their termini, their position and orientation in the BAC sequences. The number of Gypsy and Copia were nearly similar but the later predominated. The Gypsy elements range in sizes from 3015-17804 bp. The average sizes of the Gypsy-like elements are between 4.5 to 5.5 kb . The smallest element MaGYP6 is a non-autonomous Gypsy coding the gag region only. MaGYP2, MaGYP3, MaGYP4 and MaGYP5 belongs to same family and their gag-pol protein coding domains necessary for transposition are missing indicating them non-autonomous elements. They code some other protein domains, which are not the structural domains for Gypsy superfamily except MaGYP3 and MaGYP4, which encode the aspartic protease (AP) that is a domain present in retrotransposons (Table 8.1 and 8.2). The largest element (17804 bp) MbGYP20 showed a nested structure, where another element MaGYP8 is inserted in to it (Figure 8.6). Another 11605 bp long element MaGYP14 was observed in Musa acuminata BAC clone 'AC186950.2'. This element has a $\sim 2 \mathrm{~kb}$ simple sequence repeat (SSR) insertion near its 3' end. All the investigated elements have shown target site duplications (TSDs) on both sides of LTRs. A total of 90% elements are terminated by 5 bp TSDs, while rest (10%) showed 4 bp TSDs. Almost 80% of elements are terminated by perfect TSDs without any bp mismatch, but 20% of them showed a single bp mismatch in their TSDs. The TSDs are mostly AT rich with the exception of MAGYP1, MaGYP18 and MaGYP20, which showed more GC\% in their TSDs. The LTRs of the Gypsy elements range in size from 264-1105 bp. The smallest sizes of LTRs were observed in MaGYP16, while the largest LTR was 5^{\prime} LTR of MbGYP19, which has an insertion of 265 bp in it. The average sizes of LTRs in Gypsy elements are 450-550 bp (Table 8.1).

The distribution of intact elements in Musa BAC sequences were also identified which showed uneven distribution patterns within BAC sequences. The Musa acuminata BAC clone 'AC226035.1' showed the highest activity of retrotransposons, which contain 5 Copia and 4 Gypsy elements with a total size of $\sim 60 \mathrm{~kb}$ out of 105 kb BAC size covering 58.5% of total BAC sequence (Figure 8.1). Another Musa acuminata BAC 'AC226048.1' showed the maximum activity of retrotransposons transposition, where 6 Gypsy elements MaGYP8-MaGYP13 were detected (Table 8.1). These elements covered a total of $\sim 31 \mathrm{~kb}$ (24%) of 134.5 kb BAC sequence. The partial copies or remnants from there elements
further increase the size and percentage of these elements in these BAC sequences. This revealed that some regions of chromosomes are the hotspots for LTR retrotransposons activity and proliferation.

8.2.4.1 Structural features of the Gypsy superfamily

The structural features of all Gypsy elements identified in present study were analysed in detail. MaGYP1 is 4982 bp in size, flanked by 5 bp TSD 5^{\prime}-CCCGG-3' and LTRs of 505 bp. The element has an internal region containing PBS, protein coding domains of gag-pol genes (GAG-AP-INT-CHR). The RT and RH domains are not detected or might be deleted from the element during rearrangement of the element. MaGYP2 is a non-autonomous retrotransposon of 3.8 kb with 5 bp TSDs, flanked by $543 \mathrm{bp} 5^{\prime} \mathrm{LTR}$ and $527 \mathrm{bp} 3^{\prime} \mathrm{LTR}$. The internal region displays PBS, GAG and Transcriptional regulator (TR) protein but lacking the RT, RH and INT domains. MaGYP3 and MaGYP4 belong to the same family and are 4.5 and 4.6 kb in size and are flanked by LTRS of 458 bp . They have a PBS and PPT tracts but lacking the protein domains necessary for their transposition. They have incorporated some other proteins like Transcriptional regulator (TR), Haemthiolate proteins (HP), Tymovirus proteins (TVP), Hepadnavirus proteins (HVP) and a family of proteins with high proportion of positively charged amino acids (APC), where APC is detected only in MaGYP4. MaGYP5 is the close member of this family that is 6.25 kb in size, flanked by LTRs of 586 bp and have an internal region lacking the conserved protein domains present in autonomous LTR retrotransposon for their transposition. It encodes some other proteins called Major Facilitating System (MFS), Transcriptional regulator (TR), Tymovirus proteins (TVP) and a large tandem repeat (Figure 8.6; Table $8.1 \& 8.2$).

MaGYP6 is the smallest Gypsy and is non-autonomous due to an internally deleted pol gene region (Figure 8.6). It is only 3 kb in size, terminated by 5 bp TSDs and flanked by 655 bp LTRs. The internal coding domains are deleted during the reorganization of the element. The PBS was not detected while blasting against Zea mays and Oryza sativa tRNA databases. Only a GAG region can be identified by screening the sequence against protein database in CDD of NCBI. A 15 bp PPT towards C-terminal is detected which is purely composed of guanine nucleotide bases. MaGYP7 and MaGYP9 are 5.3 kb in size and belong to the same family; characterized by 5 bp TSDs, flanked by LTR ranging from 411-519 bp. Small insertions can be observed in 5'LTR of MaGYP7 and MaGYP9.

Another element MaGYP11 make a sister family with them. Their internal regions display PBS, two ORFs for the gag-pol genes, characteristics of canonical LTR retrotransposons and a PPT adjacent to 3^{\prime} LTR. MaGYP8 and MaGYP10 are 5.9 and 5.4 kb large in sizes, flanked by 473 and 438 bp LTRs respectively. They are terminated by perfect 5 bp TSDs and display gag-pol poly-proteins (GAG-AP-RT-RH-INT). They also encode a well characterized chromodomain (CHR) towards the downstream of INT, which is a structural domain of chromoviridae clade of Gypsy retrotransposons (Table 8.2).

MaGYP12 displays a genome of 5.76 kb is size, terminated by 5 bp TSDs, flanked by the LTRs of 671 bp . The large size of LTRs in this element differs from the members of closely related families. It presents a PBS downstream to 5^{\prime} LTR, the protein coding domains of gag-pol genes as 5^{\prime}-AP-RT-RH-INT-3' and PPT near to the upstream of 3^{\prime} LTR with an additional Zinc knuckle (ZK) domain (Figure 8.6). MaGYP13 is 5.4 kb defective Gypsy element that is flanked by 1062 bp LTRs, which are the largest Gypsy LTRs investigated in this study. It generates 5 bp imperfect TSDs. The internal region of the element encoding the gag-pol protein domains is deleted and only RT is present. The RT domain showed homology to the RT of Non-LTR elements. LINE-like element inserted into the element was tried to isolate but no clear evidence was observed. There is a possibility that LINE element fragment is incorporated in this element or the RT region have high similarity to the RT of a non-LTR retrotransposons. MbGYP15 was identified in Musa balbisiana, which is 4.9 kb LTR retrotransposon, terminated by imperfect TSDs of 5 bp. It is flanked by 884 bp LTRs, and encodes gag-pol genes (Table $8.1 \& 8.2$).

A family of Gypsy showing homology to Monkey-like Gypsy element was also identified from the Musa acuminata and Musa balbisiana. The elements shown homology to Monkey element were MbGYP16, MaGYP17 and MbGYP18, which are 4.0, 6.1 and 7.4 kb is size respectively and terminated by 4 bp TSDs. MbGYP18 showed the structural features of LTR retrotransposons encoding the gag-pol protein domains. MaGYP17 is the complete element encoding CSP-GAG-AP-RT-RH-INT-CHR domains. CSP is an additional protein domain inserted in the gag gene, which is not observed in other members of the family. MbGYP16 encodes GAG-AP-RT-RH, while only AP and RT domains are observed in MbGYP18. All the elements have the typical PBS and PPT structures upstream and downstream of 5^{\prime} LTRs and 3^{\prime} LTRs respectively. The only difference is the tRNA of MaGYP17 is complementary to RRNA $_{\text {Met }}$, while the tRNA of MaGYP16 and MaGYP18 is
complementary to RRNA $_{\text {Lys. }}$. MbGYP19 is a 7.36 kb in size, flanked by $1105 \mathrm{bp} 5^{\prime}$ LTR and $883 \mathrm{bp} 3^{\prime}$ LTR. A small insertion of 265 bp was detected from the 5^{\prime} LTR, which makes the two LTRs unequal in sizes. Another AT rich unknown insertion is observed next to the downstream of 5^{\prime} LTR. The PBS of the element was not detected but a PPT can be observed adjacent to 3^{\prime} LTR (Figure 8.6; Table 8.2).

8.2.4.2 Nested structures of Gypsy LTR retrotransposons in Musa

Two Gypsy-like families of LTR retrotransposons identified in this study have complex and nested structures, where 1 or two other transposons or LARD insertions are incorporated within the element. MaGYP14 is an 11.6 kb long element, flanked by 624 bp LTRs. It is characterized by the presence of PBS, ORF containing the gag-pol genes. The pol gene exhibit domains (AP-RT-RH-INT) with PPT motif downstream to pol gene. It harbours a transcriptional regulator protein of $\sim 1.7 \mathrm{~kb}$ and an unknown insertion of $\sim 2.3 \mathrm{~kb}$ made up of simple sequence repeats, highly rich in GC (71\%) towards the C-terminal of the element (Figure 8.6). The most complex structure among the Gypsy elements was observed in MbGYP20, identified in Musa balbisiana accession (AP009325.2). The size of MbGYP20 is 17.8 kb , which shows a nested structure of 3 insertions and 2 solo LTRs (Figure 8.6). One insertion is 9.6 kb Gypsy-like retrotransposon, in which another unknown insertion of 4.5 kb is inserted in opposite orientation ($3^{\prime}-5^{\prime}$) and duplicating the size of original LTR retrotransposon. This unknown insertion is terminated by 'TA' target site duplication and flanked by perfect 162 bp terminal inverted repeat, indicating the characteristic features of Tc1-mariner transposon. But no clear evidence was found due to the lack of any transposase and homology to the known elements. The insertion encodes a protein of unknown function (DUF), a ZK domain and a cauliflower mosaic virus peptidase (CMV). By removing this insertion from the element, where it is inserted, a 5.6 kb large retrotransposon can be isolated. The detail structural and comparative analysis of this element indicated that this is MaGYP10-like element, inserted in MbGYP20. Two solo LTRs of 1.4 kb are also inserted in MbGYP20; one in the last fragment of $4.5 \mathrm{~kb} \mathrm{Tc1-}$ mariner-like insertion and the other in the upstream of CMV domain of outer most retrotransposon. The outermost LTR retrotransposon (MbGYP20) is flanked by 351 bp 5^{\prime} LTR and 393 bp 3^{\prime} LTR.

8.2.4.3 The gag-pol polyprotein organization in Gypsy elements

The organization of gag-pol genes protein domains of 20 individual Gypsy retrotransposons revealed 2 pattern (complete \& incomplete) and 14 sub-patterns of domain organization (Table 8.2). The canonical domain structure of Gypsy is 5'GAG-RT-RH-INT-3', which was observed in 6 elements. A single element MaGYP6 encodes a gag protein only, MaGYP2 showed gag and a transcriptional regulator (TR), MaGYP13 encodes RT only and MbGYP18 encodes 5'-AP-RT-3'. The five elements MaGYP7, MaGYP9, MaGYP11, MaGYP15 and MaGYP16 lack the INT domain. MaGYP1 is characterized by displaying a domain pattern 5^{\prime}-GAG-AP-INT-CHR-3' but lacking the RT and RH domains. MaGYP3, MaGYP4 and MaGYP5 showed different protein domain organizations. Three elements MaGYP8, MaGYP10 and MaGYP17 showed more or less similar domain pattern 5^{\prime}-GAG-AP-RT-RH-INT-CHR-3' with one or the other extra domain in them. The nested element MbGYP20 showed a complex organization of protein domains 5'-GAG-AP-(3'-CMV-RH-DUF-5')-DUF-CMV-RT-RH-CHR-3' (Figure 8.6).

Figure 8.6: Schematic representation of Gypsy retrotransposons in Musa. Red arrowheads represent TSDs, while blue arrows indicate TIRs. The gag and pol regions are drawn with their protein domains. The scale below shows length in bp . Additional insertions or unknown sequences are represented by different colours. A 17.8 kb large nested MaGYP20 is drawn with other inserted Gypsy element (9.6 kb) having another DNA transposon (4.5 kb) inserted in it. AP: Aspartic protease. RT: reverse transcriptase. INT: integrase. GAG: gag-nucleocapsid. ZK: zinc knuckle. DUF: domain of unknown function. CHR: Chromatin organization modifier. CMV: Cauliflower mosaic virus. UN: unknown. MFS: Major facilitating factor. TR: Transcriptional regulator.

Table 8.2: List of Musa retrotransposons with PBS, PPT motifs and gag-pol gene protein domains. The abbreviations used for domains are written in abbreviations. UD: Undetermined.

Element name	$\begin{aligned} & \text { tRNA } \\ & \text { type } \\ & \hline \end{aligned}$	PBS ($5^{\prime}-3^{\prime}$)	Position	PPT (5^{\prime}-3')	Position	Domain organization ($\mathbf{5}^{\prime}-\mathbf{3}^{\prime}$)
MaGYP1	Met*	TATCAGAGCAGCGATCTT	516-533	ATGAGGAGCTGAAGA	4394-4408	GAG, AP, INT,CHR
MaGYP2	Asn	CGCTAGAAGGAGGGC	560-574	UD	---	GAG,TR
MaGYP3	Asn	CGCTAGAAGGAGGGC	470-484	ACGGACCAGGGAGAA	4012-4026	HP,TR,TVP,HVP
MaGYP4	Asn	CACTAGAAGGAGGGC	472-486	ACGGACCAGGGAGAA	4072-4086	DUF,HP,APC,HVP
MaGYP5	Ala	GGAGCTATGCGTCGGTTC	612-619	AGGAGAAAGCTAACG	5605-5619	MFS, TR, TVP,
MaGYP6	UD	---	---	GGGGGGGGGGGGGGG	2331-2345	GAG
MaGYP7	Pro	TCGAGGCTGACGATTC	497-512	GGAAGGGCAGCGAGA	4869-4883	GAG,AP,RT,RH
MaGYP8	Met	TATCAGAGCAGCGTT	484-499	ATGAGGAGCTGAAGA	5351-5365	GAG,AP,RT,RH,INT,CHR
MaGYP9	Met	TATCAGAGCAGCGTTCtTG	492-511	TGAAGAGGGCGGGTT	4794-4808	GAG,AP,RT,RH
MaGYP10	Met	TATCAGAGCAGCGTT	468-483	TGAAGAGGGCGGGTC	4977-4991	$\begin{aligned} & \text { GAG,TIM,AP,RT,RH,INT,CH } \\ & \text { R } \end{aligned}$
MaGYP11	Leu	TCATGAATTTTGGGAATTTG	555-574	GGAAGGGCAGCGAGA	4792-4806	GAG,AP,RT,RH
MaGYP12	Ala	TGGAGATGACGCTGAGTCG	754-772	AGACTTGAGGACAAG	5049-5063	GAG,ZK,AP,RT,RH,INT
MaGYP13	Leu	AACATACCACTCTGCAGC	1076-1093	TCATTCTTCTATGTT	4334-4348	RT
MaGYP14	Asn	CGCTAGAAGGAGGGCCT	636-652	TTCAGGGGGGGAATA	10962-10976	GAG,AP,RT,RH,INT
MbGYP15	Thr*	CCAACTAAGTTAGGAATTG	893-911	GCATGAAGAAGGAGA	3968-3982	GAG,AP,RT,RH
MbGYP16	Lys	TTCACCATGGCAAAGCATTG	349-368	TGAGTAATTGTTTAT	3729-3744	GAG,AP,RT,RH
MaGYP17	Met	TATCAGAGCCAGGTT	803-817	GACATGAAGAAGAAG	5568-5582	$\begin{aligned} & \text { CSP,GAG,AP,RT,RH,INT,CH } \\ & \text { R } \end{aligned}$
MbGYP18	Lys	TCTCACCATGCGAAGCACCT	431-452	AAGTTGGGGAGAATA	6673-6687	AP,RT
MbGYP19	UD	---	---	CGAGGAAAGAGGGAA	6516-6530	GAG,AP,RT,RH,INT
MbGYP20	Met	TATCAGAGCAGCGTT	362-376	TGAAGAGGACGGGTC	17392-17406	GAG,AP,(CMV,RH,DUF)*D UF,CMV, RH, CHR
MaCOP1	Met	TATCAGAGCGGGGTtTTG	616-633	AAGAAAGACAGGAGA	4589-4603	GAG,AP,INT,RT,RH
MaCOP2	Met	TATCCAGCATGTCAAGTtTC	388-407	AGGAAGAGGCCATAG	4407-4421	GAG,INT,RT,RH
MaCOP3	Arg*	CGACCTTGCATATGATCG	311-328	AAGAGAAAGGAAGAA	15883-15897	(GAG,AP,INT,RT,RH)*, GAG,INT,RT, RH
MaCOP4	Met*	ATCTGATCTAAGAGTTTTG	262-280	GGAAGAACAAGAAAA	3706-3720	GAG,ZK,INT
MaCOP5	Met	TATCAGAGCAAGGTTATC	1296-1313	CAAAAAGGGGGAGAT	6938-6952	GAG,INT,RT,RH
MaCOP6	Met	TATCAGAGCCAAGTTATT	486-503	UD	---	RT
MaCOP7	Thr*	AGGCttcGtgagtangich	229-247	GGGGTtGGAGAGGGA	4779-4793	GAG,INT,RT,RH
MaCOP8	Cys	TGCCATGAAAATGATtTG	561-579	GACCAAGTGGGAGAA	5501-5515	GAG,INT,RT,RH
MaCOP9	Ser	GATGCCTGAATGATTCG	585-601	GGCCAAGTGGGAGAA	6410-6424	RT
MaCOP10	Met	TATCAAAGCCAAGTTGTTCG	1609-1628	AGGTCAAGTGGGAGA	7150-7164	GAG,INT,RT,RH
MaCOP11	Met	TATCAGAGCCAGGTT	1504-1518	UD	---	GAG,INT,RT,RH
MaCOP12	Val*	TATtAAATATGACATACAAA	1207-1226	AGAAAAAAGCTTAAA	5903-5917	GAG,INT,RT,RH
MaCOP13	Val*	TATtAAATATGACATACAAA	618-637	AGAAAAAAGCTTAAA	5314-5328	GAG,INT,RT,RH
MaCOP14	UD	---	---	AAGAAGAAACCAAAA	5703-5417	GAG,INT,RT,RH
MbCOP15	Met	TATCAGAGCCTAGTtTCG	461-478	AGAAGGTGGAGCAAG	4483-4497	GAG,INT,RT,RH
MaCOP16	Val*	ATTCACCATAGAGGCCACAA	443-463	GAACAAGTGGGGGAT	4967-4981	GAG,RT,RH,MT*
MaCOP17	Val*	TATTGAGATAAAGCAAA	1398-1414	AAATCAAATTGAGAG	7043-7057	GAG,INT,RT,RH
MbCOP18	Sup	GTATCAGAGTGAGGCTC	1424-1440	CAAAAAGGAGAAGAT	8464-8478	GAG,INT,RT,RH,PRK
MbCOP19	Lys	GCCCACAAGGGAGGCT	625-640	AAATACAAAATTAAA	4571-4585	GAG,INT,RT,RH
MaCVI	Gly	TGCAAAAGGCCAAGGAATT	3918-3937	GAGCTGGGTAGCGGA	7172-7186	ZK,AP,RT,RH,DUF
MaLAR1	UD	---	---	ATAAGTGGGGGAGAA	4561-4564	UD
MbLAR2	UD	---	---	ATAAGTGGGGGAGAA	3965-3979	UD
MbLAR3	UD	---	---	ATAAGTGGGGGAGAA	4051-4065	UD
MaLAR4	UD	---	---	UD	---	UD
MbLAR5	UD	---	---	ATAAGTGGGGGAGAA	4049-4063	UD
MbLAR6	UD	---	---	ATAAGTGGGGGAGAA	4049-4063	UD
MaLAR7	Asp	GGGACCTAACGGGGCtGCG	505-523	ATAAGTGGGGGAGAA	4107-4121	UD
MaLAR8	Leu*	TGGTATCAGAGTGGGAT	442-458	AATAAGTGAGGGAGA	4088-4102	UD
MbLAR9	UD	---	---	UD	---	UD
MaLAR10	UD	---	---	UD	---	ADM

8.2.4.4 PBS and PPT pattern of Gypsy elements

The $15-18 \mathrm{bp}$ priming binding site (PBS) located immediately downstream to the 5^{\prime} LTR and a reverse compliment called Polypurine tract (PPT) located adjacent to the 3'LTR were detected by scanning the retrotransposon sequences against Zea mays tRNA database using parameter 'Predict PBS by using tRNA database'. A total of 80% and 75% elements showed the presence of 14-18 bp PBS and 15 bp PPT respectively, 10% showed 15 bp PPT only adjacent to 3^{\prime} LTR. Remaining 10% sequences failed to detect any PBS or PPT by scanning tRNA of Zea mays, which were than scanned against Oryza sativa tRNA database and their PBS and PPT were successfully achieved. MaGYP2 lack PPT, while PBS was not detected in MaGYP6 and MbGYP19. Seven different tRNA types were investigated in Gypsy elements. The most frequently use type was tRNA $_{\text {Met, }}$ which was present in 30% of the elements investigated. The second important primer type was tRNA $_{\text {Asn }}$, occurred in 20% of the elements. 10% elements showed no evidence of PBS, either deleted or have no homology with the reference elements (Table 8.2).

Table 8.3: List of primers to amplify the RT region of Gypsy, Copia and Pararetrovirus (PRV) elements.

No.	Superfamily	TE Family	$\begin{aligned} & \hline \begin{array}{l} \text { Product } \\ \text { size } \end{array} \\ & \hline \end{aligned}$	Primer name	Primer Sequence
1	Gypsy	MaGYP8	684	MaGYP8F	CTTCTCGGCAACATGACCA
				MaGYP8R	GGTCTACCGCCACTCCTTC
2	Gypsy	MaGYP10	897	MaGYP10F	CATCTGCAACGAACATTCTC
				MaGYP10R	CTTTTCATCGGTGCTACTTG
3	Gypsy	MaGYP11	550	MaGYP11F	ACAGGAGTTATTCGGCCAAG
				MaGYP11R	TCATGGCTGCCTTAAGTTTG
4	Gypsy	MaGYP12	830	MaGYP12F	CCAATTCCCACATTAGATGC
				MaGYP12R	GAGAGCATGAGTCATTGTGC
5	Gypsy	MaGYP13	758	MaGYP13F	GGGAGACCCAAATAAGGAAC
				MaGYP13R	CAGGGGCTGATTCACTAGAG
6	Gypsy	MaGYP17	835	MaGYP17F	GCAGCTCAAAAGCACCTTTC
				MaGYP17R	CCAATAGCAAAGTCCGAAGC
7	Copia	MaCOP5	744	MaCOP5F	CTTAGTCGCAGTACTCATAG
				MaCOP5R	TGGAAGCTTGTTCCTAGACC
8	Copia	MaCOP7	748	$\begin{aligned} & \text { MaCOP7F } \\ & \text { MaCOP7R } \end{aligned}$	GTTTGGACGGGTGAAAGCTA
9	Copia	MaCOP8	964	MaCOP8F	CTTTCACAATGGGAGCAACA
				MaCOP8R	GTTGAACCACAAGTTCCTCA
10	Copia	MaCOP9	720	MaCOP9F	GCGACTCAAAGGACAATATC
				MaCOP9R	GAGCATAGACTTCCAACTAC
11	Copia	MaCOP10	752	MaCOP10F	CCCATGTCTTATCGGAATGA
				MaCOP10R	CCTCCGGAGAGATATGTGAG
12	PRV	MACV1	425	MACV1F	CAACTACAAGAGGCTGAACG
				MACV1R	CTATTTCCTTGACTGCTATC

8.2.4.5 RTAP markers to study diversity of Gypsy elements in Musa genomes

The distribution and abundance of Gypsy LTR retrotransposons in Musa genome were performed by reverse transcriptase amplification polymorphism (RTAP) by PCR among 48 Musa accessions. The primers were designed from conserved regions of RT around D-DD triad. Of the forty eight Musa genomes (Table 2.3), 6 were Musa acuminata (AA), 6 were Musa balbisiana (BB), 3 were hybrids (AB), 8 were triploid Musa acuminata (AAA), 19 were allotriploids (AAB) and 6 (ABB). The primer pair MaGYP8F and MaGYP8R (Table 8.3) was used to amplify 684 bp RT regions of MaGYP8 family. The products were amplified from Musa acuminata (AA) (Calcutta 4, Sannachenkadali, Pisanglilin, Kadali, Matti, Cherukadali), Musa balbisiana (BB) (PKW1, PKW2, Javan, Klutuk, Tani, Batu), AB genome (Njalipovan, Adukkan, Padalamukili), AAA genome (Manoranjitham, Grandnain, Grow-michel, Greenred, Red, Monsmari, Robusta, Dwarf Cavendish), AAB genome (Motta povan, Karimkadali, Perumadali, Kunoor ettan, Palyamcodan, Mysoreettan, Krisnavazhai, Poovan, Doothsagar, Charapadati, Kumbillakannan, Velipadati, Vellapalayamcodan, Ettapadati, Padati, Chinali, Nendran, Poomkalli, Kamaramasengi) and ABB genome (Kosta bontha, Peyan, Kanchikela, Boothibale, Monthan, Karpooravali). This showed that the element is ancient, was present in a common ancestor predating the separation of A and B-genome Musa (Figure 8.7a).

The abundance of MaGYP10 family in Musa genomes was investigated by primers MaGYP10F and MaGYP10R to amplify 897 bp RT regions. All the 48 accessions yielded the product indicating its high distribution and diversity. A 550 bp RT region from MaGYP11 family was amplified by MaGYP11F and MaGYP11R from all the 48 accessions suggesting its mobility in all genomes. The RT based amplification polymorphism of MaGYP12 family revealed that, it is amplified from all the 47 accessions with the exception of Musa acuminata (Calcutta 4), where no amplification suggests its absence in the genome. The 835 bp RT regions from MaGYP17 family were amplified from all the 48 Musa accessions by primer pair MaGYP17F and MaGYP17R. Very strong bands from all the genomes tested suggest its high amplification and proliferation in Musa. The amplification of Gypsy from the Musa genomes revealed that they are highly abundant, distributed in all genomes and proliferating actively in all genomes regardless of A or B-genomes specificity (Figure 8.7b-e).

Figure 8.7: Detection of Gypsy RT polymorphisms across 48 cultivars in Musa: PCR amplification of a) MaGYP8; b) MaGYP10; c) MaGYP11; d) MaGYP12; e) MaGYP17. All PCR figures show reversed images of size-separated ethidium bromide-stained DNA on agarose gels after electrophoresis; ladders (left) show fragments sizes in base pairs; numbers at the base indicate accessions defined in Table 2.3.

8.2.5 Structural features of Copia superfamily

Ninteen Copia LTR retrotransposons were identified from the screened Musa BACs sequences by comparison in dot plot analysis. The molecular structures were studied in detail. MaCOP1 and MbCOP19 belongs to the Copia lineage of LTR retrotransposons and are grouped in sister families having homology in their conserved domains. They are 5.3 and 5.2 kb in size, flanked by LTRs of 605 and 592 bp respectively. Both encode the conserved protein domains of 5^{\prime}-INT-RT-RH-3', features indicating an autonomous LTR retrotransposons encoding the necessary proteins for the transposition process. MaCOP1 encodes an AP domain, which is not detected from MbCOP19 suggesting its deletion during the rearrangement of element during the evolutionary phases. They also have PBS and PPT necessary for the transposition of RT (Table 8.2). MaCOP2 is 4.8 kb large element having the characteristic features of Copia-like retrotransposons. It generates 5 bp TSDs upon insertion and is flanked by $358 \mathrm{bp} 5^{\prime}$ LTR and $360 \mathrm{bp} 3^{\prime} \mathrm{LTR}$. It exhibits a PBS,
gag-pol genes to encode 'GAG-INT-RT-RH' and PPT upstream of 3'LTR. Another defective element MaCOP4 was identified from Musa acuminata (AC226038.1), which is 4.0 kb in size, flanked by 263 bp LTRs. It encodes only INT domain from the pol gene while other domains are deleted. A ZK motif is encoded in the element towards upstream of INT domain in gag gene (Figure 8.8).

MaCOP5 and MaCOP17 are similar in size and are $\sim 8.1 \mathrm{~kb}$ in size. They are flanked by large LTRs of $5^{\prime}-1285 / 1201-3^{\prime}$ and $5^{\prime}-1000 / 1324-3^{\prime}$ respectively. The difference in the number of nucleotides in LTRs is due to the insertions or deletions during the evolutionary stages. They show evidence of PBS and PPT in upstream and downstream of 5^{\prime} LTR and 3'LTR respectively. They have shown typical Copia gag-pol gene polyproteins (Table 8.1 \& 8.2). MaCOP6 and MaCOP9 though $\sim 7.0 \mathrm{~kb}$ in sizes do not code the pol polyproteins except RT, which suggests that these defective Copia have lost their conserved domains during the evolutionary stages. MaCOP7 is a 5.0 kb large element terminated with 5 bp TSDs. It is flanked by $5^{\prime}-144 / 149-3^{\prime}$ bp LTRs, the shortest LTRs investigated in present study. It is characterized by the integration of PBS, gag-pol gene encoding the GAG-INT-RT-RH domains and a PPT motif adjacent to 3^{\prime} LTR. MaCOP8 and MaCOP14 are 6.0 kb in sizes, are flanked by LTRs of $5^{\prime}-499 / 500-3^{\prime}$ and $5^{\prime}-492 / 548-3^{\prime}$ bp respectively. MaCOP8 have the PBS and PPT, while no PBS was identified from MaCOP14 but a PPT is present near the upstream of $3^{\prime} \mathrm{LTR}$.

MaCOP10 and MaCOP11 are 8.7 and 8.4 kb long in sizes, flanked by the longest LTRs from Copia retrotransposons investigated so far in this work. MaCOP10 is terminated by 1597 bp LTRs while MaCOP11 is flanked by $5^{\prime}-1494 / 1388-3^{\prime}$ LTRs. Their domain organization and structural features indicate that they have PBS, pol genes coding for INT, RT and RH domains. MaCOP12 and MaCOP13 are 7.1 and 5.9 kb respectively. They are the members of the closely related families, but display highly variable LTRs. MaCOP12 and MaCOP13 are flanked by $5^{\prime}-1238 / 1132-3^{\prime}$ and $5^{\prime}-573 / 548-3^{\prime}$ bp respectively. Their genomic organization showed the typical Copia gag-pol structure (GAG-INT-RT-RH). Both elements have homologous or exactly similar PBS and PPT sequences indicating their origin from a common ancestor. MbCOP15 and MaCOP16 are ~ 5.0 and 5.4 kb Copia investigated in Musa balbisiana (AC226053.1) and Musa acuminata (AC226040.1) BAC sequences respectively. The former is flanked by 449 bp LTRs while lateral has 5'-406/438-3' bp LTRs. Their internal region displays the ORF encoding the gag-pol products
(GAG-INT-RT-RH) and other features of Copia elements such as PBS and PPT. MbCOP18 is a 9.8 kb Copia retrotransposon investigated in Musa balbisiana accession 'AC226052.1'. It generates a 4 bp TSD with a single bp mismatch and terminated by long 5'-1415/1396-3' bp LTRs (Figure 8.8; Table $8.1 \& 8.2$).

Figure 8.8: General structures of different Copia elements in Musa. The red arrowheads at ends represent the TSDs. TIRs are represented by blue arrows. The gag and pol regions are drawn with their protein domains. The scale below shows lengths in bp. A 16.2 kb MaCOP3 has a 5.2 kb Copia element inserted in it. GAG. gag-nuclocapsid. AP: Aspartic protease. RT: reverse transcriptase. INT: integrase. ZK: zinc knuckle. DUF: domain of unknown function. AIR1: Arginine methyltransferase-interacting protein. PRK: Hypothetical protein. UN: unknown.

8.2.5.1 Nested structures of Copia LTR retrotransposons in Musa

A 16.2 kb sequence from Musa acuminata BAC sequence (AC226035.1) from position 75834-92033 bp was identified comprising a nested structure of LTR retrotransposons. A $5.3 \mathrm{~kb} \mathrm{MaCOP1}$ element is inserted in MaCOP3 starting from 3203-8492. The outer element is 10.9 kb in size, where another 5.3 kb insertion increased the size of retrotransposon to 16.2 kb . Both MaCOP 1 and MaCOP 3 are in $5^{\prime}-3^{\prime}$ orientation and are members of two different families. The outer element MaCOP3 is flanked by $5^{\prime}-338 / 299-$ 3^{\prime} bp while the inserted element MaCOP1 is terminated by 605 bp LTRs indicating that both are Copia elements belonging to two different families. MaCOP3 generated TSDs of 4 bp and is characterized by the presence of gag-pol genes coding domains for GAG-INT-RT-RH and exhibiting the PBS next to 5^{\prime} LTR and PPT prior to 3 'LTRs. The GC
proportion of outer and inserted Copia retrotransposon is is 43.8% and 41.3% respectively. The internal MaCOP1 displayed the perfect gag-pol poly-proteins structures (Figure 8.8).

8.2.5.2 The gag-pol domain organization in intact Copia elements

The protein domains encoded by gag-pol gene revealed that seven different sub-patterns of the two main patterns (canonical and defective) were observed from 19 intact Copia-like elements identified in present study. The canonical pattern of protein domains for Copia retrotransposons is 5^{\prime}-GAG-INT-RT-RH-3', which was observed in 90% of the elements with one less or additional domains. Several different arrangements of pol genes were detected from these elements. MaCOP6 and MaCOP11 encode only a RT domain and no other domain was detected from them. The domain organization in MaCOP1 was 5'GAG-AP-INT-RT-RH-3' while MaCOP17 showed a slight different pattern 5'-GAG-RT-RH-MT-3' without encoding the INT domain, where MT is a Mannosyl transferase protein. A nested LTR retrotransposon MaCOP3 showed a complex pattern 5^{\prime}-GAG-AP-INT-RT-RH/GAG-INT-RT-RH-3', where two sets of proteins domains are detected encoded by the gag-pol genes of 2 different Copia retrotransposons. Rest of 13 elements showed the same protein organization 5^{\prime}-INT-RT-RH-3', which are the characteristic features of Copia-like retrotransposons (Table 8.2).

8.2.5.3 PBS and PPT organization of Copia elements

The PBS and PPT structures of copia-like retrotransposon sequences were detected by scanning them against Zea mays and Oryza sativa tRNA database using parameter 'Predict PBS by using tRNA database' in LTR_FINDER. A total of 95% elements showed the presence of 14-18 bp PBS next to the 5'LTR, while MaCOP14 only failed to identify its PBS sequence. Eight different types of tRNA types were observed in all the Copia-like elements investigated. Like the Gypsy elements, the most frequent tRNA type in Copia elements was RRNA $_{\text {Met, }}$, detected in 40% of the elements; the second important type was tRNA $_{\text {Val, }}$ observed in 20% elements. All the other 6 types of tRNA contributed 5% of the tRNA type. PPT adjacent to the 3 'LTR was detected in 90% of all Copia elements. MaCOP6 and MaCOP14 failed to show any evidence of PPT in their genomic sequence. The MaCOP6 is a defective element, who has deleted the gag-pol protein domains except RT during the rearrangement of their genome. All the other elements have 15 bp PPT sequence towards the downstream of 3^{\prime} LTR (Table 8.2).

8.2.5.4 Diversity and distribution of Copia in Musa

The mobility and proliferation of various Copia families were investigated in 48 Musa accessions (Table 2.3) by PCR analysis. The data revealed that the Copia are actively proliferating in Musa genomes and are highly abundant. Of 10 primer sets, the results of 4 pairs are discussed here. Out of 292 potential products, 287 products were achieved resulting 98.8% yield. The primer pair MaCOP5F and MaCOP5R (Table 8.3) was designed to amplify a 744 bp RT region, which was yielded by Musa accessions including the Musa acuminata (AA) (Calcutta 4, Sannachenkadali, Pisanglilin, Kadali, Matti, Cherukadali), Musa balbisiana (BB) (PKW1, PKW2, Javan, Klutuk, Tani, Batu), AB genome (Njalipovan, Adukkan, Padalamukili), AAA genome (Manoranjitham, Grandnain, Grow-michel, Greenred, Red, Monsmari, Robusta, Dwarf Cavendish), AAB genome (Motta povan, Karimkadali, Perumadali, Kunoor ettan, Palyamcodan, Mysoreettan, Krisnavazhai, Poovan, Doothsagar, Charapadati, Kumbillakannan, Velipadati, Vellapalayamcodan, Ettapadati, Padati, Chinali, Nendran, Poomkalli, Kamaramasengi) and ABB genome (Kosta bontha, Peyan, Kanchikela, Boothibale, Monthan, Karpooravali). This amplification of MaCOP5 is all genomes suggest its high diversity, mobility and high proliferation rate within Musa accessions (Figure 8.9a).

Several other families of Copia were amplified from Musa genomes with different primer pairs. The amplification polymorphism of MaCOP7 yielded the expected bands, with additional bands of varied lengths. No amplification in Musa balbisiana accession 'Batu', Musa acuminata triploid (Grandnain; AAA) and an allotriploid accession (Perumadali; AAB) indicate their absence in the genomes. A 964 bp MaCOP8 RT amplicons were amplified from all Musa genomes, but no amplification in Musa acuminata accession 'Calcutta 4' suggests its absence from the genome. The 752 bp products from MaCOP10 were amplified from all 48 Musa accessions with ~700 additional bands in A-genome and its triploids (Figure 8.9b-d).

Figure 8.9: PCR showing fragments with Copia and PRV RT regions. DNA samples were obtained with primers hybridizing to conserved RT regions of various Copia and PRV families a) MaCOP5; b) MaCOP7; c) MaCOP8; d) MaCOP10; e) MACVI.

8.2.6 Structural features and diversity of a Pararetrovirus-like element in Musa

During this study, a 11.1 kb long element was investigated from Musa acuminata BAC 'AC226046.1' from position 160034-1711104 bp. It was flanked by 3.8 kb of LTRs, the largest of all the elements investigated in Musa genomes. These LTRs were larger than LTRs studied from any member of Gypsy or Copia-like retrotransposons. The comparative analysis with the known LTR retrotransposons identified a group of Pararetrovirus-like elements. The element was named as MACVI (Musa acuminata chromovirus). It was characterized by having 3.8 kb LTRs, and an internal region containing the PBS, pol genes encoding the AP, RT and RH domains and a PPT adjacent to 3^{\prime} LTR. Two other proteins were also encoded in its internal region. A ZK domain was detected in the start and a protein domain of unknown function (DUF) towards the end of pol gene. One intact and a truncated copy were identified from the Musa BAC clone sequences available in NCBI
database. The element showed a low GC ratio (42.3) as compared to AT (47.7\%), which is constant and exactly similar in LTRs and internal regions. The PBS of MACVI is also different from all other members from Copia and Gypsy elements, with $\mathrm{tRNA}_{\text {Gly }}$, which is not observed in any other element investigated in this study. A 15 bp PPT was also found near the upstream of 3^{\prime} LTR, with different sequence structure from other investigated elements.

The diversity and abundance of MACVI-like elements was examined by PCR analysis. The primer pair MACVIF and MACVIR was designed from conserved RT regions to amplify a 425 bp RT product. The analysis revealed that the product was amplified from Musa acuminata (AA) (Calcutta 4, Sannachenkadali, Pisanglilin, Kadali, Matti, Cherukadali), Musa balbisiana (BB) (PKW1, Javan, Klutuk, Tani, Batu), AB genome (Njalipovan, Adukkan, Padalamukili), AAA genome (Manoranjitham, Grandnain, Grow-michel, Greenred, Red, Monsmari, Robusta, Dwarf Cavendish), AAB genome (Motta povan, Karimkadali, Perumadali, Kunoor ettan, Palyamcodan, Mysoreettan, Krisnavazhai, Poovan, Doothsagar, Charapadati, Kumbillakannan, Velipadati, Vellapalayamcodan, Ettapadati, Padati, Chinali, Nendran, Poomkalli, Kamaramasengi) and ABB genome (Kosta bontha, Peyan, Kanchikela, Boothibale, Monthan, Karpooravali). Only one Musa balbisiana accession 'PKW2' showed no amplification, otherwise amplification in all other 47 genomes suggests the high activity and proliferation in the Musa genome (Figure $8.9 e)$.

8.2.7 Characterization and structural features of LARD-like elements

Despite of several autonomous LTR retrotransposons, a group of elements with 4-5 bp TSDs, flanking LTRs and internal non-coding regions was identified which displayed the PBS and PPT motifs downstream and upstream to 5^{\prime} LTR and 3^{\prime} LTR respectively. Due to structural resemblance with LARDs, they were considered as members of LARDs. The elements have shown no homology with already known TEs but a high homology to each other, so they were placed in a major family named Hazara. MaLAR1 was the first identified member from Musa acuminata accession 'AY484588.1'. The element is 4564 bp large in size, flanked by 4 bp TSD and 447 bp LTRs. No identifiable PBS was detected while PPT motif is traced adjacent to 3'LTR. MbLAR2 is another homologue of MaLAR1, with the difference that it is proliferating in Musa balbisiana genomes. It is 4428 bp in size
including 445 bp LTRs at both ends with a PPT motif similar to MaLAR1 indicating the members of same family. Two other elements with similar structural features indicating the members of the same family are MaLAR 7 and MaLAR8, which are 4.5 kb in size including 446 and 437 bp LTRs respectively. MbLAR3 share a family with MbLAR5 and MbLAR6 with a size of 4.4 kb , displaying LTRs of $382-383 \mathrm{bp}$. MaLAR4 is 4.3 kb including the large LTRs ($5^{\prime}-607 / 611-3^{\prime}$) and flanked by 5 bp imperfect TSDs. MbLAR9 was identified from Musa balbisiana BAC ‘AC186754.1’ from $72565-80276 \mathrm{bp}$. It is 7.7 kb element flanked by 5'-626/635-3' with no detectable PBS and PPT motifs. It exhibits an unknown insertion and a non-autonomous hAT element with two additional Solo LTRs (Figure 8.10). MaLAR10 is the smallest LARD-like element studied here with a size of 4 kb , flanked by large LTRs ($5^{\prime}-974 / 984-3^{\prime}$) and 4 bp TSDs (Figure 8.10; Table 8.1).

Figure 8.10: Schematic representation of LARDs and the Pararetrovirus-like element. Red arrowheads represent the TSDs, while blue arrows indicate TIRs. The internal non-coding region is represented by different colours. The scale below shows lengths in bp. AP: Aspartic protease. RT: reverse transcriptase. INT: integrase. GAG: gag-nucleocapsid. ZK: zinc knuckle. DUF: domain of unknown function. AIR1: Arginine methyltransferase-interacting protein. CHR: Chromatin organization modifier. UN: unknown.

8.2.7.1 Domain patterns and organization in LARD-like elements

All the LARD members from Hazara family were investigated for their gag-pol genes and the pattern of PBS and PPT. They have shown well characterized hallmarks for a LTR retrotransposons like the presence of perfect TSDs, highly homologous LTRs, PPT and in few cases PBS. No gag-pol genes coding the proteins were detected from any of the members. In contrast, the dotplot analysis of the Musa BAC clones showed the presence of these elements and their transposed copies indicating their recent movement in the
genome. On the basis of their transposed copies and high copy number, they can be considered as non-autonomous elements, defective elements or LARDs-like elements. Out of 10 individual elements, only 2 elements (20%) MaLAR7 and MaLAR8 display the PBS and PPT in their 5^{\prime} LTR and 3^{\prime} LTRs respectively. The tRNA type in MaLAR7 was tRNA $_{\text {Asp, }}$, while in MaLAR8 was tRNA Leu. . No evidence of PBS was observed in other 8 elements. PPT was detected in 7 elements (70\%), while MaLAR4, MaLAR9 and MaLAR10 failed to show the PPT sequence by scanning against Zea mays or Oryza sativa database (Table 8.2).

8.3 Discussion

The comparative sequence analyses have shown very fast variations in the plant genomes. One of the major sources of such rapid changes are the repetitive DNA sequences present in many genomes (Bennetzen, 2000). The genome of Musa is also rich in LTR retrotransposons belonging to Copia, Gypsy and Pararetrovirus-like elements. As the genomic sequence is progressing and updated, there is probably a need to discover and characterize the transposable elements. The LTR retrotransposons in the plants are terminated by few hundred base pairs to several kilobases, generating 4-6 bp TSDs and are generally terminated by dinucleotides 5^{\prime}-TG....CA-3'(Kumar and Bennetzen, 1999).

To our knowledge, this study is the first detailed survey of Copia, Gypsy and LARDs-like elements in Musa genomes over long stretches of DNA sequence: previous analyses have focussed on selected repeats revealing that nearly 30% genome composition of repetitive sequences in Musa (Hribova et al., 2010). The approach of comparative analysis of BAC sequences by dot plot was novel and used to identify the LTR retrotransposons in the sequenced genome of Musa. This strategy helped in the identification of most of the elements present in Musa BAC sequences. In the initial effort, 50 intact elements belonging to three main lineages of Copia, Gypsy and Pararetrovirus-like elements were identified, including evidence for mobility and hence a history of the elements. Further BLAST analysis using these full length elements retrieved a total of 153 intact elements from 6 Mbp of Musa BAC sequences screened. The intact copies covered $15-18 \%$ of the genome surveyed, which is further strengthening the investigations revealing high repetitive proportions found in the Musa genome analysis using short reads from 454 sequencing (Hribova et al., 2010) and BAC-end sequencing (Cheung and Town, 2007).

About 61 truncated copies, 635 partial copies, 258 solo LTRs and 16246 small fragments (remnants) were also identified; precise alignment of truncated or partial copies is not possible due to deletions and the numbers, but their contribution to the Musa genomes was counted. These deleted elements, and insertions in LTR retrotransposons are common in plants like maize (Jin and Bennetzen; Ramakrishna et al, 2002), wheat (Wicker et al. 2001 2003), barley (Rostoks et al, 2002), Rice (Ma et al, 2004) and Arabidopsis (Devos et al. 2002). It was noted that most of the deletions or insertions in the intact elements were bounded by few bp terminal duplications. Such terminal duplications were observed around the deletions within retroelements from Arabidopsis (Devos et al, 2002). The percentage of partial or deleted copies, truncated elements and remnants are very high analysed in our study as compared to the full length copies. The full length elements range in size from 4 kb to 17.8 kb and the LTRs flanking them range in sizes from 149 bp to 3.8 kb . These findings are in accordance with the investigations of LTR retrotransposons in Medicago truncatula, where the full length elements range in size from $4-18.7 \mathrm{~kb}$ with more or less similar LTRs flanking the elements (Wang et al., 2008).

A Pararetrovirus-like element residing in Musa genome was investigated, which displayed the structural features common to caulimoviruses present in many plant genomes including Musa and potato. In potato three families of Pararetrovirus-like sequences were isolated from potato genome and their distributions on chromosomes were studied by fluorescent in situ hybridization (Hansen et al., 2005). The phylogenetic analysis of the various LTR retrotransposons in Musa gives insight into diversity of these elements within the genome. Out of the 50 reference elements analyzed, 20 were Gypsy, 19 Copia, 1 Pararetrovirus-like element and the other 10 were the LARD elements. The RT alignment and phylogenetic analysis revealed that Pararetrovirus-like element (MaCV1) make a sister clade with Gypsy elements suggesting early evolutionary separation. In Brassica, the virus-like elements grouped with Gypsy lineage indicating their common ancestral origin but followed two different evolutionary pathways (Alix and Heslop-Harrison, 2004). The domain organization of the elements also varied, consistent with earlier studies: Copia-like elements were 5^{\prime}-AP-INT-RT-RH-3', Gypsy-like elements 5^{\prime}-AP-RT-RH-INT-3', and Pararetrovirus-like elements showed 5'-ORF-AP-RT-RH-3' (Hansen and Heslop-Harrison, 2004).

The LARD elements were out grouped in different clade without clustering with any of the known groups of elements. In Medicago truncatula, 11 LARD families of elements lacking protein domains in their gag-pol genes were characterized (Wang and Liu, 2008). It was observed in present study that very few elements were species specific, either in Musa acuminata or Musa balbisiana and the majority were present in both and (considering that nearly twice as much BAC sequence data is available for Musa acuminata compared to Musa balbisiana) similar proportions of LTR retrotransposons were identified in both species. The PBS and PPT pattern of the various classes of elements were also investigated. The results showed that most of the elements contained both sequences in them, while in few either PBS or PPT is missing or might be deleted. The tRNA ${ }_{\text {Met }}$ was the most frequently used type in both superfamilies. This is in accordance to the findings of tRNA type in Medicago truncatula, where tRNA Met is the most frequently used tRNA type occurred in $60-80 \%$ of the retrotransposons families investigated in Medicago truncatula (Wang and Liu, 2008). Some of the retrotransposons have acquired an extra sequence that does not have any role in their transposition or life cycle of the retrotransposons (Havecker et al., 2004).

8.4 Conclusion

The LTR retrotransposons in Musa genome were identified and described by computational analysis and PCR amplification. Fourty novel families were described in detail including their structural features, protein domain organizations, pattern of PBS and PPT, classification, evolutionary dynamics and impact on their host genome by their transduplication. The total number of copies and their percentage in Musa genome revealed that a high proportion of Musa is made up of these repetitive elements. This work provided the detail analysis of LTR retrotransposons landscape in the Musa genomes by concluding their role in Musa genome duplication, diversification and evolution. Major portions of retrotransposons belonging to Copia, Gypsy and LARD superfamilies were described and annotated. This will be helpful to other workers to understand the LTR retrotransposons landscape of Musa and related genera and their evolutionary dynamics.

CHAPTER 9

MOLECULAR CHARACTERIZATION OF DNA TRANSPOSONS AND NOVEL MOBILE INSERTIONS IN MUSA

Summary

Musa is a monocotyledonous plant and this work aimed to characterize the diversity of superfamilies of TEs present in its genome. Autonomous and non-autonomous TEs belonging to different superfamilies were identified by comparing transposon-rich BAC clones of Musa acuminata (AA) with homeologous genomic sequence regions in Musa balbisiana (BB). Class II DNA transposons were abundant comprising non-autonomous members from hAT, Mariner, MITEs and few novel families of elements. By comparative genomics and PCR/gel-based assays, active autonomous copies and fossil remnants, or deleted derivatives of active members were detected. Using comparisons over >100 kb genomic regions, the present approach identified any sequence which had been inserted or deleted. Most of DNA transposons were non-autonomous and ranged in size from 82 bp to a few kilobases (kb). The transposons display hallmarks of superfamilies but some mobile insertions-deletion pairs were detected without terminal inverted repeats (TIRs), which were not reported earlier in Musa and exhibit structural features not observed in other known TEs such as varied TSDs and lack of any TIRs. The mobility, diversity and abundance of TEs in 96 diverse Musa germplasm were analysed by PCR amplification using developed TIP markers. The abundance and localization of these elements on chromosomes was studied by flourescent in situ hybridization (FISH) and found some TEs to be A or B-genome specific. Overall, the analysis provides insight into the nature and mechanisms of changes in abundance and diversity of TEs as an important genomic component in Musa genomes.

9.1 Introduction

Transposable elements (TEs) are ubiquitous components of eukaryotic genomes with an ancient history of coexistence and proliferation in their host. They represent a high fraction of total genome size in many eukaryotic species. Their impact on genome is highly noteworthy, as they perform important roles in evolution by generating genetic variability, duplications, mutations, restructuring genomes and acting as sources of new genes (Flavell
et al., 1994; Kidwell and Lisch, 2001). Their activity is regarded as a major driving factor for gene and gene evolution in various organisms (Feschotte and Pritham, 2007). These TEs are residing in the genomes as (1) autonomous elements with an active RT or a transposase required for mobilization and integration into new sites, (2) non-autonomous elements which lack the enzymes for their mobilization, depends on the autonomous partners to utilize their enzymes for proliferation and reintegration to a new site and (3) 'relics', fossil remnants or deletion derivatives, which are normally immobile sequences. Based on their structural features and hallmarks, the Class II DNA transposons are categorized into 12 major transposon superfamilies, of which, Tc1-Mariner, hAT, Mutator, PIF-Harbinger, CACTA, P and Helitron are common in plants (Wicker et al., 2007).

The hAT is the most diverse family of DNA transposons, predominant in many plant species. They are characterized by 8 bp TSDs, terminal inverted repeats of $9-27 \mathrm{bp}$ and an internal ORF encoding a transposase displaying six amino acids conserved blocks across the animal-fungi-plant transposases. A total of 147 hAT-related sequences in plants, animals, and fungi were studied suggesting the diversity of hATs among various eukaryotes (Rubin et al., 2001). The hATs were studied in several plants like maize (Shimatani et al., 2009; Fujino and Sekiguchi, 2011), sugar beet (Menzel et al., 2012), Petunia hybrida, Phaseolus, Brassica napus (De Keukeleire et al., 2004) and Arabidopsis (Bundock and Hooykaas, 2005).

Miniature inverted-repeat transposable elements (MITEs) are the most high copy number elements proliferating in several plant species. They have shown to represent the derivatives of most DNA transposons superfamilies including Tc1-Mariner-like (Stowaway), Harbinger-like (Tourist), hATs derived MITEs and Mutator derived MITEs (Benjak et al., 2009). The MITEs display TSDs and TIRs similar to DNA transposons, but lack any transposase due to the deletion of internal region encoding ORF. Their mobilization is dependent on the transposase of their precursor, who recognizes their TIRs and help in their mobilization. MITEs are recognized by very high amplified copies in contrast to their precursors, which are typically less abundant (Yang et al., 2006). Autonomous transposons are easy to identify due to their well-known structural features. On contrary, the non-autonomous and small degraded elements or fossil remnants of autonomous transposons are harder to identify and classify due to poorly characterized structural features (Wicker et al., 2007).

The purpose of this study was to investigate and characterize the small non-autonomous TEs, deleted derivatives, fossil remnants and novel insertions. The methodology here was different from others, where a known transposon is screened in any organisms or an identified element is classified by comparing with known elements or on basis of clear structural features. The method used in this study involve the dot plot comparison of homeologous BAC genomic sequences to identify any insertions in one or other BAC and to characterize them. This method not only helped us to identify the new autonomous elements but also helped us to detect small non-autonomous elements or their deletion derivatives, which are very hard to identify by other methods.

9.2 Results

9.2.1 Transposon identification by comparison of homoeologous BAC sequences

In this study, two homeologous BACs, Musa acuminata 'MA4_82111' and Musa balbisiana 'MBP_81C12' were compared to study the most conserved and varied regions (TE insertions) (Figure 9.1). The lengths of BACs were 102232 bp and 142973 bp respectively. The homologous region of two BACs is $\sim 102 \mathrm{~kb}$ (101.9 kb in MA4_82I11 and 101.7 kb in MBP_81C12, indicating a very small divergence). This supports the equal genome size of the species and suggests that the proportion of TEs insertions or deletions in two BACs was quite similar. Fourteen unequally distributed gaps ($>80 \mathrm{bp}$) were identified from two BACs ranging in size from 82 to 4192 bp . All these gaps showed mobile elements, some of which were easily characterized, while others were not classified into their respective families and considered as novel insertions of unknown superfamilies. Interestingly, the investigated gaps were not random: gap numbers $1,2,5,6,9$, and 10 were in Musa acuminata BAC 'MA4_82I11' and 3, 4, 7, 8, 11, 12, 13 and 14 were in Musa balbisiana BAC 'MBP_81C12' sequences. The major size difference in BAC 'MA4_82I11' was due to the presence of a 4192 bp DNA transposon (Figure 9.1 \& 9.2).

Figure 9.1: Dot plot of homoeologous BAC clones Musa balbisiana MBP_81C12 (horizontal) against Musa acuminata MA4_82I11 (vertical). The comparison of the BACs showed large homologous region (continuous diagonal line) broken by multiple gap-insertion pairs. The gaps showed transposon insertions present in one BAC and absent in other. Different TEs are encircled and named. Several small insertions <500 bp are not highlighted here.

Figure 9.2: Alignment of two homoeologous BACs. The 101.7 kb homoeologous region from Musa acuminata (MA4_82I11; from 270-102190 bp) and Musa balbisiana (MBP_81C12; from 26400-128068) shows insertion sites of various TEs (named arrows) in the two BAC sequences. XXTE indicates an uncharacterized insertion.

Table 9.1: List of various autonomous and non-autonomous DNA transposons, MITEs and novel insertion from unknown families identified from Musa BAC sequences. The names of each element, their sizes, TSDs, TIRs and name of superfamilies are listed. Mut: Mutator. Sequences of elements are available in Appendices (attached CD).

| Element
 name | Super-
 family | BAC
 Accessions | Species | Size | TSDs
 size | TSD sequences | TIRs size | Position in BACs |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Mautonomous/Non- | | | | | | | | |
| autonomous | | | | | | | | |

9.2.2 The hAT transposons diversity in Musa

Four non-autonomous hAT elements (MaN-hAT1, MaN-hAT2, MbN-hAT3, MbN-hAT4) were identified by comparing Musa acuminata 'MA4_82I11' against Musa balbisiana 'MBP_81C12' BAC sequences. These non-autonomous hATs range in sizes from 273 bp to 1292 bp without having an active transposase necessary for their mobilization and integration to a new site (Figure 9.3a). For in silico identification of their autonomous copies, Musa acuminata and Musa balbisiana sequence data available in GenBank was screened and autonomous copies of MaN-hAT1 and MaN-hAT2 were detected, which are 5204 bp (MahAT1) and 3336 bp (MahAT2) respectively (Figure 9.3b). All the six hATs are studied in detail and are characterized on the basic of structural features (TSDs and TIRs). The detailed structural and phylogenetic analysis showed the clustering into two major clades further splitting hATs into four families.

Figure 9.3: Schematic representation of a) non-autonomous hATs b) autonomous hATs in Musa. Red arrows indicate 8 bp TSDs, blue triangles represent TIRs. The autonomous hATs showed transposase, Bed Zinc finger (ZF BED) and hAT family dimerization domain (TNP hAT); scale in bp.

9.2.2.1 Structural features and characterization of non-autonomous hATs

A 273 bp non-autonomous hAT was identified from Musa acuminata BAC 'MA4_82I11’ (Figure $9.1 \& 9.4 a$). It is named as MaN-hAT1; ' $M u$ ' indicates Musa, ' N ' represent nonautonomous and ' 1 ' indicates the number of hAT identified in respective Musa BACs.

Initially, it was identified in Musa acuminata but few copies were also detected in Musa balbisiana genomes. The MaN-hAT1 was characterized by generating 8 bp TSDs (5'-TCCCTGAG-3') and 22-30 bp TIRs with a 4 bp mismatch (Table 9.1). The 5^{\prime} termini of TIRs are highly conserved in all the copies and are 5'-CAAGG-3' (Figure 9.6). The GC content of TIRs is very high (63%) as compared to AT (37%). There are 2 copies of 5^{\prime} -CGGC-3' and 8 copies of 5^{\prime}-CCGG- 3^{\prime} direct tetranucleotide repeats in the sub-terminal region suggesting the binding sites for transposase.

Musa acuminata 'MA4_82I11' harbours an 874 bp insertion starting from 45436-46309 bp (Figure 9.4b), with characteristics of hAT transposons and was named MaN-hAT2. The insertion is flanked by 8 bp imperfect TSD 5'- GTGcTAaC-3', and has a 15 bp TIR (Table 9.1). In general, the insertion is equally rich in GC and AT (50% each). The first half of the insertion is adenine rich with 12 copies of $2-6 \mathrm{bp} \operatorname{poly}(\mathrm{A})$ sequences. It has 15 small segments of 5^{\prime}-CGAG-3', 9 segmnts of $5^{\prime}-$ GAAG- $3^{\prime}, 7$ segments of 5^{\prime}-CAAC-3', and 5 segments of 5^{\prime}-GGGC- 3^{\prime} tetra-nucleotide sequences repeating at intervals. The termini of TIRs are well conserved with 5^{\prime}-CAGTG-3' in all the copies. Another analogue of MaN hAT2 was found inserted in Musa balbisiana clone 'MBP-26I6' (FN396604.1) from 34017-34874 bp. Due to homology to MaN-hAT2, it is named as MbN-hAT2 as it was detected from Musa balbisiana. MbN-hAT2 is 926 bp, well characterized by 8 bp TSD 5'-GTTCTATT-3' and 23 bp TIRs. It is high in GC content with a high GC:AT ratio ($57: 43 \%$). The ~ 150 bp terminal regions from both sides of MaN-hAT2 and MbN-hAT2 are highly similar indicating their common family (Figure 9.3a; Table 9.1).

While comparing the Musa acuminata 'MA4_82I11' against Musa balbisiana 'MBP_81C12' BAC sequences, a 1292 bp insertion was identified from Musa balbisiana from position 78250-79541 bp (Figure 9.5a). This was named MbN-hAT3 and has well characterized hallmarks (TSDs and TIRs) of hAT superfamily. MbN-hAT3 is flanked by 8 bp TSDs as 5^{\prime}-GTTGCAAC- 3^{\prime} and 15 bp TIR ($\left.5^{\prime}-\mathrm{CAAGGTctGCaTACC}-3^{\prime}\right)$. The GC content of insertion was low (39.5\%) as compared to AT (60.5\%). The alignment of homologues of MbN-hAT3 revealed that the termini (5'-CAAGG-3') of TIRs are highly conserved like other hATs (Figure 9.6). Another insertion was found located in Musa balbisiana 'MBP_81C12' BAC sequence and is named MbN-hAT4. MbN-hAT4 insertion displays the structural feature of 8 bp TSDs (5^{\prime}-TTCAAATG-3') and 9 bp TIRs (5^{\prime} -CAAGGTtTG-3') (Table 9.1). The termini of TIRs are highly conserved and are 5^{\prime} -

CAAGG-3' (Figure 9.6). There are 4 copies of microsatellites or simple sequence repeats (SSRs) with TA nucleotide repeats. The first copy is 66 bp long $(\mathrm{TA})_{33}$, second is 22 bp long (TA) $)_{11}$, third is imperfectly $20 \mathrm{bp}(\mathrm{TA})_{10}$ long and fourth is $22 \mathrm{bp}(\mathrm{TA})_{11}$ long.

9.2.2.2 Structural features and characterization of autonomous hATs

To identify the autonomous partners of non-autonomous hATs, the sequences were used as query in blast searches. By using $M a N-h A T 1$ as query, $\sim 5.2 \mathrm{~kb}$ autonomous hAT element was identified designated as MahAT1. The structural features of MahAT1 showed either truncated or degraded element, with no perfect TSDs at 3^{\prime} terminal end. On the basis of TIRs at 3^{\prime} end and imperfect TSDs flanking them, the size was counted and found to be 5204 bp . It is flanked by 8 bp imperfect TSDs (TTttAAAt) and $10-12 \mathrm{bp}$ TIRs. The internal region displays a coding region for transposase but no other domains were found (Figure 9.3b: Table 9.1). It is a defective element due to the presence of several stop codons in the coding regions. MahATl is highly AT rich (67%) with high AT content in 1 kb terminal regions. Several small A and T rich sequences are dispersed in the element. The blast searches yielded no strong hits indicating that the element is less active and rarely present in Musa genomes.

Using MaN-hAT2 as query in blast searches, the autonomous partner of the element was identified from Musa acuminata clone 'MA4-86B3' (AC226047.1) from 34728-38063 bp and designated as MahAT2. It has very prominent hallmarks of hATs with 8 bp TSDs and 19 bp TIRs (5^{\prime}-CAGTGATTTAAAAAGCGCT-3') (Figure 9.3b; Table 9.1). The upstream $\sim 400 \mathrm{bp}$ starting from TIRs are GC rich while $\sim 400 \mathrm{bp}$ towards downstream are highly AT rich. The central part of transposon is AT rich with many small poly adenine and thymine sequences. The transposase (DUF659) of MahAT2 is $\sim 555 \mathrm{bp}$ long, with additional Bed Zinc finger (ZF BED) and hAT family dimerization (TNP hAT) domains. These dimerization domain forms very stable dimmers in vitro. The Bed Zinc finger domain is located on N-terminus, while dimerization domain is located on C-terminus of transposase. BLASTN searches using 3336 bp MahAT2 sequence against the Nucleotide Collection $(\mathrm{nr} / \mathrm{nt})$ retrieved 184 hits; with 4 complete copies and remaining represent the partial copies and deletion derivatives. Using transposase as query sequence, 136 hits returned from Musa acuminata, Musa balbisiana, Vitis vinifera, Glycine max, and Lotus japonica indicating its diversity in other plant genomes.

Figure 9.4: Dot plot comparison of homoeologous BAC clones Musa balbisiana MBP_81C12 (horizontal) against Musa acuminata MA4_82I11 (vertical) showing MaN-hAT1 and MaN-hAT2 insertion sites in Musa acuminata. The size, TSDs and TIRs are also shown in text and in the insets showing both ends of the insertion (large crosshair in left and right dot plots).

Figure 9.5: Dot plot comparison of homoeologous BAC clones Musa balbisiana MBP_81C12 (horizontal) against Musa acuminata MA4_82I11 (vertical) showing a) MbN-hAT3 and b) MbN-hAT4 insertion sites in Musa balbisiana. The size, TSDs and TIRs are also shown (insets).

Figure 9.6: Sequence logos of Musa hATs TIRs. The hAT CAAGG motif is highly conserved and observed in all TIRs of MaN-hAT1, MbN-hAT3 and MbN-hAT4. The height of nucleotides shows the information content of nucleotides within the TIRs of the four groups of elements.

9.2.2.3 Insertional polymorphisms of non-autonomous hATs in Musa

By using degenerative primer pair MaNhAT1F 5'-ACCCACCTGGCTCTTGTGTC-3' and MaNhAT1R 3'-AGCGAATGTGTTTTGACCAC-5', MaN-hAT1 was amplified in different Musa genomes. The primers were 66 bp upstream and 220 bp downstream respectively, of the MaN-hAT1 insertion site. A total of 96 Musa genomes (Table $2.2 \& 2.3$) were used to study the insertion polymorphism of $\mathrm{MaN}-h A T 1$. The product size of 560 bp including 273 bp MaN-hAT1 insertion and flanking regions were successfully amplified in several Musa acuminata (AA, AAA, AA cv) and 2 Musa balbisiana genomes. Few Musa triploids (AAB, ABB) also showed the amplification of $\mathrm{MaN}-h A T 1$, indicating that the insertion is contributed by A-genome. The genomes amplifying the MaN-hAT1 insertions were AA (Banksii 623, Long Tavoy pied, Zebrina, Tomolo, Calcutta 4, Kadali, Matti, Cherukadali), BB (Javan), AB cv (Safet Velchi, Kunnan, Njalipovan, Adukkan), AAA (Mbwazirume, Intokatoke, Yangambi KM5, Manoranjitham, Grow-michel, Monsmari, Robusta, Dwarf cavendish), AAB (Figue Pomme Géante, Karimkadali, Perumadali, Poovan, Doothsagar, Vellapalayamcodan, Poomkalli), ABB (Simili Radjah, Namwa Khom, Kosta bontha, Monthan, Karpooravali), and ABBB (Yawa 2). The lower bands ($\sim 300 \mathrm{bp}$) representing
the pre-insertion sites were amplified from most of the genomes except Musa acuminata (AA), which amplified the higher bands only. Many of them showed both higher (560 bp) and lower bands ($\sim 300 \mathrm{bp}$) indicating the heterozygous nature, while others showed either higher or lower bands (Figure 9.7a \& b).

By using degenerative primers MaNhAT2F and MaNhAT2R (Table 9.2), 872 bp long MaN-hAT2 was amplified in few accessions out of 48 Musa genomes (Table 2.2). The expected product size of insertion with flanking sequences was 1287 bp . Variable products ranging from $\sim 650-1300 \mathrm{bp}$ in different Musa genomes (AA, BB, AB, AAB and ABB) were amplified. Some of the genomes amplified complete copy of MaN-hAT2, while other amplified the partial or degraded fragments as confirmed by sequencing of these fragments. This advocates that some accessions possess full size elements, while others harbour many degraded or partial copies of this element. This insertion was present in Musa acuminata, Musa balbisiana and other Musa polyploids (AB, AAA, AAB, ABB) suggesting its diverse nature and amplification (Figure 9.7c).

MbN-hAT3 was amplified from many Musa accessions by the primer set MbNhAT3F 5'-CTCAACAACAACGGCAGAGA-3' and MbNhAT3R 5'-GCTTTGCCCATGGTATTCTC-3'. The expected products including insertion and flanking sequences were 1441 bp . The results indicated its amplification in Musa balbisiana (BB) and Musa polyploids having ' B ' allele in them (AAB, ABB, ABBB). No amplification in any of Musa acuminata (AA, AAA) genomes indicates B-genome specificity of this hAT. The insertion polymorphisms was observed in BB (P. Klutuk Wulung, P. Batu, Tani, Lal Velchi, Batu), AB cv (Safet Velchi, Kunnan, Njalipovan, Adukkan, Padalamukili), AAB (Lady Finger, Foconah, Prata Ana, Figue Pomme Geante, Popoulou, P. Raja Bulu, P. Rajah, P. Ceylan, Motta povan, Perumadali, Palyamcodan, Krisnavazhai, Poovan, Doothsagar, Charapadati, Kumbillakannan, Vellapalayamcodan, Ettapadati, Padati, Chinali, Nendran, Poomkalli), ABB (Orishele, Pelipita, Dole, Saba, Monthan, Simili Radjah, Ice Cream, Namwa Khom, Peyan, Kanchikela, Boothibale, Monthan, Karpooravali) and ABBB (Yawa 2) accessions amplifying the $M b N$-hAT3. The lower bands showing the flanking sequences were amplified in majority, except few genomes (Figure 9.8a \& b).

By using primer pair MbNhAT4F $+\mathrm{MbNhAT4R}$, a product size of 860 bp was achieved with MbN -hAT4 insertion. The insertion polymorphism pattern showed their amplification
in Musa balbisiana (BB), and Musa polyploids (AAB, ABB and ABBB) having ' B ' allele indicating the B-genome specificity of MbN-hAT4. The genomes that showed MbN-hAT4 amplifications are AA (Paliama), BB (PKW, P. batu, Tani, Lal Velchi, Javan), AB cv (Safet Velchi, Kunnan, Njalipovan, Adukkan, Padalamukili), AAB (Orishele, Figue Pomme Géante, Popoulou, P. Raja Bulu, P. Rajah, P. Ceylan, Doothsagar, Kumbillakannan, Velipadati, Ettapadati, Padati), ABB (Pelipita, Dole, Saba, Monthan, Simili Radjah, Ice Cream, Namwa Khom, Kosta bontha, Karpooravali, Pisang Awak), and ABBB (Yawa 2). The lower bands ($\sim 300 \mathrm{bp}$) with flanking regions were observed in many Musa genomes amplifying the flanking sequences (Figure 9.8c \& d).

Table 9.2: List of primers for amplification of various DNA transposons in Musa. The transposon sizes, product sizes, primer names and sequences are given.

Sr.No.	TE family	TE Size	Product size	Primer name	Primer Sequence
1	MaN-hAT1	273	560	MaNhAT1F	ACCCACCTGGCTCTTGTGTC
				MaNhAT1R	AGCGAATGTGTTTTGACCAC
2	MaN-hAT2	874	1287	MaNhAT2F	TTGATCATACCTAGGTGGATG
				MaNhAT2R	AACAACATGCCATGGTATCAG
3	MbN-hAT2	874	986	MaNhAT2F	GAGGAAGTCAAATGCAGAAATG
				MaNhAT2R	GATACTTTTGATGGAGAATTTG
4	MbN-hAT3	1292	1441	MbNhAT3F	CTCAACAACAACGGCAGAGA
				MbNhAT3R	GAGAATACCATGGGCAAAGC
5	MbN-hAT4	524	860	MbNhAT4F	GAACCAAGCTTACATTGAGAGT
				MbNhAT4R	GAGACACAAATCAATCACCTAT
6	MBN-hAT4	524	800	MbNhAT4F	ATTGAGGAAGCACAAGAACATA
				MbNhAT4R	CACCTATGCAACAAAGAAAATC
7	MahATI	358	5204	MahAT1F	ATGAGATGCGAGTTCCATTG
				MahAT1R	CATGGAGTCCAATATAAGTG
8	MahAT2	456	3336	MahAT2F	ATGAGATGCGAGTTCCATTG
				MahAT2R	CATGGAGTCCAATATAAGTG
9	MITE	781	1052	MaMITE1F	AACGGGACGAGTCTTGAGAA
				MaMITE1R	TAAATGTCTCCGCTTAGGCC
10	MBT	621	864	MBTF	GATCAAATGGGGAAGCAACC
				MBTR	ACTTCTCCCGTGTGTGTCGT
11	AGNABI	1676	1844		
				MAWAR	GCCAATTGTAGCTCAAAATC
12	MUST	384	548	MUSTF	GGGAGCACGGAATTTGCCC
				MUSTR	CAAGACGGACACCGAGGAC
13	MaSTE	4192	1138	MaSTEaF	CGCATGATGTTTTTGATGTA
				MaSTEaR	GAGGTACAACTCAACAAAAG
14	MaSTE	4192	1122	MaSTEbF	GGTTTTGATTGATTGAAGAC
				MaSTEbR	CAAGAATGAGTGACAAGTCG

Figure 9.7: Transposon insertional polymorphisms of Musa hATs. a-b) MaN-hAT1 insertion sites in Musa accessions. Long bands (560 bp) represented by filled arrowheads (right) indicate amplified MaN-hAT1 insertions; short bands amplify the flanking sequences only (open arrowheads). c) MaN-hAT2 insertion sites in Musa. Filled arrowheads pointing to $\sim 1287 \mathrm{bp}$ MaN-hAT2 and open arrowheads show products without the MaN-hAT2 insert. All PCR figures show reversed images of size-separated ethidium bromide-stained DNA on agarose gels after electrophoresis; ladders show fragments sizes in base pairs; numbers at the base indicate accessions of the species indicated in Tables 2.2 and 2.3.

Figure 9.8: Transposon insertional polymorphisms of Musa hATs. a-b) MbN-hAT3 insertion sites in various Musa accessions: Long bands (1441bp) showed the amplified element (filled arrowheats) and short bands (open arrowheads) show amplification of the pre-insertion sites only. c-d) MbN-hAT4 amplification with degenerate primer pair MbNhAT4F and MbNhAT4R. Long bands ($860-\mathrm{bp}$) show the amplified MbN-hAT4 element and short bands amplify the flanking sequences only.

9.2.2.4 Fluorescent in situ Hybridization (FISH) of hAT sites on Musa chromosomes

The chromosomal distribution of hATs in the Musa species was analyzed by FISH. Using MaN-hATl as probe in Musa diploids and triploids, very strong signals were observed clustered in central regions on all A-genome chromosomes. The distribution pattern of MaN-hATl on the chromosomes of Musa triploid (ABB) revealed that strong signals were observed on 11 chromosomes, out of 33 , indicating they were contributed by A-genome. The distribution of $M a N-h A T 1$ signals on these 11 chromosomes was not uniform, as some chromosomes showed strong and clustered signals while others showed few but dispersed signals. In Cavendish (AAA), all the 33 chromosomes showed very strong signals of MaNhATl on the central regions (9.10a). In diploid Musa acuminata malaccensis (AA; 2n=22), the strong signals of MaN-hATl were observed in the central regions of all 22 chromosomes revealing its abundance on all chromosomes. In contrast, the MbN-hAT3 only hybridized to few chromosomes showing its patchy distribution (Figure 9.9c-f). Similarly, MbN-hAT4 was used as a probe to see its distribution pattern on different chromosomes in Musa acuminata (AA) and Musa balbisiana (BB). Very strong and dispersed signals were observed on all chromosomes in Musa balbisiana (BB) indicating its contribution from B-genomes. Two of the 22 chromosomes showed very strong clustered signals painting nearly half of the chromosomes. The telomeric signals were very strong and clear (Figure 9.9a-j).

9.2.2.5 Phylogeny of hATs in Musa

The evolutionary relationships of Musa non-autonomous hATs were studied. Seventy complete copies identified by dot plot and blast searches were aligned and the $\sim 200 \mathrm{bp}$ region from 5' terminal end including TIRs was used to generate the tree by NeighbourJoining algorithm with 1000 bootstrap repetitions. The 200 bp region from autonomous hAT 'MahAT2' was used to root the tree. The tree clearly separated into two main lineages bringing MaN-hAT2 family in one and MaN-hAT1, MbN-hAT3 and MbN-hAT4 families in the other lineage (Figure 9.10). This clearly indicates that the elements fall into two major groups, one having 20 members from MaN-hAT2 family, the other having 50 members. Although the second lineage is shared by 3 families, family specific groups are clearly separated. The five members from $M b N-h A T 3$ family clustered together, while six members from $M b N-h A T 4$ shared a group with some $M a N-h A T 1$ elements dispersed in it.

The detail structural analysis of the elements revealed that MaN-hAT1, MbN-hAT3 and $M b N$-hAT4 families share the similar TIRs, but their internal regions are variable, due to which they are assigned into their respective families on the basis of homology in the entire lengths. This suggests that the TIRs segregated the 70 elements into 2 groups, which can be further classified into four families on the basis of homology in their entire lengths (Figure 9.10).

9.2.2.6 Musa hAT transposon diversity and copy number estimation

To identify the distribution and copy numbers, the search was extended by using initially identified hATs as query in blast searches. The 273 bp MaN-hAT1 yielded 34 complete copies with many defective or truncated copies. Four copies of MaN-hAT1 were added after sequencing from PCR amplicons from Musa genomes to analyse their phylogenetic relationships. MaN-hAT2 retrieved 19 complete sequences from A, B-genomes. Using 1292 bp MbN-hAT3 insertion as a query in BLASTN, 2 complete copies from Musa balbisiana and a truncated copy from Musa acuminata was found. All the other hits were partial sequences or truncated copies, which were removed from the analysis. The 524 bp MbN-hAT4 sequence generated 101 blast hits, with 4 complete copies. Two more sequences were added after sequencing from triploid Musa. Based on these numbers, total copy numbers for each family were estimated for whole genome of Musa acuminata and Musa balbisiana.

The estimated copy numbers for MaN-hAT1 family was 4200 and 2475 in Musa acuminata and Musa balbisiana respectively, while 2100 and 1110 copies were counted for A and Bgenome from MaN-hAT2 family. The MbN-hAT3 is the low copy number family with 165 copies in Musa acuminata and 550 copies from Musa balbisiana. MbN-hAT4 is B-genome specific, where 1100 copies were estimated while 150 copies were estimated from Agenome Musa. In general, a total of 6565 non-autonomous hATs are proliferating in Musa acuminata, while 5235 copies are residing in Musa balbisiana. Similarly the copy numbers for their autonomous counterparts were also estimated. Approximately 300 and 260 copies of MahATl were estimated for Musa acuminata and Musa balbisiana respectively, while 450 and 275 MahAT2 copies are estimated for A and B-genomes respectively. This suggests that the non-autonomous copies are 10 fold higher than their autonomous partners.

Figure 9.9: Fluorescent in situ hybridization showing the distribution of hATs on DAPI stained (blue) Musa chromosomes. a-b) A-genome specific MaN-hAT1 in two Musa triploid ($2 \mathrm{n}=3 \mathrm{x}=33$) accessions indicated in the figure located on A-genome chromosomes. c-f) Chromosomes of Musa acuminata (ssp. malaccensis; AA; $2 \mathrm{n}=2 \mathrm{x}=22$) showing the locations of $M a N-h A T 1$ (red probe) and $M b N-h A T 3$ (green probe) elements. The $M a N-h A T 1$ (red) elements are distributed on all the 22 chromosomes, while the $M b N-h A T 3$ (green) is present on few chromosomes indicating its patchy distribution and lower abundance. g -j) chromosomes of a wild banana (BB, ITC0545, $2 \mathrm{n}=2 \mathrm{x}=22$) with dispersed but not entirely uniform location of a B-genome specific $M b N-h A T 4$ (red) and telomeric probe (green) on DAPI-stained chromosomes (blue). Magnification x2000.

Figure 9.10: Neighbour-Joining tree showing relationship of hAT families identified in Musa. The phylogenetic tree of Musa hATs based on the 200 bp DNA sequence from 5 ' terminal end was constructed by the Neighbour-Joining method with 1000 bootstrap repetitions using the Geneious Pro program. The tree is rooted with the autonomous hAT MahAT2. The bootstrap support is shown near the nodes. The names of the elements are followed by the BACs in which they were identified. The hATs cluster into two strongly supported lineages; the MaN-hAT2 elements grouped in the first lineage; and MaN-hAT1, MbN-hAT3 and $M b N-h A T 4$ clustered in the second lineage where the $M b N-h A T 3$ clade is well supported.

9.2.3 Identification and characterization of MITEs in Musa

The comparison of two homeologous BACs, Musa acuminata (MA4_82111) and Musa balbisiana (MBP_81C12) led to the discovery of a MITE-like element named as MaMITE1 (Musa acuminata MITE 1) and characterized by having 781 bp size including 5 bp TSDs and long TIRs ($374 / 299 \mathrm{bp}$). The insertion was present in Musa acuminata from 27748-28528 bp (Figure $9.11 \& 9.12$). Although generating 5 bp TSDs, but long TIRs suggested it a MITE originated from Mutator-like elements, but no homology to a known Mutator element was found. BLASTN searches using MaMITE1 as query sequence against Musa Nucleotide Collection (nr/nt) database returned 454 hits from Musa acuminata, 138 in Musa balbisiana, 48 against Musa ornata and 13 in other Musa hybrids (AAB). Approximately 80 copies were complete copies, while remaining were either incomplete or appear to be low degenerate with low percentage of query coverage. The majority of hits were against Ty3/Gypsy and Musa acuminata Monkey LTR retrotransposon suggesting its nested structure. Another MITE designated MaMITE2 was found in Musa acuminata BAC accession (AC226196.1), 664 bp long including 9 bp TSDs and long TIRs (5'-291/332-3'). The 3^{\prime} terminal TIR had uneven activity and increased its size as compared to its 5^{\prime} TIR. The MITE is highly AT rich (65\%), suggesting the typical MITEs features.

MaMITE3 was detected from Musa acuminata (AC226047.1) with 9 bp flanking TSDs and 5'-291/332-3' bp TIRs (Figure 9.13), with no internal region encoding any protein domain. A 2064 bp long element (MbMITE4) was identified from Musa balbisiana (MBP_81C12) from 113622-115684 bp terminated by 9 bp TSDs (5^{\prime}-TAATTACAT- 3^{\prime}) and long TIRs ($5^{\prime}-427 / 441-3^{\prime} \mathrm{bp}$). The starting and ending TIRs are highly AT rich, which are 70.5% and 64.6% respectively. In general the element GC content is 42.7%, with central portion having more $\mathrm{GC} \%$ as compared to the TIRs. 'MbMITE4' is a non-autonomous hAT element lacking any active transposase but capture a protein domain from pectinesterase superfamily, which is ~ 240 aa long and cover most of the internal sequence of element. Blast searches, using 2064 bp as query sequence yielded 134 hits, out of which only two are the complete copies (Figure 9.13; Table 9.1).

Figure 9.11: Structure of different MITEs and novel transposons in Musa. Red arrows indicate varied sized TSDs, blue triangles represent TIRs. The non-autonomous transposons showed no transposase in their structures. Two bp TSDs but no TIRs in the MAWA element are detected.

Figure 9.12: Dot plot showing the MaMITE1 insertion site in Musa acuminata BAC MA4_82I11. The TSDs and TIRs in aligned sequences are highlighted with red (inset). A long TIR following the TSDs is highlighted with gray colour.

Figure 9.13: Dot plots of four MITEs identified from Musa plotted against themselves. The central top-left to bottom-right diagonal line represents the self-homology. The lower-left to upper-right reverse diagonals reveal the presence of $>300 \mathrm{bp}$ long TIRs. MaMITE1 shows tandem repeats at its ends, while MaMITE2 has many repetitive sequences near its centre. Scales in bp.

9.2.3.1 MaMITE1 diversity in Musa genome by TIP based molecular markers

Degenerate primers pair MaMITE1F 5'-AACGGGACGAGTCTTGAGAA-3' and MaMITE1R 5'-TAAATGTCTCCGCTTAGGCC-3' were designed from the most conserved flanking sequences of the insertion. MaMITE1 was PCR amplified in different Musa genome to see its mobilization, amplification and diversification. The expected $\sim 1052 \mathrm{bp}$ fragment was amplified from some Musa accessions; which were mostly Musa acuminata diploids or triploids accessions as Musa acuminata (Calcutta 4, Banksii 623, Khae, Long Tavoy pied, Tomolo, Pisanglilin, Kadali, Matti, Cherukadali), AAA (Grow-michel, Monsmari) and AAB (Kumbillakannan, Vellapalayamcodan, Poomkalli). All Musa acuminata accessions which amplified MaMITE1 showed only upper band indicating homozygous nature. No amplification of MaMITE1 in Musa balbisiana genomes suggests the absence of this MITE at this locus (Figure 9.14a \& b).

Figure 9.14: Insertional polymorphisms of MITEs and novel transposon insertions in Musa. a-b) MaMITE1 in various Musa accessions. Filled arrowheads point to 1052 bp MITE amplification bands and lower bands (open arrowhead) amplify flanking sequences only across empty sites. c-d) The 621 bp MBT insertion sites in Musa accessions. Long bands (864 bp) showed the amplified MBT element and short bands amplified flanking regions (pre-insertion sites).

9.2.4 Structural features of novel transposons from unknown superfamilies

A 4192 bp insertion was detected in Musa acuminata BAC 'MA4_82I11' terminating with 5 bp TSDs (CATAA) and $14 \mathrm{bp} 5^{\prime}$-TGTAACAcCCTTGA- 3^{\prime} TIRs. Due to unusual 5 bp TSDs, 14 bp TIRs and only single hit to Musa acuminata 'Calcutta 4', it was named MaSTE (Musa acuminata single transposable element). No putative transposase in the insert suggested either deletion of active transposase or the degraded element of either hAT or Harbinger-like elements but no clear evidence showed its relation to any known superfamily. Due to its large size, the primers were designed from the first and last portion of the insert to amplify a product of 1138 bp and 1122 bp with primer pair MaSTE1F and MaSTE1R and primer pair MaSTE2F and MaSTE2R respectively. Interestingly, the first and last parts of insert were only amplified from Musa acuminata (Calcutta 4) genome, which was the only significant hit in blast searches. This strongly revealed its proliferation in Musa acuminata or its recent introduction to the genome (Figure 9.15a \& b). The amplicons were sequenced and aligned with the reference sequence which showed a complete homology to MaSTE. Another 632 bp insertion was detected displaying 3 bp TSDs (ATA), 10 bp TIRs 5'-ATaATTATTG-3', AT rich (72.8\%) and having small repeats of
poly A / T starting from TIR on the upstream orientation. The structural features showed similarities to Harbingers, so it is tentatively considered to be a non-autonomous Harbinger-like element and named MbHAL (Figure 9.11; Table 9.1).

9.2.5 Mobile insertions/deletions without TIRs

The comparison of Musa acuminata (MA4_82I11) and Musa balbisiana (MBP_81C12) BAC sequences directed the discovery of a several novel insertions/deletions without any recognizable TIRs but other structural features: the flanking TSDs at gap-insertion pairs and amplification polymorphisms strongly suggested their mobile nature. The elements were studied by computational and molecular analysis to characterize them and see their diversity in various Musa genomes. An insertion (1676 bp) flanked by 2 bp TSD 'AG’ and lacking any visible TIRs was detected and named 'MAWA'. Blasting MAWA element against Repbase database of transposons showed hits to a Gypsy Monkey_MA element indicating its nesting position in Gypsy retrotransposon. MAWA was amplified in Musa genomes with degenerative primer pair MAWAF and MAWAR. The primers were designed from the conserved flanking sequences common to Musa acuminata and Musa balbisiana. MAWA elements showed a medium level of amplification in many Musa genomes including Musa balbisiana (BB) and the Musa triploids (AAB, ABB) suggesting the contribution of B-genome (Figure 9.15c \& d). A small insert of 367 bp long was identified implanted in Musa balbisiana (MBP_81C12) accession from 53800-54166 bp. Due to its small size and no homology to any known superfamily; it is named MUST (Musa small transposon). MUST is flanked by 'AA' TSDs and lack any detectable TIRs. The flanking regions of the insertion are GC rich (52-58\%), while insert itself is AT rich (59.4\%). Blast searches showed very surprising results with single hits from Musa balbisiana clone BAC MBP_81C12, from where it was originally identified (Figure 9.11; Table 9.1).

A small insertion was identified with 3 bp TSD (ATG), but no TIRs or any protein domain with high AT rich (66%) regions. The element is named MBT (Musa balbisiana transposon). The MBT transposon was amplified by using a pair of degenerative primers MBTF 5'-GATCAAATGGGGAAGCAACC-3' and MBTR 5'-ACTTCTCCCGTGTGTGTCGT-3' designed from the conserved flanking sequences. The short bands ($\sim 240 \mathrm{bp}$ amplifying the flanking regions) and long bands ($\sim 864 \mathrm{bp}$ amplifying the transposon insertion) were
amplified from various genomes. PCR analysis showed insertion polymorphisms of MBT in almost all tested Musa genomes suggesting its distribution and abundance in Musa genomes. Some of the genomes amplified only long or short band, while others amplified both bands (heterozygous). The genomes amplifying the insertion were the various accessions from Musa acuminata, Musa balbisiana and Musa triploids (AAA, AAB, AAB) (Figure $9.14 \mathrm{c} \& \mathrm{~d}$).

A 504 bp insertion was found in Musa acuminata (MA4_82I11) BAC from 65047-65550 bp. The insertion was flanked by 19 bp TA microsatellite and is named as TATA element due to generating TATA-like TSDs. A 261 bp TE was identified in Musa acuminata from 67426-67686 with 2 bp (TA) TSD. The insertion lacks any characteristic feature and was named MAX (Musa acuminata unknown). The insertion was AT rich with one third of GC content. The Mariner-like elements or Stowaway MITEs generates TA TSDs, but due to lack of any TIRs and very low copy numbers, the element cannot be sorted to its respective superfamily. The smallest insertion investigated in this study was a 82 bp insert in Musa balbisiana (MBP_81C12) from 100,030-100,111. It was named as 'TINY' due to its smallest size. It is flanked by 5 bp TSDs (TGGTC) and lacks any detectable TIRs. The GC content of the insert was 42.7%, which corresponds to the low GC content of all other transposons (Table 9.1).

9.3 Discussion

With exploitation of bioinformatics and computational analysis, various DNA transposons belonging to different superfamilies were identified which had been inserted or deleted during and after the divergence of Musa species. Most of the elements were characterized and classified into their previously known families, but several transposon insertions were novel exhibiting different hallmarks (TSDs or TIRs) or generating a TSD without any TIRs and internal coding regions. Among DNA transposons, the non-autonomous hATs or hATlike MITEs as named by several authors are predominant, followed by other MITEs. The investigated hATs generate 8 bp TSDs, 9-30 bp TIRs and conserved sub-terminal regions; all characteristic hATs features. These structural features were studied in hAT elements from plants, animals, fungi and flies (Rubin et al., 2001; Huang et al., 2009; de Freitas Ortiz et al., 2010). The investigated elements have shown some dispersed copies of tetra and penta-nucleotide sequences in their sub-terminal regions, which are thought to be the
remnants of binding sites for transposase. These kind of small sequences were also observed in maize transposon nDaiZ, which contains 11 copies of such repetitive tetranucleotides (ACCC and GGGT) (Huang et al., 2009). Due to the presence of remnants for binding sites, there is an indication that they were the part of large autonomous transposons, which during their life cycle deleted their active transposase and other motifs necessary for transposition (Kidwell and Lisch, 2001).

9.3.1 Non-autonomous hATs are dominant in Musa genomes

Four non-autonomous hAT families were identified by comparing two Musa BAC sequences, while autonomous partner of MaN-hAT1 and MaN-hAT2 were detected from other Musa BAC clone sequences. The non-autonomous MaN-hAT1 yielded >10 fold of copies (34 copies) as compared to its autonomous partner 'MahATl' (3 copies) in blast searches. Similarly, MaN-hAT2 resulted in 5 folds (19 copies) homologues in comparison to its autonomous element MaN-hAT2 (4 copies). Based on these retrieved intact copies; the number of copies for each element was estimated. A total of ~ 11800 non-autonomous hATs were estimated residing in Musa acuminata and Musa balbisiana, while their autonomous copies were 1285 only, indicating that non-autonomous hATs are >10 fold more common in Musa genomes. These results confirmed the investigations of Rubin et al., (2001) which also reported 1:10 ratio of non-autonomous to autonomous hATs collected from various animal, fungi and plant genomes.

9.3.2 The hATs are an ancient and abundant superfamily of transposons in Musa

The hATs are the most prevalent superfamily in many plants including Musa. Around 1000 hATs related complete or partial copies were found by BLASTN searches of Musa genomes. Out of these, only 70 copies were intact, while all others were partial copies or deletion derivatives, which indicate that the degraded copies of hATs are still persisting in Musa genomes. The higher proportion of defective or partial copies makes it the most ancient superfamily of transposons. The non-autonomous hATs investigated in present study still retain evidence for their mobility, which is indicated by the presence of their TIRs, TSDs and conserved sub-terminal regions. The hATs from different families were aligned and high heterogeneity was found in their internal regions, except TIRs, which showed homology within few families. The ancient nature of hAT superfamily in
investigated in several eukaryotic genomes. Due to their ancient nature, a high variability and a high proportion of defective and partial elements can be expected (Rubin et al., 2001).

Our results showed the presence of several copies of non-autonomous hATs, which are still active in Musa genomes. We suggest that the proliferating of non-autonomous hATs might be the result of utilizing the enzymatic machinery (transposase) of related autonomous hATs. Many degraded copies or deletion derivatives of these hATs are found in Musa genome. The previous investigations suggested that degradation mechanisms are the last phases of genomic colonization by TEs, where such copies are inactivated and slowly eliminated or split into fragments (Le Rouzic et al., 2007).

9.4 Conclusion

In Musa, it was notable that not all superfamilies of elements were present: although 7 superfamilies are reported as being ubiquitous in plants (Wicker et al., 2003), no CACTA nor Mutator elements were found in Musa. Some MITEs had 9 bp TSDs and long TIRs signatures which could suggest derivation from Mutator-like elements, but no homology was found with any known Mutator element, and it seems likely that the ancestor of Musa included both CACTA and Mutator elements, indicating that they have been swept from the genome. Such events are unusual but reported: for example, the lack of Copia-like elements in mammalian genomes, despite present in plants, fungi and most animal taxa (Flavell et al., 1998). Our results showed the abundance of hATs, MITEs and several novel mobile elements in Musa with conserved structural features, not found in known superfamilies. The mobility and high activity of these elements has contributed to the genomic duplication and variability of Musa species.

CHAPTER 10

CONCLUSIONS

10.1 Conclusions structure

These general conclusions will give a short overview of the progress towards the aims presented in the Introduction based on the seven chapters detailing specific results of this work. While some aspects of broader significance have been presented in these chapters, some future needs for work and the prospects will be discussed briefly here.

10.1.1 Mobile elements in diploid and polyploid Musa and Brassica crops

The exploitation of homoeologous BAC sequences from pairs of species within the two genera studied here, Musa and Brassica, proved to be efficient in identifying mobile elements of both Class I (retrotransposons and non-LTR retrotransposons) and Class II (DNA transposons). The approach taken based on a bioinformatic, dot plot and comparative analysis was not based upon known sequences or homologies, but driven by data. In the pairs of BACs compared here, all the regions corresponding to a gap in one species with sequence in another species were investigated in detail. As shown in the data chapters, most of these sequences belonged to orders and superfamilies of transposable elements that have been identified in other species. However, some of the elements showed characteristic TIRs, TSDs and gene structures that make them candidates for definition as new superfamilies, but it will be necessary to search for these structures in more species to define the universal nature, abundance, and conserved characteristics. Notably, a very high proportion (more than 80%) of all the gaps/insertion pairs were transposable element related, suggesting that spontaneous genome insertion/deletions are very rare events (within the size limits defined here, which would for example include the length of most introns).

10.1.2 Small mobile element structures

Small, non-autonomous transposable elements have few conserved components, there may be no genes/open reading frames, and TSDs and TIRs may be short, variable and imperfect. The BAC targeting approach here was able to identify many such elements in
both Brassica and Musa showing that indeed many different families are active in recent evolutionary time. In other reports, particular motifs have been found to be abundant, but it has not previously been possible to identify the full population of short mobile element structures. There are many software approaches and methodologies to identify transposable elements, but they are not efficient to identify non-autonomous TEs especially with variable structural features (varied TSDs, no TIRs and short sizes). In contrast, the comparison of homoeologous sequences displays a complete profile of any insertion/deletion due to the activity of these mobile elements.

10.1.3 Autonomous transposable element families

The analysis here showed that most orders and superfamilies of transposable element were both present and active within the Brassica and the Musa genomes. Notably, Mutator, CACTA and Harbinger elements were missing from Musa, but highly abundant in Brassica. Although there are many proteins characteristic of non-LTR LINE elements in the genomic sequence, no LINE elements were found in Musa BACs. SINEs were found to be very active with many polymorphisms in Brassica, but not in Musa. The evolutionary history and activity of each superfamily was different and showed contrasting characteristics in the different species with the two genera. Some elements were specific to one genome (A, B in Musa; A, C in Brassica). These suggest that the controls (whether through RNAi, methylation, and genome positioning) on the activity of elements will be different, and would provide an interesting topic for further study. In the polyploids, activity of genome specific elements, and movement between genomes leading to homogenization, will be important for future study, with implications over timescales from the years relevant to plant breeding and alien chromosome introgression, to the tens of millions of years that defines the impact of whole genome duplications on angiosperm speciation.

10.1.4 Transposon marker development and exploitation

The primers designed here proved to be both well conserved from flanking sequences and robust over the range of 40 and 96 accessions tested in Brassica and Musa respectively showing that these PCR based markers are valuable for detecting polymorphisms. The known mobility was valuable in targeting elements of interest. Both those that are genome-
specific, and polymorphic within genomes, will be useful for different studies in a plant breeding context: for identifying chromosome origin, and for varietal identification or pedigree analysis. These molecular markers can be used to identify the unknown accessions or cultivars, as in the present study a commercial Brassica variety named NATCO was used without knowing its genomic composition and the developed markers clearly sorted its position in Brassica juncea (later confirmed by cytogenetic analysis).

10.2 Dot plot: a highly effective method for transposable element identification

The dot plot approach used in the present study was highly informative in the identification of all types of TEs including the large LTR retrotransposons and very small SINEs or MITE elements in the compared BAC genomic sequences (Figure 10.1-10.3). Dot plots of the sequences were used to identify and detect LTR retrotransposons, LARDs, TRIMs or the Mutator-like MITEs. The parallel lines across the diagonal lines represent the long terminal repeat of retrotransposons, while the inverted lines indicate the terminal inverted repeats of Mutator-like MITEs. Their starting and ending points of LTRs and TIRs can be defined by sliding the window from the start to the end of the LINEs. Two BAC sequences with high homology in sequences were used to see the insertion or deletion of any mobile TE by gap-insertion pairs. The DNA transposon insertions can be easily identified by TSDs in their terminal ends and TIRs internal to the TSDs. The deletions can be identified by having footprints of TSDs. The effectiveness of this method can be measured by the results, where $>90 \%$ investigated gap-insertion pairs were TEs of one or other superfamilies (Figure 10.1-10.3). Similarly the identification of LTR retrotransposons by various softwares such as 'LTR FINDER' and 'LTR_STRUC' were compared with dot plot identification of LTR retrotransposons and dot plot was found as most efficient method to detect all LTR retrotransposons, while the other programs failed to detect all elements. Some mobile insertions with features not common to the known superfamilies were identified by dot plot method, not detected by other softwares. The PCR amplification polymorphism of these insertions indicated their mobile nature. This method is straightforward, if more time consuming than alternatives, but highly efficient, precise and informative in identifying larger and smaller TEs. The figures 10.1-10.3 have shown that nearly all different superfamilies of TEs (Copia, Gypsy, LARDs, TRIMs, LINEs, SINEs, CACTA, Harbinger, Mutator, MITEs and unknown TEs) can be identified and characterized by comparison of homeologous and homologous BAC sequences.

Figure 10.1: Dot plot of homoeologous BAC clones Brassica oleracea (EU642504.1) (horizontal) against Brassica rapa (AC189298.1) (vertical). The comparison of the BACs showed a large homologous region (continuous diagonal line) broken by multiple gap-insertion pairs. The gaps showed transposon insertions from various LINEs, SINEs (retrotransposons), hATs, Mutator, Harbinger (DNA transposons), MITEs and novel insertions shown by various colours. The details of the elements are given in respective chapters. Many small insertions <500 bp are not highlighted here.

Figure 10.2: Dot plot of homoeologous BAC clones Brassica rapa (AC155344.1) (horizontal) against Brassica oleracea (AC240081.1) (vertical). The gaps showed transposon insertions from various Copia, Gypsy, LINEs, SINEs (retrotransposons), hATs, Harbinger (DNA transposons), MITEs and novel insertions. The uncharacterized elements are represented by green colours. The details of the elements are given in respective chapters. Many small insertions <500 bp are not highlighted here.

Figure 10.3: Dot plot of homoeologous BAC clones Brassica rapa (AC155341.2) (horizontal) against Brassica oleracea (AC240089.1) (vertical). The gaps showed transposon insertions from various LINEs, SINEs (retrotransposons), hATs, CACTA, Harbinger (DNA transposons), MITEs and novel insertions. The details of the elements are given in respective chapters. Many small insertions <500 bp are not highlighted here.

10.3 Total copy numbers of TE superfamilies in Brassica genome

The genome of Brassica rapa and Brassica oleracea is rich in various types of TEs. Almost all different types of Class I retrotransposons and Class II DNA transposons investigated in other plant genomes were identified in Brassica genomes. The total estimated copies from the whole genome indicated that the Copia family contained the highest numbers of copies in comparison to other LTR retrotransposons and the numbers were much higher in Brassica oleracea (7540) as compared to Brassica rapa (1596) (Figure 10.4). The TRIM elements were fewer in numbers in both A and C-genome Brassica. The SINEs were also abundant in Brassica oleracea and less frequent in Brassica rapa. Among DNA transposons the non-autonomous hATs were very high in numbers in both Brassica rapa and Brassica oleracea. The MITEs derived from Mariner (Stowaway), Harbingers (Tourist) and Mutator-like MITEs were very high in number; predominant in Brassica oleracea. Very few copies of Mutator and Harbinger-like elements were identified and Mariner are only represented by their MITEs (Stowaway) derivatives. The TE elements with unknown superfamilies were also identified in the present study. In general, the number of copies of each superfamily is higher in C-genome as compared to A-genome.

Figure 10.4: Estimated copy numbers of each superfamily of transposable elements in Brassic rapa and Brassica oleracea whole genomes.

10.4 Relative percentages of TE superfamilies in the Brassica genomes

The relative percentage of each TE superfamily was calculated in Brassica rapa and Brassica oleracea. The Copia elements showed a very high percentage as compared to other TEs. The Gypsy superfamily covered a high proportion after Copia. The LARDs superfamily also covered a substantial proportion (2.1\%) of A-genome and 4.6\% in Cgenome Brassica. TRIMs were less active in both genomes and covered the smallest proportion of all TEs investigated in Brassica genomes (Figure 10.5a \& b). LINEs were more abundant in A-genome (7.3\%), while in C-genome they are only 4.4% of all TE proportion. SINEs were very high copy numbered elements in Brassica (predominant in Brassica oleracea) but only covered $0.8-1.8 \%$ of all TEs due to their small sizes.

Among DNA transposons, the major proportion (24.3\%) is covered by Brassica oleracea CACTA elements, while they are less frequent (4.1%) in Brassica rapa (Figure 10.5a \& b). The non-autonomous hATs were distributed in high copy numbers but due to their small sizes, they cover very less proportion of TEs in Brassica rapa (16.2\%) and Brassica oleracea (4.7%). Harbinger and Mutator-like TEs are very less frequent DNA transposons in both Brassica rapa and Brassica oleracea, while all the MITEs (Stowaway, Tourist, Mutator-like) covered major portion of TEs. Among the MITEs, Mutator-like MITEs constitute the major proportion in Brassica rapa (18.4\%) and Brassica oleracea (6.8%) due to their larger sizes and high copy numbers. The Stowaway and Tourist-like MITEs have shown high activity in A-genome.

In Brassica oleracea nearly half the proportion is composed of LTR retrotransposons, while CACTA covered a quarter of all TEs. Several novel insertions were also identified with unknown superfamilies and were included in a group of unknown TEs. The unknown elements covered a small proportion ($<2.1 \%$) as compared to other superfamilies of TEs in Brassica genomes (Figure 10.5a \& b).

Brassica rapa

Brassica oleracea

Figure 10.5: Percentage of each TE superfamily in a) Brassica rapa and b) Brassica oleracea. The Copia elements have shown very high percentage as compared to other TEs.

10.5 Future developments

During the work in this thesis, DNA sequencing costs have reduced many folds, although the effort required for assembly and analysis has changed by a much smaller amount. Indeed, many whole genome sequences published in the last two years have many gaps or miss repetitive and mobile sequences. The elements defined from BACs as in this work will be useful to assist with efficient and complete genome sequence assembly approaches in the future.

Markers for identification of chromosomes and genomes are important in wide hybridization and alien introgression programmes which have enable plant breeders to exploit variation from diverse germplasm. Both the genera studied here have interesting challenges for crop improvement. Both have several related species with various chromosome numbers, and polyploids are common. There is a need for a robust phylogeny showing the relationship of the wild and cultivated relatives. Germplasm resources are critical to collect, characterize at molecular and phenotypic (including biotic and abiotic stress resistance) levels. Interspecific hybridization is also likely to be very important to increase the diversity available to breeders. Banana has the additional problem of sterility and parthenocarpy, attributes required in the crop. In the next months, the genome specific markers here will be tested in both Brassica and Musa to identify transfer of chromosomes between species in intercrosses. As well as use of flanking PCR markers, it will also be important to test the mobile transposable element fragment further by Southern and in situ hybridization to see if they are high copy number but still retaining genome or even chromosome specificity by hybridization. The work will also need to be expanded to see if any sub-genome specific markers can be developed, and test the primers in more distant species of interest for breeders, whether in other Brassicaceae genera (eg Erucastrum, Diplotaxis and Enarthrocarpus) or Musaceae/Zingiberales species such as Ensete or ginger.

Understanding the past evolutionary behaviour of transposable elements within the genome is a key to exploiting them as both markers and sources of variability in the future. In this work, the genomic studies have made a significant advance towards identification of the nature, structure and mobility of transposable elements as a major genomic component of genomes studied here.

References

REFERENCES

Ahmed S, Shafiuddin M, Azam MS, Islam MS, Ghosh A, Khan H. 2011. Identification and characterization of jute LTR retrotransposons:: Their abundance, heterogeneity and transcriptional activity. Mob Genet Elements, 1: 18-28.

Alix K, Heslop-Harrison JS. 2004. The diversity of retroelements in diploid and allotetraploid Brassica species. Plant Mol Biol, 54: 895-909.
Alix K, Joets J, Ryder CD et al. 2008. The CACTA transposon Botl played a major role in Brassica genome divergence and gene proliferation. Plant J, 56: 1030-44.
Altschul SF, Gertz EM, Agarwala R, Schaffer AA, Yu YK. 2009. PSI-BLAST pseudocounts and the minimum description length principle. Nucleic Acids Res, 37: 815-24.

Altschul SF, Madden TL, Schaffer AA et al. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res, 25: 3389-402.
Antonius-Klemola K, Kalendar R, Schulman AH. 2006. TRIM retrotransposons occur in apple and are polymorphic between varieties but not sports. Theor Appl Genet, 112: 999-1008.
Bancroft I, Morgan C, Fraser F et al. 2011. Dissecting the genome of the polyploid crop oilseed rape by transcriptome sequencing. Nat Biotechnol, 29: 762-6.
Barker MS, Vogel H, Schranz ME. 2009. Paleopolyploidy in the Brassicales: analyses of the Cleome transcriptome elucidate the history of genome duplications in Arabidopsis and other Brassicales. Genome Biol Evol, 1: 391-9.

Benjak A, Boue S, Forneck A, Casacuberta JM. 2009. Recent amplification and impact of MITEs on the genome of grapevine (Vitis vinifera L.). Genome Biol Evol, 1: 75-84.

Bennett MD, Leitch IJ. 2011. Nuclear DNA amounts in angiosperms: targets, trends and tomorrow. Ann Bot, 107: 467-590.

Bennetzen JL. 2000. Transposable element contributions to plant gene and genome evolution. Plant Mol Biol, 42: 251-69.

Bernet GP, Asins MJ. 2003. Identification and genomic distribution of gypsy like retrotransposons in Citrus and Poncirus. Theor Appl Genet, 108: 121-30.

Bundock P, Hooykaas P. 2005. An Arabidopsis hAT-like transposase is essential for plant development. Nature, 436: 282-4.

Bureau TE, Ronald PC, Wessler SR. 1996. A computer-based systematic survey reveals the predominance of small inverted-repeat elements in wild-type rice genes. Proc Natl Acad Sci U S A, 93: 8524-9.

Bureau TE, Wessler SR. 1992. Tourist: a large family of small inverted repeat elements frequently associated with maize genes. Plant Cell, 4: 1283-94.

Bureau TE, Wessler SR. 1994a. Mobile inverted-repeat elements of the Tourist family are associated with the genes of many cereal grasses. Proc Natl Acad Sci U S A, 91: 1411-5.
Bureau TE, Wessler SR. 1994b. Stowaway: a new family of inverted repeat elements associated with the genes of both monocotyledonous and dicotyledonous plants. Plant Cell, 6: 907-16.

Capy P. 2005. Classification and nomenclature of retrotransposable elements. Cytogenet Genome Res, 110: 457-61.

Chan PP, Lowe TM. 2009. GtRNAdb: a database of transfer RNA genes detected in genomic sequence. Nucleic Acids Res, 37: D93-7.

Chen ZJ. 2007. Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids. Aпnи Rev Plant Biol, 58: 377-406.
Cheng X, Zhang D, Cheng Z, Keller B, Ling HQ. 2009. A new family of Ty1-copia-like retrotransposons originated in the tomato genome by a recent horizontal transfer event. Genetics, 181: 1183-93.
Cheng XD, Ling HQ. 2006. [Non-LTR retrotransposons: LINEs and SINEs in plant genome]. Yi Chuan, 28: 731-6.

Cheung F, Town CD. 2007. A BAC end view of the Musa acuminata genome. BMC Plant Biol, 7: 29.
Comai L. 2005. The advantages and disadvantages of being polyploid. Nat Rev Genet, 6: 836-46.
de Freitas Ortiz M, Lorenzatto KR, Correa BR, Loreto EL. 2010. hAT transposable elements and their derivatives: an analysis in the 12 Drosophila genomes. Genetica, 138: 649-55.
de Jesus EM, Ochoa Cruz EA, Cruz GM, Van Sluys MA. 2012. Diversification of hAT transposase paralogues in the sugarcane genome. Mol Genet Genomics.
De Keukeleire P, De Schepper S, Gielis J, Gerats T. 2004. A PCR-based assay to detect hAT-like transposon sequences in plants. Chromosome Res, 12: 117-23.

Deragon JM, Casacuberta JM, Panaud O. 2008. Plant transposable elements. Genome Dyn, 4: 69-82.
Deragon JM, Gilbert N, Rouquet L, Lenoir A, Arnaud P, Picard G. 1996. A transcriptional analysis of the S1Bn (Brassica napus) family of SINE retroposons. Plant Mol Biol, 32: 869-78.

Deragon JM, Landry BS, Pelissier T, Tutois S, Tourmente S, Picard G. 1994. An analysis of retroposition in plants based on a family of SINEs from Brassica napus. J Mol Evol, 39: 378-86.

Deragon JM, Zhang X. 2006. Short interspersed elements (SINEs) in plants: origin, classification, and use as phylogenetic markers. Syst Biol, 55: 949-56.
Doak TG, Doerder FP, Jahn CL, Herrick G. 1994. A proposed superfamily of transposase genes: transposon-like elements in ciliated protozoa and a common "D35E" motif. Proc Natl Acad Sci U S A, 91: 942-6.

Doolittle WF, Sapienza C. 1980. Selfish genes, the phenotype paradigm and genome evolution. Nature, 284: 601-3.
Doyle, J.J. and Doyle, J.L. 1990. Isolation of plant DNA from fresh tissue. Focus 12: 13-15.
Drummond AJ, Ashton B, Buxton S et al. 2011. Geneious v5.4, Available from http://www.geneious.com/.
Du C, Hoffman A, He L, Caronna J, Dooner HK. 2011. The complete Ac/Ds transposon family of maize. BMC Genomics, 12: 588.

Du J, Tian Z, Hans CS et al. 2010. Evolutionary conservation, diversity and specificity of LTRretrotransposons in flowering plants: insights from genome-wide analysis and multi-specific comparison. Plant J, 63: 584-98.

Eickbush TH, Jamburuthugoda VK. 2008. The diversity of retrotransposons and the properties of their reverse transcriptases. Virus Res, 134: 221-34.

FAOStat. 2012. FAOSTAT http://faostat.fao.org/. Accessed March, 2012.
Fawcett JA, Kawahara T, Watanabe H, Yasui Y. 2006. A SINE family widely distributed in the plant kingdom and its evolutionary history. Plant Mol Biol, 61: 505-14.

References

Feschotte C. 2008. Transposable elements and the evolution of regulatory networks. Nat Rev Genet, 9: 397405.

Feschotte C, Jiang N, Wessler SR. 2002. Plant transposable elements: where genetics meets genomics. Nat Rev Genet, 3: 329-41.
Feschotte C, Mouches C. 2000. Evidence that a family of miniature inverted-repeat transposable elements (MITEs) from the Arabidopsis thaliana genome has arisen from a pogo-like DNA transposon. Mol Biol Evol, 17: 730-7.
Feschotte C, Pritham EJ. 2007. DNA transposons and the evolution of eukaryotic genomes. Annu Rev Genet, 41: 331-68.
Feschotte C, Wessler SR. 2002. Mariner-like transposases are widespread and diverse in flowering plants. Proc Natl Acad Sci U S A, 99: 280-5.

Finnegan DJ. 1989. Eukaryotic transposable elements and genome evolution. Trends Genet, 5: 103-7.
Flavell AJ. 1984. Role of reverse transcription in the generation of extrachromosomal copia mobile genetic elements. Nature, 310: 514-6.

Flavell AJ. 1992. Ty1-copia group retrotransposons and the evolution of retroelements in the eukaryotes. Genetica, 86: 203-14.
Flavell AJ. 1999. Long terminal repeat retrotransposons jump between species. Proc Natl Acad Sci U S A, 96: 12211-2.
Flavell AJ, Dunbar E, Anderson R, Pearce SR, Hartley R, Kumar A. 1992a. Ty1-copia group retrotransposons are ubiquitous and heterogeneous in higher plants. Nucleic Acids Res, 20: 3639-44.
Flavell AJ, Jackson V, Iqbal MP, Riach I, Waddell S. 1995. Ty1-copia group retrotransposon sequences in amphibia and reptilia. Mol Gen Genet, 246: 65-71.
Flavell AJ, Knox MR, Pearce SR, Ellis TH. 1998. Retrotransposon-based insertion polymorphisms (RBIP) for high throughput marker analysis. Plant J, 16: 643-50.
Flavell AJ, Pearce SR, Heslop-Harrison P, Kumar A. 1997. The evolution of Ty1-copia group retrotransposons in eukaryote genomes. Genetica, 100: 185-95.
Flavell AJ, Pearce SR, Kumar A. 1994. Plant transposable elements and the genome. Curr Opin Genet Dev, 4: 838-44.
Flavell AJ, Smith DB. 1992. A Ty1-copia group retrotransposon sequence in a vertebrate. Mol Gen Genet, 233: 322-6.
Flavell AJ, Smith DB, Kumar A. 1992b. Extreme heterogeneity of Ty1-copia group retrotransposons in plants. Mol Gen Genet, 231: 233-42.
Friesen N, Brandes A, Heslop-Harrison JS. 2001. - Diversity, origin, and distribution of retrotransposons (gypsy and copia) in conifers. Mol Biol Evol, 18: 1176-88.
Fujino K, Sekiguchi H. 2011. Transposition behavior of nonautonomous a hAT superfamily transposon nDart in rice (Oryza sativa L.). Mol Genet Genomics, 286: 135-42.
Gaeta RT, Pires JC, Iniguez-Luy F, Leon E, Osborn TC. 2007. Genomic changes in resynthesized Brassica napus and their effect on gene expression and phenotype. Plant Cell, 19: 3403-17.
Gbadegesin MA, Beeching JR. 2010. Enhancer/Suppressor mutator (En/Spm)-like transposable elements of cassava (Manihot esculenta) are transcriptionally inactive. Genet Mol Res, 9: 639-50.

References

Gbadegesin MA, Wills MA, Beeching JR. 2008. Diversity of LTR-retrotransposons and Enhancer/Suppressor Mutator-like transposons in cassava (Manihot esculenta Crantz). Mol Genet Genomics, 280: 305-17.

Ge XH, Wang J, Li ZY. 2009. Different genome-specific chromosome stabilities in synthetic Brassica allohexaploids revealed by wide crosses with Orychophragmus. Ann Bot, 104: 19-31.

Gierl A. 1996. The En/Spm transposable element of maize. Curr Top Microbiol Immunol, 204: 145-59.
Gierl A, Saedler H. 1989. The En/Spm transposable element of Zea mays. Plant Mol Biol, 13: 261-6.
Gierl A, Schwarz-Sommer Z, Saedler H. 1985. Molecular interactions between the components of the En-I transposable element system of Zea mays. Embo J, 4: 579-83.
Goubely C, Arnaud P, Tatout C, Heslop-Harrison JS, Deragon JM. 1999. S1 SINE retroposons are methylated at symmetrical and non-symmetrical positions in Brassica napus: identification of a preferred target site for asymmetrical methylation. Plant Mol Biol, 39: 243-55.
Grzebelus D, Gladysz M, Macko-Podgorni A et al. 2009. Population dynamics of miniature invertedrepeat transposable elements (MITEs) in Medicago truncatula. Gene, 448: 214-20.

Grzebelus D, Lasota S, Gambin T, Kucherov G, Gambin A. 2007. Diversity and structure of PIF/Harbinger-like elements in the genome of Medicago truncatula. BMC Genomics, 8: 409.
Grzebelus D, Simon PW. 2009. Diversity of DcMaster-like elements of the PIF/Harbinger superfamily in the carrot genome. Genetica, 135: 347-53.
Grzebelus D, Yau YY, Simon PW. 2006. Master: a novel family of PIF/Harbinger-like transposable elements identified in carrot (Daucus carota L.). Mol Genet Genomics, 275: 450-9.
Guignon V, Droc G, Alaux M et al. 2012. Chado Controller: advanced annotation management with a community annotation system. Bioinformatics.
Han CG, Frank MJ, Ohtsubo H, Ohtsubo E. 2000. New transposable elements identified as insertions in rice transposon Tnr1. Genes Genet Syst, 75: 69-77.

Han Y, Korban SS. 2007. Spring: a novel family of miniature inverted-repeat transposable elements is associated with genes in apple. Genomics, 90: 195-200.
Hansen CN, Harper G, Heslop-Harrison JS. 2005. Characterisation of pararetrovirus-like sequences in the genome of potato (Solanum tuberosum). Cytogenet Genome Res, 110: 559-65.
Hansen CN, Heslop-Harrison JS. 2004. Sequences and Phylogenies of Plant Pararetroviruses, Viruses and Transposable Elements. Adnances in Botanical Research, 41: 165-193.
Havecker ER, Gao X, Voytas DF. 2004. The diversity of LTR retrotransposons. Genome Biol, 5: 225.
Hawkins JS, Hu G, Rapp RA, Grafenberg JL, Wendel JF. 2008. Phylogenetic determination of the pace of transposable element proliferation in plants: copia and LINE-like elements in Gossypium. Genome, 51: 11-8.

Heitkam T, Schmidt T. 2009. BNR - a LINE family from Beta vulgaris - contains a RRM domain in open reading frame 1 and defines a L1 sub-clade present in diverse plant genomes. Plant J, 59: 872-82.
Heslop-Harrison J. 2011. Genomics, Banana Breeding and Superdomestication. Proc. Int'l ISHS-ProMusa Symp. on Global Perspectives on Asian Challenges. Acta Hort. 897.
Heslop-Harrison JS. 2010. Genes in evolution: the control of diversity and speciation. Ann Bot, 106: 437-8.
Heslop-Harrison JS. 2012. Genome evolution: extinction, continuation or explosion? Current Opinion in Plant Biology, 15.

Heslop-Harrison JS, Brandes A, Taketa S et al. 1997. The chromosomal distributions of Ty1-copia group retrotransposable elements in higher plants and their implications for genome evolution. Genetica, 100: 197-204.

Heslop-Harrison JS, Schwarzacher T. 2007. Domestication, genomics and the future for banana. Ann Bot, 100: 1073-84.

Heslop-Harrison JS, Schwarzacher T. 2011. Organisation of the plant genome in chromosomes. Plant J, 66: 18-33.

Hippolyte I, Jenny C, Gardes L et al. 2012. Foundation characteristics of edible Musa triploids revealed from allelic distribution of SSR markers. Ann Bot, 109: 937-51.

Hribova E, Neumann P, Matsumoto T, Roux N, Macas J, Dolezel J. 2010. Repetitive part of the banana (Musa acuminata) genome investigated by low-depth 454 sequencing. BMC Plant Biol, 10: 204.

Hu W, Das OP, Messing J. 1995. Zeon-1, a member of a new maize retrotransposon family. Mol Gen Genet, 248: 471-80.

Huang J, Zhang K, Shen Y et al. 2009. Identification of a high frequency transposon induced by tissue culture, nDaiZ, a member of the hAT family in rice. Genomics, 93: 274-81.
Jacobs G, Dechyeva D, Menzel G, Dombrowski C, Schmidt T. 2004. Molecular characterization of Vulmar1, a complete mariner transposon of sugar beet and diversity of mariner- and En/Spm-like sequences in the genus Beta. Genome, 47: 1192-201.

Jarvik T, Lark KG. 1998. Characterization of Soymar1, a mariner element in soybean. Genetics, 149: 156974.

Jiang N, Bao Z, Temnykh S et al. 2002. Dasheng: a recently amplified nonautonomous long terminal repeat element that is a major component of pericentromeric regions in rice. Genetics, 161: 1293-305.

Jiang N, Bao Z, Zhang X, Eddy SR, Wessler SR. 2004a. Pack-MULE transposable elements mediate gene evolution in plants. Nature, 431: 569-73.

Jiang N, Ferguson AA, Slotkin RK, Lisch D. 2011. Pack-Mutator-like transposable elements (PackMULEs) induce directional modification of genes through biased insertion and DNA acquisition. Proc Natl Acad Sci U S A, 108: 1537-42.

Jiang N, Feschotte C, Zhang X, Wessler SR. 2004b. Using rice to understand the origin and amplification of miniature inverted repeat transposable elements (MITEs). Curr Opin Plant Biol, 7: 115-9.

Jing R, Vershinin A, Grzebyta J et al. 2010. The genetic diversity and evolution of field pea (Pisum) studied by high throughput retrotransposon based insertion polymorphism (RBIP) marker analysis. BMC Evol Biol, 10: 44.

Junier T, Pagni M. 2000. Dotlet: diagonal plots in a web browser. Bioinformatics, 16: 178-9.
Juretic N, Hoen DR, Huynh ML, Harrison PM, Bureau TE. 2005. The evolutionary fate of MULEmediated duplications of host gene fragments in rice. Genome Res, 15: 1292-7.

Jurka J, Kapitonov VV. 2001. PIFs meet Tourists and Harbingers: a superfamily reunion. Proc Natl Acad Sci U S A, 98: 12315-6.

Jurka J, Kapitonov VV, Kohany O, Jurka MV. 2007. Repetitive sequences in complex genomes: structure and evolution. Anпи Rev Genomics Hum Genet, 8: 241-59.

Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J. 2005. Repbase Update, a database of eukaryotic repetitive elements. Cytogenet Genome Res, 110: 462-7.

Kalendar R, Schulman AH. 2006. IRAP and REMAP for retrotransposon-based genotyping and fingerprinting. Nat Protoc, 1: 2478-84.

Kalendar R, Vicient CM, Peleg O, Anamthawat-Jonsson K, Bolshoy A, Schulman AH. 2004. Large retrotransposon derivatives: abundant, conserved but nonautonomous retroelements of barley and related genomes. Genetics, 166: 1437-50.

Kamate K, Brown S, Durand P, Bureau JM, De Nay D, Trinh TH. 2001. Nuclear DNA content and base composition in 28 taxa of Musa. Genome, 44: 622-7.
Kapitonov VV, Jurka J. 1999. Molecular paleontology of transposable elements from Arabidopsis thaliana. Genetica, 107: 27-37.
Kapitonov VV, Jurka J. 2003. A novel class of SINE elements derived from 5S rRNA. Mol Biol Evol, 20: 694-702.

Kapitonov VV, Jurka J. 2004. Harbinger transposons and an ancient HARBI1 gene derived from a transposase. DNA Cell Biol, 23: 311-24.

Kapitonov VV, Jurka J. 2008. A universal classification of eukaryotic transposable elements implemented in Repbase. Nat Rev Genet, 9: 411-2; author reply 414.
Kapitonov VV, Tempel S, Jurka J. 2009. Simple and fast classification of non-LTR retrotransposons based on phylogeny of their RT domain protein sequences. Gene, 448: 207-13.
Karlov GI, Fesenko IA, Andreeva GN, Khrustaleva LI. 2010. [Chromosome organization of Ty1-copialike retrotransposons in the tomato genome]. Genetika, 46: 769-73.

Kawakami T, Strakosh SC, Zhen Y, Ungerer MC. 2010. Different scales of Tyl/copia-like retrotransposon proliferation in the genomes of three diploid hybrid sunflower species. Heredity (Edinb), 104: 341-50.
Kazazian HH, Jr. 2004. Mobile elements: drivers of genome evolution. Science, 303: 1626-32.
Kempken F, Windhofer F. 2001. The hAT family: a versatile transposon group common to plants, fungi, animals, and man. Chromosoma, 110: 1-9.
Khan MF, Yadav BS, Ahmad K, Jaitly AK. 2011. Mapping and analysis of the LINE and SINE type of repetitive elements in rice. Bioinformation, 7: 276-9.

Kidwell MG, Lisch DR. 2001. Perspective: transposable elements, parasitic DNA, and genome evolution. Evolution, 55: 1-24.

Kikuchi K, Terauchi K, Wada M, Hirano HY. 2003. The plant MITE mPing is mobilized in anther culture. Nature, 421: 167-70.
Koch MA, Haubold B, Mitchell-Olds T. 2000. Comparative evolutionary analysis of chalcone synthase and alcohol dehydrogenase loci in Arabidopsis, Arabis, and related genera (Brassicaceae). Mol Biol Evol, 17: 1483-98.

Komatsu M, Shimamoto K, Kyozuka J. 2003. Two-step regulation and continuous retrotransposition of the rice LINE-type retrotransposon Karma. Plant Cell, 15: 1934-44.
Kramerov DA, Vassetzky NS. 2011. Origin and evolution of SINEs in eukaryotic genomes. Heredity (Edinb), 107: 487-95.
Kuang H, Padmanabhan C, Li F et al. 2009. Identification of miniature inverted-repeat transposable elements (MITEs) and biogenesis of their siRNAs in the Solanaceae: new functional implications for MITEs. Genome Res, 19: 42-56.

Kubis SE, Heslop-Harrison JS, Desel C, Schmidt T. 1998. The genomic organization of non-LTR retrotransposons (LINEs) from three Beta species and five other angiosperms. Plant Mol Biol, 36: 821-31.

Kumar A, Bennetzen JL. 1999. Plant retrotransposons. Annu Rev Genet, 33: 479-532.
Kunze R, Saedler H, Lonnig WE. 1997. Plant Transposable elements. Advances in Botanical Research, 27.
Kwon SJ, Hong SW, Son JH et al. 2006. CACTA and MITE transposon distributions on a genetic map of rice using F15 RILs derived from Milyang 23 and Gihobyeo hybrids. Mol Cells, 21: 360-6.
Langdon T, Jenkins G, Hasterok R, Jones RN, King IP. 2003. A high-copy-number CACTA family transposon in temperate grasses and cereals. Genetics, 163: 1097-108.
Le QH, Wright S, Yu Z, Bureau T. 2000. Transposon diversity in Arabidopsis thaliana. Proc Natl Acad Sci U S A, 97: 7376-81.

Le Rouzic A, Boutin TS, Capy P. 2007. Long-term evolution of transposable elements. Proc Natl Acad Sci U S A, 104: 19375-80.

Lee JK, Kwon SJ, Park KC, Kim NS. 2005. Isaac-CACTA transposons: new genetic markers in maize and sorghum. Genome, 48: 455-60.
Leeton PR, Smyth DR. 1993. An abundant LINE-like element amplified in the genome of Lilium speciosum. Mol Gen Genet, 237: 97-104.
Lenoir A, Lavie L, Prieto JL et al. 2001. The evolutionary origin and genomic organization of SINEs in Arabidopsis thaliana. Mol Biol Evol, 18: 2315-22.

Lerat E, Capy P. 1999. Retrotransposons and retroviruses: analysis of the envelope gene. Mol Biol Evol, 16: 1198-207.

Lisch D. 2002. Mutator transposons. Trends Plant Sci, 7: 498-504.
Lisch DR, Freeling M, Langham RJ, Choy MY. 2001. Mutator transposase is widespread in the grasses. Plant Physiol, 125: 1293-303.

Llorens C, Futami R, Bezemer D, Moya A. 2008. The Gypsy Database (GyDB) of mobile genetic elements. Nucleic Acids Res, 36: D38-46.
Llorens C, Futami R, Covelli L et al. 2011. The Gypsy Database (GyDB) of mobile genetic elements: release 2.0. Nucleic Acids Res, 39: D70-4.
Llorens C, Munoz-Pomer A, Bernad L, Botella H, Moya A. 2009. Network dynamics of eukaryotic LTR retroelements beyond phylogenetic trees. Biol Direct, 4: 41.
Lu C, Chen J, Zhang Y, Hu Q, Su W, Kuang H. 2012. Miniature Inverted-Repeat Transposable Elements (MITEs) Have Been Accumulated through Amplification Bursts and Play Important Roles in Gene Expression and Species Diversity in Oryza sativa. Mol Biol Evol, 29: 1005-17.
Lyons M, Cardle L, Rostoks N, Waugh R, Flavell AJ. 2008. Isolation, analysis and marker utility of novel miniature inverted repeat transposable elements from the barley genome. Mol Genet Genomics, 280: 275-85.
Ma J, Devos KM, Bennetzen JL. 2004. Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice. Genome Res, 14: 860-9.
Ma XF, Gustafson JP. 2008. Allopolyploidization-accommodated genomic sequence changes in triticale. Ann Bot, 101: 825-32.

Macas J, Koblizkova A, Neumann P. 2005. Characterization of Stowaway MITEs in pea (Pisum sativum L.) and identification of their potential master elements. Genome, 48: 831-9.

Macas J, Neumann P, Navratilova A. 2007. Repetitive DNA in the pea (Pisum sativum L.) genome: comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula. BMC Genomics, 8: 427.

Malik HS, Burke WD, Eickbush TH. 1999. The age and evolution of non-LTR retrotransposable elements. Mol Biol Evol, 16: 793-805.
Marsch-Martinez N, Pereira A. 2011. Activation tagging with En/Spm-I /dSpm transposons in Arabidopsis. Methods Mol Biol, 678: 91-105.
McCarty DR, Settles AM, Suzuki M et al. 2005. Steady-state transposon mutagenesis in inbred maize. Plant J, 44: 52-61.

McClintock B. 1950. The origin and behavior of mutable loci in maize. Proc Natl Acad Sci U S A, 36: 34455.

Menzel G, Dechyeva D, Keller H, Lange C, Himmelbauer H, Schmidt T. 2006. Mobilization and evolutionary history of miniature inverted-repeat transposable elements (MITEs) in Beta vulgaris L. Chromosome Res, 14: 831-44.

Menzel G, Krebs C, Diez M et al. 2012. Survey of sugar beet (Beta vulgaris L.) hAT transposons and MITE-like hATpin derivatives. Plant Mol Biol, 78: 393-405.

Mills RE, Bennett EA, Iskow RC et al. 2006. Recently mobilized transposons in the human and chimpanzee genomes. Am J Hum Genet, 78: 671-9.
Minervini CF, Viggiano L, Caizzi R, Marsano RM. 2009. Identification of novel LTR retrotransposons in the genome of Aedes aegypti. Gene, 440: 42-9.
Miura A, Kato M, Watanabe K, Kawabe A, Kotani H, Kakutani T. 2004. Genomic localization of endogenous mobile CACTA family transposons in natural variants of Arabidopsis thaliana. Mol Genet Genomics, 270: 524-32.
Miura A, Yonebayashi S, Watanabe K, Toyama T, Shimada H, Kakutani T. 2001. Mobilization of transposons by a mutation abolishing full DNA methylation in Arabidopsis. Nature, 411: 212-4.

Moisy C, Garrison KE, Meredith CP, Pelsy F. 2008. Characterization of ten novel Tyl/copia-like retrotransposon families of the grapevine genome. BMC Genomics, 9: 469.

Momose M, Abe Y, Ozeki Y. 2010. Miniature inverted-repeat transposable elements of Stowaway are active in potato. Genetics, 186: 59-66.
Monteiro A, Lunn T. 1999. Trends and perspectives of perspectives of vegetable Brassica Breeding Worldwide. WCHR- World Conference on Horticulture Research ISHS. Acta Horticulture, 495.
Motohashi R, Ohtsubo E, Ohtsubo H. 1996. Identification of Tnr3, a suppressor-mutator/enhancer-like transposable element from rice. Mol Gen Genet, 250: 148-52.

Muehlbauer GJ, Bhau BS, Syed NH et al. 2006. A hAT superfamily transposase recruited by the cereal grass genome. Mol Genet Genomics, 275: 553-63.

Muszewska A, Hoffman-Sommer M, Grynberg M. 2011. LTR retrotransposons in fungi. PLoS One, 6: e29425.
Muthukumar B, Bennetzen JL. 2004. Isolation and characterization of genomic and transcribed retrotransposon sequences from sorghum. Mol Genet Genomics, 271: 308-16.

References

Myouga F, Tsuchimoto S, Noma K, Ohtsubo H, Ohtsubo E. 2001. Identification and structural analysis of SINE elements in the Arabidopsis thaliana genome. Genes Genet Syst, 76: 169-79.
Nacken WK, Piotrowiak R, Saedler H, Sommer H. 1991. The transposable element Tam1 from Antirrhinum majus shows structural homology to the maize transposon $\mathrm{En} / \mathrm{Spm}$ and has no sequence specificity of insertion. Mol Gen Genet, 228: 201-8.

Noma K, Ohtsubo E, Ohtsubo H. 1999. Non-LTR retrotransposons (LINEs) as ubiquitous components of plant genomes. Mol Gen Genet, 261: 71-9.
Noma K, Ohtsubo H, Ohtsubo E. 2001. A new class of LINEs (ATLN-L) from Arabidopsis thaliana with extraordinary structural features. DNA Res, 8: 291-9.
Novikova O. 2009. Chromodomains and LTR retrotransposons in plants. Commun Integr Biol, 2: 158-62.
Novikova O, Mayorov V, Smyshlyaev G et al. 2008. Novel clades of chromodomain-containing Gypsy LTR retrotransposons from mosses (Bryophyta). Plant J, 56: 562-74.
Okada N, Hamada M, Ogiwara I, Ohshima K. 1997. SINEs and LINEs share common 3' sequences: a review. Gene, 205: 229-43.

Oki N, Yano K, Okumoto Y, Tsukiyama T, Teraishi M, Tanisaka T. 2008. A genome-wide view of miniature inverted-repeat transposable elements (MITEs) in rice, Oryza sativa ssp. japonica. Genes Genet Syst, 83: 321-9.
Okpul T, Harding RM, Dieters MJ, Godwin ID. 2011. Occurrence of LINE, gypsy-like, and copia-like retrotransposons in the clonally propagated sweet potato (Ipomoea batatas L.). Genome, 54: 603-9.

Orgel LE, Crick FH. 1980. Selfish DNA: the ultimate parasite. Nature, 284: 604-7.
Osborn TC, Pires JC, Birchler JA et al. 2003. Understanding mechanisms of novel gene expression in polyploids. Trends Genet, 19: 141-7.

Ostergaard L, King GJ. 2008. Standardized gene nomenclature for the Brassica genus. Plant Methods, 4: 10.

Ouyang S, Buell CR. 2004. The TIGR Plant Repeat Databases: a collective resource for the identification of repetitive sequences in plants. Nucleic Acids Res, 32: D360-3.

Park KC, Jeong CS, Song MT, Kim NS. 2003. A new MITE family, Pangrangja, in Gramineae species. Mol Cells, 15: 373-80.
Park M, Jo S, Kwon JK et al. 2011. Comparative analysis of pepper and tomato reveals euchromatin expansion of pepper genome caused by differential accumulation of Ty3/Gypsy-like elements. BMC Genomics, 12: 85.

Pearce SR, Harrison G, Heslop-Harrison PJ, Flavell AJ, Kumar A. 1997. Characterization and genomic organization of Ty1-copia group retrotransposons in rye (Secale cereale). Genome, 40: 617-25.
Pereira A, Cuypers H, Gierl A, Schwarz-Sommer Z, Saedler H. 1986. Molecular analysis of the En/Spm transposable element system of Zea mays. Embo J, 5: 835-41.

Perrier X, De Langhe E, Donohue M et al. 2011. Multidisciplinary perspectives on banana (Musa spp.) domestication. Proc Natl Acad Sci U S A, 108: 11311-8.

Peters SA, Datema E, Szinay D et al. 2009. Solanum lycopersicum cv. Heinz 1706 chromosome 6: distribution and abundance of genes and retrotransposable elements. Plant J, 58: 857-69.
Plasterk RHA, van Luenen H. 1997. Transposons. In: Riddle DL, Blumenthal T, Meyer BJ, Priess JR eds. C. elegans II. Cold Spring Harbor NY.

Pollefeys P, Sharrock S, Arnaud E. 2004. Preliminary analysis of the literature on the distribution of wild Musa species using MGIS and DIVA-GIS Montpellier, France: INIBAP.

Pozueta-Romero J, Houlne G, Schantz R. 1998. Identification of a short interspersed repetitive element in partially spliced transcripts of the bell pepper (Capsicum annиит) PAP gene: new evolutionary and regulatory aspects on plant tRNA-related SINEs. Gene, 214: 51-8.
Price Z, Dumortier F, MacDonald W, Mayes S. 2002. Characterisation of copia-like retrotransposons in oil palm (Elaeis guineensis Jacq.). Theor Appl Genet, 104: 860-867.
Proels RK, Roitsch T. 2006. Cloning of a CACTA transposon-like insertion in intron I of tomato invertase Lin5 gene and identification of transposase-like sequences of Solanaceae species. J Plant Physiol, 163: 562-9.

Queen RA, Gribbon BM, James C, Jack P, Flavell AJ. 2004. Retrotransposon-based molecular markers for linkage and genetic diversity analysis in wheat. Mol Genet Genomics, 271: 91-7.
Rajput MK, Upadhyaya KC. 2009. CARE1, a TY3-gypsy like LTR-retrotransposon in the food legume chickpea (Cicer arietinum L.). Genetica, 136: 429-37.

Ramallo E, Kalendar R, Schulman AH, Martinez-Izquierdo JA. 2008. Reme1, a Copia retrotransposon in melon, is transcriptionally induced by UV light. Plant Mol Biol, 66: 137-50.

Remigereau MS, Robin O, Siljak-Yakovlev S, Sarr A, Robert T, Langin T. 2006. Tuareg, a novel miniature-inverted repeat family of pearl millet (Pennisetum glaucum) related to the PIF superfamily of maize. Genetica, 128: 205-16.

Roccaro M, Li Y, Sommer H, Saedler H. 2007. ROSINA (RSI) is part of a CACTA transposable element, TamRSI, and links flower development to transposon activity. Mol Genet Genomics, 278: 243-54.

Rocheta M, Cordeiro J, Oliveira M, Miguel C. 2007. PpRT1: the first complete gypsy-like retrotransposon isolated in Pinus pinaster. Planta, 225: 551-62.
Rubin E, Lithwick G, Levy AA. 2001. Structure and evolution of the hAT transposon superfamily. Genetics, 158: 949-57.
Salina EA, Sergeeva EM, Adonina IG et al. 2011. The impact of Ty3-gypsy group LTR retrotransposons Fatima on B-genome specificity of polyploid wheats. BMC Plant Biol, 11: 99.
SanMiguel P, Bennetzen JL. 1998. Evidence that a recent increase in maize genome size was caused by the massive amplification of intergene retrotransposons. Ann. Bot., 82.

Santiago N, Herraiz C, Goni JR, Messeguer X, Casacuberta JM. 2002. Genome-wide analysis of the Emigrant family of MITEs of Arabidopsis thaliana. Mol Biol Evol, 19: 2285-93.
Sanz AM, Gonzalez SG, Syed NH, Suso MJ, Saldana CC, Flavell AJ. 2007. Genetic diversity analysis in Vicia species using retrotransposon-based SSAP markers. Mol Genet Genomics, 278: 433-41.
Sarilar V, Marmagne A, Brabant P, Joets J, Alix K. 2011. BraSto, a Stowaway MITE from Brassica: recently active copies preferentially accumulate in the gene space. Plant Mol Biol, 77: 59-75.

Schmidt T. 1999. LINEs, SINEs and repetitive DNA: non-LTR retrotransposons in plant genomes. Plant Mol Biol, 40: 903-10.

Schwarzacher T, Heslop-Harrison JS. 2000. Practical in situ hybridization. Oxford: Bios.
Schmidt T, Kubis S, Heslop-Harrison JS. 1995. Analysis and chromosomal localization of retrotransposons in sugar beet (Beta vulgaris L.): LINEs and Ty1-copia-like elements as major components of the genome. Chromosome Res, 3: 335-45.

References

Schranz ME, Osborn TC. 2000. Novel flowering time variation in the resynthesized polyploid Brassica napus. J Hered, 91: 242-6.

Schulman AH, Flavell AJ, Ellis TH. 2004. The application of LTR retrotransposons as molecular markers in plants. Methods Mol Biol, 260: 145-73.
Schulman AH, Flavell AJ, Paux E, Ellis TH. 2012. The application of LTR retrotransposons as molecular markers in plants. Methods Mol Biol, 859: 115-53.

Seibt KM, Wenke T, Wollrab Cet al. 2012. Development and application of SINE-based markers for genotyping of potato varieties. Theor Appl Genet.

Sergeeva EM, Salina EA, Adonina IG, Chalhoub B. 2010. Evolutionary analysis of the CACTA DNAtransposon Caspar across wheat species using sequence comparison and in situ hybridization. Mol Genet Genomics, 284: 11-23.

Shimatani Z, Takagi K, Eun CH et al. 2009. Characterization of autonomous Dart1 transposons belonging to the hAT superfamily in rice. Mol Genet Genomics, 281: 329-44.
Shirasawa K, Hirakawa H, Tabata S et al. 2012. Characterization of active miniature inverted-repeat transposable elements in the peanut genome. Theor Appl Genet.
Shirsat AH. 1988. A transposon-like structure in the 5' flanking sequence of a legumin gene from Pisum sativum. Mol Gen Genet, 212: 129-33.
Shu Y, Li Y, Bai X et al. 2011. Identification and characterization of a new member of the SINE Au retroposon family (GmAu1) in the soybean, Glycine max (L.) Merr., genome and its potential application. Plant Cell Rep, 30: 2207-13.
Snowden KC, Napoli CA. 1998. Psl: a novel Spm-like transposable element from Petunia hybrida. Plant J, 14: 43-54.

Sonnhammer EL, Durbin R. 1995. A dot-matrix program with dynamic threshold control suited for genomic DNA and protein sequence analysis. Gene, 167: GC1-10.
Staton SE, Ungerer MC, Moore RC. 2009. The genomic organization of Ty3/gypsy-like retrotransposons in Helianthus (Asteraceae) homoploid hybrid species. Am J Bot, 96: 1646-55.

Syed NH, Flavell AJ. 2006. Sequence-specific amplification polymorphisms (SSAPs): a multi-locus approach for analyzing transposon insertions. Nat Protoc, 1: 2746-52.
Takahashi H, Akagi H, Mori K, Sato K, Takeda K. 2006. Genomic distribution of MITEs in barley determined by MITE-AFLP mapping. Genome, 49: 1616-20.
Tam SM, Causse M, Garchery C, Burck H, Mhiri C, Grandbastien MA. 2007. The distribution of copiatype retrotransposons and the evolutionary history of tomato and related wild species. J Evol Biol, 20: 1056-72.
Tarchini R, Biddle P, Wineland R, Tingey S, Rafalski A. 2000. The complete sequence of 340 kb of DNA around the rice Adh1-adh2 region reveals interrupted colinearity with maize chromosome 4. Plant Cell, 12: 381-91.
Tian PF. 2006. Progress in plant CACTA elements. Yi Chuan Xue Bao, 33: 765-74.
Tomita M, Asao M, Kuraki A. 2010. Effective isolation of retrotransposons and repetitive DNA families from the wheat genome. J Integr Plant Biol, 52: 679-91.
Tomlinson P. 1969. Anatomy of the monocotyledons. III. Commelinales-Zingiberales Oxford: Clarendon Press; 1969.

Town CD, Cheung F, Maiti R et al. 2006. Comparative genomics of Brassica oleracea and Arabidopsis thaliana reveal gene loss, fragmentation, and dispersal after polyploidy. Plant Cell, 18: 1348-59.
Trentmann SM, Saedler H, Gierl A. 1993. The transposable element En/Spm-encoded TNPA protein contains a DNA binding and a dimerization domain. Mol Gen Genet, 238: 201-8.
Tsukahara S, Kobayashi A, Kawabe A, Mathieu O, Miura A, Kakutani T. 2009. Bursts of retrotransposition reproduced in Arabidopsis. Nature, 461: 423-6.

Tu Z. 2001. Eight novel families of miniature inverted repeat transposable elements in the African malaria mosquito, Anopheles gambiae. Proc Natl Acad Sci U S A, 98: 1699-704.
U.N. 1935. Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn. J. Bot. 1935, 7: 389-452.
Ungerer MC, Strakosh SC, Stimpson KM. 2009. Proliferation of Ty3/gypsy-like retrotransposons in hybrid sunflower taxa inferred from phylogenetic data. BMC Biol, 7: 40.
Van de Peer Y, Maere S, Meyer A. 2009. The evolutionary significance of ancient genome duplications. Nat Rev Genet, 10: 725-32.
van Leeuwen H, Monfort A, Puigdomenech P. 2007. Mutator-like elements identified in melon, Arabidopsis and rice contain ULP1 protease domains. Mol Genet Genomics, 277: 357-64.
Vershinin AV, Druka A, Alkhimova AG, Kleinhofs A, Heslop-Harrison JS. 2002. LINEs and gypsy-like retrotransposons in Hordeum species. Plant Mol Biol, 49: 1-14.

Vukich M, Giordani T, Natali L, Cavallini A. 2009. Copia and Gypsy retrotransposons activity in sunflower (Helianthus annuus L.). BMC Plant Biol, 9: 150.
Wang GD, Tian PF, Cheng ZK et al. 2003. Genomic characterization of Rim2/Hipa elements reveals a CACTA-like transposon superfamily with unique features in the rice genome. Mol Genet Genomics, 270: 234-42.
Wang H, Liu JS. 2008. LTR retrotransposon landscape in Medicago truncatula: more rapid removal than in rice. BMC Genomics, 9: 382.
Wang X, Wang H, Wang J et al. 2011. The genome of the mesopolyploid crop species Brassica rapa. Nat Genet, 43: 1035-9.

Waugh R, McLean K, Flavell AJ et al. 1997. Genetic distribution of Bare-1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP). Mol Gen Genet, 253: 687-94.

Wessler SR, Bureau TE, White SE. 1995. LTR-retrotransposons and MITEs: important players in the evolution of plant genomes. Curr Opin Genet Dev, 5: 814-21.

Wicker T, Guyot R, Yahiaoui N, Keller B. 2003. CACTA transposons in Triticeae. A diverse family of high-copy repetitive elements. Plant Physiol, 132: 52-63.
Wicker T, Keller B. 2007. Genome-wide comparative analysis of copia retrotransposons in Triticeae, rice, and Arabidopsis reveals conserved ancient evolutionary lineages and distinct dynamics of individual copia families. Genome Res, 17: 1072-81.

Wicker T, Sabot F, Hua-Van A et al. 2007. A unified classification system for eukaryotic transposable elements. Nat Rev Genet, 8: 973-82.

Witte CP, Le QH, Bureau T, Kumar A. 2001. Terminal-repeat retrotransposons in miniature (TRIM) are involved in restructuring plant genomes. Proc Natl Acad Sci U S A, 98: 13778-83.

Xiong Y, Eickbush TH. 1990. Origin and evolution of retroelements based upon their reverse transcriptase sequences. Embo J, 9: 3353-62.

Xu M, Brar HK, Grosic S, Palmer RG, Bhattacharyya MK. 2010. Excision of an active CACTA-like transposable element from DFR2 causes variegated flowers in soybean [Glycine max (L.) Merr.]. Genetics, 184: 53-63.

Xu Z, Dooner HK. 2005. Mx-rMx, a family of interacting transposons in the growing hAT superfamily of maize. Plant Cell, 17: 375-88.
Yaakov B, Ceylan E, Domb K, Kashkush K. 2012. Marker utility of miniature inverted-repeat transposable elements for wheat biodiversity and evolution. Theor Appl Genet.
Yamashita H, Tahara M. 2006. A LINE-type retrotransposon active in meristem stem cells causes heritable transpositions in the sweet potato genome. Plant Mol Biol, 61: 79-94.

Yang G, Hall TC. 2003. MAK, a computational tool kit for automated MITE analysis. Nucleic Acids Res, 31: 3659-65.

Yang G, Weil CF, Wessler SR. 2006. A rice Tc1/mariner-like element transposes in yeast. Plant Cell, 18: 2469-78.
Yang TJ, Kim JS, Lim KB et al. 2005. The Korea Brassica genome project: a glimpse of the Brassica genome based on comparative genome analysis with Arabidopsis. Comp Funct Genomics, 6:138-46.
Yang TJ, Kwon SJ, Choi BS et al. 2007. Characterization of terminal-repeat retrotransposon in miniature (TRIM) in Brassica relatives. Theor Appl Genet, 114: 627-36.
Yang YW, Lai KN, Tai PY, Li WH. 1999. Rates of nucleotide substitution in angiosperm mitochondrial DNA sequences and dates of divergence between Brassica and other angiosperm lineages. J Mol Evol, 48: 597-604.

Yano ST, Panbehi B, Das A, Laten HM. 2005. Diaspora, a large family of Ty3-gypsy retrotransposons in Glycine max, is an envelope-less member of an endogenous plant retrovirus. BMC Evol Biol, 5: 30.
Zabala G, Vodkin L. 2008. A putative autonomous 20.5 kb -CACTA transposon insertion in an F3'H allele identifies a new CACTA transposon subfamily in Glycine max. BMC Plant Biol, 8: 124.
Zerjal T, Rousselet A, Mhiri C et al. 2012. Maize genetic diversity and association mapping using transposable element insertion polymorphisms. Theor Appl Genet.
Zhang X, Feschotte C, Zhang Q, Jiang N, Eggleston WB, Wessler SR. 2001. P instability factor: an active maize transposon system associated with the amplification of Tourist-like MITEs and a new superfamily of transposases. Proc Natl Acad Sci U S A, 98: 12572-7.
Zhang X, Jiang N, Feschotte C, Wessler SR. 2004. PIF- and Pong-like transposable elements: distribution, evolution and relationship with Tourist-like miniature inverted-repeat transposable elements. Genetics, 166: 971-86.
Zhang X, Wessler SR. 2005. BoS: a large and diverse family of short interspersed elements (SINEs) in Brassica oleracea. J Mol Evol, 60: 677-87.
Ziolkowski PA, Kaczmarek M, Babula D, Sadowski J. 2006. Genome evolution in Arabidopsis/Brassica: conservation \&divergence of ancient rearranged segments and their breakpoints. Plant J, 47: 63-74.
Zou J, Fu D, Gong Het al. 2011. De novo genetic variation associated with retrotransposon activation, genomic rearrangements and trait variation in a recombinant inbred line population of Brassica napus derived from interspecific hybridization with Brassica rapa. Plant J, 68: 212-24.

IMPORTANT WEBSITES USED

Arabidopsis Genomic tRNA Database: http://gtrnadb.ucsc.edu/Athal
Conserved Domain Database: http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml
European Bioinformatics Institute (EBI): http://www.ebi.ac.uk
GC Calculator: http://www.genomicsplace.com/gc_calc.html
Gypsy database: http://gydb.org/index.php/Main_Page
National Center for Biotechnology Information (NCBI): http://www.ncbi.nlm.nih.gov/
ORF finder: http://www.ncbi.nlm.nih.gov/projects/gorf/
Primer3: http://frodo.wi.mit.edu/
Repeat masker of Censor software: http://www.girinst.org/censor/index.php
The Repbase database: http://www.girinst.org/repbase/index.html
WebLogo: http://weblogo.berkeley.edu/logo.cgi

Appendices

CHAPTER 3

IDENTIFICATION AND CHARACTERIZATION OF NOVEL LTR RETROTRANSPOSON FAMILIES FROM BRASSICA

The nucleotide sequences of LTR retrotransposons identified in Brassica genomes are given below. Only few representatives from each superfamily are given below. The TSDs are shown in red while LTRs are represented by blue colour. The red colour in internal regions indicates the reverse transcriptase region. The details of the elements are given in table 3.1.

BrCOP1: Copia retrotransposon in Brassica rapa (AC189222.1) from 120554-30970 (3'-5')
GTGAATGTTGAAAAAAGGATCGTTTTATACTTTGTTTCGTTCTCTTTGATTTCGGTATCTCTCTCACCTCTCACGTTGTTT CATTCGTGTGTATTACGTTTGTTTGCGGAAAGTAAAGACACACAGATTTAACCAGTTCACGCCTCAGTGTGAGGACGTTAC GCCTGGTCCGAGGTTATCTCGGAAATCCACTAGAAAGCTTGGTTACACTTAACCCTTAGAGACCGAACAAACGCTAGACTT GCGGCTGCTCTCTGTGTTTCTCAACTGCTCTCTTAACCCTAATGTCTCAGCTCTGTGTCCGCTTTATAGCATTTGAAGAGG CGGTGCCACGCTCСTСTСTCTTCTCTGTTTTACTCTGCTTTACCGTACAGAGGAAGAAGACAAATGCCAGCGATAAGGGAG ACATGGTTAATTACTCCGTTGCCCCTTAATACCGTTAAGTCTCGCACGTGAGCTCTCCGTGCGAACTACTGTTTCCTTAAC GACCAGCTGAGACCCTCTGCTTCGGGTAGAGACTCTTCGACACTTAGGCAAAACTCAACAAAACTCCACCTTGCCGTAGTG TCAACTTCCATCTTTCTCTTTAGCTTACTTTCTAATGTTACTTGATTTCCTCCTCGGATCCTGATACTCTTATCAGTTACT GGTAATCCTGAGCTTCTCCATTGCGCTCAGGAAATTGTTCACCGGCAAGACTTTAGTAAGCATGTCTGCCGGATTGTAGAC TGTTGATATCTTCAACACCTTCGTTTCACCATCAGTAATTGTGTCTCTGATGAAGTGAAACCTTCTCTGTATATGCTTTGT CCTTTCATGGTGGACAGCATTCTTTGCTAATGCTATAGCACTTTGAGAATCGCAGTGAATCTCCACTGCTCCTTGCTTAAA CCCCAACTCGTTCATCAAACCCTTTAGCCAAATGGCTTCTTTTGCTGCTTCTGTTAGGGAGATGTACTCTGCCTCTGTTGT AGATAATGCCACCACAGGCTGTAAACCTGATCTCCAACTTATAACATTACCACCAACTGTAAACGCATATCCTGTAATGGA CCTTCGCTTATCAAGGTCGGCTGAGTAATCTGAATCGCAATATCCTGTTACTACAAACTCTCCTTCTCCCTTGAACTTTAG TCTTGTGTCATGTGATCCTTGTATGTACCTTAGTACCCACTTAACTGCTTGCCAGTGAACCATCAGTGGCTTTCCCATGAA CCTGCTTATCATTCCAACTGGATAAGCGAGGTCTGGTCTCGATCCTATCATCGAATACATGATGCTACCAACTGAATTTGC GTAAGGAATAGACTTCATCTGATCAGCTTCCTCTTCCAGTTCTTTATCAGTTGTAGATTTGAGTCTCATGTGTGCCCCCAA GGGCGTTTTCACCGGTTTACAGTTCACCATTCTGAAGGTTCTCAGTACTTTCTGAAGATACTCTTTCTACGACAGTTCCAC AACTCGTTCTTCTCTGTCTCTCTTTATCTCCATTCCCAATATCCTCTTGGCTGGACCAAGGTCTTTCATTTCAAAAGTAGC AСTTAGACTTTССТTСААСТССААTACTGTGTCTTTGTTCTTTGATATAATCAACATATCGTCCACGTACAGCAGAAGGTA AGTCСTСTGСTСTTСССTGGTCTTCTTAAAGTACAAGCAACTGTCCTTCAGACTTCTCGAATATCCTGTAGACCTCATGAA AGCATCGAATCTTTGGTTCCACTGTCTTGGTGATTGTCTCAAGCCGTATAACGATTTTCTTAACAGACAAACCTTCTCAGG TGCGTTCTTGTCCACATATCCTTCAGGCTGATCCATGAATATCTCTTCGTCCAAGGTTCCGTGCAAGAATGTTGTCTTAAC GTCCATTTGCTCTAGTTCTAGATTGAAATGAGCAACTGCAGACAGCATTAGACGGATCGTGACGTGTTTGACTACGGGTGA ACAGATTTCTTGAAAATCAATACCTTCССTCTGAGAGTAACCTTTGGCAACAAGTCTAGATTTGTGTCTTGGTCTCTCAAC ACCCGGGATTCСААСTTTCСTСTTGAACACCCACTTACAGССTATTACTTTCTTCTTCACTGGTTTCTTAACTAGATCCCA TGTATGATTCTTGATAAGTGATAACATCTCTTCATCTGTTGATCCTCTCCAGAGTTTGCTCTCTGGACTGAGCATTGCTTC AGCATAACTTTGCGGCTCAAGATCTCCACCATCCTCAGTTAAGTTAAATGCAAAACCAAGGTCTCCTAGTTCATCATATCT CTTAGGAGGTCTTGTAGTTCTTCTTTCTCTATCTCTCGCTAACTGGTAGTCAGCAAGACTTGGTGGCATATAGTCCTCCTC TGAATCTGTCTCAGACTCTGATCCTTGTTGCTGTTCTGTAGGCACGTTTCCTTGGTTAATGTTGTCTTGCTCGTTAGCTCC ACCTTCTTCTGTTACTTCATTTTCTGTAGTTACAGTAGGAGTACTTATTACAGTAACCTCAGGTTCAGTTTCTGTTCTTTC TTCAGTCTGTCCAGTAGAGCTCTTGAACATAACTTCCTCATTAAACACAACGTCTTTACTTATTACCACTTTCTTTTCTTC AATTAACCACACCCTGTAGCCTTTTACCCCTGTTGGATAACCAAGGAACACTCCTTTCTTGGCTCTTGGATTTAACTTCCC TTGATCTGAATGTACATAGGAGATACATCCAAAACTTCTCAGACCACTCAAGTCAGGTAATACCTCTGTCCACACTTTCTC TGGTATCTCATAATCGATCGGAGAAGCTAGTGTTCTGTTGATTACATACACAGCTGTTGAAGCCGCTTCTGCCCAGAACAT CTTATCCAAACCAGACTCGCTGAGCATGCTCCTAACCTTCTCCATTATCGTTATGTTCATCCGTTCAGCAACGCCGTTCTG TTGTGGAGTGTAAGCACACGTTCTGTGTCTTACAACTCCCTCTTGCTTGCAGTAACCATCGAACTCAAGATTACAAAACTC AAGCCCATTGTCAGTCCTCAACTTCTTAACCTTCCTGCTTGATTGATTCTCAACCATCGTTTTCCATTCGACGAACGTTCT AAAGGCTTCATCCTTCTTCTTCAGAAACTATATCCAGACTTTTCTGCTGTAGTCGTCGATGAATGTCATGAAGTACTGACA GTTTCTCAGAGAACTTGGTACTGACGGTTCTCCCCAAAGATCTGAGTGTATGTATTCAAGTTTTTCTTTTGTAACGTGCTT CCCTTGACCGAAGCTGACCTTATGAGATTTACCATACACACAGTCTTCGCAGAATTCAAAACCTTTCATCTTATCTGCTTC TAGGCATCCTTTCTTGATCAATAAATCTGTGTTCTTCTTACTCATGTGACATAGTCTGCTATGCCACAGCTTTGACTCGTT CTTGGAACTCACTACTGCATTTGCGCTTCCTGCAACTACCTTTCCTTGTAAGATGTATAGAGTTCCTACTTTCTCCCCTTT CAACAGCGTTAAGCAACCTTTGGTGACTTTCAAAGAACCGTTCCTGGACTGAAACCAACAGCCTTGATCTTCTAATGTTCC CATTGAGATCAAGTTTCTCGTCATGCTTGGAACGTATCTGACGTTTGAAATCAGGACAGTTGATTGATCATCATTCTGAAT CCGTATACTGCCAATGCCTTTGATCTCAGAATGAGTGTGATTAGCCATCTTCACTCTTCCTGTTTTTGAGTTATCAAACTC AACAAACCAATCCCTCCTTGGAGTCATATGAAATGAGCACCCTGTGTCCATGATCCACTCGTCTTCTTGTCCTTCACATAC TGCATTAGACTCTTCTTCCACATTCAAACCAGCTGCATCGACAACTTGACCCACAACATTCGAAGTTTCACCTTTCTCTGA ACTGCCGTTCTTCTTGTTCCTTTCTTTCCAAACAAAACACTGCTTCTTGTAGTGACCGTCTTTACCACAAATCCAACAAGT САTCTTCTCTCTTGACTGTGACCTGTTCTGGCTTTTTCCTCTGTCTGAACTCCTTCCTCTTCTATCTCTCCTGCCTCTTTC TTGAACATATAGAGCCTCTGAGTTACTCTTGCTCAATTTACCACTCGCTCCAAGTTCTAGACTTTTCGACCTTATAGCTCC AGTGATTACTTCCAGTGCTAGCGTTGTCTTACCATACTTCAAAGTTTCTTTCAACTGATCAAACTGTTTCGGTAAAAACAT CAGTAACACAATCGCTTGGTCTTCATCTGAAACTGTAACCTTCACGTTCTCCAGGTCAGATATAAGCTTGAAGAAGTCGTT TACATTCTCCTCCATAGTCATGCTATCTGACATCTTGTACCCATATAACCTTTGCTTAAGGTATATCCTGTTGGGTAACGA CTTAGCCATGAACAACTTGTCTAAGATCTTGAGCATACCAGCTGTGGTCGTTTCCTTGATGACCTTTCTGAGAATATGATC CCCCAGACTTAGTATGATCGTAGATCTAGCTTTTTCTCTCTTCTCCTTGAGGGTTTTCTCCTTTTGAATCTTCTCTTCCGG CTTGTCAGAAGCTTCAGTCGCAGACATCCCTTTCTCTGCTGTAGAGTCTTCAACATCCACGCTTTCTTCATCTTCTAACCC

TTCTAACAAACACAGTAGCTCCAGATGAGCCAACAGCTTCTCTTTCCAGAGAACATAATCGCCTTCTCCGTCGAACTTCTC AACCTCTGAACGTACTGAAGTCATGATACGCATCAAAGGACAAAGCTTTACAGAAAAGCTTCAATCTTTACAAAGCTTCAA TCTTTCCTCCTTCCCAGCCAGCCAACCTGGCTCTGATACCAAT TATTGAGAAAAGGATCGTTTTATACTTTGTTTTGTTCT СTTTGATTTCGGTATCTCTCTCACCTCTCACGTTGTTTCACTCGTGTGTATTACGTTTGTTTGCGGAAAGTAAAGACACAC AGATTTAACCAGTTCACGCCTCAGTGTGAGGACGTTACGTCTGGTCCGAGGTTATCTCGGAAATCCACTAGAAAGCTTGGT TACACTTAATCCTTAGAGACCGAACAAACGCTAGACTTGCGGCTGCTCTCTGTGTTTCTCAACTGCTCTCTTAACCTTAAT GTCTCAGCTCTGTGTCCGCTTTATAGCATTTGAAGAGGCGGTGCCACGСТССTСTСTСTССТСTАTTTTAСTСТGСТTTAC CGTACAGAGGAAGAAGACAAATGCCAGCGATAAGGGAGGCATGGTTAATTACTCTGTTGCCCCTTAATACCGTTAAGTCTC GCACGTGAGCTCTCTGTGCGAACTACTGTTTCCTTAACGACCAGCTGAGACCCTCTGCTTCGGGTAGAGACTCTTCGACAC AGGCAAAACTCAATAGTGAA

BoCOP22: Copia retrotransposon in Brassica oleracea (AC149635.1) from 23364-32285 bp (3'-5')

TAGCTTGTTGATGTAAGATAAACGTACACTAACTAGAACACACAGTAACACAGAGATATTTCTTTTCAATAAATTCAACTA GATTAATATTTTTAAAAACACATACAAGTTCTTCTTAAAAGCAATCATTCAAACATGTTCAAGACAAACCTTGACTTATTG ACTAGTCTTCCTCGTTCACAGACTTAACGTAGTCTATGAATCACTCAAACCCTTAACCCCTAGTGGCTTTGTTTCTCCTTA TTCGGACTTGCAAACCTCCTATTGCTAAAAGCTCTCTCTGTGTGTTCAGCAGTCACACCGTGCCAAGCCTCCTCTTTATAT TCTTCAGAGGAGAAACCCTAGACATAAAATCTATTTAATGGAAACTTTTCATATCTTCTTCTTCAGCGAATAAGCCAATCT TССTTTСTTCTGAGTTAGATTGCTTСTTCTCCAATTCTTCCTTTAAACTGACTCCTTCAGTAATTCTTCCTTGAATGCTCA TTAACTCACCCGACCAGCTTCTTGTATCCTCATCTGATGTCGTAGTTCATGTCGTGCTTCATGAACTACTACAGCTCCGTC TTGACTATACATCTTCAATCTCCCCCTTTTTAATCCTTGCGTCTCACAAGTACCTAAAATGAAGTCACACACACAACACAG GGATTCACAACAACCACGAGCAAACACATATAGGCATGAAGCAATCAAAAGCATACTTATATTATCTTAATAGTTGGGTTC AAGTATTTAATACATCTTAACAAAGACAACACACATAAATACTCCCCCATAAACCATGATCAGTCTGAATAATAAGATAAA CACAATTGCAGCAAGTAGTGCAATCGGAAAGTACATAAAGCAAATAAACATCAAAGATTTCTCCCCCACAAACTTAGCCAT TCTTCATCTTAATCCTCATCTTCTCCCCCTGCTTGTGAGCACAAGGGTTAAAAACGAAAGTAAACACAAGAGTCACAAAAG AATAAGACGTGACTAACCTGCAACAGAACGACTCAGATCCTGAACAATGTCAGTCAGTGCTTGAAGAGCTCGGGTGATTTG CTGTAAGACCTTGTGAAGATCATCCTGAGTCAGTACTCCTTGAGGTATTGAAACAAAGCCAAGGTCATGCACACTGAAACG TCGCGGTCCTGTGGTGGTGCTTGGAGTCGGAGCACTTGGGGATGATGGCAGAGGGTGTGACACGCGAGCTGATCTTGAGGA AAGTTTTCCTTCCCCTCCCTTCTTTGCGTTACCCTTTGCTTTAGCAAGACGCTGTTCATAGATCTCACCAACCCGTTTGTC CTTTGTATAGACCACTGGACCCTGAGATTTCTCACCCGGAAGAAGAGAGACACGATGTTGCTTCTGGAGGACACTCATGAT CAAGCGAGGAAAGATCAACCAACGAGAGTCATTCTTCTGCACCACACCAAGATTCAGGACTTGCCTGAAGATCAATCTTCC CATATCAACTCGGATTCCTCGAGCCATCTTGTAGATCAACCGTGCTCGATCAACAGAGACATGTGTCTTGTGTGTAGACGG GATCCAATTGTAGGCAGCAATGATCATGAGGGCACCGTAGCAAGAAGACAAGTCAGCGGTGGTCAGATTGTCCCATTCTTT TCGAGTTCCTTCAGTGAGAAACTCAGCCAACTCAGACTTCGAGATGCTATCAAGAGTGGTCTCTTCTTCTACCTCATCTTC ATCCAGAGGTTCGACATGGAGAGCCTCGTTGATCATTGTTGGTGAGAACTCATACGTGTGACCACGTACTTGGACCGCTAT CTCCTCTGCATCTGCTTCAACCTTTGTGGCAGGAAGACCTGCATAGAACTCATCAACGACTTGTTCAACATAGTTTCCAAG TGCTGAGACTGTGGTTCCCATAGGCCCTTTTGCGATGATCTCTATATAGCCCCACTGATCCTTCTCAGTCATATCCACAGA TCTCTCGGCTATGAGGCTCCGACGCATAAATTGCTGAACCCTCTCGGTGATTGGGGACACTTCAACCACATCACTTCGCTC AGATGCTTTCCTGGATCGAACACCGCTTGAAACAGAGGTATTCTGAGCAAGGACTGGAGGACTCAACGCATCAGTCGATGG TGTCTTAGATGTGGACTTAGGGGCGCCAGATTTACTCGTCTTGTGTCGCTTTGAAGATCCTAATCCCAATTTCTTCATCAC CCGCTTCTTCCTGCTTCGTTTCTCAGAGATTTCTTCAGCCGATGACCCAAGAGAAACTGCATCCTCTGCCCCTGCCTCAGA TCGATCCTGACTCTGCTCTTCTGCCTTGTCACCAGAATCGATCTTTTCATCAGGGCAAAAAACAAAAGAGGGTCGGATACC TGATTTGGATTTTCAGATCTGAGTGATTCAGACGGCGTAGCGTTGAGTGGGGCAGATGGAGACTTAGGCGGTGTTGGGTCA GTCAATGTCGTAGCATCTGGAGCAATCAGACCTTTCTCTTGGACAAAAGAGACTTGTTGATCACCGCTTTCGTCAGACAGA GCCTTCTCACGTGCAGTGTTGAACTCGTCTAGTTCCTCCGTGACCTCTGGGAGCAGGTTTATTGTCGGTAACTCATTTCTC GGAGGAGTTGCCTTAGATTCTTCATCAGTGAGATGGGGTCTTGGTGATTCATCCTCTGCATGTGACGAGGAAGCAATTACA ACATCACGTTTAGCCATCTGCTTCGTTCTCACCATAGATGTCAAGAAATCGCCTTTTTGATTGAGAGCAAAAGAGACGGTG AAGAGCAGTTCTTGATTTTAAAACAGTAACCATTTAGGGTTTCTGATTCACAACGTCCCTTAAGAGGGAAACTCAATCAAC TTGTCCGAAATTGCAACTCTGGTCCCTCCTTGTTAGCCTTTTTCCTTATTTGACATGTACTTTCAAATTCTCTTATCCAAA CCCAAGTCATTCAAGAACATTTGTGAATCAATCGTGTATCACAAGACTTTCAGAATAGTAATCAAACATGAGTTAACAAAC TCCCAATTGGCCAATTTTGATCTCATAATTTAAACAAAATTCGTTGTACCTTTTAAGATGAGTACTGCAAGACTTGGCTCA GCACTTGATTCAGGTTGCACGTCTCACTCTTTGGAGATTTTACGATTTGGTGCACCTGATTATCTTGTTATGGCTAGCTTT CACATTGCCATGCCTTTATCAATCATGTGGGTTTTCAACCTTTATCCGCGTGCTGTGAAACCCATATTGTCACCCTTGTTT CCTTTTTTTTTTAATTTCTTTTGAGCATCTTTCTGAAACATGACTGGCTCTTTTAAGATTAGGGAGGGGCCACAGATTGAC GCAGAACCTGTACCTCACATATTGACGGCACAACAAACAGCTCTTTTCCACAGCGTTCTCAGGTCCAAACATAATCTGAAT TATACGTACATCCGGAGCAAGTACCTGCACTAACATCTGCACATCTTGACTCAATGGTCAAGCTTACACACTCCAATTGCA TTTCTTAGAGTAATAAAACGGGTGTATTCAAGAGATTAAGTAAATATATCAGCCAATTGAGAATTAGTAACTACATGATCG ATGACTACCTGATTGTCTTCAACTAATTCTCTGATGAAATGGTGCCTGATGTCAATGTGCTTTGTTCGCGAATGTTGAACT GGATTCTTTGAGATATCGATTGCAATTTTATTGTCGCAGTATACAAGAAGAGGACCAGCGTGCATTCCATAATCAGCTGAC ATTTGTTTCATCCAGATCAGTTGTGAACAGCAGCTTCCCATAGCGATATATTATGCTTCTGCTGTAGAAAGCGATATAGAG TTTTGCTTCTTACTCAGCCATGAAATGAGATTGTTTCCAAGAAAGAAACATCCTCCACTTGTGCTTTTACTGTCATCAGCA CATCCTGTCCAGTCTGCATCACAGTAGCCCACCAAGTTGTCATTCGAGTTTCTTGAGTAGTACACTCCAAGGTTCTCTGTT CCTTTGACATACTTGATGATTCTTTTCACAGCATTTAGGTGAGACACTTTCGGTTTAGCTTGATATCTCGCACAGACCCCA ACACTGAATGATAGATCCGGTCTACTAGCAGTGAGATATAACAAACTCCCAATCATCCCTCGATAAAGCTTTGTGTCAACA TCCTCTCCTGCTTCATCGTGTGCAACTTTCAAGGTAGCACTCATAGGTGGTTTTTGGAGATCTTTGCTGGTCCGTAGTCCA ACATCGTTTTCACCAGACTTTGTGCATATACGGCTTGAGATATAAATACTCCTTTTTCTGATTGATCAATCAGTAGCCCCA AGAAGTACTTCAGCTCACCACACATACTCATCTCAAATTCTTGTGTCATGTTCTTCACAAAATCGTCTACCATTGATTGAG ATGTGCTCCCAAAGATTATATCATCCACATAGATCTGAACAACAATTATGTCCTTCTGTTTTTCCATGAAGAACAAAGTCT TGTCTACACTTCCTCTGATGTAGCCACCGTCCACAAGGAATCCAGTAAGTCTCTCATACCAAGCTCGAGGTGCCTGCTTCA

ATCCATACAAAGCTTTCTTAAGTCGGTACACATAATTGTGATGGATTGGATCCTCAAACCCCTTTGGTTGTTCTGCATACA СТТСТTСTTGCAATATCCCATTTAAGAAGGCACTCTTCACATCCATTTGATACACCTTGAAGTTTAGTATACATGCCATCC CTAGAAATAACCGTATGGATTCCAGTCTAGCAACTGGAGCAAAGGTTTCTTCAAAATCAACTCCTTCGATTTGTGAGTAAC CTTGTGCTATAAGTCGTGCCTTGTTGCGAACCACTTCTCCATGTTCATCTGTTTTGTTTTTGAAGATCCACTTGGTTCCAA CAATGTTGACTCCATTAGGTCGAGCCACCAACTCCCATACATCATTCCGTGTGAATTGTTCTAATTCTTCCTCCATGGAAA CAATCCAATACTCATCTCGAAGTGCTTCAGTATGTGTCTTAGGTTCGACAACAGAGACAAAACATGCAAACTGAACCATGT CCCTGAAGTTGATCACTTTTCCACGAGTTTTGCGACCTTCCTCAACTCCTCCAATGACATCTGACACTGAATGATTCCGAT GAACTTGCTGAATGACTTGTTGAGGAACTGAAGCTTCTGACTCAATCACAGCCCCTTCTATCTCGCTCTCTTCAGGTGATT TGTCACTGACCCGAGTTTCTTTCTTTTCAGTGTCTTCATCTGACTCTCATTGCTCCCAAGTTACAGATGTCATGTCATCAA ACACCACATTCACGGATTCCACGATGACTGCTGATCTCTTGTTGTAAACTCGGTAAGCTGTGCTAGTTCCTGAATAACCCA GAAAGATTCCCTCATCACTTCTGGAGTCGAATTTTCCAAGATAGTCCTTGTCATTTAGGATGTAGCACCTGCAACCAAAAA CATGAAAATAACCAATATTAGGTGTTTTTCCATTCCACATTTCATAAGGAGTTTTTGTGGTCCCTTTTCGAACATAAACTC GGTTAATAATATAGCACGCAGTACTCAATGCCTCTGCCCAGAACCTCTGAGGTATTTTGTTTTCATGAATCATTGCACGAG CCATTTTCTGTAGAGTCCTGTACTTTCGTTCAAGCACTCCATTCTGCTGCGGGGTTCTTGGTGCTGCAAACTGATGACTAA TGCCCTTTTGTTCACAGAATTCCATCATAACTCCATTCTCAAATTCTCCACCATGATCGCTGCGTATCTTCTTGATTCCTC CTCTTTCATTTATGAGTTGAAGAGCCAGGATTTTGAAGCTTTCTGCAGTTTCCGATTTCTCTCTGATGAATCGAACCCAAG TGAAGCGAGTGTAGTCATCCACCAGCACAAACACATACTTCTTGCCTCCAATGCTTTCTTTCTGCATTGGCCCCATGAGAT CCATATGAATTAGATCAAGTAGTGCTGAAGCTTGTACATCTGTAACCTTCTTGTGTTGAACTTTTACTTGCTTTCCCTGAT TGCAAGCTCCACACACCATCTTGTCATCAAATCGGAGCTTCGGTACTCCCCTAACTAGATCCTTATGCACCAGATATGTCA TATTCCTGACATTCATGTGTCCCAATCTTTGATGCCATAGTTCAACATTTCCTTGCGCTGTCATGCATTTGATCTTCTTTT CCCACATGTAGCAGTTGTTACCAGATCTGACACCTTGCAAAATCTTCACGCCATATGCATTTATTGCACGACAGTCAGTCG CTGAGAATACTACAGTGAGTCCTTCATCACACAATTGACTAACACTAATCAGATTTGCTTTTAGTCATTTGACGAAGTATA CATTTGCTAGCTTAGGTAACTCTGAGTTGCACGTGATGCCTTTGCCTTTGATGATTCCATATCCTCCATCTCCGAAGGTAA CCTTTCCACCTTTAACTTTTGACACTTCTTTGAGATACTCAGCATTGCCTGTCATATTTCTGGAACACCCGCTGTCAAAAT ACCATGGTTCATCTGAATCTAGCTCATCTGTGACACGTGCCATGTTACACCTAATTCCACCAGCTCCACTGTTAGCTGCTC CTGGATACAGACCAGTCTTCTTCATCCAGACTTGATTCGTTTTTCCAATCCTCCCAGAACTTCCGTTGGCTTCCACATTTG ATTGACCCTGTTGAGGTACTTATAGCAGAACCTTTTGTAGTGTCCGAACTTTCCACAGAAGAAACACCCAGTAGTCTGATG CACAGTTGGCTTTGAGTTGAATTCCTCTCTATGTGCATAGCCTCCTGACACAAATTATGTCTTTCCTGTATTACTACTCTG CCTCCCAGTGTAGCCCAGACCCATGTGTGAGCTTTCTGTTCTTCCAGCACACAGAATCTTGTCCAGTTGCTTGGTTCCAGT GAGCATCTTGATGTTTTTGTTCTGATGGTCGAGTTTTGCCTGGAGATCTGCTGACACCTGTTTCTCAGCTACCACTTCCTG TCTGAGTTCTTCAGCTTGTTTGGCAAGAATTAGTTTTTCCTTGATTAGTCCGACACTCTCCTTAGCCAGTTCAGCTTCTCT CTGTAGCTCAACTCGAACAATGGACAGTTCAGCTTTTAACCTCTCTTTTTCCTTAATGAGTGAGAGGTTCTCCATACTGAG TTTGATTAGTGTTTCACGCACCTCCTTGTAGCTTTCATCTAACTCTCTTTCTGGTTCACCATCGCTTTCAGAGCCTGATTC AAAGTCAGTTATTCCAAGAAATGCCACAAAGTTATTCAACTCTTCCTCACTGTCACTTTCTGAGTTATTGTCATCGATTCC AATCATGGATCTTTCCTTTTTCCTTTTTCCATCTGCCTCACACTCAGCCTGAGTATGTCCAAAACCTTGACATCCATGACA CTGAAATTCTCTTCTCTTGACCGTTGGACAATCGGTTCTGAAGTGACCGTATCCCTTGCATTCATAGCACTTGACATCAGC CTTCTTGTTCCCCTTGTCAGATTCAGCAGCTGTCTTCCTCCATGGAACAAACCTCTTCTGTCCTTGCTCTACCCTGCGTAG AGCTCTGTCAAATCGCCTGACCAATAGGCTTACTGGATCATTATCTGCAGCTTCAGTTTTTTCTACTGATGCTAAAGCGAT TCTTTTTTCCTTCTTTCCACCAGAGACCTCCATTTCATGAGCTTGAAGCATCCTGACTACTTCATCAAACGTCATCTCGTC AGTGTTAAGAGAAACGCTCATAGCTGCCTTGTATGGCATGAATTTAGCTGGTAGACACCTTAGGAACTTCTTCACTAGATT CTTTTCTTTGTATTTTTTACCAAGCGTTAATGCTTCCTGAGCTACTGAGCTGAGCTTGGAGCTAAAGTCACCAATCGATTC ATTTTCATCCATTTTAAGTTCTTCAAATCTGGTTGCAAGCATGTCTTTTCTGGAGCTCTGAACCTTCAGTGTTCCTTCAAA ATGTACTTGGAGAATGTTCCATGCATCTTTTGCTGACTCACACCCTTGAATCAGCTCAAATTGCTTTCTCGCTACGCTGCA GTGAATAACAGTAAGAGCTCTCACATTGAATTTAGCCATCTTGTTTTCTTCATCTGTCCATAGCTCTTCTCCCTTCGGTAC ATCAGTTCCATCATCACCTCTGGCAACAGGTGCCGTCCACCCAGATTCCACAGCTTTCCATGCCAGAGGATCTATCCCCTT GATCGTTGCCTTCATACGAGCCTTCCAAAAGCTGTAGTTTACTACTTCAAGGATCAACTTTGAGTGCGACAACATCTCACT GTAGCTGTCCATCTTACTCCGCATGATCTTACCTGTTTTGAAAAAAAATATAGATACCCGCTCTGATACCACTTGTTGATG TAAGATAATCAAGCTACACTAACTAGAACACACAGTAACACAGAGATATTTCTTTTCAATGAATTCGACTAGATTAGTCCT TTTAAAAGCACATACAAGTTCTTCTTAAAAGCAATCATTCAAACAAGTTCAAGACAAACCTTGACTTGTTGACTAGTCTTC СTCGTTCACAGACTTAACGTAGTCTATGAACCACTCAAACCCTTAACCCCTAGTGGCTTTGCTTCTCCTTATTCGGACTTG САААССТССТАTTGСTAAAAGCTCTСTСTGTGTGTTCAGCAGTCACACCGTGCCAAGCCTCCTCTTTATATTCTTCAGAGG AGAAACCCTAGACATAAAATCTATTTAATGGAAACTTTCCATATCTTCTTCTTCAGCGAATAAGCCAATCTTCCTTTCTTC TGAGTTAGATTGCTTCTTCTCCAATTCTTCCTTTAAACTGACTCCTTGAGTAATTCTTCCTTGAATGCTCATTAACTCACC CGACCAGCTTCTTGTATCCTCATCTGATGTCGTAATTCATGTCGTGCTTCATGAACTACTACAGCTCCGTCTTGACTATAC ATCTTCATAGCT

BrGYP5: Gypsy retrotransposon in Brassica rapa (AC189430.2) (5'-3')

CTAGGTGTAGGAGATGGATTACATCCCTCTACAAGGCCCATCACATAACAGGCCCTAGCCCGACAAGGTCGATCAAGCTTA GTCGGCTTAGCGGCTAGAGACGTCAGCTCGACCTCAGAGTACTTTAAGCCGGTCAGCTAAGCCGATCAGCTATACTCGGCT TGGATGAAACAGTACTAAGGCCCACATACTCGGCCTTTGGGCGACAAGGCCCAAAGGATAGGCGCGATTAGGGCACCACGC AGAAGGGCACTATAAGAGAGAAGGAGGAGGCAACGAAAGGAGGACTTGGGGGAGAAATCACATACTAAGCGGCTAGATTTA GGGTTTCCTAATCATCTCTTTGATCTTGTCGTTTAAACCTCTGATCTTGTCTCCTTACCTTCGATCAGTCTTGTAACCCAC TGTGTTGATTCTAATAAAAACGTCTTTAGTCATCCCATTTTCTAAGTTATCATTCTAATCGACTGAATCCTGTACAAACAA TTGGCGCCCACCGTGGGACCGACTAAAGCAACGTTCTAGATCTACATGGCTCAAGACGACGCCGCCTTCGGCGCCCCAGGC GAGGAACCGACGCCTACGCCTGCGGCCGCGCCGCCCATCACCTCAGAATTCATGAGCTCCGTCATGGCTCGACTCGCCCTC CAAGACGAAGTCCAAAAGACAACCAACGACCAACTCGCTGCGTTGGTCGAGGCGCTCACAGCCCCTGAGGGACAAACTAGC CATCCCCAGCTGACACGCCGCCGCCTCTTCAACACAAATCCTACGGCAGCCGGAGTCGACCATATCTCTGACGACTCGGAG ССTAACGAAGCCTTTCTCGCAGACGCTCCCCCAGCAGGCTCAGATCTCACGACAATACGCGAGCTCGCCGAGCTCAAACTC

Appendices

AGCCTTCAACAAATGGGAGAGAAGATCCACCATGTAACCAGCGCAGCTCCGCAAATAGAGAGCGTACTCGCCGCAACCTCG CGCACTCCTTTTACTCGCGCGCTAACTAGCGTCCAACTCGGAAAGATAGAAAAGCTGCGCCTACCTGAGTACAAGCCCGGC GGAGACCCGGTAGAACATATGACCGCTTTTAACATCGCGATGGCGCGAGCTCGTCTCCCCGACGACGAAAGGGACGCAGGT TACTGCCAGCTGTTCGTCGAGACTCTTCACGAGCAAGCCCTGACTTGGTTCTCCCAGTTGGAGGAGAACTCAATCGGATGT TTCCGCGACCTATCAGCAGCTTTTCTCAAGACATACATCATGTTCACAAAGCGCAGCGCCACCGCGTCCAGCCTATGGAAC CTCAATCAGAAAAAGGATCAGAGCTTGCGCGACTACATGGAGAAATTCAAAGCCGTAGTGTCAAAGATTGAGATCCCAGAC GGAATCGCTATCGATGCATTGCGCAACACCTTGTGGGTCCACTCCAAGTTCCGAGAAGACCTGTACCAGAATCCAACCAAG TCGCTCCAAGACGCTATCGCACGCTCCGATAACTTCATCCGAATGGAGGAGGACACCAACGCAATCCTCAGCAAGATGAGC GCACCCAAGGCTCCAGCGGCTAAGAACGCAAATGCGCGACAAGAACCGCGCCAGCACGCTCCAAACGACAAAAACGGTCCC AAGGATGGTTACATGTATGTCGTGAACGAGAATAACACACCAATCTCCACTCTCGTAGTTCGCGGGGAGGGGTGGAACAAG TGGGTAAGAGAACTCGAGTCATCCGACCAAAAAGTCGATTCTGTTTGCACCACCCAACCCGCAGCTGGAGTCGGATCAGCA GCAGGACCTTCCCGGACCGTCGACCTCACCAAGCATTGCAAGTATCACGACGTCAAAGGACACGATACCTCAGAATGCAAA TCTCTCTACGCGCATTACCTCTCGTCCCTTGCAAGCGGCGAGTTTAAGTTTGAGCCATTGAAAGCCAAACCAAAGAACGGT AAGAGCTGGAGCAAGAACAAAGAACGAAGGTCCCAGCGCAAAGCCACTGGCAGAGGTCGACAAAACGACGCTCCGCAACGA GACGACGAGGAAGAAACCCCAAGGGATAACGGCGGGGGAGACTCCTCAGCCGACGAAGAGCATCCGGCTAATCGCAGACGC ATTGAGGTTATACTCTCTCAGCAATCCTTGTCGTCCGACGAAGATAATGACGATTCGCCTGTACCCGGAGACCTGAGAGAC AGCCTTAAACGGCGGCTCGCACCGGAAAATGGAAGCGATACCACACGCAGAGATCTCCGGACGATGCTAGATGCACGAAAG TCTCGGCGCATCTCGACAAGCGTTGGCAACAACAACGAAGGGCCAGTCGGCGACCTCCGAGACAAACTCAATGCCGGAGTA AGCGATCTCCGCGTGAAGCTTAACAAGTCAAAATCAACAGACTTACGACGACAGTTGGAACGAGCTAACGGTCAACCTCAA CTTCCACCTCCTGATACCAGCGTACCAAAAGACCTCCGCGCCTTACTGAACTCCAAGCGAGTCCAAACGGGACAGTCTTTA AACGTCATCATGGGGGGGTTCCCCTAGCGGCGACTCAGTCCGTTCCGTGAAAGACTATCGTCGACAAGTCACGACGTCCCA GAAGTGGCCGAGTAAACCGTCGAGTCATCCTCCAATAACCTTCTCATCAGATGACGCTGAAGGTGTTCACGCGCCCCATAA TGATCCCCTCCTCGTCGTCCTCGGAATTGGAGAGTATGATGTCACCAAGATCCTTATTGACACCGGGAGTTCCGTTGACCT CATCTTCCGAGGAACTCTGCAGAAGATGGGAGTCGACCTCGACGACATAAAAGCGTCCTCCAGAACGCTAACAGGATTTAA CGGGTCATCCGAAACCATCTTGGGAACGATCCGCCTCCCGGTGCGTGCATGCGGTGTTACTCGAACGGTCAAATTCGCCGT CGTTAGCACAAAAGCTCCGTATCACGCTATACTCGGTACTCCTTGGTTACACTCGATGCAAGCTGTCCCTTCCACCTACCA TCAGTGCATCAAGTTTCCCGGCGCGGACGGGAAGATAAAAACATTGCGTGGGGACCAAAAGGCCGCTAGGGATCTCCTAGT CGCCACGGTCAAACTCCAACGAGCGTCGCCACTCGTGAACTCAGTGTCCCCTCCAACCCCAAAAGTCTACTCCCAGGAAAA CGAGGTCCTCGAGTTACCTATTGATGACGCCGACCAGAGCCGCACCGTGAGAGTTGGCGCATACCTCTCCGAAGAAATGCA GCAGTCAGTTCTGGATTTCCTCAGACAGAACGTATCCACGTTCGCTTGGTCCATGGCAGACATGAAAGGCATTGACCCAAC TATAACGACGCACGAGCTAAATGTCGACCCAACTTTCAAACCTATCCGACAGAAGAGACGTAAGCTCGGCCCCGATAGGTC TAAGGCCGTGAACGAGGAAGTCGACAGGTTACTCGGTGCAGGTTCGATTGCCGAGGTCCGCTACCCCGAATGGTTGGCAAA CCCAGTAGTCGTCAAAAAGAAAAACGGCAAGTGGCGCGTCTGCGTCGACTTCACCGACCTGAACAAAGCCTGCCCAAAGGA TAGCTACCCTCTTCCCAACATCGACCGCTTAGTCGAGTCTACAGCTGGAAACGAGATGCTAACCTTCATGGATGCCTTCTC CGGTTACAACCAAATAATGATGCACCCGGATGACCGCGAGAAAACGGCCTTCATCACGGATAGGGGAACCTATTGCTACAA AGTCATGCCATTCGGCCTGAAGAACGCCGGAGCAACCTACCAAAGGCTTGTGAACAAAATGTTCGCAGATAAGCTGGGTAC CACCATGGAAGTGTACATCGACGATATGCTGGTTAAGTCGCTCCATGCCCCCGATCACCTCCGCCATCTACAAGAATGCTT CGAAACTCTCACCAAGTATGGCATGAAGCTAAACCCAGCAAAGTGCACGTTCGGGGTCTCTTCTGGCGAGTTCCTTGGTTA CATTGTCACACAGCGAGGAATCGAGGCGAACCCAAAGCAAATATCTGCAGTTCTAAACCTCCCGAGTCCGAAGAACAGCAG AGAAGTGCAGCGGCTCACGGGCAGGATAGCCGCTCTAAATCGATTCATCTCCAGATCCACCGACAAGTGCCTGCCATTCTA TGATCTCCTGCGAGGAAATAAAAAGTTCATTTGGGATGAGAAGTGCGAGGAAGCGTTCACTCAACTCAAACAGTACCTGAC CACGCCCCCAGTACTCGCTAAGCCAGACGTCGGTGATGTTCTATCTCTCTATGTCGCAGTATCACAGGCTGCAGTCAGCAG CGTTCTGATAAAAGAAGACCGCGGCGAGCAAAAGCCCATCTTCTATACAAGCCGACGCATGACAGCACCAGAGACGCGTTA CCCAACTCTAGAAAAGATGGCTTTAGCAGTCGTTGAAGCAGCGCGAAAACTACGACCATATTTCCAGTCGCACTCCGTGGA AGTACTGACTGATCAGCCTCTCCGGACAATACTCCAGAACACTAACAGATCTGGCAGACTCACAAAGTGGGCTATCGAACT CGGCGAGCTCGATATCATCTACAAGAACCGCACGGCAGCGAAATCCCAGGTCCTAGCCGACTTCTTGGTCGAACTGGCCCC GGAATTAGAGCAAGATCTCACATCCCCAAGCTCAAACTGGACACTGCACGTCGACGGATCGTCGACCAACAAGGGGGCAGG CGCCGGAGTCCAATTGCAGTCCCCGACCGGTGAGCTAATCAGACAATCTTTCAGCTTTGGCTTCCCCGCGTCAAACAACGA GGCAGAATATGAATCTCTGATTGCAGGACTCCGCTTAGCAAAAGCCGTCAAAGCTAAACGACTAAGCGCTTATTGCGACTC CCAGTTAGTCGCCAGTCAGTTCAGTGGCGACTACGACGCCCGCAACGATCGAATGGACGCCTATCTCAAAATAGTGCAAAG CCTGGCAGCAGAGTTCGAATTCTTCGAACTCATCAAAGTTCCGAGAGGAGAGAACGTCTGCGCCGATGCCCTCGCCGCCCT TGGCAGCAAGCTTCGTGATCAAGTGAAAAGAACCATCCCGATACATCGTATCGAGAAACCAAGCATCGACGTCCTAACCGA TCAAACCCTCATCGCCCAAGTCATTGAACCCGCCACTCCAGACGACGATGGGTTTGGCCCTGACTGGAGAACTGAATTCAT CAACTACCTCTCGAAAGGGGAACTCCCAGCAGAAAAATGGGCAGCTCGCCGGCTAAAAACCCGCAGCGCCCATTACGTTGT TCTCGACAATGAACTGCATAGATGGACTGCGAGTAAGGTGCTCTTAAAATGCATCCATGGCGACGAGACAGCAAGGGTTAT GGCGGAAACGCATGAAGGCGCCGGTGGAAATCATTCGGGCGGACGTGCGTTAGCAATAAAAGTAAGGAGTTTAGGTTTCTT CTGGTCAACAATGAACGCCGATTGTGAGTCTTATGCGAGAAGCTGCGACAAGTGCCAACGGCACGCACCCAGCATCCATTG TCCAACCGAACTGTTGCGAACAACCACCGCTCCCTACCCGTTCATGCGATGGGCGATGGACATCATAGGACCACTCCCTTG TTCCCGCCAAAGACGCTTCATCCTCGTCCTCACCGACTACTTCACCAAATGGATCGAAGCTGAAGCATACGCTCAAGTCAC AGACAAAGAAGTCCGCGGCTTCGTCTGGAAAAACATTATTTGCCGCCACGGACTGCCCTACGAGATCGTCACCGACAACGG GTCACAGTTCATGTCAGGCAACTTTAAGGAATTCTGTAGCAAGTGGAACATTCGGCTAAGCCCGTCCACTCCACGTTACCC GCAAGGTAATGGCCAAGCCGAATCCTCCAACAAACTCATCATCGACGGCATTAAAAAGCGTCTAGACCTCAAAAAAGGTCA CTGGGCTGACGAACTCGACGGAGTCCTATGGAGCCATCGCACGACTCCACGGGGATCGACTAAATCGACACCCTTCTCTCT CGCTTACGGTGTTGAAGCCATGGCTCCTGCTGAAGTTAACGTTTCAAGCCTCCGACGTTCCAAAATGCCTCAATACGTCGA GCTAAACAAGGAGATGCTACTCGACGCTCTCGATGAGATAAGAGAACGGAGAGATCAAGCCCTGCTGCGCATCCAGATTTA CCAACATCAGATTGAGAGCTACTATAACAAAAAGGTCCGGGCCCGACCTCTAGAACTCGGTGATCTCGTCATGCGCAAAGT GTTTGAAAACACCAAAGAGCTTAACGCCGGTAAACTCGGCGCCAGGTGGGAAGGACCATACAAAATCATCAAAGTTGTTAA ACCTGGCGTATACCGGCTCCAAACCTCGCGCGGAGAAGAAGTCCCGCGATCATGGAACTCAATGCATCTACGACGTTTCTA CTCGTAGAAGTATCTTAGTAAAAAAAAAAAAAAAAAAAAAAAAAAACGAGTAGATGCACCCCCGTGGTCACTTCTACTCGA

Appendices

CCGAGTAAATGCGCCACTTACGGCCACTTTTACTCGGGAGAAAAACGAACTACGAATGGCTTGATCCTCAACCGAGGTACG TAGGCAGCCTTAACAGGTCCAGCTGTAACAAAAAAAAACGAGTAGATGCACCCCCGTGGTCACTTCTACTCGACCGAGTAA ATGCGCCACTTACGGCCACTTTTACTCGGGAGAAAAACGAACTACGAATGGCTTGATCCTCAACCGAGGTACGTAGGCAGC CTTAACAGGTCCAGCTGTAACAAAAAAAAACAGAGTAGATGCACCCCCATAGTCACTTCTACTCGACCGAGTAAATGCGCC ACTCACAGTCACTTTTACTCGGGAAAAACGAACTACGAATGGCTTGATCCTCAACCGAGGTACGTAGGCAGCCTTAACAGG TCCAGCTGTAACAAAAACAAAGTCAAAACCTTACCTAGGTCTCAATTGAATAAACAATGACTTTCACATCGTGGTTCCCGT GCCTCCAGCAGAGGATACGCGGACACTCACATTCCTTTGCTCGCGGCTATGTCCTGATCAGACACTTGGCTCCAGGACTTT AACAGTCACGGTTCACCTATGCCTAAGCATTGAACCGACTAAACAGAGTGAATCTTTGCCTTTTCTCGACTAAAATGTAAC GGCTTAGCTACCCGATTGCTTAATTGTCACTGAGGAAACGGACAGAAGGACCTTTCACTCTTGTACTCAATTCTTTGTTAT CGACTTTTGGACAACTCCAAAACGAAACATGATGACAGCCGAGTAAAACCAATTACCGGTTCATCACTTGTCTATTTGCAA AAATTAAGAATATGAAAATCTGATGTTTCAAAACACAACAGATAAGTGAAATCGCTTAAGGGTTGCAAATACTGACAAGAA ACACAAAGTAGAAAGAGTTTTAAAGTACAACAACAAGGTCTATCAAGACCACCGATGAAAGCATCCTAAATATAACATACA ACAAGATCAGACGACAACGTCTTGGTCATCCCTACTCGGGTCAAGCGCTTCGATCGTCTCTTCTTCAACGACTTGATCGCC AAGGCCTTCAACCTGAGCAGAAGGGTCTGGAACTGGCAGGTTCGGGACCATCTCTTCAACAAGCGCCGGCGATGACCCGTT СTCCTCCACGCCCACTCCGTCCTCTTCCCGCTCCTCAGATGAAGAAACCAAGACCGGATCTTCAGCGGCTACATCCCCCGT ATCCGTTTGAATCGCTTCCCCGGTCTCCTCGGGATCGCTCCCGTCGGGGCGCTCCTCGATGGTAGTTCCTTCGGGAACGAC GATACGCTCCGACAAAGCAGAAGTAATGTCTACCATCGGCTCATCGACTGGATCTTCAGTCGCCTCGCGGGAAGTGATCAA CTGGGAGGCTGATTCGTGGCCAATCAGACCAACATTTGATCCATACGGGTCGAGTACCCCCATGAGCTCTTCATTCACAAA TCGAGAAGGGAGGCTGAGAGGAGAGAGAGCATAATCATCCTCAGAGAACGGCTCGAGGTAAAGATTGGCGACTTCAGCCTC ATACATCTTCTCCTGCTCCGAGAAGATGTTGATCATACTCGGCGGAATCGCGATCCCGCTATCTTTAATCATCTCAAGGCA TTTTTTGGTTCCTGAAGCCTGCCCATATAAGTTCTTGGCCTTCTCTCGCGCGATAAGGCGATCCAGATAGCCCTTCATCTT ACCGATACAGCGAGTAGACTTGTCCGCCATAGCCGTTTGGACCTTGATCCTCTCGCGGGTAACCTCCTGAACCCTGGAATC CCTCAGGCGTTGCCTCTCTTTGACCAGCGTTCCGACGACGGCGTCCCTCTCTCCCTCGAGCTCAGCCTTCTCCTTCTCAAG GGAAGCGACCAATCGCTCTAAGCGAGTTTTCTCGCGGAGAGCGTCCTTCTTCGCAAGACGGTCAGACTTCAGCTTGTCTTC CAACTCCTCGAACTTAACTCGGAGGACCTCTTTCTCTTTGGCCGCTTTGTCGCTGGCCTTTTTGTTCTCGGCGCGTAACCT CTCGATCACGCCCAATCTGGTCCGTGCGAGTTTATCCGAGGCGCCCAGCTGGACCATCGTCTGCTTCAAAGTGCTGTCGTA CTTCTCCACGAGATAGTTCATGCTCCCGTCACTCTGCGTGAAGCAAAAGAGACTTAGAAAAAATTTTTAAGAAAGAGAAAG GGAAACAAGGGGAAAACAAGTTTACCCGTCTGCCCGCCATAGCCGCGTCAATGTACTCCTTTTTGAAGTATAAGTCGTCGA CCGGCGGCAACTCTTTGGTCCCGCCACGAATCTGACGAGTCAGTTCAGCACACGGAAGTGGATTCAGAACCAACGGAGTCG CCTCGTCGTAAAGGAATTCTACGTGATCCGGGAAGTGAACTCCTCCTCCCGCCTTCCGCGGAAGCGAACCTCCGCTTCCCG CACCAGTCTCCCTCGCAGAAGACGAAGGGGCTCCCTTACTCGACGGAGATTCATCCCGTGAGCCATCTCCGACTTCGGTAG CTGGTTCCCCACTTCTAGAAGGAATCTCGGGAGCAGAAGTCCCATCGCCTTCCGCTGACTTCTTCTTCAGTTTCTTCTTGG GACGCTCCTCAGGCGATCCCCGAGTAGAATCGGCCGGATCGTTTCTTTCCGCACCATCATTCCCTGCGGCAGTTGGAGTCT CCATAGCCCCAACAGAAGTCTCTTCACGAGACCTTTTCTTGCTCTCCTTTTTCTTCTTCTTCTTAGCCGCGACTTCAGAGA CATCGGCAGAAGGTTGTGCCTCTTCCAAAGGGACACTCCTGTTCTTGGCCTTGGCCCTATTGGCCTTCCTCTTTGGGGAAC TCTGAGCTAGCGGCTCAGAGTTCACATCTCCATCTGTGGAAACAGGCCTGACTTCTGAGGCACCGGCAGAAGACGATTTTG TCGAGAGCATTTGAAGCTTCCCTTTCAACAGGGCACTTAAGTCGGGAACTCCCTCCATCTTTCTAGCTTGGTTAAGGAGTT TTTGTTGCTTCCGAGTAAATAGGGAGAGACGTGATTTGCGGGGACCGAGTACACAAGGAAGTCTCGATTCCCAATCAACTA TATAAAAAAGAGAAATCAGACACGGAGACTATGAAAAAGGTTCAAGAGCATCTCTCTAGGATAAACGGCAACTTTACCTCT GGCGATCCTAGCTTGTTGCCGACGTATCCACTCCCGACTAAGATCCGGCCACCTGAGATGACTATGCGTCGCGATCAGTTG AGCAGTTTCGAAGAATTTCTCTGGATAGGCAATTGTATTGGGATGACGAACTGCAAAAGAAAAAGGGAACATCAGAACCAT CGACCAGAATACGAGTAAACAGACAAATTTCTACCAAGTTGCTGATTCCATAAAACGCGATAATCGTCCCCCGGCGGCTCC TCGAAGGCATGCTCGTCGGACTTAATGAAGAAGTAAGCGCGTTGCCAATCCTGCGTCTTGTTGGGATGACCAGTCAAAACG TTGTAACTCGCTCTCATCTTTACCGAGAAGATCCCGTTAGGCTCCGCCTTCGTGAAAGTCAGCTCCTCAAACACCCTCACG CTCATCGAAACATCCATCTCCGCTGCCATAACCATCAACATGACGGCTATGCGCAGCGACCCGTTCAGCAGCTGAGAAATG GCGATATCCCGACGAAATGCGTAAGACGTGATCAGTCTGGGGATTGGGAACCAGAGCTTCGTCTGATCCTTGAAGTAAGAT TCATACACGCACTGGTAACCAACCGGTGGCGACCACGGCCGCTGATCGGTTGACGGAATGAGGAAGGTGACTCCAGCGCCA CCACTCTCTCTTAGCAATCTCTTCACGGTCTCGTTGGAAGAACAGGAACTGAAAACGTTCCCCCACGATTGAACTCGCGGG TCGCGTAACGCTTCGGGAGGCAGCGAAGGTAGTTCTTCGAAAATCCCACCAGGGTGATATATCACAGGACGACAGTCTACT TCGTAGAACGGAACACTTCTCGGAGCAGGGAGACGGCCTGACTGGTCGATACGACCCCTCCGACGAGCCCGTCTCCTAGGT CTTACGACAAGGCTAGGCGCTTCAGAACCACTCGCCTCTCTATCCTCGTCCTCAACGTTTTCTTCGATTTCTTCGCGAAAC TGTCTATGGGCATCAGCGACCAGAAGGCGCTGGGAAAGGCTCATGTTCTCCGTATCCCGCAGAGCATCACGATGGATTATG TCGAAATCCTCCAACGGACCCCCGTCCGCATCCCTAGCCGGGCTTGGCGAAGTAGCTATATCTTTCCCTTTTTCCTCGCGC GATAGCCGATTCCCTGAAGCCATATCTCTTCTACTCGGGGGGACGACTAAACCAGCTAGATCGCTAGCAAAAAACCCTATG CTACGGAAGGCTTATCTAGAGAGAGAAAATAAAAGTAGAGAGAAGGGAGAGAAAGTGGAATACCTGAGCTTGCAGAGAAGA ATGACGAAAGCAAAGGAGAGGCGCCTATTTATAGCAAAAACGAGGCGCATCCTTCGAAGCGTCATCATTAGGTCTACAAAG GCCTAAATGGGCTTCAAAGGCCGCCTAAATGCCCAAAAACCTACTCGCGACGGTTCGGTTTCTCGCCAAAACCGGTTTTCA ATCAAGAAACCGGACCGAAATTAATCTCCGGTTCTAGCCCGAACCAATTCGACAGAGTTAACCATCCAAAGACCGCCTGGA CTCCTAATCCGAGAAGTTTACCTCCCGAGTAAAACACAACGCATCGTGAGAAGACGTAACGCGGAGCGACTAGACGCGGCA CGCGACTAAAACCATACACCAGTAAAACGAGCTGTCGTCGGCATTAGGCCCTGTTATATGAGCGAACCTGACCCACAAATT CACTGAGACCGACAAGCCGCTCACAAGTGAACTGGGGGGGGACTTAT TGTAGGAGATGGATTACATCCCTCTACAAGGCCC
ATCACATAACAGGCCCTAGCCCGACAAGGTCGATCAAGCTTAGTCGGCTTAGCGGCTAGAGACGTCAGCTCGACCTCAGAG TACTTTAAGCCGGTCAGCTAAGCCGATCAGCTATACTCGGCTTGGATGAAACAGTACTAAGGCCCACATACTCGGCCTTTG GGCGACAAGGCCCAAAGGATAGGCGCGATTAGGGCACCACGCAGAAGGGCACTATAAGAGAGAAGGAGGAGGCAACGAAAG GAGGACTTGGGGGAGAAATCACATACTAAGCGGCTAGATTTAGGGTTTCCTAATCATCTCTTTGATCTTGTCGTTTAAACC TCTGATCTTGTCTCCTTACCTTCGATCAGTCTTGTAACCCACTGTGTTGATTCTAATAAAAACGTCTTTAGTCATCCCATT TTCTAAGTTATCATTCTAATCGACTGAATCCTGTACAAACACTAGG

BrGYP14: Gypsy in Brassica rapa (AC189233.2) in $3^{\prime}-5^{\prime}$ orientation

ATCAT TGATGTTAGGAGTTTTCAAGGCTCCTAAGACAAATGTTGTAGTATAAAAGATTGTCGAACCAGTTCTGAGGGATAT CAAAGCACTGAGAATGCAAGTACTCACTTAATCTAAGTGCAACCAATGATTTAGAAGGGTTTTAAACTATGACTAAAACTA GAAAGCAATAACAGAATGATACTTTCTTGACTAAAGGAAAAGAGAACTCATGGGTATAGGGATTAGACCTTGGGTGATCAA GTATCGAACTAAGGATGGCAGATGATCAATCAAACTATCAACCTTAAGCCTAGACACAATTCTAAGCAAGCTCTATGTCTA GATGAATGCTCATTTGCTAACATATCTCAAACATCAAATGTCTTTGGTTGAATAATATGAAAGCAATCATTACTAACAAAT CTATTAGCTATCTTAGTACCTTTAACAACAAATGTCTTTGGCAAAGTATACTAAAAGCCTAGGAGAGTTGTCTCGGGCATT TCATCGAACACCTTTCGGGTGAGAAATGCCTAAGGATCAACAACTGAGTGGCCAACTCAGAAGATGCATTATGATTACTCT ACTAGCAAGGAAATATGAATGATCTACACTAAAACATCCTAGCTCTAACCTAATCACCCTTAATCTCCCTAACCCATGAAT TCAAAAGGTGATTACTCACTAATCTCCATGATTCCTCTTAAACCCATATTGGATTTCAGATTAATCATGTAAAGAAATAGA TAAGAAATCAACAAGAACACAAGAACATAACAATCAAAATCCAAGAGATGAACTTCTCAAGAGAGTTCTTGTGTATTTCTC AATAGATCAAAAGATAAAAGATAATCTGCCTCTGGTGGCTACAAAAGATGTTTAAAACATAGGTTTTTCCAAGTGCAAAAC GTCCAAAATAAATTGCAAAAAGGTCCTTAAGAAATCATGATTTTCGGCAGCAAAATAACGCGGAGCGACTTGCAGGTGTCG CTCCGGGAAGTCGCTCCAGGGCCGATTTTTGGTGTCTCCGGGCGAGAGGTCGCGAGCGACTTTGGTGTGTCGCTCCAACGG GTCGCTCTGGATCGGGAGCGACCTTGGTAGGTCGCTCTGAGAGGTCGCTCCAGGCTTCGCTTCGTGTCGTCTCTCCATAAA GACGCGAGCGACCTCGGGGTGTCGCTTTGGGAGGTCGCTCTGAGAGGGGTGTGATAACGGAGCGACTTCGTGGTGTCGCTC CGGGAGGTCGCTCCGGGCTCGTTCTCGCGTCTCCGAGTGATGAAACCGCGAACGACTTCTCCCTGTCGCTCTGGTAAGGTC GCTCCAATAGGGAAGTCAGAGCGACTTGGTGGTGTCGCTCCGGACTGGTCGCCCCATGCCTTGCTCGCCCAATGACCACTC TAAACACTCCATTTTGAGCTCCAAATGCACCCAAATGTCTCCAGAAACTCCATGTGGTACTCAAATACCTGATAGAGACAT ATGTATGCAAAATGCAACCTAAACATGTCTAAATTCTAATCTATATGATGAAAATGTTTATGAATGAATGGATAAAACAAT GTAAATATGCAAGATATCAACTCCCCCAAACTTGTTCTTTTACTTGTCCACAAGTGAACTTTCTAGAACTCATAGGGAGAG AGGTTGAAGGTGGGAGCACATAGCCAAAAGAAACACAACTAGCACACTCTCTTATTACACTCTAGCTTCTCTAGGCTCTTT TTGTTCTTACACTCATCATCAAGCATCCACACATTCAAATCAACCAACTCTCACATTCATTAAGCACAAAACATCAGGTGA ATTCTTGCAAATGGTCAGTTGGTCCAAGTCATTTGGTTGGGTAAGGGAAGGCTTTTATTCAAGTGATTCAAGAGGTTCAAA ACATATGATCTTTAAGGTGGTTTACTCTCAAAACAAGTAGCCTTGACATTGCACATAATATATCTAAGAAAGGGACCAACT CATGCATACAATGCTCAATCTCCATTGTTCTACCCTTTTCTCAAACATACAAATCACACAATCATTTTCCAATGTCAAACC CAACTCACATCTCTCACCAAAAGATCCTAAGAACTTTAACTCCTTCTCTTTGAAATCTACAAGGGATTTTTTTTCACAACC TCAAAACATTTCTTAGCTCCTAACAACTTTGCTAGCCCCCTTTTCTTTCTTTTTCTCTTTTTTTTTTTTTTTTCTTTTCTC TTTTTTTTCGTTTTTCTTTTTCTCTTTTTTTTTTTTAGGCTGGGGGCCAAGACTTTTCAAAACTTGAGCTAGAGGCTTCTA TACTGGTCCCAATAAAACAATTCACTTAAGCACAAAGAGTCTATTCTTTTCTTTTTCATTTCTCCCAAATCATAATCACAA CACTCACCCCCACCTATAGCTAGACAATAGAGTGTCCAATCTAGCAAGAATGAAGATCAAGCATTGTCGTTCCCGATACTC TCAACATTATGCACATGTAAGACTTTCCAAAAAAGGCCTCACTCATCAAACAATGAAAGCTTAAAAGGAGGAAAAGGTTTT GGGAGTGGTCTACCACTAGAGTTTGTCAAAAAAAGATTGGTATAAAAGATGTGACAACTCAAGTGTGTATAGCCATGACTC AGTACACAAGGGACCATGAGCAAGAAGCATTAAGTTCGTTCAGTTCAAATAAGGTTGTAGTTGGCTTCAAAGACTGAGTTT CAGCAATCAACAAGTTTCAGGAAGAGTTTTCAAGGCTCAAAACATACAAGTCTTTTTGAGAGGTGCAAAAGCTACTCAGGT GCAACGTAGTGTTCTTTACAAGGCATTTAAAATCATTGCTCCCAATGTAAGTGAATGCAACCTATATGCTCTAGACTCTCC TAGAAATGCAAATGATGCAAACTAAATGATTGATTTTTTTTTTATATGCAAATAGGTATGCAATGCATGACTCAATGAAAC AACATCAAAGCAAACATGATCAAATACTTGGGACCTCCCCCAAACTTGAGTTACACAGTCTCTGTGTCGTCAAGTAGAGAG AGATACCGAAAAGAAGACTAATATGCAAAAATGAAATGGTATATACAAGGGAGTGTGGTGGGTTACCTTCTATGGGGAATG AGTAGAGGGAGATGCTCCCTCCTCGTCGTCCTCAGGTGGTAACTCTTCAAGGTGCTCATCAGCAGGAGTGTCCATCTCTTC AATGCAGAAGGCTTGCCCGAACACAGTTGGTTTCCTCATTTTCCCCTTGATGTCAAAGTGGAGGATGTTCTCTTTACCCAA ATGGAGATCAATCGTGCCCTCCTTCACATTAACAATAGCTCCTGCTGTAGCTAAGAATGGCCTTCCTAGAATCAATGGATC TTGAGCCTCCTCACCCATCTCAAACACCACAAAATCTGTAGGTATCTCATACCTTCCAATCTTCACAGGGAGGTCCTCTAA GATGCCCACAGGGTACTTCACTGAACGATCAGCTAACACCAGAGAGAGTCTACACTTCTTGTACTGAGTGAATCCAAGCTT CTTTGCAACAGACAAATGCATCAAGCTGACACTAGCTCCCAAATCGCAGAGACTTTTCTCAAATACCATAGGTCCAAGAGC ACAAGGTAGTGTGAAACTTCCTGGATCCTCTAATTTCTCTGGAACATCAAGCCTCTGGATGATGGCATTGCACTCATGGGT AAGAATCATCATGCCTTCCATCTCCTTCTTCTTTGCAGCTACAACATCTTTCAGGAAATTGTTGTATTGAGGAATCAACAT GAAAGCATCGATGATGGGCATTGCAACCTGAGCTTCACTCATTTGCTTCTCAAACAGAGCTTTGTATTTCTCTAGCAGCTG CTTCTTGAATCTACCAGGGAATGGAAGTTTGGGTTCATAGGGAGGAGGAACAAAAGAACTTTCACTTGCTGGAGTAACAAC TTCACCATCCTTTACTGTCTTCTTCTCCTCTCCAACCTTTCCTTTACCTTTGGCTTCCACTATCTTCTCCAAGATCTCGTC ATTGATCTTCTCATCAACAATCACCACTTCATCATCTATGTTGATGGCAACCCCCTCACCTAATTTCTCAGCATCCTTGGT GAGGGTTCTAGGAGGTAACTGCTTACCACTCCTGAGGGTGATAGCTTTGGCCTCCTTGGGATTTTGGTCAGACTTTCCAGG TAGAGATCCTTGCTGGCGATTCTGGTGAGTGTTCATGGAAGCAAATTGATTCTCTAAATTCCTGACTGTAGAAGCAAGGTG TGAGAATTTGTTGTTGAGCTCATTGTAGCCCCCATCAATCTTGGAATGAAGGTTCTTCAACTCATAACCAACTTGCTTCTC ACTTCTAGTCTGAGACTCCAAGATTTGCTTCAGTAAGGTATCAGTGCTGCTCTCTTGAGGAGCAGAGGAACCAGACGAGGG GTTTTGCTGAGGCTGATAGCTGCCTTGCTGGTTGTTTTTTGGCGGATAGCCACTCTGTTGGTTGTTTGGATAGGATTTCTG TTGGTAGTTGTTGTACTGAAAGTTGAGCTCCTTTTTGTACCAGCTACCATTGTTGTTGATGAAACACAACTCCTCTTGACC TTCCAAACCCTCAACCTCATTGACAGCAAGTGGATCTTCCTGCTTGGAGTTACCAACAAACTTCAGCTGCTCTTGGGTTGC TTTTTCAGCAATGAGTAGGTCGATCTTGTCTTCCAAAGCTTTGATCTCTTTCCTCGTCTGCTTATCATCTGTTCTACTGTC TCTGTCGTGGTCTCCACTGTAGACTGCATCACTCTTTACCATGTTGTCAACCAGTTCTTCTGCATCCTCCTCAGTTCTCCC CAAGAAGAACCCATTGCTAGCTGTATCCAGTCTGGCTCTGTACTTAGGAAGAGCACCACGGTAGAATGTGCTCAGTAAGCT CTCCTTAGAAAAGCCATGGTGTGGGCATTGAGCTTGGTAGCCCTTGAATCTCTCCCAGGCTTCACTGAAGCCTTCCAAGTT CTTCTGTTGAAAGCTGGAAATCTCGTTTCTCAGCTTAGCAGTTCTTGAAGTAGAGAAGAACTTCTCCAAGAATGCTTTCTT GCAGTCATCCCAAGTAGTGATGGAGTCACTGAGTAGAGACTTCTCCCACTGACGTGCCTTATCCCCCAAAGAGAAAGGGAA TAGCTTGAGCTTTAAGGCATCTTCGGACACACCATTGGTTTTTGACAACCCACAGTAGCTGTCGAACCTGTCCAAGTGATC AAATGGATCCTCTAGAGCCAAGCCATGATACTTGTTGTTCTCGATCACGTTGAGGAGTCCTGATTTGATCTCAAAGTTGTT GGCTGCCACAGCGGGTGCTCGGATTCCCAATCTATGACCATGAATGTTGGGGCGGTCGTAAGTGCCAATGGGTCGAGCTGC TCGCTGTTGGTTTTGAGGTATGTCTCCCATATCAGTACTCAATCTCTGCAAGTGAGTCTGTTGCTCTTCTTCTCTTCTATT

TCTAGCACACTCTCTCTCTAAAGCTCTGATGTCTGCAGCTATTGGAACTAGGTTTGATGGACCCCTGCTCCTCAAGTTCAT ACACCTGTAGATTAAAGGGAGGTGAAGAAAGAGAATCAGTAACAAAAGAAAATAAAAATGACTTAGTCTCAAGCAAGTGAC TAAATCTCAATGTTCAAATCTACTCAGAATTTGGCAACGGCGCCAATTTGATGTTAGGAGTTTTCAAGGCTCCTAAGACAA ATGTTGTAGTATAAAAGATTGTCGAACCAGTTCTGAGGGATATCAAAGCACTGAGAATGCAAGTACTCACTTAATCTAAGT GCAACCAATGATTTAGAAGGGTTTTAAACTATGACTAAAACTAGAAAGCAATAACAGAATGATACTTTCTTGACTAAAGGA AAAGAGAACTCATGGGTATAGGGATTAGACCTTGGGTGATCAAGTATCGAACTAAGGATGGCAGATGATCAATCAAACTAT САACCTTAAGCCTAGACACAATTCTAAGCAAGCTCTATGTCTAGATGAATGCTCATTTGCTAACATATCTCAAACATCAAA TGTCTTTGGTTGAATAATATGAAAGCAATCATTACTAACAAGTCTATTAGCTATCTTAGTACCTTTAACAACAAATGTCTT TGGCAAAGTATACTAAAAGCCTAGGAGAGTTGTCTCGGGCATTTCATCGAACACCTTTCGGGTGAGAAATGCCTAAGGATC AACAACTGAGTGGCCAACTCAGAAGATGCATTATGATTACTCTACTAGCAAGTAAATATGAATGATATACACTAAAACATC СТАGСТСТААССТААТСАСССТTAATСTСССТААСССАТGAATTCAAAAGGTGATTACTСАСТААТСТССАТGATTССТСТ TAAACCCATATTGGATTTCAGATTAATCATGTAAAGAAATAGATAAGAAATCAACAAGAACACAAGAACATAACAATCAAA ATCCAAGAGATGAACTTCTCAAGAGAGTTCTTGTGTATTTCTCAATAGATCAAAAGATAAAAGATAATCTGCCTCTGGTGG CTACAAAAGATGTTTAAAACATAGGTTTTTCCAAGTGCAAAACGTCCAAAATAAATTGCAAAAAGGTCCTTAAGAAATCAT GATTTTCGGCAGCAAAATAACGCGGAGCGACTTGCAGGTGTCGCTCCGGGAAGTCGCTCCAGGGCCGATTTTTGGTGTCTC CGGGCGAGAGGTCGCGAGCGACTTTGGTGTGTCGCTCCAACGGGTCGCTCTGGATCGGGAGCGACCTTGGTAGGTCACTCT GAGAGGTCGCTCCAGGCTTCGCTTCGTGTCGTCTCTCCATAAAGACGCGAGCGACCTCGGGGTGTCGCTTTGGGAGGTCGC TCTGAGAGGGGTGTGAGAACGGAGCGACTTCGTGGTGTCGCTCCGGGAGGTCGCTCTGGGCTCGTTCTCGCGTCTCCGAGT GATGAAACCGCGAGCGACTTCTCCCTGTCGCTCTGGTAAGGTCGCTCCAATAGGGAAGTCAGAGCGACTTGGTGGTGTCGC TCCGGACTGGTCGCTCCATGCCTTGCTCGCCCAATGACCACTCTAAACACTCCTTTTTGAGCTCCAAATGCACCCAAATGT CTCCAGAAACTCCATGTGGTACTCAAATATCTGATAGAGACATATGTATGCAAAATGCAACCTAAACATGTCTAAATTCTA ATCTATATGATGAAAATGTTTATGAATGAATGGATAAAACAATGTAAATATGCAAGATATCAATCAT

BoLAR1: LARD-like element in Brassica oleracea (AC149635.1) from 8183-14365 bp
TAATATGTTATAAATCAATTAGTGGATGTGCATAACCGTCCCGGTCCATAACCAGTTCATATACCTAGAGAGAGAGTCGGC CACGACTTAGAGAGAAAGAGAGAGAGAGAGGCGGCTTGTAGAAAAGGAAACCATCTTTCCTTTCTTTTTGTAATTGTTATC TTTCCATTATTATGTATTAGTAGTTTTCCTAATCTTAGTGGGTTTAGGTTTTAGATACTTTCATTTTTACTTATCTTGTAA TCCCCTATATAAGGGAACACTTATTCATTAATGATAGATAGAAACATTCAGTTCTCAAACCTTCGTTTTATAACATATTAT CAGCTCGATAACCTCTAACACCGTGAGCCTAAAACCAAAATCACTAAAAACCCTAAAATCCCTAAACAAAGAGGAATCTGC CCCAGAACTTCAAAGATGTTGTTCTCCCAAACCGTAAGGACCCAGAAAACGATCAAGATATCAAATCGAAGCTCTTGCCGA AACGAATCAGTCAGTGCAAACCGTTTGTCGATCTAACCACTGACGCGTCCTCACGCACCGATACAGTGCGCGCCGATTTGC TTTGGAACCCTAATCTGTTCTTGCAAGCGTTCCAGCTCGTGTTCATCCGATCAGCCCCAACCCTAAGGCATTCCTGATACT AGACGAACTCAGCCTCAGCTCCATCTGTTCTCAGCTTGCATCCCGGACAGCTACAACTCGCGTTCCCGATCAGACGCATTC CGTTCCAGCTCGCGTTCCATTCCAACTCGCGTTCCAGCTCGCGTCCGATCGTCCAGCTCGAGGTTCTCTTGGTGGTCCGGT TCTACAATCTTCAAAACCCTAAAGGTAATTCGAAATCTGAAAACATGAATCGAATCTGGTTGTTTTGTAAAGATTGAAACC CTAAAATATAATCTCTAAAAAGCTGAAAGCCATAGGATAATAGATCAATACCCTATGAGTAAATCGAAGCTCTATAAGTTC GATCCAAACCCTAAAATTGAGATTTGATCCATTGATCAATTAAAATCAGAACCTTGAAGGTTTGAATCTCAAAATTAAACT CCCTTGATCTAAGATCAAATCGAATACCCAAAACCCTAATTTGAAAAATCGATTTTAATTGTTTGGAATTTGAAACTTTGT TTGATTGACTGATCACCTAGAACTATGATTATGATTGTTTAAACTTGAATCTTGAAATCTGAATTGATTGGCATGTTTAAA CTAAAACCCTAATGATCTAGTTTAGATTGTTTAAAATTGAAATCTGAAACTATAGGATTAGGTTAAACTATTCTAGACATA ATCATATTTGTGGCCGTGTGGCCTTGTTGTATTCATACCTAAACCTAATCACATTGATTGATTGCAATTTCACTTAGAATC TCATGTTAGAATGGTATTGAAATTGAAATTGAAATCAAGTATGATTGTTCTTTGCTTGGCCGATTAGCTTGCTTGTGTTGA GTACATTGTATAAACTGATAGAATGCATCTATGCTAGGATTGCAATTACACAACAAACTATATGCATTGATCCTGAATTGA ATCATTAGCCGTGTGGCTTATTTTCCTGTTTTGTCCGTGTGGCTTCCTCATGGCCGTGTGGCTTCTTCTTGGCCGTGAGAC ATAAACCTTAGCCATAAGGCTTGCTTGCTTGATTGATTCTATTAATTGTGAGTTAAGTCAGCTAGATTGATTGCATACTGA ATCTGAAACCCTAAATCTCGAATTTGAATCCCTAAGGGCCTTGAAACCCTAAATCACATGATATTAATCCAAATTGAGTTT AGGTTTGATTCTTGTTATTTTGTCTGATCTAATTGATGTCTTGAAAGTTAAGGTGCTAGATTATTTTGATTCTCATAAAAT CTGAAACCCTAGCCACATTTTGTATTGCTAAGATGATAAAACCCTAATTGGATCAACATAGATTGTTTACATCATAGCTTG GCCGTGTGGCCTTTATTGCACCTTACTATCATAGCCGTGTGGCTTGCATACATCACATCACCTTGATCACATATAGAATCC AAAAGCTAAGATCGTATGCATCATATATATCTATCTAGCCGTGTGGTCTCTTTGCTTACATCATGATTGTATGACAGTGTG GCCTTATTGCACATCACCCCTATAGCCGTGTGGCTTGTTCATTAGAAATGCATTAACTCGATTGTTTACTTGGTCACACGA TTTATTTTCTTATAAAGATTGAGTGATATATGATTACAGATGTCGAAAATCAGCAATCAAGATTATGCTAGCCTAAATCTC TTTGGAGATAATTATTTACAATGGGCATTAGACACATAGATTGTCCTGAAATCAAAGGGCCTCGGTGAATGTATCATCGAG GACAATAATGCAAGTGAAAGTAATAGATACATGGCAATAATGATTACTCGCCAACCCCAAGCCAATGAGGCTGCAGAAAAA AAAATCTAAAGAAAGCAACCACGTCCATCATGATAAACCATACGGATGTAACCGTGATGGATGGAAAGGACGTGGGCATAG CCAAACCACCTTATACAACCATGGACATAGGAATCACTATAACCGTGGTTGTGGACACAGTTTTGGCCATGGTTAAGGGAG AGGAGGTTGTGGCATTTCTAAGCCACCACACTCGGCCAAGTCAGTGTGCCATAAGATATGTAATGGGGAATCATTAGGCTA AAACATCTGATTGTCTAAAAAGAATAATGTTGATTTCGATTTCTGTTTTTGCTTTGCTTTATGTTTGTGATTTTCTTGAAT TAAGAACTTATATTATAAGATGAATGAATGATTTTAGATATGACTAAGAAAACACCAATATATAAGGCAATGTTGCGGGTA TAGTCAGTCAGAGAAGGTCATGCGACCAGTATAGAATTGCCTAAAGGGCTACGGCTAGACTTAGTACATTGGCACCTAAAG AGGCTAAGTACATTGGTGCCTAAAAAGAGCACGCATAAAAGACTTAATGCTCTATATCCACCCATAGAAGCCCATTGAGTT TATAAGATATATGATAATGGTTTCCATATAGAAACAATGGGCAAAGGAAACAAAGAGAGATCGAAACTATACATGCATTCT CTACTGATCTAGACTATGCAAAGATCAATATGATAAAGGCAAAAGCCATGGTAACCAGATTGGTATGCCCCACGAAAATTA TACACTATATGGCATGACCGGATTAGCCATTCTGGTCTAAACTTGATGCAAAGATTGATATTGAATAGGCACACAGAGTTA TCCCATAAGATCTCACGTTGTGTAACATGTACACAAGGGAAACTCATGAGGCTTTATTGTCATAAGCATCACGAAATTATA GTATGTTCATGAGGGGGAGAGAGGATAAACTCGTGATCCATGATCACACATGATCAATACTACAAATTTGTGTACTACTAT GGTCTATGACCATGCTATAAACGGCTCGGCCGCAAAGGCCATTACCTACAAAGGTTCGGGACATCACGAGTTTTACATGTA TATAAGGTTAATATGCATCAGGCCATATAAGTGAGCATAAATATTCCCATCTCAGATTGAATACGGGTCATGAGCCAGACA TATACCATCTTAAGAGACTATTGAATAAACCACCACAGACATATGTACCGTCTAAGATGGAACCTTAGAAGAGGATTGAGA

ACATATGTTGGATAAGAGTATGACTTTCTCCCACGACTTCTAAGAGACCTTGAGCCAAATATGGGTGATCAGAAAGTGGCC AGGTACACGGATTGCATGATCAATGAATCTGACTATCCAACATTAAAGGGAGAATGCTATAAGCTGGTAAAGAGTAAAGAA TGATAAGAAACAGAATGGTATCAGCCATCATTGTCTTGGCAAAGATCCTCGGATTAGAATTATAGACGTCCAAAGAAAGAA AAGATTATACATAGCTAGCTAATCGAGATGCCAGACACTGACCCGAAAAGAAAAGAAAAGAATGACTAAGTCATAACCAGC TTAGCACCAAACGAAATCTGATGTCCTAGAAAGAGACACAGTCAAGTTGTTACAGAGTCTATACAAGATAGACCAAAGTGT TCCATAAGATAAGTAACCTCGGAAAGAAAAAGAGAAAGGTGCATAGAATACAAATCCGAGGTCATAAGGAAACCAGACCAG ACATTGAGAAAAGGCTGCGCAGCTAAACATCTAAGGTACCAAACCATGTAGTTTGGGACGCCAAGCTACTAGGTAACAAAG GTCCTGGATAATAAAATCTCAAATCGATTAGATCATGTCTGGAACACAATGGAACCATATATAAGTGTCGACACATAAAGA TATATTTGTACATAAGAGAGTAGCACTTGAACATAAAGATATAAACGAGGATCATGAACGAAAGAGTACTCATAAAGATTA AAGATTAGATTGAAAAGATAAACGTGGGGTTTAAAGTATCTAAAGAAGAGATAGGCGTATTGGCCATACACATATACATAA ACACCATCTGATAAACCAGTGAAATAGATGGGTCTTGTGAGGGAAAAAAACCCGTGAGATATGGTACATGATCACGTGGTC TAAAGGTGTTCATGTTTCCTACTAACAGCATTCGATCATAGCTTGTTACACAAGGATACTCACAGAGACCAAATGAACAGA TTATAAGGAGATAAACTCCTATGTGGTGGATGCTGCTATATATTTTCGAAATTGACAAAGGTCTGGTCATAAGAAAGAAAT TAGATACAAAGATGCAGTAAGCAACATATGGATCACTGGATAAAGAACAACATTGTTCCTAAGCTGTTCATGGATAAAGAA CAACATTGTTCCTAAGTTGTTCATGGACTGAAACAAAGTAGCTGCATATATTATATAAAGGAATTGTATAAGGACAATCCA AATTCAGTCCATACATATACTTATAAAACAGATTTGAATTCTTTGTGTTTACTTTATACTAAACCAGCCTAAAGAGAGGTT AATTAGTTGATACATATTATTTATTAATTCTGTCTGGCTAGAGGTGTCCGGCCCTTCTTCTTTGATCATGGCTAGTGGAAA AGAAAGATCAGCCATCATGATTGCCGTCCATAAGCTCGTGTAGTCGAGGTCCATGACCTAATAAATCTTCTGGTGCGTGGT ATGATTCACGGCAACAAAGGTCATGGGACACCATCAAGGTATGGATAAAAGACTGCAATAGCATTACCGAATGCAAGAGAG ATTACTGATCGAGATCCATGAGTGTGTTCGGCCGAAGAGCCATAGCTTGATGAGATTATAAAACTCATTACAGCAATAATC ATTGATCACATCTTGATCTAGAACACTCATGAGACAAGTTATAAACATGTATAGAAGAAGTCTATGACTCAATATGGATCG ATCAGATTAGTGCATAGTCGATGATAATAAAGAAAGATCTATGGACAGATACATTGGTACACATCCGTGTAGTAGATACAC CGGAACATCGGTTTACGACCTGAGACTATAAGTTCATAAGTACCATGCTCAGTATATATTGTCCACAGTGTGTTTAGTCTG TCCGACCTAATTAAGAGTACTCGACAGCCAAAGGTCCACTTCTTGACCATGCACACACGATGTCAGAAGACATGAGAAGAG ACCGGAAAGGTCAAAGTAATCCAATTGCGGTTCAGTAATGAACTTGGCCGATTTGTTTACTCCCTACCTGCACGTTTAGGA AAGATCACGCATCAGATGCGTAGACTGAAGAAACTTCCACTGAGGTCCACATCAGGGGGAGTAGTACGTGTTGTATTCTTT TTCCTTCATCATGTTTTGTTCCACTGGATTTTTCATGATAAGGTTTTAATGAGACAACATTAAGCGTATTACAATCCCTGA ATGGTTATGGCATCCAAAGGAGAGTGTTATAAATCAATTAGTGGATGTCCATAACCGGCCCGGTCCATAACCGGCCCCGTC CATAACCGGCTCATACACCTAGAGAGAGAGTCGGCCACGACTTAGAGAGAGAGAGATAAGCGGCTTGGAGAAAAGGAAACC АTСTTTCATTTTCCTTGTAATTGTTATATTTCCATTATTATGTATTAGTAGTTTTCATAATCTTAGTGGTTTTAGGTTTTG GATACTTTTCTTTTTACTTATCTTGTAATCCCTTATATAAGGGAACACTTATTCATTAATAATAGATAGAAACGTTCAGTT CTCAAACCTTCGTTTTATAACATAATA

CHAPTER 4
 CHARACTERIZATION OF LINEs and SINEs: UBIQUITOUS COMPONENTS OF BRASSICA CROP GENOMES

The sequences of reference LINEs and SINEs identified in this study are given below. The details about the elements are listed in table $4.1 \& 4.3$. The TSDs of elements are shown in red colour and poly(A) in blue colour.

A 6382 bp BrLINE2-1 in Brassica rapa (AC189630.2) in 5'-3' orientation
GTTACATGAATACAAGAATACTACTAAAGAATAAAAAAGCCTTTTCTCTCTCTTGCGATTTTTCTCCCAGACACGGTTCCA GAGAAAAACCTTTACACCCTGTACCCAAAGCTGACCTAGCCTTTTAACCCACGGTTCTTTCCCTTTGTCGGCTTTTATCCT CTGTAAAACCCTGCAAATTTTCAAATATTTACTACTTTAAGCTATATCCAACGGATAATAGATAGCTCCCACAAATTATCC TACCGGCTCTGCAGTCTCCTCCGCCGGGTTCAGCCCCCGACTCCGTCGGTGGGTCAGCCAGGGTCCTCCTGTGCCGTCTCC GTTCTGTTCTCGCATCTCAGCCTCATACAGTCTCTGTACTCTCTCTATACCGGAGCTGGTCTTTATGGATGAGATAAGATA GATACCTTTCTCAACTCTTGGGTTGTTATAACCTCCTACTAGTACTGCCTCCAACAACTTGATATAGCATTAATCACTTTG AGTTACTCACCTATATCAGCATTTACTGACCTTGGAAAGTCGAGATCTCACCATCTCTTTAAGATACTCTCCACGCTGGGT CTGGTTATACTAAATCTCCTTTCAGCTTGAATTATTTGTGCCACTTCCACCATGTCTCGCCGCTACTCTCGTTCGGACAAG GAAAAATGGAGTGCGGCCGCCCCCCCGCCACCTCCGCCTACTCGCCGTGCTCCTATTCGCATTCCAGACAGTGACCCTGCC GCCCTAATAGCGGAAAACAAGCTCACTATCATTGGTAGGGTTACAAACCCACGGTTCCAGAGACCTCGAGCTGTTATCGAC TTCTTGCCCCAAGTCTGGAATTTGGAAGGGCACGTTGAAGGCCGTGAACTAGGGCTAGACAAATTCCAGTTTCGTTTCGAT TCAGAACACGAGCTTCAAACGGTTCTTGACAAAGGCCCGTACCATTACAAAAGATGGATGTTGATACTACAAAGATGGGAA CCAGTGGTGTCGGAAAACTTTCCTTCTCAGATATCCTTTTGGGTGAAAATCCATGGTATCCCCCTCCACTACTGGAATGAA AAAGCTGTTGAAACTATCAGCGATGCACTTGGACATGTCTCAAGCCGAAACGCCAAAGAAGCAAAGTTTCGTGTAGAAGTG AATGGGCTCCTTCCACTTGAAATGAAAATGGAAATCTTGCTCCCCTCTGAAGAAGTTACAGAAGTGGAGTTTCAATACCTA AAGATAGAGAAACACTGTTTCACTTGTTTCTCTCTCCTTCATGAAGAGGAGGACTGTCCCTCTCGCCCAAGAGGAGCTCGA GCTCCTAAGGATAGACCCCTCGGTATTACTCAGGCCATTGCTCTCCAGCGAATCGAAGCTGACAAAAAGAGACACGATGAT AGAAGAGGCTATAGACGGCCTGCTCCTCAACAATCTGCCCCAAATAATCCTTCCCTGACGAATCGGGAGGAGCATCGCCAT TACTCTGATAATAGAGACTCTCATCTGTTGCCTTCAGACCCTGCCTCCCATCGGGATTACCATCGCCATTACTCTGAGAAT AGAGGCTCTCGTTCGATGCATGTAAACCCTGCCTCGCATCACTCTAACAGACCTAGCGGGGGCTCTTTTGAGCCTCGAAGC CAGCATGATGAAACTGTTAGAACCCCTGCAGCATCAGCCACCAGAGGATCGATCAGGAGGGGATCAGGAGGATCGATCGCA GACGGCCAAATCATCTATCCAGTGAATCAGAACAACAGTGGAGGGCAATCTAACTCTAGGGAGAGAATTCCCGCTCGTGAT CGGCTGTCAGGACAATCCCAGGAAGACAGAGTTCCTGCCATGGAACGCCTCTCTGGTGGAGATACATCAATGGTTCCGGTA TTTGAATTACAGGACATTGGAGGGGAAGTTGCGGTGGAACCCGCGTTACAACCCTCACACTTGGCATCTGGCTCCAGGGTT CCGGCCTCTCTGCGTCTAGGAAGCCCAAGTGTCTCAGGCAACAGGAACAAAGCAAAGGCTACTGCAGCAGCAGCGTTAAGC AAACAAGCTGGGAAGCGAAAGGTGTCAAAAACCACGAGCAATAAACGTGTAGCTAGAAGCCCAATGCAAGTACTAAGCCTC TCAAAAAGCATTGCAGCACGATCCAAGATTTCCACCCGTAGGAGACTATGCCCAGCTCGCTATGCAAATGAATTTGCGGGG

Appendices

CCAGGTTCAAGCCGCAAGAGACAGGATTCGAGTAATCCCATTACGGTGAATATACCGTCGACTAACAAGGAAGGGGCGGAT TTTCGGTCCCATCTTCCTCCTCTTCCTTAGTAATTATGAGCTGGAATTGTCAGGGCTTGGGAAACGTTCTGACAATTCGCA GAGTGAAGGAGTTACATCGGACTCTCTCACCGGATATCATGTTTCTCATGGAGACAAAAAACTCCGATGAATTCATCAAAT CAAAGCTGGACAGTATACAGTATCCCAATTATTTCTCAATCCCACCAGTGGGCTTGAGTGGCGGCCTCACTTTGCTATGGA AGCAGGGGGTTGAGATCAAAATTATAGAGTCATGTGCCCATTTCATCGATGCTGAAGTGGTTTTCAAAGGAACTTCATCCT TTGTAACTTTTGTTTATGGCGAGCCAGTGGCAGGGAATAGAGCGGATTTCTGGAACACTCTTACGAGAGTGGGTGCAAACA GAGAGGAAGCATGGCTATTGACAGGTGATTTTAATGATATATTGGATAATTCGGAGAAGGAAGGAGGGCCTGAGCGATGGG AGGGCTCCTTCACGGCATTCCGATCTTTTGTTTCACAGAACGGACTATGGAACCTTAAGCACTCCGGAAATCAACTCTCAT GGAGAGGAGTACGATACACTCATCATATCAAGTCTAGACTGGACCGCTCCTTGGTTAATTGCTCCTGGTCAGAGTCATTCC CAATGGGTAGGAGTGTGTACCTCAGATATGAAGGGTCTGACCACAGACCAGTGATCACTTACTTCAATACTGCAATGCAAA AACGCAGGGGTCTTTTCAGATTCAATCGATCATATACTGAGAATGAGGAGGTTACACAGCTAGTGGATGCTGCCTGGAATC ATCACCCTCTCGATTCAGTCATTACAAAACTCAACTCTGTCCGTCGAAGCATCATCAAATGGGCTAAAGAACAGAATGTAA AGAGCAACCTTGTTATCCAATCTGCCCAGCAAGCGCTTGAAGAAGCACTATCAATGCCAGTTGCGGACTTACCTCATATCC AAACTCTCACTAATACATTACTGGTTGCTTATAGAGAAGAGGAAAGTTTTTGGCTACAAAGAAGCCGGATTCAATGGCTTA AgAAgGgGgACAGGAACACCGGCTTCTTCCATGCGGCCACTAGGAAGAGGAGAGCGCTCAATAATCTCTCAGTGATAGAAA AAGAGAATGGCGAGGAAGTGTTTGAGGAAGCTCAGATCTCTTCGGTCATTGCAGATTACTACACGGAGATGTTCACCACAA ACAGCAACTCTGACTTCTCTCTAGTCCAAGCCTGTCTTGTTAATAAGATTACTCCAGAGATGAATAGTCGGCTTATAGAGA TTCCATCAGACAAGGAGATTGAGGAGGCAGCTCGGTCGATAAATGGAGGAAAAGCCCCGGGCCCGGATGGTTTCTCAGCAA AGTTCTATCACTCTTATTGGCATATCATTGGGAAAGATGTAATCACTGATGTCAGGAGCTTCTTTGTCACCGGAATAATAC ATCCACAGCAGAATGAGACTCATGTTCGATTGATTCCCAAAGGCTCGGGACCGCGAAAGGTTGCGGACTATCGACCGATAG СТСТСТGСААСАСТСАТTACAAGATCATTGCCAAAATCCTTACTCGACGCCTCAAGCCTCTGCTGCCAGATCTTATCTCCA AGACGCAATCGGCTTTTGTAGCGGGACGAGCTATCTCGGACAACGTCCTCATTACGCATGAAACCTTACATTATCTCCGAA CTTCAGAGGCGAAAAAGTATTGCTCCATGGCGGTGAAAACCGATATGAGCAAGGCTTATGATCGCATAGAGTGGGGTTTTA TTAGAGCAGTCCTGGCCCAGCTTGGTTTTGACCCGATATGGGTCTCTTGGATCTTGGCGTGTGTTGAATCAGTGTCGTACT СTTTTCTGATCAATGGTTCACCTTCCGGTCATGTTACTCCATCGCGTGGAATACGGCAAGGTGATCCGCTCTCACCATACT TGTTCATCATGTGTACAGAAGTCCTCTCAGCGATGTGTACTAAGGCGCAACTAAACGGTACTATGGCGGGGGTGAAGGTAG CACGGAACTGTCCTCCGATTAATCATCTATTGTTCGCGGACGATACGATGTTTTTTTGCAAATCAACACCCGCCTGTGTCA СTACTCTGAAGACGATCTTAGAGAGTTATGAAAATGTATCTGGACAACGGATCAACCTGCTGAAGTCGTCTATCACTTTCT CGGCTAAGACACCTGGTGAGGTTAAAGCTCGAGTGAAGACTGAGCTGTCTATCCCGGCAGAGGGAGGGATTGGCAAATATT TGGGCCTCCCCGAAAACTTTGGCCGCAAGAAGAGAGACATATTTGCGGCAATTCTTGATCGCATCAGACAGAAGGCGCATA GCTGGACATCTCGGTTCTTATCAGGCGCCGGTAAACAAGTTCTCCTCAAATCTGTCCTTGCTGCAATACCGTGCTATACGA TGTCATGTTTCAAGTTGCCTATCTCTCTATGCAAACAAATACAATCCCTCCTTACTCGATTTTGGTGGGATGCAAACCCGG AAAAGAAAAAGATGTGTTGGGTCGCATGGTCTACTCTCACACTGCCCAAATATGCTGGTGGCTTAGGTTTCAAAGACATTG AGACTTTTAATGATGCCATGCTCGCTAAAATTGGCTGGCGCCTTATACAGTTTCCAGACTCGTTGCTGGCACAAGTGCTGC TCGGAAAATATGCTAAAGCTTCCTCTTTCATGGAGTGTGAAAGCCCATCATCAGCTTCCCACGGATGGAGAAGTATCTTGG CAGGTCGGGAGGTTCTAAGGAAAGGACTCGGTTGGGTGGTTGGGAATGGAGAAAACATTAAGGTTTGGGGGGATCCTTGGC TCTCCTCCTCCTTTCCTACAGCCCCTATAGGTCCACCAACTGAGAATGCAGTATCGATGACGGTTAGTGAGCTTCTATGCC СTCTCACTAACGCCTGGGACATCCAAAAGATCCAGAACTATCTTCCTCAGTATGAAGGCATTATTAATAGGATTATCACAA GCTCTGCCCCTGCTCGCGACTCCCTTGCCTGGCTAGCTGAGAAATCAGGAGAGTACACTGTGAAAACGGGATATGGAGTGG AACGTGTTGGCTTGATCCCTCCTCACACAAATGAGCAAACCTTTGATTGGCTAAAGAACATATGGAACCTGAATACTTCAC CCAAGATCAAGGATTTTCTATGGAAAGTCAAAAGAAAGGCAATCCCTGTTAGTTCCAATCTAGCGACCAGAGGTATGGCTC CGTTTCCTTGCGCGAAATGTGGAGGAGTTGAAGATGATCTCCACGTCTTCCTTCTCTGCCCCTTTGCTTCTCAATCATGGA GCCTACTACCAGTTTATGAAATTCCGGATGGTTCAAATAGCTCCATGGCGAGCTTATTTGCAAATGGTAAGAAGTACACCA ATCTGCCTCCGGTGGGGTGTGATACCCCTGTCTGGCCCTGGCTCTTATGGAACCTTTGGAAAGCTCGAAATAAGTTGTGCT TTGAAAACAAAACCTTCACGGAGTGGGAAGTTGTGAACAAAAGCGTTACTGATGCGAAGGAATGGGCTGCTGCTCAACTAC TCGCTGAAGAACATAACCACGCTACCAAGCGACAAGGTTCTCCTCCGATCATTCCCCAACCATCTCCTGGCCAAGTTCTGT GCCATGTGGATGCAGCTTGGGATCTGCGTACTGGTAACTGTGGCATAGGGGTTCTGTTTTCGGAACTGGAAGACACTAGGA TCCAGCCCCTTAAGGTTTCTCGTTCTTTTGTTTCATCAGCTCTCATGGGAGAAGCTCTTGCTGTTCGTTTGGCGGTGATGA CCGCCTCCTCGTCTAACGTCCGATCGCTGATAGTTCTTTCGGATTCCCAGGTTCTTATCAACATGATTAGAGCTAAGGAAT CACGCCCGGAACTGTTTGGCATCTTGTTTGACATCTATCATTTTAGCTTATCTTTTGAGGATATCTCCTTTCATTTCATTC CTCGCTTATGTAATGTTGCTGCTGATAATGTGGCTAAGGCAGCCCTGGCTTCTGTAAACTCTACCTCCCTAGTAGGAGGCT GACTCTGTTTTCTTAATTGAATGAATCGTAGTTTGCTACAAAAAAAAAAGTTACATGAATACAA

A 7313 bp BoLINE3-1 in Brassica oleracea (AC240078.1) in 5'-3' orientation

CTATGATTGGGGACTTAGCGTTGATTGGGTAGAATTAGTATTTACTGTGGATAAAGCGAACGCTCTCGATGAAACTTGCGT TCTAGATCTTTAAATATATGATAACATCGACAAGTAATCATAGTCGTTGTATGGTCTAGTTTGGATGCGAATTCAAGTTCA ATGTTCCAATTACCAAATACCAACTTGAAGTAACACATAATGGCCAGAGTAGGAAATTCAATATTATAAGATAAATTATTA CTGAAATGTTGCTTTTTACTATTGTCACATTTCTCAAAGTTGATTATACACACAAGAAAATAAATTGAATGATTGTGTTGG AAGCAAGGAAGCACTGACTAGAGAAAACAGCTTAATCAAGCACCACTAAAATCTTATTAGACGGAGTCAGCGTCATTAGAT ACCATTAATTTATTGTTAATGACCCATCTACCAAAGTTTGATTGATAAACTAGTGCATTCTATTTTAATAACCACTGAGTC GATTGATAATTTAAATTACAATAATTAGTGTTCTTTTGCGGTCAAAGAAAACGATTAAAGTAATTTTCTTAAAGTGATGTT TAGACAGAAATAGTATACCTTCATCGAGAAAGAGAAATTTTCCAAATTCAGTTAGCAAACAGTTAGATTATGCAAAATATT ATTTACCTTGTCTAACCAAAAAAAAAAACTAATAAACTTTTATAGTTACAGGATTTTTTTTCATTTTAAAAATTACATGAC GTGAACATTTACATATTTTTTGAACTTTGTAAACATTTTCATTTCCATTTGAATTGCTTATCACACAGAAAGCAGAATGGT ATAGCACTAGAAGAGTGTTGCTCTATTGAACTCTTTACGCCCTTTAGTTCGTTTTCTACTCATATTTTTTGTTCATGAAGA GCGTAGAGATCATGCATGTAAAGATTTGTTTTGGTCCCAGCTAGGTTGATATACTGGTTTATACTCTGGTGTACATATGGT CTTTTTGGTTTCTTAAATCTGTTTTTGTTGTTGGTGTAATGAAAAGACAATGACACCATTGGTGTGTGGTTCTTCTGTTAA ACTTTATGTTCTCAGACCGAACTTTGTGATTTACGATTTTTTAGAAAGTATTCAAAATAATTTTTTTTTGAGTGCTATGTT

Appendices

ATTACATTGAATTAAATAATATTGTGTAGGTCTCAAGATGTTGAATTATAGAGGAGTTAGAGCATCATTAATCCGGAGTTC TTATGATGGAGTTCTTAGCGGAAGTTAAAAAACTGTTTCTTAACTTCCGCTTAAAACCCTATCCTAATAACTCCGGGTTAA TCATGATCTCATGTTACGGATATGGTGAAGATCCCCACCTCCACTAGAGTGGAAAGTTCAAATGGTGCATGAATGTTTACC CAAATACGTAGTGCGTGAAATGCATGGTTTGACCAAGTTTCTTTCTTGGTTTGTTTTAACCAAACAAAAATTAGAAAAGTC GACGAGTGTGGGTAAACATAAACTAATAATAAATAATTATAGAACGTGTTCTAGTTAATAACACAACATGCGACTGTGAGT GAATGATTTACATGAATACATGACGTTTTTTTTTTTTTGCTAAAAAGATATTGGTATACACAAGTAGGTGTAAAAAGATAT TGCGGGTAACCTTGATATGATCAAAGATTCATTAAAAACATCTAGAAAAATATGTATAAATTAAAAAAATTAACTCTTTCA AGTAATGAACTACGGTTAACAACTTTAGATGTTAGTGTTTATGGTTTCAGAGTGTTTTCAAAATTATTCTTAATCATGAAT GCATTATTTCACTCAAACTTGGATCAAATAACACGTTAAACCTCTTTCAAAAAAAGCTCCGTCCTTTCTCCTCTTCTCTGT CTCGCCTTGTCACTTAGCCATGCCTCCGAAAAAGAAGAAAAAAACTCGTAATCTCCTCCGGGGCTCTTCGAAGATGGCCCG TCTCCAAGGAGCGTTGAAACCCTCCACTTCGGTCCGGTCGTTACAACAGTCGTCTCTCGCCGGCGCTTCAAGCGCTGATGC TGTAATTGCTGCTTCGGTGGCACCCACGACTGAGGTTTCGCCGTCGACCCCTGAGGTCTCTGTAGATCTGAGTTTGGGTCA ССTACCACTACCGCTAGCTCCTGTTCTTGAGTTTGGCAATTCATCACCTCTCACGCCATGTGAGCTTGACGCTACCCCTAC AGTATCGGAGGAGGTAACTCCCGACGCTACAATAGAGGTTTCCCTTCCAATCCAGGAAGTGGTTAGTAGAGACATCCCTCA TGGAGCCCTGCAGAAGGCTGCTACCCTAGGGGAGTACTCTGGAACTAAGAGCTACGCCAGTTTAGTCAAGGACTCTGTGAC CTTGGAAGAGCTAGGAACACCCTCTGAACACGTATCGGGGGTACCTTTCGTTCTTATCCCGGATGAAAATATAGAATCAGC TAAGGAGGAGTTTCGTGATTACATCTTCGCTAGATTCCACGGGGACTGGCCTTCCATGGGTCGTATAATCGGTGTTGTTAA TGCCGTATGGGCTAAGACAGGGCCGCGAATCTTTGTCCACATGGTGGGCGCTGGGGAGTATCTATTAAAAGTCACGTCTGC TAAGACAAGGGAGCACCTCCTCTCCAGGACTTGTTGGAACATTGCGGGATTCCCGATGTTTGTTGCTCCATGGTCGCATGA TTTTACTCCGGAGGAAGCTCCGATTACAAGTGCGGTGGTTCCAGTAGAGCTAAGGGGAGTCCCTTACTTGCTGTTCAACAA GGAGAGTTTGAGTCGGCTGGCCACAGCAGTAGGCAAACCTGTGTCTTTGGCTCCGGAAACAGAGCGGAAGGAAAACTTTCA GGTTGCAAAGTTATTTGTGCGTGTGGATCTCACACGGGAGCACCCCTCAAAGATGATCTCTGGGTTTTCAAATGGGAAAGA AAATGAGATAACTATTTCTTACCCTTGGCTCCCACTAAAGTGTAATGCTTGTGGTAAATATGGTCATCTCAACACCAAGTG TCGTGCCCTGCCTCGTAGTAACACGGAAGGCAGAAGACGTTCTCCTAGTCCAACGAATGAGGAGGATAAGGGGAGGAAACA GTCTAGGCAAGGACGTCGTAGCAGAGGAGGTAAAGCTGGTACTCACAACAAGGAGCGATCGGTAGATGGTGATGCGAAGAA GGGTGTCACATCCTCTCAGGGTTTGGAAGATGGTGAAATACCTCCTGAGGAGCATACAGAGGACACCACTGTAACAACTCC GGTTAGGGAGAATGGCATTCCTGAATCATCTGATAAGACTGTCCCACCGGATATCTCTCTTCAGAAATTCCCACCTGCGCA CGACTTGATTACTTCTTCGTATGAGTCAGGTCCATCCTCGGGGGTCCCTAGTGCTGAGGCAGACGGCTCAGATGAGCATGA AGCCCCGTTTTTGCTGGTTAACCGCCAGAGCTGTGGCCGCAGGGTCGCAAAATCTATATAATTATAAATGTCGAAATTTTT TGCATGGAATGTGAAAGGGCTTAACGATCCCAGACGCCACACCATGGTTAGAAACTGGATTAATATCCAGAGGCCGCTCTT TGGAGCTTTTTTGGAAACACATATTCAGGAAAGAAATTCACAACGGATTAATAATGCTCTCCCTATAGGATATGGAGCTTT TTCGGCTACTATGATCATCATCTCTCGGGTCGAATAATTGTTGTTTGGGACCCGTCTGTTCGAGTCTTCATCTACAAGTCT TCTGCTCAGGTTGTTACTTGTGGGATTTATCTTATGGCGGAAAATGTGAACTTCACGGTCTCTTTTGTTTATGGGTTCAAC ACTGTACTCGAGCGTAAAAACTTATGGGAAGAGATGGTCTACATACATGATTCCACTCCGGTTGTTAACTCTCCTTGGTCG GTGCTGGGAGACTTCAACCAAATCTTTCGTCTAAGCCAGCACTCTGATTACCCTCTCTCAGTTATTGATCCATCAGGTATT GATGATATGGTTGCAGCTTTGTAGGACTCTGAGCTCTTCGAATGTCAAGCGAAAGGCATCCCTTTCACTTGGTGGAATAAC AGTGGCTCCAACCCTGTCTCCAAAAGAATTGACCATGCTCTTATCAACCACTCGTGGGCCGCTTCATTTCCGGATTCATAC GCAGACTTTCTTCAGCCAGATCAGTCTGATCATGCGCCTTGCCTTCTCAGGGTTCCCTCAATCAGTAGACGTATCCGCAAG CCTTTCAAATTTTATCACCATCTTACTGGCCATCCTGACTACTCTTCTGTTGTCTCAGACGCGTGGTCAAATGCTGAAGTT CAAGAATCTGAGCAGTTTAAATTGGTCCGACGAATGAAGCTTCTTAAGACAGATCTGAGGAACTTAAATAAAACGCACTTT AGTGGCATCACAGGAAGGGTAAAGCAGCAGTCTGTGAGGGTAGCGAACCTGCAGCAAAGTCTTCTCACCTGCCCGGACCCA GCTACTGCCTCTGAGGAGCACCGTCAGCGTGATATCCTTAACACCTTACTCAATGCTGAGCAAAAGTTCTTCAGGCAGAGG TCGCGTGTTCGCTGGGCTGATGTGGGAGACAGGAATACACCTTTCTTTCATAAAACAGTAGCACAAAGGAATAATAGCAAC CACATCCATTATCTGATAGATAAGTCTGGCCAGTTCCTGGGGTCCATCGATGATATAAAAGCGCACTCAGTCTCTTATTTC CAGGATATCCTTGGCCACACAGAGCTTCCTGTCTCACCAGTTCCTCTAAATGCTTTGGAAGGTTTGCTCTCCTTCAGATGC TCGGACCTACAGAAAGCTTACCTGAAGAGAGATGTCCTGGAAACTGAGATCAAAGGTACTATCTTCTCCATGCCCCTAAAC AAAAGCCCAGGTCCCGATGGCTATTCTTTTGAGTTCCTTAAAGCATCGTGGGATACTGTTGGAGGGGATGTGATTGTTGCG GTTTCTGAGTTTTTTCGTAATGGCCGATTGCTGAAAGACCTAAACACCACAGCTATTGTTCTCATTCCTAAGACCACTACT GCTTGTAGCCTTTGGGACTACCGGCCGATAAGCTGCTGCAACATTGTGTATAAGATCATCACCAAGATAATCGCCAACAGG CTCAAGCCGATTCTCAAGAGTTCGATAAGTCGTGCTCAGTCGGCTTTTCTTAAAGGGCGCAGCTTGGGTGAAAACGTCCTT CTTGCAGCTGAGCTGATCCGCAAGTATGAGAACCAAAATTGCAGCAGGAGCAGCATGCTAAAAATAGACATCCGCAAAGCT TTTGATACAATCTGCTGGGACTTTGTCATTAAGATCCTCCAGGCTCAGGGATTCCCTCCGATTTTTGTTACCTGGATCAGA GAATGCATCTCGTCACCCAGGTTCTCTGTGGCCATTAATGGTGAGTTTGCAAGTTTCTTCCCGGGGAAAAAGGGGCTGCGT CAGGGTGATGCAATCTCGCCGTACCTCTTCATTATGGTGATGGAAGTACTGTCAAAACTGATTGAACGAGCTGCTGCTGCT GGACATTTTCGCCTCCATCCTCGGTGTTCTGAGCCTATAGTCACGCATCTACTTTTTGCTGATGATCTTCTTGTGTTCACT GATGGGTCAAGGCACTCTATCTCCGGTGTTAAGAACGTGATGGCAGGGTTTAAAGACTGGACAGGTCTGGATATAAATGCT GAAAAATCGGAAATTTTCTTTGGTGGGTATCTAGATATTGAGGCTGCTGTCATCAGTGACATCTCAGGTTTCAAGCGTGGT AAATTCCCAACTCGGTATCTAGGCCTACCACTATGCCCTAAGAAGATCAGTTTTGCGACGCTGCAGCCTTTTCTTGAGCGA ATAACTGCCAAGCTAAACAATTGGACAGTTAAATGCCTCTCCTATGCCGGCAGGATCACTATGATCTCATCCGTCATTTAT GGAATGGTAAATTTTTGGAGCTCGGTCTTCACACTGCCAAAGAGGTTCTATGCTAAGGTTGACTCCGTCTGTGGGTCCTTC CTCTGGAAAAATAAGACTACATCGGCTTCGGGGGCTCGAGTTAGCTGGGACGATATATGTAAACCGAAGAATGAGGGCGGA TTAGGAATCAGGAAGTTGGAAGATTTCCAATCAGTCTTCCAGCTGAAGAGGGTTTGGAATTTTTTCTCTGAGGCAGGCTCT TTATGGGTTGCTTGGCTCCAGCATAATGTCTTCGCGGGGTCATCTTTTTGGACTGCTGAAACTTCTACTACTTTCTCATCT ACGGTCAACCAAATGCTGAAGCTGAAGCCGAAGCTAAATGCCTTAATGAGATGCAATTTAGGGGATGGGAAGTCTGTTAGC TTCTGGTTTGACTGGTGGACTGATCTTGGTCCCCTAATCTCTGTGTGTGGCAGGAGAGGTACTAGGGACCTTCGTATTCCC ATTGACGCTACTGTTAGTGCTGCTGCACCTAATGGACACTGGTCTCTTCCACCGGCGAGATCCGACGAAGCTGAAACCTTG CAGGTGGTTCTCTCAACGATGCAGCCACCATCATCTTTGCGCGGAAAGGATTGTTTCCTTTGGCGGAGTGGTGCTCACTCT TTTCTGCCCAAGTTCTCTTCTAAAGCTACTTGGAACTTTGTAAGACAACCCTCCCCTCTGGTATCGTGGTATAAACTTATC TGGTTCAAAGAAGAGATTCCTCGCTGTTCTTTTGTCTCTTGGATGTCAGTTTTATCAAGGCTGCCTACTAGAGATAGGCTC

Appendices

ATCTCATGGGGAATGCAGGTTCCTCCGGTGTGTCCCCTATGTTCTCTGGACCATGAATCGCACGCTCATATGTTCTTCTCC TGCTGCTTCTCAACTGCAGTTTGGTCTCACTTCACGGGCTGGTTGCTCCCTACCACTCCGGATTCACTGCCTCTTTGGAAA CCACCATTGCTCTGCCACATATTGCTTCCTGCTCGGGTGTTGTGTCTGTTATTAAACTTTTGATGCAGGTCATCGTCTACA GCCTGTGGAGAGAGAGGAACGTCCGTATCTTTAAGAATGTTTCCTCTACCGCAGCGGCGATCGCCAAGTATGTTGATCGTT CTATGAGGGATCGTCTCTTGTCCTTAGCCCCTCCAGCTGATGGCCACGACACGCTCCTCCTGCTCTACCTTTCCATCAGAC GTCTCTTTCCACTTTAGTGTCGCTTTCTCTTATTTTGATTGTTGTTGTTTAGTCTGTTTCCTTTGTCTTTCTTTTCTGCTT CTCTGTTCTTCTCTTGTAATAAGTTGTTTAACAACAACAGTGTATCCTTCTTTCAGAAAATGGTAAGCTTAACATTTTACC AAAAAAAAAACTATGATTGGGTA

A 6560 bp BoLINE4-2 from Brassica oleracea (AC240089.1) in 5'-3' orientation

AAATTGTTTCGACCTTGTGGTTATTCAACAAGTTAAAAAAGAATCGTTAGAGAAGGAAATCAAAGTAACTTCTCTCCCAGA CGACCTTTTCGAGAGCAGTCTTTATCCAATAGACCCAAGCACATTCCTGTCCAGCAACCTGCTTTAGTCCAAAAGTCAACA GAGTTTCTTTTCGAATTTCTTTCTTCTTTTGGAAAAAACCATTGGATATCTCCACGCTCTGGTCTATTACACATCGGGTTC TTCCCCCGACCATGGTCGGAGGGACCGCCGGAGCCGCCTTCACGCCGCTTAACTTGCCTGCTGGAGTTTCCCAACCGGTCG TTTCAACCCAAAGCCACGCCTTTCCCCGCAGCGGAACCTGTTTCCTCTTCAGGGCCCAACTTCGCTGAAGATCTCCACTAC ACCGAGGGTTTCCTCAGAACAGAGACGTGAACACATAAGCCTTTCAAGGAGCTCACAAATATGCTTAAGGGTTTCCTTATA TATTTTTCTATCACAAACTAGAAGAAGATCTGTCACTTAAATCTCAACCACCAAGAAGTTATTGCTCACAAATTGACTCCA CCAGCAACTACTTAAAGCCTTCAAAGCGGCTTCTCTAAGGAACTAACTGACACAGGGGTTCCTGTTACTACAATAGTTTCT TCGTGCTTTACACCTCACAACAAAAGATGTCTGGAAGACTTAGGAGAGCGGATAAAGGTAAATAAATAGCTACTGACCCCT CTCAAGCCCCAAGAACTGCTCGCATCAGAATCCAAGACCCGGATAATGCTGAGCTCATGCAACGCCACTCTCTAACACTCA TAGGCCGTGTTACCAACAGAACGGCGCAGCGAGTCTGGTCTCTCATCCCCTTTTTCACCGATCTCTGGAAGGCAAAATCCA AACCGGTCGGCTCTGACCTAGGAAACGGAATGTTCCAGTTTCAATTTGACAGTGAGGAGGATCTACTAACGGTCTTGGAAA AAAGACCCTACTATTATGGAAGATGGATGGTTATTGTTCAGAGATGGGAACCCACGGTCTCCAAAAATTTCCCATCCCTCT TGCCTTTTTGGATTAAAGTTCAAGGAATTCCTGTACATCTATGGACAGAGGAGACAATCCAGAAACTTGGCGAAGATCTGG GTGTTTTTGAAAAGATGGAGATCACTTCATCAACGGTGAGAATGAGGGTGCAGGTTAATGGACTGCTCCCGCTAATCAAAT CATCGGTGATTGAGTATGCGAATGGAGATGAAGTTACAGCGAGCTTCGTATATGAAAAGCTCGATAGGCATTGTCCTAAAT GTTTCCGCTTGGATCATGACTTAAAAGATTGCTTGGAGGCCAAGCATGAAGCAAGAGCTCTTAAAGCTCAGGAAGCTAGCG TGGGAAATGAGGAGCCTGAGAGAAGGGGAACGCACTACAAGCAACACGACTCAGGTTCTAATATTTTCCATTTCACAGCTC AAGGGTCAGAGCACAGAGGAAGACAAGACTATAACCGGCGAGATCGCCAAGTTGATGCGCGAGATGAACTAGAGGCCCGAC GCAGGTCTCGCTCCAGCCAAGATACAGTCCCTCGAAGATACTTTAGTGAGGACCCCAAGCGGGGAAGAGAGGACTATCGTA GCCAAGATAGTCGGTCCTCCTATCACCGTGACACAAACCTGCTCCTGCGTGAGGTTTCTTCTAGGCCACGGGACCTGAGAA GGGACATTTCGGATAAATACTTATCCAGGGACCGCAGCCTGCAACCAACAAGATCCAGAGATAGATCAATACCAGGAAGAG AGGAATCTCCTCCACGGCAGTCAAGAATCAATCCAACTAGGGGGATTCCCCTGGAAGAAGTTCAAGCCTCTGTACCAGTGG AAGTCTTTAATGCAGCAGTGGGAGAAGTCAGGGAGGCCAAGATACAATACACCCAATGCAACGATCCAACGGAGAGCGCGG CTCGCAAGGAACGTATGAGAAGAGCAGAGGAAGAAGGTGAAATGGAGGAAACAACAGCACTTATGCTTCAGGCAACTTTGA TAGCACCTACAGATACCTTGCAAAGCCCGGAACAGCAACCCACAGCAGAAAGAGTACCAGCTGCTCTCCGGCTAGGGCCTA CTGTCCAACATTTACAAGGATCAGGCCAAGATGCATCCAAGGAAACAGGCAAGAGAAAGCCTGGAAGACCACCAGGAAGAC GTACGGTGCAAGGAAGCCCAAAGTTAATCAGAGGATCGACTTCCAAAAAGAGAAAACTCCCACAAGATAAACCACCTCTCA CCAGAAGAAAACTTATTCCGGAAACGGATCAAAGAAACCCGCAGAAGGCGAAGTCAAAACCCTCCTCATCACGAGGCTCCC GAGGAGCCCGAGGAGCAAACGGAAAAGCAGAGGTGCAAACAAACTCGGAGGATCAGCCCATCTGCAATTTGATTCCGGCGT CATCAAGAAGAAGAAAGATGGATTTTCAAAATCCATCTTCTGTCGTTCCTTAAAAGTTGCGAGTTGGAACTGTCAGGGTTT GGGGAATCCCCGGACAGTTCGACGCCTAAAGGAGATGAAGAGAAACATTTCTCCTGACATTCTATTCCTTATGGAAACTAA AAACCCCGACAGCTTTGTTGCAAAGAAGACGGACAAGCTGCAATATGAAAACAGAGTTCTAGTTTCACCTGTGGGACACGG AGCTGGAGGATTGGCGCTATTGTGGAAGCAAGAAATTAACCTTTAAGTTCTCTCTACTTCTACAAACTGTATTGATACTTG TATTATCTTTGAAGGGAAAATTTTTTTCGCTTCCTTTGTCTACGGCGACACTAACAGACCTCAACGAAAAGAACTATGGGA TCAGTTGATTGATCTGAACACGGCCCGAGAAGCTCCCTGGTTTTTAACCGGCGATTTCAACGACCTACTTAGAAACGCAGA GAAAGATGGTGGGGCAATTCGCCATGAAGGATCCTTCACAGATTTGAGAACCTTCTTTTCCGAAGGTGATTTATTTGACCT CCAATACTCGGGAGATTTCTTGTCATGGAGAGGGAAGCGTGGTGATGATCTGGTTCGCTGTAGGCTAGATCGTGCAGTTGC GAATAGTGACTGGGCTGAGTTGTTTCCGACTGCAAGTTCCCAATACCTTGCCTTTGAAGGATCTGACCACAAACCCTTATT ATCCTTTTTTGAGCCAGAAAAGAAGAAGAAACGTGGAATGTTCCGCTATGATCGACGGCTTAAGAACAATCCAGAAGTTAA AGAACTAGTGGCCAAGACGTGGAAGAATAGATCATTTAGAACTGTCAATGACAGGATCTTTGCTATACGATCAGTCCTAAT CGAATGGAGCAGACAGCAAACTCTAAACAGTAGAGCCCGTATAGAGGAAAAGAAGCACCAGCTGGAACAAGCTCTAACGGA CCCTGTAAACGACACAGAGCTGATAGCGAAAGTATCGAAGGAACTCGACGAAGCCTATGCAGCAGAGGAGAGTTACTGGCA ACAAAGGAGTAGGCAGCTGTGGCTCAGCCTAGGAGACAGAAACACCGGATACTTTCACGCAGTGTCAAAGAACCGGAAACG AGTTAATGCCCTCTCGGTCATTGAGAAGGCAGAAGGGGAAGCAGTCTACCAGGAGGACCAAATTGGGAGGGTTATTGTCGA GTACTTCCAGCGACTATTTACCTCTATGGGTGGAGACAGAGAAGATACAGTGCACTACGCCCTCTCCCCAATGATCTCGGC AGAGACAAATGAAGAGCTAATCCGCATACCATCTGCATTGGAGATTAAAGAGGCAGCATTCTCTGTTCACGTAGACAAAGC GCCGGGGCCTGACGGTTTCTCGGCCAGCTTCTTCCACACAAACTGGGAAAATATAGGAGCAGATATAGTCAAGGAAATCCA GGAGTTCTTTGTGTCGGATAAGCTGCCTGACAAGATCAATGAAACCCATATCCGGCTCATCCCGAAGATTCAAAGCCCAAA GACAGTTGCGGAATACAGGCCCATCGCTCTCTGCAATGTCTACTACAAGATCATCTCCAAGATCTTGACCAAGAGACTGCA GCCACTGTTATTGAACATCATCTCGGAGAACCAGTCCGCCTTTGTCCCGGGCCGGGCAATATCGGACAATGTCTTCATCAC TCATGAAGTCCTTCACTATCTCAAGACGTCCAAGGCTGAGAAGAGAGTATCTATGGCGGTTAAAACCGACATGAGCAAAGC CTACGATAGGCTCGAATGGGACTTCATCAGATTGGTATTTCAACGCCTCGGTTTCCACCCGAAGTGGATCAACTGGATTAT GCAGTGTGTCTCTACTGTTACTTACTCCTTCCTCATTAACGGCTCGCCTAGAGGAAGAGTCACACCGAGTAGAGGTATCCG TCAAGGAGAСССТСТСТСАССАТАСАТСTTTATCTTGTGTAGTGAGGTCCTCTCGGGTCTATGTAACAAAGCGCAAGAGGA AGGAACCCTTAAAGGGGTCCGTGTAGCACGAGGGTGTCCTCGTCTCAACCATCTCCTCTTCGCCGACGACACAATGTTTTT ССТTAGAGCAAGCAAGGAAAATGGCGAGGCTTTATGCCGATTACTGAAACGATATGAGGAGGCTTCCGGGCAGTCAATCAA CACAGAAAAATCTTCGATTAACTTCTCTCGGCACGCACCGACAGCTCTTAAATCAGCTATCAAGGATGCTCTTTCTATCCA

GAAAGAGGGAGGTACCGGCAAATACCTCGGACTCCCAGAGCTATTTGGAAGGAAGAAGCAAGATCTTTTCTCATCTATTGT GGATCGGATAAAGCAAAAAGCATGTGGCTGGTCAAACAGGTTCTTATCTACTGCGGGAAAGATGACTATGCTCACCAGTGT ATTATCTCCCATTCCATCGCACGCCATGTCCTGTTTCCAGTTACCGATATCTCTGTGCAAGAGAATTCAATCAACGTTGAC TCGATTCTGGTGGGACACAAACATAGGAGATAAGAAGATGGCTTGGATTGCTTGGTCTAAGCTGGTGCAACCGAAAGATAG TGGAGGTTTAAACTTCAGAGATATACAGAGTTTTAATGAAGCTTTCCTCGCAAAGCTGAGCTGGAGAATCATCAACCATCC CGACAGCCTACTTGGAAGAGTTCTACTTGGAAAATATTGCAGTGAGGAGAGCTTCTTAGAATGCTCAGGAAAAACTGCTGT CTCGCATGGCTAGCGTGGAGTTTTGATTGGACGCGATATCATTGTCAACTCCGCATGATGGGAAGTAGGCAATGGCTCTAG CATCAACATCTGGGAAAAACCATGGCTCAGCTGCTCCACACAGCTGAGACCCATGGGACCACCACCGAGAGAATTCTCACA TCTCACAGTGTCTGACCTCATGCTCCCGGACCGAAATGAATGGGATATTGGGATGATCCAGCGTGTGCTCCCATTTGAGGA ACAGAGAATTTTAGCCATTAAGCCAAGCTTAACCGGGGCTCCGGACAATCTCTCATGGCTGAGCACTGACACAGGAGATTA CTCTACCAAAACCGGCTATGCTGCAGTCCTCTCTTCTCGAACCGCAGAGGATACAGTAAGCACGGAGGATGCATCCTACGA CTGGAAGAAGAATGTTTGGAAAATCCAAACAGCACCAAAGATCAAGCTGTTCATCTGGAAAGCGCTTCATGGGGCGCTACC TGTGGGCGAAGCTCTCAAAGCCCGGGGAATCAACACCAATGGACAGTGCAAACGATGTAATCTACCTGAATCTATTGATCA TCTGCTTTTTCATTGCGACTTTGCTAGACAGGTTTGGGAATCAGCCCCTGTCTCCCCAAGCATTGAATACAGTGGATCCAT AGATTTAAGGAGCAACTGGAGCAGCTTCTGCTCAAGGAAAAACTTGCCACCGACTGGAATTTCTACAGGAGCCCTTGCCCC TTGGATCATTTGGCAACTATGGCTAGCTCGTAACAAGTTAGTTTTTGAAGGAAAGATCATCACGGTGGAGGAAACAATATC CAGAGCAACCGCTTGCGCCCGAGAATGGATATCTAGCCAAATTCAGCTGTCTGCAACAAAACAAGCACTACCACCCAGACC CCCGCTTCATGACTGCGTTTTGGTGAGAACCGATGCTGTCTGGAACGAGAATTTAAAAATTGCAGGGCTAGGATGGACAAC TAATCGAGAGGAGAGTCTCCCAATCCTCGACCACTGCGCAGCATGTTGAGTCCCCTCTTGCAGCAGAAGGACTGGCGATGA GGGAAGCCCTCCTAAAGTGCAGAGAAATTGGCCTCCCCAAGCTTAGATGTGAGTCGGATTCGGCGATCCTGATCAAAGCTA TTAACTTGCGCTCCCCACTAGTTGGTTTGTATGGCATTTTAGCTGACATTTATTCTATTGCCTCTTCTTTTGAATCCATCT CGTTCACCTGGATCTCGCGTGAGAGAAACAGTGTAGCGGATGGACTGGCGAAGAATGTTTTATCTTCGGAGCTGGCCATTA TGGCAGCAACAAACCCTGTTTCGAACGTTTGAATTAATATAAGTAGTGTTTCAAAAAAAAAAAAAATTGTTTCGACCTTG

A 690 bp BoNA-LINE1 from Brassica oleracea (EU642504.1) in 5'-3' orientation

GCTTATAGGGCTGGGCATGAATACTCGTTACTTACCTTATATCCGCTACTTGAACCGTACTCGCCTTGTTTTTTCAAATAC TTGTCGTTGCCAAGTCAAATATCAAATCGTTGAGTTTTGCTACTTACAAGTACAAGACAAATAATAAGTATCACAAAAAAA GTTACGACTCGCCTTGATATTACTCGTTACTTGTTTATGACTAAAAATGATAACTAAACCATAAAAACCAAAGCCCTAAAT AAATATTTCTTTGNTGTAAGAAGTAAACAATACTTTCTTATTGAATTCCATCTTTCTTTTTTTTATATTAGGGCAAATATT TTATTTAAAATACGTCTCGTGTTTTTACCAAGTCAAGTAAATAAAACAAACTTTTATAACCTTATCTCGTAAAATATTATC TATCAAGTAATTTTTAGAAACTTGAAAATATATCCAAGTAATTAATAAATATTTGTAAGTAACAAGTAATCGAACAAGACA ACTAACTTGCAAGTAACATATTTTTGGATAAGTACTCGAAATAACAAATACTCGTTTCTGATAAGTCAAGTATAAGTCGAA AAATTCATTACTCGTTCAAAGCAAACCAAGAAATATACGTAAAAAAGCAAGTATCCGCCTTGCGTCCACCAGCTTCTACAT CGTAATATTTAGACCCAAAAAGAAAAAAAAAAAAAGCTTCTA

A 914 bp BrNA-LINE4 in Brassica rapa (AC189298.1) in 5'-3' orientation

AAACTACTTTTTGGATGTTCTGGGGGAGAGACGTTTAATAGATTTGGGCATTGGAAGAGATGCCACCGTGGGGGATGCTCT TCAGACTTCTCGAAGAAGAACGAGGCATCGCTCAAGTTTGCTGAAAGATATCGAAAGGGCTCTGGACTCCTTTAGAGATCA TCTAAACACAGCTGAAGATGATGTTGATATGTGGAGACGTTCATCTGGATATAAACCAAAATTCTATACTAGTGAGACTTG GTTACTTCTTTGTGAGGCGAAGCCGCAGTGCCTATGGTCCAAAGGTATATGGTTCTCGCAGGCTACTCCTAAGTTTGCTTT CATGGCTTGGCTTGCAACTAGAGGAAGAATATCTACAATGGATCGAGTCTCTCAATGGAGTCAAGGCATTGACACAATCTG TGTATTATGCAAGAACACTCCTGAATCCCGGAACCATCTTTTCTTTGAGTGCTCTTTCTCAAGGCAAGTGTGGGAGCACCT AGTAAAAGGCATTTTGCAGAACTCATACACTACAGAATGGTCAGGTATTGCGGAATTGCTTATTGATCAGCATTTGGAGAA ATACAGGCTGTTCTGCACTCGCTATGCTTTCCAAGCCGCTGTCTATGCGATATGGAGAGAACGCAACAGACGTCGACATGG AGAATCACCAATACCCCCCAAGCTCTGATGAAGATGGTCGATAAAGGCATGAGAAACAAACTTAGCTTGATGAAACTACAT GGAGGAAAGGGTTTTGAAGGCATTTTGCAGTTTTGGTTTGCCACAAGAGTGTAAATAAAGTGCAGATTAGGAGTAGTAAAG AGTAGTTGATTTCCATTTATAAGCATATGATGCACTTGTTGTAAAGAGATCTTTTTGATGAATAAAATTTAACATTCTTTC AAAAAAAAAAAAACTACTTTTTG

BoSINE1-1: A 216 bp SINE in Brassica oleracea (EU642504.1)

AAATCAGAACAACCGGGCCTCGTGGTCTGGTGGTATAGGAACCTCAGCTGAGGTGCCCGCCATCACGAGTTCGAGTCCCGG CCACAGCGGATTTAACATGGTTTCCGTTTGGCCGCCAGGACCCTCCAGTTCCGGTTGGACGCGGTGGGATAGTCGGACTAA GGTCCGGATACCTGGATTATCAAAAAAAAAAAAAAAAAAAAATCAGAACCAACC

BoSINE2-1: A 219 bp SINE in Brassica oleracea (EU642504.1)

AAGAATATAAAAGAATAAACCAGTGGCCTTGGGCTAGTGGTACTTGAGGGGAAAACCCTCAATACGGTACCCGCAGTTCGA GTTCCGCTGGCCACCCGGACTAGGGTTAAATCCCAAGAATACGTGGAGTGCCGTGGGCCTCGCGGGAATAGTCGGTTGACC ACGGTCGCCGGAAACCCGCGGTTACCTTAAAAAAAAAAGAATATAAAAGAATAATAA

BoSINE3-1: 272 bp SINE in Brassica oleracea (EU642504.1)

GATCCAATGATTTAACCACATCGTGGTGGTCTAGTGGTTTCCACTAGAGGAATAGTTGCCCTGTTGGTCCAGGTCAGGGAT CGATTCCCCTTTAGTGCGAAATTATTAGCTCCACATGTGGCCACGCGGATATGGGTCCATGTTTACGGCCCATTTAAATAC CCGGGAGAGGATCCATCCGTGGGTTGCACCTCCCACCCGGGAGTTAGGTCTGTGTTTTTAATAGACCCGGGTTTAACCTTT TTTCGTCAAAAAAAAAGATCCAATGATTT

BoSINE4-1: 446 bp SINE in Brassica oleracea (EU579455.1)

TTTGCTTCATCTCAAGTGTTGCATGCGGCATCTGCATGTCCAGTAACTTAAATTTGCTTCATCTCAAAAAGCTTGCAGTAC AAGCGGTTGTTTTTCACCTTTGGAAACAGAGGAACAAGTTAATTCACAACAATGTCTTTGTGCCTCCTTCAATTGTTTTCA AAGCCATTGATAGGGAGCTGAGGAACATCATCTCCTCTAGGAGATCCATCAAGCAATTCAAACGTCTGATGGTTTTGTGGA TTCGATAAGCTGTTGTGGTTTAAGCTTTCCAATGGTTTGGATGTTGTTGGTCCATCTTGTTTTTATTCTTTTTTGCCAAGA TGTATCAAACCTAAGATCTTGTCTTTGTAAAATCTTTTCTTCATTTATATGATATTTACAATTTAGCAAAAAAAATTTGCT TCATCTCAAGTGTTGCATGCGTCATCTGCATGTCCAGT

BoSINE5-1: 225 bp SINE in Brassica oleracea (AC240089.1)

AGTTTTGTGGTAGTGGATAGGCTTTAGATACAATCACATTCTGGATTCATCTTCCTACCGCGGAAACTACGGAAACTAATT CACATTATTCTATTCACCACGGCAGCGGATACATCCATATGAAAACTGGGAAAGAGTGTCGTAGACTACACTTTCTACCCG AAAGTTAAGTTTGTGTCTTTAATATATTCGGGTTTAACCCTTTCCTTTTTCAAAAAAAAAGTT

BoSINE6-1: 335 bp SINE in Brassica oleracea (AC240089.1)
CTACTGACGCGACTTAATCCCTTCTCTACAACATTTGGAGGCAGCGAAACTCAGCCGTGCATCTTTCACGATTCACTCCTT CTCACACGACCTTCAACAGCATAGACAGGGACATCCGCAACTCAATCAGTGCGAGAAGACATAGGAGGAAGTTCATTCCTC TTATGCAACTTTGGATTAGATAAACTTGTTTCTCTAATCTAACTCTCTATGCATACCTTGTTTTTTCTTTTTTTTTGCCAA GGTATCACCTATTAGGTTTTTGTAACCATAAACTTTTCATTATATGAATATTAACAGTTTAGCAAAAAAAAAAAAAAAAAA CTATTGACGCG

BoSINE7-1: 401 bp SINE in Brassica oleracea (AC240089.1)

AATACTCAGGAGAAAGGTATCAGGAGGCTGGAGGTGGAAGTTGATTCCAAAATGGCGGTGGGTTTTCTTACGACAGGGATT AAAGATATTCATCCACTGTCTTTCCTGGTACGATTGTGCCATGGCTTCTTGACGAGGGACTGGTTGGTCCGAATTGTTCAC GTGTATAGGAAAGCTAACCGATTAGCTGATGGGTTAGCTAACCTTGCGTTTTCTCTTCCTTTTGGGTTTCATCGTCTTGAT GTTGTTCCGCGTGGGTTTGTTAGTTTGATACGAGAGAATGTTGATGGACTTGATGGACTGTTACAGCCACAACAAGTTTGA TTGTAATTTGAAGTTTTAGTTTAAATAAAATTGGGAGGCTTCCTCCCATCTTCCTACCAAAAAAAAAAAAATACTCA

BoSINE8-1: 484 bp SINE in Brassica oleracea (AC240089.1)

GATAATATCATAATTCGGGTCATGGAAAGATAATGATATATTTTCAGGACAGGGTTGGTATAGTACCTTACCGGGTTTCGA TGGCTTATTAGGGTCACAGAATGTAAGGGCATGTATTTCACCACTACATTCAGAGATAGATGCGCTGATTTGGACAATGGA AAGTATGAGGAATTTAAGACAGTTTCAGGTTACGTTTGCAACGGATTGTTCTCAATTGGTGAAGATAGTTTCAAAACCAGA AGAATGACCAGCATTTGAAAGTTATCTGAAAGATATTAAAGTCCTACAAAGGAGTTTCTACAACTCAGAGATCGTTCATGT ACCTCAGATGGAGAATAAAAGGGCGGATAGCTTAGCACCCAGTGCTAAGAAACAACCGTCTTTCGTCGTTCATATAGATAC AGAGTTGCCGGTTTGGTTTACAGAGTCAAGTTGAGTCTGTGAATGTATTGTTGTCAAAAAAAAAAAGATAATATCATAA

BoSINE9-1: 524 bp SINE in Brassica oleracea (EU642504.1)

ATCAAAGATGTTCAAAGGCGGAGATGATCTCGTGTTTCGATTGATCTCTTTCGCGTGTTGACAGTGCGGGTAGGATGATTT CTCTAGTGGTTGGAAGTTTGGTTGTGTCGGGGGAGATCTCGATGGTTTGAGAAAGACCTCCGACATGATGTAAAAGCAAGG AAAATAGGTTGTTTCGGCGGAGGCTCTGCGGGTATCTGAGCTCCGGCGAAACGAGCGGTCCGGCGATCTCTTCCGGTTTCT TCCGGAGTCGATGAAGGGCAAGTTGAGGCAGAGAAACGCATGCCGGTCTGAATGGTGTAGATCATCCCACGTGTCTCTTCT TCTGCTTCCTTGTTTCTCTCATGGGCCTTGATCGTCCGGTTTTGTAAGGTTGGGCCGAGAGGCCGTCTAAGTTGTTTGGGG CTTCGGCCGTATGTTGTAGCCCGTTTATGTTTGGACCTTTGGTGTTTCTGTTGTATCTGGGCTTGGTCCATTTGCTTTTAA TAATATAAACCTGATGGAAAAAAAAAAATCAAAGATGT

BrSINE10-1: 376 bp SINE in Brassica rapa (AC189298.1)

GTAGGGCCTATTTGTGGAAGCAGCGTAGCCTATTGGTTAAGGTTTAAAGGCTTCTACACCCAGGTCTGGGCTTCGAATCCC AGACTATGCAATTTATTGCAGATTACAGGAAATCCAGGTTTCAAGTTTCGGAGAGAGCGGTTTATTAAACAATTATGCAGA CTACGGAGGAAAGGCTTGCAAAGGATCTTCAACATGGTGCAAGTAAATCTGGTCAAACGTGGATCTTCATAGGACGGCTCA GGTGATGCAGTTAGGCGTAGGTCTTCATAAGGCAGGTAGTATTGTCGGTTGTCAAATCGTATATGTAATCTTTCCTATATC ATAATTGTAAGATCATAATAAATCAGCGTTAAAAAAAAAGTAGGGCCTATTT

Appendices

CACTA AND HARBINGER DNA TRANSPOSONS: CHARACTERIZATION AND IMPACT ON BRASSICA GENOMES

This section covers sequences of reference CACTA and Harbinger elements characterized in present study. The details about the elements are listed in table $5.1 \& 5.4$ respectively. The TSDs of elements are shown in red, while TIRs are shown in blue colours.

BoCACTA1: 9399 bp CACTA in Brassica oleracea (EU642504.1) from 20580-29972

TAGCACTACAAGAAAACACCGGTATTCCGACGACAAATATCGTCGGTATGTCCTCAGAATAACGGTATTCCGAGGACATAC CGACGAGAATGGTCGTCGGAAATTTCTTGTCGGAAAGTAAAATTTTCTCGGAAAATTCCGAGAAAATTCCGAGGAAATACC GAGAATTAAAGATTCCGAGGACATTCCGAAGAAACATTTCCTAGGACTGTTCGTCGTATCTCCTCGGATATTTCCGATGGA ACGGTCCTCGGAAACATTCCGAGAGAAAAGAGGTATCGGAATATTCCGACGAACTTTGGCCGTCGGAATATTCCGAGAAAC CTTTGCTGTCGGAATATTCCGAGGAAGTGTATCTGTCGGAATATTCCGAGGGCATATATTCCGAGGAGATATGCCCTCGGA ATATTCCGAGGAACTTCGGCCGTCGGAATATTCCGAGAAACCTTTGCCGTCGAAATATTCCGAGGAAGTGTATCCCTCGGG ATATTCCGACGACAACTTCCTCGGAATATTTCCGACGGATACACTTCCTCGGAATATTCCCAAAAATATTTTTTTTTTAAT TAAAAATTTATTTTTTTTAATTGAAATTCGAAAATATAAAATTAAAATTGAAATAGAAAACATATTAGATAATATTCAAAG TTGTACATACCAAAATAAAACATTCAGAGTTTTTTTTTTAAAAAAAGAAAGAAACTACGGGAACTGCTCGTTCGGGTACAT ССTCTTCATCATCTCCATCATTTGCTCGTTCTGTTTCCTCGTTGCCTCCCATCCCGCCTCTTGATCCACCATCTTTTGCTC CAACGCAGCTATGCGGTCATCTTTGTCCTTCAACTGGTCCATAAGCACTTCTGGATCAACAAAGGGCTGTGGTGCAGAAGG AGGAACCGACTGGGCTCGACGACCCAAACCGACCAAACGTCCCTTCTTCTTTGGAACCGACTGAAATAGAAAATAAACAAA TTTAAATAATAGAAAAGATGATAAAATGAAAATAAAGAAATAAATGAATTGAACTTTTTTATAAAGAACATACCGATTCAA CGATTTCGTTGATTCGAATCCAGGACAAGTTGGTCGAAGCCGTCGAAGTGGCGTCCAGGTCGGTTTGAAGCTGAGATAGAC GGGTCTCTTCGTCTTCCTTCTGAGTTTCGATCAGGCTGAGCACATCCCTCACAACACCATCATCAATCTCTCCGGTGTGCT TGTTGGTATACGCCGTCTTCATTAGGACGAAATCATCAACCGGCTCGCCATCATTTTCATCCGCCTTGAAAAAATAAAAGT TAAACAAACATTAGAAATTAGAAGAAATGCATAAAAAATAAAATAAAATACTTAAATAATTAAAAAAAAGATTGAACTTAC CAAGCGATCCCCCAGAGTGGCAATAGTCTGGGCACCCAAATTGTGCTTGTACATGCCCTTCCCGCTACGATCGCTCTTGCG GTTGGCGGAGTTGGTCACGGAGGTAGCTTTCGTCTCGTCCTTATCCCAATGCACACATAACTCCTCCCAGACCGTGCTGTT GATCGACTTCGGGACCTTTTAATAAAAAAAATATAAAATAGTTTAATAAATCCAAAAATTGTTTAATAAATTCAAAAAAAC CTGGTTGATGAGCCACTTCTGCTTCCACTCGTAGATCTGCTTCCCATAGTTGTCCATAACTTTATGGACGAAGGCGTCACG GATAAAGTTCCTGTGATCGGAATTCCAGGTGAACTCTTGCTGAAAAAAAACACAATTTGTATAAATTTTATATTAAAGATT AAAAATATAAGTTAAAAAATTAGAATACTTACCGCAAACTGACGAAGCCACATCTCCTGGTCCTCGGCAAGGAAGTGAGTG AAAGTCTGATATCCTTTGCTGAGGTTCGAGTACATCATATTGTTGATCCATGCGCTGATCCCGTTCCCGGATCGGTTGAAC CTAATATAAGAAACAAATTATTAATAATGAATCAAATTTTAATGAAAGGAAAAAAAAAACTTTTAATTACCATGTTTGACG TCGTCCCTTTGGACACGGAGTGAGATAGGGAAGATGCTCACGACCGGGCTGGTAAACTAACTGGGCAACAATCATCACTCC CGGAACGACTGGAGGAGCGGGAGGGGGTGCAGCAACGGGAGGGGGTGCAGCAGCTGGAGCAAAAACCGGAGCGAGAAATGA AGAATCCCGACAGTGGCTGCTCGATCCCCGAGAGTGGCTGGACGAACCCTGAGAGTGGCTCCCCGTACCACTACGACCTCG TGGTGAGGCACGACGAGATCGAGACCGGGTCTGATCACCAGTAGACCTGTAAATTACAAAAAACATATTTAAAAATAGTTT TAATAAATATTAATTGAACAAATATTTAAAATTAGTTATAATAAATATATAAATTAAAAAAAAATATTTAAAGATAGTTTT AATAAATATTAATTGAAAAACATATTTAAAATAGTTTTTATAAATACAAAAAATAATAAAATAGTGTTTATAAATAAAAAA AATGTTTTATAAATACAAAAATAGTTTTAATAAATAGAAATATTTTTATAAATATGAAATCATCTTTTATAAATCCAAAAA TCGAATTTATATACAAAAAACGTTTTGTAAAATCCAAAAAATCGAATTTATATACAAAAAACGTTTTGTAAAATCCAAAAA TCGAATTTATATACAAAAATCGATTTTATAAATACAAAAATAATAAAAAATTTATAAAAAAGTTCTAAATCAATTCAACAC AACAAATTACAACCAAATCACAATCCTAACCAATCACCCTAACAAAAATCTATCAAAAAACTTCTAAAATCATCAAATCTA CATAAAAACCTAACAAATAGAACCTAAGAGAGTGGGGGATAGGATCCTTACATGATTTATGTAGGTTTAGCGAGGATTCGC CAGAGAGATCGTCGTGAGAGAAGGGGGAGATCGCCGGAGAGGAAGAAGAGAGAAATGGGGAAGAAGAAGTGTTTCGTCTTT ATAAAACCTAGGGTCCGACGGAAACTATCCGTCGGAATTTCCTCTGTATTTTCAATTTCAATATTCGCGAAATATTTGGCG GCTGGTTTGCCCGGTTAAATGAAACTATACCGAGGAAATTCCGACGGACACTTAAATATCTGTCGGAATTACCTCGGTATG TTCATTAATTCGAGGAAAAAAGAATATCCTATGCATGTATTTCTATTGGCTTATATTGTTCCTCGGAATTTCCTCGGACTA TTCCGAAAAAATTCTGAGGAAAACATGTTTGGGGTTTCAAAACATCAAATTGTTTTGCCTATATCATTTCTTATACAAATG CAATGCATACCATTGAGGAATTTTTGTATAGATGATCATAAACTATGAAATAACAAAATTTCAAAACGAATCGTAAGTATT CCTTTTACCGTTCATTAAAGTGTATAAGTGTTTCTCTTATGTTGTGGGGATTTCGTTCATACAATCGGAAAAATGTTTATT ATAGGGTAAGGAACAAATTTTTGACTTCATAATTAGTCTAAGACACTTAATAAGGGTTATATAAGTGTTATTCAAACCGCA AAACGTTGTTTTCTGTTTAAAAACCCTACTTCCTCGGAAAAGCCTCGGAATATTCCGAGGAAATTCCGAGGAACACTTGGA TTTGCTCGGAATTTCCTCGGAATATTCTGAGGCTTTTCCAAGGAAACAGAAACCCTAAAAGAAAAGTCCTAAATCGTCGGA AAAGTCGCGGACTATTCCGAGGAAATTCCGAGGGAATCCCTAAATCCTATTATCCCTCGGAATTTCCTCGGTATTCTTATA TTAAAAAAAAAGACGATGCTACTCTGTTTCCGAGTTATCATCACCAGATGAATCTGAATCTGGATCTTGGTGAAACTCTCC AATCTCTGGTTTATCCTCTACGTGAACGACAGTTTCCTCTCCAAAGTCGGTTAAATCGACTACAAGGCCAACTGCAACTAA ATCTTCTGCTGCACTTAAGTTACCGGATGTGCTTGGTTGTAGTGGGTCTTCCAGATGAGAACTTCCCTGAATTCGGCCTCT CGGGTTGAGTGATGTAACAATGACCCATGGATCATCTCTGTTCCTAACCCGGGGGTACTTGATATAACAAACCTGTAACAT TTAAAAAAATTATTTAATTTGTAAATAAGTGTTATTAATACACATGATGATGAATCATTATGAATAATTGATGTATGTATA TTTAATTACCTGAACGGCCTGAGAAGCAAGAATGAAAGGATCATAATATTGCAACTTTCGCCTCGAATGTACTGATGTAAC ACCAATGCATCTGTTCTCACACCTCGATCTGGAGTGTTGTCGTACCAATCACAATAGAAAACAGTACAGCGCAATCCAACC ATGTCTGGATACTTAATTTCCATAATCTCTCGTATGTTTCCGTAGTATACATCATCTCCAGATGCAGAACAAACGCCAGCA ACATAAGTCGTACTCGAACGTCTCCTTTTTTGAGTTGTGAATGCATATCCTTGAGTACAAAATCTCGGATATGACTTCACA ACATACTCTGCTCCACGCACCATCTCGCGTATCCAATCGTCAAATGTTTTACCTCTGGTCATACCAGCAGACACCTATTAA TAGCACATATATATGTTATATCAATATATGTGAATTAGTATAAATATGTGATAAATAATATTTTAATTTGTTTAAAACACT CACATAAGTAAGCATCCATCCAGAAATTTCTCTCTGTTTCAGTTCTTCAAGTTCTTCCTCTGTGGCGTATCTATATTCGAA CCGCTTTTATGCCATGAAAATCATGTACATATGTTGACAATAATATAATTAATTAAGATTTAAATTTCAACTTGTTAAAAT

AAAAATTTGTATGCTAATTTATTTACCTCTCATATTGAAGAACATCTTCACAGTTGGTGAGCAAATATGTTTGCAAATGAC TGCGCTCCTGCTCAGTAAGTCGACGGTCCTTTGGTTTTCCGCTAAGTCGTCCAACATCTGTGAAGATGTCTGGAACCGTAA CATGATATGTTGCCCGTTCGCCTCTATCATCATGCCGAACAGGTCTTCTTTTTTTGGTCTGCACTTCTGCTGGAAAGTAGA ACTCGACAAAGTTTGAAGTTTCTGAATTTATCATCTGTGCGATTATAGAACCTTCCACCCTACTATAATTTTTCACCATCT TCTTCAAATGGTACATATACCGCTCATACAAATACATCCATCTATACTGCACAGGACCACCAAGTTCCAATTCTCCTGCCA GGTTAATAACAAGATGCTCCATAACATCTAAAAATGATGGAGGAAATATCTTCTCAAGGTTGCACTGAATCACGGCTATGT TAGTCTTCAAATTTTCAATACCTTCAAGAGTCACTGATCTCGTGCATAAATCGCGGAAGAAAGCACTAATCCCTGCAATTG CTTCATGAACATTCCGTGGTAATAGTTCCTTGAAGGCAAATGGAAGGAGGCCATGCATCATTACATGGCAATCGTGACTCT TCAAGCCGATAAACTTTCCTTCCTTTCTGTCGACACAGTTACGCAAATTAGATGCGTAACCATCTGGAAATTTGGTAATAG GTTTTTCTCTGCCTATTGCAAATGTTGTATTACAGGGGGGTGAATGTCGAACCAGTCCTAGTGATGTGAATCAGTGAGAAT ACAAGTCATTTCTTAAGCTAAGCAGATTCAATAGTGGTGAGTGTGTGACAAGTAACAGTAGCAAACAGAGCAATACAACAA AGTAAAAAATCAATTTAGACAAGTGAATCCATGGGTATTGGGAATTGACTTCAAGTAACTAAGATCCAATCTAGGTGACAA GCTTTCAATCAAAGTAATCTCTTAAGTCTAAACACAATTCTAGACAAGTCCTATGTCTAGGTAAATGCCCATTTGCTTAGA AATCATTAAACATCAAATGTCTTTGGCTTAATTCAATCAAGCAATCTTTAAGTTCAAGTTCAATAACTATCTAGCAATTTT AACATCAAGTGTCCTTGGCTAATCTCACTAGAGCTTAGTTGAGTTGATTCAAACACTTCATCTAATCATGTCTGATGAGAA GTGTTTAGAAATCAGGTTTAGAGTGATCAAGACTAAACAAGCATTAAAAATACTCAACAAGCAAGTTCATACAAGGATCTA ATACAATAACATCATAGATCTTCACTAAGTTACTCTAATCTCCCTAACCCATGAATTCTTAAGGAAACTACTCACTAATCT CCATGAAAACACTTAATCTCATAATAGATTGAAGCATATTCAAGTAGATACAACAGAGAATAAAGATAAACAAGGATTAAA CAAGCCAAACGAAATTAAAACTCAAGAACAGATGATGAACAATTGAAGAACAGCTCAAGAACACTAAGAACAATGATATTT CAAAGAGAGAGAGTTTTGACAAGTTAAATTATTACCAAGTAAAATAATGATGTTTCTTGCCCACTCTTTTGATAAAAAGAA AGCAAATATTATACAGAAAAGTAGGAAAAATCATGCAAAGGAAAAGTGGGTGGAAGAAAGTGGGAAGTTGGTTAATCCCAT CAACTTTCCAGTGGTCCCCGGCAAGGGTTGATACACCTGTAGTAAATCGATTATAACTTATCCAATACATCTCCAAATGAC TTGAAACCACTTCCATTGGAAAGCTAACTCAATTTCCAGTGTCTCCACAAATTTTGGGCTTCAGAAAAGATCTTTAAGGCT TTCATCCGTGTTCATCTTTCACTCTCTGAAATTCCATGATTCGGGAGCGACCTCGCTGTGTCGCTCTAGTAAGGTCGCTCC AGTAGGGTGATCAATACGCGAGCGACTCTTTCATGTCGCTCTAGTAAGGTCGCTCCAGTAGGGTGATCAGAGCGACTTGGT GGTGTTGCTCCGGACTGGTCGCTCCGGGTGATCAATACGCGAGCGACTCTTTCCTGTCGCTCTAGTAAGGTCGCTCCAGTA GGGTGATCAGAGCGACTTGGTGGTGTCGCTCCGGACTGGTCGCTCCCATGCCTTGCTCGCCCAATGACGACTCTAAACACT CCTTTTTGAGCTCCAAATGCCTCCAAGTGTCTCCAAGAACTCCATGTGGTCCTCCCATACCTGATAAGGACTCATGTATGC AAAATGCAACCTAAACATGGCTAAATCCTAATCTATATGATCAAAATGCACATGGATGAATGGATAAAACAATAGAAATAT GCAAGATATCAAAATTCCATATCGTTTGAAATCCAATCAAAGAACGCATCTTTTCCCTCTGCATCAAGTCGGTATATGGGA AAAGGAGCCCTACCATTCTTATCAACATGAAGTTCTAAACGAGCACATATATCGACTAAATCCAGTCTTGACTTCAAATTA TCCTTTGTTTTACCTTGAACGTTAAGGATCGTGTTCATGAGATTGTCAAAAGTTCTTCTCAATATGCATGACATCTAAATT ATGCCTCAGCAGATGATCCTTCCAGTATGGCAGATCCCAGAAAATACTCTTTTTGTGCCAGTTATGTAGCTCTCCAACCGC ACTGACTCGAATGTTTTCATGTCCACCTACATCTGGTGTCCTTTCTGCATCAAAATACCTAAACTGCTTCAACAAATCTTT СССАСТАAСТTССТСАGGTGGACCATCAAACACCTGCTTGTTCTTCGTAAACAAAGTCTTACTCCTGCGGTATGGATGATC AGGTGGTAGAAATCGTCTGTGACAGTCAAACCAACACGAAACATGAAAGTACTGCCACATAAGTACTGCCTTCATTTGAAA GTTTTTTTTACATGAAACATCGTATGTTTCAGCACCTTGAGCTCATAGTTGTTGCAACTCATATATTAGTGGCCGAAGAAA CACATCAAGTGATCTCTTAGGATGCTTTGGTCCGGGAACGAGAATGGAGAGAAACAAAAACTCTCGTCGCAAGCACAAGTT TGGCGGTAAGTTGTATGGTGTAAGAATGACTGGCCATAGAGAATATTGTCTTTCACTCTTGCCAAACGGGCTGAAACCATC AGTACATAATCCAAGGTAGACATTTCTTCTCTCATACGCAAAGTCGGGATATTTTGATTGGAAATGCTTCCACGCTTTTGC ATCTGAAGGATGTCTAATCTCACCATTTGTTGAATGCTCTGCATGCCATCTCATTGGTTGCACTGTGCGTTCATACTGATA СААССТСTGCAACCTTTTCGTCAAAGGCAAATACCACATGCTTTTAAATGGCACTGGAACTCTTCCACTCGTATCTTTATA ACGAGCATTTCCACAAAATTTGCATGTAATCCGCTCTTCATCCGCCCTCCAATAAATCATGCAGCTATCGTCGCATACATC TATTACCTGATACGATAAACCAAGACCAGCTACTAGTTTCTGAACCTCGTAGTATGAACCAGGGGCTACATTATCCTCAGG TAGAATACCTTTTACAAAATCAGCAATCGCATCCACACAGTCTTCAACCAAATTATAATCTGTTTTAATGTCCATCAGTCT TGTTGCAGATGATAAAGCTGAATGACCATGTCTTCAACCTTCGTACAAGGGTTGCTTTCCAGCATCCAACATATCATAAAA TCTCATAGCTTCTGCATTGGGTAAATCTTCTCCTCTAAAATGATCATTTACCATCTGCTCAGTACCTACACCATAATCTAC ATCCATTCTAATTGGTTCTTCTAACCTAACCGCAGGCTGAGGTTCGCTAGTACTACCATATTCATAATCAGTTTCTCCATG ATGATACCAAATTTTGTAACTTCGTGTAAACTCATTCAACTATAGATGAGTCCAAACATCTCACTCTTTAATAATCTTTCT ATTTTTACAATTAGAGCAAGGACATCTTAACATACCCGTTTCTGCTTCCGGTTGTCGTTGAACTAACCCCATGAATTCGAA TATACCTCGTTGGTATTCTTCCGTAAGCAATCTCGTGTTCGGATCCAAATGAGGTCGATCGATCCAAAAACGATAATAATT TGAAGAAGACATGTTTTTTTCAATCAAATTCGTGTGTAAATATAGTATGTGAGAGGATGAAGAAATGGAGTGAATGAAGAG GTTGGGGGGTGCGGGTATTTATAGATGAAATGCTGCCGACAGTACCGAGGAAATTTCGACGAAATACTGACGGCAACGCCT CTTTCCTCGGAATTTCCTCGGAATTTTTAAAATGCCCAACGGCTCTCCAACGGCTATAATATATTCTCGGATATTCGTCGG TGTTTTCCGAGGAATATGCCTTCTTCGGTATTTCATCGGTATATTCCGAGGAAACCCAAATTTTGGGTTTTCTCGGAATTT CCTCGGAAATTCGTCGGAATATTTCGAGGATCTCATTTTCCGTCAGAATGTCCGTCAGAATTACGA TGTTTTCTTGTAGTG TAG

BrCACTA12: in Brassica rapa (AC189341.2) from 99395-107196 bp in 3'-5' orientation

GATCACTACAAGAAAACATCGGGATACTGAGGGAAAAAATCGTCGGTATGTCGTCGGAATAACGCTATTCCGAGGACATAC CGACGAAACAAGTCCTCGGAAATATCTCCTCGGAATTTCATACTTCCTCGGAATTCTGTCGGAAAATTCCGACGGAATTCC GAGGAAACAAAATTCCGAGGAAACTCCGAGGACACGAAGTTCGTCGGAAGATTCCTCGGAAAATACCGAGGGAATTCCGAT GGTCCAATCCTCGGAAGTTTCGACGAAATAATCCTCGGAATGTTTATCGGAAAATACCGAGGAACAAATGTTCCTCGGACT TTTCCGAGGAACTTTCTTCCCTCGGAAATTCCGAGGGAATGGAGTTCCTCGGAAAATTACGAGGAACTTTTTCCCTCGGAA AATTCCGAGGAACTTAAAGTTCGTCGGAAATTGCCGAGGGGAGAAAGTTCCTCGGAATTTTCCGAGGAACTCCATTCCCTC GGAATTTTGAAAAAATTTATTTTTTTAAAAAATTTATTTTTTTTAAAAATTAATTTTATTTTTAAAAATTAAAATTTTTAA AAGTTAAAATTAAAATTGAATAAAACATAAAATAAAACATAGTAGATAATATTCAAATTTAAATAAAACATTCAGAGTTTT TGGAAAAAAAAAAAAACTACGGGTCTTGAATTTTCGGGAACGTCTCGTTCGGGTACATCCTCTTCATCATCTCCATCATCT

Appendices

GCTCGTTCAGCCTCTTCTGGGTCTCATAGCCCGCCTGTTGAGCTGCCATCTGGGTCTCCAACGCAGATATCCGATCATCCT TGTCCTTCAGCTGAGCCGTAAGAACTTCTGGATCAACATACGCATGTGGTGCAGAAGAAGGAGCAGCCGACCGGGAGCGAC GACCCAAACCGACCAAAACGTCCCTTTTTCTTTGGAACCGACTGAAATATAAATAACCAAGTTTAAATAATTTAAATTGAT GATAAAATAAAAATCAAGAAATAATTAAATTGAACTTTAAAAAAAAAAAACTTACCGATTCAACGATTTCGTTGATTCGAA CCCGAGACAAGTTGGTCGAGGCCGTCGAATCGTCATCATCGGTTTGAAGCTGAGACACTTTGTCATACACCTGAGTTTGGA CCAGGTCGACCACGTCCCTCACAAGCCCATCATCAATCTGGCCGGTCTTCTTGTTGGTATACGCCCTTTTCATAAGGGCGA GATCATCAACTGGGTGGCCTTCATTTTCTTCCGAAAAAAAATAAATTAGACAAACATTAGAAATTTGAAAATGCAAAAAAA ATAAAATTCTGAAACTTAAATAATTGAAGAAAAAGCGGTTGAGCTTACCATGCGATCCGCCTGAGTGGCAATAGATTGAGC ACCCAAGTTATGCTTGTAGATGCCCTTTCCTTTACGGTCGCTCCTGCGGTTGATGGAGTTGGTGGAAGAAGTTTCTTTCGT СTСTTCTTTATCCCAATGCGCACACAACTCCTTCCAGACCGTGTCGTTCATCGACTTTGGGACCTTTTAATTTAAAAAAAA ACATTTAATAATTTTAAAAATAGTTTAATAAATTAAAAATTGTTAATAAATTAAAAACTACCTTGTTTACTTCCCACTTCT TCTTCCACTCGTACATCTGCTTCCCATAGTTGTCCATAACTTTATGGACAAAATGGTGATAGATAGAGAGCGTATCATCGG AATTCCAGTTGAATTCTTGCTGAAATAGTTTAAAAATAGTTTTTAAGCACAAAAATATAATAGTTTAATAATTTCAAAAAA TAAGTTTTAATAATATTTAAAATGTCTAATAAATATAGAAAATAGTTTAATAATTACAAAAAATAAGTTTTAATAATATTT AAAATGTCTAATAAATATAGAAAATAGTTTAATAATTACAAAAATAGTTTTAATAATATAAAAAATATAATTTAAAAATTA GAATACTTACCGCAAACTGACGAAACCACAGATGCTGCTTCTCGACAGGGAAGTGAGTGAAAGTCGGATGTCCGCTGTCGA GGGCCGAGTACATCATACGGTTGATCCATGCGCTGATCCCGTTCCCGGATCGGTTGAACCTAATAAAAAAAATAAATTATT AATAAAAAAATAGTTTAAATAAAAAATAGTTTAAAAAATAAAAGTTTAAATTACCATGTTTGACCATGTCCATGTGGATAC TCAGTGAGATAGGGAAGATGGTCACGACCGGGCTGTCGAACCAACTCCGCAACCGTCATCACTCCCGGAGGACCGGGTGCA GCAGCGGGACCAGGAGCGGGTGCAGCAGCGGGAGCGGGAGCGGGAGCAGCAGGAGCGAATAATGGAGAGGGAGATGTATGG TATGAGCTGTGGGGCGAAACGGAATCCTGAACATGGCTGGAAGAACCCCGAGACTGGCTCCCCATACCACCCCGGCTACGA CGCTGGCGAGGCCGGATCTGATCATCATTAGACCTGTAAATTAAAAAAAAAAACATATTTAAAAATTAGTTTAAAAATTTT AAAAATAGTTTAAATAAATCCCAAAAACATAATAATTACAAAAATAGTTTTCATAATATTAAAAATGTTTAATAAATATAG AAATTTATATTTTACATATAAAATACATAAAACGTTTTATAACCAAAAAAAAATGTTTTTAAATATTATATAAATGATTTT TAATCTTAAAAAAAGTTTTATAGATTTTAAAAATGTTTAATAAATATATAAATGAATTTAAAATGCAAAAAATAGATTTTT TATACAAAAAACGTTTTCAATATATATATATAATTTCAAATTCGATTTTTATAACCACAAAATTAATAAAAACTAAAAAAA AAATTCAAATCAAGTGAAATACATAATCAAACTCGATTTTACACAAATCTACCATTCACCCTAACAAAATCTATAAATCTC ATTCCAAAATCATCAAATCTACTTAAAAACCATACAAATCTAACCTAAAAGAGTGGGATAGGGTTCTTACATGATTATGGG GGAGGATTAGGGGAGATTCGCCGGAAAAACGCGAGAGAGAACGGTGGAGTCGCCGGAAATCGCGAGAGGAGAGGCTGTGCG GCGCGGAGAGAAAGAGAGAAATGGGGAAGAAGATCGGGCTCGACCTAATATTATGAGGCGTCCGACGGAAACTATCCGTCG GAATTTCCTCGGAAATATTTTATATTTCCGTCGGAATTTCCTCGGAATTCTTTGATTCAATTTTCCCGAAATATTTGGCGG ATTGGTTTACCCGGTTAAATGAAAATATTCCGACGAACCAGGATTCCTCGGAATACCCTCGGTAAACTCCGAGGAATTTCT GAGGAACCAGGGTTTGGGGTTTTAAAACATCGATTATTTTCGCCATATTTCATTTCTTATACAATTATAATGCATACCATT GAGGATTCTTTGTATAGATGATCAAAAACCATGAAATAACACAATTTCAAAAATAATTGTAAGTATTCCCTTTACCGTTTA TTAAAGTGTATAAGTGTTTCTCTTATGTTGTGTGGTTTTCGTTCATGCAATCGTAAAAGTGTTTGTTATTGGATAAAACAC CAAAGTTCATAGTTCCAAACATCATAATCTGGTTATGACACTTAATGAAGGTTATATACGTGTTATTCAATCCGTAAAACG TTGTTTTCGATTTAAAACCCCAAGTTCCTCGGAATTTCCTCGGAATATACCGAGGAGTTTCCGAGGAGATCCTTATGTTCG TCGGCATTTCCTCGGAATATGCCGAGGAGATTCCGAGGAAAAAGAATCTATAATCAAATCCCCAATTCCTCGGAATTTCCT CGGAATTTTCCGAGGAAATCCCGACGAACATGAGGATCTCCTCGGAATTCCCTCGGAAAATTCCGAGGAAATTCCGAGGAA CTTTGGGTTTTCAATCGAGAAGATCTATTCCGAGGAAATTCCGAGGAAAACCTACCTGTCCTCGGAATTTTCCTTTAAAAA AAAAAAAAAAAAGGTCGACGCTAGTCTGTTTCCGAGTCGTCATCACCAGATGAATCTGAATCTGGATCTTGGTGAAACTCT CCAATCACTGGTTCATCATCTACGTGAACGGCGGCTTCTTCTCCGAAAACGGTTAAATCGACTACAAGGCCAACTCCACCT AAATCTTCTGCTGCACTTAAGTTGCCGGATGTGCTTGGTTGTAGTGGGTCTTCCAGCTCAGAACTTCCCTGAACTCGGCCT CTCGGGTTGAGTCTTGTAACAGTAACCCATGGATCATCTCTGTTCCTTACCCGGGGGTACTTGATATAACAAACCTGATCG GCCTGAGAAGCAAGAATGAAAGGATCATAATATTGCAGCTTCCGTCTTGAATTTACTGATGTAACACCAAATGCATCTGTT CTCACACCTCGATCTGGAGTGTTGTCGTGCCAGTCACAATAGAAAACAGTACAGCGCAATCCAACCATGCCCAAATACTTG ATTTCCAAAATCTCATTTATGTGTCCGTAGTATACATCATCTCCTGATGCAGAACAAACACCAGCATCGTAAGTCGTACTC GAACGTCTCCTCTTCTGAGTTGTGAATGCATATCCTCGAGTACAAAATCTCGGATATGACTTCACAACAAAGTTTGGTCCA ACGACCATCTCGCGTATCCAATCGTCAAATGTTTCACCTCTGGCCAAACCATCACTCACATAAGTAAACATCCATCCACCA AATTСТСТСTGCTTCATTTCTTCTAGTTCGTCCTCTGTGGCGTATCTATATTCTAACCGCTTTTCTGCCATGAAAATCCTT TCATATTGAAGAACATCTTCGCAGTTGGTGAGTAAATATGTTTGCAAATGACTGCGCTCCTTATCAGTAAGTCGACGGTCC TTTGGTTTTCCGCTAAGTCGTCCAACGTCTGTGAAAATGTCTGGAACCTTCCAATGATATGTTGCCCGTTCGCCTCTATCA TCATGCCGAGCAGGTCTTCTGTTTTTGGTCTGAACTTCTGTTGGAAAGTAGTACTCGGCAAAGTTTGAAGTTTCTTCATTG ATCATCTGTGCGACTATAGACCCTTCCACCCTACTTAAATTTTTCACCATCTTCTTCAAATGGAACATATACCGCTCATAC AGATACATCCATCTATACTGCACAGGACCACCAAGTTCCAATTCTCTTACCAGGTGAATAACAAGATGCTCCATAACATCA AAAAATGAGGGAGGAAATATCTTCTCAAGGTTGCACTGAATCACAGCTATGTTAGTCTTCAAATTTTCAATACCTTCAAGA GTCACTGATCTTGTGCATAAATCGCGGAAGAAACCACTTATCCCTGCAATTGCTTCATGAACATTTCGTGGTAATAGTTCC TTGAAGGCAAACGGAAGGAGACGCTGCATCATTACATGGCAATCATGGCTTTTCAAGCCAGTAAACTTTCCTTCCTTTCTG TCGATACAGTTACGCAAATTAGATGCGTAACCGTCTGGAAATTCCACATCGTTTGAAATCCAATCAAAGAACGCATCCTTT CCCGCTGCATTAAGTCGGTATATGGGAAAAGGAGCCCTACCACTCTCATCAACATGAAGTTCTGAACGAGCACATATATCG ACTAAATCGAGTCTTGACTTCAAATTATCCTTTGTTTTACCTTGAACATTAAGGATCGTGTTCATGAGATTGTCAAAAAAG TTCTTCTCGATATGCATGACATCTAAATTATGCCTTAGTAGATGATCCTCCCAGTATGGCAGATCCCAAAAAATACTACTT TTTTTGTGCCAGTTATGTTGGTTTCCAACACCATCTACCGGAAAATGCTCATGTCCACCGACGTCTGGCGTCCTTTCTGCA CCAAAATCTCTAAGTTGTGTCTTCAAATCTTTCCCACGAATTTCCGGAGGTGGACTGTCAAACACCCTCTTGTTCTTCGTA AACAAATTCCTACTTCTACGATATGGATGATCTGGTGGTAGAAATCTCCTGTGACAGTCAAACCAACACGTTTTCCTTCCG TGTTTTAGTTGGAAAGCATCAGTGTTATCTTGACAATATGGACATGATAGCCTTCCATGCGTTGTCCATCCAGATAACATA CCATATGCTGGAAAATCACTTATTGTCCACATTAGTACTGCCCGCATTTGAAAGTTTTCTTTATACGAAACATCATATGTT TCAGCACCTTGAGTCCATAGTTGTTGCAACTCATATATTAGTGGCTGAAGAAACACATCAAGTGATCTCTTAGGATGCTCT GgTCCGGGAACGAGAATCGAGAGAAACAAAAACTCTCGTCGCAAGCACAAGTTTGGGGGTAGGTTGTATGGTGTAAGAATG

ACTGGCCATAGAGAATACTGTCTTCCACTCTTGCCAAACGGGCTGAAACCATCAATACATAATCCAAGGTAGACATTTCTT CTCTCATACGCAAAGTCGGGATACTTTGATTGGAAATGCTTCCACGCTTTTGCATCTGAAGGATGTCTGATCTCACCATCT GTTGAGTGCTCCACATGCCATCTCATTGGTTTCGCTGTGCGTTCAGACAGATACAGCCTCTGCAACCTTTCCGTCAAAGGC AAATACCACATCCTTTTATATGGTACTGGAACTCTTCCACTCGTATCTTTATAACGAGGCTTCCCACAAAATTTGCATGAA ACCCGCTGTTCATCCGCCCTCCAATAAATCATGCAGTTGTCTCTGCATACATCTATTACCTGATACGATAAACCAAGACCA GCTACGAGTTTCTGAACCTCGTAGTATGAGCCAGGAGCTACATTATCTTCGGGTAGAATACCTTTTACATAATCAGCAATC GCATCCACACAGTCTTCAGCCAAATTATAATCCGTCTTAATGCCCATCAATCTTGTAGCAGATGATAAAGCTGAATGACCA TCTCTGCAACCTTCGTACAATGGTTGCTTTCCAGCATCCAACATATCATAAAATCTCCTAGCTTCGGCATTGGGTAAATCT TCTCCTCTAAAATGATCATTTACCATCTGCTCAGTACCTACACCGTAATCTACATCCGTTCTAATTGGATCTTCTAATCTA ACCGCTGGCTGAGGTTCGCTAGTACTACCAAGTTCATAATCAGTTTCTCCATGATGATACCAAATTTTGTAACTTCGTGTA AATCCACTCAAATATAGATGAGTCCAAACATCCCATTCTTTAATAACTTTTTTATTTTTACAATTAGAGCAAGGACATCTT AACATACCTGTTTTTGCTTCCGGTTGTCGGTGAACTAACCCCATGAATTCGGTTATACCTTGTTGGTATTCTTCCGTAAGC AATCTCGTGTTCGGATCCAAATGAGGTCGATCGATCCAAGAACGAAAATAATTTGAAGAAGACATGTTTTTTATGAATCAA ATTCGTGTGTAAAGAAAGTGAGAGGGAGGATGAAGATATGGAGTGAATGAAGAGGAAGAGGGGTGCTTGTATTTATAGTTG AAATCCTGCCGACGGTCCGAGGAAATTCCGACGGAATTCCGATGCGAACGGCTAGTTCGTCGGAATTTCCTCGGAATTTTT AAAATCCCCCAACGGCTCTCTAACGTCTATAATATTTCCTCGGAATTCATCGGTTTTTTCCGAGGTATACTAGTTTCCTCG GTATTCCGTCGGAATATTCCGACGAGAAGAATTTTCCTCGGAATTCCGTCGGAATATTCCGACGGAATACCGAGGAAGAAA AATTTTGTGTTTCCTCGGAATTGCCTCGGAAATGGCTCGGTATATTCCGAGGAATTCATTTTCCGTCGGAACGTCCGTCAG AATACCGC TGTTTTCTTGTAGTGGAT

BrCACTA35: A 3029 bp CACTA in Brassica rapa (AC232476.1) from 93851-96879 bp in 5'-3'

TTGCACTACAAGAAAACAGCGGTATTCTGACGGACGTTCCGACGGAAAATGAATTCCTCGGAATATACCGAGGCATTTCCG AGGCAATTCCGAGGAAACACAAAATTTTGCTTCCTCGGTATTCCGTCGGAATATTCCGACGGAATTCCGAGGAAAATTCAT CTCGTCGGAATATTCCGACGGAATACCGAGGAAACTAGTATTCCTCGGAAAAAACCGATGAATTCTGAGGAAATATTATAG ACGTTAGAGAGCCGTTGGAGAGCCGTTGGGGGATTTTAAAAATTCCGAGGAAATTCCGACGAACTAGCCGTTTGCATCGGA ATTCCGTCGGAATTTCCTCGGACCGTCGGCAGGATTTCAACTATAAATACAAGCACCCCTCTTCCTCTTCATTCACTCCAT ATCTTCATCCTCCCTCTCACTTTCTTTACACACGAATTTGATTCATAAAAAACATGTCTTCTTCAAATTATTTTCGTTCTT GGATCGATCGACCTCATTTGGATCCGAACACGAGATTGCTTACGGAAGAATACCAACAAGGTATAACCGAATTCATGGGGT TAGTTCACCGACAACCGGAAGCAAAAACAGGTATGTTAAGATGTCCTTGCTCGAATTGTAAAAATAAAAAAGTTATTAAAG AATGGGATGTTTGGACTCATCTATATTTGAGTGGGTTTACACGAAGTTACAAAATTTGGTATCATCATGGAGAAACTGATT ATGAACTTGGTAGTACTAGCGAACCTCAGCCAGCGGTTAGATTAGAAGATCCAATTAGAACGGATGTAGATTACGGTGTAG GTACTGAGCAGATGGTAAATGATCATTTTAGAGGGGAAGATTTACCCAATGCCGAAGCTAGGAGATTTTATGATATGTTGG ATGCTGGAAAGCAACCATTGTACGAAGGTTGCAGAGATGGTCATTCAGCTTTATCATCTGCTACAAGATTGATGGGCATTA AGACGGATTATAATTTGGCTGAAGACTGTGTGGATGCGATTGCTGATTATGTAAAAGGTATTCTACCCGAAGATAATGTAG CTCCTGGCTCATACTACGAGGTTCAGAAACTCGTAGCTGGTCTTGGTTTATCGTATCAGGTAATAGATGTATGCAGAGACA ACTGCATGATTTATTGGAGGGCGGATGAACAGCGGGTTTCATGCAAATTTTGTGGGAAGCCTCGTTATAAAGATACGAGTG GAAGAGTTCCAGTACCATATAAAAGGATGTGGTATTTGCCTTTGACGGAAAGGTTGCAGAGGCTGTATCTGTCTGAACGCA CAGCGAAACCAATGAGATGGCATGCGGAGCACTCAACAGATGGTGAGATCAGACATCCTTCAGATGCAAAAGCGTGGAAGC ATTTCCAATCAAAGTATCCCGACTTTGCGTATGAGAGAAGAAATGTCTACCTTGGATTATGTACTGATGGTTTCAGCCCGT TTGGCAAGAGTGGAAGACAGTATTCTCTATGGCCAGTCATTCTTACACCATACAACCTACCCCCAAACTTGTGCTTGCGAC GAGAGTTTTTGTTTCTCTCGATTCTCGTTCCTGGACCAGAGCATCCTAAGAGATCACTTGATGTGTTTCTTCAGCCACTAA TATATGAGTTGCAACAACTATGGACTCAAGGTGCTGAAACATACGATGTTTCGTATAAAGAAAACTTTCAAATGCGGGCAG TACTAATGTGGACAATAAGTGATTTTCCAGCATATGGTATGTTATCTGGATGGACAACGCATGGAAGGCTATCATGTCCAT ATTGTCAAGATAACACTGATGCTTTCCAACTAAAACACGGAAGGAAAACGTGTTGGTTTGACTGTCACAGGAGATTTCTAC CACCAGATCATCCATATCGTAGAAGTAGGAATTTGTTTACGAAGAACAAGAGGGTGTTTGACAGTCCACCTCCGGAAATTC GTGGGAAAGATTTGAAGACACAACTTAGAGATTTTGGTGCAGAAAGGACGCCAGATTGATGATGGTCTTGTGAGGGACGTG GTCGACCTGGTCCAAACTCAGGTGTATGACGAAGTGTCTCAGCTTCAAACCGATGATGACGATTCGACGGCCTCGACCAAC TTGTCTCGGGTTCGAATCAACGAAATCGTTGAATCGGTAAGTTTTTTTTTTTTAAAAGTTCAATTTAATTATTTCTTGATT TTTATTTTATCATCAATTTAAATTATCTAAACTTGGTTATTTATATTTCAGTCGGTTCCAAAGAAAAAGGGACGTTTGGTC GGTTTGGGTCGTCGCTCCCGGTCGGCTGCTCCTTCTTCTGCACCACATGCGTATGTTGATCCAGAAGTTCTTACGGCTCAG CTGAAGGACAAGGATGATCGGATATCTGCGTTGGAGACCCAGATAGCAGCTCAACAGGCGGGCTATGAGACCCAGAAGAGG CTGAACGAGCAGATGATGGAGATGATGAAGAGGATGTACCCGAACGAGACGTTCCCGAACATTCAAGACCCGTAGTTTTTT TTTTTTCCAAAAACTCTGAATGTTTTATTTAAATTTGAATATTATCTACTATGTTTTATTTTATGTTTTATTCAATTTTAA TTTTAAATTTTAAAAATTTTAATTTTTAAAAATAAAATTAATTTTAAAAAAAAATAAATTTTAAAAAAAAATAAATTTTTT CAAAATTCCGAGGGAATGGAGTTCCTCGGAAAAGTCCGAGGAACATTTGTTCCTCGGTATTTTCCGATAATCATTCCGAGG AATATTTCGTCGAAACTTCCGAGGATTGGACCATCGGAATTCCCTCGGTATTTTCCGAGGAACCTTCCGACGAACTTCGTG TCCTCGGAGTTTCCTCGGAATTTTGTTTCCTCGGAATTCCGTCGGAATTTTCCGACGGAATTCCGAGGAAGTATGAAATTC CGAGGAGATGTTTCCGATGACTTGTTTCGTCGGTATGTCCTCGGAATAGCGTTATTCCGACGACATACCGACGATTTTTTC CCTCGGTATCCCGA TGTTTTCTTGTAGTGTTG

Bo-N-CACTA1: 3265 bp non-autonomous CACTA in Brassica oleracea (AC240092.1)

GTTCACTACAAGAAAACAACGGTATTCTGACGGACATTCCGACGGAAAATGAAATCCTCGGAATTTCCCGAGGAATTTCCG AGGATATTCCGAGGAAACCCAAAATTTGGTTTCCTCGGAATATACCGACGGAATTCCGAGGAAATATCAATCCGTCGGAAT ATTCTTATGAAATACCGAGGAAAAATGTGTTCCTCGGAAAAAACCGATGAATTCCGAGGAAATATTATAGCCGTTGGAGAG CCGTTGGGGGATTTTACAAAATTCCGAGGAAATTCCGACGATGATGACTCGGAAACAGACTACAATTGATTTTTTTTTAAA GAAATACCGAGGAAATTCCGAGGAACACTTGATATACTCGATCGATCGATGTGTTTTTGAACATATATCCATCGATCGATC CGTTTATAAAAAAACGTTCGAGATTTTGTTCATTCGATCTATTGGATATCCACATCGATCGATCGGATAATCTAATCGATC

Appendices

GATCACATTGTTACGCTTTGGTACATCTTAGTCATCGATCGATGCGTTTTTGGACATATATCCATCGATCGATCCATTTAT AAAAAAACGTTCGAGATTTTGTTCATTCGATCTATTGGATATCCACATCGATCGATCGGATAATCTAATCGATCGATCACA TTGTTACGCTTTGGTCCATCTTAGTGATCGATCGATGCGTTTTTGGACATATATCCATCGATCTATCCGTTTATAAAAAAA CGTTCGAGATTTTGTTCATTCGATCTATTGGATATCCACATCGATCGATGGGATAATCTAATCGATCGATCACATTGTTAC GCTTTGGTCCATCTTAGTGATCGATCGATCCATTTTGGGATCGATCGATCACTTTGTTACCCCAAACCCTGTTTCCTCGGA AAAGTCTCGGAATATTCCGAGGAAATTCCGAGGAACATTTGATATACTCGATCAATCGATGCGTTTTTGAACATATATCCA TCGATCGATCCCTTTATAAAAAAAATGATGTTTTGAAATCCCAAACACTAGGGAAGAAAACGGTTTCCTCGGAATTTCCTC GGAATATTCCGAGGAAATTCCGAGGAAATAGGGTTTTAAAACCGAAAACAACGTTTTGCGGTTTGAATAACACCTCTATAA CCCTTATTAAGTGTCTTACGTTCATTATGAAGTCAAAAATTTGTTCCTTACCCTATAATAAACACTTTTTCGATTGTATGA ACGAAATCCCACAACATAAGAGAAACACTTATACACTTTAATGAACGGTAAAGTGAATACTTTCAATTCGTTTTGAAATTT GTTATTTCATGGTATATGCTCATCTATACAAAGAATCATCAATGGTATGCATTACAATTGTATAAGAAATGAAATACGGCA AAAAAATTGATGTTTTGAAACCCCAAACACTAGTTCCTCAATGAACGGTAAAGGGAATACTTTCAATTCTTTCAATTCGTT TTGAAATTTGTTATTTCATGGTATATGCTCATCTATACAAAGAATCCTCAATGGTATGCATTACAATTGTATAAGAAATGA AATACGGCAAAAAAATTGATGTTTTGAAACCCCAAACACTAGTTCCTCGGTATTTCTTCGGAATATTTTCATTTTACCGGG CAAATATTTCGCGAAAATTGAAATTAGAATTCCGACGGAATTCCGACGGAATTCCGACGGATAATGTCCGTCGGACCCTAG GTTTTATAACCACGAGCCCCTTCTTCTTCCCCATTTCTCTCTTCTTCCTCTGCGTGAATCCTCTCTTCTCTCCGGCGATTT CCCCCTGAATTCCGACGATATCTCCGGCGATCTCCCCCTTCTCTTACACAAATCATGTAAGGACCCTATCCCACTCTCTTA GGTTCTATTTGTTAGGTTTTTTGTGTAGTTTTGATAGATTTTTGTTAGGGTGATTGGTTAGGATTGTGATTTGGTTGTATA ATAGGTTTAGAATTGTGATTTGGTTGAATAATTTGTTTTGTTGAATTGATTTAGAATTTTTTTATAATTTTTTTATTTTTT TGTATTTATAAAATCGATTTTTGTATATAAAATCGATTTTTGTATATAAAATTGATTTTTGTATTTTACAAAACGATTTTT GTATATAAATTTGATTTTTTGGATTTTACAAAATGTTTTTTGTATATAAATTTGATTTTTTGGATTTTACAAAACATTTTT AATATCTATAAAACTTTTTTTGTGATTAAAAACTATTATTTGAGATTTGTTTTTTAAAAAAAAATATATATTTATATTATA TAAATTTTTTATTTATTAAAACTATTTTTTGTTTATTAGAACTATTTTTATATATTTATTAAACGTTTTTAATATCTATAT ATCTTTTTAGAATGATTAAAAACTATTATTTGGGATTTTTTTATAAAAAAAAAAATATATATATTTCTATATTTATTAAAT ATATTTTTTTTTTAATTTACAGGTCTCATGATGATCAGACCCGGCCTCGACAGCGTCGTGGTCGTGGTGGTACGGGGTCAA ACATGGTAAGGATGATCGCATATCTTTGTTGGAGACCCAGATGGCGGCTCAACAGGCGGGCTATGAGGCACAGAGGAGGGC TGAACCAGCAAATGATGGAGATGATGCAGAGGATGTACCCGAACGAGGTGTTCCCGGACGTGCCAGACCCGTAGTTTTTTT TTTCTAAAAATTCGGAATGTTTTATTTTTATTTGTGAAACTTTGAATATTAATTAATATGATTTCAATTTTAATTTTAATT TTATATTTTCGAATTTAAATTTCAAAAATTTTATTTTTTTAAAAAAATTAATATTTTTTACATTCCGAGGAAATGAAATAC CGAGGAAATTCCGAGGAACACTTGATATACTCGATCGATCGATGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAACCAAAAACGCTTCGATCG ACGAAGTTCTGAGGAAATATCCCGACGACGTTCTCCCTCGGTATATTCCGAGGAGCTTTCCGCCGAACTAGTGGTCCTCGG AATGTCCTCGGAAATTTGTTTCCTCGGAATTCCGTCGGAAAATTCCGAGGGATTTCCGAGGAAAGAAGAAATTCCGAGGAG TTATTTCTGAGGATTTGTTTCGTCGGTATGTCGTCGGAATATCGTTATTCTGACGACGTACCGATGATTTTTTCCCTCAGT ATGTCGTTGTTTTCTTGTAGTGGTT

Br-N-CACTA6: 1288 bp non-autonomous CACTA in Brassica rapa (AC241034.1)

TGGCACTACAAGAAAAAGCACCGCATGCCGACAGCCATCTTTGTCGGTAAGTAATAGGAACAAGCTCGAACCGATGGTCTT CTGAGAAAACTCAATTAGTCGGAGTTTGGGTCTCGGAAATGGATTGATGTCGGAGCTGTGTCGGAAATTTCCGACGAGATA TATCCTCGGAAATTTTGTCGGAATCGTTTGTCGGAATACACCGAGACCGTTTCGATGAAATGTGAAGCCACAAACTCGTCG AAGCATGCTCGGAAGTTGGTTTGTCAGAAGTTAATCGGTATTTACCGAGGCCTTTCCGATGATACATGACATTGAATATAC CGAGGAGAAATCGTTACTACAGTATTTCCGGTGAATCTGTTTTACACTTCTGGGAAATTGTTTGAAGACCACCGTAATACA CTAATACATAAAGATGTTTTTTCTGGAAATTTAATAGATAAAGACGTTCTTAACAAAGGAACAAATATACACCATTTGATT ATTATAAAGATATACACGGGATATATATTGCTTACAAGAAAAATACAGACTAAATAACTCATAAAAACTAAAAAGTATAAA GGTAAATGTATTGAAACACTAAAACTAAATTTTAAAATATTAAAAATATATCTTCTTCATCTTCGTCTTCTCCACACCTTC TGTAAACTCAACTTCTTTGTTGACAAGAAGAATCTCTTGATGTGCATACTCAAATAGCTTCTTAGTGTCTTTAGCCTTATC TAATCTCAATTGTAAAATCGATTTTCTGCAAACACTCGTATATATGTTTTCAAATTTCTCTAGTTCAGATCTACACATGAA GACACACATGAACGCTTATATAAAGAAATACTGAAAAAGCCATGGTTGGTTTTGCTTCGAATGGCGTCACATGTACGCTAG AAGCTATTATGACAATTTTCCGTCAAATCTTCCGAGATCAATTTCTCCTCGGTAACTGCCGAGAAAGAGCTCCGACAATTT ATCGTCTACTTTTCCGAAGCCATACCCAGAAAATAATTGATTGTCGGAAATTGATTGTTCCGAGAAATTACCGTCAACATT TTCTGAGAACCTTCCCACAAAACCTGTTCCTCAGAAATTTTTTTGGTTTCCGACAAATTGCCGACTATGCATCTCGAGAAA ACAGCGAGAAAATAGATTCATCGGTAATTTCCGAGATGATCCCGACATAATTCATATGTTATCGGAATTTTATCACAAACA TGTCGTTACCTTTCCCACAAAAGAAGTTCTCGGTAAATTTCATCGGAGTGGCCATTGTTTTCTTGTAGTGTGG

BoHARB1: 3843 bp Harbinger in Brassica oleracea (AC240081.1)

TAACAATAGGTCTGTTCGTTTGGTGCCCGCAGATTCCTGCGGCTGAGTCTGCGGCTGCGCAGCTTGTTGTTCGTTTCGAAG ACGCAGGACATTGCCGTATCCGTAACCGCAGAAAATAGATTTAGTTCTGTTCGTTTGGTTGCCGCAGACGCAATTTTCATT TATTTCATATTTTAAATTTATGAATTTTATGAATTTGGAAAATTGTATTTTAAATAAATAAAATGTAGTTTAAATTTGTAA ATTGTATTTTAAATAAATAAAATGTAGATTTAAATTTGTAAAATTGTATTTTAAATAAATTTAACAACATTTTTTTATCAT AAACAAAAGCTAAATAATACATCAAGTCTTAAATAAATAAAACAAATATTTCAAATATCACTCTTCCAAACTCGCCTTCTT GTGGTCTTAATGTATCCTCCGCAAACTTCAGAATAGCACTCAAAACATCATCAAGCTTCCTTTGGATCGTATCCAATGATC TTTGATACCTTGCAGCAATATCCCGCTTAGTCTTATCTTGACCAACAGTCTCGAGAAACATCGCAACAGATTCCTCAAGGT AGACATGAGGATACATGACAAAAGGCAGTTTCATACAAAGATCAGACCAAAAGCAAAAGTTCCATACTAGTTCTAAGTTCC ATACTAGTCATAAGTTCCATAATAGTCCTGAGCTCCATACTAGTCTTAAGTTCCATAATAGTCCTAAGCTTCATAGTCACG TTTTATCTTGGTCCTAAGCTCAAGAAACATGATCTTAGCTTCATCTGTCTTCATTGTTATAAACGCCCTTCTGCTCCCTTC ACTGTCTATAAGATGTTCCATTGCTGTTTCATATAATGGAGACCACTCTCTCACTCCAGGCAATGTGTACAGAATCTCTAA CACATTCTCAACACTAGAAGCTTCTTGACGCTCCAACATCCGTTCGGCTATCCTATTCTTCACCATAAGAGCTTCAGTACG

Appendices

TTTGTCACAAGCTTCTACAACCATATCCTTCTCCTTACGCTTTCTTTTTCCTCTCGAACTTCCAGAATGAGTCTGAGTTTG GCGCTGGGTTTGTATCTGAGCTTGTGGCTAAGTTTCTGTCTCTGCTGCTGGCTGAGAATCGGCTTCATCACCATCATCTAC ACCCACTCTAGAATTCAAGCTTGCTTCTCCATGTTGAGCACTCCATCCTTCTGCTCCAGTTACTACTACAGCACAAAACTC СТСТTCAAACAGATCCATATTAAATTCCTCTTTCCATATGGATCTTCTAATCCCAGCACACTCCTATATAACAAAAAAAAA GAGTAAGTCAATGAGGAATCATGAAGCAATCATGAAGCAAATATAAGAAAAAAAAATACACAGAAGAGATAAAAGAAACAG ACATTTTCGCGCTCACTCCACCAATCATCTGACATATCAACCCTTCCCATGCTGTCAAACCCAAGACCTATCTTATTCTTA ATCAACTTCCTAAATTTGGTGTACTTCTTTCTACTTGTGTCGTACTTGTTCTTGAACACAGGCCAATCGGGATACACTTTC TTAAACCTCTCGTTTCCCTATTTTATTCATTGATGTCGTCCTATTTCCTTTTCTTCTCTCTTCCGCGTAGAGTTCGAAAAA ATACCTAACTTCTTCAGGAGTCCAAGTCTAAATCATAGAAACAAATAAACTCAAGTTCTATACTGACCTAACGACAGTTCA GTTCCATACACTACTCAAGTTCTATACTGACCTAAAGCAAGAAAGTTCCATACATATAACAAGTAAGACAGTTCCACACGA CAAGACAGTTCCATACATATAACAAACAAGACTAGTGTGAGAGAGCCTTACATCTTTTGTCATCTTAACAAGTGAGAGGAA CAGCGGTAGAGAGTGAGCTTGAGATGAGAGAGCCTGCAAAAAAGACAGACAAGCTCAGATTGATTGGTGAACGTATAAACA TTAATAGTCAGAACATCAAATACAATAAGCAAAGCCAAAGGCTGTGAAACGTATAAACATTAGATTGATTGGCTATAACAA GCAACAAACGCTAGCAAGCTACTACTTGCCGATCACAGACAAGCTAGCAAACGTATGGGTTTGTAACTAAGAGAGAAACCG AGTAGAGTCAATAACCAGAACACAGAAGATCTTATACAAACCCATCAGAGAAACCCATAACACAAACCTAAGAAAGAGACA ATTGAGCTTAAGATGTACAATGCTTACAAGAGAGAGAGCTGGAGAGGCGTCATAGAAGAGAGAGAGCTGGAGAGTGCGAGC TTGAGAAGAGTACCTGCAAAAAAGACAGAGAGATGGAGAAAGAGTGTTAATCTCAAAGAGCTTGGTCCGAAAAAAAAAATA ACAGACCTTTAGAACCAGAGCATCAGACTCAAACCAGATCACTCAAGTTTTATTCCTCAAGTGAAGTAACTCAGGAAACAA AССТTACTAAAGAGATTCTGAGCTTGAGAGGGTTTGAACTTGAGAGAGCCTGAGCTTGGAGAGGGTTTGAACTTGAGAGAG CCTGCGACCTGCAAAAAAAATAACAGACCTTTAGAAGCTGGCAAATGACAGTACATGTTTTGTGACTTAAAACCACTTGGA AAGAGAGCTCAAATGCTCAAATATACATGCAAGGACGTATTGGTGATGTAATTCATCTAATTAATCACAGACTCACTGATG AgAGTAAAACAAATGCATCACAAATATACACAGAACGTCATAACAATACGTAAGAGATTAAAAAGAAGAAGAAGGCAATTT TTGGCAATCTATACGATCAACTAGTGTAGTCACAGAACATAACTAATAAATCAAAGACATCATACCTTGAGAGAGTGAGCT TGAGAAGGTCTCGAGAGAGTGACTTGAGAGGAGCAACGGCTTTACACAAACCTAAGCATCAAAAACCTAATGCTATCATCA СTTCATCAACCCAAAAACCCATAAGACTCAAATCAATATGTGGTATCAGAGACAGTTACCTCGGAAAAGAGAGAGTTCGAG AGAGAGAGATCGTGAGAGAGAGCTCGGAGAAGAGAGAGCTCGTGAGAGAGAGCTCGGAGAAGAGAGAGCTCGTGAGAGAGA GCTCGTGAGAGAGAGCTCAGCTTTACACAAACCTAAGCATAAACAAGACATGATGGGTTAGTGTCAGAGATCAAGAGAGAG CTTGAGATGGGTTTGTTCAATAACAGAGCAAAGAAAAAATCTGAAACTTTCAAGTCAAATACTAGTCCAAATCTTAACGAA TTGATCCAAAGTTTTCAAAAGGATGAAATAATTACCTCAAAGAGAGAGAGAGAGCTCGAGGTCGGAGATTGAGAGACCGAG AGAACTCGGAGATGGGTTAGTGTCAGAGATCAAGAGATAGCTTGAGATGGGTTTGTGTGATGGATACAGAGCTCGAATCCT CGCATTGCACCATCACTTCATCTCACACTTGCAGATGGAGAGAGAGCTTGAGATGGAGAGAGGACTTGAGATGGATAGAGG GCTCGTGATGGAGAGAGGGCTCGAGATTGAGAGAGATCGAGAGAGAGATCGAGAGATGGAGAAAGAGATTGAGAGAGATGG GAGAGAGTTGCGTCGATGGGAGAAGACCTGCGGCTGCGTCAATTAGATTTAGGTTTTTTCGTAAATAATTAATTAGGTTAA GGATATAATTGTAAATATGTTAAATAGACGCACAATTTACGTCGCGACCGCGAGATTTTACGGCGTCAAACGCAGGTCTCG GCGTCAGACGCAGCGGTTAGACGCATGTCTCGGCGTCAATCAAACGAACAAAATTTTTAAAAATAGTCGCCGCAGCCGCAA GTACCTGCGGCAACCAAACGAACAGCCTTAATGTAA

BrHARB4: 3527 bp Harbinger from Brassica rapa (AC189588.2)

TAATTAATGGTTGCTTTAGTGTTTGGTTACGGTTGTGTCACTGTAATAAATAGAATTAATGGTGTAGTTTGAGTTCTTTGA AATTGAATTGAATTGTTGTTAGTTGTTAGTTGTTTGTTGTTAGATATATGTCTAGTCATTGCAATTGAAGTGTTCTTTCCA GCTTTTTTAAAAAGATCTTTCATCCATTTGCTTGATCTTTTTATAAGCTGTGTCGTTAGTGCCTTCTCCAACAGATGAATG CGCATTCTCGTTCCTTCTCCTCTTTCGCATTCTCCTCTGTCTCCTCTTTCTCCTCTGTCTTCTGTGTCTCCACTCTCTCCT СТТТСTССTCTGTCTCCACTCTCTCCTCTTTCTCCTCTTTCTCCTCTCTCTCCTCTTTCTCCTCTTTCTCCTCTTTCTCCT CTTTCTCCTCTGTCTCCACTCTCTCCTCTGTCTCCTCTGTCTCCTCTCTCCTTGACTTCGAGGATGGATTTCAATCCATTT CAGGACTCGGCTAATTTTGTTGATCTACTCCATAGTCAACAAAATGTTGTCTTTGGCAGTCAAGGACGTGTTCCACTCTCT TCAACGCAAGTGCCGCCTTCTGGCAGTCAAGGACGTGTTCCACTCTCTTCAACGCAAGTGCCGCCTTTTGGCACTCAAGCC GCAGAGCTTCCAGCAGAGCGTAAGGAAAGAAGGACGTGGATAGTCACAGAGGACATAGTGCTTATTAGCAGCTGGCTCAAC ACGAGCAAAGACCCTGTCGTAGGGAATGAGCAGAAGTCAGCAACTTTCTGGACAAGAGTTGCAGCATACTTCTCGGCGAGT CCAAAACTTGCTGGATGTGAAAAACGCGACGGGAATCAGTGCAAGCAACGTTGGCACAAGCTGAATGAAGCCGTTTGCAAG TTTTCTGGGGCGTATGAGGCAGCCACAAGAGAGAAAACCAGTGGCATGAATGACAACGACGTCCTAAAACGTGCCCATGAA ATCTACTTCAACAACCACCAAAAGAAGTTTGTCCTTGAGCATGCGTGGAACGAGCTTCGCAACGACCAGAAGTGGTGTGAT CTCGCTACATCTAAAACTGAAACAAGCTCCAAAAGGAGGAAGTTCGCGGATGGTTCACATTCAGGAGCATGCTCTCACGTC AATGAATGCAATGCTGGTGGAGAAGGAACATCTCGTCCCCCTGGTGTTAAGGCTGCAAAAGCTGGAGGAAAGAAGCCACAT GTCGCGGGGGAGGATGTGTGTGATTATCAGCTCATGTGGAGCATCAAGAAGGATGACTTGGCAATGAAGCAACAGCTCTCC AAGATGAGAGTACTTGAGAAGCTTCTTGCCAAGGAAAATCTAGAGGATTATGAAGAAGATCTCAAGAAAAAGATCAGTTTA GAGTTAATGTAACTCTTGGAATAATGTTAACCTTATGTATGTTTCATGTTCTTGGCTTGTAGTTGTTTCATTTTATGTCTT CCTTATGTTTCATGTTTCATGTTATCGGCTTTAGAATGTAGTTGTTTCTAGTTTCATGTTCTCGGCTTTAGAATCTAATTT GTAATGCTTTGCTCTCTTATTTTATAAGCAACTTAATGTTTTGGTGTTTTGTTGAGTTATCTCTTGATGTGGACAATTGTT TTATTTGTTTCAGGTAACAGTAAATAAGAAGCTACATTGGATCATGTCACGGGTTGCATACTATCAGTTCAGAGTGTTGTC TCGGCGTGTGTTGTCTCGGCTTTGTAGGATGTCACGGTTTTAATCTTTTGTATCAGTGTGTCACGGGTTTCAGTTTCAGCT TTTGTATCAGTGTGTCACGGTTTTAATCTTCTGTATCAGTGTGTCACGGGTTGTTCAGTGAATCATATACTTTGTATTTTC ATGTGCATCACACAGCCTCATTTTTTATATATATATCAATGTCTCTCTACTTCCAACATCACGCAAACTCATCTACTCTCT ATTTCCTCTCTTTTGCTAACACTACCAAACGCACAGTCTCTCTATTCTCTCTATTTCCTCTCTTTCCCATGTTTCTCACTT TGAACACAATTTAAAAAAAAACTCTTAAATCACTTCTATGGCTTCTTCTTCAAATCCAAACACTTTCGATGAATCATGTGA TGATACATTTGATGACTTCTTTGATCAAAAATTTGATGAAAAATTTGATGAAAAATTTGATCAATTTTTTGAGCAAGCGTT TGAGAATTTAACTACTCGAGAGGCTCCAAAAAAAAAAAGAAAACCGAAAGTTTATATCGAGAGAAATCGTGAAGAAGGGCA TATTCGTTTATGGAATGATTATTTCAGTGATAATCCAACATATCCTGATAATTTATTCCGACGACGTTTTCGAATGAACAA GCCATTGTTCTTGTACATTGTTGATCGACTCTCCAACGAAGTTCCCTATTTTCGGGAAACAAAAGATGGTCTCGGAAGGAT

TAGTCTCTCTCCTCTTCAAAAGTGTACCGCAGCCATTCGTGTCTTGGCGTATGGTTCTGCAGCTGATGCGGTCGACGAATA CCTCCGGCTCGGTGAAACAACCACTCGCTTATGTGTGGAAAATTTTGTGGAAGGAATAATATATTTGTTCGGTAATGAGTA CTTAAGAAGACCAACACCAGCTGATCTTCAACGTCTACTTGATGTTGGAGAATATCGTGGATTTCCCGGGATGATAGGAAG CATCGATTGTATGCATTGGGAGTGGAAGAATTGTCCAACCGCTTGGAAAGGGCAATATTCTCGTGGTTCGGGTAAACCAAC AATCGTTTTAGAGGCGGTTGCTTCATACGATCTCTGGATATGGCATGCATTTTTCGGACCTCCAGGTACATTAAATGATAT CAACGTTCTTGATCGTTCACCTGTTTTTGATGACATAATAAAAGGTGAAGCTCCGAATGTCACTTTCTCTGTCAATGGAAG AGAGTATCATATGGCTTACTATCTTACGGATGGTATTTATCCGAAATGGGCAACTTTTATTCAATCTATTCCTCTACCACA AGGGCCACAAGCGGTCTTATTTGCTCAACATCAAGAAGCAGCCCGAAAAGATGTCGAGCGGGCTTTTGGAGTCCTGCAAGC TCGCTTTGCCATTGTTAAAAATCCAGCGTTGTTTTGGGATAAAGTCAAAATTGGTAAGATTATGAGAGCATGTATCATACT CCATAATATGATAGTAGAAAACGAAAGAGATGGATACTCTCAAAATGATGTTTCAGAATTTCAGCAAGGAGAAGACAACAG AAATTCACATGTCGATCTCACGTATTCTACGGATATCCCTTCAAATATCGCAAACCAGATGGGGGTTCGGATAAGAATTCG TGATAAACAAATGCATCAACAACTGAAAAATGATTTGGTTCAACATTTATGGCATAAATTTGGACCTGGTGAAGACAACAA CTGAGCTTGGAAGCTTCTTTTAAATAATTCTTGTTTAATTTAGTAATCTTTGTTTTTATGTTTTAATTATAAAATTTCTAT TAATAAAAAAATTTAAATTTTATTTTAAAGAAACCCTTAATAA

Bo-N-HARB1: 1199 bp non-autonomous Harbinger in Brassica oleracea (EU642504.1)

TTAGAGAATCTCCAAAAGAAACTCTATAACTCTAAATATAGAGTTTTTTGCTCTCCAAAAAGAACTTTAAATTTGAAGTTT TGAAAAGTGAAACTCTAAATATAGAGTTTCACTCTTCAAAACTTCAAATTTGAAGTTTTATCTTTTTATTTGCATTTTGGT CCTTACAATTATACATCATATTTATAATTCTTAAATATTTTTTTGTTTATTGTTTTATTCCTTAAAACTTTTATATCTCAT AAATATTTCAAATTTGTTTTATAAATTTAAGTTTTACACATAAAATTAAATAAAAATTTTAAAACAGATTTATAATATTTT AAAAGTAGAATTAAACAACAAGAATATTACAAAAAACCATAATAAAAACTTATTAAAAAGACACATGAAGACATAATATAC TCAATTTAATATTAAAACAACACTAATAGTCTGGTAAATTTGCTCCAGAACCTCCTAAATCTCCAAAATGCTACCCAAACA AATTTCGTGTAACCGAAGATGATTGTTGTTGTTCCTCTTGACGCCTTTTTCGTACGATTCTTTCTTGTTCAGATCGAATGT ATTCACGAATATTAACATCATCGATAGAAGCTAAGTTTTTTAGCAATATTTTATTTTCCTCTTTTACTTCTTTGAAAGCTA ACTTTTTTTGCTTCATTTTGCAGTCGTAATTCAATCATCTCATGACCTTTTTGCCTGCTTGTTTTACTTTCGTTTAAAAGA TCAAGGATTTTTTCGTTTGATGATATCAAACTATCAGCGGGTATATTATGAGGATATCCAATTTCAATAATTTTTGGCTCG TAATCTACAAATAAAAAATAAAGAGAATTAATTCTTACTTCGAAATGCACTAGTTGATCATATATGGGAGCATTACGGAAA TAATTTTATGGAATAATGTAGTATTTGCTTGCAGTTTAATATTTAATTATGTACTTTTATTTATAATTTTATATCTTAGTG TAAAATTTTTTTAATTAATATTTCTGTAATATTTATATATATGTACTAGTTATTTTAGAAGTTTTATGAATTTACATCAAC TATGACAAATATAAGGATCATAGTGTAAAATATAAATAATTTTGAAGTTAGGTTTGAAGTTTTACTTTTGGAGAAGAACAC ATTGAAATTTTAAAAATGGAGTTTTAGAAACTTCAAAATAGAGTTCTTTTTTGGAGATACTCTTA

Br-N-HARB2: 819 bp non-autonomous Harbinger in Brassica rapa (AC189298.1)

TACAATATGGTGAATTGAAATAGAATCTTGGAACATAAAAAGAAGCTAAATATACTTTTGGGATTCTGCCAAAAGATGATC CCATTTTAATCATATAACTAGATTTTGACCTGCGCTTTGAAAGCGCGGGTTTATTTTTGTTTTTTTTTTCAATTGACAAAT ATTTAGTAAATGTCACATTTTCATATATTTGTGTTTTATTTTATAAAAGACTTAAAAATTTTATTTTATTTATCGTATTTC ATTTTAAATGACTATTTATGTTAAAAAAATTAAACTTTATTTTTTTAATGAATTAAGTTGGTATAACTCTGATAAATTAAT TTTATTATGGGGTTAATATTTTAATTAAAAAATTATATACTTTTAATAAAGATTTATCCTTTTCAATAAAAAAAAGCAATT ATTTTTATGAATGCTTAAATTATATTAAGAAAAGAGAAAAAATAATAATTAAGAATAGTTGAAAAAAAATTATTTGAACTT GGACTCAATGGCCCAAAGGAAAAAAAAAGTGAGAATTGAATCTGATTTTTTAATAGGCCCAAATGGCCCAAGAGAGATTTG ATTTGGGATGGATCTAAAAATAATGACCCAATATAGATTTGTTATTAATATTACTTAATTACCCTTAATGAAACATGCAAT GTTAGTGAAGGAAACATGCCCCTAAGGTAATTATGACAATAGGATCCTGCTTTAATAGTATAGATAGGTAGGTTAAGGTAA TATTTTTTTCTTTACAGTATTACATCAAATATATAATTATTGGGGAGATACGTTTCTTGTAAGTATIT TC TA TAAGTTTTC GATATTTAC

CHAPTER 6

NON-AUTONOMOUS DNA TRANSPOSONS \& NOVEL INSERTIONS IN BRASSICA CROPS: DIVERSE AND ABUNDANT

The non-autonomous hAT sequences are given below each represented by TSDs (red) and TIRs (blue). The details of each element are given in table 6.1

BrN-hAT1: 670 bp non-autonomous hAT in Brassica rapa (AC189298.1)from 1727-2396 bp

AGTATTTTCTAGGCCTGGGCATTTTACCCGGACCCGAAGATCCGACCCGAAACCGATCCGAAAAAACCCGGTTCGGGTAAG AACCGACCCGATCAAATTACCCTATCGGGTCTTGTTGTAGAGGACCCGCGGGTCTTGGACCCGACCCGACCCGAACCCGAA ACCCGATGGGTACCCGAATTAATAATGTAAATTAAATAAAATGCATCAAGGGAGAATCGAAGACATGTTATTTGTCTAGAG AATATGGGAGTCAACCACTAGGAGACAACGAATTGTTGTTGTATTTCGCATAGTTTAGTATATAACTATATATACACATTT TAATATAATAAAAACACAAATTTTGAATAAAATTTTGAATATGTTCGGATATATAAATATTTTCAGATATTTTTTTGTATT TTTAGGTCTTTTTTAGATCGAACCCGAACCAAACCCGACCCGAAACCGAACCGAATCCGAACCGATAAATTCTAATTACCC GAATGGGTCTAACTATCTAAGACCCGACCCGACCCGGACCCGGCACGACCCGAACCGACCCGGAACCGAAAGTTTGAAATT ACCCTATCGGGTCCTAAACTCTTAGACCCGAAAGATCCGGACCCGAAAGGACCCGACCCGAATCCGATCCGACGATCCGAA TGCCTAGGCTTAGTATTTT

BrN-hAT2-1: 716 bp non-autonomous hAT in Brassica rapa (AC189298.1) from 32998-33712 bp

GTGTGGACTCTATGTTACATGGAAACGGAAGCGGGTACGTGGAAGCGGAAGCGTATGGAAGCGCAGAAGCGAGATTTTTAA AAAAATTAGGAAGCGGATACGTGTTGGAAGCGTATCCATATATATATATATATATATGTAAGACTAAAAATTAAAAATTGG AATATATATACATATGTAAGATTATTTTTAAAAATCTAAAACTAAAATTTATATGATTTAAATTTAAAATAAAGCATTTAT TCATTTATAATAATTTTGAAATAACTTCATATTTAAACTGTGAAAATACACATAAATTAAATAAAATAAATAATATTATAT TTTTGTAATTCTTTATAATTAATTGACATAATATATTTGAATATATGATTTATCTTTAATAAAAACCTCAATGCATAAAGA TAATTTATAGTATTAGTTTTAATATTTGTATATTTCTATTCTCTCTATTCAATACTATTAAAATTTGGATTATATATAAAT TAAAAACTATAATTTTATATTCTTATTGATATAAGACATTATGTTTAAAAAAAAATGGAAGCGTGATTCCAAAACGGAATC GTAAGTTTCCAATATGTTTTTAAAGATAATATTTTAGAAGCGTTTTGGAAGCGAGATTCCGTAAGCTTCCACAAGGTTCCG ATTCCGATTCCGGTTCCGAAGCGGGAAGCGGACGTCCGATGAAGC TTCCGTGCAACGTAGGTGTGGAG

BrN-hAT3: 620 bp non-autonomous hAT in Brassica rapa (AC155341.2) from 46457-47076 bp

TACAAATTTGGCTTT GAT TGGTAACATGTAGTACACTTGATTTAAGTTGACTTGAGCATATAAATCAAAAATGTTACCAAT CATGAATTAGTTTTAAGATTTTGAAGTTGTGTTTGAGTTATAATTAATTATTATTGAGTTACAATTTTGACTTATAGCCTT TGTAAAAATGATAACTCAAATCTTAAATCTACATCAACCAAAATATCATGTATTAAGATTTAAGTTATTGAAAATTTTGGG TTTGTCAATTAACTACCCACTACCTTTTGAATATTAACAATTTTAACAATTTACAATACATATAAGCACTTAGCCCTACGT TTAGTTATATTATTTAATATAATAATAAAATATTATTTATATTTATGAATTTTATTTTTTCACTATTCTTATTAAAATATT ATTTATATTTTAAAAAATAATATATACTGTAACTTATACATCAAAAATGTTACCAATCAATAATATTGATAAAATAGTAAC TCATATTTTTACTGCGAACTCACTACATAAATCTACAGTTTATACCACATAGTTTTTACTGCAAACTACATCAAATCATAC ATTTTATTGTAACTCAACTCTAA TACTACATGTCACCAG TCGAAGCCTTTAAAATT

BrN-hAT4: 786 bp non-autonomous hAT Brassica rapa (AC155341.2) from 105234-106019

ATATTAGCTAGGGGTGGGAAAAAACCGAACCGAAACGAACCAACCGAACCAAAGTCTATTTCAAACTATTCGGTTGAAGAT TTTCCCAATCCGGATAGTTTGGTTTTAAACCGAACAGAACCGAGAAACCGATGTGTTTTTATAATTATTTTAATTAAAAAT ATTAGTAATACCGATATATTAAAATTCTAATACCATACCACATATTTTCCATTTTTCATTTATTAACATATATTGTTCTAA CTGAATATGTAATCATTAAAATATTTTATTTAGAAAAATAGAAAAGTTTATATCTTTATATTCTTATATATATGTAAACAT GGATGTTAGATCTAAATCTAAAACCTAAAGCAAATTTTATTAAAACAAAAGTTCTTCTCCACAACATCACATAGAAAATTA TTCATTGCAAGCTTTTTAATAATGATATAAGAGACGTTACTAATGATGTTGGTTTTTTTTTAGTTAACTATCATTTGTTTT AATTCTTATATATCTTTTGTGATTTTTAAAAGTTTTTGTTTCAGTTTGATATTGAATCTAGTTCACATAGTTTATGTTTAC ATAATTTATACTAAAAACATAATTTCTCTCAAAAAAATTAAACTAAGAAGAACCTAACTAAGAAAAACCTAAATAAACTGA TCCAAAAATTAAATCCAACCGAACCTAATCCAAACCAAACCAAACTAACAATGGTTTATTTCAATTGGAAAAATACTATAA CCAAACTAACCAAACCGAACCGAGAAAATAACTGAAGTGCCCACCCCTAATATTAGC

BrN-hAT5: 979 bp non-autonomous hAT Brassica rapa (AC155344.1) from 34806-35784

GATAGACACAGTGCCGGT CCGGACTTGAATGATGCCTAAAGCGCATTAAAAAATAATGCCCTTTAACTATATTTATTTATT TTATATTTTAAGTTTGTTAAGAAAAATTATGCATCTTTGATTTAGTTTCAAAAGAAAATTATGCAAGATATTATCAAATTT TATTTTCTTTAAAAAAATAATTTACATAAAGATAAAAGTATTTTTGAATTGGTTATTTTCATTTTCTAATTTTTTTTTATT AATTTTGAATAATTGTTTTTTAGAAAGTATGTACTCATTCACACATGATATAATATAGTTTATTTTTATAGATTTTAGTTT AAAAATACTAAAAAAGAATAAAATATCCAGTGGATAACAATAATTAAATTAGCAAAGACTGATTTTTTTTAACAAAATAAG ATATTGAAAACTAAAACAAACAGATCGTTAAAACATAATTAACAACTATTAGTTTATCCAGTTTTATTTGAAATTGTATAC TTTATATAACTAAGTAAAAGTTTAATATAACTTTTGTCAAAAAAAAAAGTTTAATATAACTATGTACAAGCCCGTATTTTT TCGAAATTAATGACCGATATCATTCAGAAAATATATATTGTATACTTTATATAATATAAAGTAAAAATAATTGAGTGGAAA AATGGAAATATAATTAAAAAAAAACAAACTATCTGAAATGGAAGAAATTAAGATTTTTTAAAAATCCATCGTATCTTAAAG ATCACATGTCATTTGTTATCATTACCCTAAGAAAAGAATTTGTCTTGTCATATCATTACAAAAATAAAAATAAAGAAAAAA TAGGCAAGAACTTGTTCGAACAGAACAACTGATGGACTAAATTCCAGGAACAAAAACCACTATACCAAGGGAGTAAGGTTG TACTTGGTGCCCCTAACCTTTTGTTAAACTTTGGCGCCCAAAGCCTTTGCTTTATGGACTTTAGCCCAGGGCCGGGCCTGG ATAGACA

BoN-hAT6: 402 bp non-autonomous hAT in Brassica oleracea (AC155344.1) from 88339-88740 bp

AATTGGAGCAGTGTTTTTAAAACCGGACCGGGAGCTGAACCGGAAATTTTTTGGGTCACGGTTTAATATGGTCTGACCGGG TCAAACCTGGTTCAATAATCTGGTTTAATATACTTTTAGTATATAAATTTAAAAATAATGTTAATAAATATGATACATAAT TAAAATATAAATAACTTTTAAACATAAAACATTATAAATATGAACTAGTTTTATGTTTATATGGATGATTTATAGATTTTT GATAGTTTTCGTAGTTTAATAACTTTAAGATCTAATCCGGTTACGTGATCGGTTCATGGTTGAACCAATTATTAGATCCAA CCTGTTTATATACCCGGTTCATGGTTGAACCCGGTCTAACCATCGGGTCGGTCCGGTTTTAACAACACTGAATTGGAG

BoN-hAT7: 701 bp non-autonomous hAT in Brassica oleracea (AC240081.1) from 4835-5532 bp

TTTCGG TAGGGCTGGGCAAAAAAACTCGTATCCGAAAAACCGAACCGAACCATATCCGAAAAGTAGTATCGAACCCGAACC GAAATTGATTAAATATCCAAATAGGTTCAGAATTTTGGTATTTAGAGAACCGAAACCGAACCCGATCCAAAATGAAGTATT TCGGGTACCCGATTATATCCGAAATTGATTTATATACCTATATATATATTAATTATTTTTAGATTTAATATATATTAAAAA CATCAAAATATATAACATACTTTTAAGTTGTCCAAAATACTTATAAATATATACAAATAGTCAAAAGTACATGTCTAAAAT AGCTAAAGTATACTCAAAACACCAACAATACTTAAAAATATCTAAGGATTCCCAATCCAAATATTCAAACCAAACCAATTT ATATGTTAATTTTAGGTACTTTGACATATGCTATTCAAATTTATATGTAATATATTGTTTTGTTTATAGATTTTGAGAAAT TTAAAGTATATAATGAATTTTAAAAAAAATTCAAAAAAAAATTAAAATAATTTAAATGGGTTATCCGAACCCGAACTGAAT

Appendices

CCGCAAAGATCCGAACCGAACCCGAACCAAAATTTAGAAATACCCGATTGGGGCTAAAATATTTGAACCCGAAAATCCGAA ACCCAAATAGATCTGAACCGAATGGATATCCGAACTCCCACCCCTAGTTTCCA

BoN-hAT8: 998 bp non-autonomous hAT in Brassica oleracea (AC240081.1) from 65232-66229 bp
GGAATACTATAATTTTTATTTAATATATATAAATTATTTTATGTATTAAATATTTTTACATATTATAAAATAATAAATATA TATTAAATAATTAAAAGTCAGTAGCTATTAAATATATAATTAAATTTGTACGAACATATAAATCAATTTTATTAATCCAAA AAATATTTTTTTTATATTTGATAGGATATGTTATTAAATTTAAATGATACTAACATAGATAATATATTTTAGTATATTTTT AATATTAATGTCTATTAAATGATGATTTTACTCATATAGTTTTTTTGATCATTTGTATCTTTTATAGAAAAAAATTTAAAT TACTGGTAACAAAATTTTCATTGTGAGATTAATAGTTTTAGTAATTTATAATTTAAAAAAAAAGATAAATTGTCAATGATC GTTCAAAACTTTTATCAAAAAAACTGTTCAAAGTAAATTTTGAAACTAAAATATTGTATTTTATATGGTTTATAGTTTAAT TTAAAACGATATATATAATAATCTTAATAATTAATTAAATTAGACTTTTTACTTATATAATTTTTGTAATCATTTGTATTT GTCATAACAGAAATTTTAAACCATGAATCATTAAATTTGAATGTGAGACTTTTAACAGTTTTAGTAATTTATAGCTGTTTG TAAAAATTCAAAATATAACATATATTATATGGTTATTGTGGTTGTTTAATTTATTTAATAGTTTAAAATTAAACAAATATG ATAGAAGATACACTATTTTTTATCAAATCTTTATTATTCAAAATCATTAATTACCATATATACTTTAGCCACATTAGGCAA TTCCGTAAATTTTATTTAAAGAAATAATAAAGTATATTAATGATGAATTTATTGTTAGTTTAATAAAAAGCTTATTATATA ATTAGATGGACCAACATATTTTTCTAATGATTATAAGAATCATTCTGGTGATGACACGTAACTACAAAAAGAATTATAATT TTTCTCAGATAATATATAGGGAATAC

BoN-hAT9: 588 bp non-autonomous hAT in Brassica oleracea (AC240081.1) from 66529-67116 bp

CCTAGTGT TAGGCCTGGGACGGATCGGGTATCCGGACAATTTTAAGATATCCGGATCCGGATCCTTATCCGGCGGATTCAT AATTTTACTATCCTTATCCGGATCCGGGGTTCGCGGATATCCGGGTGTCGGATATCCTTCTAAAAATTATAATATCCGGCG GATATTCGGATCCGGATTTGGATCCTTAAAATAAATAAAAAAATAATATTAATATATATAAAATATTAACAATAATTTAAA AATAAAAATATATAGAATGTTTTTAATTATTTCTATGTATAATATTACAAAATTTACATAAAATTTATATATACTATTATA AAAAATGAAAATATATTAAATAAAATTAGTTTTTATATATAGATATTACTATTTTTGAAATAGTTATTAATAAAATTTACG GATCCGGATATCCGGACTAAAAAATCAAGATATCCGGATCCGGATTCGGCTTTGACGGATCCAACATTTTACTATCCGGAT CCGGATTCGGTCTCTCCGGATATCCGGATTTTCGGATCGGATCCGGATCGGATAACGGATCGAATCCGGATCTCGGATAAA AGTTCCAGGCCTACCTAGTGT

BoN-hAT10: 570 bp non-autonomous hAT in Brassica oleracea (AC240081.1) from 71911-72481 bp
CTAATAACCCCGGTTCGGAAAACCCCCAGGCGCTAGTCGGGCGATAACCCCAGGTCTAGCGAGTTACCCAAAAATCAGGGA GTATTCGGGGATTACGCGGAGCCTAGTTTTAAATTTAATTTAATATATTTATAATATATTTAGCTAATTTTAAACATGATG ACACAAATTCTTAGACATAATTATATAATTTTCTATATATAATTTTAAACAGTCTCTTTTTGATTCGTAAATGGTGGGTTT GGTACGAAAAAATCCCTAAATATAGTATGTATGTGTTTGTTTTGGGTTTGATAGCGAATTATAATTATTTAGTAATGAATA ATTACATAAAATCTGTCAATGATGAGTAAAAAATAATCAACCGTGTTTTAACTTACACGGACGGAAAAAAAAAACTTAGGC GGTCAACGTGGGATTAGGCGGGAATTAGGTGGTCAACGCGGACATTAGGCGGTCTTACGCGGATCAACGCGGGTCAACATC TGGCTACACCGATTTGGGCATAATCGCCGCGGTCAACCTCTGAACAACGCCTAGACGGCCGCGTTTTTTGAACAGGGCTAAT AAC

BoN-hAT11-1: 724 bp non-autonomous hAT in Brassica oleracea (AC240081.1) from 87115-87838 bp

TAAAAATGTAGGGGTGGGTGTTCGGATACCCATTCGGGTTCGGATCGGGTATTTCGGATTTTTGGGTATTTCGGTACAGGG ATATAGAACCCGTTCAGGTATTTCTATACTTCGGATCGGGTTCAGGTATTTTTAGTTCGGGTAGTTCGGGTTCAGTTATTT TGAATCGGGTTTTGGATATTAAGATTCTAAAAGAAAAATAAAATAAAATTTTCATTTTTAAGTTTCTTGTATTTAAAAGTA TAGATTTCACTTAACTGATTTATTTTTATTTTTTATATATTGAATGATTAATAGATTTGGAGTACCATCTCAAAAACGAAT AGATATTAATTTGGCTATTGTTTTTAAACTTTGGACGTACTTTTTGTTAATACAAAAACAAAAAGTTTGATATACATTTTA AATGAATATCAAATCATTTTCTCCATAATTATAGATATACTATATGATTTTGAAGTATGTGTAACATTAATATAAATATTT TAAATAAAATGAGAGATGTAAACTAGAAATATAAAGGTAAATATACATATGTTCGGTTATCTTCGGATATCCATTCGGGTT AGGATATTAACCGTTCGGGTTCGTATATCCAATCTCTCCTAACTTAATACATGTTCGGGTATTTTGCTACTTCGGTTCAGA TTTCGATTCAGATTTTTCGGGTCGGGTTCGGATGCGGCTTCGGATATCGGGTAAAGTGCCCACGTCTATACAAATG

BoN-hAT12: 924 bp non-autonomous Brassica oleracea (AC240089.1) from 8543-9466 bp

ССТАСTCT TAGGGCCGTTCAATATGGTAGAACCGTACCGAACTGAACCGAAATAGACAATATGGTTTGGTTTTGGTATATA CCATATAAACCGAATGAATATAATTTTATAAAAACCGTAGGATTTGGATATGGTTTGGTATATAACCGATTAAATCGAATA AACCGAACAAAACCGATTAAAAGTAGAAACATGTAAATATGTATCTATTTTATAACAAACATGAAAATCTATTTGTTACAT AAGTTAAATTTGTGTTAATAACTATTACCATAATTTTAAAGTAATTTGTAAAACACTTAAACTATAATTAAATAACAATAC ATCGCGATTCAGACATCTTATTTTCTAAGTCTATCTTTTGATCTTTTTGCTTTATTTTAGTCTTCACTAAATTAATATGAA GATTATAAATTTGATGGACAATAATTAATGAAAAATTGTCACAACTTTTTTCTTATCTATAAACAAACAGAGTTTTGTGTT CAATTAAAAAAGCATGACTTTAATGAACACTAAATATGTAAGAGTGAAAAAACTTTTCTTTCATGTTTCTGTTTTGTTTCA TATTTTTATTTTCAAAGTTTCAAGCTTTGATTTTAGTTATAGATTTGATTATTTTATTTGATGGTAGAAGCATTTTTACTT TTTTGTTCATTTATTTGAACATGTAATATATTTTTAATAAATGACTGTATTCACAATATGACTCTAAAATTCATATAATAT GATCTCAAACTAAATAATTATATTTTTTGGTATAAAACCGAATAAACCAAAAACCGACGGTATATAAACCGAACCGAACCA AAGTAAATATGGATTTAGAATGGTAGTTATATTTTACTAACCGAAATACCGAAAACCCAAAAAAACCGAACCTAAACCGAA CCGATATCCGGATTGAACACCCCTACCTACTCT

BohAT13: 629 bp non-autonomous hAT in Brassica oleracea (AC240089.1) from 24325-24980

GCTTAGAGCATCTCCAATGTATTACTCTATTTTCTATTCTAAAATAAAGTAACTCCAAAATGAAGTTGAGTTTTGCTCCAA TGTATTACTCCGTTTTCTACTCCAAAATAGAATATTTTTAATATATTATGTTTTACGTTAATAAAAACTTATTAATATCAT CTTTCATTTATACCATTTGCAAAATAGTCAATTTTCATATGTATGATCTTTTATATTTTATATCATATATCTTTTGTATGG TGCTTATCTTTTATTTTTTATATGTATGGTCTTTTATGTTTTATATTATATATATTTTGTTGCATAAAATAGTTCATTAGA TGGATATTTATATAATTAAGAAATATTAATAGTAATTTTTATAATATATATAGTAAAATAATATTTATATATTTATTTATA ATAATATTTTATTAAAAACAAAATATTTAAATATGGAAGACCATTTTATAAATAAAAAATTTCAACTCCATTTTGGAGTAA TGAGTTGGTTTACTCCATATTTGGAGTAATCATATCTATTACTCCATTTTGGAGTGGGTTTTGGAGTGGGATTATAGATGA TTTTACTGCAAAATGAAGTTTGGAGTGAGTTTTGGAGTAGGGTTGGAGATGCGCTTACTAGA

BoN-hAT15: 595 bp non-autonomous hAT from Brassica oleracea (AC149635) from 52416-53003

TTTGTAACCAGTGTTCTAAAATACGGTCTAAGTGCCCGCCTAGGCGGCGTTTAGCCGCTATACGGTAATTTACCGTACTAT TTTCATGTTATACAGGGTTTTATGCGGATTTCTATAATTCGAATGAATAATAGCGTTTAGTCGGATATTATGCGGTCTACG CGGACGTCTATGCGGATTTTAAACATTAATATTCAAAAAAATAAACTATTAATATTATTATTATATTTTATTAATGTTATT ATTTATATTATTTTTACTTATTTCATGTATTTATATGATTGTAGATATTAGTATAATTGTTGCAAAATCATTTTATATTTA TCATCTTTATATATTTAAAATGGCTTTAATTTTTATAATTTAAATCTATTTATATATGTTAAAATATATACTTTTACATAA AATTGGATTTAAAATATATTTATATTTAGTTTTTTTCAAAATAATGTATATATATTTATCTTATACTTATATTTCATGTAA GTATATATCCGTATATACCGCGTTTAGGCATCCGCCTATACGGCTATGCGCTATACAGTCATCTAACGCGTAATAAACGCC TAGCGCGTTTTAAAACACTGTTTGTAAC

CHAPTER 7

POPULATION DYNAMICS OF MINIATURE INVERTED-REPEAT TRANSPOSABLE ELEMENTS (MITEs) IN BRASSICA

The sequences below are selected from one member (reference) from each family of Stowaway, Tourist and Mutator-like MITEs. The TSDs are shown in red, while blue colour indicate the TIRs

BrSTOW1-1: 580 bp Stowaway MITE in Brassica rapa (AC155344.1)

TATACCTTTCTGTTCCTAAATATAAGATGTTTAGCAGGGCCGGTTCAATACTGCTAGAGGCCCTAGGGCAAAAAAAATTTT TTTACTCTTTTAAATTTATATAGAGATAATGTTTAAAATATTTTTTAAATTTAATCATTAATATTTTGTATATTTTGTAAT GAAAATAAAACTATATACATATCAAATAATTTTGGGCCCTTTTCAATTTTATTTATTGTATTTATAATTTTTTTATATATA AAAATATAGATTTATAAAAAATTAGACCCCTTATTTATCATTACACGGGGGAACACGGACTCGGATCCGGGGCGGTCGCAC CGCTTGTCCCCCCTTATAAGCCGGCTCTGATTTTAGTTAAAAATACACATTATTAAGAAAAAATAATTTTTGTCTAGAAAA CAACATTAAAACTATAAATTAATACTAATATTTAACCAATTACAAAATAAAGTATTAAATATGATTAGTTGTACAGTTTTT AATAAAATAAAAGTTATCTAAAAAAATAAAAACATCTTATATATAAACAATAAAATTATTTAAAACATCCTACATTTAGGA ACAGAGAGAGTTA

BoSTOW2-1: 448 bp Stowaway MITE in Brassica oleracea (AC240081.1)

TAGGCGCTAGTCGGGCGGTCGGGTTGGACCTAGCACCTAAAGAGAAAATCGGGGATTAATCGGAAATTATGCGGGGCGGAA TTTTTAGATGGTTTACTATGTTATAAAACATGTTAATCTTTAATTGTGTATAACATTAATACATTTTCATGTTTAAGATTG TATAAAACACACAAATAGAATATATAAACTTAATATAGTGTAATTTTCATCAAAATTATGAATATAAATGATATTTATAAA TTTTTAGATCAAATAAATAAATAAAAATATTATTAAAAATAAAAAATAAAAAATAAAAAATAAAAAATAAATAAAAAAATA GATTAGGCGGCCGCCTAGGCGGCTAGGCGGTCATTTAGGCGGTTTAGGCGGAAAAAAATCGGATATCCGATTTTTTAAACC GATTTGGCATAAATCGGGGCGGAAAAGTGACGCGTAACGCCTA

BoSTOW3-1: 237 bp Stowaway MITE in Brassica oleracea (EU642504.1)
TAAGAGCATCTTTACCGGGGTAGCTTAGGAAGAAGGTGCTTAGAAAAAATTAGTTTAATAGTCGGTGGGCTCCACCCAAAA TGTATAGCCGCTGCTTGATGCTCCCAGATAAGCGTCGAATTATGTGGATTGTTTGCACTGTTCGCGGGCCTCACCGACACG TGGCGGTCCGCGATTGGTTTTTTTTTAATCAGATAAAAAAAATAAAAAAATAAGCATGCGTTAATGATGCTCTTA

BoSTOW4-1: 227 bp Stowaway MITE in Brassica oleracea (AC240089.1)

TACTGTTTCCGTTTTACAAAGATATACTTTTTAGTATTTTTATACATATTAAGAAAACACATTAAACTACCATAATAAATA TATTGTTTTCTATAATTTTCGATAATTTTTAACCGTCAATTAATTTTATTGAAATTTACAATTTTTTCATAGAAACACACA AAAATACATCTTTGTGAAACAATTTTTTTTTTAAAAAAGTCTATCTTAATTAAACGGAAAGAGTA

BoSTOW5-1: 243 bp Stowaway MITE in Brassica oleracea (AC240081.1)
TA TTTCTTCCGTTTCGATTTAGTTGTCGTTGTAAGAAAAAAATTTCGTTTCAGAATAAATGTTGTTTTAGAGTTTTAATAT AAAATTTATTAATAAGATTCTCCATTTTTTTATTCTATTAATTGAAATATGGTAAAGTGTATTGGTAATTGTGTTTTTATT TTGAAAATATATAAAATCATATGTTTTATTAATCTATGTGCATAAACCTAGAAAAATAAT TAAAAT GAAACGGAAAGAGTA

BrTOUR1-1: 413 bp Tourist MITE in Brassica rapa (AC155344.1)

TTAGGGGGTGTTAGTGGGATATGGATTTGTAGTGATTGTTAAAATTCTCAAATTCTATTGTTATTGGTTGGTGGATTCTAA GATTCTTACTAAAATCTAGTGTTATTGGTTTGATGATTGTTTAATGACTTACAAAATCTCTTGTTATTCAAAAAGTTTGGT TTTTAATGATTCTAAGTTTTCATCAAATCTAGAGTTATTGGGAATTGAATTCTAGATAATTTTACTCATAAAACAAAACTT CAAAAATCTTGCATATTTCCTCTAGATTCTTAAAATCCTTGAATTAGAACATTTTCATAAACTCTTAAAATATGAAATACT CTTTATAACTCTTTACAAATTTAACAAATCTCTTGACTTTTAGAATCAACCAACTCTATAAAAATTCCAC TCCCACTAACC СССССТТА

BrTOUR2-1: 285 bp Tourist MITE in Brassica rapa (AC155344.1)
TAAAGAGACACCCCCATTAGTGAACTTACCGGAGAATTCACACAGATTCCAAAAAAAAAGAAGTATTAAAATAAGGAATAG TGATGAACTTGTCTCTCTCCACCTCTTCTTAGTGAACCCTGGTTCATCACTGTAGCGCGGGTTCCACGGCATGTGGCGGCC CGTGATTGGTCCGAAAAAATAATTTTTTTTTTTAAAACAAAAATCAAACCAAAAAAAAATATAATAAAAAAATACTTTGTG AACCCTTTTTATTCATGGGGTTCACTAACGGGGGTGCTCTAA

BrTOUR3-1: 258 bp Tourist MITE in Brassica rapa (AC189298.1)
TTAGGACATCTCCATCССТACTCCATTTTTTTTTCTAAAATGGAGTAAAAGTGATTATGGAGTAAAGAATACTCCAACCCA AСТССАТАТСТСАСТССАТААТ GAAGTTTACTCCATAAATGGAGTAATATCTTTTTTGTTTGTTCATCACTCCATTATAGA GTGAGAAATGGAGTAGGATTGGAGCAATTTTACTTCATTTTCACTTTTACTCCATTTTGGAGGAAAAAATGGTGTTTTACA TTGGAGATGCTCTTA

BoTOUR4-1: 267 bp Tourist MITE in Brassica oleracea (AC240081.1)
ATAATACTCACTCTGTTTCATAAATGTCATTCTAACTTTTTTTTATGTTACACAAAAAGTGTCACTTTATAATTTCAATAA AAATTATACTTACTTTCAGCTGAAAATTAATTGCAAATTGCATTGGTTTCATAAATAATTTTATTTATCTCAAATACTATT GGTCAGAAAAATATAATTAATAACAACTTACATATATTTTCGCTACTTTCTTAGTCTGTGTGAAAAGTGTTAAAATGACAT TTATTCAGAAACGTAGGGAGTATCATA

BrMuMITE1-1: 551 bp Mutator-like MITE in Brassica rapa (CU984545.1)
TATCCTATT GCGCAATTGTCAATAATAGCACGAAGTTTTT TTTATGTCTCAAAATAGCACTAGAAGGAGAAAGTCACAAAA ATGATATTCATTAAAGGGTAAAATATCTCTTATATCCTTGGTTTAAAATTAAATAAACAAACAAAAATAAATAAAAATAAA TAAAAAAAATGAAAAAAAAGAAATTTTTTTTATAGTTTCAGATTATATGTTTTCAGATTCGATTTTTTTTTTATTTTTTTA TTTTTTTCGAAATTTTTTTTTTATTTTTTTTCAAATTTTCTTTTTATAATTTAAAAATACTTTTTGAAACTGTTTTTTTAA TTTTTATTTTTTATTTTAGTATTTATTTTTTATAAAATTTTAAACCCTAATTCCTAAACCCCCACCCCTTAACTCTAAACC CTAAGGTTTGGATTAATTAACCCAATGGATATAAGTGTATATTTACCTCTTTAATGAAACCTATTTTTGTGACTTTGAATC TTGAGTGCTACTTTGGGAACAAAAACTTCGTTTGGTGCTATCCTAGTCTTTTTCTCTATCCTATT

BrMuMITE2-1: 905 bp Mutator-like MITE in Brassica rapa (CU984545.1)

CTTTAGAAACAGAAAAATCGCATAAAAAATTTTGAAAGTGTCACTTATTAGCACTTTATAACTTGAAATTTTTTCACTAAC ACTTTTAATTTTCAAAGTGACATTTTTATCATAAAAAACCTTCAAAGAAGAAAAATGACCAGCTGAATTGGTTAAAAACAA TTTTTTTTTCAAAAAATAATTATTTAATTAATAAATAAATAAATAATTTAATAAAAATCGAAAAAATAACAAAAACACTCA TAAATTAAAAAAATGTGAGAAAAATAAATAAAGATTTAGAAAATTAAATAAAAAATAACTCAAAAATCAAAAATAAATAAG ATCAAATTAAAATACAGAAAAAATAATAAATTGAAAAAAATGAAAATTCAAAAAAAAAATTCAGTTTCAAATACAATGTCT GAAATTATCATTGGAGATATGCCACCAACCGTCATTGGAGATATGGCGGAAATGAACGGTTTTTAGCATATCTCCAATGAT AATTTCTGACATTATATTTGAAAATGAATGTTGATAAAAAAAATATTTGAAAATGAATTTATTTTTGAATTTTCATTTTTT TGAAATTTATGATTTTTTTTTATTTTTCTCTATTTTAATTTGATCTTATTTATTTTTTCTATTTTTTATTTATTTTTTTAA TCTTTATTTAGTGTTCTTATTTTTGGCTAAATTTGTTGGTTTTTATTAATTTTTTTTTGTTTATTTTATTAATTAAATAGT TATTTTTTGGAAAAAAAAACTGTTTTTAACCTGTTCAACCGGTATTTTTCTTTTTTGAAGGTTTTTATGATAAAAATGTCA TTTTGAAGGTTAAAAGTGTTGAAAAAACTTCAAAATTTAAAGTGTTACTAAATGACACTTTGAAGGTTTTTTATGAGATTT TTCCCTTTTGAAAC

BrMuMITE3-1: 1586 bp in Mutator-like MITE in Brassica rapa (AC232530.1)
CAAAAAAAACGAGAATTCGGCCAAAAAAAACCTGAACTTTGCACGAATTGCCAAAAAAAACATGAACTTTTGGGCTGACCA AAAAAACACCAAACTTTCATTGACTTTAGAATTAATTAACAATGTTTTTGCTGACTTGCCAATTTAGCACGCCGTCAACAA ATTTAACAGAAATATTTAACATCGTTTATTGTTGGCGTTAAGTAAAACGACGTCGTTTGCAAATGAGATGAAACGACGTCG TTTTACATGATTTGAAATTAAAAATATGTAAACCCCTAGATTCGAACCCAGGTTGGTTGGTCAAATGACAAGGTATTTTAC CACTGGGCTACTGGCACTTTCAATGTACTTACTAACATGTTTATTTTTATTTGATACATGTTAAATATAAAAAATTCTCTA AAAACTTAATAAGATTTTTAAAATTCCAAAAAAATTAAAAAATAAAGAAGATTTTTATAAAATTAATTTAGAAATTAAAAT TAAAAATAAAATTTTCTTTTTCTTTTTAAAAAATAAAAACTCTTCCAAААTTTTCTAAAAACTTAAAAAGATCTTTAAAAT TCCAAAAAAATTAAAAAAATAAAGAAGATTTTTATAAAATTAATTTAGAAATTAAAATTAAAAATAAAATTTTCTTTTTCT TTTTAAAAAATAAAAACTCTTCCAAAATTTTCTAAAAACTTAAAAAGATCTTTAAAATTCCAAAAAATTGAAAAAATAAAG AAATTTTTTATAAAATTAATTTTGAAATTAAAATAGAAAATAAAATTTTATTTTTTCTTTTCAAAAAATAAAAAATCTTCC AAACTTTTCAATTTTTTTAATACATTTGCTAAAAGTTGAAATTAATTATACACACATAAAAAGTTGATAATTGTAACTTTA ATTTTTTGCATTTTATTATAATTTTTAAAAAAATTGGATTTTTTTTAAATGAAAAATTTGGAAATTTTTTGATTTTTTAAT

TTCAAAATTAAAGATAAAGTTTTTATTTTTTAATTTCAATAAAATTTTAAAGATCTTTTTAAGTTTTTAGAAAATTTTGGA AGAGTTTTTATTTTTTAAAAAGAAAAATAAAATTTTATTTTTTAATTTTAATTTCTAAATTAATTTTATAAAAATCTTCTT TATTTTTTTAATTTTATTGGAATTTTAAAGATCTTATTAAGTTTTTAGAGAATTTTTTACATTTAATATGTACCAAATAAA AGTAAACATGTTAGTAAGTACATTGAAAGTGTGAGTAGCCCAGTGGTAAAAGACCTTGCCATTTGACCAACCAACCTGGGT TCGAATCCAGGGGTCTACTTATTTTTAATTTCAAATCCTGTAAAATGACGTCGTTTTCAAATGAGATGAAACGACGTCGTT TCACTTAACGTCAACATTTAACGTCTAGTTAACACTGTGTTAACTGAGAAGTCACGGCGTGCTAAATTGGCAAGTCAATCC TAAGTTTATTAATAAACTAAAAAAGTCAACAAAAGTAAATGATTTTTTTGGCCAGGCTCGAGTACAGGTTTTCTTTGGCAA TTCGTGAAAAGTTTGTGGTTTTTTTGGTCGAATTCTCCAAAAAAAAA

BoMuMITE4-1: 899 bp Mutator-like MITE in Brassica oleracea (AC149635.1)

TATATATATGAGAAATTCTTGGGTTCACCCCCTAGGTGAACCTCTAGATTCACCAACCAATAGTGTTTGAGTATTTGATAT TTGATATCTTTTAAAAAAGGAAACAAAATTGAATTTCCAAATAAGATTATATTTTTGAAATAAAACAATAAAAATACATAA AAATAGTTACAAAAAATAAATAAATAAATATTGATAAACTTTTAGCAAAATACTAAATCCTATACCCTAAATCCTAAACTC САААСТСТАААТTАТАААССТTAAATCTTGGATAAACCGTAAACCATTAGAAAATTTTAAATTCTAAATCATACATTAAAA AСТАААТСТTAATAACACTAAACCCTAAACCCTAATCACTAAACCCTAAACCCTTGGATAAACCCTGAACCCTTGGATAAA TCATAAACTCTAAATCAAAAATATTTAAAATTAAACCCTAGAGTTTATGATTTATCCAAGGGTTCAGAGTTTACCCAAGGG TTTAGGGTTTACCCAAGGGTTTAGGGTTTACCCAAGGGTTTAGGGTTTAGTGATTAGGATTTAGGGTTTAGTGTTAGTAAA ATTTAGTTTTTAATGTATGATTTAGGGTTTAAGATTTTCCAACGGTTTAGAGTTTATCCAAAGTTTAAGGTTTAACGTTTA GGGTTTAGGGTTTAGGATTTAGGGTATATGGTTTAGTATTTTGCTGAAGATTTAACAATATTAATTAATTTATTTTTTGTA GCTATTTTTATGTATTTTTATTATTTTATTTTAAAAATATAATCTAATTTGGATATTCAATTTTATTTCCTTTTTTAAAAG ATATCAAATATCAAATACTCAAACACTATTGGTTGGTGAACCTAAAGGTTCACCCTAGGGGGTGAACCCAAGAATTTCTCT ATATATAT

BrMuMITE5-1: 1159 bp Mutator-like in Brassica rapa (AC155344.1)
TTTATTagaAG TAATAAACCCGGGTTCAAACGTCGGTATTTGTCAAATTTCGTGTTTTTTCCATTAATGAAGTGTGGGTGA AAAAACTTTTTACATGCTCGTCATCAACTTCAAAGATATATCGATCCCTCCATGGATCTAGCTAGACTCGATCTTATGTAC AAAAGCTAATCGAACAAAATTTCAACTATCTATACACTTTTTTTTTTTTTTGCTGTTGTAACTTTCCATTCCAATATCAAG CTCCACGTCACGTCAATATTTGGTAGTGAGCATCCCGCTCGTGAAAACATGTGCTGCTAGTAACATCCGCTGGATTGGATT TGGTCGCCGGACTGGATTGGCTGGCCGAACTGGATTGGGTCGCCGGATTGGATTGGGTCGCCTGACTGGATTGGCTCGGCG GATTTAATTGGGTCGCCTGACCGGATTGGATCGCCTGACTGGATTGGGTGGCCTGATTGACAATCAACGGAAGTCGATCTT CTGGTTTATTCTCAATTTTTGAGAGAAAAAACTGCATGTTTAATCGAAGAAAAGACTTGAATACGCACAGAAACACACAAG TCGAGTGCACAAAGAAATGCCTGATCCTTTTCTGATTCTCGTTTATCATGAGCCCGTACCAGGCGCTTCGCAAAGCTCGAT CACTTCTTCGAAGTCGTAAAGAAAGTCCAGAGTCAGTAGAAAGAAGATGAAACTGACTGTGGCGTGGATTAAACAAGGATC AGTTATGAATCTTCAAGAAGGAGCCGAGGTAGTTCAAGCCGTAGTAACATGCAATGGCGCCCCCTCCTTTCGCCCGATCCA GTTCGGCCAACCAATCCAGTCCGGCGACCCAATCCAATCCGGCTGATGATACTAGCGGCACATGTTTTCACGGAGCGAGGA TACTCACTACAAAATAGTGACGTGGCAGTGGAGTTTGATACTGGAATGGAAAGTTACAACAGAAAAAAAATTGTATAGATA GTTTAAATTTTGTTCGATTAGCTTTTGTATATAGGATCGAGTCTAGCTAGATCCATGGAGGGATCAATAATTCTTTGAGAT TGATGACGAGCATGTAAAAAGTCTTTTCACCCCACACTTCATTAATAAAAATAACTCGAAATTTGACAAGTACTGAGTTTC GAACCCGGGTTTATTATTTCTTttc

CHAPTER 8

THE LTR RETROTRANSPOSON LANDSCAPE IN MUSA GENOMES

In this section the LTR retrotransposons characterized from Musa genomes are represented. From a long list of retrotransposons identified in present study (Table 8.1), only one to two representatives from each superfamily are given below. The TSDs are shown in red, while TIRs are represented by blue colour. The red colour in internal regions is representing RT. The green bold sequences downstream to 5^{\prime} and upstream to and 3^{\prime} LTRs indicate PBS and PPT respectively.

MaGYP1: 4982 bp Gypsy retrotransposon in Musa acuminata (AC226032.1) from 65772-70752 bp.
CCCGGTGATAGGACCCTAGCAGGGTTGGGTCTTACTCAACTAAGAAGTAGCTAAAAAAACCCTGTGAGATTGTAATAAACC ССАССТАGССАСТТСТАТССТАTAAAGAAGAGTGGCTAGGATTTATATTTGGGCCTTTGGGCTTCCTAGCCGTTGCCCCTT TTATTGGGCTGGTTGGTTAGGGTTGAGGGCAAAAAAGGTAACTCACTTAGGAAGCAGCCCCTAAGTCTAGGGTTAGGAGGT TATTTCTTAGAGAAGTATTAGGAGTTGTAAAGGAATATAAGTCTTGAATAGGAGTCCTATAAGGAGTTGGCTAAAAGTCCT ATTAGGAGTTAGGGTTTAGAAGTCCTATAAATAGCCATGTATTCATCCTCTTTTCTTAAGCAATAGATGAATCTTTTCTAC AGCCTTTGAGCGGTAATTTGGAGGAAGGAACCCCTATAGAGTTCTAAGGAGGTCGATCCCCTAAAGAGATCAACCCCAAGC TTAGAATCTGCAAAGGTTCTAACATCTAGTATCAGAGCAGCGATCTTACTGCTTTTGCTGCCATCCCTACCACCCACCATC AGCCAAATAATTTTTACAATTGCTCTTGACAACACCATCTCTATTGTCATCTTCTGCCGTAGATCAAATCAATCTACTACC GTCACCTCCAATTGCATTAGAGATCTGGTATTCTCCTATCACTAATACCTTTTGCTGCTGTAATTTTTCATTTAAAATACC AAGAAGAAGTCTTCTTATCTACCTCGTGCTGCGAATTCCTTTCGTCGCAAAAGTTATCATCTTTGCGAACGAAGGATTGCT ACAAAAAATTTCAACCGCATATTGTTACCTTAACCAATCTATTTGCAATCCTTTTTGAATGAAATTTCTTATGCACTTCAT ATATCATCTTGGCTTTCATTTAAGATTAATCTATTGAGGAATTCATCTATAAAAACATTCTTGTGTTGCTGTAAATTTTCA TCATAAACCGTTGAAATTTTTCGATGAGAATTCTGCTATCGCAACTTGCACCAATTTCCTTGCAGTTATACTACTGAAATT TTCTTGATTAAATTGGTCATCTTTGCTGTTATATAAAATGAGATTTTGCTGTCAAATTTTCTCCTCAAATCTCTCGGAGTT TGCTGAAAATTTCATTGAGAAACTGTTGTTTCTTCAACGATAATTCTGCTCTTATAAGACAACATATATCTGTAGCAACTT

CCACTGATTTATATCAAACCTTTGCTACTATCTACCACAGATCTAAAACTTTTTTCCCTAATCTTCATCCACTACTATCAT AGCCCTAAAACTCTATTAAATCATACCCTCAAACTGCACCTAAAACAACCATAAAACAAGCCTAAACCGCAGCCTACACCC ACCAACTCTTTCGATCACCACTTCTCTTAACCTATACATGCCTTTAACCCGACAACAAAAGAAAGATCTTAATATTACAGA TTTGGAGGCATATACTATGGCATCTAAGGAGGCAATTAATGATAAATTCAAAGCCTTCGAGGCACGAATGGAGGATAAGAT TCAGACTCTTTTTATCGACCACCAAACCCGAAGAAATCACATCAAGGAGAGAGCTCTGACCAATCACATCAAGCCCGAAGA GATGACTTCCAACAGAGGGGAGGCTCTATGACCGATCCCTACTATCCATGCATGAGGGTGGATTTCCCTATATGGGAAGAA GGAGACCCAATTGGTTGGATCTCATGCACGGAGCAATATTTTTGGTGCCACAAAACCACGGATGCATCTATGGTGGAAATT ATGGCTATACATCTTAAAGGGGATAATATAAAATGGTTTAACTGATTTGAACATACTCATGGAGTCCTCTCATGGTGACAA TTCGAAGAAGGACTGTTGATCCGCTTCGGACCAACCGATTACGAGAACATTGACGGATAGCTAGCAAAGATATGAAAAACC TCCACCATTCAGGAGTACCAAACCAGGTTTGAAAGGTTATCTAATCAAACTCATGATTGGTTTAAAAAATAGCTATTAAGG ACCTTTATTGAGGGCTTGAAGCTAGAGATCCGGGGAGAAGTTAAAGCGCAACAACTGTACACGCTTATGGTAGCCATCTCT TTCGCACGACTTCAAGAGGAGCGATTGAACCATGAAGTCCGGAGGACTAGAGTCGCTCCCCGACCAGCAATACCAAAGCCC CTAGCCCCCCCTACTATTAACTAAGCCCCTGCACCAAAAAGGTTGACAAGAAAAGAGTTTCAGGAGCGATCTGCGAAGGGG TTATGTTGGCATTACGATAAGCTGTGGAGCCACAAGCATCGCTGTAAAAAAGGGAGACTTCTTATGATTGAACTAATAGAA GAAGAGGTCATTGAATATCCAAAAGAGAGCCTTAAACATAAAGAAGAAAATGTGGAAGAAGAGCCATAACTGACTGACTTT ACGGTACACACACTAGCCGGCTACTCAACCCGCAAACGATGAAAGTAGGAGGCATTCTCAAACAACAATCGATCACTATTC TTATTGACACAAGCAGCACTAATAACTTTCTAAATAGTAAGGTTACTGCTCGGATGACGCTCTACATCAAAGGTTACAGCA AGTTCGACGTAAAGGTCACCGATGGAAGAATCCTAAAGTGCGACCAAAGATGTCCGTAGGTGAAACTATTACTGCAAGACC AAGAAATTATCATCGATTTCTTCCTCCTACCAATTGATGATTATAAGGCCATGCTTAGCATAGAATGGCTGACGATGCTAG GTGATGTCTCTTGAAATTTTTTTAAATTAATTATGAAATTCTATTGCAAAGGCAAACATATCATCCTACGTAGGAAGCGCG AAATCAACGTAACCACCATTTCGACCTAACGAATAGAGAAAGTTTTACACAAGGTAAATGGTGGCTTTTTTATGCATCTCC AGTAGCAACCATAGGGGAAAGAAAATATTATTGCAGATGCACTCTCACAACTACCTAAGCAAGCTAAGTTTTCAATCATCT CCTTTCCTACCACCAGCTTCCTCGAGGACACTAGGGAAGAATGGAAGAAGGATCCAGAGATCAGCAACATCATAAAAAAAT TAAAAGATCCAAGTGCAATAGCCCACTACACTTGGGATTCGAGGGATCTATGCTACAAAGGTCGCATTGTGCTTATACTTG ACCCCCCTTGCATCAAAATCATCCTGCATGAAATGCACTCCACACCTTCAGTAGGGCACTCCGGATTCCTGAGAACCTACA AAAGAGTGAAGAAAAATTTTTATTGGAGAGGGATGAAAAAAATTATTGCTGAATATGTGACATAATGTGATATATGTCAAC AGTACAAGGGTGAAACAATGGCAAGTCCAGGGAAGCTACAACTACTACCCATACCGGACTTGGTGTGGACTGACATCTCCA TGGACTTCATCGAAGGGCTGCCACCTTCCAAAGGTAAAAGCATAATTCTCATGGTGGTTGATCAACTTACAAAATATGCTC ATTTTTGTGTTGTGCGAAATCCCTACACTACTACTAGTATTGCCTAGATTTTTATAGAAAATATTATTCAACTGCATGGGA TGCCAAGGTCCATTGTAAGTGATCGTGAAAAGATCTTCACAAGTAAATTTTGGATCGAGTTATTTCAATTACAAGGCACCA AAATCAAGATGAGTACAGCGTATCATCCACAAATTGATGGCCAAACAAAGGTAGTAAACCAGTGTTTAGAGACATACCTTT GGTGTTTTGCTAGTGACCGACCAAAGGAGCGGGCGAAATAGCTTCCTTGGGCCAAATGGTAGTATAATATTACATATCATT TATCTACAAAATGTGCCCCTTATGGAGCGCTATATGGTCGGCCGACCCTTGTGATTCCAAAGTATGCAATTGGCTCGGCCA AGGTAGATCAGGTTGACCAAGAATTGATTGATAGGGACAAACTCCTACAACTGTTAAAGGATAATCTCTCTATCGCTCAAG CCAAAATAAAGCAGTAAGCCAACACACGACGAAGCGAAAGAGAATTTTCAATAGGAGATTAGGTATCTTCGCCTACAGCCA TACAAAGAACTCTCCATCAACACTCGAGCCTCCATGAAGCTATCCCCATATTTTTATGGGCCCTATCAGATCACAGAGCGT ATTAGAGCCATGACGTACAGACTTAAATTGCTTGAGGATGCCAAAATTCACTTTGTCTTCCACGTGTCATGCTTGAAGCCC AAGTTGGGATAACACGAGTCAAGCCAAATCCAACTGCCCAATACCACTGAGGATGGAGTTATTTAAGCCCAACCACAAGCC ATCATCGACCGTAGGATCATGATACATCGTCGACATCCCTCTACTGAAGTACTAGTGCATTGGAATAATTTACCATTTGAA GACGCCACATGGGAATCATATGAGGAGCTGAAGATCCAGTTCTCTGAGTTCATGGAATCTCAGCTTTGAGGACAAGGCTGA TTTGGAGAGGGCGAGCT TGATAGGACCCTAGCAGGGTTGGGTCATACTCAACCAAGAAGTAGCTAATAAAACCCTGTGAGA TTGTAATAAACCCCACCTAGCCACCTCTAGCTTATAAAGAAGAGTGGCTAGGGTTTATATTTGGGCATTTGGGCTTCCTAG CCGCCGTCCCTTTTACTGGGCTGGTTGGTTAGGGTTGAGGGCAAAAGGGGTAACTCACTTAGGAAGCAGCCCCTAGGGCTA GGGTTAGGAGATTATTTCTTAGAGAAGCATTAGGAGTTGTAAAAGAATAGGAGTCTTGAGTAGGAGTCCTATTAGGAGTTG GTTAGAAGTCCTATTATGAGTTAGGGTTTATAAGCCCTATAAATAGCCATATATTCATCCTCTTTTCTTAAACAATAGATG AATCTTTTTTATAGCCTTTGAGCAATAATTTGGAGGAAGGAACCCCTATAGAGTTCCAAAGAGGCCAATCCCCTAAAGAGA TTAACCCTAAGCTTATAATCTGCAAGGATTCTAACACCCGG

MaGYP13. 5418 bp Gypsy element Musa acuminata (AC226048.1) from 123405-128822 bp

AAACT TTTTTTTTTTGGTAAGTAAAAGTAAATTGATTATGTGTAAAGTTTCTACAAATAGCTTTATCTATACAAGTCATAG ACAAAGCCAAGTAACTCATAGAGTGCGAATGCGATAGTTATGACTACACATGCTGTAGACTATAACTACCTGTGGGTACAT TATTTGGCATCATTCCCAAGATCTTTTGCTAATAGCAAAATTAAATTTGATGAAAATATCTTTTTCTCTTCGGGTGAAGTG CTCGGTTTTGAGATCATGCTCCAAACAGGATCTTGAGTCTCTAATAATCTCTTTCAAGAGCTGAGCATTGTTTGTGTGTTG
 AGGCCCTTTTCTTGAGAAACATTGCATAAGGTCGCCTAGTTCTTGGTGCAAGTTTGGTTGCGGCAGTCTATTGAGTTCAAA TCGCTGGAGAATCTCCTTCCATATCCATTTTGTATAATCACAAGCAAAATAGAGGTGGTCAACAGTTTCTTCTTGTTGCAA ACAAAGGGAGCATCGGTTAACATGATAGATACCTCTTCTTTTCATATTGTCTATTGTAGGTAGTTTATTGAGAAGGGCCTG CCATGTACATAAGGAGTGTCTTTGTGATCCCGGTCGATCCCATGTCCAACTGCTTGGGACCCACTTGTTATTTCTTTGCCT AATTTGATTCCATGCAGATGTGGCACTAAATTTGCCATTGTCATGAGGCCAAATAAGTATATCTGAAGACTTGTTCCTGAT TGGAATAGCTATGATAGTCGGCCAAAGTGATAACATTTCGGGAGAAATAGGATTAGGGAGACACCAAGTACCGTTAGCAAT AAACTCGGAAACCTTCCAATCTTTGGGAGCCCCAAGATCTTTTCGTATTCTATCCCCATATAATTGAAATATACTCTTCCC ATTCACCCAAGGATCGTACCACATATTAGTACTAGTTCCAGAGGAGATTGCATAAGAGATGTGTTTGATTAGCCAATTCCT TGCCTTTAAAATTCCTTTCCAAGCTGCAGAGTGGTATGTTCTTGTTGAAATTTCCCAGATTGATTCCTTTGAAAGATACCT AGCAGAAACCCATTGAGACCATAAGGAACATTTGTTTTGCAAAAGATCCCACAATTGTTGTACCAAGCATGCTTGATTCCA ATCTCTAGTATTTCTCAAGTTTAGCCCCCCTTCATCTTTCGGTTTGCAAATGCTATCCCAATTTACCATATGCATTGCCTT ATCATTTGTGTCATTCCAGAAGAAGTTCATTAATAACCGTTCAATATCTTGGAGAAGTCCAGCTGGCAGAAGAAATGCATT ACACCAATATATAGAGTAGGAGTGCAATACAGAACGGATAAGTTCGAGTCGTCCTGCTTTTGATAGAAGCCTATTTTTCCA

AGAAGAAATTCTATTCTTTATTTTTTGCAGGATAGGCTGACAGTGGGTTTTGTGAATGCCTGTGGATATGAGCGGGAGACC CAAATAAGGAACTGGCAGGCTTCCCTCACTAACCCCCAAAGTTTGTGCAATAAAAACTTTATCCTCAACGTAAGGGCTCAT ATATACTTTACTTTTCGCATGATTTAATTGAAGTCCAGAAGCCATACCAAAGTCATTCATAATAGTAGCCAGGTTCTTTAC TGAAGTTGGATCATTTTGGAGAAAGATAAGTAAATCATCTGCAAATGTTATATGTGATATATGAATAGAGCCAGCATTGGG TACCTTAATGCTGCCATTTAAGACTGCATGTTCCAACATACAGCTAAGTCCTTCCATCGCAATAGTAAAGAGATACGGAGA GAGTGGATCTCCTTGTCGGATGCCATTCGTGCTCCCAAAAAAACCAATAGGTGTGCCATTAAAGAGTATCGAAAACTTTGG AGTTTCCAGGCAAGATTGAATCCAATTAACCCATTGCTGTGGGAAGTTCATATCGAGGAGCATCTTATAGATAAATTTCCT ATTAACTGAATCAAAGGCTTTCCGTAAATCAGCTTTAAAACATATTTTTGTCCCTCTTGCTTTTGAATGCAAATCTTTGAC CAAGTCATTAGCAAGCAAAATGTTATGATGTATACTTCTCCCTTTGATGAAAGCAGCTTGATTTGGACTAATGATCTTGTG TATTACCTTTTGCATTCTATTTGCCAATACTTTGGAGATGATCTTGTAAATAAAGTTGCATAATGATATGGGTCGATAGTT СTCTAGTGAATCAGCCCCTGAATTCTTCGGAATTAAAGAAATAAAAGTGCAATTCATCTCTCTAAGAATATGACCTGAAGA GAAAAAATGTTGGCAAGCCTTGATCACATCATTTCCAATAATAGACCAAGCAGTTTGATAAAATTCAGCTGGAAATCCATC TGGACCTGGGCTTTTGTGCTTTGGTGACTTAAAGACAACACATACAATTTCGTCGTTTGTAATTGGGGCATTGAGGATTGA AATAGCTTCCGAATCAAGTTTTCTAGTCGGCTCCACATGAATATTATTAGTTTTCCCAGCTTGATTGAGTAAGGAATAAAA AAATTGCTCTGTGTGTGCTTTAACCTCATCTAAATTCTCAATAAGATTATCATCTTTGTCTCTGCATTTGCTGGTACGGTT AACAGCCCTTCGAGTAGCAATTGAAGCATAGAAAAATTTAGTATTGGAATCTCCTAATGTAAGCCAATGCTGTCGAGACTT CTGCTTTGCAAAACTTTCCTCCTGTTTTAAGGCTTGCATGAAGTTATTTCTGGCTTCTGTCTCTTTGTAGATAATATTCTC ATCATTTGGCTGAAGTTGCAGCTCATGTTGCAATGACATTAGTTCCTTCCTGCAAAATTGAACTGTGGTGATAATATTGCC AAAGGTATTTGTATTCCACTCCTTTAGTGCTGCTTTACAGGCTTTGAGCTTTTGACATAAGATGTAAGGGGGGGATCCATG CACATTAACATTCCAAGCAGATCTGATAACATCAAGAAATTGAGGATGAGTACTCCACATGTTAAAGAATCTAAACGGTTT CTTGCCTCTTGGTGTCGCTTTGTCTGCGTGTATATACATTAAAGAATGGTCAGAAAACAAAGGAGCACCATACTCAAGAAG TGAATCTGGATAAACTGTTAACCATTCATTATTAATCAAAGACCTATCAAGTCGAGCCATTATTTTTCTGTTAGCAGCACC TTGATTACTCCAGGAGAGCCAATTACCCACAGATTTCATATCAAACAAAGCTGCAGTGTCAATGTAATCATTAAAACTTTG AAGCTGGCTTTCTGAAAGTTGTCTTCCCCCCTCTTTCTTGTGTAGTTAGCAAAAACTTCGAAAGCAAATGAAAAAGAGGGG GGAAGTTAGCAAAAACTTCGAAAGCAAATGCAAGATAACTTTCTTGTGTAGGCTCATGATTATTGCTTCCTATTGTAATGT GCAGGTTGCAAGTCTTGCTTCTTGAGATATTCAAGATAGTGATGTTCAAGAAGACAACTTTTGCTTCTTGAAATAAGCAAG TTAGCAATCTTTGCTACTTAAGATAGGCAAGCTAGCAATCAAGTTTTTGCATCTTCTTGACTTGTGCAAGCTAGCTATCTC CCCCTTTGTCATTGTCAAAAAGAAAGGAAGAATACAGTTTTTTAGTTCTTTTTCCTTTTACAACGATTTCAAAATCATGAC AAAGGATGAATAATCAAGTTATGAATGTCAAGACAATTTTTCATCATGAATATTTTATCATTGCATGCATCATTATCATAA GTTGAAGTATTACATGCATAATATCATATCATCATTTATAATTATATTAATGTTTCAATATAGCAATTTTTTCTCAAAATG TGTAACTTAGCACTCATAGCATTTTAAATCATGATTTACATCATATGCAATACATCATGTAGAAAGCATAAGTATTGCATG CATCATTTTAGCAACAAATCGTAGCGTTTCATCACATGGCAAGATATCATCAAGTAGAATTACGATGCAAGTTCTAACTAG CAAAAGCTTTCTCCCCTTTGTTTTTGTCGAAAAGAAGGGAGAAATCAATGACCAAAAATTTTTAATTATTATATAGGCCAT ATTACAAAATCTTGTCATGATATCAAGAAAGTTCAAGAAGGACATGATCCATTCAACAAATCCTTTTAATAGGGCAAAGAA ATTATATAACCAAGAATCATGATTAAAATATTTCAATATCATAGATCAAGTCATGATTCGTGATTCATCATAAAGCAAGTT AATTTTCAGTCATCACATAAGGCATTTAAAGAATTTTTGAAACATAGAAGAATGATTTTTTTTTTTTTGGTAAGTAAAAGT AAATTGATTATGTGTAAAGTTTCTACAAATAGCTTTATCTATACAAGTCATAGACAAAGCCAAGTAACTCATAGAGTGCGA ATGCGATAGTTATGACTACACATGCTGTAGACTATAACTACCTGTGGGTACATTATTTGGCATCATTCCCAAGATCTTTTG CTAATAGCAAAATTAAATTTGATGAAAATATCTTTTTCTCTTCGGGTGAAGTGCTCGGTTTTGAGATCATGCTCCAAACAG GATCTTGAGTCTCTAATAATCTCTTTCAAGAGCTGAGCATTGTTTGTGTGTTGACATTCAAAGATTCTATTACATCTCTCC TTCCACATCCACCAAATAGCGCATCTGAAAGTGACCTTTGCCAGTTGTGTTAGAGGCCCTTTTCTTGAGAAACATTGCATA AGGTCGCTTAGTTCTTGGTGCAAGTTTGGTTGCGGCAGTCTATTGAGTTCAAATCGCTGGAGAATCTCCTTCCATATCCAT TTTGTATAATCACAAGCAAAATAGAGGTGGTCAACAGTTTCTTCTTGTTGCAAACAAAGGGAGCAGCGGTTAACATGATAG ATACCTCTTCTTTTCATATTGTCTATTGTAGGTAGTTTATTGAGAAGGGCCTGCCATGTACATAAGGAGTGTCTTTGTGAT CCCGGTCGATCCCATGTCCAACTGCTTGGGACCCACTTGTTATTTCTTTGCCTAATTTGATTCCATGCGGATGTGGCACTA AATTTGCCATTGTCATGAGGCCAAATAAGTATATCTGAAGACTTGTTCCTGATTGGAATAGCTATTATAGTCGGCCAAAGT GATAACATTTCGGGAGAAATAGGATTAGGGAGACACCAAGTACCGTTAGCAATAAACTCGGAAACCTTCCAATCTTTGGGA GCCCCAAGATCTTTTCGTATTCTGTCCCCATATAATTGAAATATACTCTTCCCATTCACCCAAGGATCGTACCACATATTA GTACTAGTTCCAGAGGAGATTGCATAAGAGATGTGTTTGATTAGCCAATTCCTTGCCTTTAAAATCAATACT

MaCOP1: A 5290 Copia in Musa acuminata (AC226035.1) from 79036-84325 bp

CTGCATGTTGGGCTGATGGCCCATATTCAGCCCATGTGGGCTTTATCAGCCCACAGCCTACACCCTCTCTTAACCTAACCC TAATTAAGATTAGGGGGGTGTGGTGGCTGCGTTTTAGAGGCAGATTAAGGCTATAAAAAGGCAGCAACGAGGCAGATCTTT GAGGACACGGGATTCCAAAGAGAAGAAGGAGATCAAGGCAGAAAAGGAAGAGAAAGAAAGGGAAGAAGACAAGGACAACGC AGAGAGACTGTTCACAATCATCTAGCAGTGTTCTCATCTCAGGTTAGATCAAATCTACAGTAGCCTCTTGCTGTGATTACT TGGGGAGGTTTTAGATATTGTGGGCAGTGACGTGATCCTTGTATCCCAGTTATTCTCTTGTGGTTGTTGCTAGGGTTTTGG GCAAGAGATTGAGATTTGTATATTCATTATTCTCATAGTGGATTATCTCTAGTTTGCCCCGTGGTTTTTACCCTTCACATT GAAGGGGTTTTCCACGTATATCTTGGTGTTATGTTTGATTGTGTTTCCATTTTATTCCGCTGCGTATTTTGGTCTTCTAGT ATTTGTTCCTATACAAAGGTTATTCCTCTTTTTATCCACATCAACTGGTATCAGAGCGGGGTTTTGGTGATTTAATTTTTG TATTTGAACATGGAGGCCAGTAATATTTCTCGCATGATTAGTTTAAATGGAAATAATTGGATGATATGGAAACCAAGAATG GAAGATCTCTTGTATTGCAAAGATTTGTATGGACCTTTGCAGGGGGATAGTGCAAAACCTACAACTATGACAGATGATGAG TGGAAGAGGTTAGATCGAAAAACAATTGGGTTTATTAGATAGTGGCTTGATGATAGTGTCTTTCACCATGTTTCTACTGAA ATTTCTGCATATTCTCTTTGGAAAAAATTGGAAAGTCTCTATGAGAGAAAAACAGCTGGCAACAAAGCTTTTTTGATCAGA AAACTTGTGAACCTAAAATATAGAGAGGGTGCTTCTATTGCTGAGCATTTGAATGAAATGCAGAGTATTACTAACCAGTTA TCCTCTATGAAAATGTCTCTTGATGATGAGTTGCAGGCATTGTTACTTCTCAATTCATTACCAGAAAGTTGGGAGACACTG GTGGTTTCCCTCAGTAATTCTGCGCCAGATGGTATTGTCACTATGAGTCAAGTAACAAGCAGTTTGTTGAATGAGGAGTTG AGAAGAAAGAGTTCAGCAACATCTCAGAATGATTCACAGTCACTTATCTCAGAGAACAGAGGAAGGTCAAAGTTCAGAAGC AgTTCACGTATGGGTAGGAGCAAGTCAAGATCAAGAAAAGATATTGTTTGCTATAACTGTGGTGAGAAAGGACATTACAAG

AACCAATGTAAGCAACCTAAGAAGAACAAGAAAAAGGGAAAAGAAGTGGAGTCTACAGAATCAAAGGATAATACTACAGCT ACAGTGCAGGGTGGTGATTATTTGATTTTGTCTCCTTCTGATGATATTTTTTCTTGTGTGTGTCAGGATCTTGAGTGGGTG ATTGACACAGGTGCTTCTTATCATGCTACACCTCGGAGGGAGTTTTTTGCTACATACAGGTCTGGAAACTTTGGTGTTGTC AAGATGGGCAACTATGGCACAGCAGACATCATTGGCATGGGTGATATCCATTTAAAGACCAACCTTGGCTGCAAGTTGGTA CTTAAGGATGTGAGACATGTGGTTGACTTGAGGCTGAATTTAATTTCAGTTGGAAGACTAGATGATGAAGACTATGAAAGC AGATTTCACAGAGGGCAATGGAAACTCAGTAAGGGTTCTCTTGTTATAGCTAATGGAAAGAAATGTCATACTTTGTACAGG TTGCAGGCTAAAGCTTATGGTGAGCAGTTAAATGCTACAGAGAAAGACTTCAGTATGGAGTTGTGGCATAGGCGATTGGGA CACATGAGCGAGAAGGGGCTGCAAACTCTTTCCAAGAGAGAGGTATTACCAGATCTCAGAGGTATACATCTGAACCCTTGT ATTGATTGTTTAGCTAGTAAACAACATAGAGTTTCATTTGCTAGTGCTGCTTTGTCTAGAAAAATGCATGCCTTAGACCGT GTTTATACAGATGTATGTGGTCCTTTGAGGACAAAAACTCCTGGTGGATCTGTTGATGTTCTTGGTATAAGTGGTGCACTT TATTTTGTCACTTTTATAGATGATTTTTCTAGGAAAGTTTGGGCCTATGCTTTGAAGACCAAAGATCAGGTTATTAATGTC TTTAAAGAGTTTCATGCCAGGGTTGAAAGGGAGACAGAAAGGAAATTGAAATGCATAAGATCAGATAATGGTGGTGAGTAT ACAGGATTGTTTAATGACTATTGCAGGTCACATGGAATCCAACATGAGATGACAGTTCCTGGTACACCTCAGCATAATGCA ATTGCAGAGAGGATGAACCGCACCATCATGGAAAAGATCATATGTATGCTTTCACAGGCCAAGCTACCCAAAAGGTTTTGG GATGAGGCTTTGAGGACTGCAGTTGATGTGATCAACTTATCACCATGTACAGCCCTAGATGGTGATGTTGCAGAGCATGTA TGGTCAGGGAAAGATGTTTCCTACAGGCATTTGAAAGTGTTTGGTTGTCGTGCATTTGCACATGTTCCAGATAATGAGAGG TCCAAGCTGGATGGTAAGTCTAAAGAATGTATTTTTCTTGGTTACTCACATGATCAGTTTGGTTACAGGCTTTGGGATCCA GAAAAGCAGAAGGTGTTCAGGAGCAGAGATGTGATCTTCTTTGAGGATCAAACCTTTGAGGATTTGAAGAAGAAGGCACCA GCCAAGACTTCTGCAGAAGGATTAGCAGATTGTGACCCAGTTACTCCTCCAGTATATCAGGGTGATGGGGGAGATATGCAG GAAGATGGTGTAGAACCTGATATTGATCTACCTGTAGGACATGTTGAGCAAGAAGAAGTAGGAGAGCAAGTTCCCGCAGAA CCTCAGTTGAGAAGATCTTCTAGACAACGTCAACCTTCCAGAAGATACTCTACAGATGAGTATGTGATGCTTACTGATGCA GGTGAACCAGAGAGTTACCAGGAAGCAGTTGAGAGTGAGCAGAAAGAGAAGTGGTTAGCTGCTATGCAGGAAGAGATGGAT GCTCTTCAGAAGAACCACACTTATGATTTGGTGCTGCTACCAAATGGAATGAAGGCCTTGAAGAACAAGTGGGTTTTTAGG TTGAAGACTCAAGAATATTGTTCTCAACCAAAGTACAAAGCTAGATTGGTTGTGAAAGGCTTTGGTCAAAAGAAAGGTATT GACTTTGAAGAGATATTTTCTCCTGTTGTTAAAATGTCTTCTATTCGTGTTGCTCTTGGTATTGCTGCTAGCCAGGACTTG GAGGTTGAGCAGTTAGATGTGAAGACAGCTTTCCTTCATGGTGATTTGGAGGAGGAAATTTATATGGAGCAACCAGAAGGC TTCAAAGTCAAAGGTAAAGATAATTTTGTCTGCAAGTTAAAGAAGAGCTTGTATGGGCTAAAGCAAGCTCGAAGACAGTGG TACAAAAAGTTTGATTCATTTATGACAGAAAATGGATACAAAAGAACGGCTTCAGATCATTGTGTGTACATCAAATGGTTT GGTGAGGATTTTATTATTCTCTTACTTTATGTTGATGACACGCTTATTCTTGGGAAAGATATGTCTAAAATTGACAGGTTG AAGAAGGAAATGAGTGAGTCTTTTGCAATGAAGGACATGGGGCCAGCAAAGCAAATACTAGGCATGCAGATTTCTCGTGAC AGGAAAAACAAGAAGATTTGGTTGTCACAGGAGAAATACATCGAGAAGGTATTGGAAAGATTCAGTATGAGCAATGCTAAG CCAGTTGGTTCTCCTCTTGCAGGTCACTTCAAGTTGTGCTCAAAACAGAGTCCGTCAAGTGATGAGGAGAAGGAGAAAATG CAAAAGGTTCCTTATGCTTCAGTAGTTGGAAGTTTAATGTATGCAATGGTTTGTACGAGGCCAGACATCGCATATGTAGTG GGTGTTACTAGCAGATTTCTTGCAAATCCAGGCAAAGAGCACTGGGCAGTGGTGAAGTGGATTTTTAGATATCTCAGAGGG AGCTCTAAGGTTTGTTTAAGCTTTGGAGGTGGACCACCTGTGTTGACAGGTTACACAGATGCAGATATGGCCAGAGATATA GATACGAGGAAGTCTACTTCAGGTTATGTACTTACTTTTGCAGGGGGAGCTGTGTCATGGCAATCCAGGTTACAAAGGTGT ATTGCTCTCTCCACCACAGAAACAGAATATATTGCTGCTACAGAGGTATGCAAAGAAATGTTATGGATGAAAGAATTCTTA CAAGAATTGGGGCTGAAACAGGAAAATTATGTGGTGCATTGTGACAGCCAGAGTGCCATCCATTTGTGTAAGAACCCAATG TTTCATTCCAAGTCAAAGCATATAGATGTCAGATACCACTGGATTCGAAATGTATTTGAAGAGAAGCAGTTGCAGCTTCAG AAAATTCATACAGATGACAACGGAGCAGACATGTTGACGAAGACCTTACCAAAAGAAAGACAGGAGATATGCCGACAGTTG GTCGGCATGGCTTCACATTGAGGAGTCATGGGACAGCCTCCCTTATGGGCTGAAGGGGGAGGT TGTTGGGCTGATGGCCCA TATTCAGCCCATGTGGGCTTTATCAGCCCACAGCCCACACCCTCTCTTAACCTAACCCTAATTAAGATTAGGGGGGTGTGG TGGCTGCGTTTTAGAGGCAGATTAAGGCTATAAAAAGGCAGCAACGAGGCAGATCTTTGAGGACACGGGATTCCAAAGAGA AGAAGGAGATCAAGGCAGAAAAGGAAGAGAAAGAAAGGGAAGAAGACAAGGACAACGCAGAGAGACTGTTCACAATCATCT AGCATTGTTCTCATCTCAGGTTAGATCAAATCTACAGTAGACTCTTGCTGTGATTACTTGGGGAGGTTTTAGATATTGTGG GCAGTGACGTGATCCTTGTATCCCAGTTATTCCCTTGTGGTTGTTGCTAGGGTTTTGGGCAAGAGATTGAGATTTGTATAT TCATTATTCTCATAGTGGATTATCTCTAGTTTGCCCCGTGGTTTTTACCCTTCACATTGAAGGGGTTTTCCACGTATATCT TGGTGTTTTGTTTGATTGTGTTTCCATTTTATTCCGCTGCGTATTTTGGTCTTCTAGTATTTGTTCCTATACAAAGGTTAT тССТСТТТТТАТССССАТСАСТGCA

MaCOP7: 5012 bp in Musa acuminata (AC226041.1) from 2059-7070 bp

ACTAATGTTGAAGAGAATAGAATATAGGAATTACTGAAGAAGCTGTTCTCGTATTGACATATTCTCTCCTATTTATACATG TTAGGATGGAGAATTTTTCTTAACAGAGTAGAAAGATTTTCTCATATAGTTAGAAAAATCTTATATACTATCATGCCCCCG CAAGATGGTGCTCTTATCAAGGATACCAATCTTAGATCGATGTAAAGTAAAAAGTTTATGAACGAGAGGCTTCGTGAGTGA GTCGGCTAATTGATCAGTCGTATGTACATGAGAAACTCATAGTTGACGATGGACAACTTGATCTTGCACAAAGTGGAAGTC GATAGCAATATGTTTCATGCAGGATTAGAACACCGAATTAACATACAGATAGGTAGCTCTAACATTATCACAATATATTGT AGGAGTAGAATTGATGTTGAGTTCCTTAAGTAGATTTGTAACCCAATTAAGTTCTGTAGTGACAATGGCGATGACACAGTA TTCAGCTTCAGTTGTAGATCATGCGATTGTCTTTTGCTTCTTAGAACTCTAACTGATTGGATTAACACTAAGGAAGATAAT ATACCCCAATGTGGATGTTCAATCATCAAAGTTACCTACCCAATTAGCATCAGCAAAGGCATAAAGAAGAAGTGGAGAGTG TTTATGAAGAAAGAGACCATGATTGAGGGTCCCCTTAAGATATCGTAGGATTCGTTTGACCGTAGACCAATGCATAGTAGA CGACCTATGCATAAACTATGATAATTTGTTGACTGCAAAGGAGATGTTTGGACGGGTGAAAGCTAAATACTATAAAGAGCC AACAACTTGTCGATATTGAATGGGTTCCGTAGTAGGACTTCCATCAGATAATTTGAGAGAGCCACTAGCAAAGAGAGGAGT TGTAACTGCATTTGCGTCCTACATGTTTATTTTTGATAATAAATCTTGAATGTACTTTCTTTGTGAGAGAAAGAGACTAAA AGATGTGAATATAGCTTCTACACCTAGAAAGTAGTTCAAGGGTCCTAGATCTTTAAGCGAGAATCGATCTGCCAACTATTT GATGAAGGGTTGGATTTCTACGGGATTGTTGCATATGACAATGATATCATCCACATATGCCAGAATATATATTGTGTCACT ATGGTGTTGTCGTAAAAATAACGAGGTATCAGATTTGGAGTTGAGAAAGCAATTGAAGTCAAAAAAGAGCCAAGTTCTATG TACCAAGCTCTTGGAGTCTAACGAAGTCCATAAATAGTTTTTTGTAGTTTACAAACATGCATTGGATATTGAGAATGAGTG AAACCAAGAGGTTGTTGCATAAAAACATCTTCAATTAGAGTTTCCTGTAAAAAGGCATTATTAACATCCAACTGTCATAAT

TGCCAGCCTGTAGTGGTAGCCAAACTCAGGATAAGTCGGATTGTAGTAGACTTAACAACTGGACTAAATATCTTAGTGAAA TCAACTCCAAGTCTTTGATGAGGAATGGTCCGCATAGTATGATAAGTATGGTTTTGGAAAGAAAAGATAGACTCAATAAAA ATAATGTAACGTAATATAAAGATTTTGTGAGTGTGGATATTATAGGAACGGAAAGTATTATGTTCAAGAGAGTAACTTATA AAGACGCAAGGATTAGATCGTGATGTTAACTTATGAGAGGCATAGAGATGTAACCATGGATAACATAGACAATCGAATACT CTAAGTTTACGAAGGTTTGAGGGTTTATGAAATAGTGTGTCAAAGGGGGACTGGTATTGTAGGATTGACATAGGCATTCTA TTAATAAGGTATATGATAGTTTAAAAGACTGTTATCCAAAAGTTTGAAGGCATGGAGTTCTAATGTAGAAGTATGAGCCTA GTTTCTACTATATATCGATGTTTATGTTTGGCGGAGCCAACTAGCCGAGAAGTATGCAGGGAAGACTTGAGGTGTTGGATA TCACAAGTTGAGAGATAGGATGCTTGGGCTTGATATTCACCACCGCCATCAAAGTAAACTATTTTGATTGTGGACTGAAAG TGATTTTTGACCAACTTTCGAAAGATGGGAAAGATAGTGGAAATGTCAGATTTATGGTGAAGAGGATATAACCATGTGAAT TTAGTGAAGTGATCTATAAAAATGACATAAAATCTGAATTTATCAAAAGACGGGATTGGAGTAAGGCCCCAAATATCGGTA TAAATAATTTCAAATGGTTTAGAGAAAGAAATGAAAGATGAGCCAAAGGGCTGTCGATGACTTTTATTACTAAGACATGCA TCACAATGTATTATAGAACTATGTGATTTAAAAATAGGAATAGAGTAACGAGAAAGTAATTTCTGCTGAATAAGGGACGAG GGATGACCAAGACGATGATACCACACATCAACTGGAGCCGCAATAGAAGAATGAACAGTGGGCTGGGTTATTTATGGAGCT GACGACCATTCGTAAATATTGCATCTATTCGGGCCCTGGACCAAGGATTTCCCCATGCTCAAGTCCTTAACAAGAAAGGAA TCAAGAAAGAATTCAATTGAAGTATTGTTATGTTTGCAAAACTGATAAATAAAAATGAGGTTGCGTTTAATATGAGGGGCA CATAAAACATCATCGCGTGTAAATGTGATAGTATTAGAAGTAAGCATTGTAGAACCAATATGAGTTATAGGAAGTCCTTTA CCGTCACCGATGATGATATCTTTATCGTCGCCATAGGTGTTGTGAAGAGACAAATTCTGAAGATCAACGGTGATGTGATGG GAGGCGCTAGAGTCGACAATCCAGTTGGGCTAGCTAGTCATCGGAGTAGTTAGGAGATTTGCCTGAGGCTAGTGTGATGGA GCATGGAGGCGAGGTTGAGACCGACAAACTTTAGCGGAGTGTCCAATTTTATCACACAACTGGCAAACGATCAGTCTTGTT GGCTTGGTGGGGCAGGATGCCAAGATGTATGATTATTGGAGTTGTCATTTTATAAGAAGTTATGATTAGGACGATAAGAGG GGTTTCGCATGGGATCCATAGGATCAAGATGTGTATAGGCCAAACCTTTGGAGATGTTTGGAGGGTACCAAGTGCCCTTCC TCTTAGACTTGTGACTGACTTGAGCTATGATAGTCAGTCCGGGCAACTTGTCCTCATGCTTCAAATACGTCTTATAATCAG TCAACTTGTCATAGAGGTCTTCCAATGATACTAGCGTGTCGCGTGCCCGAATTGCATCTGCCAACTCCTTGTAATCGTCTC CAAGATCATTAAGGGTATGGATGATGATCTCTTCGTCACATAGAGAATGACTTATCAAAGCCAAATCATCGATAATAACTT TAATATTTTATGGATAATTAGTGATAGTACTTCCCTCTTGCTTTGTCACCATTAGCTTGGATAGAAGATTGAGCTTATGAG TACGCGAATGATTCACTAAGGTTGTTTACAGTTTAAATCACACTTCGGCAGTAGTCCCACATGAAGATATTAATGGAGTGA TGGATCCAGCAATTGAGGCTTGAATAGCTTGGAGGATGAGATGATCTTGACGTAGCCACAATTTGTGAGCTAGATTTGGTA CTGGACTGGGTTCTCCGAGGATGTTGATCATGGCTAGCGGACAACTGAAGGAGCCGTCAACGTAGCCTAGCAATTCATATC CAAATAAGAGATTAGAAAATTAAGCACGCCATGATGCATAGTTGCCACCCTTTGATAACTTGAAAGGGATTAGCGTGACAG CATTGATGGAGATAAGTCCTGTAGAAAAAGTACTATGAGTCCCTGTAAAAATAGTAACTTGAATATCAAAAGAAATAACAA AGACATCCCAAACATTTTTTTTTGTTTGTTTTTTTTTTTTACTAAACAGTGATCTTTACGGAAGATAGAGGAGGGAGAGAG GAGGCTACTGCTATAGCTGCTGTGGCTACTACGATAGAGAAGACTGCTAGAGGGCAGCACTAGTGGTGCACCAGTGAGAAA CAGTGCAGCGTTGGTAGCGTTGGAGAGAGCTGTAGTGATGCTGGAGGAAGCTGCAACAATTAGGTAGAGAAATCTGCAGTG ACTAGGTGGAGAAATCTACAGTAATTATGTGGAGAAATCTACAGCGATCAAGTGGAGAAATCTGCAACGATCAGGTGGATT GCTGGGATGAGTTCTTTATTTGGTGGATGCTTTTATCTCTTTTCAGCTAGAAGGTTGCTGAGGATTAATGGTGAAGAGATG TTTTATGCTGTCGAGAGCTGTTCTTGGGGCGGTTGATAATGAGGCAGCGAGCTGTGATCGATGCAGATCATAGCCTGATGA AGATGATGCTGCCGCCGTGGTGGTTTGAGAGGCACCAGGCAGTGAGAAAGAAGTGATTCAGCAGCAACTGAAGGTCGTGGC TGGGGTAGCAGCTAAGGCGTCACGCGCTATACACGCAGTAGTCAGGATCAGGGGCGGCGCTCGGAGAGAGAGCGGCTGAAG GAGTTGGAGAGAGGAAGCCAATAAGCGCTAGAGGATGTTGGGGTTAGAGACAATACCGAAGGTCTAGTAGTCATTGGAGGA CACCGGCGCAGTCGGCAGCGGTGGCGAAGGTGACCGATGAAGGGGACCAACGAAAGGGAAAGAAGGGCCGGAAGGGGAGAA AGATGGGGTGGAAGATGCAGCGGAGGAAGGCTTTGGCAGTCCTCACCAGTCCTTTCGGCTTCCACACTAACACCCAGATGA GCAGCGGAAGGCTTCGGTAGAGTTGCCTACATCCGTAGGGGAGAGCTGGTCGCAAGGAGAGAAGAGGGAAGGAGCAGGCAG GGGTTGGAGAGGGATCCACCGTTAAGGGTGAGCAACCAGCCGCAAACAAACAGGCCTTCGTTGTCGTGGCTGCACCTGATA CCATGTTAGAAGAGAATAGAAGATGAAATTACTGAAGAAGTTGTTCTCGCATTAACATATCCTCTCTTATTTATACAGGTT AGGAGGGAGGATTTCCCTCAATAGAGAAATTTACTCGTACAGTTAGAGAAATCTTATATGCTATTAACTAG

MACVI: A pararetrovirus-like element in Musa acuminata (AC226046.1)

CTCT TGGTATCAGAGCTGTTGCTGGCTAGCCATTTTTAAGCCCGAATGGCATGGCTAACCCGAATGGTATCAAAGCTTGTT TTTATCTGTGCTATGGCTTTCTAAATTGCTTCAAGATAGTCATGTGGACAGGTTTTGAGGAGCATGGGTTAAATTTTTGTT AAGTTCCTTCTATCATTTAGAATCAACTCGTGAAGCTTAAATAACCGTGGGGAAGTACTTTCTTTAATCCTGAGAAAGGTT GTCAAAAGACGTAAGGTATCAAAATTGGGCAGGGAGACCCTAAGAAACCACTGATAAGGTGAGGCAACCTAAGACTAGAAA AAGGAAAGGAAGACCAATGGTTAGGAATGCCTAGGATAGATGTCTGAAAGATGGGAAGAAGCTATACAACAATGGTATACT AGCTCССАTAССТСАAAACTAGACTATCTTGACCTTGTTGAAAGTAGTAGCTCTACCCGAAAGGAACTAGCTCACAATCTT ACTGTCATTTACAACATAACTTGCTTATCAAGTAAAGTACATCTAAAGAACTTCAAAATCCTCATAGAAAAAATTTAATTT СTСTCGAAAGAGGTTAAGATACTGAGATCCTCTGTAAAAACTTTCTCTGCCTTGTTCTCCGAAAATAAACCTTTAACAAAG CATGAAGTCAGGGATCTAGTTGAAGAAATATCCAAGCAACCAAAGCTGGTTGAAGAAGAAGCTTTAAAACTAACCCTAAAC СTCGATCAAAAGCTTCAAAGAGTAGAACAACTCCTAACAAGGATAGAAAAACAAATTTTTGGATGAGCTACTTGTTCACCA AAAACACCGAATCCTATAAAGAAGTACTCAAAGCTACAAAATCCATTAACTCTCCGTCCCTTGGATTCCTAAAAACCAGTG ACTATCCCGGAACCCTAAGCCATCAATCAGCTGTAATCAAACAACACAACACTCAGCTACAACTACTCGTACAAATTGCTG AGGATATAAAAGGGATACGTATAGAACTGCAAACCATATGAGAAATCCAGCAAGCAAAAGCCGGATCATCCCAGGGAATCC CTGAAGATTTGATTATCAAATCTAAATTTAGGTCCTTCAGAAAGACCTAAAGAGGTGCAAGAAAGAATCTTAGTGTTCAAA GATCCCATCCAGATTCTTAAGCAAGTCCAACAATGACAACCCAGAGTTCAACCCAAGAAGTCTCCACATCTGCCCCTTTAG TTGAAGATCAAATCCGAGACTACAGGAGAAACCACAGAAGGCTATTCAATGCTCGCCAGGCAACAAGGCGAATGGGGCAAA TGCTGCTAGGAGGACCGTCCGCTACCCAGCAAATCCTTGAGCAGCAGATAGACCCTCAGGCCCAACTGAGGCTATCCATGC GAGAAAGGGCGACGATAGCACCTGCCGAGGTGCTATATCACTCCAGGCGAGATGATGCACACCATCGAGTTTATGTGCACC GATCCGAAGAGGCAATGTTGGTCACCAATAATCAGGAAGACAGGGCTTTCATCATAGAGGAAAGCTATGACCGACTGCAAA GGAGCCGCATGCAATACATTCACCTAGGCATACTGCAAGTCAGGATGCAAAGGCTTCTTCGGCAAGAAGAAGGAACACTAG CACTATTAGTGTTCAGAGATAATAGATGGGCTGACGACAGGTCCATCATAGCCACCATGGAGGTAGACTTGACTCGAGGAA

GTCAGCTGGTCTACATCATTCCTGACATCATGATGACGATTAGGGACTTCTTCCGCAACATTCAAATTTCAATCCTCACTA GAGGATATGACACATGGCGGAATGGTGAGGCAAACTTGCTAATCACCTGTGGAATAGTAGGGCGACTTTCAAATACCACGA ATGTCGCCTTTGCATATGAAACATCAGGGGTGGTGGACTACCTAACAAGCCATGGTGTCCGGGCACTTCCCGGAAGGAGGT AСTССАTAGCTGAGCTACATGGCAGAGACTGGGTCATTAGACCAACCTAGATTGCAATACCAATACAGCCAATAGAAGTAA GGAGTCGCAACCTTATTGATGGCAGAATATCTATAAGCTTTGACAACTACAAAGCTGCATCTACATCCAATCGGATCAACT ACAATACCGCTGATGATGAAACATTCAACGATGAAGAAGAAATCCGGAGCCACATAGTAGCTGTCAACATCCAATTATCTG ATGACAGTGAAAATGAAGCTGAAGAATTACGTAAAAACCTGAATTCCTATTGTCAGGATATTAACGTTTCAGAAGGAGGTG GGGAGATGCCATATCCCCAAAAATTTCAAAAGGAAGTAATTGCAGCAGGACTCGAGGAAGACCTAGCAATGGAATACCCCC AACTTGCAAAGTTATCTCAACAGGTATATTCATCCTCTGTTGTATCAAATTACAGACCACCTGCAGATTCAACTATGGGAC CAGCAAATTACCCCCAGTAGTGAATGTGGAATCCACAAGCTAGAGGCTCGCATATGAAGGCTACTCAAGACATCCAAGGTT САAATCAAAGGATTTCTCAGAAGCTTGGAACCTCCCATCAGCCTTCCAACAACAAGGGGCAATGTTTATAATTCCGTCCCA ACTTGGGATGTTTAATGAAGTATTTATGAGATGGGAATCAATCACTAAAAACTTGGTTTCCCTACAAGGATTCACTGATCC CCAAGCAAAAATGGAATTCATTGAAAACTTGCTTGGAGATGCAGAGAAATTAGCATGGATCCAATGGCAAATGGCGTACCC AGAGGAATACCAACTACTAATGGCCAACGCAGACGGAACTGGAGGAACTCAAAATATCCTCTCACAACTAAGGACGATCTT САTTCTGGAGGATCCGTTCCAGGGTTCAACTGCAGCACAAGAAGAAGCTTACAGAGACCTCGAAAGGTTATCCTGCACAAA ССTCAAGTACATTATTCAATTTCTAAATGATTACATGAAGCTTGCATCTAAGACCGGAAGGTTGTTTACAAGCCCAGAACT TTCCGAAAAACTATGGTCTAAAATGCCTGGAGAATTAGGAAAAAGAATCAAAGAGGCATTTAAGACGAAATACAGGGGAAA TACTATAGGAATAATTCCAAGGATACTTTTCTCCTATAAGTATCTGGAAGCAGAATGCAAAGATGCTACCTTCAGAAGGGC GTTAAAAGACTTATCCTTCTGCAGTGAGATCCCTTTCCCTGGATATTATAACAAGCCCGAGAGGAAGTATGGCGTGAGAAG ATCAAAAACCTACAAGGGCAAACCCCACTCGTCTCACGCCAGAATTGAAAAGAGGAAGCACCTAATAAGAAACAAGAAGTG CAAGTGTTACTTGTGCGGGGAAGAAGGACACTTTGCAAGAGAATGTCCCAATGACCGTAAAAACATCAAGAGAGTCACTAT GTTTGAACAATTAGACCTTCCTTATGACTATGAAATTTTGTCAGTACAAGAAGGGGAAAACCAGAGCGACGCAATCTACTC САTСTCTGAAGGAGAAGACGTAGAAGACCTACAACACGGTATTCACTCCTTCACCCACAAAATTTTTGCACTAATAGAAGA TAGTAGAACTTGGTGGATAGGACCCGAGTCAGGTTACCGGGCCAGAGTTCAAGTCTCCCAAGCACAAGCTGAATGCAGACA CATATGGGAAATCAACACCGAGTTACCAGCCAATTTGGAGAAGTGCAAATGCTGCAAACGGACATCACAAAGGAGGCACAG GAGACACTGCCCCTTGTGTAAAATTACTTCATGCGGGATGTGCAGTATCTACTACTTTGATAAAAGAACCCCCGTAATGAC TGAGGAACCACCAAGGTATGAACCAAGAAACTTGCCTCAGCAGCAACAGGATTATATTAATCACTATGAAGCAGAAATTAG GAGGCTCGAGACTGCAGTAGAATCTGAACTGCAAAAGGCCAAGGAATTGGAAGAGATGCACATCCAGGCCGTAACCACTGC CCAAGAAAACCTTCGCCTACAACATGAAGTATGCGAATGGAAAAAGAAGTATGATCAGCTGGAAAAAGAGGCAATGGAGGT CGATAGGTTAAGACTAGAAAGAGCTGATCTATTAAAGGAAATACAAAGATTGAAGGAAAATGAAATTGAGGAGGACAAGGA AATCTTCGTTCTACTCGCAGACGAAACCCAGAAAGTCTTGTCTGTTGAAACTAAGGAAACAAGTGGTTCAAGGAAAGCCAA AAATATGATGTTTAATCTAAAGGTACAAATCGAAATTTTAAACATCCCCCCTTTTGAAGTTAATGCTATATTAGATACAGG AGCAACAACTTGCTGCATAGATGAAAATGCTGTACCAGATGCCGCAATGGAGGAAAATCCCTACATAGTACACTTCAGTGG GATCACCTCTAAGACAATAGCAAATAAAAAGCTGAAAGGAGGTAAAATGACCATTGGGGATAACTCGTTCAGGATCCCATA TACCTATGCCTTCGCGATGAAACTTGGGGATGACATCCAAATGATAATCGGATGTAATTTTATAAGGGCAATGCAGGGAGG AGTAAGGATAGAAGGTAATATCGTTACTTTTTATAAGAACCTTACTACAATTAACACACTGCCCTACATCCCAGCAGCAAC AGCCATAGAAGAATTGGATCTTGAGGAAGATGTCTATGTTCAGATCCAAGAAGCAGTGTTTTTCTCCGCTGAAGCCCAACA AAGTGACAATGCTATTAGGGCAAAATTTGGAAGCCTACTGGACCAACTAAAGGCCCAAGGATATATTGGGGAAGACCCCCT TAAACACTGGGAGAAAAACAGGATTCAGTGCAAACTGGAAATTAAAAACCCTGATTTCGTGGTGGAAGACAAACCCCTGAA GCATCTCACACCACAGGCTAAGGAGGCTTTTTCAAAGCATATAAGGGCCCTCTTGGAAATTAGAGTAATAAGGCCCAGCAA GAGTAAACACTGAACGACTGCCATAATTGTTAACTCCGGAACAACAATCGACCCAATCACTGGAGTAGAAAATAAAGACAA AGAAAGAATGGTATTCAACTACAAGAGGCTGAACGACATCACGGAGAAAGACCAGTACAGCCTACCTGGAATCAACACCAT TCTAAGAAAGGTCAGCAACAGTAAAATTTATTCAAAATTTGATCTTAAGTCTGGCTTTCATCAAGTTGCTATGCACCCAGA CTCAATTGAATGGACTGCCTTTTGGGTCCCTGACGGGTTATATGAATGGCTAGCCATGCCATTCGGGCTTAAAAATGCACC AGTAATATTCCAGAGAAAGATGGATGAATGCTTTAAAGGCACAGAGGAATTCATTGCAGTATACATCGATGATATACTAGT СТTСTСТGAAAATGAAAATGACCATGCCCGACACCTAGCCCAAATGGTGGAAATTTGTCAAATAAACGATCTGGTATTAAG CCCATCAAAAATGAAGATAGCAGTCAAGGAAATAGAATTTCTTGGGGTAATTTTAGGAAACTCAAAAATTAAGTTACAACC CCACATCATCAAAAGGATCACTGAATATCAGGAGGAGGACCTTACCACCAAGAGAGGACTCAGATCATGGTTAGGTATACT CAATTATGCTCGAAATTATATACCTAACTTGGGCAGACTTTTGGGACCACTCTATTCCAAGACAAGCCCAACTGGGGAGAA AAGATTTAACGAGCAGGATTGGATGTTGATCAAAAATATCAAAAGCATGGTTAAAAATCTCCCAGATCTAGAGGTTCCTCT AGAAGAATGCTTCATCATCCTTGAAACCGACGGATGCATGGAAGGGTGGGGAGGGGTCTGTAAATGGAAAAAACACAAAAA TGACCCTCGAAACACTGAGAAAATCTGCGCTTATGCTAGTGGAAAATTCAGTCCTATCAAATCCACCATTGATGCAGAAAT GTATGCGGTAATGAAGAATCAAGAATCCTTAAAGATATATTTCCTAGATAAAAAGGAAGTTATTATCAGGACAGACTGTCA GGCAATTATTAGCTTCTTTAACAAGTCTGCTCAGAACAAACCTTCTAGAGTTCGGTGGATGGCTTTCGTAGACTATATAAC AGGAAGTGGCGTGGAGATAAAATTTGAACACATTGAAGGGACTAGTAATATCCTTGCAGACTCTTTGTCCAGACTAATAAA TATTCTAGTTGCAGGATGGCCAAGCGAACAAGTATTCCTGCTATTAGAAGCCACCTAGGAGGTTCAAGCACAACCAAACCC GAAACAACAGCATCCCTCAACAAACTGTTAGTAACCTTGTCCAACAATATCAACAAAAGCTGGACGAGCTCAAATCAGAAA TGCGAGGAGGAATCCCCCTCTGTAAAATCAAGGCAACCGAAGGAGAGCTCAGGACCATTCAAAGAGAAGCCGCCCGCCAAG CCTGCGAAGCATTACAATGCTTCCACGACATCCACTCAGCAAAGGCAAAGGAATATCAGAGAAGGAGTGGGGGCAAGGACT GTTGGTACAAAGACTGGCTACCAACTGTCCTCCAGCACCAGCAACAGCTGGAAAGAGCTCTTGCACTAACCAAAGATTCCG CCCAGAGGATAAATAACTTCAGTCTTTAGAAACTCGGGGAGCCGTGCATAATTGGAGTCTAGCGTCGGCGCCACTGTTTTG CGCCACTAGTTTTTACTTTACCATCCTTTTGCACTGAGCCTCGGGGAGCCGTGCATAATTGGAGTCTAGCGTCGGCAACCC TGTTTTAGTAAAGGCAAAATAGAAAACTTTGACAAAGGGTGTCGATGGGGGCCAATGATCACCCGACCCTCTGCCTTAGTT TCTCTATATAAGCCTTAGTTCAGCTCATTGCAGAGTAGTCAGAAAAAATCTGAAGTTCTACTTTGAGTTCCAAGTCATAAA TCAGAGTCTGTAAGTTTCTTTCTAGTTCTTCATACCTATCTCTGTTTTTATTTCTTGAAGGTTTAGTGAAAGCTTAGTGAA TACTTTAGCTAAGTGATTTCTTGTTCAGTGAAAGCTTAGTGAATACTTTAGCTAAGTGATTACTTTGGTATCAGAGCTGGT GCATTTTTAAGCCCGAATGGCATGACTAGCCATTCATATAACCTTACGCCATTTTAGTTGCTGGCTAAAATGGGTATCAGA GTTGGGTAGCCATTCATATTAGCCATTCATACCATTGGTATCAGAGCTGGGTAGCGGACGGTTCTCCTAGCAGCCTTTACC CCATTCGCCTTGTTGCCTGGCGAGCATTGAATAGCCTTCTGTGATTACTT TGGTATCAGAGCTTGTTTTTATCAGTGCTAT

GGCTTTCTAAATTGCTTCAAGATAGTCATGTGGACAGGTTTTGAGGAGCATAGGTTACATTTTTGTTAAGTTCCTTCTATC ATTTAGAATCAACTCGTGAAGCTCAAATAACCGTTGGGAAGTACTTTCTTTAATCCAGAGAAAGGTTGTCAAAAGATGTAA GGTGTCAAAATTGGGCAGGGAGACCCTAAGAAAACACTGATAAGGTGAGGTAACCTAAGACTAGAAAAAGGAAAGGAAGAC CAATGGTTAGGAATGCCTAAGATAGATGTCTGAAAGATGGGAAAAAGCTATACAACAATGGTATACTAGCTCCCATACCTC GAAACTAGACTATCTTGACCTTGCTGAAAGCAGTAGCCCGACCCGAAAGGAACTAGTTCACAATCTTGCTGTCATTTACGA САTAACTTGTTTATCAAGTAAAGCACATCTAAAGAACTTCAAAATCCTCATAGAAAAAATTCAATCTCTCTCGAGAGAGGT TAAGATACTGAGATCCTCTGTGAAAACTTTCTCTGCCTTGTTCTCCGAAAATAAACCTTTAACAAAGCATGAAGTCAGGGA TCTAGTTGAAGAAATATCCAAGCAACCAAAGCTGGTTGAAGAAAAAGCTTTAAAACTAACCCTAAACCTCAATCAAAAGCT TCAAAGAGTAGAACAACTCCTAACAAGGATAGAATAACAAATTTTTGGATGAGCTACTTGTTCACCAAAAACACCGAATCC TATAAAGAAGCACTCAAAGCTACAGAATCCATTGACTCTTCGTACCTTGGGTTCCTAAAAACCAGTGACTATCCCGGAACC CTAAGCCATCAATCAGCTGTAATCAAACAACACAACACTCAGCTACAACTACTCGTACAAATTGCTGAGGATATAAAAGGG ATACGTATAGAACTGCAAACCATATGGGAAATCCAGCAAGCAAAAGCCGGATCATCCCAAGGAATCCTTGAAGATTTGAAT ACTAAATTATCAAATCTAAATTTAGGTCCTTCAGAAAGACCTAAAGAGGTGCAAGGAAGAATCTTAGTATTCAAAGATCCC ATCCAGATTCTTAAACAAGTCCAACAATGACAACCCAGACTTCAACCCAAGAAGTCTCCACATCTGCCCCTTTAGTTGAAG ATCAAATCCGAGACTATAGGAAAAACCACAGAAGGCTATTCAATGCTCGCCAGGCAACCAGGCGAATGGGGCAAAGGCTGC TAGGAGGACCGTCCGCTACCCAGCAAATCCTTGAGCAGCAGATAGACCCTCAGGCCCAACTGAGGCTATCCATGCGTGAAA GGGCGACGATAGCACCTGCCGAGGTGCTATATCACTCCAGGCGAGATGATGCACACCATTGAGTTTATGTGCACCGATCCG AAGAGGCAATGTTGGTCACCAATAATCAGGAAGACAGGGCTTTCATCATAGAGGAAAGCTATGACCGACTGCAAAGGAGCC GCATGCAATACATTCACCTAGGCATACTGCAAGTCAGATGCAAATGCTTCATTGGCAAGAAGAAGGAACACTAGCACTATT AGTGTTCAGAGATAATAGATGGACTGACGATAGGTCCATCATAGCCACCATGGAGGTAGACTTGACTCGAGGAAGTCAGCT GGTCTACATCATTCCTGACATCATGATGACGATTAGGGACTTCTTCCGCAACATTCAAATTTCAATCCTCACTAGAGGATA TGACACATGGCGGAATGGTGAGGCAAACTTGCTAATCACCCGTGGAATAGTAGGCGACTTTCAAATACCACGAATGCCGCC TTTGCATATGAAACATCAGGGGTGGTGGACTACCTAACAAGCCATGGTGTCCGGGCACTTCCCGGAAGGAGGTACTCCACA GTTGAGCTACATGGCAGGGACTGGGTCATCAGACCAACCCAAATTGCAATACCAATACAGCCAACAGAAGTAAGGAGTCGC AACCTTATTGACTGCAGAATATCTATAAGCTTTGACAACTACAAAGCTGCATCTACATCCAGTCGGATCAACTACAATACC GCTGATGATGAAACATTCAGCGATGAAGAAGAAATCTGGAGCCACATAGTAGCTGTCAACATCCAATTATCTGATGACCGT GAAAATGAAGCTAAAGAATTATGTAAAAACCTGAATTCCTATTGTCAGGATTTTAACGTTTCAGAAGGAGGTGGGGAGATG ССАТАТССССАAAAATTTCAAAAGGAAGTAATTGCAGCAGGACTCGAGGAAGTCCTAGCAATGGAATACCCCCAACTTGCA AAGTTATCTCAACAGGTATATTCATTCTCTGCTGCATCAAATTACAGACCACCTGCGGATTCAACTATGGGACCAGCAAAT TACCCCCCAGCAGTGAATGTGGAATCCACAAGCCAGAGGCCCGCATATGAAGGCTACTCAAGACATCCAAGGTTCAAATCA AAGGATTTCTCAGAAGCTTGGAACCTCCCATCAACCTTCCAACAACAAGGGGCAATGTTTATAATTCCATCCCAACTTGGG ATGTTTAATGAAGTATTTATGAGATGGGAATCAATCACTAAAAACTTGGTTTCCCTACAAGGATTCACTGATCCCCAAGCA AAAATGGAATTCATTGAAAACTTGCTTGGAGAAGCAGAGAAATTAGCATGGATCCAATGGCGAATGGCGTACCCAGAGGAA TACCAACTACTAATGGCCAACGCAGACGGAACTGGAGGAACTCAAAATATCCTCTCACAACTAAGGACGATCTTCATTCTA GAGAATCCGTTATAGGGTTCAACTACAGCGCAAGAAGAAGCTTACAGAGACCTCGAAAGGTTATCCTACACAAACCTCAAG TACATTATTCAATTTCTAAACGATTACATGAAGCTTGCATCTAAGACAGGAAGGCTGTTTACAAGCCCAGAACTTTCCAAA AAACTATGGTCTAAAATGCTTGGAGAATTAGGAAAAAGAATCAAAGAGGTGTTTGAGACGAAATACAGGGGAAATACTATA GGAGTAATTCCAAGGATACTTTTCTCCTATAAGTATCTGGAAGCAGAATGCAAAGATGCTACCTTCAGAAGGGCGTTAAAA GACTTATCCTTCTGTAGCGAGATCCCTATCCCTGGATATTATAACAAGCCCGAGAGGAAGTATGGCGTGAGAAGATCAACA AGCTACAAGGGCAAACCCCACTCGTCTCACGCCAGAATTGAAAAGAGGAAGCACCTGATAAGAAACAAGAAGTGCAAGTGT TACTTGTGCGGGGAAGAAGGACACTTTGCAAGAGAATGTCCCAATGACCGTAAAAACATCAAGAGAGTCGCTATGTTTGAA CAATTAGACCTTCCTTATGACTATGAAATTTTGTCAGTACAAGAAGGGGAAAACCAGAGCGATGCAATCTACTCCATCTCT GAAGGAGAAGACGTAGAAGATCTACAACACGGTATTCACTCCTTCACCCACAAAATTTTTGCACTAATAGAAGATAGTAGA ACTTGGTGGATAGGACCCGAGTCAGGTTACCGGGCCAGAGTTCAAGTCTCCCAAGCACAAGCTGAATGTAGACACATATGG AAAATTAACACCGAGTTACCAGCCAATTTGGAGAAGTGCAAATGCTGCAAACGGACATCACAAAGGAGGCGCAGGAGACAC TGCCCCTTGTGTAAAATTACTTCATGTGAGATGTGCAGTATCTACTACTTTGATAAAAGAACCCCCGTAATGACTGAGGAA CCACCAAGGTATGAACCAAGAAACTTGCCTCAGCAGCAACGGGATTATATTAATCACTCT

MaLAR1: 4564 bp LARD-like element in Musa acuminata (AY484588.1) from 48330-52793 bp

GGTT TGTCACTGACTTAGCTAGTTTTGCCTAAGTCGTGCGGCACCCTTGCATGTCCGTCCGCAAAGGTCAGTCTCCCCGAA GCCTCCCATGGTCCCTTAGGACATACGAAAGAGAAAACGAGTTAGAGAGAACGCCTCACTTGGGATCCATAAGCAAACATT CCAAGAAACACTTCATAGACAATGCAAATTACAAACAGACTTTACAAGCTCTGAACAGTTGCACAACAAAGGGTCAAAATG GTCTACTACAGACCGAAAATTTCTCACAAGTGTCCACATGACACAACCTTTATTTACAAGCCTAAAGCGGCCACCAAACCC AACTAAAATGAGGCTATTAAGCCTTCGGTTGTCCCTCTACATGCTAGGCAAAGTATGAACATACCAAAAGATACGGACATA CATAAGCATTACATCAAACATCCTGTTTAGAAGTTTATCCGTGACATTCTCCCCCACTTATTCCTTCGATGTCCTCGTCGA AGCCTTTGTGAACACTGTAACTCCTTGCCTTTGTTGAGTCTTCAATCTTTTGCTCCAGCTGCAATGCGCCTCTTGCTCCCA GTTGCTCTCTACTGCTGTTTTTGAGTAGTCAAACCTTTGATCCGCTATGATGCTTCAACTCACCAATGACTCTGACTTTGG TGTGGGGTTGGCTGAGTTGTGTTGATCCTTATTGATTCCTGTGGATCCTCCAGATGAAGGAAAATACCATCTTTACTATAC GCTAGTCTCTCAAATGTCTCATGCTGCTTGAATTGGGTGGATAGTTGTTGGAGCTTTAACAAGTATCGCATCGTAAACTTT CAAAGCTTTTGGTCCTTCCTCCACAAAATTTGCTTATCGACTTTTCTTTCACTTAGTTGTCACTTCCAAGTAGATTCGCAT CACTTCCGCTTTTGATTGACATTCTGTTGGGAAATGAGGCGAATACTCTACTCTCAGTAGCACTGATCACCAATGGTGAGG ATTTGATAACTATTGTCTTCTAATATCTTCAAAGGGTCTTTGAACCTGTGCAGAGCTCCTCTGCTGGATAGATAAGAGAAT TAGGGTACTCGGTTTCGTCCATTCTCTTAAGAGTTGAGAAGGCAAAGGTTACTTAACTTCGCCCGCTTCCTCGAGGTTGTA CTCCATGCATCGAGCTGGTTATTGGCCTTCGCCTGCTCTTTGCTCATACTTCTAAAGCACTTGAAGTGTTTGCACTCCTTG TGTTGAGTTAGTTACTGTGATTCACCTTCTCAATGCCATCGAACTTCTGGAATGCAGGAAGTTTTCACCCCAACTTGGAGT AATTCTCTAATAGATTTGGTCGCCTCTGGGATTGTACCGTATTCTCCATCAACCCTGCCGCCTACTCCACTAAGTAGCAAA GGTATAGCACCGCGTACTACTTGCTTCATTCCTTGGTTGTGCATCTTGCCTAACCCGAAGTCCTTCACTTTCGACTATCTT GATGAGAAGCTCGTTGACACCGGTCTTACGAAGTTCCTTAGCCTCTGCCCTTCAGCCTTGTCTCGGTACTTGGAGTTTGCA

TCTGCATACTCCACCTTCTCGGCCCCTTTTACGATCAAGCACTCTCCCTCCATGAGAGCAAGGGATCAATGACTTTCACGG AAGTCCTGCCTCTGCGGTACCATGGCACTGCCATGCCCATGGCCCTACTATTCGTCACCTCGCATCTGCATCCCTTTTCTT CACGATCAGTAGATATGTCTCTGTGGTACTCCTCCGAGTCCACCTCCATTCTAACTGATGCTTGATTTTGGGTAGCTAAGT CCCTATGGACTTATCGTCGCTTCCTCGCCCCTTTAGATCCTCTGCTTCAACACCTTTGTGTTCTCCAAGCAACTCCCTTTG ATCGATGGAGAGACAGATTACAACTCCCATGCATGGCCTCTGCCATTACGTTGTAGAGTTTGCATCGATTATGTTCTCCTT AGCTTCCTTGGTAGCAACATTCGCTTACTCGACCTTGTCCTCTGACTTACCGGGCTCCCTTAAGCAAATATGAGCTCTGGA GCAGTCCAACTCTCCAGCTGCTTCAATCATACCTCTGTATGATCAACTCCCTCCCATGAGACTCATTGGTACTTGCATTCA AACTTTTTCCTTGGTGGAACACAACCCTCATATGCTAATGACCAAGGCTTTCATCCGATGCAAAATTCGATGCACGCACGG AAGACCCGCCTCTACGGTACCATAGCCTTCACTTCTTGAATCCATAGCCCTTCTTGCCGTTGTGTTGTTCACTGAAGTGGA GCTTCCAATAGCTCCCGATCATACCTCCGTATGATCTAGTCCCTTACAGGACTATGTCATGTGTATCGCATTGCTATAAAC TCTTCCACCACGATCCGCTGCACAATGCTGCCTCCTGGTGACATCCCCATTGCATTCTGATCCTTATGGGATGAACTCGAA TTGTGATCCCTCAATGTGTGACCTTTGCCAATACATCGTAGTGTCTCTTCCACCTTCGATTTTGTTCAATCATTTGGCAAT CGACCTTCATCCACCTACTCTTGGGTCACACCTAGATGAAGCACCGCTCTAGGACAGTCCATCGCCTAGTAGCTCCCAAAG TCTCCCGACTTCACTGCAATTAGTGCAACATTGTCTGGATCCTGGGACTCTGCCCCTACTAGCACAATCTTCGCTGTGCAC CACTTCCTTCATAGCAACTTGAATGGCAAAACTGTGGCATATTCTTCAAGAGTACCTGCCTCCACGTCCTCTTGCCCCGTG CTAAGGCCTTTTGAACCTAACTTCGCCTCTACAAGTTGAGTCGCCTTAGTTCCTCCATCAAATGCTTCTCCGAGATAAGGT GTATGTGCCTAGAAGCTCCCTTCGTCTTTGGCACCATGCAAGATGAGTCCGCTTCGTCAGAATGAAGGACCCATGGAACAA CATGATCCTACTCTTGCCTCTGCAAGAGTTCATGTCCTTGACCTCTGTCCAAGGAAAGCACTGTGCCTCCGCTCCATGTTC CATCTTCTATGCTGGCTCCCTTCATGCGGCTTGGGTACTTTGCCAAGTTACACCCAAGTTGCTCCGCTCCTCATTTTTGCA TTGAGTTGATGGTGGCCCTCGCGCCCACTATTCCACGGGTCAGCCCTCCCTTGAGTCCGATCTCTATATTGACTCCAAGTG TGCCTTCATTTGTGTTGCTTTGTGTCGCTCCCCCACTTGATCTCACAATGCATTCTCTCAAGCAAGATCATGCGATGACTC CTCGCCACTTACTCGGTCCATTGAGCTTCATGGAGTTATTGTTTGTTGAGGCACTCCTCCTCAACATGTGAGGTCCATCCC ACTTGATTCTCCCTCTGGAGAGCCGAGACTTATCCCTCCTGGATAACTGTCCCATTGGAGCAACATCTCTTTTAGTTTCGG AGACCACCATCCCCTTGGACTACTCCGATTTGCTGAACAAACTGTGTATTGTTCTACCTCCTGCAAACGCACTTGCTAGAT TGCGACTCCACGTCAATACAGCCCCCACTGTACCACTCAAGGCCTAGCAACATGCTGAACTCGTTGTACACTTTAGCCTCC TACGGACGTATCCTTCACATGCCGAAGAGAAAGTTTTAATGCTCCATGGCGTCGAGTTTCGGTCGCCTTGGGATTGCCGCG AACATTCCATCGTCTGTATACAAGCCCATGTATGAGTACCGAATTCTTTGAGTTAGCAATTCCCCTCATCTCTGTGAGCTT TACACAACTCTTATGGTCGCTGAGCAACTCATTCTACCTTGCATTGTCTCATCCTTTACCAAGCGCCTCGCTTGCCTTGAG CACCATCAAGTATAGTTGTCAACGTTGAGCCGTAGCTCAAACTCAACCATCCCAACCTTTGTGCGCTCCGCATTCTTCCAA GCTTGCCTATTCTCGTGGTGTCTCGTGCGCGAAGGGTTGGCCATTCCTCTGAATGCCAATCTCAGATGCTCGCTCTTTCGA GCGACTCCTTTTCCCTACATCTCCATACCCGTTTTCCCCCAAACGATCGCGCGTGTGCTGACTGCCCTCAATGCAGCCCCG CTAGGTCCCCCACATTTGCATTCTAAGTGTTTCTATAAGTGCTTGTCCCACTCTGATACCATT TGTCACGGACTTAGCTAG TTTTGCCTAAGTCGTGCGGCACCCTTGCGTGTCCGTCCGCAAAGGTCAGCTTCCCCGAAGCCTCCCATGGTCCCTTAGGAC CTACGAAAGAGAAAACGGGTAAGAGAGAACGCCTCACTCGGGATCCACAAGCAAACATTCCAAGAAACACGTCATAGACAA TGCAAATTATAAACATATTTTACAAGCTCTGAATAGTTGCACAACAAAGGGTCAAAATGATCCACTATAGACCGAAAATCT СTCACAAGTGTCCAAATGACACAACCTTTATTTCCAAGCCTAAAGTGGCCACCAAACCCAACTAAAATGAGACTATTAAGC СTTCAGCTATCССTСTACATGCTAGGTAAAATATGAACATACCAAAAGACACGGACATACATAAGCATTACATCAAACATC TTGTTTAGAAGTTTGTCCATGACAGGTT

MbLAR5 4449 bp LARD-like element Musa balbisiana (FN396604.1) from 28462-32910 bp

ATACTGTCACGGACTTAGCTGGTTTTGCCTAAGTCGTGCGGCACCCTTGCGTGTCCGTCCGCAAAAGTCAGCCTCCCCGAA AССТСССАTGGTCССTTAGGACCTACAAAAGAGAAAACGGGTTAGAGAAAACGCCTCACTCGGGATCCACAAGCAATCATC TCCGGAAACACTTCTTAGACAATGCAAATTACAAACAAACTTTACAAACTCTGAACAGTTGCACAACAAAGGGGTAAAATG GTCTACTACAGACCGAAACTAAAATGGGACTATTAAGCCTTCGGCCGTCCCTCTACATGCTGTTCAAAGCATGAACATACC AAAAGACACGGACATACATAAGCATTACATCAAACATCCTATTTTGAAGTTTGTCCGTGACATTCTCCCCCACTTATTCCT TCGACGTCCTCGTCGAAGCCTTTGCCGACACTGCAACTCCTCGCCTTTGCTGAGTCTTCAATCTTCTATGCCAGCTGCAAT GCGCCCCTTGGCTCCTAGCTGCTCTCCGCTGCTGTTTTTGAGTAGTCGAACCTTTGATCCGCCATACTGCTTCAACTCGCC AGTGACTCTGACTTTTGTGTGGGGTTGGCTGAGTTGTGTTGATCCCTGTTGGTTCCTACGGATCCTCCAGATGAAGAAAAA GACCATCCTTACTATGCGCCAGTCTCTCAAATGCCTCATGATGCTTGAACTGGGTGGATGCTTGTTGGAGCTTTAACGAGC ATCGCCTCGCAAACTTTTGAAGTTTTTGGGTCCTTCCTCTACAAAATTTGTTCATCGACTTTTCTTTCACTTAGTTGTCAT TTTCAAGTAGATTCGCATCACTTCCGCTTTCGATTGGCATTCTGTTAGGAAATGAAGCAGATAATCTACTCTCAGTAGCAC TGATCACCATTGGTGAGGATTTGACAACTATTGTCTTCTAATATCTTCGAAGGGCCTTTGAACCTGTGTAGAGCTCCTCTA CTGGATAGATAAGAGAATTGGGGTACTCGGTTTCGCCCATTCTCTTAAGAGTTGAGAAGGCAATGGTTACTTGACTTCGCC CGCCTCCTCAAGGGTTGTACTCCATGCATCGAGCTGGTTACTGGTTTTCGCCTGCTCTTTGCTCACACTTCTGAAGCACTC GAAGTGTTTGCACTCCTTGCGTTGAGTTAGCTACTGTGATTCACCTTCTCAATGCCATCGAACTTCTGGAATGCAGGAAGT TTTCACCCCAACTTGGAGTAAGTCTCTAATAGTTTTGGTCGCCTTTGGGATTGTACCGTCTTCTTCATCAACCCTGCCGCC TACTCCACTGAGTAGCAAAGGTACAGCACCGCGTACTGCCTGCTTCGTTCCTTGGTCGTGCACTCTTGCACGACCCGAAGT CCTTCACTTTCGGCTATCTTGATGAGAAGCTCGTTGACACCGGTCTTATGAAGTCCCTTGGCCTCTGCCCTTCAGCCTTGT CTTGGTACTTGGAGTTTGCCTCTGCATGCTCCACCTTCTCGGCCCCATTCACGACCAAGCACTCTCCCCCCATGAGAGCAA GGGATCGATGACTCCACAGAAGTTCCACCTCTGTGGTACCATGGCGCTGCCATGCCCACGGCTCTACTATCCGTCGCCTCA CATCTGCATCCCTTTCTTCACGATCGGTAGATATGTCTCTGTGGCACTCCTCCGAGTCCACCTCCATTCTAACCGATGCTT GATTTTGGGTAGCTAAGCCCCTCTGGACTCGTCGTCGCTTCCTCGCCCCTTTCGACCCCTTGCTTCAACACCTCTGTGTTC TCCAAGCAGATCCCTTTGGTCGATGGAAAGACAGACTGCAACTCCCATGCATGGCCTCTGCCATAACATTGTAGGGTTTAC ACCGATTCTGTTCTCCTTAGCTTCATTGGTAGCAACGTTCGCTTACTCGACCTTGTCCTTTGACTTGCCGAGCTCCCTTAA GCGAATATTGGCTCTGGAGCAGTCCAACTCTCCAGCTGCTTCGATCATACCTCTGCATGATCAAGTCCCTCTCATGGGACT CACTGGTACTTGCATTCGAACTTTTTCCGTTGGTAGAACACAGCCCCCATATGCTGATGACCAAGGCTTTCATCCGATGCA AAATTCGATGCACGCACGGAAGACCCGCCTCTGCGGTACCATGGCCTTCACTCCTTGAATCCATAGCCCTTCTTACCGTCG TGTTGTTCACCGAAGTGAAGCTGCCAGTAGCTCCTGATCATACCTCCGTATGATAAGTCCCTCACGGGACTTTACCCGTGT

GTATCGCATTGCCACGAACTGTTCCACCACGATCCGCTGCACCATGTCGCCTCCTGGTGACATCTCTATTGCCTTCTGATC CTTGTGGAATGAACTCGAATTGTGGTCCCTCCATTTGTGGTCTCTGCCACCACATTGCAGGGCCTCTTCCACTTTTAATTG TGTTCGCTCCTTTGGCAATCGACCTTCGTCCACCCGCTCTTGGGTCACACCTAGACGAAGCACCGCTCTAGGACAGTCCAT TGCCTAGTAGCTCCCGAAGTCCACCGACTTCGCTGCAATTAGTGCACCATTGTCTGGATCCTGGGCCTCTGCCCCTACCAG CCCAATCTCCGCTGTGCACCGCTCCCTTTCATGGCAACTTGAATGGCAACACTGTGGCATATTCTTCAAGAGTACCCGCCT CTGTGTCCTCTTGCCCCGTGCCAAGGCCTTCTGAACCCAACTTTGCCTCCGCAAGCTGAGTCGCCTCAGTTCCTCCATCAA ATGCTTCTTCGAGATAAGGTGCATGTGCCTAGAAGCTCCCTTCGTCTTTGGCACCATGCAATCCGAGTCCGCTCTATCAGA AATAAAGGACCCATGGAACAACATGATCCTGCTCTTGCCTCTACAAGAGTTCATGTCCTTGACCTTTGTCTAAGGAAAGCT CTGCGCCTCCGCTCCATGTTCCCACTTCTATGCCGACTCACTTCATGCGACTTGGGTACTTCGCTAAGTTACACCCAAGTT GCTTCGCTCCTCGTTTTTGTCATTGAGTTGATGGTGGCCCTCGCGCCCACCATTCCACGGGTCAGCCCTCCCTTGAGTCTG ATCTCTATATTGACTCCAAGTGTGCCTTCATTTGTGTTGCTTTGGGTCGCTCCCCCACTTGATCTCGCAATGCATCCACCG ATGCATTCTCTTAAGCGAGATCATACGACGACTCCTCGCCGCTCGCTCGGTCCATTGAGCTTCGTGAAGTTGTTGTTTTTG AGGTACTACTCCTCAACATGTGTAGTCTATTGCACGTGATTCTCCCTTTGGAGAGTCGGGATTTATCCCTCCTGGATATCC ATCCCGTTGGAGCAACATCTCTCTTCGTTTCGGAGACCACCATCCCCTTGGACTACTCCGATTTGCTGAACAAACTGCGCA TTGTTCTGCCTCCTGCAAACACACTTGCTAGATTGCGATTCCACGTCAATACAGCCCCCACTGCACCACTCAAGGCCTAGC AACATGCTGAACTCGCTGCACACTTCAGCCTCCTACGGACGTATCCTTCACATGCCGAAGAGAAAGTTTCAATGCTCCATG GAGCCGAGTTTCGGTCGCCTTGGGATGGTCACGAACATTCCGTCATCCGCATACAAGCCCTTGCATGAGTACCGAATTTTT CGAGTTAGCAATTCCCCTCACCTCTGTGAGCTTTGCACAACTCTTTCGGTCGCTGAGCAACTCATTCCACCTTGCATGATC TCATCCTTTACCAAGCGCCTCGCTTGCCGTGAGCACCATCAAGTATAGTTGCCAACGTTGAGCCATAGCTCAAACTCAATC ATCCCAACCTTTGTGCGCTTCGCATTCTTCCCAGCTTGCTCGTTCTCGTGGTGCCTCTCACGCGAAGGGTTGGCCATTCCT CTGAATGCCAATCTCAGATGCTCGCTCCTCTTAGCGACTCTATTTCCCTACATCGCCATGCTCGTTTTCCTCAAAACGATC GCGTGTGCTGGCTGCCCTCAATGCAGCCCCGCTAGGTCCCCCACGTTTGTATGCTAAGTGTTTTTATGAGTGTTTGTCCCG CTCTGATACCATC TGTCACGGACTTAGCTGGTTTTGCCTAAGTCGTGCGGCACCCTTGCGTGTCCGTCCGCAAAAGTCAGC СTССССGAAACCTCCCATGGTCCCTTAGGACCTACAAAAGAGAAAACGGGTTAGAGAAAACGCCTCACTCGGGATCCACAA GCAATCATCTCCGGAAACACTTCTTAGACAATGCAAATTACAAACAAACTTTACAAGCTCTGAACAGTTGCACAACAAAGG GgTAAAATGGTCCACTACAGACCGAAACTAAAATGGGACTATTAAGCCTTCGGCCGTCCCTCTACATGCTGTTCAAAGCAT GAACATACCAAAAGACACGGACATACATAAGCATTACATCAAACATCCTATTTTGAAGTTTGTCCGTGACAATAC

CHAPTER 9
MOLECULAR CHARACTERIZATION OF DNA TRANSPOSONS AND NOVEL MOBILE INSERTIONS IN MUSA

MaN-hAT1: 273 bp non-autonomous hAT in Musa acuminata (AC186955.1)
TCCCTGAGCAAGGTCTGCCATACCGTACCGTACCGGCGTTTCGACCCGGGCTCGGTACGGTACCGGTGTACCGGGCAGTAC ATCAGGGTGTACCGAATGGTACACCCTGATGTACCGAACAATTTTATACTTTTTCATACTGTAGCAGTGCTACAGTATAAT ACTGTAGCACTGTAGCGGTATCGGGCGGTCCGCGTACCGGTAACCTGTCGGACCGGTACATACCGCCCGGTATCGGCGGTA CGCTTCGGTATGACAGACCTTGTCCCTGAG

MaN-hAT2: 874 bp non-autonomous hAT in Musa acuminata (AC186955.1)

GTGcTAaCCAGTGATTTaAAaAGCGCTAAGCGCCAAGCGGCAAAATGCGTCAAGGTCAAAAAACGCCCGAGGCGCTAGGCG CTCGCCCAAGCGAAGCGAGACGCTAAAATATAAAAATATATAATATAATTAATAAATATAATTATTTAAATAAAAAATATG CTATTAAATAAATAAAATTTAATGGTATTAAAATCAAAATAATATATTATTAATCTAATAAATAAAAATATTATTATTAGT ATATAGTTAGAAGTATACTGTTAACAGTATAATGAGAAGAGTGTGAGAAGACCGAGGCTGCTGTGGCAACGACAGCGGTAG CAGGTGGCAGTCATAGCTGGAGCGAGAGCAGCGAGCGACGGCAATAACGAGAGCAACGACGACAGCGGGAGCGGGAGCTGC GAGTGGTAGCGGGAGCGGCGATAACAGCGACGAGTGACGACAACAACGACGAGCGACGATTATGGCAGCGGCGAGCAGCGA TTGTGGCAGTGGCGAGCAGCGACAATAGTGGCGAGCAGCGACAGTGGCAACGACAACGGAGAAGAAATCTCGGCGGCAAAA TCGTGAGTGTTAGGGTTGGGGAAGTCGGGGAAATCGCGAGAGAGAGCCTGATATCGGTGATTTAGATGGTTCGATTGAACC AACTAAAGCATTGGAGACCAACCAGACCTAAAAATCTGGTTCGGTCGCCTGGTTTAACCCGGGCGCTCGCCCGAAGCGCCC GACGCCTGGGCTCGGGCGAGCGCCTAGGCGGTGCCCTCTTTGAAGCGAGGCGCCTGGACATGAAGCGAGGCGCTCGGGCCT CGTCTCGCCTCGCCCGAGCGCCTAGGCGGGCACCCGAGTGCCTaTTgAAATCACTGGTGtTAgC

MbN-hAT3: 1292 bp non-autonomous hAT in Musa balbisiana (AC186754.1)

GTTGCAACCAAGGTCTGCA TACCGAATCATACCGCTTGGTATGGGCGGTACGTACCGGTCCAACAGGCTCCCGGGCGGTAC GTCCAAAAACCCCCCGTATCAGACAATACGGGGTAATATCGGGCGGTAACGGTCGAAATTTCGATCGTTACCACCCGGCAC CACTCGATAACGGTTGAAATCGACCATTATCGCACTGTAGCAGTGCTACAGTGCTCCAACGGTCAATTTAATCGTTGGAGC ССТТTСТССТССТАТTTAAACCATTCTTСТСТССССТАТTTСАТTATAСТСТСТTAAACTCTCTCTCAAACTTTTTTTTTC TCTCCTAAACTCTATAAAACAACGATTTGTAAATTCAATCGAGGCTAATTTGGGAAGATTAAGAGGAAGAACTTTCTAATC AAGAGGTATGTATTCGTTTTCTTTAATTAGAGAGTAATTAAGATTTTACACATGTCACTCAAGATTCAGATCATGGAACTC GACAAAGTACTAGTCAAGTTTATGCGTGGAAGGGGAAGGCAGTGGATGAATATGAACAAATGCGACAGAGCATACATGATA TAGACACAGAAAGAGGCTCATCGTATTCACAACCATCGTATTATGGAGAATTATACGAGCAACAACAATATGGTGATAGAT GGTCATCCTTCTCTGAGCAACAACATGATACAGAATAGCACCAATATATGCCTCAAGAGCTGCCTCGGATAAATATGATTC ATGACGATCAATCTACGATCAGCACCACATTGATGTATCAATGGCATACGGTGTATCAATACACTATGTCATGTGATCAAT TTCATGATTGAGTCTAACAAACGTATCATATTGATATGTATCGAATCGAGGACCCAGATCCACCACCCGTGGAGGCTCGTC GTTCGTTTTGGTGGTAGAATCAACAATCAGGTATATCTAGATATGTGATTATTTAATTCATTTGAATTTTAGAGTTTATAT TGTAACAAAATAGTCTAACAATTCAACTGATTTTTCTGTAGATATTTCAATATATAACGGGCTGAAATACGAACCTCGAAC

Appendices

AAGACTACCTCAAAGCCCGAAAAAGATATATGATACTATTCTTACCTAATTTACATTGATTTTGCTAAACTTATACTATTA CTATATTTATTTGTAACTTGAAAATCCTATCCTAACTTTTTTTTTATTTTCAGGTTCGGAGGGTTAAATCGATGAAATCAG GTGTACCGCTCGGTACACCGTAACGAGCCCGGGTCGAAACGCCGATACGGTATGGTACGGCGAACCTTGGTTGCAAC

MbN-hAT4: 524 non-autonomous bp in Musa balbisiana (AC186754.1)

TTCAAATGCAAGGTT TGCTGTACCGAATGATACCGCCCGGTACGGGTGGTACGTACCGGTCCGACGGCATACCGGTACTCG GACCGCCCGCTACCGGGCGAAACAAAAAATAATAATAATATTA TATATATATATATATATATATATATTAATTAAAAAAAAAGCAATGTTCGGTGACGTTGCCAAGGCGACGTGACGTCGATAT ATATATATATATATATATAAATAAACGAGGCGACGTCGCCCCGTGTGGGGAAGGAAAAGGCGACGTCACCGAGGCGATGCG ACGTCGCCTTTTAAATAAAAAAAAAAATATATAATCTTATATATATATAGACTCGGCGACGTCGCTTCGACGACGTCGCCG AGTTATATATATATATATATATATACCGAGCGGTATACCATTCGGTATACCGTTCCGTACCG TACCGAGCGATCGTCGAAA CTCTGGTACGGTACGAAATTTCAGACCTTGTTCAAATG

MahAT1: 5204 bp autonomous hAT in Musa acuminata (AC226051.1)

TTTTCAATCAAGGTTCGTTGTACCATGGTATATCACCCAGTATGGGTAGTACATACCAATCTAATAGGGCACTGATATGCG GATCACCCCATACCAGACTATACATGTTACATGACCCTATATACGGGGCTTGTATTAGTCGAAATCCGAATGTTACTGACT TGTACCGATCGATGACAGTCGAATTTCGACCAATACCGATCAAGGGCTGAGATTGCCCTATTTCAAACGATCAATTTGACC ATTTAAACCCTTTTCTCCTCCTTTTAATCCATTTTACATTCTTAAACTCTTTTTCACTCACATCTCTTTCTCATTCTCACA TTTTCAATACTTAAACTCAACAAAGCTACGATTTATGATTTAGATCAAATTTGGAAGGCTAATTTGAGAGGATTAACACTT AAGTTAAGGGAAGAATACTCTATTCAGGAGATATGTATTCTCTTTTTAGATTTTTGTTGATTTATGAGATGATTAAGACTA TTCTATGTGGTTAATGTTTAATATATTGTTTGACATATTTTTAATGGTAAAATATTGTTAATTAAGGAGTAATTAAGGCCT TTAATATTGTGATTAGTGTGTTTAATATTGTTTTTTTTAATTAGACACTTAATGGGTCAAATCATTATATTTCATGCATAT TAAGGTGATTTACATCTTTGTGATGGTATAATAGATTTAATTAGGTTTTAATTAAGTTTTTTAATGCTATGATTAGTGGTA TTAATGATGATTTAATCAAAGAGCCGTATTAGGTCAATTCAATGTCTTTAATACCTATTACAATGTTTGACATATTTATAA TGTGAAAAAAGACTAATTAAGGATTAATTAGCTATATTAATGCTGTGATTAGTGTATTTAATTACGATGAGAACAAAATTT GACTCATATTGGATCAATTAAATGTCTTTTAATGCCTATTAGAGCATTTGACATGTTTATAGTGGTGAAAGAAAAATAATT AGAGAGCAATTAACTATGTTAAAGGTGTGATTAGTGTATTTAATGATGATTTAGTCTTAATTTAACCTATATTGGATCAAA TTTACATATTTAATGCCTCTTAGGGTGTTTGACATATTTATAGTGGTAAAATAAAGTTAATTATGGCTTGATTAAGTTGTT TAATGCTGTAATTAGTGTATTTATGATAAATTTATCATTATTTGACCTATTATTGGGTCAATTTCATGTATTTAATAATTA GAGTGTTTGACTCACAATGAGGCATCAACAACTTGACTCACAATGAAAGCGTGGCGATGGTAGTGGGTCTGCGCCACAAGG ATTTCAAAGGTCGACCGACATGAGACAGCTAACTGCCCCTCCTCAATTGAGTCAGATTGGTAGCATGAGGCAGGGTAGAAT CCATGATTTTATCAAAAGACTTGGCAGGAGATCAGCATCGTATATTATTAATATTGATCCGTAAACATATCATCCACAAAC AGCAAAGCAGACATGGATTGACGATGCATATACAAAAGAAAAGAAGTGAGATATTAGGAAGGCAATTATAAAATAATTCAA CTTCCACAGGATTCCAACAAACACAGCCCACGATTCATATTATCAGAGCATGATCTCCTCTATTCGAAAGGCTAACACAGG GATTCAACCTCCAATATTCAAGGAGAACCACGATGTGTATTTAGATGAGGAAGTGGTAAAATTAAAGAATTTGATCAAATC CTTCAAGAGGCAATGGGACGAATATGTAGTGATAGTTGGACAAGACCAACAAGAATGAGTATCATCAATTTTCTTATGCAT TACAATAGACGAGCAGTTTTTCATAAGTCTAATTAATGCAAACTATATTGAAAACATACTTAACACTATAGTAGAGGAAAT CAGACCATAGTACATTATCCAGATACTCATCGACAATGAAGCCAATTTCAATAAGATCAACTTATAATTGATGGAAAAAAG GAAAACATCGTTTTGAACTCCATGTGCAGCTCATTACATAGATATAATGCTGAAGGATATTGGCGAGCTACCATTAGTCAG CAAGTGTGTAGCTAAGGAATAATCGATTATAAAGTTTACATATAATCATCAGTGGGTCCATTCTTTTATGCAAAAGTATAT AAATGGTGAGATACTCCGACCTGGAGTCACTTAGTTTGCTATAAATTTCATTGTCTTAAAGTCAATACTCAATACAACAGA AGAGGCAAGGTCTCATGACAATTGTCACCTCACAGAAATGGTCCGATTATAGGAATTCAAGATCGAGCGATGGAAAAAATG TAAAAAAGACTAATCTTTCTTCTAAATTTTGGGATACCGTGAATGAAATTATAACAAAAGTAGAACCACTTTATGTTGTCT TCCGTAAGATCAATAAGGACAAGCATCCCCAAATGCCTTATCTTGACATATGCTGATTACAGCAAGAGAGGAGGCTAAGAA AGCATTCATAGATTATTTTAATGTTGATCAATACTTATAGATCATCGATCGTAGGACTGAAGTTCATATGAACCAAGACAT CCATAATACAAATAAATTCATATTCAGTGTAATTTAATTCATAAGTTTTGATATTTAAAAATTTCTTACTAACAAAATTAT TTGTCTTGCAACATATTATCTAAATTCAAATATTCAATTTCGATATAGTCTTGAAATATGATCAAATTTATTATTGACACT AAGAAATCTTATATATTGACTCTTGCCAAACACCATCGTTGCAACTGATGCTATTATGGAGGGCCAATTATTCTAGTTCAT TCTCCAACATTGTAGTTGTATTGTACGTTAAAATATGAATCCTGATAAAGAAAAATTACACACATGTTAATTATAAACTAT ATATGACATTATTTGTTATATTAATAAAGTTCAATTTATATCTTTTTTGCAATCAAGTGGTAGCTACAATATGGAGGGGAT ACACCAAATTTAAGGTTGTCATCTATGTAGTATGTACTTCTATAAACGATGACATCAAGTGATTGTAAACATAAATGGTCA ACATTCACATTGATTCACATGAAGGTCTACAATAGACTATCGTATAGACGATTGGAGAAATTGATATATGTCCACTACAAC ATGTGACTAAGGTTGCAGTGTGCCAGGCTAAACAAGGAAATAGGATGAAGTGGGTCAAAGCAACAAAGAACCAAAAGGATC CTTTACTTGATAAGGCAGGAGATCCTCCACGCGCTTCATGTTTTTTCATCGAGACAATAGAAGAAAATGAAGCACATCCCA ACAGGAGGAAGATCCCCCTCGATCAAATGTAATGGAAGGATCCGGACAACATCGAATCAGACTACTTGAGGAACTAAAGAC AACTAATAATCAGAGTCGTCCGCCCAGTGTGCAAATAAAACGACAAAGGGGAAGATAGTAGAATCAGTCGCACCGTTAGAA AGAATCGAGTCGGACGACGAGACACCTCCATCACATTTATCAACACACTCGATTCATAGACATGGTAGCGACGTGAACAAC AATGCCTCAACTAATGAAGGCGACAACGTCGGGGAGCTAATGATCCTGTCTACATAGTTTGAGGGTGGTGTATGGACCGAG GACCAATATTTTATGTATGCCACTCAAGATTGATATCATGGAACTCGATGAAGTACTAGTCAAGTTTATACATGGAAGAGG AAAGGGAAGGCAATGGATGATTTTAAACAGATGTGACAAAGCCTATATGATGTAAACACAGAGTAAAGATCATCGTATTCA CAGTTGTGGTATTATAGAGAATCTTATGGCCAACAATAGTACGGTGATGGTCATTCTTCTCCGAGTAGTAGTACAGTGATT GCTCTTATGATACGGATAGTAGATCAATGACGAAAGTAAAAGTTCTGATATTCTCCATGCTTTGCACCAATACATGTCACA ATTATACTTGCGTTAGGAGCCGCCTTAGACATGTGCGATTCATGACAATCAGATTACAACCATCACTACATTAATGCACCA ACAATATACGGTGTATCAACATATTATGTCGTGGGATTAATTTCATGATCGAATCCAACAAACATATCAAATTGATATAAA AATACATAAGATCGACGATCTCGATCTACTGCCCGTGAAGTCTCATCTTTCTTTTTGGTGATAGATCAGATATATCCATTG ATAGATTACTTGATTTATTTGAATCTTAAAATTTAAATTATTTAAAAAATAATCTAATAATTCAAATCATTTCTTTGTAGA TAATTCAATATCAACGGAAAAACGATTCGAAATGTGCCACAAAACTACTCCTCAAAGCTTGAAAAAAGATGTCACAATTCT

Appendices

TTCCTAATTTAGATTATTTTTTGCTAAAATTATAATAAATTTATATTTATTTCCAACTTAAAAACCTAATCTACTTTTTTT ATTTTTTAGAAATTTTTGGAGTTATTTTCGACCATTTTTTCTGTGGCATCTATACATGACACTGTACTAACACATGGTATG GTAGTACAAATCCATATGTACTATACCGACAGTCAATAAGTACTCTGGTATAGACCCATAAAACCAAGCGAAAGCAATAAA GTACACACAAATTGAACCTTCAGACCAGATTGTTAAGAAATTATACAACAAAATATTTTAATTTGGAACAAAAAGAAGCAG AATCAGTTTATGACTGTTCAAAAAATATGCCACTGAACCTAAAAAGGAATGCAGTTTGCTTGCCTGGTTATGATAAAAAAA TCACCAACGTTTAATAACCATCTAGATGGCTGCTTCTAACAACACTGCTCCAATACAAATATGGTAAGTTGAATAAACTGT TCAGGCTTCATTGAGAAAATTTTGATACTCAATAGGTGTCCATGGTCCAGACTAGCTGGGTAACATAACCAAACTCACATT AACAACTTGGGAAGGTGGATTAGGTTGCAATATCCAATACAAGTTTAATAGATGATCAAGGCTCAAATTATAGTTACTGAG TCCTAGTAAGATCCACAAAATCTAGATTACTAGAGAGCAATTCTAGAAATATAATTTCCTTTACAATCCATGATATAAGGT TTCAAATTCCACAAAGAATTCATTAAAGAGTTAAATATTGTAACCAACTTCTAACATAAAAGACTTAAAAACTACCTAAAA CCCTTAAACACTAGGATAGTAAATAATTTTACAGAACTACTTAGGTCTGGCCCCTGACTTATAATAGGAAGGCTAAGTGGC CCAACAACCTTGTTCCAAAA

MahAT2: 3336 autonomous hAT in Musa acuminata (AC226047.1) from 34728-38063 bp

GAAGGAAGCAGTGATTTAAAAAGCGCTGCGGGCGCTCGCCTAGTAGCTCGGGCAAGGCGAGGCGAGGCCCGAGCGCCTCAC TTCACTTTCAGGCGGCGCGCTTCAAAGAGGTGCTGCTTGGGCGCTCGCCCGAGCCAAGCGCCCAGCGCCTGGGTTAAACCA GGCGACCGAACCAGGATTTTAGGTCTGGTTCGATCTTGGTGCTTTAGTTGGTTTAATCGAACCAACTAAAACCGATATCAG CTGTCGCTGCCCAACCCTAACCCTGCTCGTTGCCACTCTCGCTCCCGTTGCTTGCCACTGTCGCTGCTCGCTACCGTTGCT TGCCGCTGTTGCCGCTCCTGCTCCCACTCCTGCTCCCGCTGCTCACCGCTGTCGCTGCTCGATGCCGCTGTCGCCGCTCCC GCTGCTGCTGTCGCTTCCTCTTTTCTCAATCAGCACCCCTTTACACTCCTCTTCCTTCTTCTCCTTCTATATACTGTTAAC AATATACTAATAATAGTATTTATATTTATTAGATTAATAATATATTATTATTATTTTAATACTGTTAATTTTTATTTATTT GAAATTATTGTTAGGTTTCAAGATAAATGACAAGTGTACAGAGCAACTCAATAGTCTCCAATGGCATCAAAAAAAGATCCT GCATGGAAGTATAATTATCTGAAGGATCCGAAAGATCATAATGCAGTGACTTGCATATTCTGCGATAAGACTACTAGAGAG GGTATTTTTCGTGCAAAACAACATCTAATAAGAAATTTCAAGAATGCAAAACAAAAAGTGTCCACCTGAGGTAAGAGAAGA GTTACTGATATATATGAATGAAAAGAAGATACAAAAGAATGAATCTTACGGGAATTTACCAGAAGACAATGTTGAACATCT CAGGGATGAAGAAGAAGATTATTTTATGAGTATTAATCCAAGTAGAAAAAAAGTATACGACAAAAATTGAAACGAAGTTAT GAGTACTAAGAAGGGTAAAAAAGGACCAATGAATCTATATATGTTTCAAGGATCCCAGAAACAACAAGGGCAAGTAGGAGG CTCAAAATTTAGACAAACAAATATAAGTGATGCTTGTGATAAAAAATAAGAGGAAGAACAATTCAGCACATTGCTCGCTTC TTCTATCACGTTGGTCTTCCCCTTAATACAACTCGTTTAGACAGTTTTAAGGATATGATTGAAGCTATTGGAAGATATGGT GTAGGATTAAAACCTCCAAGTTATTATTATGAGATGCGAGTTCCATTGTTGCAAAAAGAGTTGAATTATATAAATGACTTA CTAAAGGGTCATAAAGAATCATGGGCAACACATGGTTGCTCAATTATGTCAGATGTTTGGATTGACAGGAGGCGTAGGAGT ATAATTAATTTTATGGTTAATTGTTCTTTAGGGACTATGTTTGTGAAGTCAATAGATGCTTCATCTTTTATAAAATCTGGA GACAAGATATATGATTTACTTAACAACTTCGTGGAAGAAATTGGAGAACAAAATGTCATTCAAATCATAACCGACAATAGA AACAACTATGTATTAGCTGGTAATATTCATCTTTTAAATTTTTTTAATTATTTTATCTTCAATTAAATGTGTTAAACTCTT AAGTCTTATCATTTTTGTTATCCTTTGTCTCAGGTAAATTGCTTGAAACAAAAAGACGACACTTATATTGGACTCCATGTG CAGCACATTGTATTGATTTAATGTTGGAGGATATTGGAAAGATCTTAGACATAAAAAAAAACCCAAGAAAGGGCAATTTTT GTTGTTGGATTTCTTTATAATCATTTTGGGGCTTTGAATATGATGAGAGAATTTACAAGGAACAAAGAATTAGTGAGGTAT GGTGTCACCCAATTTGCTACTTCATTCTTGACATTACAGAGCGTGCATCGTCAAAAACATAATCTGAGAAACATATTTACC TCTGAGAAATGGGTGACAAGCAAATGGGCAAAAGAAGCAAAAGGCAAGAGGGCTACTGATATCATCTTAATGCCATCCTTT TGGAATCATGTAGTTTATACATTAAAGGTAATGGGCCCTCTTGTTCGAGTCCTTCGGTTGGTGGATAATGAAAATAAGCCT GCAATGTGATATATTTATGAGGCTATGGATAGAGCAAAGGAGACGATTAAAAGATCTTTTAATGAAAATGAAGAAAAATAT GAGAAAATTTTTATAATCATTGACGAAAGATGGAATTGTCAACTTCATCGTCCCTTACATGCAGCAGGATATTATTTAAAC CCTTAATTCTTTTATAAGATTAAATCTGTTGGGTTTGATGCATAAGTTTTGGATGGGTTATATCAGTGCGTTGTAAGATTA ATTCCCAGCCTTGAGGTTCAAGGTAAGATTATTCATGAATTATCTTTATATAAAAATGCCGAAGGTCTTTTTGGAATTCCA ATAGCCGTTCGATCCAGGACAACTACGTCTCCAAGTATTAATAATTTGATATAATTAATTTCATATATATTATGTTACTAT GTTATTGCTAATAATAACATAAATTTTATAGCTGAATGGTGGAGTCTATTTGAAAATTCCACCTCGAACTTACGGCAATTT GCTATCAAAGTACTTAGTTTGACATGTAGCGCTTCGAGTTGTGAGCGAAACTAGAGTGTCTTTGAGCATGTAAGGATCACC AAATATTTTTGTTTTAATTAATTTATTTATTTAGATAGATGTATTAATATATTTTTAAATTATATGACATGACAGATTCAC TCGAAGAGAAGAAATCGGTTGGAACATCAACGATTGCACGATCTTTTTTACATAAAGTATAATTAAACTTTGAAGGCTCGT CATAGATTGACATAAGGAGATGTGGCAAGAGCTTCAGGTGCTGGAGAATTACAAACATATACAAGACAGATGACAAAGAGA AAAATGAGTGCAAAAGCATCAAGCTCGGCTCTTGCTATTATTGAAGACATAGAGAATGAAACATATTTTGATGAAGAGGAA GAAGTCGAAGGACAAGAGGAAAATGACGAATTTAATGAAGATGATTTGTGTGAAAATGACGATAATATTGATTATGATGAA TGACTTTAATGTAAAATTTTATTATTTTGAATTTTGAAACTTTTTGTTAATGTGACAATGTGATTTTGTATCTTAGATTTT CTTAATTTAATAGCATATTTTTATTTAAAATTTTAAATAATTATATTTATTAATTATATTATATATTATTATTTTTTAGCA TCTTGCTTCGTTCAGACGAGCACTTGGGCCAACGCTTAGCGCCTCGGACGTTTTTGGACCTTAGCGCTTAGCGCTTTTTAA ATCACTGGAAGGAAG

MaMITE1: 781 bp Mutator-like MITE in Musa acuminata (AC186955.1)

ATGCGA TGTCACGGCCTTAGCTGGAATTGCCTAAGGCGTGAGGCACTCTTGCAGCCAAGACGCAAACTTAGCTTGCGTTAC CTAAGTCGCGAGGCACCCTTGCGACAAAGACGCGAACTTAGCTTGCGTTGCCTAAGTCGCGCTTCGCCCTTGAGATATTGC TCCGCAAAGATCAGCCCACTTGCAACCTCTCGCAGGTCCCGAAGGACCTGTAAAAGAGAAAG TTGATTAGTTCGAAAGAAC GAGCGACGGACAAGTCCTAACATCTCGCGAAAAGAGGGGAAGCTTTACAAGCAATTCAGCGAGCATCTTGTGTGCACAAGA GAAAAGAAGAGAGGGAAAAAACAAAGACTTTAGAGGGTTGAACGAACAGCTGCAACGGGTGCCGGGCGCGACAACAAGTTC CCGTCAAGGTAACGTGCGAACTTGCGAAAGGTTGTTCAACACCCGACACCCGGTGAGCAGTTGTCTGCGGACTTACAGTTG TTCGTTCAACCCTСTAAAGTCCTTGTTTTCCСССTСTСССTСTTTTCTCTTATGCACGCAAGGTGCTCGCTAAATTGCTTG TAAAGCTTCTCСTСTTTTCGCGAGACGTTGGGACTTATCCGTCGCTTGTTCTTTCAAACTAATCAAGACCTGCGAGAGATT

CCAAGTGGGCTGATCTTTGTGGAGCAATATCTCAAGGACGAAGCGCGACTTAGGTAACGCAAGCTAAGTTCGCGTCTTGGC CGCAAGGGTGCCTCACGCCTTAGGCAATTCCAGCTAAGGCCATGACAATGC

MaMITE2: 664 bp Mutator-like MITE in Musa acuminata (AC226196.1)

СTACTATAGGGGTTAATTGTAGTTAGACCTCCTTGGCATCTCGATTCCTATATTTCAAAAATTTAATTAGCATCTTTATAG TTATGAAAGTGAAACATTTAACCTCATTTATTCTAATACCATCGGCTTTACCGACGAAAGATATAACACATGATAGCATAT ACAGAATTATTGATTTTACTAATTATAAAATGATCATTTCAGGTAATAATTAAAAAGTGAAAGAAAGCAGCCATTGACTTA GGCAGTCACATAATTGGTTTCTTTCCCAATTGGATCTCTTAAGGTTTACAGCAAAGGTCCTCTACAACGTGGCAATGCTAA GTCAGTCT TAAACCCTAAGAGATCGATTTGGGGGAAGAAATCCCAACAGATCGATTTGGGGAAGAAATCAATCATACGACT AССТАААССААТGGССССTTTCTTССАССTTTTAATTAACACCTGTAATGATCATTTTGCCATTGTCAAAATCGATAATTC CGTACATGCTGTCATATGTTGTATCTTCCGTCAACAAAGCTGACGGCGTTAGGGTTGATGGGGTTAAATGTTTCGCTTTCA TAATATAGGGATGCTAATGTAATTTTTTTAACTCTAGAGATCAGAATGCTAAAGATCTCTAACTACATGGATAATTTATAA TTAGCCCCTACTATCG

MaMITE3: 1042 bp Mutator-like MITE in Musa acuminata (AC226047.1)
TTTGATTTCAAACTAATTACATATTACCCCCCATAGTTAGCTACCTTTAGCATCTCGGTCCTTACACTTCAGAAATTTACA TTGGCATCCCTATAGTTACGGTGAAACATCTAAGTCAATTTACCCATACACCATTAATTTTACCGATAGAAACATGAAAAT AAAGAGCAAAAAGGTACTCTTAATGTTTCAGTTGGTCATGGCAAACAACGTCAGTGGTGGCAAACGGCAACGCTGCGGGTG ACTGTTGTGGATGAGGAGAGCGACGATGAAAGATAAGGGTCGCTATGCATCTATATCGACATCGATGCAGTTGCTGAGCGG GGAAAGGGTCATTGATGCAGATGTAAAGTGATGCTACTCGGTATATGCATCGATGGCCCTTTTGCTCGGCAACTACGTCGC GCCGACGTAGATGCAAAGTTGCGTCGCTCAGCATCTGCAACGACGGCCCTTGCAGATGCAGAGTGATGTCGCTAGGCAACT ACGTCAACGTCGACGTAAATGTAAAGCAACGTTACTCGACAATTGCATCGACGTCGATGCAGATACAAAGCGACGTCACTC GACAACTACGTCGGTCGCTCTGCATTTGCGTCGGCGCCTACGTAGATGCAGAGCGACACCGCTTTGCATCTACGTCAACGC TGATGCAATTGTCAAGCGACGAAAGAGCCACCAATGCAGATGTCGAGCAACCCTTTAGCCACTCGACAATGCCAACGACGC CGACACCGATGCAGAGGCACTCTTACCTCTCACCGCTACTCTССTСАTССАTAATAGCCACTCGCAACTCTCAACAATGCC AССАТССGССАССАССGACGTCATCCACCATCGTCAACAAGAATGCTAAAATTACCTTTTTGTCTTTTGTTTTTATATTTC CGTCGATAAAACTAACAAGGTTATGGTAAATAGACCTAAATGTTTATTTTCGTAATTATAGGGATGCCAATGAAACATTTT AAAGCATAAGGACCGAGATGCTAAAGGTAGTTAAATACAAAGGGTATTCTGTAATTAGTTCTTTGATTTC

MaMITE4: 2067 bp Mutator-like MITE in Musa acuminata (AC186754.1)

TAATTACATATTACCCTTCTAATTAACTATGATTAGTGTTTTAATTTTTATATTTTAAAAAATAATATTGGGATCTTTATA СTTATGAAAATAAAATATTTAACCTCAATTCTTCGACGAAAAAAATTACAAAGTGTTATCAAATGAAAAAAATATGAACAA AAATAATAAAAATAATTTATTATCTTTTAAATTATTAATTTCATATAAACTTCTCACTCGTAACATAGAGTTTTAATAGAA ATTGCTTTTATTCTCTTCGGTTCCCTCCCTTTCGATTGTATTACAAATGACAAACTAGCGACGATGTCCGTAACGCGCAAG GCCAATGGCATTCTAAAAGAAATATGAGCGTTGCCTTTGACCATAATTGATTTCCTCCTCCCCTCTCTTTTGCACTAGCGT GATGTCACTAGTCCATGGCAACCAGCCCTTTGTCCTCACGATCTTTGCTAAGTTGCAATCAAGGAACACTGTCCACAAGTA CTCCTTCCATGGCCTCCCAAGGTACGTGCGGTGGACTGCAAGCTTTAAGTAGTAAAGTGTGAGGAACTCGTCGCTCTCGTT GATGGTGTAGTGCAAAACACGAAGTCGGTGGAGTGGGTGGGGTCGGTGCGATCGTGCACGGTGATGGTGTTGGACTCGCCG TGCTCGAGGTTAAGCTGGCGGGGGAGGATGAAGATGAGACAGTCACAGAAGAAGGTGACGGGGTTGCCAAAGATGAAGTCG ACGAAGCCAGAGATGCAACAAGACTTGTAGAATTGGCGGAAAGAGTGGGCGTAGAGGGTGTCCTGGTGGCCAAGGTACTCC ACCACCTGGTGCTTGTCCGACTTAAAGATGTTGGCGAAGGTCAAGTCTTGGGCCACGTCTAGGTCAAGATTGGACTAAGGA TTTGTGGCAAATTCTTATTGATTATAGAAAGGAAACTATAAGTGGTAACTATGAGGAAAGTTAAGTTTGTACTCATTGAAG GTGGTTGTGTTATAGGTGGAGACGTTGACTGTGTCAACGTTGAGGGAACCCGTAATGATTATTTTGCCCATCCCATCCCCG ATAAATTCCAAGTTCATCTTCTCAAATGACACTCGGATCATCTCCTCGTGAACCCCTTTCTTTATGTAGATTATGCATCGA TTGGCGTTGTGCTCTAGCGTAGCGTTGACCACCACCTATACCACTCCGAACTGGCACTCACCATCCTTGTAGACCGTTGCA TCTAACAGTGTCCTTGGTCGTAGGAACTCCTTCCGGATGGCCTCTCTGCTTGGTGATGTCGGGGTGACGTTCGGGCAGTAC CCATCCCTCTTGATCTGCAATAGGGCCCAGAGTGAAATGTCGACACACTACGGGGTGGCCACCATGGTGATGGCGCCGTCG ATGACATTAGTGAGGTTGGCAAGGAAGGCCATGGCATCTGCCACCTAGTAGGTATCGTTGATGTACTAGTGGGTAAACCAA TAATCGTACTGGTAGAGCTCCACGACATGTGAGCGAGCAGGTGCAATGGGCAATACTCGTACAGCACTGGGGGATCAGCAT TCTCTCACGTATAGAACTAGTTGCGATAGGTGAGCAAATGTGATAGGTGTTCATCTCCAATGGGCAAGCAAGATCAATAAA GGGGTGATGGGCAAGCAGGTTGGAAAGAGGACGGGAGGAGGAAATTAGTCACGGTTGAAGATAGCGTCCAGATCTCCTCTG GAACGCCACTGGCCTCGTGCGTCATCGATGTTGTCGTTGGTCTACTATCGACAACATAGTCGGAGGGGAGGGAATCGAAGT GAGGGAGAGCGATTTCTTTATTAAAGCTTCTACACTACAAGCAAAGAGTTTATATGAAATTAATAATTTAAACGATAATAA ААТТАТTTTTTTATСTTTTTCATTCGTTTTTTTTTTGTATGTGACAACACATATAATTTTTTCCATCAACGAAATTAATGA CGTGAGGAGAATTGAGACTAAATGTTTCACTTTCGTAAGTGTAGGGATCTCAATACTATTTTTTAAAATATAGGGATCGGG ATGCTAATCATAATTAACTAAGAGGATAATATATAATTACAT

MaSTE transposon in Musa acuminata (AC186955.1)

CATAATGTAACACCCTTGATTAGTCTCACATCGAAAATGGGCAAGATTAAGATTGACTTATAAGGGTCTGATGAGTGTATT ATTATTATTAACTTCAGCTTAAGTATTTTGGTCAGTGGTTTAGACCAAATGAAGTTGATAGGCTAGTTAGCCCATCAGGCT CGGGTCATGATATTTGGTATCAGAACAATATTTCGAGGACATATTGTAATATGGGATCCTAGGACTAGAATATTAGATGAC CTAATTAAGTGTTTGAGATTTAGATTTTGAGAAGTAGATTAAATACAACATGTATTTAAGATATTATAATCATTTTTAGTC GAATATAATTTTTTTTATAAAAATAGTTGATTGAAGATGTTAGTTGAATTTTGTTAAATGACTTGAAATAGGATAATAGAA GATCAAAATTTTAAATTTTCACTAAATTAAAATAAGTGTCATATTAGTTTATCTTATAAACTCCCATAAGATTTTATATTT TGAATATGATTTTTTTCATGATCCTCTTGTCCCCTTTTTGAAAAATAGATTAGGGATGTTAATTTAATTATAGAATATTTA

Appendices

TTTTATTTTTGAGATATATATGACTTAGTTATTCATTAGGATTATAGTAACTTTAAGTCATTCTCTCTTAATGTAAAAGTT TTGATAATTTTAAGTGTAAAAATTTTATAGAAACTTTATAAATATAAAGTATTTACCTTTATAATTTTTATTACCATATAT TATTCTTGACATATGCTAGGATGGTTTGTAGAAGTTATTGTTGACATTAATAAAATATGTGACTTTAAAGTTAGAATACAT TTGATCGTGCATTGATATTTAAACTTAATTGTATGAGTAATTAATTTAAATATATTTTTGATTTAATATAAAATTAATTAT AAGATATTATTTGTTTAATGAAATGACGAGTCTAATGAGAATTAGATATAATGTTATTTCTTTGACACATATAAAATATAA ATCATTCGAAATTATAAAAGAATATATGCTGAATAGTTGGATAAATTTTCATCATTTCAATTGCTTTTGTTGAGTTGTACC TCAACTTATATTTTATGTGAACAATCAATTAATTTTTAAAACTTAAAAATTTTATTGATTTATTAGATATAGAATTTGATA TACTTGGTAATGTAAAACCAAATTTATTCAATAAGTTTCATTAATTTGTCATATATTTTATGTTAAAAATATATAAATATA TATTTTTGATTGAAAAGTTTTCGAGTGGTTCATTTAATTAAAATATTTTTCAAGCTAATTTAGTTTTGTCCGACTTAGTAT TTCAAAAGCTAACTATATTGATTAATGTTATTCTTAATCAAATTTGGAGACCAAATTTCTATTAAGTGGGGGAGAAATGTA ATCACTGATAATTTCTCCTTTAACATAAATTAATTACTATAAATAATATATTACTTTATTATTAACTTCTATATTTGTGTA TTATAGTTAAGGAAATGATTAAATTTGGTTTCCTTAATCGTACGGATAAGTTATGAATTCTACTAATCAATTAAATTATTA ATTGATTTATTTCCTAATGAATGATTTGATATTTAGGAAGTAAATAGTTTACATTCTATTTTTTGTGTGTGAACTATAAGA AATAAATATTATTTTATTTTTTTTTTATGTGAAAGCAAATGTAAAATAAATTAAAAATAAAAATTAAATTATTACTTACCT TTCGGGGAGATCTCATCTTCTCCTATATAAAGGGACTATTCATCCCTCATTCTCTACTAAGCCTAACAATAGGAGGATCGA GGAGATGACTTCCCGGAGAGATGATATCGAGGAAGGGTATCGAAAAAAGATAGGATCCTTTCTTTTTAATTAGCTTTGATT TATGTTTTAAAATCTAGATATTAAGATTGTTACAATTTTATAATGAATGATGATATTTTAATTTCGAAATTTTATGATTTA TAAATAATAATAATTGATTTGTGATGTTAGATTGATTATTTGATTTATATTGAACTTTTAAGCCTAAGTAAATTTTAATAT TAATTTAATTATTAAAATTATTATTTTTGGATTAGTATAATAGTTCTAATTTATTTAATTAGATATATCTATGTTTCAAGA ATTATGTATGAATTTCTGTAATGTAATTAGTTTTAAATTTTAGATCATGAATTTAAAGTTTTAATTAATATATTTGAGTCA TTATTTAATAATTTTAAATATTAAAATTTAATTTGATAAAAGGAGTCTAATTGGGGTTTGACTTGAATCAAGTTGATCGAT CAGATCAAATTGACTCAACCCATGTGGTCATGTACAAACCTAGCACATGTGACTAAGTACAACCTAGCTCATATGACTCGG TATGACACAATCTATGTGGCCGGATAAGAGACAACCCATATGACAAGGTACGACCTAACCCATGTGGTCAGGCATGACCCA ACCCATGTGGCTAGGTACGATCTAGTCCATGTGGCTATGTATGACTCGGCCCATGTGGTAAGGTACGACCCAACCATGTGG CTAGGCATGGGCCAGCTCATGTGGCTAGGTACGACCTAGTACATGTGGCCGTGTATAACCCAACTCATATAGTAAGGTATG ACTTAACTATATGGTCACGCATTGGCTAGCTCATGCAGCTAGGTACGACCTAATCCATATGGTTATATACAACCCCAACTC ATACGTTTAGGACCAACTCGCGAGCCAAGTAAGACCTAGTTCAAATGGTAAGGCTCAGCCCAACTTATAAGTGAGGCTTAG CCTAGTTCATGAAGCTAAGTTTGCCGATTGGCATTAGACATATCGTCGCTCTTTCTATATAGCCTATCGTACCTCAACTCA ACCTAGTACTTGGAACATGTATATGCAGTGTATGTGACCCGTCCAAGACTCAGGTGGGTTGGTTCGGTTTGGGTTAGCACT ATACGACATAGTCCAATCTCCTTCCTCTTTATTGGTTTGAGCTCATTAATTGACGAAATCAAACAAGTTTGATTAGTTAAA ATCAAGGTGATTCCAAACTAACTAAAATTAGACTGGTTTAGGGTGATTCCAGACCGGTTCTATAAGGATTTGATATTGGTT CCGTTAGATCATAATCGAATTGAGTTTGGTTTAAGTCAATTGAGCTATTCCAATTAGGGTTTTGATTGATTGAAGACTATT GAGATATTAATATTTCATGCTTTTATGATTTGATGAATTTAAAGATTTTATTTGAAGATATCGTTTGAAAATGATTATTGG TTTTTTATGTTTATGATATTGATATGATAAGTATCATGTAGTAGATGTGACTAGACTAGTAGTTCACATTTAGAGTGCAAC CTGTGAAAGGAGCTACGGGCCCATTATAATGCGGAGCCACCAATGAACATAGTCTAGTATATTTACATCAAGTATGGTCTC TCATAATGTTTAATCATATTAATTTCTTGATGTGTGCATGAGTGATTGAATGAGTATAAATGAATGATCATGGATGTTTAT GTATCCCTGCCGAGGGCAGGTATGACGATTCCCTTCGGGGATTAGCGGGCCGTCAGATGTGATGGTTAAACGGTTTCTCCA TCCGTTGTTGGGAGGAACGTGTCCCCACTTGGGCGGGTGAGGGATACCACTCCATCCGCTATTGGGAGTGCGATATGGATT ATCTCCATCCGCTGTTGGGAGGAATCCATCTCGTGGAATATGCCTCTCCATCCACTGTTGGAGAGTGCACCATTAGGTGAT GTACGCCTTTATTATTATGTATGTGCTGCATGTGGTTGATGCATGATTTTGTTCATTATGTAAGAAATTATCATCATTTTT CTGATGCATAAGTTTTTATGATGAATAGATATATTTTTATATTAAATTATTGAAATTTGTTTATATTTCACGAATATTGAA TATTATTTTTATGATTTTTCTGAGGTTCCTACCAGCATGTGTGGTTGCTGATGTGTTTTTATTTTATATTTATTTTCAGAG TAATCTACTATTGTGTAATAGATCTGAAGCTTGGGTGAAAGAGACTTGTGACCCTGTGAAGAAGATGTCATTTTTCTAGCT AATAGAATATTTATTATTATAAAGACAATGATTTGAATTCAAAGCCAAGTAAAAAGAAAAGAAGGGAGTTTATTATGTAAA TTATGAATAATAAATTATTGATTTATTATTTTTTTTATAAAT TCAAGGaTGTgACACATAA

MAWA transposon in Musa balbisiana (AC186754.1)

AGTGCTAGTCATAGGTGTCTTACAAGCCAATCACGTTAATAATGACACATGTGACATGACATGCACTCTTTTTGCTTATTA TTATTATGATATTTTCTCACTTTATATTGCTTGATGTATAAATATATTGTGATGTCCATGGATTTGTGCAATGGGAATCGG ATCATGATGAGATCGTAATAATGAGAGTGATTCACCTCTAAACACAGACATTAAATAATCATGATCATAGGTTACTCGAGA TAGACATCGAGATAATTGGACAGACTGGTGTGCTGTATACCCATCCATATGATGGAGGTAACTGATCTCATAGCTACTCGT GTGGGGACAGTAGGGCTACAGTGCATGTACTCATTGGAGACTGAGTTTACTGATTGATCCACTCACGAAATGCTGGATGGT TGATGATACCTCATTGTCAGACAATAATTCCGTTGTCCCAGTGGTGTACTTGGTCCTTAGACTTGAGATACTAAGGATGTT CTGTATGAGTACTCAACTTTTTGATACCGACCTTATAGGTTTGAAATTTCAGATGTAGCACAGTTGGTCATCGGAAGTGGC AGCCAACCTTACGAGGGCTATTGAGTGTCGATAGAAAATCATCCGCTCTCAATATCATAAGAGGAATATCTCATGTATTCT TGTTCAGACAAATCCTTGACCAAGATCATTTGAAATAAGAGAGAAAGAGTTCTCCGGGAGAATTCGATTAGAGCAAGATTA GAGGAGAAACCGTATGGGCTTGACAATACCATACCCGGTGTACGATTTCTAGGATATTAGATGGATAAGAGACCATAGGTA CACGACAATTGAGGACAGATATGTCCAAAGGATTAGGTTCCCCTATATCGTCTAGGGACTACGACATACTGGCCTAGTACG TCCGCAGTCGATGAGTCGAGTGAACTATTATAAAGATAATAATTCATTAAGCCGGAAGGAATTCTGACATATATGACTCAC GGCCAGCTCAATATTGGGCCTAGAAGGTCACACATATATGGTAGGTGTTGCGACGAATAGAGGTTTAGATATGAGATATCT GCCGAAGCCCCTATTTTTTTGGATATCCATTAAGCCCCTGAATTATTGAATCCTATAGATGAGATCCAATAAGAGCTAATA AgAGATTATTGGATAGAGATCCACTAATCTAATAAACTTAAGTAATTGGATAGAAATTCAATACCCAATAGGGTAAGATCT ATTAGGGTTAAGTTAATAGAGGACCTCTATAAATAGGAGGGAACCAAAGGGCCATAGCTAGGCTCTTTGACTGTCACCTCC TATTCTCCTCTCCCCCTCTCCTCCTCAGCCTGCAACCCTTGTTTGAGGCGTGTGGATAGCAAGAAGGGTCGATCCCTTCTT GATTGCGTGGTGCGCACAGTAAGGAGATTTGAGGAGCGTATTCGCAACCCTTGGCGTGTGAATCACCGCTAGAGATGAGGG CGCTTGACTTCTTTCATCCCTCCCACAGATCTGCAGAAATTCATAGATATACGATCTTCCTATATAACACAACTATCTTAC ACATGGTTTTCAGTTTCGTGAGTTTTTGCGCATCAATCTTCGTACGACGATAAACACCTTTCTGGGAAATCTAAGATTTTT ATTTTTTGTTCTTCCGCTACGCATATAATGTCGCCCATAGATTTCCCTACACGGAG

