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Approximating Node-Weighted Steiner Subgraphs for
Multicast Communication in Wireless Networks

Ambreen Shahnaz

Abstract

We are motivated by the problem of computing multicast routing structures
in wireless ad-hoc networks modelled by special classes of graphs including unit
disk graphs, quasi-unit disk graphs and (λ + 1)-claw-free graphs. Multicast com-
munication can be established by a tree known as Steiner tree. Wireless ad-hoc
networks must operate using limited resources, therefore, the suitability of nodes
for inclusion in a Steiner tree can vary widely between different nodes. We model
this by assuming that each node of the network is assigned a weight that rep-
resents the cost of including it in the Steiner tree. Our goal is to compute a
Steiner tree with minimum total node weight. However, in scenarios where nodes
and links are not reliable, a tree has the drawback that it can be disconnected
by the failure of even a single link or node in the network. Therefore, we also
consider various fault-tolerant routing structures called 2-edge-connected Steiner
subgraphs, k-edge-connected Steiner subgraphs, 2-vertex-connected Steiner sub-
graphs, and 2-edge-connected group Steiner subgraphs. The problems we consider
are NP-hard, so we are interested in algorithms that compute provably good ap-
proximate solutions in polynomial time. We present a generalization of Steiner
subgraph problems referred to as the node-weighted δ-Steiner subgraph problem,
where δ represents connectivity requirements. We present an algorithm with ap-
proximation ratio 0.5dρ for the node-weighted δ-Steiner subgraph problem, where
d is the bounded maximum degree of the solution subgraph, and ρ is the approxi-
mation ratio of the edge-weighted version of the δ-Steiner subgraph problem. We
then shown how to construct solution subgraphs of bounded maximum degree d in
several graph classes for our problem variants. As a result, we obtain algorithms for
the problems we consider, on graph classes that admit subgraphs of small degree,
whose approximation ratios are better than the best known ratios for the same
problems on general graphs.
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Chapter 1

Introduction

A wireless ad-hoc network is a multi-hop network without any fixed infrastructure.

Nodes of the network are mobile or static and communicate through radio waves

by relaying packets in the absence of central management. This makes wireless

ad-hoc networks different from cellular networks where base stations are installed

to manage routing centrally. An important application of wireless ad-hoc networks

is in situations like disaster and recovery, when there is no infrastructure of a

communication network or the existing network has collapsed, and the deployment

of a network is highly required. Other applications are in environmental monitoring,

military operations, and video conferencing among a group of people. There are

several types of these networks including wireless sensor networks, wireless mesh

networks and vehicular wireless ad-hoc networks [40, 54].

The amount of available resources, for example, battery power, memory, and

bandwidth, is very limited in wireless ad-hoc networks. Therefore, due to the

absence of any fixed infrastructure, and limited resources these networks pose nu-

merous challenges. To overcome the challenges and ensure efficient use of limited

resources, these networks have been studied in different domains such as energy-

efficiency, routing, and fault-tolerance. A simple approach to the study of wireless

1



Chapter 1 Introduction 2

ad-hoc networks is to model them as unit disk graphs. A unit disk graph is a

graph whose nodes correspond to equisized disks in the plane with an edge between

two nodes if the corresponding disks intersect [38]. Such a graph is a simplified

model of a wireless network consisting of nodes with omnidirectional antennas and

equal transmission power. Nodes can communicate directly when they are in each

other’s transmission range. Since the unit disk graph model is too idealized, more

general graph models that are a better reflection of real wireless ad-hoc networks

have been proposed. Kuhn et al. [35] employ quasi-unit disk graphs or α-unit disk

graphs, where nodes are adjacent if their distance is at most α, non-adjacent if

their distance is greater than 1, and can be adjacent or non-adjacent otherwise.

There is another graph class considered in [34, 33, 49] called the class of bounded

independence graphs. Let the r-neighborhood of a node u be the set of nodes that

are at most r hops away from u. Bounded independence graphs are the graphs in

which the maximum number of independent nodes in the r-neighborhood of any

node is bounded by a polynomial p(r) [49]. Another class of graphs is the class of

bi-directional disk graphs in which disks can be of different size [53]. For two nodes

u and v in a bi-directional disk graph, there is an edge u-v if both u and v can hear

each other’s transmissions directly. We consider the class of (λ+1)-claw-free graphs

which is more general and includes unit-disk graphs, α-unit disk graphs, bounded

independence graphs, and bi-directional disk graphs. A graph is (λ+1)-claw-free if

every node has at most λ independent neighbors. Since the claw-freeness property

is exhibited by many other classes of graphs considered in this thesis, the results

we achieve for (λ + 1)-claw-free graphs are applicable to those classes as well. We

only concentrate on static ad-hoc networks modelled by the above classes of graphs

and do not deal with mobility issues.

We are interested in multicast communication in which a message is aimed to

be delivered to a set of destinations from a source node in a network. Consider an
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ad-hoc wireless network. Every node has some transmission range, and we say that

two nodes are adjacent if they can transmit a message to each other directly. Let

a subset of the nodes of the network want to initiate a multicast session. The idea

is to model this network using a graph and connect all members of this subset by a

tree. To communicate with distant nodes, multi-hop transmissions are required for

which intermediate nodes are necessary. Thus, apart from source and destinations,

there can be several other nodes that participate in the communication only to

forward messages to the destination nodes. This type of communication can be

modelled as a multicast tree known as Steiner tree. The multicast sender and

receivers correspond to terminals, and other nodes participating in the tree are

Steiner nodes. Given a graph G = (V,E), K ⊆ V , a tree T that is a subgraph of

G is a Steiner tree if it spans all vertices in K. As Steiner nodes are nodes that

participate in the multicast tree by forwarding packets but do not benefit from the

multicast, it is a natural objective to compute a tree that minimizes the total cost

of the Steiner nodes. One can therefore consider the node-weighted version of the

Steiner tree problem defined as follows: Given an undirected graph G = (V,E)

with nonnegative weights wv for v ∈ V and a subset of nodes K ⊆ V (terminals),

compute a subgraph T of G that is a tree and contains all the nodes in K [62]. The

objective is to minimize the total weight of the vertices of T .

A disadvantage of multicast trees is that they are not reliable for communi-

cation because there is a single path between sender and receivers, and links may

break because of various reasons like interference and collision of packets etc. There

can also be node failures in the network due to some fault in the device or scarce en-

ergy resources. Therefore, a network needs to be robust to deal with such failures,

i.e., routing structures are required in which sender and receivers are connected

even if a link or node fails.

Unfortunately, there are hundreds of problems for which optimal solutions
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cannot be computed efficiently despite years of effort. Such problems are classified

as NP -hard problems. In this thesis, we consider the node-weighted Steiner tree

problem which is NP -hard even in unit disk graphs [11]. We also consider node-

weighted Steiner problems specified by certain higher connectivity requirements.

We study the problems in several special classes of graphs that can be used to

model wireless ad-hoc networks. We present approximation algorithms for each of

the problem variants, and analyze their approximation ratio. The main ingredient

of each algorithm’s analysis is a proof showing that in special classes of graphs, there

always exists a solution of bounded degree. This allows us to derive approximation

results for each problem variant from a known approximation algorithm for the

edge-weighted version. For graph classes that admit subgraphs of maximum degree

bounded by d, we obtain a 0.5dρ-approximation algorithm for each node-weighted

problem variant, where ρ is the approximation ratio of the algorithm for the edge-

weighted version of the problem. Finding subgraphs of bounded maximum degree

in the considered classes of graphs could also be of independent interest.

The problem variants and our results are briefly described below.

Overview of the Results

Node-Weighted δ-Steiner Subgraph Problem

We consider properties of the form δ(H,K), where H is a graph and K a set of

vertices. Intuitively, the property δ(H,K) represents that H contains all vertices

from K and satisfies certain connectivity requirements. In this thesis, we consider

several special cases of such properties, for example, µ(H,K), σ(H,K), ς(H,K),

and ψk(H,K), which will be described later.

For a fixed property δ, we define the node-weighted δ-Steiner subgraph problem
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as follows: Given a graph G = (V,E), a subset of vertices K ⊆ V , and nonnegative

weights wu for u ∈ V , the node-weighted δ-Steiner subgraph problem is to find a

subgraph H of G such that the property δ(H,K) is satisfied. The objective of the

node-weighted δ-Steiner subgraph problem is to minimize the sum of the weights of

the vertex set of H . Since wireless nodes have limited resources, the weight wu can

represent the suitability of a node for inclusion in multicast communication. For

example, if a node v has less remaining battery power than a node u, it means that

v is less suitable for communication than u. Thus, v will have higher weight than

u in the input graph, and the minimum-weight solution would prefer to include u

as a Steiner node.

We present an algorithm with approximation ratio 0.5dρ for the node-weighted

δ-Steiner subgraph problem, where d is the maximum degree bound of the solution

subgraph and ρ is the approximation ratio of the algorithm for the edge-weighted

version. The node-weighted δ-Steiner subgraph problem generalizes several prob-

lem variants we study in this thesis.

Node-Weighted Minimum Steiner Tree Problem

We consider the property µ(H,K) which represents that H is a graph that contains

all vertices in K and there is a path in H between every pair of vertices in K.

The node-weighted minimum Steiner tree problem is defined as follows: Given an

undirected graph G = (V,E) with nonnegative weights wv for v ∈ V , and a subset

of nodes K ⊆ V called terminals, compute a subgraph H for G and K that satisfies

the property µ(H,K). The objective is to minimize the total weight of the vertices

of H . Note that the way in which we define the problem does not require the

solution subgraph H to be a tree. However, it is easy to see that any solution

subgraph can be transformed into a tree by removing redundant edges, without
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increasing the weight of the solution.

For graph classes that admit spanning trees of maximum degree bounded by d,

our algorithm yields approximation ratio 0.695d for the node-weighted minimum

Steiner tree problem. We show the existence of spanning trees of bounded max-

imum degree in α-unit disk graphs and (λ + 1)-claw-free graphs. For unit disk

graphs, a spanning tree of bounded degree was already known in the literature.

For other graph classes considered in this thesis, the result of (λ + 1)-claw-free

graphs is applied.

Node-Weighted 2-Edge-Connected

Steiner Subgraph Problem

As trees are not reliable for communication, we therefore, consider Steiner sub-

graphs which are fault-tolerant to some extent. We consider the property σ(H,K)

representing that H is a graph that contains all vertices in K and has at least 2

edge-disjoint paths between every pair of vertices. We define the node-weighted

2-edge-connected Steiner subgraph problem (NW2ECS) as follows: Given an undi-

rected graph G = (V,E) with nonnegative weights wv for v ∈ V , and a subset

of nodes K ⊆ V , compute a subgraph H for G and K that satisfies the property

σ(H,K). The goal of the node-weighted 2-edge-connected Steiner subgraph prob-

lem is to minimize the total weight of the vertices of H . Requiring only that H

has 2 edge-disjoint paths between every pair of vertices in K does not change the

problem.

We present an algorithm with approximation ratio d for the problemNW2ECS

in classes of graphs that admit 2-edge-connected spanning subgraphs of bounded

maximum degree d for the solution subgraphs. We compute 2-edge-connected span-

ning subgraphs of bounded maximum degree d in unit-disk graphs, α-unit disk
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graphs, and (λ+ 1)-claw-free graphs.

Node-Weighted 2-Vertex-Connected

Steiner Subgraph Problem

For the property of being resilient to node failures, we consider 2-vertex-connectivity.

We consider the property ς(H,K) which expresses that H is a graph that contains

all terminals and has at least 2 vertex disjoint paths between every pair of vertices.

The node-weighted 2-vertex-connected Steiner subgraph problem (NW2V CS) is de-

fined as follows: Given an undirected graph G = (V,E) with nonnegative weights

wv for all v ∈ V , and a set of terminals K ⊆ V , compute a subgraph H for G and K

that satisfies the property ς(H,K). The objective of the problem NW2V CS is to

minimize the total weight of the vertices of H . The requirement of 2 vertex-disjoint

paths only between every pair of terminals of H does not change the problem.

For a graph class that contains a 2-vertex-connected spanning subgraph of

bounded maximum degree d for any 2-vertex-connected Steiner subgraph, we present

a d-approximation algorithm for NW2V CS. We find a 2-vertex-connected span-

ning subgraph of bounded degree d in (λ+ 1)-claw-free graphs.

Node-Weighted 2-Edge-Connected Group

Steiner Subgraph Problem

We consider the property χ(H,K) which represents that H is a graph that contains

at least 2 edge-disjoint paths from each group Ki of terminals to a root vertex r

and the end-points in Ki of these two paths are distinct. Strictly speaking, χ(H,K)

is not a special case of δ(H,K) because of the additional constraints satisfied in χ.

Given an undirected graph G = (V,E) with nonnegative weights wv for all v ∈ V ,

a root node r ∈ V , and a collection of M subsets of nodes K = {K1, ..., KM} in
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V \ {r} with |Ki| = 2 for all i, compute a subgraph H of G that contains at least

2 edge-disjoint paths from each group Ki to r such that the end-points of these

paths in Ki are distinct. The objective is to minimize the total cost of the vertices

in H .

We show that there exists a 2-edge-connected group Steiner subgraph of bound-

ed maximum degree d for any solution subgraph in the class of (λ + 1)-claw-

free-graphs. We achieve approximation ratio 1.695d for the node-weighted 2-edge-

connected group Steiner subgraph problem in (λ+ 1)-claw-free graphs.

Node-Weighted k-Edge-Connected

Steiner Subgraph Problem

We extend our study of higher edge-connectivity requirements to the node-weighted

k-edge-connected Steiner subgraphs. We consider the property ψk(H,K) which

specifies that H is a graph that contains all vertices in K and has at least k edge-

disjoint paths between every pair of terminals. The node-weighted k-edge-connected

Steiner subgraph problem (NWkECS) is defined as follows: Given an undirected

graph G = (V,E) with nonnegative weights wv for v ∈ V , and a subset of nodes

K ⊆ V , compute a subgraph H for G and K that satisfies the property ψk(H,K).

The goal of the node-weighted k-edge-connected Steiner subgraph problem is to

minimize the total weight of the vertices of H .

In the classes of graphs that admit k-edge-connected Steiner subgraphs of

maximum degree bounded by d, we present a d-approximation algorithm for the

node-weighted k-edge-connected Steiner subgraph problem. We show that there

exists a k-edge-connected Steiner subgraph of bounded maximum degree for a

solution of NWkECS in the class of (λ+ 1)-claw-free graphs.
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Steiner tree problem 1.35 ln |K| [25]
k-edge-connected Steiner
subgraph problem

k ·O(ln |K|) [43]

2-vertex-connected Steiner
subgraph problem

O(lnn) [43]

2-edge-connected group
Steiner subgraph problem

O(lnn) [29]

Table 1.1: Best known results for node-weighted Steiner problems in general graphs.
|K| denotes the number of terminals.

UDG α-UDG bi-directional disk graphs (λ + 1)-claw-free

graphs

Steiner tree problem 3.4751 0.695(4/α2 + 4/α+ 2) (12.51 dlog2 me+ 9.035) 0.695 · (λ+ 1)

2-edge-connected Steiner
subgraph problem

12 2 · (4/α2 + 4/α + 2) 2 · (18 dlog2me+ 13) 2(λ+ 1)

k-edge-connected Steiner
subgraph problem

(2k − 1)5+ k (2k − 1)(4/α2 + 4/α +
1) + k

(2k−1)(18 dlog2me+12)+
k

(2k − 1)λ+ k

2-vertex-connected
Steiner subgraph prob-
lem

12 2 · (4/α2 + 4/α + 2) 2 · (18 dlog2me+ 13) 2(λ+ 1)

2-edge-connected group
Steiner subgraph prob-
lem

20.34 3.39 · (4/α2 + 4/α+ 2) 3.39 · (18 dlog2me+ 13) 3.39(λ + 1)

Table 1.2: New results for node-weighted Steiner problems in special graph classes.
m is the ratio between maximum and minimum transmission radius in a bi-
directional disk graph.

Structure of the Thesis

Some basics about graphs, complexity theory and approximation algorithms are

presented in Chapter 2. Chapter 3 contains a detailed literature review on Steiner

trees and fault-tolerant Steiner subgraphs. In Chapter 4, we address the node-

weighted δ-Steiner subgraph problem and provide a solution which is adapted for

several variants of Steiner subgraph problems studied in subsequent chapters. The

node-weighted minimum Steiner tree problem is studied in Chapter 5. In Chapter

6, we study the node-weighted 2-edge-connected Steiner subgraph problem, 2-edge-

1This result was achieved independently by Zou et al. [62]
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connected group Steiner subgraph problem, and the 2-vertex-connected Steiner

subgraph problem. In Chapter 7, we discuss the node-weighted k-edge-connected

Steiner subgraph problem and also present a proof showing that the node-weighted

k-edge-connected Steiner subgraph problem is NP -hard in unit-disk graphs. Con-

clusion and directions for future work are given in Chapter 8.

Chapter 5 on the node-weighted minimum Steiner tree problem and the part

of Chapter 6 on the node-weighted 2-edge-connected Steiner subgraph problem are

based on our papers [15] and [50] respectively.

The best known approximation results for node-weighted Steiner problems in

general graphs are listed in Table 1.1. The new approximation results obtained in

this thesis for special graph classes are shown in Table 1.2.



Chapter 2

Preliminaries

We present general background on graphs, computational complexity, and approxi-

mation algorithms. The terminology and concepts described in this chapter are

used throughout this thesis.

2.1 Graphs

An undirected graph is represented by G = (V,E) where V is the set of points of G

called vertices, and E consists of 2-element subsets of V . The number of vertices

in G is denoted by |V | and the number of edges is denoted by |E|. There are

no self-loops in undirected graphs, i.e., edges from a vertex to itself. Vertices v

and w are neighbors or adjacent if there is an edge between them. A path from

v1 to vi is a sequence of vertices and edges v1, e1, v2, e2, v3, e3, ...ei−1, vi such that

ej = {vj, vj+1} for 1 ≤ j < i. The length of a path is the number of edges of that

path. Two vertices vi and vj are connected if there is a path from vi to vj . If the

two end-points v1 and vi are the same, then the path is called a cycle. A forest is

a graph containing no cycles. A tree is a connected forest. Two vertices are called

end-points of an edge if they are connected by that edge. If e is an edge with an

11
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end-point v, we also say that edge e is incident with v. A node is called a leaf

if it is incident with only a single node. The degree of a vertex is the number of

neighbors of that vertex. A subgraph H = (V ′, E ′) of G = (V,E) is a graph such

that V ′ ⊆ V and E ′ ⊆ E. A subgraph H = (V ′, E ′) of G = (V,E) is induced

by a vertex subset V ′ ⊆ V if H contains all edges {u, v} ∈ E for every pair of

vertices u, v ∈ V ′. A spanning subgraph H = (V ′, E ′) of a graph G = (V,E) is

a subgraph that spans all vertices of G. A spanning tree is an acyclic connected

graph which contains all vertices of G. Two paths are edge-disjoint if they do not

have an edge in common, and two paths are vertex-disjoint if they do not have an

internal vertex in common. A graph G is k-edge-connected if it contains at least

k edge disjoint paths between every pair of vertices of G, for k ≥ 1, and a graph

is k-vertex-connected if it contains at least k vertex disjoint paths between every

pair of vertices of G, for k ≥ 1. For a connected graph G, a node is said to be

an articulation point if removal of this node disconnects G. Similarly, an edge is

called a bridge if its removal from a connected graph G disconnects the graph.

A directed graph G = (V,E) is a pair, where V is the set of vertices, and

E is the set of edges that consists of ordered pairs of vertices. When vertices or

edges in a graph are assigned numerical values, the graph is called a weighted graph.

Two graphs G = (V,E) and G′ = (V ′, E ′) are isomorphic if there is a bijection

f : V → V ′ such that (u, v) ∈ E if and only if (f(u), f(v)) ∈ E ′. That is, there is

a one-to-one correspondence between the vertex sets V and V ′, and for every edge

of G there is an image in G′, and vice versa.

Given a graph G = (V,E) with a nonnegative weight w(u, v) assigned to every

edge {u, v} ∈ E, a minimum spanning tree is a tree that spans all vertices of G and

has minimum total weight. For a graph G, a subset of its vertices is an independent

set if no two vertices in the subset are adjacent. A dominating set D of a graph

G is a subset of the vertices of G in which every vertex not in D is adjacent to at
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least one vertex of D. If D induces a connected subgraph, the subset is known as

connected dominating set. A clique C is a subset of the vertices of G, such that

there exists an edge between every pair of vertices in C. A graph is triangle-free if

no two adjacent vertices are incident to a common vertex. The chromatic number

of a graph G = (V,E) is the minimum number of colors required to assign color to

each vertex of G such that no two adjacent vertices have the same color.

Let M denote a set of points, and d(x, y) denote a distance function for x, y ∈

M . If the following three properties are satisfied, then (M, d) is called a metric

space [7].

• d(x, y) ≥ 0, where equality holds only if x = y;

• d(x, y) = d(y, x) for x, y ∈M ;

• d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈M .

An n-dimensional Euclidean space is represented by (Rn, d), where R is the set

of real numbers and d is the Euclidean distance between any two points. Commonly,

the two-dimensional Euclidean space is known as the Euclidean plane.

In the following section we describe those classes of graphs which are considered

in this thesis to model wireless ad-hoc networks.

2.2 Special Graph Classes

To study wireless ad-hoc networks, simplified graphs are used rather than general

graphs. The way nodes of a wireless ad-hoc network are spread in the region

together with their neighborhood information usually suggests that the underlying

graph could be a geometric object. Therefore, there are several graph models of

wireless ad-hoc networks in the literature that are geometric. The most widely used
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graph class for wireless ad-hoc networks is the class of unit-disk graphs. In a unit

disk graph, every node corresponds to a disk of unit diameter in the plane, and

two nodes are adjacent if the corresponding disks intersect. Equivalently, one can

associate each node with a disk of unit radius of the plane, and define two nodes

to be adjacent if the disk corresponding to one node contains the center of the disk

corresponding to the other node, i.e., if the Euclidean distance between the centers

of the disks is at most 1 [35]. Such a graph is a model of a wireless ad-hoc network

consisting of nodes with omnidirectional antennas and equal transmission ranges.

The unit radius of each disk represents the transmission range over which the disk

can send and receive messages directly. The simple structural properties of unit

disk graphs are exploited to achieve good results for various problems arising in

wireless ad-hoc networks. In reality, however, it is not necessary that a node always

reaches every other node located within its transmission range due to the presence

of obstacles like walls, buildings, or signal distortions [4]. For instance, consider

the disk in Fig 2.1 representing a wireless node. The shaded area is the area within

which the node can send and receive messages, however, the node cannot transmit

to the white region. This shows that the transmission range of such a node does

not cover the whole area of the disk.

r

Figure 2.1: Transmission range may not cover the whole disk.

To model the above situation, researchers have considered more general graph
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models than unit disk graphs. The class of α-unit disk graphs, also called quasi-unit

disk graphs, is one of them [4, 35]. In an α-unit disk graph, for α ≤ 1, nodes are

adjacent if the Euclidean distance between them is at most α, non-adjacent if their

distance is greater than 1, and can be adjacent or non-adjacent otherwise. This

means that a node always reaches another node if both are located at a distance

at most α, and two nodes could be non-adjacent even if their Euclidean distance is

between α and 1, depending on the circumstances mentioned above. With α = 1,

an α-unit disk graph is a unit disk graph.

Usually in wireless ad-hoc networks, many nodes are adjacent to each other

and the number of independent neighbors of a node is not very large. Due to this

property of wireless ad-hoc networks, a class of graphs namely bounded indepen-

dence graphs (BIG) is considered in [49, 34, 33]. Let the r-neighborhood of a node

u be the set of nodes that are at most r hops away from u. Bounded independence

graphs are the graphs in which the maximum number of independent nodes in the

r-neighborhood of any node is bounded by a polynomial p(r) [49]. Inspired by

bounded independence graphs, we consider a more general graph class referred to

as the class of (λ + 1)-claw-free graphs. Let us define a t-claw in a graph first. A

t-claw in a graph is an induced subgraph on t+1 nodes that is isomorphic to K1,t,

i.e., the star with one node in the center and t independent leaves. A (λ+1)-claw-

free graph is a graph that does not contain a (λ+1)-claw. Equivalently, a graph is

(λ+ 1)-claw-free if every node has at most λ independent neighbors. Note that for

λ = p(1), bounded independence graphs are (λ+1)-claw-free. We mention that the

definition of a t-claw-free graph is different from a claw-free graph which is known

in the literature as a graph that has no induced subgraph isomorphic to K1,3, i.e.,

if no vertex has three pair-wise non-adjacent neighbors (see for example [9]).

In unit disk graphs, the number of independent neighbors of every node is at

most 5 [59]. For α-unit disk graphs, we will show later the number of independent
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Graph class value of λ
UDG 5
α-UDG 4/α2 + 4/α+ 1
bi-directional-disk graphs (18 dlog2me + 12), for m > 1
bounded independence graphs p(1)

Table 2.1: Values of λ for which different graph classes are (λ+ 1)-claw-free.

neighbors of every node is at most (4/α2 + 4/α + 1). Therefore, unit disk graphs

and α-unit-disk graphs are special cases of (λ+ 1)-claw-free graphs.

There is also another graph class employed to model wireless ad-hoc networks

known as the class of bi-directional disk graphs. A bi-directional disk graph models

a wireless ad-hoc network when nodes have different transmission ranges [53]. Let

G = (V,E) be a bi-directional disk graph. Every node vi ∈ V corresponds to a

point in the Euclidean plane and ri is the transmission range of a node vi ∈ V .

Two disks vi, vj are adjacent if d(i, j) ≤ min{ri, rj} where d(i, j) represents the

Euclidean distance from vi to vj [53]. In other words, two disk vi and vj are

adjacent if the Euclidean distance between the two disks is not more than the

radius of the disk with minimum transmission range of the two disks. The edge

(vi, vj) is called a bi-directional edge. See Fig 2.2 for an example. In (a) y is inside

the transmission range of x, but x is not in the transmission range of y. Therefore,

there will be no edge between these two nodes in a bi-directional disk graph. In

(b), x and y are in the transmission range of each other, thus there will be an edge

between x and y in a bi-directional disk graph.

Let rmin denote the minimum transmission range and rmax denote the max-

imum transmission range. Let m = rmax/rmin. If m = 1, this means that the

disks are equisized, hence the graph is a unit disk graph. For m > 1, the number

of independent neighbors of every node is at most 6(3 dlog2me + 2) [53]. Thus,

bi-directional disk graphs are included in the class of (λ+ 1)-claw-free graphs.
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See Table 2.1 for an overview of the values of λ for which the graph classes

considered are (λ+ 1)-claw-free.

x y

(a)

x y
x y

(b)

Figure 2.2: (a) y is in the transmission range of x but x is not in the transmission
range of y (b) x and y are in each other’s transmission range

Figure 2.3: Graph G that is α-UDG but not UDG.

By the definitions of the graph classes considered, it follows that UDG ⊆

α-UDG ⊆ BIG ⊆ (λ+ 1)-claw-free. In the following, we show that each of these

inclusions is proper.

UDG⊂ α-UDG:

Consider the graph in Fig. 2.3 with six independent nodes centered at u, and the

distance between every pair of adjacent nodes is 1. The distance between any

two consecutive neighbors of u is also 1. We know that the number of independent

neighbors of every node in a unit disk graph is at most 5, therefore, G, in which the

number of independent neighbors of u is six, cannot be a unit disk graph. However,

the graph is an α-unit disk graph if we choose, for example, α = 0.99, because we

are then free to include or exclude edges between nodes at distance 1. Note that
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the number of independent neighbors of u is not more than 4/α2 + 4/α+ 1 in this

graph.

α-UDG ⊂ BIG:

We show that there is a class of graphs that are bounded independence graphs but

not α-unit disk graphs as follows.

It is known that there are triangle-free graphs with arbitrarily large chromatic

number. For example, Mycielski’s construction [41] can be used to obtain such

graphs. Let Gk be a triangle-free graph with chromatic number k, and Hk be the

complement of Gk. Let Lk be the graph obtained from Hk by adding a new vertex

x and making x adjacent to all vertices of Hk. Consider the class C of graphs that

contains Lk for all values of k. C is a class of bounded independence graphs because

no graph in C contains an independent set of size 3 (an independent set of size 3

would correspond to a triangle in Gk, a contradiction to Gk being triangle-free).

C is not a class of α-unit disk graphs. Assume for a contradiction that C is

a class of α-unit disk graphs for some fixed value of α. Consider any graph Lk

and the vertex x in Lk. Every vertex in Lk is a neighbor of x, so all vertices in

Lk−{x} = Hk are located in a disk of radius 1 with center x. This implies that the

vertices of Hk can be partitioned into O(1/α2) many cliques (because the disk of

radius 1 can be covered by O(1/α2) squares of side length α/
√
2, and the vertices

in each such square form a clique). But this means that Gk can be partitioned into

O(1/α2) many independent sets. This cannot hold for all graphs Gk, because the

chromatic number of Gk is k and thus exceeds O(1/α2) for sufficiently large k. So

we have a contradiction. This shows that C is not a class of α-unit disk graphs.
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BIG ⊂ (λ+ 1)-claw-free graphs:

Binary trees are included in the class of (λ+ 1)-claw-free graphs but not included

in the class of bounded independence graphs. Let us consider a binary tree of

depth greater than r (Fig. 2.4). The r-neighborhood of the root node v contains

at least 2r independent nodes, namely the nodes at depth r in the tree. Since we

know that in a bounded independence graph, the size of any independent set in the

r-neighborhood of every node is bounded by a fixed polynomial in r, binary trees

are not included in the class of bounded independence graphs. However, binary

trees are (λ+ 1)-claw-free with λ = 3, as no vertex has more than 3 neighbors.

v

Figure 2.4: A graph that is (λ + 1)-claw-free but not a bounded independence
graph.

2.3 Algorithms and Computational Complexity

An algorithmic problem describes the input and specifies the properties of the

desired output [20]. An instance of the problem consists of the input specified

in the problem statement. The time-complexity of an algorithm is the number of

computation steps taken by the algorithm to transform the input into the output,

and can be represented as a function of the input size. For example, if we consider

graph problems, the input size can either be the size of the vertex set or the edge set

in the graph. While designing an algorithm for a problem, the foremost aim is to
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solve the problem as efficiently as possible. The efficiency of algorithms is usually

judged by their time-complexity. When we analyze the relative performance of two

algorithms, we compare their time-complexity functions. The time-complexity is

commonly referred to as the worst-case running time of an algorithm also called

the upper bound on the running time and is represented using the O-notation:

Assume that we have two functions f(n) and g(n). We say that f(n) is O(g(n))

if there exists a constant c such that f(n) ≤ c · (g(n)) for all values of n ≥ n0 for

some constant n0. It is also written as f(n)=O(g(n)).

For example, assume that an algorithm has running time bounded by the value

of a function f(n) = n3+n+2 for every input. We say that the worst-case running-

time is O(n3). When we consider large enough input size, lower order terms and

constants are discarded because their effect is negligible as compared to the higher

order terms in the growth of the function (as n→ ∞).

For input length n, we say that an algorithm runs in polynomial time if the

time complexity of that algorithm is O(nk) for some constant k. Algorithms are

said to be efficient algorithms if their time-complexity is bounded by a polynomial,

i.e., O(nk). When f(n) is Ω(g(n)), it means that there is a constant c such that

f(n) ≥ c · g(n), for all n ≥ n0 for some constant n0. The notation Ω(g(n)) is often

used to specify lower bounds on the running time of a specific algorithm or of all

algorithms for a certain problem.

Now let us come to the notion of NP -completeness. We need to consider

decision problems first to understand this. For any instance of a decision problem,

there are two possible answers, either “yes” or “no”. An instance of a decision

problem for which the answer is “yes” is referred to as yes-instance, whereas an

instance for which the answer is “no” is referred to as no-instance. Let us represent a

decision problem by the set of inputs L that contains the yes-instances. L belongs

to the complexity class P if there is an algorithm A that has polynomial time
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complexity and outputs “yes” for every input i ∈ L and “no” for every input i /∈ L.

If there is an algorithm A that verifies in polynomial time using a certificate C

of polynomial size whether the answer for a given input i ∈ L is “yes”, then the

decision problem L belongs to the complexity class NP .

Consider two decision problems Q1 and Q2. We say that a decision problem

Q1 polynomially reduces to Q2 if any instance I of Q1 transforms into an instance

I ′ of Q2 such that:

• there exists a polynomial-time algorithm which computes I ′ from I, and

• I is a yes-instance if and only if I ′ is a yes-instance.

If Q1 is polynomially reducible to Q2, then the relative difficulty of two prob-

lems is established. We say that Q2 is at least as hard to solve as Q1.

A problem Q1 is in the complexity class NP -hard if any problem Q2 in NP

can be reduced in polynomial time to Q1.

A problem Q1 is NP -complete if:

• Q1 is in NP , and

• for any problem Q2 in NP , there is a polynomial-time algorithm that reduces

any instance of Q2 into an instance of Q1.

Some famous examples of NP -complete problems are travelling salesman, vertex-

cover, independent set, and Hamiltonian path problem [12]. No efficient algorithm

is known for any of the NP -complete problems. If a single NP -complete problem

can be solved by a polynomial time algorithm, then all problems in this class can

be solved in polynomial time. This idea raises the question of determining whether

P = NP or P 6= NP . So far, nobody could answer this question in either direction,

and in theoretical computer science this is the most famous open problem today.
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In contrast to decision problems, optimization problems are the problems that

ask to find best feasible solutions. An optimization problem P is defined by a tuple

(I, S, val, goal) [2] such that:

• I is the set of instances of P ,

• S is a function that maps any instance i ∈ I to all feasible solutions of i,

• val is a function that assigns a positive integer to each pair (i, s), where i ∈ I

and s ∈ S(i), and

• goal of the problem P is either maximization or minimization.

An optimization problem can be converted into its decision version and is thus

at least as hard to solve as the decision version. In this sense the theory of NP -

completeness is also related to the optimization problems.

2.4 Approximation Algorithms

None of the NP -complete problems can be solved optimally in polynomial time

unless P = NP . If the problem size is small, then an exponential solution can

work. However, for sufficiently large input size of a problem, the exponential time-

complexity means that this solution is infeasible. Therefore, an alternative way to

tackle such problems is to use polynomial-time algorithms that give solutions close

to the optimum. These algorithms are known as approximation algorithms.

Let C(A) be the cost of the approximate solution produced by an algorithm A,

and C(OPT ) be the cost of the optimal solution for a given instance of the problem.

For a minimization problem P , an approximation algorithm A has performance

guarantee or approximation ratio α ≥ 1 if for any instance of the problem it holds

that:

C(A) ≤ α · C(OPT )
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For a maximization problem, an algorithm A has an approximation ratio α ≤ 1

if the following inequality holds for all instances of the problem:

C(A) ≥ α · C(OPT )

Thus, for any instance of a minimization problem, an α-approximation algo-

rithm is a polynomial-time algorithm which outputs a solution of cost at most α

times the optimum [57]. Likewise, for a maximization problem, an α-approximation

algorithm is a polynomial-time algorithm which gives a solution of cost at least α

times the optimum solution for any instance of the problem.

For an optimization problem, a polynomial-time approximation scheme (PTAS)

is an algorithm that takes as input an instance of the problem and a value ε ≥ 0,

and outputs a solution within a factor 1 + ε of the optimal in polynomial time in

the size of the input [12]. There is a trade-off between the running time of the

algorithm and the value of epsilon; as the value of ε gets smaller, the running time

of the algorithm grows faster. An optimization problem belongs to the class APX ,

if there exists a constant-factor approximation algorithm for the problem. There

is a notion of approximation-preserving reductions (see, e.g., [2] for a definition

of AP -reductions). A problem Q1 is APX-hard if, for any problem Q2 ∈ APX ,

Q2 can be reduced to it with an approximation-preserving reduction. An APX-

hard problem is APX-complete if it belongs to to the class APX . If a problem is

APX-complete, then it does not admit PTAS unless P = NP [2].

There are several ways in the literature to design approximation algorithms for

NP -complete problems, for example, greedy algorithms, linear programming, the

primal-dual method and dynamic programming [2, 55]. The existing approximation

algorithms that we use as black-box in our work are based on linear programming,

therefore, here we introduce the technique of linear programming. A linear program
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formulates an optimization problem that asks to minimize or maximize a linear

objective function subject to linear constraints. Given two n-dimensional vectors

c and x, an m-dimensional vector b, and an m× n matrix A, an objective function

to be minimized (or maximized) is given by cTx, where cT denotes the transpose

of c [12]. cTx is the inner product of two vectors whereas Ax is a matrix-vector

product. The constraints that are required to be satisfied are Ax ≥ b and x ≥ 0.

When all constraints are satisfied by a solution, the solution is called a feasible

solution. When the value of the objective function cTx is minimum (or maximum)

over all feasible solutions, the solution is called an optimal solution.

In contrast to linear programming, in integer programming each variable can

take an integer value only. Solving an integer program is an NP -hard optimization

problem, but a linear program can be solved optimally in polynomial time. For

the purpose of designing an approximation algorithm for an optimization problem,

the idea is to formulate an integer program first, then relax the integer constraints

to get an LP and solve the LP to get an optimal fractional solution, and finally,

construct an integral solution from the LP’s optimal solution using some rounding

techniques.

As an example, we show how the generalized Steiner network problem is mod-

elled as an integer program in Jain’s algorithm [26], which will be discussed briefly

in Chapter 3. First we define the generalized Steiner network problem: given an

undirected graph G = (V,E) with nonnegative cost ce on every edge e ∈ E, and

a connectivity requirement ri,j for all pairs of vertices i, j, compute a subgraph

H(V,E ′) of G of minimum cost such that there are at least ri,j edge-disjoint paths

between every pair of vertices i, j. Consider an instance of this problem given by

an undirected graph G = (V,E) with nonnegative cost ce for all e ∈ E, and a

connectivity requirement ri,j for very pair of vertices i, j. For all cuts S ⊆ V , let us

denote the set of edges in E that have only one endpoint in S by ∆(S). A subset
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E ′ of E is feasible if and only if |∆(S) ∩ E ′| ≥ ri,j for all cuts S and i ∈ S, j /∈ S.

The integer program is then as follows, using a variable xe ∈ {0, 1} for every e ∈ E

that represents whether e is included in the solution or not:

Minimize
∑

e∈E
xece

subject to
∑

e∈∆(S)

xe ≥ max
i∈S,j /∈S

ri,j, ∀S ⊆ V

xe ∈ {0, 1}, ∀e ∈ E

The corresponding linear programming relaxation is given by:

Minimize
∑

e∈E
xece

subject to
∑

e∈∆(S)

xe ≥ max
i∈S,j /∈S

ri,j , ∀S ⊆ V

0 ≤ xe ≤ 1, ∀e ∈ E

Jain’s algorithm [26] then solves this linear programming relaxation without

constructing the whole linear program explicitly (as the number of constraints is

not polynomial), and applies iterative rounding.

For details on the preliminaries discussed in this chapter, we refer to [13, 22]

for concepts on graphs, [20] for the theory of NP -completeness, and [57, 2, 55] for

approximation algorithms.
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Literature Review

We begin this chapter with some basics of Steiner trees. In the rest of the chapter,

we discuss work related to the optimization problems we study in this thesis.

3.1 Basics of Steiner trees

Motivated by communication in wireless ad-hoc networks, we consider multicast

routing in which one node wants to send messages to multiple receivers via multi-

hop transmissions. A wireless network can be modelled as a graph, and the multi-

cast communication can be achieved by a multicast tree in the form of a Steiner tree.

We can refer to the sender and the receivers as terminals. Apart from terminals,

there are other nodes in a Steiner tree which only take part in the transmission

to forward messages but are not the intended receivers. Such nodes are referred

to as Steiner nodes. So far, many variants of the Steiner tree problem have been

studied in the literature. For the Steiner tree problem in graphs, one distinguishes

the edge-weighted version where the goal is to minimize the total weight of the

edges of the Steiner tree, and the node-weighted version where the goal is to min-

imize the total weight of the Steiner nodes. Both versions have also been studied

26
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in the un-weighted version, where the goal is to minimize the number of edges or

the number of Steiner nodes. Note that a Steiner tree has a minimum number of

edges if and only if it has a minimum number of Steiner nodes. For the study of

approximation algorithms, however, the two objective functions are very different,

and this can be explained with the help of the following example.

Consider the graph G in Fig 3.1, and Steiner trees for this graph. Let G′ be

the optimal solution, and G′′ an approximate solution for the given graph G. Black

nodes represent terminals and white nodes are Steiner nodes. There are two rows

in G in which the number of nodes is equal, and there is a single node that is

located at the top of these two rows. In the bottom row of G, assume that the

number of terminals is k. Thus, the total number of nodes in G is 2k + 1. Now,

let us look at the approximation ratio of G′′ with respect to the number of edges,

and also with respect to the number of Steiner nodes. The number of edges is 2k

in G′′, and k + 1 in G′. So, G′′ has approximation ratio 2k
k+1

with respect to the

number of edges which is arbitrarily close to 2 for k → ∞. The total number of

Steiner nodes is k in G′′, and 1 in G′. Therefore, G′′ is a k-approximate solution

with respect to the number of Steiner nodes. We can see that a good approximate

solution for the objective of minimizing the number of edges of a Steiner tree is

not guaranteed to be an equally good approximate solution for the objective of

minimizing the number of Steiner nodes. Hence, minimizing the number of Steiner

nodes, and minimizing the number of edges, are different objective functions from

the perspective of approximation algorithms.

The single-pair shortest path problem and minimum spanning tree problem are

special cases of the Steiner tree problem [46]. Given a graph G = (V,E), weight

we on every edge e ∈ E, and a pair of vertices s, t, the single-pair shortest path

problem asks to find a path of minimum total weight between the two vertices s

and t. Given a graph G = (V,E), K ⊆ V , and weight we assigned to every edge
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(a) G

(b) G′ optimal solution w.r.t
number of edges and number of
Steiner nodes.

(c) G′′

Figure 3.1: An example to illustrate that minimizing the number of Steiner nodes
is different from minimizing the number of edges of a graph in terms of approxi-
mation algorithms. Black nodes represent terminals, white nodes are Steiner nodes.
Approximation ratio of G′′ w.r.t. number of edges is 2, and k w.r.t. number of
Steiner nodes.
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Figure 3.2: Shortest path shown with dashed lines

e ∈ E, if K contains only a single pair of vertices, then the Steiner tree problem

reduces to the shortest path problem for the given pair of vertices (Fig 3.2). Given

a graph G = (V,E), weight we on every edge e ∈ E, the minimum spanning tree

problem asks to find a tree that spans every vertex of G and has minimum total

weight. Given a graph G = (V,E), K ⊆ V , and weight we assigned to every edge

e ∈ E, if K = V , then the Steiner tree problem reduces to the minimum spanning

tree problem (see Fig 3.3).

1

3

1 232

11 1 1

2

11 1 1

Figure 3.3: K = V , Minimum spanning tree is equivalent to Steiner tree in this
example.

3.2 Related Work on Steiner Trees

The node-weighted Steiner tree problem is studied in [30, 25], and the edge-weighted

Steiner tree problem in [36, 28, 51, 61, 47, 8]. For a long time the best known
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approximation algorithm for the edge-weighted Steiner tree problem in general

graphs was that of Robins and Zelikovsky [47], which achieved approximation ratio

1.55. Recently, Byrka et al. [8] achieved a better approximation ratio for this

problem which is 1.39. Their algorithm is based on linear programming. For the

node-weighted Steiner tree problem in general graphs, an approximation ratio of

1.35 ln k has been shown by Guha and Khuller [25], where k is the number of

terminals.

Besides the Steiner tree problem in graphs, there have also been studies of

geometric Steiner tree problems. In the Euclidean Steiner tree problem, the ter-

minals are points in the Euclidean plane, the length of an edge is the Euclidean

distance between its endpoints, and the goal is to minimize the total edge length

of the tree [14]. Note that arbitrary points can be used as Steiner nodes. The

rectilinear Steiner tree problem is the Euclidean Steiner tree problem in the plane

with the additional constraint that all edges of the Steiner tree must be horizontal

or vertical. Garey and Johnson showed that the rectilinear Steiner tree problem is

NP -hard [19]. It follows from a similar reduction presented in the proof of The-

orem 7.1 that for unit disk graphs, the problem of computing a Steiner tree with

a minimum number of edges (or, equivalently, with a minimum number of Steiner

nodes) is NP -hard [11].

Xu et al. [60] have considered the Steiner tree problem in unit disk graphs

with the goal of minimizing the number of internal nodes of the Steiner tree. The

motivation for this objective function is that the internal nodes of the Steiner tree

are the nodes that need to actively forward messages, while the leaves are only

receivers. They call this the Minimum Steiner Connected Dominating Set problem

and present an algorithm with approximation ratio 2ρ + 1, where ρ is the best

known approximation ratio of the edge-weighted Steiner tree problem in graphs,

currently ρ = 1.39. A main difference between their objective function and ours



Chapter 3 Literature Review 31

is that terminals that are internal nodes of the Steiner tree count towards their

objective but not towards ours (because we only consider the cost of the Steiner

nodes). Therefore, approximation results for the two problems do not translate to

each other. Furthermore, Xu et al. [60] only consider the un-weighted version of

their problem.

Zou et al. [62] consider the node-weighted Steiner tree problem in unit disk

graphs and present a 2.5ρ-approximation algorithm, where ρ is the best known

approximation ratio for the edge-weighted Steiner tree problem in arbitrary graphs.

With ρ = 1.39 [8], this gives approximation ratio 3.475 for node-weighted Steiner

trees in unit disk graphs. To obtain this result, Zou et al. [62] define the weight

of an edge to be the sum of the weights of the two endpoints and then apply an

algorithm for the edge-weighted Steiner tree problem. In this thesis, we follow the

same approach for the node-weighted Steiner tree problem, but our analysis is more

general and extends to classes of graphs such as quasi-unit disk graphs, bounded

independence graphs, and (λ+ 1)-claw-free graphs.

There is also a study of the node-weighted minimum Steiner tree problem in

line of sight networks presented by Frieze et al. [18]. The authors refer to this

problem as “Relay Placement problem”. In a line of sight network, every node has

a transmission range r, and nodes are located at intersection points of rows and

columns. Two nodes are visible to each other if they are in the same row or same

column, and at a distance at most r from each other. Frieze et al. [18] present a

ρd-approximation algorithm for the node-weighted minimum Steiner tree problem,

where ρ is the approximation ratio of the edge-weighted version of the Steiner tree

problem and d is the maximum degree of a spanning tree in the line of sight graph

model. A graph having a spanning tree of maximum degree d for every connected

component is referred to as d-cohesive in [18]. Our approach is similar to theirs but

is significantly more general since we extend our study to several classes of graphs
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employed to model wireless ad-hoc networks.

For routing in wireless networks, one approach is to use a virtual backbone

comprising a set of nodes of the network, and connect the remaining nodes of

the network to this backbone. The work of Min et al. [39] is based on this idea.

In wireless networks, a virtual backbone could be constructed with the help of a

connected dominating set. It is desirable that the size of the virtual backbone

is small. Therefore, the goal is to find a connected dominating set of minimum

size. It has been shown that the problem of computing a minimum connected

dominating set is NP -hard even for unit disk graphs, hence several approximation

algorithms are proposed for this problem in the literature. Min et al. [39] first

compute a dominating set, and then given the set of nodes of the dominating set

as terminals, the idea is to construct a Steiner tree connecting terminals with the

help of a minimum number of nodes that are not terminals. Their algorithm yields

approximation ratio 6.8 for connected dominating sets in unit disk graphs.

Node-weighted Steiner trees have also been used in the algorithm presented

by Liang [37] for finding minimum energy multicast trees in the bi-directional disk

graph model for wireless ad hoc networks. The minimum energy multicast tree

problem is defined as follows: Given a wireless network Q = (N,L), a source node

s and a subset of destination nodes D ⊆ (N −{s}), the minimum-energy multicast

problem is to compute a multicast tree rooted at s that spans the vertices in D

such that the sum of transmission powers of all nodes except leaves is minimized. It

is assumed that leaves do not participate in transmitting packets, therefore, their

weight is not included in the objective function. An undirected node-weighted

graph G is constructed for the network Q. The set of terminals for G corresponds

to s and D. For this instance of the node-weighted minimum Steiner tree prob-

lem, a tree T is computed with an approximation algorithm for the node-weighted

minimum Steiner tree problem with best known approximation ratio α. Then the
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tree is modified repeatedly to get a multicast tree in which the total transmission

power of the nodes is minimized approximately. The algorithm presented by [37]

achieves an approximation ratio which is within a constant factor of α.

Panigrahi [45] has recently addressed the minimum Steiner activation network

problem for wireless networks. Given a graph G = (V,E), a collection of subsets

of terminals T1, T2, ...Tk ⊆ V , a parameter xv chosen from a set X of possible

values at every node v ∈ V , and the activation function fu,v of every edge u, v ∈ E.

The activation function is a mapping fu,v : X × X → {0, 1}. Depending on the

chosen values xu and xv, if the edge u, v is active for transmissions, the activation

function gives 1, and otherwise 0. In the minimum Steiner activation network

problem (MSAN), every pair of terminals in each of the k sets T1, T2, ...Tk ⊆ V

is aimed to be connected in the activated subgraph and the goal is to minimize

the sum of the values of xv. The MSAN problem is a generalization of the node-

weighted minimum Steiner network problem [45] defined as follows: Given a graph

G = (V,E), nonnegative node-weights, and subsets of terminals T1, T2, ...Tk, the

objective is to compute a minimum-cost forest that contains all subsets of terminals,

and every pair of terminals in a subset Ti is connected. Panigrahi [45] reduces the

given instance of the MSAN into an instance of the minimum node-weighted Steiner

network problem and then uses the algorithm by Klein and Ravi [30]. This yields

approximation ratio O(logn) for the MSAN problem. The node-weighted minimum

Steiner tree problem is a special case of the minimum Steiner network problem,

so the MSAN problem also generalizes the node-weighted minimum Steiner tree

problem.

In several studies, heuristic solutions have been proposed for constructing mul-

ticast trees where the performance is tested with the help of simulations. For

example, Wieselthier et al. [56] worked on establishing multicast trees when the

transmission power of nodes is adjustable. When a node uses high transmission
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power, it can reach a large number of destination nodes. However, when the trans-

mission power of a node is lower, it does not reach as many nodes and, therefore,

needs to transmit over longer paths to the destination nodes. Let v and w be inside

the transmission range of source u. While transmitting packets to v, w will also

hear the transmission of u.

This property of wireless networks which enables multiple nodes to receive

messages simultaneously is known as wireless multicast advantage. In the method

presented by [56], first a tree is constructed using the broadcast incremental power

method: Start with a source node, add one node at a time to the tree (such that

the increase in transmission power of the parent of the new node is minimized)

until all nodes are included in the tree. In the second step, nodes that are not

used to connect the intended multicast receivers are deleted from the tree. In this

process, those nodes whose distant neighbors are deleted reduce their transmitting

power level too. This multicast incremental power technique which benefits from

the wireless multicast advantage shows better results than other techniques used

to construct multicast trees that do not consider the wireless multicast advantage

[56].

We refer the interested reader to [58, 48, 52, 3] for simulation-based studies on

multicast communication in wireless ad-hoc networks.

3.3 Fault-tolerant Steiner Problems

The problems NW2ECS and NWkECS studied in this thesis are related to the

classical combinatorial problem known as generalized Steiner network problem or

survivable network design problem (SNDP), defined as follows: Let an undirected

graph G = (V,E) with vertex set V and edge set E be given. For every edge

e ∈ E, there is a nonnegative weight ce, and for every pair u, v of vertices in V ,
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there is a connectivity requirement ru,v. The objective is to find a minimum-cost

subgraph such that there are at least ru,v edge-disjoint paths between u and v,

for all u, v ∈ V [24]. There are several special cases of this problem including

the 2-edge-connected Steiner subgraph problem, and the k-edge-connected Steiner

subgraph problem. In the edge-weighted version of the 2-edge-connected Steiner

subgraph problem, ru,v equals 2 if u, v ∈ K and 0 otherwise. Similarly, for the

special case of the k-edge-connected Steiner subgraph problem, ru,v equals k if

u, v ∈ K and 0 otherwise. A 2-approximation algorithm for the generalized Steiner

network problem was presented by Jain [26]. Hence, there is a 2-approximation

algorithm for the edge-weighted version of the 2-edge-connected Steiner subgraph

problem and k-edge-connected Steiner subgraph problem for arbitrary graphs.

For a graph G = (V,E), weights wv for all v ∈ V , and edge-connectivity

requirement ru,v for all u, v ∈ K ⊆ V , Nutov [43] studied the problem of computing

a minimum weight subgraph H of G that contains K and has at least ru,v edge-

disjoint paths between every pair of terminals. The algorithm presented in [43]

yields approximation ratio rmax · O(ln |K|), where rmax = maxu,v∈K ru,v and |K|

denotes the number of terminals.

There are also problem variants concerned with node-disjoint instead of edge-

disjoint paths, for example, edge-weighted and node-weighted k-vertex-connected

Steiner subgraphs. The best known approximation ratio for the k-vertex-connected

Steiner subgraph problem with respect to edge weights is O(k3 logn) [10], and for

node-weights, it is O(k4 log2 n) [44], where n is the number of vertices. In this thesis,

we consider the 2-vertex-connected Steiner subgraph problem with respect to node

weights. For the edge-weighted 2-vertex-connected Steiner subgraph problem, the

best known approximation ratio is 2 [17]. For the node-weighted 2-vertex-connected

Steiner subgraph problem, the best known approximation ratio is O(lnn) [43]. A

special case of the k-vertex-connected Steiner subgraph problem is the problem
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of computing k-vertex-connected spanning subgraphs, i.e., ru,v equals k for all

u, v ∈ V . The k-vertex-connected spanning subgraph problem [32, 16] asks to

compute a subgraph that contains all vertices of G, and in which every pair of

vertices has at least k vertex-disjoint paths. The goal of the k-vertex-connected

spanning subgraph problem is to compute a subgraph of minimum total weight.

There is also another version of the generalized Steiner network problem con-

sidered in the literature: instead of requirements ru,v for every pair of vertices, an

integer value ru is assigned to nodes [23]. The goal is to find a minimum cost graph

satisfying the requirement ru,v = min(ru, rv).

Kamma and Nutov [27] studied survivable networks with the objective of using

a minimum number of Steiner points in unit disk graphs. Given a finite set of

points V ⊂ Z in a metric space represented by (Z, d), we have an induced unit

disk graph G on V , and there is an edge between every pair of vertices u, v ∈ V

if the distance between them is at most 1. An integer connectivity requirement

r = {ru,v : u, v ∈ X ⊆ V } is satisfied if there are r vertex-disjoint paths between

every pair of vertices u, v ∈ X . The goal is to find a set of Steiner nodes S ⊂ Z \V

of minimum size such that the new graph G′ on (V ∪S) satisfies r (SN-MSP). They

reduce an instance of their problem into an instance of the edge-weighted survivable

network design problem (SNDP). They prove that an α-approximation algorithm

for the instance of SNDP gives an α · O(k2)-approximation algorithm for the SN-

MSP instance, where k = maxu,v∈V ru,v. There is similarity in their approach

and ours as for the 2-vertex-connected Steiner subgraph problem, we transform

the given instance into an edge-weighted version of the 2-vertex-connected Steiner

subgraph problem, and then solve that instance with an α-approximation algorithm

for the edge-weighted version of the problem. We aim to find 2 vertex-disjoint

paths whereas their connectivity requirement is more general seeking k vertex-

disjoint paths. They consider unit disks in a metric space, however, we consider
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unit disk graphs in the Euclidean plane. Our result extends to more general classes

of graphs including α-unit-disk graphs, bi-directional disk graphs, and (λ+1)-claw-

free graphs.

Bredin et al. [6] studied fault-tolerance in wireless networks. If the given net-

work is not k-vertex-connected, their algorithm deploys additional nodes to make

the network k-vertex-connected. Their algorithm also works in scenarios when

several nodes fail and the network connectivity is lost. So, additional nodes are

installed to repair the network. Their goal is to minimize the number of additional

nodes deployed in the network for k-vertex-connectivity. The network is modelled

by a unit disk graph. Given a graph G = (V,E) and connectivity requirement

k, the algorithm computes a complete graph G′ = (V,E ′) on the vertex set V ,

and assigns weight w(u, v) = dd(u, v)e − 1 to each edge (u, v) ∈ E. Then, their

algorithm constructs a k-vertex-connected subgraph H ′ for G′ of minimum weight

using an α-approximation algorithm for the k-vertex-connected Steiner subgraph

problem on complete graphs. In the next step, for every edge selected in the k-

vertex-connected subgraph of G′, new nodes are inserted in G′. Let the new graph

obtained be H . There can be two cases of fault-tolerance [6]: (i) when only the

original vertices in V are required to be k-vertex-connected, and, (ii) when all ver-

tices in H are required to be k-vertex-connected. Their algorithm ensures that one

of the above two cases are satisfied. For the first case, w(u, v) nodes are inserted

in H along each edge in H ′ such that they are at a unit distance from each other.

For the second case, w(u, v) groups of k nodes are placed along each edge {u, v} in

H ′, and the distance between each group is one unit. Their algorithm is an O(k4α)

approximation algorithm. The step in which they transform their input graph into

an edge-weighted complete graph, and then run an existing α-approximation al-

gorithm for the edge-weighted k-vertex-connected subgraph problem, is somehow

analogous to our algorithm for the 2-vertex-connected Steiner subgraph problem.
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We transform an instance of the node-weighted 2-vertex-connected Steiner sub-

graph problem to an instance of the edge-weighted version of the problem, and

then run an α-approximation algorithm for the 2-vertex-connected Steiner sub-

graph problem with respect to edge-weights. We minimize the weight of the re-

sulting graph requiring that the property of 2-vertex-connectivity is satisfied, while

their objective is to include a minimum number of additional nodes (Steiner nodes)

to connect terminals through k vertex-disjoint paths.

There are also studies of group Steiner problems in the literature. Given an

undirected graph G = (V,E), costs ce for all e ∈ E , and a collection of groups

of vertices K1, ..., KM ⊆ V , the group Steiner tree problem asks to compute a tree

that is a subgraph H of G of minimum-cost and contains at least one vertex from

each group [21]. Fault-tolerant variants of this problem are studied in [29] including

the node-weighted version of the 2-edge-connected group Steiner subgraph problem

(called EC-FTGS-2 in [29]). The best known approximation ratio for the node-

weighted 2-edge-connected group Steiner subgraph problem is O(logn) [29]. For

the edge-weighted version of the problem, the best known approximation ratio is

(2 + α), where α is the best known ratio for the Steiner tree problem [29].

3.4 Inapproximability Results of Steiner Probl-

ems in General Graphs

The edge-weighted Steiner tree problem is APX-hard [5]. For the node-weighted

Steiner tree problem, no approximation algorithm better than O(lnn) can be

achieved unless NP ⊆ DTIME(npolylog(n))2 because the set-cover problem can be

reduced (in an approximation-preserving way) to the node-weighted Steiner tree

2DTIME(npolylog(n)) represents the class of problems for which there exists a deterministic
time algorithm that runs in time npolylog(n).
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problem [30]. Since the node-weighted k-edge-connected Steiner subgraph problem

generalizes the node-weighted Steiner tree problem, the k-edge-connected Steiner

tree problem is also set-cover hard. The node-weighted group Steiner subgraph

problem generalizes the node-weighted Steiner tree problem [29] , therefore, we

cannot achieve approximation ratio better than O(lnn) for our 2-edge-connected

group Steiner subgraph problem either. For the edge-weighted k-vertex-connected

Steiner subgraph problem, one cannot achieve approximation ratio better than

2log
1−ε n for any ε > 0 unless NP ⊆ DTIME(npolylog(n)) [31]. The same inapprox-

imability result applies to the node-weighted k-vertex-connected Steiner subgraph

problem as the node-weighted version is more general than the edge-weighted ver-

sion (see Fig. 3.4. Any instance of the edge-weighted problem can be reduced to an

instance of the node-weighted version by dividing every edge of the given instance

and then assigning weight associated with each divided edge to the corresponding

new node [30]). See Table 3.1 for an overview of the known inapproximability

results.

4 2 1 2

(a) An instance of the edge-weighted prob-
lem I.

4 2 1 2

0

0

0

0

0

(b) the node-weighted instance I ′ reduced
from I.

Figure 3.4: An instance of the edge-weighted version reduced into the node weighted
version.
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Steiner tree problem Ω(ln n)

k-edge-connected Steiner
subgraph problem

Ω(ln n)

k-vertex-connected Steiner
subgraph problem

no 2log
1−ε n-approximation

for any ε > 0

2-edge-connected group
Steiner subgraph problem

Ω(ln n)

Table 3.1: Inapproximability of node-weighted Steiner problems in general graphs.



Chapter 4

General Problem

In this chapter we study the node-weighted δ-Steiner subgraph problem. Given a

graph G = (V,E), and a subset K ⊆ V , the node-weighted δ-Steiner subgraph

problem asks to compute a Steiner subgraph H ⊆ G of minimum vertex cost,

such that a property δ(H,K) holds. A Steiner subgraph H contains the vertices

of K (terminals), and some vertices in V \ K (Steiner nodes). Interestingly, the

result we obtain can be applied to the family of problems outlined in Chapter 1,

which implies that the node-weighted δ-Steiner problem is a generalization of those

problems. We introduce a property P δ
d in Section 4.3, on the basis of which we

achieve a 0.5dρ-approximation algorithm for the node-weighted δ-Steiner problem

for classes of graphs that satisfy P δ
d , where ρ is the approximation ratio of the best

known approximation algorithm for the edge weighted version of the problem, and

d is the maximum degree bound of the solution subgraph.

4.1 Node-weighted δ-Steiner Subgraph Problem

We consider properties δ(H,K) where H is a graph and K is the set of terminals.

Intuitively, the property δ(H,K) represents that H contains all vertices from K

41
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and satisfies certain connectivity requirements. A graph that satisfies δ(H,K) is

referred to as δ-Steiner subgraph. Examples of subgraphs for suitable choice of

δ are Steiner subgraphs in which all terminals are connected, 2-edge-connected

Steiner subgraphs, 2-vertex-connected Steiner subgraphs, and k-edge-connected

Steiner subgraphs.

For a fixed property δ, we define the node-weighted δ-Steiner subgraph problem

as follows:

Problem 1. Given a graph G = (V,E), a subset of vertices K ⊆ V , and nonnega-

tive weights wu for u ∈ V , the node-weighted δ-Steiner subgraph problem is to find

a subgraph H of G such that the property δ(H,K) is satisfied. The objective of the

node-weighted δ-Steiner subgraph problem is to minimize the sum of the weights of

the vertex set of H.

Besides the node-weighted δ-Steiner subgraph problem, there is an edge-weight-

ed version of the problem defined as follows: Given a graph G = (V,E) with edge

costs ce for e ∈ E, and a subset K ⊆ V , compute a Steiner subgraph H ⊆ G, such

that the property δ(H,K) holds. The goal of the edge-weighted δ-Steiner subgraph

problem is to minimize the sum of the costs of the edges in H .

As our motivation is wireless ad-hoc networks, we present approximation al-

gorithms for the node-weighted δ-Steiner subgraph problem in those graph classes

which are employed to model wireless ad-hoc networks. For general graphs, the

approximation algorithms proposed for the edge-weighted δ-Steiner subgraph prob-

lem in the literature have better approximation factor as compared to the results

achieved for the node-weighted version. We show that using the best known ρ-

approximation algorithms for the edge-weighted version of the problem in general

graphs, we can get better approximation results for the node-weighted δ-Steiner

subgraph problem in restricted graph classes.
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Figure 4.1: Black nodes are terminals and white node are Steiner nodes (a) Graph
G with arbitrary weights assigned to terminals (b) Optimal solution for connecting
terminals in G (c) solution produced by an algorithm for connecting terminals in
G with approximation ratio 7/6.

We assume that terminals have weight zero because they are present in every

solution. If we allow the weight of terminals to be more than zero, we can only

get a better approximation ratio. For example, see Fig. 4.1, terminals are assigned

arbitrary nonnegative weights, whereas in Fig. 4.2 all terminals are assigned weight

zero. Clearly, the ratio between approximate solution and optimal solution is 7/6 in

Fig. 4.1 which is less than the approximation ratio shown in Fig. 4.2, i.e., 2. Thus,

assigning weight more than zero to terminals does not worsen the approximation

ratio but may improve it.

Before we present a formal proof for what we have shown in the above example,

we state the following inequality that holds if a ≥ 0, b ≥ 0, a ≥ b:

a+ k

b+ k
≤ a

b
, ∀k ≥ 0 (4.1)

Lemma 1. A ρ-approximation algorithm A for instances of the node-weighted δ-

Steiner subgraph problem with terminals of weight 0 gives also a ρ-approximation

algorithm for instances of the node-weighted δ-Steiner subgraph problem with ter-
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Figure 4.2: Black nodes are terminals and white node are Steiner nodes (a) Graph
G with zero weight assigned to each terminal (b) Optimal solution for connecting
terminals in G (c) solution produced by an algorithm for connecting terminals in
G with approximation ratio 2.

minals of arbitrary non-negative weights.

Proof. Consider an instance of the node-weighted δ Steiner subgraph problem I

with arbitrary terminal weights. Let OPT be the weight of optimal solution for I,

and w(K) be the weight of terminals in I. We modify I by setting the terminal

weights to 0 and denote the modified instance by I0. Consider the weight of an

optimal solution for I0 and denote it by OPT0. Let the weight of the Steiner nodes

of the solution produced when A is applied to I0 be w(S).

Observe that: OPT = OPT0 + w(K), and

w(S) ≤ ρ · w(OPT0)

The approximation ratio of the solution produced by A for I0, if taken as solu-

tion to I, is then: w(S)+w(K)
OPT

= w(S)+w(K)
OPT0+w(K)

Due to inequality (4.1), we get

w(S)+w(K)
OPT0+w(K)

≤ w(S)
OPT0

≤ ρ,

where w(K) ≥ 0, w(S) ≥ OPT0, and w(S) ≥ 0,

Definition 1. We say that the property δ(H,K) is monotone if neither adding an

edge to H nor deleting a Steiner node of degree 1 from H, violates the property.
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A Steiner node of degree 1 in a solution means that it is a leaf node and not

an intermediate node which is helping to connect other nodes in that solution. For

instance, consider a property δ(H,K) that expresses that H is a Steiner subgraph

in which every pair of terminals is connected. Let us assume that there exist Steiner

nodes of degree one in H . Even after removing such Steiner nodes, H is a Steiner

subgraph that connects all terminals. If we consider a δ(H,K) such that H is a

Steiner subgraph satisfying some higher connectivity requirement, in that case too,

a Steiner node of degree 1 can be deleted without harming the connectivity of other

nodes in the solution. Thus, the property δ(H,K) still holds if we remove Steiner

nodes of degree 1.

We prove our result for those classes of graphs for which there exist δ-Steiner

subgraphs of bounded maximum degree. Due to this reason, it is necessary that

the solution subgraph belongs to the same class of graphs to which the input graph

belongs. However, the solution we get may not always belong to the class of the

input graph. For example, consider the unit disk graphG = (V,E) in Fig 4.3. Black

nodes are terminals and white nodes represent Steiner nodes. We wish to compute

a Steiner subgraph for G that connects all terminals. One possible solution is the

subgraph H∗, which is indeed an optimal solution for this example. However, H∗

does not belong to the class of unit disk graphs because no vertex in a unit disk

graph can have more than 5 independent neighbors. For the solution to belong

to the class of unit disk graphs, we compute the graph H ′ induced by vertex set

V (H∗). The desired connectivity of nodes does not decrease in H ′ when edges are

added to H∗ to obtain H ′. Therefore, H ′ satisfies δ(H ′, K), and we can achieve

our approximation results for the considered graph classes that admit solution

subgraphs of bounded maximum degree.
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Figure 4.3: (a) Given graph G (b) Solution H∗ to G (c) Adding edges to H∗ to
obtain an induced subgraph H ′ does not violate δ.
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4.1.1 Properties δ for different types of Steiner subgraphs

There are other properties considered in this thesis which are special cases of the

property δ. The node-weighted Steiner subgraphs satisfying those special cases of

δ are as follows:

Node-weighted connected Steiner subgraphs

We consider the property µ(H,K) which expresses that H is a graph that contains

all vertices inK such that there is a path between every pair of vertices inK. Given

an undirected graph G = (V,E) with nonnegative weights wv for all v ∈ V , and

a subset of nodes K ⊆ V , a subgraph H for G and K that satisfies the property

µ(H,K) is referred to as node-weighted connected Steiner subgraph. When a

Steiner subgraph connects vertices of K and is acyclic, the subgraph is called

a Steiner tree, i.e., there is only one path between every pair of terminals. A

connected Steiner subgraph can be transformed into a Steiner tree by removing

those edges from the graph which make cycles.

Node-weighted 2-edge-connected and k-edge-connected

Steiner subgraphs

We consider a property σ(H,K) which represents that H is a Steiner graph that

contains all vertices in K and has at least 2 edge-disjoint paths between every pair

of vertices. Given an undirected graph G = (V,E) with nonnegative weights wv for

all v ∈ V , and a subset of nodesK ⊆ V , a subgraphH forG andK that satisfies the

property σ(H,K) is termed as node-weighted 2-edge-connected Steiner subgraph.

Likewise, we consider a property ψk(H,K) which specifies that H is a graph that

contains all vertices in K and has at least k edge-disjoint paths between every pair

of terminals. Given an undirected graph G = (V,E) with nonnegative weights wv
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for all v ∈ V , and a subset of nodes K ⊆ V , a subgraph H for G and K that

satisfies the property ψk(H,K) is referred to as node-weighted k-edge-connected

Steiner subgraph.

Node-weighted 2-vertex-connected Steiner subgraphs

A property ς(H,K) is considered which represents that H is a graph that contains

all vertices in K and has at least 2 vertex-disjoint paths between every pair of

vertices. Given an undirected graph G = (V,E) with nonnegative weights wv for

all v ∈ V , and a subset of nodes K ⊆ V , a subgraph H for G and K satisfying

the property ς(H,K) is referred to as node-weighted 2-vertex-connected Steiner

subgraph.

Before we present an algorithm for the node-weighted δ-Steiner subgraph prob-

lem, and analyze its approximation ratio, we remark that for all the variants of the

δ-Steiner problem considered in this thesis, it is easy to check whether a given

instance of the problem with graph G = (V,E) and set K of terminals admits a

feasible solution. For this, one only needs to check whether there are at least the

specified number of edge-disjoint or vertex-disjoint paths in G between any pair of

vertices in K. This can be done in polynomial time using standard network flow

techniques (see, e.g., [1]). Therefore, we can always assume that the given instance

of the δ-Steiner subgraph problem admits at least one feasible solution.

In the following section, we present an algorithm for the node-weighted δ-

Steiner subgraph problem.

4.2 Algorithm Description

Since we assume wu = 0 for all u ∈ K, therefore, c(u, v) = 0 if u, v ∈ K. Our

algorithm computes a δ-Steiner subgraph H using ρ-approximation algorithm. If
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Algorithm 1 Algorithm for the node-weighted δ-Steiner subgraph problem

Input: An instance of the node-weighted δ-Steiner subgraph problem given by
G = (V,E) with nonnegative weights wv for all v ∈ V and a set K ⊆ V of
terminals.

Output: δ-Steiner subgraph H .

1 Assign weight c(u, v) to every edge (u, v) ∈ E: c(u, v) = wu + wv
2 Compute a δ-Steiner subgraph H for graph G and terminals K with respect to
the edge weights c using ρ-approximation algorithm.

H contains a Steiner node of degree 1, we repeatedly delete such Steiner nodes

until no such Steiner node is left. Then the algorithm outputs H as solution to the

given instance of the node-weighted δ-Steiner subgraph problem. The running time

of Algorithm 1 is dominated by the time algorithm A takes in Step 2 to compute

δ-Steiner subgraph H with respect to edge weights.

4.3 Analysis of Approximation Ratio

We consider graph classes Υ that are hereditary, i.e., if a graph is in the class, then

any induced subgraph of that graph is also in the class. Furthermore, Υ has the

following property P δ
d , for some constant d:

(P δ
d ) Any graph H and any subset of vertices K ⊆ V (H) in the class Υ satisfy-

ing the property δ(H,K) has a subgraph H ′ of maximum vertex degree d

satisfying δ(H ′, K).

Let the graph G = (V,E) of the given instance of the node-weighted δ-Steiner

subgraph problem belong to a class of graphs with the above-stated property. Con-

sider an optimal solution to this instance. The weight of the Steiner nodes in this

solution is denoted by OPT V . Let us denote the minimum total edge weight (with

respect to edge weights c) of a δ-Steiner subgraph for G and terminal set K by
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OPTE . As our algorithm computes H by running a ρ-approximation algorithm for

the edge-weighted version of the problem, the total edge weight of H , denoted by

c(H), thus satisfies c(H) ≤ ρ ·OPTE . Let the total node weight of H be w(H). We

analyze the approximation ratio by relating OPTE to OPT V and c(H) to w(H).

Lemma 2. For classes of graphs satisfying (Pδd), it holds that OPTE ≤ d ·OPT V

Proof. Let H∗ be the optimal solution to the node-weighted δ-Steiner subgraph

problem. As in the example illustrated by Fig. 4.3, H∗ may not belong to the

same class of graphs to which G belongs. Therefore, we consider the subgraph

of G induced by V (H∗) and denote it by H ′. Since property δ is monotone, this

allows us to add edges to H∗ in order to obtain H ′, and thus, H ′ satisfies property

δ(H ′, K). By (P δ
d ), H

′ contains a subgraph Hd of maximum node degree d that

satisfies δ(Hd, K). The total node weight of Hd is equal to that of H ′, as the set

of nodes is the same. The total edge weight of Hd is at most d · OPTV , because

the weight of each edge is the sum of the weights of its two end vertices and each

vertex contributes to the weight of at most d edges. Hence, Hd is a feasible solution

of edge weight at most d · OPT V , and the optimal solution with respect to edge

weights cannot have larger weight.

Lemma 3. w(H) ≤ c(H)/2

Proof. As every Steiner node ofH has degree at least two in H and c(uv) = wu+wv

for all edges uv, we have that every Steiner node contributes its weight once to the

sum of all node weights but at least twice to the sum of all edge weights. Hence,

c(H) ≥ 2w(H).

Theorem 4.1. Let δ be monotone. Then for hereditary classes of graphs satis-

fying (P δ
d ), Algorithm 1 is a 0.5dρ-approximation algorithm for the node-weighted

δ-Steiner subgraph problem.
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Proof. Combining the previous lemmas, we get that w(H) ≤ c(H)/2 ≤ 0.5ρOPTE

≤ 0.5dρOPT V .

Conclusion

Considering that nodes in a wireless ad-hoc networks can have different amount of

available resources or willingness to participate in communication, we have allowed

arbitrary node-weights to model the situation in graphs. Since terminals are part of

every solution, we assume that they have weight zero, and the weight of the Steiner

nodes in the solution H is minimized. Minimizing the weight of the Steiner nodes

is a natural objective in this setting because it is desirable to minimize the cost of

the nodes that forward packets but do not benefit from the multicast transmission

themselves. The approximation ratio achieved is 0.5dρ, where d is the maximum

degree bound of the solution, and ρ is the approximation ratio of the edge-weighted

version of the problem. This result will be used in the analysis of our algorithms

in remaining chapters.



Chapter 5

Node-Weighted Minimum Steiner

Tree Problem

We discussed in Chapter 4 that there are properties δ which model the connectivity

requirements in different types of Steiner subgraphs. Here, we consider the property

µ(H,K) which specifies that H is a graph that contains all vertices in K and there

is a path between every pair of vertices in K.

The node-weighted minimum Steiner tree problem is defined as follows:

Problem 2. Given an undirected graph G = (V,E) with nonnegative weights wv

for v ∈ V , and a subset of nodes K ⊆ V called terminals, compute a Steiner

subgraph H for G and K that satisfies the property µ(H,K). The objective is to

minimize the total weight of the vertices of H.

We can assume that the solution is a tree. If it is not a tree, we can just remove

those edges without which the terminals are still connected in H . By deleting

such edges we obtain a subgraph which is a tree. We can assume without loss of

generality that the terminals have weight 0 as they are present in any solution and

their weight increases the objective value of any solution by the same amount. So

our goal is to minimize the total weight of the Steiner nodes of H . See Fig. 5.1 for

52
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(a) An instance of the node-
weighted Steiner tree prob-
lem denoted by G.

1

22

(b) A good solution for G
with total node-weight 5.

4

22

5

(c) A bad solution for G
with total node-weight 13.

Figure 5.1: Black nodes are terminals, white nodes are Steiner nodes.
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an example of good and bad solutions for a given instance of the node-weighted

minimum Steiner tree problem.

We assume that all leaves of a Steiner tree are terminals, so that all Steiner

nodes are internal nodes with degree at least two. This assumption can be made

because Steiner nodes of degree one can simply be removed from a Steiner tree.

Furthermore, we consider only classes of graphs that are hereditary. For some

constant d, we have a property (P µ
d ) for a class of graphs Υ, as follows:

(Pµ
d) Any graphH in the class Υ, and a subset of vertices K ⊆ V (H) satisfying the

property µ(H,K) has a subgraph H ′ of maximum degree at most d satisfying

µ(H ′, K).

We say that a class of graphs Υ has spanning tree degree bound d, if every

connected graph H in Υ has a spanning tree with maximum degree at most d.

It is clear that Υ satisfies the property (P µ
d ) if any connected graph H in Υ has

a spanning tree of maximum degree at most d. Thus, we first derive results for

classes of graphs with constant spanning-tree degree bound, and then for specific

classes of graphs as corollaries.

As NWMST is NP -hard for unit disk graphs and thus also for the more

general graph classes we consider, we are interested in algorithms that compute

solutions in polynomial time with good approximation ratios. In the following

section the algorithm for NWMST problem is presented.

5.1 Algorithm for Minimizing the Weight of

Steiner Nodes

Algorithm 1 in Section 4.2 can be applied to the node-weighted minimum Steiner

tree problem as follows:
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Algorithm 2 Algorithm for NWMST

Input: An instance of NWMST given by G = (V,E) with nonnegative weights
wv for v ∈ V and a set K ⊆ V of terminals.

Output: Steiner tree H .

1 Assign weight c(u, v) to every edge (u, v) ∈ E: c(u, v) = wu + wv
2 Compute a subgraph H for G satisfying µ(H,K) with respect to edge weights
using the algorithm by Byrka et al [8].

We assume that wu = 0 for all u ∈ K, thus c(u, v) = 0 if u, v ∈ K.

Our algorithm computes a Steiner tree H for graph G and terminals K with

respect to the edge weights c using the algorithm of Byrka et al. [8]. Then the

algorithm outputs the tree H as solution to the given instance of NWMST .

We already know that Theorem 4.1 can be applied to a subgraph H if δ is

monotone, i.e., adding an edge to a Steiner subgraph H and deleting a Steiner node

of degree 1 from it does not destroy the property. This property of monotonicity

does not hold if H is required to be a Steiner tree (because a Steiner tree will no

more be a tree if we add an edge to it). Thus, the output of the algorithm, i.e., H ,

is considered as a subgraph that connects all terminals instead of a tree structure.

This allows us to add edges to H in order to find its induced subgraph. Recall that

we are interested in the induced subgraph of H for the purpose of analysis of the

algorithm, to ensure that we are taking into account the maximum degree bound

d of the subgraph which belongs to same class of graphs to which the input graph

belongs.

Theorem 5.1. For hereditary graph classes satisfying (P µ
d ), there is a 0.695d-

approximation algorithm for the Node-Weighted Minimum Steiner Tree problem.

Proof. According to Theorem 4.1, for hereditary classes of graphs that satisfy P δ
d ,

we have a 0.5dρ-approximation algorithm for the node-weighted δ-Steiner subgraph

problem, where δ is monotone. Since we consider the property µ(H,K) which is
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monotone, and represents that H is a Steiner subgraph in which all terminals are

connected, Theorem 4.1 implies that we have 0.5dρ-approximation algorithm for

the node-weighted minimum Steiner tree problem in classes of graphs that satisfy

(P µ
d ). As the algorithm by Byrka et al. [8] is a 1.39-approximation algorithm for

the edge-weighted Steiner tree problem, we have an approximation algorithm with

ratio 0.5 ·1.39d = 0.695d for the node-weighted minimum Steiner tree problem.

5.1.1 NWMST in Special Graph Classes

In this section, we apply Theorem 5.1 to several classes of graphs that are frequently

employed to model wireless ad-hoc networks.

Unit Disk Graphs

First, we obtain directly the result for unit disk graphs that is presented by Zou et

al. in [62].

Corollary 1. There is a 3.475-approximation algorithm for the Node-Weighted

Minimum Steiner Tree problem in unit disk graphs (Zou et al. [62]).

Proof. As shown by Wu et al. [59], any connected unit disk graph admits a spanning

tree in which the degree of every vertex is at most five. By applying Theorem 5.1

with d = 5, we obtain approximation ratio 0.695 · 5 = 3.475.

α-Unit Disk Graphs

Lemma 4. For every 0 < α ≤ 1, the class of α-unit disk graphs has spanning-tree

degree bound at most 6 + 8/α2 + 4
√
2/α.

Proof. Consider any connected α-unit disk graph G = (V,E). Let the weight wuv

of an edge uv ∈ E be the Euclidean distance between the positions of nodes u and
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Circle with radius 1

Circle with radius  

near neighbor of u

far neighbor of u

u

α

Figure 5.2: Neighbors of a node in an α-unit disk graph

v, and let T be a minimum spanning tree of G with respect to these edge weights.

Consider an arbitrary node u of G. The degree of node u in T can be calculated

as the number of neighbors that are at distance at most α from u plus the number

of neighbors that have distance greater than α from u. We call the former type

of neighbors the near neighbors, the latter type the far neighbors. We bound the

number of neighbors of each type separately. First, consider the near neighbors

of u in T . We can use the method of [59] to prove that T can be chosen so that

there are at most 5 such neighbors.

Now consider the far neighbors of node u in T . All such neighbors lie in a ring

around u that is bounded by circles of radius α and 1 with center u, see Fig. 5.2.

This ring is contained in a square with side length 2 and center u. We cover this

square using square cells of side length α/
√
2 (and, thus, diameter α). We claim

that each cell can contain at most one far neighbor of u in T . If a cell contained two

far neighbors v and w of u in T , the weight of T could be decreased by removing

one of the edges uv and uw (both of which have length more than α), and adding

the edge vw (which has length at most α). Hence, the number of far neighbors

of u is bounded by the number of cells needed to cover the ring, which is in turn

bounded by the number of cells needed to cover a square of area 2×2. This number
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u
radius of each small circle: 

radius of the bigger circle: 

α/2

(1 + α/2)

Figure 5.3: Independent neighbors of an arbitrary node u in an α-unit disk graph

of cells is at most
⌈

2
α
√

2

⌉

·
⌈

2
α
√

2

⌉

≤ (2
√
2

α
+ 1) · (2

√
2

α
+ 1) = 8

α2 +
4
√
2

α
+ 1.

Considering both types of neighbors of u, we get that u has degree at most

5 + 8/α2 + 4
√
2/α+ 1 = 6 + 8/α2 + 4

√
2/α in T . As the argument can be applied

to any node u, the claim follows.

Corollary 2. For α-unit disk graphs, there is a 0.695 · (6 + 8/α2 + 4
√
2/α)-

approximation algorithm for the NWMST problem.

This result also applies to disk graphs with bounded diameter ratio. A disk

graph is a graph where each node corresponds to a disk in the plane and two

nodes are adjacent if the corresponding disks have a non-empty intersection. The

diameter ratio of a disk graph is the ratio between the largest and the smallest

diameter of any disk in the graph. If a disk graph has diameter ratio at most D for

some constant D, we can assume without loss of generality that the largest disk

has diameter 1 and the smallest disk has diameter at least 1/D. The graph is then

an α-unit disk graph with α = 1/D. Hence, Lemma 4 and Corollary 2 imply that

disk graphs with diameter ratio at most D have spanning-tree degree bound O(D2)

and admit an O(D2)-approximation algorithm for the NWMST problem.

We now show a bound on the maximum number of independent neighbors of a

node in α-unit disk graphs. We will use this bound later to achieve a better result

for NWMST than what we obtained in Corollary 2 for α-unit disk graphs.
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Lemma 5. For every 0 < α ≤ 1, the number of independent neighbors of every

node in the class of α-unit disk graphs is at most 4/α2 + 4/α + 1.

Proof. Consider any α-unit disk graph G = (V,E). We bound the maximum

number of independent neighbors of an arbitrary node u in G by considering a disk

of radius (1+α/2) with center u (see Fig 5.3). We draw a small disk of radius α/2

around each independent neighbor of u. As all these small disks are disjoint (since

independent neighbors of u must have distance larger than α) and contained in the

disk of radius (1 + α/2), the number of these small disks is at most:

(1+α/2)2π
(α/2)2π

= 1+α2/4+α
α2/4

= 4/α2 + 4/α+ 1.

Thus, the number of independent neighbors of any node in an α-unit disk graph is

at most 4/α2 + 4/α+ 1.

(λ+ 1)-Claw-Free Graphs

Next, we consider the class of (λ+1)-claw-free graphs. In (λ+1)-claw-free graphs,

the number of independent neighbors of every node is bounded by λ. First we show

spanning tree degree bound in (λ + 1)-claw-free graphs, and then apply Theorem

4.1.

Lemma 6. For every integer λ ≥ 1, the class of (λ + 1)-claw-free graphs has

spanning-tree degree bound at most λ+ 1.

Proof. We can prove that there exists a spanning tree of bounded maximum degree

in (λ+1)-claw-free graphs by constructing a tree with depth first search (DFS) (see

[12] for a description of DFS). Given a (λ + 1)-claw-free graph G = (V,E), start

with an arbitrary node and construct a DFS tree T . Consider an arbitrary node

u and any two of its children denoted by v and w in T . If there was an edge

v-w in G, then according to the construction of any DFS tree, v would have been

either a descendant of w or an ancestor of w in T , but both of them could not
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belong to a common parent. Therefore, the two cases that there is an edge v-w in

the original graph G, and both v and w have the same parent in T cannot occur.

As we have assumed that v and w have a common parent u, nodes v and w are

independent nodes in the original graph. Thus, children of every node in a DFS tree

are independent nodes. Furthermore, every node can have at most λ independent

neighbors in a (λ+ 1)-claw-free graph, thus, there are at most λ children of every

node in T . This means that the number of neighbors of u is at most λ + 1, i.e., λ

children plus one parent. Hence, it is proved that T has maximum degree bound

at most λ+ 1.

We also give an alternative proof for Lemma 6 as follows:

Let G = (V,E) be any connected, (λ + 1)-claw-free graph. We give an algo-

rithm that constructs a spanning tree of G with maximum degree at most λ + 1.

The algorithm grows a subtree T of G, initially consisting of a single node, into a

spanning tree by repeatedly picking a leaf node v and adding a maximal indepen-

dent set of its neighbors outside T as children of v. More formally, the algorithm

can be described as follows:

1. Let T be the subtree of G consisting of an arbitrary node u of G.

2. while T is not yet a spanning tree do

(i) Pick any leaf v of T that has at least one neighbor outside T .

(ii) Compute a maximal independent set I among the neighbors of v that

are not in T .

(iii) Add all nodes of I as children of v to T .

3. return T .

First, we show that the algorithm computes a spanning tree. The algorithm

could only fail to compute a spanning tree if it reaches a situation in which T is not
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yet a spanning tree, but in Step 2(i) there is no leaf of T with a neighbor outside T .

Assume that this happens. Let U be the set of nodes in T and W the set of nodes

outside T . Since G is connected, there must be a node u ∈ U and a node w ∈ W

such that uw ∈ E. The node u cannot be a leaf of T , because we assume that no

leaf has an edge to a node in W . Hence, u is an internal node of T . We can assume

that u is chosen to be the deepest node in T that is adjacent to w. In an earlier

step of the algorithm, when the current tree was a subtree T ′ of T and u was a

leaf of T ′, the algorithm has added a maximal independent set I of u’s neighbors

as children of u to the tree. As w was not added to I, w must be adjacent to

a node in I, and hence w must be adjacent to a child of w. This is impossible

because we have assumed that u is the deepest node in T that is adjacent to w.

We have reached a contradiction, and hence the situation where the algorithm fails

to compute a spanning tree cannot occur.

Now we analyze the degree of the constructed spanning tree. As G is (λ+ 1)-

claw-free, the independent set I computed in Step 2(ii) has cardinality at most

λ. Therefore, every node of T has at most λ children and at most one parent.

Consequently, the degree of every node of the tree is at most λ+ 1.

Corollary 3. There is a 0.695 · (λ+1)-approximation algorithm for the NWMST

problem in (λ+ 1)-claw-free graphs.

α-unit disk graphs are (4/α2 +4/α+2)-claw-free due to Lemma 5. Therefore,

Corollary 3 implies that we have an algorithm with approximation ratio 0.695 ·

(4/α2 + 4/α+ 2) = (2.78/α2 + 2.78/α+ 1.39) for the NWMST problem in α-unit

disk graphs. Thus, due to Corollary 3 we obtain a better result for the NWMST

problem than the result obtained in Corollary 2 for α-unit-disk graphs. However,

for unit-disk graphs, Corollary 3 does not give us better result than what we have

obtained in Corollary 1.
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Graph Classes Result obtained by applying
Theorem 5.1 directly

Result implied by Corol-

lary 3

unit disk graphs 3.475 4.71

α-unit disk graphs (4.17 + 5.56/α2 + 2.78
√
2/α) (2.78/α2 + 2.78/α + 1.39)

bounded indepen-
dence graphs

−− 0.695 · (λ+ 1)

bi-directional disk
graphs

−− (12.51 dlog2me + 9.035),

for m > 1

Table 5.1: Results obtained for the node-weighted Steiner tree problem in restricted
graph classes.

Bounded Independence Graphs

Recall from Chapter 2 that in bounded independence graphs, the number of inde-

pendent neighbors of every node that are r hops away is bounded by a polynomial

in r, i.e., p(r). For λ = p(1), bounded independence graphs are (λ + 1)-claw-free.

Thus, Corollary 3 implies the following result:

Corollary 4. There is a 0.695 · (λ+1)-approximation algorithm for the NWMST

problem in bounded independence graphs.

Bi-Directional Disk Graphs

In bi-directional disk graphs, every node has at most 6(3 dlog2me+2) independent

neighbors, for m > 1 [53]. Recall that m = rmax/rmin, where rmax is the maximum

transmission range and rmin is the minimum transmission range. Therefore, bi-

directional disk graphs are (18 dlog2me + 13)-claw-free, for m > 1. For m = 1, a

bi-directional disk graphs is a unit-disk graph and we have 3.475 approximation

ratio for NWMST in unit disk graphs due to Corollary 1. For m > 1, we get the

following result for bi-directional disk graphs.
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Corollary 5. There is a 0.695 · (18 dlog2me + 13) = (12.51 dlog2me + 9.035)-

approximation algorithm for the NWMST problem in bi-directional disk graphs,

for m > 1.

Conclusion

We have shown that by defining suitable edge weights and then applying an al-

gorithm with best known approximation ratio for the edge-weighted Steiner tree

problem, we achieve a good approximation ratio for the node-weighted minimum

Steiner tree problem in restricted graph classes used to model wireless ad-hoc net-

works. An overview of the achieved approximation results is given in Table 5.1.



Chapter 6

Node-Weighted 2-Edge- and

2-Vertex-Connected Steiner

Subgraphs

Multicast communication in wireless ad-hoc networks can be achieved with Steiner

trees, however, due to the lack of fixed infrastructure and wireless medium, these

networks are prone to link and node failures. Sender and receivers may discon-

nect even if a single link or node fails in the tree. Thus, trees are not reliable

for communication in such networks, and in scenarios where fault-tolerance is a

key requirement, one looks at communication structures that offer higher connec-

tivity, so that in the event of link or node failure an alternative path could be

used to transmit packets. In this chapter, we study the 2-edge-connected Steiner

subgraph problem, the 2-vertex-connected Steiner subgraph problem, and the 2-

edge-connected group Steiner subgraph problem with respect to node weights in

restricted graph classes that model wireless ad-hoc networks. Our algorithm yields

better approximation ratio in these graphs than the previous results in arbitrary

graphs for these problems.

64
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6.1 Node-Weighted 2-Edge-Connected Steiner

Subgraph Problem

We consider the property σ(H,K) representing that H is a graph that contains

all vertices in K and has at least 2 edge disjoint paths between every pair of

vertices. We define the node-weighted 2-edge-connected Steiner subgraph problem

(NW2ECS) as follows:

Problem 3. Given an undirected graph G = (V,E) with nonnegative weights wv

for v ∈ V , and a subset of nodes K ⊆ V ( terminals), compute a subgraph H for G

and K that satisfies the property σ(H,K). The objective of the NW2ECS problem

is to minimize the total weight of the vertices of H.

Unlike Steiner trees, 2-edge-connected Steiner subgraphs exhibit some level of

fault tolerance due to 2 edge-disjoint paths between every pair of vertices. Note

that the alternative requirement of 2-edge-disjoint paths only between every pair

of terminals does not change the problem.

σ(H,K) satisfies the property of monotonicity (see Chapter 4 for a definition

of monotonicity). We can assume that H does not contain any Steiner nodes

of degree less than 2, because such vertices could be removed from the solution

while reducing the cost and maintaining feasibility. In fact, a 2-edge-connected

graph cannot contain vertices of degree less than 2. Furthermore, addition of edges

to H does not harm the property of being a 2-edge-connected Steiner subgraph.

Therefore, we can add edges to H for the analysis of the algorithm.

6.1.1 Computing 2-Edge-Connected Steiner Subgraphs

The following is the algorithm for the node-weighted 2-edge-connected Steiner sub-

graph problem.
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Algorithm 3 Algorithm for NW2ECS

Input: An instance of NW2ECS given by G = (V,E) with nonnegative node
weights wv for v ∈ V and a set K ⊆ V of terminals.

Output: 2-edge-connected Steiner subgraph H .

1 Assign weight c(u, v) to every edge (u, v) ∈ E: c(u, v) = wu + wv
2 Compute a subgraph H for G satisfying σ(H,K) with respect to edge weights
using the algorithm by Jain [26].

Note that c(u, v) = 0 if u, v ∈ K. As the edge-weighted 2-edge-connected

Steiner subgraph problem is a special case of the generalized Steiner network prob-

lem, we use the algorithm by Jain [26] which is the best known approximation

algorithm for the generalized Steiner network problem, and also for its special case,

the 2-edge-connected Steiner subgraph problem with respect to edge weights.

It is easy to check whether a given instance of the problem NW2ECS wit

graph G = (V,E) and set K of terminals admits a feasible solution. For this, one

is required to check whether there are at least two edge-disjoint paths in G between

every pair of vertices in K. This can be done in polynomial time using standard

network flow techniques [1]. Therefore, we assume that the given instance of the

problem NW2ECS has at least one feasible solution.

6.1.2 Analysis of Approximation Ratio

First, we analyze the algorithm for graph classes that have the following property,

for some constant d:

(Pσ
d) Any 2-edge-connected graph in the class contains a spanning 2-edge-connected

subgraph of maximum vertex degree d.

In subsequent sections, we will then show that UDG and quasi-UDG satisfy

this property.
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Assume that the graph G = (V,E) of the given instance of NW2ECS belongs

to a class of graphs with property (Pσd). We analyze the approximation ratio

using an adaptation of analogous results for the node-weighted δ-Steiner subgraph

problem studied in Chapter 4.

Theorem 6.1. For hereditary classes of graphs satisfying (Pσd), Algorithm 3 is a

d-approximation algorithm for the problem NW2ECS.

Proof. By Theorem 4.1, Algorithm 1 (see Section 4.2) is a 0.5dρ-approximation

algorithm for the node-weighted δ-Steiner subgraph problem in hereditary classes

of graphs that satisfy (P δ
d ), where δ is monotone. As our considered property

σ(H,K) is monotone, Theorem 4.1 implies that we have a 0.5dρ-approximation

algorithm for the node-weighted 2-edge-connected Steiner subgraph problem in

classes of graphs that satisfy (P σ
d ). Since Jain’s algorithm has approximation ratio

2, Algorithm 3 has approximation ratio 0.5d · 2 = d for the node-weighted 2-edge-

connected Steiner subgraph problem.

Before we consider UDG and quasi-UDG, we state the following auxiliary

lemma that follows directly from Menger’s theorem.

Lemma 7. If there are at least two edge-disjoint paths between u and v, and at

least two edge-disjoint paths between v and w, then there are also at least two edge-

disjoint paths between u and w.

Proof. Recall that by Menger’s theorem (see, e.g., [1]), for any pair of distinct

nodes x and y, the size (number of edges) of the minimum cut between x and y is

equal to the maximum number of edge-disjoint paths between x and y. Consider

any cut C that separates u and w. The node v is connected to each of the nodes

u and w via two edge-disjoint paths.

• Case 1: C separates u and v, i.e., v is located on the side of C where w is

located. We know that there are at least two edge-disjoint paths between u
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and v. So, there are at least two edges going across C, which means that the

size of C is at least 2.

• Case 2: v is on the side of C where u lies. There are two disjoint paths

between v and w, and C is a cut separating these two nodes. Again, the size

of C is at least 2.

In either case, there are at least two edges in the cut C. As the choice of C

was arbitrary, we have that any cut that separates u and w has size at least 2. By

Menger’s theorem, this implies that there are at least 2 edge-disjoint paths between

u and w.

If there are two edge-disjoint paths between two nodes u and v, we also say

that u and v are in a cycle.

6.1.3 Unit Disk Graphs

In this section, we find a 2-edge-connected spanning subgraph of maximum degree

at most 12 in unit disk graphs, and then apply Theorem 6.1 to achieve approxi-

mation ratio 12 for NW2ECS.

Lemma 8. Every 2-edge-connected unit disk graph has a 2-edge connected spanning

subgraph of maximum degree at most 12.

Proof. Let G = (V,E) be a 2-edge-connected unit disk graph. We show how

to construct a 2-edge-connected spanning subgraph G′ of small degree. First, we

determine a minimum spanning tree T (with respect to edge weights that represent

the Euclidean distance between the endpoints of the edge). Then, we add edges to

T so that it becomes 2-edge-connected. The construction is as follows:

1. Compute a minimum spanning tree T with respect to edge weights given by

Euclidean distance, and initialize G′ = T .
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2. For all edges e ∈ E that are not in T , in order of non-decreasing length:

3. if G′ ∪ {e} puts at least one bridge edge from G′

into a cycle, then add e to G′.

Here, an edge of G′ is a bridge edge (or simply a bridge) if it is not contained

in any cycle and thus its removal disconnects G′. If a bridge edge in G′ is contained

in a cycle in G′ ∪ {e} it is no longer a bridge edge.

We observe that after the construction has considered an edge uv in the for-

loop, either it has added the edge or there were already two edge-disjoint paths

between u and v in G′. In either case, we have that after an edge uv has been

processed, u and v are in a cycle.

It is easy to see that if G is 2-edge-connected, the graph G′ produced by the

construction is 2-edge-connected. It remains to analyze the maximum node degree

of the final G′. Consider an arbitrary node u. We divide the surrounding area

of u into six equal 60◦ sectors. We choose the sectors in such a way that none of

the neighbors of u in G lies on the boundary between two sectors. Note that each

sector contains at most one node that is a neighbor of u in the spanning tree T .

(If there were two neighbors of u in the same sector, one of the two edges joining

u and these neighbors could be replaced by the shorter edge between these two

neighbors to give a spanning tree of smaller cost, a contradiction.) The degree of u

in the final G′ is the sum of the number of adjacent nodes of u in all six sectors. We

claim that u has at most 2 neighbors in each sector in G′. To prove this, consider

the following cases.

Case 1: Consider a 60◦ sector of u that does not contain a spanning tree

neighbor of u. Assume that there are two nodes x and z in the sector such that

the construction has added edges between u and these two nodes to G′. See Fig-

ure 6.1(a). Let y be a third node in the sector that the construction considers. If
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xy and yz are in T , then uxyzu is a cycle in G′ containing y and u, so yu is not

added.

Now assume that at least one of the two edges (xy and yz) is not in T . Let us

assume xy is not in T . (The case that yz is not in T is analogous.) The construction

adds edges in order of increasing length, so xy is considered before yu. This means

that y and x are already in a cycle when yu is considered. Furthermore, x and u

are in a cycle because the construction has added the edge xu and there is also a

path connecting x and u in T . By Lemma 7, if u and x are in a cycle and x and

y are in a cycle, then u and y are also in a cycle. Therefore, the construction does

not add y as third neighbor of u.

Case 2: u has one neighbor v in the sector such that uv ∈ T . Assume that

the construction has added x as a second neighbor of u in the sector. Note that

the distance from u to x is at least as large as the distance from u to v, because

otherwise the edge vu would not be in any minimum spanning tree. (It would be

the longest edge in the cycle uvxu.) Assume z is another node in the sector and

the construction considers the edge zu.

(i) If zv and zx are in T : Then zvuxz is a cycle. So, the construction does not

add zu.

(ii) If zx is not in T (and zv may or may not be in T ): Before considering zu,

the construction has considered zx. From then on, z and x are in a cycle.

Furthermore, x and u are in a cycle. Therefore, by Lemma 7, u and z are in

a cycle, and the edge zu is not added by the construction.

(iii) If zx is in T and zv is not in T : There can be two different ways in which x

is connected to u, v via a path in T . (Furthermore, if z lies on that path then

z and u are in a cycle and zu does not get added to G′ by the construction.
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u

x

y

z

(a) Case 1

u

v
x

z

(b) Case 2(iii)(a)

u

v
x

z

(c) Case 2(iii)(b)

Figure 6.1: Illustration of cases in the proof of Lemma 8. Edges in T are drawn
solid, other edges dashed.
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Hence, we assume in the following that z does not lie on the path in T between

x and u, v.)

(a) The path in T from x to u, v reaches v before u. See Figure 6.1(b).

Observe that u and v are in a cycle as ux has been added toG′. Moreover,

the construction considers vz before uz is considered. Therefore, v and

z are already in a cycle when the construction considers uz. By Lemma

7, if u and v are in a cycle and v and z are in a cycle, then u and z are

also in a cycle. Thus, the construction does not add zu.

(b) The path in T from x to u, v reaches u before v. See Figure 6.1(c). vz

is considered before uz. If the construction adds vz, then u and z lie on

the cycle consisting of the edge vz and the path in T between v and z,

so uz does not get added. If vz is not added, this shows that uv is not a

bridge. (If uv was a bridge, the addition of vz would have put it into a

cycle, and hence the construction would have added vz.) Hence, v and

z are in a cycle, and u and v are in a cycle. By Lemma 7, u and z are

in a cycle, and the construction does not add uz.

We have shown that in each of the six sectors, it is impossible that the construction

adds an edge to a node that would become a third neighbor to u in that sector.

Therefore, the final G′ is a 2-edge-connected spanning subgraph in which each node

has at most 12 neighbors.

By applying Theorem 6.1 with d = 12, we obtain the following corollary.

Corollary 6. There is a 12-approximation algorithm for NW2ECS in unit disk

graphs.
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6.1.4 α-Unit Disk Graphs

In this section, we find a 2-edge-connected spanning subgraph of maximum degree

at most 14 + 16/α2 + 8
√
2/α in α-UDG. When Theorem 6.1 is applied with d =

14+16/α2+8
√
2/α, we get approximation ratio 14+16/α2+8

√
2/α for NW2ECS.

Lemma 9. For every 0 < α ≤ 1, every 2-edge-connected α-UDG has a 2-edge-

connected spanning subgraph of node degree at most 14 + 16/α2 + 8
√
2/α.

Proof. Apply the construction in the proof of Lemma 8 to produce a 2-edge-

connected spanning subgraph G′. To analyze the neighborhood of a node in an

α-UDG, we use the same framework as in Chapter 5. The neighbors of a node u

are classified as near (within distance at most α from u) and far (distance greater

than α) neighbors. The proof of Lemma 8 can be used to show that u has at most

12 near neighbors in the final G′. In the remainder of the proof, we consider only

far neighbors. To bound the number of far neighbors, we cover a 2 × 2 square

containing all neighbors of u using squares of side length α/
√
2 called cells, see

Figure 6.2. Note that any two nodes in the same cell have distance at most α and

hence are adjacent. We show that the number of far neighbors of u in the final G′

is at most twice the number of cells. After computing a minimum spanning tree

T , there is at most one neighbor of u in every cell. We show that if a cell contains

a neighbor of u in T , then at most one more node in that cell can be added as a

neighbor of u by our construction, and otherwise, at most two neighbors can be

added to u.

Consider three nodes v, w, x in a cell and assume that in the minimum spanning

tree, there is no neighbor of u in this cell. Assume that v and w have already been

added as neighbors of u in this cell and we are now considering the edge ux. We

claim that the construction would not add x as third neighbor of u. To show this,

we can use arguments analogous to Case 1 of the proof of Lemma 8: If vx and wx
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Circle with radius 1

Circle with radius  

u

v

w

x

Neighbours of u in a cell

u α

Figure 6.2: Neighbors of u in an α-unit disk graph

are both in T , then we have a cycle uvxwu and therefore, xu does not get added

to T . If at least one of vx and wx is not in T , assume that vx is not in T . Then

the algorithm considers vx before xu is considered, so by the time xu is considered

v and x are already in a cycle. By Lemma 7, if u and v are in a cycle and v and x

are in a cycle, then u and x are also in a cycle. Therefore, the construction does

not add x as third neighbor of u.

Now consider the case that u has one neighbor v′ in T in the cell, a second

node w′ has been added as neighbor of u in this cell, and we are now considering

the edge ux′ for a third node x′ in this cell. Here, the same arguments apply as we

have described in Case 2 of the proof of Lemma 8, and it again follows that ux′ is

not added.

Thus, in every cell, u has at most two far neighbors in the end. Therefore, the

number of far neighbors of u is at most twice the number of cells, and the number

of cells is at most

⌈

2
α√
2

⌉

·
⌈

2
α√
2

⌉

≤ (
2
√
2

α
+ 1) · (2

√
2

α
+ 1) =

8

α2
+

4
√
2

α
+ 1 .

The total number of near and far neighbors of u is at most 12+16/α2+8
√
2/α+2 =

14 + 16/α2 + 8
√
2/α.
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u
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v

w

(a) (b)

Figure 6.3: solid lines are edges of DFS tree, dashed lines are back edges in DFS,
and dotted lines in (b) are edges chosen by our construction for 2-edge-connectivity
in a (λ+ 1)-claw-free graph.

By applying Theorem 6.1 with d = 14+16/α2+8
√
2/α we obtain the following

corollary.

Corollary 7. There is an approximation algorithm with approximation ratio 14 +

16/α2 + 8
√
2/α = O(1/α2) for NW2ECS in α-unit disk graphs.

6.1.5 (λ+ 1)-Claw Free Graphs

We construct a 2-edge-connected spanning subgraph of maximum degree bound d

in (λ+ 1)-claw free graphs.

Lemma 10. For every λ ≥ 1, every 2-edge-connected (λ + 1)-claw-free graph has

a 2-edge-connected spanning subgraph of maximum degree at most 2(λ+ 1).

Proof. Let G = (V,E) be a 2-edge-connected (λ + 1)-claw-free graph. In order

to construct a 2-edge-connected spanning subgraph G′ of bounded degree, we first

determine a spanning tree T , and then, we add edges to T so that it becomes a

2-edge-connected subgraph. The construction is as follows:
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1 Compute a DFS tree T for graph G = (V,E)

2 G′ = T

3 Process tree T top-down: for each node v ∈ V

4 for all children c of v in T

5 if v-c is a bridge in G′ then

6 add to G′ an edge from v or a node above v to a node in the

subtree below c, with deepest lower end-point.

Each node can have at most λ children in the DFS tree T . We claim that

when we add edges to T to construct a 2-edge-connected spanning subgraph G′,

each node gets at most (λ+ 1) new neighbors. Therefore, the degree of each node

is at most 2(λ+ 1) in G′.

We show how the degree of every node in T increases by at most (λ+1) while

computing G′. Consider an arbitrary node u. Let us first consider the maximum

number of neighbors added to u from above. Assume that the algorithm adds an

edge from above with lower end point u. Consider the first such edge. Assume

that the edge is added when the algorithm considers the bridge v-w, where v is the

parent of w in T . Let t be the upper end point of this added edge. t can be equal

to v or a node above v. After the addition of this edge, all edges on the path from

v to u in T cannot be bridges. Therefore, it is impossible that the algorithm adds

a second edge from above to u.

Let us now check how many neighbors can be added to u from below in G′.

Children of u in T are independent nodes, and we know that in a (λ+1)-claw-free

graph, every node can have at most λ independent neighbors, therefore, u has at

most λ children in T . This means that u has λ children in G′ initially. We show
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that every node can get at most λ new neighbors from below in G′ while adding

edges for 2-edge-connectivity. As edges are added to deepest descendants, none of

the lower end points of the edges being added to u from below is an ancestor of

another. Hence, all new neighbors of u from below are independent nodes. The

case that more than λ new neighbors are added to u, therefore, cannot occur.

Now, the degree of u in G′ is the sum of the number of neighbors of u in T and

the number of neighbors added to u from above (ancestors) and below (descendants)

in G′. Hence, u has at most 2(λ + 1) neighbors in the 2-edge-connected spanning

subgraph G′.

By applying Theorem 6.1 with d = 2(λ+1), we obtain the following corollary.

Corollary 8. There is an approximation algorithm with approximation ratio 2(λ+

1) for NW2ECS in (λ+ 1)-claw-free graphs.

We know that unit disk graphs are 6-claw-free [59], therefore, the above corol-

lary implies a 12-approximation algorithm for unit disk graphs which is the same

result as obtained in Corollary 6. As α-unit disk graphs are (4/α2 + 4/α + 2)-

claw-free due to Lemma 5, Corollary 8 implies that we have an algorithm with

approximation ratio 2 · (4/α2 + 4/α + 2) which is better than the approximation

ratio 14 + 16/α2 + 8
√
2/α obtained in Corollary 7. An overview of the achieved

approximation results is given in Table 6.1.

6.2 Node-Weighted 2-Edge-Connected Group

Steiner Subgraph Problem

Given a graph G = (V,E) with edge-costs ce for all e ∈ E, a root node r ∈ V , and

a collection ofM subsets of nodes K = {K1, ..., KM} of V \{r}. The edge-weighted
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Graph Classes Result obtained by applying
Theorem 6.1 directly

Result implied by Corol-

lary 8

unit disk graphs 12 12

α-unit disk graphs 14 + 16/α2 + 8
√
2/α 2 · (4/α2 + 4/α + 2)

bounded indepen-
dence graphs

−− 2 · (λ+ 1)

bi-directional disk
graphs

−− 2 · (18 dlog2 me + 13), for

m > 1

Table 6.1: Results obtained for the node-weighted 2-edge-connected Steiner sub-
graph problem in restricted graph classes.

fault-tolerant group Steiner problem asks to compute a subgraph H of minimum

total edge-weight that contains at least 2 edge- or vertex-disjoint paths from each

group Ki to r. Khandekar et al. [29] studied various versions of this problem. We

consider the node-weighted version of the problem termed as EC-FTGS-2 in [29].

We consider the property χ(H,K) which represents that H is a graph that

contains at least 2 edge-disjoint paths from each group Ki of terminals to a root

vertex r and the end-points of these paths in Ki are distinct. The node-weighted

version of the problem EC-FTGS-2 is defined as follows:

Problem 4. Given a graph G = (V,E) with nonnegative node-weights wv for all

v ∈ V , a root node r ∈ V , and a collection ofM subsets of nodes K = {K1, ..., KM}

in V \ {r} with |Ki| = 2 for all i, compute a subgraph H of G that contains at least

2-edge-disjoint paths from each group Ki to r such that the end-points of these

paths in Ki are distinct. A subgraph H satisfying this property is called a 2-edge-

connected group Steiner subgraph. The objective is to minimize total cost of the

vertices in H.

We refer to this problem as the node-weighted 2-edge-connected group Steiner

subgraph problem (abbreviated as NW2ECGS). For a given instance of the prob-

lem, it is easy to determine whether there is a feasible solution by checking whether
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there are at least two edge-disjoint paths in G between each group of terminals and

the root vertex. This can be done in polynomial time using standard network flow

techniques (see, e.g., [1]). Therefore, we can assume that the given instance of the

problem admits at least one feasible solution.

Recall that the node-weighted δ-Steiner subgraph problem is formulated via

a monotone property δ(H,K) that is defined in terms of a graph H and a subset

K of the node set of H . Strictly speaking, the property χ(H,K) that is used to

define the 2-edge-connected group Steiner subgraph problem does not fit into this

framework because in the case of χ(H,K), K is a collection of subsets of nodes

of H . However, the result stated as Theorem 4.1 for the node-weighted δ-Steiner

subgraph problem also holds for the node-weighted 2-edge-connected group Steiner

subgraph problem because the arguments used in the proofs that establish the

theorem apply also if χ(H,K) is considered in place of δ(H,K).

In general graphs, the approximation ratio achieved for the node-weighted

2-edge-connected group Steiner subgraph problem is O(logn) [29]. For the edge-

weighted version of the problem, there is a constant factor approximation algorithm

with ratio (2+ ρ) [29], where ρ is the best known approximation ratio for the edge-

weighted Steiner tree problem in general graphs, currently ρ = 1.39. We consider

NW2ECGS in restricted graph classes for wireless ad-hoc networks.

The property χ is monotone, i.e., we can remove Steiner nodes of degree 1 from

the solution, and we can add edges to the solution for the analysis of the algorithm

when considering the induced subgraph of the solution. Removing Steiner nodes of

degree 1 from the solution does not destroy the connectivity because such Steiner

nodes are leaves and are not intermediate nodes. Adding edges to the solution does

not destroy the connectivity of nodes either.
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6.2.1 Computing 2-Edge-Connected Group Steiner

Subgraphs

We adapt Algorithm 1 to compute 2-edge-connected group Steiner subgraphs with

node-weights as shown in Algorithm 4.

Algorithm 4 Algorithm for NW2ECGS

Input: An instance of NW2ECGS given by G = (V,E) with nonnegative node

weights wv for v ∈ V , a root vertex r, and a collection of subsets of nodes in

V \ r: K = {K1, ..., KM}, where |Ki| = 2 for all i.

Output: 2-edge-connected group Steiner subgraph H .

1 Assign weight c(u, v) to every edge (u, v) ∈ E: c(u, v) = wu + wv

2 Compute a subgraph H for G satisfying χ(H,K) with respect to edge weights

using the algorithm by Khandekar et al. [29].

Note that c(u, v) = 0 if u, v ∈ ⋃

iKi.

6.2.2 Analysis of Approximation Ratio

We consider only hereditary classes of graphs, i.e., if a graph is in the class, then

any induced subgraph of that graph is also in the class. Moreover, we analyze the

algorithm for graph classes Π that have the following property, for some constant d:

(Pχ
d) Any graph H in the class Π with a root vertex r, and a collection of subsets

of nodes in V \ r: K = {K1, ..., KM} satisfying the property χ(H,K) has a

spanning subgraph H ′ of maximum degree at most d satisfying χ(H ′, K).

We assume that the graph G = (V,E) of the given instance of NW2ECGS

belongs to a class of graphs with property (Pχd ). We prove the following:
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Theorem 6.2. For hereditary classes of graphs satisfying (Pχd), the above algorithm

is a 1.695d-approximation algorithm for the problem NW2ECGS.

Proof. By Theorem 4.1, we have a 0.5dρ-approximation algorithm for the node-

weighted δ-Steiner subgraph problem in hereditary classes of graphs that satisfy

(P δ
d ), where δ is monotone. Although Theorem 4.1, is proved for δ-Steiner sub-

graphs The property χ(H,K) does not affect the proof of Theorem 4.1, The prop-

erty χ(H,K) is monotone, therefore, Theorem 4.1 implies that we have a 0.5dρ-

approximation algorithm for the node-weighted 2-edge-connected group Steiner

subgraph problem in classes of graphs that satisfy (P χ
d ). The algorithm by Khan-

dekar et al. is a 3.39-approximation algorithm for the edge-weighted version of the

2-edge-connected group Steiner subgraph problem. Thus, the approximation ratio

of our algorithm is 0.5d · 3.39 = 1.695d for the node-weighted 2-edge-connected

group Steiner subgraph problem.

6.2.3 Node-Weighted 2-Edge-Connected Group Steiner

Subgraph Problem in (λ+ 1)-Claw Free Graphs

Similar to how we have shown previously that there exist 2-edge-connected span-

ning subgraphs of maximum vertex degree d for any 2-edge-connected (λ+1)-claw-

free graph, we can compute 2-edge-connected group Steiner subgraphs of bounded

degree for any 2-edge-connected group Steiner subgraphs using a modified version

of the algorithm given in the proof of Lemma 10.

Lemma 11. For every λ ≥ 1, every 2-edge-connected group Steiner subgraph in

the class of (λ+ 1)-claw-free graphs has a subgraph that is also a 2-edge-connected

group Steiner subgraph and has maximum degree at most 2(λ+ 1).

Proof. Assume that G is a 2-edge-connected group Steiner subgraph in the class of

(λ+1)-claw-free graphs. We construct a subgraph G′ using the algorithm presented
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in the proof of Lemma 10 with one modification: If, in step 6, there is no edge

connecting v or a node above v to a node in the subtree below c, the algorithm

does not add an edge. We first compute a DFS tree T starting with vertex r.

Then edges are added to T to get a subgraph G′. We claim that in G′ there are

2 edge-disjoint paths from every group Ki to r. Note that every v ∈ Ki for any

group Ki has a path to r in G′ because G′ contains the spanning tree T . Consider

a cut C that separates r and Ki in G
′. Let u-v be an edge going across this cut.

Suppose u and r are located on one side of the cut and v and Ki are on the other

side of the cut. If u-v is the only edge that crosses C in G′, the v-side of the cut

C must consist of v and all its descendants in T (and no other node). Because G

is a feasible solution, there must be another edge from u or an ancestor of u to v

or a descendant of v. The algorithm would have added such an edge to G′ when

processing u-v. Therefore, u-v cannot be the only edge across C in G′. By the

same argument as in Lemma 10, it follows that G′ has degree at most 2(λ+1).

By applying Theorem 6.2 with d = 2(λ+1), we obtain the following corollary.

Corollary 9. There is an approximation algorithm with approximation ratio 1.695·

2(λ+1) = 3.39(λ+1) for the node-weighted 2-edge-connected group Steiner subgraph

problem in (λ+ 1)-claw-free graphs.

6.2.4 NW2ECGS in Special Graph Classes

The result obtained in Corollary 9 for (λ+1)-claw-free graphs can be used to derive

results for other graph classes.

In unit disk graphs, the number of independent neighbors of every node is at

most 5 [59], therefore, we have the following result:

Corollary 10 (UDG). There is a 1.695 · 12 = 20.34-approximation algorithm for

the NW2ECGS problem in unit disk graphs.
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α-unit disk graphs are (4/α2 + 4/α + 2)-claw-free due to Lemma 5, therefore,

we have:

Corollary 11 (α-UDG). There is a 1.695·2·(4/α2+4/α+2) = 3.39·(4/α2+4/α+2)-

approximation algorithm for the NW2ECGS problem in α-unit disk graphs.

Bi-directional disk graphs are (18 dlog2me + 13)-claw-free (see Section 5.1.1),

hence we have the following corollary:

Corollary 12 (bi-directional disk graphs). There is a 1.695 ·2 ·(18 dlog2me+13) =

3.39 · (18 dlog2me + 13)-approximation algorithm for the NW2ECGS problem in

bi-directional disk graphs, for m > 1.

6.3 Node-Weighted 2-Vertex-Connected Steiner

Subgraph Problem

We also consider 2-vertex-connected Steiner subgraphs, i.e., subgraphs in which

there are at least 2 vertex-disjoint paths between every pair of vertices.

We consider the property ς(H,K) which represents that H is a 2-vertex con-

nected graph containing all vertices in K. We define the node-weighted 2-vertex-

connected Steiner subgraph problem (NW2V CS) as follows:

Problem 5. Given an undirected graph G = (V,E) with nonnegative weights wv

for v ∈ V , and a subset of nodes K ⊆ V ( terminals), compute a subgraph H for

G and K that satisfies the property ς(H,K). The goal of the NW2V CS problem

is to minimize the total weight of the vertices of H.

Requiring only that H has 2 vertex disjoint paths between every pair of termi-

nals does not change the above problem.
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The property ς is monotone as we could add edges to H for the analysis of our

algorithm, and also we could delete Steiner nodes of degree 1, in fact, a 2-vertex-

connected Steiner subgraph cannot contain a vertex of degree less than 2.

Using network flow techniques [1], we can check in polynomial time whether

a given instance of NW2V CS admits at least one feasible solution. Therefore, we

assume that the given instance of the NW2V CS has at least one feasible solution.

6.3.1 Computing 2-Vertex-Connected Steiner Subgraphs

We adapt Algorithm 1 to compute 2-vertex-connected Steiner subgraphs with node-

weights as shown in Algorithm 5.

Algorithm 5 Algorithm for NW2V CS

Input: An instance of NW2V CS given by G = (V,E) with nonnegative node
weights wv for v ∈ V and a set K ⊆ V of terminals.

Output: 2-vertex-connected Steiner subgraph H .

1 Assign weight c(u, v) to every edge (u, v) ∈ E: c(u, v) = wu + wv
2 Compute a subgraph H for G satisfying ς(H,K) with respect to edge weights
using the algorithm by Fleischer et al. [17].

We assume that wu = 0 for all u ∈ K, thus c(u, v) = 0 if u, v ∈ K.

6.3.2 Analysis of Approximation Ratio

For some constant d, we analyze Algorithm 5 for graph classes that have the prop-

erty (Pςd):

(Pς
d) Any 2-vertex-connected graph in the class contains a spanning 2-vertex-

connected subgraph of maximum vertex degree d.

Let graph G = (V,E) of the given instance of NW2V CS belong to a class of

graphs with property (Pςd). The result for the node-weighted δ-Steiner subgraph

problem in Chapter 4 is adapted for the NW2V CS problem:
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Theorem 6.3. Algorithm 5 described above is a d-approximation algorithm for the

problem NW2V CS in hereditary classes of graphs satisfying property (Pςd).

Proof. We know that property ς(H,K), which models 2-vertex connected Steiner

subgraphs, is monotone. Furthermore, as proved in Theorem 4.1, we have a 0.5dρ-

approximation algorithm for the node-weighted δ-Steiner subgraph problem in

hereditary classes of graphs that satisfy (P δ
d ), where δ is monotone. Therefore,

we have a 0.5dρ-approximation algorithm for the node-weighted 2-edge-connected

Steiner subgraph problem in classes of graphs that satisfy (P ς
d ). The algorithm

presented by Fleischer et al. [17] has approximation ratio 2, thus we have an

approximation algorithm with ratio 0.5d · 2 = d for the node-weighted 2-vertex-

connected Steiner subgraph problem.

6.3.3 Node-Weighted 2-Vertex-Connected Steiner Subgrap-

hs in (λ+ 1)-claw-free graphs

The following lemma shows that (λ+1)-claw-free graphs satisfy the property (Pςd).

Lemma 12. For λ ≥ 1, every 2-vertex-connected (λ + 1)-claw-free graph has a

2-vertex connected spanning subgraph of maximum degree at most 2(λ+ 1).

Proof. In order to analyze the maximum degree bound of every node in a 2-vertex-

connected spanning subgraph, we present an algorithm that computes a DFS tree

T for a connected (λ + 1)-claw-free graph G = (V,E), and then adds more edges

to make the graph 2-vertex-connected.

1. Compute a DFS tree T for graph G = (V,E)

2. G′ = T

3. Process tree T top-down: for each node v ∈ V
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4. for all children c of v in T

5. if c and the parent of v in T are in different components

of G′-v then

6. add to G′ an edge from a node above v to a node in

the subtree below c, with deepest lower end-point.

Every node in a (λ+1)-claw-free graph can have at most λ independent neigh-

bors. Moreover, we know that the children of every node in a DFS tree are inde-

pendent. Therefore, in the DFS tree T , every node has at most λ children. When

we add edges to make T 2-vertex-connected, each node gets at most (λ + 1) new

neighbors. In the following, we show that the degree of each node is at most 2(λ+1)

in the end.

Consider an arbitrary node w, and assume that the algorithm adds an edge

from above with lower end-point w, which is the first new edge added to w. Assume

t is the upper end-point of this added edge. Let us assume that this edge is added

when the parent and at least one child of a node u are in different components of

G′ − u. Suppose v is such a child of u. After addition of the edge from t to w in

the subtree below v, all nodes on the path between t and w are 2-vertex-connected.

Therefore, the algorithm does not add a second edge from above to w.

We claim that every node can get at most λ new neighbors that are below it.

This is due to the fact that among all new neighbors added to a node w from below,

none of the nodes is an ancestor of another. If such a situation arises, then we have

a contradiction that an edge has been added from w to its deepest descendent.

Hence, we can say that all new neighbors added to w from below are independent

nodes, and the number of these nodes is at most λ.

Now, the initial number of w’s neighbors in T (when no extra edge is added

yet for 2-vertex-connectivity), plus the number of neighbors added to w from above
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(ancestors) and below (descendants) in T , gives us the degree of w in the end. Thus,

w has at most 2(λ + 1) neighbors in the 2-vertex-connected spanning subgraph

G′.

Theorem 6.3 and Lemma 12 imply the following result:

Corollary 13. There is a 2(λ + 1)-approximation algorithm for the NW2V CS

problem in (λ+ 1)-claw-free graphs.

In the following subsection we present results obtained for the node-weighted

2-vertex-connected Steiner subgraph problem in graph classes that are included in

the class of (λ+ 1)-claw-free graphs.

6.3.4 NW2V CS in Other Graph Classes

Since unit disk graphs are 6-claw-free [59], quasi-unit disk graphs are (4/α2+4/α+

2)-claw-free (due to Lemma 5), and bi-directional disk graphs are (18 dlog2me+13)-

claw-free (see Section 5.1.1), we have the following corollaries:

Corollary 14 (UDG). There is a 12-approximation algorithm for the NW2V CS

problem in unit disk graphs.

Corollary 15 (α-UDG). There is a 2 · (4/α2 + 4/α+ 2)-approximation algorithm

for the NW2V CS problem in α-unit disk graphs.

Corollary 16 (bi-directional disk graphs). There is a 2·(18 dlog2me+13)-approxim-

ation algorithms for the NW2V CS problem in bi-directional disk graphs, for m > 1.

Conclusion

Using algorithms analogous to the algorithm for the node-weighted δ-Steiner sub-

graph problem, we have obtained good approximation results for node-weighted
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versions of the 2-edge-connected Steiner subgraph problem, the 2-edge-connected

group Steiner subgraph problem, and the 2-vertex-connected Steiner subgraph prob-

lem in restricted graph classes for wireless ad-hoc networks. We have shown that

there exist solutions of bounded maximum degree for our problem variants in (λ+1)-

claw-free graphs and other special graph classes considered in this thesis.



Chapter 7

Node-Weighted k-Edge-Connected

Steiner Subgraph Problem

In the framework of related graph problems motivated by wireless ad-hoc networks,

we continue to study Steiner subgraphs in the classes of graphs that are employed

to model wireless ad-hoc networks. The problem variant that we consider in this

chapter is the node-weighted version of the k-edge-connected Steiner subgraph

problem. A graph is said to be k-edge-connected if all vertices are connected by k

edge-disjoint paths. For example in Fig 7.1, every pair of vertices can communicate

via at least 2 edge-disjoint paths, so the graph is 2-edge-connected. We consider

Figure 7.1: Every vertex is 2-edge-connected.

the property ψk(H,K) which specifies that H is a graph that contains all vertices

in K and has at least k edge-disjoint paths between every pair of vertices in K.

The node-weighted k-edge-connected Steiner subgraph problem (abbreviated as

89
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NWkECS) is defined as follows:

Problem 6. Given an undirected graph G = (V,E) with nonnegative weights wv

for v ∈ V , and a subset of nodes K ⊆ V , compute a subgraph H for G and K that

satisfies the property ψk(H,K). The objective is to minimize the total weight of the

vertices of H.

A subgraph H satisfying ψk(H,K) is called k-edge-connected Steiner subgraph.

The considered property ψk(H,K) satisfies monotonicity, i.e., we can add an edge

to H and also we can delete a Steiner node of degree 1 from H , and by doing so the

property ψk(H,K) is not violated. We can assume that H does not contain any

Steiner nodes of degree less than 2 because such vertices could be removed from the

solution while maintaining feasibility. Furthermore, when we add edges toH for the

analysis of the algorithm, it does not destroy the property of k-edge-connectivity.

Before we present the algorithm and its analysis for the k-edge-connected

Steiner subgraph problem, we prove that the k-edge-connected Steiner subgraph

problem is NP -hard in unit disk graphs for k ≥ 2. For k = 1, the problem is

equivalent to the Steiner tree problem, which is already known to be NP -hard

[11].

7.1 NWkECS is NP -hard in UDG

Theorem 7.1. The node-weighted k-edge-connected Steiner subgraph problem is

NP-hard in unit disk graphs for k ≥ 2.

Proof. The rectilinear Steiner tree problem in which all terminals have integer

coordinates that are polynomially bounded, is NP -hard as shown by Garey and

Johnson [19]. To prove that the k-edge-connected Steiner subgraph problem is

NP -hard in UDG for k ≥ 2, we reduce the rectilinear Steiner tree problem to the
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k-edge-connected Steiner subgraph problem.

Consider an instance of the rectilinear Steiner tree problem having terminals

at polynomially bounded integer coordinates and denote it by I. We construct an

instance of the k-edge-connected Steiner subgraph problem for a unit disk graph

denoted by I ′ from I as follows:

(a) An instance
of the rectilin-
ear Steiner tree
problem I.

(b) constructed
instance of the
k-edge-connected
Steiner subgraph
problem I ′ from
I.

Figure 7.2: Black nodes represent terminals, white nodes are Steiner nodes of
weight 1 and blue nodes are Steiner nodes of weight 0.

If there is a terminal at an integer coordinate (i, j), we put a terminal in the

UDG at the same position; otherwise, we put a unit disk of weight 1 only for

the integer coordinate points within the bounding rectangle of the terminals (see

Figure 7.2). In between any two vertically or horizontally adjacent disks, we put

k unit disks of weight 0 such that each of the k disks is a neighbor of these two

vertically or horizontally adjacent disks but not connected to any other disks. We

use disks of radius 0.3 to construct I ′.

We claim that there is a k-edge-connected Steiner subgraph T ′ for I ′ of weight

W ≤ L + 1 − |K| if and only if there exists a rectilinear Steiner tree T for I

with length at most L, where |K| is the number of terminals. See Fig. 7.3 for an

illustration. Let T be a rectilinear Steiner tree for I with length L, and a segment

be a horizontal or vertical line between two neighboring integer coordinate points.
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We can assume that T consists only of such segments (i.e., all lines in T are at

integer x- or y-coordinates). The total length L of T is the sum of the lengths of

all segments in T . For every segment in T , add to T ′ the unit disks at both ends

of the segment and the k unit disks in between. Since terminals have weight zero,

W is the weight of T ′ contributed by unit disks of weight 1. Alternatively, we can

say that the total number of Steiner nodes of weight 1 in T ′ is the total weight

of T ′. Since we have constructed T ′ from T , and we know that each Steiner node

of weight 1 in T ′ corresponds to an integer coordinate point in T that does not

have a terminal, the total number of integer coordinate points minus the number

of terminals in T is the total number of Steiner nodes in T ′. L + 1 is the total

number of integer coordinate points in T . So, the total number of Steiner nodes of

weight 1 in T ′ or the total weight W of T ′ satisfies W ≤ L+ 1− |K|.

Conversely, suppose that there is a Steiner subgraph T ′ for I ′ of weight W ,

which is the sum of the weights of the Steiner nodes in T ′. We can assume that T ′

contains a disk in the middle of a segment only if it also contains the disks at both

end points of the segment. We construct T from T ′ by choosing all line segments

where at least one of the k disk in the middle is chosen for T ′. The length of T

is equal to the total number of integer coordinate points included in T minus 1.

We know that each integer coordinate point in T corresponds either to a Steiner

node of weight 1 or a terminal in T ′, therefore, the length of T is equal to the sum

of the weights of the Steiner nodes and the number of terminals in T ′ minus 1:

L =W + |K| − 1.

We have shown that the problem of deciding whether I has a solution of length

L can be reduced in polynomial time to the problem of deciding whether I ′ has a

solution of weight at most L−|K|+1. This implies thatNWkECS isNP -hard.

The choice of 0.3 as disk radius in the reduction above can be explained as
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a b

c

1 2 3 4 5 6

1

2

3

4

a b

c

1 2 3 4 5 6

1

2

3

4

Rectilinear Steiner tree of total length 7.

k-edge-connected Steiner subgraph for k=2

Total weight of the subgraph is 5.

Terminal

Steiner node of weight 0

Steiner node of weight 1

Terminal

Figure 7.3: Example showing a rectilinear Steiner tree and its corresponding k-
edge-connected Steiner subgraph
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(a) An instance of the k-edge-
connected Steiner subgraph prob-
lem G′, for k = 2

(b) H ′, A solution for G′

(c) corresponding
Steiner tree for the
above solution

Figure 7.4: Example showing disks of radius larger than 1
4

√
2 ≈ 0.35. Grey disks

are terminals, white disks are Steiner nodes of weight 1 located at integer coordinate
points, and blue disks are Steiner nodes of weight zero located between the integer
coordinate points.
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(a) An instance of the k-edge-
connected Steiner subgraph
problem G′, for k = 2

(b) H ′, a solution of G′

(c) corresponding
Rectilinear Steiner
tree for the above
solution

Figure 7.5: Example showing disks of radius smaller than 1
4

√
2 ≈ 0.35. Grey

disks are terminals, white disks are Steiner nodes of weight 1 located at integer
coordinate points, and blue disks are Steiner nodes of weight zero located between
the integer coordinate points.
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i

w

Terminal

disk of weight 0

disk of weight 1

u

v

Figure 7.6: Radius ‘r’ of each disk is 0.3. Distance from u to v and also from u to
w should be larger than 2r to avoid edges uv and uw.

follows: If we choose the radius of each disk larger than 1
4

√
2 ≈ 0.35, then there

is a situation that k disks at one coordinate point are adjacent to k disks located

at another point. Consider the instance of the k-edge-connected Steiner subgraph

problem G′ in Fig. 7.4. Assume H ′ is a solution for G′. We aim to construct a

rectilinear Steiner tree from H ′ in the same way we constructed T ′ in the above

proof. Grey disks are terminals, white disks represent Steiner nodes of weight 1

located at integer coordinate points, and blue disks are Steiner nodes of weight

zero located between the integer coordinate points. We can construct a tree from

H ′ but that is not a rectilinear Steiner tree because it contains a diagonal edge. If

we choose the radius of each disk equal to r, then the distance from u to w should

be greater than 2r in order to avoid edges like u-w (see Fig. 7.6). When r = 0.5,

the distance from u to w is
√

(0.5)2 + (0.5)2 = 1
2

√
2 ≈ 0.707 which is less than 2r.

Therefore, we must have that
√

(0.5)2 + (0.5)2 > 2r which implies that r should

be less than 1
4

√
2 ≈ 0.35. Also, we need radius of each disk at least 0.25.

When we take disks of radius smaller than 1
4

√
2 ≈ 0.35 (see Fig. 7.5), we get a

rectilinear Steiner tree for a solution of the given instance of the k-edge-connected

Steiner subgraph problem.
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7.2 Algorithm for the Node-Weighted k-Edge-

Connected Steiner Subgraph Problem

Algorithm 1 can be adapted to the node-weighted k-edge-connected Steiner sub-

graph problem as shown in Algorithm 6.

Algorithm 6 Algorithm for NWkECS

Input: An instance of NWkECS given by G = (V,E) with nonnegative node
weights wv for v ∈ V and a set K ⊆ V of terminals.

Output: k-edge-connected Steiner subgraph H .

1 Assign weight c(u, v) to every edge (u, v) ∈ E: c(u, v) = wu + wv
2 Compute a subgraph H for G satisfying ψk(H,K) with respect to edge weights
using the algorithm by Jain [26].

We assume that every terminal has weight 0, therefore, c(u, v) = 0 if u, v ∈ K.

The edge-weighted version of the k-edge-connected Steiner subgraph problem is a

special case of the generalized Steiner network problem: ri,j equals k if i, j ∈ K

and 0 otherwise (see Chapter 3 for a definition of the generalized Steiner network

problem). Therefore, we use the best known approximation algorithm for the gener-

alized Steiner network problem, i.e., the algorithm by Jain [26]. The approximation

ratio of that algorithm is 2.

7.2.1 Analysis of the Approximation Ratio

For analysis of Algorithm 6, we consider only hereditary classes of graphs, i.e., if

a graph is in the class, then any induced subgraph of that graph is also in the

class. Furthermore, we consider graph classes Π that have the following property,

for some constant d:

(Pψk

d ) Any graph H in the class Π, and a subset of vertices K ⊆ V (H) satisfying
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the property ψk(H,K) has a subgraph H ′ of maximum degree at most d

satisfying ψk(H
′, K).

Assume that the graph G = (V,E) of the given instance of NWkECS belongs

to a class of graphs with property (Pψk

d ). Then, we have:

Theorem 7.2. For hereditary classes of graphs satisfying (Pψk

d ), the algorithm

described above is a d-approximation algorithm for NWkECS.

Proof. By Theorem 4.1, we have a 0.5dρ-approximation algorithm for the node-

weighted δ-Steiner subgraph problem in hereditary classes of graphs that satisfy

(P δ
d ), where δ is monotone. We know that the property ψk(H,K) is monotone,

therefore, Theorem 4.1 implies that we have a 0.5dρ-approximation algorithm for

the node-weighted k-edge-connected Steiner subgraph problem in classes of graphs

satisfying (P ψk

d ). Since Jain’s algorithm has approximation ratio 2, we have an

approximation algorithm with ratio 0.5d · 2 = d for the node-weighted k-edge-

connected Steiner subgraph problem.

We show that there exists a k-edge-connected subgraph of maximum degree

bounded by d in the class of (λ + 1)-claw-free graphs for any k-edge-connected

Steiner subgraph. We first present an algorithm to compute a k-edge-connected

subgraph in (λ+1)-claw-free graphs and then show the maximum degree bound d.

7.2.2 Computing k-Edge-Connected Subgraphs in (λ + 1)-

claw-free Graphs

The following algorithm computes a subgraph by repeatedly finding forests Fi in

G−⋃i−1
j=1 Fj for i = 1, 2, ..., k. So the output of the algorithm is a k-edge-connected

subgraph formed by the the union of forests: F1 ∪ F2 ∪ ... ∪ Fk.

1 i :=1, T := φ;
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2 while i ≤ k do

begin

3 Compute spanning forest Fi in G− T using DFS

4 T := Fi ∪ T

5 i := i+ 1

end

6 output T

Due to the following Lemma 3, we know that the spanning subgraph we com-

pute has k edge-disjoint paths between every pair of terminals.

Lemma 13. (Nagamochi and Ibaraki [42]) For a graph G = (V,E), let Fi = (V,Ei)

be a maximal spanning forest in G − E1 ∪ E2 ∪ ... ∪ Ei, for i=1,2,..,|E|, where

possibly that Ei = Ei+1 = ... = E|E| = ∅ for some i. Then each spanning subgraph

Gi = (V,E1∪E2∪.....∪Ei) satisfies: ζ(x, y;Gi) ≥ min{ζ(x, y;G), i} for all x, y ∈ V ,

where ζ(x, y;H) denotes the edge-connectivity between x and y in graph H.

Thus, a pair of vertices x and y are connected by k-edge-disjoint paths in the

subgraph Gk = (V,E ′) if they are k-edge-connected in G, where E ′ = E1 ∪ E2 ∪

... ∪ Ek.

It remains to show that the subgraph computed above has maximum degree at

most d. We need to compare the number of independent neighbors of an arbitrary

node in G− (F1 ∪F2....∪Fi) to that in G− (F1 ∪ ....∪Fi−1) to find the maximum

degree bound d.

Lemma 14. The number of independent neighbors of a node in G−(F1∪F2...∪Fi)

is at most twice the number of its independent neighbors in G− (F1 ∪ ....∪Fi−1) in

(λ+ 1)-claw-free graphs.

3Thanks to Frank Kammer for pointing us to the result of Nagamochi and Ibaraki [42].
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Proof. Let the number of independent neighbors of a node u be I in G − (F1 ∪

F2... ∪ Fi). Consider u and these I neighbors in the previous iteration, i.e., G −

(F1 ∪ .... ∪ Fi−1). Because it is a property of forests that they are 2-colorable, we

can 2-color the I neighbors of u with respect to forest Fi. Thus, at least half of I

belong to one color. As vertices of the same color do not have edges between them,

u has at least I/2 independent neighbors in G− (F1 ∪ .... ∪ Fi−1).

Lemma 15. The degree bound of the k-edge-connected Steiner subgraph is at most

(2k − 1)λ+ k in (λ+ 1)-claw-free graphs.

Proof. When we construct a spanning forest by depth first search in a (λ+1)-claw-

free graph G = (V,E), the degree bound of every node is at most λ+1 (see proof

of Lemma 6 in Section 5.1.1), where λ is the maximum number of independent

neighbors in graph G. Furthermore, it follows from the previous lemma that the

number of independent neighbors of an arbitrary node in G− (F1 ∪ F2... ∪Fi−1) is

at most 2i−1λ.

Therefore, the degree bound of the spanning forest Fi denoted by deg(Fi) is

given by:

deg(Fi) ≤ 2i−1λ+ 1

We already know that our k-edge-connected Steiner subgraph is the union

of spanning forests: F1 ∪ ... ∪ Fk, thus the degree bound of every vertex in the

k-edge-connected Steiner subgraph is as follows:

deg(F1 ∪ ... ∪ Fk) ≤
k

∑

i=1

(2i−1λ+ 1) = (2k − 1)λ+ k

By applying Theorem 7.2 with d ≤ (2k − 1)λ+ k we have the following result:
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Corollary 17. There exists an approximation algorithm with approximation ratio

(2k − 1)λ+ k for the NWkECS problem in (λ+ 1)-claw-free graphs.

7.2.3 NWkECS in Other Graph Classes

In this section, we derive results from Corollary 17 for special classes of graphs that

are included in the class of (λ+ 1)-claw-free graphs.

First we obtain a result for unit disk graphs, which are 6 claw-free [59]. There-

fore, we have the following corollary:

Corollary 18. There is an approximation algorithm with approximation ratio (2k−

1)5 + k for NWkECS in unit disk graphs.

For α-unit disk graphs, the maximum number of independent neighbors of a

node is at most (4/α2+4/α+1) (see Lemma 5). Thus, we have the following result

for α-unit disk graphs:

Corollary 19. There is an approximation algorithm with approximation ratio (2k−

1)(4/α2 + 4/α + 1) + k for NWkECS in α-unit disk graphs.

Now consider bi-directional disk graphs. Every vertex has at most K inde-

pendent neighbors, where K = 6(3 dlog2me + 2) [53] for m > 1 (m is the ratio

between the maximum and minimum transmission range in a bi-directional disk

graph). Thus, we have the following result for NWkECS in bi-directional disk

graphs:

Corollary 20. There is an approximation algorithm with approximation ratio (2k−

1)(18 dlog2me+ 12) + k for NWkECS in bi-directional disk graphs, where m > 1.

For λ = p(1), bounded independence graphs are (λ + 1)-claw-free (see Sec-

tion 2.2). Thus, Corollary 17 implies the following result:
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v

Figure 7.7: Lower bound on the degree of a k-edge-connected unit disk graph

Corollary 21. There is an approximation algorithm with approximation ratio (2k−

1)λ+ k for the NWkECS problem in bounded independence graphs.

7.3 Lower Bound on the Maximum Degree in a

k-Edge-Connected Steiner Subgraph in UDG

From the previous section, we know that the maximum degree bound d in a k-

edge-connected subgraph for unit disk graphs is at most (2k− 1)5+ k. Now we are

interested in finding a lower bound on the maximum degree in a k-edge-connected

subgraph for the class of unit disk graphs.

Lemma 16. There exists a unit disk graph and a set of terminals such that any

k-edge-connected Steiner subgraph has maximum degree at least 5k.

Proof. Consider a k-edge-connected unit disk graphG that is constructed as follows.

There is an arbitrary vertex v in G. Terminals constituting five cliques are located

around v in a 360◦ sector, and the size of each clique is k + 1 (for example see

Fig. 7.7). In this construction, the degree of v is 5k. All vertices of G are terminals.

Suppose that any two vertices, each belonging to a distinct clique, have more

than 60◦ angle between them at v. Due to this assumption it is impossible that a

pair of vertices of separate cliques have an edge between them in G. If we remove
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even a single edge from v to a vertex in any of the cliques, then the property of

k-edge-connectivity is lost. Hence, the degree of v which is equal to 5k, cannot

be decreased. Therefore, the lower bound on the degree of any k-edge-connected

Steiner subgraph of this unit disk graph is 5k.

Conclusion

In this chapter, we showed that NWkECS is NP-hard in unit disk graphs for k ≥ 1.

We presented an algorithm with approximation ratio (2k − 1)λ+ k for NWkECS

in (λ+1)-claw-free graphs, and then derived results for several restricted classes of

graphs. Moreover, we presented a lower bound on the degree of a k-edge-connected

Steiner subgraph which is only linear in k. Since the upper bound is exponential

in k, there is a large gap between the lower and upper bound on the maximum

degree in k-edge-connected Steiner subgraphs in unit disk graphs. In the future,

it would be interesting to find better algorithms for constructing k-edge-connected

subgraphs of small degree in unit disk graphs so that the gap between the lower

and upper bound is reduced.
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Conclusion and Future Work

Our motivation for the study of node-weighted Steiner subgraph problems is mul-

ticast communication in wireless ad-hoc networks. All problem variants studied in

this thesis are NP -hard, and thus, it is unlikely that polynomial-time optimal al-

gorithms exist for these problems. We used approximation algorithms to find good

solutions in polynomial time for these problems. We considered node-weighted

graphs in order to capture the situation in which nodes have different capabili-

ties or willingness to participate in a multicast routing due to certain constraints

like energy, memory, life-time etc. Therefore, different cost values are assigned to

nodes to model the above situation. We assumed that all terminals have weight

zero since they are included in every solution. Our aim was to minimize the weight

of the Steiner nodes because it was desirable to minimize the cost of the nodes that

forward multicast packets but are not the intended transmitters or receivers in a

multicast transmission themselves.

In the literature, an idealized graph model for wireless ad-hoc networks is the

unit disk graph model. There are also more general graph models for these networks

known as quasi-unit disk graphs, bounded independence graphs, bi-directional disk

graphs. We considered all these graph classes in our work to model wireless ad-hoc
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networks for the study of our optimization problems. In addition, we considered the

class of (λ + 1)-claw-free graphs which includes the aforementioned graph classes,

and therefore, is more general than all of them.

We addressed a generalized version of the node-weighted Steiner subgraph

problems referred to as the node-weighted δ-Steiner subgraph problem. The prop-

erty δ represents the edge-connectivity or node-connectivity requirement in the

solution graph. We have shown that the simple approach of defining suitable edge

weights for a given instance of the node-weighted δ-Steiner subgraph problem and

then applying an approximation algorithm for the edge-weighted version of the δ-

Steiner subgraph problem yields a good approximation ratio for the node-weighted

δ-Steiner subgraph problem in graph classes that admit δ-Steiner subgraphs of

small degree. The approximation ratio achieved for this problem is 0.5ρd, where

ρ is the best known approximation ratio for the edge-weighted δ-Steiner subgraph

problem, and d is the bound on the maximum degree of δ-Steiner subgraphs in the

considered class of graphs. We adapt the algorithm for the node-weighted δ-Steiner

subgraph problem for problem variants with the different connectivity requirements

δ mentioned below.

For computing good multicast trees in wireless ad-hoc networks, we have con-

sidered the node-weighted Steiner tree problem in the previously mentioned graph

models. We presented a 0.695 · (λ + 1)-approximation algorithm for the class of

(λ+1)-claw-free graphs. For the computation of fault-tolerant routing structures in

wireless networks, we have considered the node-weighted 2-edge-connected Steiner

subgraph problem and presented an approximation algorithm with ratio 2(λ + 1)

in (λ + 1)-claw-free graphs. The study of higher edge-connectivity requirement

was extended to k-edge-connected Steiner subgraphs with node weights. A d-

approximation algorithm was presented for the node-weighted k-edge-connected

Steiner subgraph problem in (λ+1)-claw-free graphs, where d ≤ (2k − 1)λ+ k is a
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bound on the maximum degree of a k-edge-connected solution subgraph in (λ+1)-

claw-free graphs. We also considered the node-weighted 2-vertex-connected Steiner

subgraph problem and 2-edge-connected group Steiner subgraph problem in spe-

cial classes of graphs. For the node-weighted 2-vertex-connected Steiner subgraph

problem, we presented a 2(λ + 1)-approximation algorithm in (λ + 1)-claw-free

graphs. For the 2-edge-connected group Steiner subgraph problem, we achieved

approximation ratio 3.39(λ + 1) in (λ + 1)-claw-free graphs. The key point in the

analysis of all of the above algorithms was to show that for the considered classes

of graphs, there exist solutions of small node degree.

Our algorithms are centralized, but distributed algorithms for the edge-weighted

versions of the considered problems can be used to obtain distributed implementa-

tions of our algorithms. If the approximation ratio of the distributed algorithm for

the edge-weighted δ-Steiner subgraph problem is ρ, our algorithm yields approxi-

mation ratio 0.5dρ for graphs having solution subgraphs with maximum degree

bounded by d.

In general, for graph problems that have better approximation results for

their edge-weighted version as compared to their node-weighted version in arbi-

trary graphs, one might use a similar approach as we have used to get better

approximation results for restricted graph classes. In our approach, the main ingre-

dient that is necessary is the existence of optimal solution subgraphs of small node

degree. If this property can be shown to hold for another problem in a restricted

class of graphs, then our approach may lead to a better approximation ratio for

the node-weighted version of that problem in that restricted class of graphs.

Future work

One interesting question for future work is whether the approximation ratio for the

node-weighted Steiner tree problem in graph models of wireless ad-hoc networks can
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be improved further and whether even a polynomial-time approximation scheme

exists for the problem. Similarly, one might try to improve the approximation ratio

for the node-weighted 2-edge-connected, k-edge-connected, and 2-vertex-connected

Steiner subgraph problems. The approximation ratios given in this thesis could be

improved if we could further minimize the bounded maximum degree d of solution

subgraphs in the considered graph classes.

It would be interesting to study other variants of fault tolerance requirements

in restricted classes of graphs, e.g., k-vertex-connected Steiner subgraphs such that

there are at least k internally vertex disjoint paths between every pair of terminals.

Another interesting problem variant is to compute k-vertex-connected Steiner sub-

graphs in which every pair of vertices has k internally vertex disjoint paths.

One direction for future work is to study inapproximability for the connectivity

problems addressed in this thesis. We have shown a lower bound on the maximum

degree bound in k-edge-connected unit disk graphs. In the future, it would be

interesting to find such lower bounds in other classes of graphs we considered.
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