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SUMMARY

We present a 3D joint inversion framework for seismic, magnetotelluric and scalar and ten-

sorial gravity data. Using large-scale optimization methods, parallel forward solvers and a

flexible implementation in terms of model parametrization allows us to investigate different

coupling approaches for the various physical parameters involved in the joint inversion. Here

we compare two different coupling approaches, direct parameter coupling where we calculate

conductivities and densities from seismic slownesses and cross-gradient coupling, where each

model cell has an independent value for each physical property and a structural similarity is

enforced through a term in the objective function.

For both types of approaches we see an improvement of the inversion results over single in-

versions when the inverted datasets are generated from compatible models. As expected the

direct coupling approaches results in a stronger interaction between the datasets and in this

case better results compared to the cross-gradient coupling. In contrast, when the inverted

magnetotelluric data is generated from a model that violates the parameter relationship in

some regions but conforms with the cross-gradient assumptions, we obtain good results with

the cross-gradient approach, while the direct coupling approach results in spurious features.

This makes the cross-gradient approach the first choice for regions were a direct relationship

between the physical parameters is unclear.
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1 INTRODUCTION

All geophysical inversion methods are fraught with the problem of non-uniqueness (e.g. Menke

1989; Muñoz & Rath 2006). Data acquired in a geophysical survey is usually restricted to the

surface of the Earth or the shallow subsurface, often with relatively large spacing between mea-

surement sites, and affected by noise. In such a situation different models can explain the observed

data, creating ambiguity in their interpretation (Tarantola 2004). Applying regularization stabilizes

the inversion and creates a model with certain characteristics but does not alleviate the underlying

problem (Parker 1983).

Joint inversion approaches promise to reduce the set of acceptable models by combining sev-

eral geophysical methods in a single inversion scheme and requiring the resulting model to explain

all data simultaneously (Vozoff & Jupp 1975). Two factors help to achieve this goal: First, different

methods have different resolving kernels and the null space for one type of data can be resolved

by the other (Julia et al. 2000); second, the sources of noise and its impact on the data often differ

so that adding another method can improve the results more than adding more data of the same

type. Consequently joint inversion approaches have gained some attention recently (e.g Gallardo

& Meju 2004; Linde et al. 2006; Chen et al. 2007; Colombo & Stefano 2007; Wagner et al. 2007).

The prize for the increased robustness is that we have to put in assumptions about the relation-

ships between the different types of data. An apparently simple situation is where the models for

all types of data are described by the same physical parameter. For example, Rayleigh waves and

receiver functions are both usually modelled in terms of S-wave velocity and thus joint inversion

of these two dataset seems straightforward. Receiver functions, however, sample the Earth in a

different way from surface waves and we have to take care that both sample the same region (Julia

et al. 2000) and assess in how far these two types of data are compatible (Moorkamp et al. 2010b).

When combining data that are sensitive to different physical parameters, e.g. seismic velocity

and conductivity, we have to explicitly formulate a relationship between those physical parame-

ters. Here we will focus on two approaches: Direct parameter relationships where we specify a

functional relation between the parameters (Heincke et al. 2006; Jegen et al. 2009) and a struc-

tural constraint, the cross-gradient (Gallardo & Meju 2003), that enforces structural similarity
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between the different models. Other approaches include using a parameter relationship as a con-

straint (Colombo & Stefano 2007) or using a more stringent structural coupling (Haber & Old-

enburg 1997). Finally, statistical descriptions of the parameter relationships (Bosch 1999, 2004)

allow for an accurate description of the variability and uncertainty of the assumed relationship. We

are currently working on a Bayesian methodology that incorporates these and other uncertainties

in order to investigate the reliability of joint inversion models (Roberts et al. 2010).

Direct parameter relationships provide a strong coupling between the datasets. The model is

expressed in terms of a single physical parameter and all other physical parameters needed for

solving the forward problems are calculated using an analytical relationship. Consequently the

model update is influenced by the misfit of all datasets (see below for a more detailed description).

This strong coupling promises a strong influence on the inversion process, but it is obvious that

when the assumed relationship is violated this will distort the resulting model.

The cross-gradient approach makes few assumptions about the relationship of the different pa-

rameters. Within the inversion we minimize an objective function term that measures the structural

similarity between the different models. This means that the cross-gradient criterion can be vio-

lated in parts of the model, but also the cross-gradient as such provides a relatively loose coupling

(Gallardo et al. 2005). We can expect though that the improvement over a single inversion is not

as strong as for the direct parameter coupling.

It is therefore necessary to tailor the joint inversion approach to the available a-priori informa-

tion. In areas where the data suggests the possibility of a direct parameter relationship, utilizing

this relationship promises improved resolution. In other areas it might not be possible to uniquely

define such a relationship or its existence might be unknown or doubtful. In those cases the cross-

gradient provides an adequate coupling strategy for joint inversion. In any case it is necessary to

carefully assess the resulting models and compare the results from individual inversions with joint

inversion results using different coupling strategies.

For this purpose we have developed a flexible 3D joint inversion framework that allows us to

test different joint inversion approaches. We first discuss the different types of data that we can

include in the joint inversion and the motivation for using each type of data. Then we give an
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overview over the different parts of the joint inversion framework, the large scale optimization

algorithms, objective function definition, model parametrization and forward and gradient calcu-

lation. Finally we use a simple synthetic example to compare two joint inversion approaches with

single inversion results and discuss the properties of our joint inversion approach.

THE DATASETS

Before we describe the joint inversion algorithm we briefly discuss the different types of data we

use for joint inversion. As the focus of the paper is on the inversion method we restrict ourselves

to the most important properties of each method and the rationale for including this type of data in

the joint inversion.

Seismic tomography based on first arrival travel times is one of the main methods to construct

seismic velocity models of the subsurface (e.g., Zelt & Smith 1992). This method can be used both

with active source data (e.g., Di Stefano & Chiarabba 2002) and passive seismological data (e.g.,

Ritter et al. 2001). In both cases it is necessary to identify the first arrival from a given source on

the recorded seismograms. These first arrival picks then form the data that is used as input for the

inversion. The solution to the forward problem can be obtained by solving the eikonal equation

(Podvin & Lecomte 1991) or ray tracing through the velocity model (Zelt & Smith 1992). In

regions with good ray coverage seismic tomography can provide relatively high resolution velocity

models.

Scalar gravity data, i.e. the vertical component of gravitational acceleration Uz, are often used

to quickly map the density distribution in a large area (e.g., Zanolla et al. 2006). Due to their

limited resolution, gravity data are usually explained by forward modelling (e.g., Barrère et al.

2009) or constrained inversion (e.g., Welford & Hall 2007). In joint inversion schemes gravity can

provide valuable additional information for the inversion by further constraining density that other

data, for example surface waves, have only limited sensitivity to (Maceira & Ammon 2009) and

by filling gaps in data coverage (Heincke et al. 2006; Vermeesch et al. 2009).

In addition to the first spatial derivative of the gravitational potential it is also possible to

measure the elements of the second spatial derivatives that form the so-called full gravity tensor



3D joint inversion 5

Γ (FTG) (Li & Chouteau 1998). Again this type of data is often used to produce maps (Pedersen

et al. 1990), but sometimes also inverted to produce models of the density distribution (Droujinine

et al. 2007). Being a derivative of scalar gravity data it provides higher lateral resolution but the

sensitivity kernels decay more quickly with depth. Thus FTG data are mostly sensitive to near

surface structures and lateral contrasts near the surface.

Magnetotellurics (MT) is a passive source electromagnetic method. Assuming a plane electro-

magnetic wave impinging on the surface of the Earth and measuring the horizontal components of

the resulting electric and magnetic fields, we can estimate the magnetotelluric impedance tensor Z

whose elements purely depend on the conductivity distribution in the subsurface (Simpson & Bahr

2005). MT is used extensively to study the conductivity of the crust and upper mantle both on land

(e.g. Brasse et al. 2009) and in marine environments (e.g. Baba et al. 2006; Jegen et al. 2009). In

recent years it has also been used in marine exploration problems (Key et al. 2006; Constable et al.

2009) as it provides complementary information to seismic surveys. Particularly for sub-salt and

sub-basalt problems, where seismic methods often have difficulty imaging the areas below the salt

or basalt, MT can provide valuable information although with relatively lower resolution (Jegen

et al. 2009).

Having the possibility to include these four types of data means that we cover the most com-

monly used parameters in geophysical surveys, seismic velocity, density and conductivity. Also, all

types of data can be used on a large range of scales from near-surface studies through exploration

problems to the scale of the crust and mantle.

2 JOINT INVERSION FRAMEWORK

Figure 1 shows an overview of the different parts of the joint inversion framework and the forward

solvers. The framework is separated into different modules, each one with a specific responsibility.

We implement each module such that only the minimum required information is exchanged be-

tween different parts and therefore we can exchange each module relatively easily to test different

optimization methods, model parametrizations or forward solvers. Below we discuss each of the

constituents of the joint inversion framework.
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Figure 1. The structure of the joint inversion algorithm. Each module can be exchanged and configured with

minimal interference with other parts of the algorithm. We show some of the options for various models in

red boxes.

LARGE SCALE OPTIMIZATION

For efficient three-dimensional inversion using optimization methods that scale well to a large

number of unknown parameters is essential. Two main factors determine the suitability of an op-

timization method for large scale inversion: the total computational cost and the memory require-

ments (Newman & Alumbaugh 2000). Often the main factor that determines the computational

cost is the number of forward model calculations. Typically methods that require only few forward

calculations, e.g. Gauss-Newton methods, consume large amounts of memory, while methods that

require very little memory, e.g. steepest descent, have to perform a large number of forward cal-

culations. We therefore have to find the optimum trade-off between these two factors.

For non-linear inversion Gauss-Newton methods usually require only few forward model cal-

culations to reach a minimum misfit. For a problem with M model parameters and N data this

method requires the calculation of the N ×M sensitivity matrix Gij = ∂di/∂mj and the M ×M
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approximation to the Hessian GTG. For seismic tomography where G is sparse this approach is

often employed (e.g. Zelt et al. 2006; Vermeesch et al. 2009). When the sensitivity matrix is fully

occupied as for magnetotelluric and gravity inversion, storing a M ×M matrix severely limits the

maximum model size that can be handled with this approach. This can be to some degree reme-

died by using a data-space Gauss-Newton approach (Siripunvaraporn et al. 2005), but even then

we have to store the N ×M sensitivity matrix which for joint inversion with large amounts of data

is not feasible.

Quasi-Newton and conjugate gradient methods only require the derivative ∇Φ = ∂Φ/∂m of

the objective function Φ with respect to the model parameters m. Two algorithms are commonly

used in large scale inversion, the non-linear conjugate gradient method (NLCG) (Rodi & Mackie

2001; Commer & Newman 2009) or a limited memory quasi-Newton approach (L-BFGS) (Avdeev

& Avdeeva 2009). Both methods are similar in the sense that they use information from previous

iterations to improve the current model update. The main difference is that NLCG only uses the

previous model update and gradient, while L-BFGS uses a number ncp of correction pairs that can

be chosen by the user. NLCG therefore only requires 2M extra storage, while L-BFGS requires

2ncpM extra storage. As both algorithms have been described well in the literature (e.g. Rodi &

Mackie 2001; Tarantola 2004; Nocedal 2006), we only outline the basic steps.

Given a starting model m0 we perform a number of optimization iterations until the value of the

objective function Φ, the misfit between observed and synthetic data, reaches a certain threshold;

we will discuss the details of the definition of misfit below. At each iteration i we calculate the

misfit and the gradient of the objective function for the current model. Using NLCG or L-BFGS

we transform the gradient to a search direction pi, determine an optimum step length µ using the

line search procedure of Moré & Thuente (1994) and update the current model

mi+1 = mi + µpi. (1)

We then store the necessary information from the current iteration, check whether we have reached

the target misfit and if not proceed to the next iteration.

The core inversion algorithm has no knowledge of the meaning of the inversion parameters m,

it only perturbs the vector according to the objective function and gradient values. This also im-
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plies that the model parameters can assume any value including negative ones. This is problematic

if the inversion parameters are seismic velocities or conductivities, for example, which are inher-

ently positive. One solution is to use a constrained optimization method (e.g. Avdeev & Avdeeva

2009) that modifies the search direction or step length to keep the parameters within a specified

range. We instead constrain the possible values of the physical parameters through appropriate

transformations in the model parametrization which we will discuss below.

Objective function definition

The definition of the misfit in the objective function Φ determines which models we consider an

appropriate explanation for the observed data. We follow the approach of Tarantola (2004) and

define the misfit for a model m with respect to a dataset d as

Φd(m) = (g(m)− dobs)
T C−1

d (g(m)− dobs) . (2)

Here g(m) is the synthetic data from the forward calculation for the given model, dobs the vector

of observed data and C−1
d the inverse of the data covariance matrix. Including the data covariance

in the objective function reduces the influence of observations with large errors and equalizes the

influence of data with similar relative errors irrespective of the magnitude of each datum. This

latter property is important for MT data, where the impedances at high frequencies can be orders

of magnitude larger than at low frequencies. In addition this type of misfit definition gives us an

objective criterion for a sufficiently small data misfit, when Φd(m) = N , where N is the number

of observations, we explain the data within the assumed observational errors (Tarantola 2004).

A geophysical inversion that only minimizes the misfit between observed and synthetic data

is ill-posed in the sense that the resulting models show erratic parameter variations and do not

resemble Earth structures (e.g., Constable et al. 1987). In some cases the inversion procedure even

cannot proceed past the first few iterations and fails to produce an acceptable misfit. By including

some form of regularization we can stabilize the inversion and produce smoothly varying models

that allow us to identify coherent structures (e.g. Jupp & Vozoff 1975; Constable et al. 1987). This

comes at the cost of increased data misfit, although often we can still explain the data within the

observational errors.
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The regularization functional we use for the joint inversion has the form

ΦReg(m) =
∑
i

αi (m−m0)
T WT

i C
−1
M Wi (m−m0) + β (m−m0)

T C−1
M (m−m0) . (3)

We sum over the three axis directions i = {x, y, z} and weight the contribution for each direction

by a weight αi. The matrices Wi are finite difference approximations to the first or second spatial

derivative of the model parameters in the respective direction (e.g., Farquharson & Oldenburg

1998). Depending on the choice of Wi we seek a model that has a minimum parameter variation

between adjacent cells or minimum curvature, respectively. m0 is an a priori model that we can

use to keep the inversion result close to this reference model. We also include a term to minimize

the total value of the model vector, although we usually keep the corresponding weight β small.

Similarly to our definition of data misfit, we can include a diagonal model covariance matrix CM .

Changing the entries of this matrix allows us to limit the variation of certain parts of the model,

for example to fix known structures.

For the structural joint inversion approach we can have a number of cross-gradient terms (Gal-

lardo & Meju 2003). These are used to enforce structural similarity between the different physical

properties in the inversion domain. The cross-gradient objective function is defined as

ΦCross(m) = (∇m1 ×∇m2)
T C−1

M (∇m1 ×∇m2) . (4)

Here m1 and m2 correspond to the parts of the model vector m that correspond to two differ-

ent physical properties in the joint inversion, for example seismic velocity and conductivity. This

function vanishes if the spatial gradients of the two models point in the same direction, i.e. both

physical properties change in the same direction, or one property remains constant. In these cases

the magnitude of the change does not have an influence on the value of the cross gradient func-

tional. Only when both properties change, but in different directions, the value of the functional

is different from zero. This type of structural coupling is relatively weak and can be expected to

hold within the Earth under very general conditions and is therefore a popular coupling method

for joint inversion approaches (e.g. Gallardo & Meju 2007; Hu et al. 2009). With these different

objective functions we obtain a joint inversion objective functional of the form

Φjoint =
∑
i

Φi. (5)
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Here the index i denotes the various data misfit, regularization and cross-gradient coupling terms.

For the direct parameter coupling we have

Φjoint = Φd,seis + Φd,grav + Φd,FTG + Φd,MT + ΦReg, (6)

while for the cross-gradient coupling the full joint objective function is

Φjoint = Φd,seis + Φd,grav + Φd,FTG + Φd,MT + ΦReg,s + ΦReg,ρ + ΦReg,σ (7)

+ΦCross,s/ρ + ΦCross,s/σ + ΦCross,σ/ρ.

Here the indices Reg, s, Reg, ρ and Reg, σ denote the regularization for the slowness, density and

conductivity section of the model vector, respectively. Cross, s/ρ, Cross, s/σ and Cross, σ/ρ

denote the cross-gradient terms between slowness and density, slowness and conductivity and con-

ductivity and density sections of the model vector, respectively. We can achieve different weights

between the various terms of the objective function by multiplying the respective covariances by a

factor α. For the regularization terms this is equivalent to changing the lagrangian multiplier (e.g.

Constable et al. 1987) used in other formulations.

Model parametrization

The way that we parametrize the inversion model determines the nature of the joint inversion to a

large degree. In any case we divide a region of the subsurface into rectangular blocks with constant

property values within each block. For the joint inversion with direct parameter coupling we as-

sign a single property value to each block, e.g. seismic slowness, and calculate the other physical

properties through empirical relationships. In contrast, for the joint inversion with structural cou-

pling we assign a slowness, conductivity and density value to each block and achieve the coupling

between the different methods through cross-gradient functionals.

In order to have maximum flexibility in terms of model parametrization and coupling and al-

low for future experiments with different strategies, we encapsulate the knowledge about the model

parametrization in a separate module in our joint inversion implementation. The core inversion al-

gorithm operates on a vector of generalized model parameters m. The objective functions for each

method in contrast expect the natural physical properties for the respective method, i.e. slowness
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for seismic tomography, conductivity for MT and density for the two types of gravity data. We

therefore have to define three transformation functions s(m), σ(m) and ρ(m) that translate be-

tween the generalized model parameters and the physical parameters. This type of implementation

has the advantage that the coupling strategy for the joint inversion approach is separate from both

the inversion routine and the objective function for each method and thus can be changed relatively

easily. In terms of our joint inversion objective function it means that we have a definition of the

form

ΦJoint(m) = ΦTomo(s(m)) + ΦMT (σ(m)) + ΦGrav(ρ(m)) + . . . , (8)

here the dots indicate possible regularization and cross-gradient terms. We will now discuss this

type of implementation in terms of the direct coupling and cross-gradient coupling to make it more

clear.

For the direct coupling where we only have one value for each inversion cell we have to chose

one physical property as the main inversion parameter, e.g. slowness. As mentioned above we

want to restrict slowness to positive values and in most cases even to a specified range of slowness

values, e.g. between smin = 10−4 s/m and smax = 0.005 s/m. We therefore define a generalized

parameter vector m and for the forward calculations transform it to slowness using

sj(mj) = smin +
1 + tanh(mj)

2
(smax − smin) (9)

for each element mj of the generalized parameter vector. This way each element of m can vary

throughout the whole numerical range, while the corresponding slowness values are guaranteed to

be restricted between smin and smax (Commer & Newman 2008).

Once we have calculated the slowness values we can use the parameter relationships to calcu-

late the corresponding conductivities and densities. Such parameter relationships can come from

theoretical considerations of rock properties or simply from empirical laws derived from borehole

data (Jegen et al. 2009). We use relationships between slowness s (in s/m) and conductivity σ (in

S/m) and slowness and density ρ ( in g/cm3) of the form (Heincke et al. 2006)

σ = exp
(
−as2 − bs− c

)
, a = 2.31 · 10−7, b = −5.79 · 10−4, c = 0.124, (10)

ρ = (1/s+ 8500)/5000, (11)



12 Moorkamp et al.

for our synthetic examples.

For the cross-gradient coupling the generalized model vector m contains three segments that

correspond to slowness, conductivity and density, respectively, viz.

m = (ms mσ mρ) . (12)

Each segment uses a transformation of the form of Equation 9 to reduce the range of possible

parameter values, but with a different maximum and minimum value for each segment. To cal-

culate synthetic data the corresponding segment of the model vector is passed to the appropriate

forward modeling algorithm.

Forward modeling

We use parallel forward solvers to calculate first arrival travel times, MT impedances and scalar

and tensor gravity data. The calculation of travel times is based on the code of Podvin & Lecomte

(1991), but we can calculate solutions for different source positions in parallel. This type of paral-

lelization is simple to implement, but with hundreds of source positions in a typical survey, scales

to large clusters.

Both types of gravity data are calculated using a massively parallel approach that can run

either on a standard CPU or on a graphics processing units (GPU). GPUs are particularly suited

for problems where simple equations are applied to a large amount of data, such as the calculation

of acceleration due to a density distribution. With our GPU based code we observe an acceleration

of a factor of 30-40 compared to a single CPU (Moorkamp et al. 2010a).

For the MT impedance calculation we use the integral equation code of Avdeev et al. (1997)

and parallelize the impedance calculation by frequency. Although this usually means that only 10-

20 parallel calculations can be performed, we achieve good scaling of run time with frequency. An

intrinsic parallelization of the forward code can utilize more processors but is difficult to achieve

with good scaling (Avdeeva 2008) and out of the scope of this project.

Each forward modeling algorithm has different requirements on the mesh to ensure numerical

stability of the solution. All forward algorithms operate on rectilinear meshes where the model

consists of cuboids of constant parameter value. However, the travel time code, for example, re-
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quires all cuboids in the mesh to have the same size in all three dimensions and the error on the

calculated travel time scales roughly with cell size. The error on synthetic impedances depends on

the ratio of the mesh size to penetration depth, so deeper parts of the model can be discretized with

a coarser grid, as they are only illuminated by long period data. Also, the calculation time for the

integral equation code depends strongly on the number of cells in z-direction (depth), therefore

it makes sense to use a coarse grid at depth for the MT forward calculations. Finally we might

want to regularize the inversion by using large blocks in some areas to enforce constant parameter

values there.

For these reasons, we separate the inversion grid from the forward modeling grid for each

method. We can specify a different grid for each method and refine the inversion model to match

that grid. We use a simple form of refinement where for the forward calculation we only can

add new cell boundaries to the inversion mesh and always preserve the existing boundaries of

the inversion grid. This way we do not have to interpolate any parameter values. This type of

refinement is equivalent to resampling the model and we will denote this operation withX(x).

Gradient calculation

The inversion algorithms require the gradient of the objective function with respect to the gener-

alized model parameters. Given all the steps described above we have for the synthetic travel time

data t = g(m) in Equation 2

g(m) = g (X(s(m))) . (13)

Therefore the gradient of the objective function has to be calculated using the chain rule, for

example for the seismic objective function we have

∂Φseis

∂m
=

∂s

∂m

∂X

∂s

∂t

∂X

∂Φseis

∂t
. (14)

Here ∂t

∂X
is the sensitivity matrix for the seismic data with respect to the refined grid. As this

matrix is sparse for the seismic data we can calculate this matrix separately by backtracking

through the calculated traveltime field (Heincke et al. 2006), while for gravity and MT data we
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directly compute the product with the last term using an adjoint approach (Plessix 2006; Avdeev

& Avdeeva 2009).

The term ∂X
∂s

describes how the refined grid changes when one of the parameters on the inver-

sion grid changes. For our simple refinement schemes this is just a summation over the gradients

in all cells in the refined grid that correspond to one cell in the inversion grid. Finally the term ∂s
∂m

relates the changes of the objective function with respect to the physical parameters to the gener-

alized model parameters. This term depends on the parameter relationship and in our case has a

simple analytical form. Once we have calculated the gradient for each type of data and possible

regularization and cross-gradient terms the gradient of the objective function becomes simply the

sum of all gradients

ΦJoint(m)

∂m
=

ΦTomo(m)

∂m
+

ΦMT (m)

∂m
+

ΦGrav(m)

∂m
+ . . . (15)

We then use this gradient to update the inversion model with one of the large-scale optimization

algorithms NLCG or L-BFGS.

3 SYNTHETIC EXAMPLES

We perform a number of tests on a simple synthetic model to evaluate the potential of the joint

inversion approach. In particular, we want to see how our joint inversion performs in comparison

with single inversions and how the two approaches of coupling the data impact on the joint inver-

sion results. For the comparison between joint inversion and single inversion we use L-BFGS as

an optimization method in all cases. We constrain the slowness between 10−4 s/m and 0.005 s/m,

corresponding to velocities of 10, 000 m/s and 200 m/s, respectively.

A SIMPLE EXAMPLE

Our test model (Figure 2 consists of 20×20×10 cubic cells with an edge length of 500 m. Within

a layered background the model contains two rectangular anomalies that extend from the surface

down to a depth of 2000 m. One anomaly has a 20% higher slowness than the corresponding

background layer, while the other anomaly has a 20% lower slowness.
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Figure 2. A plot of the true model. On the left we show a plot of the surface layer that shows the position of

the two anomalies. On the right we show a vertical depth slice through the center of the two anomalies. The

position of this vertical slice is marked by a thick line on the horizontal slice. We show the position of the

measurement sites for which we generate synthetic data by circles (seismic receivers and sources), triangles

(MT) and squares (gravity), respectively.

We construct corresponding density and conductivity models using the parameter relationships

in Equations 10 and 11. From these three models we calculate synthetic travel times, scalar and

tensorial gravity responses and MT impedances. We place 25 seismic sources and receivers on

a regular grid on the surface with a distance of 2 km between each source in both horizontal

directions. For all 600 source-receiver combinations we calculate synthetic travel times. For the

gravity data the 16 measurement sites are arranged on a rectangular grid with a distance of 2 km

in each direction. At each site we calculate both scalar gravity data as well as the full gravity

tensor. Finally, we have 16 MT sites with a spacing of 2 km and calculate the for elements of

the MT impedance tensor for 4 frequencies between 10 Hz and 0.1 Hz. We add Gaussian noise

with a standard deviation of 20 ms to the synthetic travel times and 2% Gaussian noise to the MT

and gravity data. These data with added noise form the input for all individual and joint inversion

experiments described below. The combination of a small model with such a small dataset enables

us to quickly perform various tests in order to investigate the properties of the two joint inversion

approches.

Figure 3 shows the result of a single seismic tomographic inversion. The starting model is the
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Figure 3. Tomography only model. We show the result of the tomographic inversion with the same scale as

for the true model. For reference we also plot the position of seismic sources and receivers (circles).

true layered background without the two anomalies. We see that the inversion of seismic data alone

recovers the general shape and position of the two anomalies. We overestimate the amplitude of the

high slowness anomaly at the surface and do not fully recover the depth extent of both anomalies.

Also, the transition between the two anomalies is blurred out and towards the borders of the model

we observe some artifacts in the background. These are both effects of the regularization used in

the inversion. Here we employ a curvature based smoothness functional. In addition to equalizing

parameter variations it also permits constant spatial gradients and thus trends in the parameters

tend to be extended into regions without data coverage. However, this property of permitting linear

trends is useful for the inversion of seismic data, as we have increasing velocity with depth that

otherwise would have to be facilitated by down-weighting the smoothing in the vertical direction.

All in all the result of the single inversion is satisfactory for this simple model.

The inversion of MT data alone shows the expected result for this inductive method (Figure

4). Compared to the seismic tomography model the transition between anomalies and background

is more smooth. This obviously also depends on the amount of regularization but it is generally

true for all models that do not show strong oscillations in parameter values that are a sign of

underregularization. As before we recover the general shape and position of the anomalies and

in the center the obtained parameters values match the true model well. Again we loose some
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Figure 4. Final model obtained from single MT inversion. For easier comparison we plot the result of the

MT inversion in terms of slowness using the true relationship between the test models.

resolution at depth, this is to some degree due to the fact that we only use a single frequency per

decade.

The results of the inversion of the two types of gravity data are somewhat surprising. As shown

in Figure 5 the inversion recovers the shape of the two anomalies at the surface very well. We have

to remember though that for all inversions we start with the true layered background model and

the inversion only has to recover the anomalous parameter values. For different starting models we
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Figure 5. Final model obtained from gravity only inversion. For easier comparison we plot the result of the

gravity inversion in terms of slowness using the true relationship between the test models.
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Figure 6. Final model obtained from joint inversion with direct parameter links.

expect the individual MT and seismic inversions to perform similarly but the gravity inversion to

differ significantly because of lower resolution. Also the parameter values are not well estimated

in cells without measurement sites and the good results are restricted to the surface layer. Already

the second layer shows a much weaker signature of the anomalies before they disappear in the

third layer.

For the joint inversion we use the same data with added noise as for the individual inversions.

All data are weighted by their variance with no additional weighting between the datasets. We first

present the results with direct parameter coupling. In this case the parameter relationships in the

joint inversion exactly match the relationships that we use to generate the true models. This is the

ideal situation for the joint inversion, as the different methods are strongly linked to each other

and we can expect some improvement of the inversion results. For this example we use the same

weight for the regularization term, however due to the additional data the effective weight of the

regularization is slightly lower than for the individual inversions.

We plot the model resulting joint inversion with direct parameter coupling in Figure 6. For

the surface layer we can see significant improvement over the inversion of the individual datasets

alone. The shapes of both anomalies match the shape of the true anomalies and we also recover

the slowness values of the anomalies with little scatter. In addition, the artifacts at the border

of the model are strongly reduced. The vertical slice through the model shows that with depth
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Figure 7. Convergence curve for the joint inversion compared to the seismic tomography inversion. We

show the χ2 misfit at each iteration for each type of data for the tomographic inversion (black) and joint

inversion using direct parameter coupling (red). a) seismic data, b) scalar gravity data, c) tensor gravity data,

d) MT data, e) regularization term. We also plot the level that corresponds to an RMS of 1 as a dashed line

in each plot of data misfit.

the improvement becomes less pronounced. Below 2,000 m depth both inversion results are very

similar. We have to consider though that gravity data has no direct depth resolution and that the

MT data has only one impedance estimate per decade.

Comparing the convergence curves of the seismic tomography inversion (black) with the joint

inversion (red) in Figure 7 illustrates the influence of the gravity and MT data. While the χ2-misfit

for the seismic data at final iterations is virtually identical, the misfit of the tensor gravity and

MT datasets is consistently lower after the first iteration. It is interesting to see that the misfit for

the scalar gravity data is higher for the initial iterations but then falls below the final misfit of

the seismic tomography inversion. We can also see the complex interaction between the different

types of data as the misfit for each type of data occasionally increases before it plunges down again.
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Figure 8. Final model obtained from joint inversion with cross-gradient links.

Although the tomographic inversion also reduces the misfit of the other datasets, the joint inversion

reaches a final misfit that is a factor 2-100 lower than for the seismic tomography inversion. The

joint inversion stops after 42 iterations as it cannot find a suitable step size that minimizes the

objective function significantly. The total run time in this case is ≈ 40 minutes on a standard Core

2 Q6600 quad core desktop computer with 4 GB of main memory. Most of this time is consumed

by the MT forward and gradient calculations.

For the joint inversion using the cross-gradient approach we need to specify the weights for

three cross-gradient terms and three regularization terms, one for each of the physical parameters

slowness, density and conductivity. We obtain a separate model for each parameter, however the

cross-gradient terms ensure that there is structural similarity between these three models. Due

to the interaction between data misfit objective, cross-gradient objective and regularization, the

value of the weight for the regularization term is not directly comparable to the weight for the

individual inversion. We therefore scale the covariance for the three regularization terms so that

the misfit for the cross-gradient inversion becomes comparable to the joint inversion with direct

parameter coupling. This ensures that the models remain comparable. In this case the values for

the covariance scaling factors are αReg,s = 50, αReg,σ = 50 and αReg,ρ = 1.

Figure 8 shows the inversion result for seismic slowness using cross-gradient coupling. The

result looks similar to the direct parameter coupling although there is some additional scatter at
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Figure 9. Relative difference (strue−s)/strue between inversion results and true model for the slownesses.

For each inversion we plot the relative difference for the surface layer.

the borders of the two anomalies. As before we can see some improvement over the individual

inversions for the surface layer, but at depth all results are relatively similar. The colour scale used

to plot the inversion result is a compromise between representing the whole range of parameter

variations while keeping the anomalies and small fluctuations visible. To improve the visibility of

fluctuations from the true model we plot the relative difference between the inversion results and

the true model for the surface layer in Figure 9 and for a vertical slice across the center of the

model in Figure 10.

Deviations from the true model are relatively similar for both types of joint inversion. The max-
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imum relative deviation from the true model is ±10%. Particularly at the boundaries of the model

we can see larger deviations that are due to reduced data coverage. We can identify larger devia-

tions from the true model for the cross-gradient case at the transition between the two anomalies,

but throughout the rest of model the inversion results of both joint inversions fluctuate around the

true model with positive and negative deviations equally distributed. In comparison the individual

seismic inversion shows much larger deviations from the true model demonstrating the improve-

ment we can obtain with joint inversion in comparison to the single inversions. This observation

is confirmed by the misfit between the true model and the three inversion results,

χ2 =
∑
i

(
struei − sinvi

struei

)2

. (16)

Here the summation goes over all model cells and sinv and strue denote the slowness in each cell

for the inversion result and the true model respectively. For the tomographic inversion we obtain

χ2
tomo = 5.3, while for the cross-gradient inversion χ2

cross = 4.8 and for the direct coupling joint

inversion χ2
direct = 3.5.

Obviously the joint inversion results depend on the chosen weighting between the data, the

regularization, and, if present, the cross-gradient functionals. Particularly for the cross-gradient

approach we need to specify various weights that all impact on the final model. We therefore

investigate the interaction between the different functionals for this approach further.

Figure 11 shows how variations in the regularization of the conductivity model change the

obtained velocity model with the cross-gradient approach. Both models are coupled through a

cross-gradient term, so as long as the coupling is strong the smoothness of the MT model will be

reflected in the seismic model. From these plots it appears that any value for αReg,σ between 10

and 100 produces reasonable results. Below αReg,σ = 10 we start to see erratic behaviour, while

for αReg,σ > 100 the resulting models look overly smooth. Similarly, the misfit for the seismic

data (not shown) increases with increasing regularization of the conductivity model. It therefore

appears that for our chosen weight for the cross-gradient term αCross,s/σ = 107 the regularization

of conductivities has a direct impact on the seismic data. We will now see how changing the weight

of this term influences the inversion results.

Again we use the initial cross-gradient result as a basis for our experiment and vary the values
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Figure 10. Relative difference (strue−s)/strue between inversion results and true model for the slownesses.

For each inversion we plot the relative difference along a vertical slice through the center of the model.

for all three cross-gradient terms that were κ = αCross,s/ρ = αCross,σ/ρ = αCross,σ/s = 107

above between 105 and 109. Figure 12 shows a plot along the surface for all three parameters

involved in the joint inversion. We observe that the results are similar for coupling values between

κ = 106 and κ = 108. The three inversion results obtained with this parameter range all show

a good recovery of the two anomalies with little scattering or excessive smoothing. The model

with a weight of κ = 105 for the three cross-gradient terms in comparison is visibly smoother,

while for a value of κ = 109 we start to see erratic parameter variations for slowness, density and

conductivity. Interestingly the model with the largest coupling is not only more erratic but also

has a larger misfit for all datasets compared to the other models. This indicates that for such high

values the inversion is mostly occupied with decreasing the cross-gradient term at the expense

of the data misfit terms and the regularization. Conversely a lower weight for the cross-gradient
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Figure 11. The impact of MT regularization on slowness in the cross-gradient inversion. We plot the seismic

model from the cross-gradient inversion for different values of the weight for the regularization of the con-

ductivities αReg,σ. This demonstrates how the different physical parameters interact through cross-gradient

coupling.
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Figure 12. The impact of the weight of the cross-gradient coupling term κ = αCross,s/ρ = αCross,σ/ρ =

αCross,σ/s. Higher values increase the coupling and therefore the similarity between the models for different

physical parameters. We keep all other weights constant.

terms allows the regularization to act more strongly as indicated by the smooth variations of the

inversion results.

Finally we examine how the direct parameter coupling and the cross-gradient approach behave

when conductivity and slowness do not have exactly the same spatial structure. We now combine

the seismic and gravity datasets used above with synthetic MT data calculated from the incompat-

ible model shown in Figure 13. Here we multiplied the conductivities for the right half of the two

anomalies by a factor of two. Although we only plot the surface layer we apply this multiplication

for the whole depth range of the anomalies between the surface and 2000 m depth. The site distri-

bution, frequencies and noise characteristics are exactly as before for the test with the compatible

models and we call this the incompatible test case.

Figure 14 shows the joint inversion result using the direct parameter coupling with exactly the

same weights as for the compatible case. As expected the deviation from the assumed parameter

relationship is mapped into spurious anomalies. These occur not only directly in the regions where

the true models do not match the relationship, but also in the surrounding regions. The joint in-
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Figure 13. The incompatible conductivity model (left) that we use for the following experiment and for

comparison the compatible conductivity model used above (right).

version is creating these structures in order to fit all datasets simultaneously. We can identify the

limited reliability of this model through the significantly increased misfit for both the MT and the
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Figure 14. The slowness model from joint inversion with direct parameter coupling for the incompatible

dataset. We can see how the discrepancy between the different data is mapped into spurious anomalies.
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Figure 15. The impact of the weight of the cross-gradient coupling term κ = αCross,s/ρ = αCross,σ/ρ =

αCross,σ/s for the incompatible test case. As before, higher values increase the coupling and therefore the

similarity between the models for different physical parameters. We keep all other weights constant.

FTG data, the first arrival times and scalar gravity data in contrast are fitted to a similar level as

for the compatible case.

For the cross-gradient inversion of the incompatible dataset we perform a similar experiment

as before and vary the weight of the cross-gradient term to analyze its impact on the results (Figure

15). As before a coupling weight of κ = 109 reduces the influence of the regularization and results

in strong fluctuations of the parameter values in all three models. For all other values of κ we

obtain reasonable results. The seismic and gravity anomalies are more or less continuous as in

the true models while we can identify a partitioning of the MT model. This effect becomes more

pronounced with reduced coupling as this allows the models to be more different from each other.

We consider the results for κ = 107 the best although the results for smaller values are similar.

Interestingly, in theory we should be able to reconstruct the true model regardless of the weight

for the cross-gradient term, as the difference between the true conductivity model and the other

two models is chosen so that the cross-gradient functional for the true model vanishes. However,

the regularization produces additional gradients with directions depending on data coverage and
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Figure 16. Relative difference (strue − s)/strue between inversion results and true model for the incom-

patible case and for κ = 107. For each inversion we plot the relative difference for the surface layer (upper

row) and a vertical slice through the center of the model (lower row).

resolution characteristics for each dataset. This then results in a complex interaction between the

data misfit terms, regularization and cross-gradient terms and an imperfect fit to the data.

For our preferred cross-gradient model with κ = 107 and the direct parameter coupling we

again plot the relative difference to the true model for the slowness model. This plot confirms our

previous observations: For the direct coupling we obtain strong deviations from the true model

mostly where the parameter relationship is violated, but also in the surrounding regions. For the

cross-gradient coupling the deviations are smaller. Also, the strongest deviations are located at

the transition between the anomalies where the regularization acts strongest and at border of the

inversion domain where we have limited data coverage. This demonstrates that in cases where
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there is doubt about the structural coherence for the different parameters in the joint inversion,

cross-gradient coupling is an adequate approach.

4 CONCLUSIONS

We have presented first joint inversion results for a simple test model and examined the impact

of various factors on the inversion results. The flexible structure of the joint inversion framework

allows us to change the model parametrization and number of objective functions in order to

investigate different coupling approaches. Obviously, the simple geometry of our synthetic test

model is not representative for a possible geological target and the inversion domain is small for

a 3D geometry. However, this model is well suited to investigate some of the basic properties of

joint inversion.

Our results demonstrate that when a direct parameter relationship exists and is utilized in the

joint inversion we obtain the largest improvement over single inversion results. Still, cross-gradient

coupling, which makes only few assumptions about the relationship between different datasets,

results in a considerable improvement. Cross-gradient coupling should therefore be the preferred

approach when the existence of a direct relationship between the different physical parameters is

doubtful. This conclusion is supported by the experiments where the conductivity structure does

not match the structure of the other anomalies. In this case the joint inversion with cross-gradient

constraints still produces good results, while the direct parameter coupling results in a number of

spurious artifacts. In addition, for the inversion of real data it is rarely possible to fully describe

the relationship between different physical parameters by analytical functions. Disregarding de-

viations from the assumed relationship in the inversion will then result in inversion artifacts and

underestimating uncertainties for the model parameters. A possible solution is to include a statisti-

cal property relation description in the inversion (Bosch 2004) that allows for deviations from the

assumed relationship.

One difficulty with cross-gradient inversion of three different physical parameters is the large

numbers of weights that need to be specified. Although our experiments suggest that the ex-

act values of the weights are not critical, the acceptable range for the MT regularization was
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ασ = 10− 100 and for the cross-gradient terms κ = 105 − 107, we observe a complex interaction

between the different terms of the objective function. It is therefore necessary to perform various

joint inversions with different weights. This is, however, advisable in any case in order to be able to

assess the validity of the joint inversion results. For the compatible test case there was little varia-

tion of the anomalies with cross-gradient weight. In all cases there were two continuous anomalies

and only the transition to the background changed. For the incompatible case we see how with in-

creasing weight for the cross-gradient term the conductivity anomalies that were split before start

to join, an indication of the incompatibility. Furthermore the misfit that we can achieve with the

joint inversion compared to single inversion is another important indicator of compatibility.
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