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Abstract

The Lattice Boltzmann Method (LBM) is a discrete velocity method which in-

volves a single particle distribution function with two repeating procedures propa-

gation and collision. When the Bhatnagar-Gross-Krook operator is applied as the

collision operator for LBM, this is called lattice Bhatnagar-Gross-Krook method

(LBGK). In comparison with the traditional computation methods, LBM appears

as an efficient alternative computational approach for simulating complex fluid

systems. However, LBM suffers numerical stability deficiencies when applied in

low-viscosity fluid flow, such as local blow-ups and spurious oscillations where

sharp gradients appear. The development of LBM has taken a further step to

resolve the stability problem with applying a discrete entropy H−theorem. How-

ever, the stability and accuracy problems are not completely dealt with by the

entropic lattice Boltzmann method. One of the remedies for the stability deficien-

cies is to construct nonequilibrium entropy limiters for LBM. The original concepts

with the construction of nonequilibrium entropy limiters are based on flux filters

(also called flux-corrected transport) by Boris and Book. The principal idea of the

nonequilibrium entropy limiters is to control a scalar quantity, the nonequilibrium

entropy. In this thesis, there are 6 limiters are developed and tested in 1D ather-

mal shock tubes in uniformed discretized space lattice sites. Among these limiters,

two new nonequilibrium limiters are constructed. All the median entropy limiters

are tested with different stencils, which also have an effect on removing spurious

oscillations. Apart from the test on a three-velocity set, we use five-velocity sets

for the applications of nonequilibrium entropy limiters of LBM. The five-velocity

sets are {−3,−1, 0, 1, 3}, {−5,−2, 0, 2, 5} and {−7,−3, 0, 3, 7}. The performance



of LBGK without limiters provides a frame of reference for comparison with the

performance of LBGK which uses the nonequilibrium entropy limiters. The com-

putations of the LBGK on different velocity sets have shown that the nonequilib-

rium entropy limiters are able to efficiently remove spurious oscillations for both

post-shock and shock regions for high Reynolds number. Among the suggested

limiters, we recommend the median nonequilibrium entropy limiter.
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Chapter 1

Introduction

1.1 Brief History of Lattice Boltzmann Methods

Lattice Boltzmann Method (LBM) is a discrete velocity method which has been

well developed in the last decade as an alternative approach to simulate hydrody-

namic systems ( [26], [29], [44], [47]). For each velocity vi, a single-particle distri-

bution function fi is involved. Lattice Boltzmann methods include two repeating

procedures propagation and collision. There are two well known approaches to

obtaining lattice Boltzmann methods. One approach to derive this method comes

originally from Lattice Gas Automata (LGA), and another approach is from the

over-relaxation discretization of Boltzmann’s kinetic transport equation.

Lattice gas automata ( [24], [25]) appear as an alternative approach for study-

ing complex physical systems. Lattice Boltzmann methods can be derived from

lattice gas automata. The concept of continuum is not used in LGA and LBM,

and the phase-space and time are discretized. The number of velocities are finite

and usually take small numbers for a velocity set. Instead of using the macro-

scopic approach for some of the traditional numerical methods, LGA and LBM

1



use kinetic concepts to deal with physical systems.

The essence of kinetic theory is to make a connection between the microscopic

and macroscopic dynamics, but does not treat macroscopic dynamics directly.

This means the macroscopic equations are derived from microscopic equations,

but at the same time ignoring many fine details of the true microscopic dynam-

ics physics. The hydrodynamic equations can be obtained from the distribution

functions.

In LBM, the advection (also called propagation, or free flight) equation is

always the same, but the collision operator can have many different forms. Among

these collision operators, the Bhatnager-Gross-Krook (BGK) operator [31] is a

simplified operator, where collisions are interpreted as a single time relaxation to

local equilibria. When the Bhatnager-Gross-Krook operator is applied in LBM, we

obtain the well known LBGK method. LBGK is linear in the advection procedure,

and is locally non-linear in the collision procedure.

1.2 The Stability Problem and the Construction

of Schemes

LBGK encounters the classical stability and accuracy problems. When LBGK is

applied in high Reynolds numbers, even with a sufficiently small relaxation time,

it suffers numerical instabilities and lack of accuracy.

The explicit manifestations of these instabilities are spurious oscillations and

local blow ups. There are a variety of reasons for the causes of instabilities. Posi-

tivity loss and large deviations are two of the reasons [42]. Positivity loss happens

when the condition of positive populations or probabilities is not fulfilled. Large

derivations happen when the distribution f is far from local equilibrium. When

2



hydrodynamic gradients not small and low, linear stability analysis is satisfactory,

but when hydrodynamic gradients are sharp and high, the nonlinear stability anal-

ysis is needed. For other related lattice Boltzmann methods research approaches,

please see ( [53], [59], [60], [61], [66], [69], [71], [72], [73]).

The concept of bringing entropy to LBM has improved the stability and accu-

racy of LBGK. The lattice entropic Bhatnager-Gross-Krook Boltzmann equation

is called ELBM, which uses the H-theorem ( [43], [47]). However ELBM can not

erase the instabilities entirely.

In the 1970s, Boris and Book (see [32], [33], [34]) introduced flux-corrected

transport (FCT), which is also called flux limiter, to improve the quality of numer-

ical convection algorithms. There are a lot of modern monotonicity-preserving and

non-oscillatory fluid transport schemes which can originally trace back to Boris

and Book’s contributions.

The construction of nonequilibrium entropy limiters [44] is partially based on

the concepts of flux limiter. The performance of nonequilibrium entropy limiters

for lattice Boltzmann methods has similar effects as flux limiters do for finite dif-

ference, finite volumes and finite elements. The essence of the construction of

nonequilibrium entropy limiters is to control a scalar quantity, the nonequilib-

rium entropy. The nonequilibrium entropy limiters are Ehrenfests’ regularization,

smooth limiter 1, smooth limiter 2, median and mean entropy limiters. The max-

imum median entropy limiter and the general median entropy limiter are newly

constructed, but the general median entropy limiter does not have effective perfor-

mance for front shock regions. All the median entropy limiters can have different

effectively performance according to the the choices of stencils. These limiters are

tested on 1D athermal shock tube, with three-velocity and five-velocity sets.
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1.3 Thesis Structure

Chapter one briefly discusses the history of lattice Boltzmann methods, the in-

stability problem that we face for LBM, and the concepts for the construction of

nonequilibrium entropy limiters.

Chapter two gives the fundamental concepts and background of fluid dynamics

and some important parameters which are closely associated with lattice Boltz-

mann method. Euler equations and Navier-stokes equations in one dimension,

Mach number, Reynolds number and Knudsen number are given here.

Chapter three discusses the history and derivations of lattice Boltzmann method.

The simplified collision operator we will use for lattice Boltzmann method is the

Bhatnagar-Gross-Krook collision operator.

In Chapter four, the background and history of entropy is elaborated in de-

tail. The interpretations of entropy both in a thermodynamics approach and

in a statistical approach are stated. The two well known entropy H-functions,

Boltzmann-Gibbs-Shannon entropy H-function, and the Kullback and Leibler en-

tropy function are introduced here. The Kullback entropy is applied here in the

lattice Boltzmann method.

In Chapter five, the history of flux-corrected transport is displayed, and the

history of median filter, mean filter and conservative filter in image processing are

given.

In Chapter six, the basic concepts for the construction of nonequilibrium en-

tropy limiters are explained in details. The Positivity rule provides a way to keep

the distribution positive. Ehrenfests’ regularization offers a local-wise correction

for LBGK methods. The smooth limiters and median entropy limiters are ensem-

ble dependent limiters which are based on filtering the nonequilibrium entropy.

The three-velocity set of LBGK is tested on shock tube with the comparison of

4



LBGK without limiters.

Chapter seven illustrates the numerical computations and performance which

the nonequilibrium entropy limiters provide for LBGK methods, and the per-

formance of LBGK without limiters as the frame of reference. In this chapter, 3

five-velocity sets are tested on shock tube. The calculations for the local equilibria

for these velocity sets are non-entropic with the application of Kullback entropy.

Chapter eight concludes the analysis of nonequilibrium entropy limiters for

lattice Boltzmann methods. Some future work about the nonequilibrium entropy

limiters and their applications will be discussed.
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Chapter 2

Equations of Fluid and Gas

Automata

2.1 Some Basic Concepts

2.1.1 The Macroscopic and Microscopic Approaches

There are two different approaches for solving the problems involved in fluids,

which are the continuum (macroscopic) approach and the molecular (microscopic)

approach [15]. For the microscopic approach, fluids are defined in the form of

particles, i.e. molecules or atoms. A fluid is described as a collection of discrete

particles being in random motion and elastic collisions between particles and with

the walls of its container. The conservation of mass, momentum and energy are

employed for each particle.

In the macroscopic approach, instead of using particles, an infinitely divisible

substance, the continuum, is used. The macroscopic approach in thermodynam-

ics, is also known as classic thermodynamics. In the macroscopic approach, the

concept of continuum has to be assumed, on the other hand, in the microscopic
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approach, the concept of continuum is not valid. The detailed molecular and

atomic nature of matter is taken into account in microscopic thermodynamics, on

the other hand, the detailed molecular and atomic structures of the substance are

neglected in macroscopic thermodynamics.

The equation of continuity describes the conservation of mass, the equation

of motion (the momentum equation) describes the conservation of momentum,

the equation of energy which is the first law of thermodynamics describes the

conservation of energy in the fluid.

2.1.2 Kinetic Theory

Kinetic theory, also called dynamic theory, states that the laws of mechanics can

be implemented to the individual molecules of a system [14]. Further more it sates

that from these laws which are possible to derive other related properties of the

equation of state, such as expressions for the pressure of a gas, its internal energy

and its specific heat capacity. In other words, microscopic thermodynamics anal-

ysis can be done through the analysis of the behavior of gas molecules which is

based on classical mechanics. The laws of mechanics are accepted as axiomatic

in this analysis. From the detailed microscopic analysis, certain special macro-

scopic thermodynamic phenomena can be derived. As previously mentioned, the

equation of state of a system describes the relationship between its measurable

macroscopic properties. An ideal gas has the simplest equation of state, and to

understand how a molecular model can be used to derive the equation of state of

an ideal gas by using kinetic theory, the following assumptions (see [12], [13])

are necessary:

1. There is a very large number of molecules for any macroscopic volume of a

gas. For example, at standard conditions, there are around 3×1025 molecules

7



in a cubic meter.

2. The second assumption is that molecules are in continuous motion, and the

distances between molecules are much larger than the length of their own

diameters.

3. When molecules collide with each other, there are forces acting on them.

Apart from these forces from collision, no other external forces would have

effect on molecules, therefore, they move in straight lines. Collisions taking

place between molecules and with the walls which are assumed as perfectly

geometrically smooth, are treated as elastic.

4. In an isolated container, the molecules are distributed uniformly with no

external forces acting upon it. Similarly, the directions of molecular veloc-

ities are distributed uniformly. So if the total number of molecules is N in

an isolated container where the volume is V , then the average number of

molecules per unit volume, say n, is:

n = N/V.

2.1.3 Statistical Thermodynamics

Statistical thermodynamics has close relationship with thermodynamics and ki-

netic theory. It was first developed in the last century, mainly by Boltzmann

and Gibbs. Statistical thermodynamics, also called statistical mechanics, does

not consider the detailed molecules as individuals, and uses probability to de-

scribe the very large number of molecules. Since molecules are numerous, even if

any information about specific molecules is neglected, the average properties can

be obtained. Statistical thermodynamics provides a definition of the concept of

8



entropy, and an explanation of the principle of the increase of entropy.

2.2 Euler Equations

Euler equations [3] are a system of nonlinear conservative equations which govern

inviscid flow. They are time dependent equations. They named after Leonard

Euler(1757).

A set of variables to describe a flow can be expressed either as primitive vari-

ables (also called physical variables), or conserved variables. The primitive vari-

ables are described as density ρ(x, t), pressure P (x, t) and velocity u(x, t). The

conserved variables are described as density ρ, momentum ρu and the total energy

per unit volume E = 1
2
ρu2 + ρe, where e is the internal energy.

Euler equations consist of the equations of the conservation of mass, momen-

tum and energy. The one space dimension (1D) Euler equations are:

∂ρ

∂t
+

∂(ρu)

∂x
= 0,

∂(ρu)

∂t
+

∂(ρu2 + P )

∂x
= 0,

∂E

∂t
+

∂(uP + uE)

∂x
= 0.

(2.1)

The governing partial differential equations (2.1) for the motion of a fluid is

incomplete as a full description of the associated physical process. The problem is

that there are more unknown variables than the equations given above, so closure

conditions are needed. The key to obtaining closure conditions is to introduce

thermodynamics which gives new physical variables and offers relations between

variables. In equation (2.1), a new variable e is involved, the specific internal

energy, which can be defined in terms of density and pressure. Therefore an extra

relation is generated as a closure condition for an ideal gas equation of state:

9



P = ρ(γ − 1)e− γP 0. (2.2)

The internal energy is e = E − 1
2
ρu2, where γ is the adiabatic exponent set as

γ > 1 and P 0 is a substance specific pressure adjustment term between liquid

molecules (for an ideal gas, P 0 = 0).

The two space dimension (2D) compressible Euler equations are:

∂ρ

∂t
+

∂(ρu1)

∂x1

+
∂(ρu2)

∂x2

= 0,

∂(ρu1)

∂t
+

∂(ρu2
1 + P )

∂x1

+
∂(ρu1u2)

∂x2

= 0,

∂(ρu2)

∂t
+

∂(ρu2
2 + P )

∂x2

+
∂(ρu1u2)

∂x1

= 0,

∂E

∂t
+

∂(u1(P + E))

∂x1

+
∂(u2(P + E))

∂x2

= 0,

(2.3)

where the velocity is ū = (u1, u2), the internal energy is e = E − 1
2
ρ(u2

1 + u2
2) and

the rest are the same defined in 1D Euler equations.

A much simple equation of state for Euler equations is the isothermal state,

rather than the ideal gas state. The isothermal 1D Euler equations are:

∂ρ

∂t
+

∂(ρu)

∂x
= 0,

∂(ρu)

∂t
+

∂(ρu2 + P )

∂x
= 0,

(2.4)

where the pressure is P = ρc2.
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2.3 Navier-Stokes Equations

Navier-Stokes equations ( [3], [62], [63]) are much more complicated than Euler

equations. Basically the heat conduction and viscous terms are added to the Euler

equations to form the Navier-Stokes equations.

Navier-Stokes equations are a set of nonlinear partial differential equations

which used to describe the motion of a Newtonian fluid. The fluid could be liquid

or gas. Here we concentrate on gas as a compressible fluid. The Navier-Stokes

equations were firstly started by Navier(1827). It was then further developed

and summarised with the methods and hypotheses of Naviers, Poission(1831) and

Sint-Venant(1843). The one space dimension compressible viscous Navier-Stokes

equations are:

∂ρ

∂t
+

∂(ρu)

∂x
= 0,

∂(ρu)

∂t
+

∂(ρu2 + P )

∂x
= (λ + 2µ)

∂2u

∂x2
,

∂E

∂t
+

∂(uP + uE)

∂x
=

1

2
(λ + 2µ)

∂2(u2)

∂x2
+ k

(∂2θ)

∂x2
,

(2.5)

where the pressure P = (γ − 1)e is determined by an ideal polytropic equation

of state, the internal energy is e = E − 1
2
ρ(u2), and the absolute temperature is

θ = θ(x, t) > 0, such that Cvρθ = e. An polytropic gas is also called calorically

ideal gas where γ is a constant, while for a thermally ideal gas γ is a function

of temperature, i.e. γ = γ(T ). The viscous terms depend on the constant Lame

coefficients of the viscosity λ > 0 and µ > 0, and the heat fluxes depend on the

constant conductivity k > 0. Here Cv > 0 is the specific heat at constant volume,

and is set as Cv = 1 for simplicity as k → k/Cv.

When the right hand side of all the Navier-Stokes equations (2.5) equal to 0, i.e.

the coefficients of the viscous terms λ and µ tend to be zero, and the coefficient of
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heat conductivity term k tends to be zero, the 1D Navier-Stokes equations become

the 1D Euler equations.

The Navier-Stokes equations and Euler equations are time dependent and con-

sist of a continuity equation for conservation of mass, conservation of momentum

and conservation of Energy. The independent variables of the NS and Euler equa-

tions are spatial coordinates and the time t, and the dependent variables are the

density, the pressure, the velocity and the temperature.

2.4 The classifications of Compressible and In-

compressible Fluids

In general, it is normal to classify the flow as compressible or incompressible

based on the fluid which is flowing. Compressible flow is defined as variable

density flow, while incompressible flow has constant density throughout. In a lot

of practical problems, if the density changes 5 percent or more, the flow is treated

as a compressible flow. Hydrodynamics represents the behavior of incompressible

fluids, while gas dynamics represents the behavior of compressible fluids.

It is worth mentioning that the modern approach of compressible flow has

gained attention since 1960. The difference between the modern approach and the

classical approach of compressible flow is that apart from the classical analysis,

the modern approach is supported also by many computational techniques with

the treatment of noncalorically perfect gas(see [21], [23]).

Compressibility is not associated with the fluid’s ability to change shape, such

as that of pure shear. In order to elaborate more details about compressibility of

a fluid, here we introduce a coefficient of compressibility β which is defined as:
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β =
Relative Change In V olume

Change InPressure

= lim
∆p→0

(− ∆v

v∆p
) = −1

v

dv

dp
.

(2.6)

Since v = 1
ρ
, so the coefficient β becomes

β = −1

ρ

dρ

dp
=

1

ψ
, (2.7)

where ψ is the Bulk Modulus of Elasticity which is defined as

ψ =
Change In Pressure

Relative Change In V olume

= lim
∆p→0

(−v∆p

∆v
) = −v

dp

dv
,

(2.8)

There are several dimensionless parameters that are used to classify the flow

of a fluid. They are called Mach number, Reynolds number and Knudsen number.

2.4.1 Mach Number

Mach number is a markedly important parameter in the analysis of compressible

flows. Mach number is a dimensionless parameter named after the Austrian physi-

cist Ernst Mach. The Mach number at a point is defined as the ratio of the local

velocity of the flow to the local velocity of the sound in the medium:

M =
V

a
, (2.9)

where V is the local velocity and a is the local speed of sound. When the temper-

ature increases, the speed of sound increases, thus when the Mach number equals
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to 1 the speed of the fluid depends on the fluid temperature around it. For a

perfect gas P = ρRT , the speed of sound is:

a =
√

γRT , (2.10)

where γ is the adiabatic exponent, R is the gas constant, and T is the temperature.

The steady compressible flow can be classified as incompressible, subsonic,

sonic, transonic, supersonic and hypersonic different flow regimes, based on the

magnitude of the Mach number(see [2]):

• incompressible: M < 0.3,

• Subsonic: 0.3 < M < 1,

• Sonic: M = 1,

• Transonic: 0.8 < M < 1.2,

• Supersonic: 1.2 < M < 5,

• hypersonic: M > 5.

2.4.2 Reynolds Number

Reynolds number is a dimensionless parameter defined as the ratio of the inertial

force to the viscous force. In 1883, Osborne Reynolds firstly introduced this num-

ber to fluid dynamics as one of the principle hydrodynamic properties to classify

the stability problems in the transition from laminar to turbulent flow in pipes. In

1963, Oswatitsch showed that the Reynolds number can be also interpreted as the

ratio of the momentum flux to the shearing stress, which indicates that the inertial
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force is not necessarily the determinative term. Here we use the first definition of

Osborne Reynolds:

R =
InertialForce

V iscousForce
. (2.11)

The inertial force and the viscous force can be written respectively as:

Mass(= ρL3) · acceleration [≈ u0/t = u0/(L/u0) = u2
0/L]. (2.12)

TangentialStress(= µ
u0

L
) · surface (= L2), (2.13)

where L and u0 are the characteristic length and characteristic velocity respec-

tively, µ is the absolute dynamics fluid viscosity. Substitute the equations of

inertial force and viscous force into equation (2.11):

R =
ρu0L

µ
=

u0L

ν
, (2.14)

where ν is the kinematic viscosity term which is ν = µ
ρ
.

Therefore, the Reynolds number evaluates the relative importance of the fluid’s

inertia and viscosity. A high Reynolds number is produced if the viscous force is

smaller than the inertial force, which is caused by the small value of ν or the big

value of u0. High values of R are related to an unstable flow, while low values of

R are related to a stable flow. The stable or unstable flow is related to the local

speed of the flow and the thermodynamic properties of the fluid change rate. For

high Reynolds number, it is possible that the speed of flow is very high, or perhaps

it is a nearly inviscid low-speed flow. When R is usually numerically very large or

tends to infinite, the following flows are defined: turbulent flows, inviscid flows,

potential flows and flows far removed from boundaries. When R is numerically

very small, the flows are normally defined as: creeping flows, laminar flows, Stokes
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flow and lubrication theory, bubble flows, and flows very close to a boundary. So

Reynolds number is mostly used as a tool to describe the speed and/or viscous

properties of a flow field.

2.4.3 Knudsen Number

Knudsen number is a crucial measure for molecular-structure effects, which is the

ratio of the mean free path of a molecule λ to a characteristic dimension of the

flow geometry L. This is:

Kn =
λ

L
. (2.15)

The mean free path of a molecule is the average distance traveled by a molecule

between collisions which occur by the random motion of the molecules. The char-

acteristic dimension L can be easily obtained, for example, the radius of a body in

fluid, or the length of a cubical box edge, or the diameter of a long pipe, etc. Since

both λ and L are the same units of length, the ratio Kn is dimensionless. When

λ is much less than L, i.e. Kn << 1, molecule-molecule collisions determine gas

behavior and such that it forms as a fluid in a continuum or viscous state. Here

continuum means continuum media. On the other hand, if λ >> L, i.e. Kn >> 1,

then it turns to be molecule-surface collisions determine gas behavior, such that it

is not a fluid-like state, called molecular state. Therefore, these states, or regimes

can be categorized as follows [2]:

• Continuum: Kn < 0.01,

• Molecular: Kn > 1,

• Transitional: 0.01 < Kn < 1.
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In reality, there is no sharp change between continuum and molecular states.

Knudsen number is also used to separate the line between macroscopic and mi-

croscopic models:

• macroscopic: Kn < 1,

• microscopic: Kn > 1.

It is vital to mention that the very essential condition for the continuum assump-

tion which is required in the Navier-Stokes equations is that the mean free path of

the molecules is smaller than the characteristic dimension of the flow domain. If

this condition is not valid, then the fluid is not under local thermodynamic equi-

librium and Newton’s law of viscosity cannot be applied. For example, beyond

Kn = 0.1, the continuum assumption of the Navier-Stokes equations will start to

fall down and alternative approaches have to be used.
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Chapter 3

Lattice Boltzmann Method

There are two approaches to obtain lattice Boltzmann methods. One approach to

derive this method comes originally from Lattice Gas Automata (LGA), and an-

other approach is from the Boltzmann’s kinetic transport equation. One approach

for the lattice Boltzmann simulation of hydrodynamics is [79]:

Boltzmann → LBE → Navier − Stokes,

and another approach for the lattice Boltzmann simulation of hydrodynamics is:

Newton → LatticeGas → LBE → Navier − Stokes.

In this section these derivations are presented approximately as they developed

historically.
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3.1 Lattice Gas Cellular Automata

In general, to solve the problem of physical systems, the first step would be to

derive the partial differential equations for the system and then solve it analytically

or numerically. However most the of physical systems we are dealing with are

very complicated, and most of their analytical solutions are difficult to obtain.

Thus numerical solutions are an alternative way of solving complicated physical

problems.

3.1.1 Cellular Automata

In the late 1940s, John von Neumann introduced the concept of cellular automata

approach (also called CA), and since then this approach have been used in many

different areas to model physical systems. The concept of continuum has been left

behind in this approach.

Cellular automata are defined as an idealization of a physical system with

discrete time and space, and only a finite set of values are taken for the physical

quantities [24]. Cellular automata rules can be thought as another formation

of microscopic reality which has the predicted macroscopic behavior. Cellular

automata could be considered as the extremely simplified version of molecular

dynamics(MD).

Cellular automata also have several disadvantages. The simulation of cellular

automata is very noisy, since it is based on Boolean quantities. Another problem

is that this method does not have very much flexibility to alter parameters in order

to simulate more complicated physical systems.
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3.1.2 Lattice Gas Cellular Automata

Lattice Gas Cellular Automata(LGCA) is a special class of cellular automata,

which is one of the simplest models with discrete velocity to simulate fluid motion

[25]. The remarkable difference between CA and LGCA is the update being di-

vided into two parts which are propagation (also called streaming) and collision.

Propagating describes each particle propagates to the nearest node according to

the direction of its velocity. The collision procedure of LGCA is very similar with

the update rule for CA. Collision refers to particles meeting in a node and how they

interact and change their velocity directions based on scattering rules. After the

collision, the state of each site propagates to its neighbour site. This separation,

i.e. propagation and collision procedures, ensures propagation being executed and

maintains the update rule simple.

In 1986, Frisch, Hasslacher and Pomeau contructed a model with fictitious

particles, which each particle has the same mass [28]. The key point is that the

particles moving with the same speed with 6 possible velocities. Then the particles

collide when they meet, provided that the number of particles and momentum are

conserved. The dynamic rule is described as only if one particle can enter the

same site at the same time with the same velocity. Particles getting in the same

site at the same time interact with each other and have new local distribution of

particle velocities. This model is called FHP model. The FHP model is sufficient

to obtain isotropic hydrodynamics, and therefore lattice gas cellular automata

were brought as a model of the Navier-Stokes equations. This development has

laid out the theoretical foundations of the lattice gas cellular automata, and the

later development of the lattice Boltzmann methods.

The Lattice Gas is constructed as a simplified, fictitious molecular dynamic

systems in which space, time and the particle velocities are all discrete (Chen and
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Doolen 1998) [27]. From this point of view, the lattice gas method is normally

regarded as lattice gas cellular automata. The very important quality of the

lattice gas automata which is different from a cellular automata is that mass and

momentum are conserved. Therefore this model is more appropriate for simulating

real physical problems.

Different microscopic interactions arrive to the same form of macroscopic equa-

tions [25]. This is how the development of LGCA started. The microscopic in-

teraction is rigorously local for the particles assigned at nodes. Particles update

momentum with the vital condition that the conservation of mass and momentum

are the sum up over each node. A particle propagates to its next neighbor node

along its related link after each collision. The microdynamics can be viewed as a

repetition of collision and propagation. The values of mass and momentum den-

sity for macroscopic state are obtained by coarse graining (the mean values over

large spatial regions).

Lattice-gas cellular automata are normally based on a regular lattice with

particles staying on the nodes [27]. A set of Boolean variables ni(x, t)(i = 1, ..., M)

represent the particle occupation, and M is the number of directions of the particle

velocity at each node:

ni(x + vi, t + 1) = ni(x, t) + Ωi(n(x, t)), (3.1)

where vi are the local particle velocities, and Ωi is the collision operator which is a

function of all particles. At each time step, the particles experiment two sequential

sub-steps, propagation and collision.

However, LGCA faces some difficulties, which are: lack of Galilean invariance,

statistical noise, spurious invariants [29].
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For the problem of lack of Galilean invariance, the main issue is that the

continuum family of equilibria can not be parameterized with the flow speed ~u

for a finite number of speeds. This led to the consequence that only producing a

perturbative expansion can interpret hydrodynamic equilibria, but this expansion

does not correspond to the form of the Navier-Stokes inertial and pressure tensors.

LGCA is a particle method, so it can not avoid to produce a fair amount

of statistical fluctuations (noise). The root cause for this is LGCA is a N-body

Boolean system and it generates a lot of unnecessary many-body details. However,

on another side of this, the statistical noise intrinsic to LGCA dynamics is similar

to true noise in actual thermodynamic systems.

For continuum fluids in a isolated system environment, mass, momentum and

energy are conservative. For discrete fluids, some additional conserved quantities

could be produced from the lattice discreteness. These are pure artifacts, and are

so called spurious invariants.

For high Reynolds flow simulations, LGCA can not reach a good approxi-

mation, so in the early 90s, LGCA has been leveled off. Therefore, the lattice

Boltzmann method was developed exactly according to the initial weaknesses of

LGCA, and nowadays lattice Boltzmann method can be studied independently

without the reference from LGCA.

3.2 From LGCA to Lattice Boltzmann Method

The lattice Boltzmann mothod was firstly developed from LGCA. It uses a single

particle distribution function with real variables. The single particle distribution

function interacts locally and propagate after collision to the next neighbor node.

The lattice Boltzmann method neglects individual particle motion and particle-
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particle correlations in the kinetic equations. Lattice Boltzmann equation states

that the distribution function does not change the particles trajectory between

collisions. However, it emphasizes the changes as a result of an ‘instantaneous’

interaction between colliding particles.

The advection transformation, also called free flight, streaming, originally de-

rives from Newton’s second law. The probability density f(x, t) on phase space

expresses the equation of incompressible flow, with discrete velocities. The free

flight transformation is:

∂fi

∂t
+ vi · Oxfi = 0. (3.2)

If the initial condition of density is given at time t = 0, then the analytical

solution is amazingly simple: fi(x,v, t) = fi(x− vit, v, 0).

In lattice Boltzmann equation, the free flight equation is always the same, and

this dynamics should conserve entropy.

In comparison with this analytical solution, the numerical advection equation

is much more difficult to solve, which is in fact a matter of best choice among

vast approaches of approximation for different numerical applications. The main

problem arises from the process of discretization, which is the change of the advec-

tion equation from continuous to discrete state that only leads the result reaching

to the best approximation. Therefore, reducing the impact of discretization for

solving the advection equation by the lowest computational cost is crucial for the

modeling of fluid flow.

The further developments of Lattice Boltzmann method are the simplification

of the collision operator and the selection of different distribution functions. This

development gives much more flexibility to the application of Lattice Boltzmann

method.
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3.2.1 Local Equilibrium and Global Equilibrium

For global equilibrium the density is constant, while for local equilibrium it varies

in space and time. The crucial property for the choice of local equilibrium is that

it has to satisfy the consistency condition: the summation of the local equilibriums

is equivalent to the density ρ [81].

The key issue for the derivation from the Boltzmann equation to hydrodynam-

ics is local equilibrium, which is interpreted as a local distribution function f e. At

the local equilibrium state, the gains and losses are equivalent. Thus the collision

term becomes:

Ω(f e, f e) = 0,

where the superscript ‘e’ represents the local distribution function f is in local

equilibrium. This leads to the ‘detailed balance’ condition:

f
′
1f

′
2 = f1f2.

This detailed balance condition could be interpreted as a direct/inverse collision is

balanced by an inverse/direct partner. Take the logarithms of the above equation:

ln f
′
1 + ln f

′
2 = ln f1 + ln f2.

This property indicates that the quantity ln f is an additive collision invariant. At

thermodynamic equilibrium, ln f has to be a function of dynamic collision invari-

ants I(v) ≡ [1,mv,mv2/2], namely number, momentum and energy conservation.

ln f = A + Bava +
1

2
Cv2, (3.3)
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where A, Ba, C are Lagrangian multipliers bearing the functional dependence on

ρ, ρua, E which are density, momentum and energy, and they are calculated by

the conservation of these quantities:

m

∫
fdv = ρ,

m

∫
fvdv = ρua, a = 1, 2, 3,

m

∫
f

v2

2
dv = ρe,

where ua is the macroscopic flow speed, and ρe is the energy density.

3.2.2 Nonlinear Lattice Boltzmann Equation

As before mentioned, the earliest Lattice Boltzmann equation (LBE) was devel-

oped from LGCA, which was very much related to the weaknesses of LGCA,

particularly statistical noise. But fortunately, not long after it was shown that

the lattice Boltzmann equation can cope with many other problems that LGCA

suffers. Thus lattice Boltzmann equation has taken the advantages of LGCA, and

discarded the anomalies plaguing [29].

In 1988, G.McNamara and G.Zanetti firstly introduced LBE, with the initial

motivation to deal with the statistical noise problem in LGCA [39]. The funda-

mental idea is straightforward, which is to replace the Boolean occupation numbers

ni with the associated ensemble-averaged populations:

fi = 〈ni〉 ,

where 〈 〉 means the ensemble averaging. The concept has been changed from

tracking single Boolean molecules to the time history of a collective population
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which expresses a ‘cloud’ of microscopic states.

Mathematically, the Boolean occupation numbers can be separated into two

parts, the average part and the fluctuating part:

ni = fi + gi,

where the average of fluctuating gi is zero, i.e. 〈gi〉 = 0. Thus,

∆ifi = Ωi(f) + Gi,

where Ωi is the collision operator, and Gi is the sum of all contributions from

interparticle correlations.

For the purpose of simplicity, the earliest Lattice Boltzmann Equation (LBE)

assumed that there is no correlations between particles for a collision, i.e. Gi =

0. Therefore it left a nonlinear, finite difference equation for the one particle

distribution fi:

∆ifi = Ωi(f1, .., fm),

where m is the m-th order of polynomial of f . This nonlinear LBE is a transcrip-

tion of LGCA microdynamics accompanied with the replacement ni → fi. The

distribution fi as defined before, is the averaged, smooth quantity, and as a con-

sequence, the effect of averaging populations is that the statistical noise has been

removed away. However, on the physical side, the physics of particle correlations

(‘non-Boltzmann effects’) is lost. Thus, some of the fundamental concerns, such

as the breakdown of molecular chaos, long time tails, and related points are not

in any consideration.
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3.2.3 The Quasilinear Lattice Boltzmann Equation

The crucial development in the Chapman-Enskog treatment which leads from

kinetic theory to hydrodynamics, is the low Knudsen, small mean free path as-

sumption in discrete form [29]:

fi = f e
i + fne

i . (3.4)

The non-equilibrium component fne
i corresponding to the equilibrium fi is

calculated as the order of O(k), where k is the Knudsen number. In the late 80’s,

nearly at the same time, Higuera and Jimenez expanded the equation with a low

Mach number expansion into the lattice Chapman-Enskog treatment as follows

[29]:

fi = f e0
i + f e1

i + f e2
i + fne

i + O(kMa2), (3.5)

where the superscripts 0, 1, 2 stand for the order of the Mach number expansion.

The collision operator around global equilibria f e0
i can be expanded as:

Ωi(f) = Ω0
i + Ω0

ijφj +
1

2
Ω0

ijkφjφk, (3.6)

where

φi = fi − f e0
i ,

Ωij = ∂Ωi/∂fj,

and

Ωijk = ∂2Ωi/∂fj∂fk.

This superscript 0 means it is defined at fi = f e0
i . The collision operator at global
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equilibria is

Ω0
i = 0.

And without the terms higher than O(kMa2),

Ωi(f) = Ω0
ijf

1
j +

1

2
Ω0

ijkf
1
j f 1

k + Ω0
ijf

ne
j ,

while at a local equilibrium fi = f e
i , i.e. fne

i = 0, the above equation left as:

Ω0
ijf

1
j +

1

2
Ω0

ijkf
1
j f 1

k = 0.

Therefore,

Ωi = Ω0
ijf

ne
j = Ω0

ij(fj − f e
j ),

Eventually, this leads to the quasilinear LBE introduced by Higuera and Jimenez,

∆ifi = Aij(fj − f e
j ),

where Aij ≡ Ω0
ij. Although this equation seems as a linear equation, it is a

nonlinear equation which represents the nonlinear Navier-Stokes dynamics. The

quadratic nonlinearity is embedded in the local equilibrium term f e
i .

The LBE developed by McNamara and Zanetti, and Higuera and Jimenez have

reduced two defects of LGCA: statistical noise and the complexity of the collision

rule.

3.2.4 Lattice Boltzmann Methods

To solve the Boltzmann equation analytically and numerically, the main problem

is how to manage the nonlinear integral collision operator. Because of the realistic
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interactions between particles, the integral collision operator expressed in Boltz-

mann equation is very complicated. At the hydrodynamic level which includes

turbulence, the realistic form of the collision operator is not really necessary to

keep all the details, and most details contained in operator Ω play no role. In 1954,

Bhatnagar, Gross and Krook introduced in ( [31], [59]), a much simpler collision

operator. In this collision operator, some mathematically simple terms are cho-

sen, where these terms consistent with the conservation laws of mass, momentum

and energy, and meanwhile, keep certain essential qualities of collisions, such as

persistence of velocity. This simpler form of the collision operator is suitable from

low density to high density, even the intermediate region is included. In addition,

this form is also applicable to physically more complicated situations.

Here we give some details about how the Boltzmann equation collision oper-

ator changed into the simpler Bhatnagar-Gross-Krook(BGK) relaxation collision

operator [30]. In the Boltzmann equation there are two parts for each collision

term. One part describes particles absorbed from a definite velocity range by

collisions, and another part describes the particles emitted into that range after

the collisions. For BGK operator, the absorption term is nearly the same as in

Boltzmann equation, but the emission term is substituted by a term representing

a Maxwellian distribution of the emitted particles, where the particles meet the

condition that density, mass velocity, and temperature fulfill the conservation laws

of mass, momentum and energy. The BGK collision operator is:

Ω[f ] = −1

τ
(f − f e), (3.7)

where f e is a local equilibrium associated with the local conserved quantities

density ρ, speed u and temperature T , while τ is a time scale which relates collision
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relaxation to the local equilibrium. In principle, τ is a complicated functional of

the distribution function f , but here τ related to the BGK equation is to consider

the simplification which τ is a constant value for this relaxation scale.

This simplified BGK collision operator looks like a linear operator, since the

explicit particle-particle quadratic coupling is being removed in the process. But

in reality it is not the case as its appearing, and the truth is that in BGK colli-

sion operator the local equilibrium depends exponentially on the fluid speed and

temperature, which both are linear functions of the particle distribution. This

property of hidden nonlinearity is very important for obtaining analytical solu-

tions and has a very strong effect on the lattice Boltzmann equation.

The following equation is the Bhatnagar-Gross-Krook model Boltzmann equa-

tions in continuum kinetic theory, and it is the famous LBGK for a short name:

∂f

∂t
+ v

∂f

∂x
= −1

τ
[f − f e]. (3.8)

The equilibrium f e
i is the local equilibrium distribution with a Maxwellian form:

f e
i =

ρ

(2πvT )d/2
exp[−(v − u)2

2(vT )2
], (3.9)

where d is the spatial dimension. The thermal speed vT with the fluid temperature

T is:

vT =

√
KBT

m
.

From the above equation, we can see that the local equilibrium is entirely domi-

nated by the local hydrodynamic quantities, ρ, T , and u.

The propagating operator is linear, and the collision operator contains nonlin-

earity. In the collision operator, the local Maxwellian f e gives nonlinearity and
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that is completely local in configuration space. The conservative laws are embed-

ded on the local equilibrium, and the local equilibria has to ensure that it takes

the same density and momentum as the actual distribution function:

∑
i

f e
i =

∑
i

fi = ρ,

∑
i

f e
i cia =

∑
i

ficia = ρua.

(3.10)

Unlike the lattice Boltzmann equation only applies to low density situation,

LBGK has much wider areas for applications which opens up from low to high

density situation. LBGK has all the properties of hydrodynamics. LBGK also can

be applied to most complexities of velocity space, which includes multiphase and

complex boundary conditions, and does not have conflicts with the hydrodynamic

content of the theory.

Here we give some elaboration of the difference between LBGK and LBE. LBE

does not need the full equilibrium distribution, instead only the second-order term

in the Mach number expansion. Apart from this, LBE uses a constant, uniform

density ρ, not local value of ρ, therefore LBE bears weak density fluctuations in

the equilibria.

As given above LBGK is a single time relaxation scheme, and that is a very

valuable point comparing with other schemes. However, this simplification based

on the single time relaxation is also its disadvantage, which is all modes decay

at the same time rate ω−1. The consequence of this effect is that unphysical

short-wave oscillations may be generated. This unphysical short-wave needs to

be filtered out, and this leads to the fact that spatial resolution would be lost.

The generation of oscillations also depends on the initial and physical conditions.

Therefore numerical stability may be reduced because of the effect of oscillation.
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Numerical instabilities also may be generated when velocity gradients are large.

In addition, this single relaxation time indicates that mass, momentum and heat

transfer all occur at the same rate. Therefore, this condition only applies for ideal

gas. Another limitation for LBGK is that the Prandtl number must be fixed,

which is far from the real physics.

Despite the disadvantages mentioned above, the continuum limit of LBGK can

reproduce the Navier-Stokes equation and is a viable tool for numerical fluid dy-

namics. LBGK is not a fundamental equation, but is a useful model for numerical

dynamics. LBGK is much more simpler, elegant and efficient model than LBE

after all.

The discrete velocity Boltzmann equation is:

∂fi

∂t
+ vi

∂fi

∂x
= −1

τ
[fi − f e

i ]. (3.11)

This discretization of LBGK accepts a time step is chosen such that δt À τ .

For small τ , the Chapman-Enskog approximation can deliver the equation 3.11 to

the compressible Navier-Stokes equation with kinematic viscosity ν ∼ τc2
1, where

c1 is the thermal velocity. The relaxation time τ is proportional to the kinematic

viscosity ν for LBM.
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Chapter 4

Entropy

The concept of entropy firstly appeared in the second law of thermodynamics, as

one of the most important thermodynamics properties, and then it was introduced

in the development of statistical physics during the 19th century. These two

developments of entropy are rather symbiotically related, especially by the work

of Boltzmann.

4.1 Entropy in Thermodynamics

Entropy was firstly introduced by Clausius in 1867 as a mathematical quantity,

S . Entropy describes the heat transfer during a reversible process through the

function [20]:

dS =
δQ

T
, (4.1)

where T is the absolute temperature, and Q is the amount of the heat where the

exchange occurs. The entropy of a perfect gas is:

S = CV ln T + R ln V + constant, (4.2)
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where Cv is the specific heat capacity at constant volume, V is the volume and

R per mole of gas is a constant for all gases. The above equation (4.2), shows

that if the volume is constant, the entropy S increases as ln T goes up, and if the

temperature is constant, the entropy S increases as ln V increases.

Adiabatic processes are irreversible processes. In an adiabatic process, there is

no heat transfer between the system and the surroundings. In adiabatic processes,

entropy always increases.

For all irreversible adiabatic processes the change of entropy are always posi-

tive, so the following equation holds:

dS ≥ δq

T
. (4.3)

If there is no irreversible adiabatic process, then the total entropy change equals to

the change of entropy in the exchange of heat process. If the system is thermally

insulated such that δq = 0, and the volume is fixed, then we arrive to the very

important conclusion:

dS ≥ 0. (4.4)

In words, it means that “in any closed system whose volume and internal energy

are fixed, the entropy S tends to a maximum, and when this is achieved all change

ceases and the system is in equilibrium” [19].

4.2 The Statistical Approach

The statistical explanation of entropy is associated with the microscopic states

of a system. This idea was firstl introduced by Ludwig Boltzmann, and further
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explored by Maxwell (1831-1879). The statistical concept states that macroscopic

phenomena can be approached from microscopic dynamics, i.e. a macroscopic

state can be represented by many different microscopic states.

Here, microscopic state refers to configurations of molecular motion, i.e. a

state in which all the details about atoms and molecules are specified [20]. In

the microscopic point of view, to describe one gram of helium gas would require

around 1023 parameters, while in macroscopic terms, it only need 3 parameters.

However, it is not essential to express the velocity and the position of all the atoms

and molecules associated.

It is important to mention that the numbers of molecules with certain velocities

(or certain velocity ranges) do not change with time, if the gas is in equilibrium. In

the real physical world, the velocity of each molecule changes frequently before and

after each collision. But, as Boltzmann showed in some models, “these collisions

are such as to maintain the equilibrium distribution of velocities in the gas as a

whole” [19].

A macroscopic state can be defined from density, momentum, pressure, tem-

perature, energy and similar macroscopic quantities. Normally a huge number of

microscopic states correspond to a macroscopic state. These microstates are being

treated as indistinguishable states at the macrostates level. These microstates are

named as ‘realizations’ of the macrostates.

The justification of entropy equation was proved by Planck (1858-1947) as

follows. First, assume entropy S is:

S = f(W ). (4.5)

Here, f refers as a universal function of the argument W . Now let us take two
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isolated systems 1 and 2, with entropies S1 and S2, and the associated microstates

are W1, W2 respectively. Next these two systems combine into one composite

system. The total entropy becomes:

S12 = S1 + S2. (4.6)

And it is possible to combine the microstate of system 1 with any of the microstates

of system 2 to give a distinguishable microstate:

W12 = W1W2. (4.7)

Now combine the equations (4.5), (4.6) and (4.7), we arrive at the general

solution of this equation is:

f(W12) = f(W1W2) = f(W1) + f(W2). (4.8)

The general solution of this equation is:

S = f(W ) = k ln W, (4.9)

where k is a arbitrary constant.

Entropy also is interpreted in some other aspects by researchers, as disorder and

spread. When entropy is high, it is to be considered as great disorder, meanwhile

when entropy is low, the system is an ordered system. The explanation of entropy,

in the idea of spread by Guggenheim, said that for example, high entropy can be

interpreted as having the elements of an assembly spread over a big range of energy

levels.
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4.3 H-Function: Boltzmann-Gibbs-Shannon en-

tropy

4.3.1 The Gibbs and Boltzmann H-Functions

The concept of entropy H function is an important step for the development of

LBM (see [47], [48], [76]). The classical expressions for entropy were firstly

developed by Gibbs and Boltzmann [5]. Gibbs established the general theory

of equilibrium of complex media by using entropy maximum. After Boltzmann

proved his H-theorem in 1872, the expression for the H-function became well-

known:

H =

∫
f(x, v) ln f(x, v)dxdv,

where f(x, v) is a distribution density of particles in phase space, x is the coor-

dinate of a particle, and v is the velocity. The H-Function is a monotonically

decreasing function in time for an ideal gas.

Gibbs H-Function expression is based on the probability density in the full

phase space of the system:

HG =

∫
WN log WNdτ, (4.10)

where WN(x1, p1; x2, p2; ...; xN , pN ; t) is the probability density, p is the momentum

of a particle.

4.3.2 Shannon’s Information Theory

In 1928, R.V.L.Hartley developed the logarithmic measure of information H =

n log s initially for electronic communication in the paper [7]. Hartley eliminated
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all the psychological factors and their variations in order to compose a definite

quantitative measure of information which solely stands on physical considera-

tions, as Hartley called “Quantitative Expression for Information”. In the equa-

tion H = n log s = log sn, H stands for the amount of information in a particular

system which is related to n selections. The small letter s refers to the number

of symbols available at each selection, and sn is the number of distinguishable

sequences.

C.E.Shannon further developed Hartley’s idea and formed information theory

in mathematics. Shannon started with the key question on how to measure the

uncertainty in the selection of the event. This measure, say H(p1, p2, ...pn) needs

to fulfill three properties:

1. H should be continuous in the pi.

2. If all the pi are equal, pi = 1
n
, then H is a monotonic increasing function of

n.

3. If a choice can be divided into two successive choices, the original H is the

weighted sum of the individual values of H,

where {p1, p2, ...pn} are the probabilities of occurrence of a set of possible events

with the property
∑n

i=1 pi = 1. The H which satisfies the above three properties

can be expressed in the form:

H = −K

n∑
i=1

pi log pi, (4.11)

where K is a positive constant.

The derivation of H is shown below [9]. Firstly, define H( 1
n
, 1

n
, ..., 1

n
) = A(n).

In the property 3 given above, it states that a choice can be decomposed from sm
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equally likely possibilities into a series of m choices from s equally likely possibil-

ities and get:

A(sm) = mA(s).

And similarly

A(tn) = nA(t),

where n can be chosen as arbitrarily large, and select an m in order to satisfy:

sm ≤ tn ≤ s(m+1).

And then take the logarithms and divide by n log s:

m

n
≤ log t

log s
≤ m

n
+

1

n
.

Since n is chosen arbitrarily large in the first place, so this inequality can be

rewritten as: ∣∣∣∣
m

n
− log t

log s

∣∣∣∣ < ε,

where ε is arbitrarily small. In property 2 it is requested that H is a monotonic

increasing function of n, i.e. A(n) is also a monotonic increasing function, so:

A(sm) ≤ A(tn) ≤ A(s(m+1))

mA(s) ≤ nA(t) ≤ (m + 1)A(s).

Divided by nA(s)

m

n
≤ A(t)

A(s)
≤ m

n
+

1

n
,
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or ∣∣∣∣
m

n
− A(t)

A(s)

∣∣∣∣ < ε.

Thus, ∣∣∣∣
A(m)

A(n)
− A(t)

A(s)

∣∣∣∣ < 2ε,

and A(t) = K log t. Assume now that we have a choice from n possibilities with

commeasurable probabilities pi = ni∑
ni

, where ni are integers. The choice can be

divided from
∑

ni possibilities into a choice from n possibilities p1, p2, ..., pn. If

the ith item was selected, then ni is with equal probabilities for the choice:

K log
∑

ni = H(p1, ..., pn) + K
∑

pi log ni,

and finally:

H = K
[∑

pi log(
∑

ni)−
∑

pi log ni

]

= −K
∑

pi log
ni∑
ni

= −K
∑

pi log pi.

When K = 1, i.e.H = −∑
pi log pi this expression plays a very important role in

information theory as a measure of information, choice and uncertainty. This H

can be regarded as the entropy in statistical mechanics where pi is the probability

of a system being in a cell i of its phase space.

4.4 The Kullback and Leibler Entropy

The Boltzmann-Gibbs-Shannon entropy has the following properties which are:

(i)Additivity [75]: The total entropy of the system is the sum of the entropies
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of the independent subsystems. This is a conditional statement, saying ‘if the

systems are independent, then the entropy of the joint system equals to the sum

of the entropies of the subsystems’. (ii) Trace-Form: The total entropy is the sum

of all the states, i.e. the sum over the convex functions f(pi, p
∗
i ). (iii)Convexity

of entropy for the reference entropy H, and concavity for entropy S. S.Kullback

and R.A.Leibler introduced the relative entropy or else called the Kullback-Leibler

divergence between the current distribution P and some ‘reference’ distribution Q

( [8], [10]):

DKL(P ||Q) =
∑

i

pi log
pi

qi

. (4.12)

4.5 The Entropic Lattice Boltzmann Method

Introducing entropy to lattice Boltzmann method gives the entropic lattice Boltz-

mann method (ELBM)( [18], [74]). ELBM numerical discretized solution of the

kinetic equation is slightly different from the LBGK numerical solution:

fi(x + vi∆t, t + ∆t) = (1− β)fi(x, t) + βf̃i,α(x, t), (4.13)

with f̃i,α = (1 − α)fi + αf eq
i . The parameter α is determined such that a con-

stant entropy condition is satisfied. To find the value of α = α(f), the entropic

functional S(f) has to be involved, which is:

S(f) = S(f̃) = S((1− α)f + αf eq). (4.14)

Inaccuracy in the solution of this equation will bring artificial viscosity. A sub-

stantial issue of the value α is to secure that entropy does not decrease.
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Chapter 5

Flux-corrected Transport and

Median Filters

5.1 Flux-corrected Transport

Flux-corrected transport (FCT) was created to improve the reliability and the

physically acceptable results of the convection algorithms by Boris and Book three

decades ago ( [32], [33], [34], [35], [36], [37]). Since the traditional Fluid Dy-

namics approaches have many defects, such as the fact that mass density some-

times produces negative populations, this is not physically reasonable in reality.

Nowadays many of the monotonic preserving and non-oscillatory fluid transport

algorithms build partly on this principle.

Flux correction is also normally called flux limiter. The main idea about this

invention is to reduce the impact of truncation error considerations and locally re-

place with conservative monotonicity enforcement. Particularly this monotonicity

enforcement will be applied in those places where the solution was not smooth,

as well as where high order solutions would break physically-motivated upper and
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lower bounds on the solution.

FCT is a nonlinear finite difference technique. A transport algorithm called

‘Sharp And Smooth Transport Algorithm’ (SHASTA) generates high diffusion, so

the demand of creating antidiffusion for removing this diffusive errors is highly

required. Consequently, the limiter was invented to control the antidiffusive fluxes

to maintain positivity, as a nonlinear ingredient.

In a finite difference algorithm if all the operations can be represented as flux,

then it is certainly conservative, since the amount of flux that moves from one

point will not be changed to the next point. Therefore, transportative fluxes can

be used for the approximation of advection.

5.1.1 Brief History of Flux Limiters

Boris and Book worked in the area of time dependent fluid dynamics, especially

relative to supersonic flow, such as shocks, contact discontinuities and sharp gra-

dients. The numerical method they implemented is a finite-difference approach.

To find an approximation of a finite difference of differential equation, the simple

approach is to expand the derivatives of time and space function in Taylor series

on a uniformed spacing δx mesh ( [32], [37]).

f(x±∆x) = f(x)± ∂f

∂x
∆x +

∂f 2

∂x2
(∆x)2 ± ......,

Thus,

f(x + ∆x)− f(x−∆x) = 2
∂f

∂x
∆x + O(∆x)3,

rearrange it:

∂f(x, t)

∂x
=

1

2∆x
[f(x + ∆x, t)− f(x−∆x, t)] + O(∆x)2,
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and for the time derivative:

∂f(x, t)

∂t
=

1

2∆t
[f(x, t + ∆t)− f(x, t−∆t)] + O(∆t)2.

So for the passive advection equation

∂ρ

∂t
+ u

∂ρ

∂x
= 0. (5.1)

The finite difference approximation is

ρ(x, t + ∆t) = ρ(x, t−∆t)− ε[ρ(x + ∆x, t)− ρ(x−∆x, t)], (5.2)

where ε = u ∆t
∆x

is the Courant number. This approximation is a second-order

leapfrog scheme. The special feature of the Taylor series expansion is that it

produces accurate different schemes for slowing varying profiles. Beside that, it

provides tools to analyze amplitude and phase error. The limitation of Taylor

series expansion is that it cannot be applied when discontinuities are present,

where dispersive ripples make their appearances. The reason why it does not work

is because it does not ensure positivity of variables which only accepts positive

values. Examples are mass, energy density and temperature. When close to

discontinuities, positivity is even harder to achieve.

Here it is important to give some reference about discontinuity. Shocks, contact

discontinuities and slip lines(tangential discontinuities) are physically discontin-

uous if dissipation is not involved. In classical physics, a physical quantity is

normally continuous and dissipation can not be completely absent. Similarly in

nature there are no absolute discontinuities.

In numerical analysis, the changes of the finite difference approach are discon-
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tinuous. The level of discontinuity can vary. The difference of a ‘real’ discontinuity

and non-discontinuity depends on the relative and absolute change in a variable

if it exceeds some threshold value, and it also depends on primary of the problem

as well as one’s standard.

The requirement for shocks to meet the Rankine-Hugoniot conditions is that

viscous dissipation generates entropy at a shock front. The weak solutions state

the zero viscosity limit. Therefore, any numerical scheme must include some

dissipation to fulfill the jump conditions.

Shocks for this type of equations are self-steepening. A shock wave increases

the temperature of the medium through which is traveling, and consequently, the

speed of sound increases (The speed of sound is proportional to the square root

of the specific heat). Thus, information travels faster and this causes the signals

in the region behind a shock to have a tendency to get closer to the shock. Com-

paring with shocks, other discontinuities are not self-steepening, such as contact

surfaces. The numerical diffusion tends to smear out for shear surfaces and inter-

faces between two different media, or between two regions in the same medium

with different properties, and as a result, it is more complicated to simulate than

shocks.

5.1.2 The algorithms of FCT

A historic background of algorithms composed with flux corrected transport tech-

nique is given in paper [32] for solving continuity equations by using Eulerian

finite difference method. For a FCT algorithm, there are mainly two stages: a

transport or convective stage, and an anti-diffusive or corrective stage. These two

stages have the properties of being conservative and non-negative. The advantage

of the combination of these two stages is that the usual dispersively produced
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ripples is highly reduced in the regions of sharp gradients and shocks.

The fundamental principle for the antidiffusion stage is described as follows

[37]:

“ The antidiffusion stage should generate no new maxima or minima in the

solution, nor should it accentuate already existing extrema.”

This description guarantees that the antidiffusion is nonnegative and this is

done by maintaining the correction of antidiffuive mass fluxes. The fluxes fj+ 1
2

are constrained term by term. Therefore “no antidiffusive flux transfer of mass can

push the density value at any grid point beyond the density value at neighboring

points”, that is where the origin of the name ‘flux-corrected transport’ comes from.

The fluxes which will be strongly corrected by the following formula are [37]:

AC
i+ 1

2
= Smax(0,min(|A 1

2
|, S(qtd

i+2 − qtd
i+1)∆x, S(qtd

i − qtd
i−1)∆x)), (5.3)

fC
j+ 1

2
= sgn∆j+1/2max[0,min(∆j−1/2sgn∆j+1/2,

1

8
|∆j+1/2|, ∆j+3/2sgnj+1/2∆j+1/2)],

(5.4)

where

∆j+1/2 = ρ1
j+1 − ρ1

j ,

and the corrected fluxes f c
j+ 1

2

replace the fluxes in equation:

ρ̄1
j = ρ1

j − fj+ 1
2

+ fj− 1
2
. (5.5)

The FCT algorithm has much better performance comparing with some general

schemes, such as ‘one sided’ first order scheme, second-order Lax-Wendroff two

step scheme, and second order Leapfrog scheme. All these algorithms including

FCT are linear operations beside the stage of the flux correction. However, this
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restriction of assumption leads to the consequence of ‘clipping and ”terracing”

phenomena.

5.1.3 Summary

This new class of Eulerian, finite-difference algorithms are appropriate to solve

continuity and continuity like equations. FCT algorithms provide not only second

order advection, but also keep the dilation terms nonnegative and conservative.

The application of this method can be easily extended to 2D and 3D, and com-

bined with even more or less standard transport algorithms to improve results.

There are two stages in FCT algorithms, the transport stage and the flux-

corrected antidiffusion stage. The continuity equation is solved by using three

point formula, and in general strong diffusion is generated, and a large numerical

error is formed at the first stage. Therefore at the second stage, the numerical

error is being rectified by antidiffusion and flux correcting procedures.

The flux correction helps the algorithm to produce nonnegative and stable

results as well as minimizing the diffusion. The diffusion introduced in stage I is

larger than any dispersive error. The antidiffusion cancels the dispersion. In other

words, the local large diffusive flux is equivalent and of opposite sign to the local

dispersion error.

5.2 Median, Conservative and Mean Filters

Here, the history of median, conservative and mean filters in image processing

will be given ( [50], [51]). In general, there is a tradeoff between preservation of

image detail and noise elimination which the noise represents as unwanted black or

white pixel. Mean filters also lose information in their quest for noise elimination,
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and the trick is to minimize information loss. Ideally, a filter that adapts to the

underlying pixel values is desired.

However, an adaptive filter alters its basic behavior depending on the underly-

ing pixel values, which allows it to retain image detail while still removing noise.

The typical criteria for determining filter behavior involve some measure of local

brightness and contrast.

Another useful adaptive filter is the adaptive median filter. The primary

strength of the adaptive median filter is the removal of salt-and-pepper noise,

but it also attempts to smooth other types of noise and to avoid the distortion

of small image structures. ‘Salt and pepper’ noise is also called impulse noise,

which is typically seen in images, representing randomly in a form of black and

white pixels. Noisy pixels can only take the maximum and the minimum values.

In image restorations, specially for the areas with fine details and high contrast,

a minimum or low rank has a tendency of darkening an image, and a maximum

or high rank has a tendency of brightening an image.

Median, mean and conservative filters were originally developed for image

restorations. Each filter has its own unique and special effect on noise reduc-

tion for an image. These sufficient qualities they have are good enough to bring

them into our area of research. The vital point by using these filters for deviation

of local equilibrium is to make the best adjustment between preservation of details

and impulse noise elimination.

Mean filter is to calculate the mean(average) value of its neighbors including

itself and replace each pixel value with the corresponding average. Mean filter is

one of the simplest type of low-pass filter.

x̄ =
1

n

n∑
i=1

xi, (5.6)

48



where n is the length of a window (or kernel), which formulates the size and pat-

tern of neighborhood when the average is computed. For example, a 1×3 window

in 1D is shown:

1 1 1

The size of the window dominates the level of smoothing effect. The larger the

size is, the greater the smoothing effect the filter has.

The concept of median filter was primarily developed by Tukey for the utility

of noise suppression in images. It is a nonlinear order filter which selects the

middle pixel value from the monotonically increasing sequence and replaces the

central pixel with the median value. Mathematically, median value is obtained

from the classical definition. If the window is an even number, then the median

would be the average of the two middle pixels in an ordered sequence. If it is

an odd number, then the median would be the middle pixel value in an ordered

sequence. For example, an odd window is {11, 21, 108, 5, 9}, and after sorting them

in numerical order, the median value 11 will replace the central pixel value. An

even window is {2, 11, 21, 108, 5, 9}, and after sorting them in numerical order, the

median value 10 will replace the central pixel value. If the value 108 presented a

valid pulse, then the result would suffer the loss of information. On another side,

if it were an impulse noise, the median filter would produce a desirable result.

A conservative filter assures that each central pixel is restricted within the

boundary defined by its nearby neighbors. It firstly identifies the maximum and

the minimum values of the neighbors of the central pixel within an given window.

If the central pixel value is greater than the maximum value, then it is replaced

by the maximum value. If the central pixel value is smaller than the minimum

value, then it is replaced by the minimum value. The values of central pixels that
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satisfy the boundary conditions remain unchanged. For example, given a set of

1D 1×5 window, {21, 2, 99, 9, 0}, the central pixel is 99, with the maximum value

of its neighbors 21, and the minimum value 0, and obviously the central pixel will

be updated to 21 by the conservative filter.

Figure 5.2 illustrates the performance of mean and median and conservative

filters operating on discrete step functions, ramp function, pulse functions and

triangle functions with a window of three pixels. Notice that for the boundary

conditions of these three filters, we leave the first and the last pixels untouched.

Median and conservative filters are sensitive for preserving sharp edges on step

functions and have considerable ability of removing impulse noise for one pulse.

Mean filter smooths out local noise variations on most of the functions, but it

loses detail information, such as lack of edge preservation and smearing local

structure. The undesirable blurring effect of mean filter can reduce the original

detail information.

The choice of windows length for all these filters can be varied. In general the

starting point would be three. If there is no significant information loss, then the

windows length would be increased to five and so on. The stop point of increasing

windows length would be that the filter would do more harm than good, and

it is also worthy considering the capability of the equipment on the increasing

computational expenses. The basic principle of filters with window length n is

that regions in which the signal period is smaller than half of the window length

n will be altered.

A mean filter is simple and can be implemented easily with computational effi-

ciency. However, it is not very successful for clearing up impulse noise in general,

because an unrepresentative value in the neighborhood can influence the mean

value significantly. Though median and conservative filters behave accidentally
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Figure 5.1: Examples of mean, median and conservative filters with windows
length 3 on (a)step (b)ramp (c)single pulse (d)double pulse (e)triple pulse
(f)triangle
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the same on all the functions presented on the example shown above, they can

yield very different results with different windows length in other applications. A

conservative filter keeps the original information unchanged slightly more than a

median filter, therefore it is considerably effective on removing extreme high or

low noise. Median filter takes actually the median value of one of the points in

the neighborhood(or maybe itself), such that it does not create unrealistic values

and is more reasonable robust average for erasing impulse noise. The drawback

for median filter is that if the noise level is above 50 percent, then the result will

be affected by the filter.
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Chapter 6

Nonequilibrium Entropy Limiters

A non-equilibrium entropy filter ( [42], [43], [44], [45], [77]) is introduced to

suppress the spurious oscillations near sharp gradients in high order schemes. The

main concept for building nonequilibrium entropy limiter schemes is to control

a scalar quantity which is the value of nonequilibrium entropy. Nonequilibrium

entropy is the difference between the state entropy S(f) where f is at some site,

and its corresponding quasi-equilibrium entropy S(f ∗) : ∆S(f) := S(f ∗) − S(f),

where f ∗ is the quasiequilibrium. There are some flux limiter functions examples

in papers ( [55], [57], [58]).

The core structure for general limiters in this model is established on the

representation of distributions f in the form:

f = f ∗+ ‖ f − f ∗ ‖ f − f ∗

‖ f − f ∗ ‖ . (6.1)

In this equation f − f ∗ describes the nonequilibrium part of the distribution,

which is formed in ‘norm × direction’ where ‖ f − f ∗ ‖ represents the norm of

this nonequilibrium component. The essence of limiters that can perform on a

given distribution f is that the norm of the nonequilibrium component f − f ∗
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will be changed accordingly, but its direction and the quasiequilibrium would not

be affected, especially the macroscopic variables which are kept the same, as f

and f ∗ coincide in moments. We use φ to represent a limiter, and after limiter

transformations, the distribution f has the form:

f 7→ f ∗ + φ× (f − f ∗), (6.2)

under the condition that the limiter function φ has to be sufficiently smooth and

φ > 0. By applying the nonequilibrium entropy as the variable of limiter φ, the

above equation becomes:

f 7→ f ∗ + φ(∆S)× (f − f ∗), (6.3)

where ∆S = S(f ∗)−S(f). Notice that, in non-entropic lattice Boltzmann models,

the non-entropic equilibria is evaluated from the discrete Kullback entropy:

SK(f) = −
∑

i

fi ln

(
fi

f ∗i

)
, (6.4)

where −SK(f) = ∆S(f). The entropy function is a very useful function for the

analysis of kinetic equation ( [64], [81]). Kullback entropy ( [67], [66]) in quadratic

approximation,

− SK(f) =
∑

i

fi ln

(
fi

f ∗i

)
≈

∑
i

(fi − f ∗i )2

f ∗i
. (6.5)

There is a vast range of choices on how to construct non-equilibrium entropy

filters, examples such as positivity rule, Ehrenfests’ regulation [42]. We will elab-

orate the details about limiters which apply in 3 velocities and 5 velocities. One
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type of limiters is based on pointwise correction, and another is based on several

neighborhoods correction where the value of a select site will be decided by its

nearby neighbors.

The adaptive nonequilibrium entropy limiters have the property that they

can easily pick up the highly noisy ones which are far from equilibrium states

and transform them into or near equilibrium states, thus the spurious oscillations

are reduced accordingly. The disadvantage of these limiters is that they bring

up additional dissipation, but still all this dissipation can be estimated by the

assessment of nonequilibrium entropy production.

6.1 Positivity Rule

To keep the positivity of probabilities or populations valid, we need to build some

positive rules for the populations of f ( [42], [53], [54]). After collision, if f is

far from f ∗, and the population of f become nonpositive, then this may cause

the populations to be nonphysical. The important fact is that even when one site

population of fi losses its positivity, the whole sites of f are considered by some

authors as nonphysical. In this condition, it is vital and extremely important to

add a positivity rule to keep the populations of f positive.

There are some methods to build positivity rules. One of the simple ways is

to substitute nonpositive populations of f by the closest nonnegative state which

is from the straight line [43]:

{λf(x) + (1− λ)Π∗(f(x)), λ ∈ R} , (6.6)

This is defined by two points, f(x) and its corresponding quasiequilibrium state.

For the quasiequilibrium f ∗M , an equilibration operation is the projection Π∗ of
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the distribution f into the corresponding quasiequilibrium state: Π∗(f) = f ∗m(f),

where m(f) = M . The value of λ depends on x, apart from the value of f . This

positivity rule is not applied for each site of f , only for those values of populations

which are nonpositive, therefore it is a pointwise application. A positivity rule

is a simple and efficient way to preserve the populations of f positive, but by

its nature, it also affect the accuracy of approximation. The basic reason is that

though it keeps the populations of f positive, it also brings additional dissipation,

since it moves the nonpositive state of f near or closer to quasiequilibrium state.

However, it is nearly unavoidable to introduce additional dissipation, if we want

to keep the populations conservative. This positivity rule is one of the minimal

necessary modifications to keep all the populations physical. Therefore a positivity

rule is applied for each LBGK model simulation here.

6.2 Ehrenfests’ Regularisation

Ehrenfests regularisation ( [40], [42], [70]) is a pointwise correction limiter. As a

start, we consider the nonequilibrium entropy for each site:

∆S(f) := S(f ∗)− S(f),

where f ∗ is the corresponding quasiequilibrium at the same point. The local

deviation of f from the corresponding quasiequilibrium is being controlled through

a pre-specified threshold value δ and a number of sites k. For each time step, we

select k sites with largest ∆S, then compare with the pre-defined threshold value

δ. In other words, there will be a number of k sites such that the values of limiter

φ are zero, and we set the values of f for these sites to be the quasiequilibrium

values. Here we need to mention that, the number of k sites, is not selected
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randomly from the range which are ∆S(f)(x) > δ, but instead that we sort all

the sites which fulfill this condition in descending order, and then take the first k

sites from this sorted range, and leave the rest of sites unchanged.

The LBGK equation with Ehrenfests’ step is constructed as following:

fi(x + viδt, t + δt) =





f ∗i (x, t) + (2β − 1)(f ∗i (x, t)− fi(x, t)), ∆S ≤ δ,

f eq
i (x, t), otherwise.

(6.7)

where β = 1/(2ν + 1).

Therefore, the limiter φ(∆S) for Ehrenfests’ regularisation is set as [45]:

φ(∆S)(x) =





1, ∆S ≤ δ,

0, otherwise.
(6.8)

The number of sites selected should be less or equal to o(Nh/L), where N is

the total number of sites, h is the step of the space discretisation and L is the

macroscopic characteristic length. When this condition is satisfied, the change of

accuracy order “on average” could be avoided.

6.3 Smooth Limiters

Ehrenfests’ regularisation contributes localised pointwise corrections with limited

sites. Smooth limiters are based on a different type of concept, which treat the

limiter φ as a real function of ∆S(f). In this concept, the function φ has a lot of

options to choose. There are two types of categories that limiters belong to [44]:

1. Ensemble-independent φ. The value of the limiter φ(∆S(f)) depends on

local value of ∆S only, not on the entire values or its neighbors of fi,

i.e.∆S(fi) (the ith site). For example, Ehrenfests’ regularisation, the lim-
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iter φ is ensemble-independent, since when the k sites are being selected,

the values of φ are set as zeros, and the derivations of f return to their cor-

responding quasiequilibrium values f ∗, which are not relevant to the whole

ensemble or its neighbors.

2. Ensemble-dependent φ. The value of the limiter φ(∆S(f)) depends on the

values of the entire ensemble or the neighbors of fi.

The first smooth limiter, named Smooth limiter 1, introduced here is con-

structed as following [46]:

φ(∆S) = 1/(1 + α∆Sk), (6.9)

where α = δ
E(∆S)k , and E(∆S) is the average value of ∆S. In this function, there

are two conditions needed to be fulfilled which are α > 0 and k > 0. This limiter

is an ensemble-dependent limiter, since it involves the average value of ∆S, i.e.

the entire ensemble. The second smooth limiter, named Smooth limiter 2, is

constructed as [44]:

φ(∆S) =
1 + (∆S/(δE(∆S)))k−1/2

1 + (∆S/(δE(∆S)))k
, (6.10)

where E(∆S) is defined the same as above. For smooth limiter 2, the restrictions

are k ≥ 1 and δ ≥ 1. Similarly, this limiter is also an ensemble-dependent limiter.

The performance of the smooth limiter 2 has the following qualities:

1. φ(∆S) ≈ 1, when ∆S is small,

2.
√

(δE(∆S)/∆S), when ∆S À δE(∆S).

Both of these two smooth limiters are unlike Ehrenfests’ regularisation which

only corrects certain points, but instead each point is being corrected by the
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limiters. Therefore they introduce more dissipation than other limiters. By the

nature of their definitions, these two smooth limiters produce more modification

than Ehrenfests’ regularization.

6.4 Smooth Double Monotonic Nonequilibrium

Entropy Limiters

The monotonic properties are vital for both theory and application of entropy, ac-

cording to the second law of thermodynamics. There are two essential descriptions

of the monotonic properties for the non-equilibrium entropy limiters [44]:

1. One of the core roles that a non-equilibrium entropy filter plays is to keep the

entropy non-negative, which satisfies the dissipation condition. Another role

is to ensure the distribution to finally reach equilibrium, which enhances the

stabilization of the distribution by this functionality. Notice that to satisfy

this property, the value of φ should be bounded at all times with 0 ≤ φ ≤ 1.

2. A monotonic non-equilibrium entropy filter should not change the order of

the states for any distributions in a line with the same moments. Before the

limiter transformation any two distributions f and f ′ with the relationship

f ′ − (f ′)∗ = x(f − f ∗) for x > 0, such that ∆S(f) > ∆S(f ′), then after

the limiter transformation this non-equilibrium entropy order should not

be altered. For example, for the limiter (6.3), the non-equilibrium entropy

∆S = ∆S(f ∗ + xφ(∆S(f ∗ + x(f − f ∗)))(f − f ∗)) should be a monotonically

increasing function with the interval x ∈ [0, 1].
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The quadratic approximation is given by:

∆S(f ∗ + x(f − f ∗)) = x2∆S(f), (6.11)

∆S(f ∗ + xφ(∆S(f ∗ + x(f − f ∗)))(f − f ∗))

= ∆S(f ∗ + xφ(x2∆S(f))(f − f ∗))

= x2φ2(x2∆S(f)).

(6.12)

In the equation (6.12),the term yφ(y2s) must be a monotonically increasing func-

tion with the conditions that y > 0 for any s > 0.

A limiter that satisfies these two monotonic conditions, named as ’double

monotonic’ limiter. In general the first condition is easy to be satisfied, but not

all could fulfill the second condition. For example the limiter φ = 1/(1 + α∆Sk)

fulfills the first condition, but not the second condition if k > 1/2.

The double monotonic function for smooth functions in quadratic approxima-

tion can also be derived from the system of differential inequalities [78]:

φ(x) + 2xφ′(x) ≥ 0;

φ′(x) ≤ 0.

We combine these two inequalities and rewrite them into: φ′(x) = −η(x)
2x

φ(x) with

the condition 0 ≤ η(x) ≤ 1. This equation can be really easily solved:

φ′(χ)

φ(χ)
= −η(χ)

2χ

(ln(φ(χ)))′ = −η(χ)

2χ
,

(6.13)
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with the boundary condition of interval χ ∈ [0, x],

ln(φ(χ)) =

∫ x

0

−η(χ)

2χ
dχ, (6.14)

And finally, the general solution of these inequalities for double monotonic filters

is:

φ(χ) = exp

(
−1

2

∫ x

0

η(χ)

χ
dχ

)
. (6.15)

There are two essential conditions that have to be provided. One is the that inte-

gral exists, another is the given initial condition φ(0) = 1, which implies physically

that when the limit of non-equilibrium entropy tends to zero, a limiter would not

change the flow. Let η(x)H(x−∆St) be a Heaviside step function with threshold

value ∆St, then the general solution (6.15) produces the threshold limiter. For

example, set η(χ) = χk/(∆Sk
t + χk), and substitute into the equation (6.15), we

get

φ(x) = exp

(
−1

2

∫ x

0

χk−1

(∆Sk
t + χk)

dχ

)

= exp

(
ln(

∆Sk
t + xk

∆Sk
t

)−
1
2k

)

=

(
1 +

xk

∆Sk
t

)− 1
2k

.

(6.16)

Thus, the non-equilibrium entropy function would be:

φ(x) =

(
1 +

xk

∆Sk
t

)− 1
2k

. (6.17)
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There are two different approaches for approximation from this threshold limiter

according to the value of x ( [78], [80]).

φ(x) = 1− 1

2k

xk

∆Sk
t

+ o(xk); (6.18)

φ(x) =

√
∆St

x
+ o(x−k). (6.19)

If the value of x is reasonably small, the equation (6.18) is the approximation up

to kth order. The macroscopic equations are equivalent to the LBM macroscopic

equations without limiters up to the (k + 1)st order in powers of deviation from

equilibrium. If the value of x is large, the equation (6.19) is the approximation up

to kth order. This double monotonic limiter is a local one point correction limiter.

By the primary properties of this double monotonic limiter, the quadratic approxi-

mation brings accuracy without additional care, and stabilization by transforming

the distribution to equilibrium.

6.5 Nonequilibrium Entropic Median and Mean

Filters

Among a vast number of choices of limiters, a median entropy filter is preferred due

to its effective noise reduction ( [42], [43], [44], [45], [78]). Comparing with point-

wise correction of non-equilibrium entropy at the ‘most non-equilibrium’ points,

such as Ehrenfests’ regulations, median entropy filters have the property of using

local structure. A median entropy filter can correct local non-monotone irregu-

larities, but at the same time keeping regular fragments untouched. A median

entropy filter engages in reduction of ‘salt and pepper noise’ by treating monotone
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increase or decrease of non-equilibrium entropy as regular fragments. In terms

of non-equilibrium entropy, ‘salt’ is the maximum(or high rank) filter of the non-

equilibrium entropy, where ∆S is bigger than the median value, and ‘pepper’ is

the minimum(or low rank) of non-equilibrium entropy. In the application of non-

equilibrium entropy, the ‘salt’ noise can be removed, but the ‘pepper’ noise will

not be touched.

In the non-equilibrium entropy field, median filter considers each site in turn

and concerns its nearby neighbors. The median value is represented as ∆Smed.

For each point, firstly, it makes all the values of its surrounding neighborhood into

numerical order by given a range of its surrounding, then this point is replaced by

the middle value. For example, if a site has 3 nearest neighbors including itself, and

then after sorting the values of these 3 points, ∆S : ∆S1 ≤ ∆S2 ≤ ∆S3, the median

value is ∆Smed = ∆S2. Similarly, for 5 nearest neighbors(including itself) after

sorting the median is ∆Smed = ∆S3, For 15 nearest neighbors, after sorting the

median is ∆Smed = ∆S8, and so on. The median entropy filter replaces the non-

equilibrium entropy value ∆S at the point with the values of the median calculated

∆Smed, and then substitutes this median value into the homothety coefficient
√

∆Smed/∆S into equation (6.3) to update f , ie. we set up φ(∆S) =
√

∆Smed/∆S

( [44], [78]),

f(x) 7→ f ∗(x) +

√
∆Smed

∆S
(f(x)− f ∗(x)). (6.20)

This is the general structure for entropy median filter. The vital issue for me-

dian filter is to control the non-equilibrium entropy limitation(or constraints) and

substitute by the related median value accordingly when ∆S exceeds some range.

There could be many possible ways to build non-equilibrium entropy median fil-

ters according to one’s interest. We establish three types of median entropy filter,
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named as smooth, maximum and general median entropy filters. There are three

fundamental elements associated here, ∆S, ∆Smed and a predefined value δ. The

specific constraint for each filter is described as follows:

∆S > δ, and ∆S > ∆Smed, smooth median entropy filter,

(∆S −∆Smed) > δ, maximum median entropy filter,

‖ ∆S −∆Smed ‖> δ, general median entropy filter.

Notice, for the smooth median entropy filter, is also called median entropy

filter for short abbreviation. For the maximum filter, the constraint is set as

the difference between the value of non-equilibrium entropy and the median non-

equilibrium entropy, and this is greater than the predefined value δ. The general

filter has some de-efficiency of filtering. Apart from having the same condition as

maximum filter, it also alters the situation when (∆Smed −∆S) > δ, as this will

cause the total entropy decrease. The smaller the value of ∆S , the closer the

entropy tends to maximum. In this case, the second law of thermodynamics is not

being respected.

Similarly, the constraint for the mean entropy filter is ∆S > δ, and ∆S >

k∆Smean. Thus, the mean entropy filter is φ(∆S) =
√

k∆Smean/∆S, and then,

f(x) 7→ f ∗(x) +

√
k∆Smean

∆S
(f(x)− f ∗(x)). (6.21)

From the primary nature of the constraint of each filter, additional dissipation

is introduced to each filter according to the predefined value δ. Following the

second law of thermodynamics, the value of ∆S which is bigger than the value of

∆Smed will be updated by the median entropy filters apart from the general filter.
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6.6 Numerical Experience on Three-velocity Set

In this section, we present some numerical results to illustrate the experiments

of median entropy filter. In the first part the discretized velocities and explicit

equilibria are given, and then in the second part the 1D shock tube is introduced

to demonstrate the experiments.

6.6.1 Velocities and Equilibria

In one dimension, the vector velocity is discretized into a set of 3 components

corresponding to static, left and right moving populations fi, where i = 1, 2, 3.

In order to make the simulation easier to model, we set these three components

of velocity as: {v1, v2, v3} := {0,−1, 1} and a lattice with spacing and time step

δt = 1. Another important factor is to give explicit definition of entropy, S = −H,

where H is an H function:

H = f1 log(f1/4) + f2 log(f2) + f3 log(f3). (6.22)

For this entropy, the quasiequilibrium is as follows,

f ∗1 =
2ρ

3

(
2−

√
1 + 3u2

)
,

f ∗2 =
ρ

6

(
(3u− 1) + 2

√
1 + 3u2

)
,

f ∗3 = −ρ

6

(
(3u + 1)− 2

√
1 + 3u2

)
,

where

ρ :=
∑

i

fi, u :=
1

ρ

∑
i

vifi.
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To see how this equilibrium is derived, see [49]. The entropy functional is:

S(f) = −
∑

i

fi log
fi

Wi

, i = 1, 2, 3.

The weights for quasiequilibrium are {4
6
, 1

6
, 1

6
}, and the weights for the entropy

are taken as the same proportion of quasiequilibrium {4, 1, 1}. Notice that, W1 is

the weight corresponding to the static population with the zero velocity, and W2

is the weight corresponding to the left moving population, and W3 is the weight

corresponding to the right moving population. The governing equations for LBGK

are:

fi(x + vi, t + 1) = fi(x, t) + (2β − 1)(f ∗i (x, t)− fi(x, t)), i = 1, 2, 3. (6.23)

where β = 1/(2ν + 1), with ν defined as kinematic viscosity.

6.6.2 Shock Tube

For a compressible althermal fluid, the 1D shock tube is one of an ideal model for

hydrodynamics codes. In the shock tube, the computational domain is the interval

[0, 1], and it is discretized as 801 equally spaced lattice sites. For simplicity, the

initial density ratio is set as 1 : 2, such that

0 ≤ x ≤ 400, ρ = 1.0;

400 < x ≤ 801, ρ = 0.5.

In these tests, there are three types of pictures demonstrated which are density

profile, the total entropy, and the total nonequilibrium entropy.

To see how well the different filters behave with additional dissipation, we set
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up the LBGK model without any limiters as a starting point to compare with the

LBGK models with limiters. The kinematic viscosity is fixed as ν = 10−9 for all

the limiters, but has been varied for LBGK. Figure 6.1 clearly proves that the

lower value of kinematic viscosity is, the more spurious oscillations in the nearby

neighborhoods of shocks will be produced.

From figure 6.2 to figure 6.4, the general median entropy filter, the maximum

median entropy filter and the smooth median entropy filters are presented with

3 neighbors including itself. It is obvious that the smooth median filter is more

effective for reducing the spurious oscillations in both post-shock and shock regions

under the same conditions comparing with the other two filters. The maximum

median entropy filter suppresses spurious oscillations in the post-shock region

better than the general median entropy filter. The general median filter has an

ill condition, because it takes the absolute value, ‖ ∆S − ∆Smed ‖> δ. When

∆Smed−∆S > δ, it means when the site of entropy is much closer than the median

value entropy, it will be selected by this filter and then by replacing this median

value. This behaviour brings the fragments further away from the equilibrium

state. Therefore, the general median entropy filter is not an optimal choice for

reducing spurious oscillations. Figure 6.5 shows the performance of the smooth

median entropy filter with different numbers of neighborhood.

All the three median entropy filters introduce additional local dissipation in

thin zones around shocks in the shock tube. This has similar effect to bring

additional global dissipation in the simulation. In particular, median entropy

filter has the advantage of applying for the shape of shock tube. The reason for

that is a shock tube does not have many peaks and troughs, so that the limiter

would not smooth out important fragments and keep the original shape as close

as possible.
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Figure 6.1: The isothermal shock tube simulation, total entropy S and nonequi-
librium entropy ∆S time histories are displayed above using LBGK only after
400 time steps. The viscosity is (a) ν = 0.066 (b) ν = 0.0066 (c) ν = 0.00066.
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Figure 6.2: The isothermal shock tube simulation, total entropy S and nonequi-
librium entropy ∆S time histories are displayed above for ν = 10−9 after 400 time
steps using general median entropy filter. The nearest neighbors including the
site itself is m = 3, and the threshold is (a) δ = 10−5 (b) δ = 10−4 (c) δ = 10−3.
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Figure 6.3: The isothermal shock tube simulation, total entropy S and nonequi-
librium entropy ∆S time histories are displayed above for ν = 10−9 after 400
time steps using the maximum median entropy filter. The nearest neighbors
including the site itself m = 3, and the threshold (a) δ = 10−5 (b) δ = 10−4 (c)
δ = 10−3.
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Figure 6.4: The isothermal shock tube simulation, total entropy S and nonequi-
librium entropy ∆S time histories are displayed above for ν = 10−9 after 400 time
steps using the smooth median entropy filter. The nearest neighbors includ-
ing the site itself is m = 3, and the threshold is (a) δ = 10−5 (b) δ = 10−4 (c)
δ = 10−3.
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Figure 6.5: The isothermal shock tube simulation, total entropy S and nonequi-
librium entropy ∆S time histories are displayed above for ν = 10−9 after 400 time
steps using the smooth median entropy filter. The threshold is δ = 10−4, and
the nearest neighbors including the site itself is (a) m = 3 (b) m = 5 (c) m = 7
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Chapter 7

Lattice Boltzmann Methods with

Five-Velocity Set

The nonequilibrium entropy limiters for LBM with discrete five-velocities sets

are based on non-entropic equilibria, with the condition that Kullback entropy is

employed. The discrete five-velocity sets have to be chosen such that they can

give a stable and complete Galilean invariant LB scheme.

7.1 Weights and Velocities

The lattice is set with spacing and time step δt = 1. The entropy function H is

the same as before:

H =
N∑

i=1

fi ln(
fi

Wi

). (7.1)

With a five-velocity set, the entropy function is:

H = f1 log(
f1

W1

) + f2 log(
f2

W2

) + f3 log(
f3

W3

) + f4 log(
f4

W4

) + f5 log(
f5

W5

). (7.2)

The constraints for weights Wi are Wi > 0 and
∑N

i Wi = 1. The weights Wi
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and the reference temperature T0 need to fulfill the constitutive relations for the

pressure P eq and the energy flux Qeq:

P eq =
N∑

i=1

f eq
i v2

i = ρT0 + ρu2,

Qeq =
N∑

i=1

f eq
i v3

i = 3ρT0u + ρu3.

(7.3)

The weights and the reference temperature are ( [38]):

W0 =
−3m4 − 3n4 + 54m2n2 − (m2 + n2)D5

75m2n2
,

W±m =
9m4 − 6n4 − 27m2n2 + (3m2 − 2n2)D5

300m2(m2 − n2)
,

W±n =
9n4 − 6m4 − 27m2n2 + (3n2 − 2m2)D5

300n2(n2 −m2)
,

T0 =
3m2 + 3n2 + D5

30
,

(7.4)

where D5 is:

D5 =
√

9m4 − 42n2m2 + 9n4. (7.5)

There are 3 discrete five-velocity sets we will use here: {v1, v2, v3, v4, v5} :=

{−3,−1, 0, 1, 3}, {v1, v2, v3, v4, v5} := {−5,−2, 0, 2, 5}, {v1, v2, v3, v4, v5} := {−7,−3, 0, 3, 7}.
The corresponding populations {f1, f2, f3, f4, f5} stand for: f1, f2 left moving pop-

ulations, f3 static, and f4, f5 right moving populations.

7.2 Equilibria, LBGK and Shock Tube

The non-entropic quasiequilibrium f ∗ is:

f ∗i = ρWi{1 +
viU

T0

+
U2

2T 2
0

(v2
i − T0) +

U3vi

6T 3
0

(v2
i − 3T0)}, (7.6)
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where

ρ :=
∑

i

fi, U :=
1

ρ

∑
i

vifi. (7.7)

The governing equations for LBGK ( [59], [60], [61]) are given as follows:

fi(x + vi, t + 1) = f ∗i (x, t) + (2β − 1)(f ∗i (x, t)− fi(x, t)), (7.8)

where β = 1/(2ν + 1).

For five-velocity sets we use shock tube test also. The computational domain

is again the interval [0, 1], which is discretized into 801 uniform space lattice sites.

The initial density is set:

ρ =





x ≤ 400, ρ = 1.0;

otherwise, ρ = 0.5.
(7.9)

The kinematic viscosity is fixed as ν = 10−9 for all the limiters introduced. It is im-

portant to mention that, for each five-velocity set, the time step is different. Since

when the velocity gets bigger, after certain time steps, the shock tube gets unsta-

ble. So the time step will set as 100
√

3/cs , where cs is the speed of sound, which

is cs =
√

T0. The number of time steps for the 3 five-velocity sets {−3,−1, 0, 1, 3},
{−5,−2, 0, 2, 5}, {−7,−3, 0, 3, 7} are respectively 150, 90, 60. These five-velocity

sets would not be used normally, because they are unstable and are used to test the

filters here. The bounce back boundary conditions are applied in the computation.

7.3 Figure description

In the following section, we will illustrate some examples for the 6 limiters in-

troduced in chapter 6 on the 3 five-velocity sets using non-entropic polynomial
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quasiequilibria.

There are mainly two types of figure we will illustrate here. One panel shows

the comparison of LBGK which has no limiters, and LBGK with the 6 limiters

which we proposed in the previous chapter. Another panel shows the comparison

of shock tube density profiles only. On the first panel we illustrate vertically the

shock tube density profile ρ, the velocity profile U , the sum of entropy S̄, the

total nonequilibrium entropy ∆̄S and finally the nonequilibrium entropy in his-

tograms(80). The sum of entropy S̄ is S̄(t) =
∑

x S(x, t), and the total nonequi-

librium entropy is ∆̄S(t) =
∑

x ∆S(x, t). The second panel is the comparison of

shock tubes with different threshold values. Apart from these two types of panel,

we also demonstrate some statistical tables for each limiter with the same velocity

set. These tables include the average nonequilibrium, the average velocity, and

the calculation of Mach number and Reynolds number.

7.4 Results Discussion

For the first type of panel, we generally compare the LBGK with a limiter which

behaves reasonably well such that, with the predefined threshold values, the limiter

can remove the spurious oscillations effectively. For the second type of panel,

the comparison of shock tube density profiles can clearly exhibit how the limiter

behaves in different threshold values. The tables display the accurate values for

the average nonequilibrium entropy and velocity, as well as Mach and Reynolds

numbers.

There are two parts in the shock tube density profile we can pay more attention

to in these figures, which are the shock region and post shock region. It is very

important to mention that both the post shock and shock regions should not be
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extremely smooth. In other words, it simply means we have introduced too much

additional dissipation by the limiter. Especially when the maximum velocity in

the velocity set is big, the shock tube and velocity profiles give very unstable

performance with much bigger oscillations (sharp gradients) when only LBGK is

applied with no limiters. The velocity profile performs very similarly to the shock

tube density profile.

The total entropy S̄ for the LBGK with no limiters decreases with time. Al-

though the positivity rule is enforced in LBGK, after a certain number of time

steps, some of the values of populations still decrease because of the rounding

error, even though the range of decrease for the total entropy is under 0.6. As we

can see that the total entropy with any one of the limiters grows in time.

The total entropy in paper [44] is in the range from 1215 to 1217, but the

figures here are in the range from 138 to 140. The reason for the difference between

these two ranges is the norm for the entropy and equilibrium is distinct. In other

words, the scale of the sum of entropy is different, but the proportion keeps the

same. In the following we will show the reason for this.

S(f) = −
∑

i

filog(
fiα

wi

) = −
∑

i

filog(
fi

wi

)−
∑

i

filog(α), (7.10)

where α is a constant. Similarly,

S(f ∗) = −
∑

i

f ∗i log(
f ∗i α

wi

) = −
∑

i

f ∗i log(
f ∗i
wi

)−
∑

i

f ∗i log(α). (7.11)

Since ∆S is:

∆S = S(f)− S(f ∗), (7.12)
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therefore,

∆S = −
∑

i

filog(
fi

wi

) +
∑

i

f ∗i log(
f ∗i
wi

)−
∑

i

filog(α) +
∑

i

f ∗i log(α). (7.13)

Since
∑

i fi =
∑

i f
∗
i , so the above equation becomes:

∆S = −
∑

i

filog(
fi

wi

) +
∑

i

f ∗i log(
f ∗i
wi

). (7.14)

From the above equations, we can clearly see that, the difference of norm in en-

tropy would not affect the non-equilibrium entropy. The difference is that, Brown-

lee uses 3 velocities {−1, 0, 1}, with the weight for equilibrium {1/6, 4/6, 1/6}, and

the weight for entropy {1, 4, 1}. The weights for equilibrium and entropy are the

same proportion. Here, we use the same weight scale for both equilibrium and

entropy.

The total nonequilibrium entropy always increases with time in LBGK with

no limiters, however LBGK with any one of the limiters we introduced behave

differently with time. The scales of the total nonequilibrium entropy for LBGK

with no limiter and LBGK with limiters are very different. The range for LBGK

with no limiter is 0 ≤ ∆̄S ≤ 0.6, and the range for LBGK with limiters is much

smaller and varies when different limiters are applied.

The histograms of nonequilibrium entropy ∆S for both LBGK without limiter

and LBGK with limiters have the same scale, which are divided into 80 bins. Note

that the domain in the y−axis is fixed up to 15, but the actual domain, especially

the points close to zero, should be 0 ≤ N ≤ 800. The fact is that the majority

of points are concentrated around zero. In order to show closely the points which

are not close to zero, we cut the domain to 15. So when the tail is long and fat in

the histograms, the shock tube and velocity profiles have more oscillations in the
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shock regions.

For the total nonequilibrium entropy time histories as shown, we can see that

in each one of them there is a turning point, which sometimes is a local minimum

point, sometimes a local maximum point. When the shock tube starts to be active,

the total nonequilibrium entropy begins to accumulate from the first time step to

say, time step Ns, where the turning point takes place, and this is the place where

the maximum number of points are being filtered to the distribution f . The

smoother the shock tube is, the less the tendency for the total nonequilibrium

entropy to increase dramatically, or even sometimes gets to decrease, as the time

steps increase. Further more, the turning points mostly appear when the shock

region is formed, and the maximum number of points are being filtered.

The small waves or vibrations appear in figures for LBGK with limiters, caused

by the process from continuous equation to discretization, i.e the Gibbs phenom-

ena.

The Ehrenfests’ regularization is a point-wise correction limiter of nonequi-

librium entropy, therefore it brings additional dissipation locally and it is an

ensemble independent limiter. As we can see the figures for the 3 five-velocity

sets, when 5 sites are selected with highest ∆S > δ, Ehrenfest’s regularization

is efficient to reduce the spurious oscillations in the shock regions, but not very

helpful in the post shock regions. But when 10 and 19 sites are selected, for ve-

locity sets {−5,−2, 0, 2, 5} and {−7,−3, 0, 3, 7}, the spurious oscillations can be

efficiently removed for both shock and post shock regions. Notice that for veloc-

ity set {−7,−3, 0, 3, 7}, the table for the smooth limiter 2, the values of average

nonequilibrium entropy and velocity, and Mach and Reynolds numbers for the

threshold from δ = 10−3 to δ = 10−5 are the same. The reason is that limiter

picks exactly the same 5 sites for all these 3 different threshold values.
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The smooth limiter 1 and smooth limiter 2 are both ensemble dependent lim-

iters. Notice that the k2 and k3 are different from Ehrenfests’ regularization k1.

As we can see, the smooth limiter 1 for all these 3 velocity sets can remove the

spurious oscillations effectively and there are no heavy tails in the nonequilibrium

entropy histograms. However the smooth limiter 2 gives too smooth performance

for these velocity sets.

The smooth median limiter, the maximum median limiter and the mean limiter

are all ensemble dependent limiters. The concept of constructing the smooth

median and maximum median limiters determines that the nonequilibrium entropy

of neighbors have more influence on the performance of the limiters than any

other limiters. The performance of these two median limiters are very gentle and

effective in general, while not introducing too much additional dissipation at the

same time remove the spurious oscillations efficiently.

The conclusions are given here from the figures and tables which are displayed.

The positivity rule is always enforced on both LBGK without limiters and LBGK

with limiters, to ensure the populations are positive and to keep a minimum loss

of density during the process of simulation. The construction of nonequilibrium

entropy limiter schemes is based on controlling a scalar quantity, i.e. the nonequi-

librium entropy. We use the computations of LBGK without limiters as a frame

of reference comparing with the computations of LBGK with limiters. The con-

clusion is that for the 6 nonequilibrium entropy limiters we have introduced in

previous Chapter, median entropy limiters are recommended as a preferred lim-

iter, since they give reasonably gentle and effective performance which removes

the spurious oscillations in both shock and post shock regions, at the same time

not bringing too much dissipation.
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7.5 Velocity set {−3,−1, 0, 1, 3}

7.5.1 Ehrenfests’ Regularisation

Velocity set {−3,−1, 0, 1, 3} LBGK compares with Ehrenfests’ limiter

parameters average ∆S average U Mach Reynolds

none 7.8533× 10−4 4.4015× 10−1 3.4449× 10−1 3.5212× 1011

δ = 10−2, k1 = 5 3.7575× 10−4 4.4014× 10−1 3.4448× 10−1 3.5211× 1011

δ = 10−3, k1 = 5 7.2349× 10−5 4.4178× 10−1 3.4577× 10−1 3.5343× 1011

δ = 10−4, k1 = 5 5.8848× 10−5 4.4204× 10−1 3.4597× 10−1 3.5363× 1011

δ = 10−4, k1 = 10 2.4617× 10−5 4.4287× 10−1 3.4662× 10−1 3.5430× 1011

δ = 10−4, k1 = 19 1.3941× 10−5 4.4341× 10−1 3.4704× 10−1 3.5473× 1011

7.5.2 Smooth Limiter 1

Velocity set {−3,−1, 0, 1, 3} LBGK compares with smooth limiter 1

parameters average ∆S average U Mach Reynolds

none 7.8533× 10−4 4.4015× 10−1 3.4449× 10−1 3.5212× 1011

δ = 10−3, k2 = 0.5 5.8779× 10−4 4.4089× 10−1 3.4507× 10−1 3.5271× 1011

δ = 10−2, k2 = 0.5 1.4362× 10−5 4.4276× 10−1 3.4653× 10−1 3.5421× 1011

δ = 10−1, k2 = 0.5 1.1596× 10−5 4.4378× 10−1 3.4733× 10−1 3.5502× 1011

δ = 10−3, k2 = 1 2.9912× 10−4 4.4210× 10−1 3.4602× 10−1 3.5368× 1011

δ = 10−2, k2 = 1 1.6991× 10−5 4.4334× 10−1 3.4699× 10−1 3.5467× 1011

δ = 10−1, k2 = 1 8.4356× 10−6 4.4395× 10−1 3.4747× 10−1 3.5516× 1011
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Figure 7.1: Velocity set {−3,−1, 0, 1, 3}, (a) LBGK vs (b)Ehrenfests’ with k1 = 5
and δ = 10−4.
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Figure 7.2: Velocity set {−3,−1, 0, 1, 3}, Ehrenfests’ with δ = 10−4, (a) k1 = 10
and (b) k1 = 19.

83



0 0.2 0.4 0.6 0.8 1
0.4

0.6

0.8

1

(a)

x

ρ

0 0.2 0.4 0.6 0.8 1
0.4

0.6

0.8

1

(b)

x

ρ

0 0.2 0.4 0.6 0.8 1
0.4

0.6

0.8

1

(c)

x

ρ

0 0.2 0.4 0.6 0.8 1
0.4

0.6

0.8

1

(d)

x

ρ

0 0.2 0.4 0.6 0.8 1
0.4

0.6

0.8

1

(e)

x

ρ

0 0.2 0.4 0.6 0.8 1
0.4

0.6

0.8

1

(f)

x

ρ

Figure 7.3: Velocity set {−3,−1, 0, 1, 3}, (a) LBGK with no limiter, and Ehren-
fests’ with (b) k1 = 5, δ = 10−2, (c) k1 = 5, δ = 10−3, (d) k1 = 5, δ = 10−4, (e)
k1 = 10, δ = 10−4, and (f) k1 = 19, δ = 10−4.
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Figure 7.4: Velocity set {−3,−1, 0, 1, 3}, (a) LBGK vs (b) Smooth limiter 1 with
k2 = 0.5 and δ = 5× 10−2.
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Figure 7.5: Velocity set {−3,−1, 0, 1, 3}, (a) LBGK with no limiter, and Smooth
limiter 1 with (b) k2 = 0.5, δ = 10−1, (c) k2 = 0.5, δ = 10−2, (d) k2 = 0.5, δ = 10−3,
(e) k2 = 1, δ = 10−1, (f) k2 = 1, δ = 10−2, and (g) k2 = 1, δ = 10−3.
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7.5.3 Smooth Limiter 2

Velocity set {−3,−1, 0, 1, 3} LBGK compares with Smooth limiter 2

parameters average ∆S average U Mach Reynolds

none 7.8533× 10−4 4.4015× 10−1 3.4449× 10−1 3.5212× 1011

δ = 1, k3 = 1 2.5807× 10−5 4.4321× 10−1 3.4689× 10−1 3.5457× 1011

δ = 1.5, k3 = 2 2.5854× 10−5 4.4333× 10−1 3.4698× 10−1 3.5466× 1011

δ = 2, k3 = 2 5.4419× 10−5 4.4327× 10−1 3.4693× 10−1 3.5461× 1011

δ = 2, k3 = 3 1.3975× 10−5 4.4340× 10−1 3.4703× 10−1 3.5472× 1011

7.5.4 Median Limiter

Velocity set {−3,−1, 0, 1, 3} LBGK compares with Median filter

parameters average ∆S average U Mach Reynolds

none 7.8533× 10−4 4.4015× 10−1 3.4449× 10−1 3.5212× 1011

δ = 10−3,m1 = 11 8.1732× 10−5 4.4231× 10−1 3.4618× 10−1 3.5385× 1011

δ = 10−4,m1 = 11 2.7753× 10−5 4.4286× 10−1 3.4662× 10−1 3.5429× 1011

δ = 10−5,m1 = 11 1.9153× 10−5 4.4343× 10−1 3.4706× 10−1 3.5475× 1011

δ = 10−4,m1 = 5 5.3409× 10−5 4.4321× 10−1 3.4689× 10−1 3.5457× 1011

δ = 10−4,m1 = 21 1.8045× 10−5 4.4365× 10−1 3.4723× 10−1 3.5492× 1011
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Figure 7.6: Velocity set {−3,−1, 0, 1, 3}, (a) LBGK vs (b) Smooth limiter 2 with
k3 = 2.0 and δ = 1.5.
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Figure 7.7: Velocity set {−3,−1, 0, 1, 3}, (a) LBGK with no limiter, and Smooth
limiter 2 with (b) k3 = 1.0, δ = 1.0, (c) k3 = 2.0, δ = 1.5, (d) k3 = 2.0, δ = 2.0, (e)
k3 = 3.0, δ = 2.0.
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Figure 7.8: Velocity set {−3,−1, 0, 1, 3}, (a) LBGK vs (b) Median limiter with
m1 = 11 and δ = 10−4.
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Figure 7.9: Velocity set {−3,−1, 0, 1, 3}, (a) LBGK with no limiter, and Median
limiter with (b) m1 = 11, δ = 10−3, (c) m1 = 11, δ = 10−4, (d) m1 = 11, δ = 10−5,
(f) m1 = 5, δ = 10−4, and (e) m1 = 21, δ = 10−4.
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7.5.5 Maximum Median Limiter

Velocity set {−3,−1, 0, 1, 3} LBGK compares with maximum median filter

parameters average ∆S average U Mach Reynolds

none 7.8533× 10−4 4.4015× 10−1 3.4449× 10−1 3.5212× 1011

δ = 10−3,m2 = 11 6.2667× 10−5 4.4255× 10−1 3.4637× 10−1 3.5404× 1011

δ = 10−4,m2 = 11 3.2568× 10−5 4.4353× 10−1 3.4714× 10−1 3.5483× 1011

δ = 10−5,m2 = 11 1.8143× 10−5 4.4383× 10−1 3.4737× 10−1 3.5506× 1011

δ = 10−4,m2 = 5 5.5164× 10−5 4.4306× 10−1 3.4677× 10−1 3.5445× 1011

δ = 10−4,m2 = 21 1.8882× 10−5 4.4326× 10−1 3.4693× 10−1 3.5461× 1011

7.5.6 Mean Limiter

Velocity set {−3,−1, 0, 1, 3} LBGK compares with mean filter

parameters average ∆S average U Mach Reynolds

none 7.8533× 10−4 4.4015× 10−1 3.4449× 10−1 3.5212× 1011

δ = 10−2, k4 = 1 4.0609× 10−4 4.4032× 10−1 3.4462× 10−1 3.5225× 1011

δ = 10−3, k4 = 1 6.3290× 10−5 4.4330× 10−1 3.4696× 10−1 3.5464× 1011

δ = 10−4, k4 = 1 1.2743× 10−5 4.4352× 10−1 3.4713× 10−1 3.5482× 1011

δ = 10−5, k4 = 1 8.7041× 10−5 4.4393× 10−1 3.4745× 10−1 3.5514× 1011

δ = 10−3, k4 = 1.5 6.6680× 10−5 4.4320× 10−1 3.4688× 10−1 3.5456× 1011
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Figure 7.10: Velocity set {−3,−1, 0, 1, 3}, (a) LBGK vs (b) maximum median
limiter with m2 = 11 and δ = 10−4.
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Figure 7.11: Velocity set {−3,−1, 0, 1, 3}, (a) LBGK with no limiter, and max-
imum median limiter with (b) m2 = 11, δ = 10−3, (c) m2 = 11, δ = 10−4, (d)
m2 = 11, δ = 10−5, (f) m2 = 5, δ = 10−4, and (e) m2 = 21, δ = 10−4.
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Figure 7.12: Velocity set {−3,−1, 0, 1, 3}, (a) LBGK vs (b) mean limiter with
k4 = 1 and δ = 10−4.
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Figure 7.13: Velocity set {−3,−1, 0, 1, 3}, (a) LBGK with no limiter, and mean
limiter with (b) k4 = 1, δ = 10−2, (c) k4 = 1, δ = 10−3, (d) k4 = 1, δ = 10−4, (e)
k4 = 1, δ = 10−5, and (f) k4 = 1.5, δ = 10−3.
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Figure 7.14: velocity set {−5,−2, 0, 2, 5}, (a) LBGK vs (b)Ehrenfests’ with k1 = 5
and δ = 10−3.
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Figure 7.15: velocity set {−5,−2, 0, 2, 5}, Ehrenfests’ with δ = 10−4, (a) k1 = 10
and (b) k1 = 19.
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Figure 7.16: velocity set {−5,−2, 0, 2, 5}, (a) LBGK with no limiter, and Ehren-
fests’ with (b) k1 = 5, δ = 10−2, (c) k1 = 5, δ = 10−3, (d) k1 = 5, δ = 10−4, (e)
k1 = 10, δ = 10−4, and (f) k1 = 19, δ = 10−4.
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7.6 Velocity set {−5,−2, 0, 2, 5}

7.6.1 Ehrenfests’ Regularisation

velocity set {−5,−2, 0, 2, 5} LBGK compares with Ehrenfests’ limiter

parameters average ∆S average U Mach Reynolds

none 7.7357× 10−4 7.1514× 10−1 3.4811× 10−1 5.7211× 1011

δ = 10−2, k1 = 5 4.9367× 10−4 7.1136× 10−1 3.4627× 10−1 5.6909× 1011

δ = 10−3, k1 = 5 1.1570× 10−4 7.1324× 10−1 3.4718× 10−1 5.7059× 1011

δ = 10−4, k1 = 5 1.1570× 10−4 7.1324× 10−1 3.4718× 10−1 5.7059× 1011

δ = 10−4, k1 = 10 5.5118× 10−5 7.1362× 10−1 3.4737× 10−1 5.7090× 1011

δ = 10−4, k1 = 19 3.2546× 10−5 7.1365× 10−1 3.4738× 10−1 5.7092× 1011

7.6.2 Smooth Limiter 1

velocity set {−5,−2, 0, 2, 5} LBGK compares with smooth limiter 1

parameters average ∆S average U Mach Reynolds

none 7.7357× 10−4 7.1514× 10−1 3.4811× 10−1 5.7211× 1011

δ = 10−2, k2 = 0.5 2.5096× 10−4 7.1348× 10−1 3.4730× 10−1 5.7079× 1011

δ = 5.5× 10−2, k2 = 0.5 3.7111× 10−5 7.1374× 10−1 3.4743× 10−1 5.7100× 1011

δ = 10−1, k2 = 0.5 2.2322× 10−5 7.1384× 10−1 3.4748× 10−1 5.7107× 1011

δ = 10−2, k2 = 1 4.3749× 10−5 7.1395× 10−1 3.4753× 10−1 5.7116× 1011

δ = 2× 10−2, k2 = 1 2.3412× 10−5 7.1385× 10−1 3.4748× 10−1 5.7108× 1011

δ = 10−1, k2 = 1 1.5078× 10−5 7.1418× 10−1 3.4764× 10−1 5.7134× 1011
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Figure 7.17: velocity set {−5,−2, 0, 2, 5} (a) LBGK vs (b) Smooth limiter 1 with
k2 = 0.5 and δ = 5.5× 10−2.
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Figure 7.18: velocity set {−5,−2, 0, 2, 5} (a) LBGK with no limiter, and Smooth
limiter 1 with (b) k2 = 0.5, δ = 10−2, (c) k2 = 0.5, δ = 5.5× 10−2, (d) k2 = 0.5, δ =
10−1, (e) k2 = 1, δ = 10−2, (f) k2 = 1, δ = 2× 10−2, and (g) k2 = 1, δ = 10−1.
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7.6.3 Smooth Limiter 2

velocity set {−5,−2, 0, 2, 5} LBGK compares with Smooth limiter 2

parameters average ∆S average U Mach Reynolds

none 7.7357× 10−4 7.1514× 10−1 3.4811× 10−1 5.7211× 1011

δ = 1, k3 = 1 3.6927× 10−5 7.1510× 10−1 3.4809× 10−1 5.7208× 1011

δ = 1.5, k3 = 2 2.5208× 10−5 7.1376× 10−1 3.4744× 10−1 5.7101× 1011

δ = 2, k3 = 2 3.1184× 10−5 7.1390× 10−1 3.4751× 10−1 5.7112× 1011

δ = 2, k3 = 3 2.1221× 10−5 7.1353× 10−1 3.4733× 10−1 5.7083× 1011

7.6.4 Median Limiter

velocity set {−5,−2, 0, 2, 5} LBGK compares with Median filter

parameters average ∆S average U Mach Reynolds

none 7.7357× 10−4 7.1514× 10−1 3.4811× 10−1 5.7211× 1011

δ = 10−3,m1 = 11 1.2370× 10−4 7.1537× 10−1 3.4822× 10−1 5.7230× 1011

δ = 10−4,m1 = 11 4.0581× 10−5 7.1415× 10−1 3.4763× 10−1 5.7132× 1011

δ = 10−5,m1 = 11 3.4737× 10−5 7.1367× 10−1 3.4740× 10−1 5.7094× 1011

δ = 10−4,m1 = 5 1.6755× 10−4 7.1374× 10−1 3.4743× 10−1 5.7099× 1011

δ = 10−4,m1 = 21 3.9443× 10−5 7.1360× 10−1 3.4736× 10−1 5.7088× 1011
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Figure 7.19: velocity set {−5,−2, 0, 2, 5}, (a) LBGK with no limiter vs (b) Smooth
limiter 2 with k3 = 2 and δ = 1.5.
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Figure 7.20: velocity set {−5,−2, 0, 2, 5}, (a) LBGK with no limiter, and Smooth
limiter 2 with (b) k3 = 1.0, δ = 1.0,(c) k3 = 2.0, δ = 1.5 (d) k3 = 2.0, δ = 2.0, and
(e) k3 = 3.0, δ = 2.0.

105



0 0.2 0.4 0.6 0.8 1

0.5

1

(a)

x

ρ

0 0.2 0.4 0.6 0.8 1

0.5

1

(b)

x

ρ

0 0.2 0.4 0.6 0.8 1
0

0.5

1

x

U

0 0.2 0.4 0.6 0.8 1
0

0.5

1

x
U

0 20 40 60 80
138

138.5

139

t

S

0 20 40 60 80
138

139

140

t

S

0 20 40 60 80
0

0.5

1

t

∆
S

0 20 40 60 80
0

0.05

0.1

t

∆
S

0 0.5 1 1.5 2 2.5

x 10
−3

5

10

15

∆S

N

0 0.5 1 1.5 2 2.5

x 10
−3

5

10

15

∆S

N

Figure 7.21: velocity set {−5,−2, 0, 2, 5}, (a) LBGK vs (b) Median limiter with
m1 = 11 and δ = 10−4.
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Figure 7.22: velocity set {−5,−2, 0, 2, 5}, (a) LBGK with no limiter, and Median
limiter with (b) m1 = 11, δ = 10−3, (c) m1 = 11, δ = 10−4, (d) m1 = 11, δ = 10−5,
(f) m1 = 5, δ = 10−4, and (e) m1 = 21, δ = 10−4.
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7.6.5 Maximum Median Limiter

velocity set {−5,−2, 0, 2, 5} LBGK compares with maximum median filter

parameters average ∆S average U Mach Reynolds

none 7.7357× 10−4 7.1514× 10−1 3.4811× 10−1 5.7211× 1011

δ = 10−3,m2 = 11 1.5030× 10−4 7.1269× 10−1 3.4692× 10−1 5.7016× 1011

δ = 10−4,m2 = 11 7.6178× 10−5 7.1334× 10−1 3.4724× 10−1 5.7067× 1011

δ = 10−5,m2 = 11 6.5442× 10−5 7.1385× 10−1 3.4748× 10−1 5.7108× 1011

δ = 10−4,m2 = 5 1.6759× 10−4 7.1385× 10−1 3.4748× 10−1 5.7108× 1011

δ = 10−4,m2 = 21 3.8228× 10−5 7.1333× 10−1 3.4723× 10−1 5.7066× 1011

7.6.6 Mean Limiter

velocity set {−5,−2, 0, 2, 5} LBGK compares with mean filter

parameters average ∆S average U Mach Reynolds

none 7.7357× 10−4 7.1514× 10−1 3.4811× 10−1 5.7211× 1011

δ = 10−2, k4 = 1 4.9693× 10−4 7.1277× 10−1 3.4696× 10−1 5.7022× 1011

δ = 10−3, k4 = 1 6.9997× 10−5 7.1323× 10−1 3.4718× 10−1 5.7059× 1011

δ = 10−4, k4 = 1 1.8258× 10−5 7.1406× 10−1 3.4759× 10−1 5.7125× 1011

δ = 10−5, k4 = 1 1.5120× 10−5 7.1440× 10−1 3.4775× 10−1 5.7152× 1011

δ = 10−3, k4 = 1.5 6.7438× 10−5 7.1376× 10−1 3.4744× 10−1 5.7101× 1011
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Figure 7.23: velocity set {−5,−2, 0, 2, 5}, (a) LBGK vs (b) maximum median
limiter with m2 = 11 and δ = 10−4.
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Figure 7.24: velocity set {−5,−2, 0, 2, 5}, (a) LBGK with no limiter, and max-
imum median limiter with (b) m2 = 11, δ = 10−3, (c) m2 = 11, δ = 10−4, (d)
m2 = 11, δ = 10−5, (f) m2 = 5, δ = 10−4, and (e) m2 = 21, δ = 10−4.
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Figure 7.25: velocity set {−5,−2, 0, 2, 5}, (a) LBGK vs (b) mean limiter with
k4 = 1 and δ = 10−4.
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Figure 7.26: velocity set {−5,−2, 0, 2, 5}, (a) LBGK with no limiter, and mean
limiter with (b) k4 = 1, δ = 10−2, (c) k4 = 1, δ = 10−3, (d) k4 = 1, δ = 10−4, (e)
k4 = 1, δ = 10−5, and (f) k4 = 1.5, δ = 10−3.
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Figure 7.27: velocity set {−7,−3, 0, 3, 7}, (a) LBGK vs (b)Ehrenfests’ with k1 = 5
and δ = 10−4.
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Figure 7.28: velocity set {−7,−3, 0, 3, 7}, Ehrenfests’ with δ = 10−4, (a) k1 = 10
and (b) k1 = 19.
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Figure 7.29: velocity set {−7,−3, 0, 3, 7}, (a) LBGK with no limiter, and Ehren-
fests’ with (b) k1 = 5, δ = 10−3, (c) k1 = 5, δ = 10−4, (d) k1 = 5, δ = 10−5, (e)
k1 = 10, δ = 10−5, and (f) k1 = 19, δ = 10−5.
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7.7 Velocity Set {−7,−3, 0, 3, 7}

7.7.1 Ehrenfests’ Regularisation

velocity set {−7,−3, 0, 3, 7} LBGK compares with Ehrenfests’ limiter

parameters average ∆S average U Mach Reynolds

none 7.6042× 10−4 9.7176× 10−1 3.4664× 10−1 7.7741× 1011

δ = 10−3, k1 = 5 1.7489× 10−4 9.7029× 10−1 3.4611× 10−1 7.7623× 1011

δ = 10−4, k1 = 5 1.7489× 10−4 9.7029× 10−1 3.4611× 10−1 7.7623× 1011

δ = 10−5, k1 = 5 1.7489× 10−4 9.7029× 10−1 3.4611× 10−1 7.7623× 1011

δ = 10−5, k1 = 10 9.0613× 10−5 9.7373× 10−1 3.4734× 10−1 7.7899× 1011

δ = 10−5, k1 = 19 5.3942× 10−5 9.7469× 10−1 3.4768× 10−1 7.7975× 1011

7.7.2 Smooth Limiter 1

velocity set {−7,−3, 0, 3, 7} LBGK compares with smooth limiter 1

parameters average ∆S average U Mach Reynolds

none 7.6042× 10−4 9.7176× 10−1 3.4664× 10−1 7.7741× 1011

δ = 10−2, k2 = 0.5 3.1860× 10−4 9.7223× 10−1 3.4680× 10−1 7.7779× 1011

δ = 5.5× 10−2, k2 = 0.5 6.1610× 10−5 9.7436× 10−1 3.4756× 10−1 7.7949× 1011

δ = 10−1, k2 = 0.5 3.6085× 10−5 9.7424× 10−1 3.4752× 10−1 7.7940× 1011

δ = 10−2, k2 = 1 8.3530× 10−5 9.7265× 10−1 3.4695× 10−1 7.7812× 1011

δ = 2× 10−2, k2 = 1 4.0028× 10−5 9.7422× 10−1 3.4751× 10−1 7.7937× 1011

δ = 10−1, k2 = 1 2.2998× 10−6 9.7416× 10−1 3.4749× 10−1 7.7933× 1011
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Figure 7.30: velocity set {−7,−3, 0, 3, 7},(a) LBGK vs (b) Smooth limiter 1 with
k2 = 0.5 and δ = 5.5× 10−2.
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Figure 7.31: velocity set {−7,−3, 0, 3, 7}, (a) LBGK with no limiter, and Smooth
limiter 1 with (b) k2 = 0.5, δ = 10−2, (c) k2 = 0.5, δ = 5.5× 10−2, (d) k2 = 0.5, δ =
10−1, (e) k2 = 1, δ = 10−2, (f) k2 = 1, δ = 2× 10−2, and (g) k2 = 1, δ = 10−1.
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7.7.3 Smooth Limiter 2

velocity set {−7,−3, 0, 3, 7} LBGK compares with Smooth limiter 2

parameters average ∆S average U Mach Reynolds

none 7.6042× 10−4 9.7176× 10−1 3.4664× 10−1 7.7741× 1011

δ = 1, k3 = 1 4.3463× 10−5 9.7359× 10−1 3.4729× 10−1 7.7887× 1011

δ = 1.5, k3 = 2 2.8319× 10−5 9.7468× 10−1 3.4768× 10−1 7.7974× 1011

δ = 2, k3 = 2 3.2335× 10−5 9.7383× 10−1 3.4737× 10−1 7.7906× 1011

δ = 2, k3 = 3 2.8555× 10−5 9.7352× 10−1 3.4726× 10−1 7.7882× 1011

7.7.4 Median Limiter

velocity set {−7,−3, 0, 3, 7} LBGK compares with Median filter

parameters average ∆S average U Mach Reynolds

none 7.6042× 10−4 9.7176× 10−1 3.4664× 10−1 7.7741× 1011

δ = 10−3,m1 = 11 1.5234× 10−4 9.7158× 10−1 3.4657× 10−1 7.7726× 1011

δ = 10−4,m1 = 11 6.1560× 10−5 9.7432× 10−1 3.4755× 10−1 7.7945× 1011

δ = 10−5,m1 = 11 5.7121× 10−5 9.7366× 10−1 3.4731× 10−1 7.7893× 1011

δ = 10−4,m1 = 5 2.7783× 10−5 9.7022× 10−1 3.4609× 10−1 7.7619× 1011

δ = 10−4,m1 = 21 4.5741× 10−5 9.7478× 10−1 3.4771× 10−1 7.7983× 1011
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Figure 7.32: velocity set {−7,−3, 0, 3, 7}, (a) LBGK vs (b) Smooth limiter 2 with
k3 = 2 and δ = 1.5.
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Figure 7.33: velocity set {−7,−3, 0, 3, 7}, (a) LBGK with no limiter, and Smooth
limiter 2 with (b) k3 = 1.0, δ = 1.0, (c) k3 = 2.0, δ = 1.5, (d) k3 = 2.0, δ = 2.0 (e)
k3 = 3.0, δ = 2.0.
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Figure 7.34: velocity set {−7,−3, 0, 3, 7}, (a) LBGK vs (b) Median limiter with
m1 = 11 and δ = 10−4.
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Figure 7.35: velocity set {−7,−3, 0, 3, 7}, (a) LBGK with no limiter, and Median
limiter with (b) m1 = 11, δ = 10−3, (c) m1 = 11, δ = 10−4, (d) m1 = 11, δ = 10−5,
(f) m1 = 5, δ = 10−4, and (e) m1 = 21, δ = 10−4.
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7.7.5 Maximum Median Limiter

velocity set {−7,−3, 0, 3, 7} LBGK compares with maximum median filter

parameters average ∆S average U Mach Reynolds

none 7.6042× 10−4 9.7176× 10−1 3.4664× 10−1 7.7741× 1011

δ = 10−3,m2 = 11 2.2376× 10−4 9.7113× 10−1 3.4641× 10−1 7.7690× 1011

δ = 10−4,m2 = 11 1.3657× 10−4 9.7215× 10−1 3.4677× 10−1 7.7772× 1011

δ = 10−5,m2 = 11 1.2659× 10−5 9.7314× 10−1 3.4713× 10−1 7.7851× 1011

δ = 10−4,m2 = 5 2.8124× 10−4 9.7065× 10−1 3.4624× 10−1 7.7652× 1011

δ = 10−4,m2 = 21 6.3525× 10−5 9.7447× 10−1 3.4760× 10−1 7.7958× 1011

7.7.6 Mean Limiter

velocity set {−7,−3, 0, 3, 7} LBGK compares with mean filter

parameters average ∆S average U Mach Reynolds

none 7.6042× 10−4 9.7176× 10−1 3.4664× 10−1 7.7741× 1011

δ = 10−2, k4 = 1 5.3791× 10−4 9.7204× 10−1 3.4673× 10−1 7.7763× 1011

δ = 10−3, k4 = 1 7.1116× 10−5 9.7265× 10−1 3.4695× 10−1 7.7812× 1011

δ = 10−4, k4 = 1 2.4692× 10−5 9.7556× 10−1 3.4799× 10−1 7.8045× 1011

δ = 10−5, k4 = 1 2.2553× 10−5 9.7575× 10−1 3.4806× 10−1 7.8060× 1011

δ = 10−3, k4 = 1.5 6.8374× 10−5 9.7206× 10−1 3.4674× 10−1 7.7765× 1011
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Figure 7.36: velocity set {−7,−3, 0, 3, 7}, (a) LBGK vs (b) maximum median
limiter with m2 = 11 and δ = 10−4.
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Figure 7.37: velocity set {−7,−3, 0, 3, 7}, (a) LBGK with no limiter, and max-
imum median limiter with (b) m2 = 11, δ = 10−3, (c) m2 = 11, δ = 10−4, (d)
m2 = 11, δ = 10−5, (f) m2 = 5, δ = 10−4, and (e) m2 = 21, δ = 10−4.
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Figure 7.38: velocity set {−7,−3, 0, 3, 7}, (a) LBGK vs (b) mean limiter with
k4 = 1 and δ = 10−4.
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Figure 7.39: velocity set {−7,−3, 0, 3, 7}, (a) LBGK with no limiter, and mean
limiter with (b) k4 = 1, δ = 10−2, (c) k4 = 1, δ = 10−3, (d) k4 = 1, δ = 10−4 (e)
k4 = 1, δ = 10−5, and (f) k4 = 1.5, δ = 10−3.
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Chapter 8

Conclusion and Future Work

For the problem in which the LBM suffers the stability deficiencies for high

Reynolds number, in this thesis, we have provided some solutions by using nonequi-

librium entropy. These nonequilibrium entropy limiters are tested in shock tube.

The performance of these limiters for LBGK in comparison with LBGK only shows

that they are much more effective in removing spurious oscillations in the presence

of sharp gradients. In this chapter, the conclusions are drawn and some future

work will be discussed.

8.1 Conclusion

Flux limiters schemes combine high resolution schemes in areas with smooth fields

and first order schemes in areas with sharp gradients. In other words, flux limiters

are based on the choice between spurious oscillations in high order non-monotone

schemes and additional dissipation in first order schemes. The construction of all

the limiters is based on:

f → f ∗ + φ× (f − f ∗). (8.1)
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Notice that all the limiters do not change the macroscopic variables. In the fol-

lowing, the conclusion is summarized into five points.

1. How can one construct the nonequilibrium entropy limiters for LBM with

non-entropic quasiequilibria [44]? One of the solutions for this question is

to use Kullback entropy. For the given macroscopic variables, the Kullback

entropy reaches its maximum at the point f = f ∗ for both continuous and

discrete distributions. Therefore, if the quasiequilibrium f ∗ is nonentropic,

the Kullback entropy −SK(f) is used.

2. The weights are the bridge from continuous density to discrete distribution

fi. The values of hydrodynamic normalized weights are all positive and the

sum of the values of weights is equal to 1. Weights are additional variables.

3. The positive rule and Ehrenfests’ regularization offer localised corrections,

and they are very easy and computationally cheap. The positive rule is

based on a very simple concept: when the population is negative in a colli-

sion step, the positive rule enables the negative population to go back to the

positive boundary. The positive rule is enforced throughout the simulations

for LBGK both with and without limiters. The positive rule and the Ehren-

fests’ regularization provide a gentle transformation from big nonequilibrium

states to quasiequilibrium states without modifying any other distribution

states. The performance of Ehrenfests’ regularization with the five-velocity

sets for LBGK can effectively remove the spurious oscillations.

4. The two smooth limiters filter each nonequilibrium entropy. There are a

lot of options to build the function φ. These two limiters satisfy the first

property of the monotonic condition. The behavior of these two limiters for

LBGK is efficient to remove the big oscillations in both the shock and the
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post shock regions for all the velocity sets.

5. The smooth median entropy limiter, the maximum median entropy filter and

the mean entropy filter are all double monotonic filters. These three limiters

involve the local structure. The smooth median entropy limiter is a more

robust average than the mean entropy limiter, since a single non-important

value in a neighborhood does not influence the selection of median value

significantly. Furthermore, the median entropy filter does not wipe out the

sharp fronts completely in the shock region, as we can see from the figures

for all the five-velocity sets. For all these three limiters, the number of

neighbors involved also can effect the oscillations for the both shock and

post shock regions, especially they can remove the sharp fronts when the

number of neighbors involved is big. The smooth median entropy limiter

and the maximum median entropy limiter have quite similar performance

apart from the sharp fronts in the shock regions.

As mentioned before, there is always a tradeoff between spurious oscillations

in high order non-monotone schemes and additional dissipation in the first order

schemes. This concept originally came from S.K.Godunov whom illustrated that

a linear scheme for a PDE could not, at the same time, be monotone and sec-

ond order accurate. Therefore, the shock and post-shock regions should not be

extremely smooth, which it means that too much dissipation has brought up by

the limiters. Consequently the Reynolds number decreases, i.e. the kinematic vis-

cosity which we initially defined as a constant value 10−9 will change to a bigger

value. When too much dissipation is brought up by the limiters, the simulation

will lose accuracy. On the other hand, when a little dissipation is brought up, the

spurious oscillations cannot be removed effectively. The median entropy limiter

is preferred, since it works in a way such that it removes the spurious oscillations
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effectively for both shock and post-shock regions and at the same time does not

introduce too much dissipation.

8.2 Future Work

Although the limiters introduced here can remove the spurious oscillations effec-

tively in 1D shock tube simulations with three-velocity sets and five-velocity sets,

they still need to be tested in higher dimensions and much wider range of veloc-

ity sets. All the 6 limiters can be applied in 2D and 3D dimensions as well, for

example, lid driven cavity, and square passing cylinder.

For many researchers, the simulation of low kinematic viscosity flows, i.e. high

Reynolds number, is not easy to obtain stable and accurate solutions. As the

Reynolds number increases, the less accurate and unstable of the simulation would

be. The nonequilibrium entropy limiters provide a way to deal with high Reynolds

number. The concept of constructing the nonequilibrium entropy limiters are

reasonably simple, so the applications of these limiters can be widely adapted to

different areas of research. There is a big range of applications can be used such

as airfoil for NACA.

There are also other ways of constructing nonequilibrium entropy limiters ac-

cording to ones interests for the research.
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