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Abstract

Peer-to-Peer (P2P) networks provide an alternative approach to dis-
tributed systems, relaxing the requirements for dedicated servers from
the client-server model. A P2P network operates as an overlay at ap-
plication layer, on top of the physical network. In the early years of
P2P, most applications lacked mechanisms for enforcing a particular
overlay topology. This resulted in inefficient communication schemes,
such as flooding or the maintenance of large numbers of connections
with other peers. However, researchers and practitioners have realized
the importance of constructing and maintaining appropriate overlay
topologies for efficient and robust P2P systems.

P2P-based Voice over IP (VoIP) networks, such as Skype, distinguish
client peers from super peers. This results in a two-level hierarchy:
Peers with powerful CPU, more free memory and greater bandwidth
take on server-like responsibilities and provide services to a set of client
peers. But building and maintaining a super peer-based overlay topol-
ogy is not easy. In particular, the uncontrollable and unpredictable
behaviour of peers results in volatile overlay topologies. This makes it
challenging to design reconfigurable and stable networks that provide
good Quality of Service (QoS). Various solutions have been proposed.
However, peer dynamics, scale and complexity make it hard and ex-
pensive to validate them by testing. Simulation can help to validate
network designs and protocols, but most existing approaches cannot
cope with unbounded dynamic change of network topology.

We propose a new approach to the modelling and simulation of P2P
network reconfigurations using graph transformation, a visual rule
based formalism. Based on existing alternatives we classify network
design variations by means of a feature tree. Focussing on P2P VoIP
applications, we develop a structural model and transformation rules
to compare alternative solutions to the problems of selection and con-
nection to super peers, peer promotion, and load balancing, evaluating
their QoS properties. We validate the model using statistics from the
real Skype network and experimental data in the literature.
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Chapter 1

Introduction

The Internet has passed through different stages of evolution. Over it’s 40

years [169] of history there is a dramatic shift from static HTML pages, via

client-server-based web applications, to multimedia and file sharing [58]. Most of

the current sharing of voice, multimedia and files operates in Peer-to-Peer (P2P)

style [54].

The popularity of P2P in the Internet community is evident through appli-

cations like Skype [149], Gnutella [48], KaZaA [96] and SETI@Home [6]. P2P

networks are the subject of academic research and industrial efforts such as the

P2P Working Group led by companies such as Intel, HP, Sony [107].

P2P networks can comprise hundreds of millions of peers with individual re-

sources and capabilities. Peers are characterised by a high degree of dynamism.

With nodes joining or leaving the network, their behaviour is difficult to pre-

dict. This makes it hard to design flexible and stable systems that can operate

effectively with minimum cost.

In P2P, neither a central authority nor a fixed communication topology can be
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employed to control various components. Instead, a dynamically changing overlay

topology is maintained on top of the physical Internet. The overlay topology is

maintained by the peers and is created dynamically based on the requirements

of the application [111], such as connectivity, indexing and routing, availability,

scalability, fault-tolerance and load balancing [33].

A vital tool of P2P systems is the overlay network architecture supplied by

the embedded protocols, mechanisms and algorithms. Most P2P applications on

the Internet lack mechanisms for enforcing an efficient overlay topology, resulting

in the adoption of communication schemes such as flooding [111]. Several aca-

demic and industrial research projects have recognised the importance of select-

ing, constructing and maintaining appropriate topologies for the implementation

of efficient and robust P2P systems [32; 135; 186].

However, designing an overlay network is a challenging task. A number of

requirements have to be met for the network to be deployed without unduly di-

minishing the resources of the underlying Internet. It has been observed that

most overlay designs stress specific requirements while ignoring other important

ones. Such narrowly targeted approaches are inflexible in adapting to emerging

requirements, which will require redesign [33]. This can be observed by analysing

a well-known application like Guntella, which offers a non-hierarchical P2P ap-

proach with minimal maintenance cost. However, the employed flooding mech-

anism used for querying makes it unscalable [33] and causes system breakdown

when the size is increased. Keeping in view the flaws in the Gnutella protocol,

two approaches have been followed by P2P network designers.

The first approach is based on distributed hash table (DHTs) that index items

to be mapped on the overlay network [33]. Peers are declared by Globally Unique
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Identifiers. DHT-based systems aim to provide efficient routing mechanisms, but

the cost of the routing grows logarithmically with the size of the overlay network

for most of the proposed approaches. Although this increases the robustness of

the overlay network, such a large number may not be feasible for peers with low

capabilities. Further, this solution may became inefficient in scenarios where high

peer dynamism exists.

The second approach introduces super peer architectures, which are the focus

of this thesis. Nodes that are faster, more reliable and have more memory take

on server-like responsibilities and provide services to ordinary peers. The super-

peer paradigm allows decentralised networks to run efficiently by exploiting peer

heterogeneity for the distribution of load [111]. The usefulness of the super-

peer approach is not limited to file-sharing systems, but some popular VoIP

applications such as Skype [53; 173] are also using this approach. Distributed

games [78], Grid Management [65] and distributed storage are other applications

of this paradigm. The approach overcomes some of the flaws of the client-server

model, such as single point of failure. Building and maintaining a super peer-

based overlay topology is not straightforward. Rapid architectural changes in

both ordinary and super nodes require robust and efficient protocols, capable of

self-reconfiguring the overlay topology in spite of both controlled and unexpected

events, like the joining, leaving or crashing of nodes. In case the P2P network

is used for VoIP traffic, it needs to reconfigure fast enough so that Quality of

Service (QoS) is not affected [87].

A basic drawback of this approach is the requirement for super peers [33]. Su-

per peer failures are more severe than those of normal peers as they increase the

reconfiguration effort in the architecture. Super peers may also become perfor-
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mance bottlenecks, if there is no sufficient number or unstable peers are promoted

to the super peer-role.

P2P networks are still in their infancy, with new applications and protocols

emerging frequently. However, it is difficult to evaluate them before their deploy-

ment on a large scale. Therefore they are often short-lived and disappear as fast

as they emerge. One of the reasons behind this is unsatisfactory performance.

As the list of failed P2P systems and protocols grows, the need for evaluation

increases [161]. Testing a system before its deployment is common practice in

software engineering. There are two main possible streams: Experimentation

with the actual system or with a model of the system [161]. Testing a running

P2P network or protocol in a realistic environment is often not feasible. However,

it is possible to simulate a model of the network to evaluate it in a controlled

environment

1.1 Problem Statement

Availability and reliability of P2P networks is gaining importance as their size

and demand increase. Most current research in P2P networks is based on the

cooperative model. It is considered that, although there can be rogue peers in

a system, most of the peers are trustworthy and follow the same protocol. But

this assumption does not always hold true, especially when the network is large,

dynamic and distributed, such as in a super-peer based P2P VoIP network.

Overlay networks are subject to functional requirements like connectivity and

routing and non functional requirements like performance and reliability. The

problem in an open network is that peers and super peers belong to end users,
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and without any centralized authority both can join or leave the network as

they wish. A super peer may behave selfishly and drop messages which it was

supposed to forward to conserve bandwidth or other resources. The selection of

stable peers for promotion to super peer and super peer selection by clients are

other notable events that affect the health of the super peer topology. Similarly,

when a super peer switches its role to peer-only, as a result of local recovery or

load balancing, the dependent peers need to find another host quickly enough

so that QoS is not unduly affected. Said problems require for their solution

architectural changes and, if the network fails to reconfigure in time, may result

in loss of communication.

The dynamic nature of peers and super peers poses several questions for the

design of network protocols:

• Which peer should be promoted to the role of super peer?

• When should a super peer be demoted to the role of peer?

• Which super peer should a new client peer connect to?

• Can we predict that a super peer will be capable of providing VoIP services

to all connected peers?

• What shall we do when a super peer selfishly leaves the network?

• How can the load on super peers be balanced?

The performance of a protocol can be measured by answering the following

questions:
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• How many clients are provided with a good network connection through

super peer?

• How many clients are currently linked to super peers?

• How many are waiting to connect?

• What is the number of peers and super peers, and their ratio?

Several approaches have been proposed to address issues of promotion, selec-

tion of suitable super peers and effects of peer dynamics. However, the complexity

of P2P networks makes it difficult to validate these solutions. Geographic dis-

tribution of peers, network dynamics, and lack of central control make testing

impossible. Simulation of network reconfigurations is not easy, as existing simu-

lators provide limited support for networks with dynamic topology [61; 87; 113].

We propose to model complex network reconfigurations in P2P VoIP net-

works by graph transformation systems, a visual rule-based formalism, and use

a new approach to the stochastic simulation of such systems to evaluate the

performance of network protocols. We consider the network architecture as a

graph in which nodes are represented by graph vertices and graph edges repre-

sent network connections. Reconfiguration can naturally be modelled by graph

transformation [61; 85; 87]. Stochastic simulation techniques for validation have

been developed in [86; 87]. The aim is to model different protocols in order to

evaluate and improve their QoS properties with focus on VoIP applications.
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1.2 Modelling and Simulation Requirements

P2P VoIP networks such as Skype [97] operate on unstructured topologies distin-

guishing client peers from super nodes. The Skype network consists of millions

of clients resulting in a high degree of peer dynamics, with a continuous flow of

clients going online, offline and crashing. Another crucial consideration is the

intrinsic heterogeneity of physical capabilities, which aggravates the problem of

workload distribution. In the following, we discuss some of the requirements that

are essential for modelling, simulation and evaluation of super-peer based P2P

VoIP networks [31; 113; 114; 138; 159].

1. Promotion, Demotion and Reconnection

Super peers are selected from the existing pool of clients which meet the

requirement for this role. Promotion is not a user choice but maintained

by the protocol architecture. Similarly, if a super peer no longer meets

the requirements of this role, it should be demoted and client only status

restored. When super-peer status is attained, new peer connection requests

will start to arrive until no new connection can be accepted. Similarly,

when the role is switched to client-only, existing dependent client peers

will reconfigure to connect to a new super peer. This results in a dynamic

topology where clients switch their role and connections in the network.

2. Model of Churn

The dynamics of peer participation, or churn, are an inherent property

of P2P systems and critical for their design and evaluation. Accurately

characterizing churn requires precise and unbiased information about the
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arrival and departure of peers, which is challenging to acquire. Churn in a

Skype-like VoIP network follows two possible mechanisms. Peers and super

peers can leave and join the system either cooperatively using the proper

exit procedure, or in a selfish manner, such as by crashing. The cooperative

exit will enable the dependent client and super peers to retract their overlay

connection or dependency link. In the event of selfish exit, dependent and

super peers need to detect and reconfigure fast enough for new connections

to be established.

3. Alternative Solutions

There are a number of recommendations and algorithms for the selection

of peers for promotion. Some solutions concentrate on requirements, such

as promotion based on bandwidth, memory etc., whereas others suggest

promoting as many super peers as possible. Apart from promotion, the

selection of a suitable super peer by a client is another important concern.

A number of approaches have been proposed, including random selection,

latency-based selection, local super peer selection, and stable super peer

selection. We require the approach to be flexible enough to evaluate and

compare these solutions.

4. User Behaviour

The approach should be able to model the application layer and user be-

haviour. Modelling user behaviour is essential, as distribution of peers and

local user control over the services they contribute result in a highly dy-

namic network. Selfish user behaviour makes the P2P recovery process

more vulnerable, especially when a user leaves the network by crashing his
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system. In this case, neither probe messages are generated nor time is given

to dependent hosts to recover.
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5. Simulation Model

In order to model realistic P2P VoIP, the simulator should support stochas-

tic modelling. This will enable us to generate randomly parameters like

bandwidth, memory, type of Internet connection and background traffic.

These random events will create a controlled environment close to the real

networks.

6. Scalability

The approach should be able to simulate peers and super peers in hun-

dreds or more, in order to provide convincing results. In order to observe

meaningful intervals the tool must be able to run long simulations.

7. Statistics

The study of the literature shows that most of the simulation tools lack

flexibility in terms of gathering and displaying results. The usability of an

approach depends on the ability to provide results with minimal effort, to

include new parameters and support statistical tests, such as confidence

intervals.

1.3 Contributions

As discussed in the previous sections, this thesis addresses the challenges in mod-

elling and simulation of overlay networks for large-scale, dynamic and heteroge-

neous P2P systems. Our contributions are summarized below.
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1. P2P VoIP Protocol Variations as Feature Diagram

The first step in modelling a system is to analyze its requirements. By

investigating relevant case study applications such as Skype, a rich set of

features have been identified and modelled using feature diagrams (Chap-

ter 4). These features provide input for the development of a valid model.

Further, we identify a plethora of existing solutions proposed for super-

peer selection, promotion and load balancing. Feature diagrams are used

to model these alternative solutions.

2. Modelling and Stochastic Analysis Approach

In this thesis, we have proposed a new approach for the stochastic modelling

and analysis of super-peer based P2P VoIP networks. The approach is

based on graph transformations, a visual-rule based formalism that has

been supported by facilities for stochastic simulation.

3. Metamodel and Rules for Super Peer-based P2P VoIP

This thesis also proposes a new visual model for churn and reconfiguration in

P2P VoIP protocols, following the requirements stated in Section 1.2. The

newly developed approach consists of a metamodel for super peer-based P2P

VoIP and transformation rules describing different protocols (Chapter 6).

4. Mapping to Executable Simulation Model

We have converted the metamodel into a VIATRA2 model space and the

rules into VIATRA2 transformation rules (Chapter 7 and Appendix B). The

aim is to convert the model and transformation rules into an executable form

for stochastic simulation.
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5. Analysis of Protocol Variations by Simulation

We have evaluated the alternative solutions to super peer selection, pro-

motion, load balancing, etc., using stochastic simulation. The results are

compared to enable the designer to look into various alternatives in a single

model and rank their performance (Chapter 8).

6. Proposal for Improved Protocol

Based on the evaluation, a custom-built protocol has been proposed, which

performs better than the parent protocols (Chapter 8).

7. Model Validation and Threats to Validity

The model is validated using animation, event validation and a comparison

to the real system (Chapter 9). Threats to the validity of the simulation

results have been identified and analysed (Chapter 9).

1.4 Outline of the Thesis

The contents of the dissertation are divided into eleven chapters. Following this

introductory chapter.

Chapter 2

Introduces the concepts of graph transformation used for modelling P2P VoIP

networks. We also explain the algorithm underlying the simulation tool.

Chapter 3

Discusses P2P networks and their evolution from structured to unstructured and

super-peer architectures. It also provides an overview of popular P2P applications

running over the internet.

12



Chapter 4

Discusses P2P VoIP networks and identifies the core features of their operation.

Alternative solutions to the problems of super-peer promotion, selection, and load

balancing, etc., are modelled using feature diagrams.

Chapter 5

Describes in more detail the case study of Skype including Skype’s network ar-

chitecture, operation, and statistics. It provides a basis for the model and their

validation.

Chapter 6

Presents a structural model of a Skype-like P2P VoIP protocol. The model is

based on the discussion of the case study and the design variations studied before.

It will be given in the form of a metamodel supporting the design alternatives.

In this chapter, we also introduce a set of transformation rules in graphical form

based on the case study in Chapter 5. The transformation rules present a com-

plete view of the VoIP protocol and associated variations as discussed in Chapter

4.

Chapter 7

Discusses the operation and use of the Graph Based Stochastic Simulator

(GraSS). We provide an overview on how this simulator could be used. This

chapter also provides background on the conversion of rules to VIATRA2 and

details of confidence intervals. In the last part of this chapter, we discuss the

contribution of this thesis towards the development of GraSS. The metamodel

and the transformation rules presented in Chapter 6 are converted into their

representation inside the simulation tool.
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Chapter 8

Describes the simulation of the models and associated variations. This chapter

will use the feature model presented in Chapter 4 along with the model presented

in Chapter 6 and in its executable form in Chapter 7.

Chapter 9

Will validate the model, evaluate the approach and comment on the simulation

results. In this chapter, we also discuss threats to the validity of the results.

Chapter 10

Discuss related work including various alternatives proposed to cope with mod-

elling churn, peer promotion, demotion and reconnection. In the last part of this

chapter, we discus various simulation tools and their shortcomings. We conclude

this chapter by comparing existing approaches against the requirements of this

thesis.

Chapter 11

Concludes this thesis and provides directions for future research in this area.
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Chapter 2

Stochastic Graph Transformation

This chapter introduces the concepts of graph transformation used for modelling

P2P VoIP networks. We start by defining type and instance graphs, node type

inheritance, and attributed graphs. Our graph transformation systems consist of

rules transforming typed attributed graphs following the algebraic single pushout

approach. We explain stochastic graph transformation in this thesis based on

different probability distributions and illustrate the simulation algorithm used.
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2.1 Graphs

Graph transformation systems provide a language for manipulating graphs and

graph-based structures as they come about in representations of programming

language semantics, databases, object-oriented systems, and distributed systems.

Because of their formal, operational semantics these descriptions can be analyzed

as well as executed using suitable graph transformation tools.

In the literature, graph transformation approaches are broadly categorised

in two mathematical techniques: the set-theoretic approaches and the algebraic

approaches [56]. The difference is the definition of application of transformation

rules to the host graph. The algebraic approaches uses pushouts to model the

gluing of graphs. The double pushout approach proposed by Ehrig, Pfender

and Schneider in the early seventies [41] uses two gluing constructions to model

a graph transformation step. The singl-pushout approach (SPO) uses a single

pushout for modelling transformations. In this thesis, we will use the SPO.

Graphs are directed and can have parallel edges as well as loops. The following

definition is reproduced from [56].

Definition 2.1 (Graph).

A graph G = (V,E, src, tar) consists of a set V of nodes (also known as vertices),

a set E of edges, and two functions src, tar : E → V , the source and target

functions:

E
src ++
tar

44 V
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Definition 2.2 (Graph Morphism).

A graph morphism f : G→ H between graphs G and H is a pair of total functions

f = (fV : GV → HV , fE : GE → HE) preserving source and target, i. e., satisfying

srcH ◦ fE = fV ◦ srcG and tarH ◦ fE = fV ◦ tarG.

2.2 Type Graphs and Typing Morphisms

The simplest way to restrict the shape of a object is to specify a type for that

object. In graph transformation this is achieved by means of a type graph.

Definition 2.3 (Type Graph).

A type graph is a graph TG = (VTG, ETG, src, tar). An instance graph is a tuple

(G, type) of a graph G and morphism type : G→ TG

Type graphs can be presented by UML class diagram, as shown in Fig. 6.1.

Similarly, instance graphs can be represented by corresponding UML object di-

agrams as shown in Fig. 2.2. As per UML syntax, each node is labelled by an

identifier followed by a reference to its type in the type graph. Edge labels do

not contain any identifier but refer to the respective edge type only.

2.3 Node Type Inheritance

In this thesis, we are using inheritance to allow abstract node types analogous to

abstract classes. The definitions below are based on [12; 13].

Definition 2.4 (Type Graph with Inheritance).

A type graph with inheritance is a triple T̂G = (TG, I, A) consisting of a type

graph TG = (TGN , TGE, src, tar), a set I ⊆ TGE of inheritance edges, and a
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Figure 2.1: Type graph as UML class diagram

Figure 2.2: Instance graph as UML object diagram
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set A ⊆ TGN of abstract nodes. The subgraph TG|I = (TGN , I, src|I , tar|I) is

called inheritance graph. TG|I has to be acyclic. For each node type n ∈ TGN ,

the set of its subtypes, also called inheritance clan, is defined by clan(n) = {n′ ∈

TGN | ∃ path n′
∗−→ n in TG|I} where paths of length 0 are included, i. e., n ∈

clan(n).

Fig. 6.1 represents the type graph as a UML class diagram. The type graph

has one abstract node type Node and two subtypes SC and SN. The node type

Call is used to model calls. As this type is connected to the abstract node, both

SN and SC can use it. In the type graph we see that Node has three attributes

bandwidth, exit and chronos. Each subtype can adopt these attributes as well

as add a new local attribute if required. In Fig. 6.1 we see that SC has a locally

defined attribute firewall. The type graph also shows relation between SC and

SN, established through another node type LK. The type graph further shows

cardinality constraints between SC and SN to ensure that an SC can have only

one extended role of SN.

When defining instance graphs for type graphs with inheritance, we have to

allow instances of a subtype to have incoming or outgoing edges that are specified

for one of its supertypes. This type of inheritance-enabled typing is expressed

using a mapping, called clan morphism [12; 13].

Definition 2.5 (Clan Morphism). Given a type graph with inheritance

T̂G = (TG, I, A) with TG = (TGN , TGE, srcTG, tarTG) and a graph G =

(GN , GE, srcG, tarG); a clan morphism typeG : G → TG is a pair of functions

typeG = (typeN : GN → TGN , typeE : GE → TGE \ I) with:

• ∀e ∈ GE : typeN ◦ srcG(e) ∈ clan(srcTG ◦ typeE(e)) and
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• ∀e ∈ GE : typeN ◦ tarG(e) ∈ clan(tarTG ◦ typeE(e)).

If f : H → G is a graph morphism, then typeG ◦ f : H → TG is a clan

morphism, too [12]. With the help of clan morphisms, we can now provide a

more general definition of instance graphs respecting inheritance:

Definition 2.6 (Instance Graph).

Given a type graph with inheritance T̂G, a T̂G-typed instance graph 〈G, typeG〉

is a graph G equipped with a clan morphism typeG : G → TG. Simply we will

use G instead of 〈G, typeG〉 if the context reveals that we are considering instance

graphs.

Fig. 2.2 shows the instance graph. We see that two instances of abstract node

type Node have been linked with each other through another instance of node

type LK.

2.4 Attributes and Typed Attributed Graphs

Nodes can be enriched with attributes used to store additional information. As

in object-oriented languages, an attribute has a unique name and data value.

However, in the context of a type graph, we have to declare the attributes that

belong to a certain node type by a name followed by their data type. After

declaration, each node in the instance graph can store different values in the

attribute, but of similar data type. Further, the attributes also play an important

role in the application of GT rules. A rule will only be applied if a certain node

meets the attributes constraints of the rule. In the case study of this thesis, an SC
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will only be promoted to the extended role of SN if an SCs bandwidth attribute

has a value of more than 1.5 Mbps.

Typed attributed graphs and attributed graph transformations have been for-

mally defined in [42; 62]. In this thesis, we use the approach of [158]. The

definition of attributed graphs is reproduced from [158].

Definition 2.7 (Attributed Graph).

A graph G = (GN , GE, srcG, tarG) is attributed over a data node set A, if A ⊆ GN

and ∀e ∈ GE : srcG(e) /∈ A.

In this thesis, the set of possible values that can be assigned to attributes is

referred to as domain. The values belonging to the domain are partitioned into

disjoint sorts representing different basic data types.

Definition 2.8 (Domain). A domain Dom = (SN, V,X, sort) is a tuple with

a set SN of sort names, a set V of attribute values including a subset X ⊆ V

of variable names, and a function sort : V → SN associating every value and

variable with a sort.

Fig. 6.1 shows the type graph where the abstract Node type has three at-

tributes bandwidth, exit and chronos. The bandwidth is an integer attribute,

exit is a boolean attribute and chronos is of type T (Time).

As we want to declare node attributes in a type graph using sort names as

attribute values, type graphs are attributed over the set of sort names SN . To

formally define the attributed type graph, we use the definition by [158].

Definition 2.9 (Attributed Type Graph).
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Figure 2.3: Instance attributed graph

For a given domain Dom = (SN, V,X, sort), a Dom-attributed type graph is a

type graph with node inheritance T̂G = (TG, I, A) where TG is attributed over

SN .

The instance graphs of attributed type graphs are attributed over concrete

values and variables and respect the inherited attributes. In order to define

attributed instance graphs we use the definition from [158].

Definition 2.10 (Attributed Instance Graph).

Given a domain Dom = (SN, V,X, sort) and an Dom-attributed type graph T̂G,

an attributed instance graph is a T̂G-typed instance graph 〈G, typeG〉 with G at-

tributed over V and typeN(v) = sort(v) for all v ∈ V .

Fig. 2.3 shows an instance graph with three nodes types RS, SN and SC.

The type SC has inherited attributes bandwidth and exit, and a locally defined

attribute firewall. Further, this shows how different values are assigned to there

attributes.
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2.5 Graph Transformation Rules

Graph transformation rules consist of a left-hand side (LHS) and a right-hand

side (RHS) each. The left-hand side and right-hand side are instance graphs L

and R. The left-hand side represents the pre-conditions of the rule, whereas the

right-hand side represents its effects as post-conditions. It is important to note

that L and R may be typed by abstract types and their attributes may have

variables as values.

Whenever there is an occurrence of the left-hand side L in an instance graph

G that conform the typing and attribute values in L, this occurrence is also know

as match of L in G. If the rule is applied, the match of L is replaced by the graph

in R. In this event all those elements which are present in L, but are not present

in R, will be removed from the host graph.

Definition 2.11 (Graph Transformation Rule).

For a fixed domain Dom = (SN, V,X, sort), a graph transformation rule over

a Dom-attributed type graph T̂G is given by p = (L
r−→ R,NAC), where p =

(L
r−→ R,NAC) consists of a rule name p and graphs L,R attributed over V

such that L ∩R is well defined.

L represents the pattern of elements required for the application of the rule,

R represents the pattern used to replace the pattern selected as L. NAC is a set

nac = (N, n) with N being a graph and n : L→ N a graph morphism.

The diagram in Fig. 2.4 illustrates the definition. The arrows describe graph

morphisms and dashed arrows describe clan morphisms. N is the graph of a

negative application condition where N \ L represents the forbidden structure.

Fig. 2.5 depicts an example of a graph transformation rule. According to
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Figure 2.4: Algebraic constituents of a graph transformation rule

Figure 2.5: Graph Transformation Rule

its left-hand side L, it requires as pre-condition the existence of a node of type

SC and three other nodes of types RS, SN and LK. The rule further states the

attribute constraint that SC must have a current bandwidth value of more than

1.5 Mbps and the exit attribute is set to false. According to the right-hand side

R, applying this rule deletes the first LK-node, promotes SC to type SN and links

it with RS.
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Figure 2.6: Negative application condition

2.6 Negative Application Conditions

Until now we have discussed that the left-hand side L of a transformation rule

specifies which pattern has to be present in the instance graph in order to allow

their application. But sometimes we require that the rule should only be applied

if certain edges or nodes are not present in the instance graphs. In order to

cope with this situation, we add negative application conditions (NACs) to the

transformation rule [15; 57].

Fig. 2.5 depicts an example of a graph transformation rule with two negative

conditions. The edges or nodes crossed with a single line model the negative

conditions. The first condition makes sure that the SC is not linked with an

SN through a node LK. The second NAC make sure that the newly selected

SN is not linked with an SN. If these condition are evaluated as true and other

conditions, such as attribute constraints, are satisfied, then this rule will re-link

a disconnected SC with a new SN.
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2.7 Graph Transformations System

A graph transformation system (GTS) consists of a type graph, transformation

rules and a start graph. In this thesis, we follow the algebraic single pushout

approach (SPO) to graph transformation [56].

Definition 2.12 (Graph Transformation System (GTS)).

A graph transformation system G = 〈TG, P, π,G0〉 consists [91] of a type graph

TG, a set P of rule names, a function mapping each rule name p to a TG-typed

rule p = (L
r−→ R,NAC), and an initial TG-typed graph G0.

2.8 Stochastic Graph Transformation Systems

In order to reason stochastically about a GTS, we want to associate with each

rule a distribution function governing the timing of the application of the cor-

responding step. Thus, a stochastic graph transformation system (SGTS) is a

graph transformation system that associates distributions to rules. In this thesis

we support normal and exponential distributions.

We say that S = 〈G,F 〉 is a stochastic graph transformation system whenever

G is a GTS and F : P → (R → [0, 1]) is a function which associates with every

rule in G a continuous distribution function.

Our interest in stochastic graph transformation systems is closely associated

with their simulation, where the stochastic aspect is useful in order to resolve the

non-deterministic character of ordinary GTSs. We rely on standard notions of

stochastic process and discrete event system [23] for an intuitive presentation of

our approach. The behaviour of a stochastic GTS can be described as a stochastic
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process over continuous time, where reachable graphs form a discrete state space,

the application of transformation rules defines state transitions as instantaneous

events, and interevent times, determined by the application of transformation

rules, are dominated by continuous probability distributions. More precisely,

we associate each rule, as it becomes enabled by a match, with an independent

random variable (timer) which represents the time expected to elapse (scheduled

delay) before the rule is applied to the match. This timer is set randomly, based

on a continuous probability distribution function. The null delay condition means

that the probability of a null delay at enabling time is always zero.

Thus, for a GTS to become a SGTS, the GT rules defined in the respective

GTS require to be associated with continuous probability distribution functions

(CDF) such as normal or exponential. In order to complete this task, a clear

difference has to be identified between the rules carrying normal and exponential

distribution. The selection of an appropriate distribution in this study is based on

the real statistics and network analysis performed. Further, distribution fitting

is the procedure of selecting statistical distribution that best fits the existing

data set [156]. However, it is not always possible to have data for selection of

a probability distribution. Instead, such a selection can also be made based

on distribution properties and theories such as the memory-less property and

the central limit theorem. For example, the exponential distribution is the only

memoryless continuous probability distribution. Hence, memory lessness is a

unique categorization for the exponential distribution.

If we know how many times in a day, a user tries to go online in the Skype

network, or how often an on-line person will activate a VoIP call, then these events

can be considered as following an exponential distribution. On the other hand if
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we know the average length of time it takes to complete an action, such as the

average time of the VoIP call, then it can be categorized as a normal distribution

or a log-normal distribution, which defines a positive normal distribution.

2.9 Probability Distributions

In a SGTS a probability distribution is associated with a GT rule. In this thesis,

we have divided our GT rules in two groups based on their probability distribu-

tion. We use normal or log-normal distribution and exponential distribution.

The exponential distribution is always the choice to represent the time between

events that happen at a constant average rate such as inter-arrival time and

rate of decay. Because of this behavior, the exponential distribution is usually

used to model the mean time between occurrences, such as arrivals or failures.

Exponential distributions tie together mean and variance, respectively 1/λ and

1/λ2, where λ is the exponential rate — so it is possible to decrease standard

deviation only by decreasing the expected mean.

The normal distribution is always the choice to represent the average time for

an event, such as the average time a barber takes to cut a persons hair. Moreover,

normal distributions have a quite stable character, intuitively visualised by the

bell curve functions associated with them — meaning that essentially, experimen-

tal values tend to hurdle within short range from the mean in terms of standard

deviation. The normal distribution requires mean µ and variance σ2.

The log-normal distribution can be defined as a variable resulting from the

multiplicative product of many independent random variables each of which is

positive. According to probability theory, a log-normal distribution is a proba-
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bility distribution which defines a positive normal distribution. The log-normal

distribution is also represented by mean µ and variance σ2.

2.10 Stochastic Simulation

Simulation is one of the prime tool for study, analysis and comparison of P2P

approaches and algorithms. The cost of implementation of simulation models is

far lower then large-scale experiment. Further, if a simulation model is carefully

constructed, then it can be more realistic [136].

For example the bandwidth or latency, in the deterministic approach has to

be specified from the beginning of the simulation such as what is peer bandwidth

and what is the latency of a particular channel. In a stochastic model, the peer

will be assigned bandwidth randomly as it joins the network, and similarly the

latency will randomized.

We simulate our model using GraSS (for Graph-based Stochastic Simulation),

a new tool introduced in [162]. The tool has been developed in Java-Eclipse, as

plugin of a graph transformation engine called VIATRA2. VIATRA2 [16] re-

lies on a RETE-style implementation of incremental pattern-matching, in which

precomputed matching information is stored and updated as transformation pro-

ceeds.

Essentially, the stochastic engine receives the set of enabled rule matches, (i.e.

the active events) from the transformation engine, turns them into timed events,

by assigning to each of them an expected time value, randomly determined on the

basis of the probability distribution which is associated with the event type, and

sends the events that has been scheduled first back to the transformation engine
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for execution. In GraSS a GTS is represented as a VIATRA2 model, consisting

of the model space with the current graph and the transformation rules.

The simulation algorithm for stochastic simulation consists of the following

steps [63; 87]. The algorithm relies on calls to Random Number Generator (RNG)

in order to provide delay values for the timers associated with newly activated

events. Active timed events are managed as a list ordered by the time for the

times events are scheduled for, so that the first element of the list turns out to

be the event scheduled to take place first. Simulation time needs to be recorded

explicitly.

Assume a Generalised semi-Markov Process (GSMP) P =

〈Z, E, active, new, ∆, s0〉 [87; 91] where Z is a set of system states; E

is a set of implicitly timed events; active is the activation function, so that

active(s) is the finite set of active events associated with s; new is the transition

function depending on states and events; ∆ is the distribution assignment, so that

∆(e) is the probability distribution function associated with the delay of event

e; and s0 is the initial state. Given a GSMP P = 〈Z, E, active, new, ∆, s0〉

1. The simulation time is initialised to t0.

2. The set of the activated events A = active(s0) is computed.

3. For every event e ∈ A, a scheduling time te is computed by adding t0 to a

random delay value de provided by the RNG on the basis of the probability

distribution function ∆(e);

4. The active events with their scheduling times are collected in the scheduled

event list ls0 = {(e, te)|e ∈ A}, ordered by the scheduling times.
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Then, for each simulation step, given the current state s ∈ S and the scheduled

event list associated with it ls = {(e, t)|e ∈ active(s)}

1. the first element k = (e, t) is removed from ls;

2. the simulation time tS is updated by increasing it t;

3. the new state s′ is computed as s′ = new(s, k);

4. the list ms′ of the surviving events is computed, by removing from ls all

the element that become inactive, i.e., all the elements (z, x) of ls such that

z /∈ active(s′);

5. a list ns′ of the newly activated events is built, containing a single element

(z, t) for each event z such that z ∈ active(s′)\active(s) and some scheduling

time t = tS + dz, where dz is a random delay value provided by the RNG

on the basis of the distribution function ∆(z);

6. the new scheduled event list ls′ is obtained by reordering with respect to

scheduling times the concatenation of ms′ and ns′ .

The simulation algorithm can be explained with the help of an example con-

sisting of a simple GTS with five transformation rules using only log-normal

distributions with mean µ and variance σ2. Table 2.1 shows the GT rules with

mean and variance. An example run of the simulation is consist of the following

steps:

Step 1. The simulation time t is set to 0.

Step 2. The set of enabled GT rule’s active matches is obtained from the VIA-

TRA2 engine.
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• active(S0)= 1 matchforGT Rule A,

3 matchesforGT Rule C,

2 matchesofGT Rule E

Step 3. A scheduling time te is computed by adding t0 to a random delay value

de provided by the RNG on the basis of the probability distribution function

∆(e);

• (GT Rule A,m1) has delay 1.35

• (GT Rule C,m1) has delay 2.35

• (GT Rule C,m2) has delay 3.00

• (GT Rule C,m3) has delay 4.50

• (GT Rule E,m1) has delay 1.75

Step 4. The timed active events are placed in a list ordered by scheduling times,

we present the time line in the Fig. 2.7.

• (GT Rule A,m1) is scheduled for 1.35

• (GT Rule E,m1) is scheduled for 1.75

• (GT Rule C,m1) is scheduled for 2.35

• (GT Rule C,m2) is scheduled for 3.00

• (GT Rule C,m3) is scheduled for 4.50

Step 5. The first element of the ordered event list is removed from the list. The

event is despatched to the VIATRA2 GT engine for execution. The simu-

lation time is increased to the time of the event that has been despatched.
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• (GT Rule,m1) is despatched

• t = 1.35

Step 6. As the recently received GT rule is executed by the VIATRA2 GT

engine, new GT rules will be enabled as a result, while existing enables

rules will become disabled. As a result of the execution of GT Rule A, say

GT Rule E is disabled and two new matches of GT Rule B are enabled.

The single match of GT Rule E is removed from the active event list ls,

making it ls′ .

• ms′ = 3matchesofGT Rule C

• ns′ = 3matchesofGT Rule B

Step 7. The new scheduling time is assigned to active events ns′ based on the

RNG and the probability distributions associated with the GT rules.

• (GT Rule B,m1) has delay 3.35

• (GT Rule C,m2) has delay 1.95

Step 8. The new scheduled event list ls′ is obtained by reordering with respect

to scheduling times the concatenation of ms′ and ns′ . The timeline is shown

in Fig. 2.8.

• (GT Rule B,m2) is scheduled for 1.95

• (GT Rule C,m1) is scheduled for 2.35

• (GT Rule B,m1) is scheduled for 3.35

• (GT Rule C,m2) is scheduled for 3.00
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No Event Mean µ Variance σ2

1 GT Rule A 1 2.5
2 GT Rule B 2 2.0
3 GT Rule C 3 4.5
4 GT Rule D 2 1.0
5 GT Rule E 4 2.0

Table 2.1: GT rule log-normal distribution

• (GT Rule C,m3) is scheduled for 4.50

Step 9. The first active event is removed from the list and dispatched to the

VITRA2 GT engine.

• (GT Rule B,m1) is despatched

Step 10. The simulation time t is advanced by the time of the last triggered

event,

• t= 1.35 + 195= 3.20

Step 11. The simulation continues this process of executing the rule match

with the lowest delay and a new updated list is obtained. This process

repeats itself until terminated either by the maximum number of steps or

completion of the simulation time.

2.11 Summary

In this chapter, we have introduced the concepts of graphs and graph transforma-

tion with attributes, constraints, and application conditions. We have introduced
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Figure 2.7: Scheduling timeline at t = 0

Figure 2.8: Scheduling timeline at t = 1.35
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the concept of stochastic GTS and the procedure for selecting a probability dis-

tribution. We also introduced normal, log-normal and exponential distributions.

We illustrate the simulation algorithm used through an example.
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Chapter 3

P2P Networks

In this chapter, we focus on P2P systems and architectures. We first study

definitions proposed by different authors. We classify these definitions based on

the characteristics they consider to define P2P systems. We also agree on a single

definition of P2P in this thesis. This chapter further aims to explain types of P2P

architectures. In the last part we briefly discuss different P2P applications.
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3.1 Peer-to-Peer Computing

Statistics show that almost a quarter of the world population has already got ac-

cess to the Internet. This boosts the technology industry which directly increases

the availability of new kinds of devices and technology.

It is important to note that today each user on the Internet possess CPU

power more than 100 times that of an early model of super computer [107], but

at the same time 95% of this power is wasted. To efficiently utilise this massive

computing power the concept of P2P communication was developed. According

to the Merriam Webster dictionary the word peer means, one that is of equal

standing with another [105], that is P2P is communication with equal rights [94].

This is much like a telephone network, where caller and callee can be seen as

equal partners. In a distributed setting systems setting peers are running on

different machines with their own specific capabilities and resources. Different

design paradigms have been developed to make use of these resources, leading to

a differentiation in the basic concept of P2P networks.

P2P refers to a class of networks that make use of distributed resources to

perform functions in a decentralized manner. The resources could be computing

power, memory, data or network bandwidth. P2P applications are distributed

systems in which various components, connected by a network, communicate and

coordinate their actions by passing messages [43]. Despite several complications

at the architecture level, such as peer churn [153] and selfish peer behaviour, the

paradigm is becoming popular in areas such as distributed and collaborative com-

puting, not only on the Internet but also in ad-hoc networks [107]. Distributed

systems can be distinguished into two types: client-server model and P2P model.
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In client-server models each client submits its request to the respective server

and the server is responsible to answer the query and provide services. The core

idea behind a P2P network is that a peer can act as a server as well as client

in one application [14]. A peer, while acting as a server, can share resources

like processing power, memory and bandwidth with other participating peers on

the virtual network, called overlay. Some of the applications have central login

servers, but most are lacking a central point of contact.

There exists no universally accepted and agreed definition for P2P. The term

has been used to cover systems with vastly different architectures, ranging from

file-sharing, distributed computing, instant messaging, voice and multimedia and

content distribution. In the literature [7; 107] different taxonomy trees have been

used to classify P2P systems stressing the decentralised nature, overlay network

architecture and type of data being shared among peers. The existing definitions

of P2P fall into two classes depending on whether they focus on the role of leaf

peers. Peers which are connected to the Internet, but whether this connectivity

is variable, e.g, due to shared bandwidth or temporary IPs assigned, are often

called computers at the edge of the Internet [119]. Based on this classification we

are going to discuss the existing definitions.
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3.1.1 Use of Leaf Peers

1. One of the early books on P2P published in the year 2001 defines P2P

computing by identifying two requirements P2P [119; 148]:

• Does it allow for variable connectivity and temporary network ad-

dresses?

• Does it give peers at the edge of the network significant autonomy?

2. A white paper initially published in the year 2003, which was updated in

year 2006 because of many technological changes and improvements in P2P

systems, states the following definition: P2P networking is the utilization

of the relatively powerful computers (personal computers) that exist at the

edge of the Internet and is used for more than just client-based computing.

[[106] Paragraph 1].

3. In 2004, Andy Oram [120] defined P2P systems as: Any networking tech-

nology where the crucial responsibility lies at the end point.

4. In the year 2000, Clay Shirky et. al. used the following definition [145]:

P2P is a class of applications that takes advantages of resources– storage,

cycles, content, human presence– available at the edge of the Internet.

The definitions of this group concentrate on the use of computing resources at the

edge of the network/Internet. These nodes have temporary IPs and are normally

behind Network Address Translation (NAT) or local firewall. Therefore, these

machines are inaccessible from other machines on the Internet. According to the
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above group of definitions, the potential of P2P applications lies in their ability

to utilize these nodes. However, it is worth mentioning that these definitions do

not cover applications which perform functions such as collaboration. P2P appli-

cations also perform other tasks such as providing overlay routes, coordinating

topology formation and searching. Therefore, classification of P2P based on the

ability to use computers at the edge of the internet appears too limited for our

purpose.

3.1.2 Server-Less Topology

In this section we discuss definitions used by other researchers in order to classify

an application as P2P, in chronological order.

1. In the year 2003, Detlef Schoder and Kai Fischbach proposed the following

definition for a P2P application [142; 148]: P2P refers to a technology that

enables two or more peers to collaborate spontaneously in a network of equals

by using appropriate information and communication systems without the

necessity for central coordination.

This definition identifies three important aspects of P2P systems: no need

for centralized coordination, participation in a network composed of sim-

ilar types of peers, and spontaneous collaboration. It is almost the same

concept as that used for server-less designs. In P2P systems, each peer can

communicate with other respective peers without permission of servers or

other central authority. Peers are considered equal, although they may pos-

sess different computational and communication capabilities. Spontaneous

collaboration is one of the key advantages and is considered as direct result
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of the server-less design approach. This approach was partially adopted

for hybrid systems and in this connection an interesting effort was made in

the year 1999 by introducing Napster to the P2P world [115]. Hybrid sys-

tems do have a central server, which performs tasks such as authentication,

resource discovery, global index monitoring, but all other tasks after suc-

cessful login continue without involvement of the central server. Therefore,

these systems can also be classified as P2P.

The central servers in hybrid systems do have more capabilities, functional-

ities and responsibilities than peers in the network, but all the other peers

are equivalent in their functionalities. If we consider Napster as example of

hybrid P2P systems, a Napster server is used to search a particular file and

its respective address, while the actual process of file transfer is conducted

in P2P fashion. Thus, P2P systems do not need to be completely decen-

tralised. This is also evident from the modern implementation of Gnutella

known as KaZaa [83], which makes use of the centralised/decentralised de-

sign approach not only to increase the efficiency of searching but to scale the

network. This approach is implemented using the concept of super peers,

which store file locations. Super peer selection is based on constraints such

as bandwidth, CPU power, memory and time in the network. These criteria

reduce the number of super peers available.

2. The Intel working group proposes the following definition for P2P systems

[14]: A type of network model, where peers (computers) share resources and

services by direct exchange between networked peers.

3. In the year 2001 at the IEEE P2P conference, Rüdiger Schollmeier presented
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the following definition [143]: A distributed network architecture may be

called a Peer-to-Peer (P-to-P, P2P) network, if the participants share a

part of their own hardware resources (processing power, storage capacity,

network link capacity, printers). These shared resources are necessary to

provide the service and content offered by the network (e.g. file sharing

or shared workspaces for collaboration). They are accessible by other peers

directly, without passing intermediary entities. The participants of such a

network are thus resource (service and content) providers as well as resource

(service and content) requesters.

4. A technical report published by Intel in the year 2002 defines P2P as fol-

lows [34]: P2P can be defined as any application or network solution that

supports the direct exchange of resources between computers without relying

entirely on a central server.

In the above definitions, 4 and 6 seem to be using the server-less design topology

as a key characteristic for P2P applications. All other definitions emphasise direct

communication between peers for sharing of services and resources. The study

of the literature shows that P2P got its popularity because of exchange of files

among peers, however today’s P2P is not limited to the exchange of resources.

It does perform several other important tasks such as transmission of real time

voice and video traffic [149], content distribution [27] and knowledge management

[34]. Therefore, exchange of resources by direct communication should not be

considered as the core classifying criterion.

To summarise the definitions of both groups, Table 3.1 shows the definition

number and classification criteria used. Based on the above discussion and Table
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Table 3.1: Defining classification key based on definitions
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1 X
2 X
3 X
4 X
5 X X X X
6 X X
7 X X
8 X X X

3.1, P2P systems are defined as follows for rest of this thesis:

P2P networks are distributed systems without central control for topology for-

mation and communication, where most peers are equivalent in functionality while

peers with extraordinary capabilities can perform additional tasks, serving a group

of ordinary peers.

3.2 Overlay Networks

An overlay network is build on top of the physical network and provides addi-

tional features. Overlay networks have emerged to provide promising platforms
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for customizable and reliable services to support multiple applications, such as

multicast, resilient connectivity, content delivery, VoIP, distributed hash table

services [133; 185] and many others (e.g Akamai [3], RON [5], Skype [149]).

Overlay networks consist of peers which may be situated in multiple domains

and geographically diverse locations. These peers are connected to each other

through virtual links maintained at the application layer. The main idea behind

overlay networks is to give applications more independence in routing decisions.

Those would normally be taken by the IP layer/physical layer [133]. With the

availability of various active measuring techniques, it has become feasible for

overlay networks to monitor and maintain multiple paths among peers and even

select the path based on requirements such as latency, bandwidth availability,

congestion and errors.

In overlay networks, in the worst case a peer can be connected to all other

peers in the network, but this may affect scalability. Therefore, in most designs

a peer keeps a connection with a subset of peers. One of the crucial points

in P2P is the topology of peers in the overlay network. The topology can be

considered as a graph in which peers are vertices and the overlay connections

amongst the peers are the edges (see Figure 3.1). Most P2P overlay topologies

support reconfiguration and such systems are capable of handling events like peers

joining, departing and crashing, etc.

Overlay networks are used by many different applications ranging from file

sharing to VoIP, each based on its own set of requirements. Overlay networks

become most effective when peers are behind NAT and firewall. Some of the

core tasks of the overlay include searching for peers, resources and services and

transmission of keep alive messages.
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Figure 3.1: A P2P overlay Network

Figure 3.2: Taxonomy of P2P architectures

3.3 Types of P2P Networks

The core challenge in P2P is the organisation of peers into meaningful structure.

On the basis of the organisation of peers in the overlay network, P2P networks can

be divided into three broad categories (see Figure 3.2): centralized, decentralized

structured, and decentralized unstructured [84; 107].

3.3.1 Centralized P2P

Early P2P systems such as Napster [115] and SETI@home [6] successfully intro-

duced the concept of resource and data sharing through peers belonging to end

users. Both Napster and SETI@home placed a central server in the network to

coordinate peers. Today P2P systems that follow the approach of a central server

are also know as hybrid system, because this approach combines the classic client
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server model with the dynamics of P2P networks. While the central server may

have more capabilities and responsibilities than other participating peers, the rest

of the peers are equivalent in their functionalities [107].

In hybrid systems, when a peer joins the network it registers itself with the

central server. Because of this process of registration, the server has accurate

information regarding the peers and resource available. As in the case of Napster,

every peer upon registration provides a list of files it is sharing. If the server

receives a search query for a file, it is in a position to tell which peer is sharing

that particular file.

The main drawback of the hybrid P2P approach is that the central server

may become a central point of disaster. If the server fails the whole system will

be down. Another potential problem is that when the number of peers increases,

this has direct impact on the server [92].

Despite these drawbacks, a number of P2P applications use this approach

(e.g BitTorrent [19], eDonkey [39] and distributed.net [38]). The hybrid systems

seem the best choice for systems that could not afford inconsistencies but do

require a moderate amount of resources for the coordination task. If the central

server is capable to manage the load and chances of failure, this approach can

perform efficient coordination of peers without requiring them to communicate

themselves. The result of this will be low bandwidth requirement for network

organisation and peer coordination.
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3.3.2 Decentralized P2P

Decentralised architectures are also known as pure P2P, referring to P2P architec-

tures where all peers participate at equal level without the umbrella of a central

server. The decentralized architectures are further subdivided into unstructured

and structured P2P [92; 107].

3.3.2.1 Unstructured P2P

In unstructured P2P networks, whenever a new peer joins the network it has to

first find a peer on the network and after successful handshake it broadcasts a join

message to the neighbours of that existing peer. In this way peers are connected

randomly to each other. In this kind of topology no peer has a special location,

while keeping small set of neighbours for the purpose of searching and relaying

messages.

With a random network and absence of central server, in this class of P2P

it is almost impossible to perform tasks that require an exact global view of

the network. In unstructured P2P, if a peer wants to send a query, the query

will be first forwarded to its local neighbours and the neighbours will forward

further to their neighbours. To overcome flooding in the network, the message is

enriched with a time-to-live (TTL) attribute which is decremented as the message

proceeds.

The main drawback of this approach is that it does not scale when the network

grows large. The query will only reach a small set of peers because of the TTL,

possibly missing some of the peers which could have the response. This will have

worst results if the search request is initiated for a unique resource. The resource
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could be available further away in the network where the message could not reach

because of the TTL. Thus, we may receive an answer of non availability although

the resource may still be available.

3.3.2.2 Super Peer Hierarchy in Unstructured P2P

To solve the problem of searching in unstructured P2P, two options have been

considered. The first option suggests increasing the size of the broadcast horizon

and second suggests reducing searchable network size.

The first suggestion was implemented in Gnutella clients. The main problem

with this approach is if the TTL is increased the number of message recipients

is increased exponentially [92]. The implementation results showed that search

horizon increase has created a lot of problems in Gnutella network and resulted

in arguments, whether this could be considered the downfall of the network. The

ultimate result was that this approach does not scale well [94].

The second approach proved to be much more successful and was implemented

by KaZaA [83], Grokster [51] and many more. With the concept of super peer,

super node or ultra-peer the network proved to scale very well. The core idea is to

divide the network into two layers. The first layer consists of a number of ordinary

peers or clients and the second layer consists of a small number of super peers. A

peer which has sufficiently large resources, especially bandwidth, is promoted to

the role of super peer [92]. Promotion can be based on a number of constraints

as required differently by different applications. Some applications may promote

based on need whereas others may promote as many peers as possible. The leaf

node or ordinary peer will connect to the super peer. Ordinary peers will not

form any kind of network among themselves. The super peers act as servers and
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Figure 3.3: Types of P2P systems

keep records of the files that their clients are sharing and forward their queries

to other super peers to find a particular resource. The super peers also reduce

the network overhead by routing messages to dependent peers only which are

identified to be the resource owner. However, when a peer is identified to have a

particular resource the rest of the communication is direct among the dependent

peers.

The super peer approach is still considered the dominating technology in the

P2P world because it improves the search and also removes the single point of

failure from the centralised P2P model. The dependent peer can reconfigure and

connect to a new super peer if the current super peer has crashed or a user has

decided to leave the network. Some of the applications have even combined the

super peer unstructured P2P approach with the centralised model and the result

is known as mixed P2P [6] (see Figure 3.3 for types of P2P systems). In this

approach the central server is used for authentication and the rest of the network

is maintained in a decentralised manner. Upon successful authentication, the

peer has to select one of the super peers as their local host. Several super peer

selection strategies will be discussed in the coming sections. In this thesis we

focus on mixed P2P networks.
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3.4 Popular P2P Applications

New P2P applications are emerging regularly, often to disappear again after a

short period of time. Some P2P applications are discussed below.

1. Gnutella [48] is a file sharing protocol. The early version of Gnutella was

based on the decentralized approach and queries were transmitted using

viral propagation [127].

2. Napster [115] is a file sharing protocol based on the centralised approach.

The search is through a central server but file transfer is direct between

participating peers.

3. BONIC [21] is a CPU service sharing system inspired by the SETI@home

project. It operates in centralised manner. Each client logs into the server

downloads the data to be processed and submits the results back to the

server.

4. Freenet [25] is a distributed content storage and retrieval application based

on the structured P2P approach. The prime goal is to ensure the anonymity

of the publisher.

5. KaZaa [83] is a file sharing application that uses the concept of super

peers to organise peers into two layers. The super peer layer is used for the

purpose of searching while file transfer is direct between peers.

6. Jxta [29] is a framework for developing P2P applications. It specifies a

number of protocols that enable the creation as well as maintenance of P2P

networks.
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7. IM [103] is a messaging system where a user joins the network using a regis-

tered identity and can search as well as communicate with other identities.

These systems normally have a central server which is the authentication

point and also maps IP addresses with identities registered.

8. Skype [149] is a P2P Voice over IP (VoIP) application that controls the

login process in a centralised fashion and uses the super peer approach for

searching as well as to redirect conversation for peers behind firewall or

NAT. These systems are the core focus of this thesis and will be explained

in more detail the coming chapters.

This list of application software shows the importance of P2P applications

and their topology of operation. Further, from the list above we see that each

application has its own set of requirements that is essential for ensuring service

quality. For example in KaZaA the focus is searching for a file and then to

download it. Skype is concentrating on searching as well as transferring real time

conversation packets. This set of requirements also affects the topology of the

application.

3.5 Summary

This chapter started with considering P2P networks from many different angles

based on the definitions proposed in existing literature. At the end of the section

we agreed on a single definition of P2P for this thesis, which states that P2P

networks are distributed systems without central control for topology formation

and communication.
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P2P networks use overlay networks for their topology formation. Overlay

networks are virtual networks built on top of the physical networks. They con-

centrate on the application layer and enable peers to communicate directly with

each other without using publically advertised routes at the physical layer. Skype

is considered as one of the popular applications used for VoIP.

There are three basic types of P2P architectures which are known as cen-

tralized, unstructured and structured. P2P systems are classified into pure P2P,

hybrid P2P and mixed P2P. In mixed P2P we have a central server which is used

as authentication point, but the rest of the network is organised in an unstruc-

tured way using the super peer approach. This kind of P2P is the focus of this

thesis.
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Chapter 4

Reconfiguration of P2P VoIP

Networks

In this chapter, we focus on P2P protocols and their application in the VoIP do-

main. Based on existing design alternatives, first we sketch the general structure

of a P2P VoIP protocol and then follow the design variations by means of a fea-

ture tree. The feature tree represents the core mandatory and optional features of

P2P VoIP protocols, and their associated variations selected from the literature.

This chapter also aims at introducing various reconfiguration and communi-

cation mechanisms used in P2P VoIP systems. Further, we explain how peer

dynamism and selfishness affect the quality of the VoIP applications
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4.1 Introduction to P2P VoIP

VoIP can be defined as set of technologies that enable voice calls to be transported

over the internet or any other network designed for data transportation, rather

than the classical Public Switched Telephone Network (PSTN).

The term VoIP was used by the VoIP Internet forum in the year 1966. The

main driving force behind the introduction was to cut the existing cost of tele-

phone calls. The classical telephone system works on circuit switching approach,

where a dedicated circuit or channel is setup between the caller and callee before

the conversation is started. The dedicated circuit approach seems the same, as

was used in manual switching based telephone exchanges, where an operator has

to connect the two callers. The biggest advantage of a dedicated circuit is the

excellent quality of service, but at the same time it is very expensive.

The introduction of VoIP posed many challenges for the telecommunication

industry. VoIP applications use existing IP protocols originally designed for data

transportation. VoIP breaks voice calls into packets. These packets travel towards

the callee through public routes on the internet, where they are assembled and

decoded. Voice packets are much more sensitive to delay, packet loss and jitter

as compared to than data packets. Researchers realised that instead of using

publically advertised routes, overlay networks could minimize the delay. This

coined the idea of P2P VoIP, where caller and callee communicate in directly

without using intermeddles.

Today almost 30% of the traffic over the internet is VoIP and this figure is

increasing day by day. The reason behind this is low cost. PSTN calls are charged

based on the time used, while in VoIP the user pays only for the Internet service.
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Figure 4.1: VoIP Architecture

The facility of conferencing and group meetings on VoIP are also among the core

attractions.

Figure 4.1 illustrates a basic VoIP architecture, although different applications

may use different topologies for organising clients in the network. A typical call

scenario will involve the following steps at the callers end.

1. Encoding of the caller’s voice into digital format.

2. The digitally encoded signals are compressed and divided into packets of

equal size. These packets are time-stamped and provided with information

regarding destination and origin. Time stamping will enable the callee to

assemble these packets in correct order.

3. These packets are transmitted over the internet travelling to their destina-
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tion. Different packets may follow different routes in the network. This

transmission of packets over different routes makes VoIP different from cir-

cuit switch call operation where a dedicated circuit for each call is estab-

lished and maintained for duration of the call.

At the callee end the following steps are followed:

1. The callee side receives these time-stamped packets and uses a buffer to

organise them in order of transmission time. These packets are depacketized

for conversion to analog form.

2. The depacketized streams are converted to analog form by a decoder. After

this conversion the analog signal is transmitted to human ear.

It is clear from the above discussion that VoIP uses digital packets for trans-

mission of voice over the data networks, while telephone network uses the analog

signals. The data network can be an intranet maintained within the organisation,

a leased network, PSTN or the Internet [50]. The process of compression and en-

coding of analog signals into digital packets is achieved through the use of codecs.

There are many codecs available for digitizing speech. Table 4.1 gives some of the

characteristics of a few commonly used International Telecommunication Union-

Telecommunication (ITU-T) standard codecs [137]. The first column shows the

name of the codec, the second shows the data rate used by the codec for packet

transmission, the third column shows the time taken by codec to convert voice

into digital and back to voice, and the last column shows the bandwidth cost of

the calls. The bandwidth cost here is for a full duplex channel. In this thesis we

will use the information in Table 4.1 to compute the cost of bandwidth for VoIP

call. Based on the information we have fixed the cost of VoIP calls at 80 Kbps.
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Table 4.1: ITU-T codecs and defaults values

Codec Data Rate
(kbps)

Datagram
Size(ms)

A/D Conversion
Delay (ms)

Bandwidth
Bidirectional
(kbps)

G.711u 64.0 20 1.0 180.80
G.711a 64.0 20 1.0 180.80
G.729( 8.0 20 25.0 68.80
G.723.1(MPMLQ) 6.3 30 67.5 47.80
G.723.1(ACELP) 5.3 30 67.5 45.80

4.2 Quality Issues in VoIP Implementation

The classical PSTN based telephony service is more than hundred years old and

during these years it has passed through various technological developments. The

ultimate result of these developments is the 99.999% guaranteed quality of ser-

vice [24]. VoIP is relatively new technology implemented over a less reliable

data network [152]. Therefore, there are justifiable concerns such as voice qual-

ity, reliability of service, access to emergency numbers like 999, directories and

addressing. An important point in VoIP traffic is the real time nature of commu-

nication. When voice packets are transmitted, any problem such as congestion,

link down or relay node departure will immediately affect the quality and relia-

bility. All these factors will result in the callee experiencing poor voice quality

by missing part of the conversation, experiencing echo on the line. According to

[24; 126] the main concerns of voice service over IP networks are jitter, packet

loss and echo. If these stated parameters are controlled in an efficient way, VoIP

can provide a quality almost equivalent to PSTN.
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4.2.1 Latency

VoIP is the transportation of real-time conversation over a network and therefore

sensitive to communication delays. Latency has a direct effect on voice quality.

Latency is defined as the time taken by packet to travel from caller to callee. It

is composed of two kinds of a delays: propagation delay or actual transportation

delay (time taken by packets to travel in the network from caller to callee) and

preparation delay (such as encoding and packetization) [24]. This is also known

as mouth-to-ear (M2E) delay [75]. The lower the latency, the more natural is the

conversation [128].

Increased latency results from a number of factors such as congestion in the

network, low bandwidth, large packet size, the number of hops that packets have

to pass through [165], or loss of connection. If the codec G.714 is used, the total

maximum one way delay accepted is 150 ms [69] and in [71] a delay of 200 ms

was also considered acceptable. If the delay experienced is higher, the callee may

experience breaks in the conversation. In this thesis we will use this information

to link client peer with super peer. This will help to reduce latency and improve

call quality.

4.2.2 Jitter

Jitter results from the variable arrival time of packets. In order to clearly un-

derstand the conversation, the packets must arrive at the callee end with equal

intervals. Jitter results from congestion on the route a particular packet follows.

Normally, if variation between consecutive packets is not too large, it is compen-

sated by the jitter buffer at the callee end. The literature [183] shows that less
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than 40 ms is ideal but 75 ms variation can be tolerated.

4.2.3 Packet Loss

Packets in the network can be lost either during transmission, due to departure of

intermediate peers, or failure of connection. In VoIP if a peer behaves selfishly and

stops routing traffic for others, leaves the network selfishly or crashes, the result

will be packet loss. Packet loss is a very frequent phenomenon in data networks,

but many applications are designed to provide a reliable service using network

protocols such as TCP [15; 28] to request the retransmission of the lost packets.

But most VoIP application use UDP [163] for the transmission of voice packets,

which discards the missing packets. This results in gaps in the conversation [49].

Most VoIP applications are designed to handle packet loss up to 3% [24; 124].

4.3 VoIP Classification

In order to see how VoIP is used in various communication scenarios, we classify

VoIP on the basis of network architecture and ownership [60].

4.3.1 VoIP as Backbone

This class of VoIP is dedicated to connecting to switching stations. Mostly this

class makes use of circuit switching techniques to connect two terminal stations

while the core network may be operated by the packet switching technique. The

biggest example of this approach is the interconnection of local exchanges or call

centre operation. This model is considered to be vertically integrated, i. e., all

services are controlled by a single telecom company.
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4.3.2 Dedicated VoIP Solutions

In this class of VoIP, a user who has internet access also purchases a dedicated

VoIP service, either from the same Internet Service Provider (ISP) or a different

VoIP service provider. The ISP will be responsible for carrying the voice signalling

using TCP/IP [28] and audio over UDP/IP [163] UDP. This model is not vertically

integrated as the user can have different companies for internet service and VoIP

operation.

Dedicated VoIP solutions like Vonage, provide monthly subscription and their

services could be used as VoIP phone. This enables the user not only to call PC to

PC but can also make calls like PC to PSTN. These companies offer soft phone or

SIP based hardware which are directly connected to the Internet. These types of

applications are stable as they are using paid server and intermediate gateways.

4.3.3 P2P VoIP

In this class of VoIP, an Internet user simply downloads the P2P enabled VoIP

application. After successful registration they get access to the service. Different

P2P VoIP application use different topology formation approaches that could be

either centralised, hybrid, or mixed.

In these applications centralised servers are used for authentication purposes

while the rest of the operations are performed in decentralised fashion. After

completion of the registration process the P2P VoIP clients are connected to

each other based on the topology implemented by P2P VoIP application. For

example in Skype [149], after registration the client is connected to the super

peer. If the connection is lost due to departure or crashing, the client has to

61



reconfigure itself and connect to a new super peer.

In P2P VoIP applications, if a client wishes to make a call to a callee, first

the on-line status is searched through a distributed directory service maintained

by the application either through a server or super peers. Then the call request

is initiated and the application software performs the task of managing signalling

and audio coding. The virtual circuit/path is established between the clients and

the ISP carries the signalling over TCP/IP and audio over UDP.

This class is not vertically integrated as the P2P VoIP provides only the appli-

cation and directory service. As the network is maintained through cooperation

of peers, P2P VoIP services are usually free. But due to the volatile nature

of P2P and in the presence of a high degree of churn, this has never been the

primary service of choice. However, research and development is continuing to

improve the quality of P2P by using different topology formation approaches in

the presence of churn. P2P VoIP is also unique in that the other two classes

impose restrictions on the clients to be connected using permanent IPs whereas

P2P VoIP applications do support temporary IPs obtained by NAT or firewall.

The focus of this thesis is this class of VoIP.

4.4 P2P VoIP Network Design

4.4.1 Architecture of P2P VoIP Networks

The most widely-used client-based P2P technologies include Napster and Skype

[53]. As discussed earlier, P2P systems operates in a decentralised environment,

which has very little reliance on a central server. Almost all tasks are performed
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Figure 4.2: P2P VoIP features tree

in a decentralised fashion. Clients act as nodes, sharing as well as consuming

resources. Fig. 4.2 represents P2P VoIP architectures by a feature tree [81]. A

feature connected by a black dot is mandatory while the unfilled circle show that

a feature is optional.

The first feature in Fig. 4.2 models the peer registering process with a central

server as shown in the simple scenario in Fig. 4.3. After successful registration

it has to select one of the super peers as local host (2nd feature in Fig. 4.2).

Selection of super peers depends a on number of factors, such as bandwidth,

latency or locality. If a peer has more computing capabilities, it may be promoted

to the extended role of super peer while retaining the primary function of being

a client (3rd feature in in Fig. 4.2).

In order to minimize the search horizon, the super peers form an overlay

network among themselves (4th feature in in Fig. 4.2). The function of being

host is maintained at the cost of the super peer’s own bandwidth. If the super

peer’s bandwidth falls to critical conditions due to the existing load, the super

peer is demoted to client only (5th feature in Fig. 4.2). In addition, a super peer

opts to restore itself to normal condition by transferring some of its load to other
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Figure 4.3: Simple P2P VoIP scenario

hosts, either by selfish disconnection or cooperative transfer (6th feature in in

Fig. 4.2).

P2P network are known to have a high degree of peer dynamism, i.e, peers

as well as super peers can leave the network without any constraints (7th feature

in in Fig. 4.2). This is the case because peers and super peers are controlled by

the user, who may decide to disconnect from the network, leaving it to the other

peers to recover from the loss of connectivity.

Peers search their online peers through the super peer overlay. If callee peer

and caller peer are connected through static IPs [36], after successful search the

rest of the VoIP call transmission is direct between the caller and callee as in

Fig. 4.3. However, it is not the case that only peers with static IPs can make

calls. Peers who are behind a firewall and NAT can make calls to other peers

through their host super peer [15]. At the same time super peers are also clients,

so they can also make calls (6th feature in in Fig. 4.2).

There are a number proposals for each feature shown in Fig. 4.2. These

64



Figure 4.4: P2P VoIP protocol as feature tree(first part)

variations are modelled using three feature diagrams. The design alternatives

presented in the feature diagram in Fig. 4.4, 4.5, 4.6 are based on the literature [15;

30; 34; 53; 99; 111; 118; 121; 153; 161; 166; 168; 176; 187]. In this section we are

going to discuss these variations.

Peer Arrival In Fig. 4.4, we have two variations for peers going online in the

network. The first variation is based on the assumption that a user first gets

registered. After successful registration, the user can go online in the network.

The second variation states that an already registered peer can go online in the

network. This option does not let new peers get register and restricts the number

of peers in the model. As in the feature diagram these two options are connected

by the OR operator, the model permits to use either a single feature in one time

or both together.

Number of Links between Peer and Super Peer In Fig. 4.4, the second

feature is the process of linking peers to the super peers. The first decision is
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the number of connections that a peer can make. [53; 111; 121; 176] state that a

client should keep a single connection to a super peer; [176] suggests that multiple

connection with different super peers will help in avoiding a single point of failure.

If a super peer leaves the network, all the dependent peers will be disconnected

until they relink to another super peer, so if a peer is connected to multiple super

peers, departure of a single super peer will not completely disconnect a peer. [118]

proposes that a peer must keep multiple connections with super peers. The peer

must periodically check the status of these connections, so as to have updates

if the super peer leaves the network. This will help the peer to establish a new

connection to other super peers, so that multiplicity is maintained.

Links Peer and Super Peer In Fig. 4.4 the next decision is the choice of super

peers among the population, either to maintain single or multiple connections [15].

Super peer selection is demanding because of the P2P architecture, a large number

of super peers and highly dynamic network in which neither peer characteristics

nor topology are known in advance. There are many solutions to cope with this

situation. [99; 121] suggests that the bandwidth of the super peer shall be used as

choice for making peer to super peer connection; [168] suggest that bandwidth,

round trip time (RTT) and similarity of interest shall be used. [180] propose

delay-aware P2P systems (DAPP), based on the concept that the shortest path

in the overlay cannot ensure efficiency in the actual physical media. DAAP

suggests sending ping-type time-stamped messages to get an idea of the actual

latency. According to [9; 99], peers from the same physical network always give

low latency as compared to remote or overseas peers with different geographic

location as well as different physical network. The latency is observed to increase
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the further we go in the network interms of network hops. Their approach is

based on the notion that a local peer will be the minimum number of hops away.

In the feature tree at Fig. 4.4, based on the above discussion, we have shown

four variations connecting peer to a super peer. All four variations are modelled

using the alternative operator. The alternative operator permits the use of a

single option at time. According to this, a protocol may choose to link a peer to

super peer based on the latency and available bandwidth, or only use the bandwidth

of the super peer, or only attempt to connect to local super peer, or select a super

peer based on its bandwidth and time spent in the network.

Promotion to Super Peer The third mandatory feature in Fig. 4.4 is the

promotion of peers to the role of super peer. The important decisions at this

point are: When a peer be promoted to super peer? Which peer shall be selected

among the available peers? How many super peers a network have?

[35; 111; 175] suggest that any peer that has fast reliable internet, more mem-

ory and CPU power shall be immediately promoted to the role of super peer.

Being super peer is not the choice of the peer owner, so a network should have as

many super peers as possible. [99] suggests that a fixed ratio must be maintained

between super peers and peers. The concept is based on the idea that super peer

should be arranged only when required. [99] suggests an algorithm which states

that promotion to super peer shall be made on the basis of bandwidth and time

spent in the network. [168] suggests promotion based on a parameter referred to

as capacity. They are modelled using alternative (XOR) in the feature diagram

at Fig. 4.4 [85]. We call the first choice static protocol. In this protocol, a peer

promotion decision is made on the basis of bandwidth as soon as the peer goes
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Figure 4.5: P2P VoIP protocol as feature tree(second part)

online in the network. This option excludes all those peers from promotion who

at the time of joining fail to meet the requirements. We call the second variation

the dynamic random any-time protocol. This protocol states that peers can be

promoted either as they peer become online or later, as soon as it meets the

requirements of the role. We call the third variation the dynamic need-based

protocol. This protocol is based on the concept that being a super peer is costly,

so promotion should be strictly based on the requirements. Another justification

for this protocol is that too many super peers will broaden the search horizon and

search will results in too much traffic among super peers. The cost of bandwidth

is a key issue in super peer-based architecture. Due to this many, organisation

have banned super peer-based P2P applications from their network.

Super Peer Overlay Network In Fig 4.5 we have shown the other three

mandatory features and their design variations. The core concept behind the

approach of the super peer-based protocols is to improve search and reduce un-
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necessary traffic. In order to connect super peers among themselves to form

overlay network, [61] suggests that they should have as many connections as pos-

sible, as this reduces the chance of being disconnected in the presence of churn.

[15; 53] suggest that Skype super peers are connected to a fixed number of other

super peers, because these connections are maintained at the cost of bandwidth

[97]. Based on these ideas, we have two alternative features, first to connect every

super peer with all other super peers, and second to connect super peers with a

limited number of super peers only.

Load Balancing The optional feature in Fig. 4.5 is load balancing. Some of

the super peer-based approaches [187] restrict the load per super peer by putting

a strict limit on the number of peers they can support. This helps the network

to share the load evenly. [30] proposes to use an approach based on moving peers

from overloaded to free super peers. [187] explains how selfish or self-interested

peers act in the P2P overlay and how load can be balanced in the presence of

selfish nodes. Similarly, a self-interested super peer will simply disconnect the

dependent peers, so as to make itself stable without considering that other peers

will lose connection to the network. We have two alternatives here. First if a super

peer is under stress due to dependent peers, it may selfishly disconnect randomly

a dependent clients. The second solution is based on the approach to disconnect

them through a cooperative procedure by informing them through message to

find alternative. When they find an other super peer they get disconnected.

Demotion to Peer The last core feature in the feature diagram in Fig. 4.5 is

the dynamic demotion to the role of client only. If a super peer’s current band-
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Figure 4.6: P2P VoIP protocol as feature tree(third part)

width reaches the critical condition, the super peer will be demoted to the role

of client only. To handle this situation, we have two alternative approaches. A

protocol may selfishly [170] disconnect all dependent peers and connect itself to

a super peer. The second solution is performing this demotion by a cooperative

procedure [99], which includes informing all dependent peers and when all depen-

dants have safely transferred to other super peers, get demoted and find a host

for itself.

Departure/Exit from Network In Fig. 4.6 we have shown the last two

mandatory features of the P2P VoIP protocol. The most prominent is departure

from the network. That could be either due to selfish behaviour or by using the

proper exit option provided in the application. [111] states that sudden crash is
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very hard to handle, as this behaviour makes peers and super peers disappear

from the network without informing any other peers or super peers. Following

[9] peers connected through static IPs are more stable, but those at the edge of

the Internet are exposed to frequent in and out events. P2P VoIP must support

both departure mechanisms. In uncontrolled exit, the network does not have any

alternative, but to recover from drastic failure. In the case of cooperative exit,

there are two design alternatives. The first is based on the concept to disconnect

and exit from the network. The second solution is to cooperatively inform all the

peers and super peers, and then exit from network.

VoIP Calls In Fig. 4.6 the last mandatory feature is the operation of VoIP

calls. A P2P VoIP [15; 53; 134] supports direct P2P calls and super peer-routed

calls by traversing the NAT and firewall. If calls are routed through a super

peer, they can be operated by a single super peer in one domain or by involving

multiple super peers in other domains.

4.4.2 Reconfiguration in P2P VoIP Networks

The dynamics of peers as well as super peers are called churn [153]. This is

considered as one of the prime challenge in the design evaluation of P2P systems.

In P2P VoIP, when a user starts the application, a peer joins the network after

passing through the process of authentication. Based on the computing resources

in its possession, it may be immediately promoted to the role of super peer and will

continue to offer its resources to other peers or it may simply become dependent

on other super peers. Peers may make calls or may support other peers’ calls and

then eventually leave the system. This process of join-participate-leave is referred
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to as a cycle or session. As P2P networks are composed of thousands or millions

of peers, each following this cycle, this creates significant churn.

One of the essentials of modern dynamic P2P systems is the reconfiguration

of peers resulted from the churn. Since each peer is independent and autonomous

[74], peers can take actions that do not require any global view of the topology.

Based on this characteristic, peers in different applications handle reconfiguration

at different level of priority depending on the type of service they are offering. In

VoIP applications which are time sensitive, in the event of crashing or departure,

the peer or super peer needs to reconfigure itself fast enough so that QoS is not

affected. Peers as well as super peers are exposed to the following reconfiguration

capabilities and restrictions:

• A peer can join the network at any time and can leave the network by

crashing, cooperative, or selfish exits.

• Peers can be promoted to super peer while retaining their primary role,

if they meet the higher resource requirements of the extended role. This

dynamic promotion is not a peer choice and peers cannot stop themselves

from acting as super peer.

• A super peer that no longer fulfils the minimum requirements of the ex-

tended role will be demoted and peer only status will be assigned.

• If a dependent peer loses connection to the host super peer (due to net-

work loss, congestion or selfish exit, etc), the peer must reconfigure itself to

connect to a new super peer as soon as possible.

• If a super peer loses its current connection with other super peers (due to
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super peer departure or demotion), the super peer must connect to another

super peer to recover its overlay formation.

• When a super peer is switched to peer-only, the peer must reconfigure fast

enough to find a host for itself.

4.4.3 Communication in P2P VoIP

Communication between peers and super peers is as important as dynamic re-

configuration to restore the network connection. In P2P VoIP, if a peer wants to

get an idea of the physical latency resulting from a possible connection before it

is established, it has to communicate with the proposed super peer. In the P2P

VoIP model which we are going to propose the model shall capture the following

assumptions of communication.

• Full duplex or two-way communication is supported by a single connection,

either between peer and super peer or super peer to super peer.

• Peers as well as super peers can send voice packets and control packets

for finding latencies or connection requests. Both peers at the edge of the

network and peers with static IP can make calls.

• Peers as well as super peers can receive voice packets and control packets.

• Super peers can answer a connection request either by saying yes or no.

• Super peers can forward voice packets to peers behind NAT or firewall.
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4.5 Summary

The idea of P2P VoIP was coined when overlay routes were considered as resulting

in low latency as compared to publically advertised routes. Today almost 30% of

traffic over the Internet is VoIP traffic. The reason behind this massive growth

is the low cost of calls as compared to the PSTN.

As the Internet is initially designed for transportation of digital data packets,

the sound waves are converted to digital packets and they are reassembled and

converted back to analogue sound waves for hearing purposes. The transportation

of these individual packets via overlay routes result in QoS issues in P2P VoIP,

such as increased latency, jitter, packet loss and echo.

In this chapter, we also studied different architectural designs for P2P VoIP

protocols. We use feature trees to show different designs alternatives. The aim

is to enable the reader to get an idea how many different approaches exist to

perform a particular function. In the last part we studied different architectural

reconfiguration and communication mechanism.
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Chapter 5

Case Study

In this chapter, we are going to present a case study based on the popular VoIP

application Skype. Skype is P2P VoIP application developed in 2003 by the

owners of KaZaA. Skype claims that it has more than 56 million users. Real

statistics shows that on average 20 million users are online. It currently con-

tributes more than 4.4% to the total VoIP traffic over the Internet. Skype keeps

its directory structure decentralized. This decentralized architecture enables it

to scale its network to millions of clients without requiring complex dedicated

infrastructure.

In this chapter, we also present real network statistics obtained through trac-

ing of the Skype network. In addition, we present data collected by researchers

by monitoring Skype traffic. These will later be used to validate the model.
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5.1 Skype Background and Definitions

The first beta version of the Skype P2P VoIP application was distributed in

2003 [101]. By its first anniversary, in August 2004, the cooperation reported

a remarkable growth in the number of downloads and registered users. During

that year, the VoIP software was downloaded more than 20 million times and

the number of registered users were above 9 million [131]. The founders of Skype

had previously contributed KaZaA [83], a P2P application for downloading and

sharing music files [100]. The idea of using P2P topology for VoIP enables the

company to maintain the network with low costs remarkable scalability, and pro-

vide an easy registration process.

Today Skype claims that it has more than 56 million users. Real statistics

shows on average 20 million users are remain online [101]. It currently contributes

more than 4.4% to the total VoIP traffic over the Internet. Skype permits reg-

istered users to make free PC to PC voice and video calls, send real-time text

messages and to make calls to the Public Switched Telephone Network numbers

by paying small charges. Skype operates a decentralized P2P network, in contrast

to controlling all communication through a central server. Skype is unique, as

it has the ability to traverse NAT (Network Address Translation) and firewalls,

while encrypting user’s conversations and storing user information in a decen-

tralized way [131]. This enables it to scale to a large number of clients without

requiring complex dedicated infrastructure [96].

The number of registered users indicate the popularity of the Skype, but due

to its proprietary network and encryption mechanisms used, very little is known

about its architecture and operation. [46] states that Skype is related to KaZaA,
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network traffic analysis confirms that KaZaA and Skype use the same procedure

for network connection. The Skype topology formation is achieved through a two

layer P2P network using super peers and ordinary peers.

Most of the network administrators consider Skype as a security and band-

width consumption threat [40; 90]. Other network experts are of the opinion

that it should never be allowed on a well organised network. The reason is that

Skype uses strong encryption, which makes it a black box whose architecture is

unknown. Skype software is available on many platforms ranging from Ipads to

mobile phones, and operating systems such as Windows, Mac OS and Linux.

Before we discuss the operation and architecture of the Skype network pro-

tocol we need to understand its basic entities and concepts, like Skype Client

(SC), Super Peer (SN), Ports, Codecs, Encryption, NAT, Firewall and Skype

Registration server (RS).

1. Skype Client (SC)

The Skype Client executes the Skype VoIP application [59; 131]. Further,

a client has consumable functionality. It means that it is using the network

but does not share the load with other peers or clients. In Skype, all those

users are considered as client which do not meet the requirements of the

extended role of super peer. An SC keeps a permanent connection with

a super peer for searching as well as VoIP calls. The SC also uses it for

transferring call packets if the SC is behind NAT or firewall.
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2. Super Peer (SN)

A super peer is a Skype client that has a public IP address and sufficient

CPU, memory and network bandwidth [15; 46; 59; 131]. This approach

clearly favours the overall availability of the system. The author in [53]

states that the population of the super peers selected by Skype tends to be

relatively stable. Therefore, this represents a compelling point in the P2P

design space where heterogeneity is leveraged to manage churn, not just to

cope with it. The SN form an overlay network which reduces the number

of searching clients, improving overall searching. [59] states that if SN is

relaying voice traffic than 4 Kbps bandwidth are consumed.

3. Skype Registration Server (RS)

This is the only central element in the Skype network. It keeps records of

the user names and passwords. It also ensures that Skype user names are

unique across the Skype network [15; 53]. An SC must first authenticate

itself with the RS for a successful login. The RS also keeps a record of the

super peers. This list of super peer is provided to every new client at first

login.

4. Ports

An SC opens a TCP and UDP listening port at particular port numbers,

which are normally assigned randomly at the time of installation [15; 18].

In addition to the random ports the SC also opens a TCP port at the

port number 80 the http port and port number 443 the https port. These

are used for transmition and reception of control signals for the purpose of

maintaining links.
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5. Codecs

If we want to transmit analogue sound waves on the digital network of

the internet, we need conversion at both ends of the call. This process of

conversion from analogue to digital and the reverse is achieved by mean

of a (CODEC). There are many standard algorithms [137] but as this is

a complex process so every application use their own preferred. The au-

thor [15] states that Skype uses iLBC [26], iSAC [68] or their self created

codecs which is unknown, although, GlobalIPSound [67], who originally im-

plemented the iLBC and iSAC, do claim that Skype is their partner in their

codecs. The real experiments in [15] confirm the use of wideband codec.

6. Encryption

[15; 18] states that Skype is utilizing the AES (Advanced Encryption Stan-

dard), also known as Rijndel. The same is used by the U.S Govt. Organi-

sation, to protect sensitive information. The encryption is composed of 256

bits and offers a total of 1.1 x 1077 possible keys [15]. This helps Skype to

encrypt data and voice traffic.

5.2 Three Layer Architecture

Skype is a proprietary protocol [2] so very little is published by the company

regarding its operation and network architecture. However, due to its popularity,

it has always remained on the agenda of researchers [2]. The author in [121] used

a reverse engineering approach to find the architecture of the Skype network while

others [15; 22; 46; 53; 134; 154] used real network traffic tracing.
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Figure 5.1: Skype architecture showing three layers

The reverse engineering and deep packet analysis of Skype network show that

its protocol consist of three layers. Fig. 5.1 the first layer is known as the reg-

istration and authentication layer. This layer consists of a single Skype server.

The server has the primary role of authentication and registration. In addition,

this server also keeps a record of active super peers in the network

The second layer is the super peer layer. The super peers are randomly se-

lected from the pool of users based on constraints on bandwidth, memory and

CPU power [15; 53; 178]. These constraints and solutions proposed in the litera-

ture have been discussed in Chapter 4.

The last layer is the client layer. Every user is a client when authenticated

and registered. After authentication and registration, it can either stay in the

client only role or get promoted to the role of the super peer if it meets the

requirements. If client status is retained it has to select one of the super peers as

a host.

In this thesis, we are going to model Skype like protocol, so the above infor-
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mation will help to model the Skype network as closes as possible.

Skype topology formation or network building process can be further sub

divided into sub events like login, promotion to SN, SC connection to SN, SN

connection to SN, user search and call placement.

5.3 Skype Network Operation

Skype topology formation or network building process can be further sub divided

into sub events like login, promotion to SN, SC connection to SN, SN connection

to SN, user search and call placement.

Login is one of the most influential and critical function required for the Skype

network topology formation and operation [15; 53; 109; 178; 182]. At this stage,

not only SC authenticates its user name and password with central login server

but also inform other participants and friends about its presence. This activity

is shown by edge marked as 1 in the Fig. 5.2. Other crucial task at this stage

is the determination of NAT and firewall if used by the connecting SC. After

successful login, it discovers SNs. According to the analysis performed by [15]

there are two type SCs that go online in the network, freshly installed Skype

new user and existing registered user. If a fresh user tries to register with the

central server, first the user name selected is checked against the user database,

if not issued previously, the same is assigned to the user. In the second step,

the software version is checked against the latest update issued [15]. In the third

step, the host cache (HC) is provided with a list of IP address and ports numbers

of SN that SC refreshes at regular intervals in order to have an updated list of

the SNs. If already registered SC tries to connect to the Skype Network, it first
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Figure 5.2: Skype login, registration and overlay formation

sends UDP messages to bootstrap SNs in HC. This is a handshake request if reply

received with in 5 seconds [15] then connection with SN is established. If reply

fails, SC try TCP with bootstrap nodes and if replied connection is made. If all

the bootstrap nodes failed, SC may contact registration server for an updated

list.

At the login stage, an SC identifies itself either with public IP or behind NAT

or firewall. This task is achieved through the use of Session Traversal Using NAT

(STUN) [70; 157] protocol.

If SC is connected with the internet through a public IP and have sufficient

spare bandwidth, memory and CPU cycles, it may be selected for the extended

role of the super peer. If SC meets the constraints, it can advertise itself with the

RS as SN and it can start serving other SCs. [178] States that an SN can offer

support from 55 to 80 SCs.

Once the SN is promoted it starts building its neighbourhood by connecting

to other SNs. The SNs maintain an overlay network among themselves, whereas

in this overlay each SN is connected to a limited number of SNs rather than every

SN is connected to other SN [15; 53; 109; 178]. The experiments in [178] claim
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that every SN keeps almost 0.05% connections as overlay with other SN. This

formation of overlay network among SNs is shown in Fig. 5.2 as marked number

3. An SC in Skype network has to select one (or a small number of) SNs as their

local host [15; 109; 178]. The selection of SN can be random or either based on

bandwidth or latency. This activity is marked as edge 2 in the Fig. 5.2.

After successful login and subsequent connection with SN. SC provides detail

of its availability to the global index maintained by SNs overlay. Skype claims

that it is using Global Index (GI) [66] technology to search for a user. Skype

claims that search is distributed and it guarantees to find a user if it exists and

has logged in during the last 72 hours [166].

In a Skype network if either SC or SN wants to place a call on the network,

there are three possible types. It is necessary to mention that call signalling

information or request is always initiated through the TCP. If callee is not in the

friend list of the caller. This call may take little longer as first the user will be

searched and then call requite will be initiated.

In the first type of VoIP call, both the caller and callee are connected to the

internet through public IPs. In such a situation, If both are in the friends list

of each other and both are currently online then once the call button is pressed,

call signalling information are exchanged. If the callee accepts the call, the flow

of conversation packets will start. However, the timing to complete the call may

change if callee is not in the friend list. Further, this call is direct, and packet

flow from caller to callee.

In the second setup, if the caller is behind port restricted firewall or NAT and

callee is on public IP. In this case, the caller cannot send signalling as well as actual

voice packets directly to the callee. The caller will first send the call request to its
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respective host SN, and then the host SN will forward the request to the callee.

If callee is online and the request is acknowledged, than actual voice packets will

be first forwarded by the caller to host SN and then subsequently forwarded to

the callee. The callee response will also follow the same route [15; 166].

In third setup is when both the caller and the callee are behind port restricted

firewall or NAT. In this case, Skype first uses STUN-like NAT traversal to estab-

lish the direct connection. In the event that the direct connection fails, Skype

used alternate mechanism where the VoIP session is relayed by a publicly reach-

able supernode. This latter approach is invoked when NAT traversal fails, or

a firewall blocks some Skype packets[15; 166]. Similarly, if the callee is behind

port restricted firewall or NAT and the caller is connected to the network through

public IP. The use of STUN enables the node behind the NAT to initiate/respond

the TCP/UDP media session regardless of which end requested the VoIP call.

5.4 Statistics

Aaytch organization is dedicated to the collection of real Skype network statistics.

They claim to be collecting Skype user information every 15 seconds. Table 5.1

developed based on the data from [150], shows that the total number of registered

users is more than 65 million whle about 25 million were online on 17th January

2011 at 14.00 PM UK time. The average number of users who were online during

the 2nd week of January 2011 was about 20 million. The Table 5.1 also gives

details of the peak number of users attained during week.
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Table 5.1: Skype Real Time Online Users Statistics

Description Users Date and Time

Skype Users Online Now: 25,150,422 1/17/11 14:00
Skype Real Users“: 65,814,593 1/17/11 14:00
All-Time peak: 27,474,821 01/11/2011 19:00
Average online this week: 20,112,727 1/17/11 14:00

In order to get a closer picture, we are interested in the numbers of users over

a period of 24 hours. This will later help us to adjust the rate associated with

transformation rules. In Fig. 5.3 we have plotted a graph of seven days showing

the minimum, maximum and average numbers of users online in the second week

of January 2011. If we can produce the same numbers of users on average, this

would confirm the validity of the model and simulation approach.

In order to get an answer to questions like how much time do people spend

on calling, or what is the duration of the calls made through Skype. [53] states

that during their experiments the minimum call duration observed was 2m 50s,

while the average was 12m 53s. The longest call during their experiments lasted

about 3h 26m.

Over a period of 24 hours, the average number of clients that joined the

network varies by over 40% of the active registered accounts, whereas the average

number of super peers in this period is below 24% of the active population [53].

Similarly, the author in [171] state that in December 2010 there were 1.4 million

super peers and 25 million users were online, when network crashed due to non-

availability of super peers. This figure confirms that almost 6% of the on-line

user were super peers, and still Skype network crashed. This further confirm

that Skype super peer population must be over 6% of the online users in order

to make the network stable.
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Figure 5.3: Skype online users statistics over a period of seven days

5.5 Summary

In this chapter, a case study based on the popular VoIP application Skype was

presented. In the case study, we discussed that Skype protocol has a three layer

architecture. We have presented the real statistics collected from the Skype net-

work. These information will be used in the stochastic simulation to select suit-

able probability distributions for graph transformation rules and to adjust their

rats of application, so that similar average are produced.
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Chapter 6

Modelling P2P VoIP Networks

In the first part of this chapter we are going to present a structural model of

a P2P VoIP Skype like protocol. The model is based on the discussion of the

case study and the design variations studied in Chapter 4. This chapter will the

present a model in terms a of type graph. The type graph will support all the

design alternatives with attribute and cordinality constraints. In the second part

of this chapter, we introduce a set of transformation rules according to the feature

diagram in Chapter 4.
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Figure 6.1: Type graph

6.1 Graph Model for the Skype Protocol

The type graph TG in Fig. 6.1 represents a structural model for Skype archi-

tecture as described earlier in the case study. It defines types for registration

server (RS), super peer (SN), Skype client (SC), client (ND) and their common

super type (Node). The node type LK is used to model links between SN and

SC, while OV represents the overlay connection between existing SNs. The edge

types registration, online, offline and overlay-index are used to show connection

between RS, SC, ND and SN. The node type Packet is used to send control or

probe messages between SC and SN. The edges types sender, receiver and at are

used to model the sender, receiver and current location of the packets. The node
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types Call and RouteCall are used to model different types of calls supported by

the model. The edge types caller and callee are used to model the caller and

recipient of VoIP call, whereas the edge type route is used to model calls routed

through the SN. The bandwidth attribute is used to model the bandwidths of

SC and SN, whereas the exit attribute is used to model the controlled departure

of SCs and SNs. The firewall attribute is used to model the NAT and firewall

status of the SC.

The objective of the model is to evaluate different strategies of connecting

SCs to SNs such as random selection, selection based on bandwidth and time

spent in the network, selection based on bandwidth and latency, and region-

based connectivity. The model will also be used to evaluate single and multiple

connections between SCs and SNs. The model will evaluate different strategies

for promotion such as promotion of SC to SN at the start, dynamic any-time and

dynamic need-based.

The performance result of these strategies are compared on the basis of the

number of SCs happy with their current SN, SCs connected, and SNs promoted.

The model also provides information of the overall number of SCs and SNs in the

network and calls generated either directly or through an SN.
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Figure 6.2: Design variations of P2P VoIP protocols
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6.2 Graph Transformation Rules Modelling

Protocol Behaviour

We are now going to present the transformation rules in the order of the features in

Fig 6.2, i.e., registration, going online, linking SC to SN, promotion to SN, SN and

SC departure, load balancing, call placement, background traffic, reconfiguration

and probe rules. The feature diagram in Fig 6.2 is based on the design variations

discussed in Chapter 4, the case study in Chapter 5, and the model in the previous

section.

6.2.1 Registration of New User

In the model, whenever a new user wishes to join the network, it has to first

register with the RS server. Once registered the user will still be offline. If a

registered user wants to use the network, it can go online at any time. The online

edge in Fig. 6.1, show when an offline user ND goes online, it is first assigned the

status of client SC.

6.2.1.1 New User Registration

The rule in Fig. 6.3 is used to register a new user with the server. The LHS of

the rule models a single server RS, and the RHS shows that whenever a new user

arrives, it has to register with the central server RS.

6.2.1.2 Successful Registration

The rule in Fig. 6.4 is used to show the successful registration of a new user.

When a new user is successfully registered, its existing register edge with RS is
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Figure 6.3: New user registration

Figure 6.4: Successful registration

replaced by an edge of type offline. The user’s subsequent role of client (SC) and

super peer SN will be decided later when the ND tries to go online.

6.2.2 Client Goes Online

A registered user can go online at any time. Once online the type is changed to

SC modelling a Skype client. The model supports here two variations. The first

randomly assigns bandwidth to SCs, and decides which SC is behind a firewall

and which is connected using a static IP. The second choice is to separate firewalls

and static IPs. This client’s resources separately to be able to increase or decrease

the number of clients behind firewall or NAT. This will help to comment on the

performance of the model in extreme conditions.

6.2.2.1 User Goes Online with Random Firewall

This rule in Fig. 6.5 is used to model the transformation of a registered user

(ND) to an online client of the VoIP network. This rule consider a registered user
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Figure 6.5: User goes online with random firewall

which is currently offline and makes them online. IT assigns each user random

bandwidth between 128 Kbps to 2 Mbps and sets the exit attribute to false,

modelling that the client does not intend to leave the network. The firewall

attribute is set to disabled or enabled randomly. This rule further assigns the

client a region number between 1 and 50, which models the locality of the client

[96]. The purpose of the region attribute is to identify clients that belong to the

same region [1].

6.2.2.2 Separating Firewall Decision

Go Online with Firewall Disabled

The rule in Fig. 6.6 is used to model the transformation of a registered

user(ND) into an online client (SC). The SC is assigned random bandwidth be-

tween 256 Kbps to 2 Mbps. The exit attribute is set to false and the firewall

is statically set to false. This rule further assigns a random value to the region

attribute modelling the locality of the SC in the network.

Go Online with Firewall Enabled

The rule in Fig. 6.7 is used make client go online with firewall enabled. The

LHS of the rule is same as that of the rule in the Fig. 6.6. The only difference,
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Figure 6.6: Users go online with firewall disabled

Figure 6.7: User go online with firewall enabled

is in the attributes on the RHS of the rule. As the client is behind a firewall,

we reduce the bandwidth range for the client. The bandwidth available for this

client is between 128 Kbps to 1 Mbps. This rule sets the value for the firewall

to true. The exit and region attributes hold the same values false and random.

This rule is helpful, when we want to increase the population of SCs with firewall

enabled.

6.2.3 Selection of SN by SC

Once an SC goes online with the RS, next it has to select one or more SNs as

host. The connection between SC and SN is modelled through node LK, where

the edge type linkTo is placed between the SC and LK. The edge type outTo is

placed between LK and SN. The bandwidth attributes of SC and SN are reduced
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by 5 Kbps, modelling the cost of this connection. In the model, an SC can either

choose to have a single connection or multiple connections to SNs. The model

allows SN to accept and reject new connections based on the local awareness

of current bandwidth and exit attributes. SN will reject new connections if its

current bandwidth is less than 256 Kbps or its exit attribute is set to true. In the

same way, the SC can select an SN as the host if latency between the connecting

SC and SN is less than 300 ms (round trip time). To find the latency a packet

carrying a time stamp is sent as shown in Fig. 6.1. If the round trip time taken

by a packet is more than 300 ms, the SN is rejected and connection with new SN

is tried, sending another packet. Similarly, an SC can select an SN on the basis of

bandwidth and time spent by the SN in the network, serving other SCs. If an SC

wants to connect to an SN which is close to the SC in terms of network locality,

the SC can select SNs based on the region attribute value. All these variations

can be seen in the feature diagram at Fig. 6.2.

6.2.3.1 Selection of a Single SN as Local Host

1. Random Selection of SN on Bandwidth

The rule in Fig. 6.8 links an SC with an SN. The LHS of this rule uses a

NAC to prevent an already linked SC from relinking. This NAC condition

is represented by node LK crossed. This rule also selects an SN from the

population of available SNs, if an SN has a current bandwidth more than

256 Kbps, and is not leaving the network, SN is a candidate for selection.

In the RHS of this rule, a linking SC terminates its current edge with the

RS and create a new connection with SN. Both host SN and connecting SC

pay a bandwidth cost of 5 Kbps for keeping this connection.
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Figure 6.8: Random selection of SN on Bandwidth

2. Selection of SN based on Bandwidth and Latency

The transformation rules in this section are used to model a scenario in

which an SC makes an attempt to link a random SN based on bandwidth

as well as latency [1; 9; 15; 53; 173]. In this approach, the latency between

SC and SN is computed using a time stamped packet.

(a) Create and Send Time Stamped Packet

The rule in Fig. 6.9 creates a packet p1 and sets the chronos attribute

of the packet p1 to the current simulation time. However, p1.chronos

is just a static time stamp. This rule also sets the chronos attribute

for SC to the current time. This will enable the SC to keep timing

information such as when the packet was transmitted. This rule sets

the contents of the packet to ping. The ping packet will be considered

by an SN as a connection request. This rule make sure the packet is

transmitted to an SN, not intending to leave the network in the near

future. The edge at is used to show the current location of the packet.

(b) Reply Packet with AcK
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Figure 6.9: Create and send time stamped ping packet

Figure 6.10: Reply packet with AcK

If the current available bandwidth at an SN is more than 256 Kbps

and the exit attribute is set to false, the rule in Fig. 6.10 will return

the packet p1 with message content AcK. Once the packet reaches SC,

it updates the chronos value of p1 with current time. This will help

the SC to find the time taken by the packet to complete a round trip

(RTT).

(c) Reply Packet with DnY

The SN through the rule in Fig. 6.11, returns the packet p1 with

message content DnY (Denial of Service), if the available bandwidth
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Figure 6.11: Reply packet with DnY

at SN is less than 256 Kbps. This models the situation when the SN

is experiencing either too many connections or congestion.
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Figure 6.12: Link SC with the SN
based on latency

Figure 6.13: Reject SN based on latency

(d) Links SC with SN Based on Latency

If an SN returns the packet p1 with a message content AcK, and the

RTT taken by packet p1 is not more than 300 ms, the requesting

SC will select the current SN as their host for the rest of stay in the

network. Both SC and SN pay a 5 Kbps of bandwidth as cost for

keeping this connection. The rule in Fig. 6.12 will also disconnect the

SC from RS by removing edge online.

(e) Reject SN Based on Latency

If SN returns a packet p1 with AcK content, but the RTT is computed

to be more than 300 ms during the round trip time. The SC will reject

the current SN by applying the rule in the Fig. 6.13.

(f) Reject SN Based on Return of DnY Packet
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Figure 6.14: Reject SN Based on Return of DnY packet

The rule in Fig. 6.14 is used to reject the current selection of SN.

As the SN has refused a new connection by sending packet DnY.

Once this rule is applied, the existing Packet p1 is deleted and a new

selection of SN will be made by applying the rule in Fig. 6.9.

3. Selection of SN as based on Region

This version of linking to an SN is based on concept that local SN results in

less RTT than a non local one [1]. This approach gives equal importance to

spare bandwidth and locality of the SN. The strict version of this protocol

only connects an SC with an SN, if both of them share common region

number. Since this may increase the waiting time for an SC to connect to

an SN, the enhanced version makes an attempt to connect to a local SN and

if this is not available, connects to a non local one. The enhanced version

uses both strict linking and dynamic linking, so we present both rules for

better understanding.

(a) Links SC to SN on Bandwidth and Region

The rule in Fig. 6.15 is used to select a local SN for linking an SC.

The selected SN has the same region number as the connecting SC.

Further, the selected SN has a current spare bandwidth of more than
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Figure 6.15: Links SC to SN on bandwidth and region

Figure 6.16: Linking to SN on bandwidth

256 Kbps. The SC is linked with the SN and both pay 5 Kbps as

compensation.

(b) linking to SN on Bandwidth

The rule in Fig. 6.16 makes an attempt to link an SC with a random

SN if there is no local SN in the current graph. This rule uses a

NAC to confirm that there is no SN in the current graph which has

the same region number as SC. If the NAC is true, a random SN is

selected without taking care of the region. If this SN accepts new

connections, the SC is linked with this non local SN.
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Figure 6.17: Link SC to an SN based on bandwidth and stability

4. Selection based on Bandwidth and Time spent in Network

In this rule, an SC makes an attempt to select an SN which is more stable

[99]. The rule in Fig. 6.17 not only considers bandwidth, but also the

time SN has been serving. As LHS of this rule, an SN with current spare

bandwidth of more than 256 Kbps is selected, and the time of serving in this

role is computed by looking to the chronos attribute. If an SN is serving

for more than 10 minutes, SC is linked.

6.2.3.2 SC Selection of Multiple SNs as Host

The feature diagram in Fig. 6.2 shows that an SC has the choice to connect to

multiple SNs [118; 176]. This approach has some drawbacks such as the higher

cost in bandwidth. These factors will increase the burden on the available SNs

and may reduce the number of happy clients in the network. We discuss in this

section the rules available to connect an SC to multiple SNs.

1. Link to Multiple SN based on Bandwidth

The rule in Fig. 6.18 is used along with the rule in Fig. 6.8 to connect an

already linked SC with another SN. This rule uses two NACs. The first
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Figure 6.18: Link to multiple SN based on bandwidth

condition makes sure that the current SC is not linked to two SNs in the

current graph. The second NAC makes sure that one new SN selected

for the second connection is not the same already linked. The attribute

constraints on exit and bandwidth are checked as precondition of the rule.

If the precondition is satisfied, a link is established with a second SN.

2. Link Multiple SNs Based on Bandwidth and Latency

The transformation rules in this section are used to connect SCs to multiple

SN. This approach is based on computing latency before establishing the

link with an SN. The procedure and approach is the same as for the single

link. The only difference here is that an SC is linked multiple SNs instead

a single SN.

(a) Create and send Packet to the Second SN

The rule in Fig. 6.19 sends a time stamped packet to a newly selected

SN for establishing a second link.

(b) Reply Packet With AcK Content

The rule in Fig. 6.20, return the time stamped packet with AcK.
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Figure 6.19: Create and send packet to the second SN

Figure 6.20: Reply packet with AcK
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Figure 6.21: Reply Packet With DnY

Figure 6.22: Link an SC with second SN

(c) Reply Packet With DnY

The rule in Fig. 6.21, is used return the time stamped packet with

DnY.

(d) Link SC with SN based on Latency

The rule in Fig. 6.22, is used to link an SC with second SN.

(e) Reject SN Based Reply of DnY Packet

The rule in Fig. 6.23 is used to reject SN.

(f) Reject SN Based on Latency

The rule in Fig. 6.24, is used to delete a packet p1 and reject sn1.

3. Link to Multiple SNs Based on Bandwidth and Locality
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Figure 6.23: Reject SN based on reply of DnY

Figure 6.24: Reject SN based on latency

The rules in this sections are used to link SC to multiple SNs, based on

current bandwidth at SN and region attribute.

(a) Link to Multiple SN based on Bandwidth and Region

The rule in Fig. 6.25 is used to link an SC to multiple SNs. This

rule simply selects a new random SN based on the region number

attribute. If the region number of SC and SN is the same and the

current bandwidth of the SN is more than 256 Kbps, the SC will

establish a second link with this SN. The NAC will confirm that this

SN is not the same as SC is already connected, and the SC is not

currently linked with two SNs.
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Figure 6.25: Link to multiple SN based on regions

Figure 6.26: Link to multiple SN based on bandwidth

(b) Link to Multiple SN Based on Bandwidth

The rule in Fig. 6.26 is used to link SC to multiple SNs. This rule

uses the same NACs as the single link.

4. Link Multiple SN Based on Bandwidth and Time Spent

This approach gives importance to the stability of SN and the rule in

Fig. 6.27 use the same concepts as in single link rule.

6.2.4 Promotion to SN

If a user goes online and its firewall attribute is not set to true, this SC is candidate

for SN. The model supports the promotion of the eligible SCs at three stages in
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Figure 6.27: Link multiple SN based on bandwidth and time spent

the network. First, when a user goes online, second any time, and third whenever

there is a need for an SN. These variations are presented in the feature diagram

in Fig. 6.46. We have named these three choices as static, dynamic and need

based [85]. The static protocol promotes an SC to SN as soon as it gets online

and the bandwidth is more than 1.5 Mbps. The dynamic protocol can promote

an SC at any time during the session in the network, but still the bandwidth will

be considered. The need-based protocol promotes an SC to an SN only whenever

there is a need for a new SN. The following transformation rules implement these

three protocols. Once the SC is promoted to the extended role of SN, it retain,

the primary role of the SC while serve other SCs in the network. After promotion,

the SN also updates the RS regarding the new role.

6.2.4.1 Static Promotion of SC to SN

The rule in Fig. 6.28 is used for static promotion of SC to SN. In this rule, a

recently on-line Skype client will be promoted to its extended role as SN. This

rule uses an attribute constraint on bandwidth which makes sure that the client

current bandwidth is more than 1.5 Mbps. In addition to bandwidth, the rule also

confirms that the clients firewall attribute is set to false. Once these conditions
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Figure 6.28: Static promotion of SC to SN

are satisfied, the client will be promoted to SN. Once successfully promoted, client

SN informs the RS about the recent changes to its role in the network. In this

protocol, the decision for client promotion is taken when joining.

6.2.4.2 Dynamic Promotion of SC to SN

The rule in Fig. 6.29, along with rule in Fig. 6.28, is used to implement dynamic

promotion to SN at the start as well as later on. The dynamic protocol is based

on the concept that an SC may not have sufficient bandwidth at the start, but

later the SC may change, making this SC a candidate for SN. The rule in Fig. 6.29

is used to promote the SC to SN. The LHS makes sure that SC is linked with

SN. The rule further confirms that SC has a current bandwidth of more than

1.5 Mbps and that firewall and exit attributes are set to false. If the selected

SC satisfies these constraints, it is promoted to SN. Once the SC is promoted it

terminates its current link with host SN. The new SN informs RS about change

to its role in the network.

6.2.4.3 Need Based Promotion of SC to SN

The rule in Fig. 6.30 is used to implement the need-based protocol for promotion

to SN. This protocol is based on the approach that bandwidth is expensive, so
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Figure 6.29: SC is promoted to SN while SC is linked with SN

Figure 6.30: SC is promoted to SN based on the need of a new SN

promotion shall be strictly based on the need of the network. In this approach

an SN, may select one of its clients for promotion. This rule selects an SN which

has a current bandwidth of less than 1 Mbps. Further, the rule selects an SC

from the SN dependent. The SC is promoted to the role of SN. However, the rule

confirms that client meet the bandwidth requirements of the promotion.

6.2.5 Overlay Network among SNs

The rule in Fig. 6.31 is used to link an SN with four other SNs to form an overlay

network. The recently online SC provides detail of its availability to the global

index (GI) maintained by SNs overlay. The user availability is searched in the

GI maintained by SNs. This rule uses two NACs. The first ensures that the SN
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Figure 6.31: Overlay network among SNs

should only connect to four other SNs. The second makes sure that current SN

can only link an SN, it is linked with. As RHS, SN establishes a new overlay

connection. Both SNs pay a bandwidth of 5 Kbps as the cost for keeping the GI

and connection status.

6.2.6 Load Balancing

The rule in Fig. 6.32 is used to transfer an SC from an overloaded SN to under-

loaded SN. This rule make sure that the current host SN has a bandwidth of less

than 800 Kbps and there exists a new SN that has spare bandwidth more than

1.5 Mbps. The newly selected SN is not intending to leave the network. Once

these conditions are satisfied, the SC is disconnected from the current SN and

relinked with a new SN.
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Figure 6.32: Reconfigure and transfer from overloaded

Figure 6.33: SC extended role of SN is cancelled

6.2.7 Demotion of Super Peer

The rule in Fig. 6.33 is used to cancel the extended role of a client as super peer

(SN) and a client only status is restored. This rule uses two NACs. The first

ensures that extended role should only be cancelled when current SN is not serving

any client. The second makes sure that extended role should only be cancelled, if

it does not have any current OV links in the overlay network. This uses attribute

constraint which make sure that the current available bandwidth of SN is less

than 256 Kbps. Once all these conditions are evaluated as true extended role as

SN is demoted, and client only status is maintained. The demoted SN informs

the RS by replacing the edge overlay-index by the edge online.
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Figure 6.34: Control departure selection of SC

6.2.8 Departures of SC and SN

In the model an SC as well as SN can join, participate and exit the network

by crashing and using the exit procedure prescribed in the application. We first

explain the control departure from a network followed by the uncontrolled depar-

ture.

6.2.8.1 Control Departure of SC

In control departure, the user of the VoIP application uses the exit procedure

provide by the application GUI. The use of this procedure enables the SC to

inform an SN regarding the intended departure from a network.

1. Control Departure Selection of SC

The rule in Fig. 6.34 is used to set the control exit attribute to true. This

rule select a random SC and enables its exit attribute to true.

2. Control Departure Preparation of SC

The rule in Fig. 6.35 is used as a result the rule in Fig. 6.34. Once an

SC opts for leaving the network, and informs the host as well as involved

clients by setting the exit attribute to true. In the next step it cancels its

dependency link with SN. As link LK is removed both SC and SN recover

their cost of compensation, i. e., 5 Kbps.

3. Control Final Departure of SC
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Figure 6.35: Control departure preparation of SC

Figure 6.36: Control final departure of SC

The rule in Fig. 6.36 is used to make an SC offline.

6.2.8.2 Uncontrol Departure of SC

The second departure that is available to SC in the model is to leave a network

selfishly without informing host SN or clients involved in call with current SC.

The rule in Fig. 6.37 is used to model selfish departure of the S. In the LHS of

this rule, we see that there are only two nodes RS and client SC. There are no

attribute constraints or NACs. This rule simply make client SC offline.

Figure 6.37: Uncontrol departure of SC
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Figure 6.38: Control departure preparation of SN

6.2.8.3 Control Departure of SN

An SN can leave the network through a control procedure available in the GUI of

the VoIP application. However, SN exit or departure is different from SC because

SN not only has dependent SCs, but also have searchable overlay with other SNs.

In the event of control exit procedure for SN, it has to inform both dependents

SNs and SCs.

1. Control Departure Selection of SN

The rule in Fig. 6.38 is used to set the control exit attribute of the SN to

true. This rule selects a random SN, and set its exit attribute to true.

2. SN Links Between SC and SN is Removed

The rule in Fig. 6.39 is used as post implementation of the rule in Fig. 6.38.

Once an SN opts for control exit, existing linked SCs break their current

link with SN and report back to the RS. The departing SN and SC recover

their bandwidth compensation cost for the link.

3. SN Overlay Links Removed

The rule in Fig. 6.40, is used as post implementation for rule in Fig. 6.38.

In this rule the SNs in overlay disconnects their link and recover their cost

of compensation for the link.

4. Control Final Departure SN
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Figure 6.39: SN links between SC and SN is removed

Figure 6.40: SN overlay links removed

The rule in Fig. 6.41 is used to make SN offline. This rule uses two NAC

conditions. First make sure SN is not serving as host for SCs. The second

makes sure that SN is not sharing searchable overlay network with other

SNs. Once confirmed that no active connection exists, SN go offline.

Figure 6.41: SN finally go offline
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Figure 6.42: Uncontrol departure of SN

6.2.8.4 Uncontrolled Departure of SN

In uncontrolled approach the SN leaves the network without informing SNs or

SCs. The rest is upto the dependent SC and SN to find a new host. The rule in

Fig. 6.42 is used to make SN offline.

6.2.9 VoIP Calls

In the model shown in Fig. 6.1 two types of nodes are used to model VoIP calls.

If caller and callee both have their firewall attribute set to false, both can make

VoIP calls directly to each other without needing the assistance of the host SNs.

It is worth mentioning that in this type of call, both the caller and callee can be

either SCs or SNs. This type of call is represented by node call in the model,

and the edges types caller and callee point to the caller and recipient of the

call. The second type of call is modeled through a node called RouteCall. All

those SCs with their firewall attribute set to true will use their host SN for the

establishment of VoIP calls. The edge type route points to those SNs, which are

relaying traffic of calls. As there are many codecs available, and each requires

different bandwidth, for the purpose of simplicity in the model we assume that

80 Kbps is the cost of VoIP call. If the call is direct between the caller and callee,

then only the caller’s bandwidths are decremented, but if the call is routed though
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Figure 6.43: Call request by SC behind firewall/NAT

SNs they also pay the cost of the call. In the model, VoIP calls consist of three

stages: request call, complete call and terminate call.

6.2.9.1 Call Request

Each client or super peer will first submit request for a VoIP call. If the user is

online, the call between caller and callee will be established.

1. Call Request by SC behind Firewall/NAT

rule in Fig. 6.43 is used to enable an SC behind a port-restricted firewall

to request a VoIP call with the other client. The on-line participant can

be either SN or SC. The callee of the call can be either connected through

public IP or behind a firewall. In all cases, the VoIP traffic from this SC

will be relayed by the respective host SN of the requesting SC. The rule in

Fig. 6.43 use two NACs. These make sure that the requesting SC is not

involved in existing VoIP calls before requesting a new call. CallReq is used

to model and register requests of the caller for a new VoIP call.

2. Call Request by SC having Static IP

The rule in Fig. 6.44 is used to enable an SC with static IP to request a

VoIP call. The callee can be either SN or SC. The callee of the call can

be either directly connected through live IP or may have firewall-enabled
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Figure 6.44: Call request by SC having static IP

Figure 6.45: Call Request by SN

access. This rule uses two NAC conditions. They prevent a new call if

an existing call is in progress. This rule uses CallReq to model the call

initiation request.

3. Call Request by SN

An SN can serve other clients, but retains the client functionality. The rule

in Fig. 6.51 is used to register an SN’s request for VoIP call.The use of NAC

prevents the SN to initiate a call if an existing call is in progress.

6.2.9.2 Call Placement

The most crucial part of the VoIP P2P network is the voice conversation. Call

placement is the second step in VoIP call. In this section, we discuss the type of

calls that the model supports.

1. Multiple SNs Routed VoIP Call
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Figure 6.46: Multiple SNs routed VoIP call

The rule in Fig. 6.46 is used to complete call requests of a caller SC behind

a firewall. The rule considers that callee is also behind a firewall. The

NACs make sure that neither caller nor callee are already in a call. In this

rule, caller and callee are both linked with different SNs. As both caller and

callee are behind a firewall, the choice available for this call completion is

the SN-routed call. VoIP call data will be transmitted and received through

their respective SNs. We can see in the RHS of the rule that RouteCall is

established between the caller and callee is routed through SNs. The route

edge shows that calls are routed through SNs. In this VoIP Call, caller,

callee and SNs use up bandwidth of 80 Kbps for this call.

2. Single SN Routed VoIP call

The rule in Fig. 6.47 completes the call request of an SC behind firewall.

The caller and callee are connected to the same SN. The call type will be

RouteCall and data will be routed by a single SN. In this call, we still use

the constraint of not being in a call. Once the call is established caller,

callee and SN use up bandwidth of 80 Kbps.

3. P2P Call Between SC behind Firewall and SN
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Figure 6.47: Singe SN routed VoIP call

Figure 6.48: P2P Call between SC behind firewall and SN

The rule in Fig. 6.48 is used to model a call between an SC behind a firewall

and an SN. In this call, the caller is SC whereas the callee is SN. The use of

NACs makes sure neither caller nor callee is in a call at present. The call

will be of type RouteCall as the caller cannot communicate directly with

the SN. Instead, all call transmission will be through the respective host

of the caller. The call is established in the RHS of the rule, and the three

nodes pay the cost of 80 Kbps each.

4. P2P Direct Call between SCs
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Figure 6.49: P2P direct call between SCs

The rule in Fig. 6.49 is used after the rule in Fig. 6.44 to complete a call

between caller and callee. Both caller and callee are connected to the In-

ternet through live IPs. The NACs make sure that neither callee nor caller

is in a call at present. As RHS of the rule, a direct P2P call is established

between Callers. Both caller and callee use up a bandwidth of 80 Kbps as

the cost for maintaining this call.

5. P2P Direct Call between SC and SN

The rule in Fig. 6.50 is used to show a direct P2P VoIP call between caller

SC and callee SN. As caller and callee are connected to the Internet through

live IPs, the direct call will be established as shown in the RHS of the rule

through the node Call. Both caller and callee use up a bandwidth of 80

Kbps each.

6. P2P Direct Call between SNs The rule in Fig. 6.51 is used to model

SN to SN VoIP Call.
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Figure 6.50: P2P direct Call between SC and SN

Figure 6.51: P2P direct Call between SNs
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Figure 6.52: P2P direct VoIP call termination between SCs

Figure 6.53: Terminate SC to SN P2P direct VoIP call

6.2.9.3 VoIP Call Terminations

Once calls are completed, they must be terminated. The following are the calls

termination rules.

1. P2P Direct VoIP call Termination Between SCs

The rule in Fig. 6.52 is used to terminate P2P VoIP call between the caller

SC and callee SC by removing the call node. After termination, caller and

callee update their bandwidth by 80 Kbps.

2. P2P Direct VoIP call Termination Between SC and SN

The rule in Fig. 6.53 is used to terminate P2P VoIP direct calls between

caller SC and callee SN. After termination, bandwidth cost is recovered.

3. P2P Direct VoIP call Termination Between SN and SC

The rule in Fig. 6.54 is used to terminate a P2P VoIP direct call between

caller SN and callee SC. After termination, bandwidth cost is recovered.
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Figure 6.54: Terminate SN to SC P2P direct VoIP call

Figure 6.55: Terminate SN to SN P2P direct VoIP call

4. P2P Direct VoIP call Termination between SNs

The rule in Fig. 6.55 is used to terminate a direct P2P VoIP call between

SNs. Both SNs, after call termination, recover their bandwidth of 80 Kbps

each.

5. P2P Single SN Routed VoIP Call Termination

The rule in Fig. 6.56 is used to terminate an SN routed call established

between caller and callee. As both caller and callee share the same common

SN, their call is routed by a single SN. We can see in the RHS of the rule

that RouteCall node is removed and bandwidth is recovered by the caller,

callee and intermediate SN.

6. Terminate Multiple SNs routed VoIP call

The rule in Fig. 6.57 is used to terminate a multiple SN routed call. In

the LHS of this rule, a RouteCall is connected by route edges. These two

125



Figure 6.56: P2P single SN routed VoIP call termination

Figure 6.57: Terminate multiple SNs routed VoIP call

SNs are used to route VoIP call packets from caller to callee and back. As

shown in the RHS of the rule, once the call is terminated the RouteCall

is removed all participants recover their bandwidth compensation for this

call.

7. P2P Routed VoIP call Termination between SC and SN

The rule in Fig. 6.58 is used to terminate a call between a caller SC behind

a firewall and an SN connected through live IP. In this type of call, the call

packets travel through the host of the caller SC. Once this call is terminated,

the bandwidth cost is recovered by caller, callee and host of the caller.
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Figure 6.58: Terminate SC to SN local host routed VoIP call

6.2.10 Reconfiguration

If an SN departs from the network either cooperatively or by crashing, the SCs

can reconfigure to connect to a new SN based on one of the connecting approaches

discussed above. If the SN intends to leave the network by cooperating, it informs

all other overlay SNs and dependent SCs by setting the exit attribute to true.

This enables the involved SNs and SCs to reconfigure quickly to new SNs. Once

all load is transferred, the SN can leave the network.

6.2.10.1 Link to a New SN when Existing One leaves

In Section 6.2.3 of this chapter, we discussed that SC has four choices to find

a suitable SN. In case of reconfiguration the same choices will be used. In this

section we explain the reconfigurations for relinking to a new SN.

1. Reconfigure and link to a New Random SN

The rule in Fig. 6.59 is used to re-link an SC to a new SN. The new SN is

selected randomly based on the constraint of bandwidth being greater than

256 Kbps. The LHS of the rule use two NAC. The first makes sure that

the LK node is not linked with any other SN in the current graph. The

second NAC makes sure thatthe LK node is not having an existing outTo
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Figure 6.59: Reconfigure and link SC to a new SN

edge with the newly selected SN. Once these conditions evaluated as true,

the SC can re-link with a new SN. The new SN compensates a bandwidth

of 5 kbps for this newly linked SC.

2. Reconfigure and link to a New SN(based on Bandwidth and La-

tency)

The LHS of this rule uses four NACs and two attribute constraints. The

NACs make sure that SC is currently disconnected from The SN, it has

no existing edge with the newly selected SN, and The SC has neither sent

nor received any ping packet yet. The attribute constraints make sure that

the newly selected SN has bandwidth greater than 256 Kbps and SN is not

intending to leave the network . Once all these NACs and constraints are

evaluated, the rule sends a time stamped packet to the newly selected SN.

After this step the reply rule and link rules are used for re-linking this SC.

3. Reconfigure and Link to a New SN based on Bandwidth and Re-

gion

The rule in Fig. 6.61 uses two NACs. The first makes sure that the SC

is currently disconnected and node LK is not having an outTo edge with
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Figure 6.60: Reconfigure and send a time stamped packet to a new SN

Figure 6.61: Reconfigure to link to a new SN based on bandwidth and region

any of the SN, in the current graph. The second NAC makes sure that

the SC is not having an existing edge with the newly selected SN. Apart

from NACs, this rule uses three attribute constraints. The first attribute

constraint makes sure that the new random SN has a bandwidth greater

than 256 Kbps. The second attribute makes sure that it is not intending to

leave the network. The last attribute makes sure that the disconnected SC

and the new SN have same region number. If all these conditions are true

this SC is linked with the SN.

4. Reconfigure and link to a New SN based on bandwidth and time

spent

The rule in Fig. 6.62 is used to re-link a disconnected SC to a new SN
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Figure 6.62: Reconfigure link to a new SN based on bandwidth and time spent

Figure 6.63: Reconfigure and remove overlay target edge

based on the time spent by the SN in the network. This rule uses the same

bandwidth and exit attribute constraint they other reconfiguration rules.

Only one additional constraint is added. This makes sure that the newly

selected SN must have served the role for more than 10 minutes.

6.2.10.2 Recover Bandwidth due to Crashing SN (Target)

The rule in Fig. 6.63 is used to enable an SN to recover its overlay connections.

The SN in this rule detects the crashing of the SN in the overlay and retracts the

overlay link and bandwidth.

6.2.10.3 Recover Bandwidth due to Crashing SN (Source)

The rule in Fig. 6.64 is used to enable an SN to recover and complete its overlay

network. This rule uses a single NAC that checks that OV is not connected with

any SN in the network. This rule deletes the link OV and recovers its bandwidth
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Figure 6.64: Reconfigure and remove overlay source edge

Figure 6.65: Reconfigure and remove linking edge with SC, and update bandwidth

of 5 Kbps.

6.2.10.4 Recover Bandwidth due to Crashing of SC

Similarly, an SC may also leave a network by crashing, and as result its SN will

need to reconfigure. This rule enables the SN to retract the dependency link and

update its bandwidth. The rule in Fig. 6.65 uses a single NAC, which makes sure

that the SN is not linked with the SC through LK. The rule removes node LK

and update its bandwidth.

6.2.11 Background Traffic

As the VoIP client is sharing The Internet bandwidth with other applications

it will not always have guaranteed bandwidth. In order to model increase and

decrease in the availability of bandwidth, we use a random function to randomise

the bandwidth during the simulation. In a second approach, we subtract and add
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Figure 6.66: Random other traffic at SN

Figure 6.67: Random other traffic at SC behind firewall

a uniform value to create the effect.

6.2.11.1 Random Traffic Modelling

1. Random other Traffic at SN

The rule in Fig. 6.66, is used to model the background traffic generated by

other applications while the VoIP client is participating in the network. This

rule selects an SN in the current graph and assigns it a random bandwidth

between 256 Kbps and 2 Mbps.

2. Random Other Traffic at SC (behind firewall)

The rule in Fig. 6.67 is used to model a background traffic generated by

a Skype client, while behind a firewall. This rule selects an SC which has

firewall and randomizes its bandwidth between 128 Kbps and 1 Mbps.

3. Random Other Traffic at SC (behind firewall

The rule in Fig. 6.68 is used to model background traffic generated by a

Skype client that has live Internet connection. This rule selects an SC and
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Figure 6.68: Random other bandwidth at SC

Figure 6.69: Increase bandwidth at SN

randomizes its bandwidth between 128 Kbps and 2 Mbps.

6.2.11.2 Uniform Traffic Modelling

1. SN Transmitting and Receiving Uniform other Traffic

The rule in Fig. 6.69 is used to model the background traffic generated by

other applications while super peer SN is participating in the network. This

rule selects an SN and then subtracts a uniform value of 80 Kbps. It also

uses the rule in Fig. 6.70 to increase the bandwidth value by adding 80

Kbps.

2. SC Transmitting and Receiving Uniform other Traffic

The rule in Fig. 6.71 is used to model the background traffic generated by

other applications while client SC is participating in the network. This rule

selects an SC and then subtract a uniform value of 80 Kbps. It also use the

Figure 6.70: Reduce bandwidth at SN
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Figure 6.71: Increase bandwidth at SC

Figure 6.72: Reduce bandwidth at SC

rule in Fig. 6.72 to increase the bandwidth value by 80 Kbps.

6.2.12 Probe Rules for Collection of Statistics

Probe rules are used to count the number occurrence if certain pattern during

a simulation run. These pattern are encode into the precondition of the rules,

while the postconditions are empty. In the model , an SC can be connected to a

single SN, but as an alternative approach it can be connected to multiple SNs.

This number of connections also changes the structure of the probe rules. In

this section, we present two sets of probe rules. The first set will be used with

the single-link approach whereas the other will be used with the multiple-links

approach.

6.2.12.1 Probe Rule for Single Link

In order to collect the statistics of the simulation, rules with empty postconditions

are used as probes. Each probe rule returns the number matches in the current

graph for each state of the transformation system.

134



Figure 6.73: Number of SCs

Figure 6.74: Number of SNs

1. Number of SCs

This rule in Fig. 6.73 is used to count the number of SCs in the current

graph.

2. Number of SNs

This rule in Fig. 6.74 is used to count the number of SNs in the current

graph.

3. Number of SCs linked with SN

The rule in Fig. 6.75 is used to count the number of SCs linked with SNs

in the network.

4. Number of SCs Happy with current SN

The rule in Fig. 6.76 is used to count the number of SCs that are currently

linked with SNs, they have a spare bandwidth more than 1 Mbps.

5. Number of SCs re-linked with new SN

Figure 6.75: Number of SCs linked with SN
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Figure 6.76: Number of SCs happy SCs with current SN

Figure 6.77: Number of SCs reconfigured with new SN

The rule in Fig. 6.77 is used to count the number of SCs that have lost

connection with their current host in the graph and are looking to re-link

to a new SN.

6. Number of P2P Direct Calls

The rule in Fig. 6.78 is used to count the number of P2P direct calls.

7. Number of SN-Routed Calls

The rule in Fig. 6.79 is used to count the number of SN routed Calls.

8. Number of Calls Disconnected Due to Crashing of Callee

The probe rule in Fig. 6.80 is used to count the number of P2P direct calls

that are disconnected due to crashing of callee.

9. Number of Calls Disconnected Due to Crashing of Caller

Figure 6.78: Number of P2P direct calls
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Figure 6.79: Number SN-routed calls

Figure 6.80: Number P2P direct calls disconnection due to callee

The probe rule in Fig. 6.81 is used to count the number of P2P direct calls

that are disconnected due to crashing of caller.

10. Number of Routed Call Disconnection due to SN

The probe rule in Fig. 6.82 is used to count the number of routed calls that

are disconnected due to crashing of SN.

6.2.12.2 Probe Rule For Multiple Links

1. Number of SCs linked with SNs

Figure 6.81: Number P2P direct calls disconnection due to caller

137



Figure 6.82: Number of routed call disconnection due to SN

Figure 6.83: Number of SCs linked SNs

The probe rule in Fig. 6.83 is used to count the number of SCs that are

linked with multiple SCs.

2. Count Number of SCs Happy with SNs

The rule in Fig. 6.84 is used to count the number of SCs that are happy

with their current SNs. This is the case the SN has a current bandwidth of

1 Mbps.
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Figure 6.84: Probe rule counts number of happy SCs

6.3 Summary

In this chapter, we defined a type graph as a model for P2P VoIP like protocol.

The type graph is based on the discussion of the case study. Further, we also

presented the transformation rules for modelling the behaviour of the network,

including all it’s variants. Typed graph and transformation rules will be converted

into VIATRA2 the coming chapter for use in simulation.
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Chapter 7

Simulation Tool Support

In order to implement the approach proposed in this thesis, we require tool sup-

port for the simulation of graph transformation. In this chapter we will discuss

the Graph-based Stochastic Simulator (GraSS) which has been developed along-

side the research reported in this thesis. In particular, we will explain how the

tool is used to perform the simulations required to evaluate our P2P protocols,

including the simulation parameters used and the statistics produces as a result.

We will also give a brief overview of the tool’s architecture. GraSS requires a type

graph as well as GT rules in the syntax of VIATRA2, a model transformation

language and tool. This chapter will give an overview of the syntax and seman-

tics and explain the conversion of our graphical rules into this textual model

transformation language.
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7.1 Graph-based Stochastic Simulation (GraSS)

GraSS is a stochastic simulator [162] based on the algorithm [87] for generalised

stochastic graph transformation described in Chapter 2. GraSS provides various

forms of statistical computations such as confidence intervals, averages and mean,

etc. The underlying stochastic model is that of a semi-Markov process allowing

for exponential and log-normal distributions. The tool has been developed in

Java-Eclipse, as a plugin of a graph transformation engine called VIATRA2 [16].

GraSS takes as input an XML file with the rule names and definitions of

the distributions associated with transformation rules, as well as the list of rules

with empty postconditions that are to be used as probes. Additional parameters

needed for a simulation run are provided to GraSS as part of the VIATRA2

model, which will be explained in the coming sections.

In GraSS a GTS is represented as a VIATRA2 model, consisting of the model

space containing the current graph and the transformation rules. The model

represents a discrete event system, given by the set of all reachable graphs as

states and transformation steps (pairs of rules and matches) as events. In GraSS

each event is associated to a random variable that represents the scheduled delay

as specified by a continuous cumulative distribution function (CDF).

GraSS collects statistics by means of transformation rules used as probes

(rules with empty postconditions). The statistics are provided by a Java library

for stochastic simulation (SSJ) TallyStore class reports [93].
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7.1.1 Simulation Parameters

The experiment can be structured as a sequence of variations, each defined by a

batch of simulation runs. However, all runs of a batch share the same stochastic

parameters. Runs from different batches can vary, either in stochastic assignment

or in maximum length. In GraSS [162] the statistics are produced for each run,

batch and experiment. In order to run simulation experiments, the following are

the inputs that have to be provided to the tool, either as a part of the model

space or in a separate XML file. The parameter.xml file used in this thesis is

shown in Fig. 7.2.

1. Graph Transformation System

The metamodel representing the type graph of the GTS, as shown in

Fig. 7.1. The initial model (start graph) as shown in Fig. 7.1, consist-

ing two nodes RS and SN. The transformation rules, converted from the

graphical rules of our model.

2. Probability Distribution and Rate

The parameter inputXML(string) is used to specify the name of the XML

file where rule names, probability distributions and rates are stored. The

Fig. 7.3 shows a section of the XML file used in this thesis.

3. Rule Set

The parameter ruleSet(string) is used if we want to simulate a single model

with different sets of transformation rules. Assigning the rule set name will

enable the simulator to use only that set of rules.

4. Length of Simulation Run
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Figure 7.1: Skype VPM Model Space
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Figure 7.2: Internal parameters
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Figure 7.3: XML file with GT rules and probability distribution

145



(a) The parameter runDepth(integer) is used to show the number of steps

that we want to run the simulation for. Once this number of events

occur in the network the simulation will stop.

(b) The parameter timeMode(boolean) is used to set the simulator to

time mode. In this mode each run is limited by a maximum simulation

time, otherwise it is limited by a maximum number of steps.

(c) The parameter runTime is used with time mode and it provides the

length of the simulation run. It’s value is interpreted based on the

scale used in the probability distribution. If the rates are assigned

based on a per-day basis time, a simulation time of 1 represents 24

hours.

(d) The parameter sizeOfBatch(integer) specifies the number of runs

for each batch of experiment, this parameter specify how many times

we want to run the simulation with a single sensitive rule value. This

helps to obtain an average value and to find confidence interval.

5. Content and Organisation of Output

(a) The outRepBtc requests a report on the probe rules, including de-

tailed information of minimum, maximum and averages. This report

also provides confidence intervals for each probe rule.

(b) The outRepBtcR requests a report on the global statistic of all

GT rules, showing the minimum, maximum and average number of

matches they had during the simulation.

146



(c) The outRepSlc requests a report for each variation and each slice

separately.

(d) The outRepGlb requests a report on the global statistics during the

simulation, such as if the simulation was running on time mode, the

report shows the number of steps that occur.

7.2 This Thesis and GraSS

GraSS has been developed by Polo Torrini during his time on the SENSORIA

project at Leicester [162]. The research reported in this thesis has provided a test

bed for evaluating and debugging of the tool. We also performed tests in order to

validate the scalability of GraSS. Using the time mode we were able to simulate

a model for 48 hours on a standard PC with a Core2Duo 2 GHZ processor and 4

GB RAM with 32 bit Windows XP operating system.

During these experiments the tool has managed to simulate the model up to

35000 steps, upon which almost 90% of the memory was in use. The network

had 3486 clients and 600 super peers. In other experiments we fixed the number

of clients in the model to 1000 and ran the simulation based on steps so as to

observe the time it took to complete. The results are presented in Fig. 7.4.

This thesis also contributed sample models including detailed comments and

parameter files to enable new users to test the tool.
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Figure 7.4: Steps Vs time in Grass

7.3 Mapping To VIATRA2

In this section, we are going to convert the type graph and the transformation

rules presented in Chapter 6 to executable form in order to be used by GraSS.

In the first section, we convert the type graph into a Visual Automated Model

Transformations(VIATRA2) model space. We also define the start graph in the

model space, along with the parameters for the simulation. In the second part of

this chapter, we convert a single GT rule into a VIATRA2 rule. We explain this

mapping based on the background presented in Chapter 7. Later in this thesis,

the model space and transformation rules in VIATRA2 will be used by GraSS for

stochastic simulation and analysis.

7.3.1 VIATRA2 Model Space

Fig. 7.1 shows the model space for the Skype-like protocol. The metamodel is

the conversion of the type graph presented in Chapter 6. The model elements

SC, SN and ND and associated relations have kept the same names for better

understanding. Fig. 7.1 also provides the start graph where the GT rules will

be applied. The start graph in Fig. 7.1 shows a single registration server RS, a

single super peer SN and a list of registered users. This list will increase as a new

148



registrations occur, presently the model has 1000 registered users.

7.3.2 The VTCL language

VIATRA2 is a model transformation tool based on graph transformation. Trans-

formation rules in VIATRA2 consist of several constructs that together form an

expressive language for developing both model to model transformations and code

generators. Graph patterns (GP) define constraints and conditions on models,

graph transformation (GT) rules support the definition of elementary model ma-

nipulations. The language that is created to implement all these concepts is the

Viatra Textual Command Language (VTCL). This language is textual and cur-

rently it does not have any graphical editor for development of rules. All the

rules needs to be coded.

Graph patterns Graph patterns are the atomic units of model transforma-

tions. They represent conditions (or constraints) that have to be fulfilled by

a part of the model space in order to execute some manipulation steps on the

model. A graph model or part of the model can satisfy a graph pattern, if the pat-

tern could be matched to the subgraph of the model using an incremental graph

pattern matching technique presented in [164]. The syntax for the definition of

patterns is as follows.

pattern (name of pattern (formal parameters)) =

{

Pattern body

}
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Patterns are defined using the pattern keyword. Patterns may have parame-

ters that are declared after the pattern name. The basic pattern body contains

model element and relationship definitions. The keyword neg identifies a sub-

pattern that is embedded into the current one to represent a negative condition

for the original pattern. To explain the pattern we consider an example pattern

below:

1 pattern example(X,S,BW ,RG) =

2 {

3

4 SN(X); // X is variable of type SN//

5 RS(S);

6 neg pattern negcondition(X,Y) =

7 {

8 SC(X);

9 RS(S);

10 RS.register(RG ,S,X);

11

12 }

13 find SN_Bandwidth(X,BW);

14 check(( toInteger(value(BW))) >256);

15 }

Listing 7.1: Example pattern

The negative pattern in the example can be satisfied, if the node X and Y are

connected through an edge of type register. There are also check conditions that

are Boolean formulas which must be satisfied in order to make the pattern true.

In our example, we check that SC has current bandwidth more than 256 Kbps.

Another unique feature of the VTCL pattern language among graph transfor-
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mation tools is that negative conditions can be embedded into each other at an

arbitrary depth, as negations of negations. In such case a expressiveness of such

patterns converges to first order logic [132].

Pattern calls, OR-pattern, recursive pattern In VTCL, a pattern may call

another pattern using the keyword find. This feature enables to use an existing

pattern in a new pattern. A once written pattern will be reused whenever required

later in the code. Similarly, alternate bodies for a pattern could be defined by

simply creating multiple blocks after the pattern name and parameter definition,

and subsequently connecting them with a keyword or. In this case the pattern is

fulfilled if at least one of the bodies of the pattern is fulfilled. By using pattern

call and OR together, recursion can be formulated in which a pattern can call

itself. In this scenario one of the bodies contains stop condition whereas the other

activates the recursive call. This can be explained with help of the example given

below. In this pattern it is ensured that the selected SN has either source edge

with node OV or target edge with OV.

1 pattern Check_OV_Links_with_SN(Y)=

2 {

3 OV(Z);

4 SN(Y);

5 OV.source(LKI ,Z,Y);

6 }

7 or

8 {

9 OV(Z);

10 SN(Y);

11 OV.target(OVT ,Z,Y);
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12 }

Listing 7.2: Example of Or

Semantics of graph patterns When a graph pattern is activated using the

find keyword, this activation means that a sub-situation for the free parameter of

the specified graph pattern has to be identified such that it satisfies the pattern,

in case there is no defined value. If there are bound variables which are passed

as parameters, they are considered as additional constraints, and they remain

bound throughout the pattern matching process. By default in VIATRA2 the free

variable will be substituted by existential quantification, which simply states that

only one matching is generated. However, if a variable is universally quantified

using the construct forall, the matching will be performed on all possible values

of the given variable.

7.3.3 Transformation Rules in VIATRA2

As the graph pattern defines the logical conditions or formulas on the model,

the manipulation of models is achieved using graph transformation rules. This

whole process in VIATRA2 is based on graph patterns for defining the applica-

tion criteria for transformation steps. The application of a GT rule on a given

current graph (model space) replaces an image of its precondition (LHS) pattern

with an image of its postcondition (RHS) pattern. A GT rule is composed of a

precondition, a postcondition and an optional action part. The syntax of a GT

rules in VIATRA2 is given below.

1
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2 gtrule (Name of rule) (in/out (i/o parameters)) =

3 {

4 precondition {

5 pattern definition

6 pattern call

7 }

8 postcondition {

9 pattern definition

10 pattern call

11 }

12

13 action {

14 pattern definition

15 action pattern call

16 }

17

18 }

Listing 7.3: Syntax of transformation rules

The VTCL language allow the use of popular notations for construction of trans-

formation rules. The above syntax is a combination of traditional and new spec-

ifications for presenting transformation rules in VIATRA2. The precondition is

performing the core function of the GT rule. It defines the conditions for the of

application of a rule. The execution of a precondition means finding a pattern in

the start graph. This represents the LHS of the transformation rule. The post-

condition pattern describes what conditions should hold as a result of applying a

GT rule. The result of a rule can be identified as the difference between the pre-

condition and the postcondition. Further, the postcondition allows three different
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operations on the graph. The first is the preservation of an input parameter of

the precondition. The second is deletion, if an element or an input parameter of

the postcondition does not appear in the pattern itself, then the matching model

element is deleted. The last task is the creation. If a variable appears in the

postcondition which is not an input variable of the post condition, then a new

model element is created.

The action part to the GT rule can be used without a postcondition to per-

form the same task as would be performed by the postcondition with additional

flexibility of user defined functions or methods. A GT rule can create model

elements, delete existing ones and update values of attributes. In this thesis, we

are using GT rules with preconditions and actions.

7.3.4 GT Rule Conversion To VIATRA2

In order to explain the process of converting a GT rule into a VIATRA2 rule, we

have selected a rule which links an SC with an SN. This rule captures features

such as NAC, attribute constraints and updates. We reproduce the rule from

Fig. 6.8 in Fig. 7.5, marking the patterns with numbers. These patterns will be

converted separately into VIATRA2 pattern. The objective is that they could

be reused if another GT rule uses the same patterns. The complete view of the

VIATRA2 code is shown in List. B. All other rules have been placed in Appendix

B.

1 pattern SN_overlay -index_RS(S,Y,RG) =

2 {

3 SN(Y);

4 RS(S);

154



Figure 7.5: GT rule link an SC with SN

5 RS.overlay -indexRG ,S,Y);

6 }

Listing 7.4: SN connected with RS (P.No.1)

The pattern in List. 7.4 finds an SN that is currently connected with a RS

through an edge of type RSoverlay.

1 pattern SC_go_online(S,X,RG) =

2 {

3 SC(X);

4 RS(S);

5 RS.online(RG ,RS ,SC);

6 }

Listing 7.5: SC is Online (P.No.2)

The pattern in List. 7.5 finds an online SC that is currently connected with

RS through an edge online.

1 pattern test_links(X)=

2 {
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3 SC(X);

4 neg find Link_SN(X);

5 }

6 pattern Link_SN(X)=

7 {

8 LK(L);

9 SC(X);

10 LK.linkto(CO ,L,X);

11 }

Listing 7.6: SC is not Linked (P.No 3)

The patterns in List. 7.6 are different from the other two. The first pattern

calls the other pattern as negative condition. The aim of these two patterns is to

make sure that an SC is not currently linked with an intermediate node LK in

the current graph. We see that the first pattern calls the second.

1 pattern SC_Exit(X,EX) =

2 {

3 SC(X);

4 SkypeNode.Exit(EX);

5 SkypeNode.exit(EXR ,X,EX);

6 }

Listing 7.7: SC Exit Attribute(P.No 4)

The pattern in List. 7.7 finds the exit attribute of an SC and links variable

EX to that attribute. The variable EX can be used to update, compare or change

the value of the attribute.

1 pattern SN_Exit(Y,EX) =

2 {
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3 SN(Y);

4 SkypeNode.Exit(EX);

5 SkypeNode.exit(EXR ,Y,EX);

6 }

Listing 7.8: SN Exit Attribute(P.No 5)

The pattern in List. 7.8 finds the exit attribute of an SN and links variable

EX to that attribute.

1 pattern SN_Bandwidth(Y,BW)=

2 {

3 SN(Y);

4 SkypeNode.Bandwidth(BW);

5 SkypeNode.bandwidth(BWR ,Y,BW);

6 }

Listing 7.9: SN Bandwidth Attribute(P.No 6)

The pattern in List. 7.9 finds the bandwidth of the selected SN and links a vari-

able BW to that attribute, which shows the current value of the SN’s bandwidth.

Similarly, this can be used to update, compare or change the value of the band-

width of SN.

1 patter SC_Bandwidth(X,BW)=

2 {

3 SC(X);

4 SkypeNode.Bandwidth(BW);

5 SkypeNode.bandwidth(BWR ,X,BW);

6 }

Listing 7.10: SC Bandwidth Attribute(P.No 7)
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The pattern in List. 7.10 is used to link BW to an SCs bandwidth. We see

that we have repeated the BW in two different patterns. This does not matter as

the return value will be stored in the variable which is used to call this pattern.

1 gtrule Rule_Link_SC_to_SN () =

2 {

3 precondition pattern lhs(S,X,Y,CRO ,RG ,BW ,SCBW ,NL ,R)

4 SN(X); // X is variable of type SN//

5 SC(Y); // Y is a variable of type SC node //

6 RS(S); // S is a variable of type RS node //

7 Network(NL); // NL is a variable of type Network node //

8 find SN_overlay -index_RS(S,X,R); // find SN is linked with

server RS// P.No. 1

9 find SC_go_online (S,Y,RG); // call pattern SC go online //

P.No. 2

10 find SN_Exit(X,EX); // find exit attribute of SN// P

.No. 7

11 find SC_Exit(X,EX1); // find exit attribute of SC// P

.No. 6

12 find SN_Bandwidth(X,BW); // finds bandwidth attribute and

current value// P.No. 8

13 find SC_Bandwidth(Y,SCBW);

14 // finds SC bandwidth and current value which will be used in P

.No 10 //

15 find test_links(Y); // check if SC is already connected //

P.No.

16 check(( toInteger(value(BW))) >256);

17 // this check condition make sure that SN bandwidth must be

greater than 256, this finds

bandwidth by
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using P.No 8, while accepting new connection //

18 check ((( value(EX)))=False);

19 // this condition use P.No. 7 to find value of exit attribute

& compare it//

20 check ((( value(EX1)))=False);

21 // this condition use P.No. 6 to find value of exit attribute &

compare it//

22 } // end of pre -condition //

23

24 action { // below is post condition of RHS of the

figure 6.6//

25

26 let LK=undef , CO=undef ,OU=undef ,NR=undef in seq

27 {

28 new (LK(LK) in NL); // create anode LK under the network

node NK// P.No. 11

29 new(NL.nodes(NR ,NL ,LK)); // this make it a child of the network

// P.No.11

30 new(LK.linkto(CO ,LK ,Y));

31 // this establish an edge of type linkto between LK and SC //

P.No 5

32 new(LK.outTo(OU ,LK ,X));

33 // this establish an edge of type outTo between LK and SN //

P.No. 4

34 delete(RG); // this delete the existing edge between SC and RS

server // P.No.2

35 setValue(BW ,(( toInteger(value(BW))) -5));

36 // link cost compensation is deducted from SN// P.No 9

37 setValue(SCBW ,(( toInteger(value(SCBW))) -5));

38 // link cost compensation is deducted from SC// P.No. 10
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39 println("SC connected/Linked with SN"); // message is

printed //

40

41 }

42

43 } // close action part//

44 } // close GT rule//

Listing 7.11: Rule Link an SC with SN

In List. B individual patterns are combined to form a single rule. List. B The

number show where each pattern is used.

7.4 Summary

This chapter focussed on the use of GraSS as stochastic simulator. We have

discussed the conversion of the type graph of a GTS into a VIATRA2 model

space. We have shown transformation rules converted to executable VIATRA2

rules. The complete set of rules is shown in appendix B. The model space in this

chapter along with the VIATAR2 transformation rules are used by the GraSS

tool for simulation and analysis. This is the focus of the following chapter.
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Chapter 8

Stochastic Simulation

In this chapter, we are going to simulate the models and associated variations

of the P2P VoIP protocol. This chapter will use the feature tree presented in

Chapter 4 along with the model and transformation rules presented in Chapter 6.

The simulation is based on the executable forms of the model and transformation

rules presented Chapter 6. Based on our case study, first we will assign probability

distributions to different GT rules.

In this chapter, we compare different strategies for selection, promotion, load

balancing, single and multiple links. As a result, we propose a single protocol for

P2P VoIP based on the performance of the design variations tested.
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8.1 Probability Distributions For Rules

The aim of this section is to explain how the distributions are assigned to the

rules of the graph transformation system in this thesis. One challenge in this case

study was to select an appropriate distribution for each rule.

For example, as we don’t know exactly how many times a user uses Skype,

it can be once in 24 hours orevery 3, 4 or 6 hours. In such a scenario this event

can be considered as following an exponential distributions. On the other hand,

if we know the average length of time it takes to complete an action, such as a

VoIP call, then it can be categorized as a log-normal distribution (positive normal

distribution).

Hence, each GT rules presented in Chapter 6 of this thesis needs to be catego-

rized into exponential or log-normal, and then associated with specified scheduled

delays. The exponential distribution requires a single parameter of corresponding

rate or frequency, whereas the log-normal distribution requires two parameters,

i.e., mean and variance. The corresponding rate, mean and variance parameters

for the case study were selected based on the Skype statistics, network analysis

and reverse engineering data from [15; 53; 97; 134; 150; 173; 182].

Real data was gathered from [150] which was based on one month of analysis,

from 17th December 2010 to 17th January 2011. Due to the nature of the P2P

protocol no restriction can be imposed on the peers, so most of the rules in this

case study will follow exponential distributions while tasks such as a peer linking

with a super peer or call establishment are following log-normal distributions.

But before presenting values, we briefly explain which distribution suites which

feature in the feature tree of Chapter 6, Fig. 6.2.
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1. Register New User

The GT rules modelling user registration will be associated with exponential

distributions since in the real Skype network there is no exact information

on when a user can register. In fact user registration is related to user

choice.

2. User Goes Online

A user can go online anytime once they are registered. There are no exact

information available that how many time a registered user go online in 24

hour. For example some people may use Skype twice in 24 hour, or even

more frequently. Thus, the exponential distribution is the right choice for

this feature of the P2P VoIP protocol.

3. Link with Super Peer

Once a user gets online with the server, the next task performed by the

protocol is to find a host for the newly online Skype client. Real observation

shows that Skype takes between 30 to 50 seconds to find a super peer, link

and update the global index. These timings suggests that the GT rule

modelling the linking of SC to SN will be associated with a log-normal

distribution.

4. Promotion to Super Peer

Promotion does not depend on user choice. Once a peer satisfies the con-

straint of the bandwidth of 1.5 Mbps, the protocol could randomly select the

SC for promotion. Hence, promotion GT rules will be assigned exponential

distributions.
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5. Connect Super Peers / SN Overlay Formation

After compulsory promotion, the new super peer has to become part of the

SN overlay in order to share the global index. This task normally takes up

to 50 seconds. Hence, the GT rules modelling this event will be assigned

log-normal distributions.

6. Demotion to Client

If a super peer is unable to accept new connections, the protocol takes up

to 55 seconds to cancel the super peer role and maintain its client-only role.

Hence, GT rules modelling this downgrade event will be assigned log-normal

distributions.

7. Departure of Skype Super Peer / Skype client

The departure of peers and super peers both depend on user choice. A user

may use Skype for hours or may decide to leave the network in a couple

of seconds. The GT rules modelling controlled and uncontrolled departure

are assigned exponential distributions. However, once a peer or super peer

decides to leave the network in a controlled manner, the dependent peers or

SN recover their links in 30 seconds time. Hence, GT rules modelling the

recovery are assigned normal distributions.

8. VoIP Calls

This feature of the VoIP protocol consist of three phases. Phase 1 is user’s

request for VoIP Call. This task depends on when the user wants to make a

call to another user. Hence, the GT rules modelling this phase are assigned

exponential distributions. Phase 2 consists of call establishment. This task
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is performed by the protocol and the protocol takes up to 40 seconds until

ringing event. Therefore, the GT rules modelling this phase are assigned log-

normal distributions. The last phase is call termination. Real experiments

suggest that, on average, VoIP calls are between 3 to 16 minutes. Hence,

the choice of a log-normal distribution is the best for the GT rules modelling

call termination and completion.

9. Load Balancing

The super peer-based on the local awareness, may promote one of its client

to the extended role. The super peer takes up to 50 seconds to promote

a local client and transfer the load. Hence, log-normal distributions are

assigned to the GT rules modelling this feature.

Tables A.2 and A.1 show some of the core GT rules with heir types of dis-

tributions and parameters. The complete list of rules and distributions for all

models are given in Appendix A.

8.2 Setup and Parameters

We simulate our model using GraSS [87; 162] presented in Chapter 7 of this thesis.

In GraSS a GTS is represented as a VIATRA2 model as explained in Chap-

ter 7. The VIATRA2 model consists of the model space with the current/start

graph and the transformation rules. Moreover, GraSS takes as input an XML file

with the definitions of the distributions associated with transformation rules, as
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State Event Mean µ Variance
σ2

Link SC to SN ConnectSCToSN 0.000347 2.5
Re-Link SC ReconfigureSCtoSN 0.000173 2.0
SN Overlay SNtoSNOverlay 0.000578 4.5
Control exit Prep. CtrlExitPrepSc 0.000154 2.0
Control Final Ext SC CtrlFinalExitSc 0.000154 2.0
Control ext Prep SN CotExitPrepSN-Delink-SN-S 0.000154 4.0
Control exit Prep SN CotExitPrepSN-Delink-SN-T 0.000154 4.0
Control exit Prep SN CotExitPrepSN-Delink-SC 0.000154 4.0
Control Final SN Depart CtrlFinalSN-Exit 0.000154 4.0
Place Call using STUN CallUsingSTUNB/WSCs 0.000347 10.00
Place Call using STUN CallUsingSTUNB/WSNSCs 0.000347 10.00
Place Call STUN Failed CallWhenSTUNFailed 0.00567 5.00
Call Term. callTermination 0.033 1.0
Load Balancing LoadTransferBal 0.000347 2.5
Cancel SN Role DownToSCfromSN 0.00578 10.0

Table 8.1: GT rule log-normal distribution

Event Frequency Mean
λ (hours)

Mean arrival
rate λ−1(hours)

UserGoOnline Every 8 hours 3.0 0.33
Every 6 hours 4.0 0.25
Every 4.8 hours 5.0 0.20
Every 4 hours 6.0 0.1666

UserGoOffline Every 5 hours 4.8 0.208
UserCrash Every 168 hours 0.142 7.042
UserReqVoIPCall Every 6 hours 4.0 0.166

Table 8.2: GT rule exponential distribution
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Figure 8.1: Steady state of random SN selection

well as the list of rules with empty post-conditions that are to be used as probes.

Additional parameters needed for a simulation run are provided to GraSS as part

of the VIATRA2 model.

The simulations in this thesis are based on the time unit of 24 hours with

a simulation time of 19.2 hours. We run the simulation with a batch size of

6 runs. The simulation time was selected based on steady state experiments.

We simulated all models and observed that after 12 hours simulation time every

model was in steady state. Fig.8.1 shows that the model is in a steady state for

client joining at rate 2,3,4,5 and 6. The test results for the other models are given

in Appendix A.

We evaluate our models based on performance parameters such as

• How many clients are happy with their current selection of super node?

• How many clients are in the model?
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• How many are linked with a super peer?

• How many clients are waiting to link with a super peer?

• How many super peers are present in the model?

• How many calls are supported?

• How many clients reconfigured their connections?

All these performance indicators have been modelled as GT rules with empty

postcondition in graphical form Chapter 6 and as executable rules in Appendix

B. After each simulation step, the tool collects statistics for these probe rules,

generates reports giving min, max and average values along with their confidence

intervals.

Although the tool supports large numbers of nodes, in this thesis we keep the

number of users to 1000. During experiments we have simulated the models upto

the size of 10000 users, but observed that after 1000 the averages are nearly the

same. We have fixed the rates on the 1000 nodes models such that it produces

the same number of averages as those observed in the real Skype network [15; 53;

150; 154]. Further, the models are also evaluated in the presence of random and

uniform background traffic.

8.3 Simulation of Super Peer Selection

In this experiment we compared four models using different approaches for con-

necting clients with super peers. The four different approaches are shown in

Fig. 8.2. They are tested by keeping other mandatory features of the protocol
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constant varying only the selection strategy. The Exclusive OR (XOR) enables

us to select exactly one. In this experiment a registered user can go online and

the model randomly decides whether a client is behind firewall or NAT. We test

all these four models through variations {2, 3, 4, 5, 6} of the rate x for the client

to go online. In all models the number of registered users were 1000.

All four models use promotion based on random dynamic protocol and the

background traffic is modelled using random traffic rules. Clients depart by crash-

ing or operative exit. SNs can demote if they do not meet the requirements of the

role. In all the models VoIP calls are supported both routed via SN and directly.

Each model has been tested by running batches of simulations, varying the

rate of GT rule go online as shown in at Fig. 6.5 Chapter 6 and VIATRA2 code

is in List B.3. Each batch consists of 6 independent runs, each bounded by a

time limit of 19.2 hours.

We programamed GraSS to automatically generate independent batches of

simulations for each model. We produce confidence intervals based with a confi-

dence level of 95%.

We compare the performance of all approaches with respect to four measure-

ments: the total number of SC nodes in the network, the number of super nodes

in the network, the percentage of linked SC nodes, and the ratio of happy peers.

The ratio of happy peers is computed as percentage of happy clients divided by

the total number of linked clients.

The simulation results are presented as graphs. The results in Fig. 8.3 show

the average number of clients in the models. This results show that almost all

approaches have 35% - 65% of clients online. At joining rates 2,3 and 4 the

average for numbers of clients are close to each other. However, at joining rates
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Figure 8.2: Feature tree for SN selection

5 and 6 the latency-based SN selection produces slightly fewer clients.

Fig. 8.4 shows the average numbers of SNs observed along with the average

number of SCs.

Fig. 8.5 shows average number of clients online with their firewall enabled.

These SCs are not candidate for promotion to super peer and are always depen-

dent on SNs. The observed average shows that all approaches have nearly similar

number of SCs with firewall enabled.

Fig. 8.6 shows the average number of SCs linked to SNs. The simulation results

show that random linking results in percentages of linked SCs between 56% and

61%. These percentages make this approach superior in terms of linking SCs.

Further, time-based SN selection links SCs with percentages between 32% and

42%, making this approach the second best. The simulation results further show

that the latency-based selection approach links between 20% to 27% of online

clients, placing it on third position. The local SN-based selection results in the
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Figure 8.3: Average number of SCs

Figure 8.4: Average number of SNs
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Figure 8.5: Average number of SCs with firewall/NAT

lowest percentages. This is mainly because it is a more complicated approach as

it requires a local SN for connection. This slows down the process of linking SCs

with SNs. Thus, our first criteria for evaluation of these approaches shows that

putting constraints on the selection of SNs results in increases in waiting time.

This is one of the reasons that random SN selection has produced results which

are the highest among the approaches.

The second evaluation is on the basis of averages of number of happy SCs. As

stated earlier an SC said to be happy if its current host SN has 1.5 Mbps of spare

bandwidth. Fig. 8.11 shows the observed values for the probe rules that count

happy SCs. The results are different as compared to our previous evaluation.

They show that local SN selection results in an average percentage of happy SCs

between 71% and 77%, which makes this approach superior. The latency based

approach stands in second place, with percentages of happy SCs between 61%
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Figure 8.6: Average number of SCs linked with SN

and 63%. At third position is the random SN selection with percentage between

57% and 64%. The lowest percentages result for time-based SN selection, which

is due to the fact that an SN that spent more time in the network is more likely

to host a greater number of SCs.

We present here confidence intervals for the average numbers of linked SCs

with a confidence level of 95%. The tool produce confidence intervals for each

of the probe rule. The confidence interval for random SN selection is shown in

Fig. 8.7. The figure confirms that lower bounds (LB-) and upper bounds (UB+)

are not far away from the average. Similarly, the confidence interval for latency

based SN selection is shown in Fig. 8.8. The graph confirms that intervals are

close to the average, but wider than the random-based. Further, Fig. 8.9 shows

the CI for the time based approach. The graph shows that CI for latency and

time-based approach are roughly the same. The last CI in Fig. 8.10 shows local SN

based selection. The graph shows that their CI is narrower than in the previous

two approaches especially at rate 7.
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Figure 8.7: Random SN 95% CI for average number of linked SCs

Figure 8.8: Latency based SN 95% CI for average number of linked SCs

174



Figure 8.9: Time based SN 95% CI for average number of linked SCs

Figure 8.10: Local SN 95% confidence intervals for average number of linked SCs
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Figure 8.11: Average number of SCs happy with SN

Hence, this experiment has shown that random SN selection does reduce the

waiting time to select an SN but it can not guarantee the quality of the selected

SN. Local and latency based selection slow down the process of finding a suitable

SN but make sure that the selected SN is in a position to serve the SC. Further,

we observed that SN selection on the basis of the time that the SN has spent

online produces the poorest results in terms of happy SCs.

8.4 Simulation of Peer Promotion

Building and maintaining a super peer (SN) based overlay topology is not a sim-

ple task. Super peers are selected among the online peers, which may have limited

bandwidth available to relay VoIP sessions. For example, the bandwidth limit of

a super peer with cable/DSL connection is at most its upstream link bandwidth.

Further, as NATs and firewalls are increasingly deployed in the internet, more

peers depend on super nodes to obtain VoIP services. The quality of a VoIP
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network may degrade when the bandwidth demand of active sessions exceeds the

available access capacity of the network. At the same time super peers may be

subject to the AS policy constraint [173]. Specifically, due to Internet economics,

certain autonomous systems (AS) do implement their own policies [173]. A com-

mon example of this policy is the no valley routing policy [44], which states that

a customer does not relay traffic for other costumers. Super peers relaying traffic

for Skype clients are in violation of this policy [144]. As a result some universities

have banned Skype from their campuses [122].

In this experiment we compare and evaluate three different approaches to

super peer promotion. They are represented by models and sets of GT rules as

discussed in Chapters 4 and 6, referred to as static, dynamic, and need-based

protocol. The three different strategies are shown in the feature tree in Fig. 8.12.

We see that in all three protocols a registered user can go on-line by two different

approaches. In the first approach the model has no control on the number of

clients behind firewall. The approach uses a single GT rule to make client go

online. The clients with or without firewall decision is made on the basis of a

random number. The second approach provides control over users behind firewall

using two different rules. One for clients going online with static IP and the

other for clients behind firewall. This enables us to see the performance of these

approaches by increasing the number of users with firewall and reducing the users

with static IPs. Therefore, in this simulation we have a total of 6 models. All

models use random selection for linking SCs with SNs. Further, all the other

features are the same as in our previous experiment.

We divide this experiment into two steps. First we use the GT rule

UserGoOnlinewithRandomFirewall. We test all these models through 4 variations

177



Figure 8.12: Feature tree for super peer promotion

of the rate x for this GT rule UserGoOnlinewithRandomFirewall, using exponential

distribution ranging over {2, 3, 4, 5, 6}. The number of registered users is 1000.

The second experiment fixes the rate of the GT rule GoOnlinewithFirewallDisabled

(y) at {4} and we vary the rate of GT rule GoOnlinewithFirewallEnabled (x) over

x ∈ {2, 3, 4, 5, 6}. This enable us to compare the performance by reducing the

number of candidates for super peers and increasing the load. We use four mea-

surements: the total number of SC nodes in the network, the number of super

peers in the network, the percentage of linked SC nodes, the ratio of happy peers,

and the number of calls completed.

The simulation results in Fig. 8.13 show that all three promotion protocol

allow between 400 and 700 clients to go online. Although the dynamic protocol

has slightly less clients in the network, the difference is small.
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Figure 8.13: Average number of clients

Fig. 8.14 shows the average number of SNs promoted during the simulation.

To compare these models we used a probe rule to count the number of SCs

linked and the number of SCs that are happy with their current SN. Fig. 8.15

shows the average number of SCs that are linked with an SN. The graph shows

that at joining rate 2, 3 and 4 the need-based protocol and the static protocol are

performing at the same level. At joining rate 4 the dynamic protocol results in

averaged which are close to other two approaches. However, at joining rate 5 and

6, the need-based protocol and static protocol follow same trend. Further, the

results show that the need-based protocol and the static protocol have resulted

in well-connected networks.

To further evaluate these approaches, we use our second performance measure

of happy SCs. The graph in Fig 8.15 shows that the need-based protocol for super

peer promotion is performing better than the other two approaches. Fig. 8.16

shows that at joining rate 4 the number of happy peers is almost the same for all
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Figure 8.14: Average number of SNs

Figure 8.15: Average number of SCs linked with SN
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Figure 8.16: Percentage of SCs happy with current SN

approaches, but at rate 5 and 6, as the number of clients in the network increases,

the need-based approach produces better results than the other two approaches.

Hence, the need-based and static protocols result in shorter time for SCs to

find a host as well as increases the number of happy clients. The first experiment

shows that at joining rate 4 all three approaches produce close results. Now we

have fixed the rate of the rule GoOnlinewithFirewallDisabled y at {4}. The aim

is to fix the number of candidates for SN and we vary the rates for the rule

GoOnlinewithFirewallEnabled x such that x ∈ {2, 3, 4, 5, 6}.

Fig. 8.17 shows that all three protocols resulted in similar numbers of clients

with firewall enabled. Fig. 8.19 shows that as the number of SCs with firewall

enabled increases, the number of SNs reduces. Fig. 8.19 shows the average number

of SCs linked in the model. The result confirms that the dynamic protocol has

managed to link a good number of SC with SN, thus reducing the waiting time
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Figure 8.17: Average number of clients with firewall enabled

for SC connection. The need-based protocol also resulted in a good average,

compared to the dynamic protocol. However, the difference between these three

approaches is small enough at joining rates 3 and 5. Now we will finally evaluate

these approaches on the basis of their average numbers of happy SCs. Fig. 8.20

confirms that the need-based protocol is performing much better than the other

two approaches when the number SCs behind firewall increases. Although, at

the start the static approach is performing better at joining rate 2 and 3, where

both rules are running at the same rate, the need-based approach continues to

produce better results as the number of SCs behind firewall increase.

The overall conclusion of this experiment is that, as the number of firewalls

deployed over the Internet increases and many ISPs are banning the routing for

P2P applications, the number of SN candidates will reduce. In such a situation

the need-based protocol seems a better choice as it is more economical in its use

of super peer candidates.

182



Figure 8.18: Average number of SNs

Figure 8.19: Average number of SCs linked with SN
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Figure 8.20: Average number of SCs happywith SN

8.5 Evaluating Load Balancing

Super peers have been introduced to improve the performance of structured P2P

networks. The resulting heterogeneity benefits efficiency without compromising

the decentralised nature of P2P networks. However, this only works as long as

there are enough super peers and the distribution of clients among them is roughly

even. With the increase in the number of users or organisations preventing the

use of their clients as super peer, the overall number of candidates for super peer

tends to be limited. Thus, selection and load balancing strategies are critical,

especially in voice-over-IP (VoIP) networks where poor connectivity results in

immediate loss of audio quality.

An optimal strategy for super node promotion and load balancing is diffi-

cult to implement in a decentralised system, but there are two obvious local

solutions: To move clients from overloaded super nodes to less busy ones, or to

promote clients whenever more super nodes are possible. We model two alterna-
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Figure 8.21: Feature tree with static, dynamic and load balancing

tive strategies, one with static super peer selection and load balancing and one

based on dynamic selection and promotion, and compare their performance in

ensuring client satisfaction.

Fig. 8.21 models the VoIP protocols with two XOR features for peer

promotion and an optional feature for load balancing that could be used

with both of the promotion strategies. In this experiment we use GT rule

UserGoOnlinewithRandomFirewall for clients to go online. We run this experi-

ment with the same parameters as previously and vary the joining rule rates as

x ∈ {3, 4, 5, 6}.

Fig. 8.22 shows that the dynamic protocol and the static protocol with op-

tional feature of load balancing (LB) result in client populations that go online

with averages almost the same. This provides comparable input to the model

and enables us to evaluate the output. The average number SNs in both models

are presented in Fig. 8.23. The figure shows that at joining rate 3 the average
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Figure 8.22: Average Number of SCs

numbers of SN are not much different, but at joining rates 5 and 6 this changes

significantly.

In order to comment on the performance, we evaluate them on the basis of

the numbers of SCs linked and the percentages of happy SCs. Fig. 8.24 shows

the average number of SCs linked with SN. The graph shows that both protocols

have similar averages at joining rate 2, 3, 5 and 6 . Fig. 8.25 shows the percent-

ages of happy peers in the network. The static protocol with independent load

balancing is performing much better compared to the dynamic protocol. The

number of happy SCs is stable under increase of the joining rate, which confirms

the scalability of the protocol.

This simulation results confirm that large numbers of SNs do not guarantee

that the load will be balanced across all the SNs. Therefore, local load transfer

decisions can result in a greater number of happy clients.
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Figure 8.23: Average Number of SNs

Figure 8.24: Average Number of SCs linked with SNs
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Figure 8.25: Average Number of SCs happy with SNs

8.6 Single Vs Multiple Links

In this simulation experiment we are going to evaluate the effects and benefits

of an SC selecting a single or multiple SN. [53; 111; 121; 176] claim that Skype

clients keep a single connection to their super peer. [176] suggests that multiple

connections of peers with different super peers will help in avoiding a single point

of failure. According to their approach, if a super peer leaves the network, all the

dependent peers will be disconnected until they connect to another super peer.

If a peer is connected to multiple super peers, the departure of a single super

peer will not completely disconnect the peer. [118] further comments that a peer

must keep multiple connections and must periodically check the status of these

connections, so as to notice when a super peer leaves the network. This will help

the peer to establish a new connection so that multiplicity is maintained.

The feature tree in Fig. 8.26 represents the VoIP protocol that could ei-

ther choose to link an SC with a single random SN or multiple random
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Figure 8.26: Feature tree for VoIP protocol with single/multiple links

SNs. This protocol uses the dynamic version for peer promotion, a single rule

UserGoOnlinewithRandomFirewall to allow clients to go online, and random num-

bers of SCs with firewall.

We simulate both versions of the protocol, called the single-link and multiple-

link protocols. We evaluate their performance on the basis of the number of SCs

linked with SNs and the average number of happy SCs in the network.

Fig 8.27 shows that both protocols have created a similar pool of online clients.

This serves as a uniform input to both models. Fig. 8.28 shows that at joining

rate 3, 5 and 7, the numbers of SNs in both models are close in averages. However,

at joining rate 4 and 6, the multiple-link protocol is having more SNs than the

single-link protocol.

Fig. 8.29 confirms that the single-link protocol has linked a higher number of

SCs. However, this is due to the fact that the multiple-link protocol takes two

steps to establish a single link and then upgrade to multiple links. So each SC in
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Figure 8.27: Average number of clients

Figure 8.28: Average number of SNs
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Figure 8.29: Average number of clients linked with SN

the multiple-links protocol is connected twice.

Fig. 8.30 shows that the single link protocol has a higher number of SCs that

are happy with their current SN than the multiple-link protocol. Too many con-

nections may result in a congestion of the network as each link costs bandwidth.

In the multiple-link protocol, the cost of connections doubles which directly af-

fects the number of happy SCs in the model. However, the multiple-link protocol

is more robust in case of reconfiguration as an SC will never be disconnected until

both of its SNs leave at the same time.

8.7 A New Protocol for P2P VoIP

Based on the results of the experiment 1 in Section 8.3 we observed that the

link local approach has produced a higher number of happy SCs, but the average

numbers of linked SCs is lower. This shows that the link local approach increases
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Figure 8.30: Average number of clients happy with SN

the waiting time for connection, which may not be acceptable to users. On the

basis of these results we define a new protocol which makes a first attempt to

link to a local SN, and if a local SN is not available or could not accept new

connections, links an SC to a random SN.

The feature tree in Fig. 8.31 shows three options for SCs linking to a single

host SN. The first option links on the basis of the random approach whereas the

second approach first tries to link to a local SN, and if not successful will link to

a random SN based on bandwidth. The approach links an SC with a local SN.

Further, these approaches use the dynamic protocol of SN promotion and a single

GT rule lets clients go online, with a random number of SCs behind firewall. We

use the same parameters as in previous experiments and vary the joining rule

rates x ∈ {3, 4, 5, 6, 7}

Fig. 8.32 shows the average number of clients online. This confirms the local

approach and the new protocol result in averages that are close. The client

192



Figure 8.31: Feature tree for new VoIP protocol

population of the random SN approach is also close to the averages of the other

two. Fig. 8.33 shows the average number of SNs promoted. The results shows

that the new protocol has a lower number of SNs. The link-local and random

approach have same number of SNs at joining rate 3. Further at joining rate 4,

5 and 6 the link-local approach has slightly more SNs than the random one.

Fig. 8.34 shows that the random approach is still leading with the highest

number of SNs while the new approach stands at second position. The link

local approach still has the lowest number of linked SCs. This shows that the

new protocol has managed to link a good number of SCs while at the same time

benefiting from the possible number of local connections. This is confirmed by the

results in Fig. 8.35. The graph shows that the new protocol is not far away from

the link local protocol in terms of local connections. This shows the improvement

that this new protocol has made with its combination of random and local SN
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Figure 8.32: Average number of SCs

Figure 8.33: Average number of SNs
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Figure 8.34: Average number of SCs linked with SNs

selection.

The final simulation results in Fig. 8.36 show the average number of happy

clients in the model. The graph shows that the new protocol has a percentage of

happy SCs between 72% and 68%, which is significantly more than the random

SN approach. At the same time this percentage is not much bellow then the link

local approach.

Thus, this experiment confirms that by combining the good features of various

approaches a new approach can be developed and compared against the parent

approaches. Further, this experiment has revealed that combining the features

of the random and link local approach has resulted in a new protocol which has

overcome the shortcomings of both approaches. The new protocol has now more

linked nodes than the local SN, which reduces the waiting time for an SC to find

a host, while at the same time showing a percentage of happy SCs which is higher

than the random SN approach. Further, the average number of local connections
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Figure 8.35: Average number of SCs linked with local SNs

in the new protocol has increased with respect to the random SN approach.

8.8 Summary

In this chapter, we have compared various alternative approaches to selection

of SN, super peer promotion, super peer selection and load balancing, single

or multiple links. Based on simulation results we commented on each of the

approach. We measured the performance of each approach in terms of clients

successfully linked with SNs and the number of SCs that are currently happy with

their host SN. We developed a new protocol based on combining good features of

other approaches and simulated the new protocol with the same parameters and

environment. We compared the results with those from the parent approaches

and observed the progress made.
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Figure 8.36: Average number of SCs happy with SNs
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Chapter 9

Model Validation

In this chapter, we are going to validate the model, using statistics from real Skype

network and experimental data. The aim is to build confidence in the model using

methods like animation analysis, event validity, face validity and data validation.

This chapter also comments on the performance of the alternative approaches.

In the last part of this chapter, we discuss and evaluate the possible threats to

validity of the simulation results.
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9.1 Model Validation and Verification

Verification and validation of the simulation model is one of the core activities

in modelling and simulation. There are various methods in the literature for this

purpose [10; 139]. In this study, we have used static and dynamic verification

techniques in order to make sure that the model has correctly been converted

into VIATRA2. The static technique has ensured that model and rules are error

free and the right syntax has been followed. The dynamic verification technique

has ensured that each rule does the task it was suppose to do.

Similarly for the purpose of model validation, we have used animation, face

validation, event validation as well as compared the model with real system data

[10; 139]. Animation confirmed the operational behaviour of the model. In order

to implement this technique, we have used the GraSS visualizer which displays

graphically the operational behavior as the simulation moves forward through

time. For example, the operations of peer registering, joining, being promoted,

etc. are animated graphically, observing the changes to the network graph.

The face validation technique has been implemented through discussions with

experts while presenting papers from this thesis at international conferences.

Event validation is the comparison of event occurrences in the simulation with

those in the real system. Here, we benefit from the GraSS visualizer, which helps

to see the sequences of events. The details of the real system were taken from

experimental studies and reverse engineering techniques discussed in Chapter 10

of this thesis.

In order to explain the process of event validation for model validation, we

use a UML communication diagram to show the sequence of events in the real
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Figure 9.1: UML communication diagram

system. The same sequence is then observed in the simulation model using the

step-forward facility in the GraSS visualizer. In Fig. 9.1 a UML communication

diagram is used to show the sequence of events to be observed in the simulation

model. These tests have confirmed that model event sequence matches those in

the real system.

In order to conclude this testing process and confirm the rates and distribu-

tions associated with GT rules, we performed a comparison with the output data

of the real system. Although collection of real statistics from Skype’s proprietary

protocol is complex, previous authors [15; 53] not only provided crucial data

for model development but have given enough statistics to help to validate the

model. Apart from their work, forums like [150; 171] provide Skype statistics

with 15 second intervals as well as weekly, monthly and three monthly global
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statistics. The analysis in [15] is based on a real study and results show that over

a period of 24 hour the average number of clients that join the network varies

by 40% of the active registered accounts. Further, real statistic of Skype [150]

confirms that an average of 20% to 50% of registered users go online. Due to the

time difference, their observed average is 30%, and the all-time peak is 41% (see

Chapter 5). Further, the average number of super peers in this period is below

24% of the active population. Similarity, the author in [171] states that in De-

cember 2010 there were 1.4 million super peers and 25 million users online, when

the Skype network crashed due to non availability of super peers. This figure

confirms that almost 6% of the online users were super peers, and still the Skype

network crashed. This supports that the Skype super peer population must be

over 6% of the online users, in order to make the network stable.

Keeping in mind these averages, we plot the average number of clients that

go online during our simulation period of 24 hours. We have fixed the number of

registered users at 1000. The simulation results at Fig. 9.2 show the percentage

of clients that go online is between 22% to 47%, which confirms the real statistics

and previous experimental results.

Fig. 9.3 shows the percentage of the SNs promoted in the course of the sim-

ulation which is well over 6% and below 24%. This further confirms that the

behaviour of the model matches that of the real system.

9.2 Evaluation of Requirements

In this section, we evaluate our approach based on the requirements in Chapter 1.
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Figure 9.2: Average number of SCs go on-line

Figure 9.3: Average number of SNs promoted
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9.2.1 Peer Promotion and Demotion

Dynamic peer promotion and demotion requires to change the role of the client

in the network if its current attributes meet the requirements of the role. For

example, Skype clients with sufficient bandwidth can be promoted to super peer

and in this role they will serve a number of dependent clients. Similarly, if the

client is no longer in a position to serve as super peer, the super peer will be

demoted dynamically to the client only. The same concept has been used in the

model of this thesis, which dynamically promoted and demotes clients using two

GT rules.

Super peer promotion experiments in Section 8.4 evaluated three different ap-

proaches. The simulation results confirm that peers were promoted and demoted

as required.

9.2.2 Model of Churn

In the model, a Skype client or super peer can join the network once registered.

After going online the departure of SCs and SNs is handled in two ways. The first

approach implemented follows a cooperative model of churn, in which SCs and

SNs can leave the network by informing the host SN in case of SC departure and in

case of SN informing both dependent SCs and SNs. This model of churn enables

the host, dependent SC and neighbours to reconfigure their topology in time.

The second model of churn implements the uncontrolled departure of SCs and

SNs. In this model the SCs and SNs leave the network in a selfish manner, and

it is up to the dependent peers, to reconfigure their topology to stay connected.

The simulation experiments in Chapter 8 use both version of churn. In order
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to confirm that the model used churn, we look into the application of the rules.

Experiment 8.3 shows that in the random selection approach, the rule modelling

SCs cooperative departure has average applications of 202.500 while the SC un-

controlled rule has 6.677 applications. SN cooperative departure has average

applications of 19.500 and uncontrolled applications of 1.500. These results show

that SNs are comparatively stable as compared to ordinary clients.

9.2.3 Reconfiguration

As a result of churn we need to reconfigure the topology of P2P networks. In

cooperative departure, their current overlay link will remain intact until they

reconfigure themselves. However, in the selfish model of churn, the network needs

to reconfigure fast enough so that QoS is not affected.

The simulation in Chapter 8 uses the

ReconfigureandlinktoaNewRandomSN, RecoverBandwidthduetoCrashingofSC

and RecoverBandwidthduetoCrashingofSN GT rule to reconfigure. In order

to further confirm this we look into applications of the rules in Experiment

8.3. They show that during random selection of SN at joining rate 3, the GT

rule ReconfigureandlinktoaNewRandomSN has average applications of 19.33,

the GT rule SBandwidthduetoCrashingofSC has 1.167 average applications

and the RecoverBandwidthduetoCrashingofSN has 1.500 average applications.

This confirms that the model has implemented the reconfiguration mechanisms

proposed in Chapter 4.4.2.
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9.2.4 Direct and Relay Calls

Two types of VoIP calls are supported. The first is direct and the second is the

relayed call. The relayed call is a unique feature in the case study of this thesis,

which enables an SC behind a firewall to make a VoIP call to another online

user. The relayed calls are processed by the super peer in the model. Four types

of relayed calls are supported. The first is between two SCs connected to the

internet with a firewall, when each has dependency link with a unique SN. This

type of relay call involves four types of nodes, consisting of two SNs and two SCs.

In the second type of relay call, one of the call participants is connected through

firewall and the second is enjoying a static IP connection. In this call only three

participants are involved consisting of two SCs and one SN. In third type of call

both of the participants are connected to the internet through firewalls, sharing

a single host SN. The last type of call is between a firewall-enabled SC and SN.

In the model, GT rule Call application shows P2P direct calls in the model,

whereas GT rule RouteCall shows the relayed calls. To confirm we look into the

Experiment 8.3 results. They show that at joining rate 3 the average number of

calls including direct and relayed is 35.352.

9.2.5 Modelling Latency

Time stamped packet is used to find the latency between an SC requesting con-

nection with an SN. The packet is transmitted by SC and once the SN receives

this packet, based on the awareness of its current bandwidth, it can either accept

or reject this connection request. If the SN replies, SC uses this packet to find

the round trip time taken by the packet, and if this falls within the acceptable
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range, a link is established with this SN, otherwise the SN is rejected.

Experiment 8.3 uses this time-stamped packet to implement the selection ap-

proach proposed in Chapter 4. The rule application shows that at joining rate 3

in this experiment rule Reject (DnY) has 12.500 applications, which shows the

number of rejected connections. In this experiment, GT rule AcK has 193.500

applications, which shows the acceptance messages generated by SN. In this ex-

periment, GT rule reject on latency has 12.500 applications, which shows the

number of SNs rejected based on latency.

9.3 Threats to Validity

In this section, we are going to present the possible threats to the validity of the

simulation results. The case study in this thesis is subject to threats from the

modelling to the encoding stage. Some of the threats we identified are explained

in the following subsections.

9.3.1 Start Graph

In order to see the effect of the start graph on the simulation results, we use

the super peer selection experiment in Chapter 8. The start graph used in this

experiment consists of one super peer and a single registration server. To analyse

how the choice of start graph can change the result, we develop a second start

graph that consists of five super peers, a single registration server and two online

clients. We run the experiment again with all GT rules using the same distribu-

tions and rates. The simulation time is 2.4 hours and batch size is 6. Fig. 9.4

shows the two start graphs. We run the simulation at joining rate 3 on both start
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Figure 9.4: Two start graphs/ trees

graphs and observe using probe rules the number of SCs, the number of SNs, the

number of SCs happy with the current selection of SN, the percentage of happy

and linked peers.

The simulation results show that despite the average number of SCs remaining

the same, the start graph with more SNs has managed to link slightly more clients.

The reason behind this could be that, as the number of SNs increases in the model,

the chance of accepting a new connection also increases. The results are shown

in Fig. 9.5. Overall difference is small.
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Figure 9.5: Simulation results for two different start graphs

9.3.2 Impact of Reducing Bandwidth Requirements for

Super Peers

In order to see the impact of bandwidth requirements on the simulation results,

we develop a new set of rules for the SC connection to SN experiment, changing

the requirement for promotion from 1.5 Mbps to 1.0 Mbps. These rule use the

dynamic version (see Section 8.12). We run the simulation with joining rate

3 and simulation time 2.4 hours. The batch size is 6. We observe the average

number of SCs, average number of SNs, average number of linked SCs, Happy SCs,

percentage of happy SCs and percentage of linked SCs. The simulation results

show that reducing the requirements for promotion has affected the number of

SNs in the model. The number has increased at client joining rate 3. The SNs

availability has further increased the connection process and has managed to link

a large number of clients as compared to Fig. 9.5. The results shown in Fig. 9.6

suggests that beyond the expected improvement, the overall trends remain the
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Figure 9.6: Impact of reducing bandwidth constraint

same.

9.3.3 Impact of Simulation Depth

In order to discus the impact of the simulation’s maximum depth. We use the

random SN selection model with a joining rate of 2. When we run the simulation

in time mode for simulation time of 19.2 hours with batch size 6, the simulation

experiment managed to run up to a depth of 11062 steps. To analyse the impact,

we change this depth to 22124 and run the simulation in step mode. The results

in Fig. 9.7 does not show a significant change. This further confirms that running

simulation upto 19.2 hours results in a steady state.

9.3.4 Impact of Probability Distribution Selection

This section discusses the impact of probability distribution for GT rules. In

order to understand this, we change the probability distribution for the GT rule
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Figure 9.7: Impact of maximum depth of simulation run

Figure 9.8: Simulation time and steps
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Figure 9.9: Impact of probability distribution

for promotion to super peer. The current exponential probability distribution is

replaced by the log-normal distribution with a µ=0.100 and σ2 = 2.0. We run

the simulation for random selection of SN with simulation time of 2.4 hours and

batch size 6 and observe the impact in terms of the average number of linked,

happy,and total number of SCs and total number of SNs. The simulation results

in Fig. 9.9 show significantly changed results. The number of super peers has

reduced. This has not only affected the number of linked SCs in the network, but

also reduced the percentage of happy SCs. However, the exponential distribution

seems to be the right choice as we are not sure when a SC will be selected.

9.3.5 Confidence Intervals

In this thesis as we have used less than 10 runs in each simulation. We use

t-distributions to compute the 95% confidence intervals for the parameter of in-

terest. The Fig. 9.10 shows the 95% confidence interval computed for the average
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Figure 9.10: 95% Confidence interval

number of peer or clients in the model. The figure shows that the confidence

boundaries are not too wide, because in each of the runs the average number of

clients online, are close to each other.

9.4 Summary

This chapter presents validation of the model and evaluation of the approach

used in this thesis. The validation is performed through techniques like event

validation, animation and comparison with data available from the real system.

The requirements of the model and approach are evaluated by looking into the

GT rule applications in simulation runs.

The last part of this chapter discussed the threats to the validity of the sim-

ulation results. The impact of the start graph shows very little effect on the

overall results. The impact of reducing bandwidth requirements for promotion

show that the number of SNs in the model has increased. The result confirms

that this can effect the number of linked and happy SCs in the model. The im-

pact of simulation depth shows that increasing the number steps changes results
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significantly. The number of SCs going online has increased along with number of

SNs. However, the numbers of happy and linked SCs have changed by a smaller

value. The last threat confirms that selection of probability distributions has an

impact on the results of the model. We believe that the exponential distribution

is the right choice for promotion rules. The 95% confidence interval shows that

results of runs are close.
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Chapter 10

Comparison to the State of the

Art

This chapter starts by discussing existing studies of super peer-based P2P pro-

tocols. We categorise this work into studies of protocol architecture, protocol

reverse engineering, super peer promotion, super peer selection, peer and super

peer dynamics, and the reconfiguration. Due to the large scale and geographic dis-

tributions of peers in P2P network, the evaluation of new and existing algorithms

is one of the prominent hurdles for researchers and developers. Today simulation

is the most widely accepted technique for the evaluation of such systems, in con-

trast to mathematical modelling and real time monitoring. The literature survey

shows that there are a number of P2P overlay simulators developed by various

research groups, but many protocols developer opt to use their own custom-built

simulators. This raises a number of issues such as reproduction and validation of

their results and the comparison of approaches in a similar environment. In this

chapter, we discuss some of the current simulation approaches and summarize

them against a common set of attributes.
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10.1 Super Peer-based P2P

In this section, we are going to study the existing literature on super peer based

P2P protocols, categorised according to protocol architecture, super peer promo-

tion, peer dynamics and the reconfiguration.

10.1.1 Skype’s Super Peer-based Architecture

Skype claims that it is better than other VoIP software in the market because of

its high call completion rate and superior sound quality. As Skype is a proprietary

protocol, its exact architecture, is not published. However, to confirm Skype’s

claims various traffic monitoring and analysis approaches have been used. The

authors [15; 17; 53] conducted an experimental study of the Skype traffic with

the objective to enhance the understanding and significance of successful P2P

VoIP systems, as well as to provide experimental data that may be useful for

future design and modelling of such systems. In their experiments they anal-

ysed some of the key features of the Skype architecture such as login, NAT and

firewall traversal, call establishment, media transfer, codecs, and conferencing.

They used three different network setups and conducted their experiments in a

black-box manner. The model in Section 6.1 captures the essential features from

recommendations [15; 17; 53]. Their results help to validate model as described

in Section 9.1

The results in [15; 53; 98] indicate that the structure of the Skype system

follows other P2P systems, particularly KaZaA, but there are significant differ-

ences in operation. Further, they observed that each online user in the Skype

architecture is client unless promoted to the extended role of super peer.
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In [176] the authors discuss the super peer-based network in detail in order to

fully understand the behaviour. Their work concentrates on fundamental char-

acteristics and performance issues. Their main contribution is a practical guide

and a generic procedure for designing super peer based networks. In other words,

the super peer-based architecture seems to be working better than other P2P

approaches. Further, it was also observed that a client behind NAT or firewall

can access and use the network, which makes this application more robust than

other P2P applications [98].

The graph model and transformation rules in Chapter 6 are based on the

discussion in [15; 53; 98; 176]. The overlay among SNs is based on the recom-

mendations of [176]. The discussion in Section 9.2.2 confirms that super peers

are stable as compared to clients. The model supports P2P direct calls between

clients connected without firewall and SN-routed calls for clients with firewall.

All possible choices of calls are shown in section 6.2.9 and their validation is

confirmed in Section 9.2.4.

10.1.2 Protocol Reverse Engineering

The experimental analysis [15; 53; 98] provides an abstract view of the Skype

architecture. As the use of Skype increases, network engineers and system engi-

neers feel the need for tools to analyze Skype traffic. One of the reasons behind

this need could be the use of user bandwidth by Skype without obtaining prior

permission. In order to identify encrypted traffic, one approach Reverse engineer-

ing [121]. The core aim of their work is to develop a traffic signature that enables

a third party monitoring entity to detect the usage of the Skype application. The
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SkypeLogger [8] is one of the tools that uses a traffic signature to identify Skype

traffic.

The work reported in this section is used in the model to capture the essential

features of the super peer-based architecture. This work has been helpful in

identifying the sequence of events in the real network. The tests in Section 9.1

have confirmed that our model event sequence match those in the real system.

10.1.3 Super Peer Promotion and Call Relays

The experimental studies in [15; 53; 98] confirm that super peers are more stable

than ordinary clients. The selection of super peers amongst the online clients is a

critical decision and the overall performance of the network depends on the quality

of the super peers [108]. There are many recommendations ranging from super

peer health to time of promotion. The experimental studies in [15; 53] confirm

that clients with more bandwidth, memory and CPU power are promoted to

super peers. There are other algorithms [35; 111; 175] to enhance performance by

promoting peers with a single parameter of fast reliable internet connection. The

traffic analysis in [15; 53] states that being super peer is not the choice of the

peer’s owner, so a network can have as many super peers as possible. However,

some approaches [99] suggest that a fixed ratio must be maintained between super

peers and peers. Their contribution is based on the idea that super peer should

be arranged only when required. The author in [99] proposes promotion to super

peer based on bandwidth and time spent in the network. However, [168] suggests

promotion based on a parameter referred to as capacity.

The author in [172] studies the VoIP quality of Skype and states that to act as
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super peer costs bandwidth. In order to validate his assumption the author con-

ducted large-scale end to end measurements, starting from a systematic analysis

of the Skype super peer network. In their work they further investigated per-

formance by applying access capacity constraints and the AS policy constraint.

They observed that in the absence of free riding, only 20% of super peers that are

located in stub ISPs [89] significantly affect the quality of calls in VoIP sessions.

Their work concludes that before building a super peer-based architecture, we

need to consider the operational model of the Internet. As stated earlier ordinary

clients in super peer-based architectures depend upon super peers. This depen-

dency is limited to global index hosting and query forwarding when a client is

connected through static IP based internet connection. However, when the client

is behind NAT or firewall, first efforts are made to Travers NAT or firewall by

using STUN like protocol but when this attempt is failed then actual calls are

also transferred through the super peer [88; 154].

The model and GT rule in Chapter 6 promote a client to super peer if the

current bandwidth is more than 1.5 Mbps. Three alternatives proposals for pro-

motion are modelled using the feature diagram in Section 6.2. The same alter-

natives have been implemented using transformation rules in section 6.2.4. The

simulation results in Section 8.4 confirm that the need-based protocol [99] seems

to be ideal choice for P2P VoIP as opposed to many super peers [15; 53]. This

confirms the analysis of [172].
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10.1.4 Peer Linking with Super Peer

In [15; 17; 53] the authors state that ordinary clients after authentication select

one of the super peers as host. This host’s importance is further increased if

the client is behind NAT or firewall. In order to select a super peer [15] the

registration server provides a valid list of super peer IPs to clients. The simplest

approach is to select a random super peer, but due to limited free bandwidth or

distance in the network, quality may be less than optimal.

In [99; 108; 121; 174] the authors suggest that the bandwidth of the super

peer shall be used to decide super peer connection. However, their approach

seems to fail when the super peer has free bandwidth but the path between the

client and the super peer is congested, resulting in latencies or packet delays

that are not acceptable for P2P VoIP traffic. To overcome this issue, in [168] the

author suggested that bandwidth and round trip time (RTT) shall be used for this

decision, while in [180] the authors proposed a delay-aware P2P system (DAPP).

Their approach is based on the concept that shortest paths in overlays cannot

ensure efficiency in the real physical media. DAAP suggests sending ping-type

time stamped messages to get an idea of the actual latency. Similarly, in [9; 99]

the authors state that peers from the same physical network provide lower latency

then the remote peers in different geographic location as well as different physical

networks. All these approaches maximize the quality of service, but are missing

one important characteristic, the stability of the super peer. In [108] the authors

proposed a super peer-selection strategy based on dynamic capacity and content

similarity. The authors validate their approach using simulation and compared

it with other approaches concluding that their approach is performing better.

219



In [99] the author state that bandwidth and time spent by super peers in the

network shall be used as decision criteria for linking to super peer.

The approach recommended in [99; 108; 121; 174] is modelled as a random

selection of SNs shown as a choice in the feature diagram in Section 6.2. Similarly,

the approach recommended in [168; 180] is modelled as the latency based selection

and is available to the model as second alternate choice in Section 6.2. The local

SN approach [9; 99] is modelled as the third alternative in Section 6.2. The stable

SN selection [99] is modelled as the fourth alternate choice in Section 6.2. The

simulation results in Section 8.3 confirms that random selection performs better

in terms of linking SCs. The other approaches improve the performance but

increase the waiting time for connection.

10.1.5 Load Sharing and Super Peer

Load balancing can improve the performance of unstructured P2P networks, but

there exist a number of strategies for load balancing in P2P systems. In [102]

the authors proposed an algorithm that finds overloaded peer and moves some of

their load to less loaded peers. In their algorithm they do not take into account

topology or hash tables. They compare and validate their approach using simula-

tion. In order to comment on the performance of their approach they compared it

with other two approaches: neighbour load sharing [82; 102] and uniform random

load sharing [20; 64; 102].

[187] proposed a load balancing scheme for self-interested P2P networks. They

consider that each peer in the network is selfish and is always interested to min-

imize the query response time for itself rather then considering the global per-
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formance. They verify their approach using theoretical proofs and later on used

simulation to validate their results.

[30] proposed an approach to restrict the load per super peer by putting a

strict limit on the number of peers they can support and compared their approach

with others. In [45] load is balanced by selecting super peers, so that is if always

uniformly distributed. In order to evaluate their approach they use simulation.

They claim that results have shown significance improvements.

In [130] the authors proposed a coordinated load management protocol for

P2P systems coupled with a federated grid systems. Users, which include resource

owners and consumers, belong to multiple domains. They validate their approach

using a simulation.

The approach recommended in [102] is modelled as an optional feature in

Section 6.2. The transformation rules in Section 6.2.6 represent this approach.

The simulation results in Section 8.5 match the results in [102]. Showing that

the number of happy clients increases.

10.1.6 Churn

P2P networks are highly dynamic with peers and super peers joining and leaving

the network. One of the core functions in P2P networks is to recover the topology

or re-link disconnected peers such that quality is not affected. Different proto-

cols handle reconfiguration using their own approach. Some of the fundamental

solutions proposed include keeping as many overlay connections as possible [61].

In this approach stochastic graphs and model checking are used to validate the

model. The real Skype studies [15; 17; 53] show that clients try to find a new
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super peer as soon as possible if their current connection is lost.

In [116] the authors proposed a new protocol, which uses a backup peer to

replace the failed peer. Additionally, their protocol makes sure that the backup

node is in a position to support the incoming load.

The model in Section 6, reconfiguration rules in Section 6.2.10 and connection

rules in Section 6.2.3 implement the recommendations of [15; 17; 53; 61; 116].

The simulation results in Section 8.6 show that multiple connections can reduce

reconfiguration but cost bandwidth which reduces the number of happy clients.

The reconfiguration rule validated in Section 9.2.3 shows disconnected clients are

reconnected in the model.

In [167] the authors propose two different algorithms for individual peers to

self-configure P2P network overlays in various network environments. For a small

scale homogeneous network, an optimizing peer selection protocol is proposed.

For large scale heterogeneous network a peer-power based selection protocol is

proposed. Running two different algorithms as well as peer power computing is

a complex task.

In [111] the authors proposed a new generic mechanism for construction of

super-peer based P2P networks. Their work gives a detailed strategy for main-

tenance and reconfiguration. While developing this new protocol, they consider

some of the well-known discussions such as in [176]. In their approach nodes

exchange probes with randomly selected peers. Based on these reconfigures the

topology according to the requirements of the application. They claim that their

protocol is extremely efficient as well as robust and able to reconfigure the topol-

ogy where nodes continuously join and leave the network. They further confirm

their reconfiguration algorithm by removing the super peers from the network,
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observing the repair process by simulating this protocol using the peerSim simu-

lator.

The model in Section 6 implements reconfiguration mechanisms through the

GT rules in Section 6.2.10 which are similar to those proposed in [111]. Although

the model does not send probe messages to confirm the status of the link, it uses

rules which become enable if the connection is broken. The model in presence

of churn (as validated in Section 9.2.2) reconfigures the disconnected clients and

super peers as shown in simulation results in appendix A.

10.2 Modelling and Simulation

The analytical approach requires a mathematical model for P2P system, but in

most cases, the model is based on simplifying assumptions and presents a very

basic view of the real system [113]. The need for simple models makes it difficult

to capture a true sense of real world P2P networks [77]. [129] states that this

approach has only been successful to model Bit Torrent [27] in the presence of

basic model churn.

As an alternative one could consider testing the real systems, but these at

large-scale in terms of nodes and geographic distribution, even if we limit our

experiment to a sub-area [140]. Sub-area experiments with real systems require

significant resources which are costly and may be exposed to node failure or

software version control issues. Apart from this, external factors such as cross

traffic and changes to the network layer are beyond control and can influence and

even change the results. However, despite these reasons some test beds are still

used, such the Planet-lab [125].
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Analytical approach and real testing are not the first options for research and

development in P2P systems. Simulation is one of the prime tools for study,

analysis and comparison of P2P approaches and algorithms. The cost of imple-

mentation of simulation models is less than for large-scale experiments. Further,

if a simulation model is carefully constructed, it can be more realistic than any

mathematical model [136]. It is worth mentioning that one can not simply accept

the results obtained from a simulation. They are to be validated, and one of the

best choices would be to cross-validate the results of different approaches.

The literature review shows a number of simulators [113; 114; 138; 181] P2P

algorithms. Most people have used their own custom-built simulators. One of

the reason, claimed is the lack of required functionality. Some of them don’t have

documentation which makes their use almost impossible, while other don’t have

mechanisms to gather statistical data [113; 114].

In this thesis, we have gone through a number of simulators starting from the

popular PeerSim and NS2. We observed that they are short of some of the key

functionalities which are required for our model.

10.2.1 Evaluation of Existing Approaches

In this section, we discuss the parameters that are required by the case study for

modelling P2P VoIP Skype like protocols. At the end of this chapter, we present

Table 10.1 comparing the existing approaches based on those parameters. Some

of these are generic and have been proposed in [31; 113; 114; 138; 159] while

others are domain-specific. Table 10.1 is developed based on the information

in [31; 37; 47; 76; 77; 110; 113; 114; 123; 136; 138; 146; 160; 177; 181; 184].
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1. Simulation Architecture we distinguish discrete-event and query-cycle

architecture.

Discrete event: Discrete-event system simulation is the modelling of the

systems in which the state variables change only at a discrete set of

points in time.

Query-cycle: The simulation loops through each node, processing queries

for respective nodes [113].

2. Model of Churn and Reconfiguration

These criteria include features such as how node behaviour is simulated, and

what level of churn is implemented and what distributions are associated

to peer dynamics. These criteria further evaluate support for failure of

communication channels and reconfiguration.

3. Usability

This criteria is related to how easy to use the simulator or modelling ap-

proach is, and whether respective support and training material is available.

It also evaluates whether the tool provides an API that is easily under-

standable, and if changes can be made easily. If it makes use of any domain

scripting language, how easy it is to learn. What documentation is available

and how easy it is to follow.

4. Scalability

This criterion is related to the number of nodes that could be simulated.

Skype has more than 20 million online users simultaneously. So it is neces-
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sary to evaluate the tool on the maximum number of nodes it can support.

It is also important to check how a protocol scales during simulation.

5. Simulation Model

This criterion concentrates on the model used for simulation, whether it uses

a static, dynamic, deterministic or stochastic approach. The terminology

definition below are reproduced from [4].

Static: A static simulation model, sometimes called a Monte Carlo sim-

ulation, represents a system at a particular point in time.

Dynamic: A dynamic simulation model represents a system as it changes

over a time.

Deterministic: Simulation models that contain no random variables are

classified as deterministic. A deterministic models has a known set of

inputs that will result in a unique set of outputs.

Stochastic A stochastic simulation model has one or more random vari-

ables as inputs.

For example, bandwidth or latency, in a deterministic approach has to

be specified from the beginning. In a stochastic model, the peer will be

assigned bandwidth randomly as it joins the network and similarly latency

will increase if the channel is busy and may reduce if the channel is free.

6. Support
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This criterion reports what applications can be simulated. The literature

shows that P2P is nowadays operating in various domain from file sharing

to real-time video streaming.

7. Modelling Level

This criterion states at what level the network is modelled and simulated.

There can be three levels: network layer, application layer and user layer.

This criterion evaluates each approach on the basis of these three layers.

The network layer describe how the overlay topology is formed. The appli-

cation layer tells us what applications can be used on the network formed

by the previous layer. The last and most important layer in P2P is the user

layer, which tells us whether user behaver such as selfish or controlled exit

is supported.

8. Simulation Statistics

The most prominent feature that we need to evaluate is the representa-

tion of the results. It means how easy are the various reports in terms

of understanding and editing. If we want to add a new query, is the sim-

ulator flexible? Often the designers of the simulator only provide a few

custom-built reports which may not necessarily be providing the required

information. In some cases it just generates a long log file of events and

then that file has to be analysed to produce respective results.

9. Confidence Intervals

How does the simulator report confidence intervals in order to check overall

results. Further, their simulator should draw confidence interval for each
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measurement and provide details of each run and time taken.

10. System Limitations

This shows how the simulator is performing in terms of memory and process-

ing requirements. If the simulator is using memory and processing power

excessively, then scalability could be one of the prime issue. In view of

today’s technology, we have to check whether a tool is able to make use of

the cluster in order to reduce execution time and increase scalability.

10.2.2 Overview of P2P Simulators

In this section, we are discussing some of the popular P2P simulators with their

pros and cons.

10.2.2.1 PeerSim

PeerSim was funded through the Biology-Inspired Techniques for Self-

organization in Dynamic Networks (BISON) [112; 147]. The core objective of

the project was to study complex adaptive systems in dynamic networks. This

simulator was designed for large scale overlay networks, but with built-in models

for OverStat [72; 110], SG-1 [111] and T-Man [73]. PeerSim supports dynamic

networks with large numbers of nodes. PeerSim has the capability to simulate

both structured and unstructured P2P. The simulator is designed in Java and is

extensible by plug-ins. The simulator architecture is based on cycles. The latest

releases support discrete events, but this reduces the scalability of the simula-

tor [138; 147].

PeerSim does not support distributed simulation, but various components in
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the libraries of the simulator were designed to simulate graph like overlays. This

has enabled this simulator to be extended to support other protocols. PeerSim is

configured using a single file. The main drawback is the usability of the tool due

lack of a GUI. The ouput reports are basic and for detailed statistics additional

code is required. Another drawback is that it only provides detailed documenta-

tion for the cycle-based, whereas for discrete event-based simulation there is no

tutorial or documentation. PeerSim does not model the physical network, and

it uses a deterministic model in which parameters such as bandwidth are fixed

rather than random.

10.2.2.2 P2PSim

P2PSim is a flow-based simulator written in C++. The mode of its operation is a

discrete event simulation and designed to simulate structured overlay only. This

multi-threaded simulator supports several UNIX like operating system. How-

ever, it does not provide any simulation visualization or GUI support. P2PSim

has built-in support for some of the popular protocols such as Chord [151], Accor-

dion [95], Koorde [11], Kelips [55], Tapestry [186] and Kademlia [104]. P2PSim

uses a pearl scripts for the generation of graphs. It can simulate up to 3000

nodes using chord protocol. It simulate dynamic networks with nodes joining

and departing, as well as node can failure [136].

The biggest disadvantage is the poor usability as almost no documentation

exits. It does not support distributed simulation. Further, this tool is limited to

structured P2P only. This point removes it from our list, as our case study is

based on super peer-based unstructured P2P.
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10.2.2.3 3LS (3 Level Simulator)

3LS [160] is a Java based time-stepped unstructured overlay simulator. 3LS

uses a central step clock to advance the time in simulation and control events

application. It uses three different levels to simulate a network, the physical

layer at the bottom, overlay network in the middle, and the application at the

top. This architecture makes 3LS able to simulate a number of topologies and

application protocols. Communication can only happen between the directly

connected levels, so the protocol is responsible for simulating the P2P protocols

and associated applications. User input is supplied into the network level through

a GUI interface or a file [160]. When the simulation is complete, the results are

stored in a files which can be used by the visualization tool.

This simulator does not support dynamic networks and the number of nodes

is fixed [136]. Further, it does not implement crashing and scalability is poor i.e

fewer than 20 nodes in Gnutella 0.4 [136].

10.2.2.4 Narses

Narses [47] is a discrete event simulator. This simulator is written in Java and

specifically designed for large distributed applications. It has managed to over-

come the scalability and speed of the most widely used NS-2 by combining packets

into flows and thus reduce the overall number of events in the simulation. Narses

supports four topology models starting from least accurate to most accurate and

the slowest: Naive, NaiveTop, FairTopo and SafeFairTopo. Narses has been suc-

cessful in modelling and simulating up to 600 nodes [136].

This simulator does not implement dynamic networks and does not have any
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implementation of existing popular protocols [136]. The results are basic and for

detail statistics the simulator needs to be extended.

10.2.2.5 Neurogrid

Neurogrid [76] is single-threaded discrete event simulator [77] which can simulate

both structured and unstructured overlays. The driving force behind the devel-

opment of this simulator was the comparison between the Neurogrid, Freenet [25]

and Gnutella [48] protocols. This tool has higher scalability, and with a machine

runing a 32bit operating system and 4 GB working memory it has managed to

simulate 300,000 nodes [136]. The work on this simulator is still active, and

improvement is in progress in terms of the modelling aspects [80]. NeuroGrid

through a Jave applet, facilitates users to specify the number of nodes to simu-

late, the starting edges for each node, as well as the starting topology and number

of searches.

The main drawback of this approach that it does not support churn with

node being failure, which is the most pressing requirement of our model. It does

support dynamic networks in which nodes can join and leave [136]. Further, it

does not support a random bandwidth assignment and traffic.

10.2.2.6 Query Cycle

The Query-Cycle Simulator [141] is designed specifically for P2P file sharing.

The core objective of this simulator is to simulate Gnutella-like networks. This

simulator use parameters for content distribution, peer behaviour and network.

This simulator has been used to simulate real world networks. Content dis-

tribution and peer behaviour are based on respective empirical studies. The

231



simulator visual interface shows the number of cycles completed, and statistics

for each node in terms of download and upload, is provided. The reports are fixed

and can not be edited to include additional parameters.

This simulator, due to its mode of operation is not suited for our case study,

and does not implement dynamic networks and nod failure [136].

10.2.2.7 GPS

GPS [177] is a discrete-event based simulator. It can simulate both structured

and unstructured overlay networks, but with the pre-existing protocol BitTorrent.

Since it is message based, it does model the physical network only. It makes use

of the tool GT-ITM to generate respective topology [179]. It does not support

distributed simulation. GPS supports automatic generation of events based on

the BitTorrent Protocol. Generated events are called up at regular intervals

during simulation.

The main drawback of the tool is that it is poorly documented. It seems

almost impossible to extend the tool to include other protocols. It does support

dynamic networks, but the model of churn does not implement node failure. The

developers state that churn can be implemented using event script. Scalability is

up to 512 [177] nodes and bandwidth computations are based on mathematical

equations rather than random number. The other problem with this simulator

is usability and maintenance. The group which contributed this simulator is no

more working on this tool.
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10.2.2.8 OverSim

OverSim is used as a framework with OMNeT++. The physical network model

is also derived from OMNet++. At present OverSim only supports three proto-

cols, i.e, Chord, Kademila and GIA overlay network protocols. There do exist

documentation for a simple example and a mailing list for support. The doc-

umentation shows that OverSim can support up to 100,000 nodes. There are

limited publications and the accuracy of the claims can not be confirmed.

This research group is an active group, continuously improving there simu-

lator. As per documentation this simulator has not implemented any dynamic

network and model of churn or reconfiguration. The modelling of bandwidth is

also as a static parameter rather than random seed.

10.2.2.9 NS-2

NS-2 [117] is a well known simulator in the network research community. It is

an event-based simulator for packet level simulation. The simulation is produced

using a scripting language called TCL. The TCL scripts are used to define nodes

and their associated links with properties such as latency. However, respective

protocol is implemented in C++. Until now there is only one P2P, simulation

simulation available for NS-2 (Gnutella). NS-2 does not have in-built visualiza-

tion, but NAM which is a network animator, can be used. NS-2 also supports

topology generators such GT-ITM [48] and Brite [117].

This simulator does not support dynamic networks and churn, and all events

are timed rather than random.
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10.2.2.10 OMNeT++

OMNeT++ is a discrete event simulator environment [136]. It is worth mention-

ing that it is not strictly a network simulator on its own, but instead it provides

an environment for simulation where different models and frameworks could be

used along with OMNeT++. All these components are programmed in C++ and

then combined using the high-level language. It has strong GUI support and due

to its modular architecture models can be easily embedded into new applications.

It has a number of contributed models and used in other areas apart from P2P.

[136] states that a 1000 node swarming simulation was implemented and later

the P2P swarming [155] add-on was added to the library. Multi-tier topologies

are supported, and Java interoperability is provided which further increases the

usability.

This literature shows that at present it supports only structure P2P. The tool

has low scalability because of the packet simulation. There exits no information

that churn and dynamic networks are supported.

10.2.2.11 Gnutellasim

GnutellaSim is packet level simulator designed specifically to simulate Gnutella

protocol [136]. This simulator provides a detailed model for Gnutella and uses

NS-2 as an engine. The literature shows that it could support two protocols,

i.e, Gnutella and FreeNet. It can simulate structured as well as unstructured

P2P [136].

The simulator is based on NS-2 which does not implement dynamic network

and churn. Documentation is also one of the major issues. This simulator can
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scale up to 600 nodes [136].

10.2.3 Graph Based Stochastic Simulation

The GraSS operation and architecture has been explained in Chapter 7. In this

section we are focussing on the explanation of the evaluation parameters, in order

to make a comparison with existing approaches. In GraSS, a GTS is represented

as a VIATRA2 model (as explained in chapter 6, consisting of the model space

with the current graph and the transformation rules). The model represents

discrete event system, where each state is a graph and each event is a graph

transformation.

The GraSS is a research tool. The tool has recently been tested for simulations

of pure unstructured P2P network. In this thesis the tool has been used for

modeling dynamics of super peer-based hybrid P2P architecture. The model

of churn used in this thesis consist join, and both selfish and cooperative exit.

The reconfiguration model shows that super peer and client can normalize their

topology if either choice of churn is used by the participant. Usability at present

is poor as it is an experimental tool used only in PhD and MSc research projects.

Similarly, scalability is limited to thousands of peers but this depends on the

memory availability to the machine running the tool. Support is provided by the

VIATRA2 team and researchers who use the tool. The approach has been tested

for modelling user behavior using appropriate probability distributions and rates.

The last attraction of the approach is the collection of statistics. The use of

probe GT rules makes statistics collection easy. Since, probe rules are provided

as part of GTS system it does not involve amending or editing the tool output.
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The approach is capable to be executed on the cluster which could significantly

increase scalability, but this has not yet been tested.

10.2.4 Comparative Evaluation of Approaches

In order to evaluate and justify the approach used in this thesis, first we com-

ment on the use of graph transformation and second part we discuss simulation

approach.

The case study in Chapter 5 presents requirements that include dynamic

creation, deletion, dynamic upgrade, downgrade and reconfiguration of nodes

in the topology. Apart from this the model needs sufficient number of nodes in

order evaluate different variations of protocols. Graph transformation allows for

creation of new client, deletion, downgrade, upgrade and reconfiguration. The

use of stochastic graph transformation makes it easy to study non-functional and

functional properties of the system. These stated features are difficult to be

modelled using other approaches such as based on automata or Petri-nets.

To select appropriate graph transformation tool, during this thesis we explored

a number of tools but most of them were lacking the functionality required. For

example the Root [79] tool does not support SPO and with Groove [52] dynamic

upgrade, downgrade, failure and deletion are difficult to implement, along with

scalability issues. The VIATRA2 through the use of VTCL not only provides

means to implement all the requirements but at the same time it shows the

scalability required (see section 7.2).

Table 10.1 shows that a number of simulators have been developed either

particularly for P2P (e.g., PeerSim, P2PSim, GPS) or extended to support P2P
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overlay networks (e.g., NS-2, Narses, DHTSim). No single approach is capable to

model and simulate the dynamics of P2P networks like Skype. Table 10.1 shows

that most of the simulators are designed to address a specific issue in a protocol.

This not only reduces the usability, but comparison of alternative approaches

becomes impossible. Example of this is approaches like P2PSim and Overlay

Weaver. These two are limited to DHT-based systems, making them unsuitable

for simulating unstructured overlays. Another major issue in existing approaches

is scalability, which is a core component of P2P network evaluation. Scalability

differs widely with a number of simulators incapable of practically handling more

than a few hundred nodes.

Table 10.1 shows that although GraSS has poor usability it meets all the

requirements of modelling dynamics and reconfiguration of P2P VoIP. The use of

GT rules for modelling transformations and probe rules for collection of statistics

enable the tool to simulate alternate solutions and comment on their performance.

This will help the developer of the protocol to test and compare their algorithms

against existing solutions. This approach further helps to mix and match features

of protocols and evaluate their performance against the parent protocols.
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Table 10.1. Evaluation of Modelling and Simulation Approaches
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1 PeerSim X X X X X X X X X X X X X X X X X X X X X X X X X X

2 P2PSim X X X X X X X X X X X X X X X X X X X X X X X X X X

3 3LS X X X X X X X X X X X X X X X X X X X X X X X X X X

4 Narses X X X X X X X X X X X X X X X X X X X X X X X X X X

5 NeuroGrid X X X X X X X X X X X X X X X X X X X X X X X X X X

6 Query Cycle X X X X X X X X X X X X X X X X X X X X X X X X X X

7 GPS X X X X X X X X X X X X X X X X X X X X X X X X X X

8 DHTSim X X X X X X X X X X X X X X X X X X X X X X X X X X

9 Overlay Weaver X X X X X X X X X X X X X X X X X X X X X X X X X X

10 PlanetSim X X X X X X X X X X X X X X X X X X X X X X X X X X

11 OverSim X X X X X X X X X X X X X X X X X X X X X X X X X X

12 NS-2 X X X X X X X X X X X X X X X X X X X X X X X X X X

12 OMneT++ X X X X X X X X X X X X X X X X X X X X X X X X X X

13 GnutellaSim X X X X X X X X X X X X X X X X X X X X X X X X X X

14 GraSS X X X X X X X X X X X X X X X X X X X X X X X X X X
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10.3 Summary

In this chapter, we have reviewed the literature regarding super peer based P2P

networks. The study shows that a number of approaches have been proposed

ranging from super peer promotion based on bandwidth to promotion based on

stability and locality. We also studied the dynamics in super peer architecture

resulting from user behaviour or crashing of systems. Further, the need for re-

configuration in these protocols has been justified through the studies in the

literature. In the second part of this chapter we studied some of the parame-

ters that could be used to evaluate existing approaches of P2P simulators. We

examined existing simulation approaches and commented on their strength and

weaknesses. We also evaluated these approaches based on the requirements of

our case study and reflected the results in a table.
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Chapter 11

Conclusions

This chapter presents the conclusions of the work in this thesis. We first list the

achievements of the thesis and then describe future work.
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11.1 Summary of Contributions

We proposed a new approach to the modelling and simulation of P2P net-

work reconfigurations using graph transformation, a visual rule based formalism.

Through investigation of a relevant case study applications and existing design

alternatives, we first sketch the general structure of a P2P VoIP protocol and

then follow the design variations by means of a feature tree. In this way, a rich

set of mandatory and optional features have been identified and modelled (Chap-

ter 4). The feature diagram presents the mandatory feature that are essential for

the operation of P2P VoIP protocol and optional features such as load balancing

that could help the core functions to stabilize the network.

The approach used in this thesis consists of a metamodel for super peer based

P2P VoIP networks and transformation rules (Chapter 6) describing their oper-

ation. We have converted the metamodel into a VIATRA2 model space and the

rules into VIATRA2 transformation rules (Chapter 7 and Appendix B). The aim

was to convert the model and transformation rules into an executable form for

stochastic simulation.

We have evaluated the alternative solutions to super peer selection, connec-

tion, promotion, and load balancing using stochastic simulation. The simulation

results evaluate alternative approaches based on parameters such as the number

of clients happy with their current selection of super node, the number of clients

in the model, the number SNs in the model, the number of clients linked with

super peers, the number of clients waiting for connection, the number of calls

supported, and the number of clients reconfigured. This evaluation enables the

designer to look into various alternatives in a single model and compare their
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performance (Chapter 8). Based on the simulation results, a custom protocol has

been proposed, which performs better then the parent protocols (Chapter 8).

We validated the model using statistics from the real Skype network and

experimental data to build confidence in the model using methods like animation

analysis, event validity, face validity and data validation. In the last part of

Chapter 9, we discussed and evaluated the possible threats to the validity of

the simulation results. We show that change in the start graph has less effect

on the number of happy clients in the model. However, reducing bandwidth

requirements for promotion affects the number of linked and happy clients..

11.2 Future Work

In this section, possibilities for extending this work in the future are discussed.

Future work has two possible directions, i.e, model expansion and tool enhance-

ment. The model expansion aspect is within the scope of this thesis while tool

enhancement goes beyond its scope.

The model could be extended including support for reconfiguration based on

quality. The approach enables the client to check the quality of the existing super

peer and if SN does not meet the requirements, the clients should be able to select

a new super peer. Further, if the client behind a firewall observes unacceptable

response from a super peer, the clients should be able to change the connection

dynamically without disturbing the existing VoIP call. Another possibility is to

allow reconfiguration based on jitter, packet loss or echo in the VoIP call.

In this thesis the modelling of Skype client connected through mobile devices

is not addressed. As these devices are subject to QoS issues related to network
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speed as well as mobility, this could be another possibility to explore the modelling

of P2P VoIP.

There also exist a possibility to explore other tools using the model presented

in this thesis. This will help to identify how much effort is required to export as

well as encode the model space and transformation rules of VIATRA2 into other

tools. Similarly, if a model is exported successfully, there exist a possibility to

compare the results which can help to comment on the performance of the tools.

There are a few directions for enhancement of the GraSS and VIATRA2 tools.

In this thesis we observed that conversion of GT ruls written in graphical notation

to the VIATRA2 VTCL language requires great care as there is no mechanism

to check for logical error. The first recommendation is for VITARA2 tool to

support automated conversion of graphically represented GT rules into the VTCL

language.

As currently GraSS only supports exponential distribution and log-normal

distribution, however, to further enhance the tool performance, it should support

other probability distributions. This will enable the tool to be used in other do-

mains. At present the results are written into different text files, so visualization

of the results could be another direction for enhancement. The last recommenda-

tion is to improve the scalability of the tool and improve its GUI for visualization.

As future plan I am considering to use the approach presented in this thesis

for modelling and simulation of population migration. The study of literature

shows that traditional model of immigration was based on the archaeological

evidence for culture change. This model was later on proved to be less practical

as change in culture could be resulted either through trade or influx of small

ruling elite with considerably less or no impact on the gene pool. Migration is
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one of the core entities in population change and it is considered the most difficult

component to estimate. Natural population have complex demographic histories

and their respective sizes and ranges change over time, but these changes do leave

signature on their genetic compositions. In order to get some realistic information,

biological data will do help to uncover the truth of population migration by

examining various genetic variations. Previous studies in UK have successfully

used genetic variation ranging from examine blood group to serum protein and iso-

enzymes. Recent results for Anglo-Saxon mass migration used y-chromosome as

evidence, as this mitochondrial genome is useful sources as they provide detailed

information regarding genealogies. The proposed model would represent DNA

sequence through an attribute and they would support random generation of

the DNA sequence. The model will further support exact matching and part

matching of the DNA sequence. This would help to collect statistics regarding

sequence matching in population. The flexibility of this approach would be that

we can simulate foreword as well as reverse simulation.

As future plan I am also considering the to study the dynamics email based

social network, in which individuals establish, maintain and allow links through

contact-lists and emails. In social networks the model is based on the common

neighbours as well as classical preferential attachment theory. Thus, enabling a

deeper understanding of the topology of the inter-node connection. By using the

approach of this thesis a model could be developed and stochastic simulation using

GraSS can be used to simulate and validate the model by simulating real-world

social networks with convincing realism.

244



Appendix A

Results and Probability

Distributions

A.1 Stead State Experiments Results

The Fig.A.1 shows the simulation time required for latency based SN selection

model to achieve the steady state. Similarly the Fig.A.2 and Fig.A.3 shows the

simulation required for time based SN selection and local SN selection respec-

tively.

A.2 GT Rules Probability Distributions and

Rates
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Figure A.1: Steady state latency based SN selection

Figure A.2: Steady state time based SN selection
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Figure A.3: Steady state local SN selection

Event Mean µ Variance
σ2

RuleLinkSCtoSN 0.000347 2.0
ReconfigureLinkSCtolinkbackSN 0.000173 2.0
Rule7connectSNSN 0.000578 10
Rule9DowntoSC 0.000173 10.0
Rule10ControledExitP reperationSC 0.000154 2.0
Rule10ControledF inalExitSC 0.000154 2.0
P2PCallwithf irewaalenabledP lacecallandRoute0.000520 10.0
PlacecallandRouteLocal 0.000578 10.0
PlacecallSCtoSC 0.000462 10.0
PlacecallSCtoSN 0.000347 10.0
PlacecallSNtoSN 0.000347 10.0
TerminateroutedCallSCSNSNSC 0.033 1.0
TerminateroutedCallSCSNSC 0.033 1.0
TerminateSNtoSN 0.033 1.0
TerminateSCtoSN 0.033 1.0
TerminateSCtoSC 0.033 1.0

Table A.1: GT rule log-normal distribution
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Event Mean λ (hours)
Rule5P romoteatRegistrationSuperNode 3.0
Rule6P romoteatLinkedSuperNode 1.0
ule6P romoteatNeedbased 3.0
Rule10ControlledExitofSC 12
Rule11UnControledExitSC 0.542
Rule12ControledExitSNSelected 8
Rule13departureofSNUncontrolled 0.142
RequiestcallSCtoSCbehindf irewall 4.0
RequiestcallSCwithliveIP 4.0
RequiestcallSN 4.0
RandomSCT raffic 48.0
RandomSCT rafficf ir 48.0
RandomSNT raffic 48.0

Table A.2: GT rule exponential distribution
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Appendix B

VIATRA2 Rules

B.1 Graph Pattern Used in this Thesis

In this section we present the executable forms of the rules presented in Chapter 6

We list all patterns here, except those which we already presented in the previous

sections. Further, in this section we are going to present only the single link

choice of SC to SN.

1 pattern Register_New(S,N,RG) =

2 {

3 ND(N);

4 RS(S);

5 RS.register(RG,S,N);

6 }

7 Explanation:

8 This pattern register a new user with RS.

1 pattern RS_rg_SN(S,Y,RG) =

2 {

3 SN(Y);

4 RS(S);

5 RS.RSoverlay(RG ,S,Y);

6
7 }

8 Explanation:

9 This pattern registers SN with RS.

1 pattern SC_Chronos(X,CRO) =
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2 {

3 SC(X);

4 SkypeNode.Chronos(CRO);

5 SkypeNode.chronos(CRR ,X,CRO);

6 }

7
8 Explanation:

9 This pattern access the chronos attribute of the SC.

1 pattern SN_Chronos(Y,CRO) =

2 {

3 SN(Y);

4 SkypeNode.Chronos(CRO);

5 SkypeNode.chronos(CRR ,SN,CRO);

6 }

7
8
9 Explanation:

10 This pattern access the chronos attribute of the SN.

1 pattern SC_Exit(X,EX) =

2 {

3 SC(X);

4 SkypeNode.Exit(EX);

5 SkypeNode.exit(EXR ,X,EX);

6 }

7
8 Explanation:

9 This pattern access the exit attribute of the SC.

1 pattern SN_Exit(Y,EX) =

2 {

3 SN(Y);

4 SkypeNode.Exit(EX);

5 SkypeNode.exit(EXR ,Y,EX);

6 }

7 Explanation:

8 This pattern access the exit attribute of SN.

1 pattern SN_Bandwidth(Y,BW)=

2 {

3 SN(Y);

4 SkypeNode.Bandwidth(BW);

5 SkypeNode.bandwidth(BWR ,Y,BW);

6 }

7 Explanation:

8 This pattern access the bandwidth attribute of the SN.

1 pattern SC_Bandwidth(X,BW)=
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2 {

3 SC(SC);

4 SkypeNode.Bandwidth(BW);

5 SkypeNode.bandwidth(BWR ,X,BW);

6 }

7 Explanation:

8 This pattern access the bandwidth attribute of the SC.

1 pattern check_SC_with_RL(N,L,RLC)=

2 {

3 RL(L);

4 ND(N);

5 RL.ofline(RLC ,L,N);

6 }

7
8 Explanation:

9 This pattern confirms that ND is currently offline.

1 pattern SC_Online(S,X,RG) =

2 {

3 SC(X);

4 RS(S);

5 RS.online(RG ,S,X);

6 }

7 Explanation:

8 This pattern confirms that SC is having online edge with

9 RS server.

1 pattern test_links(X)=

2 {

3 SC(X);

4 neg find Link_SN(X);

5 }

6 Explanation:

7 This pattern calls other pattern.

1 pattern Link_SN(X)=

2 {

3 LK(K);

4 SC(X);

5 LK.linkto(CO ,K,X);

6 }

7 Explanation:

8 This pattern confirms that SC is linked with LK through

9 edge linkTo.

1 pattern Packet_SE_check(X)=

2 {

3 SC(X);
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4 Packet(PK);

5 Packet.sender(SE ,PK ,X);

6 }

7 Explanation:

8 This pattern confirms that SC has an edge labelled sender

9 with packet PK.

1 pattern Packet_RE_check(X)=

2 {

3 SC(X);

4 Packet(PK);

5 Packet.receiver(SE ,PK ,X);

6 }

7 Explanation:

8 This pattern confirms that SC is having edge labelled

9 receiver with the packet PK.

1 pattern SN_Registerd_with_RS(S,Y) =

2 {

3 SN(S);

4 RS(Y);

5 RS.RSoverlay(RG ,S,Y);

6 }

7 Explanation:

8 This confirms that SN is having edge labelled RSoverlay

9 with server RS.

1 pattern Packet_reciver_Check(Packet ,Y,RE)=

2 {

3 Packet(Packet);

4 SN(Y);

5 Packet.receiver(RE ,Packet ,SN);

6 }

7 Explanation:

8 This pattern confirms that SN is having edge labelled

9 receiver with packet PK.

1 pattern Packet_sender_Check(Packet ,X,SE)=

2 {

3 Packet(Packet);

4 SC();

5 Packet.sender(SE ,Packet ,X);

6 }

7 Explanation:

8 This pattern confirms that SN is having edge labelled

9 sender with packet PK.

1 pattern Packet_at_Check(Packet ,Y,AT)=

2 {
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3 Packet(Packet);

4 SN(Y);

5 Packet.at(AT ,Packet ,SN);

6 }

7 Explanation:

8 This pattern confirms current location of the packet with

9 SN through and edge labelled at.

1 pattern Packet_Content(Packet ,CONT)=

2 {

3 Packet(Packet);

4 Packet.Content(CONT);

5 Packet.content(CI ,Packet ,CONT);

6 }

7 Explanation:

8 This pattern access the content attribute of the packet.

1 pattern Packet_Chronos(P,CO)=

2 {

3 Packet(P);

4 Packet.Chronos(CO);

5 Packet.chronos(CI ,Packet ,CO);

6 }

7 Explanation:

8 This pattern access the chromos attribute of the packet.

1 pattern Constraint(SN)=

2 {

3 SN(Y);

4 find SN_Bandwidth(Y,BW);

5 check(( toInteger(value(BW))) <256);

6 }

7 or

8 {

9 SN(Y);

10 find SN_Exit(Y,EX);

11 check(( value(EX))=="True");

12 }

13 Explanation:

14 This pattern use or gate to combine to conditions. If

15 either condition is true pattern will results true. It

16 first confirm that SN bandwidth and later it check exit

17 attribute.

1 pattern Packet_at_Check_SC(Packet ,SC)=

2 {

3 Packet(Packet);

4 SC(X);

5 Packet.at(AT ,Packet ,X);
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6 }

7 Explanation:

8 This pattern confirms the current location of the packet

9 with SC through an edge labelled at.

1 pattern SC_firewall(X,FIRW) =

2 {

3 SC(X);

4 SC.Firewall(FIRW);

5 SC.firewall(FIRWR ,X,FIRW);

6 }

7 Explanation:

8 This pattern confirms the current location of the packet

9 with SC through an edge labelled at.

1 pattern SC_firewall(X,FIRW) =

2 {

3 SC(X);

4 SC.Firewall(FIRW);

5 SC.firewall(FIRWR ,X,FIRW);

6 }

7 Explanation:

8 This pattern access the firewall attribute of the SC.

1 pattern SC_Linked_SN(X,Y,K)=

2 {

3 SC(X);

4 SN(Y);

5 LK(K);

6 LK.linkto(LT ,K,X);

7 LK.outTo(LO ,K,Y);

8 }

9 Explanation:

10 This pattern confirms that SC and SN are linked through

11 node LK.

1 pattern Check_Links_with_SN(Y)=

2 {

3 LK(K);

4 SN(Y);

5 LK.outTo(LKI ,K,Y);

6 }

7 Explanation:

8 This pattern confirms that LK is linked with SN through

9 an edge outTo.

1 pattern Check_OV_Links_with_SN(Y)=

2 {

3 OV(O);
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4 SN(Y);

5 OV.source(LKI ,O,Y);

6 }

7 or

8 {

9 OV(O);

10 SN(Y);

11 OV.target(OVT ,O,Y);

12 }

13 Explanation:

14 This pattern confirms that SN is having overlay connection

15 through node OV either as source or target node.

1 pattern SN_Target_Check(Y,O,OVT)=

2 {

3 SN(Y);

4 OV(O);

5 OV.target(OVT ,O,Y);

6 }

7 Explanation:

8 This pattern confirms that SN is having target link with

9 overlay link OV.

1 pattern SN_Source(Y,O)=

2 {

3 SN(Y);

4 OV(O);

5 OV.source(OVI ,O,Y);

6 }

7 Explanation:

8 This pattern confirms that SN is having source edge with

9 overlay link OV.

1 pattern Test(O)=

2 {

3 OV(O);

4 find target(O,Y);

5 }

6 pattern target(OV ,Y)=

7 {

8 OV(O);

9 SN(Y);

10 OV.target(OVI ,O,Y);

11 }

12 Explanation:

13 This pattern confirms OV is having link with SN in

14 the current graph as source.

1 pattern SN_Target(Y,O)=
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2 {

3 SN(Y);

4 OV(O);

5 OV.target(OVI ,O,Y);

6 }

7
8 Explanation:

9 This pattern confirms that SN is having target edge

10 with overlay link OV.

1 pattern Test_Target(O)=

2 {

3 OV(O);

4 find Source(O,Y);

5 }

6 pattern Source(O,Y)=

7 {

8 OV(O);

9 SN(Y);

10 OV.source(OVI ,O,Y);

11 }

12 Explanation:

13 This pattern confirms OV is having link with SN in

14 the current graph as target.

1 pattern Test_Target(O)=

2 {

3 OV(O);

4 find Source(O,Y);

5 }

6 pattern Source(O,Y)=

7 {

8 OV(O);

9 SN(Y);

10 OV.source(OVI ,O,Y);

11 }

12 Explanation:

13 This pattern confirms OV is having link with SN in

14 the current graph as target.

1 pattern SC_Source(K,X)=

2 {

3 LK(K);

4 SC(X);

5 LK.linkto(LKR ,K,X);

6 }

7 Explanation:

8 This pattern confirms that link LK is having edge

9 linkTo with SC.

256



1 pattern SN_SC_Target(K,Y)=

2 {

3 LK(K);

4 SN(Y);

5 LK.outTo(LKR ,K,Y);

6 }

7 Explanation:

8 This pattern confirms that link LK is having edge

9 labelled outTo with SN.

1 pattern SN_SC_Target(K,Y)=

2 {

3 LK(K);

4 SN(Y);

5 LK.outTo(LKR ,K,Y);

6 }

7 Explanation:

8 This pattern confirms that SC and SN are linked

9 through node LK via edges outTo and linkTo.

1 pattern SN_SC_Target(LKR ,K,Y)=

2 {

3 LK(K);

4 SN(Y);

5 LK.outTo(LKR ,K,Y);

6 }

7 Explanation:

8 This pattern confirms that SN and LK are linked

9 through an edge outTo.

1 pattern Check_SC_Source(X)=

2 {

3 LK(K);

4 SC(X);

5 LK.linkto(LKR ,K,X);

6 }

7 Explanation:

8 This pattern confirms that SC and LK are linked

9 through an edge linkTo.

1 pattern SC_loaction(X,LOC) =

2 {

3 SC(X);

4 SkypeNode.Location(LOC);

5 SkypeNode.location(LOCRR ,X,LOC);

6 }

7 Explanation:

8 This pattern access the location attribute of the SC.

257



1 pattern Check_OV(Y,Y1 ,O)=

2 {

3 SN(Y);

4 SN(Y1);

5 OV(OV);

6 OV.source(OVS ,OV ,Y);

7 OV.target(OVT ,OV ,Y1);

8 }

9 Explanation:

10 This pattern confirms that SN of type Y1 and Y are linked

11 in the overlay network.

1 pattern SN_location(Y,LOC)=

2 {

3 SN(Y);

4 SkypeNode.Location(LOC);

5 SkypeNode.location(LOCR ,Y,LOC);

6 }

7 Explanation:

8 This pattern access the location attribute of the SN.

1 pattern OV_Source(O,Y)=

2 {

3 SN(Y);

4 OV(O);

5 OV.source(OVR ,O,Y);

6 }

7 Explanation:

8 This pattern confirms that SN and OV are linked

9 through an edge source.

1 pattern OV_Target(O,Y)=

2 {

3 SN(Y);

4 OV(O);

5 OV.target(OVT ,O,Y);

6 }

7 Explanation:

8 This pattern confirms that SN and OV are linked

9 through an edge target.

1 pattern Check_OV_Links(Y)=

2 {

3 SN(Y);

4 find OV_Source(O,Y);

5 find OV_Target(O,Y);

6 }

7
8 Explanation:
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9 This pattern find the SN is having source or target

10 edges with OV.

1 pattern Check_LK_Links(Y)=

2 {

3 SN(Y);

4 LK(K);

5 find LK_Check(Y,K);

6 }

7 Explanation:

8 This pattern calls another pattern to check linking

9 between SN and LK.

1 pattern LK_Check(Y,K)=

2 {

3 LK(K);

4 SN(Y);

5 LK.outTo(LKR ,K,Y);

6 }

7
8 Explanation:

9 This pattern confirms that LK and SN are linked

10 through an edge.

1 pattern check_for_existing_call(X)=

2 {

3 SC(X);

4 RouteCall(R);

5 RouteCall.caller(CAI ,R,X);

6
7 }

8 or

9 {

10 SC(SX);

11 RouteCall(R);

12 RouteCall.callee(CAI ,R,X);

13 }

14 Explanation:

15 This pattern confirm that SC is VoIP call either as

16 caller or callee.

1 pattern check_for_call(X)=

2 {

3 SC(X);

4 Call(C);

5 Call.caller(CAI ,C,X);

6
7 }

8 or
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9 {

10 SC(C);

11 Call(C);

12 Call.callee(CAII ,C,X);

13 }

14
15 Explanation:

16 This pattern confirms that SC is in direct P2P VoIP

17 call either as caller or callee.

1 pattern existing_req(X)=

2 {

3 SC(X);

4 CallReq(Q);

5 CallReq.initiate(CAT ,Q,X);

6 }

7 Explanation:

8 This pattern confirms that SC has initiated VoIP

9 call request.

1 pattern check_requiest_for_call_SN(Y,Q)=

2 {

3 SN(Y);

4 CallReq(Q);

5 CallReq.initiate(CTI ,Q,Y);

6 }

7 Explanation:

8 This pattern confirms that SN has initiated VoIP

9 call request.

1 pattern call_check(Y,Y1 ,C)=

2 {

3 Call(C);

4 SN(Y1);

5 SN(Y);

6 Call.caller(CAI ,C,Y);

7 Call.callee(CAII ,C,Y1);

8 }

9 or

10 {

11 Call(C);

12 SN(Y1);

13 SN(Y);

14 Call.caller(CAI ,C,Y1);

15 Call.callee(CAII ,C,Y);

16 }

17 Explanation:

18 This pattern confirms that SN and SN1 are in VoIP

19 call.
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1 pattern check_for_call_SN(Y)=

2 {

3 SN(Y);

4 Call(C);

5 Call.caller(CAI ,C,Y);

6
7 }

8 or

9 {

10 SN(Y);

11 Call(C);

12 Call.callee(CAII ,C,Y);

13 }

14 Explanation:

15 This pattern confirms that SN is already in call

16 either as caller or callee.

1 pattern Find_routed_call(X,X1 ,Y,Y1 ,R)=

2 {

3 SN(Y);

4 SN(Y1);

5 SC(X);

6 SC(X1);

7 RouteCall(R);

8 RouteCall.caller(PKS ,R,X);

9 RouteCall.callee(PKR ,R,X1);

10 RouteCall.route(SNR ,R,Y);

11 RouteCall.route(SNRR ,R,Y1);

12
13 }

14 or

15 {

16 SN(Y);

17 SN(Y1);

18 SC(X);

19 SC(X1);

20 RouteCall(R);

21 RouteCall.caller(PKS ,R,X1);

22 RouteCall.callee(PKR ,R,X);

23 RouteCall.route(SNR ,R,Y);

24 RouteCall.route(SNRR ,R,Y1);

25
26 }

27 Explanation:

28 This pattern finds multiple SN routed VoIP calls

29 between SCs.

1 Pattern

2 Find_routed_call_SC_SN_SC(X,X1 ,Y,R)=
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3 {

4 SN(Y);

5 SC(X);

6 SC(X1);

7 RouteCall(R);

8 RouteCall.caller(PKS ,R,X);

9 RouteCall.callee(PKR ,R,X1);

10 RouteCall.route(SNR ,R,Y);

11
12
13 }

14 or

15 {

16
17 SN(Y);

18 SC(X);

19 SC(X1);

20 RouteCall(R);

21 RouteCall.caller(PKS ,R,X1);

22 RouteCall.callee(PKR ,R,X);

23 RouteCall.route(SNR ,R,Y);

24 }

25 Explanation:

26 This pattern find direct VoIP call between SC and SN

1 pattern call_check_1C(X,X1 ,C)=

2 {

3 Call(C);

4 SC(X);

5 SC(X1);

6 Call.caller(CAI ,C,X);

7 Call.callee(CAII ,C,X1);

8 }

9 or

10 {

11 Call(C);

12 SC(X);

13 SC(X1);

14 Call.caller(CAI ,C,X1);

15 Call.callee(CAII ,C,X);

16 }

17 Explanation:

18 This pattern finds direct VoIP call between SC and

19 SC1.

1 pattern SN_SN(Y,Y1)=

2 {

3 SN(Y);

4 SN(Y1);
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5 OV(O);

6 OV.source(OVI ,O,Y);

7 OV.target(OVIT ,O,Y1);

8
9 }

10 Explanation:

11 This pattern confirms that SN and SN1 are linked in

12 the overlay.

1 pattern SN_SN_OVI(Y,Y1 ,O)=

2 {

3 SN(Y);

4 SN(Y1);

5 SN.overlayPath(OVI ,Y,Y1);

6
7 }

8 Explanation:

9 This pattern confirms that there is an edge OVI

10 between SN and SN1.

1 pattern SN_SN_Test(Y,Y1)=

2 {

3 SN(Y);

4 SN(Y1);

5 find SN_SN(Y,Y1);

6
7 }

8
9 Explanation:

10 This pattern confirms that two SNs are linked in the

11 SN overlay.

1 pattern OV_Path(Y)=

2 {

3 SN(Y);

4 find SN_SN(Y,Y1);

5 find SN_SN(Y,Y2);

6 find SN_SN(Y,Y3);

7 find SN_SN(Y,Y4);

8 }

9 Explanation:

10 This pattern confirms that SN in linked with other

11 four SNs in the overlay network.
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B.2 VIATRA2 Interpretation of The GT Rules

used in this Thesis

In this section now we present the all the rules in VIATRA2 Code, The rules are

presented in the same order as that in graphical form. The purpose of this section

is to give the reader how the graphical notation of the GT rules are mapped into

VIATRA2 rules.

B.2.1 Registration of New Users

The rule in Fig. 6.3 is mapped to VIATRA2 rule in List. B.1

1 gtrule Registeration_of_New_User () =

2 {

3 precondition pattern lhs(L) =

4 {

5 RL(L);

6
7 }

8 action {

9 let

10 N1=undef ,

11 KK=undef

12 in seq {

13 new (ND(N1) in L);// create client inside the

network

14 rename(ND1 ,"ND1");

15 new(RL.ofline(KK ,L,N1));

16 }

17 println("New Skype User Registered");

18 }

19 }

Listing B.1: Registration of New User

B.2.2 Registration Successful

The rule in Fig. 6.4 is mapped to VIATRA2 rule in List. B.2

1 gtrule Rule_Sucessful_Registeration () =

2 {

3 precondition pattern lhs(S,L,RG ,N) =
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4 {

5 RS(S);

6 RL(L);

7 ND(N);

8 find Register_New(S,N,RG);

9
10 }

11 action {

12 move(N,L);

13 delete(RG);

14 let

15 KK=undef

16 in seq {

17 rename(N,"ND1");

18 new(RL.ofline(KK ,L,N));

19 }

20 println("New Skype User successfully Registered");

21 }

22 }

Listing B.2: Successful registration

User Go Online with Random Firewall
The rule at Fig. 6.5 is mapped to VIATRA2 rule at List. B.3

1 gtrule User_Go_Online () =

2 {

3 precondition pattern lhs(N,S,L,RLC ,NK) =

4 {

5 RS(S);

6 RL(L);

7 ND(N);

8 find check_SC_with_RL(N,L,RLC);

9 // this checks if user is already registerd //

10 Network(NK);

11 }

12 action {

13 move(ND,Network);

14 new(instanceOf(ND ,DSM.metamodel.SkypeSim.SkypeSimEditor.SC));

15 delete(instanceOf(ND,DSM.metamodel.SkypeSim.SkypeSimEditor.ND));

16 delete(RLC);

17 rename(N,"sc");

18 let

19 K=undef ,

20 KR=undef ,

21 B=undef ,

22 BR=undef ,

23 CH=undef ,

24 CHR=undef ,

25 NR=undef ,
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26 RG=undef ,

27 EX=undef ,

28 EXR=undef ,

29 LOC=undef ,

30 LR=undef

31 in seq {

32
33 new(SC.Firewall(K)in N);

34 // create attribute firewall in the SC

35 new(SC.firewall(KR,N,K));

36 // create relation between the SC and attribute

37 new(SkypeNode.Bandwidth(B) in N);

38 setValue(B,skypesim.random (56 ,2000));

39 // use random function to assign bandwidth

40 new(SkypeNode.bandwidth(BR,N,B));

41 new(SkypeNode.Chronos(CH) in N);

42 setValue(CH,systime ());

43 // time Now //

44 new(SkypeNode.chronos(CHR ,N,CH));

45 new(SkypeNode.Location(LOC) in N);

46 new(SkypeNode.location(LR,N,LOC));

47 setValue(LOC ,skypesim.random (1 ,24));

48 new(SkypeNode.Exit(EX) in N);

49 setValue(EX,"False");

50 // set default Exit to false

51 new(SkypeNode.exit(EXR ,N,EX));

52 new(Network.nodes(NR,NK,N));

53 new(RS.online(RG,S,N));

54 // set firewall enabled and disabled based on bandwidth

55 if ((( toInteger(value(B))) >256))

56 setValue(K,"False");

57 else

58 setValue(K,"True");

59 println("User go Online ");

60
61 }

62 }

63
64 }

Listing B.3: User go online with random firewall

Rule User Go Online with Firewall Disabled
The rule at Fig. 6.6 is mapped to VIATRA2 rule at List. B.4

1 gtrule User_Go_Online_with__Firewall_diabled () =

2 {

3 precondition pattern lhs(N,S,L,RLC ,NK) =

4 {

5 RS(S);
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6 RL(L);

7 ND(N);

8 find check_SC_with_RL(N,L,RLC);

9 // this checks if user is already registered //

10 Network(Network);

11 }

12 action {

13 move(N,NK);

14 new(instanceOf(N,DSM.metamodel.SkypeSim.

SkypeSimEditor.SC));

15 delete(instanceOf(N,DSM.metamodel.SkypeSim.

SkypeSimEditor.ND));

16 delete(RLC);

17 rename(ND ,"sc");

18 let

19 K=undef ,

20 KR=undef ,

21 B=undef ,

22 BR=undef ,

23 CH=undef ,

24 CHR=undef ,

25 NR=undef ,

26 RG=undef ,

27 EX=undef ,

28 EXR=undef ,

29 LOC=undef ,

30 LR=undef

31 in seq {

32 new(SC.Firewall(K)in N);

new(SC.firewall(KR,N,K));

33 setValue(K,"False");

34 new(SkypeNode.Bandwidth(B) in N);

35 setValue(B,skypesim.random (256 ,2000));

new(SkypeNode.

bandwidth(BR,N,B));

36 new(SkypeNode.Chronos(CH) in ND);

37 setValue(CH,systime ());

new(SkypeNode.chronos(CHR ,N,CH));

38 new(SkypeNode.Location(LOC) in N);

39 new(SkypeNode.location(LR,N,LOC));

40 setValue(LOC ,skypesim.random (1 ,24));

41 new(SkypeNode.Exit(EX) in N);

42 setValue(EX,"False");

43 new(SkypeNode.exit(EXR ,N,EX));

44 new(Network.nodes(NR,Network ,N));

45 new(RS.online(RG,S,N));

46 println("User go Online with firewall disabled ");

47
48 }
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49 }

50
51 }

Listing B.4: Users go online with firewall disabled

User Go Online with Firewall Enabled
The rule at Fig. 6.7 is mapped to VIATRA2 rule at List. B.5

1 gtrule User_Go_Online_with__Firewall_enabled () =

2 {

3 precondition pattern lhs(N,RS ,RL ,RLC ,Network) =

4 {

5 RS(RS);

6 RL(RL);

7 ND(N);

8 find check_SC_with_RL(N,RL ,RLC);

9 // this checks if user is already registerd //

10 Network(Network);

11 }

12 action {

13 move(N,Network);

14 new(instanceOf(N,DSM.metamodel.SkypeSim.SkypeSimEditor

.SC)); delete(instanceOf(N,DSM.

metamodel.SkypeSim.SkypeSimEditor.ND));

15 delete(RLC);

16 rename(N,"sc");

17 let

18 K=undef ,

19 KR=undef ,

20 B=undef ,

21 BR=undef ,

22 CH=undef ,

23 CHR=undef ,

24 NR=undef ,

25 RG=undef ,

26 EX=undef ,

27 EXR=undef ,

28 LOC=undef ,

29 LR=undef

30 in seq {

31
32 new(SC.Firewall(K)in N);

new(SC.firewall(KR,N,K));

33 setValue(K,"True");

34 new(SkypeNode.Bandwidth(B) in N);

35 setValue(B,skypesim.random (128 ,1000));

new(SkypeNode.

bandwidth(BR,N,B));

36 new(SkypeNode.Chronos(CH) in N);
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37 setValue(CH,systime ());

new(SkypeNode.chronos(CHR ,N,CH));

38 new(SkypeNode.Location(LOC) in N);

39 new(SkypeNode.location(LR,N,LOC));

40 setValue(LOC ,skypesim.random (1 ,24));

41 new(SkypeNode.Exit(EX) in N);

42 setValue(EX,"False");// set default Exit to false

43 new(SkypeNode.exit(EXR ,N,EX));

44 new(Network.nodes(NR,Nk,N));

45 new(RS.online(RG,S,N));

46 println("User go Online with firewall disabled ");

47
48 }

49 }

50 }

Listing B.5: User go online with firewall enabled

B.2.3 Selection of SN by SC

B.2.3.1 Random Selection of SN on Bandwidth

The rule at Fig. 6.8 is mapped to VIATRA2 rule at List. B, as this rule is already
presented in this chapter so we are not repeating it.

B.2.3.2 Selection Based on Bandwidth and Latency

- Create and Send Time Stamped Packet
The rule in Fig. 6.9 is mapped to VIATRA2 rule in List. B.6

1 gtrule Rule_Create_and_Send_time_Stamp_Packet () =

2 {

3 precondition pattern lhs(X,Y,CRO) =

4 {

5 SN(Y);

6 SC(X);

7 find SC_Chronos(X,CRO);

8 find SN_Registerd_with_RS(S,Y);

9 neg find Link_SN(X);

10 find SN_Bandwidth(Y,BW);

11 neg find Packet_SE_check(X);

12 neg find Packet_RE_check(X);

13 find SN_Exit(Y,SNEX);

14 find SC_Exit(X,SCEX)

15 check ((value(SCEX))=="False");

16 check ((value(SNEX))=="False");

17 check (( toInteger(value(BW))) >256);

18

269



19 }

20
21 action {

22 let Packet=undef ,

23 PC=undef ,

24 CRR=undef ,

25 PCO=undef ,

26 PCR=undef ,

27 SE=undef ,

28 RE=undef ,

29 AH=undef

30 in seq {

31 new(Packet(P)in Y); // Create Packet in SC

32 new(Packet.Chronos(PC)in P); // Create a chronos attribute

new(Packet.chronos(CRR ,P,PC)); new(Packet.Content(

PCO)in Packet);

33 new(Packet.content(PCR ,P,PCO));

34 new(Packet.sender(SE,P,X));

35 new(Packet.receiver(RE,P,Y));

36 new(Packet.at(AH,Packet ,SN));

37 setValue(CRO ,systime ());

38 setValue(PC,value(CRO));

39 setValue(PCO ,"Ping");

40 println("Ping Packet Created");

41 }

42 }

43 }

Listing B.6: Create and Send time stamped ping packet

- Reply Packet with AcK
The rule in Fig. 6.10 is mapped to VIATRA2 rule in List. B.7

1 gtrule Reply_Ping_Packet_with_ACK () =

2 {

3 precondition pattern lhs(P,CONT ,Y,X,SE ,RE ,AT ,CO) =

4 {

5 Packet(P);

6 find Packet_reciver_Check(P,Y,RE);

7 find Packet_sender_Check(Pt ,X,SE);

8 find Packet_at_Check(P,Y,AT);

9 find Packet_Content(P,CONT);

10 find SC_Chronos(X,CRO);

11 find Packet_Chronos(P,CO);

12 find SN_Exit(Y,SNEX);

13 find SC_Exit(Y,SCEX)

14 find SN_Bandwidth(Y,BW);

15 find SC_Bandwidth(X,SCBW);

16 check (( toInteger(value(BW))) >256);

17 check ((value(SCEX))=="False");
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18 check ((value(SNEX))=="False");

19 check ((value(CONT))=="Ping");

20 }

21
22 action {

23 let NSE=undef ,NRE=undef ,NAT=undef in seq {

24 new (Packet.sender(NSE ,P,Y));

25 new(Packet.receiver(NRE ,P,X));

26 new(Packet.at(NAT ,P,X));

27 move(Packet ,SC);

28 }

29 delete (SE);

30 delete (RE);

31 delete (AT);

32 setValue(CONT ,"AcK");

33 setValue(CO,systime ());

34 println("Ping Replied Back");

35
36 }}

Listing B.7: Return reply packet with AcK

- Reply Packet with DnY
The rule in Fig. 6.11 is mapped to VIATRA2 rule in List. B.8

1 gtrule Rule3d_Revers_DnY_Stamp_Packet_to_SN () =

2 {

3 precondition pattern lhs(P,CONT ,Y,X,SE ,RE ,AT ,CO) =

4 {

5 SN(Y);

6 SC(X);

7 Packet(P);

8 find Packet_reciver_Check(P,Y,RE);

9 find Packet_sender_Check(P,X,SE);

10 find Packet_at_Check(P,Y,AT);

11 find Packet_Content(P,CONT);

12 find SC_Chronos(SC ,CRO);

13 find Packet_Chronos(P,CO);

14 find SN_Exit(Y,EX);

15 find SN_Bandwidth(Y,BW);

16 find SC_Bandwidth(X,SCBW);

17 check ((value(CONT))=="Ping");

18 find Constraint(Y);

19
20 }

21
22 action {

23 let NSE=undef ,NRE=undef ,NAT=undef in seq {

24 new (Packet.sender(NSE ,P,Y));

25 new(Packet.receiver(NRE ,P,X));
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26 new(Packet.at(NAT ,P,SC));

27 move(Packet ,X);

28 }

29 delete (SE);

30 delete (RE);

31 delete (AT);

32 setValue(CONT ,"DnY");

33 setValue(CO,systime ());

34 println("Ping Replied Back");

35
36 }}

Listing B.8: Return reply packet with DnY

- Links SC with SN Based on Latency
The rule in Fig. 6.12 is mapped to VIATRA2 rule in List. B.9

1 gtrule Rule3_Link_SC_to_SN () =

2 {

3 precondition pattern lhs(X,Y,RG ,NK ,P,CONT ,PCO ,CRO ,BW ,

SCBW) =

4 {

5 SN(Y);

6 SC(X);

7 Network(NK;

8 Packet(P);

9 find Packet_at_Check_SC(P,X);

10 find SC_Online(RS ,SC ,RG);

11 find Packet_Content(P,CONT);

12 find Packet_Chronos(P,PCO);

13 find SC_Chronos(X,CRO);

14 find SN_Bandwidth(Y,BW);

15 find SC_Bandwidth(Y,SCBW);

16 neg find Link_SN(X);

17 check ((value(CONT))=="AcK");

18 check ((( toInteger(value(PCO)))- (toInteger(value(CRO)

))) <= 800);

19 }

20
21 action {

22
23 setValue(CRO ,systime ());

24 let LK=undef , CO=undef ,OU=undef ,NR=undef in seq

{

25 new (LK(LK) in Network);

26 new(Network.nodes(NR,Nk,LK));

27 new(LK.linkto(CO ,LK,X));

28 new(LK.outTo(OU ,LK,Y));

29 delete(RG);

30 setValue(BW ,(( toInteger(value(BW))) -4));
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31 setValue(SCBW ,(( toInteger(value(SCBW))) -4));

32 delete(Packet);

33 println("connected/Linked and round trip time taken is ");

34 }

35
36 }

37 }

Listing B.9: Links SC with SN Based on Latency

- Reject SN Based on Latency
The rule in Fig. 6.13 is mapped to VIATRA2 rule in List. B.10

1 gtrule Reject_SN_based_on_Latency () =

2 {

3 precondition pattern lhs(S,X,RG ,P,CONT ,PCO ,CRO ,BW ,

SCBW) =

4 {

5
6 SC(X);

7 RS(S);

8 Packet(P);

9 find Packet_at_Check_SC(P,SC);

10 find SC_Online(S,X,RG);

11 find Packet_Content(P,CONT);

12 find Packet_Chronos(P,PCO);

13 find SC_Chronos(X,CRO);

14 find SN_Bandwidth(Y,BW);

15 find SC_Bandwidth(X,SCBW);

16 neg find Link_SN(X);

17 check ((value(CONT))=="AcK");

18 check ((( toInteger(value(PCO)))- (toInteger(value(CRO)

))) >= 300);

19 }

20
21 action {

22
23 delete(P);

24 println("Reject SN as Latency is More than required");

25 }

26
27 }

Listing B.10: Reject SN based on latency

- Reject SN Based on Return of DnY Packet
The rule in Fig. 6.14 is mapped to VIATRA2 rule in List. B.11

1 gtrule Reject_SN_based_on_DnY () =

2 {

3 precondition pattern lhs(S,X,RG ,P,CONT ,PCO ,CRO ,BW ,

SCBW) =
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4 {

5
6 SC(X);

7 RS(S);

8 Packet(P);

9 find Packet_at_Check_SC(P,X);

10 find SC_Online(S,X,RG);

11 find Packet_Content(P,CONT);

12 find SC_Chronos(X,CRO);

13 find SC_Bandwidth(X,SCBW);

14 neg find Link_SN(X);

15 check ((value(CONT))=="Dny");

16
17 }

18
19 action {

20
21 delete(P);

22 println("Reject SN DnY packet Received");

23 }

24
25 }

Listing B.11: Delete reply packets try new SN

B.2.3.3 SC linked with SN on Bandwidth and Locality (region)

The rule in Fig. 6.15 is mapped to VIATRA2 rule in List. B.12

1 gtrule Rule3_Link_SC_to_SN_Region_Based () =

2 {

3 precondition pattern lhs(S,X,Y,CRO ,RG ,BW ,SCBW ,NK) =

4 {

5 SN(Y);

6 SC(X);

7 Network(NK);

8 RS(S);

9 find SC_Online(S,X,RG);

10 find SC_Chronos(X,CRO);

11 find SN_Exit(Y,EX);

12 find SN_Bandwidth(Y,BW);

13 find SC_Bandwidth(X,SCBW);

14 // neg find Link_SN(X);//

15 find test_links(X);

16
17 check ((value(EX))=="False");

18 // this part is for region based

19 find SC_Location(X,LOC);

20 find SN_Location(Y,LOCN);
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21 check ((( value(LOC)))== ((value(LOCN))));

22 check (( toInteger(value(BW))) >256);

23
24 }

25
26 action {

27 setValue(CRO ,systime ());

28 let LK=undef , CO=undef ,OU=undef ,NR=undef in seq

{

29 new (LK(LK) in Network);

30 new(Network.nodes(NR,NK,LK));

31 new(LK.linkto(CO ,LK,X));

32 new(LK.outTo(OU ,LK,Y));

33 delete(RG);

34 setValue(BW ,(( toInteger(value(BW))) -4));

35 setValue(SCBW ,(( toInteger(value(SCBW))) -4));

36 println("connected/Linked ");

37 }

38
39
40 }}

Listing B.12: Link SC to an SN from same region

B.2.3.4 Selection of SN based Bandwidth and Time spent in Network

The rule in Fig. 6.17 is mapped to VIATRA2 rule in List. B.13

1 gtrule Rule_Link_SC_to_SN () =

2 {

3 precondition pattern lhs(S,X,Y,CRO ,RG ,BW ,SCBW ,NK) =

4 {

5 SN(Y);

6 SC(X);

7 RS(S);

8 Network(NK);

9 find SC_Online(S,X,RG);

10 find SN_Chronos(Y,CRO);

11 find SN_Exit(Y,SNEX);

12 find SC_Exit(X,SCEX);

13 find SN_Bandwidth(Y,BW);

14 find SC_Bandwidth(X,SCBW);

15 find test_links(X);

16 check (( toInteger(value(BW))) >256);

17 check (( toInteger(value(CRO))) >100);

18 check ((value(SNEX))=="False");

19 check ((value(SCEX))=="False");

20
21 }
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22
23 action {

24 setValue(CRO ,systime ());

25 let LK=undef , CO=undef ,OU=undef ,NR=undef in seq

{

26 new (LK(LK) in Network);

27 new(Network.nodes(NR,NK,LK));

28 new(LK.linkto(CO ,LK,X));

29 new(LK.outTo(OU ,LK,Y));

30 delete(RG);

31 setValue(BW ,(( toInteger(value(BW))) -4));

32 setValue(SCBW ,(( toInteger(value(SCBW))) -4));

33 println("SC connected/Linked WIth SN");

34 }

35
36 }}

Listing B.13: Link SC to an SN based on the current bandwidth of SN and
stability

B.2.4 Promotion to Super Peer

B.2.4.1 Static Protocol for Promotion of SC to SN

The rule in Fig. 6.28 is mapped to VIATRA2 rule in List. B.14

1 gtrule Rule5_Promote_at_Registration_Super_Node () =

2 {

3 precondition pattern lhs(X,S,RG ,BW) =

4 {

5
6 SC(X);

7 RS(S);

8 find SC_firewall(X,FIRW);

9 find SC_Online(S,SC ,RG);

10 find SC_Bandwidth(X,BW);

11 check ((value(FIRW))=="False");

12 check (( toInteger(value(BW))) >= 1500);

13
14 }

15 action

16 {

17 new(instanceOf(SC,DSM.metamodel.SkypeSim.SkypeSimEditor.

SN));

18 let RG1=undef in seq{

19 new (RS.RSoverlay(RG1 ,S,X));

20 delete(instanceOf(SC,DSM.metamodel.SkypeSim.

SkypeSimEditor.SC));

21 delete(RG);
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22
23 }

24 println("Promoted to Supere Node at registration");

25
26 }

27 }

Listing B.14: SC is promoted to SN as soon as SC goes online

B.2.4.2 Dynamic Protocol for Promotion of SC to SN

The rule in Fig. 6.29 is mapped to VIATRA2 rule in List. B.15

1 gtrule Rule6_Promote_at_Linked_Super_Node () =

2 {

3 precondition pattern lhs(X,S,K,BW ,BW1) =

4 {

5
6 SC(X);

7 RS(S);

8 SN(Y);

9 LK(L);

10 //neg find check_existing(S);

11 find SC_Linked_SN(X,Y,L);

12 find SC_firewall(X,FIRW);

13 find SN_Bandwidth(y,BW1);

14 find SC_Bandwidth(X,BW);

15 check ((value(FIRW))=="False");

16 check (( toInteger(value(BW))) >= 1500);

17
18
19
20 }

21 action

22 {

23
24 new(instanceOf(SC,DSM.metamodel.SkypeSim.SkypeSimEditor.

SN));

25 let RG1=undef in seq{

26 new (RS.RSoverlay(RG1 ,S,X));

27 rename(SC ,"sn");

28 delete(instanceOf(X,DSM.metamodel.SkypeSim.SkypeSimEditor

.SC));

29 delete(L);

30 setValue(BW1 ,(( toInteger(value(BW)))+5));

31 }

32 println(" promoted at linked stage Super Node");

33
34 }
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35 }

Listing B.15: SC is promoted to SN while SC is linked with SN

B.2.4.3 Need Based Protocol for Promotion of SC to SN

The rule in Fig. 6.30 is mapped to VIATRA2 rule in List. B.16

1 gtrule Rule6_Promote_at_Need_based () =

2 {

3 precondition pattern lhs(X,S,L,BW ,BW1) =

4 {

5 SC(X);

6 RS(S);

7 SN(Y);

8 LK(L);

9 find SC_Linked_SN(X,Y,L);

10 find SC_firewall(X,FIRW);

11 find SN_Bandwidth(Y,BW1);

12 find SC_Bandwidth(X,BW);

13 check ((value(FIRW))=="False");

14 check (( toInteger(value(BW))) >= 1500);

15 check (( toInteger(value(BW1))) <= 1000);

16
17 }

18 action

19 {

20 new(instanceOf(SC,DSM.metamodel.SkypeSim.

SkypeSimEditor.SN));

21 let RG1=undef in seq{

22 new (RS.RSoverlay(RG1 ,S,X));

23 rename(SC ,"sn");

24 delete(instanceOf(X,DSM.metamodel.SkypeSim.SkypeSimEditor

.SC));

25 delete(LK);

26 setValue(BW1 ,(( toInteger(value(BW)))+5));

27 }

28 println(" promoted at need based");

29
30 }} }

Listing B.16: SSC is promoted to SN based on the need

B.2.5 Overlay Network among SNs

The rule in Fig. 6.31 is mapped to VIATRA2 rule in List. B.17

1 gtrule Rule7_connect_SN_SN () =

2 {
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3 precondition pattern lhs(Y,Y1 ,BW ,BWR ,Network) =

4 {

5 RS(S);

6 SN(Y);

7 SN(Y1);

8 Network(NK);

9 find SN_Exit(Y1 ,EX);

10 find SN_Exit(Y,EX1);

11 find SN_Bandwidth(y,BW);

12 find SN_Bandwidth(y1 ,BWR);

13 neg find SN_SN_Test(Y,Y1);

14 neg find SN_SN_Test(Y1 ,Y);

15 neg find OV_Path(y);

16 check (( toInteger(value(BW))) >256);

17 check (( toInteger(value(BWR))) >256);

18 check ((value(EX))=="False");

19 check ((value(EX1))=="False");

20 }

21 action

22 {

23 let O=undef , CO=undef ,OU=undef ,NR=undef in seq{

24 new (OV(O) in NK);

25 new(Network.nodes(NR,NK,O));

26 new(OV.source(CO ,O,Y));

27 new(OV.target(OU ,O,Y1));

28 setValue(BW ,(( toInteger(value(BW))) -5));

29 setValue(BWR ,(( toInteger(value(BWR))) -5));

30 println("Connected "+fqn(SN)+"with"+fqn(SN));

31 }

32 }}

Listing B.17: Overlay network among SNs

B.2.6 Demotion of Super Peer

The rule in Fig. 6.33 is mapped to VIATRA2 rule in List. B.18

1 gtrule Rule9_Down_to_SC () =

2 {

3 precondition pattern lhs(Y,BW ,RG ,S) =

4 {

5 RS(S);

6 SN(Y);

7 find RS_rg_SN(S,Y,RG);

8 find SN_Bandwidth(Y,BW);

9 neg find Check_Links_with_SN(Y);

10 neg find Check_OV_Links_with_SN(Y);

11 check (( toInteger(value(BW))) <256);

12 }
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13 action

14 {

15 new (instanceOf(SN ,DSM.metamodel.SkypeSim.SkypeSimEditor.

SC));

16 delete (instanceOf(SN,DSM.metamodel.SkypeSim.

SkypeSimEditor.SN));

17 delete(RG);

18 let REG=undef in new(RS.register(REG ,S,Y));

19 println("Down to Ordinary SC ");

20 }

21 }

Listing B.18: Departures/ Chrun of SC and SN

B.2.7 Departure of SN and SC

B.2.7.1 Control Departure of SC

- Control Departure Selection of SC
The rule in Fig. 6.34 is mapped to VIATRA2 rule in List. B.19

1 gtrule Rule10_Controlled_Exit_of_SC () =

2 {

3 precondition pattern lhs(X,EX) =

4 {

5 SC(X);

6 find SC_Exit(X,EX);

7 check ((value(EX))=="False");

8
9 }

10
11 action

12 {

13 setValue(EX,"True");

14
15 println("SC About to Exit from Network");

16 }

17 }

Listing B.19: SC informs that SC is leaving network

- Control Departure Preparation of SC
The rule in Fig. 6.35 is mapped to VIATRA2 rule in List. B.20

1 gtrule Rule10_Controled_Exit_Preperation_SC () =

2 {

3 precondition pattern lhs(Y,X,BW ,BWR ,L,S) =

4 {

5 // Controlled Exit of Client from Network

6
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7 SN(Y);

8 SC(X);

9 LK(L);

10 RS(S);

11 find SC_Exit(X,EX);

12 find RS_rg_SN(S,Y,RG);

13 find SN_Bandwidth(Y,BW);

14 find SC_Bandwidth(X,BWR);

15 find Check_SC_SN_Link(X,Y,LK);

16 check ((value(EX))=="True");

17
18 }

19 action

20 {

21
22 let RG=undef in new (RS.register(RG,S,X));

23 delete(L);

24 setValue(BW ,(( toInteger(value(BW)))+5));

25 setValue(BWR ,(( toInteger(value(BWR)))+5));

26 println("SC disconnected from SN due to SC Exit");

27 }

28 }

Listing B.20: SC inform SN and break their common link

- Control Final Departure SC
The rule in Fig. 6.36 is mapped to VIATRA2 rule in List. B.21

1
2 gtrule Rule10_Controled_Final_Exit_SC () =

3 {

4 precondition pattern lhs(X,EX ,RL) =

5 {

6 SC(SC);

7 RL(RL);// Registerd client list or offline client

list

8 find SC_Exit(X,EX);

9 neg find Check_SC_Source(SC);

10 check ((value(EX))=="True");

11
12
13 }

14
15
16 action

17 {

18 let KK=undef in seq{

19 new(RL.ofline(KK,RL,X));

20 move(SC,RL);

21 new(instanceOf(SC,DSM.metamodel.SkypeSim.SkypeSimEditor.ND));
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22 println("SC goes offline");

23 }

24 } }

Listing B.21: SC goes offline in a network

Uncontrol Departure of SC
The rule in Fig. 6.37 is mapped to VIATRA2 rule in List. B.22

1 gtrule Rule11_UnControled__Exit_SC () =

2 {

3 precondition pattern lhs(X,RL) =

4 {

5 SC(X);

6 RL(RL);

7 }

8
9 action

10 {

11 delete(X);// to be disscuessed with reiko

12 let N=undef ,KK=undef in seq {

13 new (ND(N) in RL);// create client inside the

network

14 new(RL.ofline(KK ,RL,ND));

15 }

16 println("SC goes offline from Network ");

17 }

18 }

Listing B.22: SC goes offline without informing SN

B.2.7.2 Control Departure of SN

Control Departure Selection of SN
The rule in Fig. 6.38 is mapped to VIATRA2 rule in List. B.23

1 gtrule Rule12_Controled_Exit_SN_Selected () =

2 {

3 precondition pattern lhs(Y,EX) =

4 {

5
6 SN(Y);

7 find SN_Exit(Y,EX);

8 check ((value(EX))=="False");

9 }

10
11
12 action

13 {

14 setValue(EX,"True");
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15 println("SN selected for controlled Exit");

16 }

17 }

Listing B.23: SN is leaving the network soon

Control Departure Preparation of SN through De-linking SCs
The rule in Fig. 6.39 is mapped to VIATRA2 rule in List. B.24

1 gtrule Rule_Control_Deparure_Preperation_SN_De_linking_SCs () =

2 {

3 precondition pattern lhs(Y,X,BW ,BWR ,L,S) =

4 {

5
6 SN(Y);

7 SC(X);

8 LK(L);

9 RS(S);

10 find SN_Exit(Y,EX);

11 find RS_rg_SN(S,Y,RG);

12 find SN_Bandwidth(Y,BW);

13 find SC_Bandwidth(X,BWR);

14 find Check_SC_SN_Link(X,Y,LK);

15 check ((value(EX))=="True");

16
17 }

18 action

19 {

20
21 let RG=undef in new (RS.register(RG,RS,SC));

22 delete(L);

23 setValue(BW ,(( toInteger(value(BW)))+4));

24 setValue(BWR ,(( toInteger(value(BWR)))+4));

25 println("SC disconnected from SN due to SN Controlled Exit");

26 }

27 }

Listing B.24: SN Links between SC and SN is removed

Control Departure Preparation of SN through De-linking SNs
The rule in Fig. 6.40 is mapped to VIATRA2 rule in List. B.25

1 gtrule Rule_Control_Deparure_Preperation_SN_De_linking_SNs_Source

() =

2 {

3
4 precondition pattern lhs(Y,BW ,BWR ,O,EX) =

5 {

6 SN(Y);

7 SN(Y1);

8 OV(O);
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9 find SN_Exit(Y,EX);

10 find SN_Bandwidth(Y,BW);

11 find SN_Bandwidth(Y1 ,BWR);

12 find Check_OV(Y,Y1 ,OV);

13 check ((value(EX))=="True");

14
15 }

16 action

17 {

18 delete(O);

19 setValue(BWR ,(( toInteger(value(BWR)))+4));

20 setValue(BW ,(( toInteger(value(BW)))+4));

21 println("Edge between SN and SN1 removed Due to Controlled Exit

of SN ");

22 }

23 }

Listing B.25: SN informs other SNs in the overlay network and retract connections

Control Final Departure SN
The rule in Fig. 6.41 is mapped to VIATRA2 rule in List. B.27

1 gtrule Control_Final_Departure_of_SN () =

2 {

3 precondition pattern lhs(SN ,RL) =

4 {

5
6 RL(RL);

7 SN(Y);

8 find SN_Exit(Y,EX);

9 neg find Check_OV_Links(Y);

10 neg find Check_LK_Links(Y);

11 check ((value(EX))=="True");

12
13 }

14 action

15 {

16
17
18 new (instanceOf(SN,DSM.metamodel.SkypeSim.SkypeSimEditor.ND));

19 delete (instanceOf(SN,DSM.metamodel.SkypeSim.SkypeSimEditor.SN)

);

20 let KK=undef in seq{

21 new(RL.ofline(KK,RL,Y));

22 move(Y,RL);

23 }

24
25 println("SN Departed from Network Through Proper exit");

26 } }

Listing B.26: SN finally go offline
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Uncontrol Departure of SN
The rule in Fig. 6.42 is mapped to VIATRA2 rule in List. B.27

1 gtrule Rule13_departure_of_SN_Uncontrolled () =

2 {

3 precondition pattern lhs(Y) =

4 {

5
6 SN(Y);

7 RL(RL);

8
9 }

10
11 action

12 {

13 delete(Y);

14 let N=undef ,KK=undef in seq {

15 new (ND(N1) in RL);

16 new(RL.ofline(KK ,RL,N));

17 }

18 println("SN Departed from Network due to Uncontrolled behaviour"

);

19 }

20 }

Listing B.27: SN leave the network without informing either SN or SC

B.2.8 VoIP Calls

B.2.8.1 Call Request Initiated and Placement

Call Request by SC behind Firewall/NAT
The rule in Fig. 6.43 is mapped to VIATRA2 rule in List. B.28

1 gtrule Requiest_call_SC_to_SC_behind_firewall () =

2 {

3 precondition pattern lhs(NK ,X) =

4 {

5 SC(X);

6 Network(NK);

7 neg find check_for_call(X);

8 neg find existing_req(X);

9 find SC_firewall(X,FIRW);

10 LK(L);

11 find SC_Source(L,X);

12 check ((value(FIRW))=="True");

13
14 }

15

285



16 action {

17 let PK=undef , PKS=undef in seq{

18 new (CallReq(PK) in Network);

19 new (CallReq.initiate(PKS ,PK,X));

20 println("Call Request Generated");

21
22 }

23 }

24
25 }

Listing B.28: SC behind firewall initiate request for VoIP call

Call Request by SC having Static IP
The rule in Fig. 6.44 is mapped to VIATRA2 rule in List. B.29

1 gtrule Requiest_call_SC_with_live_IP () =

2 {

3 precondition pattern lhs(NK ,X) =

4 {

5 SC(X);

6 Network(NK);

7 neg find check_for_call(X);

8 neg find existing_req(X);

9 find SC_firewall(X,FIRW);

10 LK(L);

11 find SC_Source(L,X);

12 check ((value(FIRW))=="False");

13
14 }

15
16 action {

17 let PK=undef , PKS=undef in seq{

18 new (CallReq(PK) in NK);

19 new (CallReq.initiate(PKS ,PK,X));

20 println("Call Request Generated");

21
22 }

23 }

24
25 }

Listing B.29: SC with live internet connection initiate request for VoIP call

- SN initiate P2P VoIP call
The rule in Fig. 6.51 is mapped to VIATRA2 rule in List. B.30

1 gtrule Requiest_call_SN () =

2 {

3 precondition pattern lhs(NK ,Y) =

4 {
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5 SN(Y);

6 Network(NK);

7 neg find check_for_call_SN(Y);

8 neg find existing_req_SN(Y);

9 }

10
11 action {

12 let PK=undef , PKS=undef in seq{

13 new (CallReq(PK) in NK);

14 new (CallReq.initiate(PKS ,PK,Y));

15
16 println("Call Request Generated by SN");

17
18 }

19 }

20
21 }

Listing B.30: SN initiate P2P VoIP call

B.2.8.2 Call Placement

P2P Call between SCs routed through Multiple SNs
The rule in Fig. 6.46 is mapped to VIATRA2 rule in List. B.31

1 gtrule P2P_Call_with_firewaal_enabled_Place_call_and_Route () =

2 {

3 precondition pattern lhs(X,X1 ,Y,Y1 ,SCBW ,SCBW1 ,SNBW ,

SNBW1 ,L,L1 ,NK ,Q) =

4 {

5 SN(Y);

6 SN(Y1);

7 SC(X);

8 SC(X1);

9 LK(L);

10 LK(L1);

11 Network(NK);

12 find LK_LinkTo(L,X);

13 find LK_OutTo(L,Y);

14 find LK_LinkTo(L1 ,X1);

15 find LK_OutTo(1,Y1);

16 find SC_Bandwidth(X,SCBW);

17 find SC_Bandwidth(X1 ,SCBW1);

18 find SN_Bandwidth(Y,SNBW);

19 find SN_Bandwidth(Y1 ,SNBW1);

20 find SC_firewall(X,FIRW);

21 find SC_firewall(X1 ,FIRW1);

22 neg find check_for_existing_call(X);

23 neg find check_for_existing_call(X1);
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24 CallReq(CallReq);

25 find check_requiest_for_call(X,Q);

26 neg find existing_req(X1);

27 check ((value(FIRW))=="True");

28 check ((value(FIRW))=="True");

29 }

30
31 action {

32 let PK=undef , PKS=undef ,PKR=undef ,SNR=undef ,SNRR=

undef in seq{

33 new (RouteCall(PK) in NK);

34 new (RouteCall.caller(PKS ,PK,X));

35 new (RouteCall.callee(PKR ,PK,X1));

36 new (RouteCall.route(SNR ,PK,Y));

37 new (RouteCall.route(SNRR ,PK,Y1));

38 setValue(SCBW ,(( toInteger(value(SCBW))) -80));

39 setValue(SCBW1 ,(( toInteger(value(SCBW1))) -80));

40 setValue(SNBW ,(( toInteger(value(SNBW))) -80));

41 setValue(SNBW1 ,(( toInteger(value(SNBW1))) -80));

42 println("Call Generated between SC and SC1

through SN");

43 delete(CallReq);

44 }

45 }

46
47 }

Listing B.31: Caller and Callee both are behind firewall

P2P Call between SCs routed through Single SN
The rule in Fig. 6.47 is mapped to VIATRA2 rule in List. B.32

1 gtrule Place_call_and_Route_Local () =

2 {

3 precondition pattern lhs(X,X1 ,Y,SCBW ,SCBW1 ,SNBW ,LK ,

LK1 ,NK,Q) =

4 {

5 SN(Y);

6 SC(X);

7 SC(X1);

8 LK(L);

9 LK(L1);

10 Network(NK);

11 find LK_LinkTo(L,X);

12 find LK_OutTo(L,Y);

13 find LK_LinkTo(L1 ,X1);

14 find LK_OutTo(L1 ,Y);

15 find SC_Bandwidth(X,SCBW);

16 find SC_Bandwidth(X1 ,SCBW1);

17 find SN_Bandwidth(Y,SNBW);
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18 check (( toInteger(value(SCBW))) <256);

19 check (( toInteger(value(SCBW1))) <256);

20 neg find check_for_existing_call(X);

21 neg find check_for_existing_call(X1);

22 CallReq(Q);

23 find check_requiest_for_call(X,Q);

24 neg find existing_req(X1);

25 }

26
27 action {

28 let PK=undef , PKS=undef ,PKR=undef ,SNR=undef in

seq{

29 new (RouteCall(PK) in NK);

30 new (RouteCall.caller(PKS ,PK,X));

31 new (RouteCall.callee(PKR ,PK,X1));

32 new (RouteCall.route(SNR ,PK,Y));

33 setValue(SCBW ,(( toInteger(value(SCBW))) -80));

34 setValue(SCBW1 ,(( toInteger(value(SCBW1))) -80));

35 setValue(SNBW ,(( toInteger(value(SNBW))) -80));

36 println("Call Generated between SC and SC1 through SN

L o c a l l â );

37 delete(Q);

38
39 }

40
41
42 }

43
44 }

Listing B.32: Caller and Callee both are behind firewall

P2P Direct Call between SCs
The rule in Fig. 6.49 is mapped to VIATRA2 rule in List. 6.49

1 gtrule Place_call_SC_to_SC () =

2 {

3 precondition pattern lhs(L,L1 ,X1 ,X,SCBW ,SCBW1 ,NK ,Q) =

4 {

5 SC(X);

6 SC(X1);

7 LK(L);

8 LK(L1);

9 find SC_Source(L,X);

10 find SC_Source(L1 ,X1);

11 CallReq(Q);

12 find SC_firewall(X,FIRW);

13 find SC_firewall(X,FIRW1);

14 find check_requiest_for_call(X,Q);

15 neg find existing_req(X1);
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16 Network(NK);

17 find SC_Bandwidth(X,SCBW);

18 find SC_Bandwidth(X1 ,SCBW1);

19 neg find check_for_call(X);

20 neg find check_for_call(X1);

21 check ((value(FIRW))=="False");

22 check ((value(FIRW1))=="False");

23
24
25 }

26
27 action {

28 let PK=undef , PKS=undef ,PKR=undef in seq{

29 new (Call(PK) in NK);

30 new (Call.caller(PKS ,PK,X));

31 new (Call.callee(PKR ,PK,X1));

32 setValue(SCBW ,(( toInteger(value(SCBW))) -80));

33 setValue(SCBW1 ,(( toInteger(value(SCBW1))) -80));

34 delete (CallReq);

35 println("Call Generated between SC and SC1 ANd both are having

live IP");

36
37 }

38 }

39 }

Listing B.33: SC to SC direct P2P VoIP call

P2P Direct Call between SC and SN
The rule in Fig. 6.50 is mapped to VIATRA2 rule in List. B.34

1 gtrule Place_call_SC_to_SN () =

2 {

3 precondition pattern lhs(L,Y,X,SCBW ,SNBW1 ,NK ,Q) =

4 {

5 SC(X);

6 SN(Y);

7 LK(L);

8 CallReq(Q);

9 find SC_Source(L,X);

10 Network(N);

11 find SC_Bandwidth(X,SCBW);

12 find SN_Bandwidth(Y,SNBW1);

13 find SC_firewall(X,FIRW);

14 neg find check_for_call(X);

15 neg find check_for_call_SN(Y);

16 check (( toInteger(value(SCBW))) >256);

17 check (( toInteger(value(SNBW1))) >256);

18 find check_requiest_for_call(X,Q);

19 neg find existing_req_SN(Y);
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20 check ((value(FIRW))=="False");

21
22 }

23
24 action {

25 let PK=undef , PKS=undef ,PKR=undef in seq{

26 new (Call(PK) in NK);

27 new (Call.caller(PKS ,PK,Y));

28 new (Call.callee(PKR ,PK,X));

29 setValue(SCBW ,(( toInteger(value(SCBW))) -80));

30 setValue(SNBW1 ,(( toInteger(value(SNBW1))) -80));

31 println("Call Generated between SN and SC1");

32 delete(Q);

33
34 }

35 }

36 }

Listing B.34: SC to SN direct P2P VoIP call

- P2P Direct Call between SN and SN
The rule in Fig. 6.51 is mapped to VIATRA2 rule in List. B.35

1 gtrule Place_call_SN_to_SN () =

2 {

3 precondition pattern lhs(Y,Y1 ,SNBW ,SNBW1 ,NK ,Q) =

4 {

5 SN(Y);

6 SN(Y1);

7 Network(NK);

8 CallReq(Q);

9 find check_requiest_for_call_SN(Y,Q);

10 neg find existing_req_SN(Y1);

11 find SN_Bandwidth(Y,SNBW);

12 find SN_Bandwidth(Y1 ,SNBW1);

13 neg find check_for_call_SN(Y);

14 neg find check_for_call_SN(Y1);

15 check (( toInteger(value(SNBW))) >256);

16 check (( toInteger(value(SNBW1))) >256);

17
18
19 }

20
21 action {

22 let PK=undef , PKS=undef ,PKR=undef in seq{

23 new (Call(PK) in NK);

24 new (Call.caller(PKS ,PK,Y));

25 new (Call.callee(PKR ,PK,Y1));

26 setValue(SNBW ,(( toInteger(value(SNBW))) -80));

27 setValue(SNBW1 ,(( toInteger(value(SNBW1))) -80));
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28 println("Call Generated between SN and SN");

29 delete(Q);

30
31 }

32 }

33
34 }

Listing B.35: SN to SN P2P VoIP call

B.2.8.3 VoIP Call Terminations

- P2P Direct VoIP call Termination Between SCs
The rule in Fig. 6.52 is mapped to VIATRA2 rule in List. B.36

1 gtrule Terminate_SC_to_SC () =

2 {

3 precondition pattern lhs(C,X1 ,X,SNBW ,SNBW1 ,NK) =

4 {

5 SC(X);

6 SC(X1);

7 Call(C);

8 Network(NK);

9 find SC_Bandwidth(X,SNBW);

10 find SC_Bandwidth(X1 ,SNBW1);

11 find call_check_1C(X,X1 ,Call);

12 }

13
14 action {

15 delete(C);

16 setValue(SNBW ,(( toInteger(value(SNBW)))+80));

17 setValue(SNBW1 ,(( toInteger(value(SNBW1)))+80));

18 println("Call terminated between SC and SC");

19
20 }

21
22 }

Listing B.36: Terminate SC to SC P2P direct VoIP call

- P2P Direct VoIP call Termination Between SC and SN
The rule in Fig. 6.53 is mapped to VIATRA2 rule in List. B.37

1 gtrule Terminate_SC_to_SN () =

2 {

3 precondition pattern lhs(C,Y,X,SNBW ,SNBW1 ,NK) =

4 {

5 SN(Y);

6 SC(X);

7 Network(NK);
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8 find SN_Bandwidth(Y,SNBW);

9 find SC_Bandwidth(X,SNBW1);

10 find call_check_SC(Y,X,Call);

11 }

12
13 action {

14 delete(C);

15 setValue(SNBW ,(( toInteger(value(SNBW)))+80));

16 setValue(SNBW1 ,(( toInteger(value(SNBW1)))+80));

17 println("Call terminated between SC and

SN");

18
19 }

20
21 }

Listing B.37: Terminate SC to SN P2P direct VoIP call

- P2P Direct VoIP call Termination between SNs
The rule in Fig. 6.55 is mapped to VIATRA2 rule in List. B.38

1 gtrule Terminate_SN_to_SN () =

2 {

3 precondition pattern lhs(C,Y,Y1 ,SNBW ,SNBW1 ,NK) =

4 {

5 SN(Y);

6 SN(Y1);

7 Network(NK;

8 find SN_Bandwidth(Y,SNBW);

9 find SN_Bandwidth(Y1 ,SNBW1);

10 find call_check(Y,Y1 ,C);

11 }

12
13 action {

14 delete(C);

15 setValue(SNBW ,(( toInteger(value(SNBW)))+80));

16 setValue(SNBW1 ,(( toInteger(value(SNBW1)))+80));

17 println("Call terminated between SN and SN"

);

18
19 }

20
21 }

Listing B.38: Terminate SN to SN P2P direct VoIP call

- P2P Routed VoIP Call Termination Established through Single
SN

The rule in Fig. 6.56 is mapped to VIATRA2 rule in List. B.39

1 gtrule Terminate_routed_Call_SC_SN_SC () =
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2 {

3 precondition pattern lhs(X,X1 ,Y,SCBW ,SCBW1 ,SNBW ,R) =

4 {

5 SN(Y);

6 SC(X);

7 SC(X1);

8 RouteCall(R);

9 find Find_routed_call_SC_SN_SC(X,X1 ,Y,R);

10 find SC_Bandwidth(X,SCBW);

11 find SC_Bandwidth(X1 ,SCBW1);

12 find SN_Bandwidth(Y,SNBW);

13 }

14 action {

15 delete (R);

16 setValue(SCBW ,(( toInteger(value(SCBW)))+80));

17 setValue(SCBW1 ,(( toInteger(value(SCBW1)))+80));

18 setValue(SNBW ,(( toInteger(value(SNBW)))+80))

19
20 println("Routed call terminated Between SC to SN

and SC");

21
22 }

23
24 }

Listing B.39: Terminate SC to SC single SN routed VoIP call

- P2P Routed VoIP Call Termination Established through Multiple
SNs

The rule in Fig. 6.57 is mapped to VIATRA2 rule in List. B.40

1 gtrule Terminate_routed_Call_SC_SN_SN_SC () =

2 {

3 precondition pattern lhs(X,X1 ,Y,Y1 ,SCBW ,SCBW1 ,SNBW ,

SNBW1 ,R) =

4 {

5 SN(Y);

6 SN(Y1);

7 SC(X);

8 SC(X1);

9 RouteCall(R);

10 find Find_routed_call(X,X1 ,Y,Y1 ,R);

11 find SC_Bandwidth(X,SCBW);

12 find SC_Bandwidth(X1 ,SCBW1);

13 find SN_Bandwidth(Y,SNBW);

14 find SN_Bandwidth(Y1 ,SNBW1);

15
16 }

17
18 action {
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19 delete (R);

20 setValue(SCBW ,(( toInteger(value(SCBW)))+80));

21 setValue(SCBW1 ,(( toInteger(value(SCBW1)))+80));

22 setValue(SNBW ,(( toInteger(value(SNBW)))+80));

23 setValue(SNBW1 ,(( toInteger(value(SNBW1)))+80));

24 println("Routed call terminated Between SC to SN SN

and SC");

25
26 }

27
28
29 }

Listing B.40: Terminate SC to SC Multiple SNs routed VoIP call

B.2.9 Background Traffic Generation

SN Transmitting and Receiving other Traffic The rule in Fig. 6.66 is
mapped to VIATRA2 rule in List. B.41

1 gtrule Random_SN_Traffic () =

2 {

3 precondition pattern lhs(Y,BW) =

4 {

5
6 SN(Y);

7 find SN_Exit(Y,EX);

8 find SN_Bandwidth(Y,BW);

9 check (( toInteger(value(BW))) >= 256);

10 check ((value(EX))=="False");

11 }

12
13 action {

14 setValue(BW,skypesim.random (256 ,2000));

15 println("Background Traffic Created/removed");

16
17 }

18 }

Listing B.41: Random Other Traffic at SN

- SC Transmitting and Receiving other Traffic (behind firewall
The rule in Fig. 6.67 is mapped to VIATRA2 rule in List. B.42

1 gtrule Random_SC_Traffic () =

2 {

3 precondition pattern lhs(L,X,BW) =

4 {

5
6 LK(L);
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7 SC(X);

8 find Link_SC_LK(X,L);

9 find SC_firewall(X,FIRW);

10 find SC_Bandwidth(X,BW);

11 check (( toInteger(value(BW))) >= 256);

12 check ((value(FIRW))=="True");

13
14 }

15
16 action {

17 setValue(BW,skypesim.random (256 ,1000));

18 println("Background Traffic Created/removed");

19 }

20 }

Listing B.42: Random other traffic at SC

- SC Transmitting and Receiving other Traffic
The rule in Fig. 6.68 is mapped to VIATRA2 rule in List. B.43

1 gtrule Random_SC_Traffic () =

2 {

3 precondition pattern lhs(L,X,BW) =

4 {

5
6 LK(L);

7 SC(X);

8 find Link_SC_LK(X,L);

9 find SC_firewall(X,FIRW);

10 find SC_Bandwidth(X,BW);

11 check (( toInteger(value(BW))) >= 256);

12 check ((value(FIRW))=="False");

13 }

14
15 action {

16 setValue(BW,skypesim.random (256 ,2000));

17 println("Background Traffic Created/removed");

18 }

19 }

Listing B.43: Random Other Traffic at SC

- SN Transmitting and Receiving Uniform other Traffic
The rule in Fig. 6.69 and Fig. 6.70 is mapped to VIATRA2 rule in List. B.44

and List. B.45.

1 gtrule Rule16_Increment_SN_Bandwidth () =

2 {

3 precondition pattern lhs(Y,BW) =

4 {

5 SN(Y);
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6 find SN_Bandwidth(Y,BW);

7 check (( toInteger(value(BW))) >256);

8 }

9
10 action {

11 setValue(BW ,(( toInteger(value(BW)))+80));

12 println("Bandwidth Increased ");

13 }

14
15 }

Listing B.44: uniform reduce bandwidth

1 gtrule Rule16_Decrement_SN_Bandwidth () =

2 {

3 precondition pattern lhs(Y,BW) =

4 {

5 SN(Y);

6 find SN_Bandwidth(Y,BW);

7 check (( toInteger(value(BW))) >256);

8 }

9
10 action {

11
12 setValue(BW ,(( toInteger(value(BW))) -80));

13
14 println("Bandwidth reduced due to traffic load");

15 }

16
17 }

Listing B.45: Uniform increase bandwidth

- SC Transmitting and Receiving Uniform other Traffic
The rule in Fig. 6.71 and Fig. 6.72 is mapped to VIATRA2 rules in List. B.46

and List. B.47.

1 gtrule Rule16_Decrement_SC_Bandwidth () =

2 {

3 precondition pattern lhs(X,BW) =

4 {

5 SC(X);

6 find SC_Bandwidth(X,BW);

7 check (( toInteger(value(BW))) >256);

8
9 }

10
11 action {

12
13 setValue(BW ,(( toInteger(value(BW))) -80));
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14 println("Bandwidth reduced due to traffic laod");

15 }

16 }

Listing B.46: Uniform reduce bandwidth

1
2 gtrule Rule16_increment_SC_Bandwidth () =

3 {

4 precondition pattern lhs(X,BW) =

5 {

6 SC(X);

7 find SC_Bandwidth(X,BW);

8 check (( toInteger(value(BW))) >256);

9
10 }

11
12 action {

13
14 setValue(BW ,(( toInteger(value(BW)))+80));

15
16 println("Bandwidth reduced due to traffic laod");

17 }

18 }

Listing B.47: Uniform increase bandwidth

B.2.10 Reconfiguration Rules

To Link to a New SN when Existing SN leaves Network
- Reconfigure and link to a New Random SN based on bandwidth
The rule in Fig. 6.59 is mapped to VIATRA2 rule in List. B.49.

1 gtrule Rule4_Reconfigure_Link_SC_to_link_back_SN () =

2 {

3 precondition pattern lhs(L,Y,X,BW) =

4 {

5
6 LK(L);

7 SN(Y);

8 SC(X);

9 find SN_Exit(Y,EX);

10 find SN_Bandwidth(Y,BW);

11 find Link_SC_LK(X,LK);

12 neg find Link_SN_LK(Y,LK);

13 neg find Test_SN_LK(LK);

14 check (( toInteger(value(BW))) >256);

15 check ((value(EX))=="False");

16 }
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17
18 action {

19 let OU=undef in seq{

20 new(LK.outTo(OU,LK,Y));

21 setValue(BW ,(( toInteger(value(BW))) -5));

22 }

23 println("Re -linked Back to New Super Node");

24
25 }

26 }

Listing B.48: Reconfigure and link SC to a new SN

- Reconfigure and link to a New Random SN based on Bandwidth
and Latency

The rule in Fig. 6.60 is mapped to VIATRA2 rule in List. B.49.

1 gtrule Rule4_Reconfigure_Link_SC_to_link_back_SN_latency () =

2 {

3 precondition pattern lhs(S,L,Y,X,BW ,CRO) =

4 {

5
6 LK(L);

7 SN(Y);

8 SC(X);

9 RS(S);

10 find SN_Exit(Y,EX);

11 find SN_Bandwidth(Y,BW);

12 find SC_Chronos(X,CRO);

13 find Link_SC_LK(X,LK);

14 neg find Packet_SE_check(X);

15 neg find Packet_RE_check(X);

16 neg find Link_SN_LK(Y,L);

17 neg find Test_SN_LK(L);

18 check (( toInteger(value(BW))) >256);

19 check ((value(EX))=="False");

20 }

21
22 action {

23 delete(L);

24 let RG=undef in new (RS.online(RG,S,X));

25 let P=undef ,

26 PC=undef ,

27 CRR=undef ,

28 PCO=undef ,

29 PCR=undef ,

30 SE=undef ,

31 RE=undef ,

32 AH=undef

33 in seq {
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34 new(Packet(P)in Y);

35 // Create Packet in SC

36 new(Packet.Chronos(PC)in P); // Create

a chronos attribute in Packet

37 new(Packet.chronos(CRR ,P,PC));

38 // Create a relation between packet and Chronos entity

39 new(Packet.Content(PCO)in P);

40 // Create a content attribute in Packet

41 new(Packet.content(PCR ,P,PCO));

42 // Create a relation between packet and content entity

43 new(Packet.sender(SE,P,X));

44 // Create a relation

45 new(Packet.receiver(RE,P,Y));

46 // Create a relation

47 new(Packet.at(AH,Pt,Y));

48 // Create a relation

49 setValue(CRO ,systime ());

50 setValue(PC,value(CRO));

51 setValue(PCO ,"Ping");

52 println("Ping Packet Created and Transmitted ");

53
54 }

55 } }

Listing B.49: Reconfigure and send a time stamped packet to a new SN

- Reconfigure and Link to a New SN based on Bandwidth and Lo-
cality

The rule in Fig. 6.61 is mapped to VIATRA2 rule in List. B.50.

1 gtrule Rule4_Reconfigure_Link_SC_to_link_back_a_SN_based () =

2 {

3 precondition pattern lhs(L,Y,X,BW) =

4 {

5
6 LK(L);

7 SN(Y);

8 SC(X);

9 find SN_Exit(Y,EX);

10 find SN_Bandwidth(Y,BW);

11 find Link_SC_LK(X,LK);

12 neg find Link_SN_LK(Y,LK);

13 neg find Test_SN_LK(L);

14 check (( toInteger(value(BW))) >256);

15 check ((value(EX))=="False");

16
17 //this part is for region based

18 find SC_Location(X,LOC);

19 find SN_Location(Y,LON);

20 check (( toInteger(value(LOC)))== (toInteger(value(
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LON))));

21 }

22
23 action {

24 let OU=undef in seq{

25 new(LK.outTo(OU,LK,Y));

26 setValue(BW ,(( toInteger(value(BW))) -5));

27 }

28 println("Re -linked Back to New Super Node");

29
30 }

31 }

Listing B.50: Reconfigure and re-link to a new SN based on bandwidth and region

- Reconfigure and link to a New SN based on bandwidth and time
spent in the network

The rule in Fig. 6.62 is mapped to VIATRA2 rule in List. B.52.

1 gtrule Rule4_Reconfigure_Link_SC_to_link_back_SN () =

2 {

3 precondition pattern lhs(L,Y,X,BW) =

4 {

5 LK(L);

6 SN(Y);

7 SC(X);

8 find SN_Exit(Y,EX);

9 find SN_Bandwidth(Y,BW);

10 find SN_Chronos(Y,CRO);

11 find Link_SC_LK(X,LK);

12 neg find Link_SN_LK(Y,LK);

13 neg find Test_SN_LK(L);

14 check (( toInteger(value(BW))) >256);

15 check (( toInteger(value(CRO))) >100);

16 check ((value(EX))=="False");

17 }

18
19 action {

20 let OU=undef in seq{

21 new(LK.outTo(OU,LK,Y));

22 setValue(BW ,(( toInteger(value(BW))) -5));

23 }

24 println("Re -linked Back to New Super Node");

25
26 }

27 }

Listing B.51: Reconfigure and re-link to a new SN based on bandwidth and time
spent in network

301



- Reconfigure and Recover Bandwidth due to Crashing of SN as Target
in Overlay

The rule in Fig. 6.63 is mapped to VIATRA2 rule in List. B.52.

1 gtrule Rule14_Recovery_SN_Target_SN1 () =

2 {

3 precondition pattern lhs(BW ,Y,O) =

4 {

5
6 OV(O);

7 SN(Y);

8 find SN_Bandwidth(Y,BW);

9 find OV_Target(O,Y);

10 neg find OV_Test_Source(O);

11
12 }

13
14 action {

15 delete(O);

16 setValue(BW ,(( toInteger(value(BW)))+5));

17
18 println("Bandwidthe Recovered as Target SN Departed

");

19
20 }

21 }

Listing B.52: Reconfigure and remove overlay source edge

- Reconfigure and recover bandwidth due to crashing of SN as Source
in Overlay

The rule in Fig. 6.64 is mapped to VIATRA2 rule in List. B.53.

1 gtrule Rule14_Recovery_SN_Source_SN1 () =

2 {

3 precondition pattern lhs(BW ,Y,O) =

4 {

5
6 OV(O);

7 SN(SN);

8 find SN_Bandwidth(Y,BW);

9 find OV_Source(O,Y);

10 neg find OV_Test_Target(O);

11
12 }

13
14 action {

15 delete(O);

16 setValue(BW ,(( toInteger(value(BW)))+5));

17
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18 println("Bandwidthe Recovered as Target SN Departed

");

19
20 }

21 }

Listing B.53: Reconfigure and remove overlay source edge

- Reconfigure and Recover Bandwidth due to Crashing of SC
The rule in Fig. 6.65 is mapped to VIATRA2 rule in List. B.54.

1 gtrule Rule14_Recovery_SN_OutTO_SC () =

2 {

3 precondition pattern lhs(BW ,Y,L) =

4 {

5
6 LK(L);

7 SN(Y);

8 find SN_Bandwidth(Y,BW);

9 find LK_OutTo(L,Y);

10 neg find LK_test_LinkTo(L);

11
12 }

13
14 action {

15 delete(L);

16 setValue(BW ,(( toInteger(value(BW)))+5));

17 println("Bandwidthe Recovered as Linked SN

Departed from Network");

18
19 }

20 }

21 \end{lstlisting }

22
23 \subsection{Load Balancing by Reconfiguring}

24 The rule at Fig .~\ref{LoadBalancing} is mapped to VIATRA2 rule at

List .~\ ref{VTrule53 }.

25 \begin{lstlisting }[label=VTrule53 , caption=Reconfigure and

transfer from overloaded]

26 gtrule Load_Balancing_by_reconfigeration () =

27 {

28 precondition pattern lhs(Y1 ,L,Y,X,BW ,LKR ,BW1) =

29 {

30
31 LK(L);

32 SN(Y);

33 SC(X);

34 SN(Y1);

35 find SN_Exit(Y,EX);

36 find SN_Exit(Y1 ,EX1);
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37 find SN_Bandwidth(Y,BW);

38 find SN_Bandwidth(Y1 ,BW1);

39 find Link_SC_LK(X,LK);

40 find Existing_Link(Y,L,LKR);

41 check (( toInteger(value(BW))) <800);

42 check (( toInteger(value(BW))) >1500);

43 check ((value(EX))=="False");

44 check ((value(EX1))=="False");

45
46 }

47
48 action {

49
50 delete(LKR);

51 let OU=undef in seq{

52 new(LK.outTo(OU,LK,Y1));

53 setValue(BW1 ,(( toInteger(value(BW))) -5));

54 setValue(BW ,(( toInteger(value(BW)))+5));

55 }

56 println("Move SC from overloaded to under loaded");

57
58 }

59 }

Listing B.54: Reconfigure and remove linking edge with SC

B.2.11 Rule for Collection of Statistics during Simulation

- Number of SCs
The rule in Fig. 6.73 is mapped to VIATRA2 rule in List. B.55.

1 gtrule scCount () =

2 {

3 precondition pattern lhs(X) = { SC(X); }

4 action {println("found node: "+fqn(X));}

5 }

Listing B.55: Probe rule to count the number of SCs

-Number of SNs
The rule in Fig. 6.74 is mapped to VIATRA2 rule in List. B.56.

1 gtrule snCount () =

2 {

3 precondition pattern lhs(X) = { SN(X); }

4 action {println("found node: "+fqn(X));}

5 }

Listing B.56: Probe rule to count number of SNs
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- Number of SCs linked with SN
The rule in Fig. 6.75 is mapped to VIATRA2 rule in List. B.57.

1 gtrule Rule19_SC_connected_SN () =

2 {

3 precondition pattern lhs(X,L,Y) =

4 {

5 SN(Y);

6 SC(X);

7 LK(L);

8 find LK_LinkTo(L,X);

9 find LK_OutTo(L,Y);

10
11 }

12
13 action {

14 println("SC connected with SN");

15 }

16 }

Listing B.57: Probe rule to count the number of linked SCs

- Number of SCs Happy with current SN
The rule in Fig. 6.76 is mapped to VIATRA2 rule in List. B.58.

1 gtrule Rule17_SC_Happy_with_SN_Bandwidth () =

2 {

3 precondition pattern lhs(X,L,Y,BW) =

4 {

5 SN(Y);

6 SC(X);

7 LK(L);

8 find LK_LinkTo(L,X);

9 find LK_OutTo(L,Y);

10 find SN_Bandwidth(Y,BW);

11 check (( toInteger(value(BW))) >1000);

12 }

13
14 action {

15 println("SC is happy with existing SN");

16 }

17
18 }

Listing B.58: Probe rule to count the number of happy SCs

- Number of SCs re-linked with new SN
The rule in Fig. 6.77 is mapped to VIATRA2 rule in List. B.59.

1 gtrule Rule20_Reconfigure_Link_SC () =

2 {
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3 precondition pattern lhs(L,X) =

4 {

5
6 LK(L);

7 SC(X);

8 find Link_SC_LK(X,L);

9 neg find Test_SN_LK(L);

10
11 }

12
13 action {

14
15 println("Re -linked Back to New Super Node");

16
17 }

18 }

Listing B.59: Probe rule to count the number reconfigured SCs

-Number of P2P Direct Calls SCs
The rule in Fig. 6.78 is mapped to VIATRA2 rule in List. B.60.

1 gtrule Prob_Rule_call_placed () =

2 {

3 precondition pattern lhs(C) =

4 {

5 Call(C);

6 find caller_checka(C);

7 find callee_checka(C);

8 }

9 action

10 {

11 println("Call placed");

12 }

Listing B.60: Probe rule to count the number P2P direct calls

-Number of SN Routed Calls
The rule in Fig. 6.79 is mapped to VIATRA2 rule in List. B.61.

1 gtrule Prob_Rule_Route_calls () =

2 {

3 precondition pattern lhs(R) =

4 {

5
6
7 RouteCall(R);

8 find Routed_caller_checka(R);

9 find Routed_callee_checka(R);

10
11
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12 }

13 action

14 {

15
16 println("Average Number of Routed Calls");

17 }

18 }

Listing B.61: Probe rule to count the number P2P routed calls

-Number of P2P Direct Calls between SCs through STUN

1
2 gtrule Place_call_and_Route_Local_WITH_STN () =

3 {

4 precondition pattern lhs(X,X1 ,SCBW ,SCBW1 ,L,L1 ,NK ,Q) =

5 {

6
7 SC(X);

8 SC(X1);

9 LK(L);

10 LK(L1);

11 Network(NK);

12 find LK_LinkTo(L,X);

13 find LK_LinkTo(L1 ,X1);

14 find LK_OutTo(L1 ,Y);

15 find SC_firewall(X,FIRW);

16 find SC_firewall(X1 ,FIRW1);

17 find SC_Bandwidth(X,SCBW);

18 find SC_Bandwidth(X1 ,SCBW1);

19 neg find check_for_existing_call(X);

20 neg find check_for_existing_call(X1);

21 CallReq(Q);

22 find check_requiest_for_call(X,Q);

23 neg find existing_req(X1);

24 check ((value(FIRW))=="False");

25 check ((value(FIRW1))=="True");

26 }

27
28 action {

29 let PK=undef , PKS=undef ,PKR=undef in seq{

30 new (Call(PK) in NK);

31 new (Call.caller(PKS ,PK,X));

32 new (Call.callee(PKR ,PK,X1));

33 setValue(SCBW ,(( toInteger(value(SCBW))) -80));

34 setValue(SCBW1 ,(( toInteger(value(SCBW1))) -80));

35 println("Call Generated between SC and SC1

through STN");

36 delete(Q);

37 }
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38 }

39
40 }

Listing B.62: Probe rule to count the number P2P routed calls

-Number of P2P Direct Calls between firewall /Nat enabled SC and
SN

1
2
3 gtrule Place_call_SC_to_SN_Rev () =

4 {

5 precondition pattern lhs(L,Y,X,SCBW ,SNBW1 ,NK ,Q) =

6 {

7 SC(X);

8 SN(Y);

9 LK(L);

10 find SC_Source(L,X);

11 Network(NK);

12 find SC_Bandwidth(X,SCBW);

13 find SN_Bandwidth(Y,SNBW1);

14 find SC_firewall(X,FIRW);

15 neg find check_for_call(X);

16 neg find check_for_call_SN(Y);

17 find SC_firewall(X,FIRW);

18 CallReq(Q);

19 find check_requiest_for_call_SN(Y,Q);

20 neg find existing_req(X);

21 check ((value(FIRW))=="True");

22 check (( toInteger(value(SCBW))) >256);

23 check (( toInteger(value(SNBW1))) >256);

24
25 }

26
27 action {

28 let PK=undef , PKS=undef ,PKR=undef in seq{

29 new (Call(PK) in Network);

30 new (Call.caller(PKS ,PK,Y));

31 new (Call.callee(PKR ,PK,X));

32 setValue(SCBW ,(( toInteger(value(SCBW))) -80));

33 setValue(SNBW1 ,(( toInteger(value(SNBW1))) -80));

34 println("Call Generated between SN and SC1

through STN");

35 delete(Q);

36
37 }

38 }

39 }

Listing B.63: Probe rule to count the number P2P routed calls
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[62] R. Heckel, J.M. Küster, and G. Taentzer. Confluence of typed attributed

graph transformation systems. In A. Corradini, H. Ehrig, H.-J. Kreowski,

and G. Rozenberg, editors, Proc. 1st Int. Conference on Graph Transfor-

mation, ICGT 02, volume 2505 of LNCS, pages 161–176. Springer, 2002.

21

[63] Reiko Heckel and Paolo Torrini. Stochastic modelling and simulation of

mobile systems. In Gregor Engels, Claus Lewerentz, Wilhelm Schäfer,
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stochastic simulation of P2P VoIP using graph transformation system. In

Proceedings of the 17th International Conference on Analytical and Stochas-

tic Modeling Techniques and Applications, (ASMTA’10, Walls, UK), year

= 2010, pages = 204-217,. 6

[87] Ajab Khan, Paolo Torrini, and Reiko Heckel. Model-based simulation of

VoIP network reconfigurations using graph transformation systems. Post

Proceedings of ICGT-DS ECEASST, 16, 2009. 3, 6, 30, 141, 165

[88] Wookyun Kho, S.A. Baset, and H. Schulzrinne. Skype relay calls: Measure-

ments and experiments. In Proceedings The 27th Conference on Computer

Communications INFOCOM Workshops 2008, IEEE, pages 1 –6, April

2008. 218

[89] A.A. Kist and R.J. Harris. Cost efficient overflow routing for outbound

isp traffic. In Computers and Communications, 2004. Proceedings. ISCC

2004. Ninth International Symposium on, pages 876 – 882 Vol.2, June-1

July 2004. 218

[90] Samuel Korpi. Internet telephony - security issues in Skype, Helsinki

University of Technology. Website, 2006. http://www.tml.tkk.fi/

Publications/C/21/Korpi_ready.pdf. 77

[91] P. Kosiuczenko and G. Lajios. Simulation of generalised semi-Markov pro-

321

http://www.tml.tkk.fi/Publications/C/21/Korpi_ready.pdf
http://www.tml.tkk.fi/Publications/C/21/Korpi_ready.pdf


REFERENCES

cesses based on graph transformation systems. Electronic Notes in Theo-

retical Computer Science, 175:73–86, 2007. 26, 30

[92] Martin A. Landers. An overview of peer-to-peer network topologies. Tech-

nical Report 1/2004, Technical University of Munich. 47, 48, 49

[93] Pierre L’Ecuyer, Lakhdar Meliani, and Jean Vaucher. SSJ: a framework

for stochastic simulation in Java. In Proceedings of the 34th conference

on Winter simulation: exploring new frontiers, WSC ’02, pages 234–242.

Winter Simulation Conference, 2002. 141

[94] Bo Arne Leuf. Peer to Peer: Collaboration and Sharing over the Internet.

Addison Welsley, 2002. 38, 49

[95] Jinyang Li, Jeremy Stribling, Robert Morris, and M. Frans Kaashoek.

Bandwidth-efficient management of DHT routing tables. In Proceedings

of the 2nd conference on Symposium on Networked Systems Design & Im-

plementation - Volume 2, NSDI’05, pages 99–114, Berkeley, CA, USA, 2005.

USENIX Association. 229

[96] Jian Liang, Rakesh Kumar, and Keith W. Ross. The KaZaA overlay: A

measurement study. Computer Networks Journal (Elsevier), 2005. 1, 76,

93

[97] Skype limited. Skype: Guide for Network Administrators. Skype, 2006“,.

7, 69, 162

[98] Gao Lisha and Luo Junzhou. Performance analysis of a P2P-based VoIP

software. In Proceedings of the Advanced Int’l Conference on Telecom-

322



REFERENCES

munications and Int’l Conference on Internet and Web Applications and

Services, AICT-ICIW ’06, pages 11–, Washington, DC, USA, 2006. IEEE

Computer Society. 215, 216, 217

[99] V. Lo, Dayi Zhou, Yuhong Liu, C. GauthierDickey, and Jun Li. Scalable

supernode selection in peer-to-peer overlay networks. In Hot Topics in Peer-

to-Peer Systems, 2005. HOT-P2P 2005. Second International Workshop on,

pages 18 – 25, july 2005. 65, 66, 67, 70, 102, 217, 218, 219, 220

[100] Skype Ltd. Cnet,most downloads, accessed on 10th January, 2011. Website,

2011. http://www.download.com. 76

[101] Skype Ltd. Skype company, accessed on 10th January, 2011. Website, 2011.

http://www.skype.com/company. 76

[102] K. Shen M. Zhong and J. Seiferas. Dynamic load balancing in unstructured

peer-to-peer networks: Finding hotspots, eliminating them. unpublished

manuscript, http://www.cs.rochester.edu/u/zhong/papershotspots.

pdf. 220, 221

[103] Priyanka Mahalanabis Matthew Benford, Michael Boyce and Steve Webb.

Peer-to-peer instant messaging (P2P IM). http://www.cc.gatech.edu/

~webb/P2P_IM.htm. 52

[104] Petar Maymounkov and David Mazières. Kademlia: A peer-to-peer infor-

mation system based on the XOR metric. In Revised Papers from the First

International Workshop on Peer-to-Peer Systems, IPTPS ’01, pages 53–65,

London, UK, 2002. Springer-Verlag. 229

323

http://www.download.com
http://www.skype.com/company
http://www.cs.rochester. edu/u/zhong/papers hotspots.pdf
http://www.cs.rochester. edu/u/zhong/papers hotspots.pdf
http://www.cc.gatech.edu/~webb/P2P_IM.htm
http://www.cc.gatech.edu/~webb/P2P_IM.htm


REFERENCES

[105] Merriam-Webster. Online dictionary, accessed on 14th January, 2011. Web-

site, 2011. http://www.m-w.com. 38

[106] Microsoft. Introduction to windows peer-to-peer networking. Technical

report, Microsoft, Tech, 2003. http://technet.microsoft.com/en-us/

library/bb457079.aspx. 40

[107] D. S. Milojicic. Peer-to-peer computing. Technical Report HPL-2002-57R1,

HP Ltd. 1, 38, 39, 46, 47, 48

[108] Su-Hong Min, Joanne Holliday, and Dong-Sub Cho. Optimal super-peer

selection for large-scale P2P system. In Proceedings of the 2006 Interna-

tional Conference on Hybrid Information Technology - Volume 02, ICHIT

’06, pages 588–593, Washington, DC, USA, 2006. IEEE Computer Society.

217, 219, 220

[109] S&#x00e1;ndor Moln&#x00e1;r and Marcell Per&#x00e9;nyi. On the

identification and analysis of skype traffic. Int. J. Commun. Syst., 24:94–

117, January 2011. 81, 82, 83

[110] Alberto Montresor. Robust aggregation protocols for large-scale overlay

networks. In In Proceedings of the 2004 International Conference on De-

pendable Systems and Networks, (DSNâ04). 224, 228
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