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Abstract

Stylised facts for univariate high—frequency data in finance are well-known. They include scaling
behaviour, volatility clustering, heavy tails, and seasonalities. The multivariate problem, however,
has scarcely been addressed up to now.

In this paper, bivariate series of high—frequency FX spot data for major FX markets are inves-
tigated. First, as an indispensable prerequisite for further analysis, the problem of simultaneous
deseasonalisation of high—frequency data is addressed. In the bulk of the paper we analyse in de-
tail the dependence structure as a function of the time scale. Particular emphasis is put on the tail
behaviour, which is investigated by means of copulas and spectral measures.

1 Introduction

Numerous papers have studied statistical properties of one—dimensional return data in finance. Results
like leptokurtosis, stochastic volatility effects, occurrence of extremes, seasonalities, and scaling behav-
ior are now referenced to as stylised facts of empirical finance. The work by Olsen & Associates has
extended these facts across sampling frequencies reaching from minutes to months; see foriastance
( ). Similar results for more—dimensional return data are however scarcellin

( ) some of the basic techniques for the analysis of dependence beyond linear correlation were
introduced through the notion of copula. In this paper, the latter techniques will be applied to a two—
dimensional high—frequence (hourly) data set of FX returns. As such, the change in dependence as a
function of the sampling frequency will be established. Also, for each separate frequency, ellipticality
will be tested. Finally, several statistical techniques for the study of extremal clustering in higher dimen-
sions will be applied. As a necessary prerequisite for this analysis, a method for deseasonalising bivariate
returns for time horizons up to one day will be presented.

The outline of the paper is as follows. Secti®ipresents the transformation from the raw high—

frequency (tick—by-tick) data to properly deseasonalised data. In S&;tsmveral families of copulas
will be fitted to deseasonalised two—dimensional FX data, and this at several frequencies (from hourly
to daily). Goodness—offit tests, including tests for ellipticality, are presented in SdclioiBectionb,
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the problem of clustering of extremes in two dimensional data is discussed. Finally, Segti@s an
outlook for further research.

2 The data

We investigate a high-frequency bivariate time series consisting of USD/DEM and USD/JPY spot rates.
Before they are to be used for dependency analysis, the following preliminary steps have been performed:

¢ collection and filtering,
e regularisation and transformation to logarithmic middle prices, and
e deseasonalisation.

They are described in turn.

2.1 Collection and filtering

The data set consists of tick—by—tick data originating mainly from Reuters and collected and filtered
by Olsen Data. It consists of a large part but not all of the quotes emitted in the market because the
market coverage of the data providers it not complete and depends on the region of the world. The high-
frequency series are irregularly spaced; they start February 1986 and end June 30, 2001. Since we are in-
terested in USD/DEM, which ends December 31, 1998, we discard later data also for other currencies. A
single quote at time consists of a bid prices?¢, and an ask prices2s*, o € {USD/DEM, USD/JPY}.

ot ) ot )
For both series, middle prices are displayed in Figurén a first step the data are cleaned by means
of a special filter, described in ( ), that takes peculiarities of the financial market

into account. Among others it corrects for decimal errors caused by the transmission line and removes
automatically generated fake quotes during inactive periods used by market participants to test the trans-
mission channel. Since only a small fraction of quotes is removed by the filter the filtered time series is
still irregularly spaced, and the number of data points is very high (about 10 million for the USD/DEM
series).

2.2 Regularisation and transformation to logarithmic middle prices

To reduce the data we regularise the time series to a regular series with st€p-=sizminutes by linear
interpolation. Since we are not interested in effects related to the bid—ask spread, we will work with
logarithmic middle priceg,, ; defined as

log (pZi - pitit)

ga,t = 9

@
Returns with respect to a time horiza¥" are then defined as the difference of logarithmic middle prices:

Ta,t[AT} = ga,t - fa,t—AT- (2)

Hourly USD/DEM returns are displayed in Figure 2. The advantage of taking the logarithm is that returns
of the inverted rate (e.g. DEM/USD) are just the negative of the corresponding returns of the original
rate USD/DEM, as one intuitively expects.
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Figure 1: FX middle prices for USD/DEM (top) and USD/JPY (bottom).
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Figure 2: Hourly USD/DEM returns of the whole 11-year period (top) and for 1 year (bottom). Notice
the weekly seasonalities.



2.3 Deseasonalisation of financial data

Practically all financial time series exhibit seasonalities. The most striking one is the absence of any
activity during weekends, which causes a weekly seasonality in the autocorrelation function of lagged
absolute returns. With high—frequency data the problem of seasonality becomes much more important
and more difficult to handle because the entire form of the weekly activity pattern (mean computed
conditional on the time of the week) has to be taken into account. In the autocorrelation function of
hourly absolute returns, the weekly and daily periods can be distinguished, as shown inZFidure
also shows that the seasonal patterns of the two FX rates, though overall similar, exhibit differences in
the details. Already for univariate time series deseasonalisation is not an easy task and there is not yet
unanimity on how to solve it. In the multivariate case, deseasonalisation is still largely an open problem.
Before presenting our method of bivariate deseasonalisation we will summarise the two main ap-
proaches of deseasonalising univariate high—frequency time series. More detailed discussions can for
instance be found in ( ).

2.3.1 Approaches for deseasonalising univariate financial time series

There are two main approaches of deseasonalising univariate high-frequency time series: time transfor-
mation and volatility weighting by periodically varying weights. Eventually both approaches are based
on a weekly conditional mean of volatility similar to the one shown in FiguréOne of the earliest
deseasonalisation methods has been developed by Olsen & Associatesysee ( ). It

consists of a transformation from physical time to an activity—related time scale, the so-t#leel

scale, which is proportional to a measure of the market actiyity

t2
19t2 — Q9t1 X / a¢ dt. (3)
t1
The market activity is based on the volatility estimated by a mean of absolute hourly returns, condi-
tional on the time in the week:
v, [Lhouff = E [|r[1 houd| |t mod(1 week = 7]. (4)
Volatility and market activity turn out to be empirically related by
ar ~ ()" (5)
whereh is the scaling exponent of absolute returns,
E[lr[AT]] ~ (AT)". (6)

While h = 0.5 for Brownian motion, values empirically observed are found to be arouigifor major
currencies. In addition the activity. is decomposed into component activitigs of the mean regional
markets (American, East-Asian, European), which is important for properly taking public holidays into
account. For more details oB)(6), see ( ).

Time transformation is appealing because it is intimately related to the concept of random time
change in the theory of stochastic processes. In addition it conserves the aggregation property of returns,

T [ATy + ATy] = ri_am, [ATh] + ¢ [AT3], (7

which follows immediately fromZ). However, since any coordinate of a multivariate series has its own
activity—related time scale, it is currently unclear how to construct a time transformation for multivariate
series without losing synchronicity of the different coordinates. In addition, there is not yet unanim-
ity about the interpretation off; see for instancé ( ) for a critical
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Figure 3: Autocorrelation function of bivariate absolute hourly returns (USD/DEM vs. USD/JPY).
Notice the weekly and the daily seasonality. The latter is much more pronounced for USD/DEM rates
than for USD/JPY rates.



discussion. Therefored) is at least questionable. For all these reasons we will not rel\Bpp#@a) for
deseasonalisation in this paper.
Alternative approaches based on volatility weighting have been proposediley

(1999, {1997, (1997, (1998,

(2009, (1999. In this framework the return is written agd] = ,[d] s;[0] €;
for the generic intraday return at day( ( ),
( )). Here, r,[] represents the intraday 5 minutes retuspd] the deseasonalised volatility;
denotes an i.i.d. (independent, identically distributed) mean zero, unit variance error term[d&nd
essentially represents the seasonal pattern. Thus, the deseasonalised return reads:

l’t[(ﬂ == 5’t[5] €t = SEF‘] (8)

<

.

Different methods have been proposed to model the seasonal vokafiitysee

(1999, (2009, (1999, (1999).

2.3.2 Bivariate deseasonalisation

For the above-mentionned reasons no attempt towards a bivariate time transformation is made in this
paper. Instead, we will use a weighting method simila8o\fhich can be extended to the multivariate

case in a straightforward way. Our definition of volatility is based on quadratic variations, which has
the advantage that the theoretically expected scaling exponent 1 is also observed empirically, at least in
the case of freely floating currencies of major markets. For any instrumér deseasonalised return
za,[AT], which will be analysed in detail in the following sections, is computed by

% L if va [AT] > 0,
Lo d[AT] = at 9)
0 , otherwise,

whereAT = nd is the time horizon of the return ang ;[AT] is the expected volatility of instrument
Note thatv, ([AT] = 0 impliesr,[AT] = 0. In contrast to §) the time horizon can be chosen freely,
at least up to one day. This is important in the present context because we are interested in the variation
of the dependence structure as a function of time.

In the remainder of this section we will explain haw [AT] is computed. This is similar to the
method described i ( ). To alleviate notation, the index will be dropped whenever
this is possible without ambiguity. In fact, quantities wittdropped can be interpreted as two element
vectors, and the operations on them are understood to apply component-wise.

For reasons which will become clear below we prefer to use the integrated squared volatility

V2= (on[0])” (10)

v<t

whered = 5 minutes is the binning of the volatility histogram (sé®)(below). The volatilityv;[AT]
for an arbitrary horizorAT is recovered by

|
—

(w[AT])? = (AVAT])? = (v-45[0])° (11)

i

I
=)

with n = AT'/4. Here the definition

AVLAT) := V2= V2 \r (12)
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Figure 4. Mean weekly volatility pattern, averaged from 4/86 till 10/98. Top: USD/DEM, bottom:
USD/JPY. Full lines: winter time, dotted lines: Summer time. Notice that during the periods where the
European or the American Market are active, both patterns are slightly shifted (dotted line left of the
full line) while no shift associated with Daylight Saving Time (DST) is present when only the Japanese
market is active (most remarkably seen during the Japanese lunch break). The fact that at the beginning
of the weekly activity period the dotted line is at tHght of the full line stems from the Australian
market, where a DST shift is present during the months October—April.



has been used. Thus, the deseasonalisation can be written as

X,[AT] = M' (13)
VWi —Viear
As already noted above, deseasonalised returns loose the aggregation ppbkrsygad, from7), (9),
and (L0) follows the relation

Tt AT, [AT v AT, [ATH] + 2 [AT] v [AT3)]
Ut [ATl + AT2]
AT, [ATh] AVi_ A, [ATh] + 2 [ATS] AV[ATS]

- AV,[AT] (14)

with AT = ATy + ATs. Thus, time aggregation of deseasonalised returns requires the knowledge of
V2,

2.3.3 The seasonal volatility pattern
Modelling requirements:

e The possibility to model arbitrary patterns with abrupt changes in market volatility as they for
instance occur during the Japanese lunch break;

e The modelling of the slow dynamic behaviour of the activity pattern to take into account slow
temporal changes in the habits of the market participants, institutional changes, etc.;

e Keeping track of Daylight Saving Time (DST) to take into account a partial 1 hour displacement
of the average volatility patterns for DST and non-DST periods, one with respect to the other
(Figured);

e The modelling of the geographical decomposition of market activity to take into account perturba-
tions of the regular weekly activity pattern due to local holidays affecting only parts of the market.

The first requirement is met by using weekly volatility histograms with a 5 minutes time step, and the sec-
ond and third requirements are met by treating the volatility pattern of different DST periods separately.
To meet the last requirement we decompose the squared volagiliilyinto the product

o200 = a (v])’ (15)

wherea; is a relative market activity factor an@ﬁd) [0] is the volatility averaged over DST periatl
conditional to the time in the week,= ¢ mod(1 weeK:

2 1 Na
(4900)" = 57 2o recs- [0 (16)
=1

Here,m € {0h,4,24,...,168h — §} is the time in the week; is the start of week (always a Sunday,
00:00:00 UTC (GMT)), andV, is the number of weeks in DST periatd In (15) the appropriate DST
periodd is selected by the conditiane d. The market activity factod, is 1 for normal days, when the
expected volatility ia;&d) [0]. If the expected volatility is lowek; assumes values strictly less than one.

This happens for public holidays. Since public holidays are different in different regional markists,
written as a sum of regional market activity factars= ) . a; ;. We work with an American, an East-
Asian, and a European market component. When a public holiday occurs in one of these components,
the corresponding; ; is set to zero.
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2.3.4 The Weekends

Weekends need special treatment because even though the mean activity is low it occasionally happens
that a big price jump occurs between Friday evening closing and Monday morning opening. These price
jumps cannot be properly accounted for by the mean weekend activity and, therefore, deteriorate the
deseasonalisation results for short time horizons up to about one day. One way of dealing with this effect
would be to drop the return between the last Friday evening price and the first Monday morning price.
Beside the fact that this is difficult in an OTC market without well-defined opening and closing times it
has the additional drawback that it is in conflict with the modified aggregation prodeityTherefore

we decided to adopt the following procedure. An effective weekend volaiility[s] is computed for

every weekendv by
w 0
018] = |1 en [ATS | Var (17)
_ 4lend) _ (start)

whereAT,, = ¢\ (s7r) is the weekend length. Start and end of weekends are fixaf &) =
Friday, 21:00:00 UTC ancfe”d) = Sunday, 21:00:00 UTC, respectively. The volatilifs] in (15) is

set to this value it € (t5"",+"P]. In this way, weekend peaks are exactly compensated even if
the weekend is dropped simultaneously from the series of logarithmic grieesl from the integrated
volatility patternV;2; notice, in particular, thati3) remains valid. If a jump occurs during the weekend,
a corresponding jump will be presentliff such that deseasonalisation is assured.

Here, a note of caution is in order. First, our studies showed that the weekend weighting destroys
the dependence structure of the returns for time horizons longer than about four days, while no signif-
icant effect could be seen in the margins. By construction of the weekend weighting the destruction of
dependence only affects the returns reaching over a weekend. For horizons of the order of one hour this
corresponds to less than 1% of the data. This ratio increases to 20% for daily data, and to 80% for a four
day horizon. For time horizons from one week onwards all data are affected.

Second, deseasonalisation is no longer meaningful for time horizons being multiples of one week.
This follows from the fact that by virtue ofLQ) and (L6), V,?> — V/2 | ,eekiS CONStant within a given DST
period. Even though this argument contains the assumption of no special weekend weighting, one can
argue that for such time horizons, weekends are part of the regular dynamics and should not be treated
separately. Thus, to treat time horizons between one day and one week adequately, a smooth transition
from the deseasonalisation procedure for short horizons presented in this paper to no deseasonalisation
for long horizons is needed. We emphasize that the need for such a transition only arises in the case of
multivariate data.

2.4 Univariate properties of deseasonalised returns

The series of 1 hour deseasonalised returns is displayed in Figneen though volatility clustering is
present no seasonalities can be distinguished. Figdisplays the autocorrelation function of absolute
returns for a time horizon of 1 hour, which clearly shows the well-known long-range correlation of the
volatility. This figure confirms also the efficient removal of seasonalities, as can be seen by comparison
with Figure3. To show the tail behavior, QQ—plots of the univariate series are displayed in fibanes

for time horizons ranging from 1 hour to 1 day. The well-known transition from pronounced heavy tails
at short horizons to more thin—tailed distributions at long time horizons is clearly seen.

3 Dependence structure modelling
Given the bivariate deseasonalised returns fréyyme want to analyse the dependence structure at each

of the different frequencies: one hour, two hours, four hours, eight hours, twelve hours and one day. In
each case, we will fit parametric families of copulas using a two stage semi—parametric procedure (see

11
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Figure 6:Autocorrelation function of absolute deseasonalised 1 hour returns.
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( )). This procedure consists of transforming the marginal observations into uniformly
distributed vectors using the empirical distribution functions, in a first step. Then, the copula parameters
are estimated by the maximisation of a pseudo log-likelihood function. Each one of these fitting phases
is explained more in detail below.

For each considered frequency we have two vectors of observations, deseasonalised returns of FX
rates quoted against the US Dollar, one for USD/DEM and another for USD/JPY. The scatter plots are
shown in Figured. We denote the random variable for the deseasonalised USD/DEM returis by
and for the deseasonalised USD/JPY returnXbyIf {z;1, z;2, ...,z } are then observed univariate
deseasonalised returns of the FX rate(i = 1, 2) for a given frequency, then

1 n
Fin(zi) = = > Loy
k=1

are pseudo—observations approximately uniformly distributeld,ih]. Figure 10 displays the scatter
plots of the bivariate pseudo—observations

(Fin(x1), Fon(x2)),

and Figurell shows the same returns but plotted with standard normal margins. The number of points
plotted in each panel varies a lot and that makes them harder to compare. But even so, we can still see in
Figurellthat there is an evolution from a diamond to an elliptic shape as the time frequency decreases.
In Figurel0, for the one, two and four hour returns, we plotted sub—samples of the pseudo—observations
otherwise the scatter plots of the full samples would be just three useless black squares.

Computing the bivariate pseudo—observati¢hs, (x1), F2,(x2)) for each time frequency is the
first step for the copula fitting. On these transformed data sets we can estimate the parameters for several
copula families. Here we consider the Gaussianttltee Frank, the Gumbel and the Clayton copulas.
The specifications of these distribution families can be founérin ( ) and
( ). See alsaloe( ).

In Table 1 the parameter estimates, the corresponding standard errors, and the Akaike information
criterion values (AIC) are fitted for each of the models. For every time frequency the models are ordered
by the AIC value, according to which lower values indicate a better fit. The first observation is that, for
the five models considered, theopula model has the best performance according to the AIC criterion.

In Figure 12 we plotted, for each model and for each frequency, the AIC ofttbepula minus the
AIC of the model and divided this difference by the number of observations (in order to give the plots a
comparable scale). The degrees of freedom estimated foctipula are plotted in parentheses. We note
that the degrees of freedom of theopula increase fromh.3 for hourly returns td>.7 for daily returns.
This is similar to the behavior of the tail index estimates for univariate data as a function of the time
horizon; seé ( ). It raises the question of what happens to the tail dependence when the
time frequency of the returns vary. If we assumetthepula as a reasonable model for the data, from the
results in Tablel we can then estimate the tail dependence coefficient at the different time frequencies.
This coefficient is given by
lim P(Xy > Fy Ha)| X1 > Fy ) = A

P
as long as the limih € [0, 1] exists.F} andF; denote the distribution functions of the random variables
X1 and X, respectively. IfA € (0, 1], X; and X, are asymptotically dependent and\if= 0 the two
variables are said to be asymptotically independent. In the case bttqila,\ takes the form

A=20 (Ve D= )/ +7).

15
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Frequency n. obs. Model Estimate S.e. AIC

t 0.563;4.339 0.003;0.087 -32698
Gumbel 1.577 0.005 -29052
1 hour 77 758 Gaussian 0.555 0.002 -28674
Frank 4.030 0.025 -27275
Clayton 0.880 0.007 -23997
t 0.585;4.269 0.004;0.120 -17951
Gumbel 1.622 0.007 -16066
2 hours 38976 Gaussian 0.578 0.003 -15859
Frank 4.252 0.036 -14983
Clayton 0.944 0.010 -13267
t 0.599;4.282 0.005;0.169 -9481
Gumbel 1.652 0.009 -8530
4 hours 19514 Gaussian 0.592 0.004 -8400
Frank 4.402 0.051 -7957
Clayton 0.978 0.014 -6936
t 0.619;4.833 0.007;0.293 -5006
Gumbel 1.688 0.014 -4561
8 hours 9767 Gaussian 0.610 0.005 -4540
Frank 4.633 0.073 -4347
Clayton 1.020 0.020 -3697
t 0.623;5.438 0.008;0.449 -3350
Gaussian 0.617 0.007 -3111
12 hours 6513 Gumbel 1.689 0.017 -3047
Frank 4.680 0.089 -2953
Clayton 1.037 0.025 -2518
t 0.624;5.712 0.011;0.714 -1675
Gaussian 0.621 0.009 -1576
1 day 3259 Gumbel 1.689 0.024 -1525
Frank 4.650 0.125 -1471
Clayton 1.056 0.035 -1287

Table 1: Parameter estimates, standard errors and Akaike’s information criterion values for the various
copula models and time frequencies. Fortlwpula the first parameter estimate is the correlation and
the second is the degrees of freedom and respectively for the s.e.’s.
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wheret,, denotes the tail of a standard univariatistribution withr degrees of freedom; sée
( ). As we are dealing with thecopula, which has symmetric tails, we do not have to distin-
guish between upper and lower tail dependence. Tablows the tail coefficient estimates for the time

Frequency 1 p A
1 hour 4.339 0.563 0.273
2 hours 4.269 0.585 0.291
4 hours 4.282 0.599 0.299
8 hours 4.833 0.619 0.287
12 hours 5.438 0.623 0.264
1 day 5.712 0.624 0.254

Table 2: Tail coefficient estimates for the DEM and JPY bivariate returns for the different time frequen-
cies considered.

frequencies considered for the bivariate DEM and JPY returns, assumimpdel for the dependence
structure. The values obtained indicate that the bivariate returns DEM and JPY remain asymptotically
dependent across the time frequencies considered. A confidence interval analysis can be worked out.

4 Goodness—of—fit tests

4.1 Test based on the probability integral transformation

A general goodness—offit test, valid for any copula family, can be performed using the following well

known result, the probability integral transformation; see for instéaice: ( ).

Let X = (X1, Xs,...,Xy) be a random vector with absolutely continuous distribution function
Fx(z1,%2,...,24). Let Fx,(z;) = P(X; < z;) be the distribution function of the univariate margins
X;, fori =1,...,d. Consider thel transformations

T(z1) = P(X1<x)=Fx (1),
T(z2) = P(X2 <Xy = 1) = Fxyx, (22|21),

T(xq) = P(Xgq<wxg|Xi=21,...,Xq-1=12q-1)

= Fx,xi,..x. . (@d@1, . za-1).
Then the random variablés = T'(X;), fori = 1,. .., d are uniformly and independently distributed on
[0, 1]¢.
Suppose now that' is a copula such that
Fx(z1,22,...,24) = C(Fx, (21),...,Fx,(xq)).
If C;(us,...,u;) denotes the joini-marginal distribution

Ci(ul,...,ui):C(ul,...,ui,l,...,l), ’i=2,...,d—1,

of (Uy,...,U;), with C1(u1) = uy andCy(uq,...,uq) = C(uq,...,uq), then the conditional distribu-
tion of U;, given the values df/y,...,U;_1, is

8i_1C’i(U1, ... ,u,)/ 8i_1Ci_1(u1, ... ,ui_l)

Ci(Ui’ulji..7Ui_1) - 8u1...8ui_1 f)ul ...8ui_1
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fori =2,...,d. Hence we can write the variabl&s, fori = 2, ..., d, using the conditional distributions
C;
Z; = Ci(Fx,(Xi)|[Fx,(X1), -, Fix, 4 (Xi-1)).

Hence if (Fix, (X1), Fx,(X2),...,Fx,(X4)) has distribution functionC, then ®=1(Z;), i =
1,...,d, are i.i.d., NO,1) distributed. Consequenthy§ = S¢ (<I>—1(ZZ-))2 has a chi-square dis-
tribution with d degrees of freedom. Concretely, in the cdse 2,

S(X1,X2) = (71 (Fx, (X1)))” + (271 (Ca(Fx, (X2)| Fx, (X1))))* - (18)

In performing the test, we do of course assume thathdistribution will not be significantly affected
by the use of the empirical distribution functions used to transform the marginal data.
Other, related tests can for instance be foundKiin ¢ ) and

(2009).

4.2 Test of elliptical symmetry

The test of elliptical symmetry used here is dué/to ( ). Suppose thaX is ad dimen-
sional random vector with an elliptical distributioK. can be represented as

X =pu+RAU,

wherep € R?, A is a non-singulad x d matrix, R is a real non negative random variadljs uniformly
distributed on the unit spheBé~! = {x € R? :|| x ||= 1} andR andU are independent. L&t = AA’
be the shape matrix. The covariance matrixdof Xy is proportional toX. Let X;,Xs,..., X, be
an i.i.d. sample from @ dimensional distribution. The null hypothesis of the test is that the sample
comes from an elliptically distributed population. étand.S denote the sample mean and covariance
matrix, respectively. Consider the scaled resididls = S—'/2(X;, — X) for k = 1,...,n. Let
Wi =Y/ | Yy || fork =1,...,n be the projections of the scaled residuals on the unit sphebe. If
is elliptically symmetric therW is approximately uniformly distributed d#f .

Considere > 0 fixed and letn. be the integer part ofn. Let ¢, be thes empirical quantile for the
variables|| Y1 ||, || Y2 [|,. .., || Y, ||. With the average

1 n
Qn(h) = =D (W)L, >4,
k=1

whereh is a function defined 0871, the test statisti¢Z? is given by

Zi=ny Qih)
heT;i
for j > 3. The set of functiongJj; is the union7;; = U, <,<, H:, whereH; denotes the set of spherical
harmonics of degreg¢in the orthonormal basis as considered/ia ( ). This test statistic
consists on averaging spherical harmonics over the projections &f tlseon the unit sphere. It will be
useful to know that there af¥(d, j) = (“*7~1) — (*17?) linearly independent spherical harmonics of

J Jj=2
degregj in dimensiond. Let N denote the number of functions ify;. The main result of
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( ) states that independently of the unknown parameters of the distribution under the null hypothesis,
the limiting distribution ofZ? is that of (1 — £)x2, wherey? is a variable with a chi-square distribution
with N degrees of freedom.

With the d = 2 dimensional data we used= 0.05, j = 3 andl = 6. ThenN = 8 and the
orthonormal spherical harmonics used are

h1;(Wi) = 22 cos(j), hoj(Wi) = 242 sin(56)),

for3 < j < 6andWy = (cos(by), sin(6x)).

4.2.1 The estimators

The estimation of the sample covariance matrix requires some care because in this setting, like elliptical
distributions, we often have heavy tailed margins. In this case the standard estimators may have a poor
performance. In order to test for ellipticality it is enough to estimate a matrix which is proportional to
the covariance matrix. Indeed X = p + RAU is elliptical thenY = p + R(cA)U, for ¢ > 0, is also
elliptical. Having this in mind, in the bivariate case, we can estimate the matrix

1 o2

o7y = pazl
1 g2 93
pUl a%

using more robust estimators. Hesé,are the diagonal elements Bf For the linear correlation coeffi-
cient, under the elliptical assumption, the estimator based on Kendall's tau,

o, =sin (57)
- =sin (=7,
p 2

is more efficient and robust than Pearson’s linear correlation estimator;rsée ( ). In

order to estimate the ratio between the standard deviations we can use another dispersion estimator rather
than the standard ong2 = Y, (z; — 7)?/n, like the median absolute deviatiomad,,. The latter

has some efficiency and bias problems but is very resistant to extreme observations coming from heavy
tails; see for instance ( ) or ( ). The sample median absolute
deviation is defined as follows:

mad,(x) = median(|x — median(x)|),
wheremedian(x) denotes the sample median of the vector of observatioifge then use
O'/QE = mady, (x2)/mad,(x1)

as an estimator more robust than the ratio of sample standard deviations.

4.3 Testing the results of the fittings

In Section3, Tablel we ranked the different models fitted according to their AIC values. Tabbmtains
the p—values for the probability integral transformation goodness—of—fit test explained in Settidfe
have listed only the results for the best fitting models (minimal AIC) from Tablén the same table
are also the p—values (fourth column) for the ellipticality test described in Setoo test whether
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Time Frequency| Probability Integral tes§ P—values for the ellipticality test
Model p-value original margins| ¢ margins
1 hour t 0 0 0
2 hours t 0 0 0
4 hours t 0.01 0 0.092
8 hours t 0.27 0 0.231
12 hours t 0.19 0.034 0.369
1 day t 0.74 0.821 0.675

Table 3: P—values of goodness—of—fit and ellipticality tests.

the values given byl@) come from ay? distribution we use the Anderson—Darling goodness—of—fit test
(see ( )). Looking at columns three and four it is only at a frequency of one

day that we cannot reject ellipticality and have strong support fazapula. At higher frequencies, the
situation is more subtle. Thecopula fits well up to eight hours. For four hours and higher, a more
careful analysis (and possibly more intricate copula) is needed, especially as at those frequencies very
large sample sizes (e.g7'758 bivariate hourly observations) are available. We will come back to this
issue in forthcoming work. Note that the null hypothesis of ellipticality is rejected for frequencies higher
than one day. In column five of TabBewe perform the same ellipticality test, but now after transforming

the marginals to adistribution with the degrees of freedom coming from the columns three and four in
Tablel. In this way we avoid that a rejection of the elliptical structure could come from non—elliptical
margins. These new data are plotted in Figl®e Ellipticality is now rejected only at the one and two

hour frequency. Once more, a more detailed analysis, possibly also using non—parametric methodology,
is called for. In the sequel of the paper, we concentrate on the important problem of clustering between
extreme movements, in the literature also referred to as tail dependence.

5 Tail dependence

Several authors have looked at the issue of tail dependence in financial return data. See for instance
( ) for a more mathematical discussion. Other names encountered are contagion and spillover.
Several references in ( ) yield guidance towards the more economic oriented literature.
By definition, the notion of tail dependence concerns bivariate rare events, hence limit theorems lie at the
basis of any analysis. In order to investigate these problems on real data, a large number of observations
is desirable. In Section 5.1 we start the study of the bivariate tail dependence with an estimation of the
spectral measure for all the time horizons considered in the previous sections. We then concentrate in
Section5.2 on hourly data only. Bivariate extremes in these data will be analysed using the theory of
multivariate regular variation, leading to a spectral analysis, and a statistical analysis of bivariate excesses
over high thresholds.

5.1 Spectral measure estimation

The mathematics underlying this section is to be founiddi ( ) and ( ). Below we
highlight the main definitions and notation. Liet || denote the usual Euclidedin norm onRR¢ and
S%! be the unit sphere,

Sl = {xeR? | x|=1}.
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Figure 13:Bivariate pseudo-observations for different time frequencies plottediwidrgins.
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Suppose that thé-dimensional random vectd has a regularly varying tail distribution. This means
that the tail behaviour aX is characterised by a tail indexand the limit

PO X [[> te, X/ | X |l€) v

PIX > 1) xr *P(O € ), (19)

wherexz > 0,t — oo exists. The convergence is said to be vague @nid a random vector on the
space(S?1, B(S?1)). The distribution function oB is referred to as the spectral distributionXif
Definition (19) is equivalent to the existence of a measusnd a positive sequen¢e,,), a,, — oo, such
that forn — oo,

nP(a,'Xec) 5 v(). (20)

For a more precise and detailed treatment on this see for instargeck( ). The measure has the
following scaling property:
v(vS) =v w(9), (21)

for any Borel setS C [—o0, c0]?\{0}. This property will be useful in order to find an estimator for the
spectral distribution. Intuitivelyy indicates the heaviness of the multivariate tails whefeéaseasures
in which parts of the space extremes cluster.

Define forx € R? andB € B(RY)

(B) 1 if z € B,
€x = .
0 if z € BC.

Then a consistent estimator @f, for somec > 0, is given by

1>
Up 1= ]{77 Zexi/b(n/kn)a
" i=1

whereb(.) is the quantile function(t) := F (1 — 1/t), fort > 1, of the random variablé X ||. As
usual in extreme value theory, — oo andk,/n — 0 asn — oo; see ( ). If we estimate
the quantile function with the corresponding empirical estimator

~(n
b(— ) = X |l
(1) =% I,

where|| X ||, » is thek-th largest value of the one-dimensiof#l X; ||: 1 < i < n} set, we obtain as
estimator of the spectral measure

n

P@©€s) = ki > e/l (V(9) (22)

=1

whereV(S) = {x € S : x/ || x |€ S} andST" := {x :| x ||> 1}. The performance of this
estimator very much depends on the choicé,of Here we use the scaling proper1j and choosé:,
such thaty, (uST)/(u=*0, (SE1)) = 1 for values ofu in a neighbourhood of. We plot the set of

values i
5 (uSE-
{(u,%) : 0<u<2}
u=%0, (S7)

26



1 Howr returns 2 Hours returns 4 Howrs retumns

3 HIE 3 s
E E E
? H 3
& 2 B & 2
% £ %
E n E om E n
i ¥ c -
B & B
o o =
o = . o
0 Fitz R ame  2h o Fitz B 3Rl 2R o Rz B afE 2R
Angle Angle Angle
& Hours returns 12 Hours returns 1 Day returns
g = I g =
E E E
A | A
k3 c a © f c
b b b
e - R
£ e g £ e
B & B
] o o e ——
=1 =] o
n Fite B oamE  zE o Rz B 3RE  zR o Rz B amE =R
Angle Angle Anghe

Figure 14:The estimated spectral measures for the different time frequencies.

for several values of,, and choose the one corresponding to the plot for which these values are closer
to 1 aroundu = 1. For more on this se& ( ). We use the Hill estimator to get the tail index
estimater. The values obtained lie around 4.

We now estimate the spectral density of the bivariate retdriod the DEM and JPY data at a given
time frequency using2?). First, choosé:,, as described above and consider the points

{01- € [0, 2x[: (cosb;,sinb;) = H XZ:

[
We then plot a non—parametric density estimate for these angular observations using a smoothed kernel
estimator with Gaussian weights and bandwidlttr. In a more detailed analysis one could also work

out confidence bands around the estimated functions. In Figune have plotted the estimated spectral
densities for each time frequency. We would first like to point out that for a spherical distribution, a
fairly constant spectral density would appear. Peakedness in one or other direction points at clustering of
extremes in that direction. Also, the procedure discussed only uses data in the tails so that no information
from the centre of the distribution enters. Figarkclearly shows clustering of extreme returns in the first

and third quadrant, also referred to as positive dependence. This dependence persists at all frequencies
and turns out to be fairly symmetric. Of course, a basic assumption concerns the pr@pgrgs(in

the one—dimensional case, one can show, using extreme value theory, that the limit pdf)astydry

natural for multivariate financial return data. For an interesting paper leading to similar conclusions, see

(2007).

, H X; H>H X Hkmn,i = 1,...,77,}.
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5.2 Multivariate excesses

In the previous section, under the assumptid®),(we modelled the ocurrence of joint extremes for
bivariate returns by the density of the spectral random vari@blén this section we focus, for a given

high threshold, on the even{ X; > ¢, Xo > ¢}. Similarly we can define sets of returns simultaneously
smaller than a given threshold. As the thresholdill be large (small) we will concentrate only on

the one hour data which allows for sufficient data in these cases. In Fi§uwe plotted the bivariate
excesses for different values of the threshold. For univariate random variables, the Balkema—de Haan—
Pickands result (Theorem 3.4.13(b)in ( )) yields the generalised Pareto distribution

as a canonical model for the distribution function of conditional excessekiria ( ),

a similar result is proved for bivariate excesses in the case of Archimedean copulas (nhote that in that
case, one makes an assumption on the copula for the whole domain of the bivariate dependence structure
model). We summarise below their main result which forms the basis for our statistical analysis. The
copulaC(u,v), with 0 < u,v < 1, of the random vectofU, V) is called Archimedean if there exists a
continuous, strictly decreasing functian,: [0, 1] — [0, co] with /(1) = 0, such that

Cu,v) = ¥ (u) + ¥ (v).

The functiony=1 : [0,00] — [0,1] is defined byyl~U(z) = =1 (2)1} 40y (x) and is called the
generator of the copul@. Denote byF; the conditional distribution function

The extreme tail dependence copula of the coputalative to a thresholdis given by
Ci(u,v) = P(U < F7 M u),V < F7 Y )|U <,V <t).

If C'is an Archimedean copula having a regularly varying differentiable generatofR _, with 0 <
o < 0o, then
lim Cj(u,v) = C¢(u,v), (23)

t—0t
forall 0 < u,v < 1. The limit copula in this resulk;‘gl, is the Clayton copula with parameter> 0
defined by
Cu,v) = (W™ + 0 = 1)~ Ve,

for0 < uw,v < 1. ( ) show that the conditiony € R_, is a very natural one
which holds for several known examples.

For the one hour pseudo—returns of DEM and J%(wli),ﬁgn(m)) with: = 1,...,n, we
considered several thresholdéoth in the joint left as well as in the joint right tails) and fitted copula
modelsC}. The thresholds and the resulting data are to be found in Fifuurdence we want to model

Oy (u,v) = P(U < F7Nu),V < F7 Y o)|U <t,V <t)

as well as
Cyi (u,v) = P(U < F7Hu),V < F7H)|U >,V > t).

In each case we fitted a list of copula models including the Gaussigaumbel, Frank, Clayton,

28



e

L

LED

L

H ] H
a a a z a a -4 F a a 4 2 o
(01 -=g=_] LEDTE LeoTe
o o o
L] o -

LB
LED

Ly
L
a

Figure 15:The bivariate excesses of the one hour returns for different thresholds.
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Figure 17:Comparison of the AIC values for the different thresholds.

survival Gumbel, survival Clayton and Farlie—Gumbel-Morgenstern copulas. For the definition of the
copulas used, see ( ), ( ) andJoe( ). The “survival” stands for the

copula applied to minus the random variables (hence left and right tails are exchanged). The results
are reported in Table4 and5 where the models fitted are ranked by Akaike’s information criterion.

In Table4 are the results fo€’,—-. The second column contains the number of observations below

in percentage of the total data. For theopula, the first parameter estimate is the correlation and the
second is the degrees of freedom. The Clayton copula is always the best one. Remember that the best
fitting for the dependence structure of the full hourly data set was attained withctiygula, although

without passing the goodness—of—fit test. Note that, for the considered thresholds, the Clayton parameter
ranges fromy = 0.556 to & = 0.609 which corresponds to a Kendall tau coefficient between(.217

and7 = 0.233 (for the Clayton copula with parameter - = «/(« + 2)). Table5 contains the results

for Cy+. In this case, the survival Clayton copula yields the best fit. In this case the survival Clayton
parameter varies betweén= 0.574 anda = 0.666, corresponding to a Kendall tau frofn= 0.223 to

7 = 0.250. Hence showing a slightly stronger dependence than for simultaneously small returns. Both
tables are summarised graphically in Figtii(similar to Figurel?2 for the full copula data).
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Threshold  n. obs. Model Estimate s.e. AlC p-value

Clayton 0.583 0.059 -132.19 0.99

Surv. Gumbel 1.295 0.034 -122.04 0.99

t 0.335;13.69 0.033;8.219 -88.00 0.99
0.03" 759 Gaussian 0.336 0.030 -86.79 0.92
(0.98%) Frank 2.031 0.227 -78.13 0.95

F-G-M 0.873 0.086 -70.48 0.40

Gumbel 1.195 0.033 -41.71 0.89

Surv. Clayton 0.238 0.052 -21.81 0.45

Clayton 0.561 0.043 -227.74 0.98

Surv. Gumbel 1.298 0.025 -227.13 0.99

t 0.342; 8.40 0.025; 2.31 -188.48 0.97
0.05~ 1376 Gaussian 0.348 0.022 -173.46 0.68
(1.77%) Frank 2.070 0.169 -147.70 0.78

F-G-M 0.863 0.062 -129.49 0.10

Gumbel 1.223 0.024 -110.96 0.78

Surv. Clayton 0.305 0.039 -72.38 0.23

Clayton 0.556 0.035 -350.71 0.99

Surv. Gumbel 1.283 0.020 -330.20 0.93

t 0.330; 11.44 0.019;3.35  -248.47 0.95
0.07 2112 Gaussian 0.328 0.018 -236.91 0.79
(2.72%) Frank 1.999 0.135 -216.32 0.84

F-G-M 0.903 0.054 -204.21 0.17

Gumbel 1.200 0.019 -132.03 0.86

Surv. Clayton 0.244 0.031 -66.80 0.27

Clayton 0.558 0.028 -547.96 0.91

Surv. Gumbel 1.289 0.016 -529.62 0.61

t 0.340; 13.43  0.015; 3.62 -418.10 0.85
0.1- 3273 Gaussian 0.342 0.014 -403.71 0.81
(4.21%) Frank 2.046 0.108 -352.09 0.74

F-G-M 0.897 0.040 -326.39 0.07

Gumbel 1.209 0.015 -230.55 0.81

Surv. Clayton 0.273 0.025 -140.27 0.15

Clayton 0.556 0.018 -1302.15 0.96

Surv. Gumbel 1.289 0.010 -1257.91 0.79

t 0.340;12.19 0.010;1.90 -1000.15 0.82
0.2- 7807 Gaussian 0.339 0.009 -952.77 0.21
(10.0%) Frank 2.085 0.070 -870.88 0.47

F-G-M 0.905 0.026 -803.05 0.001

Gumbel 1.211 0.010 -555.75 0.50

Surv. Clayton 0.271 0.016 -324.74 0.01

Clayton 0.609 0.014 -2547.77 0.47

Surv. Gumbel 1.330 0.008 -2546.12 0.68

t 0.383;12.59 0.007;1.52 -2178.67 0.85
0.3° 13359  Gaussian 0.381 0.006 -2097.90 0.06
(17.2%) Frank 2.401 0.054 -1944.88 0.39

F-G-M 0.982 0.015 -1750.99 0.00

Gumbel 1.260 0.008 -1374.71 0.20

Surv. Clayton 0.348 0.012 -889.42 0.00

Table 4. Fitting results for bivariate excesses on the third quadrant of one hour returns for different

thresholds.
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Threshold  n. obs. Model Estimate s.e. AlC p-value

Surv. Clayton 0.601 0.060 -137.23 0.94

Gumbel 1.306 0.035 -130.25 0.97

t 0.343;8.42  0.034; 3.45 -98.15 0.98

0.97" 745 Gaussian 0.350 0.030 -93.00 0.91
(0.96%) Frank 2.048 0.229 -77.25 0.96

F-G-M 0.878 0.090 -68.27 0.33

Surv. Gumbel 1.221 0.033 -54.98 0.93

Clayton 0.278 0.054 -29.41 0.42

Surv. Clayton 0.666 0.046 -288.12 0.92

Gumbel 1.351 0.027 -280.52 0.57

Gaussian 0.403 0.021 -230.68 0.94

0.95" 1331 ¢ 0.400;23.09 0.022;16.97 -230.50 0.84
(1.71%) Frank 2417 0.172 -196.73 0.71

F-G-M 0.999 0.072 -189.17 0.25

Surv. Gumbel 1.267 0.026 -142.60 0.87

Clayton 0.359 0.041 -91.74 0.52

Surv. Clayton 0.597 0.036 -378.41 0.99

Gumbel 1.299 0.021 -350.57 0.92

t 0.339;11.25 0.020;3.40 -260.50 0.95
0.93" 2014  Gaussian 0.344 0.018 -249.74 0.92
2.59%) Frank 2.032 0.139 -212.26 0.86

F-G-M 0.896 0.054 -196.21 0.15

Surv. Gumbel 1.203 0.020 -131.48 0.93

Clayton 0.248 0.032 -69.92 0.30

Surv. Clayton 0.583 0.028 -575.19 0.93

Gumbel 1.299 0.017 -550.75 0.78

t 0.345;11.97 0.016;3.13  -428.26 0.89
0.9" 3167  Gaussian 0.351 0.014 -413.18 0.82
(4.07%) Frank 2.050 0.110 -340.33 0.83

F-G-M 0.896 0.043 -309.91 0.05

Surv. Gumbel 1.215 0.016 -236.88 0.80

Clayton 0.277 0.025 -141.00 0.10

Surv. Clayton 0.574 0.018 -1376.35 0.99

Gumbel 1.298 0.010 -1327.02 0.83

t 0.345;10.76  0.010;1.56 -1055.79 0.87
0.8" 7765 Gaussian 0.348 0.009 -1001.24 0.27
(9.99%) Frank 2.091 0.071 -868.78 0.41

F-G-M 0.910 0.026 -797.18 0.00

Surv. Gumbel 1.218 0.010 -599.50 0.41

Clayton 0.280 0.016 -352.28 0.01

Surv. Clayton 0.594 0.014 -2459.31 0.84

Gumbel 1.315 0.008 -2426.10 0.60

t 0.366;11.63  0.007;1.36 -2014.98 0.75
0.7" 13300 Gaussian 0.367 0.007 -1928.50 0.09
(17.1%) Frank 2.253 0.054 -1718.03 0.27

F-G-M 0.954 0.018 -1561.01 0.00

Surv. Gumbel 1.242 0.008 -1226.49 0.22

Clayton 0.320 0.012 -770.77 0.00

Table 5: Fitting results for bivariate excesses on the first quadrant of one hour returns for different

thresholds.
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6 Conclusion and further work

In this paper we analysed the dependence structure within two—dimensional, high—density FX return
data. The methods used are copula modelling together with statistical techniques for extremal clustering.
An overall picture emerged that is as follows: At all time horizons the data can be fitted best with
t-copulas with successively higher degrees of freedom as the time horizon increases. Note that the t-
copula is rejected for the shortest horizons because of the large amount of data. This means that the
t-copula has not enough structure to properly describe the details which can be discerned with such a
large sample. The test for ellipticality is not rejected except for the 1 hour and 2 hours horizons if the
margins are transformed to t-distribution with the number of degrees of freedoms adjusted to the result of
the copula fit. With the empirical margins, ellipticality is rejected for horizons of 8 hours and shorter. The
spectral measure, however, shows pronounced peaks in the diagonals for all time horizons. An analysis
of the multivariate excesses of hourly returns shows that the lower left tails are best described with
Clayton/survival Gumbel copulas while the upper right tails are best described with Gumbel/survival
Clayton copula. These results are predicted by theory.

Our results extend the univariate stylized facts to the bivariate case and give valuable indications for
time series models. However, further work is no doubt necessary at several levels. For instance:

e Though we introduced a method for multidimensional deseasonalisation, more work on this topic
is needed. This not only for higher dimensional data, but also for different types of data. We
thrust our results to be fairly insensitive with respect to changes in the deseasonalisation used for
the time horizons investigated. For time horizons larger than one day deseasonalisation has to be
done differently, as discussed in Section 2.3.4. Besides the method presented in S8ctian
analysed the data also using different time transformation tools.

e Throughout, we used a static stochastic model. As in the one—dimensional case, stationary models
allowing for a richer volatility structure (as there are GARCH and stochastic volatility effects) are
to be analysed. The methods introduced may then be used at the level of the residuals.

e There are several statistical issues which no doubt need a more detailed discussion. The large data
size at the high—frequency level would allow for non—(or semi-) parametric modelling. Also an
analysis taking a broader class of copulas into account could be useful; we analysed the data using
several mixture classes of standard copulas (as for instance i ( )). The results
obtained differed not significantly.
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