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ABSTRACT

Uniquely among the dwarf spheroidal (dSph) satellite galaxies of the Milky Way, Fornax hosts
globular clusters. It remains a puzzle as to why dynamical friction has not yet dragged any of
Fornax’s five globular clusters to the centre, and also why there is no evidence that any similar
star cluster has been in the past (for Fornax or any other tidally undisrupted dSph). We set up
a suite of 2800 N-body simulations that sample the full range of globular cluster orbits and
mass models consistent with all existing observational constraints for Fornax. In agreement
with previous work, we find that if Fornax has a large dark matter core, then its globular
clusters remain close to their currently observed locations for long times. Furthermore, we
find previously unreported behaviour for clusters that start inside the core region. These are
pushed out of the core and gain orbital energy, a process we call ‘dynamical buoyancy’. Thus, a
cored mass distribution in Fornax will naturally lead to a shell-like globular cluster distribution
near the core radius, independent of the initial conditions. By contrast, cold dark matter-type
cusped mass distributions lead to the rapid infall of at least one cluster within At = 1-2 Gyr,
except when picking unlikely initial conditions for the cluster orbits (~2 per cent probability),
and almost all clusters within Az = 10 Gyr. Alternatively, if Fornax has only a weakly cusped
mass distribution, then dynamical friction is much reduced. While over Az = 10 Gyr this still
leads to the infall of one to four clusters from their present orbits, the infall of any cluster
within At = 1-2 Gyr is much less likely (with probability 0-70 per cent, depending on At
and the strength of the cusp). Such a solution to the timing problem requires (in addition to a
shallow dark matter cusp) that in the past the globular clusters were somewhat further from
Fornax than today; they most likely did not form within Fornax, but were accreted.

Key words: galaxies: haloes — galaxies: kinematics and dynamics — galaxies: structure.

oldest GCs in the Milky Way with ages of the order of a Hubble time
(Buonanno et al. 1998, 1999; Mackey & Gilmore 2003b; Greco et al.

The Fornax dwarf spheroidal (dSph) galaxy is the most massive
undisrupted dSph satellite of the Milky Way (Walker et al. 2009).
Like all dSphs it is dark matter dominated even in its central regions.
Itis unique among the undisrupted dSphs in having globular clusters
(GCs); it has five, with three of them at a projected distance outside
of the half-light radius (see Table 1). There is also evidence of
two shell-like structures, which may be the remnants of a merger
occurring more than 2 Gyr ago (Coleman et al. 2004, 2005).

One apparent paradox about these clusters is that, because they
appear to orbit in a massive background of dark matter, they should
be affected by dynamical friction which will cause their orbits to
decay. Fornax’s GCs are metal poor and very old, comparable to the
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2007). During their lifetime it would be expected that they fall to the
centre of Fornax and form a nuclear star cluster (Tremaine, Ostriker
& Spitzer 1975; Tremaine 1976). However, no bright stellar nucleus
is observed in Fornax, or in fact any other undisrupted dSph. This is
known as the timing problem for Fornax’s clusters because it seems
highly improbable that Fornax’s GCs would be observed just briefly
before they fall into the core.

Several solutions to the timing problem have been proposed. Oh,
Lin & Richer (2000) suggested two ideas: first, that a population of
black holes transferred energy to the clusters through close encoun-
ters and secondly, that a strong tidal interaction between the Milky
Way and Fornax could inject energy into their orbits. There is no
observational evidence for a population of black holes in the centre
of Fornax, while the currently observed proper motion indicates that
the orbit of Fornax around the Milky Way never takes it closer than
at present (Dinescu et al. 2004; Lux, Read & Lake 2010). Thus, both
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Table 1. Data for the Fornax system. Column 3 shows the most likely mass
from column 2. r. is the King (1962) model core radius for the GCs and
the half-light radius for the dSph. Ry, is the projected distance of the cluster
from the centre of Fornax. dys is the distance to each cluster and Avjes
is the line-of-sight velocity relative to Fornax itself. References: “Mackey
& Gilmore (2003a), bMackey & Gilmore (2003b), “Greco et al. (2007),
9Mateo et al. (1991), “Walker et al. (2009), /Buonanno et al. (1999), and
8Mateo (1998).

Object  logM* M ret Ry dos Avjs?
M)  (10°Mg)  (pe) (kpe) (kpc) (kms™")
dSph  8.15T01%¢  1420¢ 668 — 137 £ 135/ -
138 + 8.0¢

GCl 457+£0.13  0.37 10.03 1.6 130.6 + 3.0 -
GC2  526+£0.12 1.82 581 1.05 136.1 £3.1° —12+4.6

GC3 556£0.12 3.63 1.60 043 1355+3.1> 7.1+39
GC4 5.12+£024 1.32 1.75 0.24 134.0 £ 6.0¢ 59+34
GC5 525+£0.20 1.78 1.38 143 140.6 + 3.2° 8.7 +3.6

ideas appear to be disfavoured. Angus & Diaferio (2009) proposed
that all but the most massive cluster could avoid sinking into the cen-
tre of Fornax if their current distance is much larger than projected
but still within the tidal radius of Fornax of ~1.9 kpc. However, this
(i) requires special arrangement of the current projected positions
and (ii) stills leaves a timing problem for the most massive cluster
and is therefore not a complete solution. (Moreover, their analysis
was based on Chandrasekhar’s simple dynamical friction formula,
which is not suitable for accurate estimates.)

Using numerical simulations and analytic arguments Goerdt et al.
(2006) proposed that the current distribution of the Fornax clusters
can be explained by the diminution of dynamical friction on the
edge of a cored matter distribution which causes the clusters to
remain outside the dark matter core radius. Dynamical reasons for
this ‘core-stalling’ effect have been explored in Read et al. (2006b),
Inoue (2009) and Cole, Dehnen & Wilkinson (2011). Support for
this result was provided by Sdnchez-Salcedo, Reyes-Iturbide & Her-
nandez (2006) who showed that a cored matter distribution in dwarf
galaxies can significantly delay the infall times of the GCs (even if
Chandrasekhar’s simple dynamical friction formula is used).

Measuring and/or constraining the dark matter distribution in
Fornax is interesting as a test of our current cosmological model.
Collisionless cosmological simulations (which ignore the effects
of baryons) predict a universal density distribution for dark mat-
ter haloes, with a central density cusp p o« 7 where y ~ 1
(Dubinski & Carlberg 1991; Navarro, Frenk & White 1996b). If
the dark matter distribution in Fornax is found to deviate strongly
from this prediction, this could imply that baryons have an impor-
tant dynamical role in shaping the central dark matter distribution in
dwarf galaxies (e.g. Navarro, Eke & Frenk 1996a; El-Zant, Shlos-
man & Hoffman 2001, Read & Gilmore 2005; Goerdt et al. 2010;
Cole et al. 2011; Pontzen & Governato 2012), or that we must turn
to more exotic cosmological models (e.g. Tremaine & Gunn 1979;
Hogan & Dalcanton 2000; Kochanek & White 2000; Strigari et al.
2006; Villaescusa-Navarro & Dalal 2011; Maccio et al. 2012).

The first evidence that dSphs may have a constant density core
came from Kleyna et al. (2003) who found indirect evidence for a
core in the Ursa Minor dSph. The Milky Way dSphs have been ob-
served intensively in recent years, primarily because these systems
are the most dark matter dominated known. They contain mostly
intermediate or old stellar populations which are likely to be well
mixed in the dark matter potential because star formation ceased
many dynamical times ago. This in turn implies that they are ideal

laboratories for studying the mass structure of their dark matter
haloes. The intense observational effort means that there is a wealth
of kinematical data available to form the basis for theoretical models
of these systems. One line of approach has been based on the Jeans
equations where a parametric light profile for the stars is assumed
and a velocity dispersion profile is derived based on an underly-
ing parametrized dark matter profile (Pefiarrubia, McConnachie &
Navarro 2008; Strigari et al. 2008; Walker et al. 2009). This ap-
proach has its drawbacks (see e.g. Amorisco & Evans 2011b). Most
importantly, the degeneracy between the mass profile and the veloc-
ity anisotropy (which is poorly constrained), means that both cusped
and cored density distributions are consistent with even the latest
data. However, modelling the dSphs as two chemically distinct pop-
ulations with different scalelengths, it appears that this degeneracy
can be broken (Battaglia et al. 2008; Amorisco & Evans 2011a,b;
Walker & Pefiarrubia 2011); the results favour a cored density dis-
tribution in the two dSph galaxies best analysed to date: Fornax and
Sculptor (but see Breddels et al. 2012).

In this paper, we follow the work of Goerdt et al. (2006) by
examining what the current location of the GCs can tell us about
Fornax’s mass distribution. Our work improves on this previous
analysis in several key respects: (i) we use several mass models
for the underlying potential in Fornax that sample the full range
consistent with the latest data, (ii) we use the latest data for Fornax’s
GCs as constraints on their phase space distribution and (iii) we run
thousands of N-body models to sample the uncertainties in the
cluster distribution and Fornax mass model.

This large search of the available parameter space allows us to
address whether or not there are multiple solutions to Fornax’s tim-
ing problem. To focus the discussion, we phrase the timing problem
as a contradiction with either of the following two hypotheses.

(1) The Fornax GC system is in a near steady-state; consequently,
none of the GCs should fall into the core of Fornax within a Hubble
time.

(i1) Our present cosmic epoch of observing Fornax is not special;
consequently, the system does not evolve significantly on a time-
scale short compared to a Hubble time. In particular, within 1-2 Gyr
none of the clusters should fall into the core of Fornax with high
probability.

The first hypothesis can be justified by the assumption that the
present state of Fornax’s GC system is also representative of its past.
This assumption, however, is not necessary, as one can easily think
of alternative scenarios. The second hypothesis, on the other hand, is
harder to avoid and is similar to the cosmological principle, though
here expressed in terms of the epoch of observation rather than its
vantage point and orientation. We will refer to contradictions with
these hypotheses as the long-term and immediate timing problem,
respectively.

This paper is organized as follows. Section 2 reviews the proper-
ties of the Fornax system relevant for our study, Section 3 details our
modelling approach and Sections 4 and 5 present the simulations
results and assess the probability that none of the five clusters will
sink into the core of Fornax within either 1-2 Gyr or a Hubble time.
Finally, in Section 6 we discuss the implications of our results and
draw our conclusions.

2 THE FORNAX SYSTEM

We summarizein Table 1 the most relevant data for our study and
their origin.

© 2012 The Authors, MNRAS 426, 601-613
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2.1 The dSph

As already discussed above, Fornax is the most massive of the
Milky Way’s dSph [except possibly for disrupted objects such as
Sagittarius (Sgr) dwarf] and unique amongst (undisrupted) dSph to
host a GC system. The very fact that Fornax can hold on to a GC
system implies that Galactic tides cannot be strong enough to pull
these clusters off. This in turn requires that its Galactic orbit never
carries Fornax too close to the Milky Way, where the tidal forces
become exceedingly strong.

Lux et al. (2010) estimate the peri-galactic radius of Fornax,
based on its observed position, distance, radial velocity and proper
motion to be 100-130kpc, which indeed is only slightly smaller
than its current distance of about 140 kpc (see Table 1).

Based on this result, we estimate the tidal radius for Fornax using
the method of Read et al. (2006a), where the dSph is modelled
as a spherical satellite orbiting the Milky Way represented by a
Hernquist (1990) model. We then solve equation 7 of Read et al.
(2006a), which accounts for the orbit of the satellite about the host
and the orbits of the stars within the satellite. We find a tidal radius
of 1.8-2.8kpc, based on the range of masses for Fornax given in
Table 2 and using the extremal values for the orbital data taken from
Lux et al. (2010) and a total (extended) mass for the Milky Way of
1-2 x 10” M.

2.2 The globular clusters

Our principal sources for GC data are those published by Mackey &
Gilmore (2003a,b) and Greco et al. (2007) who have carried out thor-
ough surveys of the Fornax globular clusters. For our purposes the
main data required are the clusters’ masses, sizes, three-dimensional
positions and velocities.

The best estimates for these quantities are given in Table 1. The
values for the core radius r. of each cluster are based on the surface
brightness profiles calculated in Mackey & Gilmore (2003a). These
are Elson, Fall & Freeman (1987, EEF hereafter) models and the
King (1962) model core radius r. is related to the EFF scale param-
eter a by r. = a(2¥? —1 1)"/2, where y is the power-law slope of
the surface brightness at large radii.

Fig. 1 plots the distribution of the five Fornax GCs in mass M
and projected radius R, from the dSph. There are two interesting
observations to be made from this figure. First, the radial distribution
of clusters is consistent with that of the stars within Fornax: there is
about half of the total cluster light within the stellar half-light radius
of 668 pc. There are two possible interpretations of this. Either it
is a coincidence, or the formation histories of the clusters and the
Fornax galaxy are closely related, in particular, the clusters formed
within the same entities as the stars.

Secondly, there is a weak correlation between M and R,,. In
particular, the lightest cluster is furthest away from Fornax and
the heaviest is the second closest. The remaining three are about

The mass distribution of the Fornax dSph ~ 603
10° ¢ rr E
3 | I
= 10 F ! E
= f : % ]
104 I | L : L | L | L
0 05 1 15

Figure 1. Distribution of the Fornax GCs in mass and projected distance
from the centre of the Fornax dSph. The dashed vertical line indicates the
stellar half-light radius of the dSph.

equally massive and cover a spread of R;,. This correlation is in the
sense expected from mass segregation such as driven by dynamical
friction.

3 MODELLING APPROACH

The basis for our approach is to take the most up-to-date obser-
vations of Fornax’s GCs and combine these with plausible mass
models consistent with the latest kinematic data for Fornax’s stars.
We then create, for each Fornax mass model, initial conditions for
the Fornax GC system, which are consistent with the relevant ob-
servations, and evolve them for 10 Gyr into the future.

3.1 Mass models for Fornax

Wilkinson et al. (2002) and Kleyna et al. (2002) demonstrated that
the mass-anisotropy degeneracy inherent in kinematic modelling
can be broken using distribution-function modelling of sufficiently
large kinematic data sets. To take full advantage of the recent data
set of more than 2000 individual stellar velocities in Fornax (Walker
etal. 2009), Wilkinson et al. (in preparation) apply the Markov chain
Monte Carlo (MCMC) technique to dynamical and mass models of
Fornax. The mass profile and stellar luminosity profile are mod-
elled independently using spherical double-power-law profiles of
the form

0

O\ A oo
pmudel(r) = Po <*> (1 + (*) ) . (1)
s I's

The stellar distribution functions are calculated numerically fol-
lowing the approach of Gerhard (1991) and Saha (1992) allowing
various velocity anisotropy profiles. As in the earlier work (Kleyna
et al. 2002; Wilkinson et al. 2002), the models are compared to the
data on a star-by-star basis.

Table 2. Parameters for halo mass models (equation 1) used in the simulations (¥, ¥ 00> 1, Moos I's)s
as well as the resulting logarithmic density slope y(r) = —dln p/dInr at 100 pc and the mass within
1.8 kpc, our lower limit for the tidal radius of Fornax. Radii are given in kpc and masses in M.

Model Name Y0 Yoo n Moo Ts Yioope M (1.8kpc)
LC Large core 0.07 465 37 800x10% 14 0.1 4.12 x 108
wC Weak cusp 0.08 465 277 123x10% 0.62 0.1 1.03 x 108
IC Intermediate cusp ~ 0.13 424 137 151 x 10% 0.5 0.5 1.03 x 108
Ne Steep cusp 0.52 427 093 198x10% 0.80 1.0 1.07 x 108

© 2012 The Authors, MNRAS 426, 601-613
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Further details of the modelling and its results will be presented
elsewhere. Here, we simply use the above MCMC model ensemble
to inform our choice of halo models. Rather than considering a
single best-fitting model of Fornax, we select four mass models,
each of the form (1) but truncated at very large radii via

P(r) = Pmodel () sech(r /10 kpc), @)

and with parameter values as detailed in Table 2. These models
span the range of models consistent with the kinematic data. The
three models, weak cusp (WC), intermediate cusp (IC) and steep
cusp (SC), have parameters v, ¥, 1, 's and M, directly taken
from the MCMC chain outputs, and refer to the highest likelihood
models with density slope

dlnp
dinr

of, respectively, 0.1, 0.5 and 1.0 at » = 100 pc.

The fourth model, large core (LC), was motivated by the recent
work of Walker & Pefiarrubia (2011). These authors applied a non-
parametric statistical modelling technique to two chemically distinct
stellar populations within Fornax to define the enclosed mass at
the half-light radii of the two populations. The resulting model
possesses an LC with near-constant density and y ~ 0.1 for r <
500 pc.

The radial profiles of density, enclosed mass and logarithmic
density slope of the four mass models are shown in Fig. 2 for com-
parison. These models cover a wide range of inner density slopes,
including shallow profiles, such as those suggested by Gilmore
et al. (2007) based on observations of dSph galaxies, but also a SC,
such as those predicted by cosmological simulations (Dubinski &
Carlberg 1991; Navarro et al. 1996b). Note, however, that our mod-
els represent the overall mass distribution of Fornax including both
the stars and the dark matter.

Fig. 3 shows the stellar velocity dispersion for our three MCMC-
based Fornax models (curves) plotted together with the observed
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Figure 2. Radial profiles of density (top), enclosed mass (middle) and
logarithmic density slope (bottom) for the four mass models used in our
simulations (see also Table 2). The data points in the middle panel correspond
to the mass estimates by Walker & Pefiarrubia (2011) for two chemically
distinct subpopulations.
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Figure 3. The observed stellar velocity dispersion for Fornax as a function
of projected radius (Walker et al. 2007), and the simple predictions obtained
for our three MCMC-based Fornax mass models used in this study under
the assumption of isotropic velocities (see Section 3.1). The purpose of this
comparison is not to assess the relative merit of the mass models, but merely
to demonstrate that their normalizations are reasonable.

velocity dispersion as measured by Walker et al. (2007). The model
velocity dispersions were calculated assuming an ergodic distribu-
tion function with a Plummer (1911) density profile with core radius
668 pc for the stellar component, but the relevant halo model for the
underlying mass distribution. In view of the fact that these simple
ergodic models have not been fitted to the velocity-dispersion data
(apart from the assumed mass models), they provide a surprisingly
good description of these data. (This and the similarity between the
model predictions are exactly the reason why inferring the mass
profile from data like these is hardly possible.)

Modelling the stellar velocity dispersion of a single stellar popu-
lation as described above is not appropriate for the LC model. This
model has been normalized to roughly agree with the estimates for
the enclosed mass derived from two different tracer populations by
Walker & Pefarrubia (2011) and plotted in Fig. 2.

3.2 Modelling the globular cluster system

If we compare the distance to the Fornax dSph with the distances to
the individual clusters in Table 1, it can be seen that the measure-
ments of the distances are not accurate enough to provide reliable
three-dimensional locations within the dSph. We therefore draw
for each simulation random line-of-sight distance offsets to Fornax
from a uniform distribution between 0 and 2 kpc, the approximate
tidal radius of the system (Walker & Pefiarrubia 2011). For the ve-
locities, we choose a similar statistical approach by sampling the
full space velocity from a bi-variate Gaussian distribution, specified
by the total velocity dispersion ¢ and the anisotropy parameter

092 —l—a(g

207

=1 C))
This is done in such a way that for clusters GC2-5 the line-of-sight
velocity matches the observed value (which may be considered a
prior for our sampling).

As the spatial distribution of the clusters is consistent with that
of the stars in Fornax, it seems reasonable to base our kinemati-
cal parameters for the clusters on the observed stellar kinematics.
The measured stellar velocity dispersion is approximately flat over
the range of radii observed (Walker et al. 2007; Lokas 2009), and
we use 0 = 10.5kms™!. For the velocity anisotropy we assume

© 2012 The Authors, MNRAS 426, 601-613
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B = —0.33 as suggested for the stars (Lokas 2009), i.e. a mild
tangential bias, which gives o, ~ 9.5kms™! and oy &~ 11kms™'.

With this modelling approach, in particular the wide range of
initial radii sampled, we generate many different orbits for the GCs,
covering the complete range of all possible orbits for them. By
allowing such a wide distribution of cluster orbits, we can explore
the effects of possible narrow choices for the cluster distribution
function, such as preferably circular orbits, afterwards by restricting
our analysis correspondingly.

3.3 N-body simulations

For each Fornax mass model, we ran 700 N-body simulations, each
with different initial conditions for the five clusters.

The individual cluster positions and velocities are drawn as de-
scribed in the previous subsection and their masses are taken from
Table 1. The clusters are represented by individual massive but
softened particles with density profiles

p(r) oc (r* +€*) 772, ®)

where € = 5 pc, comparable to the cluster core radii.

To generate the N-body initial conditions for the Fornax mass
models, we sample positions from the density (2) and velocities
from self-consistent ergodic distribution functions f(E), which only
depend on the specific orbital energy E, thus giving everywhere
isotropic velocity distributions. The forces between particles repre-
senting Fornax are softened with softening length € = 10 pc.

We enhance the resolution of the N-body model in the inner
parts (where dynamical friction occurs) by increasing the sampling
probability by a factor g(E)~' which is compensated by setting
particle masses w; proportional to g(E;). We used

n
a(E) o L0 E)
reire(E) + 15
with g = 4 the ratio between maximum and minimum particle mass
and rg.(E) the radius of the circular orbit with specific energy
E. Testing this method for our particular purposes, we found that it
allows a reduction of N to half at the same central resolution without
any adverse effects. Based on convergence tests of decaying cluster
orbits (see Appendix A), we use N = 2 x 10° particles to sample
each of the Fornax mass models.

The mass ratio of the lightest background particle in all our
models to the lightest cluster is 1:1680 (in model WC) and that
of the heaviest particle to the lightest cluster 1:62 (in model LC).
The clusters orbit mainly within the high-resolution region of our
models defined by the volume where the resolution is better than
that would have been achieved with the same number of particles
of constant mass (within approximately 2 kpc).

The simulations are performed using the publicly available
N-body code GYRFALCON, which uses Dehnen’s (2000, 2002) O(N)
algorithm for force approximation. The total energy conservation
was typically a few parts in 10,

Q)

4 RAW SIMULATION RESULTS

As detailed at the end of Section 3.2, our simulations cover a wide
range of initial cluster orbits, some of which may not be very realis-
tic. In this section, we ignore any implications of our sampling of the
initial cluster orbits and simply consider the individual simulations
on their own merit.

For each simulation, we need to quantify how much each simu-
lated cluster has suffered from dynamical friction and has sunken

© 2012 The Authors, MNRAS 426, 601-613
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into the core of the dSph. In this respect, it is clearly better to use an
orbital property instead of an instantaneous quantity, such as radius
(projected or intrinsic). Therefore, we use as our main characteristic
the apo-centric radius r,,, of the instantaneous cluster orbit. This is
obtained from the cluster’s instantaneous angular momentum L and
specific energy E as the larger of the two radii for which

LZ
E=L L om (7
2r

(the smaller is the peri-centric radius). ®(r) is the instantaneous
gravitational potential of the N-body model, estimated using spher-
ical averaging. For a small fraction of simulated clusters, the initial
orbits were unbound. Such simulations are discarded only for the
analysis of the affected cluster orbit, but not for the others.

For each of the four mass models of Table 2, Fig. 4 plots the
distributions of each cluster orbit in initial and final r,, at t = 2 and
10 Gyr in the left-hand and right-hand subpanels, respectively.

4.1 Orbital decay after 2 Gyr

After 2 Gyr (left-hand subpanels in Fig. 4) ryp, is significantly less
than initially for most orbits with initial r,p, < 2-3 kpc, except for
model LC, which we discuss separately in Section 4.3.

However, both GC1 (red) and GC5 (cyan) rarely sink substan-
tially, and GC1 only ever falls into the centre of Fornax for the most
cusped model SC. This is not surprising since GC1 is not only by
far the lightest of the five clusters (see Table 1), but also the one
furthest away (in projection) from the centre of Fornax and hence
less likely to pass through high-density regions. As such it requires
most dynamical friction to fall into Fornax, but will suffer least,
since drag force ocmass”p. Though GCS is five times more mas-
sive, it has the second greatest projected distance from the centre
of Fornax and hence also suffers significantly less friction than the
other clusters for most orbits sampled.

The remaining three clusters GC2—4 are all dragged inwards
when initially 7,5, <2-3 kpc, presenting the Fornax timing problem.
For all of these clusters, orbits with initial r,p, S 1kpc show similar
effects of dynamical friction, presumably because orbits with apo-
centres as small as that spend sufficient time in high-density regions
to suffer substantially from dynamical friction.

Since R, < rypo, an initial r,p, ~ Lkpc is the absolute possible
minimum for GC2, which is observed at R, = 1.05kpc. Conse-
quently, GC2 only rarely falls in as much as GC3 and GC4.

Apart from the initial 7., the infall of these clusters depends
most strongly on the inner density profile of the background mass
distribution. Model SC shows the greatest effect of dynamical fric-
tion on the clusters. For GC3 and GC4, a significant proportion of
the simulations find their instantaneous apo-centres inside 30 pc.
GC2 does not show such a marked effect but a number of simula-
tions already have an apo-centre inside 100 pc.

By contrast, model WC shows significantly reduced dynamical
friction. GC3 again is most affected. However, even in the most
extreme cases, the apo-centres have decayed to no less than ~100 pc
from the centre. In this model, the logarithmic density slope y
(equation 3) was initially only 0.1 at 100 pc, which implies a near-
flat density profile within this radius. As expected, model IC is
intermediate between models WC and SC.

4.2 Orbital decay after 10 Gyr

After 10 Gyr, the trends shown at 2 Gyr are amplified. Four of the
GC:s fall into Fornax for most simulations. Only GCl still shows
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Figure 4. Apo-centric radii r,po of the instantaneous cluster orbits after # = 2 and 10 Gyr for all simulations per halo model (as indicated) plotted versus rapo
of the initial orbit. The shaded region indicates the most likely value for the current tidal radius of Fornax. Any initial r,p, greater than that would have been
strongly affected (likely removed from Fornax) by the Galactic tidal field (not modelled in our simulations). The thin horizontal lines indicate the observed
projected radius Rops for each cluster, which is necessarily less than its initial rupo. Any final rap, below these lines would be inconsistent with the present

cluster location.

not much evidence of migrating to the centre of Fornax. All clusters
have a small fraction of simulations where they remain at large
Tapo- This requires the initial r,p, to be large as well. In general,
Tapo decreases at least slightly, even when initially large (the few
significant increases of r,,, are caused by cluster encounters).

For the most cusped model SC and to some degree for model IC
too, GC3, GC4 and even GC2 can obtain values for r,,, down to
close to their softening length of 5 pc, i.e. they are essentially at the
very centre of the galaxy. For model WC, this is not the case, i.e.
none of the clusters can reach the very centre of the galaxy in this
case. However, the vast majority of simulations do not obtain such
very small ryy,.

We observe that the distributions of ry,, after 10 Gyr are quite
similar between models WC, IC and SC (in particular the latter two),
when GC3 has settled at 7,5, < 100 pc for most of our simulations, in
fact all simulations with initial r,,, < 2.8 kpc, and the distributions

for rypo of GC4 are remarkably similar. For the most massive GC3,
this similarity reflects the fact that the cluster has essentially sunken
to the very centre of the galaxy.

However, this cannot explain the similarities for GC4, which we
think is caused by a similarity of the background mass profiles after
10 Gyr. The action of cluster dynamical friction causes dynamical
heating of the background particles dragging the clusters inwards.
This in turn erases the initial central density cusp (Read et al. 2006b;
Cole et al. 2011). Goerdt et al. (2010) discuss the formation of a
density core in this way and provide an empirical formula for the
expected core size created as the clusters fall to the centre. For
model WC this predicts a core radius of 262 pc which is larger
than our stalling radii but agrees within a factor of a few. However,
this formula fails to predict the behaviour of the clusters in the
IC and SC models as it gives stalling radii of 176 and 100 pc,
respectively.

© 2012 The Authors, MNRAS 426, 601-613
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Figure 5. The initial (black) and final (+ = 10 Gyr, coloured) density profiles
of six halo models (stacked N-body models) from simulations where either
three clusters sank into Fornax or none. The dashed curves represent £1o.

In Fig. 5, we plot the density profiles of the final models for
cases with and without cluster infall. For the SC and IC models, the
central density profiles are significantly reduced and in fact have
become much more similar to each other. However, only for model
SC is this reduction slightly stronger when clusters have reached
the core of Fornax. In all cases, the density still keeps on increasing
inwards, and hence does not really correspond to a constant-density
core in the classical sense'.

4.3 The large core model

The LC model shows very unusual behaviour. After 2 Gyr, all
GCs have apo-centres closely clustered together with a strong peak
at ~1 kpc. This becomes even more pronounced at 10 Gyr. Detailed
examination of the cluster orbits in individual simulations shows
two interesting behaviours. First, orbits with initial 7,p, = 900 pc
decay move in quite rapidly (mostly in less than 2 Gyr) to ryp, ~
900 pc, where they stall. This confirms the work of Goerdt et al.
(2006) and Read et al. (2006b) which showed that massive satel-
lites orbiting outside of an harmonic density core stall at the edge
of the core. This behaviour is believed to be due to the reduction
of dynamical friction due to the resonant effects of particles in the
harmonic core.

Secondly, any cluster which has an initial orbit within the har-
monic core moves out to the edge of the core. Fig. 6 shows the
evolution of the orbit of GC4 in one of our simulations. As can
be seen the cluster orbit absorbs energy as it expands. The overall
conservation of energy for the simulation is not affected by this
change and energy is conserved to approximately three parts in 10*
during the simulation. This behaviour is unexpected and we do not
believe that it has been reported previously, though there is some ev-
idence for orbital radii expanding again after falling in at the edge of

! For model WC, the density actually increases slightly at r < 100 pc.
This is presumably caused by a slight instability of this model, which has
df/dE > 0for somerange of specific energies E and hence may be unstable
(see Binney & Tremaine 2008, section 5.5).

© 2012 The Authors, MNRAS 426, 601-613
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Figure 6. The evolution of the orbit of GC4 in one of our simulations
with the LC model. The top and middle panels show the development
of the orbital radius and specific energy for GC4, respectively. The latter
grows after approximately 2 Gyr as the orbit moves outwards. The overall
conservation of energy (bottom panel) is not affected by this orbital change.

harmonic cores in what has been called the ‘kickback effect’ (Inoue
2009; Goerdt et al. 2010). We will discuss this further in section 6.

4.4 SUMMARY

The raw empirical results from our simulations can be summarized
as follows.

(i) Cluster orbits with large initial r.,, are not significantly
affected by dynamical friction, because these orbits spend no or too
little time in high-density regions, where frictional drag is exerted.
However, most simulations with initial 7., less than the current
tidal radius of Fornax suffer from dynamical friction.

(ii) Cluster GC3 is most likely affected by dynamical friction,
followed by GC4 and GC2, while clusters GC1 and GCS5 are least
likely affected after 2 Gyr. This ordering is expected from the masses
and initial projected radii of the clusters.

(iii) Forall except model LC, cluster GC3 always reaches the core
of Fornax within 10 Gyr (unless its initial orbit was unrealistically
large with r,,, > 2.8kpc beyond the present-day tidal radius of
Fornax), constituting the long-term timing problem.

(iv) The effect of dynamical friction at 2 Gyr is increasing with
the central mass density from model WC to SC, as expected from
Chandrasekhar’s dynamical friction formula.

(v) The effect of dynamical friction after 10 Gyr is more similar
for the three halo models with WC to SC than after 2 Gyr. This
similarity can be understood, at least qualitatively, by the stalling of
dynamical frictions as consequence of core formation.

(vi) Model LC shows no effect of dynamical friction, but rather
the opposite: ‘dynamical buoyancy’, when the clusters are pushed
out of the core. Like dynamical friction, this effect appears strongest
for the most massive cluster.

In particular, for a cold dark matter (CDM)-type SC model, al-
most all simulations with initial r,,, < 2.8 kpc (Fornax’s tidal radius)
suffer significantly from dynamical friction within 10 Gyr, or even
within only 2 Gyr. This reflects the Fornax timing problem and is
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in contradiction with the claims of Angus & Diaferio (2009) (as
discussed in Section 1), possibly because our sampling discourages
very nearly circular orbits, but the usage of Chandrasekhar’s simple
formula by these authors certainly plays a role too.

5 THE PROBABILITY OF CLUSTER SINKING

Our results presented in the previous section and Fig. 4 demon-
strate that the more massive clusters GC3 and GC4 will fall into the
core of Fornax within 2 Gyr or less, unless either the mass distri-
bution of Fornax has a core or the cluster has an initial orbit with
large apo-centric radius ryp,. This latter scenario requires that the
observed cluster position be either near peri-centre (special orbital
phase) or has intrinsic radius much larger than projected (special
projection geometry). Either is atypical, implying that this scenario
is inherently unlikely. In this section, we try to quantify just how
unlikely.

Since we know neither the current orbital phase nor projection
geometry for any of the GCs, our most sensible approach is to
marginalize over both, assuming uniform distributions. However,
as we will see, our sampling of initial cluster position and veloc-
ity did not generate a uniform sampling in these quantities. As a
consequence, any quantitative statements based on the raw results
about the probability of cluster infall will be biased. In order to
eliminate this bias, we must emulate a uniform sampling of initial
orbital phases and projection geometries.

To this end, we need a quantity for each simulated cluster which
would follow a known distribution where orbital phase and pro-
jection angle are drawn randomly. A natural such quantity is the
fraction

P(R < R,|orbit)

of orbital phases and projection geometries for which the projected
radius R is smaller than actually observed for the corresponding
initial cluster orbit (see Appendix B for a formula and its deriva-
tion). Under our basic assumption of random orbital phase and
projection, p(R < R, |orbit) is uniformly distributed between 0 and
1, in particular p(R < Olorbit) = 0 and p(R < ryp|orbit) = 1. We
can therefore emulate a uniform distribution in orbital phase and
projection geometry by a uniform distribution in p(R < R;|orbit)”.

In Fig. 7, we plot for each simulated cluster and each halo mass
model the instantaneous apo-centric radius 7y, after 2 and 10 Gyr
against p(R < R, |orbit). For all mass models, there is a clear corre-
lation between p(R < R,|orbit) and r,,, at later times in the sense
that larger r,,,(¢ > 0) are achieved only when the initial projected
radius was relatively small for the initial orbit. This makes perfect
sense: for small p(R < Rp|orbit) the orbit spends most of its time at
r > R, with little dynamical friction.

What is somewhat surprising, however, is how strong the corre-
lation between p(R < R, |orbit) and r,p,(f > 0) actually is, given that
the initial orbits cover a wide range of eccentricities. For simulated
clusters with initial r,p, < 2.8 kpc, we have split their initial orbits
into low and high eccentricity

Tano — Foeri
e = apo peri (8)

Tapo +r peri

2 In addition to p(R < Rplorbit) one may also utilize the fraction p(v; <
Ulos|Rp, orbit) of the line-of-sight velocity to be less than observed. This frac-
tion should also be uniformly distributed independently of p(R < Ry |orbit),
and thus allow an additional independent constraint. However, its computa-
tion is more involved and it seems unlikely that much would be gained from
it, mainly because of the relatively large uncertainty of the observed vjqs.

with open symbols and crosses in Fig. 7 corresponding to e < 0.4
and e > 0.4, respectively. For the halo models IC and SC, we can
see some differentiation between these two groups of initial orbits,
in particular at = 2 Gyr, in the sense one would expect: eccentric
orbits obtain smaller r,p, (because they have smaller initial 7, and
hence suffer more dynamical friction) unless the observed R was
initially untypically small (when they spend most of their time at
large radii).

As is evident from Fig. 7, the distributions of p(R < R, |orbit)
from our simulations are not uniform: there are many more simu-
lations with small p(R < R,|orbit), in particular for clusters with
small R, such as GC3 and GC4.* This non-uniformity is simply a
consequence of our sampling procedure, which favours orbits with
Tapo > R, (in particular for clusters with small R, such as GC3
and GC4) resulting in non-uniform sampling of orbital phase and
projection geometry and hence introducing a bias.

Since rapo(t > 0) is strongly correlated with p(R < R,|orbit),
we can read off Fig. 7 for the unbiased probabilities of infall into
Fornax. For example, in model SC 7, (f = 2 Gyr) > 200 pc for GC4
(magenta) in almost all simulations with p(R < R, |orbit) < 0.1 but
hardly for any simulation at larger p(R < R, |orbit), implying that
cluster GC4 will have r,,, > 200 pc after 2Gyr with ~10 per cent
probability in halo model SC.

A more quantitative procedure for removing the bias of our non-
uniform sampling of orbital phase and projection is to give each
simulated cluster orbit a weight such that the weighted distributions
of simulated orbits have, or at least are consistent with, a uniform
sampling. Obviously, the weight to choose is simply the recipro-
cal of the actual frequency f(p(R < Rpl|orbit)) of fractions p(R <
Ry |orbit) for all simulations of the same cluster in a particular halo
model. The probability for, say r.,0(f = 2 Gyr) > 200 pc for GC4,
is then obtained as the weighted fraction of simulations that obtain
Tapo(t = 2 Gyr) > 200 pc for this cluster.

Combining this for all clusters, we estimate the probability that
none of the five clusters when initially on orbit with r,,, < 2.8 kpc
(our upper limit for the tidal radius of Fornax) will fall into Fornax,
in the sense that r,,, < 100pc or <200 pc, within 1, 2 or 10 Gyr.
The results for each halo model are given in Table 3 (except for
model LC when no cluster ever falls into Fornax). Columns 2—4
give the probabilities based on all of our simulations. If we restrict
the analysis to high or low eccentricities (columns 5-7 and 8-10,
respectively) or to orbits with initial r,,, < 1.8 kpc (not given in
Table 3), the results are hardly altered.

In other words, these probabilities depend mainly on the halo
model and only weakly on the distribution function of the cluster
orbits. This is a direct consequence of the tight relation, seen in
Fig. 7, between p(R < R,|orbit) and r,p, at later times. This result
implies that we do not need to investigate further the implications
of different distribution functions for the initial cluster orbits.

6 CONCLUSIONS

The Fornax galaxy is unique among the Milky Way dSphs in having
five surviving GCs. These clusters are metal poor and very old —

3 For model LC, no simulation has small P(R < Rp|orbit) for clusters with
R, > lkpc. This is a consequence of the larger mass of this model which
implies that our sampling did not obtain any nearly unbound orbits with
large initial rypo.

© 2012 The Authors, MNRAS 426, 601-613
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Table 3. Probability, estimated as the fraction of orbital phases and projection geometries (con-
sistent with the observed projected cluster positions), that no cluster with initial rypo < 2.8 kpc
(Fornax’s tidal radius) has reached rypo < 100 pc or 200 pc after 1, 2 or 10 Gyr of simulation,
depending on the mass model and the eccentricity of the initial orbit.

Any e e <04 e>04
Model 1Gyr 2Gyr 10Gyr 1Gyr 2Gyr 10Gyr 1Gyr 2Gyr 10Gyr

Probability for no cluster with ryp < 100 pc

wC 1 1 <0.001 1 1 <0.001 1 1 <0.001
IC 0.17 0.032  <0.001 0.15 0.022  <0.001 0.19 0.037  <0.001
SC 0.10 0.017 <0.001 0.082 0.014 <0.001 0.11 0.020 <0.001

Probability for no cluster with ryp0 < 200 pe
WwC 0.92 0.32 <0.001  0.87 0.29 <0.001  0.97 0.37 <0.001

IC 0.087 0.015 <0.001 0.049 0.011 <0.001 0.11 0.018  <0.001
SC 0.076  0.014 <0.001 0.063 0.011 <0.001 0.086 0.015 <0.001
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comparable with the oldest GCs in the Milky Way. There is a well-
known timing problem for these clusters: over a Hubble time or even
a much shorter time-scale dynamical friction should drag them to
the centre of Fornax, where they would form a nuclear star cluster.
Yet no such stellar nucleus is observed in Fornax or, in fact, in any
other dSph galaxy. The one possible exception to this is the Sgr
dSph which has the GC M54 at its core (Bellazzini et al. 2008).
This dSph is currently only ~ 16 kpc from the galactic centre and
strongly affected by the tidal field of the Milky Way. It seems likely
that Sgr has lost much of its mass to the Milky Way and was once
much more massive, of the order of the mass of the Large Magellanic
Cloud (Lokas et al. 2010). If so the effects of dynamical friction
would be correspondingly greater in a more massive galaxy and the
likelihood of a GC falling to its centre is much greater. Recent work
has also indicated that there is at least a possibility that M54 may
not be at the core of Sgr but at & 2kpc in the foreground (Siegel
etal. 2011).

In this study, we have extended previous work on what the current
location of Fornax’s GCs can tell us about Fornax’s mass distribu-
tion. We explored four different mass models for the underlying
potential in Fornax, we used the latest data for Fornax’s GCs as
constraints on their phase space distribution and we ran thousands
of N-body models to sample the uncertainties in the cluster position
and velocity distribution for each of our five mass models. This
large search of the available parameter space allowed us to hunt for
viable solutions to Fornax’s timing problem.

6.1 Caveats

Our models all assume a spherical mass distribution for Fornax, yet
the stars are observed to be ellipsoidal in projection, implying that
the true intrinsic distribution is aspherical, most likely triaxial. The
parameter space of such configurations is considerably larger (and
the freedom in cluster orbital projections is smaller), potentially
allowing more solutions to the timing problem. However, previous
studies suggest that, while dynamical friction is on average stronger
on box orbits than on loop orbits(Capuzzo-Dolcetta & Vicari 2005),
triaxiality has no significant overall effect on the strength of dynam-
ical friction (Cora, Vergne & Muzzio 2001; Sachania 2009). This
can be understood as cancellation of two opposing effects. First,
because angular momentum is not conserved, there is no barrier for
eccentric orbits to reach arbitrary small radii and hence high densi-
ties and strong drag. Secondly, also because angular momentum is
not conserved, successive peri-centric passages have different radii
and densities such that an orbiting cluster only rarely suffers very
high drags.

Another minor caveat of our modelling is our ignorance of the
tidal field of the Milky Way potential. In principle, it would be
trivial to have our N-body models orbit in a static model for the
Galactic potential. However, such a procedure would add even
more only weakly constrained parameters without adding signif-
icant benefits. With our existing models, we take the Galactic tidal
effects into account by discounting any simulated cluster orbits
with apo-centric radius beyond (best estimates of) Fornax’s tidal
radius.

Finally, by modelling each GC as a massive particle, we have ig-
nored their inner dynamics and tidal interaction with Fornax. Mass-
loss rates for these clusters, however, are likely to be too small to
significantly reduce their mass (Goerdt et al. 2010). Tidal disrup-
tion is arguably only relevant for GCl1, as discussed in Section 6.3
below.

6.2 Solutions to the timing problem

Our simulations demonstrate that for our normal mass models (WC,
IC or SC) for Fornax the infall of clusters GC3 and GC4 within a
Hubble time is unavoidable and the infall of all clusters except
GC1 most likely. This constitutes the long-term timing problem in
the sense of hypothesis (i) from Section 1, which is only really a
problem if one assumes that the present GC distribution of Fornax
is representative of the distant past.

Only our LC model avoids this problem completely. Rather
than dynamical friction, this model shows ‘dynamical buoyancy’,
when clusters are pushed out of the core. Following Tremaine &
Weinberg (1984), this is likely caused by this model’s inverted dis-
tribution function, when df/dE > 0 over a significant range of
orbital energies E. Such models* are generally thought to be unsta-
ble (Binney & Tremaine 2008, section 5.5). Hence, it seems unlikely
that such a model emerges from any reasonable formation mecha-
nism. However, our N-body models appear to be stable, and some
further research is needed to clarify the cause for ‘dynamical buoy-
ancy’, its relation to the core stalling effect (reported by Read et al.
2006b) and its prospects in natural systems. We have considered the
possibility that this effect is due to numerical noise. It is possible
that the LC model may not be thoroughly tested by our numerical
convergence work (Appendix A) due to its unusual nature. We have
subsequently run two simulations with identical initial conditions
using the LC model and one GC which shows the ‘dynamical buoy-
ancy’ behaviour. One has the fiducial resolution of our main work,
2 million particles, and the other has five times better resolution, 10
million particles (see Fig. 8). We find the evolution of the GC’s orbit
to be almost identical in the two cases and the energy of the GC is
the same to within 1 per cent as the orbit moves out. This strongly
suggests that we see a real effect, which we will investigate further
in future work.

For cusped mass models (IC and SC), such as predicted by CDM
cosmogony via dissipationless simulations, clusters GC3 or GC4
will sink into the centre of Fornax within 1-2 Gyr with ~90 per
cent probability (in the sense that solutions where this does not
occur cover only ~10 per cent of the possible orbital phases and
projections). In fact, we estimate the probability that no cluster
obtains ryp, S 100 pe within 2 Gyr to be no more than 2 per cent
in Table 3. This is largely independent of the assumed GC orbital
distribution function and constitutes the more severe immediate
timing problem in the sense of hypothesis (ii) from Section 1. It
implies that if Fornax indeed has a cusped density profile, then our
cosmic epoch of observation is necessarily very special.

For a shallow cusp model (WC), only the most massive cluster
GC3 has a 90 per cent probability to reach, within 1-2 Gyr, rypo S
200 pc significantly less than its current projected radius of R, =
430 pc. For this model, no cluster can reach 7, < 100 pc within
2 Gyr and the chances that no cluster will reach r,,, S 200 pe within
1 or 2 Gyr are, respectively, 92 and 32 per cent (see Table 3). These
numbers are not unlikely and hence avoid the long-term timing
problem.

6.2.1 A steady-state solution

Our finding thus suggest two possible solutions to the timing prob-
lem. First, Fornax has an LC (perhaps between models LC and WC)

4 For self-gravitating systems, an inverted distribution function typically
occurs if the transition between a near-constant density core and steep power-
law decay is fast, i.e. when 7 in equation (2) is larger than ~2.
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Figure 8. The evolution of the orbit of a GC at two resolutions: one with
2 million particles (shown in black) and one with 10 million particles (shown
in red). The simulations have one GC with the mass of GC3 orbiting in the
LC model and have identical initial conditions. As in Fig. 6, the top and
middle panels show the development of the orbital radius and specific energy
for the GC, respectively, and the overall conservation of energy is shown
in the bottom panel. The orbital parameters develop almost identically.
Note that the 10-million-particle simulation has much better overall energy
conservation.

and dynamical friction is slow or has stalled a long time ago. In this
case, Fornax may have been on its current orbit for a Hubble time
with its GC system hardly evolving. In this case, the consistency
of the cluster distribution with the stellar distribution (as discussed
in Section 2.2) cannot be a coincidence, but hints at a common
formation scenario.

6.2.2 An evolving solution

In the second solution Fornax has a small core or shallow cusp (as
model WC) and dynamical friction is still ongoing, albeit slowly
enough that the absence of a central nucleus in Fornax (or in fact
any other undisrupted dSph) is perfectly plausible. In this case, the
clusters must have been further away from Fornax in the past than
today, and the current (weak) consistency of their distribution with
that of the stars is just a coincidence. Also, a Hubble time ago the
clusters most likely were more than the current tidal radius of 1.8—
2.8 kpc away from Fornax. This in turn required that Fornax did not
orbit the Milky Way for a Hubble time on its present orbit. However,
even a simple adiabatic evolution of Fornax’s orbit may be sufficient
to solve this problem. For example, for a slowly growing Galaxy
with always flat rotation curve the peri-centric tidal radius of Fornax
evolves like r,yy oc v;%/* (even when neglecting mass-loss of Fornax
due to Galactic tides).

This second solution appears more natural and also fits with
the weak indication of mass segregation, as would be induced by
dynamical friction, in the current mass—radius relation (see Fig. 1).
However, this model implies that the GCs have not formed within
Fornax, but are most likely accreted. One may, of course, consider
these two solutions as the extreme ends of a continuity of solutions
with various degrees of cusp strengths and hence dynamical friction
effects.
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6.3 The case of GC1

An interesting aspect relates to the cluster GC1. Pefiarrubia, Walker
& Gilmore (2009) demonstrated that, uniquely of all Fornax’s GCs,
GC1 would be tidally disrupted if it fell to the centre of Fornax.
While we find that GC1 does not sink to the centre of Fornax in
almost all of our models, this still leaves us with a puzzle. Why
should the one cluster vulnerable to tides be on an orbit where it
would hardly ever suffer disruption? For our steady-state solution
to the timing problem above, this puzzle can be resolved by the
postulation that Fornax once had a richer GC system and we only
see the survivors. Such survivors are either massive enough or on
remote orbits to avoid tidal disruption. However, a high (initial)
frequency of GCs (of ~10*~> M) appears rather implausible for
a small galaxy like Fornax.

For the evolving solution to the timing problem, on the other
hand, the fact that GC1 would be disrupted poses no problem at
all. In this picture, low-mass clusters, such as GC1, would not be
dragged down much, and there is no need to postulate a large early
population of clusters.

ACKNOWLEDGMENTS

Research in Theoretical Astrophysics at Leicester is supported by
an STFC rolling grant. JIR would like to acknowledge support from
SNF grant PPOOP2_128540/1.

This research used the ALICE High Performance Computing
Facility at the University of Leicester. Some resources on ALICE
form part of the DiRAC Facility jointly funded by STFC and the
Large Facilities Capital Fund of BIS. We also thank Matt Walker
for providing the stellar velocity dispersion data to compare to our
mass models in Fig. 3.

REFERENCES

Amorisco N. C., Evans N. W., 2011a, MNRAS, 419, 184

Amorisco N. C., Evans N. W., 2011b, MNRAS, 411, 2118

Angus G. W, Diaferio A., 2009, MNRAS, 396, 887

Battaglia G., Helmi A., Tolstoy E., Irwin M., Hill V., Jablonka P., 2008, ApJ,
681,L13

Bellazzini M.et al., 2008, AJ, 136, 1147

Binney J. J., Tremaine S., 2008, Galactic dynamics, 2nd ed. Princeton Univ.
Press, Princeton, NJ

Breddels M. A., Helmi A., van den Bosch R. C. E., van de Ven G., Battaglia
G., 2012, preprint, (arXiv:1205.4712)

Buonanno R., Corsi C. E., Zinn R., Fusi Pecci F., Hardy E., Suntzeff N. B.,
1998, ApJ, 501, L33

Buonanno R., Corsi C. E., Castellani M., Marconi G., Fusi Pecci F., Zinn
R., 1999, AJ, 118, 1671

Capuzzo-Dolcetta R., Vicari A., 2005, MNRAS, 356, 899

Cole D. R., Dehnen W., Wilkinson M. 1., 2011, MNRAS, 416, 1118

Coleman M., Da Costa G. S., Bland-Hawthorn J., Martinez-Delgado D.,
Freeman K. C., Malin D., 2004, AJ, 127, 832

Coleman M. G., Da Costa G. S., Bland-Hawthorn J., Freeman K. C., 2005,
Al, 129, 1443

Cora S. A., Vergne M. M., Muzzio J. C., 2001, ApJ, 546, 165

Dehnen W., 2000, ApJ, 536, L39

Dehnen W., 2002, J. Comput. Phys., 179, 27

Dinescu D. 1., Keeney B. A., Majewski S. R., Girard T. M., 2004, AJ, 128,
687

Dubinski J., Carlberg R. G., 1991, ApJ, 378, 496

Elson R. A. W., Fall S. M., Freeman K. C., 1987, ApJ, 323, 54 (EFF)

El-Zant A., Shlosman 1., Hoffman Y., 2001, ApJ, 560, 636

Gerhard O. E., 1991, MNRAS, 250, 812

GTOZ ‘€2 JoquisnoN uo :: e /B1o'sfeulnolploxoseduw//:dny woly papeojumoq


http://mnras.oxfordjournals.org/

612 D. R. Cole et al.

Gilmore G., Wilkinson M. L., Wyse R. E. G., Kleyna J. T., Koch A., Evans
N. W, Grebel E. K., 2007, ApJ, 663, 948

Goerdt T., Moore B., Read J. 1., Stadel J., Zemp M., 2006, MNRAS, 368,
1073

Goerdt T., Moore B., Read J. 1., Stadel J., 2010, ApJ, 725, 1707

Greco C. et al., 2007, ApJ, 670, 332

Hernquist L., 1990, ApJ, 356, 359

Hogan C. J., Dalcanton J. J., 2000, Phys. Rev. D, 62, 063511

Inoue S., 2009, MNRAS, 397, 709

King I, 1962, AJ, 67, 274

Kleyna J., Wilkinson M. 1., Evans N. W., Gilmore G., Frayn C., 2002,
MNRAS, 330, 792

Kleyna J. T., Wilkinson M. L., Gilmore G., Evans N. W., 2003, ApJ, 588,
L21

Kochanek C. S., White M., 2000, ApJ, 543, 514

Fokas E. L., 2009, MNRAS, 394, L102

Lokas E. L., Kazantzidis S., Majewski S. R., Law D. R., Mayer L.,
Frinchaboy P. M., 2010, AplJ, 725, 1516

Lux H., Read J. I, Lake G., 2010, MNRAS, 406, 2312

Maccio A. V., Paduroiu S., Anderhalden D., Schneider A., Moore B., 2012,
MNRAS, 424, 1105

Mackey A. D., Gilmore G. F,, 2003a, MNRAS, 340, 175

Mackey A. D., Gilmore G. F., 2003b, MNRAS, 343, 747

Mateo M. L., 1998, ARA&A, 36, 435

Mateo M., Olszewski E., Welch D. L., Fischer P., Kunkel W., 1991, AJ, 102,
914

Navarro J. F,, Eke V. R., Frenk C. S., 1996a, MNRAS, 283, L72

Navarro J. E, Frenk C. S., White S. D. M., 1996b, AplJ, 462, 563

Oh K. S., Lin D. N. C., Richer H. B., 2000, ApJ, 531, 727

Pefiarrubia J., McConnachie A. W., Navarro J. E.,, 2008, ApJ, 672, 904

Pefiarrubia J., Walker M. G., Gilmore G., 2009, MNRAS, 399, 1275

Plummer H. C., 1911, MNRAS, 71, 460

Pontzen A., Governato F., 2012, MNRAS, 421, 3464

Read J. 1., Gilmore G., 2005, MNRAS, 356, 107

Read J. 1., Wilkinson M. L., Evans N. W., Gilmore G., Kleyna J. T., 2006a,
MNRAS, 366, 429

Read J. 1., Goerdt T., Moore B., Pontzen A. P., Stadel J., Lake G., 2006b,
MNRAS, 373, 1451

Sachania J., 2009, PhD thesis, Univ. Leicester

Saha P., 1992, MNRAS, 254, 132

Sanchez-Salcedo F. J., Reyes Iturbide J., Hernandez X., 2006, MNRAS,
370, 1829

Siegel M. H. et al., 2011, ApJ, 743, 20

Strigari L. E., Bullock J. S., Kaplinghat M., Kravtsov A. V., Gnedin O. Y.,
Abazajian K., Klypin A. A., 2006, ApJ, 652, 306

Strigari L. E., Bullock J. S., Kaplinghat M., Simon J. D., Geha M., Willman
B., Walker M. G., 2008, Nat, 454, 1096

Tremaine S., Gunn J. E., 1979, Phys. Rev. Lett., 42, 407

Tremaine S., Weinberg M. D., 1984, MNRAS, 209, 729

Tremaine S. D., 1976, AplJ, 203, 345

Tremaine S. D., Ostriker J. P., Spitzer L., Jr, 1975, ApJ, 196, 407

Villaescusa-Navarro F., Dalal N., 2011, J. Cosmol. Astropart. Phys., 3, 24

Walker M. G., Penarrubia J., 2011, ApJ, 742, 20

Walker M. G., Mateo M., Olszewski E. W., Gnedin O. Y., Wang X., Sen B.,
Woodroofe M., 2007, ApJ, 667, L53

Walker M. G., Mateo M., Olszewski E. W., Pefiarrubia J., Wyn Evans N.,
Gilmore G., 2009, ApJ, 704, 1274

Wilkinson M. L., Kleyna J., Evans N. W., Gilmore G., 2002, MNRAS, 330,
778

APPENDIX A: NUMERICAL CONVERGENCE

In order to ensure that our simulations do not suffer from numeri-
cal noise we ran simulations with two different mass models, one
cusped and one cored; each with two different orbits, one circular
and one eccentric; and each of these at three different resolutions:

M l
j‘\\ ‘Hw
H\ M

\
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4e6 particles

——  1eB particles
‘ | M' —— 45 particles

H\’H

R w Q

oo b 1
0 2 4
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Figure Al. The evolution of the radius for a single cluster moving on an
eccentric orbit in a halo with a near-cored density profile (model WC from
Table 2), but realized with different particle numbers as indicated. Some
of the deviation at later times is due to the uncertainties in determining the
centre of the N-body model.

with N =4 x 10°,10° and 4 x 10°. We then compared the evolution
in each case of one cluster over 10 Gyr.

The evolution of the orbital radius of a single cluster moving on
an eccentric orbit in model WC (see Table 2) is shown in Fig. A1. It
can be seen that orbital evolution is very similar for all resolutions.
In particular, the decay of the orbit follows the same time-scale,
with the time and radius of the first-stalling of the cluster being the
same. It has been shown that the two-body noise in a simulation
can cause the cluster orbit to precess and cause artificial decay of
the orbit once in the core (Read et al. 2006b). We selected the
above combination of orbit and density profile precisely because
Read et al. (2006b) showed that convergence is most difficult for
an eccentric orbit in a cored halo. This is the case where numerical
friction caused by orbit precession has the largest effect on orbital
decay. The simulations shown above give a strong indication that
such effects are not significant at even lower resolutions than the
one used for the main body of this work. Our simulations are well
converged.

APPENDIX B: THE PROBABILITY
FOR R <R,

The fraction of orbital phases and projections for which R < R, on
a given orbit is identical to the probability for R < R,, when R is
computed for that orbit at random orbital phase and projection.
The probability for a cluster with orbital energy E and angular
momentum L to be found at a radius between r and r + dr is

2 dr

I'Ul’

P(V|E, L) dr = ifrperi frfrapo (Bl)

and zero otherwise. rperi < 7'apo are the roots of the radial velocity

v =2[E — ®(r)] — L*/r?, (B2)
and the radial period is given by
Tao dp
T,=2 / —. (B3)
n Ur

peri
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The probability that a cluster at radius r has projected radius
between R and R 4 dR is

R dR
ra/r* — R?
and zero otherwise.’ Thus, the probability for a cluster with given
orbit to have projected radius between R and R + dR is

p(R|r) dR = ifR<r (B4)

Tapo

p(R|E,L)dR = dR/ p(R|r) p(r|E, L) dr (BS)

max{R,rperi}

for R < ryp, and zero otherwise. From this, we can work out the
finite probability that a cluster with given orbit has projected radius

5 This follows from the probability density p(9)df = sin for the polar
angle 6 € [0, 7] and p(R|r)dR = p(6)(d9/dR)dR with R = rsiné.
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not greater than observed:

P(R < Ry|E, L)

Rp
/ p(RIE, L) dR

/ /*\m R dr
max{R,rperi} 'V r2 — R? Ur

/r\po dr /mm r,Rp} R dR
Tperi
Tapo d rapo d
T r/ ,
Tperi T'peri

Nl =

with (- )+ = max {0, -}. One can easily verify that p(R < O|E, L) =

0 and p(R < rypolE, L) = 1, as required.
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