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Abstract

Background: Tissue MicroArrays (TMAs) represent a potential high-throughput platform for the analysis and discovery of
tissue biomarkers. As TMA slides are produced manually and subject to processing and sectioning artefacts, the layout of
TMA cores on the final slide and subsequent digital scan (TMA digital slide) is often disturbed making it difficult to associate
cores with their original position in the planned TMA map. Additionally, the individual cores can be greatly altered and
contain numerous irregularities such as missing cores, grid rotation and stretching. These factors demand the development
of a robust method for de-arraying TMAs which identifies each TMA core, and assigns them to their appropriate coordinates
on the constructed TMA slide.

Methodology: This study presents a robust TMA de-arraying method consisting of three functional phases: TMA core
segmentation, gridding and mapping. The segmentation of TMA cores uses a set of morphological operations to identify
each TMA core. Gridding then utilises a Delaunay Triangulation based method to find the row and column indices of each
TMA core. Finally, mapping correlates each TMA core from a high resolution TMA whole slide image with its name within a
TMAMap.

Conclusion: This study describes a genuine robust TMA de-arraying algorithm for the rapid identification of TMA cores from
digital slides. The result of this de-arraying algorithm allows the easy partition of each TMA core for further processing.
Based on a test group of 19 TMA slides (3129 cores), 99.84% of cores were segmented successfully, 99.81% of cores were
gridded correctly and 99.96% of cores were mapped with their correct names via TMAMaps. The gridding of TMA cores
were also extensively tested using a set of 113 pseudo slide (13,536 cores) with a variety of irregular grid layouts including
missing cores, rotation and stretching. 100% of the cores were gridded correctly.
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Introduction

Tissue MicroArrays (TMAs) represent a potential high-

throughput platform for the analysis and discovery of tissue

biomarkers, diagnostic support and patient targeted therapies [1].

The technique allows hundreds of individual tissue samples to be

hosted on a single glass slide, which can be labelled for a target

biomarker with chromogenic or fluorescence labels and scored to

determine the relationship between the presence of the biomarker

and diagnosis, prognosis or response to therapy. With the

emergence of commercial slide scanners, TMA slides can be

scanned, in their entirety, as high resolution (0.25 mm/pixel)

digital images, called virtual slides (aka. digital slides). This has

enabled researchers to analyse each single TMA core using various

computer-based, software analysis systems more rapidly and

objectively [2,3,4]. However, a bottleneck and technical challenge

for TMA image analysis is the automated recognition of single

tissue cores within a TMA virtual slide that may contain hundreds

of individual cores. It is important to properly assign individual

cores to their appropriate array (row and column) position, as this

is how the core sample is identified and associated with its relevant

clinical and pathological metadata. This is generally performed

manually which is extremely tedious and time consuming. For this

reason, the development of an automated method to ‘‘de-array’’

TMAs and accurately assign array positions to cores would both

save time and potentially increase TMA scoring output. Successful

automated TMA de-arraying would facilitate high-throughput

TMA experiments using computer based image processing and

machine vision techniques by eliminating the cumbersome manual

de-arraying process and enable rapid batch processing e.g.

biomarker quantification with respect to individual core clinical

characteristics [4].

TMA de-arraying refers to a procedure which firstly segments

each TMA core from the original TMA virtual slide, finds the 2D

grid index of each tissue core in the xy-plane and maps these to

the associated metadata with the cores. Core identifiers (names)

and associated clinical and pathological data are generally stored

in an anonymised database or a spreadsheet. Ultimately, a TMA
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de-arraying platform should consolidate information regarding the

TMA core’s 2D grid index, with TMA core names (and the

associated patient data) with the actual TMA images.

TMA de-arraying is a challenging problem. The layout of TMA

cores is theoretically in the form of a regular grid. Nonetheless, the

reality is that TMA slides rarely represent regular 2D arrays with

consistent spacing between cores. This is due to the fact that the

labile nature of the TMA means that it is easily, and often, altered

during slide preparation and processing. For example, the layout

can be rotated or stretched, etc. Furthermore, tissue cores can also

be fragmented. Some tissue cores can also be lost. These

imperfections, which are inherent in TMA production and slide

processing, greatly contribute to the complex, noisy 2D image data

associated with digital TMAs. Though TMA de-arraying appears

to be easy to the naked eye, the successful automated de-arraying

of the majority of TMA cores can be challenging in image

processing and computer graphics especially when rare and

difficult cases, such as severely stretched grid layout arise.

Surprisingly, relatively few studies describe de-arraying methods

[4,5,6,7,8,9,10]. For the segmentation of TMA cores, a number of

groups have used simple thresholding based methods on image

intensities [6,8,9]. One study used a multi-step approach utilising a

number of image processing techniques, including the use of K-

means for grouping fragmented tissue cores [10]. Importantly

these studies presented their segmentation methods using very

descriptive terms, and did not report the performance and/or

accuracy of their methods. Therefore it is difficult to replicate their

algorithms and to make objective judgements of how robust they

are. Fortunately we are able to utilise a variety of image

segmentation techniques, such as image morphology, watershed,

active contour and statistical modelling methods which are

generally employed for the segmentation of round objects from

white background, e.g. the segmentation of cell nuclei

[11,12,13,14]. Though the segmentation of TMA cores and

nuclei are similar, the unique morphological characteristics of

TMA cores such as broken and/or distorted cores needs to be

considered when generating a segmentation algorithm. This has

been attempted by Rabinovich et. al. by the use of a K-means

method to connect/disconnect tissue parts within a TMA core

[10], however it did not evaluate how robust this method is.

Alternatively, Dell’Anna et. al. reported an accuracy of 96.84%

from 5878 cores [5]. It used a simple algorithm for the gridding of

TMA cores by calculating distance between neighbouring cores.

However, this heavily relies on the existence of ‘‘complete rows’’

within TMA sections. Without complete rows, this proposed

method tends to produces severe gridding errors. Another group

used a Hough transform [15] based approach for the detection of

straight lines within TMA section grid patterns, however details of

the algorithm are not presented and the accuracy of the proposed

algorithm is not reported either. Such algorithms are also

susceptible to situations where large numbers of cores are missing

[6,7]. Thallinger et al. introduced a complete TMA data

management and analysis framework, however it requires initial

human interaction to perform de-arraying and the details of the

algorithm are not presented [16]. Furthermore, the de-arraying

algorithm is not evaluated either. Another study by Lahrmann et

al. describes a template matching approach for the gridding of

TMA cores. However, it is unclear how the initial grid template is

designed and although it reports a gridding accuracy of 99.59%

using 60 slides containing 8900 cores, it does not demonstrate that

the proposed simple Euclidian distance and thresholding based

grid matching approach works with sparse grids (e.g. with many

missing cores) or severely altered (rotated and stretched) grid

layouts. Nevertheless all of these studies failed to disclose enough

technical implementation details in order to regenerate their

reported de-Arraying algorithms. Additionally, none of these

reports have compared the performance of their algorithms with

commercially available de-arraying software packages such as

Aperio’s Spectrum and Definiens’ TissueStudio and each of the

two software packages (cost .£10,000 in year 2011).

Therefore, in this study, we introduce a robust TMA de-

arraying algorithm which contains three functional partitions,

Segmentation, Gridding and Mapping. In addition we provide

explicit technical details of the method and have evaluated the

performance of our algorithm against other studies as well as

currently available commercial platforms using both real TMA

slide data as well as artificially generated pseudo TMA slide.

Materials and Methods

Ethics statement
This study was approved by the Office for Research Ethics

Committees Northern Ireland (ORECNI). REC reference: 06/

NIR01/94. ORECNI waived the need for patient consent as the

samples were accessed retrospectively from the NHS pathology

archives of patients who had been treated for lung cancer up to 10

years earlier. The image data derived from the patient TMA slide

were analysed entirely anonymously.

Materials
A collection of 19 TMA slides were generated, stained and

processed within the Tissue Core Technology Unit at the Centre

for Cancer Research and Cell Biology, Queens University Belfast.

A large amount of these samples are used as a part of a large on-

going project with our centre for the investigation of novel

biomarkers from non-small cell lung cancer for drug discovery and

targeted therapies. Beside the routine H&E stain, these slides have

also been stained with a variety of biomarkers using Immunohis-

tochemistry (IHC DAB), including the BCL-2 family proteins

BAK [17], BAX [18] and NOXA [19], a novel putative cancer

biomarker, named CB1. Negative control TMAs were also

generated by staining with secondary antibody alone (i.e. the

same procedure without primary antibody). Taken together these

slides encompass 3246 TMA cores, however a total of 115 cores

were missing and 2 cores are significantly partitioned into a

number of fragments. This results in a total of 3129 valid TMA

cores, representing 96.40% of all the TMA cores. Seventeen of

these slides have TMA cores with a diameter of 600 mm, with the

remaining two having core diameters of 1200 mm and 500 mm

respectively. Details of the three virtual slides are listed in Table 1.

Slides with ID from 1 to 17 are also accompanied with a

TMAMap, which are Microsoft Excel files containing all TMA

core names and associated anonymised clinical information.

These 19 slides were subsequently scanned using an Aperio

ScanScope CS whole slide scanner at 406magnification using the

objective of 206/0.75 Plan Apo with a doubler. Virtual slide

images generated have a resolution of 0.25 mm/pixel. After

scanning, TMA virtual slides were compressed using lossy JPEG

compression at the compression quality of 70.

TMA Core Segmentation
To reduce processing time, scanned TMA virtual slides were

down-sampled to generate an image of approximately 1,0006
1,000 pixels (i.e. 0.01% of their original size), with TMA cores

being approximately 20–50 pixels in diameter. An example is

shown in Figure 1A.

Firstly, the contrast of thumbnail images are enhanced using

Contrast-limited adaptive histogram equalization (CLAHE) [20],

TMA De-Arraying
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and further enhanced using the negative of the Laplacian filter

with a~0:2, followed by Otsu’s histogram based global thresh-

olding [21] and morphological close operation. A basic TMA core

binary mask is presented (Figure 1B). Each binary object (potential

TMA core) is then converted to a convex hull C [22].

Convex hull is defined as following. Given a set of pixels P in

x,yð Þ plane, if and only if, when pixel A and B are in P, all pixels

on the line segment AB must also be presented in P. The convex

hull C used in this study is in fact the smallest convex set, which is

the intersection of all n convex sets.

C~
\n
i~1

Ci ð1Þ

It is an important step to perform convex hull transformation

especially for the TMA cores which have little tissue contents,

however have certain parts of the tissue core skeleton, such as the

examples shown in Figure 1B. Small binary objects, which are

mainly artefacts especially at slide boundaries and have an area of

less than 10 pixels, are then removed.

A single TMA core may contain two or more pieces of

disconnected tissue regions, examples of such cores are shown in

Figure 1C and Figure 1D. In this situation, it is unavoidable to

segment one broken core as many separate objects. We have

developed an area-distance approach to recognise broken cores.

Based on the results from the previous step, the entire area D for

each segmented convex object can be obtained. It is assumed that

the majority of TMA cores from a single TMA slide are of a same

size in terms of the core area and diameter. Therefore, by

calculating the first quartile QD1 and inter-quartile range IQRD of

core areas, we are able to recognise lower outliers, which are the

set of TMA cores having the smallest area that satisfies:

DvQD1{1:5|IQRD ð2Þ

By using the centroids of all potential TMA core objects as vertices

and applying Delaunay Triangulation [23], we are also able to

determine the distances L among all neighbouring cores.

Typically, for a fragmented core, the distance Lb among all

disconnected tissue fragments should satisfy:

Lb%median Lð Þ ð3Þ

For each pair of vertices (Vm,Vn) in the Delaunay Triangulation,

we consider both of the vertices as the broken tissue fragments if

they satisfy the follow criteria:

LmnvQL1{1:5|IQRL

DmvQD1{1:5|IQRD

DnvQD1{1:5|IQRD

8><
>: ð4Þ

where Lmn is the edge length between vertex Vm and Vn, and QL1

is the first quartile of all edge lengths and IQRL is the inter-

quartile range in edge lengths.

The joining of two tissue fragments can be achieved by firstly

drawing a line between the centroids of the two binary objects

followed by applying the convex hull operation (examples are

shown in Figure 1 D1 and D2).

The segmentation results can be further improved by removing

the spur (short spike of pixels) at the boundaries of TMA cores.

These spur pixels are largely artefacts introduced during contrast

enhancement. The removal spur pixels uses a pair of forward and

inverse Fourier descriptors [15,24].

Table 1. The Details of TMA Virtual Slides Used for Testing.

ID Tissue Type Stain or Biomarker Core Diameter Total Cores Missing Cores Fragmented Cores Remaining Cores %

1 Lung BAK 600 mm 232 6 0 226 97.41%

2 Lung BAX 600 mm 232 5 0 227 97.84%

3 Lung H&E 600 mm 232 3 0 229 98.71%

4 Lung CB1 600 mm 232 7 2 223 96.12%

5 Lung Negative Control 600 mm 232 8 0 224 96.55%

6 Lung NOXA 600 mm 232 7 0 225 96.98%

7 Lung BAK 600 mm 114 0 0 114 100%

8 Lung BAX 600 mm 114 0 0 114 100%

9 Lung H&E 600 mm 114 0 0 114 100%

10 Lung CB1 600 mm 114 0 0 114 100%

11 Lung Negative Control 600 mm 114 0 0 114 100%

12 Lung NOXA 600 mm 114 0 0 114 100%

13 Lung BAX 600 mm 144 4 0 140 97.22%

14 Lung H&E 600 mm 144 1 0 143 99.31%

15 Lung CB1 600 mm 144 2 0 142 98.61%

16 Lung Negative Control 600 mm 144 4 0 140 97.22%

17 Lung NOXA 600 mm 144 1 0 143 99.31%

18 Brain unknown 1200 mm 90 10 0 80 88.89%

19 unknown unknown 500 mm 360 57 0 303 84.17%

Total 3,246 115 2 3,129 96.40%

doi:10.1371/journal.pone.0026007.t001

TMA De-Arraying
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Figure 1. An example of TMA core segmentation procedure. (A) A down-sampled CB1 stained lung tissue TMA slide, 10726667 pixels, on
average each core has the diameter of 700 mm which gives the down-sampled core of the diameter of 30 pixels, (A1)–(A5) enlarge view of 5 cores, (B)
A basic binary mask, (C) After performing convex hull operation, (D) Connecting broken TMA cores with straight lines, (E) After performed a pair of
forward and inverse Fourier descriptors, (F) To superimpose the boundaries of segmented TMA core on top of the slide thumbnail. *For all the binary
images in Figure B–E, colour is inversed to highlight details.
doi:10.1371/journal.pone.0026007.g001

TMA De-Arraying
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The boundary of a binary object (TMA core) in xy-plane

can be expressed with a sequence of K pixels: (x0,y0),
(x1,y1),…,(xK{1,yK{1) in either clockwise or anticlockwise

direction. It can also be represented as a sequence of coordinates

z kð Þ~½x kð Þ,y kð Þ� for k~0,1,2,:::,K{1. Each pair of coordinates

can also be written as complex numbers so that

z kð Þ~x kð Þzjy kð Þ ð5Þ

By applying the Discrete Fourier Transform (DFT) on z kð Þ, we

then get the boundary Fourier descriptor

Z uð Þ~
XK{1

k~0

z kð Þe
{2pukj

K ð6Þ

for u~0,1,2, . . . ,K{1. The boundary z kð Þ can be restored using

the inverse Fourier transform:

z kð Þ~ 1

K

XK{1

u~0

Z uð Þe
{2pukj

K ð7Þ

In order to remove spurs, which are the high-frequency details of

the boundary descriptor, we are able to use ẑz kð Þ, the approxima-

tion of z kð Þ:

ẑz kð Þ~ 1

P

XP{1

u~0

Z uð Þe
{2pukj

K ð8Þ

for k~0,1,2, . . . ,K{1, though only P terms are used to recover

ẑz kð Þ. When P is chosen as a very small integer, the majority of

high-frequency details (spurs) are removed and only low-frequency

components are left to recover the global shape (near-circular

shape) of TMA cores. Examples of the effect of Fourier descriptor

are shown in Figure 1E.

After further removing objects smaller than 200 pixels in area,

the segmentation of TMA cores is finished. Examples of

overlapping the boundaries of segmentation results on the original

RGB image are shown in Figure 1F.

Gridding
Traveling Algorithm. Gridding is the determination of the

logical coordinates of each TMA core on a virtual slide, which

requires the identification of relative geometric relationships

among all TMA cores. After the segmentation of TMA cores,

we obtained a set of morphological features from each core,

including area, centroid and bounding box in a 2D plane.

To consider all the centroids of segmented TMA cores in xy-

plane V~ V0,V1, . . . ,Vnf g, the triangulation T(V ) of V is defined

as a subdivision of the xy-plane whose bounded faces are triangles

and vertices [V . A triangulation T(V) is considered as Delaunay

triangulation DT(V ) of V if, and only if, the circum-circle of any

triangle of T does not contain any other vertices in V [23,25].

Many existing methods [26,27] can be used for the computation of

Delaunay triangulation.

Delaunay triangulation is especially useful for the gridding of

TMA cores. Ideally if all TMA cores are aligned in a regular 2D

grid with a same core-to-core distance in both horizontal and

vertical direction, and if we restrain the angles for all edges from

DT(V ) to be in the range of ½{900,900�, they can only form five

different angles, which are:

h~ {900,{450,00,450,900f g ð9Þ

Each triangle T should be a right angled isosceles triangle, which

contains twice as many sides than hypotenuses in DT(V ). To use

the rich information from Delaunay triangulation, we are able to

design a travelling algorithm for the gridding of TMA core

centroids. For a randomly identified start point Vi, we are able to

find its immediate neighbour Vj in either horizontal/vertical or

clockwise/anti-clockwise direction.

For an example, to locate Vi
0s clockwise horizontal neighbours

Vj with 2D coordinates x Vj

� �
,y Vj

� �� �
, we first locate the set of

triangles T~ T0,T1, . . . ,Tmf g which Vi sits as a vertex (example

shown in Figure 2, T~ T0,T1,T2,T3f g). Secondly, we search all

edges that use Vi as one of the vertices from each triangle in T and

find the only Vj that satisfy the following condition:

A!Vj[V
��

ViVj
��!

x axisk

ViVj
��!��� ���ve

x Við Þvx Vj

� �

8>><
>>: ð10Þ

where .k k is the magnitude and e is a global threshold value

typically slightly larger than the average centroids distance

between two immediate TMA cores (e.g. 1.5 times of the average

centroids distance). Then we say that Vj is the direct clockwise

horizontal neighbour of Vi.

If we are able to locate the centroids of the left most TMA core

in each row of a TMA slide, we can then use the proposed

travelling algorithm to identify the logical coordinates of all TMA

cores in a horizontal direction. If each identified row of TMA

cores can be expressed as VA,VB, . . . ,VM , a simple sorting

algorithm can then be used to identify their vertical relationship

by sorting the arithmetic mean of the y-coordinates

Figure 2. An example showing how to search for the immediate
neighbouring TMA core in clockwise and horizontal direction
using Delaunay Triangulation.
doi:10.1371/journal.pone.0026007.g002

TMA De-Arraying
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y(VA),y(VB),:::,y(VM ). In such a way, the gridding of TMA cores

can be achieved.

Dealing with Imperfect Data. TMA slides are constructed

manually or mechanically. Misalignment of TMA cores often

occurs which causes the rotation and/or stretching of the grid.

Additionally, some cores are lost and/or are fragmented from

individual sections. Furthermore some TMA core segmentation

errors are carried over to this stage, e.g. over-segmentation.

An example of such a Delaunay triangulation is shown in

Figure 3A. The entire grid is slightly rotated clockwise with a

number of missing cores. A few TMA core fragments are

presented at the lower right corner. The bottom row of the grid

is also skewed. Additionally, an example of an artefact is shown at

the bottom left of the image.

Edge Length Filtering. As a large amount of the cores and

the general grid shape are preserved, most of the triangulations in

DT(V ) are close to right angled isosceles triangles, with the

exception of a small amount of large triangles (caused by missing

cores and off-the-grid cores) and thin triangles (mostly at the

boundary of the whole grid).

Consider a right isosceles triangle, the length of both of the two

sides are easily identifiable to be as shorter than the length of

hypotenuse. Given there are approximately twice as many of sides

than the hypotenuses in DT(V ), we could sort all the edges L from

Figure 3. An illustration of TMA core gridding procedure using Figure 1A as an example. (A) Result of Delaunay triangulation, (B)
Centroids connected via gray lines showing the result of edge length filtering, (C) Centroids connected via gray lines showing the result of edge angle
filtering, (D) The candidate centroids for the travelling algorithm, (E) The result of travelling algorithm, (F) To overlap grid index on top of the slide
thumbnail, artefacts are marked with an ‘‘A’’.
doi:10.1371/journal.pone.0026007.g003

TMA De-Arraying
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DT(V ) and the smallest 2/3 are largely the near horizontal and

vertical edges (denoted as ~LL). The plot of all edge lengths from

DT(V ) for the example in Figure 3A) is shown in Figure 4A.

To consider the boundary between ~LL and the remaining edges,

the upper outliers of ~LL are defined as:

~LLwQL3{1:5|IQRL ð11Þ

~LL is further removed to reduce noise. QL3 is the third quartile of all

edge lengths. An example of the remaining short edges is shown in

Figure 3B.

Edge Angle Filtering. Rotation changes edge angles for

DT(V ). By assuming that the whole TMA core grid is a rigid

object and all the angles in DT Vð Þ are rotated by d degree

clockwise, the majority of angles in DT(V ) are a subset of:

hzd~ {900zd,{450zd,00zd,450zd,900zdf g ð12Þ

To use a k-mean unsupervised clustering algorithm with 5 clusters

and the seeds location to be hzd, we are able to identify the near-

horizontal angle cluster of (00zd) as shown in Figure 3C. The plot

of all edge angles from DT(V ) for the example in Figure 3A) is

shown in Figure 4B.

Traveling. To combine all the edges the results from edge

length and edge angle filtering using intersection, we generate an

initial template (Figure 3D) for the travelling algorithm. This

template contains a set of K vectors:

S~fvV
_

i,V
_

jwg ð13Þ

where i~0,1, . . . ,K , j~0,1, . . . ,K , V
_
[V , x V

_

i

� �
ƒx V

_

j

� �
, and

every vector in S is unique.

The travelling algorithm starts with a vector vV
_

i,V
_

jw in

S with V
_

i satisfies min
K

x(V
_

i). Record V
_

i as the first and V
_

j as the

second element for a vertex list A1. vV
_

i,V
_

jw is then removed

from S.

Afterwards, a loop starts to judge if the terminal point

V
_

j~~V
_

i0 using an exhaustive search, where V
_

i0 is the initial

point for another vector vV
_

i0 ,V
_

j0w in S. If a match is found, V
_

j0

is appended to the end of A1, and vV
_

i0 ,V
_

j0w is removed from

S. V
_

j is then re-initialised with the value of V
_

j0 . The travelling

stops when

Y{y V
_

j0
� �

vc ð14Þ

where Y is the width of the image, and c is a small number,

typically less than the average core-to-core distance (d ). In our

experiment, we choose the value of 0.75 times the average core-to-

core distance.

When there does not exist such a vV
_

i0 ,V
_

j0w, which the

current end terminal point V
_

j from vV
_

i,V
_

jw to match up with

V
_

i0 and condition (14) is not satisfied, a circular sector region R is

searched for the existence of such a vertex V
0
[DT Vð Þ. R has the

radius r and central angle Q, where

r~1:5|d ð15Þ

00{d{5| dj jƒQƒ00{dz5|jdj

If such a V
0

exists, V
0

is then appended to the end of A1. In case of

the existence of multiple V
0
, the one which minimise r is selected.

If V
0

does not exist, an imaginary V
00

is added to S, where

x V
0� �

~x V
_

i

� �
zd| sin 00{dð Þ

y V
0� �

~y V
_

i

� �
zd| cos 00{dð Þ

8><
>: ð16Þ

VectorvV
_

i,V
0
w is added to S and the travelling continues.

When V
0

exists in DT(V ) but not in S, a new circular sector

region search will be performed to keep on with the travelling

algorithm.

When condition (14) is satisfied, a new start point vector

vV
_

i,V
_

jw in S with V
_

i satisfies min
K

x(V
_

i) is selected and vertices

are stored in a new list A2. The algorithm continues until S is

empty. We then get a set of lists A~ A1,A2, . . . ,Amð Þ. An example

is shown in Figure 3E.

Figure 4. Example of edge length and edge angle filtering. (A) Example of edge length filtering, (B) Example of edge angle filtering.
doi:10.1371/journal.pone.0026007.g004

TMA De-Arraying
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Gridding. Each list in A potentially represents a row in a

grid. Their row index is obtained by sorted y Aið Þ in ascending

order. The length of Ai can be a variable. The column index for

each vertex in A is obtained using the following pattern matching

approach (due to the monochrome nature of the y-coordinates in

any Ai, a cross correlation pattern matching approach cannot be

used).

For all vertices in a given Ai, their y-coordinates are

approximately equally spaced with distance d . To choose the

longest list Al . All other lists are then correlated with Al using:

v(n)~ P
?

m~{?
jf (m){g(nzm)j ð17Þ

where v is the proposed correlation vector, P is a median

operator. f :ð Þ is the function of y-coordinates of Al , and g :ð Þ is the

y-coordinates of a given Ai.

The y-coordinate offset of Ai relative to Al is defined as:

O~L min vð Þð Þ{l{1 ð18Þ

In such a way, all vertices in A are assigned with a row and column

index in a grid G.
Post-processing. For any of the two neighbouring rows in G,

if their row-to-row distance dg%G, these two rows will be merged

and sorted in y Aið Þ ascending order. When merged, regions

exhibiting overlapping and crowding cores are removed and

marked as artefacts.

All empty grid elements will be filled with imaginary centroids

and their xy-coordinates are obtained through linear interpola-

tion. For all the TMA cores which V[Sð Þ| V=[Að Þ, their grid

index will be given as the grid index for the imaginary cores which

they have the shortest Euclidian distance with.

Finally, boundaries of G are re-examined and if a whole row/

column contains only imaginary cores, the whole row/column is

then removed, thereby completing the gridding process. An

example of gridding results superimposed on top of segmentation

result is shown in Figure 3F.

Mapping
For the biomarker discovery activities with our centre,

researchers use a Microsoft Excel file, namely TMAMap, to

record TMA core names and associated clinical metadata. These

data provide the template for the generation of the physical TMA

and therefore provide precise record of the TMA grid pattern as it

should appear on the slide. An example is shown in Figure 5.

Mapping refers to the task of correlating TMA gridding results

with a TMAMap, thereby assigning TMA core names from a

TMAMap to each core image.

The first step of mapping is to recognise the orientation of a

TMA virtual slide. Once a TMA is sectioned and transferred to a

water bath, there are 8 possible orientations [28]. The tissue

section can be flipped from left to the right, from the top to the

bottom, and/or rotated 900. As the layout of tissue cores can be

symmetrical, such as the example showed in Figure 1A, without

high-level textual/morphological information, it is very difficult to

recognise the orientation of TMA slides. Therefore, in this study

the recognition of TMA grid orientation is performed manually.

An Excel-parser is developed to retrieve corresponding TMA

names from TMAMap. Each name is correlated with information

obtained from TMA core segmentation and gridding, which

includes grid index (in both row and column directions), xy-

coordinates of TMA cores’ top-left corner on the original virtual

slide (their xy-coordinates on the thumbnail 6100), width and

height of the TMA core on the original slide. All these correlation

information is then recorded into a database [4] or an Excel file for

further use. An example demonstrating core name superimposed

on top of a TMA thumbnail image is shown in Figure 6A & D,

where unoccupied core locations are marked with a ‘‘U’’, and a

missing core is marked with an ‘‘M’’.

To facilitate further processing of each TMA core, we are able

to use the high performance TMA computing platform to rapidly

partition the original TMA virtual slide into individual TMA core

images at 406magnification in #1 minute [4].

Additional Pseudo Data for Evaluation
To increase the volume of TMA slides for testing and explore a

variety of irregularities in TMA slide layouts and their impact on

TMA de-arraying algorithms, we artificially created five sets of

pseudo TMA slides which contain altogether 113 slides with

13,536 cores in total. Examples of the pseudo TMA slides are

shown in Figure 7.

During the production of TMA slides especially at sectioning

and when moving the thin section of paraffin fixation from a TMA

recipient block, the regular layout of TMA cores can be altered

especially in the following ways: i) TMA cores can be missing, ii)

the whole TMA grid can be rotated at varying angles when

positioning on a glass slide, iii) the thin TMA tissue section can be

stretched at a random direction. These three artefact irregularities

are illustrated in Figure 8B–E.

Using the existing TMA tissue samples, we selected a pool of

229 candidate TMA cores. These cores have the diameter of

600 mm and imaged at 406magnification, however the shape of

some of these cores are not completely circular which reflect the

reality. These cores are then down-sampled by a factor of 100 in

both x and y direction, which give the average diameter of 30

pixels per core. These small core images are then converted to be

binary images using the proposed TMA core segmentation

method described in the Methods section C.1. These candidate

cores are then randomly selected and placed on a predefined

equally-spaced 9|14 grid with core centroid distance of 50 pixels

in both x and y directions to form a regularly spaced TMA slide

thumbnail. This thumbnail image contains 126 cores with the

image size of 512|768 pixels. We name this template TMA slide

T from which irregular TMA layouts could be generated. We

artificially created the following five sets of irregular cases, which

are the missing core case set T m (26 cases), rotation case set T r (31

cases), horizontal stretching case set T H
s (13 cases), vertical

stretching cases T V
s (16 cases) and a mixture set T a of 27 cases

which covers all these 4 degrees of freedom.

Figure 5. An example of a part of a TMAMap showing TMA core
names.
doi:10.1371/journal.pone.0026007.g005
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Figure 6. Examples TMA de-arraying results. (A) TMA de-arraying result for the slide with ID 4 from Table 1, (B) Result for the slide with ID 18, (C)
Result for the slide with ID 19, (D) Result for the slide with ID 14. *Figure A and D superimposed TMA core names on top of the thumbnails whereas
Figure B & C superimposed grid indices on top of the thumbnails.
doi:10.1371/journal.pone.0026007.g006
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Missing Cores
By randomly removing up to 25% of TMA cores at random

locations from T , we generated a series of 26 missing-core cases

T m with the number of missing cores ranging from 0 to 31. It is

unlikely that this value would be exceeded in real cases. An

example is shown in Figure 8B.

Rotation
By rotating the whole grid layout clockwise and anticlockwise,

we obtained a set of 30 rotated TMA cases T r with the angle of

rotation within a reasonable range of {15
0
,15

0½ �, which is

{
p

12
,

p

12

h i
. An example is shown in Figure 8C.

Stretching
To simulate the physical process of TMA stretching, we

generated the following model.

If a thin section is stretched horizontally at the bottom right

corner of the slide, for each column of TMA cores, the x-

coordinates X~ x1,x2, . . . ,xM½ � for each of the TMA core in that

column would increase, where M~9 in our case. We use eH
m

(m~1,2, . . . ,M) to describe the amount of increments for the x-

coordinates of each core. As the force is applied on the bottom

right corner of the non-rigid section body, eH
m is therefore could be

modelled as a non-linear function eH
m ~f mð Þ. In this study, there

was no intention to study in detail the physics of thin section

deformation. Therefore we use the following simple differences of

cosine signal in the range of 0,
p

2

h i
to represent this non-linear

deformation:

eH
m ~

K: AH
�� ��: cos

p

2
:M{m

M

	 

{ cos

p

2
:M{mz1

M

	 
	 

AH

§0

K : AH
�� ��: cos

p

2
:m{1

M

	 

{ cos

p

2
: m

M

� �	 

AH

v0

8>>><
>>>:

ð19Þ

where K is a scaling factor with the value of 10, and AH is a user

defined horizontal stretching amplitude value. When AH
§0, the

slide is stretched horizontally at the top right corner, whereas

when AH
v0, the slide is stretched horizontally at the bottom right

corner. Therefore after stretching, the x-coordinates for a given

column are transformed to be X 0~ x01,x02, . . . ,x0M
� �

, where

x0m~xmzeH
m .

Similarly, we could also simulate the deformation in the y

direction by defining the amount of increment eV
n for the y-

coordinates of a row of TMA cores. eV
n is defined as:

eV
n ~

K : AV
�� ��: cos

p

2
: n{1

N

	 

{ cos

p

2
: n

N

� �	 

AV

§0

{K : AV
�� ��: cos

p

2
:N{n

N

	 

{ cos

p

2
:N{nz1

N

	 
	 

AV

v0

8>>><
>>>:

ð20Þ

Figure 7. Example TMA de-arraying results using pseudo TMA slide. (A) Result for the pseudo slide from T m with 31 missing cores, (B) Result
for the pseudo slide from T r which rotated 15 degree anticlockwise, (C) Result for the pseudo slide from T s with vertical stretching eH

m ~100, (D)
Result for the pseudo slide from T a with 32 missing core and no rotation, eH

m ~{40 and eH
m ~30. *All figures superimposed grid indices on top of the

thumbnails.
doi:10.1371/journal.pone.0026007.g007

Figure 8. Examples of pseudo test cases. (A) A pseudo test case of a TMA slide with 9 rows and 14 columns of cores (total 126 cores), (B) A
pseudo test case reflecting 31 missing cores, (C) A pseudo test case rotated 15 degree clockwise, (D) A pseudo test case stretched at the top right
corner with the parameter eH

m ~{80, (E) A pseudo test case stretched at the top right corner with the parameter eV
n ~{100, (F) A random test case

where the slide has 12 missing cores, and it is rotated 3 degrees anti-clockwise, stretched at the top right corner with the parameters eH
m ~{10 and

eH
m ~{50.

doi:10.1371/journal.pone.0026007.g008

ð19Þ

ð20Þ
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where n~1,2, . . . ,N, N is the number of y-coordinates for a given

row of TMA cores, and AV is a user defined vertical stretching

amplitude. When AV
§0, the slide is stretched downwards at the

top right corner, whereas when AV
v0, the slide is stretched

upwards at the bottom right corner.

By giving different values to eH
m , we obtained a collection of 13

horizontally stretched cases T H
s , where eH

m is in the range of

{80,80½ �. Similarly, a collection of 16 cases T V
s were also

generated for vertically stretched cases with eV
n [ {100,100½ �. Two

examples horizontally and vertically stretched TMAs are shown in

Figure 8D & E.

Random Pseudo Cases
By considering all the above mentioned irregularities, a random set

of 27 mixed cases T a were created. An example is shown in Figure 8F.

Results

Tests were first performed using 19 TMA tissue virtual slides

containing a total of 3129 valid cores. Scanned TMA virtual slides

were firstly down-sampled to thumbnail images to be 0.01% of the

original slide size (approx. 1,00061,000 pixels). These thumbnails

were then de-arrayed using the proposed three steps approach,

segmentation, gridding and mapping. Afterwards, the resulting

TMA core information was used to partition the entire original

TMA virtual slides into individual TMA core images and archived

for further processing. The gridding procedure was also tested

using the 113 pseudo slides with 13,536 cores in total.

For the 19 TMA tissue virtual slides, the performance of the

proposed de-arraying method was evaluated separately for

segmentation, gridding and mapping. Manual evaluation of each

step demonstrated the segmentation accuracy of 99.84%, gridding

accuracy of 99.81% and mapping accuracy of 99.93%. The

robustness of gridding was also evaluated using the 113 pseudo

cases, which give the gridding accuracy of 100%. Some examples

are shown in Figure 6 & 7.

Taken together these results suggest that the proposed de-

arraying method is robust and reliable, and providing an essential

tool for the automation of TMA analysis.

Segmentation
The performance of TMA core segmentation was examined by

visually analysing all of the partitioned high resolution TMA core

images. A TMA core is considered to be segmented correctly if all

parts of the core are segmented and it does not contain tissue/

fragments from other cores. All artefacts should not be included

and classified as cores either. For the segmentation of TMA cores

from thumbnails, given the total of 3129 cores across the 19 TMA

slides, only 5 TMA cores were wrongly segmented (Figure 9), and

the rest 99.84% cores are correctly segmented as TMA cores. In

the analysis, a total of 7 artefacts also presented in the TMA core

segmentation results (Figure 10).

For the TMA core shown in Figure 9A, only the tissue fragment on

the right is recognised and segmented as a TMA core whereas the

fragment on the left is treated as an artefact and removed from

segmentation results. Due to geographical closeness and the fragmented

nature of the two images in Figure 9B and C, the two TMA cores in

each of the image are wrongly recognised as one TMA core.

For the TMA core shown in Figure 10A, two TMA cores were

significantly fragmented into a number of tissue parts. They are

not suitable to be used in any further TMA experiments and

should be discarded. The proposed segmentation algorithm

wrongly recognised them as 4 disjoint TMA cores (A1–A4) due

to large nature of them. Figure 10B is an air bubble, generated

during cover-slipping of the slide, is similar to the size of a TMA

core. It was segmented out however further removed during the

gridding procedure. Additionally, another two small pieces of

tissue (Figure 10C and D) which have been recognised as TMA

cores, though these should more appropriately be classified as

tissue fragments due to their small nature.

Figure 9. Wrongly segmented TMA cores. (A) A disconnect TMA
core, (B) Two neighbouring TMA cores been wrongly segmented as one
core, (C) Another example of two neighbouring TMA cores been
wrongly segmented as one core. *The contours in Figure B & C are the
wrongly recognised boundaries of TMA cores.
doi:10.1371/journal.pone.0026007.g009

Figure 10. Artefacts which are wrongly recognised as TMA
cores during segmentation. (A) Two tissue cores are fragmented
into many parts. (B) An air bubble, (C) A fragment of TMA core is
wrongly recognised as a TMA core, (D) Another fragment of TMA core is
wrongly recognised as a TMA core. *The contours in Figure A illustrate
the wrongly segmented TMA core boundaries.
doi:10.1371/journal.pone.0026007.g010
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Gridding
The success of gridding was tested by examining if an identified

TMA core was allocated its correct grid index. In our study, we

use English alphabetical characters as a row index and Arabic

numbers as a column index. As an example, TMA core [B, 8]

indicates the TMA core which lies in the 2nd row and 8th column

of TMA grid.

An examination across all 19 TMA slides, the majority of TMA

cores are gridded correctly with only 6 cores being assigned the

wrong grid indices. Thus, the total of 99.81% TMA cores was

assigned correctly. These mis-gridded TMA cores are shown in

Figure 9B, C and Figure 10A. As can be seen clearly, these mis-

gridded TMA cores are the direct results of mis-segmentation from

the previous step. As the segmentation method wrongly recognised

Figure 9B & C as one TMA core each, the gridding method

assigned the two cores in each image with one grid index.

Similarly due to segmentation errors, one piece of the tissue

fragment (A2 from Figure 10A) is gridded as a TMA core however

the rest of tissue fragments (A1, A3 and A4) are successfully

recognised and marked as artefacts.

The test on the 113 pseudo test cases suggested that all of the

13,536 pseudo TMA cores were gridded correctly, which gives the

gridding accuracy of 100%. The proposed de-arraying method is

able to recognise where a single or a continuous number of cores

are missing (Figure 7A). For rotated TMA grids (as shown in

Figure 7B), our method is also able to de-array such slides correctly

without mistaking the logical core coordinates. Stretching creates

curves in either horizontal and/or vertical directions hence

subsequently alters the straightness of rows and columns where

TMA cores sit, our Delaunay triangulation based de-arraying

method is proven to be robust in such situations (Figure 7C).

Finally, test results also suggest our de-arraying method to be

robust and resilient to a random mixture of irregularities, even for

the severely altered case shown in Figure 7D.

Mapping
Comparing with segmentation and gridding, mapping is a

straightforward task. It is tested by manual examining if a given

TMA core name from the TMAMaps has been assigned correctly

to its corresponding TMA core image.

Mapping was tested using the 17 of the total 19 virtual slides

(number 1–17) which have a corresponding TMAMap. A total of

2746 cores were tested. Results suggest only 1 mapping error,

which is the tissue fragment A2 shown in Figure 10A was given a

wrong core name ‘‘A13T[4]’’. The rest 2745 (99.96%) of TMA

cores were all mapped correctly.

Discussion

In this study, we presented a novel TMA de-arraying technique

based on Delaunay triangulation, a computational geometry

method. Given the large amount of irregularities within TMA

slides, such as missing cores, rotation and stretching, the method

from this study is robust and much more resilient than other

reported methods such as Hough transform and template

matching. Evaluation from this study suggests the proposed three

step method results in the accuracy of 99.84% for segmentation,

99.81% for gridding and 99.93% for mapping using real TMA

tissue slides.

The gridding of TMA cores were also evaluated using 113

pseudo TMA slides containing 13,536 cores with 100% accuracy.

As far as the authors are aware of, this paper represents the first

study which defined and evaluated the TMA layout irregularities

and their impact on the de-arraying algorithms. The Delaunay

triangulation based gridding method presented in this study is able

to handle a range of altered TMA layouts, which would cover a

large majority of TMA cases in reality. It is capable of dealing with

the missing of 24.6% cores, the rotation of grid within the range of

{15
0
,15

0½ �, and the stretching in both horizontal (eH
m[ {80,80½ �)

and vertical directions (eV
n [ {100,100½ �).

It is difficult to compare the performance of our study with

others simply because there are relatively few de-arraying

algorithms in the literature. Most studies reported the overall de-

arraying performance [5,8], rather than the robustness of

individual segmentation, gridding and mapping steps. To the best

of our knowledge, there are no other studies reporting the

performance of TMA core segmentation algorithms. For TMA

gridding, Study [5] reported an accuracy of 96.84% using 5878

cores where mis-gridding tends to happen when there is not a

complete a row of TMA cores. Study [8] reported 99.59% using

8864 cores with most of mis-gridding to be not-assigned-cores.

Using the proposed Delaunay triangulation method, this study

achieved 99.81% in gridding using 2747 TMA tissue cores, and

100% in gridding using 13,536 pseudo cores. The proposed

gridding method does not depend on complete rows of TMA

cores, and as Delaunay triangulation uses the centroid of each

TMA core as a vertex, it is highly unlikely that cores are

unassigned.

We also compared the performance of our de-arraying

algorithm with commercially available software, Aperio’s Spec-

trum and Definiens’ TissueStudio packages. While the technical

details of how these software packages carry out de-arraying are

unknown, we were able to compare the overall de-arrayed results

directly. Using the same 19 virtual slides with 3129 TMA cores for

testing, Aperio’s Spectrum also produced very good de-arraying

results. 99.68% of the cores are assigned correctly with only 10

wrongly gridded TMA cores, and another 40 background/tissue

fragments been wrongly recognised as TMA cores (Figure 11A).

For the testing of the 113 pseudo TMA slides with 13,536 pseudo

cores, it achieved 99.98% accuracy with only 3 cores were wrongly

assigned for a severely stretched case (Figure 11E). However to

Aperio’s Spectrum software, users need to manually fine tune the

location and size of TMA core boundaries (complete circles). In

comparison, our de-arraying method contains a robust TMA core

segmentation procedure and the exact core boundaries are

identified, making it unnecessary to perform the manual core

location and boundary adjustments using our method. Definiens’

TissueStudio produces excellent TMA core segmentation results

by tracking the TMA core boundaries (Figure 11B), however it

requires a significant amount user interaction to manually i)

identify tissue fragments and artefacts (e.g. the bottom row in

Figure 11C marked with a ‘‘?’’), ii) to correct core locations

especially for TMA slides with altered grid layout, such as a

rotated and/or stretched grid (Figure 11C & F). In comparison,

our de-array method is able to recognise and filter out a significant

amount of tissue fragments and artefacts via a robust segmentation

approach. By using Delaunay triangulation with the built-in logic

to recognise and search for neighbouring cores especially for

altered grid layout, the majority of the irregular TMA grid

structures are recognised and cores assigned correctly. Addition-

ally, given that our proposed method is able to map each TMA

core with its name and associated clinical data through an

association with the underlying TMAMap, this represents an

enormous benefit over existing commercial systems.

In our experience, given the enormous variability that is

encountered in TMA construction, it is difficult to achieve 100%

accuracy of TMA core de-arraying assignment. For this reason,

visual inspection to ensure appropriate gridding results remains
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important. However, with more robust algorithms, such as the one

presented in this study, the amount of manual correction will be

significantly reduced.

The development of artificially produced pseudo TMA slides

showing a wide range of artefacts is important. This allows rapid

prototyping and evaluation of new algorithms for TMA gridding

and these are now made available publically for others to access.

For future work, the robustness of the described TMA de-

arraying method can be further improved by using the existing

grid information that exists in the pre-defined TMAMap. Here,

the layout, number of rows and columns etc are all pre-defined

and could be used to check the validity of the de-arraying results.

Additionally, the edge angle filtering method, which was described

in the Methods section C.2.d, uses a simple k-means clustering

Figure 11. Examples of TMA de-arraying results using Aperio’s Spectrum and Definiens’ Tissue Studio software. (A) Aperio’s de-
arraying result for the slide with ID 4 from Table 1, the bottom row ‘M’ represents 20 wrongly recognised TMA cores which are actually background
and artefacts, (B) Definiens’ segmentation result for the slide with ID 4, (C) Definiens’ gridding result for the slide with ID 4, majority of TMA cores
(located at in the centre and to the right of the slide) are assigned wrongly as it is unable to recognise the grid rotation from this slide, (D) De-arraying
result using our method with a pseudo TMA slide case from T a (3 missing cores, no rotation, eH

m ~10 and eH
m ~20), (E) Aperio’s Spectrum’s de-arraying

result on the same pseudo case as Figure D (only 3 cores on the bottom left of the slide are wrongly recognised), (F) Definiens’ Tissue Studio’s de-
arraying result on the same pseudo case as Figure D (A significant amount of segmented cores need to be manually assigned).
doi:10.1371/journal.pone.0026007.g011
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approaching with 5 clusters. In extreme situations the number of

edge angle clusters could be less than 5 (in a artificially created

regular pseudo slide, e.g. the edge angle of 450zd is missing), a

number of cluster number determination methods could be

applied, such as the information theoretic approach [29], and a

genetic algorithm which optimises the silhouettes [30].

In Summary, in this study we have developed a TMA de-

arraying method which recognises TMA cores and assigns them to

their corresponding grid index (and core names when available).

The proposed method is logically sound and results on real TMA

images and pseudo datasets indicate that it is robust. The correct

assignment of TMA cores is a first important step for the

automated and high throughput analysis of TMAs using computer

based image analysis. This is now becoming the cornerstone of

target validation, drug evaluation and biomarker discovery in

animal and human tissues.

Availability
For comparison studies and evaluations, all the pseudo TMA

data are freely available at https://picasaweb.google.com/

117531880452844036890/TMADeArrayingPseudoData. The re-

sult mark-up images using our proposed TMA de-arraying

method can be found at https://picasaweb.google.com/

117531880452844036890/TMADeArrayingPseudoDataResults.
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