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Abstract

Background: Asthma exacerbations remain a major unmet clinical need. The difficulty in obtaining airway tissue and
bronchoalveolar lavage samples during exacerbations has greatly hampered study of naturally occurring exacerbations. This
study was conducted to determine if mRNA profiling of peripheral blood mononuclear cells (PBMCs) could provide
information on the systemic molecular pathways involved during asthma exacerbations.

Methodology/Principal Findings: Over the course of one year, gene expression levels during stable asthma, exacerbation, and
two weeks after an exacerbation were compared using oligonucleotide arrays. For each of 118 subjects who experienced at least
one asthma exacerbation, the gene expression patterns in a sample of peripheral blood mononuclear cells collected during an
exacerbation episode were compared to patterns observed in multiple samples from the same subject collected during
quiescent asthma. Analysis of covariance identified genes whose levels of expression changed during exacerbations and returned
to quiescent levels by two weeks. Heterogeneity among visits in expression profiles was examined using K-means clustering.
Three distinct exacerbation-associated gene expression signatures were identified. One signature indicated that, even among
patients without symptoms of respiratory infection, genes of innate immunity were activated. Antigen-independent T cell
activation mediated by IL15 was also indicated by this signature. A second signature revealed strong evidence of lymphocyte
activation through antigen receptors and subsequent downstream events of adaptive immunity. The number of genes identified
in the third signature was too few to draw conclusions on the mechanisms driving those exacerbations.

Conclusions/Significance: This study has shown that analysis of PBMCs reveals systemic changes accompanying asthma
exacerbation and has laid the foundation for future comparative studies using PBMCs.
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Introduction

While asthma is a chronic inflammatory disorder of the

conducting airways causing variable airflow obstruction, sudden

deterioration of asthma control in the form of exacerbations, even

in the presence of adequate controller therapy, creates a major

unmet clinical need. At worst, exacerbations can lead to death,

and at best to unscheduled healthcare interventions accounting for

most hospital admissions for asthma. Asthma exacerbations are

caused by a wide variety of different factors acting singly or

together including inadequate controller therapy, exposure to

environmental insults (especially allergens, infectious agents, air

pollutants, irritant chemicals, and certain drugs) as well as

endogenous factors such as changes in sex hormones and

psychological stress [1]. The frequency and severity of asthma

exacerbations can be reduced by adherence to asthma manage-

ment guidelines and adequate use of controller therapy. Indeed

the most recent guidelines (GINA, BTS and US) advocate control

of baseline asthma and prevention of exacerbations as the optimal

targets of therapy. While some causes of exacerbating asthma

(such as those resulting from inadequate baseline therapy, poor

compliance and allergen exposure) can be effectively modified by

increasing anti-inflammatory therapy, especially inhaled cortico-

steroids, others (such as those triggered by virus infection or air

pollution episodes) are much less responsive. Indeed, clinical trials

of doubling the dose of inhaled corticosteroids at the onset of a

naturally occurring exacerbation have shown no beneficial effect

[2,3], although higher doses and oral corticosteroids are more

effective [4]. Adequate doses of inhaled corticosteroids alone or in

combination with long-acting b2-adrenoceptor agonists, leukotri-

ene receptor antagonists and/or anti-IgE monoclonal antibody

result in reduced number and severity of exacerbations. These

effects of therapy are likely due to a combination of reduced

baseline airway inflammation, bronchodilatation and variable

suppression of the underlying cellular mechanisms that drive the

exacerbation itself [5]. However, even in the case of biologics that

target highly selected pathways such as monoclonal antibodies

against IgE (omalizumab) and/or IL5, their effectiveness will be

limited to exacerbation subtypes that utilize these inflammatory

pathways [6,7].

Although much is now known about the immunological,

inflammatory cells and mediators involved in different asthma

subtypes, it is surprising that almost nothing is known about the

mechanisms involved in exacerbations other than that they are

triggered by inadequate controller therapy, respiratory viral

infection and allergen exposure. A dominant eosinophil or mixed

eosinophil and neutrophil response in blood, sputum and

bronchoalveolar lavage and release of a range of inflammatory

mediators, cytokines and chemokines during exacerbations

strongly supports the existence of heterogeneous mechanisms

[8]. Difficulty in obtaining airway tissue and lavage samples during

naturally occurring exacerbations has greatly hampered the study

of their underlying mechanisms. However, in one bronchial biopsy

study of severe asthma exacerbations, there was a similar increase

in the number of mucosal eosinophils and neutrophils that was

accompanied by increased expression of mRNA for the chemo-

kines CXCL5 (epithelial cell-derived neutrophil-activating pep-

tide-78) and CXCL8 (IL8) and their receptors CXCR1 and

CXCR2, but the mechanisms involved are unknown [9].

Based on the paucity of mechanistic information on asthma

exacerbations, the aim of the current study was to determine if

mRNA profiling of peripheral blood mononuclear cells (PBMCs)

could provide new insights into the systemic molecular pathways

involved during naturally asthma exacerbations in patients with a

range of asthma severity. Some of the results of these studies have

been previously reported in the form of an abstract [10].

Materials and Methods

This was a prospective, multi-center non-interventional study

conducted in Australia, Iceland, Ireland, U.K., and USA, and

approved by the respective Institutional Review Boards or Ethics

Committees. The names of the institutional review boards that

approved this study are: Research Ethics Committee, Royal

Adelaide Hospital, Adelaide, Australia, The Sir Charles Gardiner

Hospital Human Research Ethics Committee, Nedlands, Austra-

lia, Sothern Health Human Research Ethics Committee, Monash

Medical Center, Clayton, Victoria, Australia, Human research

Ethics Committee, The Royal Melbourse Hospital, Parkville,

Australia, Western Institutional Review Board, Olympia, Wa-

hington, USA, Quorum Review Inc, Seattle, Washington, USA,

Sterling Institutional Review Board, Atlanta, Georgia, USA, Yale

University Human Investigation Committee, New Haven, Con-

necticut, USA, Institutional Review Board, Saint Barnabus Health

Care System, Newark, Newjersey, USA, Medical Ethics Commit-

tee, Northern Health Board, Dubline, Ireland, Southampton

&South West hants Local research Ethics Committee, South-

ampton, UK, Leicestershir, Northamptonshire and Rutland

Health Authority Committee on the Ethics of Clinical Research

Investigation, Leicerster, UK, National Bioethics Committee,

Reykjavik, Iceland. All subjects gave their written informed

consent, were aged $18 years and had a confirmed diagnosis of

mild persistent, moderate persistent, or severe persistent bronchial

asthma according to the 1997 Guidelines for the Diagnosis and

Management of Asthma [11] Subjects were stratified by disease

severity and had to have demonstrated an improvement in forced

expiratory volume in 1 second (FEV1) of $12% from the baseline

in response to an inhaled short-acting b2-adrenoceptor agonist

within 12 months of screening and/or a provocative concentration

of methacholine causing a 20% fall in FEV1 (PC20) of ,8 mg/mL.

Exclusion criteria included an active infection, major intercurrent

illness, allergen immunotherapy, pregnancy or lactation. At

screening, baseline information collected included a detailed

medical and asthma history, medication use, physical examination

and spirometry. The pattern of asthma over the 12 month

observation period is supplied in Text S1.

Subjects attended the clinic every 3 months throughout the

course of the 12-month study with asthma assessments performed

at each visit. In addition, at the first sign of an exacerbation attack

subjects were asked to attend the assessment clinic as soon as

feasible, and again within two weeks of recovery from exacerba-

tion. At each visit, venous blood samples were collected. Thus

there were three types of blood samples collected: 1) Quiet - during

stable disease at approximately 3-month intervals, 2) Exacerbation -

Asthma Exacerbation Pathways
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during a 14 day window during which subjects were experiencing

symptoms of exacerbation attack and 3) Follow-up - within a 14 day

window following cessation of the exacerbation attack. Exacerbation

samples were collected while the subjects were experiencing one or

more of the following symptoms – increases in wheezing, chest

tightness, and/or shortness of breath. There was no restriction on

medication use in the management of these patients either when

stable or during exacerbations.

Analytical Samples
PBMCs from asthma subjects were isolated from whole blood

samples (8 ml66 tubes) collected into cell purification (CPT) tubes

(Becton Dickinson, Franklin Lakes, NJ) according to the

manufacturer’s recommendations. All samples were shipped at

room temperature in a temperature controlled box overnight from

the clinical site, cell differential counts taken, PBMCs purified

according to CPT manufacturer instructions, (Table S1), and cell

pellets stored at 280uC pending RNA purification. RLT lysis

buffer (with 0.1% b-mercaptoethanol) was added to frozen pellets,

RNA isolated using RNeasy Mini Kit (Qiagen, Valencia, CA) and

DNase treated (Qiagen RNase-free DNase Kit). Eluted RNA was

quantified using a Spectramax96 well plate UV reader (Molecular

Devices, Sunnyvale, CA, USA) monitoring A260/280 OD values.

The quality of each RNA sample was assessed by the integrity of

the 28S and 18S peaks by capillary electrophoresis alongside an

RNA molecular weight ladder on the Agilent 2100 bioanalyzer

(Agilent Technologies, Palo Alto, CA, USA). RNA was quantified

using Spectramax96 (Molecular Devices, Sunnyvale, CA).

Determining RNA Expression Level
Labelled targets for oligonucleotide arrays were prepared using

2 mg of total RNA according to the protocol provided by

Affymetrix (Santa Clara, CA). Biotinylated cRNA was hybridized

to the HG-U133A Affymetrix GeneChip ArrayH which interro-

gates 23,283 probe sets. Raw intensity values were processed using

Affymetrix MAS 5.0 software, which calculated signal expression

levels and present/absent calls for each probe set. More detailed

descriptions of sample preparation, mRNA expression measure-

ments using the Affymetrix U133A GeneChip and quality control

acceptance criteria for GeneChip data are given in the Table S2.

Gene expression data for all arrays run has been submitted to

NCBI GEO, accession number 19301. Expression levels of

polymorphic HLA DQA1 and HLADQB1, and a Y-chromosome

specific transcript, RPS4Y1 were checked for each sample from

each donor to ensure that each sample was associated with the

correct donor, i.e. erroneous sample switching had not occurred.

ANCOVA and K-Means Analyses
The multiple samples drawn from a given subject during

periods of quiet asthma served as the control comparators for

samples drawn from the same patient during exacerbations. This

repeated-measures study design provided the power to detect

changes associated with exacerbation across the large number of

subjects analyzed. There were at least 3 quiet samples for 85% of

the 118 subjects in the study. The percentage of subjects with 1, 2,

3, 4 or 5 quiet samples is shown in Figure S1. Levels and variability

of gene expression during quiet visits in each subject was calculated

using all quiet samples from the subject.

For each probe set, mean expression levels during quiet,

exacerbation, and follow-up visits were compared using repeated-

measures analysis of covariance (ANCOVA), (see Text S1 for

more detailed description). Heterogeneity of expression during

quiet states was factored into the ANCOVA, and only exacerba-

tion-associated differences that fell significantly outside the levels

observed during quiet periods were examined in further detail. In

these analyses, log2-transformed signal was the response variable,

and asthma severity, sex, age category, race, geographical location,

visit type, corticosteroid exposure, leukotriene receptor antagonist

use, RNA quality and monocyte to lymphocyte ratio were the

explanatory variables. To adjust for multiplicity of testing, false

discovery rates (FDRs) were calculated across all probe sets,

separately for each term in the ANCOVA model or pair-wise

contrast using SAS version 9.1 [12]. Additional information is

provided in Text S1.

An initial ANCOVA compared mean log2 expression levels

during exacerbations with levels during quiet visits. All genes with

mean differences between exacerbation and quiet visits that were

statistically significant at the 0.05 level (unadjusted p-value ,0.05)

were identified. Heterogeneity in the expression profiles of this set

of genes among samples was evaluated using K-means clustering

[13]. Specifically, the input to the K-means analysis was the

difference between the log2 expression level of each exacerbation visit

and the mean log2 expression level of quiet visits for the same

subject. The K-means clustering partitioned samples solely on the

basis of similarity in gene expression profile, i.e. in the absence of

additional sample-related information supplied by the investigator.

K-means clustering was executed using the R software package

(version 2.1.1; www.r-project.org). To estimate the number of

exacerbation sub-groups that were present within the dataset,

repeated K-means cluster analyses were run, setting K (the

number of subgroups) to each possible value between 2 and 8. For

each number of subgroups, we assessed the separability and

robustness of the resulting clusters. Higher separability and

robustness reproducibly revealed distinguishable subgroups of

exacerbation responses. Separability and robustness were mea-

sured using the silhouette statistic (SW) [14] and a simulation-

based robustness index (R) [15]. For the robustness index

calculation, Gaussian random noise with zero mean and realistic

amplitude (a standard deviation of 0.3) was computationally added

to the observed log-ratios to simulate biological replication. For

each of 100 realizations of the noisy data, K-means clustering was

executed as described above, and the co-clustering of all donor

pairs recorded. The resulting co-clustering matrix was then

divided by the number of realizations (100) to yield a symmetrical

matrix of cluster co-occurrence fractions for every sample-pair in

the dataset. Additional details describing the evidentiary support

for dividing the exacerbation samples into 3 subgroups are provided

in Text S1.

Based on the K-means assignments of exacerbation visits to three

subgroups, an ANCOVA was performed to compare log2 mean

expression for exacerbation visits within each subgroup with mean

expression during the quiet visits. The exacerbation versus quiet

comparison was calculated separately for each exacerbation-

associated gene. Since these ANCOVAs were performed using

exacerbation visits grouped on the basis of similarities in expression

pattern, the resulting FDR adjusted p-values must be regarded as

relative and not as unconditional probabilities indicating the

significance of association with exacerbation in general. Never-

theless, we report these ‘‘relative FDR p-values’’ because they help

identify significant changes between quiet and exacerbation observed

within subgroups, and because the values are useful for assessing

the relative strength and rank of each association.

Principal Components (PCA) Analysis
Principal components analysis (PCA) was used to display the

relationships among donor-visits in the 3 K-means clusters. PCA

was executed in Spotfire DecisionSite 9.0 (TIBCO, Palo Alto, CA).

Asthma Exacerbation Pathways
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Exacerbation-Associated Probe Sets Selection Criteria
We set the cut-offs for association with exacerbation within each

subgroup at relative FDR p-value ,0.05 and an absolute fold

change with exacerbation .1.2 fold. This fold change cut-off was

lower than conventional thresholds. Studies on selection of

appropriate fold change cut-offs in gene expression studies have

shown that decisions on cut-offs should take the characteristics of

individual dataset into account [16,17,18,19]. The relatively large

sample sizes in this study and the other considerations described in

the discussion are felt to justify the lower than conventional 1.2-

fold-cutoff.

Pathway analysis
Pathway analysis was performed using Ingenuity Pathways

Analysis (IPA) (www.ingenuity.com, Ingenuity Systems, Redwood

City, CA). Canonical pathways are shown as depicted by IPA, or

as expanded using the literature-based pathway building tools in

IPA. A right-tailed Fisher’s Exact Test was used to identify over-

represented functions or pathways in IPA. The p-values derived

through these analyses were based on: 1) number of functions/

canonical pathway eligible molecules that participate in that

annotation, 2) total number of knowledge base molecules known to

be associated with that function, 3) total number of functions/

canonical pathways eligible molecules, and 4) total number of

genes in the reference set (https://analysis.ingenuity.com/pa/

info/help/help.htm#ipa_help.htm).

TaqManH PCR
We have previously performed extensive analysis comparing

expression level data obtained using the Affymetrix U133A

GeneChip and TaqManH PCR and shown highly concordant

results. One of these platform concordance studies has been

reported previously [20]. The results of another study, using data

from some of the quiet asthma samples reported in this study, are

described in the Figure S2, and Text S1. The overall Pearson

correlation coefficient (for measurements of expression differences

by the two platforms) was 0.86. Due to this strong concordance,

we did not perform a GeneChip and TaqManH PCR platform

concordance analysis for the results reported here. However we

did use TaqManH PCR to measure levels of three specific genes,

IFNa1, IFNb1, and IFNc because these genes were expressed at

levels too low to be detected by the GeneChip, but were

functionally related to many genes identified from our GeneChip

data. We also measured IL13 by TaqManH PCR TaqManH
because of the association between the IL13 pathway and asthma.

Expression levels of these genes and ZNF592 (used for

normalization) were measured using primers, probes and instruc-

tions from Applied Biosystems (Table S3 and Text S1). ZNF592

was selected as a normalizer gene based on a survey of

oligonucleotide array expression data for 44,928 transcripts across

a compendium of 9,270 hybridizations, including multiple studies

involving different types of cells and tissues. In this broad survey,

ZNF592 had substantially less variability than other commonly

utilized endogenous controls. Specifically, ZNF592 had a

coefficient of variation which was at the 0.01-th percentile of

variation among all surveyed transcripts.

Results

Study Population
A total of 357 subjects were enrolled and are described in

Table 1 and Table S4. The mean FEV1 for each disease strata

(mild, moderate and severe) are shown in Table 2. Detailed

information on the enrolled subjects is reported in Text S1 with

the following parameter reported in tabulated form: assessment of

asthma control (Table S5), healthcare resource use (Table S6),

atopy status at screening (Table S7), body mass index and reflus

disease (Table S8), history of reflux disease (Table S9), change in

asthma severity by visit (Table S10), use of concomitant anti-

asthmatic medication (Table S11), use of anti-asthmatic medica-

tion by country (Table S12), healthcare resource use during course

of study (Table S13), precipitating and aggravating factors by visit

Table 1. Demographic and Baseline Characteristics by
Asthma Severity.

Characteristic Mild Moderate Severe Total

(n = 36) (n = 149) (n = 172) (N = 357)

Mean age (yr) 41.14 43.4 47.37 45.08

S.D. 12.85 15.18 14.71 14.88

Female, n (%) 26 (72.2) 98 (65.8) 106 (61.6) 230 (64.4)

Male, n (%) 10 (27.8) 51 (34.2) 66 (38.4) 127 (35.6)

Asian, n (%) 0 (0) 4 (2.7) 6 (3.5) 10 (2.8)

Black, n (%) 1 (2.8) 11 (7.4) 24 (14.0) 36 (10.1)

White, n (%) 35 (97.2) 134 (89.9) 142 (82.6) 311 (87.1)

Hispanic, n (%) 0 (0) 3 (2.0) 10 (5.8) 13 (3.6)

Non-Hispanic, n (%) 36 (100) 146 (98.0) 162 (94.2) 344 (96.4)

Mean Weight (Kg) 78.03 82.01 80.87 81.06

S.D. 13.29 18.83 19.88 18.86

Mean Height (cm) 167.37 169.54 166.95 168.07

S.D. 10.39 10.08 9.47 9.88

Subjects were followed for 12 months according to site standard of care.
Twenty-seven subjects (7.6%) did not complete the study. The most common
reason overall for early withdrawal from the study was failure to return. The
most common reason for exclusion was FEV1 reversibility. The reasons for
patient exclusion tended to be site-specific rather than country-specific.
doi:10.1371/journal.pone.0021902.t001

Table 2. Mean FEV1 (% Predicted) at Scheduled Non-
Exacerbation Visits.

Exacerbation
Status Asthma Severity

Mild Moderate Severe

Never n 81 295 300

Mean 95.01 85.51 74.85

P-valuea ,0.0001

At Least 1 n 33 181 244

Mean 90.27 86.33 74.15

P-valuea ,0.0001

P-valueb 0.0479 0.5675 0.6851

All Subjects n 114 476 544

Mean 93.64 85.83 74.54

P-valuea ,0.0001

aP-value indicates test for differences among asthma severity groups
bP-value indicates test for difference between exacerbation status groups

(never had an exacerbation versus had at least 1 exacerbation) within an
asthma severity category.

Abbreviations: FEV1 = forced expiratory volume in 1 second.
doi:10.1371/journal.pone.0021902.t002
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(Table S14), adverse events (Table S15), most common respiratory

adverse events (Table S16), and mean FEV1 (% predicted) at

scheduled non-exacerbation visits (Table S17). To avoid potential

confounding effects of smoking, subjects who smoked (n = 20) were

excluded from the analyses reported here. Of 337 non-smoking

subjects (64.4% female, 87.1% white) enrolled, at least one

evaluable exacerbation sample was collected from each of 118

subjects, and there were 37 subjects from whom more than one

exacerbation sample was collected. The total number of exacerbation

samples analyzed was 166. From the 118 subjects from whom at

least one exacerbation sample was collected, a total of 394 quiet

samples and 125 follow-up samples were also collected (Figure 1

and Figure S1). The vast majority of exacerbation samples were from

severe (55%) and moderate (41%) asthmatics. The interval

between exacerbation onset and collection of the exacerbation

sample was unavoidably variable. Subjects were requested to go to

their doctor’s office within 3 days of the onset of the attack, with

72% of samples being collected within this window. For the 166

exacerbation samples reported in this study, 25% were collected on

the day of onset and 16%, 17%, 14%, 24% and 4% collected on

days 1,2, 3, 429, and 10214 post-exacerbation onset respectively.

Partitioning Exacerbation Samples into Three Subgroups
Gene expression levels in each subject in multiple quiet samples

were compared to levels in the same patient during individual

exacerbations by ANCOVA performed to determine the association

of each probe set with exacerbation. There were 1079 probe sets with

an unadjusted p-value association with exacerbation ranging from

5.33610210 to 561022 (0.05). Upon adjustment for multiplicity of

testing, however, the association with exacerbation was at an

unacceptably low confidence level for the majority of probe sets.

To gain an overview of the large dataset, we generated a heat map

of the difference between the log2 expression level during an

exacerbation visit and the mean log2 expression level during quiet

visits for the same subject for each of these 1079 probe sets for

each of the 166 exacerbation samples. As we had expected, this

analysis revealed significant heterogeneity of exacerbation-associated

gene expression patterns among the samples.

K-means clustering was performed to group the samples on the

basis of similarities in exacerbation-related differences. Since the K-

means algorithm partitions samples into the number of subgroups

stipulated by the investigator, procedures were performed to

determine the number of robust subgroups within the dataset. We

assessed the robustness of K-means clusters using both the

silhouette statistic (SW)[14] and a simulation-based robustness

index (R), similar to the approach of McShane et al.[15]. Figure

S3 shows silhouette statistics for K = 2, 3, 4, and 8 clusters. There

is an ‘‘elbow’’ in the slope of the SW curve at K = 3, indicating that

further increases in K have diminishing benefits in distinguishing

distinct groups (Text S1). Figure S4 shows a clear and robust

separation into three subgroups (K = 3 clusters, SW = 0.08,

R = 0.88). With more than 3 subgroups, the SW and R measures

of subgroup robustness declined, indicating no more than three

well defined subgroups of samples. Combining these observations

with the imperative to use the simplest model that is consistent

with the data, we selected K = 3 (text S1). Exacerbation samples were

therefore partitioned by the K-means algorithm into three

subgroups designated X, Y and Z. Each exacerbation was assigned

by the algorithm to one of these three subgroups with the

subgroups comprising 18%, 38% and 43% of exacerbation samples

respectively. ANCOVA was performed and 1572 probe sets that

met the criteria for significant exacerbation association within any

subgroup were identified (FDR,0.05 and |fold change| .1.2 in

at least one subgroup). Separation of the subgroups using principal

component analysis is shown in Figure 2, and a heat map

representation ordered by bispectral clustering is shown in Figure

S5.

For Subgroups X, Y and Z, there were 1081, 574 and 286

probe sets respectively that met the criteria for significant

association with exacerbation. The FDR adjusted p-values for

association each of these subgroups are summarized in Figures 3,

4, 5, and Figure S6 of Text S1. Table S18 gives the identity of

each gene, the significance of the association with exacerbation,

and the log2 fold change with exacerbation. Separate ANCOVAs

comparing mean expression levels in quiet and follow-up samples

showed that, with a very small number (4%) of exceptions in

Subgroup Z, exacerbation–associated probe sets were not different

(relative FDR p-value.0.05) from quiet levels two weeks after

cessation of an exacerbation (Figures 3,4, and 5, and Figures S6).

These results show that: a) significant differences were detected in

gene expression in the blood of asthmatics during quiet and

exacerbation periods of disease, b) no significant differences were

Figure 1. Description of Study Samples. Of 357 subjects enrolled in the study, the 337 non-smoking subjects were selected for analyses of gene
expression patterns associated with exacerbation attack. A total of 118 subjects experienced at least one exacerbation attack, and 166 samples were
evaluated from these subjects. Analyses were performed comparing expression levels of each probe set in each exacerbation sample to the average
of quiet visits from the same subject.
doi:10.1371/journal.pone.0021902.g001
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identified when samples from individuals who were not experi-

encing exacerbation (follow-up samples) were compared to the

quiet sample dataset using identical procedures used in the analysis

with exacerbation samples. This latter point establishes that the

identification of differences in the quiet versus exacerbation

comparison cannot be attributed to unknown artifact(s) introduced

by conducting the analyses as described.

Detection of Exacerbation-Associated Genes and
Biological Pathways

Among Subgroup X genes, components of the toll-like receptor

(TLR) and interferon response signaling pathways were signifi-

cantly over-represented (Figure 6). P-values determined by

Ingenuity Pathway Analysis for significance of over-representation

of interferon and TLR pathways are = 4.2361028 and 2.6661022

respectively. Interferon-inducible genes that were over-expressed

included the interferon regulatory factors (IRFs) 21, 27 and 29

(Figure 7). IRF-4 was down-regulated as were its target genes

(Figure 8). Pathway analysis indicated a role for either IFNa1,

IFNb1, and IFNc in exacerbation, but these three genes were below

detectable levels using the HG-U133A Affymetrix GeneChip

ArrayH. As a result, expression levels of these three genes were

measured TaqManH PCR. In Subgroup X, significant elevation of

mRNA for type I interferons IFNa1 (p = 4.761023) and IFNb1

(p = 3.161023) was observed, while the association with the type II

interferon (IFNc)was not significant, indicating that the activation

of IFN associated genes was being driven by type I interferon.

Figure 2. Principal Component Analysis Showing Separation of
Subgroups X, Y and Z. PCA was performed on the log-ratios of
exacerbation to quiet expression levels for 1,572 probesets measured in
166 donor-visits. The cumulative percent of variation explained by
principal components 1, 2, and 3 was 23%, 37%, and 43% respectively;
components 1 and 2 are shown in the figure.
doi:10.1371/journal.pone.0021902.g002

Figure 3. Association of Subgroup X Probe Sets with Exacerbation. Relative FDR p-value for 1081 probe sets meeting selection criteria in
ANCOVA on 30 Subgroup X exacerbation samples compared to the average of their corresponding quiet samples. To clarify the visual representations,
probe sets have been ordered by descending relative FDR p-value in the comparison of quiet versus exacerbation samples. The metrics associated
with each of the 1081 probe sets are given in the Table S18. See Figure S6 for results obtained from ANCOVA comparing quiet and exacerbation using
only the 22 exacerbation samples with corresponding follow-up sample.
doi:10.1371/journal.pone.0021902.g003
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Figure 4. Association of Subgroup Y Probe Sets with Exacerbation. Relative FDR for 574 probe sets meeting selection criteria in ANCOVA of
64 Subgroup Y exacerbation samples and the average of their corresponding quiet samples. See Table S18 for metrics for each individual probe set,
and Figure S6 for results obtained comparing quiet and exacerbation using only the 55 exacerbation samples with corresponding follow-up sample.
doi:10.1371/journal.pone.0021902.g004

Figure 5. Association of Subgroup Z Probe Sets with Exacerbation. Relative FDR for 286 probe sets meeting selection criteria in ANCOVA of
72 Subgroup Z exacerbation samples and the average of their corresponding quiet samples. See Table S18 for metrics on individual probe sets and
Figure S6 for results comparing quiet and exacerbation using only the 52 exacerbation samples with corresponding follow-up sample.
doi:10.1371/journal.pone.0021902.g005
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One of the genes regulated by IRF7 is IL15, and a network

centered on IL15 was found to be highly significant in Subgroup

X. Ingenuity Pathway Analysis determined the significance of

over-representation of IL15-regulated genes at p = 4610213,

indicating a role for this cytokine in the expression of several

exacerbation-related genes (Figure 9 and Table S19). Consistent

with the TCR-independent activation of T cell by IL15 [21], there

was down-regulation of the TCR activation pathway in Subgroup

X (Text S1, Table S18). These results support the dominant

involvement of innate immune pathways in Subgroup X.

In contrast to the dominant signatures of innate immunity

detected in Subgroup X, the gene expression patterns in Subgroup

Y were indicative of a dominant role of antigen driven pathways of

adaptive immunity. Genes associated with the activation of B cells

through the B cell antigen receptor were more significantly

upregulated in Subgroup Y than in the other subgroups

(Figure 10). Ingenuity Pathway Analysis determined the signifi-

cance of over-representation of B cells antigen receptor pathway in

Subgroup Y at p = 3.5461023. While genes of the T cell receptor-

dependent pathway were down-regulated in Subgroup X, the

same genes were significantly up-regulated in Subgroup Y

(Figure 11). Ingenuity Pathway Analysis determined the signifi-

cance of over-representation of T cells receptor pathway genes in

Subgroup Y at p = 1.561022. Genes of the IL4 pathway, a

pathway with well established links to asthma [22,23], were also

over-represented in Subgroup Y (p = 6.261023). Because IL13

was not detectable by GeneChip and is known to be an important

mediator of lung inflammation and IgE production [24,25,26,27],

IL13 expression levels were measured in a small subset of samples

by TaqManH PCR. We did not detect a significant difference

between quiet and exacerbation samples within any of the subgroups.

Compared to the other subgroups, the genes associated with

exacerbation within subgroup Z were far fewer and of less statistical

significance (Figures 5). There were 674 probe sets in Subgroup X

and 110 in Subgroup Y that exhibited more significant

associations with exacerbation than the most significant associations

seen in Subgroup Z. Since Subgroup Z is the largest of the 3

subgroups in terms of number of samples, the comparatively weak

signature cannot be attributed to lack of statistical power. Of the

286 probe sets in Subgroup Z with significantly altered expression

relative to quiet visits, only 26% (75) of the 286 probe sets were

unique to Subgroup Z, and this relatively short list of genes was

not sufficient for an informative pathway analysis. In the majority

of cases where Subgroup Z genes overlapped with those of

Subgroup X and/or Y, the association with exacerbation in

Subgroup Z was much less significant, again indicating that the

Subgroup Z expression pattern is weak by comparison to the other

subgroups.

Figure 6. Activation of the TLR Pathway in Subgroup X. Genes that are significantly upregulated in exacerbation are shown in red.
doi:10.1371/journal.pone.0021902.g006
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Search for Subgroup Assignment and Clinical Parameters
Associations

We examined whether multiple exacerbations from the same

subject were assigned to the same subgroup, and for 19 subjects

this was not the case. Therefore, subgroup assignment was not

solely attributable to an invariant parameter associated with the

subject. The time between exacerbation onset and collection of the

exacerbation sample varied from 0 to 14 days, but the subgroups did

not differ with respect to this parameter (Table 3, Figure S7 and

Text S1). Due to the non-normal distribution of days from start, a

non-parametric version of a standard ANOVA was run, and no

evidence of differences among clusters in mean days from start was

observed (p-value = 0.49 in test for differences of means among

clusters, calculated from a one-way ANOVA run on the ranks.)

Multiple analyses were performed to identify any associations

between subgroup assignment and respiratory function and no

associations were identified. For these analyses respiratory function

was assessed by FEV1 predicted (Table S20), FEV1 change from

baseline (Table S21), FVC predicted (Table S22), FVC change

from baseline (Table S23), FEF 25–75% predicted (Table S24),

FEF 25–75% change from baseline (Table S25), PEF predicted

(Table S26), PEF change from baseline (Table S27) or relevant

respiratory infection (Table S28). There was also no association

between cluster assignment and disease severity (Table S29).

Cluster assignment also did not show an association with use of

medications such as systemic corticosteroids (Table S30), inhaled

corticosteroids (Table S31), intranasal corticosteroids (Table S32)

leukotriene antagonists (Table S33), any GI medication use (Table

S34), any PPI medication use (table S35), or any histamine H2

antagonist (Table S36). Analysis also failed to identify an

association between subgroup assignment and sex (Table S37),

race (Table S38), location of sample processing (Table S39),

country (Table S40), atopy status (Table S41), fasting status (Table

S42), IgE levels (Table S43) or history of acid reflux (Table S44).

Of the 27 analyses run in an effort to identity associations

between subgroup assignment and other parameters, two analyses

identified significant associations. Mean BMI was statistically

significantly lower (p = 0.006) in Subgroup X than Subgroup Y,

and statistically suggestively lower (p = 0.0501) in Sub-group Z

than in Subgroup Y (Table S45). This finding indicates that those

with the highest BMI tended to be preferentially assigned to

Subgroup Y. As discussed below, this finding is notable in light of

Figure 7. Activation of the Interferon Pathway in Subgroup X. Type I and Type II interferon-induced genes including IRFs that are involved in
the regulation of interferon response, and the JAK-STAT signaling components of the IFN signaling pathway that are upregulated in Subgroup X
exacerbations are shown in red.
doi:10.1371/journal.pone.0021902.g007
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the report from Haldar et al. [28] that obese non-eosinophilic

asthmatics constitute a cluster of asthmatics that differ from other

types of asthmatics with respect to clinical response to treatment.

The other parameter that showed a significant association with

subgroup assignment was the time between quiet visit and

subsequent exacerbation visit (Table 4 and Table S46). There

was a significantly shorter time between a quiet visit and the

subsequent exacerbation visits for samples in Subgroups X and Y

(median days 40.5 and 40 respectively) than for samples in

Subgroup Z (median days 69).

Discussion

The elucidation of mechanisms that drive naturally occurring

human asthma exacerbations presents a considerable translational

medicine challenge in this area of unmet medical need. We have

conducted a multinational study and searched for changes in

PBMC gene expression coincident with asthma exacerbation. The

approach we have taken was intended to test whether advances in

understanding could be made in the absence of pre-conceived bias

by using the broad net of expression profiling and bioinformatics

approaches. The strengths of our study are its large size,

longitudinal design, recruitment of patients from multiple sites in

the Northern and Southern Hemisphere and collection of samples

from individual subjects during multiple quiet, naturally occurring

exacerbation and follow-up periods in real-life settings.

From the start, it was recognized that, even if exacerbation

associated gene expression patterns existed in the blood, they

were likely to be heterogeneous. This prediction was based on the

known complexity and heterogeneity of asthma and asthma

exacerbations, the multiple triggers associated with natural

exacerbations, and the knowledge that many sources of variability

could not be controlled in a study of naturally occurring

exacerbations. Adding to these challenges was the realization

that, prior to study initiation, we had little information on what to

base predictions of the strength signal(s) or the degree of sample

Figure 8. Activation of the Interferon Response Factors in Subgroup X. Several genes upregulated in Subgroup X exacerbations are
controlled by IRFs and are shown in red. In addition to IRF1, IRF7 and IRF9 are up-regulated in exacerbation along with the target genes that these
IRFs regulate. IRF4 is down-regulated (as shown in green) and this change is consistent with the changes observed in IRF4-target genes. IRF1 appears
to be the major driver of gene expression changes in Subgroup X. IRF1 is also involved in the regulation of IL15 expression.
doi:10.1371/journal.pone.0021902.g008
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heterogeneity. Therefore, the study design and data analysis plans

contained elements aimed at maximizing the chances of detecting

changes in gene expression that could, with a high level of

confidence, be attributed to exacerbation. First, the number of

subjects enrolled was as large as we could accommodate in a

study which depended on high content oligonucleotide arrays.

From the total of 337 enrolled subjects, 166 exacerbation samples

from 118 subjects who had at least one exacerbation attack were

collected. Secondly, the average number of quiet samples collected

over the course of a year from each of these exacerbating subjects

was 3.3, enabling determination of the variability in level of

expression of each gene in each subject during quiescent asthma

over the course of approximately one year. These multiple quiet

samples for each subject served as the control comparators for a

sample or samples drawn from the same subject during

exacerbations. ANCOVA probed for differences in each exacerbation

sample as compared to the levels observed in quiet samples from

the same subject. Covariate analysis adjusted for effects associated

with many covariates including steroid use, age, sex, and cell

differentials. Thirdly, data-driven clustering algorithms that

operate without investigator bias were employed to characterize

the heterogeneity of exacerbation-related expression patterns,

and determine the number of well defined subgroups within the

dataset.

Figure 9. Modulation of the IL15 Pathway in Subgroup X. Many IL15-induced genes are significantly modulated in Subgroup X, and this
network is also identified by Ingenuity Pathway analysis as a significant pathway among Subgroup X genes. Red indicates genes up-regulated in
exacerbation and green indicate genes down-regulated in exacerbation. See Table S5 for a complete list of IL15 pathway genes associated with
exacerbation.
doi:10.1371/journal.pone.0021902.g009
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The study design enabled the identification of changes in

PBMC gene expression coincident with asthma exacerbation.

Our first pass analysis on the complete sample set indicated an

exacerbation-associated gene expression pattern encompassing a

large number of genes most of which, on an individual basis,

were associated with exacerbation at an unacceptably low

confidence level. We examined the expression pattern of all

samples using the 1079 probe sets associated with exacerbation

with a low level of confidence (unadjusted p-value,0.05), and

used that data to examine the heterogeneity among samples.

The heterogeneity revealed by this analysis indicated that the

relative statistical weakness of the associations identified by

ANCOVA was explained by differences among samples with

respect to exacerbation-associated fold change in gene expres-

sion. Clearly, the heterogeneity within the group of exacerbation

samples as a whole masked much of the information that could

be garnered by analyzing the less heterogeneous subgroups of

samples.

Figure 10. Modulation of the B Cell Antigen Receptor Pathway in Subgroup Y. Shown in red are B-cell receptor signaling pathway
components that are up-regulated in Subgroup Y exacerbations.
doi:10.1371/journal.pone.0021902.g010
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It must be recognized that it would not be possible to avoid

many of the sources of variability inherent in a yearlong

observational study of naturally occurring exacerbation in subjects

living their normal lives. For example the interval between

exacerbation onset and sample collection varied from 0 to 14 days.

A number of other variables would be predicted to affect results

including, but not limited to, severity of underlying disease,

severity of exacerbation attack, patient disease phenotype, timing

and type of medication, type of trigger, and level of exposure to

trigger. The interactions between these variables would also be

predicted to affect results. Each exacerbation sample should therefore

be viewed as a single time point ‘‘snap-shot’’ of a disease state that

is influenced by many covariates and waxes and wanes due to the

natural course of exacerbation resolution and the effects of

therapy. It was our hypothesis that, if exacerbation-associated

expression changes occurred in blood, heterogeneity of expression

patterns would be observed. The size of the study reflected this

Figure 11. Modulation of the T Cell Antigen Receptor in Subgroup Y. Shown in red are T-cell receptor signaling pathway components that
are up-regulated in Subgroup Y exacerbations.
doi:10.1371/journal.pone.0021902.g011

Table 3. Subgroup Assignment and Days Between
Exacerbation Onset and Collection of Exacerbation Sample.

Subgroup

X Y Z

Number of exacerbation visit samples 30 64 72

Median number of days between onset and sample collection 2 2 2

Minimum number days 0 0 0

Maximum number of days 9 14 12

Quartile 1 0 0 1

Quartile 3 2.8 4.0 3.3

doi:10.1371/journal.pone.0021902.t003
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hypothesis, and we took the risk that the study was sufficiently

large to allow an examination of heterogeneity.

We proceeded with K-means clustering to partition samples on

the basis of similarity of exacerbation-related gene expression

pattern. Because the number of groups into which K-means

partitions samples is specified by investigator, we performed a

series of analyses to ascertain separability and robustness, which

measure how distinct the subgroups are from each other. Based on

the outcome of these analyses, we concluded that the samples

should be subdivided into three groups. K-means analysis was then

used to assign each of 166 exacerbation samples to 1 of 3 subgroups.

The direct consequence of grouping samples on the basis of

similarity in exacerbation related changes was a reduction in

variability within each subgroup. As a direct consequence of the

reduced variability, ANCOVA run on samples categorized by

subgroup identified many more genes that were associated with

exacerbation within an acceptable confidence limit (relative

FDR,0.05). The exacerbation samples in subgroups X and Y

showed many robust differences with the quiet samples. The

exacerbation samples in Subgroup Z (44% of exacerbation samples)

showed much less profound differences with quiet. These results

suggested that the relatively weak exacerbation-associated expression

pattern in Subgroup Z greatly diminished the ability to detect

exacerbation-associated genes when all the samples were analyzed as

a whole.

Choosing gene selection criteria in studies using oligonucleo-

tide arrays poses significant challenges that cannot be met simply

by using cut-offs adopted by convention [16,17,18,19]. While the

1.2 fold change cut-off chosen was low in comparison to

convention, the large size of study reported here provided better

statistical power than usually available in GeneChip-based

translational medicine studies of mixed cell populations. Our

choice of the 1.2 fold change cut-off was based on the following

three considerations. First, we examined the relationship between

fold change and relative FDR p-value in this particular dataset

and observed that a high proportion of probe sets with fold

change between 1.2 and 1.3 also had a relative FDR p-value

,0.05. This was not the case for probe sets with fold change

between 1.1 and 1.2. For example, in the analyses of Subgroup

X, 70% of probe set with fold change between 1.2 and 1.3 were

significantly associated with exacerbation (relative FDR p-value

,0.05). Exclusion of these probe sets from the analysis of

biological pathway involved would have diminished the informa-

tion on the representation of various pathways within the dataset.

Our goal was to address the biology and probe the pathways that

are dysregulated in exacerbation, and slight but significant fold

changes of several genes within a given pathway provided

cumulative evidence implicating the pathway. Consistent with

this analytical approach we note that any impact of false positive

identifications would be mitigated by a lack of cumulative

evidence provided by functionally related genes. A second

consideration in setting the fold change cut-off at 1.2 was that

statistically significant but small changes in magnitude were of

biological interest. The profiles were generated using the mixed

population of cells in the periphery, and therefore a large

magnitude change in one, perhaps minority, cell population

would be expected to have a diluted impact on the average fold

change observed in the population as a whole. The third source

of support for the 1.2 fold cut-off decision was obtained from a

GeneChip study comparing quiet asthma samples to healthy

volunteer samples. We selected 24 pairs of samples and used a

custom low density TaqManH array to measure the fold change

of 192 genes by TaqManH PCR. The fold change between

samples by GeneChip was below 1.2 for a significant number of

gene/sample pair combinations. We compared the log2 signal

differences obtained by GeneChip to the delta CT differences

obtained by TaqManH. Results between platforms were concor-

dant in 87% of the comparisons performed, and lack of

concordance was associated with low expression level, and not

with low fold change (O’Toole, Burczynski et al. unpublished

data). We recognize that by imposing the fold change filter in

addition to the relative FDR p-value criteria some true positives

have most likely been excluded (especially among the few probe

sets with fold change ,1.2 and very low relative FDR p-values)

and some false positives included (especially among probe sets

with low fold change and relative FDR p-value close to the 0.05

cut-off), but based on the three considerations described here, the

1.2 fold cut-off was the most appropriate cut-off for this study.

The size of the study and distribution of the expression values

were sufficient to allow definition of three robust subgroups of

exacerbation-associated gene expression profiles. Key validation that

analytical methods and selection criteria used had identified genes

associated with exacerbation in each of the individual subgroups

was obtained when the intra-subgroup ANCOVA comparison of

quiet and follow-up samples did not identify significant differences.

Thus, ANCOVA did not merely identify highly variable genes

that, by random chance, differed significantly between the

exacerbation set of samples and quiet set of samples.

Examination of the known biological links between exacerbation-

associated genes led to our conclusions that systemic immune

pathways are extensively activated during asthma exacerbations.

Innate and antigen-independent immune pathways were predom-

inantly activated in subgroup X, with toll-like receptors TLR1,

TLR2 and TLR4 being significantly elevated (Figure 6). Cell

activation through TLRs is a well established driver of type I

interferon responses. Because interferon genes were not themselves

detectable by GeneChip, TaqManH PCR assays were done to

confirm significant elevation of Type I interferon genes. The

importance of this innate immune response was reinforced by the

finding of extensive interferon pathway activation associated with

Subgroup X and extensive activation of many interferon inducible

genes such as OAS1, OAS3, MX1, and IFITM3 as well as the

interferon regulatory factors IRF 1,7 and 9 (Figure 7). Taken

together these data indicate that in Subgroup X, TLR activation

leads to induction of a systemic type I interferon response.

Table 4. Association Between Subgroup Assignment and
Days Since Exacerbation Visit and Previous Quiet Visit.

Subgroup based on 1079 probeset clustering

Statistic Subgroup X Subgroup Y Subgroup Z

N 30 64 71

Mean 48.4 62.7 79.6

Median 40.5 40 69

S.D. 45.3 55.3 64.0

CV 93.6 88.3 80.5

5th percentile 9 7 11

95th percentile 91 181 211

Missing values 0 0 1

Differences between nodes in mean number of days since quiet visit.
Exacerbation visits occur sooner after a quiet visit in some nodes than in others.
Statistically significant difference between Subgroups 1 and 3 (p = 0.014),
difference between Subgroups 2 and 3 is statistically suggestive (p = 0.091.
p-value from test for differences of means among Subgroups = 0.03.
doi:10.1371/journal.pone.0021902.t004
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It is well established that infection triggers activation of the

innate immunity pathways, and that type I interferon response is

closely linked to viral infection via activation of TLR-3 and -7/-8

by ss- and ds-RNA respectively [29,30]. An important question,

but one beyond the scope of this study, is how do the peripheral

blood expression profile changes seen in asthmatics during

respiratory infection differ from the changes seen in non-

asthmatics during respiratory infection? Since respiratory infec-

tions are a common trigger of asthma exacerbations [31], a study

that identifies differences between asthmatics and non-asthmatics

in pathways activated during respiratory infections could advance

understanding of the disease. Among the utilities of this study is

that it has laid a foundation showing the feasibility and likely

fruitfulness of such a study.

It has been reported in normal subjects that during viral upper

respiratory tract infection in the absence of lower respiratory tract

involvement, there is no systemic interferon response [32]. This

finding contrasts with our results on robust systemic interferon

activation signature in the blood of exacerbating asthmatics - both

infected and without symptomatic evidence of infection. One

possible explanation for these differing results is that homing

processes may be at least somewhat abnormal in asthmatics.

Inappropriate homing could promote virus proliferation in the

lower airways, cytotoxic injury and entry into the circulation as has

recently been shown in childhood asthma exacerbation [33]. A

recent study using Illumina Human Bead Chip arrays applied to

PBMCs compared expression during exacerbations in dust mite

sensitive asthmatic children to expression in stable asthma and

normal controls. That study found that many of the asthma

exacerbation related genes were involved in defense responses and

responses to external stimuli, but these associations disappeared

after excluding infection related genes [34]. However, this study

was much smaller (N = 12 exacerbation samples) than the study

reported here (n = 166 exacerbation samples).

An unexpected finding was that a large proportion of the

exacerbation samples with the robust signature of innate immune

activation were from patients for whom symptoms of respiratory

infection were not reported by the patient nor noted by the

physician. Among possible explanations for this are: a) pathogen

load too low to result in commonly recognized symptoms of

infection but sufficient to trigger innate immunity in asthmatics, or

b) triggering through TLR ligands such as reactivated bacteria

[35], resident viruses [36], biologically active allergens such as Der

P2 [37] or ambient air pollutants as encountered in an air

pollution episode [38,39]. Indeed many endogenous molecules

that are increased with inflammation are TLR ligands and

agonists [40,41,42,43,44], and in mice the immunostimulatory

activity of lung surfactant protein A is TLR4-dependent [45].

Therefore the molecules that activate innate immunity may be of

either pathogen or host origin, and the strong signature of innate

immunity implicates innate immunity in exacerbation even in the

absence of symptoms of respiratory infection. This interpretation

fits with the accumulating evidence that innate immunity plays an

important role in asthma [46,47,48,49,50,51] and with the

findings of association between asthma and single nucleotide

polymorphisms in TLRs [52,53,54,55,56] and associated mole-

cules [57,58,59,60,61].

Another prominent characteristic of Subgroup X exacerbations

was a highly significant representation of IL15-pathway genes.

IL15 production is known to be strongly induced by interferons

[62], transcriptionally activated by IRF-1 [63], supports a non-

TCR–mediated T-cell response [21] and results in activation of

CD8 T cells [64]. IL15 has also been linked to asthma and allergy

by DNA polymorphism association [65,66]. These reports are

consistent with our findings on the down-regulation of the TCR

pathway in Subgroup X. This study implicates IL15 as a bridge

between innate and adaptive immune responses in asthma

exacerbation.

Subgroup Y genes that increased during exacerbation

included those involved in B-cell activation pathway through

B-cell antigen receptor (BCR) and the IL4 signalling pathway

involved in inducing and maintaining pro-allergic Th-2 cell and

IgE responses [22,23]. These responses are linked to a strong

adaptive allergen-driven immune response, and distinguish

Subgroup Y exacerbations from the innate immunity pathways

that dominated the gene signature of Subgroup X. While the

signatures of innate immunity did not predominate in Subgroup

Y as they did in Subgroup X, NK signalling was significant in

both subgroups, with more activation detected in Subgroup Y.

Overlap with Subgroup X was observed for 24% of Subgroup Y

probe sets, and for all but 3% (centered on antigen receptor

mediated pathways), the direction of change with exacerbation was

the same in Subgroups X and Y. These observations, together

with the important role innate immunity is known to play in

priming adaptive immunity [67], suggest a complex interplay

between both these arms of the immune system during the

course of an asthma exacerbation. Consistent with this view are

the examples in this study of predominance of innate immune

pathways at a single sampling point during one exacerbation,

and predominance of adaptive immune pathways at a single

sampling point during a different exacerbation from the same

patient.

Subgroup Z comprised the largest number of samples, but also

contained the exacerbation samples that differed least from the quiet

samples, both in terms of the number of differentiating probe sets

(286) and the significance of the detected differences. A number of

the probes-sets identified in Subgroup Z overlapped with probe

sets in the other subgroups, but the significance of the association

was almost always much less in subgroup Z. Also the direction of

change was often in opposite direction, perhaps suggesting that

these exacerbations were sampled at a time when homing between

periphery and tissue was at a different phase. Pathway analysis on

the 75 genes uniquely identified in Subgroup Z unfortunately did

not identify any dominant biological processes. We did not seek to

determine if reduction in stringency of selection criteria would

have pointed towards particular pathway(s). Such a relaxation of

the standards might have given hints implicating various biological

pathways, but would also have resulted in identification of a large

number of confounding false positives.

Extensive analysis was conducted in a search for parameters

associated with the assignment by K- means of a particular

exacerbation sample to a particular subgroup. Exacerbation samples

from a single donor were not necessarily assigned to the same

subgroups, indicating that subgroup assignment cannot be solely

determined by an invariant characteristic of the patient.

However, the relatively stable patient characteristic of BMI had

a significant association with subgroup assignment. Mean BMI is

statistically significantly lower (p = 0.006) in Subgroup X than

Subgroup Y, and is statistically suggestively lower (p = 0.0501) in

Sub-group Z than in Subgroup Y. These results suggest that

subjects with lowest BMI tended to have the most pronounced

pro-inflammatory gene expression profile. The gene expression

changes observed in the group with the significantly higher BMI

tended to be of less magnitude, and with less evidence of

involvement of the innate immune system than those in Subgroup

X. Haldar et al [28] have reported that those of an obese non-

eosinophilic asthmatic phenotype tended to cluster based on

similarities in clinical parameters such as response to therapy.
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The authors suggested that, based on differences between the

obese and other groups observed in the parameters they studied,

the difference between the obese group and the other groups

‘‘may provide a reliable framework for exploratory molecular and

genetic studies, presently undermined by population heterogene-

ity’’. The patients in Subgroup Y of this study have lower mean

BMI (32.4) than the obese group in the Haldar et al study (36.2),

but the finding of a BMI influence on asthma phenotypes is

common to both studies.

The comparative weakness of the gene expression signature in

Subgroup Z led us to a number of hypotheses which were then

tested by calculating the significance of association between

subgroup assignment and a given clinical parameter. For instance

there was no association between subgroup assignment and: 1)

severity of exacerbation as indicated by spirometry, 2) asthma

severity level, 3) time between exacerbation onset and sample

collection, 4) physician noted symptoms of respiratory infection, 5)

medication use 6) ethnicity, or 7) country of residence. A

hypothesis to explain subgroup assignment that is not ruled out

by the available data is that some combination of these covariates

acts together to influenced subgroup assignment. We did not have

information on some potentially relevant covariates such as the

level of exposure to exacerbation trigger and the degree of

sensitivity to various triggers. The study was not large enough to

support combinatorial analyses on the data available for other

covariates. The available information has not provided insight into

how to predict which exacerbation-associated gene expression

pattern described here would be expressed by any particular

exacerbation sample. One covariate identified as significantly

associated with subgroup assignment was the mean number of

days between quiet and exacerbation visits. As shown in Table 4,

there was a shorter time between a quiet visit and the subsequent

exacerbation visit for samples in Subgroups X and Y (median days

40.5 and 40 respectively) than for samples in Subgroup Z (median

days 69). The time interval between visits for Subgroup Z (median

69 days, average 79.6 days) indicates that many Subgroup Z

exacerbations occurred within the window of a scheduled quiet

visit. It therefore seems likely that the explanation for this longer

interval in Subgroup Z was that these exacerbation samples came

from patients less likely to have sought urgent care for the

exacerbation, but nevertheless met the study criteria for exacerbation

visit. We hypothesize that, although the severity of these

exacerbations did not differ with respect to the objective measures

captured in the database, the patients felt less impacted by

Subgroup Z exacerbations than by exacerbations assigned to

either of the other two subgroups. This hypothesis is consistent

with the molecular profile showing a much diminished exacerbation

molecular signature in Subgroup Z. Also consistent with this

interpretation of the data is that Subgroup Z exacerbations may

represent a type of exacerbation that slowly worsens, while

Subgroup X and Y exacerbation more acutely impact the patient,

and have a shorter ‘‘build-up’’ phase.

This study has provided proof of concept that systemic

changes associated with asthma exacerbation can be studied in

the blood. In addition to showing that the involvement of

biological processes with well-established roles in asthma can be

detected in the blood, the study has also provided new insights

such as the significant involvement of the IL15 pathway, and

activation of innate immune pathways in the absence of

apparent symptoms of respiratory infections. Perhaps the

greatest impact of our study will come from the foundation it

has laid for future studies, in particular comparative studies

between healthy and asthmatic subjects during the course of

respiratory infection. Further investigation could also be aimed

at an understanding of transitions in gene activation that occur

over the course of an exacerbation, from initiation to resolution.

These type of data could be targeted at a selected set of genes,

and seek to distinguish between processes that exacerbate

disease, and processes that are actually associated with the

resolution of such exacerbations.

Supporting Information

Figure S1 Distribution of 384 Quiet Samples from 118
Subjects. Three or more quiet samples were analyzed from the

majority (84%) of the 118 subjects with exacerbation samples, with 3

samples from 38% of subjects, 4 samples from 40% of subjects,

and 5 samples analyzed from 6% of subjects. Two quiet samples

were analyzed from 12% of the subjects, and only 1 quiet sample

was available for the remaining 3%.

(DOC)

Figure S2 Concordance of Results Using GeneChip and
TaqManH Platforms. A strong correlation was observed

between expression levels as measured by Affymetrix U133A

GeneChip and as measured by TaqManH Low Density Array.

Differences in expression between paired samples as observed in

the two platforms are shown. Signal sample pair differences (log 2

from GeneChip) are shown on the X axis, and delta CT sample

pair differences (from TaqManH) on the Y axis.

(DOC)

Figure S3 Silhouette Statistic. The silhouette statistics for

K = 2, K = 3, K = 4 and K = 8 are shown.

(DOC)

Figure S4 Robustness Statistics. The larger drop in

robustness statistic (R) from K = 3 to K = 4, compared to either

the K = 1–2 or K = 4–8 drops, is shown indicating that increasing

from 3 to 4 clusters markedly reduced the robustness of the cluster

assignments to simulated experimental noise.

(DOC)

Figure S5 Visual Representation (Heat Map) Of Exac-
erbation Related Gene Expression differences. Color

representation of differences between gene expression levels in

each of 166 exacerbation samples and the average of quiet samples

from the same patient. Intensity of color indicates magnitude of

exacerbation/average quiet log ratios. Red color indicates

elevation in expression in exacerbation, and green represents a

decrease.

(DOC)

Figure S6 Relative FDR p-value Obtained From AN-
COVA. A. Subgroup X Samples Using Only Exacerbation

Samples with Corresponding Follow-up Sample. Comparison of

relative FDR p-values for association with exacerbation obtained

using N = 30 exacerbation samples and N = 22 exacerbation samples

for which a follow-up sample was available. As expected, there is

in general a small reduction in significance with the smaller sample

number, but relative FDR p-values are very similar. B. Relative

FDR p-value Obtained From ANCOVA On Subgroup Y Samples

Using Only Exacerbation Samples with Corresponding Follow-up

Sample.Comparison of relative FDR p-values for association with

exacerbation obtained using N = 64 exacerbation samples and

N = 51 exacerbation samples for which a follow-up sample was

available. As expected, there is in general a small reduction in

significance with the smaller sample number, but relative FDR p-

values are very similar. C. Relative FDR p-value Obtained From

ANCOVA On Subgroup Z Samples Using Only Exacerbation

Samples with Corresponding Follow-up Sample. Results of
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ANCOVA indicate the lack of a robust gene expression pattern (in

comparison to Subgroups X and Y) associated with Subgroup Z

exacerbations. In the analysis using the 52 exacerbation samples

for which a corresponding follow-up sample was available, the

FDRs in the Quiet versus Exacerbation analysis is, as expected, less

significant than the FDRs obtained with the larger sample set

(N = 72).

(DOC)

Figure S7 Subgroup Assignment and Days Between
Exacerbation Onset and Exacerbation Sample Collec-
tion. Results (in box plot format) of analysis showing lack of

association between days between exacerbation onset and

collection of exacerbation sample.

(DOC)

Table S1 Post-CPT purification monocyte and lympho-
cyte percent in quiet and exacerbation visits.

(DOC)

Table S2 Quality control criteria for inclusion of
GeneChip in analysis.

(DOC)

Table S3 Genes analyzed by Taqman with assay
identification.

(DOC)

Table S4 Demographic and baseline characteristics by
asthma severity.

(DOC)

Table S5 Global assessment of asthma control by the
subject and by the investigator at screening.

(DOC)

Table S6 Reported asthma healthcare resource use
before enrollment.

(DOC)

Table S7 Atopy status at screening.

(DOC)

Table S8 Body mass index and gastrointestinal reflux
disease.

(DOC)

Table S9 History of reflux disease.

(DOC)

Table S10 Subjects with change in asthma severity by
visit.

(DOC)

Table S11 Number (%) subjects who used concomitant
anti-asthmatic medications by asthma severity.

(DOC)

Table S12 Number (%) of subjects who used concom-
itant anti-asthmatic medications by country.

(DOC)

Table S13 Reported asthma healthcare resource use
during the study.

(DOC)

Table S14 Asthma precipitating or aggravating factors.

(DOC)

Table S15 Number (%) of subjects experiencing adverse
events.

(DOC)

Table S16 Most common ($10% of subjects in any
severity group) respiratory adverse events, number (%)
of subjects.

(DOC)

Table S17 Mean FEV1 (% predicted) at scheduled non-
exacerbation visits.

(DOC)

Table S18 ANCOVA results. A: subgroup X. B: sub-
group Y C: subgroup Z.

(DOC)

Table S19 IL15 pathway genes associated with exacer-
bation in subgroup X.

(DOC)

Table S20 Lack of subgroup association with FEV1
predicted.

(DOC)

Table S21 Lack of subgroup association with FEV1
(predicted) change from baseline.

(DOC)

Table S22 Lack of subgroup association with FVC
(predicted).

(DOC)

Table S23 Lack of subgroup association with FVC
(predicted) change from baseline.

(DOC)

Table S24 Lack of subgroup association with FEF 25–
75% (predicted).

(DOC)

Table S25 Lack of subgroup association with FEF 25–
75% (predicted) change from baseline.

(DOC)

Table S26 Lack of subgroup association with PEF
(predicted) change from baseline.

(DOC)

Table S27 Lack of subgroup association with PEF
(predicted) change from baseline.

(DOC)

Table S28 Lack of subgroup association with relevant
respiratory infection.

(DOC)

Table S29 Lack of subgroup association with disease
severity.

(DOC)

Table S30 Lack of subgroup association with use of
medication: systemic corticosteroids.

(DOC)

Table S31 Lack of subgroup association with use of
medication: inhaled corticosteroids.

(DOC)

Table S32 Lack of subgroup association with use of
medication: intranasal corticosteroids.

(DOC)

Table S33 Lack of subgroup association with use of
medication: leukotriene antagonists.

(DOC)
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Table S34 Lack of subgroup association with use of
medication: Any GI non-study medication use.
(DOC)

Table S35 Lack of subgroup association with use of
medication: Any PPI non-study medication use.
(DOC)

Table S36 Lack of subgroup association with use of
medication: any histamine H2 antagonist non-study
medication use.
(DOC)

Table S37 Lack of subgroup association with sex.
(DOC)

Table S38 Subgroup assignment is not associated with
race.
(DOC)

Table S39 Subgroup assignment is not associated with
laboratory in which the samples were processed.
(DOC)

Table S40 Subgroups assignment is not associated with
patients’ country of residence.
(DOC)

Table S41 Subgroup assignment is not associated with
atopy status.
(DOC)

Table S42 Subgroup assignment is not associated with
fasting status.
(DOC)

Table S43 Subgroup assignment is not associated with
IgE titers.
(DOC)

Table S44 Subgroups assignment is not associated with
medical history of acid reflux.
(DOC)

Table S45 Association between BMI (at screening) and
subgroup assignment.
(DOC)

Table S46 Association between subgroup assignment
and days since quiet visit.
(DOC)

Text S1 Extensive details of the study are provided in
this 101 page document.
(DOC)
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