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ABSTRACT

Prior to the launch of the Swift mission several X-ray line detections were reported in gamma-ray burst afterglow
spectra. To date, these preYSwift era results have not been conclusively confirmed. The most contentious issue in this
area is the choice of statistical method used to evaluate the significance of these features. In this paper we compare
three different methods already extant in the literature for assessing the significance of possible line features and dis-
cuss their relative advantages and disadvantages. The methods are demonstrated by application to observations of
40 bursts from the archive of Swift XRTat early times (<a few kiloseconds posttrigger in the rest frame of the burst).
Based on this thorough analysis we found no strong evidence for emission lines. For each of the three methods we
have determined detection limits for emission-line strengths in bursts with spectral parameters typical of the Swift-era
sample. We also discuss the effects of the current calibration status on emission-line detection.

Subject headinggs: gamma rays: bursts — gamma rays: observations — line: identification —
methods: data analysis — methods: statistical

Online material: color figures

1. INTRODUCTION

It is widely accepted that the spectra of the X-ray afterglow
of gamma-ray bursts (GRBs) are dominated by nonthermal emis-
sion, the leading candidate for which is synchrotron emission
(Piran 2005, and references therein), although alternate emis-
sion processes have also been suggested, such as self-Compton
(Waxman 1997; Ghisellini & Celotti 1999) or inverse Compton
scattering of external light (Brainerd et al. 1994; Shemi 1994;
Shaviv & Dar 1995; Lazzati et al. 2004).

Up to the present time the X-ray spectra of Swift afterglows
are generally well described by an absorbed power law (for coun-
terexamples see Butler 2007), typically absorbed bymaterial with
a column density in excess of the well-measured Galactic values
(Campana et al. 2006c). Table 2 of Campana et al. (2006c) shows
that, of 17 bursts analyzed, 14 have observed NH values greater
than the measured Galactic column density, while the remain-
ing three have observed NH values that are consistent, within
limits, with the measured values.

In the past it has been proposed that there are other spectral fea-
tures, with varying levels of significance, in addition to the basic
absorbed power law spectrum (Piro et al. 1999, 2000;Yoshida et al.
1999; Amati et al. 2000; Antonelli et al. 2000; Reeves et al. 2002;
Watson et al. 2002, 2003; Frontera et al. 2004). Most are attributed
to Fe K� emission lines or the radiative recombination continuum
of the same element. Some have been attributed to theK� lines of
Ni, Co, or lighter elements such as Si, S, Ar, and Ca. In two cases
there have been a reports of a transient absorption feature also cor-
responding to Fe K� (Amati et al. 2000; Frontera et al. 2004).

The models for the production of such emission features
are divided into transmission and reflection models, although
the large equivalent widths (� a few keV) inferred from the ob-
served X-ray features favor models in which the line is produced
by reflection (Rees & Mészáros 2000; Ballantyne & Ramirez-
Ruiz 2001; Vietri et al. 2001). Proposedmodels have to overcome
two constraints; the size problem and the kinematic problem.
Observing a line at a time tobs after the burst implies that the
emitting material must be within a distance of �ctobs/(1þ z)
from the central engine, thus implying that the region must be
compact if a line, or lines, are observed at early times. In addi-
tion, the emitting region must contain �0.1 M� of Fe (in the
case of Fe K� features) while still being optically thin to elec-
tron scattering, in order that Comptonization does not broaden
the line beyond the observed widths (Vietri et al. 2001). If the
line width is interpreted as being due to the velocity of the super-
nova remnant, the observed limit on thiswidth implies an age limit
on the remnant of �10Y20 days. However, at this time Co nuclei
outnumber both Ni and Fe nuclei; thus the emission line would be
due to Co at an energy of 7:5/(1þ z) keV, which is the kinematic
problem.

Various geometries have been suggested for the reflectionmod-
els, which rely on either a precursor or simultaneous supernova
(SN) event. If a SN occurs several tens of days before the GRB
this solves both the size and kinematic problems. In these cases
the radiation from the GRB jets can either illuminate the inner
face of the SN shell remnant or the inner faces of wide funnels
that they excavate through young plerionic remnants. However,
these models have been questioned following the simultaneous
GRB-SN association indicated by GRB 980425 (Galama et al.
1998) and confirmed by GRB 030329 (Hjorth et al. 2003; Stanek
et al. 2003) and GRB 060218 (Campana et al. 2006b; Pian et al.
2006). In this case the most likely scenario for emission-line pro-
duction occurs if the progenitor ejects a large amount of matter
at subrelativistic speeds along its equator. The halo of material
surrounding massive stars, ejected by their strong stellar winds
toward the end of their main sequence lifetime, scatters a fraction
of the photons from the prompt and afterglow phase back into
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the equatorial material, which then produces X-ray line emission
(Vietri et al. 2001).

Verifying the presence of such spectral features is of critical
importance as they will allow us to probe the circumburst envi-
ronment of the GRB, as well as gaining an indirect indication of
the possible structure and behavior of the central engine.

The statistical significance of the 1999Y2003 reported features
is low (usually 2Y3�), and only two detections have a significance
>4� (GRB991216: 4.7�, Piro et al. 2000; andGRB030227: 4.4�,
Watson et al. 2003). Although later detections were made with
much more sensitive instruments than the early ones, all detec-
tions have remained at this low significance level; as a result they
remain the subject of much debate. Arguably the most controver-
sial issue in the discussion of line detections is the choice of sta-
tistical method employed to gauge their significance. At least four
methods have been proposed and used in the GRB literature.

1. The likelihood ratio test (LRT) and related F-test.
2. Bayes factors.
3. Bayesian posterior predictive probability.
4. Monte Carlo test for peaks in data after ‘‘matched filter’’

smoothing.

Examples of the application of thesemethods toGRBX-ray spec-
tra can be found in Freeman et al. (1999), Yoshida et al. (1999),
Piro et al. (1999), Protassov et al. (2002), Rutledge & Sako
(2003), Tavecchio et al. (2004), Butler et al. (2005, 2007), Sako
et al. (2005), and references therein.

In all the applications cited above, an underlying continuum
was assumed, usually in the form of an absorbed power law
(e.g., using the Wisconsin absorption model; see Morrison &
McCammon1983). The detection of a line then amounts to a com-
parison of two models: M0, the simple ‘‘continuum’’ model, and
M1, the more complex ‘‘continuum + line’’ model. The strength,
location, and width of the emission line may be restricted or al-
lowed to be free parameters.

As discussed in depth by Protassov et al. (2002) and Freeman
et al. (1999), there are strong theoretical reasons why the LRT is
not suitable for assessing the significance of emissions lines, de-
spite its popularity in the literature. We will not repeat those argu-
ments here. It is the purpose of the present paper to compare the
relativemerits of the remaining threemethods, in termsof their com-
putational efficiency, robustness, and sensitivity limits by apply-
ing all threemethods toX-ray spectra from the Swift archive. This
is a particularly rich archive because of the combination of the
rapid slew response of the Swift GRBmission (Gehrels et al. 2004)
and the powerful X-ray Telescope (XRT; Burrows et al. 2005a).

The remainder of this paper is organized as follows. In x 2 we
provide details of the sample selection criteria and basic data re-
duction. The theoretical basis and practical applications of the
three statistical methods under investigation are described in de-
tail in x 3. In x 4 we apply all of the methods to PKS 0745-19, a
known line emitting source, to demonstrate the expected outcome
when a line is present, and x 5 discusses a simulation study to as-
sess the line detection limits of eachmethod for typical Swift XRT
data. In x 6 we discuss the results from the Swift archival GRB af-
terglow data, highlighting several GRBs with potential additional
spectral components. x 7 is dedicated to a discussion of our results
and their comparison to other recent line detections in the litera-
ture. Finally, x 8 presents our conclusions.

2. DATA REDUCTION

This paper reports on the analysis of windowed timing (WT)
mode data from GRB 050128 to GRB 060510B, covering a total

of 153 bursts, 40 of which contained sufficient WT mode data
for our analysis methods. WT mode data was chosen primarily
because the time interval covered by these observations, typi-
cally T þ 0 s to T þ 500 s (although for bright bursts this may
extend up to T + few ks) in the rest frame of the burst, is rarely
explored. Prior observations of the 1999Y2003 bursts typically
start at 20+ hr after the trigger in the observer’s reference frame,
although Antonelli et al. (2000) report on an emission-line detec-
tion at Tþ � 12 hr; Amati et al. (2000) and Frontera et al. (2004)
report absorption line features in very early time data (Tþ < 20 s
and Tþ < 300 s, respectively) from the Wide Field Camera
(WFC) of BeppoSAX. In addition WT mode data is only taken
while the GRB afterglow is bright. All of the methods discussed
can easily be extended to photon counting (PC) mode data. We
acknowledge that the current theoretical models for line emission
indicate that lines could occur at times not covered by WT mode
data, however, the same models do not rule out this time period
either.
All data have been obtained from the UK Swift archive7 (Tyler

et al. 2006) and processed through xrtpipeline version 0.10.3,8

using version 008 calibration files and correcting for theWTmode
gain offset (if present). Version 008 of the CALDB is a marked
improvement over the previous release (Campana et al. 2006a),9

however, it may be the case that low-energy calibration features
have still not been optimally corrected.We did not apply any sys-
tematic correction factor to the errors of our spectra because the
recommended factor is very much smaller than the statistical er-
rors in our spectra. Grade 0Y2 data, using extraction regions of
20 ; 3 pixels, for both source and background regions have been
used. At count rates below 100 counts s�1 WT mode data does
not suffer from pile-up (Romano et al. 2006); however, some of
the time intervals considered contain sufficient flux to cause pile-up
effects. Following Romano et al. (2006) we have excluded central
regions when necessary as detailed in their Appendix A, splitting
the 20 ; 3 pixel region into two 10 ; 3 pixel regions placed either
side of the central exclusion region.
All spectral fitting and simulations have been carried out using

XSPEC version 12.2.1ab or higher with background-subtracted
spectra binned to�20 counts bin�1. This binning permits the use
of the �2 minimization as a maximum likelihood method. Data
for each GRB being considered have been time sliced with the
following criteria in mind.

1. Each spectrum must contain 800Y1600 background-
subtracted counts. This is a compromise between good time reso-
lution and spectral quality.
2. If one or more flares are present in the data, wherever pos-

sible (not violating condition 1), separate spectra were extracted
for the rising and falling sections of the flare, since spectral evo-
lution is likely to occur at this time (Burrows et al. [2005b], Zhang
[2007], and references therein).
3. If data are affected by pile-up then these time periods were

extracted separately from the nonYpiled-up data.

The range of 800Y1600 counts was chosen to ensure good time
resolution while maintaining sufficient counts to obtain a reason-
able spectrum, with�40Y80 spectral bins (eachwith�20 counts)
over the useful bandpass. The data considered here were taken
during the early, bright phases of the afterglow evolution (typi-
cally T þ 0 s to T þ 500 s), during which the X-ray flux and

7 See http://www.swift.ac.uk/swift_live/obscatpage.php.
8 Release date 2006 March 16.
9 See http://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/swift/docs/xrt/SWIFT-

XRT-CALDB-09.pdf.
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(possibly) spectrum are often highly variable. Time resolution is
therefore important to reduce the effects of flux/spectral varia-
tion on the modeling of individual spectra. Furthermore, previous
claims of emissions lines have often reported the features as tran-
sient and so time resolution may be important for detecting lines.

3. ANALYSIS METHODS

As noted in x 1 several different methods have been used in the
past to assess the significance of line detections in the X-ray spec-
tra of GRBs. The three methods that are the subject of the present
paper are discussed individually in the following subsections. The
reader interested only in the application of these methods may
wish to skip to x 4.

3.1. Bayes Factors

The goal of scientific inference is to draw conclusions about
the plausibility of some hypothesis or model, M, based on the
available data D ¼fx1; x2; : : : ; xNg, given the background in-
formation I (such as the detector calibration, statistical distribu-
tion of the data, etc.). However, when presented with data it is
usually not possible to compute this directly. What can be calcu-
lated directly in many cases is the sampling distribution for data
assuming the model to be true, p(DjM ; I ). This is usually called
the likelihood when considered as a function of M for fixed D.
Statements about data conditional on themodel may be related to
statements about the model conditional on the data by Bayes’
theorem.10 In its usual form Bayes theorem relates the likelihood
to the posterior probability of the modelM conditional on data D
(and any relevant background information I ), written p(M jD; I ):

p(M jD; I ) ¼ p(DjM ; I )p(M jI )
p(DjI ) : ð1Þ

The term p(M jI ) is the ‘‘prior probability’’ of the modelM and
describes our knowledge (or ignorance) of the model prior to
consideration of the data (often called simply the prior). The term
p(DjI ) is effectively a normalization term and is known as the
prior predictive probability (it describes the probability with which
one would predict the data given only prior information about the
model). For a more general discussion of Bayes theorem see Lee
(1989), Loredo (1990, 1992), Sivia (1996), Gelman et al. (1995),
and Gregory (2005), and for discussion in the context of GRB line
searches see Freeman et al. (1999, their x 3.1.2) and Protassov et al.
(2002). In the rest of this paperwe drop the explicit conditioning on
background information I, but it is taken as accepted that ‘‘no
probability judgments can be made in a vacuum’’ (Gelman et al.
1995).

One simpleway to represent the posterior probabilities for two
alternative models is in terms of their ratio, the posterior odds (see
Gregory 2005, their x 3.5). This eliminates the p(D) term (which
has no dependence on M ). If we define two competing models,
such as one with a line (M1) and one without (M0), we may com-
pute the posterior odds:

O10 ¼
p(M1jD)
p(M0jD)

¼ p(M1)

p(M0)

p(DjM1)

p(DjM0)
¼ p(M1)

p(M0)
B10: ð2Þ

High odds indicate good evidence for the existence of a line in
the spectrum. The first term on the right hand side is the ratio of
the priors, the second term is the ratio of the likelihoods and is
often called the Bayes factor (see Kass & Raftery [1995] for a

detailed review). In the present context we have no strong theo-
retical grounds to prefer one or the other model ( line or no line)
and so assign equal prior probabilities to our two models. Thus
the ratio of the priors in equation (2) is set to unity and the pos-
terior odds are equal to the Bayes factor. In the following we use
the terms posterior odds, odds, and Bayes factors interchangeably.

The likelihood functions in equation (2) are functions of Mi

only. If themodels contain no free parameters (i.e., are completely
specified) then equation (2) can be used directly. However, if the
model does contain free parameters, the likelihood will be a
function of the parameter values. In the present context, where
the particular values of the parameters are not the subject of the
investigation, the parameters are referred to as ‘‘nuisance’’ pa-
rameters. In order to remove the dependence on these nuisance
parameters the likelihood functionmust be written a function of
the N parameters (denoted a ¼f�1; �2; : : : ; �Ng) and integrated,
or ‘‘marginalized,’’ over the prior probability density function
(PDF) for the parameters:

p(DjM ) ¼
Z

p(D; ajM )da ¼
Z

p(Dja;M )p(ajM )da: ð3Þ

The marginal likelihood is obtained by integrating over all pa-
rameter values the joint PDF for the data and the parameters.
This joint PDF may be separated into the product of two terms
using the rules of probability theory: p(Dja;M ) is the likelihood
function of the data as a function of the model and its parameters,
and p(ajM ) is the prior for the model parameters. Once these are
assigned one can compute the necessary likelihood (a function of
M alone) by integration. The Bayes factor for model M1 (with pa-
rameters a1) against modelM0 (with parameters a0) may now be
written

B10 ¼
R
p(Dja1;M1)p(a1jM1)da1R
p(Dja0;M0)p(a0jM0)da0

: ð4Þ

The issues of how the relevant likelihoods and priors are assigned,
and the integrals computed, are discussed below.

3.1.1. Application to High-Count X-Ray Spectra

In the limit of a large number of counts per spectral bin, the
Poisson distribution of counts in each bin will converge to the
Gaussian distribution, and in this case equation (3) can bewritten
in terms of the familiar �2 fit statistic (Eadie et al. 1971),

L ¼ ln ½ p(Dja;M )�

¼ � 1

2

XN
i¼1

ln 2�� 2
i

� �
�
XN
i¼1

xi � �i(a)½ �2

2�2
i

¼ constant� �2=2; ð5Þ

where �i is the error on the data (e.g., counts) measured in the
ith channel, and �(a)i is the predicted (e.g., model counts) in the
channel based on the model with parameter values a. The last
equality can bemade since the term

P
ln(2��2

i ) is constant given
data with errors �i. This is why, in the high count limit, finding the
parameter values atwhich�2 isminimized is equivalent to finding
the maximum likelihood estimates (MLEs) of the parameters, â.

3.1.2. Approximating the Posterior

In general the integrals of equations (3) and (4) must be com-
puted numerically, using for example Markov chain Monte Carlo
(MCMC)methods (Gelman et al. 1995, chapter 11; Gregory 2005,

10 For general references relating to Bayesian analysis see http://www.astro
.cornell.edu/staff / loredo/bayes.
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chapter 12), which is computationally demanding. However,
maximum likelihood theory says that the MLE will become more
Gaussian and of smaller variance as the sample size (number of
counts) increases, even if the model is nonlinear (chapter 11 of
Gregory 2005). Therefore, with sufficient counts the likelihood
function will approach a multidimensional Gaussian with a peak
at the MLE location â, i.e., the location of the best fit (minimum
�2) in parameter space. Furthermore, if the prior function is rela-
tively flat around the peak of the Gaussian likelihoodwemay ap-
proximate the prior term in equation (3) by a constant, namely its
value at the best-fit location, p(âjM ). Putting this together means
we may approximate the posterior as a Gaussian—often called
the Laplace approximation—which greatly simplifies the integra-
tions in equations (3) and (4), since a multidimensional Gaussian
may be evaluated analytically, once its peak locations and co-
variance matrix are known, which avoids the need for compu-
tationally expensive numerical integration.

The integral of an un-normalized multidimensional Gaussian
is (2�)N /2 det(s2)½ �1/2 times the peak value, where s2 is the co-
variance matrix11 evaluated at the peak (best-fit location) and N
is the number of parameters. We can now rewrite equation (3) as

p DjMið Þ ¼ exp ��2
(i)=2

� �
2�ð ÞNi=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det s2

ið Þ
q

p âijMi

� �
; ð6Þ

which involves the prior density only at the mode of the p(âijMi)
likelihood (i.e., the density at the MLE position) for each model.
This can be substituted into equation (2) to give the Bayes factor
(see Gregory 2005, chapters 10Y11)

B10 ¼ exp ���2=2
� �

2�ð Þ�N=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det s2

1

� �q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det s2

0

� �q p â1jM1

� �
p â0jM0

� � ; ð7Þ

where�N ¼ N1 � N0 and��2 ¼ �2
1 � �2

0 . This can be calcu-
lated, using the appropriate values of �2 and the covariance ma-
trixs2 evaluated at the best-fit location for eachmodel, once we
assign prior densities to each parameter. See Gregory (2005),
chapters 10Y11, for a discussion of essentially the same method.

3.1.3. Validity of the Laplace Approximation

There are a number of ways to check the validity of this as-
sumption. One is to inspect the shape of the�2(a) surface, which
is related to the likelihood surface by L � ��2/2. A Gaussian
likelihood is equivalent to a paraboloidal log-likelihood, or�2(a).
If the contours of ��2 appear paraboloidal around the minimum,
in one and two dimensions, for each parameter or pair of param-
eters, the likelihood surface must be approximately Gaussian
(the conditional and marginal distributions of a Gaussian are also
Gaussian, so slices through the �2 space should also be parab-
oloidal). This was generally true for the continuum model for
the XRT data.

As a further test of the Gaussian approximation we compared
the posterior calculated using the Laplace approximation with
the posterior calculated using the MCMC algorithm discussed

in van Dyk et al. (2001). The MCMC method does not use an
analytical approximation for the posterior, and therefore is a more
general method, but is computationally demanding. Figure 1 illus-
trates the two posterior distributions calculated for the specific
case of a spectrum from GRB 060124. The Gaussian data were
computed from 105 random draws from a multidimensional
Gaussian with a covariance matrix evaluated as the minimum
�2 location using XSPEC. The non-Gaussian data were generated
from 105 draws generated12 by the MCMC routine of van Dyk
et al. (2001). It is clear that the two distributions are not identical
but are very similar both in terms of size and shape. In the present
context it is important that the ‘‘credible regions’’ occupy similar
volumes of parameter space.
The above analyses demonstrate that the Gaussian approxi-

mation is reasonable for the posterior of the simple ‘‘continuum’’
model M0, which is the denominator of equation (4). The same
will be true of the more complex ‘‘continuum + line’’ model M1

when the line is well detected (see x 11.3 of Gregory 2005).When
the line is weakly detected the posterior will be close to the bound-
ary of the parameter space, in which case the Gaussian approxi-
mation will not be so accurate. Indeed, when the MLE of the line
normalization is close to the boundary the likelihood (and there-
fore posterior) enclosed in the allowed region of parameter space
will be smaller than that given by the Laplace approximation,
which assumes that the Gaussian function extends to infinity in
all directions. This will also happen, for example, when the best-
fitting line energy is near the limit of the allowed energy range.
In such cases there will be a tendency to overestimate the Bayes
factor (i.e., favor M1). But when the line is weak there may be
multiple peaks in the likelihood (and posterior) which are not
accounted for explicitly in the Laplace approximation. We there-
fore treat the calculated Bayes factors only as a rough guide to
the presence of a spectral line.

3.1.4. Assigning Priors

Bayes factors are sensitive to the choice of prior density. As
stated above, using the Laplace approximation the resulting Bayes
factors are sensitive to the prior densities only at the MLE param-
eter values, but we must exercise care in assigning prior density
functions in order that these values are reasonable. Fortunately, the
prior densities for all parameters that are common to M0 and M1

(such as photon index and normalization) are the same forM0 and
M1, and therefore cancel out in the ratio. For the other parameters
we have no cogent information except for their allowed ranges. In
such cases we should use the ‘‘least informative’’ prior densities
(see, e.g., Loredo [1990], Sivia [1996], Gregory [2005], and refer-
ences therein for further discussion).
There are wide ranges of possible line energies and redshifts

and so the line energy, Eline is only constrained to lie within the
useful XRT bandpass, typically 0.3Y10 keV. We therefore as-
signed a uniform prior density p(ElinejM1) ¼ 1/(Emax� Emin )
over this range. For most spectral fits the line widthW was ini-
tially held fixed at a value below the instrumental resolution,13

and later allowed as a free parameter. For those models in which
the width of the line was a free parameter, the width was assigned
a uniform prior over the allowed range (usually 0.0Y0.7 keV):
p(W jM1) ¼ 1/(Wmax�Wmin ).

11 The covariance matrix is the square, symmetric matrix comprising the co-
variances of parameters �i and �j as element �2

ij . By symmetry �2
ij ¼ �2

ji. The di-
agonal elements are the variances of the parameters. The covariance matrix may
be estimated as minus the inverse the Hessian matrix listing all the second de-
rivatives of the log likelihood function (99L)ij ¼ @ 2L/@�i@�j. Given that L ¼
log½ p(Dja;M )� ¼ constant� �2/2 (in the limit of many counts per channel) the
covariance matrix may be estimated using �2½ �ij¼ 2 (99�2½ Þ�1�ij. The second
derivatives of the �2(a) function can be evaluated numerically.

12 Following van Dyk et al. (2001), we generated five separate chains, start-
ing from different, ‘‘overdispersed’’ positions within the parameter space (all out-
side the 99% confidence region calculated using��2) and used the R̂1/2 statistic to
assess their convergence.We collected data from the chains only after R̂1/2 < 1:01.

13 � ¼ 59 eV (at 5.895 keV) at launch (A. Beardmore 2007, private
communication).
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In order to test the dependence of the results to the prior den-
sities, two noninformative prior assignmentsweremade for the line
strength (normalization), A, following the discussion in Gregory
(2005). First, following x 4.2 of Sivia (1996) the line strength was
assigned a uniform prior between zero and some upper limit Amax.
Previous reports of emission lines have estimated the line flux A
to be as little as a few percent (Reeves et al. 2002; Watson et al.
2003) or as much as�40%Y80% (Yoshida et al. 1999; Piro et al.
2000) of the total flux.We conservatively take Amax to be the total
flux of the spectrum over the evaluated bandpass (i.e., our con-
straint is that the line flux is between 0% and 100% of the source
flux). However, there are strong arguments (Loredo 1990; Gelman
et al. 1995; Gregory 2005) that such a ‘‘scale’’ parameter should be
given a ‘‘Jeffreys prior,’’ p(AjM1) � 1/A, which corresponds to a
constant density in log (A). Formally this is an improper prior (can-
not be normalized such that its integral is unity), but one can apply
reasonable upper and lower bounds in order to form a proper prior
density. Following equation (3.38) of Gregory (2005), we used
p(AjM1) ¼ 1/A ln(Amax/Amin ). In the present context Amax/Amin ¼
800, since a reasonable lower limit to the X-ray counts from a line
is one count, and a reasonable upper limit is 800, the total number
of counts in the spectrum. This yields p(AjM1) ¼ 1/6:68A as a
normalized Jeffreys prior. The prior density is therefore higher
for weaker lines in the Jeffreys case compared to the uniform case
at values (i.e., over 1:25 ; 10�3Amax � A < 0:15Amax ), and lower
for stronger lines.

The ratio of the prior densities at the modes of the two likeli-
hood functions is then simply

p(â1jM1)

p(â0jM0)
¼ p(ÊlinejM1)p(Ŵ jM1)p(ÂjM1)

¼ 1

Emax� Eminð Þ Wmax�Wminð ÞAP½ � ð8Þ

in the ranges Eline 2 ½Emin;Emax�, W 2 ½Wmin;Wmax�, and zero
elsewhere. Here, AP ¼ Amax in the uniform case or AP ¼ 6:68Â
in the Jeffreys case.We have used both uniform and Jeffreys priors
in the analysis discussed below (see x 6.11).

3.2. Posterior Predictive p Values (ppp)

The use of posterior predictive p values (ppp) was advocated,
and demonstrated by application to GRB spectra, by Protassov
et al. (2002; see their x 4.1 for a description of their method and
their x 5 for its application to GRB 970508). Like Bayes factors
this method is grounded in Bayesian probability theory.

One uses the posterior density, p(ajD), for the model parame-
ters that are conditional on the data, which defines our state of
knowledge about the parameters given the data and the available
prior information, to determine the posterior predictive distribu-
tion, which is the distribution of possible future data predicted
based on the observed data. (‘‘Predictive’’ because it predicts pos-
sible future data sets and ‘‘posterior’’ because the parameters are
drawn from the posterior density of the parameters.) The posterior
predictive distribution is

p D simjD
� �

¼
Z

p D sim; ajD
� �

da

¼
Z

p D simja
� �

p ajDð Þda; ð9Þ

where D sim represents the possible future data sets (simulations).
In practice the posterior density is used to generate a set of random
parameter values a sim

i (i ¼ 1; 2; : : :), and each of these is used to

Fig. 1.—Marginal posterior distributions for the continuum parameters of an
absorbed power law fit to an XRT spectrum of GRB 060124. The contours en-
close 80%, 50%, 20%, 10%, and 5%of the distribution (and therefore correspond
to 20%, 50%, 80%, 90%, 95% credible regions for the parameters). The filled con-
tours were computed assuming the posterior is a Gaussian. The open contours were
computed usingMCMCsimulations from the routine of vanDyk et al. (2001). The
two distributions are clearly very similar. See x 3.1.3 for details.
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simulate a random data set D sim
i . The set of simulated data from

all the possible randomparameters defines the posterior predictive
distribution for simulated data. This in turn can be used to define
the posterior predictive distribution for some test statistic T (D)
(which is a function of the data):

p T D sim
� ����D

h i
¼

Z
p T D sim

� ����a
h i

p ajDð Þda ð10Þ

(compare with eq. [9]). The ppp is the fraction of this distribu-
tion for which T (D sim) > T (D), i.e., the area of the tail of the dis-
tribution with values of the test statistic more extreme than the
value from the observed data;

p ¼
Z 1

T (D)

p T D sim
� ����D

h i
dD sim; ð11Þ

where the integration is taken over the posterior predictive dis-
tribution of D sim. As such the ppp value is a Bayesian analog of
the p value of null hypothesis tests familiar from classical statis-
tics (e.g., the F or �2 tests). See chapter 6 of Gelman et al. (1995)
or Gelman et al. (1996) for a general discussion of the pppmethod,
and Protassov et al. (2002) for application to GRB data.

Using the posterior predictive distribution from equation (9)
one can produce a large number of random simulated data sets to
be used in aMonte Carlo scheme to calculate the integral of equa-
tion (11) numerically. The steps for a Monte Carlo method for
computing the posterior predictive distribution to calibrate the
test statistic T are as follows.

1. Compute the value of the test statistic for the observed data,
T (D).
2. Randomly draw N sets of M0 model parameter values ai

for i ¼ 1; 2; : : : ;N according to the appropriate posterior dis-
tribution p(ajD).
3. For each of i ¼ 1; 2; : : : ;N simulate a data setD sim

i using
the randomly drawn parameter values ai. This accounts for un-
certainties in the parameter values.
4. For each of the simulated data sets compute the test statistic

T (D sim
i ). This is the posterior predictive distribution of the test

statistic given the observed data D.
5. Compute the posterior predictive p value as the fraction of

simulated data sets that gave a test statistic more extreme than
that for the observed data,

p ¼ 1

N

XN
i¼1

� T D sim
i

� �
� T Dð Þ

� �
; ð12Þ

where � is the Heaviside step function which simply counts
instances where T (D sim

i ) > T (D).

The number of simulations, N, must be large to ensure a good
approximation to the integral of equation (11) (which is a mul-
tiple integral, being itself the integral of the function computed by
eq. [10]). See Protassov et al. (2002) for more detailed discussion.

3.2.1. Application to GRB X-Ray Spectra

As discussed above, we may approximate the posterior density
for the parameters using a multidimensional Gaussian centered on
theMLEvalues andwith a shape defined by the covariancematrix
evaluated at the peak (s2). The randomized parameter values
needed for step 2 above may then be generated with the Cholesky
method.

For the purposes of the present paper we use as the test sta-
tistic the change in the �2 fit statistic14 between the two models,
M0 and M1. This is equivalent to the formulation discussed in
Protassov et al. (2002). The observed data were fitted with the
modelM0 and the covariancematrix evaluated at the best-fit point
used to construct themultivariateGaussian distribution fromwhich
parameter values were randomly drawn.15 For each set of model
M0 parameter values a spectrum was simulated with the appro-
priate response matrix and exposure time, with counts in each
channel drawn from aPoisson distribution, and binned in the same
manner as the observed data.
In order to calculate the test statistic for each simulation,

T (D sim
i ), it was necessary to fit each simulated data set with the

two competing models M0 and M1, find the best-fitting parame-
ters for each one, and compute��2

i . This necessarily involves a
computationally expensive multidimensional parameter estima-
tion for each of the N simulations. We use as standard N ¼ 104

simulations,which yields a p value accurate to four decimal places
at very highest and lowest p values (there is an uncertainty on the
ppp value from the finite number of simulations which is roughly
p (1� p)/N½ �1/2 from the binomial distribution). This is accept-

able for determining p values as low as p � 10�4, i.e., 99.99%
‘‘significance.’’
As a further test of the validity of the Gaussian assumption for

the posterior (see also xx 3.1.2Y3.1.3) we have compared results
with andwithout this assumption. In particular, we calculated the
ppp value for a spectrum of GRB 060124 using Gaussian param-
eter values and also using values generated by theMCMCmethod
discussed by van Dyk et al. (2001). The two results were reason-
ably close ( p ¼ 0:050 � 0:007 from the Gaussian simulations
and p ¼ 0:073 � 0:008 from the MCMC, based on 103 simula-
tions). This confirms the point made in x 3.1.3, that the Gaussian
assumption is reasonable for these data.

3.2.2. Automated Fitting of GRB Spectra

Given the number of simulated data sets one must resort to an
automated model fitting procedure. This has itself been the cause
of some debate, with some authors (e.g., x 5 of Rutledge & Sako
2003) claiming that automatic routines do not robustly find the
best-fitting parameter values (minimum �2). The algorithm used
by XSPEC for �2 minimization is the Levenberg-Marquardt al-
gorithm, which is efficient and very effective when the �2 space
is well behaved (e.g., with only one local minimum). However,
as this is a ‘‘local’’ routine, there is no guarantee of finding the
‘‘global’’ minimum in�2, and it is possible that the results are bi-
ased by the presence of other local minima. For the present paper
we have employed several additions to the standard Levenberg-
Marquardt minimization algorithm in order to mitigate these
problems.
Once a local minimum in �2 is found the surrounding region

of parameter space is explored for signs of other minima. Each
parameter in turn has its value increased and decreased until the
�2 is increased by at least ��2 ¼ 2:7, while simultaneously

14 The��2 statistic is familiar tomost X-ray astronomers andwas used in the
Bayes factors method above. Here we note that it is equivalent to the likelihood ra-
tio test (LRT) statistic, since using eq. (5) we have��2 ¼ �2

(0)� �2
(1) ¼ �2 lnk,

where k ¼ p(Djâ0;M0)/p(Djâ1;M1) is the ratio of the likelihood maxima of the
two models. Under the assumptions for which the LRT is valid this should be dis-
tributed as�2 with degrees of freedom equal to the number of additional free param-
eters in model M1 compared to M0. The reason for choosing the LRT over related
statistics, such as the F-test, is that LRT is more powerful. See Freeman et al. (1999),
Protassov et al. (2002), and references therein for details.

15 In practice this was performed using the tclout simpars command in
XSPEC.
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allowing the other parameters to vary in order to minimize��2.
If any non-monotonicity in �2 is detected during this search the
volume of parameter space explored is increased by increasing
the value of ��2. If during the course of this search ��2 be-
comes negative (meaning there is a lower minimum nearby) the
Levenberg-Marquardt algorithm is restarted from the position of
this new minimum. The entire process is repeated by perturbing
each parameter in this way until no further improvement can be
made by the adjustment of any of them.

The absorbed power lawmodel (M0) has only three parameters
(photon index �, normalization, and absorption column density),
and in all cases finding the �2 minimum was straightforward us-
ing the above procedure. The alternative model M1, which in-
cludes the emission line, required more care because the presence
of a line with unknown energy may cause local �2 minima at dif-
ferent energies within the wide bandpass. An initial ‘‘best guess’’
line energywas computed for each spectrum in the followingway.
An absorbed power law plus emission linemodel was constructed
using the best-fitting parameters of model M0 and adding an un-
resolved emission line fixed at some trial energy Ei and varying
the other parameters (including the line normalization) to find the
minimum�2. One hundred values of the trial energyEi were used,
evenly spread over the entire useful bandpass, and the value that
recorded the lowest�2was selected as the ‘‘best guess’’ for the line
energy. The enhanced Levenberg-Marquardt algorithm described
above was then used to find the global �2 minimum starting
from this position. Simulation tests and comparison with inter-
active fitting demonstrated the automatic procedure described
above was an efficient and very robust procedure for finding the
global minimum.

3.3. Rutledge and Sako Smoothing (RS )

Rutledge & Sako (2003) proposed an alternative method for
line detection using a ‘‘matched filter’’ to smooth the observed
count spectrum with the aim of removing low-significance noise
and emphasizing any spectral features. The distribution of peak
fluxes in the smoothed spectrum is then compared to the result of
Monte Carlo simulations to calibrate their significance ( p value).

The counts per PHA channel are extracted from the observed
X-ray spectrum and then smoothed using an energy-dependent
kernel (a Gaussian having a FWHM equal to the spectral resolu-
tion of the detector; see eq. [2] of Rutledge & Sako 2003) to pro-
duce the smoothed spectrum C(E ). The distribution of C(E ) is
then calibrated using Monte Carlo simulations of spectra gener-
ated using the method discussed in x 3.2 that employs posterior
predictive data sets. (We note that Rutledge & Sako [2003] and
Sako et al. [2005] did not randomize the parameter values but
used fixed MLE values to generate all their simulations. This is
equivalent to assuming the posterior to be a delta function located
at the best-fit point, which is clearly a bad approximation in many
cases.) Each simulation is in turn smoothed using the same energy
kernel to produce C(E )sim;i. The C(E )sim values are then sorted
in descending order for each PHA channel separately. Thus the
99th percentile limit of the C(E )sim;global is then found by extract-
ing the 100th highest value of C(E )sim in each PHA channel.

The smoothed observed spectrum, C(E ), is then plotted
alongside the nth percentile limits, whichwe have chosen for this
analysis to be 90.00%, 99.00%, 99.90%, and 99.99%.Wherever
C(E ) exceeds a given limit then we have detected a ‘‘feature’’ at
that confidence limit. Thus a line would show up as a narrow
excess while other thermal emission components will show up as
broad excess, both of which are easily distinguishable.

3.4. Comparison of the Methods

The three methods discussed above have different theoretical
motivations and underlying assumptions and require different
amounts of computing power. The Bayes factor method is based
on a simple application of Bayes theorem combined with the
Laplace approximation and assumes uniform priors on the model
parameters (or Jeffreys prior for the line normalization). As dis-
cussed above, this may not be the optimal assignment. However,
despite its possible drawbacks, the simple priors and Laplace
approximation make the calculation extremely simple, requiring
only the evaluation of equations (7) and (8),which require the val-
ues of �2 and the covariance matrices for the best-fitting line and
line-free models, and details of the free parameters and their al-
lowed ranges. As such, it is useful as a ‘‘quick and easy’’ test.
The dependence of choice of priors may be assessed by compar-
ing the results computed using the uniform and Jeffreys prior.

By contrast, the RS and ppp methods require a large number
of random data sets to be simulated and analyzed, and are there-
fore considerably more costly in terms of computing time. There
is no compelling theoretical reason for applying a matched filter,
as in the RSmethod, although it should be noted that the method,
as implemented above, is calibrated using the appropriate poste-
rior predictive distribution. The advantage of the RSmethod is that
no model fitting is required, which is often a time-consuming pro-
cess and can lead to biased results if not handled properly (x 3.2.2).

The ppp method is grounded in the theory of Bayesian model
checking (Gelman et al. 1995; Protassov et al. 2002) but requires
time-consuming fits to be performed on each simulated spectrum,
and is therefore the most computationally demanding method
by a clear margin. However, it is arguably the most rigorous in
the sense that it is less sensitive to the choice of priors than
are Bayes factors (Gelman et al. 1996; Protassov et al. 2002),
and does not apply an ad hoc smoothing, as in the RS method,
that may actually act to suppress real spectral features in some
cases.

The simulations used for both RS and ppp methods were gen-
erated assuming a Gaussian posterior for the three parameters
of M0, which, as discussed in x 3.1.3, is a good approximation.
Again, this approximation was made to increase computational
efficiency, since Gaussian deviates are trivial to generate with the
Cholesky method. In situations where the Gaussian approxima-
tion is not valid and/or the number of spectra is small enough
that considerably more computing time may be spent on each,
the pppmethod or Bayes factors may be computed using results
from MCMC simulations (van Dyk et al. 2001; Protassov et al.
2002), which allows for a more accurate evaluation of the poste-
rior density.

3.4.1. Alternative Approximate Methods

The statistics literature contains many methods developed for
the purpose of model selection. In x 1we listed four methods that
have previously been applied to the problem of line detection in
X-ray data fromGRBs.Onemethod that has not, to our knowledge,
been applied specifically to GRB line detection is the Bayesian
information criterion (BIC; Schwartz 1978). This aims to ap-
proximate the logarithm of the integrated posterior probability
for a model with k parameters given data with a sample size N.
The BIC takes the form of the logarithm of the likelihood with a
penalty term:

BIC ¼ �ln p Dja;Mð Þ½ � þ (k=2) ln N : ð13Þ
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The model with the smallest BIC is favored. The difference
between the BIC values for two competing models (often called
the Schwartz criterion) is therefore S ¼ �lnkþ (�k /2) ln N
(see footnote 14), and is a rough approximation to the logarithm
of the Bayes factor (x 4.1.3 of Kass & Raftery 1995).

In the high count ( large sample size) limit (see eq. [5]) the
Schwartz criterion becomes 2S ¼ ���2 þ�k lnN . Whether
or not the BIC for model M1 is smaller than that for M0 is then
equivalent to the criterion��2 > ��k lnN . In the present case
the data are selected with fixed N, and�k ¼ �2 for the addition
of a fixed width line, such that the BIC is equivalent to applying
the same��2 criterion to each spectrum, mechanically the same
as the LRT, although with a different (generally higher) thresh-
old value. Therefore, in the present context the application of the
BICwould be equivalent to a slightlymore conservative applica-
tion the LRT (see footnote 21). However, as noted in Protassov
et al. (2002) and elsewhere, the BIC is often a poor approxima-
tion to the integrated posterior probability, and as discussed by
Kass & Raftery (1995) is generally a worse approximation than
the Laplace approximation employed to calculate Bayes Factors
in x 3.1.2.

4. RESULTS FROM AN IRON LINE-EMITTING SOURCE

As a first demonstration of the above methods we applied them
to a non-GRB Swift data set. Ideally we would prefer to examine
a source with a GRB-like spectrum, with a similar count rate, but
containing a clearly identified emission line feature. However,
it is difficult to find a source that meets all of these criteria. We
chose the PCmode calibration data set (combining all available
data from 2005 May 10 to 2005 September 2) of PKS 0745-19
(De Grandi & Molendi 1999; Chen et al. 2003). This test has
some limitations as PKS 0745-19 is fainter than the GRBs ana-
lyzed in this paper and it is observed in a different mode.

PKS 0745-19 is a galaxy cluster with a thermal spectrum and
a known line at 6.07 keV in Swift’s observations, which is a red-
shifted 6.7 keV iron line (z ¼ 0:1). Even though the underlying
spectrum is thermal, withmultiple temperature components, it can
bemodeled by an absorbed power law continuumwhere the power
law index,�, is 2:34þ0:03

�0:03 (�
2/� ¼ 635/511). An additional mekal

(Mewe et al. 1985;Arnaud 1996) component,with kT ¼ 0:19þ0:03
�0:01,

slightly improved the fit with �2/� ¼ 610/509. All spectral pa-
rameter errors are quoted at 90% confidence.
Adding a Gaussian component to an absorbed power law fit

naturally produced a significantly improved fit to the data (�2/� ¼
539/508) with� ¼ 2:36þ0:04

�0:03 and a line at 6:07
þ0:02
�0:02 keV (width ¼

0:06þ0:02
�0:03 keV). The spectral fit to this model can be seen in Fig-

ure 2. This is supported by the Bayes factor of 7 ; 1014 for a sin-
gle line being present. RS analysis of the spectrum, Figure 3, also
clearly showed the presence of a Gaussian feature at �6.07 keV
with a significance far in excess of the 99.99% confidence limit.
The ppp analysis placed a significance of >99.99%on this feature.
An interesting point to note is that there are shallow ‘‘excesses’’

at �0.6 and �2.3 keV in the RS plot (Fig. 3) that are clearly not
line features. Coherent, low-level, positive excesses are also seen
in the spectral fit at these energies (Fig. 2). Either the power law
component is not modeling the data adequately at these points, the
energy scale for this spectrum has an offset or the calibration files
are less accurate around these two energies. Applying the gain
fit function in XSPEC improves the model fits significantly by
adding an offset16 of �0.07 keV (no change to the slope). The
absorbed power law model improves from �2/� ¼ 635/511 to
606/509 and the mekal component model improves from�2/� ¼
610/509 to 585/507. As a result the two shallow ‘‘excesses’’ at
�0.6 and �2.3 keV become far less prominent.
The feature at �0.6 keV could be attributed to the detector

oxygen absorption edge at 0.54 keV. Applying the �0.07 keV
offset brings the�0.6 keV ‘‘line’’ in conjunction with this edge,
thus reducing its significance below the point at which we would
consider it to be a real detection. We note that the�2.3 keV fea-
ture is coincident in energywith the gold edge due to theXRTmir-
rors. We have confirmed that this feature is not due to any bad
pixel or hot column issues.17

5. TESTING THE THREE METHODS
AND DETERMINING DETECTION LIMITS

In this section we discuss the sensitivity limits of the three
methods, i.e., the weakest lines that can be reliably detected with
each of the three methods, for observations of the type discussed

Fig. 2.—Spectral fit to PKS 0745-19 with an absorbed power law plus a nar-
row Gaussian emission line model. The redshifted iron line at 6.07 keV is clearly
visible. Note also the residuals at 0.6 keV and 2.3 keV, which are thought to be
due to the oxygen and gold edges respectively. [See the electronic edition of the
Journal for a color version of this figure.]

Fig. 3.—PKS 0745-19: RS method. Confidence contours mark the signifi-
cance of the spectral features. Insets focus on energy ranges of interest. [See the
electronic edition of the Journal for a color version of this figure.]

16 Seehttp://swift.gsfc.nasa.gov/docs/heasarc/caldb/swift/docs/xrt/xrt_bias.pdf.
17 See http://swift.gsfc.nasa.gov/docs/heasarc/caldb/swift /docs/xrt /SWIFT-

XRT-CALDB-01_v5.pdf.
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in x 2, of a ‘‘typical’’ Swift era burst. This is done by simulating
XRT data with a continuum spectral model typical of the GRBs
observed with Swift, but including an emission line, and then ap-
plying the three methods described above for line detection.

In order to generate the simulated data we use a fiducial spec-
tral model comprising a power law with photon index � ¼ 2:0,
normalization (at 1 keV) of N ¼ 0:9 photons keV�1 s�1 and an
absorption column density of NH ¼ 1:8 ; 1021 cm�2 (see Table
2 of Campana et al. 2006c). These parameters are typical of the
X-ray spectra of Swift era bursts.18 In order to measure the sen-
sitivity of the three detection methods to lines in XRT data, spec-
tral data were simulated using the above model plus one Gaussian
emission line, and subjected to each of the three procedures. A
range of values for line energy, normalization, and intrinsic width
were used in order to calibrate the dependence of the methods to
the line parameters.19

The ppp and RS method result in p values with the conven-
tional frequentist interpretation. If we set the detection threshold
at �, and identify a detection as p � � then the rate of type I
errors (i.e., false positive detections) will be �. For the purpose
of sensitivity analysis we used � ¼ 0:01, equivalent to a ‘‘99%
significance’’ criterion. In contrast to these, the Bayes factor is
the ratio of the marginal likelihoods of modelsM1 andM0; in the
case of uniform priors for the two models this is the ratio of pos-
terior probabilities B10 ¼ p(M1jD)/p(M0jD) where the probabili-
ties are interpreted directly as probabilities for modelsM0 andM1,
respectively.

For the purpose of numerical comparison with the p values,
the Bayes factors were converted into probabilities [assuming
p(M1jD)þ p(M0jD) ¼ 1; see eq. (3.19) of Gregory 2005], and

p(M0jD) < 0:01 was taken as the criterion for detection. This is
equivalent to p(M1jD) > 0:99, and approximately equivalent to
a Bayes factor B10 > 100, which is conventionally taken as strong
evidence in favor of M1 over M0 (Kass & Raftery 1995). How-
ever, we stress that the interpretation of p values and Bayes factors
are fundamentally different. A p value is the tail area of the prob-
ability density function of the test statistic, assuming a null hy-
pothesis (M0) is true, and is used to decide whether or not to reject
the hypothesis. As such, a p value is not the probability for the
model M0; instead it corresponds to the frequency of more ex-
treme test statistics (e.g.,��2) given a large number of repeat ex-
periments (assuming the null hypothesis). By contrast, p(M0jD)
is the posterior probability for modelM0 based on dataD and the
priors (in the present case we used an approximation thereof ), as
p(M1jD) is forM1, and Bayes factors are used to select between
two models based on the ratio of these two. This fundamental dif-
ference in the interpretation of Bayes factors means there is no
expectation that � is the frequency of type I errors from a large
number of repeat observations when using a p(M0jD) < �
criterion.

In x 3.1.3 we confirmed that using the Laplace approximation
assumption in the calculation of the Bayes factor was valid for
the fiducial absorbed power law spectral model. The same was
also found to be true of the spectra with simulated Gaussian lines
at and above the detection limit detailed above.

For eachvalue of the line normalizationwe calculated theBayes
factors for 50 independent simulations and calculated the p(M0jD)
values for each. We then averaged the p(M0jD) values at each
normalization and linearly interpolated between points at adjacent
normalization values to map p(M0jD) as a function of normaliza-
tion. The limiting sensitivity was taken to be the normalization at
which the mean p(M0jD) value falls below 0.01.

Figure 4 shows the detection limits for an intrinsically narrow
line (W ¼ 0) at different energies for spectra with �800 and
�1600 counts (left and right panels, respectively). The limiting
sensitivities are shown in units of equivalent width (keV), which
is easier to interpret physically than the absolute normalization, by
comparing the normalization to the underlying continuummodel.
Figures 5 and 6 show the detection limits for different line widths
(W ¼ 0:2 and 0.7 keV, respectively). The Bayes factor points in
these figures have been calculated using the uniform prior, rather
than the Jeffreys prior. See x 6.11 for further discussion on the

Fig. 4.—Narrow Gaussian line (width < instrumental resolution) for a spectrum containing 800 counts (left ) and 1600 counts (right). Comparison of the detection
limits, in equivalent width (keV), of the threemethods over the energy band pass of Swift. The data are as follows.Dotted lines: Bayes factor analysis: solid lines: RSmethod;
dashed lines: posterior predictive p value analysis. [See the electronic edition of the Journal for a color version of this figure.]

18 We have assumed a redshift z ¼ 0 for the fiducial burst spectrum. The
average of the measured redshifts for Swift GRBs is higher than this (see http://
www.astro.ku.dk/~pallja /GRBsample.html for the updated values). However, it
should be noted that increasing z causes the effects of absorption by the host gal-
axy absorption (which tends to dominate the total absorption column) to shift out
of the observed bandpass, meaning there is relatively more flux at lower energies
(<1 keV). The calculated detection limits should be representative of Swift era
bursts although perhaps conservative at lower energies.

19 The ranges of values used for the line simulations are as follows. Normali-
zations of 1 ; 10�7 ! 100 photons cm�2 s�1 taken in logarithmically increasing
steps, line energies of 0.4, 0.6, 0.8, 1.0, 2.0, 3.0, 4.0, 5.0, 7.0, and 9.0 keV, and
intrinsic widths of 0.0 keV (i.e., unresolved), 0.2 keV (broad line) and 0.7 keV
(broad continuum excess).
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effect of using the two different priors in the calculation of the
Bayes factors for the observed data sets.

The ppp and RS methods require a large number of spectral
simulations in order to calibrate their distribution and estimate the
p value. The computational demands of this20 are such that it was
not feasible to produce a sufficiently large set of simulations to
carry out the methods on each and every line spectrum (e.g., which
includes several spectra at each trial value of line energy,width, and
normalization, for both�800 and�1600 count spectra).We there-
fore constructed two libraries of 104 simulations, one for�800 and
one for�1600 count spectra, that could be used for each test. These
were constructed by simulating an appropriate spectrum based on
the fiducial model, and using this to generate the posterior predic-
tive distribution from which to draw 104 simulations following the
recipe discussed in x 3.1.2. These libraries were then used to cali-
brate the distribution of the ��2 statistic for the ppp method and
thus to calculate the value of ��2 that corresponds to a p value

of 0.01. Similarly, these libraries were used to compute the 99.00%
significance contour from the fiducialmodel for theRSmethod.We
point out here that these simulation libraries were used only for the
purposes of comparing the different algorithms. For the analysis of
real observations (discussed below), each observationwas assessed
using independently generated simulations matching the particular
observational parameters.
For the ppp method each of the spectra containing a line was

fitted with an absorbed power lawwith and without an additional
Gaussian component, and the change in �2 noted. The��2 val-
ues were averaged at each normalization, and these points linearly
interpolated, to map the ��2 as a function of normalization. As
with the Bayes factor, the limiting sensitivity was taken to be the
normalization at which the mean p value falls below 0.01, calcu-
lated using the appropriated value of��2 value from each simu-
lation library. The limiting sensitivity as a function of energy is
shown as dotted curves in Figures 4, 5, and 6 for different configu-
rations of line parameters.
For the RS method each line spectrum was smoothed indi-

vidually. TheC(E )sim values over an energy channel range equal

Fig. 5.—Broad Gaussian line (width = 0.2 keV) for a spectrum containing 800 counts (left ) and 1600 counts (right ). Comparison of the detection limits, in equivalent
width (keV), of the three methods over the energy band pass of Swift. The data are as follows.Dotted lines: Bayesian analysis; solid lines: RSmethod; dashed lines: ppp.
[See the electronic edition of the Journal for a color version of this figure.]

Fig. 6.—Broad excess (width = 0.7 keV) for a spectrum containing 800 counts (left ) and 1600 counts (right ). Comparison of the detection limits, in equivalent width
(keV), of the three methods over the energy band pass of Swift. The data are as follows. Dotted lines: Bayes factor analysis; solid lines: RS method; dashed lines: ppp.
Values below 0.7 keV have been excluded due to the width of the features being analyzed. [See the electronic edition of the Journal for a color version of this figure.]

20 To give a specific example, for the simulation and fitting methods described
in xx 3.2.1 and 3.2.2 a set of N ¼ 104 simulations takes�1 day on a top-range PC.
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to the central energy, Eline, �line width were extracted. These
values were compared to the 99.0% confidence limit over the
same energy channel range found from the appropriate simu-
lation library. The number of channels within this range where
C(E )sim > C(E )99:0 was recorded for each simulation. The de-
tection limit was taken to be the lowest line normalization where
N C(E )sim > C(E )99:0½ � ¼ 0.

Analysis of the ( line free) library simulations showed that the
Bayes factors produced <1% false positiveswhenB10 � 100was
used as a detection criterion. This shows the method is, if any-
thing, slightly conservative as expected given the conservative
Amax assumption. Conversely, the false negative detection rate is
negligible above the detection limit.

As expected, the detection limits are higher for the spectrum
with a lower number of counts, by a factor of �1.5. For the
fiducial spectral model used here the optimum energy range for
detecting lines is 0.4Y6 keV, where the line only requires a con-
tribution of a few percent of the total spectral flux, In the best
cases (1600 counts and narrow line) a line with an equivalent with
as small as �40 eV may be detected around 1 keV (observed
frame) at 99% significance (in a single trial), whereas only very
strong lines may be detected between 6 and 10 keV. Additional
simulations were carried out with a higher absorption column
density (1:0 ; 1022 cm�2; the mean values stated in Reichart &
Price [2002], assuming that long bursts occur in molecular clouds).
The dependence of line detection with respect to energy for all
three methods were the same at energies >1 keV. However, we
note that simulating the spectra with much larger absorption col-
umns significantly degraded the ability to detect lines features be-
low 1 keV.

6. RESULTS FROM SWIFT ARCHIVAL
GRB AFTERGLOW DATA

Our sample covers a subset of 40 GRBs, out of the total of 153
fromGRB 050128 up to GRB 060510B, which were selected for
the quality of their WT mode data (see x 2). Some bursts only
contained sufficient data for a single WT mode spectrum to be
analyzed, while the majority contained sufficient data to be time-
sliced into multiple spectra (see x 2). In total 332 spectra were
analyzed. We sample a range of energies and time spans even
though the complete redshift distribution of this data set is un-
known. The subset of this sample with known z indicates that we
are typically probing the region between T þ 0 s to T þ�500 s
(or up to T þ few ks if the burst is very bright) posttrigger and be-
tween�1.0 and�50 keV in the rest frame of the burst. Through-
out this section error bars indicate nominal 90% confidence limits
on one interesting parameter.

All the data were fitted using the automated procedure de-
scribed in x 3.2.2 and the solutions checked by hand. In practice
four models were fitted to each spectrum: (1) absorbed power
law; (2) absorbed power law plus unresolved Gaussian emission
line; (3) absorbed power law plus variable-width line; (4) ab-
sorbed power law plus blackbody. The results presented below
focus on the line models, and we found that the blackbody pa-
rameters were in general very poorly constrained. Ideally, we
would like to apply all three methods to all 332 WT spectra to
assess the significance of lines (or other) features in the data.
But, as discussed above, the RS and especially ppp methods are
computationally demanding and so it was not practical to apply
these methods to every spectrum.

The (approximate) Bayes factor method, being computation-
ally economical, was applied to every spectrum, while the more
computationally expensive RS and ppp methods were applied
only to subsets of the data. In particular, any spectrum that showed

a Bayes factor B10 � 1 (in favor of a line), or a ��2 � 4:61 on
inclusion of a line,21 was considered for more detailed analysis.
These were deliberately chosen to be extremely relaxed selection
criteria (especially so given the large number of independent tests,
see below), so as to avoid removing any plausible line candidates
and only remove those spectra without any hint of a line, and to
counteract the conservative nature of the Bayes factors (x 5). In-
deed, this screening effectively reduced by a factor�4 the sample
of spectra worth considering in more detail. We reiterate that no
judgment about the presence/absence of a line in a spectrum was
made purely on the basis of the Bayes factor method, which, as
discussed above, is an approximation and is sensitive to the choice
of priors. Only spectra with a lowBayes factor (B10 < 1) and little
improvement in the fit statistic on including a line (��2 < 4:61)
were not considered for further analysis. This subsample was then
subjected to the RS method with a low detection threshold ( p <
0:1, i.e., a 90% single trial significance, again veryweak given the
multiple trial effect). This further reduced the sample size to a level
where the rigorous but computationally expensive ppp method
could be applied.

As stated above, this screening was only necessary to reduce
the sample to a manageable size for ppp analysis. Numerical tests
showed that the pppmethod invariably gave a higher p value (i.e.,
lower significance) than the RSmethod, and so no data that might
have shown a detection with the rigorous ppp method would have
been lost by the selection process.

The large number of spectra examined means the effects of
multiple trial must be included in the analysis. For example, to
reach a global detection significance of only 90.0% given a sam-
ple of 332 spectra, we would require a single trial significance22

in excess of 99.97%. Of the 332 spectra from 40GRBs, 12 spec-
tra from 10GRBs gave a single trial detection of �99.9% signifi-
cance in at least one of the methods. As the best line candidates
in the sample, we now consider each of these in turn. (All signifi-
cances are single trial values, unless otherwise stated.)

6.1. GRB 050730

A single Gaussian feature was detected in the spectrum ex-
tracted from T þ 692 s to T þ 792 s, which was concurrent with
a flare in the WT mode data (Starling et al. 2005; Pandey et al.
2006). An absorbed power law plus a broad Gaussian (� ¼
0:34þ0:08

�0:16 keV) at 1:14þ0:48
�0:44 keV provided the best fit to the data

with�2/� ¼ 47/52 (Table 1).When the linewidthwas restricted to
below the detector resolution a Gaussian feature at 0:73þ0:02

�0:03 keV
was detected (�2/� ¼ 57/53).

The Bayes factor was B10 ¼ 300, favoring a line. The RS
method (Fig. 7) indicated that a line is present in the spectrum
at �0.7 keV with a confidence of 99.90%. This compares favor-
ably to the parameters found in the spectral fit when the Gaussian
width was restricted to a value below the instrumental resolution.
There is no evidence for the broader feature found when the width
of the Gaussian was a free parameter (see inset to Fig. 7).

21 ��2 ¼ 4:60517 is the 90th percentile for the �2 distribution with 2 de-
grees of freedom (Press et al. 1992). As such, it corresponds to a 90% detection
‘‘significance’’ ( p < 0:10) in a classical likelihood ratio test (LRT) when in-
cluding two additional parameters (see footnote 14). The LRTshould not be used
directly for the purposes of detecting an emission line (for reasons discussed in
Protassov et al. 2002), but in practice the p value calculated from the analytical
test is usually within an order of magnitude of the value calibrated using the ppp
method. It is therefore extremely unlikely that a data set producing��2 < 4:61
would yield a solid detection (e.g., p < 10�3) after ppp analysis.

22 Calculated using the standard Bonferroni-type correction factor: p1 ¼ 1�
(1� pN )

1/N , where p1 is the single trial p value that gives pN as the rate of type I
errors in a set of N independent trials. This sometimes known as the Šidàk equa-
tion. In this limit of small pN and large N this tends to p1 ¼ pN /N .
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TABLE 1

Summary of Spectral Fits for All Candidate Spectra

Modela Photon Index

Line Energy

(keV)

Line Width

(keV)

Line Norm.

(;10�2 photons cm�2 s�1)

Equivalent Width

(eV)

NH

(;1020 cm�2) �2/�

GRB 050730 (T + 692 s to T + 792 s)

1....................................... 2:03þ0:14
�0:13 . . . . . . . . . . . . 5:84þ2:32

�2:14 64/55

2....................................... 1:98þ0:15
�0:13 0:73þ0:02

�0:03 <Inst. res. 0:95þ0:58
�0:57 50 8:88þ6:57

�4:72 57/53

3....................................... 1:78þ0:18
�0:19 1:14þ0:48

�0:44 0:34þ0:08
�0:16 22:5þ7:5

�18:5 3400 7:08þ3:95
�4:03 47/52

GRB 060109 (T + 109 s to T + 199 s)

1....................................... 2:29þ0:18
�0:17 . . . . . . . . . . . . 31:9þ5:5

�5:0 48/42

2....................................... 2:29þ0:20
�0:17 0:74þ0:03

�0:03 <Inst. res. 3:11þ3:08
�1:95 94 34:4þ6:4

�5:6 40/40

3....................................... 2:20þ0:18
�0:18 <0.72 0:23þ0:12

�0:06 17:5þ13:8
�7:7 560 39:6þ9:8

�7:6 35/39

GRB 060111A (T + 174 s to T + 234 s)

1....................................... 3:05þ0:22
�0:20 . . . . . . . . . . . . 29:9þ4:8

�4:5 52/50

2....................................... 3:09þ0:23
�0:21 0:64þ0:03

�0:03 <Inst. res. 11:6þ15:2
�4:9 73 32:6þ5:7

�5:1 44/48

3....................................... 3:07þ0:09
�0:21 0:65þ0:09

�0:06 <0.13 14:0þ16:0
�10:1 94 33:0þ7:9

�5:8 44/47

GRB 060111A (T + 319 s to T + 339 s)

1....................................... 1:97þ0:14
�0:14 . . . . . . . . . . . . 18:8þ3:9

�3:6 69/61

2....................................... 1:94þ0:14
�0:14 0:79þ0:02

�0:01 <Inst. res. 9:42þ4:86
�4:18 80 19:5þ4:1

�3:9 54/59

3....................................... 1:94þ0:07
�0:09 0:79þ0:02

�0:01 <0.15 9:42þ11:9
�4:18 80 19:5þ2:7

�2:2 54/58

GRB 060115 (T + 121 s to T + 253 s)

1....................................... 1:88þ0:12
�0:11 . . . . . . . . . . . . 16:6þ3:3

�3:1 93/80

2....................................... 1:85þ0:12
�0:12 0:89þ0:03

�0:03 <Inst. res. 0:67þ0:44
�0:42 39 16:3þ3:1

�3:2 86/78

3....................................... 1:82þ0:13
�0:11 0:81þ0:07

�0:07 0:10þ0:06
�0:05 2:09þ2:21

�1:22 100 17:0þ4:3
�2:7 82/77

GRB 060124 (T + 537 s to T + 542 s)

1....................................... 1:30þ0:16
�0:14 . . . . . . . . . . . . 29:5þ6:7

�8:0 72/47

2....................................... 1:29þ0:15
�0:15 2:49þ0:06

�0:01 <Inst. res. 11:8þ6:3
�6:5 800 27:8þ9:3

�7:8 62/45

3....................................... 1:13þ0:19
�0:24 2:30þ0:21

�0:23 0:48þ0:17
�0:11 57:7þ42:0

�25:2 150 18:3þ9:7
�9:9 51/44

GRB 060202 (T + 429 s to T + 529 s)

1....................................... 2:16þ0:11
�0:10 . . . . . . . . . . . . 47:1þ4:3

�4:0 109/103

2....................................... 2:15þ0:11
�0:11 0:94þ0:03

�0:02 <Inst. res. 2:69þ1:51
�1:30 54 48:1þ4:8

�4:2 97/101

3....................................... 2:12þ0:10
�0:12 0:94þ0:05

�0:08 <0.34 4:94þ5:01
�2:80 99 50:0þ1:1

�5:0 96/100

GRB 060210 (T + 233 s to T + 353 s)

1....................................... 2:72þ0:16
�0:15 . . . . . . . . . . . . 20:6þ3:1

�2:9 98/72

2....................................... 2:71þ0:16
�0:15 0:66þ0:04

�0:02 <Inst. res. 4:63þ3:06
�2:40 63 21:5þ3:5

�3:1 85/70

3....................................... 2:68þ0:18
�0:16 0:67þ0:03

�0:04 0:06þ0:05
�0:03 7:06þ5:94

�4:54 100 21:6þ4:0
�3:2 81/69

GRB 060418 (T + 119 s to T + 129 s)

1....................................... 1:82þ0:13
�0:12 . . . . . . . . . . . . 24:3þ5:1

�4:6 72/59

2....................................... 1:82þ0:13
�0:12 2:42þ0:02

�0:03 <Inst. res. 7:21þ3:00
�2:97 190 23:7þ5:0

�4:6 56/57

3....................................... 1:82þ0:13
�0:12 2:42þ0:02

�0:04 <0.14 7:21þ4:74
�2:98 190 23:7þ4:6

�4:5 56/56

GRB 060418 (T + 169 s to T + 194 s)

1....................................... 2:70þ0:22
�0:19 . . . . . . . . . . . . 22:3þ4:3

�3:9 62/52

2....................................... 2:67þ0:07
�0:12 0:69þ0:02

�0:02 <Inst. res. 10:8þ5:6
�5:5 58 22:2þ2:1

�2:0 52/50

3....................................... 1:82þ0:22
�0:66 <0.75 0:57þ0:09

�0:20 110þ31
�75 2300 11:0þ0:1

�0:1 43/49

GRB 060428B (T + 212 s to T + 252 s)

1....................................... 3:02þ0:18
�0:16 . . . . . . . . . . . . 11:6þ2:6

�2:3 78/63

2....................................... 2:94þ0:18
�0:16 0:77þ0:03

�0:02 <Inst. res. 3:56þ1:84
�1:87 39 10:6þ2:6

�2:2 69/61

3....................................... 2:83þ0:16
�0:16 0:76þ0:05

�0:06 0:09þ0:05
�0:03 8:38þ4:92

�3:69 100 9:21þ2:37
�2:27 63/60

GRB 060428B (T + 252 s to T + 418 s)

1....................................... 2:64þ0:14
�0:14 . . . . . . . . . . . . 2:28þ1:63

�1:50 58/64

2....................................... 2:58þ0:15
�0:14 0:69þ0:02

�0:03 <Inst. res. 0:62þ0:37
�0:37 34 1:73þ1:64

�1:51 50/62

3....................................... 2:33þ0:14
�0:22 <1.07 0:33þ0:06

�0:17 9:71þ5:48
�8:19 2100 0:39þ1:93

�0:17 48/61

a Models: (1)Absorbed power law, (2) absorbed power law plus a narrowGaussian (width restricted to less than the instrumental resolution), and (3) absorbed power law plus a
free-width Gaussian. Models containing blackbody components are not reported in this table as the fits were poorly constrained. All errors are quoted at 90.0% confidence.



A ppp analysis was carried out in both cases. The significance
of the unresolved-width and free-width Gaussian features were
found to be 88.50% and 99.92% respectively. It is surprising
that the ppp analysis appears to favor the wider line at Eline ¼
1:14þ0:48

�0:44
keV, as there is no evidence of a feature with this en-

ergy in the RS plot. However, we note that the large errors on
this line energy are consistent with a feature at 0:73þ0:02

�0:03 keVat
the limit of their range.

Applying the gain fit function to this spectrum resulted in
an improved fit (��2 ¼ 6) for an unresolved-width line feature
at 0:68þ0:07

�0:04 keV, with an offset of �55 eV (all other spectral pa-
rameters were unchanged within previous limits). Combining this
energy offset with the error on the line energy is not sufficient to
prove an association with the oxygen absorption edge. Applying
the gain fit function to the free-width Gaussian model was in-
conclusive, with regards to an association to the oxygen absorption
feature, owing to the poorly constrained line energy of <1.00 keV.
(For further discussion on the application of the gain fit function
to this and other GRBs see x 7.)

The redshift for this burst was reported as z ¼ 3:967 (Chen
et al. 2005; Holman et al. 2005; Prochaska et al. 2005; Starling
et al. 2005). Further fits were conducted with two NH columns
originating from the Galactic column (wabs, fixed at the value
given byDickey &Lockman 1990) and the host galaxy (zwabs).
This had the effect of marginally improving the fit for the absorbed
power law model (�2/� ¼ 61/55,��2 ¼ 3) with a Galactic col-
umn density fixed at 3:21 ; 1020 cm�2 and a host galaxy compo-
nent of 9:80þ6:80

�6:20 ; 10
21 cm�2. All of the other spectral parameters

were the same as the previous fit within the limits. The fit to the
other models, containing Gaussian components, did not change
significantly and the parameter values were the same within the
error limits. Bayes factor analysis including the zwabs component
indicated marginal evidence for line being present (B10 ¼ 5). Ap-
plying the additional zwabs component to the RS method (see
Fig. 8) also decreased the significance of the 0.73 keV feature
from 99.90% confidence (dotted line) to 99.0% (solid line). A
ppp analysis, taking the zwabs component into account, found
that the significance of the free-width feature had decreased to
99.49% (i.e., �2.8 � detection) in this single trial. We conclude
that the line detection (unresolved or free width) in GRB 050730
is not significant at 3 �, and note that the redshift-corrected line

energy does not correspond to a K-shell transition of a common
element.

6.2. GRB 060109

This burst had insufficient flux to produce multiple spectra;
therefore we considered the data set as a whole. The spectrum
covers data from T þ 109 s to T þ 199 s. An absorbed power
law plus a narrow Gaussian at 0:74þ0:03

�0:03 keV (width restricted to
below the detector resolution, �2/� ¼ 40/40) and a free-width
Gaussian at <0.72 keV (width ¼ 0:23þ0:12

�0:06 keV, �
2/� ¼ 35/39)

were equally good fits to the data (Table 1).
The Bayes factor for the unresolved-width Gaussian model

indicated the presence of a line (B10 ¼ 200); however, the same
analysis on the free-width Gaussian was much less convincing
(B10 ¼ 3). The RS method indicated that there may be a feature
at�0.7 keV with a significance of 99.90% (see Fig. 9). However,
the ppp method gave only 88.99% and 99.28% significance for
unresolved (fixed) and free-width Gaussian lines, respectively. In

Fig. 7.—GRB 050730 (T þ 692 s to T þ 792 s): RSmethod. Inset focuses on
energy range of interest. [See the electronic edition of the Journal for a color ver-
sion of this figure.]

Fig. 8.—GRB 050730 (T þ 692 s to T þ 792 s): RS comparison between the
absorbed power law models containing a single NH component (wabs, dotted
lines) and two components (wabs and zwabs, solid lines). Note that the feature
becomes far less significant with the addition of theNH column at the appropriate
redshift. [See the electronic edition of the Journal for a color version of this figure.]

Fig. 9.—GRB 060109: RS results. [See the electronic edition of the Journal
for a color version of this figure.]
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x 6.1, we showed that the significance of a similar feature de-
creased below 3 �when the spectral fit was changed to include an
absorption component at the redshift of the host galaxy. We will
show that this is generally true for thoseGRBs for which a redshift
is known. Unfortunately, in this case the redshift is not known and
we cannot determine whether or not the same is true.

6.3. GRB 060111A

The data from this burst were split into 11 spectra, covering
several flaring events that showed significant spectral variation
during the observation. The Bayes factor (B10 ¼ 0:05) gave no
evidence for a free-width line (at 0:65þ0:09

�0:06 keV,W < 0:13 keV)
in the spectrum covering T þ 174 s to T þ 234 s, despite it pro-
ducing a modest improvement in the fit (��2 ¼ 8; Table 1). The
RS results (Fig. 10) indicate a feature at�0.65 keVwith�99.90%
confidence. A further feature at 0:79þ0:02

�0:01 keV (W < 0:15 keV)
was detected in the spectrum coveringT þ 319 s to T þ 339 s. The
Bayes factor indicated that the presence of a line in the second
spectrum was unlikely (B10 ¼ 0:1), but the RS method (Fig. 11)
suggested an additional spectral feature.

While the �0.65 keV feature for T þ 174 s to T þ 234 s and
the �0.79 keV feature in the T þ 319 s to T þ 339 s both look
promising from the RS method, the ppp analysis showed that
they were only 85.13% and 99.56% significant, respectively, not
strong detections given the number of trials (see above).

6.4. GRB 060115

This burst had insufficient flux to produce multiple spectra;
therefore we considered the data set as a whole. The spectrum
covers data from T þ 121 s to T þ 253 s. An absorbed power law
plus a Gaussian at 0:81þ0:07

�0:07 keV with a width of 0:10þ0:06
�0:05 keV

provided the best fit to the data with �2/� ¼ 82/77 (Table 1). The
Bayes factor gave no evidence for a line (B10 ¼ 0:03), but the RS
results (Fig. 12) indicated that there was a feature at�0.75 keVat
99.90% significance. However, ppp analysis gave only 96.16%
significance.
A redshift of z ¼ 3:53 was reported by Piranomonte et al.

(2006). Further fits were conducted with two NH columns orig-
inating from the Galactic column (wabs, fixed at the value given
by Dickey & Lockman 1990) and the host galaxy (zwabs). This
led to no change in the statistical fit nor parameter values for an ab-
sorbed power law model or models containing Gaussian compo-
nents. We conclude that the line detection in GRB 060115 is only
moderately significance in a single trial, and not significant (to
3 �) in multiple trials, and note that the redshift-corrected line
energy does not correspond to a K-shell transition of a common
element.

6.5. GRB 060124

A precursor �570 s before the main burst peak allowed Swift’s
narrow-field instruments to be positioned on the GRB location
�350 s before the burst occurred (Romano et al. 2006). There-
fore the WT mode data covered both the prompt emission from
the burst as well as a portion of the afterglow phase. The flux de-
tected over the observationwas sufficient to produce a time series
containing 46 spectra. Bayes factor analysis indicated that eight
of these showed evidence for additional spectral features and a
further nine showed evidence from the raw��2 improvements.
However, RS and ppp analyses carried out on all of these poten-
tial line spectra revealed only one with an acceptable detection
(with bothmethods giving a significance of >99.90%). This spec-
trum spanned T þ 537 s to T þ 542 s (i.e., occurring just prior to

Fig. 10.—GRB 060111A (T þ 164 s to T þ 234 s): RS results. [See the elec-
tronic edition of the Journal for a color version of this figure.]

Fig. 11.—GRB 060111A (T þ 319 s to T þ 339s): RS results. [See the elec-
tronic edition of the Journal for a color version of this figure.]

Fig. 12.—GRB 0601115 (T þ 121 s to T þ 253 s): RS results. [See the elec-
tronic edition of the Journal for a color version of this figure.]
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the main burst peak). The best-fit model to this spectrum was an
absorbed power law plus a broad (�¼ 0:48þ0:17

�0:11 keV) Gaussian
component at 2:30þ0:21

�0:23 keV (Table 1).
The Bayes factor was B10 ¼ 20 for a free-width Gaussian fea-

ture in this spectrum. RS results (Fig. 13) showed a 99.99%
significance feature at �2.55 keV. A ppp analysis indicates that
the feature is significant to 99.97%.

While this appears to be a significant detection it seems to be
very broad for a single line feature, requiring a velocity dispersion
of the order 0.5c. Using the redshifts of 0.82 (Mirabal & Halpern
2006) and 2.297 (Cenko et al. 2006) it is possible to identify
this feature with K� emission of calcium (4.10 keV) or cobalt
(7.5 keV), respectively. It could in principle be a series of un-
resolved line features, a thermal component, or an indication of
a break in the spectrum. Fitting the spectrum with a blackbody
component (kT ¼ 0:76þ0:14

�0:11 keV) did not provide a good fit
(�2/� ¼ 61/45) nor does an absorbed broken power law model
(�2/� ¼ 56/45).

A further possibility is that it could be due to a poor fit to the
gold M edge as seen in x 4. However, applying an energy offset
to the data does not significantly improve the absorbed power law
model (��2/� ¼ 73/45, oAset ¼ �0:08 keV, no change to the
slope).

6.6. GRB 060202

This burst contained sufficient flux to extract 18 spectra. Of these
spectra only one, spanning T þ 429 s to T þ 529 s, appeared to
contain an additional spectral feature. TheBayes factor wasB10 ¼
300 in favor of a single free-width line. An absorbed power law
plus a broad (<0.34 keV) Gaussian feature at 0:94þ0:05

�0:08 keV
(�2/� ¼ 96/100) was a slightly better fit than an absorbed power
law alone (�2/� ¼ 109/103; see Table 1). RS results for the T þ
429 s to T þ 529 s data (Fig. 14) indicated a broad feature at
�0.95 keV, which exceeds the 99.99% confidence interval. A ppp
analysis of the same data places a significance of 99.74% on this
broad feature. No redshift value has been reported for this burst;
thus we were unable to perform awell-constrained two-component
absorption fit.

6.7. GRB 060210

This burst contained sufficient flux to extract a time series con-
taining eight spectra. Of these spectra only one, spanningT þ 233 s

to T þ 353 s, appeared to contain an additional spectral feature. A
model containing a Gaussian feature at 0:67þ0:03

�0:04 keV (width ¼
0:06þ0:05

�0:03 keV) was a much better fit than an absorbed power law
alone (��2 ¼ 13; Table 1). The Bayes factor was B10 ¼ 1. The
RS results (Fig. 15) indicated a feature at �0.65 keV with a sig-
nificance of 99.99%. A ppp analysis of the spectrum indicated
that the same feature is significant to 99.83%.

A redshift of 3.91 was reported by Cucchiara et al. (2006) for
this burst. A two-component absorption fit was carried out on the
data. This produced a significantly improved fit to the absorbed
power law (� ¼ 2:50þ0:12

�0:11
) model with a host NH column contri-

bution of 5:65þ0:85
�0:77 ; 1022 cm�2 and �2/� ¼ 80/72 (��2 ¼ 18

compared to the fit with free Galactic absorption only). Adding a
Gaussian component to this gave� = 2.46+0.12

�0.12, a host absorption
column of 5:71þ0:94

�0:83 ; 10
22 cm�2, and �2/� ¼ 76/69 (��2 ¼ 5

compared to the fit with free Galactic absorption only). The ad-
dition of the zwabs component did not change the energy of the
feature but was only able to place an upper limit of <0.10 keVon
its width. Bayes factor analysis after allowing for a zwabs com-
ponent indicated no evidence for an additional spectral feature

Fig. 13.—GRB 060124 (T þ 537s to T þ 542 s): RS results. [See the elec-
tronic edition of the Journal for a color version of this figure.]

Fig. 14.—GRB 060202 (T þ 429 s to T þ 529 s): RS results. [See the elec-
tronic edition of the Journal for a color version of this figure.]

Fig. 15.—GRB 060210 (T þ 233 s to T þ 353 s): RS results. [See the elec-
tronic edition of the Journal for a color version of this figure.]
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(B10 ¼ 5 ; 10�4). We can conclude that this feature is most likely
a false positive detection.

6.8. GRB 060218

Campana et al. (2006b) have reported on the association of
this burst with SN 2006aj and the presence of a thermal compo-
nent in the X-ray spectrum in great detail. Our analysis concurs
with their results. The data were split into 53 time intervals, from
which the Bayes factor analysis indicated an additional compo-
nent in the spectrum in all data from�T þ 750 s (withB10 > 50).
This was confirmed by RS and ppp analysis. The RS results
(Fig. 16, T þ 159 s to T þ 2770 s) indicated that this feature is
unlikely to be a Gaussian emission line, as its profile was too
broad. It is possible that it could be a series of unresolved lines;
however, a power law plus blackbody component gave the best
fit to all of the spectra, suggesting an additional spectral fea-
ture. Similarly, individual time slices (see Fig. 17, T þ 2359 s
to T þ 2409 s, for one such example) show the presence of this
broad feature, which appears to evolve over time (Campana et al.
2006b).

6.9. GRB 060418

A time series of 12 spectra were extracted from this GRB, two
of which appear to contain additional spectral components. These
were the spectra spanning T þ 119 s to T þ 129 s and T þ 169 s
to T þ 194 s.
A Gaussian component at 2:42þ0:02

�0:03 keV improved the fit to
the T þ 119 s to T þ 169 s data by��2 ¼ 16 (see Table 1), al-
though the Bayes factor was unconvincing (B10 ¼ 0:05). The RS
analysis (Fig. 18) showed a feature at this energy that clearly ex-
ceeded the 99.99% confidence limit. A ppp analysis found 99.85%
significance for the same feature. However, as noted previously in
the analysis for GRB 060124 and PKS0745-19 (x 4), a feature at
this energy is coincident with the gold M edge.
A similar improvement in the fit was found for the second spec-

trum (T þ 169 s to T þ 194 s), with��2 ¼ 10; the Bayes factor
was more promising (B10 ¼ 30). An unresolved-width Gaussian
at <0.75 keV provided the best fit to this spectrum with �2/� ¼
43/49 (Table 1). RS (Fig. 19) and ppp analysis supported the
presence of this feature at the 99.99% and 99.98% confidence
limits, respectively.

Fig. 16.—GRB 060218 (T þ 159 s to T þ 2770 s): RS results. [See the elec-
tronic edition of the Journal for a color version of this figure.]

Fig. 17.—GRB 060218 (T þ 2359 s to T þ 2409 s): RS results. [See the elec-
tronic edition of the Journal for a color version of this figure.]

Fig. 18.—GRB 060418 (T þ 119 s to T þ 129 s): RS results. [See the elec-
tronic edition of the Journal for a color version of this figure.]

Fig. 19.—GRB 060418 (T þ 169 s to T þ 194 s): RS results. [See the elec-
tronic edition of the Journal for a color version of this figure.]
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The 2.42 keV feature of the T þ 119 s to T þ 129 s spectrum
can be explained by the gold M edge, but the 0.69 keV feature
of the T þ 169 s to T þ 194 s spectrum cannot be matched to
another elemental absorption edge in the same manner. Two-
component absorption fits were carried out with a NH column
density of 9:17 ; 1020 cm�2 from our Galaxy and a contribution
from the host galaxy at z ¼ 1:49 (Dupree et al. 2006; Vreeswijk
& Jaunsen 2006). This produced a significant improvement in
the absorbed power lawmodel fit, which gave� ¼ 2:48þ0:18

�0:13 and
a host NH ¼ 0:73þ0:23

�0:20 ; 10
22 cm�2 (�2/� ¼ 53/52, ��2 ¼ 9

compared to the fit with free Galactic absorption only). The ad-
dition of a zwabs component to the Gaussian model gave � ¼
2:22

þ0:22
�0:15, a line with an energy of <0.65 keV and width of

0:47þ0:06
�0:08 keV, and a host absorption<0:21 ; 1022 cm�2 (�2/� ¼

46/49). The Bayes factor for the spectra containing the zwabs
component indicates that the odds of an additional spectral com-
ponent have been significantly reduced to B10 ¼ 1. We can
conclude that this feature is most likely not real, but a spurious
detection due to the baseline assumption of no host galaxy
absorption.

6.10. GRB 060428B

Data from this burst were split into two sets, T þ 212 s to T þ
252 s and T þ 252 s to T þ 418 s. An absorbed power lawmodel
was a poor fit to the first spectrum with �2/� ¼ 78/63, while an
absorbed power law plus a Gaussian feature at 0:76þ0:05

�0:06 keV
(width ¼ 0:09þ0:05

�0:03 keV) was a much better fit with �2/� ¼
63/60. However, the Bayes factor was less encouraging with
B10 ¼ 0:1 against a line feature. The RS analysis (Fig. 20) in-
dicated the presence of two possible features: one at�0.75 keV
at a significance of 99.99% and another at�0.90 keVat 99.90%.
However, no stable spectral fit could be found using an emission
line at �0.9 keV, hence it was not possible to calculate a Bayes
factor, nor calculate the��2 needed for a ppp calculation. A ppp
analysis of the feature at 0:76þ0:05

�0:06 keV yielded a significance of
99.85%.

The second spectrum, T þ 252 s to T þ 418 s, was best fitted
by an absorbed power law model (�2/� ¼ 58/64, Table 1) and
the Bayes factor gave only very weak evidence to indicate a line
(B10 ¼ 3). RS analysis (Fig. 21) indicated a possible feature at
�0.7 keVwith a significance of 99.90%; however, a ppp analysis
placed a much lower significance of 95.87% on this.

No redshift value has been reported for this burst, preventing
us from performing a constrained two-component absorption fit.
This could potentially determine whether the features at�0.7 keV
are due to poor modeling of the absorption continuum due to not
including a component from the host galaxy.

6.11. Use of Alternative Prior

In x 3.1.4 we discussed two different choices for assigning an
uninformative prior to the line normalization. The approximate
Bayes factors given above were calculated assuming a uniform
prior for the line normalization, but using the Jeffreys prior did
not change the results significantly. For example, GRB 060115
changed from B10 ¼ 0:03 with the uniform prior to B10 ¼ 0:05
with the Jeffreys prior. At the other extreme, the favorable Bayes
factor of B10 ¼ 300 for GRB 060202 [T þ 429Y529ð Þ s] using
the uniform prior was virtually unchanged. Spectra that were not
included for further analysis, due to a low Bayes factor (B10 <
1:0) and a small �2 improvement (��2 < 4:61) were similarly
affected by a change in priors. In general the Bayes factors changed
very little between uniform and Jeffreys priors, reflecting the fact
that typical best-fitting line normalizations were usually�10% of
the total flux (see x 3.1.4).

7. DISCUSSION OF SWIFT XRT RESULTS

The previous section shows that of 332 WT mode spectra an-
alyzed by our methods only 12 produced possible detections at
� 99.90% (single trial). These detections were tightly clustered
around two energies in the observer frame: 0.64Y0.94 keV (10/12,
Figs. 22 and 23) and 2.30Y2.49 keV (2/12, Fig. 24), with equiva-
lent widths of �0.9 and �0.5 keV, respectively.

The coincidence of many spectral feature detections close to
0.7 keV is suspicious as we would expect intrinsic GRB emis-
sion line features to be located at different observed energies, as
the GRBs span a large range of redshifts. This clustering strongly
hints at an instrumental origin. Modeling the WT mode spectra
with an energy offset, in case of imperfect bias subtraction at the
processing stage, improved the fit statistics for an absorbed power
law model (average ��2 � 5). However, even if the combined
error on the line energy and the offset corrections (1Y70 eV) are
taken, this would still not be enough to provide a plausible asso-
ciation with the oxygen K edge as seen in the PKS 0745-19 ex-
ample (x 4).

Fig. 20.—GRB 060428B (T þ 212 s to T þ 252 s): RS results. [See the elec-
tronic edition of the Journal for a color version of this figure.]

Fig. 21.—GRB 060428B (T þ 252 s to T þ 418 s): RS results. [See the elec-
tronic edition of the Journal for a color version of this figure.]
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An additional absorption component at the host galaxy redshift
was applied to those candidates with a known redshift measure-
ment. In every case the feature at 0.7 keV became insignificant
andwe expect that the same reduction in significance would occur
if we were able to conduct well-constrained twoYabsorption com-
ponent fits to the GRBs with unknown redshifts. It could be
argued that this decrease in line significance stems only from
the increased complexity in the model. If this were the case we
should see an overall increase in the level of the RS contours over
the whole energy range. In Figure 8 we can see that the effect
of the adding a zwabs component is not uniform across the en-
ergy range. It has negligible effect at energies >1.2 keV. Below
this energy the zwabs component acts to increase the total ab-
sorption at very low energies (<0.55 keV) and decrease it in the
0.55Y1.2 keV range. Thus the addition of the second absorption
component is imposing a real, energy-dependant effect on the con-
fidence contours, rather than increasing them uniformly across the
whole energy range. We conclude that the absorption is not being
modeled accurately at low energies by assuming that all of theNH

column is at a redshift of zero.

We have confirmed that the features at 2.3 keV are not due
to bad pixel or hot column issues. The two detections have the
following single-trial significances: 99.97% (GRB 060124) and
99.85% (GRB 060418). Taken in the context of all the trials per-
formed these significances become 90.09% (<1.7 �) and 50.20%
(<0.7 �), respectively. There is no significant improvement to the
model fits if the gain fit function is applied. Adding a black-
body component to the underlying absorbed power law or using
an absorbed broken power law does not yield a significantly im-
proved fit either. We note, however, that both of these features are
coincident with the gold M-edge complex.
Since all of the features are found to be narrowly clustered

around two energies in the observer frame, one of which was also
found in the PKS 0745-19 example, it is our conclusion that none
are real detections of emission lines in GRB spectra, but are in-
stead either due to residual calibration issues, imperfect bias sub-
traction at the processing stage, or incorrect modeling of the host
galaxy absorption column (most likely for the 0.7 keV features).
In addition, we would expect on the order of 3 false positive de-
tections at 99.00% for 332 spectral analyses.
It is also interesting that the majority of GRBs with potential

features occur in the first fewmonths of 2006. There are no phys-
ical, instrumental, or calibration issues associated with that period
of operations that could explain such temporal clustering. How-
ever, we note that the actual response of the XRTCCD is possibly
evolving while the response is modeled by the calibration files as
being constant.
Butler (2007) has recently published analysis citing the detec-

tion of line complexes in GRBs 050714B, 050822, 060202 and
060218. However, the same paper and Butler &Kocevski (2007)
also provided alternate reasons for these apparent lines detec-
tions (thermal components or broken power laws). GRB 050714B
was not included in our selection of bursts as the WTmode spec-
trum did not contain sufficient counts to meet our minimum
criteria.
We found no compelling evidence from GRB 050822 using

any of our analysis methods to suggest that there were any line
features in these data; hence it does not feature in x 6. Butler
(2007) quotes a significance of 4.4 � for a complex of five lines
(0.81, 0.91, 1.04, 1.23, and 1.49 keV) for one spectrum spanning
T þ 489:5 s to T þ 509:4 s, with equivalent widths of 82, 142,
194, 221, and 265 eV, respectively. We note that the features are
spaced 100 eV apart, although no obvious physical explanation

Fig. 22.—Spectramodeled with an absorbed power lawmodel: GRB 050730,
GRB 060109, GRB 060111A (T þ 174 s to T þ 234 s), 060111A (T þ 319 s to
T þ 339 s), and 060105. Note the residuals around 0.7 keV. [See the electronic
edition of the Journal for a color version of this figure.]

Fig. 23.—Spectramodeled with an absorbed power lawmodel: GRB 060202,
GRB 060210, GRB 060418 (T þ 169 s to T þ 194 s), 060428B (T þ 212 s to
T þ 252 s), and 060428B (T þ 252 s to T þ 418 s). Note the residuals around
0.7 keV. [See the electronic edition of the Journal for a color version of this figure.]

Fig. 24.—Spectra modeled with an absorbed power law model: GRB 060124
and GRB 060210 (T þ 119 s to T þ 129 s). Note the residuals around 2.3 keV.
[See the electronic edition of the Journal for a color version of this figure.]
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for this presents itself. It should be noted that Butler’s spectra
(�500 counts) is contained within our analysis from T þ 471 s
to T þ 661 s (�860 counts); our spectrum cannot be subdivided
further while still being directly comparable to the rest of the data
analysis presented in this paper. None of the power-law (or cutoff
power law) models tested provide a good fit to the data (Table 2),
although cutoff power laws appear to give a much better fit to the
data. Adding a blackbody component to an absorbed power law
gave poorly constrained parameters: � < 1:98; kT ¼ 0:17þ0:02

�0:02;
and NH ¼ 4:58þ5:16

�3:08 ; 10
20 cm�2 (�2/� ¼ 46/38).

RS analysis of our spectra compared to a base model of an ab-
sorbed cutoff power law shows a feature at�0.7 keVat >99.99%
significance. However, ppp analysis only placed a significance of
99.74% on the same feature. In addition, the appearance of a fea-
ture at 0.7 keV indicates that the absorption column may not have
been modeled accurately, as seen in other bursts in the previous
section. As there is no report of a redshift for this burst we cannot
confirm this by carrying out a well-constrained two-component
absorption fit.

GRB 060202 and GRB 060218 have both been discussed in
the previous section. We agree with the presence of a blackbody
component in GRB 060218 (Campana et al. 2006b). The single
feature found in GRB 060202 only occurred in 1 of the 18 time-
sliced spectra with a significance of 99.74% (single trial). If we
consider the multiple trials carried out this drops to a significance
of 95.4%. Our analysis indicates that it is a broad feature (� <
0:34 keV) at 0.9 keV rather than a series of resolved or over-
lapping lines; however, it does occur at the same energy over
which Butler (2007) reports four individual narrow lines. We find
no evidence for the reported feature at 4:70 � 0:07 keV.

8. CONCLUSIONS

Analysis of the galaxy cluster PKS 0745-19, which has a known
6.07 keVemission line, produced a convincing detection by all
methods and uncovered two further features at 0.6 and 2.3 keV.
Both features are likely to be due to an energy scale offset that
causes the instrumental oxygen and gold absorption edges re-
spectively to be poorly fitted (x 4). A series of simulations over
a range of emission-line parameters has allowed us to estimate
the sensitivity to Gaussian-like features, both broad and narrow.

For all three methods, using GRB parameters typical for Swift
bursts, the optimum range for emission-line detection was found
to be 0.4Y6 keV, with line equivalent widths as low as �50 eV
detectable in principle from data with only �1600 counts.

Of the 332 WT mode spectra from real GRBs, only 12 pro-
duced possible detections at �99.90% (single trial). These were
all located around two energies in the observer frame: 0.7 keV
(10/12) and 2.3 keV (2/12). The coincidence of many spectral
features close to 0.7 keV is suspicious, as we would expect in-
trinsic GRB emission line features to be located at different ob-
served energies, since the GRBs span a large range of redshifts.
For those candidates with a redshift measurement the feature at
0.7 keV becomes insignificant once an absorption component at
the redshift of the host galaxy is applied.We expect that the same
reduction in significance would occur if we were able to apply
well-constrained two absorption component fits to the GRBs with
unknown redshifts. The 2.3 keV features are thought to be asso-
ciated with the gold M edge.

Since all of the features are found narrowly clustered around
two energies, one of which was also found in the PKS 0745-19
spectrum (2.3 keV), it is our conclusion that all of these features
are either due to calibration issues, imperfect bias subtraction at
the processing stage, or incorrect modeling of the host absorption
column (most likely case for the 0.7 keV features), rather than
GRB emission line detections. The only nonYpower law emission
component we accept as intrinsic is the blackbody component
detected in GRB 060218.
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Rees, M. J., & Mészáros, P. 2000, ApJ, 545, L73
Reeves, J. N., et al. 2002, Nature, 416, 512
Reichart, D. E., & Price, P. A. 2002, ApJ, 565, 174
Romano, P., et al. 2006, A&A, 456, 917
Rutledge, R. E., & Sako, M. 2003, MNRAS, 339, 600
Sako, M., Harrison, F. A., & Rutledge, R. E. 2005, ApJ, 623, 973
Schwartz, G. 1978, Ann. Statis., 6, 461
Shaviv, N. J., & Dar, A. 1995, ApJ, 447, 863
Shemi, A. 1994, MNRAS, 269, 1112
Sivia, D. S. 1996, Data Analysis: A Bayesian Tutorial (Oxford: Oxford Univ.
Press)

Stanek, K. Z., et al. 2003, ApJ, 591, L17
Starling, R. L. C., et al. 2005, A&A, 442, L21
Tavecchio, F., Ghisellini, G., & Lazzati, D. 2004, A&A, 415, 443
Tyler, L., Page, K., Goad, M., & Osborne, J. 2006, in ASP Conf. Ser. 351,
Astronomical Data Analysis Software and Systems XV, ed. C. Gabriel et al.
(San Francisco: ASP), 97

van Dyk, D. A., Connors, A., Kashyap, V. L., & Siemiginowska, A. 2001, ApJ,
548, 224

Vietri, M., Ghisellini, G., Lazzati, D., Fiore, F., & Stella, L. 2001, ApJ, 550, L43
Vreeswijk, P., & Jaunsen, A. 2006, GRB Circ., 4974, 1
Watson, D., Reeves, J. N., Hjorth, J., Jakobsson, P., & Pedersen, K. 2003, ApJ,
595, L29

Watson, D., et al. 2002, A&A, 393, L1
Waxman, E. 1997, ApJ, 485, L5
Yoshida, A., et al. 1999, A&AS, 138, 433
Zhang, B. 2007, Chinese J. Astron. Astrophys., 7, 1

HURKETT ET AL.606


