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Abstract

“Robust Anti-Windup Control and its Application to Permanent Magnet Synchronous Motor Speed Regulation”

- Phil March BEng

This thesis is concerned with the design of anti-windup compensators and similar augmentations to electronic

control systems that aid the system to cope with isolated nonlinearities within the closed loop such as actuator

saturation. The thesis builds on theoretical contributions in the literature regarding the synthesis of low order

dynamic anti-windup compensators by presenting a successful industrialapplication of these techniques. A

range of other anti-windup techniques are described and through simulation and mathematical analysis, the

pros and cons of these designs are presented. Some subtle extensions tothe recent optimal synthesis routines

are also presented that can offer improved flexibility in tuning and greater performance for certain systems. The

industrial application chosen is an Electrically Powered Hydraulic Steering (EPHS) system in which complex

constraints are applied to the currents flowing in and voltages applied to a three phase Permanent Magnet

Synchronous Motor (PMSM) contained within.
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Chapter 1

Overview

In engineering systems, limits on the magnitude of certain signals are almost always present. These may be

mechanical limits, such as the angle of an aileron on an aircraft, limits on voltage or current within an electrical

system, or limits on the range of a variable in software. When present within feedback control systems, these

nonlinear functions can cause degradation of performance and may even cause instability in an otherwise stable

system. In order to improve performance and preserve stability, many different approaches to the control of

such systems have evolved over the years, drawing ideas from different branches of control theory.

In this thesis, the fields of anti-windup compensation and override compensation are explored. In both of these

approaches, the central idea is to “retro-fit” an existing controller with an additional element that becomes active

during violation of a constraint. Due to their nonlinear nature, the effect ofsuch constraints on the stability and

performance properties of a control system is not trivial to analyse. Asa result, many of the early designs gave

no consideration to these problems and were used simply because they seemed to work. In more recent years,

rigorous tools to assess the stability and performance properties of such nonlinear systems, and, moreover,

to synthesise compensators that guarantee stability and optimise performancehave become available. In this

thesis, a selection of these modern methods are compared to some of the better known ad-hoc approaches and

their adoption in industry is furthered by application to an industrial case study.

The industrial application of interest is the motor control system within an Electrically Powered Hydraulic

Steering (EPHS) system for use in the automotive sector. As the system is cost sensitive there is a strong

incentive to achieve maximum utilisation of the available voltage and current andtherefore the system is heavily

dependent upon anti-windup compensators to preserve performance during various saturation scenarios. The

plant and controller of the EPHS system are both nonlinear and the constraints applied are both multivariable

and time varying, thus the application of linear anti-windup compensation is challenging. However, a novel

method of posing the current constraint as a time varying single-input-single-output constraint allows successful

and appealing designs to be generated that are validated both in simulation andin practice.
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1.1 Thesis Structure

Chapter 2introduces elements of the system theory required for the analysis and design approaches discussed

in the thesis and defines the various notational conventions used.

Chapter 3starts the main body of the thesis and describes the EPHS system, the PMSM motorand associated

models and strategies in detail. The objective is to give a control-oriented description of the system which will

be used in most of the subsequent chapters and also to describe the way inwhich the nonlinearities present

affect the system’s performance and the associated controller design.

Chapter 4introduces the concept of anti-windup and describes various strategieswhich can be found in the

literature. In particular, certain “optimal” strategies, on which most of the anti-windup designs discussed later

are based, are described in some detail.

Chapter 5describes the application of various anti-windup strategies to the EPHS system. In this chapter a

simple, largely linear, model is used first to select promising candidate designs, and then a more complex

nonlinear model is used for the design, simulation and comparison of the selected compensation techniques.

Experimental results showing the success of these designs are also given.

Chapter 6shows how some of the saturation constraints present in the the PMSM systemmay be more naturally

addressed in the alternative framework of override control. The concept of override control is briefly described

and the design of several override controllers for the PMSM system is described. The results are analysed

and compared using a complex sampled data model of the motor and practical constraints which affect the

performance of the override controllers are highlighted.

Chapter 7is a supplemental chapter on some modifications and extensions which may be made to the modern

optimisation-based compensators used in most of the foregoing chapters. Some of the possible deficiencies of

these compensators are identified and modified design techniques are presented. These modified techniques are

compared to the standard ones using some simple academic examples taken fromthe literature.

Chapter 8concludes the thesis and states the main contributions and identifies directions for future work.



Chapter 2

Preliminaries and Nomenclature

This thesis can be viewed primarily as the application and development of modern anti-windup techniques to

PMSM speed control systems. For the PMSM application all the necessary details are introduced together

in Chapter 3. However, in order to appreciate the anti-windup techniques discussed in other chapters it is

necessary first to have an understanding of some concepts from system theory. While it is not possible to

describe exhaustively all technical background, a brief overview ofthe required concepts is included here as

the first section in this introductory chapter. In the subsequent nomenclature section, a collection of naming

and other notational conventions used throughout the thesis are presented for reference purposes.

2.1 System Theory

We shall be concerned with two systems. The first is the general nonlinearstate-space system,ΣNL, in which

x ∈ Rn is the state vector,u ∈ Rm is the input vector andy ∈ Rny is the output vector:

ΣNL =







x = f(x, u)

y = h(x, u)
(2.1)

When the state equations are linear, we have the linear state-space system

ΣL =







x = Ax+Bu

y = Cx+Du
(2.2)

This system has an associated transfer function

G(s) = C(sI −A)−1B +D (2.3)

and sometimes the following shorthand notation is used to denote a state-space realisation:

G(s) ∼




A B

C D



 G(s) ∼ (A,B,C,D) (2.4)

Typically we shall be concerned with two types of stability in the thesis: state-space stability and input-output

stability.
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2.1.1 State-Space (Internal) Stability

The systemΣNL is described as globallyasymptotically stableif, assumingu ≡ 0 we have

lim
t→∞

x(t) = 0 ∀x ∈ Rn (2.5)

Note that, without loss of generality, we have assumed that the origin is the equilibrium point; a simple change

of co-ordinates in the state-space can be used to state asymptotic stability for another point. A stronger form of

stability isexponential stabilitywhich insists on a certain decay rate of the initial state, viz.

x(t) = κe−ηt‖x(0)‖ κ, η > 0, ∀x ∈ Rn (2.6)

Local stability, a concept not used much in this thesis, is defined similarly except the region of attraction is

taken to be a subset,X ⊂ Rn, of the state-space. In the special case of linear systems, a locally asymptotically

stable system is necessarily globally asymptotically stable and in this case asymptotic (actually exponential)

stability is simply checked using the eigenvalues of the matrixA.

A concept strongly related to asymptotic stability of nonlinear systems is the notionof Lyapunov Stabilty. ΣNL

is said to beglobally stable in the sense of Lyapunovif there exists an “energy function”V (x) such that the

following properties hold

V (x)>0 ∀x ∈ Rn (2.7)

V̇ (x)≤0 ∀x ∈ Rn (2.8)

In this case, it follows that all states will converge to a setB := {x ∈ Rn : ‖x‖ < β}. Furthermore, if the

second inequality is strengthened toV̇ (x)<0 it follows that the system will be globally asymptotically stable.

Proving stability of a nonlinear system by searching for a Lyapunov function V (x) is normally called “the

second method of Lyapunov” and allowsglobal stability conditions to be proved. Note that this method is a

sufficientcondition for stability ofΣNL; it is possible thatΣNL may be stable even if inequalities (2.7) and (2.8)

are not satisfied. Inevitably this means that proving stability using Lyapunov’s second method is conservative.

2.1.2 Input-Output Stability

Let us again considerΣNL, but this time assume thatu 6= 0. An alternative way of assessing stability of a

system is by so-called bounded-input-bounded-output (BIBO) stability:that is given a bounded input, does

there exist a bound on the output and, if so, what is that bound? There are several types of BIBO stability, but

perhaps the most useful are based on the use of theLp norms, which measure the “size” of a signal, viz.

‖x‖p =





∞∫

0

‖x(t)‖p dt





1

p

(2.9)

wherep ∈ [1,∞]. A nonlinear system,ΣNL is said to have anLp gain orLp norm, if there exist constantsγ

andβ such that

‖y‖p < γ‖u‖p + β. (2.10)



CHAPTER 2. PRELIMINARIES AND NOMENCLATURE 11

The smallest suchγ is said to be theLp gain or inducedLp norm of the system. A particularly useful case is

whenp = 2 and we consider theL2 gain which roughly corresponds to the RMS energy gain of the system.

For linear systems it is noteworthy that theL2 gain is actually equivalent to theH∞ norm of the system; that is

sup
06=u∈L2

‖ΣLu‖2

‖u‖2
= sup

ω
σ̄[ΣL(jω)] (2.11)

Note that a system may be BIBO stable without being asymptotically stable. For example an oscillator is

certainlyL∞ stable but is not asymptotically stable.

2.1.3 Stability of Interconnected Systems

To assess the stability of two or more systems that are connected in closed loops some additional tools are

available. These are introduced by considering first how the interconnection of linear systems can be tackled,

and then extending to the case where one of the systems in the loop is nonlinear.

The Small Gain Theorem

The small gain theorem [81, 45] is a sufficient condition to guarantee BIBOstability of a closed loop system

and allows stability of a closed loop system to be assessed without full knowledge of the frequency domain

behaviour of its constituent parts. Instead, only information regarding thegain of the subsystems is used and,

regardless of phase, stability of the closed loop system is guaranteed if certain conditions relating to the gain of

the subsystems are satisfied.

H

H

+

_

+ +
u

u y

y
e

e1

2
22

1 11

2

Figure 2.1: Feedback interconnection of 2 possibly nonlinear systems

In its most general form, the small gain theorem ensures finite gainLp stability of the feedback interconnection

of a number of nonlinear systems. Consider the case depicted in Figure 2.1 for which two such subsystems

areH1 andH2. If H1 andH2 are both finite gainLp stable withLp gainsγ1 andγ2, a sufficient condition

for finite gainLp stability of the feedback loop from inputsu1 andu2 to outputsy1 andy2 is given by (2.12).

Typically for nonlinear systems, finite gainL2 stability is sought whereγ1 andγ2 represent theL2 gain of the

subsystems.

γ1γ2 < 1 (2.12)
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For linear systems, theH∞ norm is used which is equivalent to theL2 gain. From its definition above, sta-

bility is guaranteed provided that‖H1‖∞ ‖H2‖∞ < 1. However, with linear systems we really only require

that‖L(s)‖∞ < 1 whereL(s) = H1(s)H2(s) and this proves to be less conservative as‖H1‖∞ ‖H2‖∞ ≥
‖L(s)‖∞. This form of the small gain theorem applies only to linear systems and is still conservative because

from a gain and phase margin perspective, this ensures that the phase margin is infinite and the gain margin is

at least1/ ‖L(s)‖∞. Therefore, when full knowledge of the system dynamics are known it ispreferable to use

standard linear tools such as the theorems of Bode and Nyquist. The obvious exception being for multivariable

systems for which phase is not well defined.

The small gain theorem finds its main use in linear robust control where uncertainty in the system is modelled

as a norm bounded nonlinearity. Consider the control system model of Figure 2.2 whereK represents a linear

controller andG is a linear model of the plant. Error between the plant model and real system isrepresented

by an additive uncertainty model consisting of a frequency weighting function,W , and a normalised uncertain

element,∆, with norm equal to 1. Ignoring exogenous inputs and outputs, the uncertain closed loop system

can be represented by the interconnection of a single linear transfer function,M(s), and the uncertain element,

∆, as shown in Figure 2.3. Applying the small gain theorem, provided that‖M(s)‖∞ < 1, the uncertain

closed loop system is stable and the nominal control system has been shownto be robustly stable to the given

uncertainty model.

GK

W

∆
u∆ y∆

w = r
u y

z

M

+

Figure 2.2: Closed loop system with additive uncertainty model

∆

M

u∆ y∆

w z

Figure 2.3: M-delta feedback interconnection

The approach used for uncertain linear systems can also be applied to linear systems with isolated nonlinearities

i.e. a Lure type nonlinear system, by modelling the nonlinearities as a norm bounded uncertainty. This can
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be represented by the closed loop interconnection of Figure 2.4 whereψ represents the nonlinear elements.

However, this approach tends to be very conservative and so alternatives are generally used.

w zM

ψ

Figure 2.4: Lure type nonlinear system

The Circle Criterion

The circle criterion is an application of absolute stability theory to a Lure type nonlinear system. This is a

system for which the forward path transfer function is linear time invariant and any nonlinear characteristics

of the system are modelled as an isolated nonlinearity in the feedback path as shown in Figure 2.4. The

nonlinearity,ψ, is required to be memory-less and static but may be time-varying. For the circlecriterion we

require that the nonlinearity satisfy a sector condition, described by (2.13) and depicted in Figure 2.5,

[ψ(t, y) − αy]′[ψ(t, y) − βy] ≤ 0 (2.13)

such that the nonlinearity lies within lines of gradientα andβ intersecting the origin. Here, we only consider

y

βy ψ(t,y)

α y

Figure 2.5: Global sector nonlinearity

the case where the sector bound holds globally i.e. the nonlinearity lies within linesof gradientα andβ for

y ∈ [−∞,∞]. For all nonlinearities satisfying such a sector condition, saturation and deadzone functions being

two examples, the origin is an equilibrium point. If the origin can be shown to be globally asymptotically stable

for any nonlinearity contained within the sector, the nonlinear system is said tobe globally absolutely stable

[45]. Proof of absolute stability for an appropriate sector bound is an appealing method of checking nonlinear
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stability for a Lure type nonlinear system since an explicit description of the nonlinearity is not required and a

potentially complex nonlinearity can be handled therefore with relatively simple mathematics. For the sector

bounds to hold globally with the nonlinearities considered in this thesis, we require thatα = 0 and thus, the

sector condition is simplified to that of (2.14).

ψ(t, y)′[ψ(t, y) − βy] ≤ 0 (2.14)

Theorem 2.1.1 Provided thatA is Hurwitz,(A,B) is controllable,(A,C) is observable andψ(.) satisfies the

sector condition globally, the nonlinear system is globally absolutely stable ifZ(s) = I + βC(sI −A)−1B is

strictly positive real [45]. 3

The circle criterion can also be addressed using Lyapunov theory as follows where a quadratic Lyapunov func-

tion is chosen, viz.

V (x) = x′Px (2.15)

V̇ (x) = ẋ′Px+ x′Pẋ = x′(PA+A′P )x− 2x′PBψ (2.16)

The nonlinearity is bound by the sector[0, I] which is defined as (2.17) whereW > 0 is a diagonal matrix. This

function can be added to the right hand side of (2.16) to produce the inequality of (2.18). Enforcing negative

definiteness of the right hand side of (2.18) will guaranteeV̇ (x) < 0 and if the free variableW > 0 is chosen

to be small, the conservatism introduced by inclusion of the sector bound will be limited. Thus, satisfaction of

the circle criterion is equivalent to the following condition.

2ψ′W (y − ψ) ≥ 0 (2.17)

V̇ (x) ≤ x′(PA+A′P )x− 2x′PBψ − 2ψ′W (y − ψ) (2.18)

Theorem 2.1.2 The nonlinear closed loop system formed by connection of the observableand controllable

linear system with state space matrices(A,B,C) and the static nonlinearity,ψ, bound by the sector[0, I] is

globally absolutely stable if there exist a matrixP > 0 and diagonal matrixW > 0 which satisfyx′(PA +

A′P )x− 2x′PBψ − 2ψ′W (y − ψ) < 0. 3

This is a sufficient but not necessary condition for stability and so failureto find a feasible solution does not

imply that the nonlinear system is unstable. In some cases for a stability guarantee to be found, an alternative

Lyapunov function may be required. However, the quadratic function shown here is well proven and widely

used as the form of the resulting stability condition can be manipulated simply into a Linear Matrix Inequality

(LMI) framework or an Algebraic Ricatti Equation that can be solved reliably. Extensions to the case where

α 6= 0 and/or systems for whichA is not Hurwitz are possible by the application of aloop transformation,

resulting in what is referred to as the multivariable circle criterion [45].

In the scalar case, the circle criterion has a useful graphical interpretation such that absolute stability can be

checked simply by inspecting the Nyquist contour of the linear subsystem.
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Theorem 2.1.3 The scalar nonlinear closed loop system formed by connection of the observable and control-

lable linear system with state space matrices(A,B,C) and the static nonlinearity,ψ, bound by the sector

(α, β) is globally absolutely stable if one of the following conditions is satisfied.

• If 0 < α < β, the Nyquist contour ofC(jωI − A)−1B does not enter a disc centred about the real axis

with intercepts at(−1/α, 0) and(−1/β, 0) and encircles itm times in the counter-clockwise direction,

wherem is the number of eigenvalues ofA with positive real parts.

• If 0 = α < β, A is Hurwitz and the Nyquist contour ofC(jωI − A)−1B lies to the right of the vertical

lineℜ(s) = −1/β.

• If α < 0 < β, A is Hurwitz and the Nyquist plot ofC(jωI − A)−1B lies within a circle centred about

the real axis with intercepts(−1/β, 0) and(−1/α, 0).

Benefits of the circle criterion over the small gain theorem applied to such nonlinear systems are that the non-

linearity is more tightly defined and should therefore reduce conservatism, and also that the stronger condition

of asymptotic stability is sought rather than BIBO stability. However, as conditions for absolute stability go,

the circle criterion is one of the most conservative. The reason why it is sowidespread is its amenability to

solution within a LMI or ARE framework, allowing it to be included within performance and or robustness

optimisations.

The Popov Criterion

The Popov Criterion is another application of absolute stability theory to a Luretype nonlinear system and

makes use of a Lyapunov function of the form

V (x) = x′Px+ η

y∫

0

ψ′(σ)β dσ (2.19)

The inclusion of an integral term adds complexity to its use but the results achieved are generally less con-

servative than with the circle criterion. As with the circle criterion, extensions can be made to multivariable

nonlinearities and sectors that do not include the horizonal axis. However, due to its complexity, it generally

leads to intractable optimisations if included in synthesis problems. For this reason it is usually only employed

to check the stability of a pre-designed nonlinear system, and is not considered further in the context of this

thesis.

2.2 Nomenclature

The Euclidean norm of a vectorx ∈ Rn is defined as

‖x‖ =

√
√
√
√

n∑

i=1

x2
i
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The state-space model of a single degree of freedom controller is defined using the following state space matri-

ces.

K(s) ∼




Ac Bc

Cc Dc





For a two degree of freedom controller, the convention adopted is givenbelow where matricesBcr andDcr are

driven by the reference signal andBc andDc are driven by measured plant outputs.

K(s) ∼




Ac Bcr Bc

Cc Dcr Dc





The state-space model of a linear plant is given below where the subscript p denotes ‘plant’, matricesBp and

Dp correspond to the control inputs and matricesBpd andDpd correspond to disturbance inputs.

G(s) ∼




Ap Bpd Bp

Cp Dpd Dp





A collection of commonly used notational symbols and abbreviations are givenin Tables 2.1 and 2.2.

Notation Description

A > 0 Matrix A is positive definite

A ≥ 0 Matrix A is positive semi-definite

A < 0 Matrix A is negative definite

A ≤ 0 Matrix A is negative semi-definite

A′ The transpose of matrixA

A−1 The inverse of matrixA

diag(x1, . . . , xn) Diagonal matrixI × [x1 . . . xn]
′

I The Identity matrix

ℑ(.) The imaginary component of a complex number

j The complex number
√
−1

N The set of natural numbers, 0,1,2,. . .

Q The set of rational numbers,Q = m
n , m ∈ Z, n ∈ Z, n 6= 0

R The set of real numbers,−∞,∞
Rm×n The set of realm by n matrices

ℜ(.) The real component of a complex number

s Laplace operator

sign(x) The signum function,x/|x|
1e− 6 1 × 10−6

Z The set of all integers, . . . ,-3,-2,-1,0,1,2,3,. . .

Table 2.1: Mathematical notation
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Notation Description

AW Anti-Windup

BCAT Back Calcuation and Tracking

BIBO Bounded input bounded output

CAW Conventional (high gain) anti-windup

Dz(.) Deadzone operator

e Tracking error signal,r − y

IMC Internal Model Control

L(s) Loop transfer function, typically GK

MIMO Multiple input multiple output

m Number of control inputs to the plant

nc Number of controller states

nd Number of plant disturbance inputs

np Number of plant states

nr Number of reference inputs

ny Number of plant outputs

OR Override

PI Proportional plus integral control

q Number of constrained plant outputs (for OR control)

u Control signal

ū Saturation limit on control signal

ũ Violation of control saturation limit,u− sat(u)

r Reference demand

S(s) Sensitivity function, typically(I +GK)−1

sat(.) Saturation operator

SISO Single input single output

T (s) Complementary sensitivity function, typicallyGK(I +GK)−1

x Generic state vector

xc Controller state vector

xp Plant model state vector

y Output signal

z−1 Delay operator

Table 2.2: Commonly used symbols and abbreviations



Chapter 3

PMSM Control and its Application in EPHS Systems

In this chapter the concept of Electrically Powered Hydraulic Steering (EPHS) is introduced and the require-

ments of the electric drive systems that power them are given. Motivation for the choice of Permanent Magnet

Synchronous Motors (PMSM) for the EPHS application is given, togetherwith an introduction to a typical

speed control strategy and the ideas behind it. In addition, practical constraints associated with their applica-

tion in an automotive system are given, highlighting the requirement for anti-windup conditioning and other

such nonlinear modifications which are addressed in the remainder of the thesis.

3.1 Motivation for (and Characteristics of) EPHS

A conventional hydraulic power assisted steering (HPAS) system reduces the effort required to steer the hand

wheel of a vehicle by applying hydraulic pressure in the appropriate direction at the steering rack. Hydraulic

pressure is provided by a pump, driven by rotation of the engine. A complex rotary valve assembly mounted on

the steering column is used to detect the torque applied by the driver and divert fluid flow to the rack according

to the direction and magnitude of the applied torque. Two pipes are used to direct fluid flow to either side of the

pinion, each with a return path to the pump. When no torque is applied by the driver, equal hydraulic fluid flow

is provided to each side of the pinion, resulting in no assistance. When a torque is applied at the hand wheel by

the driver, a torsion bar in the steering column flexes, causing the valve to rotate. This rotation reduces the fluid

flow to one side of the pinion and increases it to the other, generating a pressure differential, assisting the driver

to counteract the rack loads. The assistance provided is tuned by careful design of the valve, with maximum

assistance provided when all fluid flow is diverted to one output channel.

The flow of fluid, and hence the hydraulic pressure, upstream of the valve is dependent upon the engine speed

and so to limit the driver efforts during parking, the pump is designed to provide adequate fluid flow while the

engine is idling. During driving the engine speed is higher and so the hydraulic pressure is also higher, gener-

ating more hydraulic pressure than required. The main problem with conventional hydraulic power steering is

that the hydraulic pump draws power from the engine continuously, even when no assistance is required such

as when the vehicle is stationary. In addition, as the engine speed increases the power drawn from the engine
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increases further leading to further reductions in efficiency. There are two factors here which conflict with the

requirements of the driver. Firstly, greatest assistance is required at parking where the road to tyre friction is

highest but in this condition, the engine speed will be low, limiting the assistance available. Secondly, during

motorway cruising the engine speed may be relatively high but due to the dynamics of the vehicle and the small

steering angles applied, only a small amount of assistance is required. In this case, the power drawn from the

engine is almost entirely wasted. In addition to highlighting the inefficiencies of HPAS, this also highlights a

fundamental trade-off in the tuning of hydraulic power steering as low assistance is desired at high speeds to

provide good road feedback but high assistance is required at low speeds to limit driver effort levels.

With Electrically Powered Hydraulic Steering (EPHS) systems, the hydraulic pump is powered via an electric

motor rather than the engine. As such, the hydraulic pressure can be accurately controlled, providing high

pressure when greatest assistance is required, and reducing pressure to save energy when less assistance is

required. This can significantly improve the overall efficiency of the vehicle and also ensure that maximum

assistance is available during parking even when the engine is idling. In addition to scheduling the hydraulic

pressure with vehicle speed, further efficiency gains can be made by dynamically varying the hydraulic pressure

according to the demands made by the driver. As an example, when drivingin a straight line at 40 miles per

hour (mph) the assistance torque requirements are low, allowing the motor speed to be reduced. When high

torque is applied to the hand wheel in an evasive manoeuvre, the motor speed can be quickly increased to meet

the assistance demands. To achieve this type of operation, the motor needs tobe able to run at low speed but

accelerate quickly when the assistance demand increases to provide the hydraulic pressure required to meet the

demand. Sharp increases in the required assistance can be caused either by aggressive inputs at the hand wheel,

or by disturbances from the road such as caused by driving over a pot-hole. In either case, the motor control

system must be able to react very quickly to step inputs and also be robust toload disturbances when running at

low speeds, preventing disturbances from stalling the motor. For such an application, a motor with high torque

capability and low inertia is required and a control system tuned to provide fast dynamics. This is an area where

permanent magnet synchronous motors (PMSMs) are ideally suited.

3.2 The 3 Phase Permanent Magnet Synchronous Machine

The three phase permanent magnet synchronous machine (3φ PMSM) is an AC motor which is becoming

increasingly prominent in high torque applications, and is steadily replacing DC motors in many applications

due to its high power density and torque to inertia ratio [8]. The3φmotor is constructed rather like an inside-out

DC motor with permanent magnet pole pairs on the rotor, and three phase windings around the stator as shown

in Figure 3.1. Note that for smoother torque production as the machine rotatesand higher torque capability, it

is common to have multiple (P) permanent magnet pole pairs and corresponding stator phase windings. In the

example shown in Figure 3.1 there are three pole pairs (P=3). It is possibleto drive such a motor in a number

of ways but for this work we consider only sinusoidal commutation.
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Figure 3.1: Schematic of PMSM with 3 permanent magnet pole pairs

Windingsa′, b′, c′ anda′′, b′′, c′′ are wired in parallel with windingsa, b, c and exhibit the same orientation to

the permanent magnet poles, albeit to different pole pairs. As such, the torque generated by the interaction of

the magnetic field produced by the current in windingsa, b, c and the adjacent permanent magnet poles is also

mirrored by the other pole pair interactions. These torque contributions sumtogether, meaning that the power

rating of the machine is proportional to the number of pole pairs: In effect there are P machines working in

parallel. A benefit of this is that for analysis purposes we need only consider one pole pair and corresponding

set of stator windings and simply multiply the torque produced by P. Other factors to take into account are

the rotor position and velocity information as for each mechanical revolution,the stator sees P electrically

equivalent orientations. To accomodate this, a variable called the rotor electrical position,θe, is defined as P

times the rotor mechanical position, with the rotor electrical velocityωe being its time derivative. The resulting

model in electrical coordinates is represented by the schematic of Figure 3.2and will be used in the analysis to

follow.

3.3 3Φ PMSM Model

The PMSM is modelled in3φ coordinates,a, b, c, as a fifth order nonlinear system according to the following

system of equations [67] and [97], a key to which is found in Table 3.1.
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Figure 3.2: PMSM electrical model schematic and associated reference frames

dia
dt

=
1

Ls
[Va −Rsia + ψfωe sin (θe))] (3.1)

dib
dt

=
1

Ls

[

Vb −Rsib + ψfωe sin

(

θe −
2π

3

)]

(3.2)

dic
dt

=
1

Ls

[

Vc −Rsic + ψfωe sin

(

θe −
4π

3

)]

(3.3)

dθe
dt

= Pωm = ωe (3.4)

dωm
dt

=
1

J
[Te − load−Bωm] (3.5)

Te =
−Ke√

3

[

ia sin θe + ib sin

(

θe −
2π

3

)

+ ic sin

(

θe −
4π

3

)]

(3.6)

ψf =
Ke

P
√

3
(3.7)

Va, Vb andVc represent the instantaneous voltages applied to each winding on the stator.Applying sinusoids

with a phase difference of23π radians between them generates a voltage phasor which rotates around the rotor

shaft. The current phasor resulting from the applied voltage waveformsinduces an electric field that interacts

with the magnetic field of the permanent magnets to produce torque.

Three of the five states in the model relate to the stator phase currents i.e. the currents flowing in the three

windings,ia, ib andic. Since these currents can be resolved into a two dimensional phasor, there is a superfluous

state in the model. It is possible therefore to produce a 4th order model in a stationary cartesian coordinate

system(α, β) which also fully describes the dynamics of the motor. This coordinate system and its relationship

to the physical displacement of the windingsa, b, c is depicted in Figure 3.2. Theα, β axes then represent

the real and complex parts of the sinusoidal stator current phasor. Further simplification can be achieved by
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Variable/coefficient Description Value (normalised units)

ia, ib, ic Stator phase currents

Va, Vb, Vc Stator phase voltages

θe Rotor electrical position

θm Rotor mechanical postion

ωm Rotor speed (mechanical)

ωe Rotor speed (electrical)

ψf Flux linkage

load Rotor load torque

Te Electromagnetic torque

P Number of magnetic pole pairs 5

Ke Motor torque constant 1

B Rotor drag coefficient 0.0323

Rs Stator winding resistance 0.2541

Ls Stator winding inductance 0.1277

J Rotor moment of inertia 1.4837

Table 3.1: Key for3φ PMSM model equations

using a rotating coordinate system which tracks the position of the rotor. Thiscartesian coordinate system

defines a ‘direct’ axis (d-axis) in the direction of the rotor magnetic flux and a ‘quadrature’ axis (q-axis) in

quadrature to the rotor magnetic flux. In rotor electrical coordinates thed andq axes are perpendicular, but

in physical coordinates for a motor withP pole pairs, the mechanical angle between the axes will beπ
2P

radians. Modelling in this rotational co-ordinate system eliminates sinusoidal terms within the model equations,

allowing the magnitude and phase of the stator electromagnetic flux to be varied easily with respect to the rotor

magnetic flux. This model is still strictly 4th order although for controller designpurposes, the rotor position

state can usually be ignored. A full description of thed-q axis model is given in Section 3.4.

Conversion between3φ andd-q axis reference frames for the purpose of control is achieved using a rotor

position measurement,θe, and the nonlinear coordinate transformations of (3.8) and (3.9). Historically, Clarke

transformations are used to translate between3φ andα, β reference frames, followed or preceded by Park

transformations which are used to translate betweenα, β andd-q axes [30]. However, as the stationary cartesian

reference frame is usually not required, it is more efficient to make the transformation in one operation as shown

here.

The signalsV0 and i0 are referred to as the zero components and have been included here for mathematical

precision. However, for a balanced system i.e. one in which the sum of thethree phase quantities are always

zero, these zero components are always equal to zero and hence canbe ignored. The systems considered in this

thesis are all balanced.
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The form of transformations used in this thesis are referred to as magnitudeinvariant transformations as the

magnitude of voltages and currents are equal in both reference frames.However, power and torque are not

equivalent between reference frames and to compensate for this, correction factors are required in the equations

defining torque and power. Power invariant transformations such as detailed in [66, 67] also exist but with

these, the magnitude of voltages and currents are not equivalent between reference frames.







id

iq

i0







=
2

3







cos (θe) cos (θe − 2π/3) cos (θe + 2π/3)

sin (θe) sin (θe − 2π/3) sin (θe + 2π/3)

0.5 0.5 0.5













ia

ib

ic







(3.8)







Va

Vb

Vc







=







cos (θe) sin (θe) 1

cos (θe − 2π/3) sin (θe − 2π/3) 1

cos (θe + 2π/3) sin (θe + 2π/3) 1













Vd

Vq

V0







(3.9)

3.4 Thed-q Axis PMSM Model

The PMSM model ind-q coordinates is given by the following equations:

did
dt

=
1

Ls
[Vd −Rsid + PLsωmiq]

diq
dt

=
1

Ls

[

Vq −Rsiq − PLsωmid −
Keωm√

3

]

dωm
dt

=
1

J
[Te − load−Bωm]

Te =

√
3

2
Keiq

ωe = Pωm (3.10)

where the new variables are defined as follows:

Variable/coefficient Description

id The stator current vector component in thed-axis direction

iq The stator current vector component in theq-axis direction

Vd The stator voltage vector component in thed-axis direction

Vq The stator voltage vector component in theq-axis direction

Table 3.2: Key ford-q axis PMSM model equations

Note that the only non-linearities in this model are the productsωmiq andωmid 1. This means that the model

can be linearised easily around a set of equilibrium states[id,lin iq,lin ωm,lin]
′ to produce the linear state space

1This model can be considered therefore as a linear parameter varying(LPV) system where the varying parameter is the motor

speed.
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model of (3.11). This linear model is ideal for use in model based controllerdesigns using techniques such

asH∞ mixed sensitivity andH∞ loop shaping [103, 81] and linear analysis, and will be put to use in later

chapters.







i̇d

i̇q

ω̇m







=







−Rs

Ls
Pωm,lin Piq,lin

−Pωm,lin −Rs

Ls
−Pid,lin − Pψf

Ls

0
3Pψf

2J −B
J













id

iq

ωm







+







1
Ls

0

0 1
Ls

0 0










Vd

Vq











ωm

id

iq







=







0 0 1

1 0 0

0 1 0













id

iq

ωm







(3.11)

3.5 Vector Control

In traditional AC machine control, motor speed and torque is controlled in an open loop manner by varying the

magnitude and frequency of the three phase voltage signals. This method is suitable for steady-state operation

and systems with slow dynamics but does not exploit the high performance capability of these machines. To

achieve maximum performance, a closed loop control strategy called vectorcontrol is applied. Vector control or

‘field oriented control’ is a control strategy for brushless machines that allows torque to be controlled precisely

by manipulating both the magnitude of the stator magnetomotive force (MMF) and itsphase relationship with

that of the rotor permanent magnet flux. To achieve this, the controller needs to manipulate the stator current

components in the rotord-q axes which produce the stator MMF.

In vector control, measurements of the winding currents are taken and translated into thed-q reference frame

using an appropriate measurement of the motor electrical position,θe. Thesed andq axis current samples

are compared to the demanded values, generating a current error vector that is used to drive the controller.

The control action required to drive the error toward zero is computed, producing a voltage output vector

also in thed-q reference frame,Vdq =
[

Vd Vq

]′
. Thed-q axis voltage demands are translated into three

phase AC waveforms using a measurement of the rotor position and the inverse transformation of (3.9), and

applied commonly via a Pulse Width Modulation (PWM) inverter. Since digital control hardware development

has enabled the control functions and nonlinear coordinate transformations to be computed at sufficiently fast

sample rates, this has become an established method for the control of brushless permanent magnet machines.

Material regarding its use can be found in [30], [48], [97] and [11].

The instantaneous control of motor torque allows the speed, acceleration and position of the rotor to be con-

trolled precisely, making it a very capable actuator. A further benefit of vector control is that for steady-state

operation, each element of the voltage and current vector is constant, whereas in three phase andα,β coordi-

nates the voltages and currents are sinusoids. This property enables theuse of a vast array of linear control

solutions and analysis techniques. To understand further the benefit ofapplying control in thed-q reference

frame, it is useful to make a comparison between the PMSM and a conventionalDC motor.
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In a brushed DC motor the torque produced is linearly proportional to the winding current [16] and hence

linear design techniques can be very successful at tuning for both steady state and transient performance. For

a PMSM, the torque produced is a nonlinear function of both the magnitude ofthe stator current and the rotor

position (see (3.7)). Fortunately, in thed-q axis reference frame, torque is proportional to the magnitude of the

q-axis component of the stator current vector (3.10) since this producesa stator mmf component in quadrature

to the rotor mmf2. Applying control ind-q axes exploits this linear relationship betweenq-axis current and

torque, reducing the complexity of the control problem toward that of the simple DC motor. However, even in

thed-q coordinates, the model is nonlinear, with bilinear interaction between both thed andq axis currents and

the motor speed,ωm. It is possible to obtain a Linear Parameter Varying (LPV) (or more accurately a quasi-

LPV model) in which the dynamics vary linearly as a function of motor speed. The control of LPV systems

is reasonably established now (see [7] for example) but does tend to leadto complex control strategies not

suitable in this application. Similarly the well-known technique of feedback linearisation [72] could be applied

directly to this model, although such a technique may suffer from robustnessproblems. Thus, most controllers

are designed typically using simple linear control techniques which are tuned, perhaps in a somewhat ad-hoc

manner, for the desired transient performance.

An important point to note is that in order to generate current in theq-axis, voltage may also be required in

thed-axis. This follows since the stator windings are inductive and thus the phase of the stator current will lag

behind that of the stator voltage. The transfer function from applied voltage to current flowing in an arbitrary

stator winding is given by1/(sLs +Rs) and an example frequency response is plotted in Figure 3.3. Note that

both the gain and phase drop significantly with increasing frequency and that at high frequencies the phase lag

approaches 90 degrees. In rotor coordinates, this means that if the voltage vector is aligned with theq-axis, the

current vector may be rotated by up to 90 degrees away from theq-axis. Noting that thed andq axes are 90

electrical degrees apart, this means that at high frequencies the current induced may be almost entirely in the

d-axis. Looking at this from another perspective, to ensure that the current is produced in theq-axis (for torque

production), the voltage vector may need to be advanced by up to 90 degrees toward thed-axis. The frequency

of the stator winding currents is proportional to the electrical velocity of the motor,ωe = Pωm. Therefore, the

amount of voltage advance required is dependent upon motor speed, and with appropriate scaling the x-axis of

Figure 3.3 can be interchanged for motor speed.

This effect of stator winding inductance on open loop behaviour is also demonstrated in the simulation response

of Figure 3.4 where a sequence of voltage step demands are applied to theq-axis. As each successive step is

applied to theq-axis voltage, the motor settles at progressively higher speeds. However, the manner in which

the motor accelerates to each step changes. Note that at low speed, the stepvoltage demand produces a large

transient in theq-axis but has very little effect on thed-axis and therefore a large proportion of control energy

contributes towards accelerating torque. At higher speeds, the same magnitude step to theq-axis voltage has

its most significant effect in thed-axis. This split of control energy betweend andq axes reduces the control

energy contributing to accelerating torque and the motor speed response ismore sluggish as a result.

2Note that thed-axis current does not contribute towards torque
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3.6 A Linear Control Structure

Using vector control, linear proportional plus integral (PI) controllers can be arranged as shown in Figure 3.5 to

form an inner current control loop, and an outer speed control loop.This is a widely used control structure for

PMSM speed regulation, due to its transparency, ease of implementation and general effectiveness. The inner

loop controls thed andq axis currents by manipulating the applied voltages, and since torque is proportional

to theq-axis current, can be considered as a torque controller. The outer loopcontrols the speed of the motor

by manipulating theq axis current demand i.e. demanding a torque. Under normal operation thed-axis current

demand is zero so maximum current is applied to theq-axis and therefore contributes toward the production

of torque. The coupling betweend andq axis currents, shown in thed-q axis model (3.11), has the effect that

in practice, thed-axis current will stray away from zero to an extent as transientq-axis demands are made,

leading to a reduction in efficiency. This effect can be reduced by suitable tuning of the controller and can also

be eliminated, at least in theory, by the application of feedback linearisation [68].
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Figure 3.5: Linear Control Structure

The current andq-axis speed controllers used are described by the following discrete statespace models where

τspd andτcrt represent the reciprocal of the sample frequencies used in the speed and current controllers re-

spectively. Normalised versions of the parameters used for the practicalapplications in later chapters can be

found in Appendix A.2.

Kspd ∼







x(k + 1) = [1]x(k) + [τspd]ωm,error(k)

iq,Dmd(k) = [ki,spd]x(k) + [kp,spd]ωm,error(k)
(3.12)

Kcrt ∼







x(k + 1) =




1 0

0 1



x(k) +




τcrt 0

0 τcrt



 idq,error(k)

Vdq,Dmd(k) =




ki,crt 0

0 ki,crt



x(k) +




kp,crt 0

0 kp,crt



 idq,error(k)

Note that with this structure,Kspd is a simple single input single output (SISO) controller, whereasKcrt

is a decentralised multiple input multiple output (MIMO) controller. By decentralised it is meant that there
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is no coupling between the channels in the controller i.e. it is a diagonal transfer function matrix. The signal

idq,error = [id,dmd(iq,dmd)−id iq,dmd−iq]′ drives the inner-loop MIMO controller, whereid,dmd is a demand

signal constructed in a nonlinear fashion fromiq and will be discussed in more detail later.

3.7 Field Weakening Operation

Under normal operation where thed-axis current demand is zero, the back emf induced by rotation of the rotor

reduces the magnitude of the voltage phasor measured across the stator windings. The back emf increases in

magnitude in proportion to the motor speed until the point at which the back emf is equal but opposite to the

applied voltage vector. At this speed, referred to as thebase speed, the resultant voltage is zero, hence there is no

current induced, and consequently no accelerating torque. This is the theoretical maximum speed at which the

motor can operate with zerod-axis current. Since in this mode of operation all the applied current contributes

toward torque production, the speed range between rest and base speed is referred to as the ‘maximum torque

region’.

Some mathematical clarity can be gained by analysing theq-axis state equation of (3.10). In the maximum

torque region,id = 0 and hence we have the simplified expression of (3.13), the solution to which isgiven as

(3.14). From this we can see that when the back emf,Keωm(τ)/
√

3, is equal to the applied voltage,Vq(τ),

the solution is simply the free response given by (3.15), so for zero initial conditions,iq = 0 and no torque is

produced.

d

dt
iq(t) =

1

Ls
[ Vq(t)
︸ ︷︷ ︸

Applied
voltage

−Rsiq(t) −
Ke√

3
ωm(t)

︸ ︷︷ ︸

back emf

] (3.13)

iq(t) = e−(Rs/Ls)tiq(0) +
1

Ls

t∫

0

e−(Rs/Ls)(t−τ)
[

Vq(τ) −
Ke√

3
ωm(τ)

]

dτ (3.14)

iq(t) = e−(Rs/Ls)tiq(0) (3.15)

In order to achieve speeds beyond base speed, a nonlinear flux weakening algorithm is activated which demands

a negatived-axis current. Applying current into thed-axis weakens the flux linkage and consequently reduces

the back emf induced, with the effect that greater current can be injectedinto the q-axis [97]. This allows

torque to be produced beyond the base speed, enabling acceleration to higher speeds, and also increases the

torque capability for speeds immediately below base speed. During flux weakening, also known as ‘phase

advance’ operation, the portion of current applied to thed-axis is essentially lost as it does not contribute to

torque. As a result, the benefit of higher speed capability comes at the cost of efficiency. The angle,φ, by which

the phase of the current vector is to be advanced is pre-determined as a nonlinear function of the motor speed

and read from a look-up table within the controller. A graphical representation of a typical phase advance map
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used is shown in Figure 3.6 for which thed-axis current demand is calculated as shown in (3.16). Note that

in practice, phase advance operation must start below base speed to ensure that sufficient torque is available to

accelerate the motor beyond this threshold, particularly in the presence of load disturbances.
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Figure 3.6: Phase advance map

The effect of motor current phase advance can also be seen mathematically. As previously, we consider the

solution to theq-axis state equation of (3.10). For flux weakening operation, we haveid 6= 0 and we consider

the case for which the motor speed is constant, giving the solution as shown in(3.17). By inspection, it is clear

to see that the zero torque (zeroq-axis current) condition occurs at higherωm if id < 0 than forid = 0.

id,Dmd = −|iq,Dmd|tan(φ) (3.16)

iq(t) = e−(Rs/Ls)tiq(0) +
1

Ls

t∫

0

e−(Rs/Ls)(t−τ)
[

Vq(τ) − PLsωmid(τ) −
Keωm√

3

]

dτ (3.17)

3.8 Saturation within the Control Loop

Various limitations related to hardware introduce different forms of saturation into the control system. It is

important to model these correctly in order to ascertain their effect on the closed loop and also to implement

anti-windup compensation to deal effectively with the adverse effects of the associated saturation events. Anti-

windup is not the only method of dealing with the saturation problem, as discussed in Section 4.2, but for the

EPHS application we consider, anti-windup provides a good blend of performance and simplicity of design

with low computational demands.

One constraint imposed is a voltage limit resulting from the power source in the vehicle. The terminal voltage

of the battery should be in the region of 13.5V when the alternator is functioningcorrectly but may drop toward
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12V depending upon the status of the alternator and the current being drawn from the supply. To simplify

analysis, this limit is considered to be a constant and values of 13.5V and 12Vare considered for analysis. With

a drive stage voltage of 12V, the PWM inverter is able to produce stator phase voltages which vary between

±6V. This constraint translates to a hexagonal limit in the stator reference frame as shown in Figure 3.7, where

any voltage vector contained within this hexagon is achievable.

a, α

bc

Figure 3.7: Physical (hexagonal) and imposed (circular) voltage saturation limits on the stator reference frame

Another constraint is a limitation on the current that can be supplied by the power electronic drive circuits. This

corresponds to a static saturation limit on the magnitude of the current flowing inthe stator windings,ia, ib, ic

and can be modelled in thed-q reference frame as saturation of the norm of[id iq]
′. These saturation constraints

change the form of the current equations from

d

dt







ia

ib

ic







= [A (θe)]







ia

ib

ic







+ [B]







Va

Vb

Vc







to

d

dt







ia

ib

ic







= [A (θe)]







sat (ia)

sat (ib)

sat (ic)







+ [B]







sat (Va)

sat (Vb)

sat (Vc)







whereA(θe) andB are the state and input matrices of the nonlinear model’s state equation. Thus,not only are

the inputs to the plant saturating, but some of the states also saturate. A graphical representation of the physical

saturation limits within the system is shown by the block diagram of Figure 3.8.

An example of the effect of saturation is shown in Figure 3.9 where the speed controller saturates in the absence

of an anti-windup compensator. When the controller saturates briefly for the small step demand, this does not

degrade performance appreciably. However, the extended period ofsaturation resulting from the larger step

demand causes a delayed and sluggish response to the reverse step. Inthis figure, phase advance operation can
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also be observed where thed-axis current demand becomes non-zero beyond a normalised speed ofapproxi-

mately 1 unit. Note that this has a direct effect on the q-axis saturation limit whichreduces from unity to around

0.5 units as thed-axis demand is increased.

When implementing a controller for a saturating system, it is commonplace to impose software saturation limits

with a threshold slightly lower than the physical limits to ensure that these are notactually reached. Any anti-

windup conditioning applied will then function according to these lower software limits. Since we desire to

compute control in thed-q reference frame, these ‘software’ saturation limits must also be ind-q coordinates,

posing some challenges.

The hexagonal voltage limit is difficult to translate into thed-q reference frame and so instead the limit is

approximated by a circle, shown in Figure 3.7. The radius of this circular limit would then be a design parameter

determining how close the control signals get to the physical limits. This circularlimit translates easily intod-q

coordinates as saturation of the norm ofVdq =
[

Vd Vq

]′
. Since the signalsVd andVq both appear within

the controller, these can be limited directly.

Current saturation can also be approximated in thed-q reference frame in a similar way as for voltage saturation.

However, we cannot easily impose a similar saturation limit within the controller because the currents are states

of the plant rather than directly controlled inputs. An alternative and convenient way of implementing a current

saturation function is to limit the norm ofidq,dmd =
[

id,dmd iq,dmd

]′
which is the current demand fed into

the inner loop current controller. The idea is that, assuming that the inner loop is stable and reasonably well

damped, we can expect the magnitude of the current induced in the motor to bebounded by a value similar

to the bounded demand. Thus, provided that the current controller is nottuned too aggressively, this should

prevent the magnitude ofidq =
[

id iq

]′
reaching the physical limit. This is not an ideal method to limit the

current but is simple to implement and transparent. Alternative ideas will be presented in later sections of the

thesis.

A further complication is that in both cases, these saturation limits translate intod-q axes as saturation of the

norm of a vector signal rather than element-wise saturation of the vector signals. In the case of the voltage limit,

saturation of the norm can be imposed by scaling theVdq voltage demand down when the norm exceeds the

voltage limit. By scaling both elements simultaneously, this ensures that the phase of the signal is unchanged

and only the amplitude is attenuated. In the case of current demand saturationthe same method could be

applied, however, the optimal compensator designs presented in Chapter 5require linear controller models for

their synthesis and thed-axis current controller is nonlinear. Therefore in order to fit the compensator design

framework an alternative method is used: Saturation is only imposed oniq,dmd and the saturation limit is varied

as a function ofid,dmd such that the norm ofidq,dmd is constrained to the saturation level. In this way, only

the linearq-axis part of the speed controller need be considered for anti-windup design, and thed-axis current

demand can be considered as a disturbance signal to the linear control loop. This implementation of software

saturation limits is depicted in block diagram form in Figure 3.10. In this figure,sat(‖.‖) represents saturation

of the 2-norm of the input vector signal.
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3.9 The Effect of Discretisation

To implement vector control a digital controller is needed due to the online computation required. This means

that thed andq axis voltage demands are only updated at discrete instances in time. TheseVdq demands are

translated into3φ waveforms based on a sampled measurement of the rotor electrical position,θe, so the stator

phase voltages also are only updated at discrete instances in time. At the sample instance, this is correct and

thed-q axis voltages measured in the motor are the same as the demands. However, in reality, θe is varying

continuously with the effect that towards the end of the sample period, the rotor magnetic field vector has

rotated towards the stator electromagnetic field which has remained static for thesample period. This has the

same effect as the applied voltage phasor moving into phase lag during the sample time and hence alters the

distribution of voltage between thed andq axes.

At low motor speeds the rate of change of the rotor position is low and hence the error in the phase voltages is

also low. At high speed however,θe can vary significantly between samples and the reduction inq-axis current

incurred can reduce the attainable speed and reduce efficiency. This problem can be solved by increasing the

sample rate significantly but this may be undesirable for a commercial productdue to the increased hardware

cost so a certain amount of error has to be accepted. Therefore an important feature of this controller structure

is that there will always be an amount of error involved in controlling the phase relationship between the rotor

and stator fields, and that this error is accentuated at high speeds. The size of this error is dependent upon the

operational speed range of the motor and is also sample dependent. Because this error would be known for a

given application it could be compensated for and in industry, these type ofsoftware fixes are commonplace.



Chapter 4

Introduction to Anti-Windup

In this chapter the problem of ‘windup’ is explained with respect to systems with plant input constraints and

existing methods to deal with this problem for linear systems are introduced. The issues of closed loop stability

and compensator performance are addressed and methods of synthesising optimal compensators are explained.

The work from hereon splits quite cleanly into two main strands; application of current techniques to an indus-

trial problem, and research into improving existing techniques. These two topics will be addressed separately

in subesequent chapters.

4.1 The Problem of Actuator Saturation

Normally, when designing a linear controller for a certain system, a linear modelof the plant is generated and

then a controller is designed using linear methods to satisfy some pre-definedstability and performance criteria.

A satisfactory design will guarantee stability of the linear closed loop and satisfy given performance objectives

which may be defined in terms of rise time, settling time, maximum overshoot and disturbance rejection for

example. Provided that the linear model is an accurate representation of thetrue system and the controller

designed is sufficiently robust, these performance criteria will be met in the real system also.

When a system is subjected to plant input constraints such as limits on the magnitude of the control signals,

a non-linearity is introduced to the system as shown in Figure 4.1. If, duringoperation, the controller output

exceeds these limits then linearity of the closed loop is lost and the performance criteria achieved by the linear

model may not be met. Typical outcomes are failure to meet reference demands, slow rise times and even

oscillatory transients or instability, although the effect observed is dependent upon the characteristics of that

particular system.

In the simple case of a SISO system that is open loop stable, saturation may simplyincrease the rise time of the

closed loop system to a step demand or prevent a reference demand beingmet due to the reduction in available

control effort. However, the behaviour of the controller during periods of saturation may be more detrimental

to performance. The mis-match between controller output and plant input during saturation events allows the
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Figure 4.1: Generic closed loop control system with plant input saturation constraints

controller output to evolve in a manner that does not match the system response. In the case of proportional

plus integral (PI) control, this phenomenon is referred to as ‘integrator windup’ as the integral state continues to

accumulate during saturation, driving the system further into saturation whilefailing to have any further effect

on the performance output. Consider the behaviour of such a system when the plant input constraint causes

the reference demand to be infeasible i.e. a reference which in steady-state cannot be tracked. The persistent

error signal causes integration to continue for as long as the referencepersists in an attempt to eliminate the

steady-state error.

If integrator windup is allowed to occur, when the reference demand changes and the control signal is required

to drop below the saturation level, the accumulated integral action serves to work against tracking of the new

reference and a significant amount of time is required for the energy in theintegrator to dissipate before the

controller can contribute positively towards attaining the new reference (Figure 4.2). This specific problem was

traditionally termed the ‘windup’ problem since any performance degradation is a direct result of integrator

windup. During the 1950s and 1960s, a number of ad-hoc methods were devised to prevent or limit the extent

of this phenomenon by directly influencing the integrating function. One suchmethod was published by Fertik

and Ross in 1967 [15] and R.M. Phelan suggested turning off integratorsduring saturation in his 1977 book,

Automatic Control Systems [70]. There are other application-specific schemes available and, due to their

development within industry, many are not documented within the wider literature.

Over time, usage of the term ‘windup’ has evolved and it is now used more generically to describe the per-

formance degradation effects associated with plant input saturation. Thisincludes, but is not limited to, SISO

systems with integral control. For example, multivariable systems, even with staticcontrollers, can exhibit un-

desirable behaviour when one or more of the plant inputs saturate as the distribution of control effort is altered

-see Figure 4.3. Furthermore, modernH∞ type controllers often do not have integrators but the behaviour of

their states can still be adversely affected by saturation. Finally, even SISO systems with purely proportional

control can exhibit oscillatory or even unstable behaviour when saturation limits are exceeded.

While a system is in saturation, the input to the plant is constant and the system becomes “pseudo open loop”.

During this period the dynamics of the system revert, in a sense, to the dynamics of the open loop plant

which may be undesirable and/or unstable. Multiple input, multiple output (MIMO)systems often have cross-

coupling between channels, so in addition to the effects described above,saturation in one channnel can cause

detrimental performance in another channel or even instability. Clearly, actuator saturation is a problem that
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Figure 4.2: The effect of integrator windup

needs to be addressed in many applications as any real system is likely to have finite limits on plant inputs, be

it a mechanical or electrical system or chemical process.

4.2 Solving the Problem of Actuator Saturation

There are a number of approaches to dealing with the problem of actuator saturation. The main methods along

with their relative merits and drawbacks are summarised as follows:

• Saturation Avoidance.Perhaps the simplest approach is to design a controller which will not violate the

saturation limits for any input demand, for instance, by using low gain controllers without integral action.

Since a successful design will not cause saturation, the associated problems would not be encountered

and linear performance will be achieved. Of course, controllers designed in this manner tend to be

conservative since the control action will be reduced across the whole range of input demands i.e. small

signal performance is forfeited to prevent saturation at the extremes of control behaviour. As such,

this approach is not appropriate for many systems.H∞ controllers can aid performance improvement

with this approach since they tend to distribute control effort in a more efficient manner, particularly for

multivariable systems, but performance is limited fundamentally by linearity of the controller since they

treat large and small signal behaviour in exactly the same way.

• Saturated Linear Control. Another approach is described as saturated linear control in which saturation

is not avoided, but the control system is designed to ensure that the saturated closed loop remains stable.
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Figure 4.3: Saturation inducing control direction change

This has the benefit of simplicity but not all systems can be guaranteed to be stable during saturation

and even if stability is guaranteed, performance may not be acceptable. Anexample can be found in

[21]. Another important stream of papers considers the low-and-high gain techniques [51, 52] in which

saturated linear control is achieved by simply increasing the gain of a low-gain controller. All open

loop systems with poles in the closed left half complex plane can be stabilised with such control laws.

However the price paid for this simplicity is a lack of flexibility in the design i.e. no tuning rules and a

prescribed architecture.

• Model Predictive Control. Model predictive control [49, 75] is a strategy in which the control con-

straints are incorporated into an online finite horizon optimisation procedure,producing controllers which

respect the saturation constraints directly. This may well give the best performance potential of all con-

trol strategies designed to cope with saturation but it has its drawbacks. Computational demands for

implementation are high and thus the approach is not commercially feasible for many applications. In

addition, the computation time required to solve the optimisation can preclude application to systems

with fast dynamics. At present, the primary application of MPC is in the process industries where time

constants are relatively long but improvements in computational power of micro-controllers and the de-

velopment of more efficient optimisation routines are extending its applicability to ever faster systems.

There are also concerns about robustness and tuning since it normally relies on the standard linear plus

quadratic (LQ) weighting matrices.

• Linear Conditioning/Anti-Windup The approach considered in this thesis is referred to as ‘linear con-

ditioning’ or ‘anti-windup compensation’. This involves two separate linear controller elements and a

two stage design process. The first stage is the design of a linear controller to meet the performance spec-

ification in the absence of saturation. Following this, the system is augmented byan additional linear

element referred to as the ‘anti-windup compensator’ which becomes active at the onset of saturation.

This compensator is designed to maintain stability of the system during saturation of the nonlinear sys-

tem and minimise the degradation of performance associated with the saturation event. The benefit of
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this approach in terms of performance is that the small signal response of the system is not forfeited

and any linear control design methodology can be used to construct the local linear controller. Computa-

tional demands can also be low enough for application on high bandwidth andcost sensitive applications.

Many variants of anti-windup compensation exist of which a summary will be introduced in the following

section.

4.3 Approaches to Anti-Windup Compensation

There are many forms of anti-windup compensator design in existence whichfunction in very different ways.

The different designs vary significantly in complexity, structure and performance. Early designs were largely

heuristic and as such it could be difficult to design and predict their performance. As tools emerged to analyse

these nonlinear systems, more structured designs emerged and tools were generated to synthesise compensators

directly which guarantee stability of the saturated system and optimise performance in some sense. This section

provides an overview of some of the most well known compensation schemesin existence. Before looking at

the specifics of each design let us consider a generic anti-windup control architecture by means of introduction

to the concept, and to highlight the areas where differences arise.

4.3.1 A Generic Anti-Windup Architecture

A generic representation of an anti-windup compensated closed loop control system is shown in Figure 4.4.

This consists of a controller,K, that responds to reference signalsr ∈ Rnr and plant outputsy ∈ Rny to

generate the control signalsu ∈ Rm. The internal states of the controller are denotedxc ∈ Rnc . The plant,G,

has control inputsum ∈ Rm, disturbance inputsd ∈ Rnd and internal statesxp ∈ Rnp . The block translating

u to um ∈ Rm - the measured inputs of plantG - represents the saturation function. In multivariable form,

the saturation function is a diagonal matrix of scalar nonlinear functions thatbound the magnitude of the

corresponding input vector elements. This is described mathematically as shown in (4.1) whereui represents

the ith element of the control vectoru, sat(ui) represents the saturated version of that same signal andūi

represent the symmetrical saturation limits applied to theith channel. The input output relationship for a SISO

case is depicted in Figure 4.4. Non-symmetric limits can also be handled but are atrivial extension to the

symmetric function shown here and so have been omitted.

sat(ui) =







ūi ∀ui > ūi

ui ūi ≥ ui ≥ −ūi
−ūi ∀ui < −ūi

(4.1)

The anti-windup compensator,AW , shown in Figure 4.4 detects when the plant input limits have been ex-

ceeded, by monitoring̃u, and then influences the controller in some way to improve the behaviour of the

system. Some compensators only require knowledge that saturation has occured but more powerful designs
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Figure 4.4: Generic anti-windup architecture

also desire to respond to the magnitude and direction of saturation in their anti-windup action. A useful way to

capture these different requirements generically is to define a signalũ ∈ Rm as the difference between saturated

and unconstrained control signals. The simple designs that only require toknow which signals are saturating

can be considered simply to apply a logical test to the signal such as|ũi| = 0.

It is possible that the unconstrained control signalu and its constrained counterpart may be real signals that need

to be measured and the saturation function to be a physical phenomena. However, in digital control applications,

it is most common for the saturation function to be a non-physical constraint implemented in software. Often

these software limits represent physical constraints, but are set slightly lower than the real limits. This removes

the requirement for a sensor to measureum as this is now a signal internal to the controller and by preventing

the physical saturation limits from being met, mechanical durability of the system can be improved. It is also

possible that physical limits do not exist but software limits are imposed for other reasons such as to minimise

power usage or noise.

4.3.2 Conditional Integration

For systems with a stable plant and simple PI control it can be adequate simply to stop the integrator state from

accumulating when certain conditions are met. Two common variants are

1. Stop integrating when the controller output is saturated

2. Stop integrating when the integrator state exceeds given bounds

These methods will prevent, or at least reduce, integrator windup and have the benefits of simple tuning and

implementation. Condition 1, referred to as ‘intelligent integration’ by Krikelis [47], does not require any tuning

whatsoever. However, the work of Krikelis describes an implementation which canbe tuned in which deadzone

feedback is placed around the integrator and the thresholds and slopes of the deadzone function can be altered.

Condition 2 requires a bound on the integrator state to be set but this corresponds to only one tuning parameter
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per integrator. A disadvantage of these methods are that the plant input(s)are allowed to remain in saturation,

meaning that the feedback loop is effectively broken. Therefore, foracceptable performance the plant must

have stable and acceptably damped open loop behaviour. Even then, stable open loop dynamics do not imply

that the nonlinear closed loop will be stable. No guarantees of stability are afforded by these approaches and

their application are restricted typically to PI controllers. In addition, because the integrator state is not altered

during saturation, the stored integrator state may restrict the speed of response to a subsequent change in the

reference.

4.3.3 Ad-hoc Integrator Reset Methods

In addition to the conditional integration methods there are also simpler methods where the integrator state is

reset to a pre-specified value when certain conditions are encountered. Perhaps the simplest implementation

resets the integrator state to zero when the controller output reaches the saturation limit, preventing saturation

from continuing. Although integrator windup is prevented entirely, when theintegrator state is reset a sudden

drop in the control signal magnitude is caused i.e. the control is discontinuous and system performance is

degraded. An illustration of this is shown in Figure 4.5 where the integrator reset causes a substantial degra-

dation in tracking performance. Note that the model used varies from the norm in that the saturation limits are

parameter varying rather than constant.
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Figure 4.5: Reset triggered when control signal reaches saturation level

Numerous variations to this scheme are possible including changes to the conditions required to initiate a reset,

and variation in the values the integrator is reset to. One example is to trigger thereset of the integrator state

only when the control signal exceeds a certain threshold above the saturation limit. Integrator windup is not
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prevented completely but an upper bound on windup is imposed. An example of this is shown in Figure 4.6

where a reset will not be triggered until the control signal exceeds the saturation level plus 0.25. Comparing

this result to that given in Figure 4.5 shows the improvement in performance.
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Figure 4.6: Reset triggered when control signal exceeds saturation + 0.15

Resetting the integrator state to a non-zero value during saturation is discussed in [50]. This can prevent the

control signal instantaneously dropping below the saturation level if this non-zero value is chosen appropriately.

However, one common problem remains: Whenever an integrator is reset, the balance between proportional

and integral action is temporarily changed leading to a period of altered system dynamics. An example of this

is discussed in 5.1.1 where momentary saturation at the onset of a step reference diminishes integral action,

leading to a much slower rise time than if integration was allowed to continue.

These methods are easy to implement and require very little online computation. They can work very well for

simple systems, but none afford any guarantees of performance or stability in the general case. These methods

will not work well with systems that are open loop unstable and often do not perform well with high order or

MIMO systems.

4.3.4 Back Calculation (and Tracking)

In the Back Calculation method, first proposed by Fertik and Ross [15], the stored value of the integrator state

is recomputed (back calculated) when saturation occurs such that the controller output at the next sample lies

approximately at the saturation limit. In this way, the controller makes full use of the available control energy

but its proximity to the saturation limit enables it to effect a quick response to a change in the reference demand.

A simple implementation of this for a digital PI controller is shown in (4.2) whereKi andKp represent the
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proportional and integral gains,τ represents the sample period,e represents the tracking error andu andumax

represent the control signal and limit respectively.

x (k + 1) =







x (k) +Kiτ e (k) , |u (k − 1) | ≤ umax

umax sign (Kp e (k)) , |u (k − 1) | > umax

u (k) =x (k) +Kp e (k) (4.2)

It can be beneficial not to reset the integrator in one sample but rather to reset the integrator dynamically with a

given time constant. This special case is referred to as ‘Back CalculationAnd Tracking’ (BCAT) since the anti-

windup compensator causes the controller output to ‘track’ back to the saturation level. The latter approach

can be represented very neatly in block diagram form as shown in Figure4.7 whereTt represents the time

constant with which the reset takes place. This method is described in more detail in [3] and is also referred to

as ‘classical’ anti-windup in [14].
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Figure 4.7: Back calculation and tracking block diagram

Aström and Ḧagglund suggest that the back calculation time constant,Tt, should be chosen according to (4.3)

whereTd is the derivative time constant (if used) andTi is the integral time constant. These time constants can

be related to proportional, integral and derivative gains,Kp,Ki,Kd, as shown in (4.4) and (4.5). If we prefer

to think in terms of gain rather than time constants, the suggested range for the anti-windup feedback gain1/Tt

to be tuned within is given by (4.6) provided thatKd,Kp 6= 0.

Td < Tt < Ti (4.3)

Td = Kd/Kp (4.4)

Ti = Kp/Ki (4.5)

Ki

Kp
<

1

Tt
<
Kp

Kd
(4.6)
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4.3.5 Conventional Anti-Windup

Another simple technique, found in [14] and [42], involves comparing the constrained and unconstrained con-

trol signals and feeding this back through a high gain to the controller input (Figure 4.8). This anti-windup

feedback artificially reduces the controller input,yk, during saturation to drive the controller output toward the

saturation level. The magnitude of the feedback gain determines how close thecontroller output gets to the

saturation limit, and if a suitably high gain is used the control signal can be constrained to the saturation limit,

eliminating windup.

k
y

K(s) G(s)

AW

−−+

umr

u~

y

+

+

u

Figure 4.8: High gain anti-windup scheme block diagram

Mathematical Analysis:

An approximate analysis of the anti-windup behaviour is as follows. For a simple PI controller with state-space

realisationK(s) ∼ (0, 1, ki, kp), when the system is in positive saturation, i.e.um = ū, the controller output,

u, is given by (4.7) wheree = r − yk

u(s) =
kps+ ki

s+AW (kps+ ki)
(e+AWū) (4.7)

Steady-state analysis:

Using the final value theorem, the controller output to a unit step input as time tends to infinity is given by

uss = u(t)
t→∞

= lim
s→0

kps+ ki

s+AW (kps+ ki)
(e+AWū)

=
1

AW
(e+AWū)

and provided the AW gain is large enough,u ≈ ū. Thus, the controller output will be forced down toward

the saturation level,̄u, and the integrator will not wind up. Note that this analysis assumes that a steady-state

condition is reached and so for the analysis to hold, the closed loop (nonlinear) system must be stable.

There are no stability guarantees with this technique but stability is usually observed, in simple, low order

stable systems, provided that the anti-windup gain is not too large. Tuning ofthe anti-windup gain is typically

a simple iterative process using experimental tests and/or simulations. Good performance can be obtained for

simple systems but responses for higher order and/or MIMO systems can be undesirable and unstable. For

discrete-time systems, the magnitude of the anti-windup feedback gain is restricted by the sample rate used and

so the achievable performance can also be limited by such implementation issues.
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4.3.6 The Observer Approach

The back calculation and tracking method for PI(D) controllers prevents windup by causing the controller

output to track down to the saturated output during saturation by manipulating the controller state. A similar

approach can also be applied to higher order controllers such asH∞ designs by means of the observer approach

[1, 2, 76]. In this method the saturation nonlinearity is considered to cause amis-match between the controller

states and the control signal applied to the plant, and the ‘error’ between the controller output and plant input

is interpreted as an observation error.

Consider that the nominal controller is given by the state-space realisation (4.8) and that we wish to include an

anti-windup feedback to the controller states that is proportional to the difference between the controller output

and plant input. This can be represented by the state-space model of (4.9) whereL is the anti-windup feedback

gain.

K(s) ∼







ẋ = Ax+Brr +By

u = Cx+Drr +Dy
(4.8)

˙̂x = Ax̂+Brr +By + L(um − u)

u = Cx̂+Drr +Dy

um = sat(u)

(4.9)

As the state-space realisation of the nominal controller is known, this can be interpreted in an observer structure

by substituting the definition ofu from (4.8) into the state equation of (4.9), yielding the state-space description

of the observer-based controller in (4.10). Note that in this approach, there is no need to have a separate nominal

controller and observer; a single state-space representation is sufficient. A block diagram of the corresponding

practical implementation is shown in Figure 4.9.

K̂(s) ∼







˙̂x = (A− LC)x̂+ (Br − LDr)r + (B − LD)y + Lum

u = Cx̂+Drr +Dy

um = sat(u)

(4.10)

From (4.9) it is evident that in the absence of saturation i.e. whenum = u, the observer-based controller will

behave exactly as the nominal controller of (4.8). During saturation, the controller behaviour is governed by

(4.10) which can be influenced by the choice of observer gain,L. For systems with integral control, the integral

pole can be moved from the origin in the complex plan along the negative real axis such that the controller is

open loop stable during saturation. In this case, rather than the integrator ramping up in response to a persistent

input (um,r,y), the controller outputu will settle to a constant value at steady-state, limiting the extent of

integrator windup. For controller types that are already open loop stable,the observer gain can be tuned to

speed up convergence of the controller states to an equilbrium condition during saturation. Moreover, if the
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observer gain is large enough it will cause the observation errorum−u to converge to zero, thereby minimising

the extent of integrator windup.

The extra “information” about the saturated controller output can assist the controller in maintaining desirable

closed-loop behaviour. In fact, by appropriate choices of the observer gain,L, it is easy to see that the CAW

scheme (and also the Hanus scheme introduced in Section 4.3.8) can be considered special cases. Furthermore,

the observer scheme is the basis of Kothare’s [43] unifying scheme for anti-windup compensators. However,

despite these appealing features, it is important to remember that the observer scheme by itself will notguar-

anteenonlinear stability of the arising closed-loop system - extra conditions must beimposed for this to be the

case.

4.3.7 The Observer Technique

Another method referred to as the ‘observer technique’ is presented in the work of Peter Hippe [37]. Not

to be confused with the observer-based anti-windup methods of Aström and Glattfelder; here an observer is

employed to recreate state estimates for the plant, allowing a state feedback control law to be applied as shown

in Figure 4.10. With state feedback control, there are no controller states to windup and so in one sense, the

windup problem is solved. However, the presence of control constraints still has an impact on closed loop

performance. This approach does not fit into the generic framework ofSection 4.3.1 as there is not a clear

demarkation between nominal controller and anti-windup compensator and sostrictly speaking would be best

described as a state-feedback control law with an anti-windup feature rather than an anti-windup method in its

own right. It has been included here to make the distinction between this and theobserver-based anti-windup

approach of 4.3.6.

Any states that can be observed in the measured outputs,ym, are reconstructed via the matrixΨ, and the remain-

ing un-observable states are reconstructed using the state observer. Note that the measured plant input is used as

the input to the observer rather than the unconstrained control signal, avoiding observation errors. A significant

benefit of this approach is that anti-windup is essentially provided for free and does not require any tuning.

Two obvious disadvantages are (i) that a higher computational overheadis required for implementing the ob-

server compared to PI control implementations with add-on anti-windup compensators; and (ii) the method is
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Figure 4.10: The observer technique of Peter Hippe

restricted to state-feedback control laws. Other drawbacks associatedwith conventional state-feedback control

also apply. For instance, performance is dependent upon the accuracy of any reconstructed and/or observed

states.

4.3.8 Hanus Conditioning

Hanus was one of the first practitioners of anti-windup to seek a generic anti-windup controller design, having

identified that the designs of the day were all dependent upon the controller structure, controller type, or the

nature of the constraints on the manipulated variable. He proposed that a good anti-windup system should

possess the following properties [27]:

• Independence of the control structure. Later work determined that this istypically achievable if one

allows the anti-windup compensator to be of sufficiently high order [100]

• Independence of the controller type. Later work determined that again, this is achievable if one allows

the anti-windup compensator to be of sufficiently high order [100]

• Independence of the controlled system. Later work determined that in general this is not achievable,

since the plant determines the fundamental behaviour of a system during saturation.

• Independence of the nature of the constraints on the manipulated variable.Later work determined that

is, in general, not the case.

• Simplicity

He used the term windup to represent the phenomena observed when a mis-match between the controller output

and plant input occurred and attributed the windup phenomenon with the information storage properties of the

controller. In addition, he considered that the nominal control behaviourshould be designed for the system
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in the absence of a windup cause and that controller behaviour should revert to the nominal design when the

windup cause disappears.

Hanus considered two main causes for the mis-match between controller outputand plant input; actuator non-

linearities, for which actuator saturation and rate limits are examples, and the switching between two control

modes, for which the example of manual and automatic control was given. However, in the scope of this thesis,

we focus on magnitude saturation only.
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Figure 4.11: Hanus conditioning

The essence of Hanus’conditioning techniqueinvolves ‘piloting’ the controller state variables in order to reduce

the windup effect. This is achieved by implementing the feedback structure shown in Figure 4.11 where the

direct feed-through term,Dc, of the nominal controller is separated to allow the anti-windup feedback to effect

the controller states only. The anti-windup feedback gain,D−1
c , is a partial inversion of the controller ats→ ∞

and by manipulating the error signal, has the effect of reducing the reference signal to arealisablelevel i.e. one

for which no saturation occurs and henceũ = 0.

It should be noted that for the case where the nominal controller is of PI design, Hanus conditioning can be

interpreted as a special case of back calculation and tracking. In this caseDc is equal to the proportional gain

Kp and the Hanus anti-windup gain,1/Kp, entering the controller just prior to the integral gain is equivalent to

the BCAT gain1/Tt = Ki/Kp which enters the controller just prior to the integrator (Figure 4.7). This choice

of BCAT gain corresponds to the minimum value suggested by Aström and Ḧagglund in (4.6).

The Hanus’ scheme can also be represented in the form of Figure 4.12 which is more convenient for analysis.

By inspection of Figure 4.12, the transfer function fromũ to u is seen to be

−K(s)D−1
c + 1 (4.11)

and thus for all frequencies which satisfy|K(s)| < Dc, the gain is negative, causing the anti-windup action

to reduce the controller output toward the saturation level. This condition should be achieved by all sensibly

designed controllers as the dominant control effort should lie in the low frequency region. This analysis also
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Figure 4.12: Hanus conditioning equivalent representation

gives some justification for the suggested minimum BCAT gain as ifD−1
c in (4.11) were replaced by a smaller

value there would be frequencies at which the transfer function fromũ to u would be positive, leading to

integrator windup.

The Hanus technique has been a fairly popular choice for practitioners due to its simplicity and ease of tuning

(i.e. there is no tuning). This popularity was probably also gained through itbeing one of the few early

anti-windup approaches to treat the problem in a fairly scholarly way. However, the Hanus technique does

not always work well and has several important restrictions in its application. The first is that in order for

D−1
c to exist, the controller must be square and strictly proper. The second is that, as the Hanus technique

essentially involves partially inverting the nominal controller to provide the realisable reference, the nominal

controller must be minimum phase or the system will become unstable. These assumptions would typically be

met by controllers of PI/PID type, but many “modern” controllers would be strictly proper and not necessarily

minimum phase. A further deficiency is that the Hanus method provides no stability guarantees, as it takes no

account of the nominal plant dynamics, and thus must be treated with caution.

4.3.9 Internal Model Control (IMC)

Internal model control (IMC), discussed in [63], was not designed as a means of performing anti-windup but is a

control strategy that happens to provide useful anti-windup behaviourand also fits into the generic anti-windup

framework. From an anti-windup perspective, this is a natural extensionto the conventional (high gain) anti-

windup approach where instead of a static feedback gain, a dynamic filter,Gm(s) is used in the anti-windup

feedback path (Figure 4.13). The controller functions to minimise the error between the reference,r, and the

signalyk, which while operating in the linear region (u(t) ∈ (−ū, ū)), is equal to the plant output,y. Hence

when saturation is not in effect, the closed loop behaviour is dictated entirelyby the dynamics of the plant and

nominal controller.

Whilst in saturation, the filterGm, referred to as the direct model, is active and influences the behaviour of

the nonlinear closed loop to effect anti-windup action. To assess the effect of this let us consider the system
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Figure 4.13: Internal Model Control (IMC) anti-windup design

operation when in positive saturation i.e.u ≥ (ū). In this condition, the signalyk is defined as shown in (4.13).

yk =y + ỹ (4.12)

=Gū+Gm(u− ū) (4.13)

By defining the direct model dynamics equal to that of the plant,Gm = G, the equation simplifies toyk = Gu

which is exactly as if saturation had not occured. Therefore, the controller will behave as if saturation was

not present and in one sense the problem of windup is solved. Providedthat the plant is open loop stable,

the nonlinear closed loop will also be stable. However, saturation will still takeplace and when it does, the

nominal controller is unaware of its occurence. In this mode of operation, the controller essentially seeks to

causeyk to track the reference demand regardless of any difference betweeny andyk. As a result, undesirable

characteristics of the open loop plant may become evident in the plant output,y, [14]. If the plant contains slow

or underdamped dynamics this can lead to undesirable closed-loop behaviour charactersised by oscillatory

behaviour and/or slow modes - even thoughyk smoothly tracks the reference. The limited control of the plant

output afforded whilst the system is saturated opens up the way for extensions to the IMC scheme such as found

in [104] that aim to improve performance of IMC methods.

More design flexibility is given if the direct model is allowed to differ from the linear model of the plant

dynamics,G(s), but this leaves the question of how to design an appropriate filter and also how to characterise

performance of the system. Many of the approaches mentioned previouslyare simple enough to be tuned in an

entirely ad-hoc fashion using simulation analysis and successive iterationsto the tuneable parameters. However,

for this approach and some more complex designs yet to be introduced, someanalysis and synthesis tools are

required. The basis for the tools to be presented are coprime factor representations, which will be introduced.

4.4 Optimal Dynamic and Static Anti-Windup

The designs presented so far all have their merits and may well be desirablechoices for certain applications

but they are also not without their limitations. The introduction of a saturation nonlinearity into the closed loop

system can result in very complex behaviour and de-stabilise an otherwisestable system. As a result, there is

often no guarantee that a simple anti-windup approach will result in a stable saturated system, and even when
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stability is provided, acceptable performance may not be provided unless certain additional conditions are met;

for instance, in the case of IMC anti-windup, performance may be poor if the open loop dynamics are slow

and/or poorly damped. In addition, many lack generality in that they are applicable only to specific control

structures such as PI control or state feedback.

A more general criticism levelled at the simple ad-hoc methods are that they tendto focus on the behaviour

of the controller and ignore the effect of saturation on the behaviour of the plant. As identified earlier in the

chapter, the effects of saturation are not limited to windup of the controller states. During saturation, we can

consider the system to be pseudo open loop where at least one plant input is constant, dictated by the constraint.

Until the point at which this control signal comes out of saturation the systemresponse is governed, at least

partially, by the dynamics of the open loop plant which could be slow, oscillatory, or even unstable. As such,

although the simple approaches may well be able to constrain integral controlstates and/or bring control signals

out of saturation, overall performance may still be poor.

It is desirable to be able to produce compensator designs that are independent of the type of nominal controller

employed, provide a guarantee of nonlinear stability and consider explicitly the performance of the resulting

nonlinear closed loop system. In recent years modern control design methods have been applied to the field of

anti-windup that enable these objectives to be met and a number of these approaches will be introduced here.

The resulting designs can have many degrees of freedom and so ad-hoc tuning methods are considered to be

insufficient. As a result, the concept of optimising performance in some sense and providing a limited number

of tuning parameters to the designer is of central importance.

4.4.1 The Weston and Postlethwaite Framework

In order to provide the potential of high performance for as many systems as possible, a framework is adopted in

which anti-windup signals are injected into the system at both the controller input and output as shown in Figure

4.14. This framework was originally introduced in [99] and has been widelyused since. Anti-windup feedback

via θ1 allows the compensator to bypass the controller dynamics and feedback viaθ2 allows the compensator

to influence the internal states of the controller, giving a great deal of flexibility without requiring direct access

to the controller states. The compensator,Θ, may be parameterised by a static gain or as a dynamic filter and

in the multivariable case, a gain or transfer function matrix. Given this framework, our attention is turned to

the problems of how to assess stability of the nonlinear system for a given choice ofΘ, and how to characterise

performance.

Weston and Postlethwaite [100] proposed that the compensator be parameterised using a linear transfer func-

tion,M , and a replica of the plant dynamics from control inputs to performance outputs,G2, as shown in Figure

4.15. Many anti-windup compensators can be represented in the framework of Weston and Postlethwaite, cor-

responding to different choices ofM . This is useful since it allows the behaviour of very different designs to

be compared using a common framework. Similar work in existence is the unified framework of Kothare et al.
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Figure 4.14: Anti-windup compensated closed loop

[43]. However, in this work, the compensator is parameterised by two transfer functions to be chosen,U and

V , rather than one and so for analysis and synthesis purposes it is less appealing. Miyamoto and Vinnicombe

[62] also explored Kothare’s scheme but their work can also be translated to the framework of [100]. The most

obvious parameterisation ofM that corresponds to a known anti-windup design isM = I, giving the IMC

design of Section 4.3.9.
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Figure 4.15: Compensation with M

Note that in the Weston and Postlethwaite framework, the anti-windup signalsθ1 andθ2 are re-labelled asud

andyd, and the signal namesulin andylin are also defined (Figure 4.15). The reason for this can be seen by the

application of some simple algebra as follows.
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The signal labelledylin is defined as shown in (4.15). The signalyd is defined as shown in (4.16). By making

the substitutionum = u − ũ and working back, the signaly can be defined as shown in (4.17). Finally, by

substituting (4.16) and (4.17) into (4.15), we arrive at the result of (4.18). This shows that for anti-windup

conditioning withM , the nominal controller,K, ‘sees’ the nominal plant,G, in spite of the presence of satu-

ration and anti-windup compensation. As a result, saturation and the design of the compensator do not affect

the behaviour of the nominal controller, and the signalsulin andylin can be considered to represent the control

and output responses of the ideal linear system. The signalsud andyd, represent the deviation of the control

signals and performance outputs of the compensated system from that of the linear system.

ylin = y + yd (4.15)

yd = G2Mũ (4.16)

y = G2ulin −G2Mũ (4.17)

ylin = G2ulin (4.18)

Figure 4.15 can also be represented equivalently as shown in Figure 4.16, referred to as the decoupled repre-

sentation. The structure of the lower portion of the diagram - the nominal linear system - is validated by (4.15).

The disturbance filter is a direct carry over from Figure 4.15, and the nonlinear loop simply makes use of the

deadzone operator in the identityDz(u) = u − sat(u) whereum = sat(u). This de-coupled representation

proves to be very useful for the analysis of both stability and performance as will be explained.
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Figure 4.16: Decoupled representation of compensation with M

The nominal linear system with reference inputr and performance outputylin is considered to represent the

ideal system behaviour and is designed to stabilise the plant and achieve thenominal performance objectives

while the system remains in the linear region (not saturated). For stability of thesaturated system we require

that the linear transfer functionG2M , referred to as the disturbance filter, be stable and also that the nonlinear
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loop be stable. Provided that the plant is open loop stable andM is chosen as a stable transfer function, the

problem of guaranteeing stability of the saturated system is reduced to that of ensuring that the nonlinear loop

is stable. Thus for open loop stable systems, the stability condition is simplified greatly to that of a single

feedback loop with dynamic elementM − I and an isolated nonlinearity, which in this case is the deadzone

function. In terms of performance, the signalyd = ylin − y represents directly the deviation of the plant output

from the desired behaviour and so can be very useful in defining measures of performance.

4.4.2 Performance of Anti-Windup Compensators

Systems incorporating anti-windup compensation are expected to operate in the linear region for the majority

of the time. Thus, linear performance should equate to good performance provided that the linear controller has

been designed appropriately. When the system does saturate, the response will degrade and deviate from linear

performance. Hence, the notion of good performance of an anti-windupcompensator is perhaps expressed best

asminimising the deviation from linear performanceduring and immediately after saturation. The difficulty

here is to find an appropriate way of expressing this notion of performance mathematically which allows for a

tractable performance optimisation. The work of Weston and Postlethwaite in [100] (and also related work by

[84] and [62]) gives a reasonably intuitive way of optimising the deviation from linear performance.

Considering Figure 4.16, it follows from the previous section thatyd represents the deviation of the nonlinear

(saturated) systems behaviour from the intended linear behaviour, due tothe linear control signalulin. Hence

the nonlinear mapT : ulin 7→ yd gives important information about the nature of the deviation which can

occur. It would therefore be desirable to minimise the “size” of this map, to ensure that the deviation inyd is

small whenulin causes saturation. A computationally tractable way of doing this is by minimising the induced

L2 norm, or ‘L2 gain’. That is we would like to synthesise an anti-windup compensator (or equivalently choose

M(s)) such that we have

‖yd‖2 < γ‖ulin‖2 γ > 0 (4.19)

whereγ is to be minimised. Note also that ensuringyd ∈ L2 also ensures thatlimt→∞ yd(t) = 0 and hence

thatlimt→∞ y(t) = ylin(t), thereby ensuring that asymptotically at least linear performance is preserved.

Note that because the mapT : ulin 7→ yd is inherently nonlinear, to obtain rigorous results, we are forced to

turn to nonlinear control tools which are noticably less “sharp” than linear tools. In particular theL2 gain of

the system is, by definition, the bound on the “energy gain” of the system for any signal in the spaceL2. In

reality a practical system will be subject to only a small subset of these signals. Thus there can sometimes be

some difference between an anti-windup compensator which is deemed “optimal” in terms of (4.19) and one

that provides the best performance in nonlinear simulation. However, there is often a rough agreement between

the two.

There are several approaches to synthesising anti-windup compensators which attempt to minimise theL2 gain

of the mapT : ulin 7→ yd. Below, the ones which are used most in the thesis are reviewed briefly.
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4.4.3 Full Order Anti-Windup

A so-called “full-order” anti-windup compensator is one in which the numberof anti-windup states equals

the number of plant states. While, in applications, it is desirable to keep the number of states in the anti-

windup compensator to a minimum, full-order anti-windup compensators are of interest because of some of

their remarkable features [22, 24].

In the work here, we follow the full order compensator design of [88, 94, 100], where a particularly simple

construction is proposed: letM(s) be part of a right coprime factorisation of the plant according toG2 =

NM−1. This means then that the disturbance filterG2M = N , and thus by appropriate choice ofM(s), to

some extent, the undesirable dynamics of the disturbance filter can be cancelled (subject to ensuring stability

of the nonlinear loop of course). An appealing method for specifying a coprime factorisation of the plant is the

state-space realisation of (4.20) in whichF is a free variable akin to a state-feedback gain. This assumes that

the plant is given by the minimal state-space realisation of (4.21). This approach is adopted in [88, 94].




M

N



 ∼







Ap +BpuF Bpu

F I

Cp +DpuF Dpu







(4.20)

G ∼




Ap Bpd Bpu

Cp Dpd Dpu



 (4.21)

In this case, the search for an optimal compensator is reduced from finding M(s) which minimises‖T ‖2 to

finding the state-feedback gainF which minimises‖T ‖2, assuming the state-space realisation of (4.20). This

problem was solved in [88, 94] using a Lyapunov formulation of the Circle Criterion and reducing theL2 gain

synthesis problem into an LMI framework. In this work, additional robustness considerations were incorporated

that enable the design to be tuned to improve stability robustness of the nonlinear closed loop system to a class

of additive uncertainty.

Let us define the uncertain plant model asG̃(s) = [G1(s) G2(s) + ∆G]. From a small gain argument, it

can be shown that the nominal linear system (in the absence of saturation) isrobustly stable to an uncertainty

model ||∆G||∞ < 1/γ whereγ = ||(I − K2G2)
−1K2||∞. In order to assess stability robustness of the

nonlinear system, the de-coupled representation of the uncertain anti-windup closed loop system in Figure 4.17

is considered. Applying a small gain argument it can be shown that the nonlinear closed loop system is robustly

stable to the uncertainty model∆G if ||∆G[I − MF(ulin)]||2 < 1/γ whereF(ulin) is the nonlinear map

ulin 7→ ũ. Therefore, in order to maximise the size of the plant uncertainty model∆G that the nonlinear system

is robust to, we desire to minimise||[I −MF(ulin)||2. This can be achieved by solving

||z||2 ≤ γ2||ulin||2 (4.22)

for minimal γ wherez = Mũ. This robustness condition is incorporated together with theL2 performance

condition to form a weighted combination as shown in (4.23). The matricesWp ∈ Rny andWr ∈ Rm
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Figure 4.17: De-coupled AW block diagram with uncertainty model

are positive definite (and normally diagonal) weighting matrices chosen by thedesigner. For emphasis on

performanceWp is chosen large andWr small; for emphasis on robustness, the reverse is done. Note that when

the ratioσ̄[Wp]/σ̄[Wr] is sufficiently small, the design becomes more “IMC-like” - in which case performance

is sacrificed for robustness.

∥
∥
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∥

2

≤ γ2||ulin||2 (4.23)

In [88, 94] it was proved that there exists an anti-windup compensator withF = LQ−1 such that (4.23) is

satisfied if there exist matricesQ > 0 ∈ Rnp , diagonalU > 0 ∈ Rm, an unstructured matrixL ∈ Rm×np and

a scalarγ > 0 such that the following LMI holds.
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< 0 (4.24)

The above LMI provides a computationally convenient manner for synthesising anti-windup compensators

and has been used in a number of applications [32, 44, 98] successfully. An alternative method solving the

same problem was proposed in [79] in which a Riccati equation was the central computational tool; this is

computationally more efficient and also identified strong links between the stabilitymulitplier (W = U−1) and

the robustness of the saturated system. In this thesis the original LMI approach is used.
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Although they require more computational power to implement in practice, the fullorder AW designs have the

following benefits:

• Provided thatG(s) ∈ RH∞ there will always exist a globally stabilising full order compensator [24,

100]. This follows since the IMC design, for which closed loop stability is guaranteed, is a special case

of the full order design.

• When constructed as part of a right coprime factorisation of the plantG2 = NM−1, the full order

designs arecompletely independentof the controller. This is not to say that saturated performance will

not be influenced by the nominal controller, but stability of the saturated system and optimality of the

compensator design in terms of performance are not affected. Hence, once the compensator is designed,

the nominal controller could be retuned without having to revisit the anti-windup design process.

• A full order compensator will achieve the lowestL2 gain of any linear compensator. That is, by this

performance measure, it yields optimal performance.

The full-order anti-windup technique can suffer from high computationaldemands since it introduces the same

number of states to the control system as the linear plant model used for design. Thus, even if the nominal

controller is simple, having only one integral state, the compensator may introduce many more. In the interest

of minimising computational demands, there is an interest in designs for whichΘ is simply a gain matrix,

so-called static anti-windup compensation, and designs for whichΘ is transfer function matrix of order less

than the plant, so called low-order dynamic anti-windup compensation. Approaches to the static and low-order

dynamic anti-windup synthesis problem are presented in the following subsections.

4.4.4 Static Anti-Windup

Static anti-windup compensators are so called because they contain no dynamics; they are activated upon

saturation being detected and deactivated immediately upon saturation ceasing. In common with full-order

anti-windup compensators, it transpires that computationally attractive algorithms exist for their synthesis,

but unlike the full-order compensators they are also computationally attractive for implementation since they

are just gains - they require no additional states. The method we follow for the synthesis of optimal static

anti-windup compensators was introduced in [91] (see also [65]). The compensator is described by the static

relationship



θ1

θ2



 = Θũ =




Θ1

Θ2



 ũ

whereΘ1 ∈ Rm×m andΘ2 ∈ Rny×m. In the Weston and Postlethwaite Framework, the static compensator

described above corresponds to the choice ofM as shown in (4.25).

M = (I −K2G2)
−1(K2Θ2 + Θ1 + I) (4.25)
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A minimal state space realisation of the static compensator in the Weston and Postlethwaite framework is given

as (4.26) for which the matrices are defined in Appendix B.1.


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



Ā B0 + B̄Θ

C̄1 D01 + D̄1Θ

C̄2 D02 + D̄2Θ







(4.26)

Given this state-space realisation, it was proved in [91], that a static anti-windup compensator,Θ = LU−1

which ensures that‖T ‖2 < γ, can be computed if there exists a positive definite matrixQ > 0 ∈ Rnp , diagonal

U > 0 ∈ Rm, an unstructured matrixL ∈ Rm×np and a scalarγ > 0 which satisfy the following LMI:
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Compensator synthesis is achieved using essentially the same LMI tools as in thefull order case except that

there are some important differences to note

• A static anti-windup compensator ensuring‖T ‖i,2 < γ is not always guaranteed to exist. Recall, that

in order for a compensator to exist, it must satisfy the multivariable Circle Criterion; this is not always

possible whenΘ is stipulated to be static.

• A static compensator, when it exists, may not achieve “optimal”L2 performance; that isγfull ≤ γstatic.

This is essentially because the static compensator has far fewer degrees of freedom with which to tailor

theL2 performance.

• The barred matrices in the state-space realisation (4.26) are functions of the controller parameters, mean-

ing that a controller re-tune would typically require an anti-windup compensator re-design.

Nevertheless, the simplicity with which static anti-windup can be implemented is the main selling point and it

may be considered acceptable to compromise on performance. Furthermore, as mentioned previously, theL2

gain is only an approximation of the performance problem and it may well be that even if a static compensator

yields a nonlinear closed-loop with a much greaterL2 gain, in typical simulations it may perform sufficiently

well to be considered suitable for implementation.

4.4.5 Low Order Anti-Windup

It transpires that full-order and static anti-windup synthesis can be castdirectly as a convex optimisation prob-

lem using LMIs. For compensators of intermediate order, the optimisation problem is in general non-convex
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and thus difficult to solve. From a practical perspective however, it is often desirable to obtain low order

compensators: normally the complete dynamics are not required to furnish satisfactory performance on the sat-

urated closed loop system and thus low-order approximations can be usedto obtain very similar performance

with much lower computational overheads.

In [91], a method for designing low order anti-windup compensators was proposed. In that work, the anti-

windup compensator is partitioned into a set of linear filters and some static gainsaccording to (4.28).

Θ =




Θ1(s)

Θ2(s)



 =




F1(s)Θ̃1

F2(s)Θ̃2



 (4.28)

The synthesis routine is partly manual and partly automatic in that the designer chooses the filter dynamics

F1(s), F2(s) and then an LMI optimisation process (almost identical to the static one) is carried out to determine

the gain matrices̃Θ1 andΘ̃2 which minimise theL2 gain ofT as before. Clearly, stability will not be guaranteed

for an arbitrary choice of filter dynamics and so some care needs to be taken in specifying appropriate filters. A

good starting point is to synthesise a full order design and chooseF1(s) andF2(s) as low order approximations

of the resultingM(s) − I andG2(s)M(s).

For the low order design, the resultingM is again given by (4.25), except that nowΘ1 andΘ2 are dynamic as

defined in (4.28). A minimal state-space description of the compensator is given as (4.29) and adopts a similar

form to that of the static design. The state space matrices are given in Appendix B.1.
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

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(4.29)

The gain matrixΘ̃ = [Θ̃1 Θ̃2] is then constructed as̃Θ = LU−1, where againL andU are solutions of the

LMI (4.27) (with the state-space realisation (4.29)). This gain matrix is then combined with the filtersF1(s)

andF2(s) in order to produce the anti-windup compensator. Note that the LMI optimisationprocess itself has

no more degrees of freedom than the static case, but the flexibility afforded by allowing the designer to specify

the filter dynamics does lead to a greater range of possible solutions. As a result, although there is no guarantee

that a stabilising solution will exist, the likelihood is improved significantly comparedto the static case.

The main drawback with the low-order approach is that the designer has to choose the compensator dynamics

in order to tune the system. However, the control that this affords the designer seems often to allow the resulting

designs to outperform that of the full order approach (from time domain simulations), even thoughγfull ≤ γlow.

Further work is required to identify any guidelines or tuning rules that couldbe used to guide the designer in this

choice. As with the static design, a retune of the nominal controller will requirea redesign of the anti-windup

compensator. However, provided that the change is not dramatic, simply re-running the optimisation using the

same filter dynamics and tuning parameters is likely to be sufficient to yield another successful design. Another
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similar design to this is proposed in [46] where in addition to the gain matrices beingoptimised, the zeros of

the compensator are optimised as well.

4.5 Summary

A summary of some of the main points of comparison between the various anti-windup approaches discussed

on this chapter is shown in Table 4.1. The conditional integration and back calculation are grouped with the

ad-hoc integrator reset methods as they share the same properties.

One further point that helps to distinguish between the different approaches concerns the concepts of controller

windup and plant windup proposed by Peter Hippe [37]. The term controller windup is used to describe the

degradation of performance associated with the controller states evolving effectively in an open loop manner

when plant input saturation effectively breaks the feedback loop. Theterm plant windup is used to describe

the degradation of performance associated with saturation that cannot beattributed to the adverse behaviour of

controller states during saturation. It is most clearly understood when considering the behaviour of a closed loop

system with a pure proportional controller. In this case, no controller windup can take place, but depending upon

the dynamics of the open loop plant, saturation may cause oscillatory transientbehaviour or even instability of

the closed loop. Peter Hippe attributes this plant windup phenomena to the closed loop dynamics being chosen

to be too fast and that with the plant input constraints, the plant states cannot be brought to equilibrium quickly

enough.

It is the opinion of the author that the overall windup phenomenon cannot be separated clearly into the indi-

vidual phenomena of controller and plant windup except in the case whenone is avoided as in the proportional

controller case. However, the concepts are useful to bear in mind. An important point concerning plant windup

is that it is a function of the nominal controller and the saturation constraint, soin the two stage anti-windup

design process we do not seek to eliminate plant windup.

Most of theclassicanti-windup designs seek only to solve the controller windup phenomenon. These include all

the integrator reset strategies, back calculation and tracking, conventional anti-windup, the observer approach,

the observer technique, Hanus conditioning and internal model control. In contrast, the optimal designs of

[24, 91], by virtue of their performance optimisation, also take into accountthe effects of plant windup and

seek to limit its effect. This property makes the optimal designs much more appealing for application to generic

systems.
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AW Simplicity Simplicity Nonlinear Controller Plant Performance Existence of

Design of of imple- Stability Restriction Restriction stabilising

Design mentation Guarantee solution

Ad-hoc Very Very None PI(D) only None System Not

integrator simple simple Dependent guaranteed

reset

BCAT Simple Simple A priori PI(D) only None System Not

Dependent guaranteed

CAW Simple Simple A priori None None System Not

Dependent guaranteed

Observer Quite Simple A priori None None System Not

Approach Simple Dependent Guaranteed

Hippe Quite Simple A priori State Observable System Guaranteed

Observer Simple feedback Stable G(s) Dependent

Technique only

Hanus Simple Simple A priori Invertible System Not

condit- atω → ∞ Dependent guaranteed

ioning Minimum phase

IMC Simple Additional Inherent None Stable G(s) Requires G(s) Guaranteed

states as in design to be well

deg(G(s)) damped

Turner Quite Additional Inherent None Stable G(s) Optimised Guaranteed

Full-order simple states as in design

Dynamic deg(G(s))

Optimal Quite Simple Inherent None Stable G(s) Optimised Not

Static simple in design guaranteed

Optimal Requires Few Inherent None Stable G(s) Optimised Not

Low-Order choice of additional in design guaranteed

Dynamic filter states

dynamics

Table 4.1: Comparison of anti-windup design characteristics



Chapter 5

Anti-Windup Design for EPHS Motor Speed Control

In the control of the PMSM consituent of the EPHS system, a restriction on thecurrent flowing in the motor is

required. One way of attempting to enforce this restriction is by constraining the current which is demanded by

the PMSM speed controller. In this chapter various anti-windup techniquesare applied to the motor speed con-

trol system to compensate for violation of this constraint on the current demand. The constraint is a nonlinear

function of the elements of the current demand vector and so does not naturally fit into the linear anti-windup

frameworks described in Chapter 4. A novel method of transforming this multivariable nonlinear constraint

into a time-varying SISO constraint compatible with linear anti-windup synthesis techniques is presented. This

method is employed to allow optimal anti-windup designs to be constructed for the EPHS system. Simulation

analysis then follows on a nonlinear discrete-time model in order for comparisons between the optimal designs

and some more traditional approaches to be made. The most appealing traditional and modern designs are then

subjected to practical testing with the real system, yielding encouraging results. This is believed to be the first

application of modern optimal anti-windup compensation to PMSM control and themain results of this work

were published in [59] and are soon to appear in [60].

Before the application of anti-windup compensation to this complex system is tackled, attention is given to

the application of anti-windup to a low order linear continuous time “single axis” model of the system for

which both the controller and plant model are SISO systems. This allows some of the features of each design

to be observed more transparently prior to application to the complex nonlinearmodel. Following this, the

vector saturation constraint is described, a mathematical model is developedand a method by which it can be

incorporated into a linear anti-windup framework is developed. Linearisedmodels of the open loop and closed

loop dynamics are developed for the system in the absence of saturation and finally, anti-windup compensators

are designed and tested on the complete system model, both in simulation and experimentally.

5.1 Single Axis Speed Controller Anti-Windup Design

We first consider a simplified speed control system in which the “plant” under consideration represents an inner

loop motor current control system and the “controller” is a PI speed regulator in the outer loop. The inner loop
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current control system has been substantially simplified and is modelled as a first order continuous time system

with transfer functionG(s) given in (5.1). The dynamics of thed-axis are ignored entirely and the single input

represents theq-axis current demand, with the output of the system being the rotational velocity of the motor.

As a result of considering only theq-axis, the effects of phase advance and cross-coupling between thed and

q axes are omitted. The normalised parameterskt, jm andbm represent the torque constant and inertia of the

motor and the mechanical damping of the system. Due to variation in the viscosity ofthe hydraulic fluid with

temperature,bm will vary from an initial value as high as 0.2 at startup, but then quickly converge toward a

nominal value of approximately 0.05. The mechanical damping is time varying in nature but in the analysis

it is considered to be a constant as it is understood to vary with significantly slower dynamics than the rest of

the model. A discrete PI motor speed controller,Kdt, is given by the transfer function of (5.2) and normalised

parameters for this and the plant model can be found in Table 5.1. All anti-windup designs will be tested in

discrete time but to allow compensator synthesis in continuous time, the equivalent continuous time controller

is given as (5.3).

G(s) =
kt

jms+ bm
(5.1)

Kdt ∼







x(k + 1) = x(k) + ki τ e(k)

u(k) = x(k) + kp e(k)
(5.2)

Kct ∼







d
dtx = ki e(t)

u(t) = x(t) + kp e(t)
(5.3)

Parameter Value Description

kt 0.83 Normalised motor torque constant

jm 0.8 Normalised motor inertia

bm [0.05,0.2] Normalised motor mechanical damping

kp 0.45 Normalised proportional gain

ki 0.05 Normalised integral Gain

τ 0.15 Normalised discrete iteration rate

Table 5.1: Single axis speed control model parameters

A bode plot of the loop transfer function,L = GK, for each extreme of the mechanical damping variation

(Figure 5.1) reveals that the nominal closed loop model has an infinite gain margin and a phase margin in

excess of 80 degrees, and therefore is robustly stable. The reductionin loop gain with the higher damping

factor suggests that performance of the linear system will be degraded inthe cold start condition, but coupled

with the reduced phase lag, robust stability actually improves. In addition to thestable closed loop dynamics,

the plant is also open loop stable and heavily damped.

Because the model is so simple and the open loop dynamics are relatively benign, one might expect the sys-

tem to tolerate saturation very well, with the only negative effect being the wellknown problem of integrator

windup. As such, this application is not expected to be a difficult test of the various anti-windup designs, but
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Figure 5.1: Bode plot of single axis motor control system

its simplicity will be useful to show the various structures and methods of operation. To mimic variation of the

q-axis current limit in the real system, a saturation limit is imposed on the plant inputthat varies with motor

speed according to Table 5.2. Between breakpoints, linear interpolation is used.

motor speed breakpoint (normalised) 0 1 3.8 5

plant input limit,ū (normalised) 1 1 0.33 0.33

Table 5.2: Plant input saturation limit lookup table

5.1.1 Anti-Windup Designs

Prior to the application of any anti-windup designs it is important to gain an understanding of the behaviour

of the unconstrained linear system (without saturation) and the behaviourof the constrained system (saturation

limits included) without anti-windup compensation, for which a block diagram is shown in Figure 5.2. The

latter describes the expected behaviour of the system if no anti-windup conditioning is applied, and the former

is generally considered to represent thedesiredbehaviour of the system i.e. that which the conditioned system

should preserve as closely as possible. Step responses for both modelsare plotted in Figure 5.3 for the nominal

mechanical damping value of 0.05 and in Figure 5.4 for the cold start value of0.2. Note that the control

system should be tuned for the nominal condition withbm = 0.05 but performance in the cold start condition

is also required to be acceptable. The model is scaled such that a normalisedspeed of 3.5 units represents the

maximum operational speed of the motor.
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Figure 5.2: Single axis constrained model block diagram

• Unconstrained performance:With the nominal damping value, the linear unconstrained system exhibits

a small overshoot of each speed set point and zero steady-state error. With the higher mechanical damping

value the system is more sluggish and although steady-state error is still zero, tracking performance is

degraded and the rise time is increased by a factor of 5.

• Constrained performance: The constrained closed loop system exhibits a very similar response with

the nominal mechanical damping value (Figure 5.3) as saturation only occursfor a short period of time

at the onset of each step reference. Note that the saturation constraintbecomes tighter when the motor

speed is higher and so the severity and duration of saturation is increasedfor the deceleration step. The

restriction in available control energy during tracking of the deceleration demand slows tracking initially.

However, whilst saturated, the integrator state winds up resulting in a greater overshoot of the set-point.

With the high mechanical damping value (Figure 5.4), the plant input level required to achieve the high

speed set-point is beyond the saturation limit and so the reference is infeasible. Acceleration perfor-

mance is similar until the point at which the saturation limit is reached and then the motor speed quickly

plateaus. While the infeasible reference persists the integrator continues toaccumulate in an attempt to

eliminate the steady-state error, driving the controller output further and further into saturation. When

the deceleration step demand is applied, there is an instantaneous drop in the controller output as the

proportional term in the controller responds to the step change in the errorsignal. However, the control

signal remains above the saturation limit for some time and so the change in reference does not have

an immediate effect on the plant. As time progresses, integral action in the controller drives the control

signal back into the linear range, at which point the plant output starts to track toward the new reference.

However, the rise time is large as the response is dominated by integral action.

Selection of anti-windup designs

A selection of the anti-windup designs presented in Chapter 4 are chosen for application to the model. The

back calculation method is chosen as a performance benchmark as it represents one of the most widely used

anti-windup approaches used in industry. The BCAT method is also selectedas it provides improvements over
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Figure 5.3: Single axis model response without anti-windup and nominal mechanical damping
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Figure 5.4: Single axis model response without anti-windup and increasedmechanical damping
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the back calculation approach with minimal additional complexity for design and implementation. The conven-

tional anti-windup (CAW) design is also applied as this also provides the potential of improved performance

with no more complexity than the BCAT approach. These are designs that typically may be adopted in industry

if warranted by a suitable performance improvement, as their tuning processis simple, intuitive and quick. The

other designs chosen for testing are the optimal dynamic and static designs of[91] and [94] as the benefits they

provide in terms of guaranteed stability for the nonlinear system and optimised performance may warrant the

additional complexity for design and implementation. As the plant in this simple model isonly first order, the

low order dynamic anti-windup approach does not provide any reductionin the compensator order compared to

the full order case and so is ignored. In addition, static compensation was not possible as the LMI solver failed

to find a feasible solution, and so only the full order optimal design is included.

Back calculation

Figures 5.5 and 5.6 show the responses of the system with back calculation tothe same doublet demand and

compares performance against the desired linear behaviour. The backcalculation approach requires no tuning

and simply recomputes the integral state of the controller when saturation is encountered such that the controller

output at the next sample instance lies approximately at the saturation limit. This is observed most clearly at the

onset of the deceleration step demand for the model with nominalbm (Figure 5.5) but it also occurs at the onset

of the acceleration step. When a step demand is made, the proportional actionof the controller causes a spike

in the control signal that may exceed the saturation limit. When this spike does cause a transient violation of

the limit, back calculation resulting from this event causes an instantaneous drop in the integrator state. As the

motor accelerates and the proportional component of the control signal drops, the controller output drops below

the saturation limit and the system fails to make full use of the available control energy. As a consequence, rise

times are extended, particularly for the deceleration step since saturation is more severe. It should be noted that

this problem can be avoided if the proportional gain is reduced enough to prevent the initial violation of the

saturation limit. However, it is an undesirable feature of an anti-windup design to place such a limitation on the

tuning of the nominal controller.

With the higher mechanical damping value, back calculation impairs the tracking of the acceleration step de-

mand as the controller output drops below the saturation limit for approximately 8units of time. While the

infeasible reference persists, the integrator state is not allowed to accumulate and the controller output is held

very close to the saturation limit. When the deceleration demand is made, tracking issignificantly better than

for the acceleration demand and even the nominal linear system. This is helpedin part by the fact that in the

constrained simulation, the motor speed is already closer to the low speed set-point. Also, since the speed

error is smaller, the step change in reference does no cause the controller output to exceed the limit and back

calculation does not occur. However, another factor affects the tracking of the deceleration step that could be

considered a negative characteristic of the anti-windup design.

In a conventional PI regulatory system, at steady-state the tracking error tends to zero and the output of the
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Figure 5.5: Single axis model response with Back Calculation and nominal mechanical damping
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Figure 5.6: Single axis model response with Back Calculation and increasedmechanical damping
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controller is influenced predominantly by the integral state since the proportional term tends to zero. When a

step change to the reference is applied, a step change in the control signal is also observed that is proportional

to the error between the output level and the new reference. This errorsignal, initially, is also equal to the

magnitude of the step change in the reference. When the reference is infeasible at steady-state as in the case

we consider here, back calculation constrains the integral state but the proportional term of the controller is

unaffected and remains non-zero. As a result, when the reference demand is reduced in a step-wise manner,

a step change is observed in the control signal that is proportionate to the step change in referencedemand

even though the change in motor speed required to meet the new set-point maybe significantly less. In this

application, the effect only serves to quicken the tracking performance but in other applications, this may result

in undesirable overshoots.

Back Calculation and Tracking (BCAT)

Back calculation and tracking is applied to the single axis model with discrete control as shown in Figure 5.7

and simulation responses to the same doublet demand are shown in Figures 5.8and 5.9. The crucial difference

between this approach and back calculationonly is that the integrator state is reset progressively over time

through the BCAT time constant,1/Tt, rather than instantaneously at the next sample. Note that a factorτ is

included which represents the controller discrete sample period to facilitate correct operation in discrete time

(as standard with discrete-time integration). Due to the progressive resetof the integrator, when saturation

occurs for brief periods, for instance due to proportional kick, the effect on the integral state is only minor and

the subsequent loss of performance observed with the back calculation only approach may be avoided. In the

example shown here, the compensator is tuned by progressively increasing the magnitude of1/Tt such that

when an infeasible reference is applied, the anti-windup feedback is large enough to drive the controller output

down close to the saturation limit at steady-state. As a result, the design will drive the integrator state toward

similar values as achieved by the Back Calculation only approach and so the design is expected to exhibit

similarities with this method.

The simulation results usingbm = 0.05 (Figure 5.8) exhibit signifcantly better tracking performance than

the back calculation only approach as expected, as the integral state is notdepleted significantly during the

brief saturation events. Tracking performance does lag slightly behind that of the linear system but this is

expected to some extent as the saturation limits restrict the available control energy. However, part of this loss

of performance can be attributed to the anti-windup design and improved performance could be observed with

a lower anti-windup gain. In the simulations usingbm = 0.2 (Figure 5.9), performance is very similar to that of

the back calculationonlyapproach with the exception that the rise time to the acceleration demand is improved.

As with the back calculation only method, the response to the reverse step demand following an infeasible

reference is faster than the linear response. If this is undesirable, the anti-windup gain can be reduced toward

the lower limit ofKi/Kp in (4.6) which is equivalent to Hanus conditioning. For comparison, a compensator

tune equivalent to Hanus conditioning is included in Figures 5.10 and 5.11. The Hanus method gives a better
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match with the linear responses in both simulation conditions but the response to areverse step following an

infeasible reference is slower (Compare Figure 5.11 with 5.9). By fine tuning the anti-windup feedback gain a

chosen compromise between the behaviour of each design can be achieved.
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Figure 5.7: Single axis model back calculation and tracking discrete-time implementation

Conventional Anti-Windup

Conventional Anti-Windup is quite similar to the back calculation and tracking approach except for the fact that

the anti-windup feedback path influences thewholecontroller via the error signal, as shown in Figure 5.12, not

just the integrator. Responses of the CAW system are shown in Figures 5.13 and 5.14.

The ability to constrain the integrator state during extended periods of saturation is dependent upon the anti-

windup feedback gain being quite high, hence its common description asHigh Gain anti-windup. With PI

controllers, the presence of a direct feed-through (proportional) term can result in instability if the anti-windup

feedback gain is set too high, particularly for discrete-time implementations. This is made more likely still since

a unit delay required in the anti-windup feedback path to prevent an algebraic loop introduces additional phase

lag. In this application, the anti-windup gain is tuned as aggressively as possible without causing instability in

order to extract maximum performance. Note that with the given anti-windup tune, some chattering is observed

in the control response during saturation (See Figure 5.13) although deviation from linear performance for the

simulation with nominal mechanical damping is very small. This design is not susceptible to performance

degradation when large but brief saturation events occur as the proportional and integral behaviour of the

controller are treated together. However, it can be sensitive to conditionsin which saturation continues for

extended periods.

Because of the restriction on the anti-windup gain to retain stability, an amount of integrator windup is unavoid-

able when an infeasible reference is demanded as shown in Figure 5.14. The integrator windup that results leads

to a sluggish response to the reverse step which would be worse still were the infeasible reference to persist for

a longer period. However, some simple analysis that follows shows that the integrator state would actually be

bounded.
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Figure 5.8: Single axis model response with Back Calculation & Tracking andnominal mechanical damping
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Figure 5.9: Single axis model response with Back Calculation & Tracking andincreased mechanical damping
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Figure 5.10: Single axis model response with Hanus conditioning
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Figure 5.11: Single axis model response with Hanus conditioning
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Figure 5.12: Single axis conventional anti-windup block diagram

Consider the condition in which an infeasible reference is applied and the plant output reaches equilibrium

with the system in saturation. This is possible for this system provided that the anti-windup action does not

destabilise the system or introduce limit cycle behaviour. Given these assumptions, the signals(y, r, e, um)

are all constant and the control signal defined in the frequency domain as a function of the tracking error

and measured plant input is given by (5.4) in continuous time. With the assumption thate(t) andum(t) are

constants of magnitudesǫ andη respectively, it follows thatE(s) = ǫ/s andUM (s) = η/s. Thus the steady

state control signal,uss(t) is given by (5.7) and is bounded for anyAW > 0 The equation does suggest that

the control signal would also be bounded forAW < 0, however, in this case the system would be unstable and

therefore the final value theorem is not applicable. Furthermore, the greater the magnitude ofAW , the closer

the equilibrium valueu(t) will be to the saturation limitum(t) = ū for a given constant error signal,e(t).

U(s) =
K(s)

1 +K(s)AW
E(s) +

K(s)AW

1 +K(s)AW
UM (s) (5.4)

uss = lim
t→∞

u(t) = lim
s→0

s

{(
K(s)

1 +K(s)AW

)
ǫ

s
+

(
K(s)AW

1 +K(s)AW

)
η

s

}

(5.5)

= lim
s→0

s

{(
kps+ ki

s(1 + kpAW ) + kiAW

)

ǫ+

(
kpAWs+ kiAW

s(1 + kpAW ) + kiAW

)

η

}

(5.6)

=
ǫ

AW
+ η = um(∞) +

1

AW
e(∞) (5.7)

Full Order Dynamic Anti-Windup

Figures 5.17 and 5.18 show the response of the system with Full Order Dynamic Anti-Windup, and a block

diagram depicting its implementation is shown in Figure 5.15. The linear plant modelused for anti-windup

design is selected with the nominal mechanical damping value,bm = 0.05, as this represents the normal mode

of operation. Since the number of plant outputs and inputs are both equal toone, the performance matrix,

Wp is a scalar and set to unity. The trade-off between performance and robustness is achieved by varying the
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Figure 5.13: Single axis model response with Conventional Anti-Windup andnominal mechanical damping
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Figure 5.14: Single axis model response with Conventional Anti-Windup andincreased mechanical damping
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magnitude of the robustness weightWr (also a scalar) with respect toWp. Starting from a value of 1, the

magnitude of the robustness weight is increased to bias the optimisation toward maximising performance and

a value of 100 was found to provide good results. The resulting design achieves anL2 gain boundγ = 5.25,

and the compensator state space model (4.20) is parameterised by (5.8) giving the continuous time state space

model of (5.9). The frequency domain behaviour of this compensator is shown in Figure 5.16. Note that the

block diagram and state space models are given in continuous time as the design is synthesised in this domain,

but conversion to discrete-time in both cases is trivial.
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Figure 5.15: Single axis full order anti-windup block diagram

Single axis full order design 1:

F = −0.1094 (5.8)




M(s) − I

G(s)M(s)



 ∼







−0.1719 1

−0.1094

1.037

0

0







(5.9)

With the first design, the response to acceleration demands is very good withrise times that are among the

fastest and very comparable to the linear system response. Whilst the infeasible reference is present (Figure

5.18), the compensator acts to constrain the controller output, preventing theintegrator from accumulating

excessive energy. Tracking of the deceleration demand is much improvedover the case without anti-windup

but cannot match that of the back calculation methods. A crucial difference in the design of this compensator

is that it does not seek to minimise the extent of saturation as the other designs do. Instead, the design brief

for this compensator type is to minimise the deviation fromlinear performance, i.e. the performance of the

system without saturation. This is dependent upon the linear model used in synthesis and so for any system with

varying plant dynamics, the trim point chosen can have a significant effect on the behaviour of the resulting

design. This is illustrated by comparing this design with a second design achieving anL2 gain performance

bound ofγ = 3.16 defined by (5.10) and (5.11), based on the linear plant model withbm = 0.2,Wp = 1

andWr = 100. The frequency domain behaviour of this compensator design is also included in Figure 5.16.

Note that with this design, channel one of the compensator has very little effect and the anti-windup action is
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affected almost entirely by feedback to the controller input as with Conventional Anti-Windup. In spite of this,

performance exceeds that of the CAW design. Part of the reason for this is that the frequency shaping present

in the second compensator channel allows the compensator to constrain the integrator state more effectively at

steady-state without causing stability problems at higher frequencies.

Single axis full order design 2:

F = −3.12e− 6 (5.10)




M(s) − I

G(s)M(s)



 ∼







−0.25 1

−3.12e− 6

1.037

0

0







(5.11)

Simulation results for this second compensator design are shown in Figures 5.19 and 5.20. When comparing

the performance of the two designs on the simulation model withbm = 0.05 (Figures 5.17 and 5.19), little

difference is observed because the period of saturation is quite short. However, for the simulation model with

bm = 0.2, there is a marked difference: Design 2, which is designed around this condition, exhibits a much

faster return to linear behaviour, taking approximately 10 units of time (Figure5.20) compared to 40 for Design

1 (Figure 5.18). The explanation for this is simply that since Design 1 is basedon the model dynamics with

bm = 0.05, it aims to provide performance akin to the linear case withbm = 0.05 even when the system

properties deviate from those of the design model.

As the system is expected to operate with nominal mechanical damping for the majority of the time, Design 1

would be the obvious choice provided that it is sufficiently robust, in terms ofstability and performance, to the

known variation in plant dynamics. If this was not the case, for instance if the performance withbm = 0.2 was

deemed to be undesirable, it may be appropriate to alter the dynamics of the design model to compensate. As

an example, a better performance compromise between the two simulation cases may be obtained if the design

model was parameterised withbm = 0.1 i.e. somewhere between nominal and cold. Another observation

regarding the two designs is that tracking of the reverse step demand for the case wherebm = 0.2 is faster with

Design 1 and so in one sense, overall performance of the system may be perceived to be better even though it

deviates more from linear performance.

5.1.2 Performance Comparison

The output tracking responses for each of the anti-windup designs described are included together in Figures

5.21 and 5.22 to aid comparisons between the different approaches.

Simulations with bm = 0.05

With the nominal mechanical damping value it is clear that the back calculation approach is the worst perform-

ing design. The remaining designs all perform quite similarly, partly becausesaturation is not severe and is

quite short-lived in the simulation. The system with conventional anti-windup exhibits the smallest deviation

from linear performance, arguably followed by the simulation without anti-windup and the full-order dynamic
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Figure 5.17: Single axis model response with Full Order Dynamic Anti-Windupand nominal mechanical

damping. Anti-windup design 1: Based on linear plant model withbm = 0.05
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Figure 5.18: Single axis model response with Full Order Dynamic Anti-Windupand increased mechanical

damping. Anti-windup design 1: Based on linear plant model withbm = 0.05
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Figure 5.19: Single axis model response with Full Order Dynamic Anti-Windupand nominal mechanical

damping. Anti-windup design 2: Based on linear plant model withbm = 0.2
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Figure 5.20: Single axis model response with Full Order Dynamic Anti-Windupand increased mechanical

damping. Anti-windup design 2: Based on linear plant model withbm = 0.2
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design; the former overshooting a little and the latter undershooting a little. The Back Calculation and Tracking

design suffers a larger undershoot but as shown previously, this could be re-tuned to improve performance.

Simulations with bm = 0.2

For the simulations replicating a cold start with higher mechanical damping, the extended period of saturation

introduces a much greater spread of performance between the acceleration and deceleration tests. Only the

back calculation approach shows a noticeably different response forthe acceleration step and this is because

the integrator is reset unnecessarily.

In response to the deceleration step, the system without anti-windup performs worst followed by that with

Conventional Anti-Windup as the tracking is slower than the linear simulation. Allof the other designs aid

the system to meet the next setpoint quicker than the linear case. If we are toconsider deviation from linear

performance, CAW and the full order dynamic design would be considered best, followed by the two back

calculation methods. However, if overall system performance is considered, we might consider that the two

back calculation designs perform best, followed by full order dynamic AWand CAW. Note that for other

systems, this deviation from linear performance may not be considered to bebeneficial.

Summary

This section has studied a simple model of the PMSM system under consideration. Although the model is

simple, it enables a rough illustration of some of the saturation problems and alsoa rough idea of the suitability

of the various anti-windup architectures. Both the CAW and Back Calculationanti-windup designs have been

seen to perform relatively poorly with this model, the former due to its inability to constrain the integrator

state adequately during saturation and the latter due to its excessive manipulation of the integrator state when

saturation is caused very briefly at the onset of a large change in the reference. Consequently both of these

techniques will be discounted for use on the more complex model. The Back Calculation and Tracking, and

the optimal dynamic anti-windup designs all performed well and are consequently chosen as candidates for

application to the more complex model.

The complex model, described in Chapter 3, is of significantly greater complexity than the simple model, with

more states and nonlinearities in both plant and controller, making it a more challenging design problem. The

remaining sections of the chapter discuss how the more promising anti-windup techniques can be adapted to

this model and reports extensive simulation and experimental results.

5.2 Current Demand Constraint Implementation

One of the crucial differences between the simplified model discussed above and the real system is that, in

the simplified model, thed-axis is simply ignored and the constraints on thed-q-axis current demand (control

signal) are severely approximate. A more realistic model of the PMSM speed control system is depicted in

Figure 5.23, where the constraint on the motor current demand is a limit on the norm of the vector according to

(5.12). This can also be expressed as (5.13) and is represented in the block diagram bysat(||.||).
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√

i2d,dmd + i2q,dmd ≤ imax (5.13)

It is obvious that this multivariable constraint is not consistent with standardanti-windup design, both because

it is not decentralised and because the constraint is not applied at the plant input. In order to fit an anti-windup

framework where the saturating signals are inputs to the plant, we consider the inner loop current control system

to be the effective plant, and the outer loop PI regulator and phase advance algorithm to constitute the controller.

Thus, the current demand saturation constraint is considered to be a plant input limitation. The complexity of

this saturation constraint is that the limit is a nonlinear function of the plant inputs. It may appear simple

to apply independent constraints on each element of the current demand vector. In principle this is possible

and modern anti-windup methods such as found in [24, 84] are certainly capable of dealing with multivariable

saturation constraints. However, for this application there are a number ofcomplications with this. Firstly,

there is not a unique solution to (5.13) for a given limitimax.

Let us define limits on thed andq axis components of the current vectorid,lim, iq,lim such that

√

i2d,lim + i2q,lim = imax (5.14)

holds. Any current demand vector[id,dmd iq,dmd]
′ for which |id,dmd| ≤ id,lim and|iq,dmd| ≤ iq,lim will also

satisfy (5.13). However, there are a continuum of possible solutionsid,lim, iq,lim satisfying (5.14) and it is not

trivial to select a set of constraints that are appropriate. This is shown inFigure 5.24 where we consider a

possible current demand vectoridq,dmd with norm at the limit,imax.

The set of constraints[id,lim iq,lim]′ = [id2 iq2]
′ satisfy (5.14) but are inappropriate for the given current

angle since the limit oniq,dmd would already be violated even though|idq,dmd| ≯ imax. Such a set of constraints

would cause the compensator to activate prematurely and seek to drive the motor current vector toward̃idq,dmd.

An appropriate set of constraints for the given current demand vectoris [id,lim iq,lim]′ = [id1 iq1]
′. Given
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this example it is simple to see that the limits on each element ofidq,dmd would be required to vary in real time

in accordance with the current angle. This is entirely possible but would require significant online computation.

−imax

i dq,dmd

i q,dmd

i max

i q1

i q2

i d,dmd
i d1id2

i dq,dmd
~

Figure 5.24: Possible elementwise current limit models

The second complication relates to the action of the controller being asymmetric in that its behaviour during

deceleration is significantly different to that during acceleration. This will be explained with reference to Figure

5.25 which shows the structure of the speed regulator and phase advance function a little more explicitly.

During normal operation, theq-axis current demand can adopt both positive and negative values, producing

accelerating or decelerating torque. However, thed-axis demand is always negative or zero whether accelerating

or decelerating asid,dmd is defined to be proportional to−|iq,dmd|. When the speed controller is linearised the

nonlinear modulus term is lost and thus wheniq,dmd becomes negative, the linear model producesid,dmd ≥ 0

which is incorrect. This discrepancy is highlighted by considering the expected behaviour of the nonlinear and

linear models in acceleration and deceleration conditions as summarised in Table5.3.

Advance
Map

Phase

|(.)|

Controller
Linear PID

φ

Nonlinear d−axis speed controller component

−tan(.) X
ω

ω

id,dmd

i q,dmd

m,dmd

m

Figure 5.25: Nonlinear speed controller

The error identified in the linear model would prevent any synthesis routinebased on linear systems theory from

generating a compensator design that would deal effectively with bothd andq axes of the system. This can be
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Operating condition Linear model Nonlinear model

Acceleration ω̇m > 0 ω̇m > 0

ωm > 0 ωm > 0

iq,dmd > 0 iq,dmd > 0

id,dmd < 0 id,dmd < 0

Deceleration ω̇m < 0 ω̇m < 0

ωm > 0 ωm > 0

iq,dmd < 0 iq,dmd < 0

id,dmd > 0 id,dmd < 0

Table 5.3: Possible operating conditions and their representation by the linear and nonlinear models

seen by considering how a successful anti-windup compensator would act during acceleration and deceleration.

In the acceleration condition the linear and nonlinear models broadly agree,and a successful anti-windup

compensator would seek to makeiq,dmd less positive and driveid,dmd in the positive direction in order to

reduce the magnitude of the current demand vector. In the deceleration condition, the linear and nonlinear

models fundamentally disagree and the linear model predictsiq,dmd < 0 andid,dmd > 0. A successful anti-

windup compensator for the linear model would seek to makeiq,dmd less negative and also driveid,dmd in the

negative direction in order to reduce the magnitude of the current demand vector. When such a compensator

is applied to the nonlinear system, it will operate as desired during acceleration, but during deceleration it will

drive thed-axis current demand in the negative direction. Since, this is already negative, this will actually

increase the magnitude of thed-axis element of the vector and will either slow the departure from saturationor

even drive the system further into saturation.

SISO treatment of norm saturation

To overcome the problems described in the previous section with respect to the d-axis portion of the model

we convert the norm limit to a time-varying constraint exclusively on theq-axis current. The threshold of this

constraint,iq,lim, is determined as a function of thed-axis current demand according to (5.15) whereimax is

the maximum allowable magnitude of the current vector andiq,lim solves (5.16). A graphical depiction of this

limit is shown in Figure 5.26.

iq,lim = ±
√

i2max − i2d,dmd (5.15)

∥
∥
∥
∥
∥
∥




id,dmd

iq,lim





∥
∥
∥
∥
∥
∥

= imax (5.16)
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Figure 5.26:q-axis current limit model

This saturation limit, although parameter varying, can still be described as a sector bounded nonlinearity to fit

in with the compensator synthesis frameworks of [91, 88, 24]. This is shown in Figure 5.27 where the following

two saturation functions with different saturation limits are shown to be enclosed by the sector bound[0,I].

sat1(u) =







ū1 ∀ u ≥ ū1
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Figure 5.27: Sector bounded nonlinearities

A limitation with this approach is thatiq,dmd ≤ iq,lim will only imply ||idq,dmd|| ≤ imax if |id,dmd| ≤ imax.

For |id,dmd| > imax, the solutions to (5.15) are complex, which is of course not possible in practice, so a more

appropriate description of the constraint is given in (5.17).
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iq,lim =







±
√

i2max − i2d,dmd, |id| ≤ imax

0, |id| > imax
(5.17)

One may have the concern that a compensator driven by violation of this scalar saturation limit will affect the

q-axis current magnitude only, leaving thed-axis current unchanged, and altering the current angle from that

of idq to that of ĩdq (Figure 5.26). However, for the controller we consider, the current angle is determined

exclusively by the phase advance map and so any reduction made to theq-axis current demand will also have

a direct and proportionate effect on thed-axis demand. Thus, we are able to handle a nonlinear multivariable

constraint effectively using a single time-varying scalar constraint.

5.3 Models for Anti-Windup Design

All of the optimal anti-windup design techniques are model-based; that is theyrequire linear models of the

plant, and also the controller in the low-order and static cases, in order to besynthesised. Furthermore such

linear models enable other anti-windup designs, such as the BCAT techniques, to be analysed in a more rigorous

way. Unfortunately, both the controller and the “plant” (inner loop current control system) depicted in Figure

5.25 are both nonlinear and hence to apply the anti-windup analysis and synthesis techniques discussed, need

to be linearised.

Due to the modelling of the current constraints described above, we concentrate only on theq-axis behaviour

of the speed controller. The behaviour of the nonlineard-axis portion of the controller is far less important to

consider for anti-windup design since it does not contain any dynamic elements and its main function is simply

to alter the trim point at which the motor current control loop operates. In addition, the phase advance angle is

scheduled with motor speed which varies with significantly slower dynamics thanthe electrical system in which

saturation occurs. Therefore, we choose to consider only theq-axis portion of the controller in the model that

will subsequently be used for compensator synthesis. Thed-axis current demand, along with the mechanical

load torque are considered to be disturbance inputs to the linear plant model.

To generate a linear plant model, thed−q axis motor model equations (3.10) are linearised using the equilibrium

(trim) conditionsωm,lin, id,lin, iq,lin, with corresponding equilibrium inputsVd,lin, Vq,lin andloadlin, yielding

the linear state-space model of (5.18). The dynamics of the linear model aredependent on the trim conditions,

most notably the motor speed. Thus, the speed at which the model is linearisedis an important consideration

in developing a representative linear model. It should also be noted that, asthe motor has several inputs, there

is not a unique trim point at a given speed; a wide range (a continuum) of voltage vectors could result in the

same speed at steady-state. The trim condition is dependent upon the current angle and the applied load as well

as the chosen speed. To ensure that the linear models produced represent the true behaviour of the model at a

given speed and load, the trim conditions were determined from closed loopsimulation results at steady-state,

as for a given motor speed and applied load, the phase advance map in place enforces a unique voltage vector.
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The linear model that results is then combined with the PI regulators of (5.19) toform a linear model of the

closed loop current control system withd andq axis current demand inputs. As the d-axis demand is considered

to be a disturbance signal, this input is ignored, and by considering only themotor speed output,ωm, we are

left with the SISO model fromiq,dmd to ωm of (5.20). Here, states one and two represent thed andq-axis

currents respectively, state three represents the motor speed and statesfour and five correspond to thed and

q-axis integrator states in the current loop.
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(5.20)

It was noted in (3.10) of Chapter 3.4 that the motor model is a Linear ParameterVarying (LPV) system. This

potentially opens the door to the use of LPV anti-windup techniques such as found in [4, 17] in which the

anti-windup compensator is scheduled with the varying dynamics of the system.Such an approach may offer
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improved performance and greater robust stability properties. However, the possibility of achieving this in

the PMSM speed control loop is complicated somewhat by the fact that the LPVmodel is present within the

feedback loop of the current control system, and additional parameter variation is brought about by the phase

advance function. For these reasons, LPV anti-windup techniques were not tested although in principle it may

be possible to derive an LPV approximation of the plant model dynamics in order to apply these techniques.

5.3.1 Linear Model Dynamics

A linear model produced at a speed of 1/3 normalised units, given by the parameterised state space model of

(5.21) was found to be a good choice for compensator design. The choice of linearisation speed was made based

on the conditions for which current demand saturation was considered to be most problematic. To understand

this better let us consider the required operation of the control system andthe conditions for saturation to occur.
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x (5.21)

The speed control system is required to operate at an idle speed and accelerate quickly to step inputs. The

magnitude of these steps is variable but can extend to the maximum speed capability of the motor. For current

demand saturation to occur, quite a large change in the speed demand is required, for instance, accelerating from

an idle speed of 1/6 units to 2/3 units or more. In such an example, during the time the compensator is active,

the motor will accelerate toward the speed reference and so the dynamics ofthe plant will vary. The linear

model dynamics should be a good representation of the model throughout this speed range. The mid-point

between idle speed of 1/6 units and maximum speed of 1 may be a good compromise. However, when load

disturbances are applied the speed range will be limited and saturation will occur at lower speeds. In addition,

saturation is likely to be most severe at the onset of the largest step demand i.e. when the speed is low. For

these reasons a linearisation speed in the lower third of the operational speed range is considered to be a good

compromise. Should the compensator remain active for a significant period following the high speed set-points

being reached, it may be necessary to increase the linearisation speed to enable the compensator behaviour to

better match the system in this region.

Figure 5.28 shows the variation in dynamics of the linear current loop model from q-axis current demand to

motor speed. Initially as the speed increases from 0 there is no change in dynamics, then at 1/6 units where

phase advance comes into operation variation in the dynamics start to appear. As the linearisation speed is

increased further, gain in the 1 to 100 Rad/s region increases and beyond 100 Rad/s, the gain drops off more
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abruptly. In terms of phase, increased motor speed provides reduced phase lag below 2 Rad/s but significantly

increased phase lag in the 200 to 500 Rad/s region. Based on this analysis,if a linearisation point were to be

chosen to best represent the dynamics over the whole speed range, approximately 2/3 units would be a good

choice.
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Figure 5.28: Variation of effective plant dynamics with motor speed under no load conditions

A time domain comparison of the nonlinear model and the linear model in responseto step inputs at theq-axis

current demand is shown in Figure 5.29. This comparison shows that the design model dynamics are a good

representation of the nonlinear system behaviour up to a speed of at least 0.6 units.
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Figure 5.29: Time domain comparison of linear and nonlinear models without saturation

5.4 Anti-Windup Designs for the Complex Model

In this section we present a number of different anti-windup compensators designed to deal with saturation

of the current demand vector. Tuning of the model based designs is aidedby continuous time simulations

based on the linear model descriptions presented in Section 5.3. Following a successful first pass, the designs

are discretised and tested with a multi-rate discrete time model incorporating the nonlinear phase advance

controller and a full three phase description of the motor and drive system.The designs were iterated upon

and re-simulated on the nonlinear model in order to maximise performance and provide sufficient robustness to

cope with the variation in dynamics that is present. For the ad-hoc methods, tuning was performed directly on

the nonlinear model.

Before the anti-windup designs are presented we consider first the behaviour of the nonlinear model without

anti-windup and also that of the model in the absence of the saturation constraints. These are important first

steps to gain understanding of the intended performance and also the extent of performance degradation caused

by saturation.

5.4.1 Nonlinear Model Behaviour without Saturation

The response of the nonlinear model to a series of step demands under noload conditions without any saturation

constraints applied is shown in Figure 5.30. The plots are normalised such that the maximum operational speed

of the motor, the maximum available torque, and the maximum magnitude of the current demand vector are
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Figure 5.30: Nonlinear model step responses - no saturation

equal to one. The magnitude of each step demand is1/6 units. Due to the changing dynamics of the system with

motor speed and increased coupling betweend andq axes at higher speeds, damping is observed to deteriorate

with increasing speed. In addition, the existing tune of the control system causes very large current demand

transients for such step demands in the high speed range; in the region of 2.5 times that of the current limit.

When larger step references are applied such as 2/6 or more in normalisedunits, the nonlinear model exhibits

instability as shown in Figure 5.31. In addition larger steps at lower speeds such as from 1/6 units to 5/6 units

also introduce instability. There are a number of possible causes of / contributors to this instability but for a full

consideration this discussion is deferred to a later section. For now, the key points to note are that the system

dynamics vary with motor speed and also with the size of the step reference. Of course, being a nonlinear

system, the type of input also has a significant effect on the response ofthe system but for the purposes of this

thesis, abrupt repeatable inputs such as steps are required to generatethe saturation phenomenon we desire to

investigate. To gain a better understanding of the system, it is useful to employsome linear analysis tools to

assess the properties of the nonlinear model linearised at various equilbrium points within the operating range

of the system.

5.4.2 Linear Stability Analysis

In order to perform any linear analysis, thed-q axis model is used rather than the three phase model as this

can be linearised readily. The limitation of this approach is that it does not consider the operation of the PWM

inverter which introduces a phase lag for discrete implementation as described in Chapter 3.9 and a contributor
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Figure 5.31: Nonlinear model unstable step response - no saturation

of phase lag is effectively ignored. Based on the PWM inverter model employed in the EPHS three phase

model, the phase lag is proportional to motor speed. Therefore, when assessing the linear analysis results, this

must be taken into consideration.

The EPHS model was linearised as described in Section 5.3 under a range of load conditions and operational

speeds to allow analysis of the stability properties of the speed loop. The speed and load range of interest was

quantised and stability properties were tested at each feasible combination. In Figure 5.32 the Nyquist plots for

each linearisation condition are overlaid. From visual inspection it is apparent that the gain and phase margins

are of a healthy size. Figures 5.33 and 5.34 show the gain and phase margins as a function of the motor speed

and applied load. For motor speeds below 1/6 units where field weakening operation is inactive, there is very

little variation in the closed loop dynamics as a function of motor speed and appliedload, and the gain and

phase margins are large. The application of a load torque during flux-weakening operation increases the gain

margin but decreases the phase margin. The minimum gain margin occurs at maximum speed under no load

and is large at 14.3 in linear units. The conditions in which the phase margin is ata minimum are in the speed

region of 1/4 under maximum load and also at maximum speed, giving values ofapproximately 57 degrees.

Based on this analysis, there are no conditions in which the closed loopd-q axis model would be expected to

be unstable in the absence of saturation. It was thought initially that the instability observed in the simulation

of Figure 5.31 may be due to the increased phase lag present in the three phase model. However, this was ruled

out as simulation tests using thed− q axis plant model also revealed the same instability problem.
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Figure 5.34: Discreted-q axis model speed loop phase margin variation

For thed− q axis model without saturation constraints although instability could be induced,it was found for

a smaller set of conditions than with the three phase model. Possible explanations for this difference between

the predictions of stability and observed instability in simulation are as follows:

• When the motor accelerates very quickly, the system operates away from any of the linear model trim

conditions and therefore the linear models fail to represent the system behaviour accurately.

• The phase advance map is linearised as two gains that are dependent upon the trim condition and so

in reality these gains are time-varying. This time variation is not taken into consideration in the linear

analysis and as such, we are effectively making use of the Aizermann Conjecture [45]. Aizermann

hypothesised that for a Lure type nonlinear system with nonlinear gain bound by [α, β], the nonlinear

closed loop would be stable if the linear closed loop formed by replacing the nonlinear gain by a static

gainγ is stable for allα ≤ γ ≤ β. This was shown to be untrue and hence could be a reason why the

linear analysis is optimistic.

5.4.3 Nonlinear Model Behaviour without Anti-Windup

A simulation response for the nonlinear model with saturation constraints applied is given in Figure 5.35. The

exogeneous inputs used for this simulation are the same as applied in the simulationresponse of Figure 5.30

which shows the response of the system without saturation. Thus, comparison of these two figures allows
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the effect of saturation on the system to be seen. The bottom plot in Figure 5.35 shows the boolean result

of ‖ũ‖ > ǫ whereũ is the difference between the constrained and unconstrainedq-axis current demand and

ǫ is a small positive number. For the first three step demands, the saturation limit isnot exceeded and the

response is identical to the case without the saturation constraints in place. For the subsequent step demands,

the rate at which the motor accelerates reduces as the current the controlsystem is able to inject into theq-axis

reduces. In spite of the saturation event, overshoot of the referenceis of a similar level to that in the simulation

without the saturation constraints and the oscillations that follow are of lower magnitude. Ordinarily one may

expect the saturated behaviour to be worse, but in this case the reducedmotor speed gradient as the set-point is

reached, caused by the restriction on control energy, makes the systemless susceptible to such oscillations. In

addition, the effective plant is stable and well damped (Section 5.3) and so the temporary break in the feedback

loop caused by saturation is not catastrophic to performance. Additional responses with higher magnitude

step demands are shown in Figures 5.36, 5.37 and 5.38. For these cases the effects of saturation are more

problematic and generally lead to more pronounced overshoots and longersettling times. With the acceleration

demand in Figure 5.38 the motor is accelerated from its idle speed up to the maximum operational speed of

the motor. Although this represents the largest step we may expect to observe in the real system, the response

initially is very good. It is only after the initial rise that the system exhibits strange behaviour and windup

causes the motor speed to exceed the set point. A critical point to note is that the presence of the saturation

constraints actually stabilises the system as many of these inputs caused instability in the simulations without

saturation. Some theoretical justifications for this phenomena have been given by Teel [83] but the complexity

of the model used here prevents an analysis based on those results.

The effect of static loads on the system response is shown in Figures 5.39and 5.40. The load is calibrated

such that when the maximum speed is demanded as in Figure 5.40, the speed attained at steady-state is reduced

by approximately 10%. The presence of this load increases the rise time to the feasible 4/6 unit reference of

Figure 5.39 compared to the no load case in 5.37 but the percentage overshoot and settling time are very similar.

When the load renders the reference demand infeasible as in Figure 5.40,the system is locked into saturation

and following some oscillations in the speed response, the response to the reverse step demand is delayed and

sluggish.

5.4.4 Anti-Windup Test Conditions

Analysis of the nonlinear system responses without anti-windup reveals that in order to test the anti-windup

designs we wish to apply to the system, a number of reference demands and load conditions must be considered.

The following are a small selection of conditions that capture the main characteristics of the nonlinear system

and shall be used for subsequent anti-windup tests in both simulation and experiment. These focus on applying

step changes to the speed reference that are large enough to induce problematic saturation and consider the

worst case applied loads. Note that the behaviour during deceleration is not considered. This is because for

practical application, deceleration demands are rate limited to prevent the motoracting as a generator and
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Figure 5.35: Nonlinear model 1/6 unit step responses - no AW
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Figure 5.36: Nonlinear model 3/6 unit step responses - no AW
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Figure 5.37: Nonlinear model idle to 4/6 unit doublet responses under no load - no AW
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Figure 5.38: Nonlinear model idle to max. speed doublet - no AW
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Figure 5.39: Nonlinear model idle to 4/6 unit doublet response under static load - no AW
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Figure 5.40: Nonlinear model idle to max speed doublet response under static load - no AW
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damaging the power electronic drive circuit. This alleviates the problems of saturation during deceleration as

will be shown in the experimental tests later in the Chapter. The presence of astatic load improves the damping

of the system and so the no load condition is generally considered to be the condition of greater interest for anti-

windup testing. However, the behaviour of the system when an applied loadrenders the reference infeasible

also leads to undesirable behaviour and so is also considered. The following three simulation conditions are

selected to allow performance comparisons between the varying anti-windupstrategies.

• Condition 1: Step demand from idle speed to maximum speed under no load

• Condition 2: Step demand from idle speed to maximum speed with a static load applied such that the

speed attained is reduced by 10% from the reference level

• Condition 3: Step demand from idle speed to 4/6 units under no load

5.4.5 Anti-Windup Designs

In this section the compensator designs developed for the nonlinear model are presented and the specifics of

their tuning detailed.

Back Calculation and Tracking

The back calculation and tracking design method described in Chapter 4.3.4 isfollowed, with the anti-windup

feedback gain increased progressively, starting at the reciprocal of the speed controller proportional gain (equiv-

alent to Hanus’ Conditioning). The gain was tuned to obtain the desired trade-off between constraining the in-

tegrator state during prolonged saturation, and limiting the loss of performance when severe but brief saturation

is caused. The resulting design for discrete time implementation as in Figure 5.7 is defined as

1/Tt = 0.38 (5.22)

Full order dynamic anti-windup

The current control system model of (5.21) is selected for anti-windup design for the reasons given in Section

5.3, along with the controller model of (3.12). Since the nominal linear closed loop system is SISO, tuning

of the full order dynamic anti-windup compensator is quite simple, requiring only that a robustness weight be

tuned, and the linearisation point of the current control system be chosen. In terms of linearising the plant, the

key parameters that define the trim point are the motor speed, the phase advance angle, and the applied load. As

the phase advance angle is fixed as a function of motor speed, this is a given. Any applied load only serves to

increase the damping of the plant model, leading to less problematic behaviour and so the no load condition is
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selected for anti-windup design, leaving only the motor speed trim point to be chosen. Although decreasing the

magnitude of the robustness weight leads to higher levels ofL2 performance, we wish to maximise robustness in

order for the design to be capable of maintaining closed loop stability for operation away from the linearisation

point and so the robustness weight is increased as much as possible without sacrificing performance. The

resulting design derived using the formulae of Turner et al. [88, 94] was achieved usingWr = 20. This was

discretised with a time step of 0.001 normalised units using the Tustin approximation,yielding the following

discrete model.

x(k + 1) =


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







0.1433 0.0265 −0.3818 0.6207 −8.3890
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

x(k) +




0.0000

0.0000



 ũ(k)

‖T ‖2 = 43.3595

Low order dynamic anti-windup

Due to the high order of the current control system model, the full order dynamic compensator produced has five

states. This is undesirable, particularly considering that the whole of the nominal control system has only three

states. In addition, high order implementations on the target microprocessor are particularly undesirable as the

limitation to fixed point arithmetic requires that each input, state, multiplicand and output signal be assigned

scalings to ensure that quantisation errors do not cause a significant deviation from the intended behaviour using

floating point arithmetic. This is trivial for first order filters but quite complexbeyond second order filters. As

a result, the low order dynamic anti-windup compensation scheme of [91] described in Section 4.4.5 is also

employed. Static compensation would be even more desirable in terms of computational simplicity but in this

case the LMI constraints for its design were found to be infeasible. In the low order method, providing that the

choice of filter dynamics allow the stability and performance conditions in the LMIto be satisfied, a dynamic

design consisting of two independent first order filters can be produced.

The same plant and controller model used for the full order dynamic anti-windup synthesis were selected for

design. The choice of filter dynamics was guided initially by approximating the dominant characteristics of

the successful full order design. Thus, given a plant linearisation condition and performance weight equal to

1 as in the full order case, the only other tuning parameter required was therobustness weight. Initially this

was set to a small value so as not to restrict the optimisation and the attention was given to the design of filter
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dynamics that provide a feasible solution to the LMI optimisation. A successfuldesign was found in which

both filters were chosen as first order low pass designs. From this feasible solution, the bandwidths of these

filters were varied and simulation tests performed in order to observe the effect on system behaviour. It was

found that the bandwidth of filterF1(s) had to be restricted as for stability of the nonlinear loop, the gain at

high frequencies had to be limited. If the bandwidth was too low, the compensator had little effect viaθ1 and

the design behaved very much like Conventional Anti-Windup, except lesseffectively. A higher bandwidth

was permissible for feedback viaθ2 and allowed better control over the integral state. Note that the Nyquist

frequency of the speed loop must be considered during the design stageas the speed of the filter dynamics are

bound by this. However, in this case the design was not restricted due to thecontroller sample rate. Fine tuning

the compensator bandwidths and the robustness weight resulted in the following design which was discretised

at a time step of 0.001 normalised units using the tustin approximation.

Θ1(z) ∼







x(k + 1) = 0.4274x(k) + 0.7018ũ(k)

θ1(k) = −0.6224x(k) − 0.3112ũ(k)
(5.23)

Θ2(z) ∼







x(k + 1) = 0.6667x(k) + 0.8333ũ(k)

θ2(k) = 0.2206x(k) + 0.1103ũ(k)
(5.24)

‖T ‖2 = 43.3597

5.4.6 Simulation Analysis

The three compensator designs above, tuned for use with the nonlinear model, are compared against the Back

Calculation only approach in Figures 5.41-5.49 where the three test conditions defined in Section 5.4.4 are

applied. All three designs provide improved performance over the simulations without anti-windup and simu-

lations with back calculation only.

The plots for Simulation Condition 1 (Figures 5.41-5.43) reveal that as soonas saturation ceases the BCAT

design ceases to act and nominal control behaviour is resumed. However, the dynamic compensators remain

active for a period of time as the energy stored in their states dissipates, andthe full-order design is observed to

remain active for a significantly longer period than the low-order design. All designs are very successful and

allow the speed response to converge quickly to the set-point when saturation ceases. A greater performance

difference is observed in the response to the reverse step, and although this condition will not occur in practice

due to rate limiting of deceleration demands, it does suggest that the BCAT andlow-order designs may be more

desirable than the full-order compensator.

The plots for Simulation Condition 2 (Figures 5.44-5.46) reveal that saturation persists for the entire duration of

the high speed reference demand. Therefore, performance is equivalent until the reference or loading changes.

Whilst the control signal is saturated the plant output evolves in a manner determined mainly by the plant
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dynamics and no difference between the three systems is observed. Whilstin saturation, the behaviour of the

compensators may not have a direct influence on the plant output, but by piloting the states of the controller and

the controller output, the time at which saturation ends can be influenced and the behaviour of the control signal

immediately following the escape from saturation can be influenced. When saturation ceases, the differences

between the differing anti-windup designs are observed.

The plots for Simulation Condition 3 (Figures 5.47-5.49) reveal a more useful comparison. Saturation ceases

quite quickly after the onset of the step reference, allowing the anti-windupcompensators to have a greater

influence on system performance. In terms of overshoot of the high speed reference, the BCAT design performs

best, followed by the low-order and full-order designs. The three candidates provide very similar levels of

performance and so the differences are subtle. A comparison of the output responses for the three designs and

simulation conditions is given in Figure 5.50 allows the differences in overall performance to be seen more

clearly. The main points to note between the different designs are as follows:

• Performance levels are very similar for the three candidates

• The low-order design consistently matches or exceeds the performance of the other designs
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Figure 5.41: Condition 1 nonlinear simulation with BCAT



CHAPTER 5. ANTI-WINDUP DESIGN FOR EPHS MOTOR SPEED CONTROL 102

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

S
pe

ed
[n

or
m

al
is

ed
]

 

 

Demand No AW Back Calc. Full Order

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

0

1

C
on

st
ra

in
ed

cu
rr

en
t d

em
an

d
[n

or
m

al
is

ed
]

 

 
d−axis
q−axis

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

T
ru

e 
[1

] /
 F

al
se

 [0
]

Time [normalised]

 

 
Saturation detected
Compensator active

Figure 5.42: Condition 1 nonlinear simulation with Full-order AW
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Figure 5.43: Condition 1 nonlinear simulation with Low-order AW
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Figure 5.44: Condition 2 nonlinear simulation with BCAT
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Figure 5.45: Condition 2 nonlinear simulation with Full-order AW
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Figure 5.46: Condition 2 nonlinear simulation with Low-order AW
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Figure 5.47: Condition 3 nonlinear simulation with BCAT
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Figure 5.48: Condition 3 nonlinear simulation with Full-order AW
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Figure 5.49: Condition 3 nonlinear simulation with Low-order AW
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order AW
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5.4.7 Perturbed Anti-Windup Designs

The designs presented here represent the best performance attainable by each of the three anti-windup ap-

proaches on the nonlinear model. Due to inevitable differences between models and real systems there is a

further stage of fine-tuning when the designs are applied to the real system for experimental tests. With simple

control designs such as PI controllers, or simple anti-windup designs such as back calculation and tracking, mi-

nor modifications can be applied ‘online’ simply by altering gains, allowing the effects of perturbing the tune

from the nominal design to be observed directly. With more complex controllerssuch asH∞ designs, or the

optimal compensators we consider, the design cannot be fine-tuned manually. Instead, a useful approach that

can be employed is to generate a number of ‘perturbed’ designs by alteringtuning parameters a small amount

in one direction and another. Then, the effect of such perturbations onperformance in both simulation and

practical implementation can be seen. If the model is accurate enough to be useful for tuning, the best perform-

ing design on the simulation model should also be the best performing design onthe real system. In addition,

further confidence can be gained if the performance of the perturbed design differs from that of the nominal

design in the same manner in both simulation and experiment. Perturbed designs for both the BCAT and low-

order designs are presented in the following sub-sections. Note that the full-order design is considered to be

too computationally demanding for implementation and so is not chosen for experimental tests. Also note that

because the agreement between the model and experimental responses isnot high, quite coarse perturbations

are applied.

Perturbed BCAT designs

The following back calculation & tracking designs will be tested on the practical system, for which design 1 is

the nominal design and the anti-windup feedback gain is decreased and increased from nominal in designs 2

and 3 respectively.

BCAT design 1: 1/Tt = 0.38ũ

BCAT design 2: 1/Tt = 0.28ũ

BCAT design 3: 1/Tt = 0.48ũ

Perturbed low-order designs

The following low-order anti-windup designs will be tested on the practical system, for which design 1 is the

nominal design introduced in Section 5.4.5, and in designs 2 and 3, the bandwidth of the filter in channel 1 was

increased and reduced respectively. The amount by which this bandwidth was altered was selected to cause

a noticable difference in simulation performance in order for a correlation with experimental behaviour to be

made. Bode plots of the resulting compensator transfer functions are shown in Figure 5.54. Note that the
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low frequency gain of channel one is maintained at approximately one but that altering the bandwidth in this

channel significantly influences the gain in channel two returned by the optimisation.

Low-order design 1:




Θ1(z)

Θ2(z)



 ∼







x(k + 1) =




0.4035 0

0 0.6667



x(k) +




0.7018

0.8333



 ũ(k)




θ1(k)

θ2(k)



 =




−0.6224 0

0 0.2206



x(k) +




−0.3112

0.1103



 ũ(k)

‖T ‖2 ≤ 43.3597

Low-order design 2:




Θ1(z)

Θ2(z)



 ∼







x(k + 1) =




0.8182 0

0 0.6667



x(k) +




0.9091

0.8333



 ũ(k)




θ1(k)

θ2(k)



 =




−0.1989 0

0 0.3711



x(k) +




−0.0995

0.1856



 ũ(k)

‖T ‖2 ≤ 43.3669

Low-order design 3:




Θ1(z)

Θ2(z)



 ∼







x(k + 1) =




0.25 0

0 0.6667



x(k) +




0.625

0.8333



 ũ(k)




θ1

θ2



 =




−0.7593 0

0 0.0797



x(k) +




−0.3796

0.0398



 ũ(k)

‖T ‖2 ≤ 43.3588

Perturbed design performance analysis

Nonlinear simulation results for the perturbed designs are shown in Figures5.52 and 5.53 for Simulation Con-

ditions 1 and 3. As found previously, Simulation Condition 1 does not enable the subtle differences between

the different designs to be observed and the responses from Simulation Condition 3 found in Figure 5.53 are

much more revealing. Here we see that the more aggressive BCAT design 3exhibits less pronounced overshoot

and design 2, that is less aggressive than the nominal design, exhibits moreovershoot. As expected, the effect

of this single gain on anti-windup behaviour is quite transparent. For the low-order compensator, designs 2

and 3 both exhibit degraded performance compared to the nominal design.Noting that the tuning parameter

selected was shifted in opposite directions from nominal to generate these twodesigns, it shows that tuning is

less transparent.
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Figure 5.51: Frequency response plots of low-order compensator designs 1-3
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Figure 5.52: Nonlinear simulation responses of perturbed anti-windup compensator designs for Simulation

Condition 1
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Figure 5.53: Nonlinear simulation responses of perturbed anti-windup compensator designs for Simulation

Condition 3
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5.5 Experimental Validation

The low-order anti-windup and back calculation and tracking anti-windup designs were selected for experi-

mental testing on an EPHS test rig. Each design was coded in C using TargetLink rapid prototyping software

and incorporated into a prototype EPHS software release in order for it torun on the target 16 bit fixed-point

processor. The following sections give details of the tests and comparisons of anti-windup performance.

5.5.1 Experimental Setup

The PMSM shaft is attached directly to a rotary pump used to direct hydraulicfluid through a sequence of

hoses. The main flow path splits into two parallel hoses, one with a rotary valveflow restriction and one with a

stop tap. These valves are used to mimic the behaviour of the rotary valve on the steering column of a vehicle

equipped with EPHS. Down stream of these obstructions the fluid flow meets again and enters the return path

at the rotary pump. In the pump, as with all hydraulic power steering setups there is a pressure relief valve that

allows hydraulic fluid to bypass the main hydraulic circuit when the pressurewithin the pump exceeds a given

limit.

The electronic control unit (ECU) contains a 16 bit fixed point arithmetic processor on which the control soft-

ware runs, and the power electronic drive stage for the PMSM. CANapeby Vector Software running on a local

PC is used to apply motor speed reference demands to the ECU and also to record test signals. Communica-

tion between CANape and the ECU is achieved using the CAN protocol [5]. This is a serial communications

protocol using a two wire bus that has become widespread in automotive systems, partly due to its low cost.

Bandwidth limitations of the CAN protocol mean that a limited amount of data can be transmitted across the

bus. As a result, the frequency at which signals are logged by CANape inthe following experimental results

are generally lower than the frequency at which they are updated within theECU and the number of signals to

be logged simultaneously is also restricted. For commercial applications this is not a restriction as the require-

ments for communication over CAN are quite limited. As an example, a vehicle stability control system may

only require to receive measurements of the vehicle speed and a steering angle measurement. However, for the

purposes of these tests, the bandwidth limitation restricted the number of signalsthat could be measured at a

fast sample rate to four. For the simple designs such as BCAT,id,dmd, iq,dmd, ωm, ωm,dmd andũwere measured

of whichωm,dmd is a reference signal generated within CANape and the anti-windup signalis reconstructed as

the BCAT gain multiplied bỹu with a single speed loop sample delay applied.

For the low order dynamic compensator, the two anti-windup signals also needed to be logged. Reducing the

sample rate allowed the extra signals to be logged but the lower rate was not adequate to represent the fast

electrical dynamics. As a “work around”, signals were logged at the higher rate in two separate experimental

runs and the presence of the speed demand signal in both sets of measurements allowed them to be combined

afterwards. In run 1, the speed and current signals were recorded, and in run 2, the anti-windup signals were

recorded along with the speed reference. Although for the plots produced the anti-windup signals do not match
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the speed response exactly, the repeatability of the experiments was very good so the character of the responses

are genuine. This method is undesirable but unavoidable.

A further complication arises due to the serial nature of the CAN interface. Only one message can be sent at

any one point in time and this includes reference demands sent to the ECU, measurement signals requested

from the ECU and any additional diagnostic communications that may exist between the ECU and and the

vehicle computer, or in this case, the PC-based simulator. CAN communication is arbitrated by priority and

precedence and the reference signals applied and measurement signalsrequested may not be of the highest

priority. Therefore they may also conflict with each other and this is evidentin in some of the plots presented

here. For instance, when the results for different anti-windup designsare overlaid and aligned by the speed

reference, some systems respond a little later than the others, indicating that reception of the reference by the

ECU was delayed in some cases.

5.5.2 Experimental Results - Perturbed Designs

First let us assess the behaviour of the perturbed anti-windup designs.To allow comparisons with the simula-

tion results, experimental tests were performed with a reference demand sequence equal to that of Simulation

Condition 1, and with both hydraulic valves fully open.

BCAT perturbed designs

Time histories for the speed response of the system with BCAT designs 1-3 are shown in Figure 5.54. The first

observation is that unlike the simulation results for this condition in Figure 5.52, the motor speed accelerates

almost linearly up to and beyond the reference demand. The behaviour ofthe real system is better represented

by the behaviour of the model in Simulation Condition 3, shown in Figure 5.53.

Comparing the behaviour of the three designs, it is clear that design 2 exhibits increased overshoot and design 3

exhibits reduced overshoot compared to the nominal design. This trend matches that observed in the simulation

analysis. The discrepancy between Simulation Condition 1 and the equivalent experimental test is thought to

be a limitation of the model and will be discussed in a later section.

Low-order perturbed designs

Time histories for the speed response of the system with Low-order designs 1-3 are shown in Figure 5.55. Cor-

relation with the simulation responses for condition 1 shown in Figure 5.52 is poor. However, when compared

to the model behaviour in Simulation Condition 3, the same characteristics are observed. Design 1 performs

best, and designs 2 and 3 exhibit greater overshoots and worse damping. Furthermore, as with the simula-

tion predictions, design 3 performs the worst and the nominal design performs similarly to the nominal BCAT

design.
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Figure 5.54: BCAT designs 1-3: Experimental responses under no load

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

Low order AW design 1

S
pe

ed

0 0.2 0.4 0.6 0.8 1 1.2

0

1

2

3

4

5

6

7

8

9

uT
ild

e

Time

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

Low order AW design 2

0 0.2 0.4 0.6 0.8 1 1.2

0

2

4

6

8

Time

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

Low order AW design 3

0 0.2 0.4 0.6 0.8 1 1.2

0

1

2

3

4

5

6

7

8

9

Time

Figure 5.55: Low order designs 1-3 (based on linearisation speed 1/3 units): Experimental responses under no
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The correlation exercise reveals a deficiency in the nonlinear model toward the upper end of the speed range.

However, the match between experimental results and the model behaviour at slightly lower speeds suggests

that the fundamental dynamics are correct. This is supported by the fact that the nominal designs perform best

both in simulation and in practice, and also that the manner in which the performance of each perturbed design

degrades from the nominal is equivalent between simulation and experiment.

5.5.3 Experimental Performance Comparisons

Comparisons between the BCAT and low-order anti-windup designs with the experimental equivalents of Sim-

ulation Conditions 1-3 are shown in Figures 5.56-5.58. Also included in thesefigures are experimental results

for an in-house form of Back Calculation and the constrained system without anti-windup conditioning.

• Condition 1: Without anti-windup compensation, the high speed reference of Simulation Condition

1 is overshot by more than 20 percent (Figure 5.56). Each anti-windup design successfully improves

performance and reduces the overshoot to less than 10 percent. There is not a significant difference in

performance between each design and even the in-house Back Calculation method performs well.

• Condition 2: Figure 5.57 shows the system responses equivalent to Simulation Condition 2where a

flow restriction in the hydraulic hose restricts the maximum speed of the motor to approximately 10%

less than the magnitude of the high speed demand. As in the simulation analysis, saturation persists

for the whole duration of the high speed reference. During this time, the anti-windup designs have no

direct impact on the output response as the control signal remains in saturation. However, the compen-

sation can influence the length of time spent in saturation and such a difference can be seen between the

compensated responses and that without anti-windup.

When the reference demand drops, saturation ceases at the same point intime for all anti-windup com-

pensated responses and the deceleration ramp is properly tracked, indicating a swift return to linear

behaviour. For the system without anti-windup, windup causes saturationto cease later and the response

to the deceleration ramp is delayed. The delay is minor in this case because the controller output was

only lightly saturated at the onset of the deceleration demand, indicated byũ being small. Had the de-

celeration demand been applied at 0.9 units of time just prior to an overflow of the integrator state, the

effect would be significantly worse.

• Condition 3: Figure 5.58 shows the system responses to the acceleration demand of Condition 3. Here

the back calculation approach offers no improvement at all over the casewithout anti-windup and the

set-point is overshot by 24%. The BCAT and low-order designs perform similarly although damping is

marginally better with low-order dynamic compensation, and overshoot is reduced to 14%.

In Figure 5.59 the response of the system to the acceleration demand of Condition 3 with a hydraulic

load applied is shown. In this case, the test without anti-windup exhibited a similarovershoot of 23%.
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Interestingly, the back calculation approach does improve performance in this case and overshoot is

reduced to 18%. Again, the low-order and BCAT designs perform bestand provide similar levels of

performance. The low-order design does appear to provide better damping than the BCAT design and

overshoot of the reference is slightly less at just under 11% rather than13.5%.

5.6 Discussion

The practical implementation exercises presented in the previous section reveal that the low-order dynamic

anti-windup and back calculation and tracking approaches are both successful and appealing methods of con-

ditioning an EPHS speed control system to cope with current constraints. The back calculation and tracking

approach does not afford any guarantees of stability for the nonlinearsystem yet for the system it was applied

to, yielded very good performance with very little complexity in both design and implementation. Only one

tuning parameter is required and due to its simplicity, tuning is quite transparent, allowing the design to be

tuned online.

The low-order dynamic anti-windup design has some significant benefits over the more traditional designs

commonly used. One of these is that provided that the designer chooses thefilter dynamics appropriately, a

guarantee of global stability for the nonlinear system is provided at the synthesis stage. Furthermore, to aid

its tuning, the design approach is partly automatic as the synthesis routine seeks out an optimal gain matrix

to place in series with the chosen filter dynamics such that performance is optimised in anL2 sense. In this

application the performance of the low-order design is not a large improvement over that of the simpler BCAT

design but for more complex systems, the benefits can be more significant. The design also proves to be robust

as good performance and stability are observed away from the trim condition used for its design.
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Figure 5.57: Experimental responses - Condition 2
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Figure 5.58: Experimental responses - Condition 3
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Figure 5.59: Experimental responses - As Condition 3 but with static load applied
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5.6.1 Robustness

Low-order compensator stability and performance robustness

Stability of the nonlinear system with low-order anti-windup for operation away from the trim point used for

design can be assessed by using an LMI optimisation similar to that used for compensator synthesis. For

low-order compensator synthesis, recall that the plant, controller and compensator models are given by (5.25),

(5.26) and (5.27) respectively. For compensator synthesis we soughtto satisfy (5.28) for minimalL2 gain,γ.

The matrix inequality of (5.29) follows by substituting in for˙̄x, yd andu = ulin−ud, whereD̄ = D02 + D̄2Θ̃.

To check stability andL2 performance of a pre-designed low-order compensator, we desire to find a solution

to this inequality for a given perturbed plant model and compensator designparameterised by matrix̃Θ and

continuous time filtersF1(s) ∼ (A1, B1, C1, D1) andF2(s) ∼ (A2, B2, C2, D2). To this end, the LMI of

(5.30) in variablesQ > 0, diagonal matrixU > 0 and scalarγ > 0 is solved for minimalγ. This LMI is

obtained by pre and post-multiplying (5.29) by[Q U I]′ = [P−1 W−1 I]′ and applying the Schur Complement

to remove quadratic and bilinear terms.

G ∼




Ap Bpd Bpu

Cp Dpd Dpu



 (5.25)

K ∼




Ac Bcr Bc

Cc Dcr Dc



 (5.26)




M

N



 ∼







Ā B0 + B̄Θ̃

C̄1 D01 + D̄1Θ̃

C̄2 D02 + D̄2Θ̃







(5.27)

˙̄x′Px̄+ x′P ˙̄x+ y′dyd − γ2u′linulin + 2ũ′W (u− ũ) < 0 (5.28)







x̄

ũ

ulin







′





Ā′P + PĀ+ C̄ ′
2C̄2 P (B0 + B̄Θ̃) −WC̄ ′

1 + C̄ ′
2D̄ 0

∗ −2W + D̄′D̄ −W (D01 + D̄1Θ̃) − (D01 + D̄1Θ̃)′W W

∗ ∗ −γ2I













x̄

ũ

ulin






<0 (5.29)










QĀ′ + ĀQ (B0 + B̄Θ̃)U −QC̄ ′
1 0 QC̄ ′

2

∗ −2U − (D01 + D̄1Θ̃)U − U(D01 + D̄1Θ̃)′ I U(D02 + D̄2Θ̃)′

∗ ∗ −γI 0

∗ ∗ ∗ −γ










< 0 (5.30)
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The LMI of (5.30) is employed for the full range of operating conditions asused in the linear stability analysis of

5.4.2 with low-order compensator design 1. The existence of a solution to the LMI indicates that the nonlinear

anti-windup compensated system is globally finite gainL2 stable at the chosen trim condition. Furthermore,

theL2 gain bound,γ achieved is an indicator of performance at that condition. Figure 5.60 depicts the feasible

operating points for the system and identifies the conditions for which the LMIis satisfied by the intersection of

dark horizontal and vertical lines in the mesh. This result reveals that a guarantee of nonlinear stability is given

for the system compensated by low-order design 1 for the majority of the region of operation, that the conditions

for which stability cannot be guaranteed by the Circle Criterion are beyonda motor speed of 0.8 units and that

stability can be guaranteed at slightly higher speeds for reduced loads. Although the Circle Criterion does not

ensure stability for operation close to maximum speed, because this region ofuncertain system behaviour is

very small, it is not impractical for empirical stability tests to be employed.

In Figure 5.61 theL2 gain bound achieved is plotted against speed and load. TheL2 gain bound appears

constant for the majority of guaranteed stable conditions but adjacent to thehigh speed conditions for which

the LMI was infeasible (and, hence, for which theL2 gain bound is infinity), theL2 gain was significantly

larger. Although only isolated peaks are observed here, if the number ofpoints within the matrix of speed

and load conditions was increased sufficiently, a gradual rise inL2 gain would be observed as speed and load

increased toward the conditions for which the LMI became infeasible. Awayfrom these boundary conditions,

theL2 gain is essentially static. This is a positive result as it means thatL2 performance is largely independent

of the operating condition, and hence the low-order compensator exhibits both robust stabilityandperformance.

BCAT stability robustness

For the purposes of analysis, the back calculation and tracking design can be considered as a special case of

the static AW approach of [91]. To achieve this, the nominal controller and plant models used for analysis

are altered from that of the standard structure to (5.31) and (5.32). Notethat the measured plant outputs are

duplicated, allowing one to be used for the proportional term of the controller, and one to drive the integrator,

that can be modified by the anti-windup feedback.

K(s) ∼




Ac Bcr

[

0 Bc

]

Cc Dcr

[

Dc 0
]



 (5.31)

G(s) ∼







Ap Bp

Cp Dp

Cp Dp







(5.32)

A static compensator for this system,Θ = [Θ′
1 Θ′

2]
′ is equivalent to BCAT ifΘ1 = 0 andΘ2 = [0 1/(ki,spd ×

Tt)]
′ whereki,spd is the controller integral gain. The integral gain term is required because for this implemen-

tation, the anti-windup signal enters at the input to the controller rather than directly into the integrator state as
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with the conventional implementation of BCAT. Using the same tools as for the low-order anti-windup robust-

ness analysis, the LMI of (5.33) can be derived, which if feasible, provides a guarantee of stability for the BCAT

compensated closed loop system. Note that due to the modified controller and plant model implementation, the

constant matrices in the LMI have a different parameterisation, given in Appendix B.4.










QĀ′ + ĀQ (B0 + B̄Θ)U −QC̄ ′
1 0 QC̄ ′

2

∗ −2U − (D01 + D̄1Θ)U − U(D01 + D̄1Θ)′ I U(D02 + D̄2Θ)′

∗ ∗ −γI 0

∗ ∗ ∗ −γI










< 0 (5.33)

By requiring two elements of the anti-windup matrix,Θ, to be zero, the structure of the static anti-windup

compensator is restricted. In order for quadratic stability to be guaranteedthe2 × 2 upper left hand block of

(5.33) must be negative definite and if this is satisfied, the remaining part of the inequality allows theL2 gain

to be calculated. Thus, if there exists aQ > 0 and a diagonal matrixU > 0 such that this upper left block is

negative definite, the BCAT compensated system at the given trim point is guaranteed to be stable.

However, for this system and BCAT compensator, the upper left block ofthe LMI was always found to be

infeasible for all operating conditions and so no guarantee of stability for the BCAT compensated system could

be given, and consequenctly, noL2 gain could be given either.

5.6.2 Model accuracy

With Simulation Condition 1 the model failed to exhibit overshoot (Figure 5.43) and the rise time was signifi-

cantly longer than for the equivalent experimental test. This characteristicwas only observed at the upper end

of the speed range when a large step change in the reference demand was applied. There are three main areas of

the model that could be in error to cause this discrepancy; the PWM invertermodel, modelling of the hydraulic

load, and the parameters of the mechanical and electrical system model. As the PWM inverter model is a

known over simplification, this was an obvious first place to look. In reality, this is a complex nonlinear system

which if implemented fully within a Simulink environment would lead to a significant increase in simulation

time. Alternative software such as Saber is typically used for such models asthis is designed specifically to

represent the complex behaviour of such electronic and control circuits. An accurate model of the inverter was

not available during the research, although some useful information about the effect of the simple model used

can be obtained by comparing the behaviour of thed-q axis and3Φ models.

• PWM inverter model: Thed-q axis model is equivalent to the three phase model with an ideal inverter

in place. In comparison, with the discrete3Φ model, as the phase voltages are only updated at discrete

intervals in time, motion of the motor causes the voltage vector to effectively move into phase lag in

between samples compared to its demand. This effect is accentuated at higher speeds. Comparing the
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Figure 5.62: Simulation condition 1, comparison betweend-q axis and3Φ model speed responses
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d− q axis and 3Φ models in open and closed loop provides some insight about the appropriateness of the

PWM inverter in the 3Φ model.

Closed loop simulation responses for Simulation Conditions 1 and 2 are shown inFigures 5.62 and 5.63

respectively. The oscillations present in the 3Φ model response, particularly for Simulation Condition

2, give a much better agreement with the true system behaviour (Figure 5.57) and the frequency of the

oscillations at approximately 12 cycles per unit time is a good match.

To compare the open loop behaviour, a sequence of step voltage demandswere applied to theq-axis via

the input to the PWM inverter. The resulting speed and current responses of the 3Φ model and the real

system are shown back to back in Figure 5.64. The fundamental difference between the two sets of time

responses is that the voltage demand applied to theq-axis induces significantly more current in thed-axis

with the three phase model compared to that of the real system. This is more andmore pronounced as the

speed of the motor increases, and the smaller proportion of current induced in theq-axis leads to reduced

torque and therefore lower speeds for the same input. The same input sequence applied to thed− q axis

model generated the responses shown in Figure 5.65. In this case, the agreement is significantly better,

suggesting that the real PWM inverter operates much more like the ideal casethan its implementation in

the 3Φ model.

This analysis highlights an obvious limitation of the PWM inverter model for open loop behaviour but its

effect on the system in closed loop does improve the agreement with experimental data. It is considered

that the phase error introduced may not be representative of the real system but when the current loop

is closed, the system appears to become robust to this error, allowing for abetter match in closed loop.

Therefore, although simplistic, the PWM model is considered to be useful.

• Parameter estimation: To check if modifying model parameters could give rise to a better agreement

between the model and experimental data, the parameters that were considered to be most influential

were included in a parameter estimation exercise. In this approach, the structure of the model is retained

but values of its parameters are altered to minimise the overall deviation from experimental performance.

The process can be applied to open or closed loop systems in the time and/or frequency domain. The

process can be automated by the application of commerically available optimisation tools or performed

manually by altering each parameter in an iterative fashion to best match the measured system behaviour.

With parameter estimated models, although the input-output behaviour of the system may better match

experimental performance, the internal properties of the model may deviatefrom that in the real system

and it is possible for the estimated parameter values to be non-physical. This isparticularly true with the

automated tools that are available, where examples of non-physical valuesmay be an estimated resistance

that is 50% greater than that of the accurately measured component, or in extreme cases it is possible to

have impossible values such as negative inertias or inductances.

To develop a parameter estimated model of the EPHS system, a manual approach was adopted to fit

the open loop motor model to experimental responses in the time domain obtained byapplying step
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Figure 5.64: Open loop response comparison for the nominal 3Φ model with a sequence of step voltage de-

mands applied to theq-axis
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Figure 5.65: Open loop response comparison for the nominald-q axis model with a sequence of step voltage

demands applied to theq-axis
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voltage inputs to theq-axis via the PWM. Although with a manual approach the model fit may not be

quite as good as achieved with an automated approach, there are benefits toa manual approach and it

was quite feasible for this system due to the modest number of parameters to beestimated. Only the

lumped mechanical inertia,J , lumped mechanical damping,Bm, resistance,R, and inductance,L, were

considered. By independently varying each parameter and observing itseffect on the system, a better

understanding of the system was gained and in principle this can improve confidence about the validity

of the parameter estimates derived. Another benefit of the manual approach is that where a trade-off is

required in the model fitting, the engineer can make this trade-off intelligently

A comparison of open loop behaviour using an estimated parameter set is shown in Figure 5.66. This

model was fitted using the three phase model and so any error understoodto be caused by the inverter

model is effectively compensated for by altering the model parameters. With the estimated model there

is still a shortfall in motor speed compared to the real system but the variation insteady-state speed

with appliedq-axis voltage is in much better agreement. In addition, the proportion ofd and q-axis

current induced by the input sequence is in much better agreement throughout the speed range. The only

deterioration in agreement is that the parameter estimated model settles at the next steady-state speed

condition more abruptly than in the measured response.

These exercises reveal that error in the parameter values of the systemor error in the PWM model both appear

to be possible candidates for the cause of discrepancy in open loop responses. In reality, it is likely that a

certain amount of error is present in both of these aspects of the model and for a more rigorous analysis, a

match of frequency domain behaviour should also be sought. However, one barrier to this is that error in the

PWM model may alter the frequency response characteristics of the systemand lead to an incorrect estimation

of system parameters.

Some additional insight into the validity of the estimated parameters is gained by observing closed loop be-

haviour of the speed loop. A comparison of the three phase model with nominal and estimated parameters

against measured performance is shown in Figure 5.67 for Simulation Condition 1. Comparing the speed re-

sponses, the estimated model exhibits a similar overshoot of the high speed reference as the measured response.

In addition, a significantly better match is observed during the deceleration ramp. However, the rate at which

the motor accelerates to the step demand is a little too high with the estimated model, particulary during the

initial rise, and the settling time is significantly shorter than in the measured response. A similar comparison

for Simulation Condition 2 is shown in Figure 5.68. Here, damping of the nominal model is in better agree-

ment with the measured response but otherwise, ignoring the aforementioned excessive rate of acceleration, the

estimated model captures the fundamental characteristics of the measured response well. From observation of

these closed loop responses, it is clear that the parameter estimated model is too far removed from the nominal

model but in some respects the model agreement is improved. Therefore in combination with an improvement

to the PWM inverter model, a more rigorous system identification exercise may befruitful in fine tuning the

model behaviour.
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Figure 5.66: Open loop response comparison for the estimated 3Φ model with a sequence of step voltage

demands applied to theq-axis
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Figure 5.67: Comparison of nominal and estimated parameter models with measured response for Simulation

Condition 1 with low-order AW
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Figure 5.68: Comparison of nominal and estimated parameter models with measured response for Simulation

Condition 2 with low-order AW
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5.7 Summary

In this chapter the topic of applying anti-windup conditioning to compensate forcurrent saturation within a

PMSM speed control system was tackled. The application of a number of modern optimal designs and more

traditional ad-hoc designs were applied to a simple single-axis model of the PMSM speed control system for

application in Electrically Powered Hydraulic Steering. This simple model allowedsome of the characteristics

of the various anti-windup designs to be seen more clearly and a selection were chosen for testing with a

complex nonlinear three phase model of the same system with control implementedat multiple rates in discrete

time.

In the nonlinear model, the current demand saturation function is a limit on the magnitude of thed-q axis de-

mand vector. In order to apply linear anti-windup conditioning, a novel methodof interpreting this nonlinear

multivariable constraint as a time-varying magnitude constraint on a scalar signal was devised. This approach

allowed the synthesis of modern optimal anti-windup compensator designs forlinearised models of the com-

plex model. These designs were tested alongside an appealing classical design in simulation and then validated

by application on an EPHS test rig. In spite of some discrepancies between the model behaviour and that of

the real system, good performance was achieved by the anti-windup designs both in simulation and in exper-

iment. Furthermore, the effect of perturbations to the designs were observed to be similar in both simulation

and experiment. Therefore it was concluded that although the model may not be described as high fidelity,

the fundamental dynamics are correct, allowing successful model-baseddesigns to result. A brief foray into

understanding the limitation of the model revealed that the most likely cause of thediscrepancy is the PWM

inverter model, although parameter estimation may also serve to improve the model fit.

The culmination of the chapter is a successful Back Calculation & Tracking design (BCAT) and low-order

dynamic design. Both compensators were observed to perform very wellin both simulation and experiment

and both out-performed an in-house Back Calculation (BC) approach. The BCAT design, benefitted from ease

of tuning and exceptionally simple implementation. Unfortuantely it did not satisfy any nonlinear stability or

performance guarantees and hence tuning was largely simulation based. The optimal low order compensator

provided similar, if not slightly better performance and although the two first-order filters were easy to imple-

ment, they were obviously of greater complexity than the static BCAT compensator. Tuning was also relatively

easy, and, although some iteration is required, the extra degrees of freedom present in the filter tuning makes

it easier to achieve a satisfactory design. Perhaps the most significant advantage of the low order compensator

was the stability and performance guarantees it provides. The low order compensator tested (synthesised us-

ing a trim point at approximately one third of the maximum speed) was able to provide stability guarantees

for 95% of the PMSM’s operating envelope and yielded anL2 gain bound which was constant across most

of this. Such characteristics provide reassurance and confidence when implementing such compensators in

experimental systems.



Chapter 6

Override Control and its Application to EPHS Motor Control

In this chapter we introduce the topic of override control and demonstrate itsapplication as a method of handling

motor current magnitude constraints for the EPHS system of Chapter 3. Theanti-windup approach described

in Chapter 5 has shown success in simulation and has also been proven by practical industrial application.

However, one characteristic of the anti-windup approach is that the desired current constraint is imposed by

placing a limit on the magnitude of the currentdemandrather than theactual current. This was required to

translate the current limit into a plantinput constraint in order to be amenable to anti-windup compensation.

As a result, the anti-windup problem generated is, arguably, somewhat artificial. A crucial implication of this is

that in spite of the apparent success of a given anti-windup design, the motor current may still exceed the limit

even though the current demand does not. This is a fundamental limitation of theapplication of anti-windup to

this problem.

Override control is a strategy that enables constraints to be applied to statesand/or outputs of the plant. Since

the motor currents are states of the plant for the PMSM system we consider,the task of limiting current is

more naturally cast as an override problem. The following sections give anoverview of some existing override

control strategies and demonstrate the application of a chosen approach tothe current limitation problem. The

performance of this approach is then compared to the anti-windup based approach considered in Chapter 5.

6.1 Introduction

Override control has been developed as a strategy which allows limits to be imposed on some of the states

and/or outputs of a system. These limits are generally introduced due to safetyrequirements or to extend

component life by ensuring that they are operating within specification. When these limits are approached or

exceeded, a secondary controller ‘overrides’ the nominal controller inorder to prevent or minimise violation of

these limits. The origins of override control lie in the field of process controlwhere limits on system variables

such as pressure and temperature are required to be respected [20].Override control remains a little known

branch of control theory but it has been applied successfully to other application areas including flight control.
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Figure 6.1 represents a typical control system for which output limitation is required. The primary control

objective is defined as a tracking problem for which the plant outputy1(t) is required to track the reference

r(t). The secondary control function is to ensure that an additional plant output, y2(t), remains within the

range(y2min, y2max).

6.1.1 Classic Override Control Approaches

A classic override control solution to this problem described in [53] is depicted in Figure 6.2. This is a multi-

mode control system for which in the primary mode, controllerK1 is active exclusively and governs nominal

tracking performance for outputy1(t). The secondary control mode is designed to restricty2(t) to the range

(y2min, y2max) and a set of logical conditions govern the switching between modes. The secondary controller

is essentially a proportional regulator with gainP2 and an optional dynamic elementK2(s) to aid closed

loop stability. This secondary regulator is designed to causey2(t) to track towardy2max or y2min via the

corresponding control signalsuM (t) or um(t) and due to the steady-state error associated with proportional

control the constraints will be satisfied at steady state in the absence of disturbances. The proximity ofy2(t) to

the limits at steady-state and any overshoot allowed can be tuned by altering the gainP2.

To better understand the operation of this system let us consider the behaviour when a ramp reference signal

r(t) is applied such that the primary control signalu1(t) increases linearly with time and the secondary plant

outputy2(t) does likewise toward the positive upper limity2max. Initially, the secondary control signaluM (t)

is positive with a valueP2y2max and the primary control signalu1(t) = 0. As the reference is applied,

u1(t) departs from zero and becomes progressively more positive, whereasuM (t) becomes progressively less

positive. At a point in time the signals cross over such thatu1(t) > uM (t). This initiates a mode change and

the switching logic passesuM (t) on to the plant, preventing the ever increasing primary control signal from

driving y2(t) beyondy2max. Equivalent but opposite behaviour is observed asy2(t) approaches the lower limit

y2min.

This override control approach is typical of many classical approaches such as found in [19], sharing the

following common characteristics:

• When the output constraints are approached (or violated), an alternative controller is switched in
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Figure 6.2: Classic Override Control System

• When the secondary controller is active, the closed loop of the primary control system is cut, potentially

allowing controller windup

• Output limit violation is generally prevented entirely as the mode change is initiated prior to the limits

being met

Such approaches can be simple to design as the two control modes are exclusive. In addition, additional layers

can be added, making the override strategy ever more aggressive as thesecondary plant output gets closer to

the limit. However, one of the main drawbacks is that when the secondary controller is active, the primary

feedback path is cut. This means that outputy1(t) may not be controlled adequately and performance can be

forfeited. In addition, for coupled MIMO systems, violation of a single outputwould initiate a mode change

and may deteriorate performance for all outputs.

6.1.2 Override Compensation

An alternative to the multi-mode override control strategies described aboveis override “compensation”. With

this approach, the primary controller is always active and violation of a given set of constraints causes an

additional controller element called theoverride compensatorto become active. This compensator is designed

to modify the nominal control action rather than replace the nominal controller.In this respect, it is similar

to anti-windup in that the compensator is only active during and immediately after violation of the specified

constraints. The compensator is designed to minimise limit violation but also to maintain closed loop stability

whilst minimising deviation from the desired tracking performance. A simple representation of this structure

is shown in Figure 6.3. Note that in contrast to the classical approach described previously, this framework

does not allow violation of the limits to be prevented entirely. However, this can be entirely appropriate if

violation for short periods of time can be tolerated, particularly when operating close to the limit is important

for performance. For an overview of some modern override schemes which adopt this approach please consult

[19, 86, 85, 90]. Some of the main characteristics of the modern approaches are as follows:
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• The primary controller is always active, thereby helping to maintain tracking performance and distur-

bance rejection during limit violation

• Output violation cannot be prevented entirely as violation of a limit is required toactivate the compensator

(although it is possible to artificially lower the limits to produce a similar effect)

• Performance is optimised via a constrained synthesis routine

• Stability of the resulting nonlinear system is sought at the design stage
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Figure 6.3: Modern override compensation approach

6.2 Override Compensator Synthesis

In this work the override compensation methodology of Turner and Postlethwaite [86, 85, 90] is adopted due

to its powerful approach and intuitive and systematic synthesis. A block diagram showing the generic override

compensation framework used in this approach is shown in Figure 6.4. Herewe have a reference signal,r,

controller,K, and plant model,G. The outputs of the plant are partitioned as
[

y′c y′
]′

wherey ∈ Rny

represents the plant outputs used for feedback control andyc ∈ Rq represents the outputs we desire to impose

limits on, the so-called constrained outputs. The limits are modelled asym = sat(yc) according to (6.1)

and (6.2) whereq represents the number of constrained outputs andȳc,i represents the saturation threshold

on theith channel ofyc. Symmetric limits are defined here for simplicity but asymmetric limits can also be

accommodated.

sat(yc,i) = [sat(yc,1), . . . , sat(yc,q)]
′ (6.1)

sat(yc,i) =







yc,i ∀yc,i ∈ (−ȳc,i, ȳc,i)
sign(yc,i)ȳc,i ∀|yc,i| ≥ ȳc,i

(6.2)

The vector signal̃y, defined as the difference between the measured and saturated versions ofyc, becomes non-

zero when the limits are exceeded and is used to drive the override compensator,Φ, to regulate the constrained
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outputs to their respective limits viaφ. The signal̃y can also be defined using the deadzone function,Dz(.) =

I − sat(.), according to (6.3), producing the simplified block diagram representationof Figure 6.5.

ỹ = yc − sat(yc) = Dz(yc) (6.3)

The most powerful form of override compensation is that for which the compensator is given the authority

to directly alter all controller states and outputs. Other, more simple, override structures can be considered

as special cases of this such as in [61], but are not considered in this thesis. This flexibility is provided by

augmenting the state space matrices of the baseline controller. Assuming a two degree of freedom type baseline

controller withnc states, viz.

K(s) ∼




Ac Bcr Bc

Cc Dcr Dc



 .

The augmented controller representation has the form of (6.4) whereφ1 ∈ Rnc andφ2 ∈ Rm are the elements of

the override signal which alter the controller states and outputs respectively. The linear plant model is described

by the state-space representation of (6.5).

K(s) ∼







ẋc = Acxc +Bcrr +Bcy + φ1

u = Ccxc +Dcrr +Dcy + φ2

(6.4)
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G(s) ∼







ẋp = Apxp +Bpdd+Bpuu

y = Cpxp +Dpdd+Dpuu

yc = Cpcxp +Dpdcd+Dpucu

(6.5)

When the signalyc lies within the limits, we havẽy = 0 and the override compensator is inactive. Thus, a

pre-requisite for stability of the override compensated closed loop is that thenominal closed loop is stable and

well-posed, i.e. we have stability whenΦ ≡ 0. This is essentially the same requirement as that made on the

nominal closed loop system for anti-windup compensation as described in previous chapters except that there

is no requirement forAp to be Hurwitz for global stability.

Due to the fact that the override is activated only whenỹ becomes non-zero, some violation of the limit must be

tolerated. However, this can usually be reduced to acceptable levels by appropriate override design. In addition,

by setting the limits of the deadzone function a few percent lower than the desired physical limit, an amount

of ‘headroom’ can be provided. This can be useful to ensure that the constrained outputs lie below the desired

limit at steady-state.

6.2.1 Static Override Compensator Synthesis

Let us consider first the synthesis of a static override compensator for which Φ is a static matrix mapping

ỹ ∈ Rq to φ = [φ′1 φ
′
2]
′ ∈ Rnc+m. This is expounded in [86] using essentially the same tools as those used for

the synthesis of static anti-windup compensators in [91]. Static override compensation can be desirable as it

has no states, making it simple to implement and computationally efficient although there is no guarantee that

it will provide the desired performance.

The central objective of override compensation is to bring the signalyc out of saturation in a timely manner

when a limit is exceeded and to minimise the amount by which the limit is violated. This equates to returning̃y

to zero quickly and also minimising the magnitude ofỹ. A useful method of capturing these requirements math-

ematically is to consider the problem of minimising theL2 norm ofỹ. This performance objective is tackled by

minimising the inducedL2 gain between the exogenous inputw = [r′ d′]′ andỹ. A simplified representation

of the corresponding closed loop system is shown in Figure 6.6 where the state-space representation ofGcl

is given by (6.6) and the corresponding matrix definitions are deferred toAppendix C. Note that for override

synthesis the outputy need not be considered.

Gcl(s) ∼







ẋ = Ax+B0w + B̄φ

y = Cyx+Dy0w + D̄yφ

yc = Cx+D0w + D̄φ

(6.6)

A secondary performance objective used is to minimise the inducedL2 gain betweenw = [r′ d′]′ andφ =

[φ′1 φ
′
2]. This can help to restrict the magnitude of the compensator signalφ and therefore allow some control
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over the aggressiveness of the compensator. It also allows a trade-off between adhering to the limits onyc

and performance of the primary control loop. These two performance conditions are combined to form the

following cost function for which we seek to minimiseγ.

∥
∥
∥
∥
∥
∥




W

1/2
1 ỹ

W
1/2
2 φ





∥
∥
∥
∥
∥
∥

2

< γ ‖w‖2 (6.7)

Here the diagonal matricesW1 andW2 are used as weights to reflect the relative importance of each perfor-

mance condition. An initial choice ofW1 is typically an identity matrix, and then the diagonal elements can

be varied from 1 to trade-off the relative importance of each channel in the performance optimisation. An

initial choice ofW2 is typically a diagonal matrix with diagonals in the order of1e−5 such that the second

performance objective has minimal effect on the initial design. The gain of this matrix can then be increased

to add more importance to the second performance condition in the optimisation andreduce the magnitude of

the override signals. In addition, the matrix diagonal elements can be altered individually to favour feedback to

either the controller states or controller outputs.

For stability analysis of the override compensated closed loop we apply the Circle Criterion [45]. In order to

generate a synthesis routine, the same tools as used for the anti-windup compensator synthesis are applied.

Stability of the override compensated closed loop is guaranteed by the Circle Criterion, for which a sector con-

dition describing the deadzone function is combined with a quadratic Lyapunov function to form the inequality

of (6.8) inP > 0 ∈ Rnc+np and diagonal matrixW > 0 ∈ Rq.

d

dt
(x′Px) − ỹ′W (yc − ỹ) < 0 (6.8)

TheL2 performance condition of (6.7) is guaranteed to be satisfied if the inequality of (6.9) in the two norm

holds. Using simple matrix arithmetic and by application of the S-procedure, the performance and stability

conditions can be combined into the single inequality of (6.10). By substituting in for various signals and

applying tools such as the Schur Complement and Congruence Transformations, the LMI of (6.11) is produced.

This can be solved using standard LMI solvers, such as present in the MATLAB Robust Control Toolbox, to

minimise the scalarγ2 > 0 subject toL ∈ R(nc+np)×q, Q > 0 ∈ Rnc+np and a diagonal matrixU > 0 ∈ Rq.
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The static compensator matrix is then recovered asΦ = LU−1. More detail on the derivation of this LMI can

be found in [86].
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2

< γ2 ‖w‖2 (6.9)

d

dt
(x′Px) + ỹ′(W1 + Φ′W2Φ)ỹ − γ2w′w + 2ỹ′W (yc − ỹ) < 0 (6.10)
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
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




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< 0 (6.11)

6.2.2 Dynamic Override Compensator Synthesis

Static compensation can be applicable to many systems but with some practical systems it is desirable to limit

the bandwidth of the override control signal,φ. This may be simply to smooth the signal or to better manage

the performance and stability trade-off by shaping the frequency content of the signal. To this end, a synthesis

routine was designed by Turner and Postlethwaite [86] which allows the compensator to be specified as a trans-

fer function matrix,Φ(s). In addition to the above, when the constrained output measurements containnoise,

it is desirable to filter this out to prevent the noise component of the signal activating the compensator when

the true signal level is still within the limits. This is achieved by including a filter,Fo(s), on the constrained

outputs of the system.

The dynamic compensatorΦ(s) is chosen to consist of a dynamic element and static element in series according

to Φ(s) = Φ̃(s)Kφ. HereΦ̃(s) is the dynamic element chosen by the designer - usually a diagonal unity DC

gain transfer function matrix - andKφ is a static gain matrix to be synthesised. The positioning of these

additional elements in the system is shown in the block diagram of Figure 6.7.
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Figure 6.7: Dynamic override block diagram

Splitting the compensator into the componentsΦ̃(s) andKφ allows the additional dynamic elements to be

incorporated into the closed loop modelG̃cl(s), simplifying the system representation from that shown in
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Figure 6.7 to that of Figure 6.8. The optimisation problem that follows, therefore, is no more complex than for

the static compensator since we simply seek a static gain matrix,Kφ, which minimises the chosen performance

constraint and satisfies the stability condition.

~
G

K

y~
ψ

clw

φ

Figure 6.8: Simplified dynamic override block diagram

The output filter,Fo(s), and the dynamic element of the compensator,Φ̃(s), are described by (6.12) and (6.13).

These dynamics are absorbed into the state-space representation ofG̃cl(s) in (6.14) and definitions of the

matrices forG̃cl(s) are given in Appendix C.

Fo(s) ∼







ẋFo = AFoxFo +BFoỹc

yc = CFoxFo
(6.12)

Φ̃(s) ∼







ẋf = Afxf +Bfψ

φ = Cfxf +Dfψ
(6.13)

G̃cl(s) ∼







˙̃x = Ãx̃+ B̃ow + B̃1ψ

yc = C̃1x̃+ D̃01w + D̃1ψ

φ = C̃2x̃+ D̃2ψ

(6.14)

The performance condition which we seek to minimise is given by (6.7) as in the case of static compensation.

However, the signals̃y andφ now have a different representation. In particular,φ, is now an internal signal

within G̃cl and so an explicit expression forφ is required as given in (6.14). Using this expression forφ and

substituting inψ = Kφỹ, the performance condition is guaranteed to be satisfied if the inequality of (6.15)

holds. This is the equivalent of (6.9) in the case of static synthesis. The derivation continues in the same vein

as for static synthesis, resulting in the LMI of (6.16) in variablesL ∈ R(nc+m)×q, Q > 0 ∈ Rnc+np , diagonal

matrixU > 0 ∈ Rq and scalarγ2 > 0 for which we seek to minimiseγ.
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Given solutions to (6.16),Kφ can be calculated then asKφ = LU−1.

Notes on tuning:

Tuning of the dynamic compensator follows in a similar method as for static compensation except that there is

the additional freedom of choosing filter dynamics. As the presence of filter dynamics increases the complexity

of the controller implementation and computational demands, it is desirable to use first order filters where

possible.

For the noise filters,Fo(s), first order low-pass filters are usually adequate and the bandwidths can be chosen

based on an appropriate noise model. These filters typically have little influence on the optimisation result

as their bandwidth is usually significantly higher than those inΦ̃(s). The performance trade-off is generally

between noise rejection, achieved by reducing the bandwidth, and reducing phase lag in the feedback path,

achieved by increasing the bandwidth. To extract higher performance,one might consider higher order filters

with damping of less than 0.7 to reduce phase lag in the pass band.

The override input filter,̃Φ(s), is chosen usually as a diagonal transfer function matrix of unity gain low pass

filters, simplifying the tuning to the choice of appropriate bandwidths. A good method is to start with low

bandwidths and gradually increase them whilst observing the effect on performance. It is common that higher

bandwidths can be tolerated in the feedback to controller states than to the controller outputs as some low pass

filtering usually occurs within the controller.

The tuning of the dynamic override compensator is intrinsically more intuitive thanfor an anti-windup design

of similar complexity for two reasons. First of all, the closed loop system is stable without any compensation

applied. Secondly, there is little reason to consider filter types other than low-pass designs as for the output

(noise) filter we seek to reduce gain at high frequencies, and the compensator is mainly required to act at low

frequencies. However, there is much less work on override control in the wider literature so tuning rules are

still relatively crude.

6.3 Application to Current Limitation in PMSM Speed Regulation

As mentioned in the introduction, for the application of anti-windup to the current limitation problem in PMSM

speed regulation we made use of the cascade structure of the PMSM speedcontrol system to impose limits on

the motor currents via their demands. The success of this approach in limiting themotor current relies on the

premise that constraining the magnitude of the current demand to a given limit willcause the magnitude of the
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actualmotor currents to be constrained to the limit also. Due to integral action presentin the current controller

this constraint is satisfied at steady-state, but it may be violated transiently due to the dynamic relationship

between the motor currents and their demands. An example of this is shown in Figure 6.9 where the magnitudes

of the current demand and measured current in the anti-windup simulation model are compared. Note that even

though the current demand never exceeds the limit, the magnitude of theactualcurrent vector does violate the

limit. Also note that at the onset of the large speed step demand, the current demand is limited before the actual

current comes close to the limit. Therefore, for a period of time the limit on the current demand proves to be

conservative and unnecessarily restricts the control effort applied.This demonstrates the drawbacks involved

when using a limit on the current demand to impose a constraint on the actual current.
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Figure 6.9: Current saturation in the nonlinear model with anti-windup compensation

Since in the override approach, the limit is applied to theactual motor currents rather than the demand, the

application of override compensation may afford more confidence in its limitation of the motor current than

provided by the anti-windup approach.

6.3.1 Current limit model

The constraint we desire to impose on the motor current is a limit on the norm of the current vector according

to
√

i2d + i2q ≤ imax, (6.17)

hence, the limit is a nonlinear function of the plant states. This is equivalent instructure to the constraint applied

to the current demand vector for the purposes of anti-windup in Chapter 5and so similar options regarding how
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to incorporate the constraint and define the structure of the compensator apply. The key requirement for such a

constraint model is that it is a tractable linear function of the states.

One option is to define time-varying limits on both thed and q-axis current measurements such thatỹ =

[Dz(id) Dz(iq)] where the width of each deadzone function is determined by the phase advance angle and

the current limit. This would facilitate a multivariable override design that is driven by the vector signal̃y and

feeds back to both elements of the current demand vector and also the motor speed measurement. However,

one problem with this is that because the sign ofid should not change during acceleration and deceleration,

violation of thed-axis constraint would cause the compensator to drive the motor speed measurement in the

same direction whether the external inputs demand an acceleration or deceleration. Supposing that the limit

is violated during acceleration, the compensator could be designed such that violation of thed-axis constraint

would drive the speed measurement in the positive direction, thereby reducing the magnitude of the error signal

and aiding the system to respect the limits. In the deceleration condition the same compensator would also

drive the speed measurement in the positive direction, increasing the magnitude of the error signal and serving

to drive the system further into saturation. A neat solution to this problem is to adopt a SISO representation of

the constraint similar to that used for anti-windup application.

Let us consider that the current angle is determined exclusively by the phase advance map such that thed-axis

current demand is a function of the motor speed and theq-axis demand. Furthermore let us consider that the

output of the override compensatorφ = [φ1 φ2]
′ influences theq-axis current demand directly byφ2 and via the

controller dynamics byφ1. The compensator can now be driven by violation of theq-axis current measurement

alone and the threshold of the limit on theq-axis can be defined as (6.18). With this approach the number of

compensator input and output signals is reduced by one. This reduces the size of the compensator gain matrix

by four elements and may halve the number of states required for the input filter in a dynamic design.

iq,lim =







±
√

i2max − i2d, |id| ≤ imax

0, |id| > imax
(6.18)

As mentioned previously, the form of override compensation adopted doesnot prevent violation of the con-

straint entirely because the constraint must be exceeded for the compensator to become active. To reduce the

amount by which the limit is exceeded it is common to set the limit in software a few percent lower than the

limit we wish to enforce. In this example this would be achieved by calculatingiq,lim according to (6.19) with

k < 1. This can be very effective when the limit is approached quite slowly but when approached quickly,

delays in compensation due to filter dynamics, time delays and the dynamic properties of the current control

loop can result in the limit still being exceeded. In this case, further reduction to the value ofk may be required

with the adverse effect that the limit is reduced further in steady-state operation.

iq,lim =







±
√

(k imax)2 − i2d, |id| ≤ imax

0, |id| > imax
(6.19)
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An appealing approach to tackling this problem may be to include derivative action in the compensator. This

could increase the aggressiveness of the compensator when the limit is being approached more quickly. How-

ever, the ‘aggressiveness’ may still be fundamentally limited by stability considerations and for practical sys-

tems, derivative control tends to make a system sensitive to noise. Anotheroption would be to use a lead-lag

filter design forF0(s) or Φ̃(s) to provide phase advance in a restricted frequency range although this may also

increase noise sensitivity. Ad-hoc methods that temporarily lower the limit whena large transient violation is

expected could also be employed.

6.3.2 Linear simulation results

In the same manner as used for the anti-windup designs of Chapter 5, a linearmodel of the current control

system is constructed using a trim speed of 0.5 units under no load. Then thephase advance map is linearised

and incorporated into the current control system model to form the linear model,G(s), which we consider to

be the plant for the purposes of override design. The derivation of thismodel is included in Appendix C.2.

The resulting state-space model is given in (6.20) for which the single inputis theq-axis current demand and

the plant output vector isy = [ωm id iq]
′. Combined in feedback with the linear PI controller of (6.21), for

which the input vector is[r ωm]′, the linear closed loop represents the dynamics of the nonlinear speed control

system in the vicinity of the trim point and provides thed andq-axis currents as additional outputs for use by

the override compensator. A representation of the override compensatedclosed loop using the linear system

model is shown in Figure 6.10.
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Figure 6.10: Representation of the override closed loop with linear plant model
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Kspd(s) ∼




0 13.3568 −13.3568

1 0.544 −0.544



 (6.21)

Thed-axis current measurement is used for practical implementation to manipulate the saturation threshold on

iq. However, for the purpose of compensator design, thed-axis current output is ignored as only theq-axis

current measurement is passed through the deadzone function and used to drive the compensator. Although

thed-axis current does affect the saturation threshold oniq, this has no bearing on synthesis since the sector

bounded nonlinearity used to describe the deadzone encompasses all possible deadzone and saturation functions

regardless of the limits used. For dynamic override synthesis where the plant outputs to be constrained are

filtered, a SISO output filter is used at the design stage as only theq-axis current is required to be filtered.

However, for implementation, thed-axis signal will also influence the signalỹ via its influence overiq,lim.

Therefore, in order to reduce noise in the signalỹ it may also be desirable to filter thed-axis signal also. In the

subsequent linear simulation tests, override compensators are designed for the model linearised at a speed of

0.5 units under no load and tested on the same linear model.

Static OR Compensation

A static override compensator was designed usingW1 = 1 andW2 = diag(1e−7 1e−7). The design produced

is defined by the feedback gain matrix of (6.22) and achieves theL2 gain performance level specified in (6.23).

The choice ofW2 ensures that the secondary optimisation objective has minimal impact on the optimisation for

performance.

Φ = [−552.5 108.3]′ (6.22)

γstatic = 9.23 (6.23)

Figure 6.11 compares the nominal linear (unconstrained) performance to that of the constrained system with

static override compensation. For best control of the motor current magnitude,k = 0.98 is chosen such that the

compensator seeks to impose the limit 2% belowimax. This enables the compensator to activate just prior to

reaching the real limit and avoid its violation completely. Static compensation is veryeffective at imposing the

desired constraint and has very little detrimental impact to the tracking performance. The compensator is able
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to consistently hold the motor current at the limit when activated, facilitating maximumuse of the available

control effort. This allows for minimum deviation from the nominal linear performance which we consider to

be the ‘desired’ performance. Although performance of this compensator is essentially ideal, time delays and

noise are expected to cause problems for practical implementation and so this performance level may not be

achievable in practice. In fact, even in continuous time simulation a small solver timestep was required for

smooth control behaviour to be observed.
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Figure 6.11: Static override compensation - linear model simulation

Dynamic OR Compensation

A dynamic override compensator was designed usingW1 = 1 andW2 = diag(1e−7 1e−7) and the following

filters:

Fo(s) =
1

0.0004s+ 1
(6.24)

Φ̃(s) =
1

0.0159s+ 1
(6.25)

Constraints on the filter bandwidths that could be implemented on the discrete model were taken into account

at this stage such that the designs produced for the linear continuous time system could also be tested directly

on the discrete nonlinear system. The bandwidth of the output filter was chosen initially to be as high as
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possible in order to impose the minimum constraint on performance. Considering limitations due to sampling,

the bandwidth was chosen to equal the Nyquist frequency of the current loop, 1
2τcrt

, whereτcrt is the sampling

period of the current loop. For the input filter, the bandwidth was increased progressively until optimum

performance was observed. Generally speaking, the greater the bandwidth, the quicker the compensator is

able to act, providing the potential for improved performance. However, increasing the filter bandwidth also

changes the phase behaviour of the system and it was found that increasing the bandwidth can also result in

reduced performance as the gain of the compensator had to be reduced.The filter chosen was deemed to

provide a good trade-off between the bandwidth of the override signals and aggressiveness of the resulting

compensator. The final stage in tuning was to reduce the bandwidth of the output filter as much as possible to

improve robustness and reduce susceptibility to noise whilst having as little impact on performance as possible

and the compensator gain matrix produced and associatedL2 gain performance level are given in (6.26) and

(6.27) respectively. Figure 6.12 compares the nominal linear performance to that of the constrained system with

dynamic override compensation. Two results are shown, one for whichk = 1, and one for whichk = 0.92.

Kφ = [−340.4 − 1.606]′ (6.26)

γdynamic = 15.80 (6.27)

For the dynamic compensator withk = 1, the compensator seeks to impose the limit atimax. The limit is

exceeded by approximately 9.5% at the onset of the large step demand compared to< 1% with the static de-

sign. This is because the dynamic compensator has a lower (finite) bandwidthand is unable to act as quickly.

This bandwidth limitation also affects the action of the compensator immediately after saturation. The energy

accumulated in the compensator filters while the current limit is exceeded is dissipated once saturation ceases,

causing the motor current to drop further below the imposed limit. This reducesusage of the available control

effort and results in a larger deviation from nominal linear performance.With k = 0.92 the dynamic compen-

sator seeks to impose the limit at 8% belowimax, causing the compensator to become active sooner and the limit

to be respected. Note that the limit has to be reduced by a much greater percentage with the dynamic design to

prevent violation of the physical current limit. This lower limit reduces the maximum current at steady-state as

well as the magnitude of transient peaks and could therefore be quite detrimental to performance.

Perhaps the most important comparison to be made between the static and dynamicoverride designs concerns

the speed at which they are able to act due to bandwidth constraints imposed by the filter dynamics. As

described in the above paragraphs, this accounts for a considerable amount of the performance difference

between the two designs. Another related issue is the aggressiveness ofeach compensator design. Comparing

the gain matrices of the static and dynamic compensators (6.22) and (6.26), although the same performance

weighting matrices were used for the synthesis of each design, the static compensator is significantly more

aggressive, which aids performance. Note also that despite the fact that each channel was given the same

weighting in the design via theW2 matrix, the static compensator makes much greater use of the second

channel which directly influences the controller output. This channel bypasses the controller dynamics and

therefore also contributes to the faster response.
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Figure 6.12: Dynamic override compensation - linear model simulation

In summary, the override compensators perform very well on the linear continuous time model with little

performance deterioration and minimal limit violation. This is particularly true for the static design, for which

it is difficult to imagine a better performing design.

6.3.3 Nonlinear simulation results

In this section, the override compensator variants introduced for the linearmodel in the previous section are

tested on the nonlinear multi-rate discrete-time model depicted in Figure 6.13. Thecurrent controllerKcrt and

output filter of the dynamic compensator operate at the fast sample frequency 1/τcrt and the remainder of the

override compensatorΦ, speed controllerKspd and phase advance controller operate at the slower rate,1/τspd.

A saturation constraint on the voltage is included to ensure that the magnitude of thed− q axis voltage vector

is correctly limited by the finite supply voltage and a simple back calculation type of anti-windup strategy is

included to prevent windup of the current controller integrator states when the voltage demand exceeds this

limit. The inclusion of these additional nonlinearities within the inner current control loop has a significant

influence over performance compared to the linear model simulations. In addition, the nonlinearity of the

phase advance controller is modelled fully so the current angle will vary through the speed range, giving rise to

variations in the current loop dynamics and a time varying saturation limit on theq-axis current.

Two of the simulation conditions defined in Chapter 5 are selected for analysisas they represent two of the

most demanding conditions in which override compensation is required to act. For Condition 1 the large step
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Figure 6.13: Nonlinear model used for override compensation simulation

change in the speed demand causes large transient violations of the current limit. For Condition 2, the current

limit would be violated at steady-state and so the compensator is required to maintain the current at the limit

for an extended period. Other input sequences were tested but the two selected were found to be sufficient to

capture the most significant characteristics.

• Condition 1: Step demand from idle speed to maximum speed under no load

• Condition 2: Step demand from idle speed to maximum speed with a static load applied such that the

speed attained is reduced by 10% from the reference level

Nonlinear simulations under no load (Condition 1)

• No OR: Figure 6.14 shows the performance of the model without override compensation, the speed

tracking performance being shown in the upper left plot. An important firstpoint is that the speed con-

troller used in this test was designed for use with anti-windup where a strict saturation limit was imposed

on the current demand. The presence of this limit in the anti-windup approach enabled the controller to

be tuned more aggressively for better small signal performance without causing large overshoots when

large reference demands were made as the control action was naturally limitedby this constraint. With

this limit removed, the response differs, and an undesirable overshoot isobserved for the large step refer-

ence. Another consequence of the removal of the current demand limit is that the voltage limit saturates

more readily. Voltage saturation is indicated by the voltage magnitude reachingVmax in the lower left

plot. It can be seen from this plot that voltage saturation starts at the onsetof the large step demand and

ceases approximately when the overshoot has reached its peak. It is clear that the controller tuning will

affect the tracking response, but it is also true that the occurence of voltage saturation itself is influential
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in the response. The bottom right hand plot shows the violation of the current limit with the motor cur-

rent approaching 1.2 units for a short period of time when the high speed demand is applied. The upper

right plot shows theq-axis current against its time-varying limit,iq,lim. The key points to note from this

simulation are that the current magnitude exceeds the limit by approximately 15%,that the large step

reference causes the voltage limit to saturate for at least 0.1 units of time, andthat there is a substantial

overshoot of the high speed reference.

• Static OR: The static compensator presented in the previous section had to be retuned for the nonlinear

simulation model as the high gains caused very chattery behaviour in the discrete model. An acceptable

design was achieved usingW2 = [5e− 7 0.1]′, placing the emphasis on feedback to the controller state

rather than the controller output. The compensator matrix produced is givenby (6.28) which is much

more similar to the DC gain of the dynamic compensator for the linear system (6.26)although still more

aggressive. Consequently, theL2 gain level achieved by the design increases by two to that given in

(6.29).

Φ = [−346 − 1.32]′ (6.28)

γstatic = 11.63 (6.29)

The behaviour of this static design is shown in Figure 6.15. Tracking of the step reference is much

improved compared to the case without override compensation with overshoot avoided completely and

the duration of voltage saturation following the large step reference reduced significantly. Violation of the

current limit is shown in the bottm right plot and occurs in two phases. Initially,the limit is exceeded by

approximately 15% as in the simulation without override compensation. Following this, the compensator

acts, bringing the mean magnitude of the motor current down to the limit but also introducing some

chatter behaviour. This chatter is most prominent immediately following the initial limit violation, and

causes the limit violation to increase toward 22%. Although this is undesirable, the mean magnitude of

the motor current is brought down to the saturation level very quickly and the chatter dies down quite

quickly.

• Dynamic OR: The dynamic compensator was fine-tuned for the nonlinear model by alteringthe input

and output filters to (6.30) and (6.31) respectively. In addition for the purposes of implementation, a

copy of the output filter is also required on thed-axis current measurement, by which theq-axis current

limit is calculated. Rather than being a direct copy of the output filter, reduced chatter was observed by

reducing the bandwidth of this filter. Its transfer function is given asFod(s) in (6.32). The compensator

matrix produced is given by (6.33) and achieves theL2 gain level given in (6.34). Note that in this case,

L2 performance is improved over that for the linear design. This is most likely to be because more time

was spent optimising the design for the nonlinear system.

Φ̃(s) =
1

(1.592e− 4)s+ 1
(6.30)
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Fo(s) =
1

(2.55e− 4)s+ 1
(6.31)

Fod(s) =
1

(1.019e− 3)s+ 1
(6.32)

Kφ = [−220.1 − 1.177]′ (6.33)

γdynamic = 13.38 (6.34)

With dynamic override compensation applied andk = 1, the performance achieved is shown in Figure

6.16. Violation of the current limit at the onset of the step demand is of a similar magnitude as for

the simulations without override and with static compensation. However, the dynamic compensator

causes the current magnitude to track down to the limit more smoothly and swiftly than the static design.

Tracking of the speed reference is comparable to that with the static design.In fact, the slightly less

abrupt limitation of the current results in a small decrease in the rise time to the stepreference.

A common feature of the simulation results described above is that the currentlimit is always exceeded by a

similar magnitude regardless of what form of override is applied. This is dueto the time delays associated with

the discrete-time implementation and fast electrical dynamics of the system. Another important feature of these

results is that the quality of the tracking response can be influenced considerably by voltage saturation and this

has been seen to cause significant overshoots of the reference. Despite these shortcomings, the system with

override engaged performs better than without any override.

Nonlinear simulations with a static load torque applied (Condition 2)

When a static load is applied to the system, the same reference sequence becomes more challenging to track

since current is required in theq-axis to reject the load disturbance in addition to that required for the motor

to accelerate and track the reference. For the following tests, the magnitudeof the applied load is chosen such

that the maximum speed reference (1 normalised unit) should be infeasible withthe given current and voltage

constraints. As a result, the current limit is expected to be reached during steady-state operation rather than just

transiently as in the previous results.

• No OR: Figure 6.17 shows the performance of the system without override compensation. The first point

to make is that the high speed reference is met even though it should be infeasible. This is because the

motor currents are allowed to rise above the limit. Another point is that the prolonged period of voltage

saturation between 0.2 and 0.6 units of time prevents the phase advance controller from achieving the

desired current angle. This allow speeds in excess of the reference tobe achieved without exceeding the

current limit. This fact suggests that an alternative phase advance map mayallow higher speed operation,

but this topic is not considered within the scope of the thesis. Violation of the current limit at the onset

of the step demand is more severe than for the no load case and the limit is exceeded by approximately

19%. The current limit is also violated later in the simulation as the current angle reverts back to that

demanded by the phase advance controller following the escape from voltage saturation.
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Figure 6.14: Nonlinear Simulation Condition 1 without override
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Figure 6.15: Nonlinear Simulation Condition 1 with static OR
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Figure 6.16: Nonlinear Simulation Condition 1 with dynamic OR
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• Static OR: Figure 6.18 shows the performance of the system with static override compensation. The re-

tuned compensator fails to prevent the transient violation of the current limit at the onset of the large step

demand, and the limit is exceeded by approximately 22%, partly due to chatter. However, the aggressive

action of the static compensator brings the system out of voltage saturation quickly with the effect that

correct phase advance operation is maintained for the whole simulation. As aresult, there is a smooth

rise toward the steady-state motor speed of 0.89 units without overshoot. The obvious drawback to this

design is the introduction of chatter to the motor current and voltage signals. It is not clear exactly what

causes this but contributing factors are thought to be the use of high gainsin a discrete implementation,

the interaction of the two discrete feedback loops, and the switching behaviour of the compensator as the

q-axis current is repeatedly driven below the limit by the compensator then back above the limit by the

nominal controller. Another consideration is the time varying nature of theq-axis current limit which, as

shown in the upper right plot, is seen to change at quite a high frequency.This chatter phenomenon also

presents itself in the motor speed measurement and so is not a feature that can be overlooked.

• Dynamic OR: Figure 6.19 shows the performance of the system with dynamic override compensation.

With the dynamic design, violation of the current limit at the onset of the high speed step reference is

slightly increased compared to the case without compensation at≈ 20%. This can be attributed to the

slower action of the dynamic design, which also presents itself with a slower return to the limit. Chatter

type behaviour is also present with this design although the magnitude is significantly lower due to the

filtering and although present in the current and voltage signals, does not have a significant effect on the

motor speed.

Nonlinear simulations with reduced supply voltage

In a vehicle the supply voltage is held at the required level by the alternator and assuming that the electrical

system is functioning correctly, it is appropriate to consider that this voltagevaries within a few percent of the

specified level. If the alternator malfunctions the supply voltage may drop andthis will influence the voltage

saturation limit in the EPHS system. In the anti-windup application work of Chapter5 the effect on EPHS

performance was minimal and hence was not reported. However, in the override application the different

architecture of the control system allows for a much more significant effect that warrants some attention.

To generate problematic voltage saturation the supply voltage limit, and therefore the voltage saturation limit,

is reduced by 10% and Simulation Condition 1 is run, generating the responseshown in Figure 6.20. Dynamic

override compensation is applied in this case but the response is very similar without override and with static

compensation because the current limit is not violated for the vast majority of the simulation.

The simulation result shows that when the large step speed demand is applied,voltage saturation occurs im-

mediately and the initial magnitude of the voltage vector is high, exceeding the limitVmax by 2.5 times. The

presence of this saturation event causes the integrator in the outer loop to wind up and the current demand
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Figure 6.17: Nonlinear Simulation Condition 2 without OR
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Figure 6.18: Nonlinear Simulation Condition 2 with static OR
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Figure 6.19: Nonlinear Simulation Condition 2 with dynamic OR
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Figure 6.20: Override performance with reduced supply voltage, Vmax, and Simulation Condition 1
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magnitude rises to 10 times that of the limit, extending the period of voltage saturationand the speed tracking

performance is significantly degraded as a result.

In the simulations with nominal supply voltage, voltage saturation may occur for short periods of time but

the current magnitude limit proves to be the more conservative limit i.e. that whichsaturates more readily. In

these cases, the action of the override compensator constrains the integral state of the outer loop controller

and thus protects against this form of windup. In the override simulation with reduced supply voltage (Figure

6.20), the motor current magnitude remains below the limit whilst voltage saturationoccurs and so the override

compensator does not act, and the windup problem ensues. This analysisreveals that for the existing override

compensation structure to be fully robust, the current limit should be more conservative than the voltage limit.

This could be ensured by a suitable design of the phase advance map as thisapportions the voltage and current

headroom, or by varying the current limit in accordance with the measured supply voltage. An example re-

sponse with the latter solution is given in Figure 6.21 whereimax is reduced by 15% to coincide with the 10%

reduction in supply voltage. This yields promising results as tracking behaviour is not significantly degraded

compared to the nominal system despite the reduction in available power.

Voltage saturation is a complex multivariable problem and the effects of violatingthe limit on the current angle

produced is difficult to control with an anti-windup design, particularly with alinear approach. When anti-

windup is applied to the outer loop, a hard constraint on the magnitude of the current demand is imposed and

this significantly reduces the severity of voltage saturation as the input to the inner loop is bounded. Thus, with

voltage saturation being quite mild, directionality problems tend to be less significant. In the override approach,

since there is no limit on the magnitude of the current demand, voltage saturationcan be quite severe. This

leads to potentially greater directionality errors and may be an additional reason why the current magnitude

remains below the limit while voltage saturation persists in the simulation of Figure 6.20. Further work in this

area could be fruitful and the design of an advanced, possibly nonlinear, anti-windup compensator for the inner

loop that better handles the directionality problem may reduce the susceptibility of the override compensated

system to such performance degradation.

6.3.4 Comparison with anti-windup compensation

Here we compare the best override compensator design with the best anti-windup compensator design in order

to assess the merits of each approach. We choose the dynamic override design withk = 0.99 and compare this

to low order dynamic anti-windup design 1 of Chapter 5.4.5 under no load (Figure 6.22).

In the upper left plot it can be seen that the anti-windup compensated system exhibits a faster rise-time. How-

ever, from the top right hand plot, we can see that this extra performanceis achieved by violating the current

limit by close to 20% for a period of approximately 1/10 units of time. This highlights the main benefit of over-

ride compensation; that it deals directly with the magnitude of theactualcurrent vector rather than its demand.

Thus, with the exception of some short transient overshoots, the motor current magnitude can be constrained
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Figure 6.21: Override performance withimax reduced in accordance with the supply voltage, Vmax, and

Simulation Condition 1
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successfully to the limit. Although the override compensator fails to prevent theinitial violation of the current

limit, it is arguable that this short duration peak would be less problematic to electronic components than a

lower peak of longer duration as observed in the anti-windup response.The motor current responses are very

similar but perhaps slightly smoother with override compensation. When comparing the voltage limit violation

shown in the bottom right hand plot it is clear that the override compensator causes saturation to cease sooner.

Figure 6.23 shows a comparison of the two systems under a static load condition. In this simulation, the

tracking performance is much more comparable with the anti-windup approachhaving initially a faster rise,

and the override approach providing lower steady-state error. Although chatter on the motor voltage is not

completely eliminated in the override simulation, the motor currents are quite smooth, violation of the current

limit is less prominent, and no oscillations are introduced to the motor speed, unlikewith the anti-windup

approach.

This comparison shows that override compensation is a better conceptual approach to the problem of current

limitation than anti-windup within PMSM speed control. The benefits are that violation of the limit can be

controlled more reliably, at least in-principle, that violation of the limit is more transparent, and that greater

usage of the available current headroom can be afforded. Having said this, the anti-windup approach was also

quite successful and if the observed violation of the limit can be tolerated, a slightly faster rise time can be

achieved by using this approach. Another appealing feature of the anti-windup approach is that the constraint

on the current demand reduces the size of signals that the inner loop is required to respond to and this may

reduce the severity and regularity of voltage saturation.

6.3.5 Conclusion

This chapter has examined the override control problem and its application toPMSM current limitation. It

has been shown that the override strategy fits this problem more naturally than anti-windup and that improved

confidence regarding limitation of the motor currents can be gained with its use.However, there are certain

drawbacks yet to receive a robust solution.

Testing on a continuous time linear model revealed very good results with minimal degradation to tracking

performance compared to the linear system and very good limiting of the current. This was particularly true for

the static design which was able to respond quickly enough to avoid violation ofthe limit almost entirely. When

applied to the discrete time nonlinear model performance dropped to an extent,with the static design proving

to be quite sensitive to ‘chatter’ and neither design being able to suppress transient violations of the limit when

large inputs were applied to the system. Testing on the nonlinear model has shown some important differ-

ences between the two forms of override compensation and given considerable insight into the practicalities of

implementing such control systems.

The stability constraints for the design of a static compensator seem to be less restrictive, allowing for higher

gains than their dynamic counterparts. These higher gains along with the lackof phase lag from the dynamic
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Figure 6.22: Nonlinear simulation comparison between dynamic AW and dynamic OR performance under no

load conditions
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compensator filters result in a more aggressive compensator. This provided better performance in continuous

time linear simulation but caused chattery behaviour to propagate through the system when applied to the

nonlinear discrete-time model. The dynamic compensator cannot be tuned as aggressively and the phase lag

introduced by the filters does restrict its ability to respond to very fast transients. However, this allows for much

smoother control with significantly less chatter introduced to the system.

One of the difficulties associated with override compensation is that violation ofthe limits cannot be avoided

entirely and when violation is caused transiently, the limit can be exceeded considerably before the compensator

manages to effect a response. Even though the duration of such violations may be very short, the amount by

which they are exceeded may be unacceptable. The extent to which this is thecase is dependent upon a number

of factors including the tune of the nominal controller and the dynamics of the plant. The transient current limit

violation caused by applying large step references could not be avoidedon the nonlinear discrete time model

even with the most aggressive static compensator. It was observed that inorder for the compensator to have a

swift effect, feedback viaφ2 is critical. The gain in this channel, and the bandwidth in the case of a dynamic

design, is restricted somewhat by the stability condition. However, the behaviour is influenced even more by

the latency introduced by the discrete-time implementation.

To reduce this violation, the sampling frequency of the speed controller could be increased to reduce latency

in the system and allow the compensator to act more immediately. This would impose higher computational

demands and so may not be desirable. An ad-hoc solution could be achieved by reducing the value ofk

temporarily when conditions are encountered demanding a sharp increasein the current demand. For instance,

when the speed tracking error is beyond a given threshold. Such an approach may prove to be very successful

if designed appropriately but analysis of its effect on the system would bedifficult. However, due to the

use of the Circle Criterion for stability analysis of the override design, time varying limits are automatically

accommodated. A more appealing theoretical approach may be to employ a dynamic H∞ controller in place

of the PI regulator. The lower bandwidth of this type of controller may allow these current spikes to be avoided

without sacrificing performance significantly. Of course this would come atthe cost of increased computational

demands.

Simulation analysis with a reduced voltage limit revealed that for the override approach to mitigate against

windup in the outer loop, the current limit must be a tighter constraint than the voltage limit. This could

be achieved in a number of ways including altering the phase advance map orreducing the current limit in

accordance with the supply voltage. A limited analysis also suggested that the influence of voltage saturation

on directionality may contribute further toward degraded performance. This area is ripe for further research

and possiblities for the application of advanced, possibly nonlinear, anti-windup compensators to this inner

loop problem exist. Other possible approaches would be to solve the inner loop anti-windup in an override

framework by passing thed andq axis voltage demands through as dummy plant outputs. If successful, this

could allow a unified override compensator to be designed to handle both voltage and current constraints.

Overall, override compensation has been shown to be a viable alternative tothe anti-windup approach for limit-
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ing the magnitude of currents flowing in the motor windings. In concept, it is a more appealing approach as with

the exception of the current transients discussed, it allows the chosen constraint to be imposed more reliably

and precisely. However, before the design can be considered preferable to the existing anti-windup solution,

additional work is required to reduce the susceptibility to transient overshoots and improve the behaviour of the

system in low voltage conditions.



Chapter 7

Improving Anti-Windup Synthesis

Anti-windup compensator design is an inherently nonlinear problem. The saturation nonlinearity at the heart

of every control system containing an anti-windup compensator means thatthe peformance of the system is

strongly dependent upon the magnitude of the control input, or equivalently, the saturation level. The funde-

mental problem with nonlinear systems is that the results available for their analysis are not as “sharp” as for

linear systems. Stability, for example, is either proved approximately (for example with describing functions),

or conservatively (for example with Lyapunov functions). The approach taken in this thesis has been to take

a cautious approach and to use the Lyapunov approach to design compensators which enforce both stability

and performance properties. This has the advantage of givingguarantees, but of course, the guarantees given,

especially of performance, may be quite vague and potentially of little use.

For the above reasons, it is sometimes the case - particularly for relatively simple systems - that an anti-windup

compensator which is designed “by hand”, perhaps using engineering tuition and intimate system knowledge,

can out-perform an anti-windup compensator designed using an “optimal method”. While it is difficult to de-

fine exactly what “performance” is in such a context, we take it to mean performance yielded in simulation or

experiment during common test condtions. In situations where a goodad hocanti-windup compensator can

be found, it is difficult therefore to justify the implementation of a more complex optimisation-based compen-

sator on the grounds of theoretical predictions only. By virtue of their greater degrees of freedom, the modern

compensator designs offer the potential of significant performance benefits along with their guarantees of sta-

bility. However, the difficulties in tuning in order to exploit their full potential are a significant barrier to their

widespread adoption within industry. Therefore, the field of anti-windup isripe for research into improving

tuning methods.

In this chapter, a contribution to the design of anti-windup compensators is made. The main aim of the chapter

is to introduce modifications to the design algorithms of anti-windup compensatorsto allow them to bestow

improved levels of performance on the closed-loop system during and after saturation. For simplicity, and also

for the most freedom, the tuning modifications are demonstrated on the full-order anti-windup algorithms intro-

duced in Section 4.4. Two approaches to improving the tuning of anti-windup compensators are proposed. The
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first is based on altering the objectives on the anti-windup compensation design to include a weighting function

which incorporates frequency domain information. The second is based on approximating the description of

the saturation (actually deadzone) nonlinearity in order to reduce conservatism in the algorithms.

7.1 A Critique of the Existing Algorithms

This section discusses the key problems inherent in the anti-windup design scheme used so far. The discussion

is focused on the full-order coprime factor-based scheme introduced in Section 4.4 [100, 94] but the arguments

apply more generally to many similar schemes [65, 96, 12], including low orderand static schemes [91]. These

schemes share two common features: firstly, that performance is guaranteed using theL2 gain; and secondly

that stability is enforced using, in essence, the Circle Criterion. Both of these features can be criticised as

follows:

• Circle Criterion. The Circle Criterion is a well-known and tractable stability test for nonlinear systems

but it only gives asufficientcondition for stability; that is a system which does not satisfy the Circle

Criterion may still be stable. In the work of [100, 94] (and elsewhere) the Circle Criterion is equivalent to

using a quadratic Lyapunov function and a sector bounded nonlinearity,Dz(.) ∈ Sector[0, I] to enforce

stability. While quadratic Lyapunov functions are perhaps the most tractablefor LMI-based analysis and

synthesis, they form only a small class of possible Lyapunov functions. Similarly, while sector-based

descriptions of nonlinearities normally lead to tractable computational procedures, for most functions,

the sector-based description is not tight and so also introduces conservatism into the design process.

• L2 gain. Performance for nonlinear systems is perhaps even more difficult todefine than stability and

there are few computationally tractable performance measures available to theengineer. One of the most

common is theL2 gain which has been used extensively in the anti-windup literature. While it has been

shown in [24] that there exists a full order anti-windup compensator whichcan minimise theL2 gain

of a (nonlinear) map representing the performance of the anti-windup compensator, it is still debatable

whether such a map is a natural measure of an anti-windup compensator’s performance. In [100, 91], a

particular nonlinear map,Tp was introduced as being particularly pertinent to the anti-windup problem

and it was shown that a coprime factorG2 = N(s)M(s)−1 which minimised this map could be chosen

by optimisation of an appropriate gain matrixF . However since the optimisation was stillL2-based,

the performance measure was inevitably coarse. Further attempts on improving the performance of anti-

windup compensators has been made in [93, 33, 102], although again these attempts are centred around

theL2-gain.

The work described in this chapter will attempt to address both of the above areas and will derive synthesis

algorithms for full-order compensators which, in principle at least, should allow less conservative compensators

to be produced. Simulation results will demonstrate the extent to which these modifications succeed.



CHAPTER 7. IMPROVING ANTI-WINDUP SYNTHESIS 169

7.2 Frequency Weighted Anti-Windup

This section proposes a modification to the standard full-order coprime factor based anti-windup synthesis

algorithms in order to address the coarseness of theL2-gain optimisation identified above. While research

has shown that minimisation of theL2 gain is a sensible and successful approach at designing anti-windup

compensators, such an approach may not capture all the desirable features of an anti-windup design and, as

mentioned above, may lead to below-par performance. One reason for these problems is that theL2 gain

is optimised over the whole space of energy bounded signals, meaning that there is no distinction between

commonly encountered signals and those which are unlikely to be encountered in practical situations.

In this section, we take inspiration from mixed sensitivityH∞ control and introduce frequency weighting into

the synthesis algorithms. In this, way, it is hoped that the designer can use the frequency weight to target the

frequencies of interest and optimise theL2 gain delivered by the compensator to those important frequencies.

The results derived were published in [58] and show how such an improvement can be achieved using essentially

the same tools as devised in [88] and [87]. The full order anti-windup approach is chosen because the associated

optimisation has the most degrees of freedom by which the frequency shaping may take effect. However, in

principle, the approach could also be applied to static compensation or low order dynamic compensation such

as reported in [91].

7.2.1 A Modified Design Procedure

As with the standard full order anti-windup scheme, we consider the stable linear plantG(s) = [G1(s) G2(s)] ∈
RH∞ and the stabilising two-degree-of-freedom controllerK(s) = [K1(s) K2(s)] which are described by the

following state space models.

K(s) ∼




Ac Bcr Bc

Cc Dcr Dc



 (7.1)

G(s) ∼




Ap Bpd Bp

Cp Dpd Dp



 (7.2)
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Figure 7.1: Augmented plant

In frequency weighted anti-windup we re-label the nominal plantĜ and augment it with a frequency weight

as shown in Figure 7.1. In this figure, the physical measurement of the plant output,y is augmented with a
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frequency weighted version,yW1, producing the stacked output vectorỹ. W1 represents the frequency weight -

chosen by the designer - which we use to improve performance.Ĝ = [Ĝ1 Ĝ2] represents the real, “physical”

plant andG = [G1 G2] is the augmented plant (see Fig. 7.1).W1 andĜ2 are described by the following

state-space equations

Ĝ2 ∼







˙̂xp = Âpx̂p + B̂pum

y = Ĉpx̂p + D̂pum
(7.3)

W1 ∼







ẋ1 = A1x1 +B1y

yW1 = C1x1 +D1y
(7.4)

and hence by making the definitionsx =
[

x̂′p x′1

]′
, andỹ =

[

y′ y′W1

]′
, we have

G2 ∼







ẋp =




Âp 0

B1Ĉp A1





︸ ︷︷ ︸

Ap

x+




B̂p

B1D̂p





︸ ︷︷ ︸

Bp

um

ỹ =




Ĉp 0

D1Ĉp C1





︸ ︷︷ ︸

Cp

x+




D̂p

D1D̂p





︸ ︷︷ ︸

Dp

um

(7.5)

M(s) andN(s) are chosen again as coprime factors ofG2 which is now the “augmented” plant. The de-

coupled representation of the anti-windup closed loop using the augmented plant is shown in Figure 7.2. Note

that ylin andyd have now become the vector signalsỹlin = [y′lin y′W1,lin]
′ and ỹd = [y′d y

′
W1,d]

′ in which

yW1,lin andyW1,d represent frequency weighted versions of the linear plant output anddisturbance filter output

respectively.

Whereas in the standard full-order synthesis [87, 88] theL2 norm of the map fromulin to yd (i.e. ||Tp‖i,2
was minimised, we now propose to minimise the frequency weighted version of this, i.e. the map fromulin to

yW1,d, using the state-space realisation given in equation (7.5). Let us call this map TW1
. This can be achieved

by ensuring that (7.6) holds, or equivalently, (7.7) whereWf has the form of (7.8).

∥
∥
∥Wf

1

2 ỹd

∥
∥
∥

2
< γ2 ‖ulin‖2 (7.6)

ỹ′dWf ỹd − γ2ulin
′ulin < 0 (7.7)

Wf =




ǫI 0

0 W̃p



 (7.8)

Typically ǫ would be chosen as a small number to ensure thatyd would have little impact on the design and̃Wp

is a weighting matrix used to trade-off the importance of the various channels inyW1. Note that such a form



CHAPTER 7. IMPROVING ANTI-WINDUP SYNTHESIS 171

of compensator fits exactly into the standard framework, except the plant has an additonal (fictitious) output

and the controller has an additional (fictitious) input as illustrated in Figure 7.2. In this figure, the “augmented”

controller is denotedK(s) = [K̂(s) 0] and has a null input column representing the zero contribution from

yW1 in the actual system. In this figure the standard anti-windup compensator architecture is used except
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Figure 7.2: Augmented plant and controller

nowM(s) andN(s) are part of a coprime factorisation of the augmented plant described in (7.5). As with the

standard compensator this means that a coprime factorisation can be given by (7.9) whereF is a free parameter.




M(s) − I

N(s)



 ∼







ẋ = (Ap +BpF )x+Bpũ

ud = Fx

yd = (Cp +DpF )x

(7.9)

In a similar manner to standard full-order compensator synthesis, except using the state-space realisation of

(7.5), an AW compensator which guarantess stability andL2 gain of the map̃TW1
: ulin 7→Wf

1

2 ỹd is produced

if the inequality of (7.10) holds.

V̇ (x) + 2ũ′W (ũ− u) + ỹ′dWf ỹd − γ2ulin
′ulin < 0 (7.10)

Some algebra then yields the LMI:










QA′
p+L

′B′
p+ApQ+BpL BpV −L′ 0 QC ′

p+L
′D′

p

∗ −2V I V D′
p

∗ ∗ −γI 0

∗ ∗ ∗ −γW−1
f










< 0 (7.11)
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Note here however that becauseM(s), N(s) are coprime factors of the augmented plant (i.e. that including the

weightW1(s)), the order of the anti-windup compensator is greater than that of the realplant,Ĝ(s). With this

in mind, the anti-windup compensator is constructed usingF = LQ−1 and (7.9).

7.2.2 Case Studies

Here the performance of a number of systems with plant input saturation is compared for standard and frequency

weighted designs. Some of the analysis makes use of the description of anti-windup modes [100] where the

behaviour of the nonlinear system is divided into three modes:

Mode I - This represents normal linear operation i.e. when saturation limits have not been exceeded.

Mode II - This represents the period for which the system’s actuators are saturated. Equivalently it can be

thought of as the period of time betweenũ becoming non-zero, and returning to (and remaining at) zero.

Mode III - This represents the final convergence to linear performance, which occurs after saturation has

ceased and in which the states of the disturbance filter relax asymptotically to zero.

RC Circuit model

The model of an electrical network taken from [24] and depicted in Figure7.3 is used.Vi is the plant input

voltage, andVo is the plant output voltage. The state space model of the plant and a robustlystabilising PI

controller are given as (7.12) and (7.13) respectively. Note that the matrices of the plant output equation are all

negative, hence the plant output is in the opposite direction to that of the applied control signal.

Ĝ2(s) ∼










−10.6 −6.09 −0.9 1

1 0 0 0

0 1 0 0

−1 −11 −30 0










(7.12)

K̂(s) ∼







−80 0 −1 1

1 0 0 0

20.25 1600 −80 80







(7.13)

For this example, the performance of the anti-windup compensator is limited by slow poles in the open loop

plant, which form the basis of the poles of the disturbance filter in the compensator. This causes mode III to

be significantly longer than mode II, as shown in Figure 7.4. Inspection of the step response of the standard

anti-windup closed loop system (Figure 7.4) reveals that the control performance during mode II cannot be

improved upon, as for the duration of mode II, the plant input is saturated inan effort to attain the reference

demand. Therefore, any performance gains to be achieved must take effect during mode III. During mode
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Figure 7.3: Electrical Network

III, ulin is a low frequency signal and hence an intelligent choice for the frequency weighting filter may be

a low pass filter of an appropriately low bandwidth. Figure 7.4 shows a comparison between the standard

compensator and that designed using the frequency weight

W1 (s) =
0.35

s+ 0.35
(7.14)

The application of frequency weighting gives rise to a swifter return to linear performance through its effect

during mode III and the performance during mode II is unaffected.
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Missile example

A simplified model of the roll-yaw channel dynamics of a bank to turn missile and LQG/LTR type auto-pilot

controller given in [74, 91] is selected for which the linear plant and controller models are given in (7.15) and
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(7.16). The two outputs of the simplified plant are roll and yaw and thus due tothe bank-to-turn nature of the

missile, to alter the heading of the missile a response is required in both of these channels.

Ĝ2(s) ∼













−0.8 −1 0.3 0.1 0

80.3 −0.6 0 −194.4 37.6

−2734 0.1 −2.1 −2716 −1093

1 0 0 0 0

0 1 0 0 0













(7.15)

K̂(s) ∼

























−0.3 −107.8 6.67 −2.6 −0.4 2.3 0.5 0 0

107.7 −97.8 64.0 −4.5 −5.4 −40.8 2.1 0 0

−6.7 64.8 −54.2 −40.8 5.1 18.5 −0.2 0 0

3.2 2.1 29.6 −631.2 429.9 −2.1 −44.7 0 0

0.4 −3.4 3.1 −460.0 −0.74 −0.98 −1.2 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

0.9 8.5 −1.7 43.9 1.1 0 0 0 0

2.2 39.9 −18.4 −8.5 1.0 0 0 0 0

























(7.16)

As shown in Figure 7.5, the standard full order compensator performs very well with the result that linear

performance is almost completely recovered in the second channel. The mainproblem with this design is the

undesirable oscillation which appears during mode III when the energy stored in the compensator is dissipated

through the disturbance filter. In order to suppress these oscillations a shelving type high pass filter was used to

penalise these frequencies in theL2 gain optimisation. Figure 7.6 shows how the oscillations in the output are

attenuated as a result of the frequency weighted design using the filter described by (7.17). This performance

improvement does come at the cost of larger compensator poles but the frequency weight can be altered to give

a compromise between performance and pole magnitude.

W1 (s) =
s+ 19

s+ 30
(7.17)

It is found that using a low pass filter frequency weight can be useful inobtaining closer reference tracking

during saturation. A first order low pass filter described by (7.18) results in the performance shown in Figure

7.7. Note that while the tracking is slightly closer during mode II, the oscillations during mode III are of greater

amplitude as they are beyond the bandwidth of the filter. In this example it is arguable that the costs outweigh

the benefits but it does demonstrate the concept.

W1 (s) =
0.1s+ 0.1

s+ 0.1
(7.18)
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7.2.3 Remarks on Tuning the Compensator

The extra freedom in this method compared to other anti-windup methods is the flexibility in choosing the

weightW1, allowing explicit frequency weighting of the design. However, in contrast to standardH∞ design,

there may be some difficulty in tuning the weightW1. There are several reasons for these difficulties:

• There is some conservatism in the method. A strong influence on the successof frequency shaping is

imposed by theH∞ norm of the open-loop plant [79, 24], which can be large for some systems. As a

consequence, the values ofγ which can be obtained, are therefore much greater than unity and thus our

specifications are not guaranteed to be satisfied1.

• In the work to date, there seems to be significant “trial and error” required in the choice of the weights.

In some systems, low pass filters are useful; in others, high pass filters aremore appropriate. Other

than observation of the system’s response, there does not seem to be a universal method of choosing the

weightW1(s). This requires further investigation.

1In standardH∞ optimisation such as S/KS design, aγ of unity indicates that our design specifications are guaranteed to have been

met; anything greater than this does not provide this guarantee
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7.2.4 Conclusions and Future Work

A method of tuning full-order AW compensators for improved performance by shaping anL2 gain optimisation

over frequency has been presented. Through a number of case studies, this method has been shown to give the

potential of improved tracking performance and/or the attenuation of undesirable frequency content in the

output of the nonlinear system following saturation.

The order of the compensator produced using this approach is increased compared to standard designs by the

order of the filter used. Although this is undesirable, in practice, Hankel model reduction could be employed

to reduce the compensator order whilst maintaining the performance benefit.For such a reduced order design,

a subsequent stability check would be required as it would no longer fit thecoprime factorisation framework.

However, since stability could be considered in isolation in this case, this wouldallow the use of less conserva-

tive stability guarantees if necessary, for example the multivariable Popov criterion.

It would be ideal if an alternative method could be developed to weight theL2 gain optimisation without

introducing extra states. This would facilitate the use of higher order band-pass, shelving or notch filters

in the frequency weighted design without additional cost. This could be achieved trivially for any optimal

compensation strategy in which the compensator order is independent of theplant model. One such possiblity

is the static anti-windup approach reported in [91] although the lack of dynamics in the compensator may limit

the effect that any frequency weighting may have. Similarly, for the low-order dynamic approach given in the

same paper the optimisation is only able to influence a matrix gain in series with the filterdynamics chosen by

the designer. It is thought that for the low order approach, the freedom that the designer has in choosing the

filter dynamics manually may overshadow any subtle variations in the optimisation result caused by frequency

weighting. Therefore the most fruitful outcomes are likely to be achieved either by incorporating a frequency

weight in such a way as not to increase the order of the compensator, or by application to a dynamic anti-windup

approach that does not make use of coprime factorisation of the plant.

Although performance improvement has been shown, this is not observedfor all systems and the performance

observed can be quite sensitive to small changes in the frequency weighting filter. For the examples presented

here, the improvement is fairly modest, although this approach is expected to be more fruitful for higher order,

complex systems. A practically verified example of this is the discrete anti-windupcompensator of [35] which

is designed for a hard disk servo system using a high pass type frequency weight. It appears that a good baseline

compensator design is given using the standard full-order optimisation, buttuning for improved performance

is complex. Frequency weighting is now one of a number of tools available to thedesigner with which to fine

tune a successful design.

7.3 Reduced Sector Bounds

For the modern anti-windup compensator designs presented in Section 4.4, the design approach ensures that

the nonlinear closed loop is globally absolutely stable, i.e. stable for all possibleinputs to the nonlinearity and
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all nonlinearities bound by the sector, which in the Weston and Postlethwaite framework [100], is the deadzone

function. Since the sector bound is a conservative definition of the deadzone function, the Circle Criterion may

be a stronger condition than required to provide stability and some conservatism is introduced into the resulting

design. This means that the ‘aggressiveness’ of the compensator may berestricted to ensure satisfaction of the

stability condition. If a representation of the deadzone nonlinearity can be used that more tightly defines the

nonlinearity, there will be more freedom in the optimisation and hence a more aggressive compensator could be

produced, potentially improving performance. This follows since the set ofall possible nonlinearities bounded

by the sector, for which stability must be guaranteed, is reduced when the size of the sector is reduced.

Firstly, consider the scalar deadzone function defined by (7.19) where−ū and ū represent the bounds of the

deadzone region where the gain is zero.

Dz(u) =







u− ū ∀u ≥ ū

0 ∀u ∈ (−ū, ū)
u+ ū ∀u ≤ −ū

(7.19)

The function is adequately bound by theSector[0, I], meaning that it lies between theu axis and a line of

gradient equal to one on the graph ofDz(u) againstu depicted in Figure 7.8. However, notice that for inputsu

less than a valueumax, the deadzone function could be adequately bound by theSector[0, β] whereβ ∈ (0, 1)

is a positive constant greater than zero. The relationship betweenumax andβ is dependent upon the saturation

limit, ū, and is given by (7.20). This is shown in Figure 7.8 as the sector between the u axis and a line of

gradientβ.

umax− u
_

−

u
_

umax
[0,   ]βSector 

[0,   ]βSector 

u

Dz(u)

Figure 7.8: Reduced sector [0,β]

umax =
ū

1 − β
(7.20)

More generally, if we consider the multivariable deadzone function
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Dz(u) =











Dz1(u1)

Dz2(u2)
...

Dzm(um)











, Dzi(ui) =







ui − ūi ∀ui ≥ ūi

0 ∀ui ∈ (−ūi, ūi)
u+ ūi ∀ui ≤ −ūi

(7.21)

it follows that, if we define

umax,i =
ūi

1 − βi
(7.22)

each componenet of the deadzone nonlinearity locally inhabits Sector[0, βi] for all ui ≤ βiumax,i. If we now

let

β = max
i
βi (7.23)

it then follows thatDz ∈ Sector[0, βI] for all u ∈ Umax, where

Umax := [− ū1

1 − β
,
ū1

1 − β
] × . . .× [− ūm

1 − β
,
ūm

1 − β
] ⊂ Rm (7.24)

= [−u1,max, u1,max] × . . .× [−um,max, um,max] ⊂ Rm. (7.25)

It then follows that for allu ∈ Umax thereduced sector conditionholds:

Dz(u)′W (βu− Dz(u)) ≥ 0 (7.26)

whereW > 0 is a diagonal matrix to be defined.

The effect of reducingβ from 1 can be seen by considering the graphical interpretation of the circle criterion

in the SISO case as follows. Consider the closed loop interconnection of a linear system,G(s), with the

nonlinearity,ψ, bound by theSector[α, β] andβ > α ≥ 0. The circle criterion states that the nonlinear closed

loop system is globally absolutely stable if the Nyquist locusG(jω)∀ω ∈ (−∞,∞) does not penetrate the disc

centred on the real axis with intercepts at[−1
β ,

−1
α ] and encircles it as many times anticlockwise asG(s) has

unstable poles. Considering stable plants only and that for the sector bound sector(0, β) defined in 7.8,α = 0,

the disc has infinite diameter and the requirement for stability is simply that the Nyquist locus must not pass to

the left of the lineℜ(s) = −1/β. A simple example of this is shown in Figure 7.9, where the Nyquist locus

does not conform to the circle criterion with the standard sector. With a reduced sector(0, β), the prohibited

region for the Nyquist contour moves in the negative direction along the real axis, allowing the circle criterion

to be satisfied. For anti-windup design, this leads to greater flexibility in the design of the linear system model

whilst satisfying the stability guarantee. Of course, the stability guarantee only holds to the extent that the

nonlinearity is bounded by the chosen sector. If the sector bound only holds locally, only local stability is

guaranteed. For the deadzone nonlinearity depicted in Figure 7.8, the nonlinear closed loop is guaranteed to be

absolutely stable for anyu ∈ (−umax, umax). To assess the benefits of using reduced sectors in anti-windup

synthesis, application is made to full-order anti-windup compensation, for which an LMI effecting anti-windup

synthesis with a user-defined sector bound is derived.
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Figure 7.9: Simple example of the graphical circle criterion bounds on the Nyquist contour for sectors (0,I) and

(0,β)

7.3.1 Reduced Sector Full-Order Anti-Windup Compensator LMI Derivation

For the synthesis of a full order anti-windup compensator, we require a sector bound and Lyapunov function

candidate by which the Circle Criterion is satisfied, and anL2 gain condition by which performance of the

nonlinear system is optimised. The following outlines equivalent conditions for the case where the sector

bound (0,I) is replaced by a smaller sector (0,βI), albeit with the loss of global stability. For convenience of

notation, a compact setU ∈ Rm is defined in (7.27) such that when the controller output in the absence of

saturation,ulin, belongs to this set none of the plant inputs are saturated.

U := [−ū1, ū1] × . . .× [−ūm, ūm] (7.27)

The goal of anti-windup synthesis is much the same as in the standard full-order case, except that we enforce

stability andL2 gain over thereducedSector[0, βI]. The idea behind this is that, as such a sector bounds fewer

nonlinearities, it will be a less conservative description and will thereforeallow more aggressive anti-windup

compensators to be synthesised. The derivation of the algorithm proceeds in a similar way to the standard full

order case. We wish to ensure that‖Tp‖i,2 is minimised, but over a smaller sector. Similarly we wish again to

ensure quadratic stability of the nonlinear system which means finding a Lyapunov functionV (x) > 0 such

thatV̇ (x) < 0 whenu ∈ Umax. These requirements can be captured by the inequality:

V̇ (x) + y′dyd − γ2u′linulin + 2ũ′W [βu− ũ] < 0 (7.28)
d

dt
(x′Px) + y′dyd − γ2u′linulin + 2ũ′W [βu− ũ] < 0 (7.29)

whereP > 0 andW > 0 are diagonal matrices to be defined. Substituting foru = ulin − ud, yd andx from
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(4.20) it then follows that inequality (7.29) can be written as







x′

ũ′

u′lin







′





(Cp+DpF)′(Cp+DpF)+(Ap+BpF)′ P+P (Ap+BpF) (Cp+DpF)′ Dp+PBp−βF′W 0

* D′
pDp − 2W βW

* * −γ2I













x

ũ

ulin






<0

Noting the presence of nonlinear (bilinear) terms, the Schur Complement canbe applied to obtain the inequality










A′
p + F′B′

pP + PAp + PBpF PBp−βF′W 0 C′
p + F′D′

p

∗ −2W βW Dp
′

∗ ∗ −γ2I 0

∗ ∗ 0 −I










< 0 (7.30)

The matrix inequality of (7.30) is still nonlinear due to cross products betweenF andP , and also betweenF

andW . These are removed by applying congruence transformations i.e. pre and post multiplying by a con-

stant matrix which in this case isdiag(P−1,W−1, I, I). The resulting matrix maintains the same definiteness

properties, hence the inequality of (7.31) also implies (7.30).









P−1A′
p + P−1F′B′

p + ApP
−1+BpFP−1 BpW

−1−βP−1F′ 0 P−1C′
p + P−1F′D′

p

∗ −2W−1 βI W−1Dp
′

∗ ∗ −γ2I 0

∗ ∗ 0 −I










< 0 (7.31)

By re-labelling variablesQ = P−1 > 0, V = W−1 > 0, and applying a change of variables,FQ = L, we are

left with the following LMI in Q > 0, diag(V ) > 0, andγ > 0 (7.32):









QA′
p + L′B′

p + ApQ + BpL BpV − βL′ 0 QC′
p + L′D′

p

∗ −2V βI VDp
′

∗ ∗ −γI 0

∗ ∗ 0 −γI










< 0 (7.32)

F can then be recovered asF = LQ−1= LP. Note that by settingβ = 1 the standard sector bound is restored

and the LMI yields standard full-order compensator designs for which global stability is guaranteed.

With the extra freedom allowed by using the reduced sector it is expected that performance will be improved

locally i.e. improved when|u| ≤ |umax|. Any such improvement is gained at the expense of the global stability

guarantee. However, due to the inherent conservatism of the Circle Criterion the domain of attraction for which

the nonlinear system is locally stable may still be larger than the region in which thesector bound holds.

7.3.2 Reduced Sector Case Studies

Using the LMI of (7.32) and the solver present in the Mathworks Robust Control Toolbox, anti-windup com-

pensators are designed for a selection of academic examples found in the anti-windup literature.
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RC Electrical Network

The RC electrical network introduced in Section 7.2.2 is re-used, for whichresponses of the unconstrained

system and the system constrained by magnitude limits±ū are shown in Figure 7.10 wherēu = 1. As the

dynamics of the RC network are quite slow, high gains are used in the controller to improve the closed loop

behaviour and these result in vary large control signals for the linear simulation; in the order of 200V. When

compared to the saturation limits applied at±1V , it is apparent that severe saturation will result.

The application of full order dynamic anti-windup is successful and greatly improves the behaviour of the

nonlinear system as shown in Figure 7.11. By designing with a reduced sector bound defined byβ = 0.8,

performance is improved further still (Figure 7.11). The anti-windup compensator performance level,γ, the

associated parameterising matrix,F , and compensator poles are given in (7.33-7.36) where the subscript of F

denotes the sector size used. For the choice ofβ = 0.8 the range for which the sector condition bounds the

deadzone nonlinearity is given byu ∈ [−5, 5]. In the simulation results shown, the control signal magnitude

does exceed these limits quite considerably and so stability is not guaranteed,although it is observed in practice.

The largest pole of the reduced sector compensator is significantly reduced in magnitude compared to that of

the standard design, and so is more desirable for practical implementation. The performance improvement

observed is accounted for by an increase in the magnitude of the dominant slow pole by 11%.
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Figure 7.10: RC circuit unconstrained and constrained responses without anti-windup

F(0,I) = [−3182.7 − 33378 − 15559], γ = 33.333 (7.33)
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λi(Ap +BpF(0,I)) =







−3182.8

−9.9984

−0.48894







(7.34)

F(0,0.8) = [−1310.9 − 13816 − 7093.2], γ = 0.44725 (7.35)

λi(Ap +BpF(0,0.8)) =







−1311

−9.9978

−0.54125







(7.36)

An interesting point to note is that theL2 gain bound is significantly influenced by the size of the sector. This is

shown in Figure 7.12 where the performance level for the full order compensator design is plotted as a function

of β, which defines the size of the sector. The shape was found to be typical of all systems tested although the

extent to which theL2 gain changes does vary between systems.

The theoretical minimumL2 gain for the full sector is theH∞ norm of the open loop linear system so would

not drop below this value when using a conventional design. However, when the reduced sector is used much

lower gains than this are returned in the optimisation. The actualL2 gain value returned therefore is more

difficult to interpret but its value relative to other optimisation results for the same system and sector bound is

still useful.

Missile Autopliot with LQG Control

The well-known model of a bank to turn missile introduced in Section 7.2.2 is re-used and a simulation was set

up in which both inputs to the plant are magnitude limited to±8 degrees. The unconstrained and constrained

without anti-windup simulation responses to a doublet demand applied to both channels is shown in Figure

7.13. The controller performs well with the linear (unconstrained) system, with the system responding very

smoothly to track the reference and excellent decoupling between the channels. Note also that in order to track

the reference, the majority of the control effort is applied in a single actuator channel. When the saturation

constraints are applied, decoupling between the roll and yaw channels is lost and performance is degraded

significantly.

A full order dynamic anti-windup compensator is designed for this system using the standard sector bound

and performance and robustness weights equal to the identity matrix. The compensator produced is defined

in (7.37), and the corresponding simulation performance is shown in Figure7.14. Note that the subscript of

F denotes the sector bound used for the design to aid the distinction between different designs. Due to the

restriction on control energy imposed by the constraints, neither channelis able to meet the set-point, however

each channel tracks quite closely to its reference. Notice though that when saturation has ceased and the system

begins recovery to linear behaviour (Mode III), both output channelsexhibit a somewhat oscillatory return to

zero. Recall that during Mode III, in the full-order case, the output ofthe disturbance filter is governed byN(s)
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Figure 7.11: RC circuit responses with full order AW
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Figure 7.12:L2 gain variation with sector bound for RC circuit example
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Figure 7.13: Missile doublet response for the unconstrained model and the constrained model without anti-

windup
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and is thusyd(t) = Cp exp(Ap + BpF )x̃(0). Hence the poles of the full order compensator are central to the

type of return to linear behaviour observed. The compensator poles given in (7.38) are underdamped and thus

explain the oscillations observed in Figure 7.14.

F(0,I) =




2.2795e− 2 1.7686e− 1 4.5274e− 3

−1.7586e− 3 −3.1289e− 3 −2.3714e− 4



 , γ = 376.59 (7.37)

λi(Ap +BpF(0,I)) =







−1.1589 + 32.482j

−1.1589 − 32.482j

−47.713







(7.38)

The control signals in the simulation without saturation violate the saturation levelby 25% which could be

enclosed by a sector bound on the deadzone function of[0, 0.2]. This sector bound is chosen as an initial trial

and if the control signals do not exceed this level in the anti-windup compensated system, we might expect to

see the greatest available benefit of using a reduced sector. Using LMILAB as the solver andβ = 0.2, the

compensator produced is given by (7.39). Performance in simulation is improved over the standard full order

design, with closer tracking of the reference and a smoother response (Figure 7.15). This is explained partially

by the improved damping of the compensator, shown in (7.40). In the constrained simulation, the magnitude of

the unconstrained control signals (not shown) do remain less thanumax and hence the stability condition does

hold. However, for larger inputs this may not be the case.

F(0,0.2I) =




1.6956 9.2176 0.33344

−0.024106 −0.3306 0.025955



 , γ = 1.0328 (7.39)

λi(Ap +BpF(0,0.2I)) =







−2697.8

−21.877 + 23.503j

−21.877 − 23.503j







(7.40)

When investigating the effect of using other sector bounds, some unexpected results were found. It was thought

that for a system giving stable results with theSector[0, I], performance would progressively increase as the

sector was reduced up until the point at which the bound is violated and as aconsequence, stability no longer

guaranteed. However, poor performance was also observed for some sector bounds where use of a smaller or

larger sector did provide good performance. An example of this is theSector[0, 0.8]. A compensator designed

using this sector and the same performance and robustness weighting matrices is defined in (7.41). This design

causes limit cycles in simulation when the same reference demand sequence is applied as shown in Figure

7.16. In this simulation the magnitude of the unconstrained control signalsdoexceedumax and so the stability

guarantee does not hold. This is understood to be the cause of the limit cyclebehaviour, although, the very

large real pole shown in (7.42) may also be causing difficulties for the simulation solver, and this is likely to be

impractical to implement.
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Figure 7.14: Missile simulation with standard sector bound. - - Nominal linear, –Saturated + AW
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Figure 7.15: Missile simulation with reduced sector AW. - - Nominal linear, – Saturated + AW
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Figure 7.16: Missile simulation with reduced sector AW that causes limit cycles

F(0,0.8I) =




15.859 84.607 3.0364

−0.2424 −2.7334 0.24027



 , γ = 1.4172 (7.41)

λi(Ap +BpF(0,0.8I)) =







−24693

−3.6955

−364.04







(7.42)

Increasing the magnitude of the robustness weight in the optimisation can cause the compensator poles to be

reduced in magnitude. When applied to the design with sector bound [0,0.8], performance equivalent to that

achieved withsector[0, 0.2] is provided and due to the larger sector,umax is also increased significantly. In this

case,umax = 40 and so local stability is not restrictive, particularly for this system as the LQGcontroller does

not cause the control signals to saturate heavily. Clearly, the impact on the optimisation result of reducing the

size of the sector bound is not trivial, but improvements to performance canbe gained.

Lightly damped system with PI control

This next case study uses the lightly damped plant and PI controller of (7.43) taken from [23] and a magnitude

saturation limit,ū = 0.5. A nominal linear (unconstrained) response and constrained response without anti-

windup are shown in Figure 7.17. Whether or not the nominal linear response should be considered to begood
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Figure 7.17: Lightly damped system responses without AW

is subjective but for the purposes of anti-windup design we seek a compensator that minimises the deviation

from the intended linear response. The saturated response is oscillatorydue to the lightly damped poles of the

plant and although the system remains stable, the settling time is long and the control response of the saturated

system is characterised by large amplitude oscillations.

K(s) ∼




0 −1

2 −2



 , G(s) ∼







−0.2 −0.2 1

1 0 0

−0.4 −0.9 −0.5







(7.43)

A full order compensator is designed for this system using theSector[0, I], performance weightWp = 1 and

robustness weightWr = 0.1 and is defined by (7.44).

F(0,I) =
[

−99.777 −11.5585
]

, γ = 10.7602 (7.44)

λi(Ap +BpF(0,I)) =




−99.859

−0.11775



 (7.45)

The behaviour of the system with this anti-windup compensator applied is shown in Figure 7.18. Although this
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design is successful in bringing the system out of saturation and causinglinear behaviour to be regained, the

return to linear behaviour is not as smooth or swift as one might hope, perhaps due to the slow pole present in

the compensator. The response of an additional full order design usingtheSector[0, 0.6] defined by (7.46) is

also shown in Figure 7.18. This compensator was designed using the same performance and robustness weights

as previously and although the compensated response still is not smooth, thedeviation from linear behaviour

is reduced: the recovery to linear behaviour is a little swifter, partly due to theincrease in magnitude of the

compensator’s slow pole. An important point to note about this example is that although the control signal

magnitude in the linear simulation was not greater than 2, in the constrained simulation without anti-windup

the magnitude of the control signal exceeded 8. Finally, in the anti-windup compensated simulations the peak

control signal magnitude approaches 70.

F(0,0.6) =
[

−55.6844 −11.3833
]

, γ = 0.42384 (7.46)

λi(Ap +BpF(0,0.6)) =




−55.6763

−0.2080



 (7.47)

7.3.3 Discussion

These case studies show that use of a reduced sector bound can lead toimproved anti-windup performance.

There are also examples for which the reduced sector affords no improvement, although no cases have been

found for which reduced sectors result in degraded local performance. By local performance, we mean per-

formance of the system whilst the sector adequately bounds the nonlinearity. Of course, for control signals

that cause the output of the nonlinearity to exceed the sector bound, the stability condition is not satisfied and

therefore neither performance or stability can be assured. This region of operation has been observed with each

of the case studies but only in the missile autopilot system did this cause detrimental performance.

A critical consideration in the use of reduced sectors is whether or not thesector is large enough to describe the

nonlinearity for the control signals that will feature during the systems operation. In this respect the case studies

show some interesting characteristics. With the RC circuit, the control signals of the linear unconstrained

system greatly exceeded the magnitude saturation limits that were to be applied and so there was little likelihood

of being able to reduce the size of the sector significantly and still bound the nonlinearity. As shown in Table

7.1 the peak control signal magnitude,upk, actually increased when the constraints were applied, and increased

further still when anti-windup was applied. However, although the sector bound did not hold globally and

stability was only guaranteed locally, the system was observed to be stable even for large deviations from the

sector bound and a small performance benefit was gained.

For the lightly damped system with PI control, the magnitude of the control signalin the linear simulation

and the constrained simulation without anti-windup were relatively small. This suggested that an anti-windup
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upk

Model ū Linear No AW Full-order AW

RC circuit 1 165 240 2200

Lightly damped 0.5 2 8 70

Missile autopilot 8 10 20 10

Table 7.1: Comparison of control signal magnitudes

compensator designed using a reduced sector bound may be successful. However, the application of full-order

anti-windup, regardless of the size of the sector, served to increase theseverity of saturation by an order of

magnitude, meaning that only a small reduction in the size of the sector could be accommodated if the sector

condition was required to hold during operation. This shows that the size ofthe control signal in linear and

constrained simulations without anti-windup is not an indicator of the size of sector required for the stability

guarantee to apply for normal operation. However, stability was observed in practice.

The missile autopilot system was a much more successful application of the reduced sector bound as a per-

formance improvement was gained and the peak magnitude of the control signal was maintained close to that

of the linear simulation. As a result, it is likely that local stability may be sufficient toensure stability during

normal operation. For compensator designs that did cause the sector bound to be violated during operation,

limit cycle behaviour was observed but by suitable tuning, a performance benefit could be gained whilst still

maintaining a relatively large sector. Of course, the peak magnitude of the control signals that may occur in a

given system are also dependent upon the exogeneous inputs applied toit and so some form of global stability

guarantee may still be desired. However, this may be provided by a less conservative method such as the Popov

Criterion.

The application of reduced sectors has only been shown for the application to full-order anti-windup but it is

equally applicable to both the low-order and static compensation strategies. Further benefits of reduced sectors

alluded to in [84] are that they may enable solution to the anti-windup stabilisation and synthesis problem for

non-Hurwitz plants although this area has not been explored here.

Another method available is to optimise local performance using a sector boundthat matches the expected size

of the control signals, but guarantee global stability by incorporating the full sector into the stability condition.

This can be achieved by posing both problems as separate LMIs and then combining them together to be

solved simultaneously. Forays in this direction revealed that when the globalstability condition was present,

the outcome of the optimisation varied very little from the standard case when performance and stability were

considered globally. This reveals that focusing the performance optimisation on a smaller set of signals has

little effect on achieved performance. Furthermore, it suggests that the size of the sector has a more significant

impact on the existence of a stability guarantee for a given system, and it is generally this that restricts the

attainable performance level for an anti-windup design.
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7.3.4 Conclusions

The following statements are the conclusions reached from this research into the use of reduced sectors.

• In most cases, use of the reduced sector bound was observed to havea positive effect on performance in

simulation, although its effect was generally quite minor. The improved full-order performance may still

lag behind that of a well tuned low-order compensator.

• Stability of the anti-windup compensated system is only guaranteed while the sector condition holds and

therefore for a practical application, ana priori check of global stability is desirable. However, due to

the conservatism of the circle criterion, global stability is often afforded in practice and so a single check

using a more complex but less conservative method may be all that is required.

• TheL2 performance level returned by compensator synthesis using a reducedsector reduces sharply with

the size of the sector and loses its relation to theH∞ norm of the connected linear system. Therefore, its

value is only of use for comparing compensator designs that employ the same sector condition.

• Whether a given sector bound is sufficient to envelope the given nonlinearity is dependent upon a number

of characteristics of the system. These include the dynamics of the nominal linear system, the type of

controller, the design of the anti-windup compensator, the saturation limits and also the exogeneous

inputs applied.

• Any performance gained by the use of a reduced sector in synthesis appears to result from the associ-

ated relaxation of the stability condition rather than focusing the optimisation toward performance for

conditions in which the control signal is bounded in magnitude byumax.

7.4 Overall Conclusions

This chapter has considered two ways in which the performance of anti-windup compensators could, in princi-

ple, be improved. In both cases, modifications to the existing full-order anti-windup synthesis algorithm of [88]

have been proposed, one involving frequency weighting theL2 performance objective, the other by considering

reduced sector bounds in order to obtain improved local performance.

Both methods have showed some merit in the simulation examples considered, although the performance ben-

efit seen has been modest. The frequency weighted approach seems able to bestow some minor performance

improvements when compared to a baseline full-order anti-windup design andmay best be used to fine-tune de-

signs, once a standard full order compensator has been computed. Thereduced-sector approach demonstrated

inconsistent results in simulation, although in some examples perhaps showed the best potential of the two

approaches.

Combined with the success of similar approaches, for instance in [77, 6, 102], the reduced sector technique
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seems able to deliver real performance benefits, although these may be better demonstrated on more realistic,

practical systems.

All in all, the theoretical results here should be considered as useful forays into the difficult territory of designing

optimal, technically rigorous compensators and they lay the foundations for further research of this type.



Chapter 8

Conclusion

The main contributions of the thesis and some areas for future research can be summarised as:-

• The main contribution of this thesis is the application of modern optimal anti-windup compensation to

a high performance Permanent Magnet Synchronous Motor (PMSM) speed control system that is em-

ployed within an Electrically Powered Hydraulic Steering system. Anti-windup isapplied to compensate

for violation of a constraint on the norm of a current demand vector signal within the control system.

A novel approach allows this complex multivariable constraint to be considered as a time-varying SISO

constraint for the purposes of compensator synthesis, allowing the application of modern optimal anti-

windup approaches.

• Following a review of anti-windup compensation strategies, a number of classical and modern approaches

were applied to simulation models of the PMSM speed control system. A selection of these designs were

tested extensively on a complex multi-rate discrete time nonlinear model of the EPHSsystem and the

most appealing classical and modern designs were subjected to practical testing on an EPHS test rig. For

practical testing the compensator designs were incorporated into a prototype software build and run on a

production ECU using fixed point arithmetic. The optimal low order anti-windupdesign yielded arguably

the best time-domain performance whilst also providing rigorous stability guarantees for the nonlinear

system. In spite of variation in the system dynamics with motor speed, theoreticalanalysis showed that

a single linear compensator design was able to provide such stability guarantees for in excess of 95%

of the operating envelope. Furthermore, theL2 performance bound was shown to be virtually invariant

with the operating condition of the system. In addition to providing new results for PMSM speed control,

the success and robustness of the low-order dynamic design for this application gives greater confidence

for the application of this approach to other engineering systems. Furthermore, the application results

presented here are believed to be the first application of modern anti-windup compensation techniques to

a real PMSM system.

One opportunity for future work in the context of PMSM control is the application of nonlinear anti-

windup methods to the current limitation problem. Techniques based on Nonlinear Dynamic Inversion
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such as presented in [57] promise effectively to cancel the nonlinearity inthe plant. This should reduce

variation of the nonlinear anti-windup closed loop dynamics with the operating condition and as a re-

sult, may allow stability to be guaranteed over the whole operating envelope. Inaddition, performance

improvements may also be achieved.

A similar but less computationally intensive option would be to design a gain scheduled linear anti-

windup compensator. Both the static and low-order designs could be adapted quite easily into gain-

scheduled designs. This may allow the stability to be guaranteed across the whole operating envelope

without a significant sacrifice of performance and with little additional complexity for implementation.

• It was identified that the problem of limiting current with the EPHS system case study is more naturally

cast as an override problem as the currents are states of the plant. A control structure was proposed apply-

ing a similar simplification of the vector norm saturation problem as in the anti-windup application work.

This structure allowed the application of optimal override compensation approaches to the EPHS system

model and static and dynamic designs were produced. The dynamic override design gave encouraging

results, showing more consistent limitation of the current than afforded by the anti-windup approach in

simulation testing. Again, it is believed that this chapter reports the first application of modern, theoreti-

cally rigorous override techniques, to PMSM systems.

Although override control is considered to be an appealing conceptual approach, some minor problems

remain that warrant further research. The first is that transient violation of the limit can still occur and

although this is more short-lived than in the anti-windup approach, it may exceed the limit by a greater

extent. A key issue with this difficulty is that in the override approach, limit violation is necessary

to trigger the activation of the compensator. Thus, confining attention to linear override controllers

(in which the reaction will be linearly proportional to the constraint violation) may be too conservative.

Some recent work on nonlinear override controllers may help to address this [36, 95], although, of course,

such controllers have an associated complexity increase. Another alternative is that if the conditions that

give rise to such overshoots can be reliably identified, an ad-hoc modification could be developed that

temporarily reduces the saturation threshold in this condition. Such an approach may be difficult to tune

but the stability guarantee afforded by the Circle Criterion does accommodatesuch time-varying limits

and so the stability properties of the system should not be affected. A second problem is that, depending

upon how the voltage and current limits are set, saturation of the voltage limit may prevent violation

of the current limit and allow the outer loop to wind up. Further study between the interplay of the

constraints is required to improve understanding of this phenomenon and develop a rigorous solution.

Another opportunity for future work is to remove the anti-windup compensator in the inner loop and

tackle this problem via override compensation. This could be achieved by passing thed and q axis

voltages through the plant as dummy outputs. This approach is appealing as itwould allow the design of

a single override compensator to compensate for both current and voltagesaturation.

• A theoretical contribution toward improving anti-windup synthesis by the application of reduced sector
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descriptions of the isolated nonlinearity was given. This technique was applied to full-order anti-windup

compensation and shown to provide performance improvements during ModeIII when saturation has

ceased and the plant output converges toward that of the nominal linear system. Although the improve-

ments seen were modest, the increased flexibility in the synthesis routine that results may provide more

significant performance benefits in other applications.

Further work in this area could explore applications to both low-order and static compensation. For

these more simple compensator designs, the extra flexibility allowed in tuning should be more transpar-

ent, allowing the characteristics of systems for which reduced sectors provide significant performance

improvement to be identified.

• A second theoretical contribution considered the idea that theL2 gain objective can be too general a

measure of anti-windup performance to ensure that a design with optimalL2 gain provides what the

designer would consider to be best performance. Specifically, the concept of weighting performance

objectives over frequency was borrowed from linear robust control and applied to theL2 design problem

for full order anti-windup compensation. The technique revealed that bygiving certain frequency ranges

greater significance in the performance optimisation, characteristics of the resulting design could be

influenced that allowed a design to be fine-tuned for improved performance. Again, modest performance

improvements were observed in simulation but it is thought that certain, more complex and more realistic

systems might demonstrate the improvement more dramatically.

Other thoughts for future work on performance improvement for full-order compensators are as follows.

For the low-order dynamic anti-windup compensator, one of the main benefitsappears to be that the de-

signer can choose the dynamics and therefore have a significant effect on the outcome of the synthesis.

It is believed that this flexibility allows the true performance potential to be exploited, which may not

correspond to the lowest possibleL2 gain. Adopting a similar philosophy in the design of full-order com-

pensators, improved performance may be afforded by allowing the designer to impose certain constraints

on the dynamics during synthesis. One possible method may be to restrict the poles of the disturbance

filter to certain regions. Similar work for linear systems and imposing quadratic stability can be found in

[10].

• A significant area of future work is the topic of robustness. The designspresented in this thesis are robust

in the sense that a single linear design has been shown to be robust to the variation in dynamics present

in the nonlinear system and also to the differences between the model and a real system. However, the

topic of robustness in terms of frequency domain uncertainty models as found in H∞ control has not

been addressed. The lack of rigorous robustness analysis is typical of the majority of work in the field

of anti-windup due to the difficulties in applying such approaches to nonlinear systems. However, some

preliminary work can be found in [88] and [94]. Robustness to structured uncertainty could also be

investigated.
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PMSM Control System

A.1 Linearisation of the d − q Axis PMSM Model

By making the substitutions

x =







x1

x2

x3


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the nonlineard− q axis state equations of (3.10) can be expressed as

d

dt
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Linearising about an equilibrium point (x0, u0) gives

˙̃x = Ax̃+Bũ

where
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Evaluating these derivatives gives
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wherexi(0) represent the equilibrium value of statexi. The output equation is given by
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and if required, the electromagnetic torque can be determined by

Te =
[

0 0 Ke

√
3

2

]
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x3





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A.2 Model Parameters

A full set of normalised parameters used for modelling and simulation of the PMSM speed control system is

included in the following tables.

Model Parameter Normalised Value

Rs 0.2541

Ls 0.1277

B 0.0323

J 1.4837

Ke 1

P 5

τcrt 200e−6 units

τspd 1e−3 units

Table A.1: Model parameters

Controller parameter Normalised value

kp,crt 2

ki,crt 2

kp,spd 9.87

ki,spd 413

τcrt 200e−6

τspd 1e−3

Table A.2: Normalised controller parameters used for design and simulation

Parameter Normalised value

Drive stage voltage limit 1

Supply Voltage 2

PWM modulation depth 1

Table A.3: Additional parameters relating to the Simulink model
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Normalised speed Phase advance angle [Rad] Normalised speed Phase advance angle [Rad]

0 0 2.05794015 1.1244

0.5879829 0 2.11673844 1.14

0.64678119 0 2.17553673 1.1548

0.70557948 0 2.23433502 1.1689

0.76437777 0.0154 2.29313331 1.1823

0.82317606 0.1827 2.3519316 1.1951

0.88197435 0.3115 2.41072989 1.2074

0.94077264 0.4155 2.46952818 1.2191

0.99957093 0.5022 2.52832647 1.2303

1.05836922 0.5761 2.58712476 1.2411

1.11716751 0.64 2.64592305 1.2515

1.1759658 0.6961 2.70472134 1.2614

1.23476409 0.7459 2.76351963 1.2711

1.29356238 0.7904 2.82231792 1.2804

1.35236067 0.8305 2.88111621 1.2894

1.41115896 0.8669 2.9399145 1.2981

1.46995725 0.9001 2.99871279 1.3065

1.52875554 0.9306 3.05751108 1.3147

1.58755383 0.9587 3.11630937 1.3226

1.64635212 0.9846 3.17510766 1.3303

1.70515041 1.0088 3.23390595 1.3379

1.7639487 1.0312 3.29270424 1.3452

1.82274699 1.0522 3.35150253 1.3524

1.88154528 1.0719 3.41030082 1.3593

1.94034357 1.0905 3.46909911 1.3662

1.99914186 1.1079 3.5278974 1.3729

Table A.4: Phase advance map
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Anti-Windup Compensation

B.1 State Space Matrices for Minimal Realisation of Static and Low Order Anti-Windup

Compensators

Minimal state space realisations for the static and low order anti-windup compensators presented in 4.4 are

parameterised by the following matrices where the nominal controller and plantare given by (B.1) and (B.2)

and the matrices∆ and∆̃ are defined as shown in (B.3) and (B.4).

K(s) ∼







ẋc = Acxc +Bcy +Bcrr

u = Ccxc +Dcy +Dcrr
(B.1)

G(s) ∼







ẋp = Apxp +Bpuum +Bpdd

y = Cpxp +Dpum +Dpdd
(B.2)

∆ = (I −DpDc)
−1 (B.3)

∆̃ = (I −DcDp)
−1 (B.4)

B.2 Static Compensator Matrices

Ā =




Ap +Bpu∆̃DcCp Bpu∆̃Cc

Bc∆Cp Ac +Bc∆DpCc



 , B0 =
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Bpu∆̃

Bc∆Dp





B̄ =




Bpu∆̃ −Bpu∆̃Dc

Bc∆Dp −Bc∆



 , C̄1 =
[

∆̃DcCp ∆̃Cc

]

D01 = ∆̃DcDp, D̄1 =
[

∆̃ −∆̃Dc

]

C̄2 =
[

∆Cp ∆DpCc

]

, D02 = ∆Dp, D̄2 =
[

∆Dp −∆DpDc

]
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B.3 Low-Order Compensator Matrices
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C̄1 =
[

∆̃DcCp ∆̃Cc ∆̃C1 −∆̃DcC2

]

, C̄2 =
[

∆Cp ∆DpCc ∆DpC1 −∆DpDcC2

]

D01 = ∆̃DcDp, D̄1 =
[

∆̃D1 −∆̃DcD2

]

D02 = ∆Dp, D̄2 =
[

∆DpD1 −∆DpDcD2

]

where the filter dynamics chosen by the designer are given by

F1(s) ∼
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A1 B1

C1 D1
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A2 B2
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B.4 State-Space Matrices for BCAT Stability Check LMI
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D01 = ∆̃[Dc 0][D′
p D

′
p]
′ D̄1 =

[

∆̃ −∆̃[Dc 0]
]

C̄2 =
[

∆[C ′
p C

′
p]
′ ∆[D′

p D
′
p]
′Cc

]

D02 = ∆[D′
p D

′
p]
′ D̄2 =

[

∆[D′
p D

′
p]
′ −∆[D′

p D
′
p]
′[Dc 0]

]



Appendix C

Override Compensation

C.1 State-Space Matrices ofGcl(s) and G̃cl(s) for Static and Dynamic Override Compensation

Cy =
[

∆DpCc ∆Cp

]

Dy0 =
[

∆DpDcr ∆Dpd

]

D̄y =
[

0 ∆Dp

]

C =
[

DpcCc +DpcDc∆DpCc Cpc +DpcDc∆Cp

]

D0 =
[

DpcDcr +DpcDc∆DpCc Dpdc +DpcDc∆Dpd

]

D̄ =
[

0 Dpc +DpcDc∆Dp

]

A =




Ac +Bc∆DpCc Bc∆Cp

BpCc +BpDc∆DpCc Ap +BpDc∆Cp





B0 =




Bcr +Bc∆DpDcr Bc∆Dpd

BpDcr +BpDc∆DpDcr Bpd +BpDc∆Dpd



 B̄ =




I Bc∆Dp

0 Bp +BpDc∆Dp





where

∆ = (I −DpDc)
−1 Ã =




Af 0

B̄Cf A



 B̃0 =




0

B0





B̃1 =




Bf

B̄Df



 C̃1 =
[

D̄Cf C
]

D̃01 = D0

D̃1 =
[

D̄ Df

]

C̃2 =
[

Cf 0
]

D̃2 = Df

C.2 Linearisation of the Phase Advance Function

The nonlinear closed loop system formed by the interconnection of the speed loop PI regulator (K), phase

advance function (ψ) and linearised model of the current control system (G) is shown in Figure C.1. We desire

to linearise the phase advance function and absorb this into the current control system model. To achieve this,

the nonlinear modulus functions must be omitted. Ignoring the modulus function applied to the motor speed

measurement has no influence on the result as for application in EPHS, the motor only operates in one direction
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i.e. ωm ≥ 0. On the other hand, the omission of the modulus function on theq-axis current demand means that

for operation withiq < 0, thed-axis current demand will be positive in the linear model as opposed to zero in

the nonlinear system. Thus, the linearisation will only be accurate wheniq ≥ 0. This should not be problematic

as for the operating conditions in which the model is used for compensator design, this will always be the case.

X−|(.)|

ψ(.)

ωm,dmd

i q,dmd

id,dmd ωm

φ
tan(.)

K
G

Figure C.1: Nonlinear closed loop system with phase advance

From the block diagram we have

id,dmd = f(iq,dmd, ωm) = −|iq,dmd| × tan(ψ(ωm))

and we desire to arrive at a linear relationship

id,dmd = [Kiq Kωm][iq,dmd ωm]′

for which

Kiq =
∂f(.)

∂iq,dmd

∣
∣
∣
∣
iq,dmd(0),ωm(0)

(C.1)

Kωm =
∂f(.)

∂ωm

∣
∣
∣
∣
iq,dmd(0),ωm(0).

(C.2)

The solution to (C.1) is given by

Kiq =
∂f(.)

∂iq,dmd

∣
∣
∣
∣
iq,dmd(0),ωm(0)

= − tan(ψ(ωm))|ωm(0). (C.3)

The solution to (C.2) is given by differentiating by parts as follows. Definingα = ψ(ωm), we have that

∂f(.)

∂ωm
= −iq,dmd

∂ tan(α)

∂α
· ∂α

∂ωm

= −iq,dmd sec2(α)
∂ψ(ωm)

∂ωm.

Thus, by evaluating at(ωm(0), iq,dmd(0)) and substituting in forα = ψ(ωm) we arrive at

Kωm =
∂f(.)

∂ωm(0)

∣
∣
∣
∣
ωm(0),iq,dmd(0)

= −iq,dmd(0) sec2(ψ(ωm(0)))
∂ψ(ωm(0))

∂ωm(0)
(C.4)
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C.3 Linear Plant Model Matrices for PMSM Override Case Study

The linear plant model is parameterised by the following matrices.

Ap =













−2.844 1.263 −0.009809 −0.158 0.05071

8.07 −136.9 118.2 261.2 −33.44

3.53 −145 −117 −35.66 175.9

7.564 −278.5 −487 −1312 −329.8

−3.429 116.1 213.1 1255 −1362













Bpd =













1.543

−2.204

−0.9575

−2.052

0.9302













Bp =













−0.001138

−0.008051

0.004471

0.03089

−0.03901













Cp =
[

−1.542 0.3585 0.03594 0.0286 −0.002264
]

Cpc =




−0.0008787 −0.3851 −0.5068 1.028 0.8355

0.05575 −2.14 0.8116 1.776 −0.4106





Dpd = Dp = 0 Dpdc = Dpd =
[

0 0
]′
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