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Abstract. The word problem of a finitely generated group is a funda-
mental notion in group theory; it can be defined as the set of all the
words in the generators of the group that represent the identity element
of the group. This definition allows us to consider a word problem as
a formal language and a rich topic of research concerns the connection
between the complexity of this language and the algebraic structure of
the corresponding group.
Another interesting problem is that of characterizing which languages
are word problems of groups. There is a known necessary and sufficient
criterion for a language to be a word problem of a group; however a
natural question is what other characterizations there are. In this paper
we investigate this question, using sentences expressed in first-order logic
where the relations we consider are membership of the language in ques-
tion and concatenation of words. We choose some natural conditions that
apply to word problems and then characterize which sets of these con-
ditions are sufficient to guarantee that the language in question really is
the word problem of a group. We finish by investigating the decidability
of these conditions for the families of regular and one-counter languages.

1 Introduction

The word problem of a finitely generated group G is a fundamental notion in
group theory; it can be defined as the set of all the words in the generators of the
group that represent the identity element of G. This definition allows us to con-
sider a word problem as a formal language and a rich topic of research concerns
the connection between the complexity of this language and the algebraic struc-
ture of the corresponding group. For example, the groups with a regular word
problem were classified in [1] and those with a context-free word problem in [11]
(modulo a subsequent result in [3]).

We will focus on the one-counter languages in this paper (see Section 2)
which are particularly interesting in the context of word problems of groups for
the following reason. Herbst showed in [4] that, if F is a subset of the context-
free languages which is a cone (in the sense of [2], i.e. F is a family of languages
closed under homomorphism, inverse homomorphism and intersection with reg-
ular languages), then the finitely generated groups whose word problem lies in
F are either those with a regular word problem, those with a one-counter word
problem or those with a context-free word problem. He also classified [4] the
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groups with a one-counter word problem (see also [5, 6]). Note that, in all the
cases mentioned here, whether or not the word problem of the group lies in the
specified family of languages is independent of the choice of finite generating set
for the group (see [5] for example).

Another interesting problem is that of characterizing which languages are
word problems of groups. A simple necessary and sufficient criterion for a lan-
guage to be a word problem was established in [13]. This involves the conjunction
of two conditions, universal prefix closure and deletion closure (see Definition 2
below); a natural question is what other such characterizations there are. We
investigate this problem, using sentences expressed in first-order logic where the
only relations are membership of the language in question and concatenation
of words. We choose some natural conditions that hold in all word problems
(see Definition 2) and then characterize which sets of these conditions are suffi-
cient to guarantee that the language really is the word problem of a group (see
Theorem 25).

We then build on the work in [10] in Section 5 and investigate the decidability
of these conditions for the families of regular and one-counter languages, noting
that all the properties are decidable for the regular languages but undecidable
for the one-counter languages (and hence for the context-free languages as well).

2 Preliminaries

In this section we will survey some concepts, notation and results we need from
formal language theory and group theory. For the background material on formal
language theory the reader is referred to [2, 7, 8] and, for group theory, to [9, 14].

As usual, we let Σ∗ denote the set of all words, including the empty word ε,
and Σ+ denote the set of all non-empty words over the alphabet Σ. If α ∈ Σ∗
and x ∈ Σ we let |α| denote the length of α and |α|x the number of occurrences
of x in α. If n ∈ N then Σ6n is the set of words in Σ∗ of length at most n and
Σ>n is the set of words of length at least n.

If α = βγ for some β, γ ∈ Σ∗ then β is said to be a prefix of α and γ is a
suffix of α; if α = βγδ for some β, γ, δ ∈ Σ∗ then γ is said to be a factor of α.
If α is the word a1a2 . . . an−1an with n > 1 and ai ∈ Σ for each i, then the
reversal αrev of α is the word anan−1 . . . a2a1 (and εrev is defined to be ε). For
any language L we define Lrev to be the language {αrev : α ∈ L}.

Given a language L over an alphabetΣ we define the syntactic congruence ≈L

to be the congruence on Σ∗ defined by:

α ≈L β ⇐⇒ (γαδ ∈ L⇔ γβδ ∈ L for all γ, δ ∈ Σ∗),

and then the syntactic monoid ML of L is the quotient Σ∗/ ≈L. If ϕ is the
natural map from Σ∗ onto ML then L = Sϕ−1 for some subset S of ML.

We will be discussing one-counter languages, which are the languages ac-
cepted by a one-counter automaton, i.e. a pushdown automaton where we have
only a single stack symbol apart from a special symbol marking the bottom of
the stack; these automata are nondeterministic and accept by final state.
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A group is a set G together with a closed binary operation ∗ which is associa-
tive and where there is an identity element 1 = 1G for ∗ and each g in G has an
inverse g−1. We often suppress the reference to ∗, simply referring to the group
as G and writing gh for g ∗ h. If G is a group, Σ is a finite set and ϕ : Σ∗ → G
is a surjective monoid homomorphism then we refer to Σ as a (monoid) gener-
ating set for G (via ϕ). For each a ∈ Σ let a be an element of Σ∗ such that
aϕ = (aϕ)−1. We have that a1a2 . . . an = b1b2 . . . bm in G (where ai, bj ∈ Σ) if
and only if a1a2 . . . anbm bm−1 . . . b1 represents 1G; so we can focus on the set of
the words in Σ∗ representing the identity of G and we refer to this language as
the word problem W (G,Σ) of G with respect to the generating set Σ (via ϕ).

Remark 1. A group is the syntactic monoid of its word problem; see [5] for
example. We will need a more general result here. Let Σ be a finite set, G be a
group, ϕ : Σ∗ → G be a surjective homomorphism, H be a subgroup of G (i.e. a
subset of G that forms a group in its own right) such that there is no non-trivial
normal subgroup of G contained in H (i.e. such that

⋂
{g−1Hg : g ∈ G} = {1})

and L = Hϕ−1; then G is the syntactic monoid of L (see [12]). ut

3 Properties of word problems

As we said in the introduction, we are interested in determining which sets of
properties of languages are sufficient to ensure that a language must be the word
problem of a group. Obviously such properties must be ones that are satisfied
by word problems; the ones we consider are listed in the following definition:

Definition 2. The following are potential properties of a language L over an
alphabet Σ:

(UPP) for all α ∈ Σ∗ there exists β ∈ Σ∗ such that αβ ∈ L;
if L satisfies (UPP) we say that L has the universal prefix property;

(USP) for all α ∈ Σ∗ there exists β ∈ Σ∗ such that βα ∈ L;
if L satisfies (USP) we say that L has the universal suffix property;

(UFP) for all α ∈ Σ∗ there exist β, γ ∈ Σ∗ such that βαγ ∈ L;
if L satisfies (UFP) we say that L has the universal factor property;

(DC) αβγ ∈ L, β ∈ L⇒ αγ ∈ L;
if L satisfies (DC) we say that L is deletion closed;

(CRD) αβ ∈ L, β ∈ L⇒ α ∈ L;
if L satisfies (CRD) we say that L is closed under right deletions;

(CLD) αβ ∈ L,α ∈ L⇒ β ∈ L;
if L satisfies (CLD) we say that L is closed under left deletions;

(IC) αβ ∈ L, γ ∈ L⇒ αγβ ∈ L;
if L satisfies (IC) we say that L is insertion closed;

(CCS) αβ ∈ L⇒ βα ∈ L;
if L satisfies the (CCS) we say that L is closed under cyclic shift;

(CC) α, β ∈ L⇒ αβ ∈ L;
if L satisfies (CC) we say that L is closed under concatenation. ut



4 Sam A. M. Jones and Richard M. Thomas

It is clear that all the properties in Definition 2 are satisfied by word problems
of groups; we will use this fact from now on without further comment. We now
introduce a concept that we will call (for the purposes of this paper) “duality”.

Remark 3. Suppose we have (as in Definition 2) a sentence σ in first-order logic
where the only relations in σ are membership of the language in question and
concatenation of words. We can obtain a new sentence σ′ by reversing the order
of the words in any concatenation in σ (but leaving everything else fixed). For
example, if we take the sentence representing the property (UPP), then the only
concatenation in the sentence is αβ ∈ L; we reverse this to get βα ∈ L and we
now have the sentence representing (USP). In this sense we say that (USP) is
the dual of (UPP) (and that (UPP) is the dual of (USP)).

In a similar vein we see that (CRD) is the dual of (CLD) and that the other
properties listed in Definition 2 are all self-dual. We sum these facts up in the
following tables:

Dual properties
(UPP) (USP)
(CLD) (CRD)

Self dual properties
(UFP) (DC) (IC)

(CCS) (CC)
ut

The motivation for introducing this concept is that, when characterizing word
problems of groups, we will make extensive use of the following result:

Proposition 4. If L is a language over some alphabet Σ, S = {σ1, σ2, . . . , σn}
is a subset of the properties listed in Definition 2, σ′i is the dual of σi for each i
and S′ = {σ′1, σ′2, . . . , σ′n}, then the following statements are equivalent:

(i) L is the word problem of a group if and only if it satisfies S.
(ii) L is the word problem of a group if and only if it satisfies S′.

Proof. We will first show that L is a word problem of a group if and only if Lrev

is a word problem of a group.
If Σ = {a1, a2, . . . , an} and ϕ : Σ∗ → G is a a surjective homomorphism

from Σ∗ onto a group G then we define a new homomorphism θ : Σ∗ → G
by aθ = (aϕ)−1 for all a ∈ Σ. If L is the word problem of G then, since
(g1 . . . gn)−1 = g−1n . . . g−11 in G and αϕ = 1 if and only if (αϕ)−1 = 1, we
see that Lrev is also the word problem of G via the homomorphism θ. Applying
the argument again shows that, if Lrev is the word problem of a group, then
L = (Lrev)rev is also the word problem of a group.

The result now follows from the observation that L satisfies the properties
in S if and only if Lrev satisfies the properties in S′. ut

4 Characterizing word problems

The following result from [13] is the starting point for our investigations in this
paper:

Proposition 5. A language L over an alphabet Σ is the word problem of a
group if and only if it satisfies properties (UPP) and (DC). ut
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Using Remark 3 and Proposition 4 we immediately have:

Corollary 6. A language L over an alphabet Σ is the word problem of a group
if and only if it satisfies properties (USP) and (DC). ut

We note the following:

Proposition 7. If a language L over an alphabet Σ satisfies properties (CCS)
and (UFP) then it satisfies property (UPP).

Proof. If α ∈ Σ∗ then we there exist β, γ ∈ Σ∗ such that βαγ ∈ L by (UFP).
Then αγβ ∈ L by (CCS) and so there exists δ = γβ with αδ ∈ L as required. ut

Using Remark 3 we immediately have:

Corollary 8. If a language L over an alphabet Σ satisfies properties (CCS) and
(UFP) then it satisfies property (USP). ut

Given Propositions 5 and 7, we have the following immediate consequence:

Corollary 9. A language L over an alphabet Σ is the word problem of a group
if and only if it satisfies properties (DC), (CCS) and (UFP). ut

We next note the following:

Proposition 10. If a language L over an alphabet Σ satisfies properties (CCS)
and (CRD) then it satisfies property (DC).

Proof. If αβγ ∈ L and β ∈ L then we apply (CCS), (CRD), (CCS) in turn to
get that γαβ ∈ L, γα ∈ L, and then αγ ∈ L as required. ut

Given Propositions 5 and 10, we have the following:

Corollary 11. A language L over an alphabet Σ is the word problem of a group
if and only if it satisfies properties (UPP), (CCS) and (CRD). ut

By Remark 3 and Proposition 10, we have the following:

Corollary 12. If a language L over an alphabet Σ satisfies properties (CCS)
and (CLD) then it satisfies property (DC). ut

Given Proposition 5 and Corollary 12 we have:

Corollary 13. A language L over an alphabet Σ is the word problem of a group
if and only if it satisfies properties (UPP), (CCS) and (CLD). ut

Given Propositions 5, 7 and 10 we have:

Corollary 14. A language L over an alphabet Σ is the word problem of a group
if and only if it satisfies properties (UFP), (CCS) and (CRD). ut

In a similar vein, Propositions 5, 7 and 12 give:
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Corollary 15. A language L over an alphabet Σ is the word problem of a group
if and only if it satisfies properties (UFP), (CCS) and (CLD). ut

Given Corollaries 6 and 12 we have:

Corollary 16. A language L over an alphabet Σ is the word problem of a group
if and only if it satisfies properties (CCS), (USP) and (CLD). ut

In a similar way, Corollaries 6 and 10 give:

Corollary 17. A language L over an alphabet Σ is the word problem of a group
if and only if it satisfies properties (CCS), (USP) and (CRD). ut

Another such result is the following:

Proposition 18. If a language L over an alphabet Σ satisfies properties (UPP),
(IC) and and (CRD) then it satisfies property (DC).

Proof. Assume that L satisfies (UPP), (IC) and (CRD); we want to show that
L satisfies (DC).

So assume that αβγ ∈ L and β ∈ L. By (UPP) there exists δ ∈ Σ∗ such
that αγδ ∈ L. Since β ∈ L we have by (IC) that αβγδ ∈ L. Since αγδ ∈ L
and αβγ ∈ L, (IC) also gives us that αγ(αβγ)δ ∈ L. Since αγαβγδ ∈ L and
αβγδ ∈ L, (CRD) gives that αγ ∈ L as required. ut

Given Propositions 5 and 18 we have another characterization of word problems
as follows:

Corollary 19. A language L over an alphabet Σ is the word problem of a group
if and only if it satisfies properties (UPP), (IC) and (CRD).

Given Proposition 18 we can apply Remark 3 to deduce:

Proposition 20. If a language L over an alphabet Σ satisfies properties (USP),
(IC) and and (CLD) then it satisfies property (DC).

Given Propositions 6 and 20 we have another characterization as follows:

Corollary 21. A language L over an alphabet Σ is the word problem of a group
if and only if it satisfies properties (USP), (IC) and (CLD).

Remark 22. For the convenience of the reader we show the implications between
the conditions listed in Definition 2 which we have established in this section by
means of the following diagrams:

(CCS)
(UPP)⇐= =⇒ (USP)

(UFP)

(CCS) (CCS)
=⇒ (DC) ⇐=

(CRD) (CLD)

(UPP) (USP)
(IC) =⇒ (DC) ⇐= (IC)

(CRD) (CLD)
ut
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We now establish a result that will be crucial in establishing the minimality of
certain sets of conditions from Definition 2 when characterizing word problems
of groups:

Proposition 23. There are languages L1, L2, L3, L4, L5 and L6 that satisfy
respectively the following specified subsets of the set of the properties listed in
Definition 2:

(UPP) (DC) (CCS) (UFP) (CRD) (IC) (CC) (CLD) (USP)
L1 Yes No Yes Yes No Yes Yes No Yes
L2 No Yes Yes No Yes No No Yes No
L3 Yes No No Yes Yes No Yes Yes Yes
L4 No Yes No Yes Yes Yes Yes Yes No
L5 No Yes Yes No Yes Yes Yes Yes No
L6 Yes No No Yes No Yes Yes Yes No

Proof. Let Σ = {a, b}, n > 1, L1 = Σ>n and L2 = Σ6n. We see that L1 satisfies
(UPP), (USP), (UFP), (CCS), (CC) and (IC) but not (DC), (CLD) or (CRD).
On the other hand, L2 satisfies (DC), (CRD), (CLD) and (CCS) but not (UPP),
(USP), (UFP), (CC) or (IC).

Let Ω be a finite set, G be a group, ϕ : Ω∗ → G be a surjective homo-
morphism, H be a non-trivial subgroup of G such that there is no non-trivial
normal subgroup of G contained in H and L3 = Hϕ−1. By Remark 1, we see
that G is the syntactic monoid of L3. If L3 were the word problem of a group
then every element of L3 would represent the identity in its syntactic monoid G,
contradicting the fact that H is non-trivial.

Despite L3 not being a word problem, it does satisfy some of the properties
in Definition 2. For example, it satisfies (UPP) (and hence (UFP) as well): if
α ∈ Ω∗ choose g ∈ G such that (αϕ)g ∈ H and then β ∈ Ω∗ with βϕ = g;
since (αβ)ϕ ∈ H we have that αβ ∈ L3. A similar argument shows that L3 also
satisfies (USP).

L3 also satisfies (CRD): if αβ ∈ L and β ∈ L then (αϕ)(βϕ) ∈ H and
βϕ ∈ H, so that αϕ = (αϕ)(βϕ)(βϕ)−1 ∈ H, and so α ∈ L. Similarly L3

satisfies (CLD). It is clear that L3 satisfies (CC): if α, β ∈ L3 then αϕ ∈ H and
βϕ ∈ H, so that (αβ)ϕ = (αϕ)(βϕ) ∈ H and hence αβ ∈ L3. Given that L3 is
not the word problem of a group it cannot satisfy (DC) by Proposition 5, (CCS)
by Corollary 14 or (IC) by Corollary 19.

For our next language we consider the bicyclic monoid B with the (monoid)
presentation 〈a, b : ab = 1〉. We let Σ = {a, b} and let L4 consist of all those
words in Σ∗ that represent the identity element of B; more formally, we have
the natural homomorphism θ : Σ∗ → B and we let L4 = {1}θ−1.

Each element ofB is represented by a word of the form biaj (were i, j > 0) and
we have that (biaj)θ = (bka`)θ if and only if i = k and j = `. If we consider the
complete (i.e. the confluent and terminating) string rewriting system R over Σ
where the only rule is ab → ε, we see that R reduces any word α in Σ∗ to the
word β of the form biaj that represents the same element of B as α (i.e. to the
word β such that βθ = αθ).



8 Sam A. M. Jones and Richard M. Thomas

It is clear that L4 satisfies (DC) (and hence (CRD) and (CLD) as well): if
αβγ ∈ L4 and β ∈ L4 then (αβγ)θ = βθ = 1 and then

(αγ)θ = (αθ)(γθ) = (αθ)(βθ)(γθ) = (αβγ)θ = 1,

so that αγ ∈ L4. Similarly L4 satisfies (IC): if αβ ∈ L4 and γ ∈ L4 then
(αβ)θ = γθ = 1 and so

(αγβ)θ = (αθ)(γθ)(βθ) = (αθ)(βθ) = (αβ)θ = 1,

and so αγβ ∈ L4. Given that L4 satisfies (IC) it clearly satisfies (CC) as well.
We also have that L4 satisfies (UFP): if α = ai1bj1 . . . ainbjn let

J = i1 + . . .+ in and I = j1 + . . .+ jn;

then aIαbJ reduces in R to ε and so aIαbJ ∈ L4. However, L4 does not satisfy
(UPP): if we let α = b then there is no word β such that αβ ∈ L as any word
in L can be reduced to ε through repeated uses of the rewriting rule ab → ε
and no word starting in b can be so reduced. A similar argument shows that no
word ending in a can be so reduced and so L4 does not satisfy (USP). The fact
that no word starting in b can belong to L4 also shows that L4 does not satisfy
(CCS) (since ab ∈ L4 but ba 6∈ L4).

We next consider L5 = ∅. It is clear that L5 satisfies (DC), (CCS), (CRD),
(CLD), (IC) and (CC) but not (UPP), (USP) or (UFP).

Lastly we let Σ = {a, b} and let L6 = {ε} ∪ Σ∗{a}. It is clear that satisfies
(UPP) and (UFP) but not (USP). L6 also satisfies (IC) and (CC) but not (CCS).
Lastly L6 satisfies (CLD) but not (CRD) or (DC). ut

As we said above, the languages specified in Proposition 23 will be useful in
establishing the minimality of certain sets of conditions from Definition 2. We can
now show that the characterizations we have obtained so far are all minimal, in
that no proper subset of any of the specified eleven sets of properties is sufficient
to ensure that the language in question is a word problem:

Proposition 24. For any non-empty proper subset S of any of the sets

{(UPP), (DC)}, {(DC), (CCS), (UFP)},
{(UPP), (CCS), (CRD)}, {(CCS), (CRD), (UFP)}
{(UPP), (IC), (CRD)}, {(USP), (DC)},
{(IC), (CLD), (USP)}, {(UPP), (CCS), (CLD)},
{(USP), (CCS), (CLD)}, {(USP), (CCS), (CRD)},

or {(UFP), (CCS), (CLD)}

there is a language satisfying all the conditions in S which is not a word problem
of a group.

Proof. Throughout this proof we will refer to the six languages L1, L2, L3, L4,
L5 and L6 introduced in Proposition 23.
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To eliminate proper subsets of . . . . . . we consider . . .
{(UPP), (DC)} L1 and L2.

{(DC), (CCS), (UFP)} L1, L2 and L4.
{(UPP), (CCS), (CRD)} L1, L2 and L3.
{(CCS), (CRD), (UFP)} L1, L2 and L3.
{(UPP), (IC), (CRD)} L1, L3 and L4.
{(USP), (DC)} L1 and L2.

{(IC), (CLD), (USP)} L1, L3 and L4.
{(UPP), (CCS), (CLD)} L1, L2 and L3.
{(USP), (CCS), (CLD)} L1, L2 and L3.
{(USP), (CCS), (CRD)} L1, L2 and L3.
{(UFP), (CCS), (CLD)} L1, L2 and L4.

For each maximal proper subset S of one the eleven sets we have given a language
satisfying all the properties in S which is not the word problem of a group. ut

Theorem 25. The sets of properties listed in Proposition 24 are precisely those
subsets S of the set of properties listed in Definition 2 such that satisfying the
conditions in S is sufficient for a language L to be the word problem of a group
but such that no proper subset of S has this property.

Proof. To start with, notice that the empty set L5 is not a characterisation and
satisfies all of the properties except (UPP), (USP) and (UFP); so any character-
isation must contain at least one of these three properties. Next we note that, if
a language satisfies (CCS) and one of (UPP), (USP) and (UFP), then it satisfies
all of them; so, in the first instance, we will consider languages which do not
satisfy (CCS).

Note, also, that each of (USP) and (UPP) imply (UFP) so, when considering
languages which satisfy two of (USP), (UPP) and (UFP), there is in fact only
one pair to consider (taking minimality into account), namely (UPP) and (USP).
The result of these considerations is that we have five cases to consider (with
respect to minimal characterizations):

– Case 1. We specify (UPP) but not (CCS).
– Case 2. We specify (USP) but not (CCS).
– Case 3. We specify (UFP) but not (CCS).
– Case 4. We specify (UPP) and (USP) but not (CCS).
– Case 5. We specify (CCS) and one of (UPP), (USP) and (UFP).

Let us consider Case 1 where we specify (UPP) but not (CCS), (USP) or
(UFP). Since (UPP) and (DC) is already a characterization by Proposition 5
there is no minimal characterization properly containing both of these properties;
so we will exclude (DC). Since (IC) implies (CC) we do not include both of these;
so we are looking at subsets of (UPP), (CLD), (CRD) and (CC) or of (UPP),
(CLD), (CRD) and (IC). With regards to (UPP), (CLD), (CRD) and (CC), the
language L3 satisfies all these conditions, and so no subset of this is sufficient
for a characterization.
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Let us now consider (UPP), (CLD), (CRD) and (IC). Considering L3 again
we see that (IC) must be included. If we only have (UPP) and (IC) then this is
not sufficient as is demonstrated by L1. If we add (CLD) to (UPP) and (IC) we
see that this is not a characterization as witnessed by L6. If we add (CRD) to
(UPP) and (IC) we have a characterization by Corollary 19, and this is minimal
by Proposition 24.

Case 2 is the dual of Case 1 (in the sense of Remark 3). Using Proposition 4
we see that the only minimal sets of conditions here are {(USP), (DC)} and
{(USP), (IC), (CLD)}.

Case 3 cannot give rise to any characterizations as witnessed by L4 which
satisfies all the properties in Definition 2 except (UPP), (USP) and (CCS).

Let us now consider Case 4 where we specify (UPP) and (USP) but not
(CCS) or (UFP). Again, using Proposition 5, we can exclude (DC) if we are
considering minimal characterizations. Again, since (IC) implies (CC), we do not
include both of these properties; so we are looking at subsets of (UPP), (USP),
(CLD), (CRD) and (CC) or of (UPP), (USP), (CLD), (CRD) and (IC). With
regards to (UPP), (USP), (CLD), (CRD) and (CC), the language L3 satisfies
all these conditions, and so no subset of this particular set is sufficient for a
characterization.

Now consider (UPP), (USP), (CLD), (CRD) and (IC). Given L3 we see that
(IC) must be included. If we only have (UPP), (USP) and (IC) this is not suffi-
cient as demonstrated by L1. If we add (CRD) to (UPP), (USP) and (IC) then
we have a proper superset of {(UPP), (IC), (CRD)} which is a characterization
as above, and, if we add (CLD) to (UPP), (USP) and (IC) then we have a
proper superset of {(USP), (IC), (CLD)} which is also a characterization; so no
new minimal characterizations arise here.

Lastly consider Case 5. We first consider the case where we have (CCS)
and (UPP). Again, by minimality, we can assume that (DC) is excluded.

Given Proposition 24, if we include (CRD), then we have a minimal char-
acterization by Corollary 11 and, if we include (CLD), then we have a minimal
characterization by Corollary 15. We must include one of these, however, as L1

satisfies (UPP), (CCS), (IC) and (CC).

We next turn to the case where we specify (CCS) and (USP). This is the
dual of the case where we specify (CCS) and (UPP) and so we get the minimal
characterizations {(CCS), (USP), (CRD)} and {(CCS), (USP), (CLD)} here.

Lastly we look at the case where we specify (CCS) and (UFP). Given that
(UPP), (USP) and (UFP) are all equivalent in the presence of (CCS), we get
(using Proposition 24) the minimal characterizations {(CCS), (UFP), (CRD)}
and {(CCS), (UFP), (CLD)}. The only other possibility would be to include
(DC) as, unlike (UPP) and (USP), (DC) is not sufficient to guarantee a word
problem when taken in conjunction with (UFP) as witnessed by L4. The set
{(CCS), (UFP), (DC)} is a characterization by Corollary 9 and is minimal by
Proposition 24; so this is our last possibility (as we clearly cannot take any set
properly containing it and preserve minimality). ut
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5 Decidability results

We now investigate the decidability of the properties listed in Definition 2. It is
reasonably clear that these are all decidable for regular languages, i.e. given a
finite automaton M we can decide whether or not L(M) satisfies the property
in question.

One possible approach for regular languages involves considering the syntac-
tic monoid of L(M). If L = L(M) ⊆ Σ∗ then we know that ML is finite, that
L = Sϕ−1 for some S ⊆M (where ϕ is the natural map from Σ∗ onto ML) and
that we can explicitly construct ML and S from M . Given this (for example),
(UPP) is equivalent to the sentence ∀x ∈ML ∃y ∈ML : xy ∈ S, which is decid-
able as ML is finite. The decidability of the other properties listed in Definition 2
for regular languages can all be established in the same way.

When we consider the corresponding questions for one-counter languages
then, as in [10], we will need the idea of a counter machine. There are several
ways of describing these machines and we give one possibility here, following the
approach taken in [10]. For the convenience of the reader we will reproduce the
basic definitions and notation from [10] here.

A counter machine M (as distinct from a one-counter automaton) is a two-
tape machine. The first tape is the input tape; it is read only and the head
can only move to the right. The second tape is a stack: whenever we move left,
M erases the symbol it moved away from. There is only one stack symbol, a say.
Intuitively M can only store a natural number (so that we can think of M as
having an input tape and a counter). As we will see, the stack is never empty.

More formally, a counter machine is a sextuple M = (Q,Σ, a, δ, q0, qf ) where
Q is a finite set of states containing two distinguished states, q0, the start state,
and qf , the final state. The input alphabet Σ is a finite set of symbols such that
a /∈ Σ. A configuration of M is a word of the form qan where q ∈ Q and n > 0
(where the current state is q and the current stack contents are an).

We take C to be {1, 2, 3, 5, 7, 12 ,
1
3 ,

1
5 ,

1
7}; there is no particular significance in

our choice of 2, 3, 5 and 7, in that any four pair-wise coprime natural numbers
would suffice. The transition relation δ is a function from (Q−{qf})×Σ×C to
(Q−{q0})×(Q−{q0}); the fact that δ is a function means thatM is deterministic.
M starts with just a on its stack (i.e. with the counter set to 1) and must set
its counter to 1 again before entering qf .

A move (p, b, x, q, r) in δ is interpreted as follows. If M is in state p reading
an input b and if the result of multiplying the current value n of the counter (i.e.
we have an on the stack) by the value x is an integer, then we set the counter
to xn and move to state q; if xn is not an integer then the counter remains set
at n and M moves to state r. We write pan ` qaxn or pan ` ran as appropriate.

Given a Turing Machine, one can effectively construct a counter machine
accepting the same language (see [7] for example). We now turn to the compu-
tations of a counter machine:
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Definition 26. Let M be a counter machine. A valid computation of M is
a word C0C1 . . . Cn ∈ (Q ∪ {a})∗ where the Ci are configurations of M and

C0 = q0a ` C1 ` . . . ` Cn = qfa;

other elements of (Q ∪ {a})∗ are said to be invalid computations. ut

In any valid computation, any configuration qan will have n = 2b3c5d7e for
some b, c, d, e > 0. Multiplying by 2, 3, 5 or 7 increases b, c, d or e respectively
by 1 and multiplying by 1

2 , 1
3 , 1

5 or 1
7 (if possible) decreases b, c, d or e by 1; so

we effectively have four counters each of which can be increased or decreased.
The fact that we can only multiply by x if nx is an integer effectively says that
we can test each counter individually for zero (e.g. if n = 2b3c5d7e and we want
to multiply by 1

2 then we must have that b > 0).
We will need the following result from [10]:

Proposition 27. If M = (Q,Σ, a, δ, q0, qf ) is a counter machine then the fol-
lowing language is a one-counter language:

K = {qanpaj : the following conditions hold:
if (q, b, k, p, r) is a quintuple of δ and kn is an integer then kn 6= j;
if (q, b, k, p, r) is a quintuple of δ and kn is not an integer then j 6= n}

In [10] it was shown that the properties (UPP) and (DC) were undecidable
for one-counter languages. Our aim here is to extend this result to the other
properties listed in Definition 2. We will need the following technical result:

Proposition 28. The following problem is undecidable:
Input: a one-counter automaton M with input alphabet Σ of size at least

two such that either L(M) = Σ∗ or L(M) = Σ∗ − Σ∗{α}Σ∗ for
some word α such that α has length at least two and contains at
least two different symbols.

Output: “yes” if L(M) = Σ∗ −Σ∗{α}Σ∗;
“no” if L(M) = Σ∗.

Proof. Our aim is to describe a language L over an alphabet Σ which is closed
under taking factors and which does not include a valid computation of a counter
machine M (when reading a specified input β) as a factor. This way L will be
equal to either Σ∗ or Σ∗ − Σ∗{α}Σ∗, where α is the computation path of M
accepting β, depending on whether or not M accepts β.

Since we want L to be closed under taking factors we need to ensure that
no factor of a word in L is a valid computation of M . We do this by checking
that, whenever an initial configuration occurs in α, a valid computation does
not follow. Formally, we will consider the following three languages:

(i) L1 = Σ∗ − Σ∗{q0a}Σ∗. This is the set of all words in Σ∗ which do not
contain the unique initial configuration of M .

(ii) L2 = Σ∗−Σ∗{qfa}Σ∗. This is the set of all words which do not contain the
unique halting configuration of M .
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(iii) L3. The set of all words which are invalid as computations of M after every
instance of the unique initial configuration of M (i.e. words which do not con-
tain a factor consisting of the unique initial configuration of M followed by
a valid computation path ending in the unique halting configuration of M).

L1 and L2 are regular and so one-counter; we now show that L3 is one-counter.
The machine accepting L3 operates as follows: it scans its input doing noth-

ing until it reads the unique initial configuration of M . At this point the machine
changes state and attempts to detect an invalid computation step of M (as in
Proposition 27). If the machine does not find a factor which is an invalid compu-
tation step of M before reading the unique halting configuration of M then the
machine scans the rest of its input, doing nothing, and rejects. If it does find a
factor which is an invalid computation step of M then the machine continues to
scan its input until it finds another instance of the unique initial configuration
and then repeats the process, accepting if and only if, after every instance of the
initial configuration, we do not reach the halting configuration without finding
an invalid computation step first. If, at any point, the machine finds another
instance of the initial configuration before an instance of the halting configu-
ration then the machine resets its state and attempts again to find an invalid
computation step of M starting at the most recent initial configuration read.

So L = L1 ∪ L2 ∪ L3 is a language one-counter as the family of one-counter
languages is closed under union. Now L = Σ∗ if and only if M rejects β and
L = Σ∗ −Σ∗{α}Σ∗ (for suitable α) if and only if M accepts β. So, if we could
distinguish between Σ∗ and Σ∗ −Σ∗{α}Σ∗ for one-counter languages, then we
could solve the halting problem, a contradiction. ut

The condition in Proposition 28 that α can be assumed to have length greater
than two and to consist of at least two symbols is included only to facilitate the
undecidability results that follow. In a similar manner we can establish:

Proposition 29. The following problem is undecidable:
Input: a one-counter automaton M with input alphabet Σ of size at least

two such that either L(M) = Σ∗ or L(M) = Σ∗ − {α} for some
α such that α has length at least two and contains at least two
different symbols.

Output: “yes” if L(M) = Σ∗ − {α};
“no” if L(M) = Σ∗.

Having established Propositions 28 and 29 we can now prove our result:

Theorem 30. All the properties listed in Definition 2 are undecidable for one-
counter languages.

Proof. Σ∗ satisfies all the properties in Definition 2 but K = Σ∗ − Σ∗{α}Σ∗
(where α has length at least two and contains two different symbols) does not
satisfy any of the conditions (UPP), (USP), (UFP), (IC), (CCS), (CC). These
are reasonably clear. The word α is not a prefix, suffix or factor of any word in K,
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and so K does not satisfy (UPP), (USP) or (UFP). If α = βγ with β 6= ε 6= γ
then β, γ ∈ K but βγ 6∈ K; so K does not satisfy (IC) or (CC).

Given that α can be assumed to have two distinct symbols, we can write α in
the form aδbζ for some a, b ∈ Σ with a 6= b and δ, ζ ∈ Σ∗; if K satisfied (CCS)
then, as bζaδ ∈ K, we would have that α = aδbζ ∈ K, a contradiction. So all
these conditions must be undecidable by Proposition 28.

The remaining properties are (DC), (RDC) and (LDC). If we could decide
these then we would be able to distinguish between Σ∗ (which satisfies all three
properties) and Σ∗ − {α} (which doesn’t satisfy any of them; for example, for
any character x in Σ, αx ∈ Σ∗ −{α} and x ∈ Σ∗ −{α} but deleting x from αx
yields α which is not a member of Σ∗ − {α}), contradicting Proposition 29. ut
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