
UNIVERSITY OF LEICESTER

DEPARTMENT OF INFORMATICS

THESIS SUBMITTED FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Recurrent Sets for Non-Termination

and Safety of Programs

Alexey Bakhirkin

September 2016

Recurrent Sets for Non-Termination and Safety of Programs

Alexey Bakhirkin

Termination and non-termination are a pair of fundamental program properties. Ar-

guably, the majority of code is required to terminate, e.g., dispatch routines of drivers

or other event-driven code, GPU programs, etc – and the existence of non-terminating

executions is a serious bug. Such a bug may manifest by freezing a device or an entire

system, or by causing a multi-region cloud service disruption. Thus, proving termina-

tion is an interesting problem in the process of establishing correctness, and proving

non-termination is a complementary problem that is interesting for debugging.

This work considers a sub-problem of proving non-termination – the problem of

finding recurrent sets. A recurrent set is a way to compactly represent the set of non-

terminating executions of a program and is a set of states from which an execution of

the program cannot or may not escape (there exist multiple definitions that differ in

modalities). A recurrent set acts as a part of a non-termination proof. If we find a non-

empty recurrent set and are able to show its reachability from an initial state – then we

prove the existence of a non-terminating execution.

Most part of this work is devoted to automated static analyses that find recurrent

sets in imperative programs. We follow the general framework of abstract interpre-

tation and go all the way from trace semantics of programs to practical analyses that

compute abstract representations of recurrent sets. In particular, we present two novel

analyses. The first one is based on abstract pre-condition computation (backward

analysis) and trace partitioning and focuses on numeric programs (but with some mod-

ifications it may be applicable to non-numeric ones). In popular benchmarks, it per-

forms comparably to state-of-the-art tools. The second analysis is based on abstract

post-condition computation (forward analysis) and is readily applicable to non-numeric

(e.g., heap-manipulating) programs, which we demonstrate by tackling examples from

the domain of shape analysis with 3-valued logic.

As it turns out, recurrent sets can be used in establishing other properties as well.

For example, recurrent sets are used in CTL model checking of programs. And as part of

this work, we were able to apply recurrent sets in the process of establishing sufficient

pre-conditions for safety.

Contents

1 Introduction 8

1.1 Non-Termination and Termination . 9

1.2 Recurrent Sets . 12

1.3 Abstraction . 14

1.4 Contents and Contribution . 15

1.5 Timeline and Motivation . 16

1.6 Publications . 18

2 Background 19

2.1 Basic Notation . 19

2.2 Programs and Executions . 21

2.2.1 Statements and Relations . 24

2.2.2 Executions . 27

2.3 Introduction to Abstract Interpretation . 32

2.3.1 Analyzing Programs in the Domain of Traces 40

2.3.2 Set-of-States Abstraction . 42

2.3.3 Error State in the Abstract Domain 46

2.4 Non-Termination Analyses and Recurrent Sets 47

2.5 Structured Programs . 52

2.6 Related Work . 56

2.7 Chapter Conclusion . 57

2.A Omitted Proofs . 58

2.B Memory Abstract Domains . 62

3 Finding Existential Recurrent Sets with Backward Analysis 68

3.1 Abstract Domain of the Analysis . 71

1

3.2 Path Domain . 75

3.3 Forward Pre-Analysis . 78

3.4 Backward Analysis For a Candidate . 81

3.5 Checking and Refining a Candidate . 85

3.6 Examples . 89

3.7 Related Work . 93

3.8 Chapter Conclusion and Future Work . 95

3.A Constructing the Abstract Domain D] . 96

3.B On Chaotic Iteration . 97

4 Finding Universal Recurrent Sets with Forward Analysis 99

4.1 Background . 100

4.1.1 Recurrent Sets in the Abstract . 102

4.2 Finding a Universal Recurrent Set . 103

4.2.1 Idea of the Algorithm . 106

4.2.2 Abstract Memory State Graph . 109

4.2.3 The Algorithm . 112

4.3 Examples . 116

4.4 Related Work . 123

4.5 Chapter Conclusion and Future Work . 126

4.A Omitted Proofs . 127

5 Experiments in Finding Recurrent Sets 130

5.A Detailed Experimental Results . 137

6 Recurrent Sets in Analysis for Sufficient Pre-Conditions 141

6.1 Background . 142

6.2 Fixpoint Characterizations of Safe and Unsafe States 145

6.3 Least Fixed-Point Characterization of Safe States 147

6.4 Approximate Characterizations . 151

6.4.1 Approximating a Recurrent Set . 159

6.5 Examples . 159

6.6 Related Work . 165

6.7 Chapter Conclusion . 166

2

6.A Omitted Proofs . 168

7 Conclusion 174

3

List of Figures

1.1 Demonstration of a real-life non-termination bug. 10

1.2 A possible fix for the non-termination bug. 10

1.3 An abstraction of the program in Fig. 1.1. 13

2.1 Logical operators in 3-valued logic. 20

2.2 Informal text in pseudocode and a corresponding formal program. . . . 22

2.3 A loop with non-deterministic branching. 23

2.4 Ways to handle errors in an unstructured program. 30

2.5 A loop that increments x an unknown number of times. 33

2.6 Constant propagation abstract domain. 33

2.7 Example of a transition relation. 41

2.8 Unstructured programs corresponding to structured programs. 56

2.9 An element of the interval domain. 62

2.10 An element of polyhedral domain. 63

2.11 The convex hull of two polyhedra. 64

2.12 A program that simultaneously updates two variables. 64

2.13 An element of the product of polyhedra and linear congruences. 65

2.14 Acyclic list with 2+ elements. 66

2.15 Cyclic list with 2+ elements. 66

3.1 A program where a non-terminating execution alternates between two

regions. 70

3.2 Reducing a partial function to an element of Dmp. 74

3.3 Loop containing single non-deterministic branching statement. 75

3.4 Loop that assigns a non-deterministic value to a variable in every iteration. 89

3.5 Loop that requires a specific range of y for non-termination. 90

4

3.6 Illustration of the descending chain {x ≥ 0∧x + j y ≥ 0} j≥0. 90

3.7 GCD algorithm with an introduced bug. 92

4.1 Program text for Example 4.1. 101

4.2 State graph for the program in Fig. 4.1. 107

4.3 Procedure FindFirst that finds the first recurrent set. 113

4.4 Procedure FindNext that finds the next recurrent set. 114

4.5 Procedure MakeNewElements that adds new elements to the graph. . . . 117

4.6 Finding a recurrent component. 118

4.7 Demonstration of a real-life non-termination bug. 119

4.8 Acyclic list with 2+ elements. 120

4.9 Cyclic list with 2+ elements. 120

4.10 Linear search in a non-cyclic list. 120

4.11 Prepending to a non-empty list. 120

4.12 Example of a cyclic list where c is false for all elements. 122

4.13 State graph for the program in Fig. 4.11. 122

4.14 Program fragment exhibiting a non-termination bug when manipulat-

ing a cyclic list. 124

4.15 Simplified version of the program in Fig. 4.14. 125

4.16 Sample structure from a recurrent component in Example 4.5. 125

5.1 Example of an input program for the implementation of the algorithm

of Chapter 3. 131

5.2 Example of a driver program for the implementation of the algorithm of

Chapter 4. 132

5.3 A program where a recurrent set corresponds to a fixed point of some

mathematical function. 136

6.1 Example program 6.1. 145

6.2 Partitioning of the states at the loop entry. 149

6.3 Example program 6.2. 160

6.4 Representations of non-deterministic branching. 163

6.5 Example program 6.3. 164

6.6 Example program 6.4. 164

5

6.7 A lasso-shaped list. Example of a safe structure causing non-termination

of Example 6.3. 165

6.8 A non-cyclic list. Example of a safe structure leading to successful ter-

mination of Example 6.3. 165

6

List of Tables

5.1 Summary of the experimental results. 135

5.2 Detailed experimental results. 137

7

Chapter 1

Introduction

This work is about program analysis. Though, this explanation is too abstract, and we

need to refine it before we can describe the actual contents of our research.

First, we are going to perform static analysis meaning that we will identify some

runtime properties of programs without actually running them. Second, we will anal-

yse imperative programs. As an imperative program runs, it goes through some se-

quence of states, which we call an execution. A single program may have multiple pos-

sible executions: the program may start in one of the many possible initial states, and

some statements in the program may have multiple possible outcomes. In this setting,

a property of a program is a mathematical object, containing some information about

the set of all executions of the program: e.g., whether the program may ever reach an

erroneous state, whether the program always (sometimes, never) terminates, etc. This

means that we will not perform testing and observe a finite number of executions of

the program. Instead, we will build a mathematical model of a program and from the

properties of the model will derive properties of the set of its executions. Finally, our

analysis will be automatic, meaning that we will produce an algorithm that can iden-

tify some properties of programs without interacting with a human. Thus, this work is

about automated static analysis of imperative programs.

This may seem as a problem that is too hard to tackle1, but in practice, this is not al-

ways the case. It turns out that programs, for which static analysis is important, are of-

ten feasible to analyse. For example, many fragments of critical systems code are what

1And indeed, program analysis is a hard problem. When modelling the state of a program as a bit
vector, analysis becomes NP-complete. Analysis of models with infinite state-space often becomes un-
decidable.

8

is called control intensive. That is, their behaviour is mostly encoded in the program

text and to a lesser extent depends on input data. Also, control-intensive programs

are often numeric (i.e., important variables are numbers) and often even linear (i.e.,

important statements perform affine transformations of the variables). This allows to

use in the analysis all the numerous achievements in linear programming2. Addition-

ally, as academic researchers, we often allow ourselves to avoid dealing with quirks and

peculiarities of a particular programming language and restrict ourselves to models of

programs that maintain only the essential aspects of the behaviour.

We now proceed to the discussion of exactly which properties we are interested in

and what will be our main tool in identifying them.

1.1 Non-Termination and Termination

In this work, we are interested in a specific property of programs, which can be infor-

mally described as, “When does a program not terminate?”

Termination and non-termination are a pair of fundamental properties of com-

puter programs. Arguably, the majority of code is required to terminate, e.g., dispatch

routines of drivers or other event-driven code, GPU programs, etc – and the existence

of non-terminating executions is a serious bug. Such a bug may manifest by freezing a

device or an entire system or by causing a multi-region cloud service disruption3. Thus,

proving termination becomes an interesting problem, as part of the process of estab-

lishing correctness of a program. At the same time, this problem (i.e., halting problem)

is in general undecidable. That is, if an automatic technique can soundly prove ter-

2Some numeric techniques, to be sound, require that all numeric variables in a program can take
arbitrary integer or rational values. In particular, that the value of an integer variable does not “wrap
around” or saturate when increasing or decreasing past a certain point. While it is in general not consis-
tent with the behaviour of machine integer and floating-point numbers (which can only take the values
from certain finite subsets ofZ andQ), this requirement is actually quite benign. An analysis can always
check whether in a given program, some variable may reach a critical value and if so, declare the results
of the analysis as non-conclusive. Another point is that in some programming languages, the effect of
an overflow of a signed integer variable is considered undefined, and it is just not possible to soundly
predict the behaviour of a program in this case. For these reasons, academic researchers often work with
models of programs where there is no bound on the values of numeric variables. In this work, the tech-
niques will not rely on the absence of overflows and will allow to encode different semantics of numbers.
On the other hand, some examples will assume that integer variables can take arbitrarily large positive
or negative values, but this is solely to simplify the presentation.

3http://azure.microsoft.com/blog/2014/11/19/update-on-azure-storage-service-interruption, last accessed
in May 2016

9

http://azure.microsoft.com/blog/2014/11/19/update-on-azure-storage-service-interruption

1 days ← a number≥ 0

2 year ← 1980

3 while (days > 365) {

4 if (leap(year)) {

5 if (days > 366) {

6 days ← days−366;

7 year ← year+1;

8 }

9 } else {

10 days ← days−365;

11 year ← year+1;

12 }

13 }

Figure 1.1: Demonstration of a real-life
non-termination bug.

1 days ← a number≥ 0

2 year ← 1980

3 while (days > 365) {

4 if (leap(year)) {

5 if (days > 366) {

6 days ← days−366;

7 year ← year+1;

8 } else if (days = 366)

9 days ← days−366;

10 } else {

11 days ← days−365;

12 year ← year+1;

13 }

14 }

Figure 1.2: A possible fix for the non-
termination bug.

mination of some programs4, this technique is incomplete. If it fails to prove that a

program terminates, this does not mean that the program has non-terminating ex-

ecutions. This way, proving non-termination becomes an interesting complementary

problem, which arises in the process of finding bugs in programs (i.e., debugging in the

sense of [Bou93a]). In general, we will use the phrases, “to prove termination” and “to

prove non-termination” in the following sense. By proving termination we mean find-

ing the initial states from which a program terminates or showing that the program

terminates from all initial states. Conversely, by proving non-termination we mean

showing that from all or from some specific initial states at least one non-terminating

execution can originate. Let us illustrate this all with an example.

Example 1.1. Fig. 1.1 demonstrates a non-termination bug that actually occurred in

the software of Microsoft Zune players in the end of 2008. This is a simplified fragment

of a procedure which calculates current date (in the example – only the current year)

4Undecidability of halting problem does not mean that we cannot prove termination or non-
termination of any program. It means that there is no algorithm that for every program will give a
definite answer on whether or not the program terminates. Still, there exist algorithms that can prove
termination (or non-termination) of some programs.

10

based on the number of days that have passed since 1 January 1980. In this fragment,

the loop repeatedly subtracts 365 or 366 from the current number of days depending

on whether the current year is leap and then increases the year by 1. Due to a logical

error, if the current year is leap and the current number of days is exactly 366, a loop

iteration does not change the variables, and the program goes into an infinite loop.

This happened for many devices on 31 December 2008 causing them to freeze with the

only option for an affected user being to wait until the battery of the device completely

discharges and then turn on the device the day after 5.

Overall, non-termination bugs, although they often cause a great impact especially

when they occur in systems code, seem to usually have simple explanations. Thus,

there is hope that automated analyses (unlike humans) will be good at finding such

bugs. How would an automated termination prover help in this case? The general

structure of a termination proof was offered by Alan Turing back in the end of 1940s

[Tur49]. To show that a program terminates, one (a person or an algorithm) would

need to construct a structure-preserving map (usually called a ranking function) from

the state-space of the program (together with the transition relation of the program)

to some set equipped with a well-founded relation. One way to think of a ranking

function is that for every state of the program, it should give an upper bound on the

number of computation steps until termination. For the program in Fig. 1.1 there is

no such ranking function, and a non-termination prover will report that it cannot find

one. This will be a hint to the programmer that something might be wrong (as men-

tioned above, non-termination provers are incomplete, and failure to find a ranking

function in does not in the general case mean that there is no ranking function at all).

On the other hand, if we apply an automated non-termination prover to the program

in Fig. 1.1, we will get one of the two possible outcomes:

(i) the non-termination prover will be able to show the existence of states from which

the program does not terminate and expose this fact to the programmer thus

showing what exactly the non-termination bug is;

(ii) the non-termination prover will fail to find any non-terminating execution which

(due to incompleteness) leaves us with a non-conclusive result. Failure to find a

non-terminating execution does not mean there does not exist one.

5http://www.zuneboards.com/forums/showthread.php?t=38143, last accessed in May 2016.

11

http://www.zuneboards.com/forums/showthread.php?t=38143

If we get rid of the non-termination bug, e.g., as in Fig. 1.2, a sound (and they are

usually expected to be sound) non-termination prover will definitely not find any non-

terminating executions. A termination prover may (or may not) find a ranking function

and demonstrate that with every loop iteration the current number of days always de-

creses (but never goes below 0).

This is a common situation for incomplete automated analyses. An analysis will

infer some property of a program that is itself a mathematical object: a ranking func-

tion, some representation of non-terminating executions, etc. Then we can try to use

this object to answer a binary question, e.g., “Does this program always terminate?”.

Sometimes, we will be able to obtain a definite answer, and sometimes we will not. For

example, if we are able to find a ranking function, the answer is a definite Yes. On the

other hand, if a termination prover did not find a ranking function, the answer is in-

definite, i.e., Maybe. Similarly, if a non-termination prover is able to find at least one

non-terminating execution, the answer is a definite No. If the non-termination prover

fails to find one, the answer is still Maybe.

The success in showing termination of imperative programs is a relatively recent

achievement6. The general structure of a termination proof is due to Turing, but the al-

gorithm to infer ranking functions for practical numeric programs was offered in 2004

by Andreas Podelski and Andrey Rybalchenko [PR04a; PR04b] (using other long-known

results: Ramsey theorem [Ram30] and Farkas’ lemma [Sch99]) and later implemented

together with Byron Cook [CPR06], with the goal of showing termination of dispatch

routines of device drivers. After initial success with proving termination of imperative

programs, the results for proving non-termination were to follow [Gup+08; VR08].

1.2 Recurrent Sets

One way to compactly represent the set of non-terminating executions of a program

is via a recurrent set, which is used by a number of modern analyses [Che+14; Coo+14;

6 We come from the program analysis background and thus our approach is to find a way to apply
standard program analysis methods (in particular, our main technique will be abstract interpretation)
to termination and non-termination analysis. On the other hand, we have to mention that termination
has been extensively studied in other contexts as well; in particular – in the context of term rewriting
systems. Advances in that field have been successfully applied to proving termination of programs and
implemented in the tool AProVE [Gie+14].

12

1 days ← a number≥ 0

2 year ← 1980

3 while (days > 365) {

4 if (*) {

5 if (days > 366) {

6 days ← days−366;

7 year ← year+1;

8 }

9 } else {

10 days ← days−365;

11 year ← year+1;

12 }

13 }

Figure 1.3: An abstraction of the program in Fig. 1.1.

Lar+14]. There exist multiple different definitions, but in general this is a set of states

from which an execution of the program cannot or may not escape.

In the context of proving non-termination, a recurrent set acts as a part of a non-

termination proof. Finding a non-empty recurrent set and showing reachability of

some state in it from some initial state – amounts to proving the existence of a non-

terminating execution. If we find an empty recurrent set or cannot show its reachability

then we obtain non-conclusive results: it could either be that the program indeed does

not have non-terminating executions, or that due to incompleteness, we overlooked

them during the analysis.

As it turns out, recurrent sets can be used in establishing other properties as well.

For example, we were able to apply recurrent sets in the process of establishing suffi-

cient pre-conditions for safety. This is the topic of Chapter 6. There is also research

that to our knowledge uses recurrent sets in CTL model checking of programs [CKP15].

Recurrent sets are the main focus of this work. Thus, we can finally say that this

work is about automated static analysis that finds recurrent sets in imperative programs.

13

1.3 Abstraction

The main technique that allows us to reason about infinite or very large mathematical

objects and thus solve in some cases the problems that are in general undecidable is

abstraction. In program analysis, abstraction takes two main forms.

(i) One form is abstraction of statements which means that we replace some state-

ments of the program with their approximate versions with the intention to sim-

plify the computation of the interesting property. For example, recall the program

in Fig. 1.1. The condition leap(year) is actually hard to work with as it cannot be

represented precisely in many abstract domains7. In particular, divisibility by a

constant can be represented in the domain of linear congruences, but indivis-

ibility cannot. In an analysis, we may want to simplify this condition, and in

the extreme case, we can just replace the if-statement by a non-deterministic

branching as shown in Fig. 1.3. Replacing procedure calls with non-deterministic

effects is also common when not all the source code for a program is available.

Abstraction of statements changes the behaviour of programs. Observe that in

the concrete program in Fig. 1.1, the states where the year is leap and the number

of days is 366 have only non-terminating executions originating in them. In the

abstracted program in Fig. 1.3, all states where the number of days is 366 have

both terminating and non-terminating executions originating from them. In ab-

stract interpretation, the program is usually not modified explicitly, but the effects

of individual statements are abstracted during the approximate computation.

(ii) The second form is abstraction of properties. Instead of trying to compute an ex-

act property of a program (ranking function, recurrent set, etc), we will usually

be computing an approximate property of a certain form. The form of the ap-

proximate property is often called an abstract domain. For example, in a numeric

program (where all the interesting variables are numbers) we may be looking for

a recurrent set in the form of a conjunction of linear inequalities (or for a ranking

function in piecewise-linear form). In this case, for the program in Fig. 1.1, we

may discover a number of singleton recurrent sets, e.g., year = 1980∧days = 366,

year = 1984∧days = 366, year = 1988∧days = 366, etc; but we may not be able to

7Recall that a year is leap either when it is divisible by 4, but not 100; or when it is divisible by 400.

14

find the largest recurrent set as it cannot be represented as a conjunction of linear

inequalities. This form of abstraction usually comes together with abstraction of

statements, which are abstracted to be transformers in the abstract domain.

The common requirement when computing an approximate property is for it to be

sound, i.e. to preserve the ability to (sometimes) give definite answers to binary ques-

tions. For example, we will usually want our analysis to find an under-approximation

of the actual recurrent set of a program (a set that is included in the actual recurrent

set). The effect is that if we find a non-empty approximate recurrent set, the actual

recurrent set is definitely non-empty.

1.4 Contents and Contribution

Thus, in this work we study the techniques for finding recurrent sets and their appli-

cations. In Chapter 2, we prepare theoretical background and give formal meaning to

everything that we mentioned in the introduction. We define a formal notion of a pro-

gram and its execution; we demonstrate a systematic way to apply abstraction when

analysing programs (abstract interpretation); we give two notions of recurrent sets and

show how they relate the set of a non-terminating executions of a program.

In Chapters 3–5 we address practical problems of computing recurrent sets for pro-

grams (in an under-approximate way). In particular, in Chapter 3, we focus on numeric

programs and develop a technique to find so called existential recurrent sets (i.e., sets

of states that might not be escaped, depending on which non-deterministic choices

a program takes). The technique is based on backward analysis (computation of pre-

decessors of states in the program) and trace partitioning (a technique to perform the

analysis separately for different paths through the program). An additional contribu-

tion of Chapter 3 is that (based on the material of Chapter 2) it formally describes trace

partitioning for backward analysis, which to our knowledge has not been done before.

In Chapter 4, we address the issue of expensiveness of backward analysis and offer

an analysis for so called universal recurrent sets (i.e., sets of states that cannot be es-

caped, regardless of non-deterministic choices) that is based on post-condition com-

putation. The analysis builds an abstract reachability graph of a program, in a way

similar to some existing program model-checkers, and analyses it in a novel way. We

15

show that this analysis can be applied to heap-manipulating programs, for which to

our knowledge no procedure for finding recurrent sets was known before. In particu-

lar, we implemented support for shape analysis with 3-valued logic [SRW02].

In Chapter 5, we report on our experimental results with two sets of benchmarks.

We show that a prototype implementation of the algorithm of Chapter 3 demonstrates

precision that is on the same level with state-of-the-art tools.

In Chapter 6, we demonstrate how the notion of recurrent set can be used in an

analysis for safety and propose a novel approach for computing weakest liberal safe

preconditions of programs. The approach will compute the set of safe state as a least

fixed-point above a recurrent set, and ensures soundness by subtracting from the po-

tentially safe states an over-approximation of the unsafe states.

1.5 Timeline and Motivation

This section describes some of the choices that we took in this work as some of them

arguably are unconventional. For example, we use abstract interpretation to anal-

yse even numeric programs, instead of using some form of abstraction refinement

model checking procedure (e.g., Impact [McM06]). Also, we use shape analysis with

3-valued logic [SRW02] to analyse heap-manipulating programs, instead of, e.g., sepa-

ration logic [Rey02]. This section is meant to explain some of the choices that we take

in this work.

In 2012, we chose shape analysis with 3-valued logic as our initial research direc-

tion, and the goal was to see whether we can come up with a novel analysis procedure

or with a novel way to represent program heaps, that would be based on 3-valued logic.

This initial research effort resulted in a paper on backward analysis for sufficient pre-

conditions that was presented and published in SAS8 in 2014 [BBP14]. It is described

in detail in Chapter 6. The SAS’2014 paper influenced further research in two ways.

First, it made use of abstract interpretation, as it is the main technique that is avail-

able for shape analysis with 3-valued logic. In particular, abstract interpretation al-

lows us to develop analyses that are parameterized with an abstract domain (the way in

which we represent abstract), i.e., the same analysis can be applied to different kinds

8Static Analysis Symposium.

16

of programs (numeric, heap-manipulating, etc.). Usually, there are relatively few re-

quirements for a domain to be usable. Typically, we need a way to compute certain

state transformers (pre-condition and/or post-condition), and a way to ensure that

the analysis of a program eventually terminates. Analyses based on abstract interpre-

tation can be instantiated with different domains: 3-valued logic or separation logic

for heap-manipulating programs, various numeric domains, etc.

Second, it drew our attention to the notion of recurrent set and the problem of

proving non-termination of programs. In the SAS’2014 paper, finding a recurrent set

was a sub-problem of finding a sufficient pre-condition for safety, but soon we realized

that it is an interesting problem by itself. From that point on, our research was focusing

on finding recurrent sets using abstract interpretation.

One of the takeaways from the SAS’2014 paper was that backward analysis (that

based on computing pre-conditions) with 3-valued logic is difficult to implement and

computationally expensive. Thus, in our next research effort (which was focused on

finding recurrent sets), we decided to try and use forward analysis (that based on com-

puting post-conditions). Shape analysis was no longer the focus of the research, but

we still wished to be able to use complicated abstract domains (e.g., 3-valued logic for

heap-manipulating programs) and thus we continued to use abstract interpretation.

This research effort resulted in a paper that was presented and published in SAS in

2015. It is described in detail in Chapter 4.

In the SAS’2015 paper, we made an observation that for many programs, the non-

terminating executions take a specific path (or paths) through the program. In our next

research effort, we wished to exploit this fact and develop an analysis that would be

able to infer which paths the non-terminating executions take. To do that, we followed

an already familiar approach of abstract interpretation: we made the set of program

paths into the concrete domain and came up with an abstract path domain: a way to

finitely represent interesting sets of paths. This allowed us to develop an analysis that

at the same time infers the form of non-terminating paths and the pre-condition for

the program to take them (this technique is called trace partitioning and was first de-

scribed by Laurent Mauborgne and Xavier Rival [RM07]). As a result, we ended up us-

ing abstract interpretation to analyse numeric programs, even though arguably, other

analysis techniques currently dominate this area. This research effort resulted in a pa-

17

per that was presented and published in TACAS9 in 2016. It is described in detail in

Chapter 3.

1.6 Publications

This work is based on the following publications. All the publications are my own

works, performed under supervision of Josh Berdine and Nir Piterman.

[BP16] Alexey Bakhirkin and Nir Piterman. “Finding Recurrent Sets with Backward Anal-

ysis and Trace Partitioning”. In: Tools and Algorithms for the Construction and

Analysis of System (TACAS). ed. by Marsha Chechik and Jean-François Raskin.

Vol. 9636. Lecture Notes in Computer Science. Springer, 2016, pp. 17–35 – Chap-

ter 3, parts of Chapters 2 and 5.

[BBP15] Alexey Bakhirkin, Josh Berdine, and Nir Piterman. “A Forward Analysis for Re-

current Sets”. In: Static Analysis Symposium (SAS). ed. by Sandrine Blazy and

Thomas Jensen. Vol. 9291. Lecture Notes in Computer Science. Springer, 2015,

pp. 293–311 – Chapter 4, parts of Chapters 2 and 5.

[BBP14] Alexey Bakhirkin, Josh Berdine, and Nir Piterman. “Backward Analysis via over-

Approximate Abstraction and under-Approximate Subtraction”. In: Static Anal-

ysis Symposium (SAS). ed. by Markus Müller-Olm and Helmut Seidl. Vol. 8723.

Lecture Notes in Computer Science. Springer, 2014, pp. 34–50 – Chapter 6.

9International Conference on Tools and Algorithms for the Construction and Analysis of Systems,
part of European Joint Conferences on Theory and Practice of Software.

18

Chapter 2

Background

The goal of this chapter is to prepare theoretical background for Chapters 3–6 (which

will be more practical in nature).

In Section 2.1 we introduce basic mathematical notation.

In Section 2.2 we introduce the theoretical notion of a program and its behaviour.

The discussion of programs continues in Section 2.5, where we introduce a restricted

notion of structured program.

In Section 2.3 we briefly describe abstract interpretation, which is a well known

systematic approach to analysing programs. In particular, we show how we can use

abstract interpretation to analyse the behaviour of programs.

Finally, Section 2.4 introduces the analysis for non-termination on a theoretical

level and describes the connection between non-termination analysis and the notion

of a recurrent set, which is a set of states that a program cannot or may not escape.

Later, Chapters 3–4 will address the practical side of finding recurrent sets.

2.1 Basic Notation

We write 1 and 0 to mean logical truth and falsity respectively. We use Kleene’s 3-valued

logic [Kle87] to represent truth values of formulas in sets. The logic uses three values

K = {0,1, 1/2} meaning false, true, and maybe respectively. The meaning of standard

logical operators in Kleene logic is given in Fig. 2.1. K is arranged in partial informa-

tion order vK , s.t. 0 and 1 are incomparable, 0 vK
1/2, and 1 vK

1/2. For k1,k2 ∈ K ,

19

¬
0 1
1 0

1/2
1/2

(a) Negation.

∧ 0 1 1/2

0 0 0 0
1 0 1 1/2

1/2 0 1/2
1/2

(b) Conjunction.

∨ 0 1 1/2

0 0 1 1/2

1 1 1 1
1/2

1/2 1 1/2

(c) Disjunction.

Figure 2.1: Logical operators in 3-valued logic.

the least upper bound tK is defined as:

k1 tK k2 =

k1 , if k1 = k2

1/2 , otherwise

For a set S, we write ∆S to mean the diagonal relation on S:

∆S = {(s, s) | s ∈ S}

For a relation T ⊆ S × S, we sometimes write T (s, s′) to mean (s, s′) ∈ T . We use ◦ for

right composition of relations:

T2 ◦T1 = {(s, s′′) | ∃s′. (s, s′) ∈ T1 ∧ (s′, s′′) ∈ T2}

We define k-th power T k of a relation T ⊆ S ×S, s.t.

T k =

∆S , if k = 0

T k−1 ◦T, for k ≥ 1

For a set S, we write P (S) to mean the powerset of S, i.e., the set {X | X ⊆ S} of all

subsets of S.

Let a set L be partially ordered by v (i.e., v is a reflexive, transitive, and antisym-

metric relation on L) and a set L ′ be partially ordered by v′. We say that a function

F :L →L ′ is monotone iff for every l1, l2 ∈L , l1 v l2 ⇒ F (l1) v′ F (l2).

We say that L is a complete lattice L 〈v,t,u,⊥,>〉 when

(i) L is partially ordered by v;

(ii) for every subset X ⊆L , there exists the least upper bound
⊔

X ∈L and the great-

20

est lower bound
d

X ∈L ; for a pair of elements X = {x1, x2}, we write x1 t x2 and

x1 ux2 respectively;

A complete lattice has the least (w.r.t. v) element that we denote by ⊥ and the greatest

element that we denote by >.

For a monotone function on a complete lattice F :L →L , we denote the least fixed

point of F (the least element l ∈ L , s.t. F (l) = l ; it necessarily exists due to Knaster-

Tarski theorem [Tar55]) by lfpvF , and the greatest fixed point – by gfpv F .

Occasionally, we use lambda-notation to write functions. For example, λx.x2 de-

notes a function that maps every number to its square. Alternatively, we use place-

holder notation writing, e.g., f (·)+1 to mean λx. f (x)+1.

2.2 Programs and Executions

In this section, we introduce the formal notion of a program and its behaviour (an

execution). We immediately note that our programs are mathematical models, and

we will not define a formal correspondence between our theoretical notion of a pro-

gram and the more practical notions, e.g., of an executable file. We assume though,

that some correspondence exists and that our analysis can in the end be applied to

practical programs. From the point of view of abstraction, we will assume that our

programs are concrete, and are not produced by abstracting the statements of some

original program. Thus, all abstraction will happen within the framework of abstract

interpretation.

Programs

A program P is a graph (L, l`,E,c), where

• L is a finite set of vertices that are called program locations;

• l` ∈ L is a distinguished initial location where execution of the program starts;

• E ⊆ L×L is a set of edges that define how control can flow in the program1; and

1We do allow edges to go into the initial location.

21

1 x ← 4

2 y ←−1

3 while (x ≥ 0) {

4 x ← x + y

5 }

6

(a) Informal text in pseudocode.

l1

l2

x ← 4

l3

y ←−1

l6

[x < 0]

l4

[x ≥ 0]

l5

x ← x + y

(b) Formal program.

Figure 2.2: Informal text in pseudocode and a corresponding formal program.

• c :E → A labels edges with atomic statements, i.e., it specifies which statement

gets executed when control moves from one location to another. We discuss

atomic statements in more detain in Section 2.2.1.

A location without outgoing edges is called a final location. Intuitively, execution of

the program terminates iff it reaches one of the final locations, and the computation

cannot continue from that point. For a location l ∈ L, the successors of l is the set

succ(l) = {l ′ ∈ L | (l , l ′) ∈ E}.

Note that by definition, for a pair of locations l , l ′ ∈ L, at most one edge can go from

l to l ′. This simplifies the presentation, but does not restrict the class of programs

that we can represent and analyse, as we can always introduce auxiliary locations and

edges as a workaround (see Example 2.2 below). We also say that P = (L, l`,E,c) is an

unstructured program (in contrast to a notion of structured program introduced later

in Section 2.5), as there are otherwise no restrictions on the form of the graph.

Example 2.1. Figure 2.2 gives an example of informal program text in C-like pseu-

docode and a corresponding formal program. Subscripts of program locations cor-

respond to line numbers in program text. The initial location is l` = l1, as indicated by

an incoming pseudo-edge.

Example 2.2. Fig. 2.3 shows a loop with a non-deterministic branching in it. The

meaning of the statement if(*) is that the program choses non-deterministically to

22

1 while (0 ≤ x ≤ 100) {

2 if (*)

3 x ← x +1;

4 else

5 x ← x −1;

6 }

(a) Informal text in C-like pseudocode.

l1

l2

[0 ≤ x ≤ 100]

l3
x ← x +1

l4
x ← x −1

l6

[x < 0∨x > 100]

(b) Possible formal program.

Figure 2.3: A loop with non-deterministic branching.

execute either the if-branch or the else-branch. After control reaches line 2 of the pseu-

docode (location l2 of the formal program), it will be non-deterministically transferred

either to line 3 (location l3) or to line 5 (location l4). Note how the increment/decre-

ment edges cannot go directly from l2 to l1 because of our definition of the set of edges.

Instead, we introduce auxiliary locations l3 and l4 and skip-edges from them to l1. An-

other possible way to construct the program graph would be to label the edges (l2, l3)

and (l2, l4) with skip and the edges (l3, l1) and (l4, l1) with increment and decrement.

Informally, we can say that our notion of a program corresponds to imperative pro-

grams without recursion where all non-recursive procedures were inlined. Academic

researches often focus their attention on such programs, when the goal (as in our case)

is to develop and study a novel analysis technique, rather than to apply an established

approach to programs in a certain programming language.

States

At a given time during a run, the configuration of the program is described by the cur-

rent program location and the current memory state. We denote the set of memory

states by M. We assume that there is a distinguished error memory state ε ∈ M, but

otherwise the structure ofM is not restricted. It is common though that a program ma-

nipulates a finite set of variables which we denote by V, and the memory state of the

program is defined by their values. In this case,Mmaps every variable to its value. For

example, the program in Fig. 2.2 uses a pair of variables V= {x, y}. Assuming that both

x and y take integer values, we can take for this program M= (V→ Z)∪ {ε}. The error

memory state represents a situation where one or more variables cannot be mapped

23

to a valid integer number. This can occur, e.g., as a result of executing the statement

x ← y/0 which attempts to assign a new value to x, but results in division by zero.

The set S = L ×M is the set of program states. Thus, at any given time in a run,

the configuration of the program can be described by an element of S. We say that a

program state s ∈S is final iff s = (l ,m) for a final location l ∈ L and some memory state

m ∈M. We say that a state (l ,ε) (for some l ∈ L) is an error program state.

Formulas

To make queries about the memory states, we assume that there is a language of mem-

ory state formulas Θ. The language of formulas is specific to the set of memory states

M (but not uniquely defined by it) and thus we do not specify its structure, as we do

not specify the structure of M. We assume though that Θ is closed under negation, i.e.

for every θ ∈ Θ, ¬θ ∈ Θ. For example, if M maps program variables to integer values:

M= (V→Z)∪ {ε} – then Θ can be the set of linear constraints over variables fromV, or

the set of their Boolean combinations, etc.

We see a memory state formula θ as denoting a set of non-error memory states

�θ� ⊆M \ {ε}. We say that a memory state m ∈M satisfies θ if m ∈ �θ�, and the error

memory state ε satisfies no formulas. For a memory-state formula θ and a set of mem-

ory states M ⊆M, the value of θ over M is a Kleene value defined as:

eval(θ, M) =

1, if M ⊆ �θ�

0, if M 6=∅∧M ∩�θ� =∅

1/2 , otherwise

That is, a formula evaluates to 1 in a set of memory states if all the memory states in the

set satisfy the formula (including the case where the set is empty); to 0 if no memory

states in the (non-empty) set satisfy the formula; and to 1/2 if some memory states

satisfy the formula and some do not.

2.2.1 Statements and Relations

The basic building block of a program is an atomic statement. This is an instruction

that gets executed when control moves along an edge between a pair of locations. We

24

denote the set of atomic statements byA. The formal meaning of an atomic statement2

C ∈ A is defined by its input-output relation TM(C) ⊆M×M. That is, the effect of an

atomic statement is to transform the memory state of a program. For a pair of memory

states, (m,m′) ∈ TM(C), iff it is possible to produce m′ by executing C from m. We

assume thatA includes the following statements.

(i) A passive statement skip that does not change the memory state:

TM(skip) = {(m,m) | m ∈M} =∆M

If an edge in a program is labeled by skip, we will not show the label in figures

(e.g., the edge (l5, l3) in Fig. 2.2b).

(ii) An assumption statement [θ] for every memory-state formula θ. Assumption

statements are used to represent branch and loop conditions. The statement

does not change the memory state3, but only allows to follow the edge from those

memory states that satisfy the assumption formula (or from an error state):

TM([θ]) = {(m,m) | m ∈ �θ�}∪ {(ε,ε)}

(iii) An assertion statement assert(θ) for every memory-state formula θ. An asser-

tion makes the program fail when the conditions given by θ are not met. More

formally, for a memory state formula θ,

TM(assert(θ)) = {(m,m) | m ∈ �θ�}∪ {(m,ε)| m ∈M∧m ∉ �θ�}

(iv) A set of domain-specific statements. Our example programs (like the one in Fig. 2.2)

will usually be numeric and will manipulate a finite set of integer variables. Such

programs will include assignment statements x ← e and a non-deterministic as-

signment statement x ←∗, where x is a variable and e is an expression. Intuitively,

an assignment x ← e sets the value of x to the value of x. A non-deterministic as-

2We use letter C , for command, to range over statements.
3This does not prevent us from modelling branching statements with side-effecting guards. For ex-

ample, to model a conditional statement “if (++x) · · ·”, we will introduce an edge labelled by the update
statement x ← x +1, followed by a branching point with two outgoing edges, labelled with assumptions
[x = 0] and [x 6= 0].

25

signment x ←∗ sets the value of x to a non-deterministically chosen value (pos-

sibly, a different one every time the statement is executed).

We assume that for the domain-specific atomic statements, their input-output rela-

tions are given and require that for every atomic statement C ∈A:

(i) If C is not an assumption statement then its input-output relation is left-total,

i.e., for every memory state m ∈M, there exists at least one successor m′ ∈M, s.t.

(m,m′) ∈ TM(C).

(ii) Statements leave the error memory state unchanged: (ε,ε) ∈ TM(C).

(iii) A program cannot recover from the error memory state: if (ε,m) ∈ TM(C), then

m = ε.

For example, let M = (V→ Z)∪ {ε} and the statement C = x ← x +1. Then, TM(C)

can be defined as:

{(m,λv.if v = x then m(v)+1 else f (v)) | m ∈V→Z}∪ {(ε,ε)}

We note that atomic statements can be non-deterministic. That is, for an atomic

statement C and a memory state m ∈M, there might exist two distinct memory states

m′ 6= m′′, s.t. (m,m′) ∈ TM(C) and (m,m′′) ∈ TM(C).

An example of such statement is a non-deterministic assignment. Let M = (V→
Z)∪ {ε} and the statement C = x ←∗. Then, TM(C) can be defined as:

{(m,λv.if v = x then n else f (v)) | m ∈V→Z and n ∈Z}∪ {(ε,ε)}

Transition Relation on States

If we know the input-output relations of the statements of the program, we can define

the transition relation of the program on states TS(P) ⊆S×S:

TS(P) = {
(
(l ,m), (l ′,m′)

) ∈S×S | ((l , l ′) ∈ E∧ (m,m′) ∈ TM(c(l , l ′))
)
}

∪ {
(
(l ,m), (l ,m) ∈S×S) | l is final}

That is, the transition relation consists of pairs of program states (s, s′), s.t. it is possible

to reach s′ either by executing a single program instruction (edge) from s, or by staying

26

in the same final state.

Example 2.3. Let us build the transition relation in states for the program P in Fig. 2.2,

for the case whenM= (V→Z)∪ {ε}. Let m,m′ ∈V→Z. Then,

TS(P) = {
(
(l1,m), (l2,m′)

) | m′(x) = 4∧m′(y) = m(y)}

∪ {
(
(l1,ε), (l1,ε)

)
}

∪ {
(
(l2,m), (l3,m′)

) | m′(y) =−1∧m′(x) = m(x)}

∪ {
(
(l2,ε), (l2,ε)

)
}

∪ {
(
(l3,m), (l4,m′)

) | m(x) ≥ 0∧m′ = m}

∪ {
(
(l3,m), (l6,m′)

) | m(x) < 0∧m′ = m}

∪ {
(
(l3,ε), (l3,ε)

)
}

∪ {
(
(l4,m), (l5,m′)

) | m′(x) = m(x)+m(y)∧m′(y) = m(y)}

∪ {
(
(l4,ε), (l4,ε)

)
}

∪ {
(
(l5,m), (l3,m′)

) | m′ = m}

∪ {
(
(l5,ε), (l5,ε)

)
}

∪ {
(
(l6,m), (l6,m′)

) | m′ = m}

∪ {
(
(l6,ε), (l6,ε)

)
}

One can spot a pattern here. The transition relation is made of a number of dis-

juncts, each corresponding to a single edge in the program.

2.2.2 Executions

We can now introduce the formal notion of the behaviour of a program. Intuitively,

as the program runs, it goes through a sequence of configurations. Thus, a single run

of a program will be described by a sequence of program states4. For that, we use an

infinite sequence of states, regardless of whether or not the run terminates in a final

state. This allows to uniformly describe terminating and non-terminating runs.

4There might exist different possible program runs, due to non-determinism. First, by definition, all
programs start in one of the many possible initial states (the set of initial states is {l`}×M). Addition-
ally, some program statements may be non-deterministic (e.g., those that generate arbitrary numbers,
receive user input, etc).

27

Path A path is a pair (p, i) ∈ LN×N, where p = 〈l0, l1, l2, . . .〉 ∈ LN is an infinite sequence

of locations, and i ≥ 0 is the (current) position. Intuitively, a path consists of the current

program location, the locations that were visited in the past, and the locations that

will be visited in the future. We denote the set of all paths by Π = LN×N. For a path

π= (p, i) ∈Π, p(0) andπ(0) denote the first location in the path; p(j) andπ(j) – the j+1-th

location.

There are no constraints on which locations appear in a path and in which order.

For example, for the program in Fig. 2.3, all the following objects are paths:

(〈l1, l2, l4, l1, lN6 〉,0)

(〈(l1, l2, l3, l1, l2, l4)N〉,100)

(〈l6, (l1, l3, l2)N〉,81)

Trace A trace is a pair (t , i) ∈ SN ×N, where t = 〈s0, s1, s2, . . .〉 ∈ SN is an infinite se-

quence of program states, and i ≥ 0 is the (current) position. Intuitively, a trace consists

of the current program state, the states that were visited in the past, and the states that

will be visited in the future. We denote the set of traces by Σ. For a trace τ = (t , i) ∈ Σ,

t(0) and τ(0) denote the first state of the trace; t(j) and τ(j) denote the j+1-th state.

We can also lift indexing to finite sequences of states. For a finite sequence of pro-

gram states τ′ = 〈(l0,m0), · · · , (lk ,mk)〉 ∈S∗, τ′(i) = (li ,mi) for i = 0..k and τ′(a) = (lk ,mk).

For a trace τ ∈ Σ, its path p(τ) ∈Π is produced by removing information about the

memory states:

For τ= (〈(l0,m0), (l1,m1), (l2,m2), . . .〉, i
) ∈Σ,

p(τ) = (〈l0, l1, l2, . . .〉, i
) ∈Π

We say that a trace is terminating iff there exists j ≥ 0, a final location l ∈ L, and a

memory state m ∈ M, s.t. for every k ≥ j , τ(k) = (l ,m). We say that a trace is non-

terminating iff it is not terminating.

Again, there are no constraints on which locations and memory states appear in a

path and in which order. For example, for the program in Fig. 2.3, the following object

28

is a terminating trace:

(〈(l1, x 7→ 0), (l2, x 7→ 0), (l4, x 7→ −1), (l1, x 7→ −1), (l6, x 7→ −1)N〉,0)

and the following objects are non-terminating traces:

(〈((l1, x 7→ 0), (l2, x 7→ 0), (l3, x 7→ 1), (l1, x 7→ 1), (l2, x 7→ 1), (l4, x 7→ 0)
)N〉,100)

(〈(l6,ε),
(
(l1,ε), (l3,ε), (l2,ε)

)N〉,81)

Execution Given a program P, not every trace can be produced by it. We distinguish

the following kinds of traces:

(i) A trace (t , i) ∈ Σ is an execution prefix iff t(0) = (l`,m) for some memory state m ∈
M, and for every j , s.t. 0 ≤ j < i , (t(j), t(j+1)) ∈ TS(P). Intuitively, for an execution

prefix (t , i), the prefix of t up to position i is produced by starting in the initial

location in some memory state and making i steps through the program.

(ii) A trace (t , i) ∈Σ is an execution postfix iff for every j ≥ i , (t(j), t(j+1)) ∈ TS(P).

(iii) A trace τ ∈Σ is a semi-execution of P iff for every j ≥ 0, (τ(j),τ(j+1)) ∈ TS(P).

(iv) Finally, a trace τ ∈ Σ is an execution, if it is a semi-execution and τ(0) = (l`,m) for

some memory state m ∈M.

Intuitively, an execution has as its first component a sequence of program states that

is produced by starting in the initial program location in some memory state, and run-

ning the program either infinitely, producing a non-terminating execution5, or un-

til it terminates in a final location, producing a terminating one. For a terminating

execution postfix (hence, also for a semi-execution and for an execution) τ, we de-

note the final state of the execution postfix by τ(a), i.e., for a terminating execution

τ= 〈(l0,m0), · · · , (lk ,mk)N〉, τ(a) = (lk ,mk).

For example, for the program in Fig. 2.3, the following object is a terminating exe-

cution with the final state (l6, x 7→ 1):

(〈(l1, x 7→ 0), (l2, x 7→ 0), (l4, x 7→ −1), (l1, x 7→ −1), (l6, x 7→ −1)N〉,0)

5Note that the only way to produce a non-terminating execution is to infinitely execute some set of
edges. Informally, this means that we assume a single atomic statement to always terminate.

29

l1

l2

x ← y/z

· · ·

ln

(a) No explicit error han-
dling.

l1

l2

x ← y/z

· · ·

ln

[0]

(b) The program may
abort from an error state.

l1

l+

[z 6= 0]

l−
[z = 0]

l2

x ← y/z

· · ·

ln

assert(0)

(c) The program must abort
from an error state.

Figure 2.4: Ways to handle errors in an unstructured program.

and the following object is a non-terminating execution:

(〈((l1, x 7→ 0), (l2, x 7→ 0), (l3, x 7→ 1), (l1, x 7→ 1), (l2, x 7→ 1), (l4, x 7→ 0)
)N〉,100)

Transition Relation on Traces

Then, we lift the program transition relation to paths and traces. The transition relation

on paths is

TΠ(P) = {
(
(p, i), (p, i+1)

) ∈Π×Π | (p(i), p(i+1)) ∈ E}

The transition relation on traces is

TΣ(P) = {
(
(t , i), (t , i+1)

) ∈Σ×Σ | (t(i), t(i+1)) ∈ TS(P)}

Note how the transition relations preserve the sequence of locations (p in the defini-

tion) and of program states (t). That is, in a path or in a trace, both the past and the

future are pre-determined and do not change when taking a step along the transition

relation.

For a program P, the meaning (or semantics) of the program �P� ⊆Σ is the set of all

executions of P.

30

Errors in Executions

The way atomic statements transform the error memory state ensures that once an

execution reaches an error state ((l ,ε) ∈S for some l ∈ L), from that point it only visits

error states and follows some (arbitrary) valid path. This corresponds to how errors

manifest in low-level languages: executing an erroneous statement (e.g., dereferencing

an invalid pointer) may corrupt the memory state in an unexpected way. Otherwise,

the way an unstructured program reacts to errors is not restricted and is defined by the

program itself.

For example, if we want to model the situation where a program may abort (i.e.,

terminate pre-maturely) when it transitions to an error state, we can do the following.

For every location li ∈ L from which the program may abort, we add an edge that leads

to some final location and is labeled by the statement [0] (assume false). This ensures

that if the execution reaches li in the error memory state, it may immediately transition

to the final location (but must continue normally otherwise, as TM([0]) = {(ε,ε)}). This

is shown in Fig. 2.4b.

Sometimes we want to model the situation where atomic statements fail determin-

istically, and failure must cause the program to abort. This corresponds to the be-

haviour of some managed languages (e.g., Java) where some actions, e.g., using an in-

valid reference, necessarily result in an exception. We can implement this by explicitly

checking the pre-condition of every statement that may fail (has ε as the successor of

some non-error memory state). This is shown in Fig. 2.4c.

The way structured programs (they will be introduced later in Section 2.5) will react

to errors is more restricted.

That said, most part of this work (the remaining part of this Chapter and Chapters

3–4) focuses on error-free non-terminating executions6 and on the notion of recurrent

set, which by definition does not include error states. Errors are revisited and get more

attention in Chapter 6.

6This does not mean that we will only consider error-free programs. This means that we will be look-
ing for a non-terminating execution that does not visit the error memory state.

31

2.3 Introduction to Abstract Interpretation

In this section, first, we introduce abstract interpretation – a systematic approach to

computing approximate properties of mathematical objects, where these properties

are expressed as fixed points of monotone functions. The theory of abstract interpre-

tation was initially developed by Patrick and Radhia Cousot in the context of static pro-

gram analysis [CC77], but it is applicable in other contexts as well (formal languages,

graph algorithms, etc [Cou15]). Later in the section, we demonstrate how we can use

abstract interpretation to reason about the set of executions of a program.

Concrete Domain

Given some mathematical object (e.g., a program), we assume that properties of the

object come from a partially ordered set L[which is called concrete domain. The

term domain is usually ambiguous and means a kind of partially ordered set that is

required in a given context (w.r.t. existence of specific upper or lower bounds, greatest

or least element, etc). Often (an in this work as well) L[is assumed to be a complete

lattice L[〈v[,t[,u[,⊥[,>[〉. Then, we characterize the property of interest as the least

or greatest fixed point of some monotone function on L[.

Example 2.4. For example, the program in Fig. 2.5 has a single variable x, which we

assume to take integer values. The program initializes x with 0 and then increments

it in a loop zero or more times7. We may want to know what can be the value of x

when the loop terminates. The answer will not be a single value, but rather a subset of

Z of possible values. That is, we may take L[= P (Z)〈⊆,∪,∩,∅,Z〉 to be the concrete

domain (since the program is error-free, we do not have to include the error state in

the domain). We may notice that the set in question is the smallest set that includes

0 (for the case when the loop makes 0 iterations and terminates) and n +1 for every n

in the set (for the case when the loop first makes n iterations and terminates after the

n+1-th one). This can be expressed as the least fixed point:

lfp⊆λN .({0}∪ {n +1 | n ∈ N }) = {n ∈Z | n ≥ 0} (2.1)

7Here, we write while(*) to denote a loop, s.t. the program non-deterministically decides whether
to exit it or to make another iteration.

32

1 x ← 0

2 while (*) {

3 x ← x +1

4 }

Figure 2.5: A loop that increments x an
unknown number of times.

>

0 1−1 · · ·· · ·

⊥
Figure 2.6: Constant propagation ab-
stract domain.

In the context of analyzing programs (in the sense of Section 2.2), L[is usually

the powerset P (Σ) of the set of program traces. That is, the goal of program analysis is

usually to approximately compute for a programP a specific set of traces: e.g., the set of

all program executions �P�, the set of error-free executions, the set of non-terminating

executions, etc.

Abstract Domain

Usually, a fixed point of a function in the concrete domain, as in (2.1), cannot be com-

puted directly (e.g., via iterating the function on the least or greatest element [Kle87]),

and its value cannot be directly represented by a computer. The approach of abstract

interpretation is to compute a sound approximation of the concrete fixed point in the

following way. We introduce the abstract domain D], where an abstract element d ∈D]
represents some concrete element γ(d) ∈ L[. The function γ :D] → L[that maps ab-

stract elements to concrete elements they represent is called concretization function

and is required to be monotone: for d1,d2 ∈D],

d1 v] d2 ⇒ γ(d1) v[γ(d2)

Usually8 D] consists of finite representations of a subset of L[. For example, in an in-

terval domain, an element is a range of numerical values, or in a more general setting –

a map from program variables to their ranges. An interval finitely represents a poten-

tially infinite set of numbers, but not every set of numbers can be represented by an

interval. Another example is a polyhedral domain where an element is a conjunction

of linear inequalities over program variables.

8Not necessarily, though. In a theoretical discussion, both L[and D] may have elements that do not
have finite representations. This will be the case later when we will discuss set-of-states abstraction.

33

For simplicity of presentation, we will assume D] in this section to be a complete

lattice9 D]〈v],t],u],⊥],>]〉. In general, in literature, by domain, authors (and we as

well) mean a partial order, where, depending on the analysis that is performed, there

exist: (i) specific elements or operations, like the least and greatest elements, upper

and lower bounds, etc (In Chapters 3–6, we will always specify what operations the

domain should support); and (ii) limits of infinite ascending or descending chains.

For an abstract element d ∈ D] and a concrete element l ∈ L[, we say that d over-

approximates l if γ(d) w[l , and that d under-approximates l if γ(d) v[l . The notion of

soundness depends on the problem and property at hand. For example, we may wish

to know whether all executions of a program are error free. Then, we will compute an

over-approximation of the set of program executions. If all the executions in this set

are error-free, then all actual program executions are. We will always indicate which

approximation we consider sound for a given problem.

Abstract interpretation provides a systematic way to over-approximate properties

characterized as least fixed points and under-approximate properties characterized

as greatest fixed points. Given a function F[: L[→ L[on the concrete domain, we

say that a function F] : D] → D] on the abstract domain over-approximates F[if for

every d ∈ D], γ(F](d)) w[F[(γ(d)). Similarly, F] under-approximates F[if for every

d ∈ D], γ(F](d)) v[F[(γ(d)). It is not necessary (for the purpose of over- or under-

approximation) for F] to be monotone. In program analysis, transfer functions are

produced from program itself and thus F[represents the concrete program in the char-

acterization of the property, while we can think of F] as representing an abstracted pro-

gram. This way, abstraction of program statements is performed.

Over-Approximating an LFP

Let us assume that F] over-approximates F[. Let us also assume that we find an element

dlim ∈ D], s.t. F](dlim) v] dlim. It follows that F[(γ(dlim)) v[γ(F](dlim)) v[γ(dlim). That

is (from Knaster-Tarski theorem10), γ(dlim) w[lfpv[
F[, and dlim over-approximates the

9Not all useful abstract domains are complete lattices. A more rigorous approach would be to assume
the domain to be a join-semilattice when it is used for over-approximation and a meet-semilattice when
it is used for under-approximation. We believe though that this does not benefit the presentation in this
chapter, and the extra details will only be distracting.

10Informally, it states that the least fixed point of a function is the infimum of the set, where the func-
tion is contracting.

34

least fixed point of F[.

To find dlim, we build an ascending chain of elements11:

d0 v] d1 v] d2 v] · · · , where

d0 =⊥]

di = di−1 t] F](di−1), for i ≥ 1

A number of domains satisfy the ascending chain condition (we also say that such do-

mains have finite height), and no infinite ascending chain can be strictly ascending.

That is, for every infinite ascending chain d0 v] d1 v] d2 · · · there exists k ≥ 0, s.t. for

i ≥ k, di+1 = di (which also implies that F](di) v] di). For such domains, in finite num-

ber of k steps we find dlim = dk and say that it is the stable limit of the chain.

In static analysis, a number of finite height domains is used. For example, one

performs constant propagation, i.e. when one wishes to identify the expressions in

the program, s.t. their value is constant and can be computed at compile time, one

uses the domain D] = Z∪ {⊥,>} (assuming for simplicity that the expressions take in-

teger values) ordered by v, s.t. d w ⊥, d v > for every d ∈ D], and distinct numbers

are incomparable (see Fig. 2.6). Top (>) means that the value of an expression can-

not be computed at compile time (i.e., absence of definite answer), and bottom (⊥)

means that an expression is not reachable in the program. Another example of a do-

main of finite height is the domain of bounded 3-valued structures [SRW02]. The do-

main uses sets of Kleene logic models of certain form (s.t. there is a finite number of

them) to represent the contents of the dynamic memory of a program. Some classes of

finite-height domains are well studied and admit efficient implementation of analyses

[RHS95; SRH96].

That said, many numeric analyses use domains of infinite height. For example,

interval domain is usually implemented in a way that admits infinite ascending and

11 The fact for a concrete transfer function F[, there exists an over-approximate abstract function F],
contains an implicit assumption on the abstract domain D]. Namely, it requires that for every element
of a concrete chain (that we can build out of elements of L[using F[), there exist an over-approximating
element ofD]. Practical abstract domain usually have a stronger property: for every concrete element l ∈
L[, there will exist a pair of abstract elements do ,du ∈D] that over- and under-approximate l : γ](du) ⊆
l ⊆ γ](do).

35

descending chains, e.g.:

[0;1] v [0;2] v [0;3] v ·· ·
or

[0;+∞) w [1;+∞) w [2;+∞) w ·· ·

For such domain we introduce a partial function O] :D] * D] that is called widening

and has the following properties:

(i) For d1,d2 ∈D], if d1 O] d2 is defined12 then d1 v] d1 O] d2 and d2 v] d1 O] d2;

(ii) For every increasing chain g0 v] g1 v] g2 v] · · · , if the following chain is defined:

d0 v] d1 v] d2 v] · · · , where

d0 = d0

di = di−1 O] gi , for i ≥ 1

then it is not strictly increasing.

Usually, in a numeric abstract domain D], widening d1 O] d2 is defined when d1 v] d2.

Thus, in a domain of infinite height, to find dlim, we instead build an ascending chain

of elements:

d0 v] d1 v] d2 v] · · · , where

d0 =⊥]

di = di−1 O]

(
di−1 t] F](di−1)

)
, for i ≥ 1

From the properties of widening, it follows that the chain is not strictly increasing

[Bag+05]. Therefore, there exists k ≥ 0, s.t. for i ≥ k, di+1 = di (which also implies

that F](di) v] di), and in finite number of k steps we find dlim = dk .

Example 2.5. For example, let us compute an over-approximation of the fixed point

(2.1) in the interval domain. To over-approximate the concrete transfer function F[=
12We prefer to follow the definition of [Bag+05], which admits that widening operator may not be

total. Usually for numeric domains, d1 O] d2 is defined when d1 v] d2. In this case one could define an
alternative total widening operator d1 O′

]
d2 = d1 O] (d1 t] d2).

36

λN .{0}∪ {n +1 | n ∈ N }, we take

F] =λd .[0;0]t (d +1)

where + operation increases the bounds of an interval by a given constant. First, let us

build an ascending chain without widening:

d0 =⊥
d1 =⊥t [0;0]t (⊥+1) = [0;0]

d2 = [0;0]t [0;0]t ([0;0]+1)

= [0;0]t [0;0]t [1;1] = [0;1]

d3 = [0;1]t [0;0]t ([0;1]+1) = [0;2]

d4 = [0;2]t [0;0]t ([0;2]+1) = [0;3]

d5 = ·· ·

This results in an infinite strictly increasing chain. For numeric domains, widening

is typically defined in a way that d1 Od2 is formed of the bounds or constraints that

are shared by d1 and d2 (i.e., stable constraints). In other words, widening removes

unstable constraints. Now, let us build the ascending chain with widening:

d0 =⊥
d1 =⊥O

(⊥t [0;0]t ([0;0]+1)
)= [0;0]

d2 = [0;0]O [0;1] = [0;1]

d3 = [0;1]O [0;2]

This may be good time to remove the unstable bound

= [0;+∞)

d4 = [0;+∞) = dlim

In this case, we were able to compute the exact interval representation [0;+∞) of

the concrete least fixed point value {n ∈ Z | n ≥ 0}, but this will not be the case in gen-

eral. First, the concrete least fixed point might not have exact representation as an

abstract element. Second, widening will often produce result that is above (w.r.t. v])

37

the exact or best representation of the concrete least fixed point even when the exact

or best representation exists.

Practical definitions of widening include heuristics that work around typical cases

of over-approximating too much. A common technique is widening delay, when first

few elements of the ascending chain are computed without widening (thus, to be for-

mal, we may want to define widening as a partial function from sequences to single

elements O] :D∗
]
* D]). A number of heuristics specific to polyhedral domain are de-

scribed in [Bag+05]. It is also sometimes possible to improve the over-approximation

produced by widening, by computing a descending chain of over-approximants where

convergence is due to narrowing operator. In this work, we regard this as an auxiliary

technique which is not strictly required for soundness or computability, and we do not

discuss it further.

Under-Approximating a GFP

The approach to under-approximating a greatest fixed point is dual. For a concrete

monotone transfer function F[and its abstract under-approximation F], if we find an

element dlim ∈D], s.t. F](dlim) v] dlim, then γ(dlim) v[lfpv[
F[. We find dlim as the stable

limit of the descending chain:

d0 w] d1 w] d2 w] · · · , where

d0 =>], and for i ≥ 1

di = di−1 u] F](di−1) when D] satisfies the descending chain condition

or

di = di−1 O]

(
di−1 u] F](di−1)

)
, otherwise

The operation O] is called lower widening or dual widening, and it ensures conver-

gence of descending chains. For polyhedra, lower widening is usually based on remov-

ing unstable generators (points, rays, etc.) [Min13].

In this work, we will not be under-approximating greatest fixed points directly as

shown above. In practice, many abstract domains are designed in the first place to

support over-approximation, and it may be difficult to produce an under-approximate

transfer function F]. We will be using lower widening though.

38

Galois Connection and Exact Fixed Point Abstraction

For a concrete domain L[, an abstract domain D], and a concretization function γ,

it may be the case that every element of L[has a unique best abstraction in D]. We

denote the best abstraction of l ∈ L[by α(l) ∈ D] where α :L[→ D] is the abstraction

function. When an abstraction function satisfies the property

∀l ∈L[,d ∈D]. α(l) v] d ⇔ l v[γ(d)

we say that α and γ form a Galois connection between L[and D] and write

L[−−−→←−−−
α

γ
D]

We should note that some important abstract domains may not form a Galois con-

nection with the corresponding concrete domain. For example, for a 2-dimensional

rational sphere {(x, y) ∈ Q2 | x2 + y2 ≤ r 2} (for some r ≥ 0), there exists the best but

inexact representation in the interval domain: 〈x : [−r ;r], y : [−r ;r]〉; but there is no

best representation in polyhedral domain (i.e., in form of a finite conjunction of linear

inequalities). This shows that polyhedral domain does not form a Galois connection

with a concrete domain that maps program variables to rational or real values.

Galois connections have a number of interesting properties, and we note the ability

to compute under certain conditions the exact fixed point abstraction. If the concrete

transfer function F[:L[→L[and its abstract approximation F] :D]→D] are monotone

and are such that α ◦F[= F] ◦α, then

α(lfpv[
F[) = lfpv]

F]

This is a standard result [CC79, theorem 7.1.0.4]. In other words, if we want to compute

a summarized property of a mathematical object that can be represented as an element

of the abstract domainD], we may perform this computation directly inD] (as opposed

to computing in L[and then abstracting) without loss of information. For example, if

we are only interested in which states a program visits (and not interested, in which

order), we may perform the computation over sets of program states, and not over sets

of program executions.

39

For the greatest fixed points, this does not seem to hold in general, and we can only

make a weaker statement.

Lemma 2.1. Let L[−−−→←−−−
α

γ
D]. Also, let the concrete transfer function F[:L[→ L[and

its abstract approximation F] :D]→D] be monotone and such that α ◦F[= F] ◦α. Then

α(gfpv[
F[) v] gfpv]

F]

Proof Idea. Via Knaster-Tarski theorem. We give the full proof in Appendix 2.A.

Still, exact abstraction of a greatest fixed point will hold in a particular interesting

case in Section 2.4, when we will move with non-termination analysis from the domain

of traces to the domain of states.

2.3.1 Analyzing Programs in the Domain of Traces

In this work, our goal is to reason about the behaviour of programs, i.e., sets of their

executions. For that, we use the domain of (sets of) traces P (Σ)〈⊆,∪,∩,∅,Σ〉 as the

concrete domain. More specifically, program properties will be sets of program execu-

tions, but their characterizations and intermediate computation steps will manipulate

sets of traces.

The transfer functions that we use to characterize program properties will be post-

and pre-conditions w.r.t. different transition relations.

Given some set S0, a transition relation T ⊆ S0 ×S0, and a subset S ⊆ S0, we define

the post-condition, predecessor, and (weakest liberal) pre-condition transfer functions

(or transformers) respectively as:

post(T,S) = {s′ ∈ S0 | ∃s ∈ S. (s, s′) ∈ T }

pre(T,S) = {s ∈ S0 | ∃s′ ∈ S. (s, s′) ∈ T }

wp(T,S) = {s ∈ S0 | ∀s′ ∈ S0. (s, s′) ∈ T ⇒ s′ ∈ S}

(2.2)

Intuitively, for a set S, if we pick an element of S and make a step along the transition

relation T , we will obtain some element of post(T,S). If we make a step along T in

backward direction, we will obtain some element of pre(T,S). Finally, if we pick an

40

s1

s2 s3

s4

Figure 2.7: Example of a transition relation.

element of wp(T,S) and (if possible) make a step along the transition T , we will obtain

some element of S. Let us now look at a small example.

Example 2.6. Let S0 = {s1, · · · , s4}, T = {(s1, s2), (s1, s3), (s3, s4)}, and S = {s2, s3}. This is

shown in Fig. 2.7. Then

post(T,S) = {s4}

pre(T,S) = {s1}

wp(T,S) = {s1, s2, s3}

Notice that s2 and s4 do not have successors w.r.t. T and as a result they are included

in the pre-condition of S.

In particular, we will be applying these transformers w.r.t. the transition relation

TΣ(P) of a program P, or the transition relation on states TS(P), or the input-output

relation TM(C) of a statement C .

Example – Forward Analysis

For a set of traces S ⊆Σ, let us define the closed subset to be

LSM= {(t , i) ∈ S | ∀ j ≥ 0. (t , j) ∈ S}

That is, LSM is the largest subset of S closed under shifting the position.

As an example, we can now define an analysis that, for a program P, produces the

set of its executions �P�. For a program P, let forward analysis of P be the least fixed

point:

lfp⊆λX .
({

(t ,0) ∈Σ | t(0) = (l`,m)∧m 6= ε}∪post(TΣ(P), X)
)

(2.3)

41

Lemma 2.2. For a program P, the closed subset of the forward analysis (2.3) gives the

set of all program executions that start in an non-error state.

Proof Idea. Intuitively, forward analysis collects execution prefixes, i.e., such (t , i) ∈ Σ
that can be produced by starting in the initial location (and a non-error memory state)

and making i steps through the program. Taking closed subset, keeps only the traces

that also are execution postfixes: if (t , i) is in the closed subset, then for every j > i ,

(t , j) must be in the closed subset and thus be an execution prefix, i.e., (t , i) must be an

execution.

Note how the result of forward analysis is “local”: for every program location, we

find execution prefixes leading to that location, but we do not immediately know what

execution postfixes go from that location. Then, by taking the closed subset, we get a

global result and find what set of executions the result of the analysis represents. We

shall note though that the notion of closed subset is typically not used in practice. We

employ it to show that forward analysis in the domain of traces produces enough infor-

mation to devise an interesting subset of program executions (we will later observe a

similar situation for the case of non-termination analysis). Practical analyses typically

work in domains of abstract program states, and when one analysis does not produce

the desired property directly, intersection of analyses is used [CC99; Arn+06].

2.3.2 Set-of-States Abstraction

When analysing a program, the most precise answer to the analysis question will be

expressed as a set of program traces. In practice, we may not actually need this most

precise answer. For example, if we wish to know if there are any erroneous program

executions, it may be enough to find the set of reachable program states and then

see whether it contains error states13. We will observe a similar situation with non-

termination analysis. For our purposes, it will be enough to know which states can or

must be visited by non-terminating program executions.

Thus the property of interest can often be expressed as a set of program states that

is visited by traces of a certain form. Examples of such interesting sets are: the set of

reachable states is visited by execution prefixes, a recurrent set (which will be discussed

13In case an error state is reachable, it may still be desirable to find at least one erroneous execution
(that reaches error state), as a counterexample to safety.

42

later) is visited by some non-terminating execution postfixes, etc. In this case, when

building an abstract domain, the first step is usually to apply set-of-states abstraction.

For a set of traces S ⊆ Σ, the set-of-states abstraction αs(S) ∈ S collects current

program states of every trace:

αs(S) = {s′ ∈S | ∃(t , i) ∈ S. t(i) = s′}

The corresponding concretization γs, for a set of program states, S′ ⊆ S produces the

set of traces that have an element of S′ at the current position

γs(S′) = {(t , i) ∈Σ | t(i) ∈ S′}

For S′ ⊆S,

Lγs(S′)M= {(t , i) ∈Σ | ∀ j ≥ 0. t(j) ∈ S′}

This way we can characterize the set of traces that only visit program states from S′.

Lemma 2.3. Set-of-states abstraction forms a Galois connection between the domains

P (Σ) and P (S):

P (Σ) −−−→←−−−
αs

γs
P (S)

Proof. This directly follows from definitions of αs and γs.

For example, note that the set-of-states abstraction of the forward analysis (2.3)

is isomorphic to the standard notion of the forward collecting semantics [CC92] as it

gives the set of program states that are visited by at least one execution prefix. Though,

collecting semantics is often partitioned with locations and is a function L → P (M)

instead of being a plain subset of S.

When we are interested in a property that is expressed as a set of program states

visited by traces of a certain form, it is often possible to characterise it directly in the

domain of (sets of) program states P (S), without loss of information. For least fixed

point characterisations, this is because of exact fixed point abstraction. For an inter-

esting case of a greatest fixed point in Section 2.4, we will be able to show this as well.

43

Further Abstraction

Fixed points in the domain of program states are usually still not computable. Practical

analyses compose set-of-states abstraction with some further abstraction. An analysis

would usually introduce memory abstract domain Dm where elements of Dm repre-

sent sets of memory states (we briefly survey some memory abstract domains in Ap-

pendix 2.B). Then, the analysis would either approximate the fixed points in the do-

main L → Dm (where elements represent sets of program states) or sometimes work

directly in Dm and make program locations implicit. We use the latter approach our-

selves in Chapters 4 and 6; some other analyses [Cou+05] use it as well.

Some modern analyses use the technique of trace partitioning [RM07]. This im-

plies using an abstract domain (still constructed from Dm) where an element not only

represents a set of possible current program states but also contains some information

about previous or future states (usually – just about locations) of a trace. An elements

of such domain represents a sets of traces directly, bypassing set-of-states abstraction.

We use trace partitioning in Chapter 3.

Example 2.7. Let us look again at the program in Fig. 2.5, now from the point of view

of an analysis in the domain of traces. We already considered this program in Exam-

ple 2.4, but let us now give it a more rigorous treatment. In this example we will assume

that the set of memory states is M = (V→ Z)∪ {ε}, where V = {x} (that is, a non-error

memory state maps x to an integer value).

First, recall the fixed point in (2.3) that defines forward analysis. Let us define the

set I to be

I = {
(t ,0) ∈Σ | t(0) = (l`,m)∧m 6= ε}= {

(〈s0, s1, · · ·〉,0) | s0 = (l1, x 7→ n ∈Z)
}

This is the set of traces where the current position is in the beginning of the trace and

points to some possible initial program state. Then, the fixed point in (2.3) can be

written as

lfp⊆λX .I ∪post(TΣ(P), X)

44

Using Kleene fixed point theorem and properties of the post-condition, this can be

written as an infinite union

= I ∪post(TΣ(P), I)∪post(TΣ(P),post(TΣ(P), I))∪·· · = I ∪
∞⋃

k=1
postk (TΣ(P), X)

Let us observe a few disjuncts of this union. We have already seen I . Now,

post(TΣ(P), I) = {(〈s0, s1, s2, · · ·〉,1) | s0 = (l1, x 7→ n ∈Z)∧ s1 = (l2, x 7→ 0)}

This is the set of traces where the current position is 1, the current position is at location

l2 and has x = 0 (i.e., it is the result of executing the statement at line 1), and the state

at position 0 is some initial state. In a similar way,

post(TΣ(P), I) = {(〈s0, s1, s2, · · ·〉,2) | s0 = (l1, x 7→ n ∈Z)∧ s1 = (l2, x 7→ 0)∧ s2 = (l3, x 7→ 0)}

∪ {(〈s0, s1, s2, · · ·〉,2) | s0 = (l1, x 7→ n ∈Z)∧ s1 = (l2, x 7→ 0)∧ s2 = (l4, x 7→ 0)}

In this set of traces, where the current position is 2, and the current state is the result of

either following the branch (l2, l3) or (l2, l4).

By continuing this way, in the limit, we get that the fixed point denotes the set of all

execution prefixes of the program.

Now suppose that we are only interested in the set of program states that are visited

by the execution prefixes of the program. One way to characterize this set is to apply

the set-of-states abstraction to the original fixed point. Thus, we can take

αs(lfp⊆λX .I ∪post(TΣ(P), X))

=αs(I)∪αs(post(TΣ(P), I))∪αs(post(TΣ(P),post(TΣ(P), I)))∪·· ·
= {(l1, x 7→ n) | n ∈Z}∪ {(l2, x 7→ 0)}∪ {(l3, x 7→ 0)}∪ {(l4, x 7→ 0)}

∪ {(l2, x 7→ 1)}∪ {(l3, x 7→ 1)}∪ {(l4, x 7→ 1)}∪·· ·
= {(l1,m0 ∈M)}∪ {(l , x 7→ n) | l ∈ {l2, l3, l4}∧n ≥ 0}

This way, we conclude that at location l1, x can take an arbitrary value, but at locations

l2, l3, and l4, x will be non-negative.

On the other hand, to produce this set of states, we do not actually have to construct

a clumsy fixed point in the domain of traces. Instead, we can construct a fixed point

directly in the domain of program states. First, let us observe that for the program in

45

Fig. 2.5, the transition relation on program states is

TS(P) = {((l1,n), (l2, x 7→ 0)) | n ∈Z}

∪ {((l2, x 7→ n), (l3, x 7→ n)) | n ∈Z}

∪ {((l2, x 7→ n), (l4, x 7→ n)) | n ∈Z}

∪ {((l3, x 7→ n), (l2, x 7→ n +1)) | n ∈Z}

∪ {((l4, x 7→ n), (l4, x 7→ n)) | n ∈Z}

∪ {((l1,ε), (l2,ε))}∪ {((l2,ε), (l3,ε))}∪ {((l2,ε), (l4,ε))}

∪ {((l3,ε), (l2,ε))}∪ {((l4,ε), (l4,ε))}

Then, let I ′ be the set-of-states abstraction of I , i.e., the set of initial program states:

I ′ =αs(I) = {(l1, x 7→ n ∈Z)}

Finally, let us construct the fixed point in the domain of states:

lfp⊆λX .I ′∪post(TS(P), X)

= I ′∪post(TS(P), I)∪post(TS(P),post(TS(P), I))∪·· ·
= {(l1, x 7→ n) | n ∈Z}∪ {(l2, x 7→ 0)}∪ {(l3, x 7→ 0)}∪ {(l4, x 7→ 0)}

∪ {(l2, x 7→ 1)}∪ {(l3, x 7→ 1)}∪ {(l4, x 7→ 1)}∪·· ·
= {(l1,m0 ∈M)}∪ {(l , x 7→ n) | l ∈ {l2, l3, l4}∧n ≥ 0}

We obtain the same result as before, and this is not a coincidence, but the result of

exact fixed point abstraction.

From this point we could perform further abstraction to produce a computable

analysis. For example, we could use intervals to represent possible values of x, similarly

to how we did it in Example 2.5.

2.3.3 Error State in the Abstract Domain

It is often the case that concrete error and non-error memory states are described by

mathematical objects with different structure. That is, the error memory state ε is often

added to the set of memory states M as a special element. For example, in a numeric

46

program with the set of integer variablesV, a non-error memory state can be described

by a map from variables to integer numbers (i.e., as an element of V → Z); but the

error memory state may be a distinct object ε. Thus, the set of memory states may be

M= (V→Z)∪ {ε}.

For the abstract memory domains, it is often the case that standard domains are

designed to represent sets of non-error memory states. For example, for a numeric

program with the set of variables V, there is a standard way to construct the domain

of polyhedra (i.e., conjunctions of linear inequalities) over V (which we will denote by

Dpoly(V)), but there is no single standard way to represent the error memory state, and

we would need to make an additional construction over Dpoly(V). Arguably the sim-

plest construction introduces an artificial top element and takes Dm =Dpoly(V)∪ {>m},

where for every d ∈Dpoly(V), d vm >m. The concretization of the new top element >m

is the whole set of memory states: γm(>m) = (V→Z)∪{ε}. For the other elements, con-

cretization is the standard concretization of the polyhedral domain. There exist other

constructions, but we will not discuss them in this work, as the simple construction is

sufficient for our purposes.

For some analyses, it may actually not be necessary to represent errors in the ab-

stract domain. It may be the case that an analysis by definition approximates some set

of non-error states, and in all computation steps all abstract states are guaranteed to

be error-free. A notable example is backward analysis (based on computation of pre-

condition or predecessors) when it is initialized with some error-free abstract state.

Then, all pre-conditions/predecessors of such abstract state are also error-free.

2.4 Non-Termination Analyses and Recurrent Sets

In this section, we finally introduce the analyses of the non-terminating behaviours of

a program. We start by defining a concrete analysis that finds all the non-terminating

executions of a program.

47

Existential Non-Termination Analysis

For a program P, existential non-termination analysis of P is the greatest fixed point:

gfp⊆λX .
(
{(t , i) ∈Σ | t(i) is non-error and non-final}∩pre(TΣ(P), X)

)
(2.4)

Lemma 2.4. For a program P the closed subset of its existential non-termination anal-

ysis (2.4) gives the set of all non-terminating semi-executions of the program.

Proof Idea. Intuitively, existential non-termination analysis retains non-terminating

execution postfixes (we present the full proof in Appendix 2.A). Taking closed subset

keeps only the traces that also are execution prefixes: if (t , i) is in the closed subset,

then for every j , s.t. 0 ≤ j < i , (t , j) must be in the closed subset and thus must be an

execution postfix, i.e., (t , i) must be a semi-execution.

Note how finding the set of non-terminating executions immediately breaks into

two sub-problems. The first one is to find the set of non-terminating execution post-

fixes, i.e., to approximate the fixed point (2.4). The second one is to produce the set of

non-terminating executions from the set of non-terminating execution postfixes. On

the theoretical level, one can intersect the closed subset of existential non-terminating

analysis with {(t , i) ∈Σ | p(t)(0) = l`} (i.e. keep only the traces that start in the initial lo-

cation). A more practical way is to intersect existential non-termination analysis with

forward analysis.

In practice, the two sub-problems are solved by different techniques, and in this

work, we focus on the first subproblem and mostly ignore the second one14.

Existential Recurrent Set

For a program P, a set of program states S∃ ⊆ S is an existential recurrent set iff for

every s ∈ S∃, s is non-error and non-final and there exists s′ ∈ S∃, s.t. (s, s′) ∈ TS(P). In

other words, this is a set S∃ of non-error and non-final states, s.t. once the program

reaches some s ∈ S∃, it may choose (as it takes its non-deterministic choices) to stay

14Reachability can be proved by a specialized tool, e.g., a bounded model checker or a model checker
based on abstraction refinement. Such model checkers can produce a genuine execution reaching a
specific interesting set of states.

48

in S∃ forever. Note that by definition, an empty set is trivially existentially recurrent.

In the literature (e.g., [Che+14]) a similar but stronger notion of an open recurrent set is

often used, that requires all the program states in the open recurrent set to be reachable

from some initial program state.

Lemma 2.5. The largest existential recurrent set can be characterized as

gfp⊆λX .
({

s ∈S | s is non-error and non-final
}∩pre(TS(P), X)

)
Proof Idea. The proof is by definitions of predecessor transformer and universal recur-

rent set. We present it in detail in Appendix 2.A.

Example 2.8. Let us now construct the existential recurrent set for the program in

Fig. 2.5. First, let us recall that the transition relation of the program is

TS(P) = {((l1,n), (l2, x 7→ 0)) | n ∈Z}

∪ {((l2, x 7→ n), (l3, x 7→ n)) | n ∈Z}

∪ {((l2, x 7→ n), (l4, x 7→ n)) | n ∈Z}

∪ {((l3, x 7→ n), (l2, x 7→ n +1)) | n ∈Z}

∪ {((l4, x 7→ n), (l4, x 7→ n)) | n ∈Z}

∪ {((l1,ε), (l2,ε))}∪ {((l2,ε), (l3,ε))}∪ {((l2,ε), (l4,ε))}

∪ {((l3,ε), (l2,ε))}∪ {((l4,ε), (l4,ε))}

Then, let I be the set

I = {
s ∈S | s is non-error and non-final

}
= {

(l , x 7→ n) | l ∈ {l1, l2, l3}∧n ∈Z}
Then, the existential recurrent set can be characterized as:

R∃ = gfp⊆λX .I ∩pre(TS(P), X)

Via Kleene fixed point theorem, this can be written as a countable intersection
⋂∞

i=0 Ri ,

49

where

R0 = I ∩pre(TS(P),S) = I

(This is because pre(TS(P),S) is the set of states that have at leastt one successor via

TS(P), and in this case this is the set of all states S)

R1 = I ∩pre(TS(P),R0) = {(l1, x 7→ 0)}∪ {(l2, x 7→ n ∈Z)}∪ {(l3, x 7→ n ∈Z)}

R2 = I ∩pre(TS(P),R1) = R1

Thus, the recurrent set is

R∃ = {(l1, x 7→ 0)}∪ {(l2, x 7→ n ∈Z)}∪ {(l3, x 7→ n ∈Z)}

Note that not all the states in the recurrent set are reachable in an execution. In partic-

ular, in an execution, only non-negative values of x are reachable, while the recurrent

set allows x to be negative at locations l2 and l3. This happens because the recurrent set

is the set-of-states abstraction of the set of non-terminating execution postfixes (rather

than executions)15. Indeed, one can see that it is possible to build a non-terminating

execution postfix by starting in a state, where x is negative, e.g., (l2, x 7→ −1).

We can actually show that existential recurrent set is exact fixed point abstraction

of existential non-termination analysis.

Lemma 2.6. The largest existential recurrent set is set-of-states abstraction of existen-

tial non-termination analysis.

Proof. Intuitively the largest existential recurrent set R∃ the largest set of states, s.t.

from every element of R∃ we can start a non-terminating semi-execution that only vis-

its elements of R∃.

Non-termination analysis produces the set R ′
∃ of all non-terminating execution

postfixes, and by applying set-of-states abstraction to it, we produce the set of all pro-

gram states from which we can start a non-terminating execution postfix. Moreover,

15In principle, we could define a “reachable existential recurrent” set to only consist of reachable
states, along the lines of

Rreach
∃ = gfp⊆λX .

({
s ∈S | s is non-error and non-final and reachable

}∩pre(TS(P), X)
)

We do not do this for practical reasons. In Chapters 3 and 4 we will build a procedures that can compute
under-approximations of our original notion of recurrent set, but not of this “reachable recurrent set”.

50

the set of non-terminating execution postfixes is closed under shifting the current po-

sition forward, and non-terminating execution postfixes in R ′
∃ only visit the states from

αs(R ′
∃).

That is, by applying set-of-states abstraction to R ′
∃, we produce the largest set of all

program states from which we can start a non-terminating execution postfix, i.e., the

largest existential recurrent set.

The transition from sets of non-terminating execution to recurrent sets is done for

a number of reasons. On one hand, modern abstract domains can only efficiently rep-

resent sets of program states (e.g., as elements of L→Dm), and not sets of traces. Even

trace partitioning domains maintain very little information on top of the set of possi-

ble current program states. On the other hand, depending on the goals of the analysis,

knowing just the recurrent set may be enough. For example, if we wanted to prove that

a program has at least one non-terminating execution, we would need to:

(i) find an under-approximation of an existential recurrent set; we develop tech-

niques for that in Chapters 3 and 4.

(ii) find at least one program state in the existential recurrent set that is definitely

reachable from some initial state; there exist techniques for that, including for

non-numeric programs [Ber+13]. We do not develop or discuss these techniques

in this work.

This certifies the existence of at least one non-terminating execution. If needed, a non-

terminating execution postfix may be produced from the existential recurrent set by

starting in some program state (reachable from some initial program state) and re-

peatedly picking a successor that is both in the post-condition of the current state and

in the recurrent set. A prefix of the non-terminating execution may be produced by the

employed reachability analysis.

Universal Recurrent Set

Now that we defined an existential recurrent set, it is conceivable that there exists a

notion of a recurrent set that uses the different quantifier.

For a program P, let a universal recurrent set be a set of states S∀ ⊆S, s.t. for every

s ∈ S∀, s is non-error and non-final, and for every s′ ∈S, s.t. (s, s′) ∈ TS(P), s′ ∈ S∀. Intu-

51

itively, this is a set of non-error and non-final states that, once reached by a program,

cannot be escaped. Again, in literature (e.g., [Che+14]) a similar but stronger notion

of a closed recurrent set is often used, that requires all the program states in the closed

recurrent set to be reachable from some initial program state.

From the point of view of proving non-termination, the notion of universal recur-

rent set is useful in that under certain conditions, a universal recurrent set is also an ex-

istential recurrent set and certifies the existence of a non-termination execution post-

fix. At the same time, it might be easier to develop a technique that finds universal

recurrent sets. This is the topic of Chapter 4.

In this work, we do not use the counterpart for the universal recurrent set in the

domain of traces, and prefer to characterize the largest universal recurrent set directly.

Lemma 2.7. The largest universal recurrent set can be characterized as

gfp⊆λX .
(
{s ∈S | s is non-error and non-final}∩wp(TS(P), X)

)
Proof Idea. The proof is by definitions of pre-condition and universal recurrent set. We

present it in detail in Appendix 2.A.

In principle, it is possible to define the counterpart of universal recurrent set in the

domain of traces along the following lines. Universal recurrent set on traces is a set

R ′
∀ ⊆Σ, s.t.

(i) every trace in R ′
∀ is a non-terminating execution postfix;

(ii) for every (t , i) ∈ R ′
∀, for every trace t ′, s.t. for j = 0 · · · i , t ′(j) = t(j), t ′ ∈ R ′

∀.

We will not use this definition and we will not give a fixed point characterisation for the

universal recurrent set on traces anywhere in this work.

2.5 Structured Programs

The notion of a program introduced in Section 2.2 is quite general and is often too

general, as many algorithms can be expressed with programs of restricted form. On

the other hand, restricted programs may be easier to analyse. In this section, we define

52

a restricted class of structured programs. Later, in Chapters 4 and 6 we will develop

analyses that are specific to structured programs.

We define the language of structured programs C. Given a set of atomic statements

A, elements of the language are built as follows:

C ::= a ∈A atomic statement

| C1 ; C2 sequential composition: executes C1 and then C2

| C1 +C2 branch: non-deterministically branches to either C1 or C2

| C∗ loop: repeats C a non-deterministic (possibly 0) number of times.

For the sake of uniformity, we will usually call the elements of C statements rather than

programs, distinguishing between atomic and compound statements.

Note that the basic branching and looping statements are non-deterministic, but

we can still express standard deterministic constructs. Standard conditional state-

ment “if(θ) C1 else C2” can be expressed as ([θ] ; C1)+ ([¬θ] ; C2), and standard loop

“while(θ) C ” can be expressed as ([θ] ; C)∗ ; [¬θ]. That is, the language of structured

programs can be seen as a simple imperative programming language16.

Most examples presented in this work can be represented as structured programs17.

For example, the program in Fig. 2.5 can be written as x ← 0 ; (x ← x+1)∗. The program

in Fig. 2.2a can be written as

x ← 4 ; y ←−1 ; ([x ≥ 0] ; x ← x + y)∗ ; [x < 0]

Input-Output relation of a Structured Program

For structured programs, we will often not be explicitly interested in the set of their

executions, as there is another way to describe their behaviour. Namely, we lift the

notion of input-output relation to compound statements (for atomic statements, we

16Or rather a modelling language, as imperative programming languages usually do not admit as-
sumption statements. The effect of an assumption statement is to discard (declare as a non-execution)
the whole trace when the current program state (from which the assumption statement is executed)
does not satisfy the assumption condition. This is usually not possible in an imperative programming
language.

17On the other hand, programs that (in their pseudocode representation) include statements affecting
the control flow (break, return, continue, goto, etc) cannot immediately be written as structured pro-
grams. An example of such program can be found in Fig 4.14 of Example 4.5. If needed, we can rewrite
such a program into an equivalent structured one (this is what we do in that example).

53

assume that their input-output relation are given). For C ,C1,C2 ∈C,

TM(C1 ; C2) = TM(C2)◦TM(C1)

TM(C1 +C2) = TM(C1)∪TM(C2)

TM(C∗) = lfp⊆λX .∆M∪ (X ◦TM(C))

(2.5)

For structured programs, the input-output relation has the same meaning as for atomic

statements. If for C ∈ C, (m1,m2) ∈ TM(C), then if we start executing C in the memory

state m1, C may terminate18 in memory state m2.

Post-Condition of a Statement

For a compound statement, a post-condition via its input-output relation can also be

computed by induction over the statement structure. C ,C1,C2 ∈C and M ⊆M:

post(TM(C1 ; C2), M) = post(TM(C2),post(TM(C1), M))

post(TM(C1 +C2), M) = post(TM(C1), M)∪post(TM(C2), M)

post(TM(C∗), M) = lfp⊆λX .M ∪post(TM(C), X)

(2.6)

For predecessors and pre-condition transformers, the construction is similar.

This is useful when performing abstract computation in an analysis. Let us assume

we are given the memory abstract domain Dm, with least element ⊥m, greatest element

>m, partial order vm, join tm and concretization γm. Usually, the transformer postm is

only given for atomic statements. Using (2.6), we can lift it to compound statements:

postm(C1 ; C2, a) = postm(C2,postm(C1, a))

postm(C1 +C2, a) = postm(C1, a)tm postm(C2, a)

postm(C∗, a) is the stable limit of the chain {a′
i }i≥1, where

a′
1 = a

a′
i = a′

i−1 Om (a′
i−1 tm postm(C , a′

i−1)), for i > 1

(2.7)

18We say “may terminate” due to possible non-determinism and existence of erroneous and non-
terminating behaviours. For example, if there exists m3 6= m2, s.t. (m1,m3) ∈ TM(C), executing C
from m1 might produce m3 instead of m2, depending on non-deterministic choices. Similarly, if ad-
ditionally (m1,ε) ∈ TM(C), executing C from m1 might fail instead of producing m2. Also, even when
(m1,m2) ∈ TM(C) the execution of a compound (not of an atomic though) statement C from m1 might
not terminate.

54

For predecessors and pre-condition transformers, the construction is similar. This

means that we can always assume that we can compute the transformers for arbitrary

(both atomic and compound) statements. For example, in Chapters 4 and 6, we will be

computing post-conditions of whole loop bodies, disregarding their internal structure.

Graph of a Structured Program

Structured programs can be seen as a compact way of expressing programs of a certain

form. For a structured program C ∈ C, we can build the corresponding unstructured

program P(C), which we call the graph of C . When talking about an execution of a

structured program, we will actually mean an execution of its graph.

The graph is constructed in the following way.

(i) For an atomic statement a ∈A, P(a) is a graph (L, l`,E,c) where L = {l`, la} – a pair

of fresh program locations; E = {(l`, la)}; and c = {(l`, la) 7→ a}. It is actually the

case that for every statement C , P(C) will have a single final location that we will

always denote by la.

(ii) For the sequential composition C = C1 ; C2, let P(C1) = (L1, l1`,E1,c1) with final

location l1a. Let P(C2) = (L2, l2`,E2,c2) with final location l2a. Without loss of

generality let us also assume that the program locations of P(C1) and P(C2) are

disjoint: L1 ∩ L2 = ∅. Then P(C) = (L, l`,E,c) with final location la where L =
L1 ∪L2; l` = l1`; la = l2a; E = E1 ∪E2 ∪ {(l1a, l2`)}; c = c1 ∪ c2 ∪ {(l1a, l2`) 7→ skip}.

(iii) For the branching C = C1 +C2, let P(C1) = (L1, l1`,E1,c1) with final location l1a;

let P(C2) = (L2, l2`,E2,c2) with final location l2a; let L1 ∩ L2 = ∅; and let l`, la ∉
L1∪L2. ThenP(C) = (L, l`,E,c) with final location la where L = L1∪L2∪{l`, la}; E =
E1 ∪E2 ∪ {(l`, l1`), (l`, l2`), (l1a, la), (l1a, la)}; c = c1 ∪c2 ∪ {(l`, l1`) 7→ skip, (l`, l2`) 7→
skip, (l1a, la) 7→ skip, (l1a, la) 7→ skip}.

(iv) For the loop C = C ′∗, let P(C ′) = (L′, l′`,E′,c′) with final location l′a and let l`, la ∉
L′. Then P(C) = (L, l`,E,c) with final location la where L = L′∪ {l`, la}; E = E′∪
{(l`, l′`), (l′a, l`), (l`, la)}; c = c′∪ {(l`, l′`) 7→ skip, (l′a, l`) 7→ skip, (l`, la) 7→ skip}.

These constructions are demonstrated in Fig 2.8. Note that resulting programs may

have redundant locations and skip-edges, but for simplicity we do not attempt to min-

imize the programs.

55

l`

la

a

(a) Atomic.

l` = l1`

l1a

C1

l2`

la = l2a

C2

(b) Sequence.

l`

l1`

l1a

C1

l2`

l2a

C2

la

(c) Branching.

l`

l′`

l′a

C ′
la

(d) Loop.

Figure 2.8: Unstructured programs corresponding to structured programs.

The Correspondence Formally Defined

The following lemma formally defines correspondence between a structured program

C ∈C and its unstructured counterpart P(C).

Lemma 2.8. For a structured program C ∈ C and its graph P(C) with an initial lo-

cation l` and a final location la, a pair of memory states (m,m′) ∈ TM(C) iff there

exists a terminating execution τ ∈ �P(C)�, s.t. τ(0) = (l`,m) and τ(a) = (la,m′) (i.e.,

τ = 〈(l`,m), · · · , (la,m′)N〉). Informally, we can say that the input-output relation of C

summarizes the set of terminating executions of P(C).

Proof idea. The proof is by induction over the structure of a statement and by direct

application of the definition of an execution and an input-output relation of a non-

atomic statement (2.5). We present the more detailed proof in Appendix 2.A.

2.6 Related Work

In [CC12], a different notion of trace semantics is introduced (a notable difference be-

ing that it separates current program state from the sequence of states visited by the

execution) that also allows to define analyses for termination and non-termination. In

[RM07], a simpler notion of semantics is introduces, allowing to formally define trace

partitioning for forward analysis.

56

2.7 Chapter Conclusion

In this chapter, we have formally introduced programs without procedures and their

semantics which are sets of executions. These notions (especially the notion of an ex-

ecution) might be considered non-standard, but they allow us to perform further the-

oretical exercises, without which this work would not look complete. First, we are able

to explain the connection between practical analyses based on sets of states and dif-

ferent subsets of the executions of a program (in particular – between a recurrent set

and a set of non-terminating executions). Second, later in Chapter 3, we will be able to

formally introduce trace partitioning for backward analysis, which to our knowledge

has not been done before.

57

2.A Omitted Proofs

Lemma 2.1. Let L[−−−→←−−−
α

γ
D]. Also, let the concrete transfer function F[:L[→ L[and

its abstract approximation F] :D]→D] be monotone and such that α ◦F[= F] ◦α. Then

α(gfpv[
F[) v] gfpv]

F]

Proof.

α(gfpv[
F[)

Via Knaster-Tarski theorem

=α(
⊔

[{L ∈L[| F[(L) w[L})

Since abstraction function preserves upper bounds. . . [CC79, theorem 5.3.0.5]

=⊔
]{α(L) | F[(L) w[L}

Since F[(L) w[L implies α(F[(L)) w] α(L)

v]

⊔
]{α(L) | α(F[(L)) w] α(L)} =⊔

]{α(L) | F](α(L)) w] α(L)}

=⊔
]{D ∈D]| F](D) w] D} = gfpv]

F]

Lemma 2.4. For a program P the closed subset of its existential non-termination anal-

ysis (2.4) gives the set of all non-terminating semi-executions of the program.

Proof. Note that existential non-termination analysis retains non-terminating execu-

tion postfixes. Indeed, consider the infinite iteration sequence {S j } j≥0 where

S0 =Σ
S j = {(t , i) ∈Σ | t(i) is non-error and non-final}∩pre(TΣ(P),S j−1), for j ≥ 1

From Kleene fixed point theorem,

⋂
{S j } j≥0 = gfp⊆λX .

(
{(t , i) ∈Σ | t(i) is non-error and non-final}∩pre(TΣ(P), X)

)
For the j -th set S j , and for an arbitrary trace (t , i) ∈ S j , let us observe a subsequence

of j program states starting at position i : 〈t(i), t(i+1), . . . , t(i+ j−1)〉. This subsequence has

the following properties (provable by induction on j and by definition of pre):

58

(i) for k = 0. . . j −1, t(i+k) is non-error and non-final;

(ii) for j ≥ 1 and k = 0. . . j −1, (t(i+k), t(i+k+1)) ∈ TS(P).

Then, let us assume that some trace (t ′, i ′) is not a non-terminating execution post-

fix. Then at least one of the following is true.

(i) For some k ′ ≥ 0, t ′(i ′+k ′) is an error state. Then, (t ′, i ′) ∉ Sk ′+1.

(ii) For some k ′ ≥ 0, t ′(i ′+k ′) is final. Then, (t ′, i ′) ∉ Sk ′+1.

(iii) For some k ′ ≥ 0, (t ′(i ′+k ′), t ′(i ′+k ′+1)) ∉ TS(P). (t ′, i ′) ∉ Sk ′+1.

In all three cases, (t ′, i ′) ∉⋂
{S j } j≥0.

On the other hand, if (t ′, i ′) is a non-terminating execution postfix, (t ′, i ′) ∈ S j for

every j ≥ 0, i.e., (t ′, i ′) ∈⋂
{S j } j≥0.

Finally, taking closed subset keeps only the traces that also are execution prefixes:

if (t , i) is in the closed subset, then for every k, s.t. 0 ≤ k < i , (t ,k) must be in the closed

subset and thus must be an execution postfix, i.e., (t , i) must be a semi-execution.

Lemma 2.5. The largest existential recurrent set can be characterized as

gfp⊆λX .
({

s ∈S | s is non-error and non-final
}∩pre(TS(P), X)

)
Proof. The largest existential recurrent set is the largest set R∃ ∈ S, s.t. every program

state in R∃ is non-error and non-final and ∀s ∈ R∃.∃s′ ∈ R∃. (s, s′) ∈ TS(P). Note that the

set {s ∈S | ∃s′ ∈ R∃. (s, s′) ∈ TS(P)} is pre(TS(P),R∃). That is, R∃ is the largest set of non-

error non-final program states, s.t. pre(TS(P),R∃) ⊇ R∃. Equivalently, R∃ is the largest

set, s.t. {s ∈S | s is non-error and non-final}∩pre(TS(P),R∃) ⊇ R∃.

Indeed, if {s ∈S | s is non-error and non-final}∩pre(TS(P),R∃) ⊇ R∃ then every pro-

gram state in R∃ is non-error and non-final, and from definition of predecessors, every

program state in pre(TS(P),R∃) is non-error and non-final. That is,

{s ∈S | s is non-error and non-final}∩pre(TS(P),R∃) = pre(TS(P),R∃) ⊇ R∃

Conversely, if R∃ is a set of non-error non-final program states, and pre(TS(P),R∃) ⊇
R∃, then every program state in pre(TS(P),R∃) is non error and non-final, and hence

pre(TS(P),R∃) = {s ∈S | s is non-error and not final}∩pre(TS(P),R∃) ⊇ R∃.

59

Then from Knaster-Tarski theorem,

R∃ = gfp⊆λX .
(
{s ∈S | s is non-error and non-final}∩pre(TS(P), X)

)
Lemma 2.7. The largest universal recurrent set can be characterized as

gfp⊆λX .
(
{s ∈S | s is non-error and non-final}∩wp(TS(P), X)

)
Proof. The largest universal recurrent set is the largest set R ∈ S, s.t. every program

state in R is non-error and non-final and ∀s ∈ R. (∀s′ ∈S. (s, s′) ∈ TS(P) ⇒ s′ ∈ R). Note

that the set {s ∈ S | ∀s′ ∈ S. (s, s′) ∈ TS(P) ⇒ s′ ∈ R} is wp(TS(P),R). That is, R is the

largest set of non-error non-final program states, s.t. wp(TS(P),R) ⊇ R. Equivalently, R

is the largest set, s.t. {s ∈S | s is non-error and non-final}∩wp(TS(P),R) ⊇ R.

Indeed, if {s ∈ S | s is non-error and non-final}∩wp(TS(P),R) ⊇ R then every pro-

gram state in R is non-error and non-final, hence every program state in wp(TS(P),R)

is non-error and non-final, and {s ∈ S | s is non-error and non-final}∩wp(TS(P),R) =
wp(TS(P),R) ⊇ R. Conversely, if R is a set of non-error non-final program states, and

wp(TS(P),R) ⊇ R, then every program state in wp(TS(P),R) is non error and non-final,

and wp(TS(P),R) = {s ∈S | s is non-error and non-final}∩wp(TS(P),R) ⊇ R.

Then from Knaster-Tarski theorem,

R = gfp⊆λX .
(
{s ∈S | s is non-error and non-final}∩wp(TS(P), X)

)
Lemma 2.8. For a structured program C ∈ C and its graph P(C) with an initial lo-

cation l` and a final location la, a pair of memory states (m,m′) ∈ TM(C) iff there

exists a terminating execution τ ∈ �P(C)�, s.t. τ(0) = (l`,m) and τ(a) = (la,m′) (i.e.,

τ = 〈(l`,m), · · · , (la,m′)N〉). Informally, we can say that the input-output relation of C

summarizes the set of terminating executions of P(C).

Proof. We proceed by induction over the structure of a statement C .

(i) For an atomic statement a ∈ A (Fig. 2.8a). From the definition of execution, the

executions of P(a) are of the form 〈(l`,m), (la,m′)N〉 where (m,m′) ∈ TM(a). That

is, for τ ∈ �P(a)�, τ(0) = (l`,m) and τ(a) = (la,m′) iff (m,m′) ∈ TM(a).

(ii) For a sequential composition C =C1 ; C2 (Fig. 2.8b).

60

Forward. If (m,m′) ∈ TM(C) then from (2.5) there exists m′′ ∈ M, s.t. (m,m′′) ∈
TM(C1) and (m′′,m′) ∈ TM(C2). Then, from the inductive hypothesis, the terminat-

ing executions of P(C1) are of the form 〈(l1`,m), · · · , (l1a,m′′)N〉, and the terminat-

ing executions ofP(C2) are of the form 〈(l2`,m′′), · · · , (l2a,m′)N〉. That is, terminat-

ing executions of C are of the form 〈(l1`,m), · · · , (l1a,m′′), (l2`,m′), · · · , (l2a,m′)N〉,
and for τ ∈ �P(a)�, τ(0) = (l`,m) and τ(a) = (la,m′).

Backward. Let us assume that the terminating executions of C are of the form

〈(l1`,m), · · · , (l2a,m′)N〉 for some m,m′ ∈M. Every terminating execution τ must

first go through the body of P(C1), visit the location l1a, then l2` and then pro-

ceed to the body of P(C2). That is, there exists a memory state m′′ ∈M, s.t. τ =
〈(l1`,m), · · · , (l1a,m′′), (l2`,m′), · · · , (l2a,m′)N〉 and therefore the terminating exe-

cutions of P(C1) are of the form 〈(l1`,m), · · · , (l1a,m′′)N〉, and the terminating ex-

ecutions of P(C2) are of the form 〈(l2`,m′′), · · · , (l2a,m′)N〉. Then, from the induc-

tion hypothesis, (m,m′′) ∈ TM(C1) and (m′′,m′) ∈ TM(C2); and from (2.5), (m,m′) ∈
TM(C).

(iii) For a branching C = C1 +C2 (Fig. 2.8c), a terminating execution τ ∈ �P(C)� iff

τ= 〈(l`,m),τ′, (la,m′)N〉 where m,m′ ∈M, τ′ = 〈(l′`,m), · · · , (l′a,m′)〉 ∈S∗, and also

〈τ′, (l′a,m′)N〉 ∈ �P(C1)�∪ �P(C2)�. From the induction hypothesis, this can be iff

(m,m′) ∈ TM(C1)∪TM(C2); From (2.5), this can be iff (m,m′) ∈ TM(C).

(iv) For a loop C =C ′∗ (Fig. 2.8d), a terminating execution τ ∈ �P(C)� iff

τ= 〈(l`,m), (la,m)〉, or

τ= 〈(l`,m0),τ′0,τ′1, · · · ,τ′k−1, (la,mk)〉, where k ≥ 1 and for i = 0..k−1

τ′i ∈S∗,τ′i = 〈(l′`,mi) · · · (l′a,mi+1), (l`,mi+1)〉

The latter can be iff for every i = 0..k−1, 〈τ′i , (l′a,mi+1)N〉 ∈ �P(C ′)�, i.e., iff (from

the induction hypothesis) (mi ,mi+1) ∈ TM(C ′), i.e., iff (m0,mk) ∈ TM(C ′)k .

That is, τ ∈ �P(C)� iff τ(0) = (l`,m), τ(a) = (l`,m′), and (m,m′) ∈ TM(C ′) j for some

j ≥ 0. This is equivalent to saying that (m,m′) ∈⋃
j≥0 TM(C ′) j = lfp⊆λX .∆M∪ (X ◦

TM(C ′)) = TM(C).

61

x

y

0 1 4

1

(a) As a set of rational points.

x

y

0 1 4

1

(b) As a set of integer points.

Figure 2.9: An element of the interval domain.

2.B Memory Abstract Domains

In this section, we briefly discuss some important abstract domains, i.e., ways to effi-

ciently represent sets of memory states of different kinds of programs.

Numeric Domains

For a numeric program, a concrete (non-error) memory state is a map from the pro-

gram variablesV to their values which usually come from a subset of integer or rational

numbers (Z or Q). One can see a concrete state as a point in the n-dimensional space,

where n = |V| (the number of programs variables; it is assumed to be finite). Then, nu-

meric abstract domains usually correspond to different ways of finitely representing

convex sets of points.

Interval Domain is probably the simplest one. An element of the interval domain

maps every program variable to a (not necessarily bounded) range of possible values.

For example, in a program with two variables, x and y , the object 〈x : [1;4], y : [1;+∞)〉
is an element of the interval domain representing the set of memory states {m | 1 ≤
m(x) ≤ 4∧m(y) ≥ 1}. Fig. 2.9 displays this element as a 2-dimensional plot.

Polyhedral Domain represents an abstract memory state as a conjunction of linear

inequalities (strict or non-strict) over program variables. An example of an element

in the polyhedral domain is the expression (y ≤ 2x ∧ y ≥ 1). This element is shown in

Fig. 2.10. Implementations of the domain internally use dual representation of poly-

hedra, storing both the set of constraints (as a matrix of equation coefficients) and the

62

x

y

0 1

1

(a) As a set of rational points.

x

y

0 1

1

(b) As a set of integer points.

Figure 2.10: An element of polyhedral domain.

set of so called the generators: vertices (extreme points) and directions of unbounded

edges (extreme rays). In our sample polyhedron, (0.5,1) is an extreme point, and the

extreme rays can be the vectors (1,0) and (1,2).

Dual representation is used since different operations can be implemented more

optimally using different representations. For example, (the constraints of) the inter-

section of two polyhedra can be produced by taking the union of their sets of con-

straints (and then removing redundant ones); the (generators of the) convex hull of

two polyhedra can be produced by taking the union of their generators; it also is easier

to minimize a system of constrains when generators are known; etc.

One of the first applications of polyhedra to program analysis was described by

Patrick Cousot and Nicolas Halbwachs [CH78], but the underlying representations and

algorithms were previously known in the field of linear optimization (e.g., a widely

used algorithm to convert between the set of constraints and the set of generators is

attributed to N. V. Chernikova [Che64; Che65; Che68]).

An interesting and useful feature of the polyhedral domain is that the convex hull

operation (which over-approximates the union of the points two polyhedra and be-

comes join operation for the domain) can invent new linear relations. For example,

observe the Fig. 2.11. In the figure, two rectangular polyhedra: (1 ≤ x ≤ 3∧1 ≤ y ≤ 3)

and (4 ≤ x ≤ 6∧3 ≤ y ≤ 5) are shown with darker gray background. Their convex hull

is shown with lighter gray background. Observe that it is not a rectangle any more, but

also bounds the difference of 2x and 3y . This allows an analysis to materialize linear

relations that are not explicitly present in the program. For example, for the program in

Fig. 2.12, a polyhedral analysis will be able to assert that after the loop finishes, x = y .

63

x

y

0 1 3 4 6

1

3

5

Figure 2.11: The convex hull of two
polyhedra.

1 x ← y ← 0;

2 while (?) {

3 x ← x +1;

4 y ← y +1;

5 }

Figure 2.12: A program that simultane-
ously updates two variables.

The interval and polyhedral domains, in a way, are the two extremes. Polyhedra can

store arbitrary linear relations between variables, which benefits the precision of an

analysis, but makes it computationally expensive, especially when the number of di-

mensions (program variables) is high (e.g., a bounded rectangle in n dimensions al-

ready contains 2n points). Interval computations are inexpensive, but lose all the in-

formation about relations between variables and produce imprecise analyses. A num-

ber of trade-offs between efficiency and precision have been proposed. For example,

the octagon [Min06] domain allows constraints of the form ±x ± y ≤ c that relate two

variables x and y , and a constant c.

Domain of Linear Congruences allows to assert divisibility of a linear expression by

a constant. Often, it is used in conjunction with polyhedra (forming a so called re-

duced product of the two domains): an abstract memory state is represented by a

pair consisting of a polyhedron and a set of linear congruences. An example of an

element of the product domain is shown in Fig. 2.13 and represents the constraints(
x ≥ 0∧ y ≥ 0∧ (x = 0 mod 2)∧ (y = 0 mod 2)

)
.

Shape Analysis with 3-valued Logic

Here, we give a brief introduction on how analyses based on 3-valued logic represent

heaps of programs. For more information on shape analysis with 3-valued logic, please

refer to Sagiv et al. [SRW02] and related papers [RSL10; Arn+06; LMS04].

This framework is designed to represent heaps that contain linked data structures:

64

x

y

0 1 2

1
2

Figure 2.13: An element of the product of polyhedra and linear congruences.

sets of heap cells (where a cell is a continuous region of dynamic memory, e.g., an in-

stance of Java class or a heap-allocated instance of C structure) that are pointed to by

program variables and also store pointers to each other. This allows to analyse pro-

grams that manipulate singly- or doubly-linked lists, trees, etc.

In the framework, abstract heaps are represented with so called 3-valued structures,

i.e., models of 3-valued first-order logic with transitive closure. Every individual repre-

sents either a single heap cell or a set of heap cells that share some properties. Pointer

variables are represented by unary predicates: the predicate is true for the cell where

the variable points. Pointer fields are represented by binary predicates: the predicate

is true for those pairs of cells where the corresponding field of one cell points to an-

other cell. The analysis also maintains in the form of predicates additional information

about the heap: whether the cells are reachable from each other or from some pointer

variable, whether cells lie on a cycle, whether some condition is true of the cells, and so

on19. The choice of these additional predicates depends on the kind of data structures

that a program manipulates. For example, if we constrain the input of a program only

to acyclic singly-linked lists, we will use a different set of predicates than if we allowed

cyclic lists or doubly-linked lists. The authors of TVLA offer pre-made sets of predicates

for different data structures, and we will not discuss those in detail.

Three-valued structures can be displayed as shape graphs, and an example is shown

in Fig. 2.14. The graph represents an acyclic singly-linked list with two or more ele-

ments and can be interpreted as follows. The left node represents a single cell which is

the head of the list and is pointed to by pointer variables x and y . The text c=1/2 means

19Soundly maintaining the strongest possible information during the analysis is an important and
complicated task.

65

x, y c= 1
2

tn

c= 1
2

n

tn

tn

n

Figure 2.14: Acyclic list with 2+ elements.

x, y c= 1
2

tn

c= 1
2

n

tn

tn

n

Figure 2.15: Cyclic list with 2+ elements.

that some condition c might or might not be true for the head – we do not know. The

right node is displayed with double border and represents a finite non-empty set of

cells that constitute the tail of the list (so called summary node). The dotted edge an-

notated by n between the head and the tail means that the pointer field n of the head

points to some node of the tail, but not to all of them. The analysis is usually instructed

that predicate n induces a function, but this is usually not reflected in the shape graph.

In our case, the analysis also keeps track of reachability between cells with the pred-

icate tn . Solid tn-edge between the head and the tail means that all cells of the tail

are reachable from the head by traversing the n-pointers. Dotted n- and tn-loops on

the tail mean that there are pointers and reachability between some pairs of cells in

the tail but not between all of them. Absence of n- and tn edges from the tail to the

head means that no cell in the tail points to or can reach head. In this case, the anal-

ysis is also instructed that there are no shared cells, i.e., every cell is pointed to by at

most one cell. The above is sufficient for Fig. 2.14 to represent exactly the set of acyclic

singly-linked lists with two or more elements. Similarly, Fig. 2.15 represents a set of

cyclic lists with two or more elements. Predicates like n are called core predicates, and

they are the main carriers of the information about the structure. Predicates like tn

are called instrumentation predicates. They have definitions in terms of other pred-

icates, and in a concrete structure (without dashed edges or summary nodes), they

are redundant and provide no additional information. For an abstract structure, in-

strumentation predicated do provide additional information and do restrict the set of

possible concretizations. Abstract transformers are designed in such a way as to pre-

serve as much information as possible and to update the instrumentation predicates

in the most precise way.

66

Separation Logic

Finally, we mention separation logic [Rey02] – a successful way of representing abstract

heaps of programs. The central connective in this logic is separating conjunction. For

a pair of statements, it asserts that there is a partition of the heap (into two disjoint

parts), s.t. the first statement holds for one part, and the second statement holds for

another part. We do not use separation logic in this work though (we use 3-valued logic

to analyse heap-manipulating programs).

67

Chapter 3

Finding Existential Recurrent Sets with

Backward Analysis

In this chapter we present an algorithm that allows to under-approximate existential

recurrent sets of individual loops in unstructured programs.

The fixed point characterization of existential recurrent set (given in Lemma 2.5)

is actually hard to apply in practice in an under-approximating way. The main issue

is that backward analysis with the predecessors transformer (pre) introduces disjunc-

tions that are hard to under-approximate in most domains. Let us look at the charac-

terization again:

R = gfp⊆λX .
(
{s ∈S | s is non-error and not final}∩pre(TS(P), X)

)
In this chapter, we will be approximating recurrent sets of individual loops. In particu-

lar, in a loop, every location is not final (because every location has a successor in the

loop) and thus (if now P denotes a single loop)

R = gfp⊆λX .{s ∈S | s is non-error}∩pre(TS(P), X)

Since the set predecessors of an error state includes error states, but the predecessors

of non-error states are non-error

= gfp⊆λX .pre(TS(P), X \ (L× {ε}))

One can think of this as a greatest fixed point in the domain of non-error states P (L×
(M\ {ε})). The computation then creates a chain of approximants of R. In this chapter,

68

we focus on numeric programs and use polyhedra (conjunctions of linear inequali-

ties) to represent memory states. That is, one can decide that every approximant of R

should be an element of the domain L→Dpoly and maps program locations to polyhe-

dra (note that since we characterised R in the domain of non-error states, our abstract

domain does not have to be able to represent error states). Let us denote the current

value of this map in a computation (the current approximant of the fixed point) by d .

Initially, d maps every location to a polyhedron without constraints (>):

d(l) =>, for l ∈ L

In practice, the computation proceeds using chaotic iteration [Bou93b]. That is, in a

computation step, instead of updating all entries of the map at once as in

d ← d upre(P,d), until d stabilizes

we pick program locations one by one in some order and sequentially update their

entries in d (in Appendix 3.B, we make a note on the use of chaotic iteration). Thus, in

every step, we pick a location l and perform the update:

d(l) ← d(l)u ⊔
l ′∈succ(l)

pre(c(l , l ′),d(l ′))

Note that here, we join the pre-conditions (w.r.t. corresponding edges) of all succes-

sors of l in the program graph. The resulting set is a disjunction of convex sets1 and

thus is not convex in general and might not be represented exactly by a single poly-

hedron. This would not be a problem in an over-approximating analysis where we

can just take the convex hull of all disjuncts. But in an under-approximating analy-

sis, we would need to come up with a heuristic that would produce some good (in a

sense that it would allow to produce some non-empty existential recurrent set) convex

under-approximation of a disjunction of convex elements, and this is not easy to do.

It is actually the case that for many programs, recurrent sets when projected to in-

dividual program locations are not convex and, cannot be reasonably approximated by

1In program analysis, the term convex can be used in a loose sense, meaning expressible as a conjunc-
tion of some atomic facts. When we take atomic facts to be linear inequalities, sets that are convex in this
sense (i.e., polyhedra) are also convex in the geometrical sense.

69

1 while (x 6= 0) {

2 if (x < 0) {

3 x ← x −1;

4 x ←−x;

5 } else {

6 x ← x +1;

7 x ←−x;

8 }

9 }

Figure 3.1: A program where a non-terminating execution alternates between regions
x > 0 and x < 0. Thus a recurrent set is not convex.

a map from program locations to single polyhedra. Consider a program that is shown

in pseudocode in Fig. 3.1. For this program (and for all other examples of numeric pro-

grams in this work), let us assume that the variable x takes integer values. While the

value of the variable x is not 0, the program will increase x, if it is positive, or decrease

it, if it is negative – and then invert its value. Thus, if x starts with a nonzero value, the

loop will run forever, infinitely increasing the absolute value of x. At the same time, at

the location corresponding to the head of the loop, the value of x alternates between

the regions where x > 0 and x < 0, thus there is no convex recurrent set.

In this chapter, we propose an analysis that attempts to work around this issue. The

analysis will maintain multiple convex elements per program location, thus allowing

to represent non-convex recurrent sets. Every element will correspond to a different

set of paths through the program represented as an element of a finite path domain

(which sets the limit to a number of disjuncts that we keep per program location). This

technique is called trace partitioning (for trace partitioning in forward analysis, see

[MR05]). Also, we will allow the analysis to perform some over-approximating opera-

tions (e.g., to sometimes join convex polyhedra by taking a convex hull). In particular,

we will allow to join memory states corresponding to the same set of paths. This way,

using not necessarily under-approximate backward analysis, we will infer a (poten-

tially unsound) candidate existential recurrent set. Then, we will check the candidate

for soundness and possibly refine it using an over-approximate forward analysis.

For this chapter, we will make a number of assumptions on the memory domain.

70

In particular, we will assume that there exists a meet operation that allows backward

analysis to build a descending chain; then, we will use lower widening to ensure con-

vergence of backward analysis. This is suitable for numeric domains, but non-numeric

domains may employ different techniques. For example, in shape analysis with 3-

valued logic [SRW02], convergence is due to the use of a finite domain of bounded

structures. Our backward analysis would need to be modified to be applicable to this

and similar domains.

We report experimental results in Chapter 5

3.1 Abstract Domain of the Analysis

Let the memory abstract domain of the analysis be Dm, with least element ⊥m, great-

est element >m, partial order vm, and join tm. Every element, or abstract memory

state, a ∈ Dm represents a set of memory states γm(a) ⊆ M. We lift concretization to

sets of abstract memory states: for A ⊆ Dm, γm(A) = ⋃
{γm(a) | a ∈ A}. In the context

of this chapter, Dm can be assumed to be a polyhedral domain where an element is a

conjunction of linear inequalities over the program variables (or some other numeric

abstract domain).

We assume that we are given the over-approximate versions of the transformers

post, pre, and eval, s.t. for an atomic statement C ∈ A, an element a ∈ Dm, and a

memory-state formula θ,

γm(postm(C , a)) ⊇ post(TM(C),γm(a))

γm(prem(C , a)) ⊇ pre(TM(C),γm(a))

evalm(θ, a) wK eval(θ,γ(a))

In this chapter, we are mostly interested in numeric programs, which, apart from pas-

sive and assumption statements, can use:

(i) a deterministic assignment x ← expr, which assigns the value of an expression

expr to a program variable x;

(ii) a nondeterministic assignment, or forget operation, x ← ∗, which assigns a non-

deterministically selected value to a program variable x.

71

For evalm, we should note that normally, it is given for atomic formulas, and for ar-

bitrary formulas it is defined by induction over the formula structure, using 3-valued

logical operators, possibly over-approximate w.r.t. vK . For example, let a be the con-

junction of linear inequalities: (−1 ≤ x ≤ 1)∧ (−1 ≤ y ≤ 1), which can be seen as a poly-

hedron in two dimensions. Let the formula θ = (x > 0)∨ (y > 1). In order to compute

evalm(θ, a), we will normally do the following:

evalm(θ, a) = evalm(x > 0, a)∨evalm(y > 1, a) = 1/2 ∨0 = 1/2

In this chapter, we also make the following assumptions on Dm. We assume there

exists a meet operation, s.t. for a1, a2 ∈ Dm, a1 um a2 vm a1 and a1 um a2 vm a2. This

allows producing descending chains in Dm and performing approximation of greatest

fixed points even with non-monotonic abstract transformers2. If Dm admits infinite

descending chains, we assume there exists lower widening operation Om. Similarly, if

Dm admits infinite ascending chains, we assume there exists widening operation Om.

Continuing the discussion started in Section 2.3.3, in this chapter, we require Dm to be

able to represent erroneous states. Although the main step of the analysis uses back-

ward analysis and involves only non-error abstract states, the subsequent refinement

step needs to be able to detect abstract states with erroneous successors.

To produce a standard over-approximate analysis one would then move to the do-

main L→Dm, where every element represents a set of program states partitioned with

locations. For the purpose of trace partitioning, we take an additional step to intro-

duce what we call a path abstract domain Dp, with least element ⊥p, greatest element

>p, partial order vp, join tp and meet up. Every element, or abstract path, q ∈Dp rep-

resents a set of paths γp(q) ⊆Π. We introduce over-approximate versions of post and

2Although, in Chapter 2 we, for simplicity, preferred to assume the domains to be complete lattices,
not all useful abstract domains actually are. For example, if in the context of shape analysis with 3-
valued logic we consider the domain of (sets of) bounded structures, we will find that the greatest lower
bound does not always exist. More specifically, the greatest lower bound will always exist in the domain
of (sets of) all 3-valued structures, but for two (sets of) bounded structures, their greatest lower bound is
not necessary bounded. In this case, we could try to define some lower bound operation (we can always
make it produce⊥m for some pairs of arguments), but we think it is better not to do so. The abstract meet
operation is supposed to be an approximation of concrete set intersection, and we believe that it may
be better to have a meaningful over-approximation of set intersection (e.g., in this case, taking a meet of
3-valued structures and applying canonical abstraction) than to have an artificially introduced under-
approximate meet. This means that for such domains we might not have a way to produce descending
chains, and the analysis of this chapter cannot be applied in such domains directly (but we anticipate
that it can be adapted).

72

pre, s.t. for an edge e ∈ E and an element q ∈Dp,

γp(postp(e, q)) ⊇ post(TΠ(P)|e ,γp(q))

γp(prep(e, q)) ⊇ pre(TΠ(P)|e ,γp(q))

where

TΠ(P)|e = {((p, i), (p, i+1)) ∈Π×Π | (p(i), p(i+1)) = e}

that is, this is a restriction of the transition relation on paths to an edge e ∈ E. For

our purposes, we also assume that Dp is finite, and there exists abstraction function αp

that, together with γp forms a Galois connection between Dp and P (Π). This allows to

partition memory states with elements of L×Dp, similarly to how a standard analysis

partitions memory states with locations.

Constructing the Abstract Domain of the Analysis.

Given a memory abstract domain Dm and a path abstract domain Dp with required

properties, let us first construct an auxiliary abstract domain Dmp ⊆ Dp * Dm (where

* denotes a partial function). We require that every element D ∈ Dmp is what we call

reduced: for every q ∈ dom(D), q 6= ⊥p and D(q) 6= ⊥m; and for every pair of abstract

paths q1, q2 ∈ dom(D), q1 up q2 =⊥p. Intuitively, D is a collection of abstract memory

states partitioned with disjoint abstract paths. For every partial function D ′ :Dp*Dm,

we can produce a reduced element D = reduce(D ′) ∈Dmp. To do so, we remove bottom

elements and then repeatedly join the pairs from D ′ (thinking of a function as of a set

of pairs) that have non-disjoint abstract paths. This procedure is shown in Fig. 3.2.

The top element >mp = {>p 7→ >m}; the bottom element ⊥mp is the empty partial

function. The partial order vmp is point-wise. For D1,D2 ∈Dmp,

D1 vmp D2 iff ∀(q1, a1) ∈ D1. ∃(q2, a2) ∈ D2. q1 vp q2 ∧a1 vm a2

Join is just a set union. For D1,D2 ∈Dmp,

D1 tmp D2 = reduce(D1 ∪D2)

When taking meet of D1,D2 ∈ Dmp, we meet the tuples from D1 and D2 pair-wise. For

73

Algorithm: Reduce
Input: Non-reduced element D ′ :Dp*Dm

Output: Reduced element D ∈Dmp

1 D ← D ′

2 for d ∈ D, s.t. d = (⊥p, a)∨d = (q,⊥m) do

3 D ← D \ {d}

4 endfor

5 for (q1, a1), (q2, a2) ∈ D, s.t. q1 up q2 6= ⊥p do

6 D ← (D \ {(q1, a1), (q2, a2)})∪ (q1 tp q2, a1 t] a2)

7 endfor

Figure 3.2: Reducing a partial function to an element of Dmp.

D1,D2 ∈Dmp,

D1 ump D2 = {(q1 up q2, a1 u] a2) | (q1, a1) ∈ D1 ∧ (q2, a2) ∈ D2∧
q1 up q2 6= ⊥p∧a1 um a2 6= ⊥m}

As both D1 and D2 are reduced (all the elements of dom(D1) are incomparable and

so are the elements of dom(D2)), it follows that D1 ump D2 is reduced, as the all ele-

ments of the form q1up q2 where q1 ∈ dom(D1) and q2 ∈ dom(D2) are either bottom or

incomparable.

Abstract post-condition and predecessor operations are path-wise. For e ∈ E and

D ∈Dmp,

postmp(e,D) = reduce({(postp(e, q),postm(c(e), a) | (q, a) ∈ D})

premp(e,D) = reduce({(prep(e, q),prem(c(e), a) | (q, a) ∈ D})

Widening and lower widening are path-wise. For D1,D2 ∈Dmp, s.t. D1 vmp D2,

D1 Omp D2 = {(q, a′) | (q, a) ∈ D2 and if q ∉ dom(D1) then a′ = a

else a′ = D1(q)Om D2(q)}

D2 Omp D1 = {(q, a′) | (q, a) ∈ D1 and if q ∉ dom(D2) then a′ = a

else a′ = D2(q)Om D1(q)}

In practice, when widening is only applied after a certain delay, it may make sense to

74

l1

l2

[0 ≤ x ≤ 100]

l3
x ← x +1

l4
x ← x −1

Figure 3.3: Loop containing single non-deterministic branching statement.

define a more aggressive lower widening.

D2 Omp D1 = {(q, a′) | q ∈ dom(D1)∧q ∈ dom(D2)∧a′ = D2(q)Om D1(q)}

We observed that with a sufficient widening delay, the abstract paths that are present

in D1 and not present in D2 are unlikely to be interesting, and removing them actually

helps the algorithm.

Then, the abstract domain of our analysis (in this domain, backward analysis will

be performed) is D] = L→Dmp. That is, one can think of an element D ∈D] as a collec-

tion of abstract program states partitioned by location and abstract path. In a sense,

an element D ∈D] answers the question, “What should be the memory state at a given

location, assuming that from this state the program may take only certain paths”. The

construction that produces the domain L→Dmp fromDmp is standard in abstract inter-

pretation (usually, it is applied to produce L→ Dm from Dm) and we move its descrip-

tion to Appendix 3.A. All the operations in D] are just location-wise applications of the

corresponding operations in Dmp. We note though in D], the post-condition post](P, ·)
and predecessor operation pre](P, ·) are taken with respect to the whole program.

3.2 Path Domain

For the path domain, in this work, we use finite sequences of future branching choices.

A branching point is a location l ∈ L, s.t. there exists at least two edges from l . A branch-

ing choice is an edge (l , l ′) ∈ E, s.t. l is a branching point. For example, consider a pro-

gram fragment in Fig. 3.3. The location l2 is a branching point, and the edges (l2, l3)

and (l2, l4) are branching choices.

We denote the set of all branching choices by Eb ⊆ E. For every non-bottom element

q ∈Dp, q is a finite sequence of branching choices: q = 〈e0,e1, . . . ,en〉 ∈ E∗b ; top element

75

>p is the empty sequence 〈〉; and bottom is a distinguished element ⊥p ∉ E∗b . That is,

Dp ⊆ E∗b ∪ {⊥p}.

For q1, q2 ∈Dp,

q1 vp q2 iff q1 =⊥p or q2 is a prefix of q1

For q1, q2 ∈Dp, join is

q1 tp q2 =

q2, if q1 =⊥p

q1, if q2 =⊥p

the longest common prefix of q1 and q2, otherwise

For q1, q2 ∈Dp, meet is

q1 up q2 =

q1, if q1 vp q2

q2, if q2 vp q1

⊥p, otherwise

For example, let q1 = 〈(l2, l3), (l2, l4)〉. It represents the set of paths where the first

two times control reaches l2, it is transferred to l3, and after that the path is not con-

strained. Also, let q2 = 〈(l2, l3), (l2, l4)〉. In a similar way, represents the set of paths,

where the first time control reaches l2, it is transferred to l3, the second time – it is

transferred to l4, and after that the path is not constrained. Informally, can see that q1

and q2 represent disjoint sets of paths. Formally, neither is the prefix of the other one.

Thus, q1��vpq2, q2��vpq1, and q1 up q2 = ⊥p. At the same time, q1 and q2 have the com-

mon prefix 〈(l2, l3)〉. Thus, the join of these two abstract paths is q1tpq2 = 〈(l2, l3)〉. This

represents the set of paths, where the first time control reaches l2, it is transferred to

l3, and after that the path is not constrained. Informally, one can see that this contains

the sets, represented by q1 and q2.

We assume that Dp only contains a finite number of elements. The following con-

struction worked reasonably well in our experiments. We assume that every element

q ∈Dp is bounded, in a sense that every branching choice e ∈ Eb appears in q at most k

times, where k ≥ 1 is a parameter of the domain. For a sequence of branching choices

q ′ ∈ E∗b (or ∈ ENb), we can produce a bounded element bk (q ′) ∈Dp by keeping the longest

76

bounded prefix of the sequence. For example, let q = 〈(l2, l3), (l2, l4), (l2, l3), (l2, l4)〉.
Then, b1(q) = 〈(l2, l3), (l2, l4)〉.

We can chose alternative definitions of a bounded element and the bounding func-

tion if required (as long as the domain of bounded elements is finite). For example, we

could bound the total number of branching choices in an element, which can be use-

ful to simplify the presentation of examples. We will use this definition in Example 3.1.

With this definition, for q = 〈(l2, l3), (l2, l4), (l2, l3), (l2, l4)〉, we get b1(q) = 〈(l2, l3)〉.
Intuitively, an element q = 〈e0,e1, . . . ,en〉 ∈ E∗b represents a set of paths where the

next n + 1 branching choices are e0,e1, etc, and after that the branching choices are

not restricted. Formally, it represents the set of paths γp(q) ⊆Π, s.t. π= (〈l0, l1, . . .〉, i) ∈
γp(q) iff for j = 0..n, there exists a strictly increasing sequence of indices {x j }0≤ j≤n , s.t.

i ≤ x0 < . . . < xn and every π(x j) is a branching point, (π(x j),π(x j+1)) = e j , and for every

index z, s.t. i ≤ z < xn , if z ∉ {x j }, then π(z) is not a branching point.

The corresponding abstraction function can be defined as follows. For a single path

π = (〈l0, l1, . . .〉, i) ∈ Π, intuitively, abstraction function extracts the next k branching

choices. Formally, for j ≥ 0, let {y j } j≥0 be a strictly increasing sequence of indices of

branching points at or after position i , s.t. i ≤ y0 < y1 < . . ., every π(y j) is a branching

point, and for every index z ≥ i , if z ∉ {y j }, then π(z) is not a branching point. Then, the

abstraction of π is αp(π) = bk (〈(π(y0),π((y0)+1)), (π(y1),π((y1)+1)), . . .〉). For a set of paths V ,

αp(V) =⊔
p{αp(π) | π ∈V }.

For an edge e ∈ E and q ∈ Dp, post-condition and predecessors are defined as fol-

lows (operator · denotes concatenation of sequences)

prep(e, q) =

⊥p, if q =⊥p

bk (e ·q), if q 6= ⊥p and e is a branching choice

q, otherwise

postp(e, q) =

q ′, if q = e ·q ′ for some q ′ ∈Dp

⊥p, if q = e ′ ·q ′ for some q ′ ∈Dp and e ′ 6= e

>p, if q =>p

⊥p, if q =⊥p

77

Intuitively, prep prepends a new branching choice to a path (and bounds the result),

and postp removes a branching choice from a path, when possible. For example, for

the fragment in Fig. 3.3, let q = 〈(l2, l3), (l2, l4)〉, and the bounding function is s.t. it

keeps at most one occurrence of every branching choice. Then,

prep((l1, l2), q), as (l1, l2) is not a branching choice

prep((l2, l3), q) = b1(〈(l2, l3), (l2, l3), (l2, l4)〉) = 〈(l2, l3)〉
postp((l2, l3), q) = 〈(l2, l4)〉
postp((l2, l4), q) =⊥p, as q does not start with (l2, l4)

One can say that an abstract path q ∈Dp predicts a bounded number of branching

choices that an execution would make. We observe that our path domain works well

for non-nested loops, and the bound k corresponds to the number of loop iterations,

for which we keep the branching choices. In most our experiments, k = 1 or 2 was

enough to find a recurrent set (for some programs, we had to use k = 3 or 4).

Note that the forward transformer postp leaves >p unchanged. Thus, our backward

analysis does use trace partitioning, but the forward pre-analysis does not (with the

current path domain). The forward pre-analysis, is initialized with f0 = {l` 7→ >]; l 6=
l` 7→⊥]}, i.e., during the forward pre-analysis, every location is mapped either to ⊥] or

to {>p 7→ m} for some m ∈Dm.

3.3 Forward Pre-Analysis

The original characterization of existential recurrent set (given in Lemma 2.5) suggests

to initialize the computation with just the set of non-error non-final states and then

perform the analysis by iterating the predecessors transformer (pre). But to better di-

rect the search for an existential recurrent set, we first perform a forward pre-analysis

of a program and find a(n over-approximation of the) set of non-error states reachable

from some initial state. Then, backward analysis will be searching for an existential

recurrent set below this set of reachable states. We observed that this approach works

better in practice, and this is consistent with observations of other researchers who

note that a combination of backward and forward analyses is known to be more precise

78

than just, e.g., backward analysis [CC99]. Intuitively, the analysis in a numeric abstract

domain infers an existential recurrent set by collecting constraints (i.e., linear inequal-

ities) from across the program and combining them. Forward analysis propagates the

constraints forwards, from the locations where they are introduced, to the locations

where they are important for non-termination. Backward analysis works similarly, but

propagates the constraints backwards. It turns out that some important constraints

are better propagated by forward analysis than by backward analysis, e.g. the loop and

branching conditions (formulas from assumption statements). Thus, pure backward

analysis below the set of non-error non final states might not be able to make use of

loop and branching conditions and infer an existential recurrent set.

Thus, we start by performing a standard forward pre-analysis of the whole program

P to find an approximation of the set of non-error reachable program states F ∈D]. One

way to do so it the following. Let Fε be the stable limit of the sequence { fi }i≥0 where

f0 = {l` 7→>mp; l 6= l` 7→⊥mp}

fi = fi−1 O] (fi−1 t]post](P, fi−1)), for i ≥ 1
(3.1)

This computes a standard forward analysis in the domain D]. Then, take the resulting

approximation F v] Fε to be the greatest non-error element below Fε.

Another way is to introduce an abstract operation postmok that over-approximates

taking non-error successors:

γm(postmok(C , a)) ⊇ post(TM(C),γm(a)) \ {ε}

and then compute a forward analysis in the domain of non-error abstract states (if this

domain can be constructed). This second way can be useful when the abstract domain

was built using the “error top” construction, as described in Section 2.3.3. Then, for

an unsafe program, standard forward analysis is likely to lose information about which

non-error states are reachable, while the analysis based on the computation of postmok

will not be affected.

Example 3.1 (Non-Deterministic Branches). Let us consider the program fragment in

Fig. 3.3, which will be our running example for this chapter. We call it a fragment here,

as it only shows a loop, without the preceding or subsequent parts of a program, and,

79

e.g., there is no edge that exits the loop. One can expect that this is a part of a larger

program, which, e.g., would have an edge3 going from location l1 labelled with an as-

sumption statement [x < 0∨ x > 100] that leads outside of the loop. In this case, we

assume that it is only in this loop where non-terminating executions can arise, and

hence the rest of the program is not interesting for the discussion. In particular, we

are only interested in the edges that allow the execution to stay inside the loop, and

all the edges that lead outside are not relevant and do not affect the computation of a

recurrent set.

For this fragment, the set of locations is L = {l1, · · · , l4} and the initial location is

l` = l1. The program does not have a final location and thus is a strongly connected

fragment of a larger program. Note how we cannot have multiple edges from l2 to l1,

and we use locations l3 and l4 to work around that (for the edges displayed without a

label, we assume the label skip).

Now, let us see what forward pre-analysis will produce for this fragment. Informally,

we can see that we do not know which states enter the loop, but at location l2 the

states need to satisfy the condition 0 ≤ x ≤ 100. Thus, the pre-analysis may produce

the element F ∈D], s.t.

F (l1) = 〈〉 7→>
F (l2) = 〈〉 7→ (0 ≤ x ≤ 100)

F (l3) = 〈〉 7→ (1 ≤ x ≤ 101)

F (l4) = 〈〉 7→ (−1 ≤ x ≤ 99)

In our prototype implementation, forward analysis does not perform trace partition-

ing, thus, for every location, F has one partition labelled with the top element of the

path domain (recall that in our instantiation of path domain, the empty sequence 〈〉 is

the top element).
3For a numeric program, it may actually be convenient to require that an assumption formula is a

conjunction of linear inequalities and thus can be represented by a single element of polyhedral domain.
In this case, we will create not one but two edges leaving the loop from location l1, one labelled by [x < 0]
and another – by [x > 100]. Example 3.4 demonstrates that this makes our analysis more precise.

80

3.4 Backward Analysis For a Candidate

Next, we perform the main step of the analysis – backward analysis to find candidate

existential recurrent sets (possibly, over-approximated). We perform this analysis sep-

arately for every strongly connected sub-program Ps that represents a loop of the orig-

inal program P. More formally, we perform the analysis for every strongly connected

component [Tar72] Ps = (Ls , ls`,Es ,c|Es), where

• the subprogram Ps is strongly connected and no subprogram that properly con-

tains Ps is strongly connected;

• Ls ⊆ L;

• Es = (Ls ×Ls)∩E;

• additionally, |Ls | > 1 or (ls`, ls`) ∈ Es (i.e., trivial strongly connected components

are disregarded, and the component should represents a loop in the program);

• c|Es is the restriction of c to the edges of Ps ;

• ls` ∈ Ls is the head of the strongly connected component, which is usually se-

lected as the first location of the component encountered in P by a depth-first

search.

Note that since Ps is strongly connected, it does not have final locations.

We can restrict the notion of successors to a sub-program. For l ∈ Ls ,

succ(l)|Ps = {l ′ ∈ Ls | (l , l ′) ∈ Es}

Lemma 3.1. An existential recurrent set of a sub-program Ps is an existential recurrent

set of the original program P.

Proof. The proof is straightforward and follows from that a non-terminating execution

postfix of a subprogram is also a non-terminating execution postfix of the original pro-

gram.

For every strongly connected sub-program Ps , we find a candidate existential re-

current set Ws ∈D] as the stable limit of the sequence of elements {wi }i≥0 that approx-

81

imates non-termination analysis below F , s.t.

w0 = F |Ls

wi = wi−1 O] (wi−1 u]pre](Ps , wi−1)), for i ≥ 1
(3.2)

where F |Ls is the restriction of F to the locations of Ps :

F |Ls = F (l), for l ∈ Ls

F |Ls is not defined for l ∉ Ls

Although formally an element of D] concretizes to a set of traces, we can think that

Ws represents a candidate existential recurrent set:

αs(γ](Ws)) = {(l ,m) ∈S | ∃q ∈Dp. m ∈ γm(Ws(l)(q))}

Since we use over-approximate operations (join, backward transformers) to compute

Ws , and hence the computation may not under-approximate non-termination analysis

and Ws might not represent a genuine existential recurrent set. In the next analysis

step, we will produce a refined element Rs v] Ws representing a genuine existential

recurrent set.

While this is hidden by succinctness of the definition of Ws , in practice, trace par-

titioning is important for inferring a good candidate. We observed that for many im-

perative programs, non-terminating executions take a specific path through the loop.

When we perform backward analysis with trace partitioning, abstract memory states

in Ws are partitioned by the path through the loop that the program run would take

from them. If the path domain is expressive enough, s.t. (states, from which exist)

non-terminating semi-executions get collected in separate partitions, the analysis is

likely to find a good candidate.

Example 3.1 (Non-Deterministic Branches, continued). Let us return to the program

fragment in Fig 3.3. One can see that in every iteration of the loop, the execution makes

a non-deterministic choice: whether to increment or decrement the variable x. For

this fragment, a non-terminating execution in every iteration needs to make the choice

depending on the current value of x, so that it does not go outside the range [0,100].

This can actually be captured by our path domain, and for simplicity let us assume that

82

an element of the path domain only remembers one next branching choice. This will

be enough in this example4.

Now let us trace a few iterations of the backward analysis and show how it com-

putes the candidate recurrent set Ws . We initialize the computation with the result of

forward pre-analysis. Recall, that earlier we established that forward pre-analysis will

produce an element F ∈ D], s.t. (note that in our instantiation of path domain, the

empty sequence 〈〉 is the top element)

F (l1) = 〈〉 7→>
F (l2) = 〈〉 7→ (0 ≤ x ≤ 100)

F (l3) = 〈〉 7→ (1 ≤ x ≤ 101)

F (l4) = 〈〉 7→ (−1 ≤ x ≤ 99)

Thus, we take the initial approximation of Ws to be F .

In this case, a reasonable iteration order (the order in which we update the entries

of Ws) is (l1, l3, l4, l2)∗. Thus, we compute:

Ws(l1)1 =Ws(l1)0 ump premp((l1, l2),Ws(l2)0) = 〈〉 7→ (0 ≤ x ≤ 100)

Ws(l3)1 =Ws(l3)0 ump premp((l1, l3),Ws(l1)1) = 〈〉 7→ (1 ≤ x ≤ 100)

Ws(l4)1 =Ws(l4)0 ump premp((l1, l4),Ws(l1)1) = 〈〉 7→ (0 ≤ x ≤ 99)

Ws(l2)1 =Ws(l2)0 ump
(

premp((l2, l3),Ws(l3)1)tmp premp((l2, l4),Ws(l4)1)
)

= {〈(l2, l3)〉 7→ (0 ≤ x ≤ 99);〈(l2, l4)〉 7→ (1 ≤ x ≤ 100)}

Note how the join operation created two partitions corresponding to two branching

choices a location l2. We continue.

Ws(l1)2 =Ws(l1)1 ump premp((l1, l2),Ws(l2)1)

= {〈(l2, l3)〉 7→ (0 ≤ x ≤ 99);〈(l2, l4)〉 7→ (1 ≤ x ≤ 100)}

Ws(l3)2 =Ws(l3)1 ump premp((l1, l3),Ws(l1)2)

= {〈(l2, l3)〉 7→ (1 ≤ x ≤ 99);〈(l2, l4)〉 7→ (1 ≤ x ≤ 100)}

Ws(l4)2 =Ws(l4)1 ump premp((l1, l4),Ws(l1)2)

4The actual implementation of this analysis uses a different definition of bounded element, the one
offered in Section 3.2.

83

= {〈(l2, l3)〉 7→ (0 ≤ x ≤ 99);〈(l2, l4)〉 7→ (1 ≤ x ≤ 99)}

Note how the partitions in locations l3 and l4 correspond to the branching choices in

the next iteration of the loop. We now proceed to location l2:

Ws(l2)2 =Ws(l2)1 ump
(

premp((l2, l3),Ws(l3)2)tmp premp((l2, l4),Ws(l4)2)
)

In this case,

premp((l2, l3),Ws(l3)2) = reduce
(
{b1(〈(l2, l3), (l2, l3)〉) 7→ prem(x ← x +1,1 ≤ x ≤ 99),

b1(〈(l2, l3), (l2, l4)〉) 7→ prem(x ← x +1,1 ≤ x ≤ 100)}
)

= 〈(l2, l3)〉 7→ prem(x ← x +1,1 ≤ x ≤ 99)tm

prem(x ← x +1,1 ≤ x ≤ 100)

= 〈(l2, l3)〉 7→ (0 ≤ x ≤ 99)

What happens here is that (l2, l3) is a branching choice. Since we chose to only keep

at most one future branching choice in a path domain element, the predecessor oper-

ation for the edge (l2, l3) produces only one abstract partition, and the corresponding

abstract memory state is the join of the predecessors of the abstract memory states in

Ws(l3)2. Similarly,

premp((l2, l4),Ws(l4)2) = 〈(l2, l3)〉 7→ (1 ≤ x ≤ 100)

This is the kind of over-approximating operation that we allow in the analysis. In gen-

eral, this may result in an unsound candidate recurrent set and that is why we need to

check the candidate later. Now,

Ws(l2)2 = {〈(l2, l3)〉 7→ (0 ≤ x ≤ 99);〈(l2, l4)〉 7→ (1 ≤ x ≤ 100)} =Ws(l2)1

The entry of Ws for location l2 has stabilized, and further computation will not make

84

any more updates to the candidate. Thus, the resulting candidate is:

Ws(l1) = {〈(l2, l3)〉 7→ (0 ≤ x ≤ 99);〈(l2, l4)〉 7→ (1 ≤ x ≤ 100)}

Ws(l2) =Ws(l1)

Ws(l3) = {〈(l2, l3)〉 7→ (1 ≤ x ≤ 99);〈(l2, l4)〉 7→ (1 ≤ x ≤ 100)}

Ws(l4) = {〈(l2, l3)〉 7→ (0 ≤ x ≤ 99);〈(l2, l4)〉 7→ (1 ≤ x ≤ 99)}

This can be interpreted as follows. If the execution is at location l1 and, as the next

branching choice, is going to increment x (by taking the edge (l2, l3)), then, for the

execution to not leave the loop, it must be that 0 ≤ x ≤ 99. Indeed, if x < 0, the execution

will not enter the loop, and if x > 99, the execution will exit the loop after incrementing

x. Similarly, if the execution is going to decrement x, it must be that 1 ≤ x ≤ 100. That

is, if the execution is at location l1, and 0 ≤ x ≤ 100, there exists a branching choice at

location l2 that keeps x in range [0,100]. This way we can construct a non-terminating

execution. By this argument, Ws represents a genuine recurrent set.

3.5 Checking and Refining a Candidate

Approximate backward analysis for every strongly connected component Ps of the

original program produces an element Ws ∈ D], which represents a candidate exis-

tential recurrent set. We use over-approximate operations (join, backward transform-

ers) to compute Ws , and hence the computation may not under-approximate non-

termination analysis and Ws might not represent a genuine existential recurrent set. In

Example 3.1, we were able to produce a genuine recurrent set with backward analysis,

but this is just a lucky coincidence.

In general, we have to refine Ws to a (possibly, bottom) element Rs v] Ws repre-

senting a genuine existential recurrent set of Ps and hence of the original program P.

That is, we produce such Rs that ∀s ∈ αs(γ](Rs)). ∃s′ ∈ αs(γ](Rs)). (s, s′) ∈ TS(Ps). To

do so, we define a predicate CONT, s.t. for an abstract memory state a ∈ Dm, a set

of abstract memory states A ⊆ Dm, and an atomic statement C ∈ A, if CONT(a,C , A)

holds (we say that the run of the program can continue from a to A through C) then

∀m ∈ γm(a). ∃m′ ∈ γm(A). (m,m′) ∈ TM(C). We define CONT separately for different

kinds of atomic statements.

85

For the memory abstract domain, let us introduce an additional coverage operation

v+
m that generalizes abstract order. For an abstract memory state a ∈ Dm and a set

A ⊆Dm, it should be that if a v+
m A (we say that a is covered by A) then γm(a) ⊆ γm(A).

For an arbitrary domain, coverage can be defined via the Hoare order:

a v+
m A iff ∃a′ ∈ A. a vm a′.

For a numeric domain, it is usually possible to define a more precise coverage opera-

tion. For example, a popular implementation of a family of numeric domains – Parma

Polyhedra Library [BHZ08] – defines a specialized coverage operation for finite sets of

convex polyhedra.

We define CONT as follows, using operations that are standard in program analysis.

For a ∈Dm, A ⊆Dm,

(i) For the passive statement skip,

CONT(a,skip, A) ≡ a v+
m A

Indeed, if a v+
m A then γm(a) ⊆ γm(A), and hence it holds that ∀m ∈ γm(a). ∃m′ =

m ∈ γm(A). (m,m′) = (m,m) ∈ TM(skip).

(ii) For an assumption statement [θ],

CONT(a, [θ], A) ≡ (
evalm(θ, a) = 1

)∧a v+
m A

Indeed, if evalm(θ, a) = 1, then γm(a) ⊆ �θ�, and if additionally a v+
m A then ∀m ∈

γm(a). ∃m′ = m ∈ γm(A). (m,m′) = (m,m) ∈ TM([θ]).

(iii) For a nondeterministic assignment x ←∗, we use the fact that in many numeric

domains (including the polyhedral domain) the pre-condition of x ← ∗ can be

computed precisely (via a cylindrification operation [HMT71]). That is, for a ∈Dm,

γm(prem(x ←∗, a)) = {m ∈M | ∃m′ ∈ γm(a). (m,m′) ∈ TM(x ←∗)}. In this case,

CONT(a, x ←∗, A) ≡ a v+
m {prem(x ←∗, a′) | a′ ∈ A}

86

(iv) Finally, for every other atomic statement C with left-total input-output relation

TM(C) (e.g., a deterministic assignment),

CONT(a,C , A) ≡ postm(C , a) v+
m A

Indeed, in this case γm(A) ⊇ γm(postm(C , a)) ⊇ post(C ,γm(a)). Since additionally,

TM(C) is left-total then for every m ∈ γm(a). ∃m′ ∈ γm(A). (m,m′) ∈ TM(C).

Another way to look at it is that (iv) represents a general case that allows handling

atomic statements with left-total input-output relations. Then, we specialize CONT

for non-deterministic statements and for statements with non-left-total input-output

relations. Case (iii) specializes CONT for non-deterministic assignments. It allows us

to detect a situation where there exists a specific non-deterministic choice (i.e., a spe-

cific new value of a variable) that keeps the execution inside the existential recurrent

set. Case (ii) specializes CONT for assumption statements (with non-left-total input-

output relations). By extending the definition of CONT, we can extend our analysis to

support more kinds of atomic statements.

Theorem 3.1. Let Rs ∈ D] be an element of D] and Ps be a sub-program. Let it be that

for every location l ∈ Ls , abstract path q ∈Dp, and an abstract memory state a ∈Dm, s.t.

Rs(l)(q) = a, there exists a successor location l ′ ∈ succ(l)|Ps , s.t.

CONT(a,c(l , l ′), {a′ | ∃q ′ ∈Dp. a′ = Rs(l ′)(q ′)})

Then, Rs represents an existential recurrent set of the sub-program Ps and hence the

whole program P.

Proof. The proof is a straightforward application of the definitions of CONT and TS.

Intuitively, if Rs ∈D] satisfies the condition of the lemma, from every program state in

αs(γ](Rs)) we can form a non-terminating semi-execution that only visits the elements

ofαs(γ](Rs)) – by executing the statements ofPs in a specific order, i.e., always choosing

an edge for which the predicate CONT holds.

Informally, Theorem 3.1, states the following. For every abstract memory state in

Rs , there should be an edge (outgoing from the corresponding location), s.t. taking this

edge from every corresponding concrete state keeps the execution inside the existential

87

recurrent set. Note that we do not need to consider the case where for a given abstract

state, for different concrete states, the execution needs to take different outgoing edges.

This is because ouf our path domain. During backward analysis, at branching points,

abstract states will always be partitioned according to which branch they are going to

take in a non-terminating execution.

Refinement Step In the refinement step, we start with an element Ws ∈D] produced

by the backward analysis, and from every location l ∈ Ls , we repeatedly exclude the

tuples (q, a) ∈ Ws(l) that violate the condition of Theorem 3.1. More formally, if we

repeatedly try to find a location l ∈ Ls and an abstract path q ∈ Dp for which we can-

not find a successor location l ′ ∈ succ(l)|Ps , s.t. CONT(a,c(l , l ′), {a′ | ∃q ′ ∈ Dp. a′ =
Rs(l ′)(q ′)}). After finding such l and q , we remove the corresponding tuples from Ws .

Eventually, we arrive at an element Rs v] Ws that satisfies Theorem 3.1 and hence, rep-

resents an existential recurrent set. Note that the refinement step that we implement in

this chapter is coarse. For some disjunct (q, a) ∈Ws(l), we either keep it unchanged or

remove it as a whole. In particular, an empty set is trivially existentially recurrent, and

it is still sound to produce Rs = ⊥]. We believe that is acceptable. The form of the ex-

istential recurrent set in our current implementation is inferred by the backward and

forward analysis steps, and the refinement step is mainly designed to ensure sound-

ness.

As a direction for future research, we note that the analysis may benefit from the

ability to modify individual disjuncts during refinement. That is, when we find in Ws

an abstract state a (or more formally, a location l and a path q , s.t. Ws(l)(q) = a) that

violates the condition of Theorem 3.1, instead of completely removing a from Ws , we

could first try to find a′ vm a, s.t. a′ does not violate the condition of the theorem.

Finally, we note that in principle, our procedure does not have to be applied to a

strongly connected sub-program. It can be applied to the original program with final

locations excluded, and this way we can prove non-termination: if Rs(l`) is defined

and γ](Rs(l`)) 6=∅, then there exists at least one non-terminating program execution.

But so far, we had little practical success with this approach. While our path domain

Dp is sufficient to capture some non-terminating paths through loops, it is not expres-

sive enough to capture non-terminating paths through the whole program (unless it

consists of a single loop and a sequential stem). Thus, for practical reasons, we search

88

l1

l2

[0 ≤ x ≤ 100]

l3

y ←∗
x ← x + y

Figure 3.4: Loop that assigns a non-deterministic value to a variable in every
iteration.

for existential recurrent sets of individual loops and assume that a reachability analysis

will complete the non-termination proof, if necessary.

3.6 Examples

In this section, we present additional numeric examples that demonstrate how differ-

ent components of the analysis (trace partitioning, CONT, lower widening) are impor-

tant for different kinds of non-terminating behaviors. In all examples, we assume that

program variables take integer values5 and there is no bound on their values (the lat-

ter is a common assumption in similar research on numeric programs, e.g., [LQC15]).

Also, we assume that the analysis uses the polyhedral domain (i.e., sets of linear in-

equalities) to represent memory states.

Example 3.2 (Non-Deterministic Assignment in the Loop). Fig. 3.4 shows a loop that

in every iteration, first assigns a non-deterministic value to y and then adds it to x.

Intuitively, if at location l1 x is in range [0,100], then for the edge (l2, l3), there is always

a choice of y , s.t. x+y is still in the range [0,100]. In this way, we can construct a

non-terminating execution.

The way, in which we define the predicate CONT for non-deterministic assign-

ments, allows us to handle such cases. The first two steps (pre-analysis and backward

analysis) yield the candidate recurrent set Ws , s.t.

Ws(l1) = {〈〉 7→ (0 ≤ x ≤ 100)}

Ws(l2) =Ws(l1)

Ws(l3) = {〈〉 7→ (0 ≤ x ≤ 100∧0 ≤ x+y ≤ 100)}

5In particular, sound analysis of floating point operations is not among our goals.

89

l1

l2

[x ≥ 0] x ← x + y

Figure 3.5: Loop that requires a specific
range of y for non-termination.

x

y

0

· · ·x+2y ≥ 0

x+
y ≥

0

x ≥ 0

Figure 3.6: Illustration of the descend-
ing chain {x ≥ 0∧x + j y ≥ 0} j≥0.

We show that Ws satisfies Theorem 3.1 and thus represents a genuine recurrent set. For

location l1, the successor location is l2, and (0 ≤ x ≤ 100) satisfies the memory-state

formula of the assumption statement that labels (l1, l2). That is, for every state at loca-

tion l1 with 0 ≤ x ≤ 100, we will stay in the recurrent set after executing the assumption

statement. This corresponds to case (ii) of the predicate CONT. For location l2, the

successor location is l3 and c(l2, l3) is the non-deterministic assignment y ←∗. Note

that for every value of x it is possible to choose a value of y , s.t. 0 ≤ x+y ≤ 100 holds.

Or, more formally, prem(y ← ∗, (0 ≤ x ≤ 100∧ 0 ≤ x+y ≤ 100)) = (0 ≤ x ≤ 100) which

corresponds to case (iii) of the predicate CONT. Finally, for location l3, the successor

location is l1 and c(l3, l1) is x ← x+y . Also, postm(x ← x + y, (0 ≤ x ≤ 100∧0 ≤ x+y ≤
100)) = (0 ≤ x−y ≤ 100∧ 0 ≤ x ≤ 100) v (0 ≤ x ≤ 100) which corresponds to case (iv)

of the predicate CONT. Therefore, Ws represents a genuine recurrent set, and the final

step of the analysis yields Rs =Ws .

Example 3.3 (Non-Deterministic Assignment Before the Loop). Fig. 3.5 shows a loop

that in every iteration adds y to x. Both x and y are not initialized before the loop, and

are thus assumed to take non-deterministic values. If at location l1, x ≥ 0 and y ≥ 0,

it is possible to continue the execution forever. Let us see how the constraint y ≥ 0

can be inferred with lower widening. For this program, the pre-analysis produces the

invariant F , s.t.

F (l1) = {〈〉 7→>}

F (l2) = {〈〉 7→ x ≥ 0}

90

Then, consider a sequence of approximants {wi }i≥0 where

w0 = F

wi = wi−1 u]pre](P, wi−1), for i ≥ 1

which corresponds to running the backward analysis without lower widening. Then,

we will observe that the i -th approximant at location l1 represents the condition that

ensures that the execution will make at least i iterations through the loop. For i ≥ 0, let

w ′
i = wi (l1)(〈〉). Then

w ′
0 =>

w ′
1 = x ≥ 0

w ′
2 = (x ≥ 0∧x+y ≥ 0)

w ′
3 = (x ≥ 0∧x+2y ≥ 0)

w ′
4 = (x ≥ 0∧x+3y ≥ 0)

· · ·

That is, for i ≥ 1, w ′
i = (x ≥ 0∧ x + i y ≥ 0) (a polyhedron with a “rotating” constraint,

see Fig. 3.6), and we would like a lower widening technique that would produce an

extrapolated polyhedron (x ≥ 0∧ y ≥ 0) which is the limit of the chain {w ′
i }i≥0. Notice

how this limit is below w ′
i for every i ≥ 0. This explains why we use lower widening

(and not, e.g., narrowing) to ensure convergence of the backward analysis. Here, we

use lower widening as proposed by A. Miné [Min13]. Intuitively, it works by retaining

stable generators (which can be seen as dual to standard widening that retains stable

constraints). Additionally, we use widening delay of 2 and a technique of threshold

rays (also described in [Min13]), adding the coordinate vectors and their negations to

the set of thresholds. Alternatively, instead of using threshold rays, one could adapt

to lower widening the technique of evolving rays [Bag+05]. This allows the backward

analysis to produce the extrapolated polyhedron (x ≥ 0∧ y ≥ 0). Eventually, backward

analysis produces the candidate Ws where

Ws(l1) = {〈〉 7→ (x ≥ 0∧ y ≥ 0)}

Ws(l2) =Ws(l1)

91

1 if (a < b)

2 swap(a,b)

3 while (a 6= b) {

4 t ← a −b;

5 a ← b;

6 b ← t;

7 }

Figure 3.7: GCD algorithm with an in-
troduced bug.

Ws represents a genuine recurrent set, and the final (refinement) step of the analysis

yields Rs =Ws .

Example 3.4. This example is a program “GCD” from the test set of Invel6 [VR08]. The

program given in pseudocode in Fig. 3.7 is based on the basic algorithm that computes

the greatest common divisor of two numbers: a and b – but has an introduced bug that

produces non-terminating behaviors. For the loop in this program, our analysis (with

k = 2) is able to show that if at line 3, it is the case that (a > b∧a > 2b) or (b > a∧2b > a),

the execution will never terminate and will alternate between these two regions. This

example demonstrates how the interaction between the components of the analysis al-

lows finding non-trivial non-terminating behaviors. In a program graph, the condition

a 6= b will be represented by a pair of edges, labelled by assumption statements: [a > b]

and [a < b]. Thus, these assumption statements become branching choices at line 3.

Then, the path domain (with k at least 2) allows the analysis to distinguish the execu-

tions that alternate between these two assumption statements for the first k loop iter-

ations. By doing numeric reasoning, one can check that there exist non-terminating

executions that alternate between the two assumption statements indefinitely.

The example also demonstrates a non-trivial refinement step. At line 3, backwards

analysis actually yields two additional disjuncts, one of those being (a > b ∧2b > a ∧
3b −a > 4). These are the states that take the branching choice [a > b] for at least two

first loop iterations. But from some of the concrete states in the disjunct, e.g., (a =
6,b = 4), the loop eventually terminates. As currently implemented, the refinement

6http://www.key-project.org/nonTermination/, last accessed in May 2016.

92

http://www.key-project.org/nonTermination/

step has to remove the whole disjunct from the final result.

Finally, note how for this example, recurrent set cannot be represented by a sin-

gle convex polyhedron (per program location). Our approach allows to keep multiple

polyhedra per location, corresponding to different abstract paths.

To summarize, the components of the analysis are responsible for handling differ-

ent features of non-terminating executions. Trace partitioning allows predicting paths

that non-terminating executions take; predicate CONT deals with non-deterministic

statements in a loop; lower widening infers the required values of variables that are

non-deterministically set outside of a loop.

3.7 Related Work

The idea of proving non-termination by looking at paths of a certain form appears in

multiple existing works. We note though, that usually the authors of previous work

were interested in proving non-termination, while we are solving a sub-problem of that

(finding an existential recurrent set). It is still valid in most cases to compare our anal-

ysis to existing approaches and tools. Search for a non-terminating execution postfix

is still a substantial (arguably, the most important) part of a non-termination proof.

An early analysis by Gupta et al. [Gup+08] enumerates symbolic executions of a

program and tries to find one that represents a lasso-shaped one: a non-terminating

execution a certain sequence of instructions is executed infinitely often. The analysis

is formulated for linear programs and uses Farkas’ lemma to produce the proof.

The tool called Ultimate Büchi Automizer [HHP14; Hei+16] decomposes the orig-

inal program into a set of lasso-programs (a lasso programs in a sequential stem fol-

lowed by a loop with no branches) to separately infer termination or non-termination

[LH14] arguments for them.

The tool AProVE [Gie+14] implements a range of techniques. The one that is inter-

esting in the context of this chapter is described in paper [Bro+11]. For every loop, it

analyses a set of paths through it and produces a formula that is unsatisfiable if there

is a set of states that cannot be escaped by following these paths. The formula is then

passed on to an SMT solver.

Similarly to these analyses, our approach tries to identify a path through a loop

93

that a non-terminating execution takes, but uses trace partitioning for that. This does

not have to be the same path segment repeated infinitely often, but may also be an

alternation of different segments7. We see a strength of our approach in that it is pa-

rameterized by a path domain. That is, the partitioning scheme can be improved in

future work and/or specialized for different classes of programs.

Chen et al. [Che+14] also use a combination of forward and backward analysis,

but in a different way. With forward analysis, they identify terminating abstract traces;

then using backward analysis over a single trace, they identify, how the program can be

restricted (by adding assumption statements) to remove this trace. By repeating this

process, they may be able to obtain a program without any terminating executions.

Then, they try show that the restricted program has at least one execution (which is

non-terminating by construction). This final step in their approach is actually similar

to the refinement step of our analysis.

A distinctive approach is implemented in a tool called E-HSF [BPR13]. It allows

the user to specify the semantics of a program and the verified properties in the form

of ∀∃ quantified Horn clauses. In particular, the specification language allows to as-

sert the existence of different kinds of recurrent sets (to specify liveness properties, the

specification may include well-foundedness assertions). To our knowledge, the imple-

mentation is targeted at numeric programs and relies on Farkas’ lemma (although the

general approach of using horn clauses as a specification language is more general).

There is also a number of approaches that can infer universal recurrent sets for

programs (or prove non-termination by finding a reachable universal recurrent set). It

is actually reasonable to compare them with the analysis of this chapter, as for a certain

class of deterministic programs, the notions of universal and existential recurrent sets

coincide. We do not do it here though, but in Chapters 4 and 5.

Finally, [MR05] presents a different formalization of trace partitioning (in the con-

text of standard forward analysis). In particular, the authors describe a more expres-

sive path domain that, e.g., can represent paths that take a finite number of iterations

through a loop. Adapting such a domain to our analysis can be a topic for future work.

7This is what is called non-periodic non-termination. AProVE can also find such behaviours.

94

3.8 Chapter Conclusion and Future Work

In this chapter, we proposed an analysis that finds existential recurrent sets of the loops

in (numeric) imperative programs. The analysis is based on the combination of for-

ward and backward abstract interpretation and an important technique that we use is

trace partitioning. To our knowledge, this is the first application of trace partitioning

to backward analysis.

In Chapter 5 we will see that the implementation of our approach for numeric pro-

grams demonstrated results that are comparable to those of state-of-the-art tools.

As directions of future work we see the following. One direction is to develop a more

precise path domain, similar to that of [MR05]. Having a domain that can represent,

e.g., lasso-shaped paths would allow better handling of nested loops and maybe even

extending our analysis to proving non-termination (rather than just finding existential

recurrent sets). Another direction that will improve the analysis of numeric programs is

to develop a specialized numeric refinement step. This specialized refinement will not

exclude whole disjuncts from a candidate recurrent set, but will rather refine them (so

that they satisfy the predicate CONT) improving the precision of the analysis. Finally, a

possible direction is to adapt the approach to non-numeric abstract domains (e.g., to

domains for shape analysis). To do so, we will need to replace lower widening with the

appropriate domain specific extrapolation technique and to specialize the predicate

CONT to support new kinds of statements.

95

3.A Constructing the Abstract DomainD]

For d ,d1,d2 ∈D],

⊥] = {l 7→⊥mp | l ∈ L}

>] = {l 7→>mp | l ∈ L}

d1 v] d2 iff ∀l ∈ L. d1(l) vmp d2(l)

d1 t] d2 = {l 7→ d1(l)tmp d2(l) | l ∈ L}

d1 u] d2 = {l 7→ d1(l)ump d2(l) | l ∈ L}

d1 O] d2 = {l 7→ d1(l)Omp d2(l) | l ∈ L}

d1 O] d2 = {l 7→ d1(l)Omp d2(l) | l ∈ L}

post](P,d) = {l 7→⊔
mp{postmp((l ′, l),d(l ′)) | (l ′, l) ∈ E}

| l ∈ L}

pre](P,d) = {l 7→⊔
mp{premp((l , l ′),d(l ′)) | (l , l ′) ∈ E}

| l ∈ L}

96

3.B On Chaotic Iteration

Chaotic iteration is an important practical aspect, but for simplicity of presentation

we do not take it into account in the definitions of the abstract computation, either in

Section 2.3 where it is first introduced, or in the subsequent chapters (e.g., in (3.1) or

(3.2) in this chapter). When the abstract domain is partitioned with program locations

(like in this chapter, where D] = L→Dmp), the simplistic formulation means that every

step of the analysis will update (the mappings for) all the locations of an approxima-

tion in parallel. This is considered sub-optimal as in practice only a few locations will

be updated in a single step. For example, in a forward analysis, like in (3.1), the first

step will update the graph successors of the initial location, the second – the locations

reachable in exactly two steps from the initial one and so on. In practice, it is common

to update the locations on by one, picking them in some order, and this approach is

called chaotic iteration.

We could amend the standard definition of the approximate computation to in-

corporate chaotic iteration. For the forward analysis of (3.1), this can be done in the

following way. First, let post]iter be a stateful procedure (i.e., not a function in the math-

ematical sense), s.t. for d ∈D]

post]iter(P,d) = {l∗ 7→
⊔

mp{postmp((l ′, l∗),d(l ′)) | (l ′, l∗) ∈ E}}∪ {d(l) | l ∈ L∧ l 6= l∗}

for some picked location l∗

That is, post]iter every time picks a new location l∗ and updates the mapping for it.

Then, define the chain of approximants { fi }i≥0 as follows

f0 = {l` 7→>mp; l 6= l` 7→⊥mp}

fi = fi−1 O] (fi−1 t]post]iter(P, fi−1)), for i ≥ 1

Finally, define the result of the analysis F to be the first f j , s.t. f j = fk for all k ≥ j .

Now, the analysis requires two additional components. First component is an it-

eration strategy, i.e., the order in which the locations are updated. The strategy has to

be fair, i.e., every location that can be updated should be updated eventually. Addi-

tionally, the strategy is expected to avoid making redundant updates. For example, in

a sequential fragment program, we would expect the strategy to update the locations

97

in topological order.

Second component is a stopping condition, i.e., a way to detect that the chain of

approximants has reached its stable limit and no update is possible in future. In many

analyses, both components are implemented using a worklist. That is, the analysis

maintains a worklist of locations that should be updated and in every iteration picks

one (possibly, according to some priority). After updating a location (and if the cor-

responding value in the mapping was changed), the analysis adds its graph successor

(for the case of forward analysis) to the worklist and proceeds to the next iteration.

An example of a sophisticated worklist iteration algorithm is described in [ASV12].

In [Bou93b], François Bourdoncle offers a number of iteration strategies (and corre-

sponding stopping conditions) that do not require a worklist.

For the abstract computation, the order in which the locations are updated does

matter for both performance and precision of the result. If the strategy is fair, the result

will be a sound approximation of the concrete fixed point, but different fair strategies

may produce chains with different stable limits. For example, it is believed that for the

nested loops (at least in numeric analyses) it is more optimal to update locations in the

inner loop with higher priority that the locations in the outer loop.

98

Chapter 4

Finding Universal Recurrent Sets with

Forward Analysis

In this chapter we present an algorithm that allows us to under-approximate universal

recurrent sets of individual loops, but this time – in structured programs1. More specif-

ically, we address another obstacle in computing recurrent sets via greatest fixed point

characterizations, namely that backward analysis (analysis based on pre-condition or

predecessor operations) is computationally expensive. This is less the case for numeric

programs, but becomes an issue for heap-manipulating ones. Intuitively, this is be-

cause backward transformers exhibit non-determinism (e.g., “what was the value of a

pointer before it was updated?”) in a way that is hard to deal with in shape analysis

domains. For example, backward analysis with separation logic [Rey02] is known to

be computationally harder than forward analysis [CYO01]. For shape analysis with 3-

valued logic [SRW02], we are aware of a single attempt to approximate a fixed point

of backward transformers [LA+07]. This analysis is much more complicated than for-

ward analysis (e.g., the implementation is based on both TVLA [LMS04] – the original

implementation of shape analysis with 3-valued logic – and the SPASS theorem prover

[Wei+09]).

This motivated us to try and find a way to compute recurrent sets via forward anal-

ysis, so that the resulting procedure would be immediately applicable not only to nu-

meric, but also to heap-manipulating programs. The main challenge of a forward ap-

proach is that to our knowledge there is no way to characterize recurrent sets in terms

1The reader is invited to re-visit Section 2.5 before proceeding.

99

of forward transformers2. Instead, we were able to produce a condition for a set of

states in a structured program to be universally recurrent. The algorithm that we de-

velop in this chapter will systematically explore the state space of individual loops in

the program, searching for what we call a recurrent component, which is somewhat

similar to the notion of an end component in a Markov decision process [BK08].

4.1 Background

We define the analysis for a subset of the language of structured programs.

If for a memory state m ∈M and a statement C ∈ C, there exists no memory state

m′ ∈M s.t. (m,m′) ∈ TM(C), we say that the execution of C diverges from m. Under

certain conditions, this definition agrees with the common one based on a small-step

semantics: all execution postfixes starting from m are infinite, and there exists at least

one. This is the case when both of the following holds:

(i) assumption statements appear only at the start of a branch or at the entry or exit

of a loop (i.e., assumption statements cannot be used freely in the program):

C ::= a |C1 ; C2 | ([ϕ] ; C1)+ ([ψ] ; C2) | ([ψ] ; C)∗ ; [ϕ]

(ii) branch and loop guard assumptions are exhaustive: ϕ∨ψ= 1

Then, the only way for an execution to diverge (in the above sense) is to get stuck in

an infinite loop. Therefore (as in Chapter 3) we are going to find recurrent sets of

individual loops.

In the rest of the chapter we will focus on the loop statement:

Cloop = ([ψent] ; Cbody)∗ ; [ϕexit] (4.1)

Here, Cbody is the loop body; if ψent holds, the execution may enter the loop body; if

ϕexit holds, the execution may exit the loop; and ψent ∨ϕexit = 1. What is important for

2We do not explore it in this work, but certain subsets of non-terminating behaviors can be charac-
terized using forward transformers. More specifically, we can produce a characterization of states from
which we can build an infinite sequence of predecessors. In particular this would include states that
are visited infinitely often by a non-terminating execution, e.g., the set x ∈ [50;60] in Example 4.1. Cases
when a set of states is not escaped, but no individual state in it is visited infinitely often, e.g., the set
x ∈ [100;+∞) in Example 4.1, it seems, cannot be captured by such characterization.

100

1 while (x ≥ 1) {

2 if (x = 60) x ← 50;

3 x ← x +1;

4 if (x = 100) x ← 0;

5 }

Figure 4.1: Program text for Example 4.1.

us is that this form of loop has a single point serving as both the entry and the exit. As

currently formulated, our analysis relies on this property, although we anticipate that

more complicated control flow graphs can be analyzed in a similar way.

Universal Recurrent Set of a Loop

For a loop as in (4.1), let us define a projection of a universal recurrent set on the loop

entry. This is a set R∀, s.t.

R∀ ⊆ �¬ϕexit�
∀m ∈ R∀.

(∀m′ ∈M. (m,m′) ∈ TM(Cbody) ⇒ m′ ∈ R∀
)

Intuitively, if an execution (of the corresponding unstructured program) reaches the

loop entry in a memory state m ∈ R∀, it will stay in the loop forever. First, the execu-

tion cannot exit the loop from that state. Second, from Lemma 2.8, every terminating

execution of the (graph of) loop body will lead to a memory state m′ that also belongs

to R∀. In the rest of the chapter, we will (somewhat ambiguously) call such set R∀ a

universal recurrent set of a loop.

The conditions for a set of memory states to be universally recurrent are captured

by Lemma 4.1 (in the concrete case) and Theorem 4.1 (in the abstract case).

Lemma 4.1. For a loop as in (4.1), the set R ⊆M is universally recurrent (that is, R is

a projection of a universal recurrent set on the loop entry) iff eval(¬ϕexit,R) = 1 and

post(TM(Cbody),R) ⊆ R.

Proof. Follows from the definitions of eval, post, and universal recurrent set of a loop.

101

Example 4.1. Consider the loop shown in pseudocode in Fig. 4.1 which will be our

running example for this chapter.

Notice that if at the head of the loop x lies in the interval [1;60] or x is greater or

equal to 100, the loop will not terminate from that point. Indeed, if x starts between, 1

and 60, the loop will increment x until it reaches 60, then set it to 50, and the process

will continue forever. If x starts at 100 or greater (and assuming that x is a mathematical

integer), the loop will increment it indefinitely. Let us assume that M = (V→ Z)∪ {ε}

(non-error memory states map program variables to integer values), and V = {x} (x is

the only program variable). Then, we can say that the universal recurrent set of this

loop is the following set of memory states:

R∀ = {x 7→ n | (1 ≤ n ≤ 60)∨ (n ≥ 100)}

Now, let us look at the post-condition of R∀ w.r.t. the loop body (lines 2-4 of the

pseudocode). If x starts between 1 and 59, it is only incremented at line 3 and not

affected by lines 2 and 4, thus ending up between 2 and 60. If x is 60 it is set to 50 at

line 2 and incremented to 51 at line 4. Finally, if x is greater or equal than 100, again,

it is incremented at line 3 and not affected by lines 2 and 4, ending up greater or equal

than 101. Thus,

post(Cbody,R∀) = {x 7→ n | (2 ≤ n ≤ 60)∨ (n ≥ 101)} ⊆ R∀

4.1.1 Recurrent Sets in the Abstract

We are analysing structured programs (thus, the locations of a corresponding unstruc-

tured program are implicit) and the analysis will work in a memory abstract domain,

where elements represent sets of memory states. Since the memory abstract domain is

the main domain of the analysis in this chapter, we will denote it by D] instead of Dm.

Now, let D] be some memory abstract domain, with least element ⊥], greatest ele-

ment >], partial order v], and join t] (later, we will introduce some structure into this

domain). Every element, A ∈ D] represents a set of memory states γ](A) ⊆M. Let the

over-approximate versions of post and eval be given, s.t. for an arbitrary statement

102

C ∈C, an element A ∈D], and a memory-state formula θ,

γ](post](C , A)) ⊇ post(TM(C),γ](A))

eval](θ, A) wK eval(θ,γ](A))

Theorem 4.1. For a loop as in (4.1), a memory abstract domain D], and an element

A ∈ D], if eval](¬ϕexit, A) = 1 and post](TM(Cbody), A) v] A, then γ](A) is universally re-

current.

Proof. From the properties of eval], eval(¬ϕexit,γ](A)) = 1. From the properties of post]

and γ], post(TM(Cbody),γ](A)) ⊆ γ](post](Cbody, A)) ⊆ γ](A). Then, universal recurrence

of γ](A) follows from Lemma 4.1.

Note that in Theorem 4.1, the post-condition is taken with respect to the loop body

without the preceding assumption statement.

4.2 Finding a Universal Recurrent Set

In this chapter, we construct the memory abstract domain D] as a powerset domain.

Let Lm be the underlying set of abstract memory states. Lm is partially ordered by vm,

with least element ⊥m and concretization γm : Lm → P (M). Elements of Lm are ab-

stract memory states. For example, in a numeric analysis, Lm can be a set of polyhedra.

In a shape analysis, Lm can be a set of individual 3-valued structures extended with an

artificial bottom element. Then, elements of D] will be elements of P (Lm), i.e., sets of

abstract memory states.

We want the partial order in D] to be the Hoare order. For A1, A2 ∈D] (i.e., A1, A2 ⊆
Lm), we define

A1 v] A2 iff ∀a1 ∈ A1. ∃a2 ∈ A2. a1 vm a2

We want concretization in D] to be pointwise. For A ∈D], we define

γ](A) =⋃
{γm(a) | a ∈ A}

Most importantly, we want the over-approximate operations in D] to be pointwise.

That is, for A ∈ D], arbitrary (atomic or compound) statement C ∈ C, and a state for-

103

mula θ, we want the following to hold (this is not a definition)

post](C , A) = ⋃
a∈A

post](C , {a})

eval](θ, A) =⊔
K

a∈A
eval](θ, {a})

(4.2)

We construct D] to be a powerset domain with pointwise operations for a reason. We

will search for a recurrent set in the form of a set of abstract memory states (i.e., a

subset of Lm). This way, the recurrent set will be an element of D], and we will be able

to claim soundness via Theorem 4.1. At the same time, basic steps of the analysis will

work on individual abstract memory states (i.e., individual elements of Lm). Pointwise

operations ensure that element-based reasoning produces a sound set-based result.

We construct operations on D] from the underlying operations of Lm as follows.

If operations in Lm are given for individual elements In a numeric analysis, Lm

may be the domain of intervals or polyhedra. In this case, we may be given over-

approximate operations postm and evalm that work with individual elements of Lm,

i.e. postm :C×Lm →Lm and evalm :Θ×Lm →K . In this case, for A ∈D], an arbitrary

(atomic or compound) statement C ∈C, and a state formula θ, we can define

post](C , A) = ⋃
a∈A

{postm(C , a)}

eval](θ, A) = ⊔
K

a∈A
evalm(θ, a)

Many examples in this chapter use interval domain. In this case, post-condition

w.r.t. a given statement (post] for a given statement C) accepts a set of intervals as

input and produces a set of intervals as output. For example, to compute post](x ←
x +1,{[0;1], [2;+∞))}, we will apply the increment transformer to every interval in the

set separately, thus producing:

post](x ← x +1,{[0;1], [2;+∞)}) = {[1;2], [3;+∞)}

Similarly,

eval](x ≥ 2,{[0;1], [2;+∞)}) = evalm(x ≥ 2,[0;1])tK evalm(x ≥ 2,[2;+∞)) = 0tK 1 = 1/2

104

If operations in Lm are given for sets For some domains, we may be given oper-

ations that work on sets of elements of Lm, i.e., postm : C×P (Lm) → P (Lm) and

evalm :Θ×P (Lm) →K . For example, this is the case for shape analysis with 3-valued

logic. Then, for A ∈ D], arbitrary (atomic or compound) statement C ∈ C, and a state

formula θ, we can define3

post](C , A) = ⋃
a∈A

postm(C , {a})

eval](θ, A) = ⊔
K

a∈A
evalm(θ, {a})

In either case, we require that evalm (as a consequence, eval] will also be) is mono-

tone: for a formula θ and a1, a2 ∈ Lm, a1 v a2 ⇒ evalm(θ, a1) vK evalm(θ, a2). Nor-

mally, evalm is given for atomic formulas, and for arbitrary formulas it is defined by

induction over the formula structure, using 3-valued logical operators, possibly over-

approximate with respect to vK .

Also, we assume that the bottom element ⊥m, which represents unreachability, is

transformed and evaluated precisely.

γ]({⊥m}) =∅

post](C , {⊥m}) =∅

eval](θ, {⊥m}) = 1

In this chapter, we will want a way to split an abstract memory state (or a set of

abstract memory states) into those that do satisfy some memory state formula θ and

those that do not. For that we will use a post-condition w.r.t. an assumption statement

– post]([θ], ·). We will abbreviate post]([θ], ·) as [θ, ·]].
We will also want a way to split an abstract memory state (or a set of abstract mem-

ory states) into erroneous and non-erroneous ones. For a set of abstract memory states

A ∈D], let [ε, A]] be an operation that attempts to produce the smallest erroneous ab-

stract memory state below A. Formally, we require that

[ε, A]] v] A

γ]([ε, A]]) ⊇ γ](A)∩ {ε}

3Even though postm and evalm operate on sets, they might not satisfy (4.2).

105

This is the same as taking a post-condition w.r.t. the statement [0] (assume false).

Similarly, let [¬ε, A]] be an operation that produces an over-approximation of non-

error memory states of A:

[¬ε, A]] v] A

γ]([¬ε, A]]) ⊇ γ](A) \ {ε}

This is a non-standard operation that does not correspond to a post condition w.r.t. a

statement, as statements are not allowed to recover from error.

4.2.1 Idea of the Algorithm

For a loop as in (4.1), if we find X ∈D], s.t. eval](¬ϕexit, X) = 1 and post](Cbody, X) v] X ,

then γ](X) is definitely a recurrent set. The idea is to explore the state space of the pro-

gram with forward analysis until such an X is found. We proceed as follows. Separately

for every loop, we build a graph where vertices are elements of Lm, all representing

sets of concrete states at the loop head. We initialize the graph with some set of ab-

stract memory states I ∈ D] and then repeatedly apply the transformer for the whole

loop body, post](Cbody, ·), to the vertices (treating them as singleton sets) and add the

resulting elements to the graph as successors. Our experiments suggest that in many

cases (when the program indeed has a universal recurrent set) a subset X of vertices

satisfying the conditions of Theorem 4.1 will emerge as a result. To be able to efficiently

find such a subset, we remember which elements are related w.r.t. abstract order vm,

as a second kind of edges in the graph. Note that in case of nested loops, we analyze

inner and outer loops separately; when analyzing the outer one, the effect of the inner

needs to be summarized in an over-approximating way4.

We use a number of heuristics to help the analysis. First, we try to distinguish states

that take different paths through the loop body. In this work, we took a simplistic ap-

proach: we prefer to use a powerset domain where join is set union. This way, abstract

memory states produced by different branches are not joined, i.e., post](C1 +C2, A) =
post](C1, A) t] post](C2, A). In principle, a more involved trace partitioning [RM07]

4This means that we will need to treat the inner loop as a single statement and be able to compute an
abstract post-condition w.r.t. this statement. More specifically, given the entry condition ψ′

ent and the
body C ′

body, we need to be able to compute postm(([ψ′
ent] ; Cbody)∗, a) for an abstract memory state a.

This is done by approximating the limit of an ascending chain, as shown in (2.7), in Section 2.5.

106

[1;+∞) (−∞;0]

[2;60]

51

0

[101;+∞) [62;99]

[3;60]
[102;+∞)

[63;99]

· · ·

Figure 4.2: State graph for the program in Fig. 4.1.

could be introduced instead5.

Second, we introduce additional case splits in the state graph, by applying assump-

tion statements to elements. For a set of initial elements I ∈D], we will actually initial-

ize the graph with a set I ′, s.t.

I ′ = [¬ψent, I ′′]]∪ [ψent, I ′′]],

where I ′′ = [ε, I]]∪ [¬ε, I]]

Before adding new elements to the graph, we will split them in a similar way. This en-

courages the algorithm to keep separately the erroneous and non-erroneous elements

as well as those that may and may not enter the loop.

These heuristics are helpful when (as is often the case) there is a specific path

through the loop body that infinite traces take. Then, the heuristics introduce control-

flow distinctions and enable states taking such path to be partitioned from the oth-

ers. But these heuristics may not be helpful when additional distinguishing power is

needed for the data in states, e.g, when certain kinds of non-determinism are present,

when non-termination depends on the properties of mathematical functions that the

program implements, or when the abstract domain is not expressive enough to capture

the states that take the interesting control paths.

Example 4.1 (continued). Let us informally demonstrate how the algorithm that we

propose works for the program in Fig. 4.1. Let us assume that x ranges over integers and

5As you may recall, trace partitioning is used in the analysis Chapter 3, but this analysis pre-dates it.

107

using intervals to represent its values. Since we do not know the initial value of x, we

start with a graph consisting of a pair of elements: {(−∞;0], [1;+∞)} – one represents

the loop condition and another represents its complement. We then start adding new

elements to the graph by computing post] as described above, s.t. paths through the

loop body are represented in a post-condition of an element by different disjuncts.

For example, let us see what happens to [1;+∞) when it enters the loop. In line 2,

we consider three cases. If x < 60, then the conditional body in line 2 is skipped, x is

incremented at line 3, the conditional body in line 4 is skipped, and the output element

is [2;60]. If x = 60, the conditional body in line 2 sets x to 50, at line 3 x is incremented,

the conditional body in line 4 is skipped, and the output element is 51. If x > 60, the

conditional body at line 2 is skipped and at line 3 x is incremented to [62;+∞). Then,

if x < 100, the conditional body at line 4 is skipped, and the output element is [62;99].

If x = 100, the conditional body at line 4 sets x to 0, and the output element is 0. If

x > 100, the conditional body at line 4 is skipped, and the output element is [101;+∞).

Thus, post](Cbody, {[1;+∞)}) = {[3;60], 51, [62;99], 0, [101;+∞)}. We add these elements

to the graph and continue the exploration. Fig. 4.2 shows a state graph that will be

produced this way after a number of steps. In the graph, boxes represent elements,

and solid edges represent post-conditions. Note that in the graph, there exists a subset

of elements X = {[2;60], [101;+∞)} has the desired property: eval](¬ϕexit, X) = 1 and

post](Cbody, X) v] X , thus γ](X) is a recurrent set. In what follows, we discuss how to

efficiently find such subset of elements if it exists. We revisit this example in Section 4.3.

For some domains (e.g., for shape analysis with 3-valued logic), the analysis ben-

efits from case splits that post] naturally performs. For example, when a program tra-

verses a potentially cyclic list, post] would likely consider a definitely cyclic list as a

separate case. If the abstraction is expressive enough, the cyclic list case will appear as

a separate vertex in the graph, and become part of a recurrent set.

Finally, the choice of the set of initial elements I matters. When the abstract do-

main is finite (and no widening is required) and the loop is not nested, we initialize the

graph with a representation of states that reach the loop via the rest of the program, i.e.,

produced by the standard forward analysis of the preceding part of the program. In this

case, the analysis will explore all the states reachable at the head of the loop, and the

success relies only on how refined the resulting graph is. When the abstract domain is

108

infinite (e.g., for intervals or polyhedra) or for inner nested loops, we normally initialize

the graph with a pre-fixpoint of post]. That is, we assume that initially, a standard for-

ward analysis is run to produce a pre-fixpoint for every loop (an over-approximation of

the memory states reachable at the loop entry). Starting with a set of elements below

(w.r.t. v]) a pre-fixpoint makes it less likely that the analysis terminates, as our proce-

dure does not include widening. Starting with an element above a pre-fixpoint is more

likely to drive the search towards the states unreachable from the program entry. Note

that it is sound to start with any set of elements, and we sometimes start with just >].

Our procedure is sound (by Theorems 4.1 and 4.2), but incomplete: if we do not

find a recurrent set after a number of steps, we do not know the reason: whether the

loop does not have a universal recurrent set; or the abstraction and post] are not ex-

pressive enough; or we did not explore enough states. Thus, for an infinite domain,

the procedure might not terminate. So, we perform the exploration incrementally: we

proceed breadth-first until some recurrent set is found. Then, we may decide to stop

or to continue the search for a larger recurrent set.

4.2.2 Abstract Memory State Graph

For a loop as in (4.1), an abstract memory state graph (we will call it just state graph) is

a graph G = 〈V ,Ep ,Ec〉, s.t.

• V is a finite non-empty set of vertices which are elements of Lm: V ⊆ Lm. Im-

plicitly, these memory states belong to the loop entry location.

• There are two independent sets of edges: Ec ,Ep ⊆V ×V .

• Ep is a set of post-edges. For every element a ∈V , one of the following holds:

(i) there are no outgoing post-edges: ({a}×V)∩Ep = ∅ (this will mean that

successors have not been explored by the analysis); or

(ii) ψent may hold in a; post-condition of a with respect to the loop body is not

empty; the whole post-condition is in the graph; and it is connected to a by

109

post-edges:

eval](ψent, {a}) 6= 0

∧ post](Cbody, {a}) 6=∅

∧ post](Cbody, {a}) ⊆V

∧ ({a}×V)∩Ep = {a}×post](Cbody, {a})

or

(iii) ψent may hold in a; the post-condition of a is empty; a has ⊥m as the only

post-successor; and ⊥m has a post-self-loop6:

eval](ψent, {a}) 6= 0

∧ post](Cbody, {a}) =∅

∧ ({a}×V)∩Ep = {(a,⊥m)}

∧ (⊥m,⊥m) ∈ Ep

• Ec is a set of containment-edges. For a1, a2 ∈ V , (a1, a2) ∈ Ec iff (a1 6= a2 ∧ a1 vm

a2). This definition forbids self-loops, and due to properties of vm, G cannot

have containment cycles7.

This is similar to the abstract reachability graphs built by modern model checking pro-

cedures (e.g., Impact [McM06] or analyses built within the CPAChecker framework

[BHT07; BHT08]) and to the termination graphs built by AProVE [Gie+14]. Our algo-

rithm, though, differs in the way we analyse the graph.

For a loop as in (4.1), a state graph G = 〈V ,Ep ,Ec〉, an element a ∈ V , and a set of

elements A ⊆V , let us define the successors in the graph as

postG (a) = {a′ ∈V | (a, a′) ∈ Ep }

postG (A) = {a′ ∈V | ∃a ∈ A. (a, a′) ∈ Ep }

6This is added mostly for technical reasons. We want a way to distinguish the cases when the post-
condition of an element have not been yet computed and when the post-condition of an element is the
empty set. In the latter case, we make ⊥m the post-successor of that element in the graph.

7In Lm as a partially ordered set, if a1 vm a2 vm · · · vm an vm a1 then a1 = a2 = ·· · = an and thus
all of them correspond to the same vertex in the graph. This fact, while mathematically obvious, has
implications for implementation of the analysis: membership in the state graph should be based on
semantic equivalence between elements, and it is not acceptable to use an approximate (e.g., some
form of structural) equivalence that is inconsistent with the definition and implementation of vm.

110

For a loop as in (4.1) and a graph G = 〈V ,Ep ,Ec〉, a recurrent component is a set of

elements R ⊆V , s.t. every element a ∈ R, is non-error, cannot exit the loop, has at least

one outgoing edge (post- or containment-):

eval](¬ϕexit, {a}) = 1

∧∃a′ ∈V. (a, a′) ∈ Ep ∪Ec

and also at least one of the following is true:

(i) a has a containment-edge into R: ∃a′ ∈ R. (a, a′) ∈ Ec ; or

(ii) the outgoing post-edges of a lead exclusively into R: postG (a) 6=∅∧postG (a) ⊆ R.

Example 4.1 (continued). The entity in Fig. 4.1 represents a state graph, with some

modifications made for clarity. Boxes represent the vertices of the graph, which are

members of an interval domain. Solid arrows represent post-edges. Dashed errors

represent containment edges, but for clarity, not all containment edges are shown (for

example, there should be a number containment edged going into the vertex [1;+∞)).

Notice that vertices with grey background form a recurrent component (actually, con-

tainment edges are only shown between the vertices in the component).

Lemma 4.2. The union of two recurrent components is a recurrent component.

Lemma 4.3. In a state graph G , there exists a unique maximal (possibly, empty) recur-

rent component.

Proof. Lemma 4.2 follows from the definition of recurrent component. Lemma 4.3

follows from Lemma 4.2 and finiteness of G .

Theorem 4.2. For a loop as in (4.1) and a state graph G = 〈V ,Ep ,Ec〉 we say X ⊆ V is

fully closed if eval](¬ϕexit, X) = 1, ∀a ∈ X . postG (a) 6=∅, and post](Cbody, X) v X . (Note

that in this case, γ](X) is a recurrent set.)

Then, for every state graph G :

(i) For a recurrent component R, there exists a fully closed X ⊆ R s.t. γ](X) = γ](R).

(ii) For a fully closed X , there exists a recurrent component R ⊇ X , s.t. γ](R) = γ](X).

Proof. We present the proof in Appendix 4.A

111

4.2.3 The Algorithm

The algorithm, whose main body is shown in pseudocode in Figures 4.3 and 4.4, is ap-

plied individually to every loop in a program. Initially, we call the procedure FindFirst

giving it the set of elements I ⊆ Lm to start the search from (normally, a loop invari-

ant). After performing initialization, FindFirst calls FindNext once. FindNext contains

a loop in which we build the state graph G = 〈V ,Ep ,Ec〉. In every iteration, proceed-

ing in breadth-first order, we pick from the worklist F an element without post-edges

and add its successors to the graph, together with relevant post- and containment-

edges. This happens in lines 3–10 of Fig. 4.4; new elements and post-edges are created

by MakeNewElements shown in Fig. 4.5. We choose not to explore the successors of

an element belonging to a recurrent component (lines 4–6) even though when post]

is non-monotone, they might lie outside the recurrent component. Similarly, we do

not explore the successors of a must-exiting element, even if ψent may hold in it. If

adding new elements and edges could create a larger recurrent component, we call

FindRecComp to search for it (lines 13–15). If a new recurrent component is found, we

return 1, and Rec contains those elements of the component found so far that have no

outgoing containment-edges (lines 16–26). If we wish to find a larger recurrent com-

ponent, we can call FindNext again to resume the search. If the search terminates and

no new recurrent component can be found, the procedure returns 0.

For every abstract element a ∈V , we maintain the status as follows.

We say that an element a ∈V must exit, mustE(a) = 1, if all executions starting in it

exit the loop or reach an error memory state, i.e., if it is definitely the case that for every

concrete memory state m ∈ γ]({a}) the loop eventually terminates or reaches an error.

We mark a as must-exiting if

(i) eval](ψent, {a}) = 0 (note that this is also the case for erroneous abstract memory

states); or if

(ii) all post-successors of a are already must-exiting; or if

(iii) there exists a larger (w.r.t. vm) element that is already must-exiting.

We say that an element a ∈ V may exit, mayE(a) = 1, if we know that it cannot be

part of a recurrent component. We mark a as may-exiting if

112

Procedure: Find First
Input: Set of initial elements I ⊆Lm

Output: Whether recurrent set Rec was updated
Global variables: State graph G = 〈V ,Ep ,Ec〉, worklist F ⊆ Lm,

current recurrent set Rec ⊆Lm

1 procedure FindFirst(I):

2 for A ∈Lm do

3 mayE(a) ← mustE(a) ← rec(a) ← 0

4 unk(a) ← 1

5 endfor

6 MakeNewElements(I ,nil)

7 F ← {a ∈V | ¬mustE(a)∧a 6= ⊥m}

8 FindNext()

9 endproc

Figure 4.3: Procedure FindFirst that finds the first recurrent set.

(i) it is must-exiting or if eval](¬ϕexit, {a}) 6= 1; or if

(ii) post] is monotone and a has a post-successor that is already may-exiting; or if

(iii) post] is monotone, and there exists a smaller (w.r.t. vm) already may-exiting ele-

ment.

We say that an element a ∈ V is recurrent, rec(a) = 1, if it is a part of a recurrent

component. If post] is monotone, we also mark as recurrent all successors of a recur-

rent element. Here, the term recurrent is overloaded. For a recurrent element a ∈ V ,

γ]({a}) is in general not a recurrent set itself, but is included in some recurrent set.

Otherwise, the element a ∈ V is unknown, unk(a) = 1, i.e., unk(a) ⇒ (¬mayE(a)∧
¬rec(a)). This is the case if eval](¬ϕexit, {a}) = 1, and the element may become a part of

a recurrent component, but it is not part of the recurrent component found so far.

Lemma 4.4. May-exiting elements cannot be part of a recurrent component.

Proof. We give the proof in Appendix 4.A.

When searching for a recurrent component, it is only necessary to consider un-

known and recurrent elements, therefore every step of the algorithm only creates new

113

Procedure: Find Next
Output: Whether recurrent set Rec was updated
Global variables: State graph G = 〈V ,Ep ,Ec〉, worklist F ⊆ Lm,

current recurrent set Rec ⊆Lm

1 procedure FindNext():

2 while F 6=∅ do

3 a ← first(F); F ← F \ {a}

4 if mustE(a)∨ rec(a) then

5 continue

6 endif

7 newPost ← MakeNewElements(post](Cbody, {a}), a)

8 E+
c ← {(a′, a′′) ∈V ×V | unk(a′)∧ (unk(a′′)∨ rec(a′′))∧a′ v a′′∧

(a′′ ∈ newPost ∨a′ ∈ newPost)}

9 Ec ← Ec ∪E+
c

10 F ← F ∪ {a′ ∈ newPost | ¬mustE(a′)∧a′ 6= ⊥m}

11 PropagateStatus()

12 R ←∅

13 if
(
newPost =∅∧ (∀a′ ∈ postG (a).unk(a′)∨ rec(a′))

)∨E+
c 6=∅ then

14 R ← FindRecComp()

15 endif

16 if R 6=∅ then

17 for a ∈ R do

18 rec(a) ← 1; unk(a) ← 0

19 endfor

20 PropagateStatus()

21 Rec ′ ← Rec

22 Rec ← {a′ ∈V | rec(a′)∧ ({(a′, a′′) | a′′ ∈V ∧ rec(a′′)}∩Ec =∅)}

23 if (Rec 6= Rec ′) then

24 return 1

25 endif

26 endif

27 endwhile

28 return 0

29 endproc

Figure 4.4: Procedure FindNext that finds the next recurrent set.

114

containment-edges between unknown elements or from an unknown to a recurrent

element.

Note that when new elements or edges are added to the graph, or the status of an

existing element changes, we make a call to PropagateStatus. PropagateStatus propa-

gates the statuses through the edges of the graph according to the following rules. For

an element a:

(i) if postG (a) 6=∅∧∀a′ ∈ postG (a). mustE(a′), then mustE(a)

(ii) if mustE(a), then ∀a′. (a′, a) ∈ Ec ⇒ mustE(a′)

(iii) if postG (a) 6=∅∧∀a′ ∈ postG (a). rec(a′), then rec(a)

(iv) if rec(a), then ∀a′. (a′, a) ∈ Ec ⇒ rec(l ′)

Additionally, if post] is monotone8:

(v) if ∃a′ ∈ postG (a). mayE(a′), then mayE(a)

(vi) if mayE(a), then ∀a′. (a, a′) ∈ Ec ⇒ mayE(a′)

(vii) if rec(a), then ∀a′ ∈ postG (a). rec(a′)

(viii) if mustE(a), then ∀a′ ∈ postG (a). mustE(l ′)

Rules (i) and (ii) are derived from the definition of must-exiting element. Rules (iii)

and (iv) mark as recurrent those elements that would anyway be included in a recur-

rent component next time FindRecComp is called. Rules (v) and (vi) are derived from

the definition of may-exiting elements. Rule (vii) is for the case when for some a, first

its post-condition is computed, and later, a is marked as recurrent by rule (iv). If post]

is monotone, the successors of a would eventually become part of a recurrent com-

ponent. Similarly, rule (viii) is for the case when for some a, first its post-condition is

computed, and later, a is marked as must-exiting by rule (ii). If post] is monotone, the

successors of a would eventually be marked as must-exiting. This all is not necessary

for the correctness: every element that PropagateStatus marks as may- or must-exiting,

8As you can see, monotonicity of post] (which would follow if postm is monotone) is helpful for the
analysis. Usually, if the analysed loop is non-nested (i.e., its body is a loop-free program), the abstract
post-condition w.r.t. its body will be monotone. In case of nested loops, non-monotonicity can be in-
truduced by widening, which will be required in a numeric analysis to over-approximate the effect of an
inner loop when analysing the outer one.

115

cannot be part of a recurrent component, and every element that it marks as recurrent

would eventually become a part of a recurrent component anyway. But this allows to

eliminate unknown elements earlier, create fewer containment-edges, and search for

recurrent component in a smaller portion of the graph.

Fig. 4.5 shows the procedure MakeNewElements that adds new elements to the

graph. Given a set of abstract elements A ⊆ Lm and a predecessor element ap ∈ V ,

it adds abstract elements corresponding to A to the graph and creates post-edges from

ap to them. Every a ∈ A is split into a number of elements with the assumption trans-

former, then is possibly marked as may- or must- exiting depending on the values of

ϕexit and ψent and added to the graph together with a post-edge from ap . The proce-

dure returns the set N of new elements produced from A that were not present in the

graph before.

Fig. 4.6 shows the procedure FindRecComp that finds a (subset of a) recurrent com-

ponent among the unknown elements. We call it from the procedure FindNext when a

new containment-edge is created or an element is discovered such that all its outgoing

post-edges lead to existing unknown or recurrent elements (i.e., when a larger recur-

rent component could emerge). It starts the search with the whole set of unknowns

as the candidate C and iteratively removes the elements C− that make the candidate

violate the definition of recurrent component. Observe that FindRecComp works incre-

mentally: assuming that R is a set of elements that are currently marked as recurrent

(i.e., R is the recurrent component found so far), the procedure produces the largest

set C , s.t. C ∪R is a recurrent component. In general, C itself might not be a recurrent

component.

Theorem 4.3. For an abstract state graph G = 〈V ,Ep ,Ec〉 and some recurrent compo-

nent R ⊆ V , FindRecComp produces C ⊆ V such that C ∪R is the maximal recurrent

component of G .

Proof. We give the proof in Appendix 4.A.

4.3 Examples

We now demonstrate how our analysis can be successfully applied to numeric and

heap-manipulating programs. Examples 4.1 and 4.2 present Numeric Programs. Pro-

116

Procedure: Make New Elements
Input: Set of elements A ⊆Lm and a predecessor element ap ∈Lm

Output: Set of new elements N ⊆Lm

Global variables: State graph G = 〈V ,Ep ,Ec〉
1 procedure MakeNewElements(A, ap):

2 N ←∅

3 if A =∅ then

4 A′ ← {⊥m}

5 else

6 A′ ← [ε, A]]∪ [¬ε, A]]

7 A′ ← [ψent, A′]]∪ [¬ψent, A′]]

8 endif

9 for a ∈ A′ do

10 if lp 6= nil then

11 Ep ← Ep ∪ (ap , a)

12 endif

13 if a ∉V :

14 if eval](ψent, {a}) = 0 then

15 unk(a) ← 0

16 mayE(a) ← mustE(a) ← 1

17 elseif eval](¬ϕexit, {a}) 6= 1 then

18 unk(a) ← 0

19 mayE(a) ← 1

20 endif

21 V ←V ∪a

22 N ← N ∪a

23 if a =⊥m then

24 Ep ← Ep ∪ {(a, a)}

25 endif

26 endif

27 endfor

28 return N

29 endproc

Figure 4.5: Procedure MakeNewElements that adds new elements to the graph. New
elements are unknown unless marked otherwise.

117

Procedure: Find Recurrent Component
Output: Extension of the recurrent component C ⊆V
Global variables: State graph G = 〈V ,Ep ,Ec〉

1 procedure FindRecComp():

2 C ← {a ∈V | unk(a)}

3 R ← {a ∈V | rec(a)}

4 while 1 do

5 C− ← {a ∈C | {(a, a′) | a′ ∈C ∪R}∩Ec =∅∧

(postG (a) =∅∨postG (a)*C ∪R)}

6 if C− =∅ then break endif

7 C ←C \C−

8 endwhile

9 return C

10 endproc

Figure 4.6: Finding a recurrent component.

gram variables range over integers, and we use intervals to represent their values. (Ex-

amples 4.3, 4.4, and 4.5 will present heap-manipulating programs.)

Example 4.1 (continued). Let us revisit the program in Fig. 4.1 and its state graph

Fig. 4.2. The graph is shown at a stage when the algorithm cannot find a larger recurrent

component, and FindNext returns 0. The recurrent component is shown greyed, post-

edges are solid, containment edges are dotted, and for clarity, containment-edges to

and from may-exiting elements are not displayed. The element [1;+∞) is may-exiting,

and must-exiting elements are marked with a cross. As a result, we find recurrent set

{[2;60], [101;+∞)}. Note that the states x = 1 and x = 100 are lost compared to the max-

imal recurrent set, and the discovered recurrent set is closed under application of the

forward transformer, but not the backward transformer. This can be the case for some

other tools based on forward semantics. For example, the tool E-HSF [BPR13] when

presented with this example, may report the recurrent set to be {[4;60], [100;+∞)}.

Also, note the set of must-exiting elements (on the right side of the graph). While our

algorithm often succeeds in proving that a recurrent set exists, it behaves badly when

no recurrent set can be found. For example, in this case, it had to enumerate all ele-

ments of the form [62;99], [63;99], [64;99], and so on. Finally, note that our procedure

118

1 days ← a number≥ 0

2 year ← 1980

3 while (days > 365) {

4 if (leap(year)) {

5 if (days > 366) {

6 days ← days−366;

7 year ← year+1;

8 }

9 } else {

10 days ← days−365;

11 year ← year+1;

12 }

13 }

Figure 4.7: Demonstration of a real-life non-termination bug.

did terminate, although the abstract domain is infinite and we did not take measures

to guarantee termination.

Example 4.2. Let us now revisit the program in Fig. 4.7 (which already appeared in

Example 1.1). We presented this program to an implementation of our algorithm (with

some splitting heuristics for modulo operation) with the starting element being the

loop invariant: year ≥ 1980∧days ≥ 0. Every call to FindNext extends the recurrent

set with a single element: year = 1980∧days = 366, year = 1984∧days = 366, year =
1988∧days = 366, and so on. The abstract domain was not expressive enough to infer

that every leap year causes non-termination. Also, because the analysis is forward-

only, it did not explore the predecessors of those elements: e.g., from the state year =
1983∧days = 731, the loop also diverges, but this was not discovered by the tool. Still,

we count this result as success: our approach does expose the bug even if it does not

find all inputs for which the bug manifests.

119

x, y c= 1
2

tn

c= 1
2

n

tn

tn

n

Figure 4.8: Acyclic list with 2+ elements.

x, y c= 1
2

tn

c= 1
2

n

tn

tn

n

Figure 4.9: Cyclic list with 2+ elements.

1 y ← x;

2 while (y 6= null∧¬c(y)))

3 y ← (y → n);

Figure 4.10: Linear search in a non-
cyclic list.

1 y ← x;

2 while (y 6= null)

3 y ← new record;

4 if (y 6= null) {

5 (y → n) = x;

6 x ← y;

7 }

Figure 4.11: Prepending to a non-
empty list.

Shape Analysis Examples

Examples 4.3, 4.4, and 4.5 present heap-manipulating programs. We use 3-valued logic

[SRW02] to represent heaps, and build the analysis on top of the tool TVLA9 [LMS04].

In Appendix 2.B, we gave a brief description of shape analysis with 3-valued logic

that is sufficient to understand the examples. For more information on shape analysis

with 3-valued logic, please refer to Sagiv et al. [SRW02] and related papers [RSL10;

Arn+06; LMS04].

Example 4.3. One source of non-termination in heap-manipulating programs is in-

correct traversal of cyclic data structures. Fig. 4.10 shows a procedure that searches

a list pointed to by x for an element y s.t. the condition c(y) holds. The search ter-

minates when such y is found or when the end of the list is reached, and it does not

handle cyclic lists correctly. In this and the next example, the initial statement: y ← x

– is disregarded by the analysis and only emphasizes for the reader that when the loop

is reached for the first time, both x and y point to the head of the list. Due to canonical

abstraction10, the set of 3-valued structures that we can explore is finite, and there is no

9http://www.cs.tau.ac.il/~tvla/, last accessed in May 2016.
10In shape analysis with 3-valued logic, abstract transformers are usually designed in a way that they

120

http://www.cs.tau.ac.il/~tvla/

need to perform pre-analysis for the loop invariant. Thus, we analyze the loop starting

with the set of elements containing cyclic and acyclic lists with both x and y pointing to

the head and with unknown value of c for all the cells: the structures shown in Figures

4.8 and 4.9, plus structures to represent single-element lists and an empty list. As our

tool proceeds, it reports as the recurrent set all the heaps that cause non-termination

of the loop, i.e., in this case – the cyclic lists where the condition c is false for all the

elements. One of such lists (with three or more elements, y pointing into the list) is

shown in Fig. 4.12.

Example 4.4. Another interesting class of bugs in heap-manipulating programs is re-

lated to heap allocation. Sometimes, models of programs do not take into account that

heap allocation can fail. For example, in a real program, an infinite loop performing al-

location would usually lead to an out-of-memory error and may consume much time

and system resources. But in a model of the program this may appear as potential non-

termination. Fig. 4.11 shows a program that repeatedly prepends a newly allocated el-

ement to a (non-empty) list. The loop is supposed to terminate if the allocation fails,

but this is not possible in our TVLA model. The state graph for the example is shown

in Fig. 4.13. The initial elements are: a list with two or more elements (element 1, as

shown in Fig. 4.8), an empty heap (2), and a single-element list (3). The empty heap

is must-exiting, and the elements 1, 3, and 4 (list with exactly two elements) form the

recurrent set. Element 4 does not have an outgoing post-edge as the algorithm finishes

before the post-condition of the element is computed. Note the post-loop on element

1. Because of canonical abstraction, the post-condition of a list with two or more ele-

ments is again a list with two or more elements. On one hand, the analysis loses track

of the length of the list. On the other hand, abstracting from the length of the list allows

us to produce a compact summary of the recurrent set.

Example 4.5. Fig. 4.14 shows a fragment of a device driver procedure that has a non-

termination-related bug discovered by a termination prover [Ber+06]. The fragment is

a loop that traverses a cyclic doubly-linked list. Every entry of the list is embedded in

produce structures belonging to a certain finite subset of 3-valued structures. One possible finite subset
consists of what is called bounded structures. The analysis fixes a set of unary abstraction predicates
(usually – just all unary predicates). Then, bounded structures are those where all nodes have distinct
values of abstraction predicates. Finiteness of the image of the transformers allows to claim termination
of analyses.

121

x ¬c

tn

¬c
n

tn tn

n

¬c

tn

n
tn n

tn

y

Figure 4.12: Example of a cyclic list
where c is false for all elements.

2 3

41

Figure 4.13: State graph for the pro-
gram in Fig. 4.11. Element 1 is shown in
Fig. 4.8. Grayed are recurrent elements
and must-exiting element is marked
with a cross.

a larger record and line 4 extracts a pointer to the containing record. If the condition in

line 7 holds, the current entry is removed from the list in line 8. If the condition in line

9 also holds, the loop terminates. Otherwise, in line 12 the current entry’s next-pointer

(Flink) gets directed to the entry itself and the loop continues. In the latter case, the

execution will stay in the loop as long as the conditions in lines 7 and 9 continue to

hold for the entry.

Fig. 4.15 shows a simplified version of the loop that can be presented to our tool.

Variable x always points to the head of the list, and y traverses the list. We did not

have a template for working with cyclic doubly linked lists in TVLA, and we use a singly

linked list, and explicitly track the pointer yp to the previous list element. We also

unify the list entries and containing records. To handle the early return in line 10, we

manually transform the program to use an auxiliary condition c(x).

What happens to conditions in lines 7 and 9 is more important. We need to abstract

them, as they need much context to be modelled precisely. One option is to abstract

them as non-deterministic conditions, but in this case there will be no universal non-

termination, as there will always be the possibility for the execution to reach the return

statement in line 10. But it may also be sound to model these conditions as predicates

on list entries, s.t. they are not changed in the loop body, and initially we do not know

whether they hold. In Fig. 4.15 we assume that this is the case, and introduce a pair

of predicates k1 and k2 for the conditions in line 7 and 9 respectively. With the above

assumptions, we were able to find a recurrent set of the program fragment. Fig. 4.16

shows an example of a 3-valued structure belonging to the discovered recurrent com-

122

ponent11. Notice the node pointed to by y where k1 definitely holds, and k2 definitely

does not. Due to a logical error in the program, this node became detached from the

original list, and the traversal along its self-loop never terminates.

This example shows that our approach can in principle handle real-world non-

termination problems. At the same time, it points out some limitations. First, universal

recurrent sets are fragile. Even though a non-termination bug may cause the program

to have one (this is the case in Example 4.2 and may be the case in this example), it may

be hard to build an abstraction that preserves it and does not introduce spurious ter-

minating traces from every interesting state. In this example, building such abstraction

requires certain knowledge about the context.

Second, the recurrent sets that we discover are genuine, but may not be reachable

from the program entry. This can become an inconvenience when this procedure is

used for debugging. For example, in this case we could not identify the input states that

reach the recurrent set. In particular, just from the results of the analysis, we cannot

see whether there exists a valid input that causes non-termiantion, or whether non-

termination is caused by passing as an argument some misformed data structure.

4.4 Related Work

The problem of finding a universal recurrent set seems to be somehow less general

than the problem of finding an existential recurrent set12. If a program has a reach-

able universal recurrent set, this means that it has (under certain conditions, recall

Section 4.1) a non-terminating execution, but the inverse is not true. Due to non-

determinism (e.g., see Example 3.1), a program may have non-terminating executions,

but no universal recurrent set (when every state in a non-terminating execution, we

can build a terminating execution postfix). The analysis of non-deterministic pro-

grams is important (it can be used to model the environment, to abstract away from

details, etc) and probably this is why finding universal recurrent sets is a less popular

11For this program, the analysis (as suggested by the authors of TVLA) actually tracks a predicate stat-
ing whether or not a cell lies on a cycle. Also, it does not track binary reachability between cells, only
unary reachability from variables. For clarity, we do not show the evaluation of the cyclicity and unary
reachability predicates in the picture.

12One could also argue that it is a simpler one. Existence of a universal recurrent set is a problem
complementary to reachability of exit location and thus is a safety property. Existence of an existential
recurrent set is a liveness property.

123

1 for (entry = DeviceExtension ->ReadQueue.Flink;

2 entry != &DeviceExtension ->ReadQueue;

3 entry = entry ->Flink) {

4 irp = (IRP *)((CHAR *)(entry)-(ULONG *)

5 (&((IRP *)0)->Tail.Overlay.ListEntry));

6 stack = IoGetCurrentIrpStackLocation (irp);

7 if (stack ->FileObject == FileObject) {

8 RemoveEntryList(entry);

9 if (IoSetCancelRoutine (irp , NULL)) {

10 return irp;

11 } else {

12 InitializeListHead (&irp ->Tail.Overlay.ListEntry);

13 }

14 }

15 }

Figure 4.14: Program fragment exhibiting a non-termination bug when manipulating
a cyclic list.

problem. Still, it has seen some attention.

Cook et al. [Coo+14] analyze linear over-approximations of programs and then use

Farkas’ lemma to find universal recurrent sets. Their soundness result is similar to ours

and is more general: they state it for arbitrary transition systems and require a property

of upward termination (for every concrete final state, the corresponding abstract state

is also final) which for us implicitly holds. Note that linear abstractions have not yet

demonstrated to be very effective for analyzing heap-manipulating programs.

Larraz et al. [Lar+14] use the notion of an edge-closed quasi-invariant (a set of

states that, once reached, cannot be escaped) as a generalization of recurrent set. They

encode the search for such set as a max-SMT problem.

Le et al. propose a specification logic and an inference algorithm [LQC15] that can

capture the absence of terminating behaviors.

Velroyen and Rümmer developed one of the early non-termination analysis [VR08].

They propose a template and a refinement scheme to infer invariants proving that ter-

minating states of a program are unreachable.

124

1 y ← x;

2 yp ← y;

3 y ← (y → n);

4 while (x 6= y ∧¬c(x)) {

5 if (k1(y)) {

6 (yp → n) ← (y → n);

7 if (k2(y))

8 c(x) ← 1;

9 else

10 (y → n) ← y;

11 }

12 if (¬c(x)) {

13 yp ← y;

14 y ← (y → n);

15 }

16 }

Figure 4.15: Simplified version of the
program in Fig. 4.14.

x

¬c

¬k1

k2 = 1
2

n

n

k1 = 1
2

k2 = 1
2

n

n

k1

¬k2

n

y, yp

Figure 4.16: Sample structure from a
recurrent component in Example 4.5.

125

4.5 Chapter Conclusion and Future Work

In this chapter, we described a forward technique for finding recurrent sets in impera-

tive programs, where loops of a specific form are the source of non-termination. The

recurrent sets that we produce are genuine, but may not be reachable from the pro-

gram entry. We applied our analysis to numeric and heap-manipulating programs and

were successful if (i) we were able to capture the paths through the program that infi-

nite traces take, and (ii) we were able to perform enough case splits to isolate the re-

current set into a separate set of elements. The latter point can benefit from heuristics

in some cases.

Our analysis only admits structured programs without goto statements, with re-

stricted form of loops: while-loops without statements that affect control flow (break,

continue, etc). One direction for future work is to enable the analysis of a larger class

of loops: either by introducing relevant program transformations and studying their

effect on the outcome of the analysis or by extending the technique to handle more

complicated control flow graphs.

Another direction is to solidify the analysis: eliminate the need for a separate for-

ward pre-analysis by weaving it into the main algorithm, introduce a proper trace par-

titioning, etc. Alternatively, we could try to re-formulate the analysis within the frame-

work of another existing model checking procedure, e.g., Impact, as the way we con-

struct the abstract state graph is already similar to what modern model checkers do.

There exist extensible tools, like CPAChecker, that facilitate this kind of integration of

different analyses.

Note that the analysis of this chapter will be able to find a recurrent set only if it

is materialized as a set of elements in a state graph. This does not always happen

naturally. For example, recall the program in Fig. 3.5. The loop does have a univer-

sal recurrent set, but non-termination relies on making a specific choice of y before

the loop. Applying the analysis of this chapter directly will not materialize a recurrent

set in the state graph, but we anticipate that there exist heuristics (possibly, including

those based on widening techniques) that will partition the results of post-condition

operation in a certain way and allow to materialize a recurrent set. Thus, developing

such heuristics is another possible research direction.

126

4.A Omitted Proofs

Theorem 4.2. For a loop as in (4.1) and a state graph G = 〈V ,Ep ,Ec〉 we say X ⊆ V is

fully closed if eval](¬ϕexit, X) = 1, ∀a ∈ X . postG (a) 6=∅, and post](Cbody, X) v X . (Note

that in this case, γ](X) is a recurrent set.)

Then, for every state graph G :

(i) For a recurrent component R, there exists a fully closed X ⊆ R s.t. γ](X) = γ](R).

(ii) For a fully closed X , there exists a recurrent component R ⊇ X , s.t. γ](R) = γ](X).

Proof. (i) Let R be a recurrent component. Let X be the set of elements in R without

outgoing containment-edges into R. This set is always not empty. Since R is finite, if

every element in R had a containment-edge into R, there would be an infinite con-

tainment path within R, and therefore – a containment cycle, which is assumed never

to happen. Since elements in X have no containment-edges into R, it must be that

every element in X has an non-empty set of outgoing post-edges, all leading into R:

∀a ∈ X postG (a) 6=∅∧postG (a) ⊆ R. This means that post](Cbody, X) = postG (X) (since

post] is pointwise) and post](Cbody, X) ⊆ R. Note that abstract order in D] is Hoare or-

der. Since every containment path that stays within R is finite, every element in R can

reach an element in X by crossing 0 or more containment-edges, hence R v X , and

post](Cbody, X) v X . That is, γ](X) is a recurrent set via Theorem 4.1. Also, since X ⊆ R,

then X v R, and hence γ](R) = γ](X).

(ii) Let X ∈ V be such that ∀a ∈ X . postG (a) 6= ∅, eval](¬ϕexit, X) = 1, and also

post](Cbody, X) v] X . By properties of eval], ∀a ∈ post](Cbody, X). eval](¬ϕexit, {a}) = 1.

Let R = X ∪postG (X) ⊆ V . Note the following: (i) every a ∈ X has a non-empty set of

outgoing post-edges, all leading into R; (ii) since post](Cbody, X) v] X , either R = X =
{⊥m} or every a ∈ postG (X) has a containment-edge leading into R ⊇ X . Hence, R sat-

isfies the definition of recurrent component.

Lemma 4.4. May-exiting elements cannot be part of a recurrent component.

Proof. Let a ∈ V be s.t. eval](¬ϕexit, {a}) 6= 1. Then it cannot be part of a recurrent

component by definition.

Let a ∈ V be s.t. eval](ψent, {a}) = 0. That is, from the properties of eval], for every

concrete memory state m ∈ γ]({a}), ψent does not hold. Since ψent ∨ϕexit = 1, for every

m ∈ γ]({a}), either ϕexit holds or m = ε, and it cannot be that eval](¬ϕexit, {a}) = 1.

127

Let a ∈ V be s.t. it would be marked as must-exiting by recursively applying the

rules (ii) and (iii) from the definition of must-exiting element. By induction, we can

show that for every concrete memory state m ∈ γ]({a}), every concrete path that orig-

inates in it, eventually reaches a memory state where ψent does not hold (a memory

state that must exit the loop or is erroneous). That is, γ]({a}) cannot be contained in a

recurrent set. From Theorem 4.2, it follows that a cannot be part of a recurrent com-

ponent, since otherwise γ]({a}) would have to be contained in a recurrent set, and we

would have a contradiction.

Let post] be monotone and let a ∈ V be such that (a) it would be marked as may-

exiting by recursively applying rules (ii) and (iii) from the definition of may-exiting ele-

ment; and (b) let a belong to a recurrent component R ⊆V . Let us show that this is im-

possible. From assumption (a), is follows by induction that by taking one or more post-

and reversed containment-edges a can reach an element a′ ∈ V , s.t. a′ is must-exiting

or s.t. eval](¬ϕexit, {a′}) 6= 1. From assumption (b) and Theorem 4.2, there is X ⊆ R s.t.

eval](¬ϕexit, X) = 0, post](Cbody, X) v] X , and a ⊆ X . Consider an arbitrary element

a′ ∈V that is reachable from a by taking one or more post- and reversed containment-

edges. From monotonicity of post], it follows by induction that {a′} v] X and therefore,

from the properties of eval], eval](¬ϕexit, {a′}) = 1. Also, by the above development,

a′ cannot be must-exiting. Note that the corollaries of assumption (b) contradict the

corollaries of assumption (a).

From the above, we conclude that it cannot be that a may-exiting element a is a

part of a recurrent component.

Theorem 4.3. For an abstract state graph G = 〈V ,Ep ,Ec〉 and some recurrent compo-

nent R ⊆ V , FindRecComp produces C ⊆ V such that C ∪R is the maximal recurrent

component of G .

Proof. Let Rmax ⊆ V be the maximal recurrent component of G , which does exist due

to Lemma 4.3.

First, note that C ∪R is indeed a recurrent component. If it was not, in lines 5–7,

the elements that make C ∪R violate the definition of recurrent component would be

excluded from C (such elements can only be in C , and not in R). That is, C ∪R ⊆ Rmax.

Next, let us represent the execution of FindRecComp as a chain of n approximations

C0 w C1 w ·· · w Cn−1 where C0 is as in line 2, Cn−1 = C is the output of the procedure,

128

for 0 ≤ i ≤ n −2, Ci+1 =Ci \C−
i , where

C−
i = {a ∈Ci | ({(a, a′) | a′ ∈Ci ∪R}∩Ec =∅)∧ (postG (a) =∅∨postG (a)*Ci ∪R)}

And C−
n−1 =∅. That is C−

i is the set of elements that make Ci ∪R violate the definition

of recurrent component.

Let us by induction prove that Rmax ⊆C ∪R. From Lemma 4.4, it follows that Rmax ⊆
C0 ∪R as no may- or must-exiting element can be in a recurrent component. For 0 ≤
i ≤ n−2, let us assume that Rmax ⊆Ci ∪R. From the definition of recurrent component,

for every a ∈ Rmax,

(∃a′ ∈ Rmax. (a, a′) ∈ Ec)∨ (postG (a) 6=∅∧postG (a) ⊆ Rmax)

From the definition of C−
i above, it follows that C−

i ∩Rmax = ∅ (that is, no a ∈ Rmax

satisfies the condition to be included in C−
i . Thus we have that Rmax ⊆ Ci ∪R, and

C−
i ∩Rmax =∅, and Ci+1 =Ci \C−

i , hence Rmax ⊆Ci+1 ∪R.

By induction, Rmax ⊆C ∪R and hence Rmax =C ∪R.

129

Chapter 5

Experiments in Finding Recurrent Sets

We have implemented the algorithms of Chapters 3 and 4 as two separate prototype

tools. We evaluated the tools using a number of test programs available in the program

analysis community.

Prototype of Chapter 3

The prototype of Chapter 3 is implemented in Scala. The implementation consists

of two main components. The first one performs generic fixed point approximation

using chaotic iteration, as discussed in Section 2.3, introduction to Chapter 3, and Ap-

pendix 3.B. The computation is parameterized with the abstract domain and uses in-

teration order that prioritizes inner loops (it uses a prioritized worklist and assigns pri-

orities to locations based on their position in hierarchical SCC decomposition [Bou93b]).

The second component is an implementation of the trace partitioning domain, as de-

scribed in Chapter 3. The underlying memory abstract domain is a product of poly-

hedra (linear inequalities) and linear congruences (constraints asserting divisibility by

constants). The implementations of the polyhedral domain and the domain of linear

congruences are provided by Parma Polyhedra Library [BHZ08].

As input, the prototype accepts unstructured programs – i.e., graphs with edges la-

belled by numeric statements – in its own format. The format is similar to the input for-

mat of some other tools that work with transition systems, e.g. T2 [Bro+16]. This could

allow in future to re-use some of the components of T2 that perform pre-processing of

the input, e.g., convert C source code to a transition system. An example of an input

program is shown in Fig. 5.1.

130

1 x, y: Int

2 l1: [x >= 0, x <= 100] :l2

3 l2: y = * :l3

4 l3: x = x + y :l1

(a) Input text.

l1

l2

[0 ≤ x ≤ 100]

l3

y ←∗
x ← x + y

(b) Corresponding program graph.

Figure 5.1: Example of an input program for the implementation of the algorithm of
Chapter 3.

Prototype of Chapter 4

The prototype of Chapter 4 actually pre-dates the one of Chapter 3. It is implemented

in Java as a library and needs a driver Java program. As input, it accepts individual

structured loops that must be constructed using the provided API. An example of a

driver program is shown in Fig. 5.2. Lines 1–7 initialize the abstract domain and ab-

stract transformers. Lines 8–14 construct the loop condition and body. Lines 15–17

initialize and run the analysis.

The implementation again consists of two main components. The first one builds

and analyses an abstract reachability graph of a loop, as described in Chapter 4, and

is parameterized with an abstract domain. The second component implements inter-

val domain which is used to analyse numeric programs, and the domain of 3-valued

structures [SRW02] that is used to analyse heap-manipulating programs. The imple-

mentation of the domain of 3-valued structures is based on making calls to a modified1

version of the tool TVLA2 [LMS04].

Benchmarks

To evaluate the implementations, we used several numeric test programs available in

the program analysis community. The prototype of Chapter 4 also supports heap-

manipulating programs, but we only evaluated this support using a small number of

examples that we produced ourselves; most of them are presented in Section 4.3.

An early benchmark for non-termination analyses of programs was produced by

the authors of the tool called Invel3 [VR08]. The benchmark consists of 55 numeric

1The only purpose of the modifications was to allow using TVLA as a library in a Java application.
2http://www.cs.tau.ac.il/~tvla/, last accessed in May 2016.
3http://www.key-project.org/nonTermination/, last accessed in May 2016.

131

http://www.cs.tau.ac.il/~tvla/
http://www.key-project.org/nonTermination/

1 while (x ≥ 1) {

2 if (x = 60) x ← 50;

3 x ← x +1;

4 if (x = 100) x ← 0;

5 }

(a) Informal program text.

1 IntISet intSet = new IntISet ();

2 IntervalID intervalD = new IntervalID(intSet);

3 BoxID boxD = new BoxID(intervalD);

4 Var x = boxD.makeVar("x");

5 boxD.freeze ();

6 IntervalPost intervalPost = new IntervalPost(boxD);

7 StmtPostI stmtPost = new StmtPostI(intervalPost);

8 StmtFacI f = new StmtFacI(intervalD);

9 Formula <IntProp > cond = f.cmp(Cmp.GT, x, 0);

10 Stmt <IntStmt , IntProp > body = f.seq(

11 f.ifThen(f.cmp(Cmp.EQ, x, 60), f.set(x, 50)),

12 f.set(x, f.op(Op.PLUS , x, 1)),

13 f.ifThen(f.cmp(Cmp.EQ, x, 100), f.set(x, 0))

14);

15 RecSetAlgI recSetAlg = new RecSetAlgI(boxD , stmtPost);

16 RecSetAlgI.Run run = recSetAlg.makeRun(body , cond , cond.negate ()

, stmtPost.model(cond));

17 run.findAll ();

(b) Driver program to run the analysis.

Figure 5.2: Example of a driver program for the implementation of the algorithm of
Chapter 4.

132

Java programs and 4 heap-manipulating programs. Of the numeric programs, 53 de-

terministically fail to terminate for some inputs, one program always terminates and

one encodes the Collatz conjecture4 (thus we do not know whether or not it terminates

for all inputs).

Another well-known benchmark is the Competition on Software Verification, also

known as SV-COMP5. One of the categories in the competition is “termination”, which

is maintained by the teams of the tools AProVE [Gie+14] and Ultimate Büchi Automizer

[Hei+16], and consists of more than 300 C programs. Most of the offered programs

terminate for all inputs (which the tools entering the competition need to prove), but

some have non-terminating behaviours.

To evaluate our implementations, we used 53 numeric programs from Invel bench-

mark and selected 44 non-terminating6 numeric programs from the 2015 edition of

SV-COMP7. We manually converted those programs to the input formats of out proto-

type implementations (for the prototype of Chapter 4 we converted only 18 programs

out of 44).

It is worth noting one of the first benchmarks for termination and non-termination

provers – the Termination Competition8. Historically, it focuses on termination of

rewriting systems, but since 2009 includes a category for Java bytecode programs, and

since 2014 – for C programs and integer transition systems. We did not use this bench-

mark in our evaluation, but to our knowledge the category of C programs considerably

overlaps with SV-COMP.

Summary of the Results

In Table 5.1, we summarize the experimental results9 and compare our prototype im-

plementations to 3 existing tools that can prove non-termination of programs: AProVE

[Gie+14], Ultimate Büchi Automizer [Hei+16], and HipTNT+ [LQC15]. We did not eval-

uate these tools ourselves, but just repeat the results that we found elsewhere. In par-

4 The conjecture can be summarized as follows. Take a positive integer n. If n is even, divide it by 2. If
n is odd, multiply it by 3 and add 1 (i.e., obtain 3n +1). Repeat this process indefinitely. The conjecture
is that this process always reaches 1. It has been tested for starting values of n up to 260, but no formal
proof is known.

5http://sv-comp.sosy-lab.org/, last accessed in May 2016.
6In the sense that they fail to terminate for some inputs.
7http://sv-comp.sosy-lab.org/2015/, last accessed in May 2016.
8http://termination-portal.org/wiki/Termination_Competition, last accessed in May 2016.
9We give a detailed table in Appendix 5.A.

133

http://sv-comp.sosy-lab.org/
http://sv-comp.sosy-lab.org/2015/
http://termination-portal.org/wiki/Termination_Competition

ticular, for Ultimate Büchi Automizer and HipTNT+, we do not have the results for Invel

programs. For AProVE, we give results for Invel programs as reported by [Bro+11], and

for SV-COMP programs – as reported by the 2015 edition of Termination Competition10

(the version of AProVE that participated in 2015 edition of SV-COMP did not include a

non-termination prover for C programs).

The table should be read as follows. For our prototypes, column “OK” is the num-

ber of programs for which a prototype could find a recurrent set. The sets were later

checked manually for reachability. Most test programs consist of a single loop and a

stem that gives initial values to program variables; and to check reachability, we only

needed to intersect the inferred recurrent set with the produced set of initial states.

Column“M” is the number of programs that originally fall outside of the class that a

prototype can handle, but after we introduced small modifications (e.g., replaced a

non-linear condition with an equivalent linear one), a prototype would find a recur-

rent set. Column “U” is the number of programs for which no recurrent set could be

found due to technical limitations of a prototype. In particular, our implementations

do not support arrays, pointers, recursion, some instances of division and modular

arithmetic, etc. We note that the prototype of Chapter 4 was tested only on 18 of 44

SV-COMP non-terminating programs. The remaining 26 programs contribute to the

“U” column. Column “X” is the number of programs that are formally not affected by

the limitations of the prototypes, but for which no recurrent set could be found.

For the other tools, the columns “OK” and “X” give the number of programs for

which the tools were able, and respectively failed to prove non-termination. Column

“U” gives the number of programs for which we did not find reported results.

Numbers in brackets compare the tools against the prototype of Chapter 3. These

are the numbers of test programs, for which the prototype of Chapter 3 produces the

opposite outcome (fails to find a recurrent set in a program that was marked as non-

terminating and vice versa). For example, for the SV-COMP benchmark, AProVE suc-

cessfully proved non-termination for 30 programs. For 6 of those, the prototype of

Chapter 3 could not find recurrent set. On the other hand, AProVE could not prove

non-termination of 10 programs, and for 6 of those, the prototype of Chapter 3 found

a recurrent set
10http://www.termination-portal.org/wiki/Termination_Competition_2015, last accessed in

May 2016.

134

http://www.termination-portal.org/wiki/Termination_Competition_2015

Table 5.1: Summary of the experimental results.

Chapter 3 Chapter 4 AProVE Ultimate HipTNT+
Tot. OK M U X OK U X OK U X OK X OK X

Invel 53 46 5 2 - 39(+1) 3(+3) 11(+11) 51(+2) - 2(+2) - - - -
SV-C 44 32 - 9 3 10(+1) 3(+3) 31(+20) 30(+6) 4 10(+6) 37(+11) 7(+6) 35(+7) 9(+4)

Note that Table 5.1 should not be interpreted as a direct comparison of our proto-

types and 3 listed tools, as they prove different things about the programs. The pro-

totype of Chapter 3 finds existential recurrent sets; the prototype of Chapter 4 finds

universal recurrent sets; AProVE and Ultimate Büchi Automizer prove the existence of

at least one non-terminating execution; and HipTNT+ to our knowledge proves that

from some initial states, all executions are non-terminating.

Discussion

In numeric benchmarks, the prototype of Chapter 4 is not a good match for the special-

ized numeric tools. A possible explanation is that the prototype lacks two mechanisms

that are important for the analysis of numeric programs: relational reasoning and ex-

trapolation.

The prototype of Chapter 4 uses interval domain that tracks possible ranges of vari-

able values, but not the relations between them, and as a result cannot find recurrent

sets that take the form as in ’If x is greater than y , then the loop will not terminate’. We

found that out of 14 Invel benchmarks, where the prototype could not find a recurrent

set, at least 7 require a relational domain. Also, most numeric analysis based on ab-

stract interpretation use widening to make informed guesses about the values of fixed

points. At the same time, the prototype of Chapter 4 lacks any similar extrapolation

technique and can only produce a recurrent set from abstract states that appear di-

rectly as a result of post-condition operation. Because of that, the analysis cannot han-

dle programs like the one in Example 3.3, where it needs to guess a non-deterministic

choice (of a variable’s value) that causes a program to not terminate.

The prototype of Chapter 3 was implemented after the prototype of Chapter 4 and

addresses both shortcomings. It uses polyhedral domain and employs lower widening

to guess the limits of descending chains. As a result, it performs on par with other nu-

meric tools, and there is no single dominant cause of failure of the analysis (i.e., failure

to find a recurrent set in a program that has non-terminating behaviours). Most fail-

135

1 while (x > 0)

2 x ←−2x +9

Figure 5.3: A program where a recurrent set corresponds to a fixed point of some math-
ematical function.

ures are due to the lack of support of certain language features in the analysis: some

forms of division, arrays, pointers, dynamic memory, and recursion. The former four

are a matter of implementation effort, and they see rather limited use in the bench-

marks. Handling recursion may be much trickier, as we have not yet looked into for-

mulating our analyses for the inter-procedural setting.

Actually, there is a class of non-terminating behaviours that both prototypes do

not handle well. An example of a problematic program is shown in Fig. 5.3. The re-

current set in this example is x = 3, which corresponds to a fixed point of the function

λx.− 2x + 9. If we allow x to be rational and use backward analysis to built for this

program a chain of approximations of a recurrent set, standard widening techniques

fail to find its stable limit (which should be x = 3). Some other tools have dedicated

techniques to handle such cases (e.g., AProVE can detect behaviours where important

variables do not change in a loop iteration). There is hope that in the framework of

abstract interpretation such cases can be handled with specialized fixed point compu-

tation techniques (e.g., with policy iteration [Cos+05]).

136

5.A Detailed Experimental Results

Table 5.2: Detailed experimental results.

Test name Chapter 3 Chapter 4

Invel

alternatingIncr OK OK

alternDiv OK OK

alternDivWide OK OK

alternDivWidening OK X

alternKonv OK OK

complInterv M OK

complInterv2 OK OK

complInterv3 OK OK

complxStruc OK X

convLower OK OK

cousot OK OK

doubleNeg M X

even OK OK

ex01 OK OK

ex02 OK OK

ex03 OK OK

ex04 OK OK

ex05 OK OK

ex06 OK OK

ex07 OK OK

ex08 OK OK

ex09half U X

factorial M X

fib OK X

flip OK OK

137

flip2 OK X

gauss OK OK

gcd OK OK

lcm OK X

marbie1 OK OK

marbie2 OK OK

middle OK X

mirrorInterv OK X

mirrorIntervSim OK OK

moduloLower M OK

moduloUp M OK

narrowing OK OK

narrowKonv OK OK

plait U OK

sunset OK OK

trueDiv OK OK

twoFloatInterv OK OK

upAndDown OK OK

upAndDownIneq OK OK

whileBreak OK U

whileIncr OK OK

whileIncrPart OK OK

whileNested OK U

whileNestedOffset OK U

whilePart OK OK

whileSingle OK OK

whileSum OK X

whileTrue OK OK

138

SV-COMP

Arrays02-EquivalentConstantIndices U U

Division U OK

Madrid OK OK

NonTermination1 OK OK

NonTermination2 OK U

NonTermination3 U U

NonTermination4 OK OK

NonTerminationSimple2 OK OK

NonTerminationSimple3 OK X

NonTerminationSimple4 OK OK

NonTerminationSimple5 OK X

NonTerminationSimple6 OK OK

NonTerminationSimple7 OK OK

NonTerminationSimple8 OK U

NonTerminationSimple9 OK X

RecursiveNonterminating U U

Rotation180 OK OK

WhileTrue OK OK

BradleyMannaSipma-CAV2005-Fig1-modified OK U

ChenCookFuhsNimkarOHearn-TACAS2014-Introduction OK U

ChenFlurMukhopadhyay-SAS2012-Ex2.02 OK U

ChenFlurMukhopadhyay-SAS2012-Ex2.03 OK U

ChenFlurMukhopadhyay-SAS2012-Ex2.04 OK U

ChenFlurMukhopadhyay-SAS2012-Ex2.05 U U

ChenFlurMukhopadhyay-SAS2012-Ex2.06 X U

ChenFlurMukhopadhyay-SAS2012-Ex2.11 OK U

ChenFlurMukhopadhyay-SAS2012-Ex2.12 X U

ChenFlurMukhopadhyay-SAS2012-Ex2.14 X U

ChenFlurMukhopadhyay-SAS2012-Ex2.15 OK U

ChenFlurMukhopadhyay-SAS2012-Ex2.17 OK U

139

ChenFlurMukhopadhyay-SAS2012-Ex3.02 OK U

ChenFlurMukhopadhyay-SAS2012-Ex3.06 OK U

ChenFlurMukhopadhyay-SAS2012-Ex3.08 OK U

ChenFlurMukhopadhyay-SAS2012-Ex4.01 OK U

HarrisLalNoriRajamani-SAS2010-Fig2 OK U

HenzingerJhalaMajumdarSutre-POPL2002-LockingExample OK U

LeikeHeizmann-WST2014-Ex5 OK U

LeikeHeizmann-WST2014-Ex6 OK U

Urban-WST2013-Fig1 OK U

Velroyen OK U

joey U U

PodelskiRybalchenko-2004VMCAI-Ex2-alloca U U

Urban-2013WST-Fig1-alloca U U

Velroyen-alloca U U

140

Chapter 6

Recurrent Sets in Analysis for Sufficient

Pre-Conditions

In this chapter, we demonstrate how the notion of recurrent set can be used in an anal-

ysis for safety and propose a novel approach for computing weakest liberal safe pre-

conditions of programs. Our goal will be to compute (an under-approximation of) the

set of safe states of a program, from which no execution can lead to a failure (such as

violating an assertion, dividing by zero, or dereferencing a dangling-pointer – i.e., an

event that causes program execution to abort and signal an error).

First, let us reiterate and make explicit some observations that we could make over

the course of the previous chapters. Forward static analyses (based on post-condition

computation) usually compute program invariants that hold of executions starting

from given initial conditions, e.g., over-approximations of reachable states. And con-

versely, backward static analyses (based on the computation of pre-conditions or pre-

decessors) for universal properties compute program invariants that ensure given as-

sertions hold of all executions, e.g., under-approximations of safe states or recurrent

sets. Forward analysis of programs has been a notable success, while backward anal-

ysis has seen much less research and is done less frequently1. The standard formula-

tion of forward analyses is based on over-approximating a least fixed point of a trans-

fer function (or over-approximating a solution to a recursive system of equations) that

represents the forward semantics of a program. Conversely, backward analyses for uni-

1There are good examples of numeric backward analyses though. Apart from the analysis of Chap-
ter 3, one notable example of an under-approximate backward analysis is [Min13]. There has also been
some success in inferring piecewise-linear ranking functions with backward analysis [UM15].

141

versal properties usually involve under-approximating a greatest fixed point.

Over-approximating abstractions used by forward analyses are more common and

well-developed than the under-approximations used by backward analyses, and this

was one of the motivations behind the research that we described in Chapters 3 and 4.

Another indirect approach to under-approximation is via over-approximate abstrac-

tion and under-approximate complementation which we will denote with an overbar:

(·). In this setting, if one wants to compute an under-approximation of safe program

states, they instead compute an over-approximation of unsafe states and then take its

complement. However, computing a complement is, in many cases, infeasible or im-

practical (including, for 3-valued structures, separation logic, or polyhedra). In this

chapter, we suggest an approach to backward analysis that replaces complementation

with under-approximate logical subtraction operation (it can also be understood as

and with complement or not implies). In a nutshell, our approach characterizes the

set of safe program states as a least fixed-point above a recurrent set. Soundness of

the abstract computation is then ensured by subtracting an over-approximation of the

unsafe states.

Using subtraction instead of complementation has several advantages. First, it is

easier to define in powerset domains, for which complementation can be hard or im-

practical. Second, as the approximations of safe and unsafe states are the results of

analyzing the same code, they are strongly related and so subtraction may be more

precise than a general under-approximate complementation.

Our approach is not restricted to a specific abstract domain and we use it to analyze

numeric examples (using the domain of intervals) and examples coming from shape

analysis (using the domain of 3-valued structures).

6.1 Background

Let us be given a concrete domain L[and an abstract domain D]. In particular, in

this chapter, we analyze structured programs, and the concrete domain is the domain

of memory states (since we are analysing structured programs, and the locations of a

corresponding unstructured program are implicit in the analysis). The analysis works

in a memory abstract domain, where elements represent sets of memory states. Since

142

the memory abstract domain is the main domain of the analysis in this chapter, we

again denote it by D] instead of Dm.

Complementation

For the abstract domain D], we define complementation to be a function (·) :D] → D]

that for every d ∈D], produces another element with a disjoint concretization:

γ](d)u[γ](d) =⊥[

That is, an abstract element d ∈ D] and its complement d represent disjoint sets of

(program or memory) states; but we do not require thatγ](d)t[γ](l) =>[. For example,

if d ∈ D] over-approximates the unsafe states, then γ(d) under-approximates the safe

states. In a domain that is a power set of a set of atomic elements, we can use standard

set-theoretic complement.

Subtraction

We define subtraction as a function (· − ·):D]×D]→D], such that for d1,d2 ∈D],

γ](d1 −d2) v[γ](d1)

γ](d1 −d2)u[γ](d2) =⊥[

We claim that a useful subtraction is often easier to define than a useful complemen-

tation. For example, given some underlying domain D, we can define a coarse but

still useful subtraction for the power set domain D] = P (D) in the following way: for

D1,D2 ∈D],
D1 −D2 = {d1 ∈ D1| ∀d2 ∈ D2. γ(d1)u[γ(d2) =⊥} (6.1)

In particular, when elements of D represent sets of memory states,

D1 −D2 = {d1 ∈ D1| ∀d2 ∈ D2. γ(d1)∩γ(d2) =∅}

This way, subtraction can be defined, e.g., in the domain of 3-valued structures that

does not readily support complementation. This definition is suitable for numeric do-

mains as well. For example, in the interval domain, with this definition {[1;3], [5;7]}−

143

{[6;8]} = {[1;3]}.

We also note that for every d0 ∈D], the function λd .(d0 −d) is a complementation.

However, for a given d , the accuracy of this complement depends on the actual choice

of d0. One can think that later in this chapter, an over-approximation of the set of

unsafe memory states will be d , and some approximation of the set of safe memory

states will be d0.

Input Language

We define the analysis for a subset of the language of structured programs 2, similar to

the one we used in Chapter 4. We require that in our programs, assumption statements

appear only at the start of a branch or at the entry or exit of a loop (they cannot be used

as normal atomic statements):

C ::= a |C1 ; C2 | ([ϕ] ; C1)+ ([ψ] ; C2) | ([ψ] ; C)∗ ; [ϕ]

and branch and loop guard assumptions are exhaustive: ϕ∨ψ = 1. Additionally (we

did not have this constraint before) we require that there are no nested loops.

Non-Error Memory States

Let us denote the set of non-error memory states by

M\ε =M\ {ε}

Largely, this chapter focuses specifically on non-error memory states. In particular,

when talking about the set of unsafe-memory states, we will be interested in the set

of non-error unsafe memory states. The error memory state itself is trivially unsafe

excluding the error memory state from the computation saves us from needing to rep-

resent it in the abstract domain. Thus, we can think of the concrete domain of our

analysis as L[=P (M\ε).

Example 6.1. The program in Fig. 6.1 will be our running example for this chapter.

Fig. 6.1a shows program text in pseudocode, and Fig. 6.1b shows the corresponding for-

mal structured program (recall that we considered a similar program in Example 4.1).

2The reader is again invited to re-visit Section 2.5 before proceeding.

144

1 while (x ≥ 1) {

2 if (x = 60) {

3 x ← 50;

4 }

5 x ← x +1;

6 if (x = 100) {

7 x ← 0;

8 }

9 }

10 assert(0)

(a) Informal text in pseudocode.

1
(
[x ≥ 1];

2(([x = 60]; 3x ← 50)+ ([x 6= 60];skip));

5x ← x +1;

6(([x = 100]; 7x ← 0)+ ([x 6= 100];skip));)∗; [x ≤ 0];

10assert(0)

(b) Formal structured program.

Figure 6.1: Example program 6.1.

In the formal program, we label the statements that are important for the analysis with

the corresponding line numbers from Fig. 6.1a (like in 3x ← 50).

6.2 Fixpoint Characterizations of Safe and Unsafe States

Let us define two auxiliary transformers, in addition to those defined in (2.2) of Sec-

tion 2.3.1. For a statement C and a set of non-error memory states M ⊆M\ε, let

fail(TM(C)) = {m ∈M\ε | (m,ε) ∈ TM(C)}

pre+fail(TM(C), M) = pre(TM(C), M)∪ fail(TM(C))

That is, fail(TM(C)) is the set of non-error memory states from which C fails.

Lemma 6.1. For a statement C and a set of non-error memory states M ⊆M\ε

wp(TM(C), M) =M\ε \ pre+fail(TM(C),M\ε \ M)

Proof. The proof is a direct calculation based on the definitions. We present it in full in

Appendix 6.A.

For a structured program C , our goal is to compute (an under-approximation of)

wp(TM(C),M\ε) and (an over-approximation of) its complement – fail(TM(C)). If we

145

are interested in termination with specific postcondition θ, we can add an assert(θ)

statement to the end of the program. We characterize these sets (as is standard [Cla77;

Cou81]) as solutions to two functionals P and N that associate a statement C and a

set of states M (resp., V) ⊆ M\ε with a predicate P (C , M), resp., N (C ,V). P (C , M),

which we call the positive side, denotes the states that must either lead to successful

termination in M or cause non-termination. Conversely, N (C ,V), which we call the

negative side, denotes the states that may lead to failure or termination in V . Given a

program statement (where a denotes an atomic statement) and M ,V ⊆M\ε,

P (a, M) = wp(TM(a), M) N (a,V) = pre+fail(TM(a),V)

P ([θ], M) = �¬θ�∪M N ([θ],V) = �θ�∩V

P (assert(θ), M) = �θ�∩M N (assert(θ),V) = �¬θ�∪V

P (C1 ; C2, M) = P (C1,P (C2, M)) N (C1 ; C2,V) = N (C1, N (C2,V))

P (C1 +C2, M) = P (C1, M)∩P (C2, M) N (C1 +C2,V) = N (C1,V)∪N (C2,V)

P (C∗, M) = gfp⊆λX .M ∩P (C , X) N (C∗,V) = lfp⊆λY .V ∪N (C ,Y)

(6.2)

Lemma 6.2. For a statement C and set of states M ⊆M\ε

P (C , M) =M\ε \ N (C ,M\ε \ M)

Proof. The proof is by structural induction. We present it in full in Appendix 6.A.

Lemma 6.3. For a statement C and sets of states M ,V ⊆M\ε,

P (C , M) = wp(TM(C), M)

N (C ,V) = pre+fail(TM(C),V)

Proof. The proof is by structural induction. We present it in full in Appendix 6.A.

P and N may seem redundant as at this point they are essentially shortcuts for wp

and pre+fail. The difference is that P and N are defined by induction over the state-

ment structure (and for loops – via fixed points), and for the standard transformers,

induction and fixed points are hidden in the definition of the transition relation of a

compound statement. Still, we found that P and N benefit the exposition. Later, we

146

will introduce the abstract positive and negative sides P [and N], which will have a

different structure from the standard abstract transformers, but similarly to P and N ,

they will be defined by induction over the statement structure, using limits of ascend-

ing chains for loops. Thus, the reader will be able to draw parallels between the ab-

stract and concrete positive and negative sides (while the association to the standard

transformers becomes less clear in the abstract case).

6.3 Least Fixed-Point Characterization of Safe States

To compute an abstract positive side directly, we would have to under-approximate a

greatest fixed point. As discussed before, this can be problematic since most domains

are geared towards over-approximating least fixed points. Hence, instead, we restate

the problem for loops such that the resulting characterization is based on a least fixed

point. In this section, we focus on the looping statement:

Cloop = ([ψent] ; Cbody)∗ ; [ϕexit] (6.3)

where Cbody is the loop body; ifψent holds, the execution may enter the loop body; and

if ϕexit holds the execution may exit the loop. To simplify the presentation, in what

follows, we assume that the input-output relation of Cbody is directly known. Since (by

our assumption) Cbody is itself loop-free, TM(Cbody) does not induce fixed points, and

the transformers for the loop body can be obtained by combining the transformers for

its sub-statements.

Recurrent Sets

In what follows, will reformulate the characterizations of safe states in terms of least

fixed points above recurrent sets.

For the loop in (6.3), similarly to Chapter 4 (see Section 4.1), let us define a projec-

tion of universal recurrent set on the loop entry. This is a set R∀, s.t.

R∀ ⊆ �¬ϕexit�
∀m ∈ R∀.

(∀m′ ∈M. (m,m′) ∈ TM(Cbody) ⇒ m′ ∈ R∀
) (6.4)

147

Intuitively, if an execution (of the corresponding unstructured program) reaches the

loop entry in one of these memory states, it will stay in the loop forever. In the rest of

the chapter, we will call this set a universal recurrent set of a loop.

Similarly, an existential recurrent set of the loop is a set R∃, s.t.

R∃ ⊆ �ψent�
∀m ∈ R∃. ∃m′ ∈ R∃. (m,m′) ∈ TM(Cbody)

Intuitively, if an execution reaches the loop entry in a memory states m ∈ R∃, it may

stay in the loop forever. Indeed. First, the execution the loop from that state. Second,

from Lemma 2.8, there exists a terminating execution of the loop body that leads to a

memory state m′ that also belongs to R∃. This way, we can construct from m a non-

terminating execution postfix.

Example 6.1 (continued). Recall, that Example 4.1 considers a program that contains

the same loop, as in our running example. For that loop, the analysis of Chapter 4 finds

a universal recurrent set R∀ = (1 ≤ x ≤ 60)∨(x ≥ 101). In our experiments, we also used

the tool E-HSF to find recurrent sets of numeric programs. With three calls to E-HSF

using different recurrent set templates3, we could infer the recurrent set R∀ = (4 ≤ x ≤
60)∨ (x ≥ 100). In the rest of the running example, we will use this recurrent set.

Lemma 6.4. For the loop Cloop in (6.3), s.t.

Cloop = ([ψent] ; Cbody)∗ ; [ϕexit]

and a set of states M ⊆M\ε,

R∀ ⊆ P (Cloop, M)

R∃ \ N (Cloop,M\ε \ M) ⊆ P (Cloop, M)

Proof idea. For R∃, the result follows from Lemma 6.2. For R∀, one can show that a

universal recurrent set is always below P (Cloop,∅) which is below P (Cloop, M) for every

M ⊆M\ε. We present the full proof in Appendix 6.A.
3To our knowledge, E-HSF internally uses Farkas lemma, and it needs the user to provide a template

for the result – a parameterized formula, for which E-HSF will infer the values of the parameters.

148

M\ε

Ploop Nloop

Tmust R∃

(a) Partitioning with existential recurrence.

M\ε

Ploop Nloop

R∀ Tmay

(b) Partitioning with universal recurrence.

Figure 6.2: Partitioning of the states at the loop entry.

Positive Least Fixed Point via Recurrent Sets

We begin with an informal explanation of how we move from a greatest fixed point

formulation to a least fixed point one. Observe that for the loop in (6.3), the positive

and negative sides are characterized as follows. For M ,V ⊆M\ε,

P (Cloop, M) = gfp⊆λX .(�¬ϕexit�∪M)∩ (�¬ψent�∪P (Cbody, X)
)

N (Cloop,V) = lfp⊆λY .�ϕexit�∩V)∪ (�ψent�∩N (Cbody,Y)
) (6.5)

Then, since loops only occur at the top level, a program Cprg that contains the loop

Cloop can be expressed as Cinit ; Cloop ; Crest, where Cinit or Crest may be skip. Let:

(i) Prest = P (Crest,M\ε) be the safe states of the loop’s continuation.

(ii) Nrest = N (Crest,∅) be states that may cause failure of the loop’s continuation. Note

that Nrest =M\ε \ Prest.

(iii) Ploop = P (Cloop,Prest) be the safe states of the loop and its continuation.

(iv) Nloop = N (Cloop, Nrest) be states that may cause failure of the loop or its continua-

tion. Note that Nloop =M\ε \ Ploop.

For the loop in (6.3), Fig. 6.2 shows how the states entering the loop can be partitioned.

In the figure, by Tmust, we denote the states that must cause successful termination of

the loop (in a state belonging to Prest) and by Tmay, we denote states that may cause

successful termination.

Fig. 6.2a shows that the positive side for the loop in (6.3) can be partitioned into the

following two parts:

(i) R∃ \ Nloop – states that may cause non-termination but may not fail;

149

(ii) Tmust – states that must cause successful termination of the loop.

Tmust can be characterized as the least fixed point:

Tmust = lfp⊆λX .(�¬ψent�∩Prest)∪
((

(�ψent�∩Prest)∪�¬ϕexit�
)∩wp(Cbody, X)

)

Intuitively, the states in �¬ψent�∩Prest cause the loop to immediately terminate (such

that the rest of the program does not fail), those in

((�ψent�∩Prest)∪�¬ϕexit�)∩wp(Cloop,�¬ψent�∩Prest)

can make one iteration through the loop, and so on.

Fig. 6.2b shows that the positive side can also be partitioned in another way:

(i) R∀ – states that must cause non-termination of the loop;

(ii) Tmay \ Nloop – states that may cause successful termination but may not fail.

In a way similar to [Cou81], Tmay can be characterized as the least fixed point:

Tmay = lfp⊆λX .(�ϕexit�∩Prest)∪
(�ψent�∩pre(Cbody, X)

)
Intuitively, from states �ϕexit�∩Prest, the loop may immediately terminate in a state safe

for Crest; from states �ψent�∩pre(Cbody,�ϕexit�∩Prest) the loop may make one iteration

and terminate, and so on. From this, it can be shown that

Tmay \ Nloop = lfp⊆λX .
(
(�ϕexit�∩Prest) \ Nloop

)∪ (
(�¬ϕexit�∩pre(Cbody, X)) \ Nloop

)
We replaceψent with ¬ϕexit, since the states in �ψent�∩�ϕexit�∩pre(Cbody, X) are either

already included in the first disjunct (if belonging to Prest), or are unsafe and removed

by subtraction.

Following these least fixed point characterizations, we can re-express the equation

for the positive side of the loop (6.5) using the existential recurrent set R∃ as follows,

where N = N (Cloop,M\ε \ M). For M ⊆M\ε,

P∃(Cloop, M) = lfp⊆λX . (R∃ \ N)∪ (�¬ψent�∩M)

∪
((

(�ψent�∩M)∪�¬ϕexit�
)∩wp(Cbody, X)

) (6.6)

150

or using the universal recurrent set R∀ as follows:

P∀(Cloop, M) = lfp⊆λX .R∀∪
(
(�ϕexit�∩M) \ N

)
∪

((�¬ϕexit�∩pre(Cbody, X)
)

\ N
) (6.7)

Theorem 6.1. The alternative characterizations of the positive side of the loop: (6.6)

and (6.7) – under-approximate the original characterization (6.5). That is, for M ⊆M\ε,

P∃(Cloop, M) ⊆ P (Cloop, M)

P∀(Cloop, M) ⊆ P (Cloop, M)

Proof. We present the proof in Appendix 6.A.

6.4 Approximate Characterizations

In Sections 6.2 and 6.3, we characterized both the negative and the positive sides as

least fixed points. For the negative side, our goal is to over-approximate the least fixed

point, and we can do that using standard tools. That is, we move to the abstract mem-

ory domain D] ordered by v], with the least element ⊥], greatest element >], join t],
widening O] and concretization γ] :D] → P (M\ε). In the previous sections we made

sure that the error memory state appears neither on the positive nor on the negative

side. Thus, we do not need to represent error in the abstract memory domain.

As before, we assume that abstract transformers for loop bodies are given. First, we

assume that we are given over-approximate versions of pre, fail and of an assumption

operation (an operation that approximates intersection with the set of memory states

that satisfy a formula) For a loop-free statement C , d ∈D], and a memory state formula

θ,

γ](pre](C ,d)) ⊇ pre(TM(C),γ](d))

γ](fail](C)) ⊇ fail(TM(C))

pre+fail](C ,d) ⊇ pre+fail(TM(C),d)

γ]([θ,d]]) ⊇ �θ�∩γ](d)

151

We abbreviate [θ,>]]] as [θ]].

Additionally, we assume that we are also given under-approximate versions of meet

u[, wp and of an assumption operation, s.t. for a loop-free statement C , d ,d1,d2 ∈D],
and a memory state formula θ,

γ](d1 u[d2) ⊆ γ](d1)∩γ](d2)

γ](wp[(C ,d)) ⊆ wp(TM(C),d)

γ]([θ,d][) ⊆ �θ�∩γ](d)

We abbreviate [θ,>]][as [θ][.

Later in this section, we will reduce the number of under-approximate operations

that we need and obtain an analysis where subtraction is the only under-approximate

operation that we require.

Approximate Positive and Negative Sides

Negative Side Given a statement C and n ∈D], the approximate negative side N](C ,n),

which over-approximates N (C ,γ](n)), is non-recursively defined by induction over the

statement structure:

N](a,n) = pre+fail](a,n), for a ∈A
N](C1 ; C2,n) = N](C1, N](C2,n))

N](([ϕ];C1)+ ([ψ];C2),n) = [ϕ, N](C1,n)]]t] [ψ, N](C2,n)]]

N](([ψent];Cbody)∗; [ϕexit],n) = the first n j ∈ {ni }i≥0, such that n j+1 v] n j where

n0 = [ϕ,n]] and ni+1 = ni O] (ni t] [ψ, N](Cbody,ni)]])

Example 6.1 (continued). Let us continue with our running example (the program in

Fig. 6.1). First, let us assume that program variables (just x in this case) take integer

values. For the abstract domain, we use disjunctive refinement over intervals allowing

a bounded number of disjuncts4 (e.g., via [BHZ07]). In the examples, by 〈x : [a;b], y :

4This analysis pre-dates the one of Chapter 3 and does not use trace partitioning, although it may
benefit from it. Our prototype implementation for this chapter chooses which disjuncts to merge (to
meet the bound) based on some notion of a distance between the hypercubes (we prefer to not go into
the details here). With trace partitioning, we will merge the disjuncts based on the future paths through
the program which may be more desirable.

152

[c;d]〉 we will denote a singleton abstract state of a program with two variables x and

y , representing the set of concrete states, satisfying (a ≤ x ≤ b)∧ (c ≤ y ≤ d).

For this abstract domain and the formulas, appearing in the program, [· , ·]] and

[· , ·][coincide, and we write [· , ·] to denote either. To emphasize that the analysis can

produce useful results even when using a coarse subtraction function, we use subtrac-

tion as defined in (6.1). That is, we just drop from the positive side those disjuncts

that have a non-empty intersection with the negative side. For example, {〈x : [1;3]〉,〈x :

[5;7]〉}−〈x : [6;8]〉 = 〈x : [1;3]〉. The analysis is performed mechanically by a prototype

tool that we have implemented.

To simplify the presentation, in this example, we bound the number of disjuncts

in a domain element by 2. Also to simplify the presentation, we omit the]- and [-

superscripts, and write, e.g., pre+fail for pre+fail]. For a statement labeled with i , we

write N j
i to denote the result of the j -th step of the computation of its negative side,

and Ni to denote the computed value (similarly, for P).

Let us start with the analysis of the negative side, going backwards from the end of

the program. For the final statement,

N 1
10 = pre+fail(assert(0),⊥) =>

then, we proceed to the first approximation for the loop (for clarity, we compute pre of

the body in steps),

N 1
1 = [x ≤ 0, N 1

10] = 〈x : (−∞;0]〉
N 1

7 = pre+fail(x ← 0, N 1
1) =>

N 1
6 = [x = 100, N 1

7]t [x 6= 100, N 1
1] = {〈x : (−∞;0]〉,〈x : [100]〉}

N 1
5 = pre+fail(x ← x +1, N 1

6) = {〈x : (−∞;−1]〉,〈x : [99]〉}
N 1

3 = pre+fail(x ← 50, N 1
5) =⊥

N 1
2 = [x = 60, N 1

3]t [x 6= 60, N 1
5] = {〈x : (−∞;−1]〉,〈x : [99]〉}

N 2
1 = N 1

1 t [x ≥ 1, N 1
2] = {〈x : (−∞;0]〉,〈x : [99]〉}

then, repeating the same similar sequence of steps for the second time gives

N 2
1 = N 2

1 t [x ≥ 1, N 2
2] = {〈x : (−∞;0]〉,〈x : [98,99]〉}

153

at which point we detect an unstable bound. The choice of widening strategy is not

our focus here, and for demonstration purposes, we proceed without widening, which

allows to discover the stable bound of 61. In a real-world tool, to retain precision, some

form of widening up to [HPR97] or landmarks [SK06] could be used. Thus, we take

N1 = {〈x : (−∞;0]〉,〈x : [61;99]〉}
N2 = {〈x : (−∞;−1]〉,〈x : [61;99]〉}
N3 =⊥
N5 = {〈x : (−∞;−1]〉,〈x : [61;99]〉}
N6 = {〈x : (−∞;0]〉,〈x : [61;100]〉}
N7 =>
N10 =>

Positive Side For a statement C and a pair of disjoint elements p,n ∈D] (i.e., γ](p)∩
γ](n) =∅), we define the approximate positive side P [(C , p,n), which under-approximates

P (C ,M\ε \γ](n)). We define P [(C , p,n) mutually with an auxiliary Q\(C , p,n) by induc-

tion on the structure of C . Intuitively, Q\(C , p,n) is an abstraction of P (C ,γ](p)), which

may not be under-approximate due to the use of over-approximate operations (e.g.,

join and widening). Also, note how n is used to represent the complement of the set of

interest.

For non-looping statements, P [and Q\ are non-recursively defined as follows:

P [(C , p,n) =Q\(C , p,n)−N](C ,n)

Q\(a, p,n) = wp[(a, p), for a ∈A
Q\(C1 ; C2, p,n) = P [(C1,P [(C2, p,n), N](C2,n))

Q\(([ϕ];C1)+ ([ψ];C2), p,n) = (
P [(C1, p,n)u[P [(C2, p,n)

)t]
[¬ψ,P [(C1, p,n)][t] [¬ϕ,P [(C2, p,n)][

For a loop Cloop = ([ψent];Cbody)∗; [ϕexit], let us define a sequence {qi }i≥0 of approx-

imants to Q\(Cloop, p,n), where qi+1 = qi O] (qi t]τ(qi)), and the initial point q0 and the

transformer τ are defined following either the characterization (6.6) using an approxi-

154

mation R\
∃ ∈D] of an existential recurrent set of the loop:

q0 =
(
R\
∃−N](Cloop,n)

)t] [¬ψ, p][

τ(qi) = (
[ψent, p][u]wp[(Cbody, qi)

)t] [¬ϕexit,wp[(Cbody, qi)][

or following (6.7) using an approximation R\
∀ ∈D] of a universal recurrent set:

q0 = R\
∀t]

(
[ϕexit, p][−N](Cloop,n)

)
τ(qi) = (

[¬ϕexit,pre](Cbody, qi)][−N](Cloop,n)
)

As for loop-free commands, Q\ can be computed first, and P [defined using the result.

That is, we can define Q\(Cloop, p,n) = q j , where q j is the first element such that q j+1 v]

q j , and then define P [(Cloop, p,n) =Q\(Cloop, p,n)−N](Cloop,n).

Alternatively, P [and Q\ can be computed simultaneously by defining a sequence

{pi }i≥0 of safe under-approximants of P [(Cloop, p,n), where p0 = q0 −N](Cloop,n) and

pi+1 = (pi t] (pi O] τ(qi)))−N](Cloop,n). Then P [(Cloop, p,n) = p j , where p j is the first

element such that q j+1 v] q j or p j+1 6A] p j . In this case, we may obtain a sound P [be-

fore the auxiliary Q\ has stabilized. While we have not yet done rigorous experimental

validation, we prefer this approach when dealing with coarse subtraction.

When analyzing a top-level program Cprg, the analysis starts with N](Cprg,⊥]) and

precomputes N] (an over-approximation of unsafe states) for all statements of the pro-

gram. Then it proceeds to compute P [(Cprg,>],⊥]) (an under-approximation of safe

input states) reusing the precomputed results for N].

We are using over-approximate join and widening on the positive side, and Q\ may

not under-approximate the positive side of the concrete characterization. Widening

allows the ascending chain to converge, and subtraction of the negative side ensures

soundness of P [. In other words, the concrete characterizations (6.6) and (6.7) are used

to guide the definition of the approximate characterizations, but soundness is argued

directly rather than by using (6.6) and (6.7) as an intermediate step.

Theorem 6.2. For a statement C and p,n ∈D] s.t. γ](p)∩γ](n) =∅

N](C ,n) ⊇ N (C ,γ](n))

P [(C , p,n) ⊆ P (C ,M\ε \γ](n))

155

As a result, for a top-level program Cprg,

γ](N](Cprg,⊥])) ⊇ N (Cprg,∅)

(i.e., it over-approximates input states that may lead to failure), and

γ](P [(Cprg,>],⊥])) ⊆ P (Cprg,M\ε)

(i.e., it under-approximates safe input states)

Proof idea. The argument for N] proceeds in a standard way for over-approximate

computations. Soundness for P [then follows due to the use of subtraction. We give

the full proof in Appendix 6.A.

Optimizations of Constraints

Use of over-approximate operations Since we are subtracting N](C ,n) anyway, we

can relax the right-hand side of the definition of Q\(C , p,n) without losing soundness.

Specifically, we can replace under-approximating and must- operations by their over-

approximating and may- counterparts. This way, we obtain an analysis where subtrac-

tion is the only under-approximating operation.

(i) For a loop-free statement C , use pre](C , p) in place of wp[(C , p) (note that we al-

ready use pre] on the positive side for loop bodies when starting from a universal

recurrent set). This can be handy, e.g., for power set domains where pre] (un-

like wp[) can be applied element-wise. Also, these transformers may coincide for

deterministic loop-free statements (if the abstraction is precise enough). Later,

when discussing Example 6.2, we note some implications of this substitution.

(ii) For a memory state formula θ, use [θ, ·]] in place of [θ, ·][. Actually, for some com-

binations of an abstract domain and a language of formulas, these transformers

coincide. For example, in a polyhedral domain, conjunctions of linear constraints

have precise representations as domain elements.

(iii) For branching statements, use [ϕ,P [(C1, p,n)]]t] [ψ,P [(C2, p,n)]] in place of the

original expression.

(iv) In the definition of Q\, an over-approximate meet operation u] suffices.

156

The result of these relaxations is:

Q\(a, p,n) = pre](a, p), for a ∈A
Q\(C1 ; C2, p,n) = P [(C1,P [(C2, p,n), N](C2,n))

Q\(([ϕ];C1)+ ([ψ];C2), p,n) = [ϕ,P [(C1, p,n)]]t] [ψ,P [(C2, p,n)]]

q0 =
(
R\
∃−N](Cloop,n)

)t] [¬ψent, p]]

τ(qi) = (
[ψent, p]]u]pre](Cbody, qi)

)t] [¬ϕexit,pre](Cbody, qi)]]

or

q0 = R\
∀t]

(
[ϕexit, p]]−N](Cloop,n)

)
τ(qi) = (

[¬ϕexit,pre](Cbody, qi)]]−N](Cloop,n)
)

No Subtraction for Q\ For a similar reason, subtraction can be removed from the

characterization of Q\ without affecting soundness of P [.

Bound on the Positive Side Another observation is that for a loop Cloop as in (6.3), the

positive side P (Cloop, M) is bounded by �¬ϕexit�tM , as can be seen from the character-

ization (6.5). This can be incorporated into a specialized definition for loops, defining

P [(Cloop, p,n) = (
Q\(Cloop, p,n)t] ([¬ϕexit]] t] p)

)− N](Cloop,n) or by performing the

meet during computation of Q\ by defining qi+1 =
(
qi O] (qi t]τ(qi))

)u] ([¬ϕexit]]t]p).

Example 6.1 (continued). Let us now show how the computation of the positive side

works for our running example. Recall that earlier we decided to initialize the compu-

tation of the positive side with a universal recurrent set R∀ = {〈x : [4;60]〉,〈x : [100;+∞)〉}.

In this example, universal recurrence and safety coincide, and our analysis will be able

to improve the result by showing that the states in 〈x : [1;3]〉 are also safe. Since we are

using a power set domain, we choose to use pre instead of wp for the all statements,

not just for the loop (where we need to use it due to using a universal recurrent set).

We start with

P 1
10 = pre(assert(0),>)−N10 =⊥−N10 =⊥

157

then proceed to the loop (again, computing pre of its body in steps),

P 1
1 = R∀t [x ≤ 0,P 1

10]−N1 = {〈x : [4;60]〉,〈x : [100;+∞)〉}
P 1

7 = pre(x ← 0,P 1
1)−N7 =⊥

P 1
6 = [x = 100,P 1

7]t [x 6= 100,P 1
1]−N6

= {〈x : [4 : 60]〉,〈x : [101;+∞)〉}−N6

= {〈x : [4 : 60]〉,〈x : [101;+∞)〉}
P 1

5 = pre(x ← x +1,P 1
6)−N5 = {〈x : [3 : 59]〉,〈x : [100;+∞)〉}

P 1
3 = pre(x ← 50,P 1

5)−N3 =>
P 1

2 = [x = 60,P 1
3]t [x 6= 60,P 1

5]−N2

= {〈x : [3;59]〉,〈x : [60]〉,〈x : [100;+∞)〉}−N2

= {〈x : [3;60]〉,〈x : [100;+∞)〉}
P 2

1 = (P 1
1 t ([x ≥ 1,P 1

2]−N2))−N2 = {〈x : [3;60]〉,〈x : [100;+∞)〉}

at which point we detect an unstable bound, but we again proceed without widening

and are able to discover the stable bound of 1. Also note that, P1 is bounded by P10 t
[¬(x ≤ 0)] = 〈x : [1;+∞)〉. This bound could be used to improve the result of widening.

Thus, we take

P1 = {〈x : [1;60]〉,〈x : [100;+∞)]〉}
P2 = {〈x : [0;60]〉,〈x : [100;+∞)]〉}
P3 =>
P5 = {〈x : [0;59]〉,〈x : [100;+∞)]〉}
P6 = {〈x : [1;60]〉,〈x : [101;+∞)]〉}
P7 =⊥
P10 =⊥

Thus, in this example, our analysis was able to prove that initial states {〈x : [1;60]〉,〈x :

[100;+∞)]〉} are safe, which is a slight improvement over the output of E-HSF.

158

6.4.1 Approximating a Recurrent Set

When approximating the positive side for a loop, the computation is initialized with an

approximation of a recurrent set. Our analysis is able to start with either an existential

or a universal recurrent set depending on what search procedure is available for the

domain. The instantiation of our approach for numerical domains may use the algo-

rithms of Chapters 3 and 45. The instantiation for shape analysis with 3-valued logic

may use the algorithm of Chapter 4. Normally, the search procedures are incomplete:

the returned sets are under-approximate, and the search itself might not terminate

(we assume the use of timeouts in this case). This incompleteness leaves room for our

analysis to improve the approximation. For example, sometimes a solver produces a

universal recurrent set that is closed under forward transformers, but is not closed un-

der backward ones. In such cases, our analysis can produce a larger recurrent set.

6.5 Examples

In this section, we demonstrate our approach on several additional examples: first for

a numeric domain, and then for the shape analysis domain of 3-valued structures. We

note that numeric programs are considered here solely for the purpose of clarity of

explanation, since the domain is likely to be familiar to most readers. We do not claim

novel results specifically for the analysis of numeric programs, although we note that

our approach may be able to complement existing tools.

Example 6.1 aims at describing steps of the analysis in detail. Example 6.2 includes

a pragmatic discussion on using pre] on the positive side. Examples 6.3 and 6.4 con-

sider programs from a shape analysis domain.

Example 6.2. In this example, we consider the program in Fig. 6.3. In the program, ∗
stands for a value non-deterministically chosen at runtime. All the assumptions made

for Example 6.1 are in effect for this one as well, except that we increase the bound on

the size of the domain element to 4.
5For numeric programs, the original implementation of the analysis of this chapter was using the tool

E-HSF [BPR13] that is capable of approximating both existential and universal recurrence. For heap-
manipulating programs, we used a prototype procedure that was, in a way, a predecessor of the analysis
of Chapter 4.

159

1 while (x ≥ 1) {

2 if (x ≤ 99) {

3 if (y ≤ 0∧∗) {

4

5 assert(0)

6

7 }

8 if (∗) {

9 x ←−1

10 }

11 }

12 x ← x +1

13 }

14 assert(y 6= 0)

(a) Informal program in pseudocode.

1([x ≥ 1];

2(([x ≤ 99];

3(([y ≤ 0]; 4(5assert(0)+skip))

+ ([y ≥ 1];skip));

8(9x ←−1+skip)

)+ ([x ≥ 100];skip));

12x ← x +1

)∗; [x ≤ 0];

14assert(y 6= 0)

(b) Formal structured program.

Figure 6.3: Example program 6.2.

Again, we start with the negative side. For the final location,

N 1
14 = pre+fail(assert(y 6= 0),⊥) = 〈x : >, y : [0]〉

then, proceed to the loop

N 1
1 = [x ≤ 0, N 1

14] = 〈x : (−∞,0], y : [0]〉
N 1

12 = pre+fail(x ← x +1, N 1
1) = 〈x : (−∞;−1], y : [0]〉

N 1
9 = pre+fail(x ←−1, N 1

12) = 〈x : >, y : [0]〉
N 1

8 = N 1
9 tN 1

12 = 〈x : >, y : [0]〉
N 1

5 =>
N 1

3 = [y ≤ 0, N 1
5]tN 1

8 = 〈x : >, y : (−∞;0]〉
N 1

2 = [x ≤ 99, N 1
3]t [x ≥ 100, N 1

12] = 〈x : (−∞;99], y : (−∞;0]〉
N 2

1 = N 1
1 t [x ≥ 1, N 1

2] = {〈x : (−∞,0], y : [0]〉,〈x : [1;99], y : (−∞;0]〉}
repeating the steps gives

N 3
1 = {〈x : (−∞,0], y : [0]〉,〈x : [1;99], y : (−∞;0]〉} = N 2

1

160

Thus, we take

N1 = {〈x : (−∞,0], y : [0]〉,〈x : [1;99], y : (−∞;0]〉}
N2 = 〈x : (−∞;99], y : (−∞;0]〉
N3 = 〈x : >, y : (−∞;0]〉
N5 =>
N8 = {〈x : >, y : [0]〉,〈x : [0;98], y : (−∞;0]〉}
N9 = 〈x : >, y : [0]〉
N12 = {〈x : (−∞;0], y : [0]〉,〈x : [0;98], y : (−∞;0]〉}
N14 = 〈x : >; y : [0]〉

To initialize the positive side, we can use a universal recurrent set produced by the

procedure of Chapter 4. The result is R∀ = 〈x : [100;+∞), y : >〉.
Again, we choose to use pre for all the computation steps on the positive side.

P 1
14 = pre(assert(y 6= 0),>)−N14 = {〈x : >, y : (−∞;−1]〉,〈x : >, y : [1;+∞)〉}

P 1
1 = R∀u (Dx≤0 uP 1

15)−N 1
1 =

{〈x : [100;+∞), y : >〉,〈x : (−∞;0], y : (−∞;−1]〉,〈x : (−∞;0], y : [1;+∞)〉}

Before we proceed to the loop body, we need to make a remark on using the combi-

nation of pre and subtraction on the positive side. When an abstract program is non-

deterministic (because of non-determinism of a concrete program or coarseness of

abstraction), pre is often larger than wp, and coarse subtraction can turn it into ⊥.

Consider a fragment of the current example in Fig. 6.4a. The trivial translation to our

input language is shown in Fig. 6.4b: having y ≤ 0 allows to execute the assertion (and

fail), but it is always possible to skip the assertion. If we try to analyze the fragment of

Fig. 6.4b in isolation, using pre for the positive side, we get the following

N5 =>
P5 =⊥
N3 = [y ≤ 0, N5]t (>u⊥) = 〈y : (−∞;0]〉

161

P3 = [y ≤ 0,P5]t (>uPω)−N3 =>−N3

If we use a course subtraction of (6.1), we get

P3 =⊥

That is, in this case, we lose all of the positive side, even though there are input states

for which the program fragment is safe. The problem here is that the precondition

for safety (y ≥ 1) never had a chance to materialize, and (because of the use of pre) >
easily got into P3. To work around this in our simple example, we use the following

tricks6. First, we translate conditions with ∗ into nested conditions, as in Fig. 6.4c or

6.4d. This allows for [y ≥ 1] to appear in the equations. Second, for some steps of the

computation, we allow for a domain element D to be redundant, i.e., to contain such

disjuncts d1,d2 ∈ D that d1 v d2. Note that widening operators for power sets may

require that the domain elements are not redundant [BHZ07], and we would have to

remove redundancy before applying widening. Then, from the fragment in Fig. 6.4d,

we get the following (for Fig. 6.4c, the steps are almost the same):

N5 =>
P5 =⊥
N4 = ([y ≤ 0, N5]t [y ≥ 1,⊥]) = 〈y : (−∞;0]〉
P4 = ([y ≤ 0,P5]t [y ≥ 1,>])−N4 = 〈y : [1;+∞)〉
N3 =⊥tN4 = 〈y : (−∞;0]〉
P3 = (>tP4)−N3 = (>t〈y : [1;+∞)〉)−N3 = 〈y : [1;+∞)〉

This way, we were able to show that the fragment is safe for the states in 〈y : [1;+∞)〉.
Equipped with these tricks, we return to the example (actually, here we prefer the

scheme in Fig. 6.4c to handle the condition in line 3). Recall that

P 1
1 = {〈x : [100;+∞), y : >〉,〈x : (−∞;0], y : (−∞;−1]〉,

〈x : (−∞;0], y : [1;+∞)〉}
6If we extend the prototype with trace partitioning, we will still benefit from spliting the conditions,

but keeping reduntant elements is useful exactly because we lack trace partitioning here.

162

3 if (y ≤ 0∧∗) {

4

5 assert(0)

6

7 }

(a) Informal program.

3(([y ≤ 0]; 5assert(0))+skip)

(b) Single branching.

3(([y ≤ 0]; 4(5assert(0)+skip))

+([y ≥ 1];skip))

(c) Nested branching (1).

3(4(([y ≤ 0]; 5assert(0))+ ([y ≥ 1];skip))

+skip)

(d) Nested branching (2).

Figure 6.4: Representations of non-deterministic branching.

then

P 1
12 = {〈x : [99;+∞), y : >〉,〈x : (−∞;−1], y : (−∞;−1]〉,

〈x : (−∞;−1], y : [1;+∞)〉}
P 1

9 = {〈x : >, y : (−∞;−1]〉,〈x : >, y : [1;+∞)〉}
P 1

8 = 〈x : >, y : [1;+∞)〉
P 1

5 = ⊥
P 1

3 = 〈x : >, y : [1;+∞)〉
P 1

2 = {〈x : (−∞;99], y : [1;+∞)〉,〈x : [100;+∞), y : >〉}
P 2

1 = {〈x : [100;+∞), y : >〉,〈x : (−∞;0], y : (−∞;−1]〉,
〈x : (−∞;0], y : [1;+∞)〉,〈x : [1;99], y : [1;+∞)〉}

then, if we continue in the same way, we get

P 3
1 = P 2

1

thus, we take

P1 = {〈x : [100;+∞), y : >〉,〈x : (−∞;0], y : (−∞;−1]〉,
〈x : (−∞;0], y : [1;+∞)〉,〈x : [1;99], y : [1;+∞)〉}

Which is the final result.

163

1 while (x 6= null) {

2 x ← (x → n)

3 }

Figure 6.5: Example program 6.3.

1 while (x 6= null) {

2 x ← (x → n)

3 x ← (x → n)

4 }

Figure 6.6: Example program 6.4.

Shape Analysis Examples

In what follows, we demonstrate our approach for a shape analysis domain. We treat

two simple examples using the domain of 3-valued structures, and we claim that our

approach provides a viable decomposition of backward analysis for this domain and

probably for some other shape analysis domains.

In Appendix 2.B, we gave a brief description of shape analysis with 3-valued logic

that is sufficient to understand the examples. For more information on shape analysis

with 3-valued logic, please refer to Sagiv et al. [SRW02] and related papers [RSL10;

Arn+06; LMS04].

Example 6.3. In this example, we consider the program in Fig. 6.5 that traverses its

input structure in a loop.

For this program, we make the analysis track an additional predicate hn that states

whether the cell has a successor via n-edge. To find a recurrent set, we use the proce-

dure of Chapter 4 that reports that the loop does not terminate when given a cyclic list

as input. The output of the procedure consists of various cyclic lists shapes, and one of

them is shown in Fig. 6.77.

The computation of the positive side will be initialized with this recurrent set, plus

the set of structures that immediately exit the loop (without visiting the body), i.e.,

structures where x does not point to a node. Then, the analysis summarizes all the

predecessors of such structures. This results in a number of additional shapes, one of

which is shown in Fig. 6.8 and represents an acyclic list of the length 3 or more.

Eventually, the analysis identifies that both cyclic, lasso-shaped, and acyclic lists

are safe inputs for the program.

7In the figure, predicate rx denotes reachability via n-edges from the variable x. Binary reachability
is not shown for clarity.

164

x
rx ,
hn

rx ,
hn

n

n

n

Figure 6.7: A lasso-shaped list. Ex-
ample of a safe structure causing non-
termination of Example 6.3.

x
rx ,
hn

rx ,
hn

n

n

rx
n

Figure 6.8: A non-cyclic list. Example of a
safe structure leading to successful termi-
nation of Example 6.3.

Example 6.4. In this example, we consider the program in Fig. 6.6. In this program,

the loop body makes two steps through the list instead of just one. While the first step

(at line 2) is still guarded by the loop condition, the second step (at line 3) is a source of

failure. That is, the program fails when given a list of odd length as an input. The ab-

straction that we employ is actually not expressive enough to encode such constraints

on the length of the list. For example, the produced summary of the negative side (for

location 1) contains, e.g., the structure in Fig. 6.8 that represents lists of length just 3 or

more, both even and odd As a result, the analysis is able to show that cyclic lists repre-

sent safe inputs (as cyclic lists will not appear on the negative side), but the only acyclic

list that the analysis identifies as safe is the list of length exactly two.

In this example, we can see precision loss resulting from using too coarse abstrac-

tion. In this example, the analysis was not able to summarize the precondition for

successful termination (as expected), but still was able to produce the summary of the

states that cause non-termination without failure.

6.6 Related Work

In [LA+07], a backward shape analysis with 3-valued logic is presented that relies on

the correspondence between 3-valued structures and first-order formulas [Yor+07]. It

finds an over-approximation of states that may lead to failure, and then (as 3-valued

structures do not readily support complementation) the structures are translated to

an equivalent quantified first-order formula, which is then negated. This corresponds

to approximating the negative side in our approach and then taking the complement,

with the exception that the result is not represented as an element of the abstract do-

main (though, at least in principle, one could use the symbolic abstraction α̂ of [RSY04]

to map back to the abstract domain).

165

For shape analysis with separation logic, preconditions can be inferred using a

form of abductive reasoning called bi-abduction [Cal+11]. The analysis uses an over-

approximate abstraction, and it includes a filtering step that checks generated precon-

ditions (by computing their respective postconditions) and discards the unsound ones.

The purpose of the filtering step – keeping soundness of a precondition produced with

over-approximate abstraction – is similar to our use of the negative side.

For numeric programs, the problem of finding preconditions for safety has seen

some attention lately.

In [PC13], a numeric program analysis is presented that is based primarily on over-

approximation. It simultaneously computes the representations of two sets: of states

that may lead to successful termination, and of states that may lead to failure. Then,

meet and generic negation are used to produce representations of states that cannot

fail, states that must fail, etc.

An under-approximating backward analysis for the polyhedral domain is presented

in [Min13]. The analysis defines the appropriate under-approximate abstract trans-

formers and to ensure termination, proposes a lower widening based on the generator

representation of polyhedra.

With E-HSF [BPR13], the search for preconditions can be formulated as solving ∀∃
quantified Horn clauses extended with well-foundedness conditions.

6.7 Chapter Conclusion

In this Chapter, we observed how the notion of recurrent set can be applied in an anal-

ysis that infers sufficient pre-conditions for safety. More specifically, we decomposed

backward analysis into multiple sub-problems: the computations of the positive (po-

tentially safe states) and the negative (definitely unsafe states) sides, and taking differ-

ence of the results.

On one hand, this decomposition allowed us to implement backward analysis for

the domain of 3-valued structures. On the other hand, we demonstrated how we could

start with a problem that has a greatest fixed point formulation and re-state it as a least

fixed point above a recurrent set. In a sense, we replaced the approximation of a more

general greatest fixed point of backward transformers with the approximation of an ar-

166

guably less general property – a recurrent set, for which, as we saw in Chapters 3 and 4,

we can come up with specialized procedures, not necessary based on backward analy-

sis. In future, this might provide a recipe for using abstract interpretation in verification

of more complicated properties (e.g., for temporal model checking of programs).

167

6.A Omitted Proofs

Lemma 6.1. For a statement C and a set of non-error memory states M ⊆M\ε

wp(TM(C), M) =M\ε \ pre+fail(TM(C),M\ε \ M)

Proof. First, note that pre-condition and predecessors of a set of non-error memory

states is also non-error. Then,

M\ε \ pre+fail(TM(C),M\ε \ M)

=M\ε \
(

pre(TM(C),M\ε \ M)∪ fail(TM(C))
)

=M\ε \ ({m ∈M\ε | ∃m′ ∈M\ε \ M . (m,m′) ∈ TM(C)}∪ {m ∈M\ε | (m,ε) ∈ TM(C)})

=M\ε \ {m ∈M\ε | ∃m′ ∈ (M\ε \ M)∪ {ε}. (m,m′) ∈ TM(C)}

= {m ∈M\ε | Øm′ ∈ (M\ε \ M)∪ {ε}. (m,m′) ∈ TM(C)}

= {m ∈M\ε | ∀m′ ∈ (M\ε \ M)∪ {ε}. (m,m′) ∉ TM(C)}

= {m ∈M\ε | ∀m′ ∈M. (m,m′) ∈ TM(C) ⇒ m′ ∈ M }

= wp(TM(C), M)

Lemma 6.2. For a statement C and set of states M ⊆M\ε

P (C , M) =M\ε \ N (C ,M\ε \ M)

Proof. We proceed by induction on the structure of C . For atomic statements, the re-

sult follows from Lemma 6.1. For sequential composition and branch, the result fol-

lows directly from the induction hypothesis.

It remains to consider loops C∗. Let A be a fixed point of λX .P (C , X) ∩ M , i.e.,

A = P (C , A)∩M . Let B =M\ε \ A,

B =M\ε \
(
P (C ,M\ε \ B)∩M

)
= (
M\ε \ P (C ,M\ε \ B)

)∪ (M\ε \ M)

168

by structural induction hypothesis

= N (C ,B)∪ (M\ε \ M)

That is, B is a fixed point of λY .N (C ,Y)∪ (M\ε \ M).

A similar argument shows that if B is a fixed point of λY .N (C ,Y)∪ (M\ε \ M), then

M\ε \ B is a fixed point of λX .P (C , X)∩M .

Let A′ = P (C∗, M) = gfp⊆λX .P (C , X)∩M . This means, M\ε \ A′ is a fixed point of

λY .N (C ,Y)∪ (M\ε \ M). Let B ′ = N (C∗,M\ε \ M) = lfp⊆λY .N (C ,Y)∪ (M\ε \ M); hence

M\ε \ B ′ is a fixed point of λX .P (C , X)∩ M . Since A′ is maximal, A′ ⊇M\ε \ B ′. Since

B ′ is minimal, B ′ ⊆M\ε \ A′, and A′ ⊆M\ε \ B ′. Hence, A′ =M\ε \ B ′, i.e., P (C∗, M) =
M\ε \ N (C∗,M\ε \ M).

Lemma 6.3. For a statement C and sets of states M ,V ⊆M\ε,

P (C , M) = wp(TM(C), M)

N (C ,V) = pre+fail(TM(C),V)

Proof. It is enough to prove the Lemma for one (e.g., negative) side, then for the other

side, it follows from Lemmas 6.1 and 6.2.

For the negative side, the proof proceeds by structural induction. For the atomic

statements, sequential composition and branching, it directly follows from the defini-

tion of pre+fail.

First, note that from the definition of pre+fail we can derive that,

pre+fail(TM(C2)◦TM(C1),V) = pre+fail(TM(C1),pre+fail(TM(C2),V))

and therefore, for every i , we can show by induction on i that

pre+fail(TM(C)i ,V) = (
λX .pre+fail(TM(C), X)

)i V

For a loop, C∗ and a set of states V ⊆M\ε,

N (C∗,V)

169

by definition

= lfp⊆λY .N (C ,Y)∪V

by structural induction hypothesis

= lfp⊆λY .pre+fail(TM(C),Y)∪V

by Kleene’s Fixed Point Theorem

=
∞⋃

i=0
(λY .pre+fail(TM(C),Y)∪V)i ∅

=
∞⋃

i=0
(λY .pre+fail(TM(C),Y))i V

=
∞⋃

i=0
pre+fail(TM(C)i ,V)

since pre+fail preserves upper bounds in its first argument

= pre+fail(
∞⋃

i=0
TM(C)i ,V)

by Kleene’s Fixed Point Theorem

= pre+fail(lfp⊆λY .∆M∪ (Y ◦TM(C)),V)

= pre+fail(TM(C∗),V)

Lemma 6.4. For the loop Cloop in (6.3), s.t.

Cloop = ([ψent] ; Cbody)∗ ; [ϕexit]

and a set of states M ⊆M\ε,

R∀ ⊆ P (Cloop, M)

R∃ \ N (Cloop,M\ε \ M) ⊆ P (Cloop, M)

Proof. The result for the existential recurrent set R∃ follows from Lemma 6.2 indepen-

dently of the definition of R∃. We now prove the result for the universal recurrent set.

Let R = P (Cloop,∅), then following the definition of the positive side of a loop,

R = gfp⊆λX .
(�¬ψent�∪P (Cbody, X)

)∩�¬ϕexit�

170

using �¬ϕexit�∩�¬ψent� =∅, and Lemma 6.3

= gfp⊆λX .wp(Cbody, X)∩�¬ϕexit�

Since P is monotone in its second argument (as wp is), then for every M it holds that

R ⊆ P (Cloop, M).

From the definition of a universal recurrent set of a loop R∀, (6.4),

R∀ ⊆ �¬ϕexit�∧R∀ ⊆ wp(Cbody,R∀)

That is,

R∀ ⊆ wp(Cbody,R∀)∩�¬ϕexit�
From Tarski’s Fixed Point Theorem

R∀ ⊆ gfp⊆λX .wp(Cbody, X)∩�¬ϕexit�
That is, for every M ⊆M\ε

R∀ ⊆ R ⊆ P (Cloop, M)

Theorem 6.1. The alternative characterizations of the positive side of the loop: (6.6)

and (6.7) – under-approximate the original characterization (6.5). That is, for M ⊆M\ε,

P∃(Cloop, M) ⊆ P (Cloop, M)

P∀(Cloop, M) ⊆ P (Cloop, M)

Proof. Let

Cloop = ([ψent] ; Cbody)∗ ; [ϕexit]

be a loop as in (6.3). Let R∃ be its existential recurrent set; Prest be a set of states; Nrest =
M\ε \ Prest; Ploop = P (Cloop,Prest); Nloop = N (Cloop, Nrest) =M\ε \ Ploop. Note that Ploop

and Nloop are the original characterizations of the positive and negative sides as in (6.5).

Then, it holds that

�¬ψent�∩Prest ⊆ Ploop (6.8)

R∃ \ Nloop ⊆ Ploop (6.9)

For M ⊆ Ploop we have wp(Cbody, M)∩ (�¬ϕexit�∪ (�ψent�∩Prest)) ⊆ Ploop (6.10)

171

Equation (6.8) can be seen from (6.5) and describes the states that immediately

cause successful termination of the loop. Equation (6.9) is due to Lemma 6.4. Equation

(6.10) is due to the following.

Ploop = gfp⊆λX .
(�¬ψent�∪P (Cbody, X)

)∩ (�¬ϕexit�∪Prest)

Then

Ploop = (�¬ψent�∪P (Cbody,Ploop)
)∩ (�¬ϕexit�∪Prest)

That is, if M ⊆ Ploop then (�¬ψent�∪wp(Cbody, M))∩ (�¬ϕexit�∪Prest) ⊆ Ploop.

Now, consider the expression

(�¬ψent�∪wp(Cbody, M))∩ (�¬ϕexit�∪Prest)

Due to �¬ϕexit�∩�¬ψent� =∅

= (�¬ψent�∪Prest)∪ (wp(Cbody, M)∩ (�¬ϕexit�∪Prest))

splitting the second occurrence of Prest = (�ψent�∩Prest)∪ (�¬ψent�∩Prest)

= (�¬ψent�∩Prest)∪
(wp(Cbody, M)∩ (�¬ϕexit�∪ (�ψent�∩Prest)))∪
(wp(Cbody, M)∩�¬ψent�∩Prest)

Note that the first and last disjuncts are already known to be included Ploop due to (6.8),

and we can just forget about them here. The more important result is that, if M ⊆ Ploop,

then wp(Cbody, M)∩ (�¬ϕexit�∪ (�ψent�∩Prest)) ⊆ Ploop. That is, we established (6.10).

Let P∃
loop = P∃(Cloop,Prest) Now, by definition (6.6), P∃

loop is the smallest set satis-

fying (6.8), (6.9), and (6.10) (as it is characterized as a least fixed point of a matching

function). Hence, P∃
loop ⊆ Ploop.

For P∀
loop, the proof proceeds in a similar way. For a universal recurrent set R∀ and

for the solution of the original equations (6.5), it holds that

(�ϕexit�∩Prest) \ Nloop ⊆ Ploop (6.11)

R∀ ⊆ Ploop (6.12)

For M ⊆ Ploop we have (�¬ϕexit�∩pre(Cbody, M)) \ Nloop ⊆ Ploop (6.13)

172

Equations (6.11) and (6.13) are due to Lemma 6.2. Equation (6.12) is due to Lemma 6.4.

From (6.7), we characterize P∀
loop to be is the smallest set that satisfies (6.11), (6.12), and

(6.13). Thus, P∀
loop ⊆ Ploop.

Theorem 6.2. For a statement C and p,n ∈D] s.t. γ](p)∩γ](n) =∅

N](C ,n) ⊇ N (C ,γ](n))

P [(C , p,n) ⊆ P (C ,M\ε \γ](n))

As a result, for a top-level program Cprg,

γ](N](Cprg,⊥])) ⊇ N (Cprg,∅)

(i.e., it over-approximates input states that may lead to failure), and

γ](P [(Cprg,>],⊥])) ⊆ P (Cprg,M\ε)

(i.e., it under-approximates safe input states)

Proof. The result for N] is a standard result for over-approximate computations.

For P [, it follows from the use of subtraction. For a statement C and disjoint d ,n ∈
D], P [(C ,d ,n) is defined as q−N](C ,n) for some q ∈D] (for the proof, it does not matter,

how q is computed). From the definition of subtraction,

γ](P [(C ,d ,n)) ⊆M\ε \γ](N](C ,n))

From the result for N]

γ](P [(C ,d ,n)) ⊆M\ε \ N (C ,γ](n))

γ](P [(C ,d ,n)) ⊆ P (C ,M\ε \γ](n))

Then, for a top-level program Cprg,

γ](P [(C ,>],⊥])) ⊆ P (Cprg,M\ε)

173

Chapter 7

Conclusion

In this work, we presented our take on the problem of finding non-terminating exe-

cutions in programs, using the framework of abstract interpretation. We started by

defining a notion of a program and its trace semantics. We introduced set-of-states

abstraction which is a step away from concrete (or, in a sense, theoretical) analysis that

manipulates sets of traces towards a state-based analysis that can be made computable

(or practical) by performing further memory abstraction. We introduced a notion of

a recurrent set (and we gave two definitions that use different modalities), which is

a set-of-states abstraction of a set of non-terminating execution postfixes. Thus, we

split the problem of proving non-termination of a program into two sub-problems:

finding a recurrent set and showing its reachability. In Chapters 3 and 4 we focused

on practical aspects of the former sub-problem and introduced two different analy-

ses that find recurrent sets in programs. The analysis of Chapter 3 was formulated for

numeric programs and was based on backward analysis and trace partitioning. The

analysis of Chapter 4, while arguably less sophisticated, was based on forward analysis

and was suitable to analyse non-numeric (e.g., heap-manipulating) programs. Finally,

we demonstrated that recurrent sets are useful not only as a sub-problem of proving

non-termination. Chapter 6 is an extensive example of how we can use the notion of

recurrent set in a backward safety analysis.

The reader could notice that the concepts that we use in practical chapters (Chap-

ter 4 would be a particularly good example) are somewhat different from the concepts

that we use in the theoretical discussions of Chapter 2. In Chapter 2, we talk about pro-

gram graphs and their executions as sequences of program states. In Chapter 4, we talk

174

about abstract memory states of a structured program. This is the result of a sequence

of abstractions that we build in this work: a structured program represents a program

graph (an unstructured program), and a set of memory states of a structured program

represents a set of program states at a particular control location; finally, this set of

program states is an abstraction of a certain set of program executions. Thus, the ma-

nipulations that a practical analysis performs over abstract memory states eventually

map to manipulations over sets of executions.

Where do we go from this point? In this work, we focused on a sub-problem of proving

non-termination, and now, we believe, it is time to look at the full problem once again.

First, we should ask ourselves, whether proving non-termination has a practical

value and whether it occupies a niche alongside other analyses. So far, we have vaguely

identified two potential use cases for it. One is debugging, i.e., finding non-terminating

behaviours in programs that are supposed to terminate. It is tempting here to make an

analogy with reachability analysis where testing, symbolic execution, bounded model

checking and other techniques, which provide incomplete ways to find safety viola-

tions, have become as important as verification techniques, which prove absence of

those violations.

In this respect, we are (moderately) enthusiastic about the analysis of Chapter 4.

The approach described in Chapter 4 is very simplistic, but at the same time extensi-

ble. It works (on a very high level) by constructing and analysing an abstract reacha-

bility graph, something that many software model-checkers do in one way or another.

It would be interesting either to extend the original procedure with a more expres-

sive abstract domain, extrapolation operations, and maybe limited backward analysis,

or to re-formulate it within the framework of another existing model-checking pro-

cedure, e.g., Impact [McM06], and see whether it can find practical non-termination

bugs. There exist extensible tools, like CPAChecker [BHT07; BHT08], that facilitate this

kind of integration of different analyses.

Also, we believe that there is value in improving the trace partitioning scheme for

the analysis of Chapter 3. One high level point of view on what this analysis does is

that it tries to identify the path or paths through the program that are taken by non-

terminating executions. We believe this is a powerful idea that requires more research.

175

Improving admissible forms of paths (path domain), e.g., allowing the paths to be ex-

pressed in some form of regular expressions or temporal logic formulas, could signifi-

cantly improve the precision of the analysis.

Then, if we continue on the path of proving non-termination with abstract inter-

pretation, we face the problem of showing (definite) reachability of our recurrent sets.

This is not a new problem. It has been around for a while, in particular, in the form

of proving feasibility of abstract counterexamples [Ber+13]. It could be the case that

this problem has a good solution within the framework of abstract interpretation. For

example, Chapter 6 makes an attempt to build an under-approximating reachability

analysis, based on subtraction operation, but this direction still requires more work.

Additionally, so far, our experiments with non-numeric domains were confined to

shape analysis with 3-valued logic. While this is a good example of a non-numeric do-

main, it would be more practically interesting to adapt our techniques a to a more pop-

ular shape analysis domain, e.g, to separation logic. It would be especially interesting

to see, whether and how we can make use of existing techniques specific to separation

logic, like bi-abduction [Cal+11].

Finally, most of the discussion in this work was from the point of view that all non-

terminating behaviours are equally undesired. There are settings though, where this

is not the case, and there may exist a notion of an acceptable non-terminating execu-

tion. For example, we may want to analyse a reactive system as a whole, and not its

dispatch routines separately. Then, an acceptable non-terminating behaviour is that

the system alternates infinitely often between accepting a new request and producing

a response to it. And a possible undesired non-terminating behaviour is that the sys-

tem gets stuck in an infinite loop while producing a response and never gets to accept

the next request. Another example comes from functional programming, where one

can work with functions on infinite objects. A desired property of such a function is of-

ten not termination but productiveness, i.e., it is acceptable that the function does not

terminate for some inputs, but it is desired that in this case, at the limit, it construct a

valid infinite object as an output. A natural question is whether non-termination anal-

yses are applicable in settings where not all non-terminating behaviours are undesired,

i.e., whether they can find non-terminating behaviours that have specific (undesired)

properties.

176

We anticipate that they can. It seems that in the examples above the distinction be-

tween an acceptable and an undesired non-terminating behaviours can be expressed

using a combination of safety and weak fairness. In the reactive system example, an ac-

ceptable non-terminating behaviour alternates between accepting a request and send-

ing a response infinitely often, or in other words:

(i) Every accept is followed by a response and vice versa. This is a safety property.

(ii) In a non-terminating execution, both accepts and responses happen infinitely

often. This is weak fairness.

To find execution prefixes where some accept is not followed by a response or vice

versa, we can use a safety analysis, e.g., an abstract interpreter, an abstraction refine-

ment model checker, etc., but this is out of scope of our work. To find non-terminating

behaviours, where an accept or a response happens only a finite number of times (i.e.,

eventually never happens), we can use a non-termination analysis, in the following

way. First, we identify fair program statements, that need to happen infinitely often in

an acceptable non-terminating execution (respectively, an undesired non-terminating

behaviour would eventually never execute some fair statement). In the reactive system

example, they would correspond to retrieving a request and sending a response. Then,

we run the analysis as follows:

(i) Modify the original program by replacing a single fair statement with a loop exit.

(ii) Run a non-termination analysis.

(iii) If the analysis can prove non-termination of the modified program (e.g., it finds a

reachable non-empty recurrent set), then the original program has an undesired

non-terminating behaviour.

(iv) Repeat this process for every fair statement.

177

Bibliography

[Arn+06] Gilad Arnold et al. “Combining Shape Analyses by Intersecting Abstrac-

tions”. In: Verification, Model Checking, and Abstract Interpretation (VM-

CAI). Ed. by E. Allen Emerson and Kedar S. Namjoshi. Vol. 3855. Lecture

Notes in Computer Science. Springer, 2006, pp. 33–48.

[ASV12] Kalmer Apinis, Helmut Seidl, and Vesal Vojdani. “Side-Effecting Constraint

Systems: A Swiss Army Knife for Program Analysis”. In: Asian Symposium

on Programming Languages and Systems (APLAS). Ed. by Ranjit Jhala and

Atsushi Igarashi. Vol. 7705. Lecture Notes in Computer Science. Springer,

2012, pp. 157–172.

[Bag+05] Roberto Bagnara et al. “Precise widening operators for convex polyhedra”.

In: Sci. Comput. Program. 58.1-2 (2005), pp. 28–56.

[BB14] Armin Biere and Roderick Bloem, eds. Computer Aided Verification - 26th

International Conference, CAV 2014, Held as Part of the Vienna Summer of

Logic, VSL 2014, Vienna, Austria, July 18-22, 2014. Proceedings. Vol. 8559.

Lecture Notes in Computer Science. Springer, 2014.

[BBP14] Alexey Bakhirkin, Josh Berdine, and Nir Piterman. “Backward Analysis via

over-Approximate Abstraction and under-Approximate Subtraction”. In:

Static Analysis Symposium (SAS). Ed. by Markus Müller-Olm and Helmut

Seidl. Vol. 8723. Lecture Notes in Computer Science. Springer, 2014, pp. 34–

50.

[BBP15] Alexey Bakhirkin, Josh Berdine, and Nir Piterman. “A Forward Analysis

for Recurrent Sets”. In: Static Analysis Symposium (SAS). Ed. by Sandrine

Blazy and Thomas Jensen. Vol. 9291. Lecture Notes in Computer Science.

Springer, 2015, pp. 293–311.

178

[Ber+06] Josh Berdine et al. “Automatic Termination Proofs for Programs with

Shape-Shifting Heaps”. In: Computer-Aided Verification (CAV). Ed. by

Thomas Ball and Robert B. Jones. Vol. 4144. Lecture Notes in Computer

Science. Springer, 2006, pp. 386–400.

[Ber+13] Josh Berdine et al. “Resourceful Reachability as HORN-LA”. In: Logic for

Programming, Artificial Intelligence and Reasoning (LPAR). Ed. by Kenneth

L. McMillan, Aart Middeldorp, and Andrei Voronkov. Vol. 8312. Lecture

Notes in Computer Science. Springer, 2013, pp. 137–146.

[BHT07] Dirk Beyer, Thomas A. Henzinger, and Grégory Théoduloz. “Configurable

Software Verification: Concretizing the Convergence of Model Checking

and Program Analysis”. In: Computer-Aided Verification (CAV). Ed. by

Werner Damm and Holger Hermanns. Vol. 4590. Lecture Notes in Com-

puter Science. Springer, 2007, pp. 504–518.

[BHT08] Dirk Beyer, Thomas A. Henzinger, and Grégory Théoduloz. “Program Anal-

ysis with Dynamic Precision Adjustment”. In: Automated Software Engi-

neering (ASE). IEEE Computer Society, 2008, pp. 29–38.

[BHZ07] Roberto Bagnara, Patricia M. Hill, and Enea Zaffanella. “Widening opera-

tors for powerset domains”. In: STTT 9.3-4 (2007), pp. 413–414.

[BHZ08] Roberto Bagnara, Patricia M. Hill, and Enea Zaffanella. “The Parma Polyhe-

dra Library: Toward a complete set of numerical abstractions for the anal-

ysis and verification of hardware and software systems”. In: Sci. Comput.

Program. 72.1-2 (2008), pp. 3–21.

[BJ06] Thomas Ball and Robert B. Jones, eds. Computer Aided Verification, 18th

International Conference, CAV 2006, Seattle, WA, USA, August 17-20, 2006,

Proceedings. Vol. 4144. Lecture Notes in Computer Science. Springer, 2006.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT

Press, 2008.

[Bou93a] François Bourdoncle. “Abstract Debugging of Higher-Order Imperative

Languages”. In: Programming Language Design and Implementation

(PLDI). Ed. by Robert Cartwright. ACM, 1993, pp. 46–55.

179

[Bou93b] François Bourdoncle. “Efficient chaotic iteration strategies with widen-

ings”. In: Formal Methods in Programming and Their Applications. Ed. by

Dines Bjørner, Manfred Broy, and Igor V. Pottosin. Vol. 735. Lecture Notes

in Computer Science. Springer, 1993, pp. 128–141.

[BP16] Alexey Bakhirkin and Nir Piterman. “Finding Recurrent Sets with Backward

Analysis and Trace Partitioning”. In: Tools and Algorithms for the Construc-

tion and Analysis of System (TACAS). Ed. by Marsha Chechik and Jean-

François Raskin. Vol. 9636. Lecture Notes in Computer Science. Springer,

2016, pp. 17–35.

[BPR13] Tewodros A. Beyene, Corneliu Popeea, and Andrey Rybalchenko. “Solv-

ing Existentially Quantified Horn Clauses”. In: Computer-Aided Verifica-

tion (CAV). Ed. by Natasha Sharygina and Helmut Veith. Vol. 8044. Lecture

Notes in Computer Science. Springer, 2013, pp. 869–882.

[Bro+11] Marc Brockschmidt et al. “Automated Detection of Non-termination and

NullPointerExceptions for Java Bytecode”. In: Formal Verification of Object-

Oriented Systems (FoVeOOS). Ed. by Bernhard Beckert, Ferruccio Damiani,

and Dilian Gurov. Vol. 7421. Lecture Notes in Computer Science. Springer,

2011, pp. 123–141.

[Bro+16] Marc Brockschmidt et al. “T2: Temporal Property Verification”. In: Tools

and Algorithms for the Construction and Analysis of Systems - 22nd Inter-

national Conference (TACAS). Ed. by Marsha Chechik and Jean-François

Raskin. Vol. 9636. Lecture Notes in Computer Science. Springer, 2016,

pp. 387–393.

[Cal+11] Cristiano Calcagno et al. “Compositional Shape Analysis by Means of Bi-

Abduction”. In: J. ACM 58.6 (2011), p. 26.

[CC12] Patrick Cousot and Radhia Cousot. “An abstract interpretation framework

for termination”. In: Principles of Programming Languages (POPL). Ed. by

John Field and Michael Hicks. ACM, 2012, pp. 245–258.

[CC77] Patrick Cousot and Radhia Cousot. “Abstract Interpretation: A Unified Lat-

tice Model for Static Analysis of Programs by Construction or Approxima-

tion of Fixpoints”. In: Principles of Programming Languages (POPL). Ed.

180

by Robert M. Graham, Michael A. Harrison, and Ravi Sethi. ACM, 1977,

pp. 238–252.

[CC79] Patrick Cousot and Radhia Cousot. “Systematic Design of Program Anal-

ysis Frameworks”. In: Principles of Programming Languages (POPL). Ed.

by Alfred V. Aho, Stephen N. Zilles, and Barry K. Rosen. ACM Press, 1979,

pp. 269–282.

[CC92] Patrick Cousot and Radhia Cousot. “Abstract Interpretation Frameworks”.

In: J. Log. Comput. 2.4 (1992), pp. 511–547.

[CC99] Patrick Cousot and Radhia Cousot. “Refining Model Checking by Abstract

Interpretation”. In: Autom. Softw. Eng. 6.1 (1999), pp. 69–95.

[CH78] Patrick Cousot and Nicolas Halbwachs. “Automatic Discovery of Linear Re-

straints Among Variables of a Program”. In: Principles of Programming Lan-

guages (POPL). Ed. by Alfred V. Aho, Stephen N. Zilles, and Thomas G. Szy-

manski. ACM Press, 1978, pp. 84–96.

[Che+14] Hong Yi Chen et al. “Proving Nontermination via Safety”. In: Tools and Al-

gorithms for the Construction and Analysis of Systems (TACAS). Ed. by Erika

Ábrahám and Klaus Havelund. Vol. 8413. Lecture Notes in Computer Sci-

ence. Springer, 2014, pp. 156–171.

[Che64] N. V. Chernikova. “Algorithm for finding a general formula for the non-

negative solutions of a system of linear equations”. In: USSR Computa-

tional Mathematics and Mathematical Physics 4.4 (1964), pp. 151–152.

[Che65] N. V. Chernikova. “Algorithm for finding a general formula for the non-

negative solutions of a system of linear inequalities”. In: USSR Computa-

tional Mathematics and Mathematical Physics 5.2 (1965), pp. 228–233.

[Che68] N. V. Chernikova. “Algorithm for discovering the set of all the solutions of a

linear programming problem”. In: USSR Computational Mathematics and

Mathematical Physics 8.6 (1968), pp. 281–293.

[CKP15] Byron Cook, Heidy Khlaaf, and Nir Piterman. “On Automation of CTL* Ver-

ification for Infinite-State Systems”. In: Computer Aided Verification (CAV).

Ed. by Daniel Kroening and Corina S. Pasareanu. Vol. 9206. Lecture Notes

in Computer Science. Springer, 2015, pp. 13–29.

181

[Cla77] Edmund M. Clarke. “Program Invariants as Fixed Points (Preliminary Re-

ports)”. In: Foundations of Computer Science (FOCS). IEEE Computer Soci-

ety, 1977, pp. 18–29.

[Coo+14] Byron Cook et al. “Disproving termination with overapproximation”. In:

Formal Methods in Computer-Aided Design (FMCAD). IEEE, 2014, pp. 67–

74.

[Cos+05] Alexandru Costan et al. “A Policy Iteration Algorithm for Computing Fixed

Points in Static Analysis of Programs”. In: Computer Aided Verification

(CAV). Ed. by Kousha Etessami and Sriram K. Rajamani. Vol. 3576. Lecture

Notes in Computer Science. Springer, 2005, pp. 462–475.

[Cou+05] Patrick Cousot et al. “The ASTREÉ Analyzer”. In: European Symposium on

Programming (ESOP). Ed. by Shmuel Sagiv. Vol. 3444. Lecture Notes in

Computer Science. Springer, 2005, pp. 21–30.

[Cou15] Patrick Cousot. “Sound Verification by Abstract Interpretation”. 2015.

[Cou81] Patrick Cousot. “Semantic foundations of program analysis”. In: Program

Flow Analysis: Theory and Applications. Ed. by S S Muchnick and N D Jones.

Prentice-Hall, 1981, pp. 303–342.

[CPR06] Byron Cook, Andreas Podelski, and Andrey Rybalchenko. “Termination

proofs for systems code”. In: Programming Language Design and Imple-

mentation (PLDI). Ed. by Michael I. Schwartzbach and Thomas Ball. ACM,

2006, pp. 415–426.

[CR16] Marsha Chechik and Jean-François Raskin, eds. Tools and Algorithms for

the Construction and Analysis of Systems - 22nd International Conference,

TACAS 2016, Held as Part of the European Joint Conferences on Theory and

Practice of Software, ETAPS 2016, Eindhoven, The Netherlands, April 2-8,

2016, Proceedings. Vol. 9636. Lecture Notes in Computer Science. Springer,

2016.

[CYO01] Cristiano Calcagno, Hongseok Yang, and Peter W. O’Hearn. “Computabil-

ity and Complexity Results for a Spatial Assertion Language for Data

Structures”. In: Asian Workshop on Programming Languages and Systems

(APLAS). 2001, pp. 289–300.

182

[Gie+14] Jürgen Giesl et al. “Proving Termination of Programs Automatically with

AProVE”. In: International Joint Conference on Automated Reasoning (IJ-

CAR). Ed. by Stéphane Demri, Deepak Kapur, and Christoph Weidenbach.

Vol. 8562. Lecture Notes in Computer Science. Springer, 2014, pp. 184–191.

[Gup+08] Ashutosh Gupta et al. “Proving non-termination”. In: Principles of Pro-

gramming Languages (POPL). Ed. by George C. Necula and Philip Wadler.

ACM, 2008, pp. 147–158.

[Hei+16] Matthias Heizmann et al. “Ultimate Automizer with Two-track Proofs -

(Competition Contribution)”. In: Tools and Algorithms for the Construc-

tion and Analysis of System (TACAS). Ed. by Marsha Chechik and Jean-

François Raskin. Vol. 9636. Lecture Notes in Computer Science. Springer,

2016, pp. 950–953.

[HHP14] Matthias Heizmann, Jochen Hoenicke, and Andreas Podelski. “Termina-

tion Analysis by Learning Terminating Programs”. In: Computer-Aided Ver-

ification (CAV). Ed. by Armin Biere and Roderick Bloem. Vol. 8559. Lecture

Notes in Computer Science. Springer, 2014, pp. 797–813.

[HMT71] L. Henkin, J. D. Monk, and A. Tarski. Cylindric Algebras: Part I. North-

Holland, 1971.

[HPR97] Nicolas Halbwachs, Yann-Erick Proy, and Patrick Roumanoff. “Verification

of Real-Time Systems using Linear Relation Analysis”. In: Formal Methods

in System Design 11.2 (1997), pp. 157–185.

[Kle87] Stephen Kleene. Introduction to Metamathematics. Second. North-

Holland, 1987.

[LA+07] Tal Lev-Ami et al. Backward Analysis for Inferring Quantified Preconditions.

Tech. rep. TR-2007-12-01. Tel Aviv University, Dec. 2007.

[Lar+14] Daniel Larraz et al. “Proving Non-termination Using Max-SMT”. In:

Computer-Aided Verification (CAV). Ed. by Armin Biere and Roderick

Bloem. Vol. 8559. Lecture Notes in Computer Science. Springer, 2014,

pp. 779–796.

183

[LH14] Jan Leike and Matthias Heizmann. “Geometric Series as Nontermination

Arguments for Linear Lasso Programs”. In: International Workshop on Ter-

mination (WST). 2014.

[LMS04] Tal Lev-Ami, Roman Manevich, and Shmuel Sagiv. “TVLA: A system for gen-

erating abstract interpreters”. In: Building the Information Society (IFIP).

Ed. by René Jacquart. Vol. 156. IFIP. Kluwer/Springer, 2004, pp. 367–375.

[LQC15] Ton Chanh Le, Shengchao Qin, and Wei-Ngan Chin. “Termination and

non-termination specification inference”. In: Programming Language De-

sign and Implementation (PLDI). Ed. by David Grove and Steve Blackburn.

ACM, 2015, pp. 489–498.

[McM06] Kenneth L. McMillan. “Lazy Abstraction with Interpolants”. In: Computer

Aided Verification (CAV). Ed. by Thomas Ball and Robert B. Jones. Vol. 4144.

Lecture Notes in Computer Science. Springer, 2006, pp. 123–136.

[Min06] Antoine Miné. “The octagon abstract domain”. In: Higher-Order and Sym-

bolic Computation 19.1 (2006), pp. 31–100.

[Min13] A. Miné. “Backward under-approximations in numeric abstract domains to

automatically infer sufficient program conditions”. In: Science of Computer

Programming (2013), p. 33.

[MR05] Laurent Mauborgne and Xavier Rival. “Trace Partitioning in Abstract Inter-

pretation Based Static Analyzers”. In: European Symposium on Program-

ming (ESOP). Ed. by Shmuel Sagiv. Vol. 3444. Lecture Notes in Computer

Science. Springer, 2005, pp. 5–20.

[PC13] Corneliu Popeea and Wei-Ngan Chin. “Dual analysis for proving safety and

finding bugs”. In: Sci. Comput. Program. 78.4 (2013), pp. 390–411.

[PR04a] Andreas Podelski and Andrey Rybalchenko. “A Complete Method for the

Synthesis of Linear Ranking Functions”. In: Verification, Model Checking,

and Abstract Interpretation (VMCAI). Ed. by Bernhard Steffen and Gior-

gio Levi. Vol. 2937. Lecture Notes in Computer Science. Springer, 2004,

pp. 239–251.

[PR04b] Andreas Podelski and Andrey Rybalchenko. “Transition Invariants”. In:

Logic in Computer Science (LICS). IEEE Computer Society, 2004, pp. 32–41.

184

[Ram30] Frank P. Ramsey. “On a Problem of Formal Logic”. In: Proc. London Math.

Soc. Vol. 30. 1930, pp. 264–285.

[Rey02] John C. Reynolds. “Separation Logic: A Logic for Shared Mutable Data

Structures”. In: Logic in Computer Science (LICS). IEEE Computer Society,

2002, pp. 55–74.

[RHS95] Thomas W. Reps, Susan Horwitz, and Shmuel Sagiv. “Precise Interproce-

dural Dataflow Analysis via Graph Reachability”. In: Principles of Program-

ming Languages (POPL). Ed. by Ron K. Cytron and Peter Lee. ACM Press,

1995, pp. 49–61.

[RM07] Xavier Rival and Laurent Mauborgne. “The trace partitioning abstract do-

main”. In: ACM Trans. Program. Lang. Syst. 29.5 (2007).

[RSL10] Thomas W. Reps, Mooly Sagiv, and Alexey Loginov. “Finite differencing of

logical formulas for static analysis”. In: ACM Trans. Program. Lang. Syst.

32.6 (2010).

[RSY04] Thomas W. Reps, Shmuel Sagiv, and Greta Yorsh. “Symbolic Implementa-

tion of the Best Transformer”. In: Verification, Model Checking, and Ab-

stract Interpretation (VMCAI). Ed. by Bernhard Steffen and Giorgio Levi.

Vol. 2937. Lecture Notes in Computer Science. Springer, 2004, pp. 252–266.

[Sag05] Shmuel Sagiv, ed. Programming Languages and Systems, 14th European

Symposium on Programming,ESOP 2005, Held as Part of the Joint European

Conferences on Theory and Practice of Software, ETAPS 2005, Edinburgh,

UK, April 4-8, 2005, Proceedings. Vol. 3444. Lecture Notes in Computer Sci-

ence. Springer, 2005.

[Sch99] Alexander Schrijver. Theory of linear and integer programming. Wiley-

Interscience series in discrete mathematics and optimization. Wiley, 1999.

[SK06] Axel Simon and Andy King. “Widening Polyhedra with Landmarks”. In:

Asian Symposium on Programming Languages and System (APLAS). Ed. by

Naoki Kobayashi. Vol. 4279. Lecture Notes in Computer Science. Springer,

2006, pp. 166–182.

185

[SL04] Bernhard Steffen and Giorgio Levi, eds. Verification, Model Checking, and

Abstract Interpretation, 5th International Conference, VMCAI 2004, Venice,

January 11-13, 2004, Proceedings. Vol. 2937. Lecture Notes in Computer

Science. Springer, 2004.

[SRH96] Shmuel Sagiv, Thomas W. Reps, and Susan Horwitz. “Precise Interproce-

dural Dataflow Analysis with Applications to Constant Propagation”. In:

Theor. Comput. Sci. 167.1&2 (1996), pp. 131–170.

[SRW02] Shmuel Sagiv, Thomas W. Reps, and Reinhard Wilhelm. “Parametric shape

analysis via 3-valued logic”. In: ACM Trans. Program. Lang. Syst. 24.3

(2002), pp. 217–298.

[Tar55] Alfred Tarski. “A lattice-theoretical fixpoint theorem and its applications.”

In: Pacific J. Math. 5.2 (1955), pp. 285–309.

[Tar72] Robert Endre Tarjan. “Depth-First Search and Linear Graph Algorithms”.

In: SIAM J. Comput. 1.2 (1972), pp. 146–160.

[Tur49] Alan Turing. “Checking a Large Routine”. In: Report of a Conference on High

Speed Automatic Calculating machines. 1949, pp. 67–69.

[UM15] Caterina Urban and Antoine Miné. “Proving Guarantee and Recurrence

Temporal Properties by Abstract Interpretation”. In: Verification, Model

Checking, and Abstract Interpretation (VMCAI). Ed. by Deepak D’Souza,

Akash Lal, and Kim Guldstrand Larsen. Vol. 8931. Lecture Notes in Com-

puter Science. Springer, 2015, pp. 190–208.

[VR08] Helga Velroyen and Philipp Rümmer. “Non-termination Checking for Im-

perative Programs”. In: Tests and Proofs. Ed. by Bernhard Beckert and

Reiner Hähnle. Vol. 4966. Lecture Notes in Computer Science. Springer,

2008, pp. 154–170.

[Wei+09] Christoph Weidenbach et al. “SPASS Version 3.5”. In: Automated Deduction

(CADE). Ed. by Renate A. Schmidt. Vol. 5663. Lecture Notes in Computer

Science. Springer, 2009, pp. 140–145.

[Yor+07] Greta Yorsh et al. “Logical characterizations of heap abstractions”. In: ACM

Trans. Comput. Log. 8.1 (2007).

186

	Introduction
	Non-Termination and Termination
	Recurrent Sets
	Abstraction
	Contents and Contribution
	Timeline and Motivation
	Publications

	Background
	Basic Notation
	Programs and Executions
	Statements and Relations
	Executions

	Introduction to Abstract Interpretation
	Analyzing Programs in the Domain of Traces
	Set-of-States Abstraction
	Error State in the Abstract Domain

	Non-Termination Analyses and Recurrent Sets
	Structured Programs
	Related Work
	Chapter Conclusion
	Omitted Proofs
	Memory Abstract Domains

	Finding Existential Recurrent Sets with Backward Analysis
	Abstract Domain of the Analysis
	Path Domain
	Forward Pre-Analysis
	Backward Analysis For a Candidate
	Checking and Refining a Candidate
	Examples
	Related Work
	Chapter Conclusion and Future Work
	Constructing the Abstract Domain []
	On Chaotic Iteration

	Finding Universal Recurrent Sets with Forward Analysis
	Background
	Recurrent Sets in the Abstract

	Finding a Universal Recurrent Set
	Idea of the Algorithm
	Abstract Memory State Graph
	The Algorithm

	Examples
	Related Work
	Chapter Conclusion and Future Work
	Omitted Proofs

	Experiments in Finding Recurrent Sets
	Detailed Experimental Results

	Recurrent Sets in Analysis for Sufficient Pre-Conditions
	Background
	Fixpoint Characterizations of Safe and Unsafe States
	Least Fixed-Point Characterization of Safe States
	Approximate Characterizations
	Approximating a Recurrent Set

	Examples
	Related Work
	Chapter Conclusion
	Omitted Proofs

	Conclusion

