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Abstract
Oxygen production due to phytoplankton photosynthesis is an important

phenomenon keeping in mind the underlying dynamics of marine ecosystems. How-

ever, despite its crucial importance, not only for marine but also for terrestrial

ecosystems, the coupled oxygen-plankton dynamics have been overlooked.

This dissertation aims to provide insight into an oxygen-plankton system us-

ing mathematical modelling. We firstly develop a ‘baseline’ oxygen-phytoplankton

model which is then further developed through the addition of biologically relevant

factors such as plankton respiration and the predator effect of zooplankton. The

properties of the model have been studied both in the nonspatial case, which cor-

responds to a well mixed system with a spatially uniform distribution of species,

and in the spatially explicit extension, by taking into account the transport of

oxygen and movement of plankton by turbulent diffusion.

Since the purpose of this work is to reveal the oxygen dynamics, the effect

of global warming is considered taken into consideration and modelled by various

oxygen production rates and phytoplankton growth functions in Chapters 5 and 6.

It is shown that sustainable oxygen production is only possible in an intermediate

range of the production rate. If the oxygen production rate becomes sufficiently

low or high, in the course of time, the system’s dynamics shows abrupt changes

resulting in plankton extinction and oxygen depletion. We show that the spatial

system’s sustainability range is larger that of the corresponding nonspatial system.

We show that oxygen production by phytoplankton can stop suddenly if the water

temperature exceeds a certain critical threshold. Correspondingly, this disserta-

tion reveals the scenarios of extinction which can potentially lead to an ecological

disaster.
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Chapter 1

Introduction

1.1 General features of plankton community

The word phytoplankton originates from the Greek words phyto (plant) and plank-
ton (wandering). The discovery of phytoplankton dates back to the 1600s and
early 1700s with the pioneering work of Anton van Leeuwenhoek on the use of
high quality lenses to examine pond water [83]. In the latter half of the 19th
century, Victor Hensen [96, 263], who was concerned about the functional role of
plankton, introduced the term plankton which was subsequently used in several
other works [108, 218], and in current times plankton history is reviewed in [235].

Plankton are floating organisms of many different phyla1 living in the
pelagic zone of inland waters, i.e. they cannot swim or move against currents,
hence their motions depend on water movement [13, 57]. Their functional classi-
fication is based on trophic level, size, and distribution. Autotrophs, i.e. primary
producers, constitute phytoplankton, whereas heterotrophs, i.e. consumers, in-
clude bacterioplankton and zooplankton [156]. Phytoplankton can be classified
according to the scaling in size and they are of microscopic size, usually single-
celled organisms [12, 208, 212, 232]2.

The color of phytoplankton is determined by the pigments that are dom-
inant in their cells. Most of them appear green coloured due to the high con-
centration of chlorophyll (a green pigment responsible for the absorption of light
for photosynthesis) and red or orange due to the high level of carotene pigment
[3]. Therefore, phytoplankton take up carbon dioxide using sun light and other
chemical nutrients and release oxygen [91, 129, 186]. Due to containing chloro-
phyll pigments, these photosynthesising organisms constitute the base of the food

1Phylum: A group that has a generic relationship or common origin.
2Parts of this paragraph were taken from [227]

1



Chapter 1 Introduction 2

chain [30]. Hence, they are responsible for 70% of oxygen production [15, 57].
Furthermore, phytoplankton are estimated to be responsible for at least one half
of the total photosynthetic activity on Earth, thereby accounting considerably for
production of the atmospheric oxygen [91, 169].

More than half of the earth’s atmospheric oxygen is produced as a result
of phytoplankton photosynthesis [233]. Oxygen, a waste product of the photo-
synthetic process, is essential for living beings and the existence of aquatic life
[233]. Photosynthetic processes occur in the biologically active layer (upper layer)
of ocean. Produced oxygen is then released into the atmosphere or is transferred
to the deep ocean [169, 201]. Oxygen transfer from surface layer to the sub-
surface layers (by respiration and sinking) is affected by oceanic processes, such
as circulation, convection, nutrient concentration, temperature and salinity [118].
Oceanographers have focussed on the question of the limiting factors of this pro-
cess [61]. It is thought that oxygen productivity rapidly increases with increasing
light intensity [62].

Production of organic compounds from carbon dioxide to maintain aquatic
food chains makes phytoplankton an important agent for primary production [91].
Besides, a prominent feature of phytoplankton is in regulating the oceans’ and
atmosphere carbon dioxide by fixing it into the organic compounds through pho-
tosynthesis [38, 91, 115, 169]. The fact that about 70% of the earth’s surface is
covered by aquatic ecosystems emphasizes the great significance of plankton for
living beings [38].

Prior to modern concerns about accelerated climate change, research has
focused on the functional activity of phytoplankton due to its importance on global
climate by regulating global carbon cycle and by regulating oceanic temperatures
[47, 197]. The amount of dissolved oxygen3 in water body is important due to its
effect on atmospheric carbon dioxide concentration, because it determines physical
and biogeochemical cycles, such as the flux of oxygen from sea to air [91, 118].
Air-sea oxygen flux is a consequence of the difference between pressure of the gas
in the surface layer and air pressure and this process is affected by water surface
temperature [119]. Setting this aside, phytoplankton are not only responsible for
the regulation of oxygen and carbon dioxide circulation, they are also responsible
for the circulation of other chemical substances in a water body, such as phospho-
rus, nitrogen and sulphur [10, 91, 212, 216]. Therefore, phytoplankton also play
a crucial role on global climate [for more details see [29, 47, 268] and references
therein].

3The dissolved oxygen is oxygen that is dissolved in a solution
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Phytoplankton are important for being a major food source for their marine
consumers [197, 212]. Herbivorous marine animals graze on phytoplankton, whilst
in turn carnivores graze on herbivores and so on up the food chain to the top
predators. There is a large body of literature concerned with herbivorous groups,
i.e. zooplankton [79, 107, 209]. Some external factors affect the abundance of phy-
toplankton in water body too, i.e. temperature, salinity, wind intensity, sunlight,
predation etc. [34, 208, 238]. In particular, predation is one of the most common
controlling measures of phytoplankton abundance and predator existence depends
on the presence of its prey [56]. The underlying interactions between phytoplank-
ton and zooplankton are of prey-predator kind [139, 262]. Zooplankton predation
is also well documented in many laboratory experiments to further understand
their feeding behavior on phytoplankton [114, 131, 266].

The interaction between phytoplankton and zooplankton is affected by some
external factors. Namely, higher temperatures decrease predator density and in
turn this leads to an increase in prey density [111]. Further research into the effect
of temperature on marine organisms is carried out in terms of two different biolog-
ical aspects: direct and indirect. The former is related to organisms’ temperature
tolerance and the latter stems from changing surrounding environment condition,
i.e. surrounding water temperature [19]. We will not go into details about the
direct effect, but it is known that maximal performance of living cells occurs when
temperatures are between 25oC and 40oC [16, 211]. This performance rate is gen-
erally modelled by a non-linear exponential function [211]. Another interesting
effect of temperature on marine organisms is its effect on body function, i.e. tem-
perature affects many cellular metabolic processes by altering enzyme-mediated
biochemical processes. The structural integrity of enzymes decays at high temper-
atures which leads to an adverse effect on enzymatic structure [75, 78]. Warmer
water leads to faster metabolism and increased respiration due to increased cell
division influenced by increasing temperature [4, 59, 117, 203].

The photosynthetic rate is also sensitive to temperature [211]. A quick
increase in photosynthetic rate is observed when temperatures are between 10oC

and 20oC [219]. Photosynthetic rate is measured either as CO2 assimilation or
the O2 production rate and it is observed that for temperatures below 13oC, the
CO2 compensation point is proportional to O2 concentration [116]. Specifically,
extinction of the marine biota occurs when temperatures exceed 30oC [267]. Glime
[78], worked on the temperature effect on photosynthetic rate and observed that
at 23oC the optimum photosynthetic rate occurs, whereas organisms die at 33oC.
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This work provides a useful framework to reveal the change in oxygen concentra-
tion under the influence of temperature. Ku and Edwards [126, 57] stated that
an increase in oxygen inhibition of photosynthesis is observed with temperatures
varying between 5oC and 40oC [126]. They added that present O2 levels affect the
optimum photosynthetic rate, e.g. the optimum rate of photosynthesis occurs at
21% of the O2 level. In [126] and [172], water temperature has been investigated
to understand the production and consumption rate of oxygen by making some
experiments on two sea grass communities. It has been shown that temperature
has a prominent effect on marine ecosystem dynamics to a large extent, thus its
changes are of considerable interest.

Marine systems are not only affected by changing temperatures, but also
affect the heat balance of Earth. Oceans have a crucial impact on changing at-
mospheric temperature and account for roughly 84% of the total increase of the
Earth’s temperature from 1955 to 1998 [133]. It stems from its role in the trans-
fer of heat and balance of CO2, thereby oceans have the capability of slowing
down climate change due to their massive presence and its storage and transport
capability of heat [102, 134].

Recent studies on the Earth’s climate show a trend of continuously increas-
ing temperature [103, 148, 149, 264]. By the end of 21st century, average water
temperatures could rise between 2oC and 6oC [157]. In light of these records,
ocean temperature has elevated since 1950s and will continue to increase [102].
The average global temperature is expected to have increase by 1.8oC - 4oC dur-
ing the 21st century [188]. The warming process can be explained as some of the
heat energy is trapped by greenhouse gases and promoted to warm up the planet.
The increasing greenhouse gas concentrations have resulted in an increase in tem-
perature on the sea surface and atmosphere in the past century by 0.4oC-0.8oC
[1]. Intense warming of 0.03 - 0.04oC yr−1 has been observed through the water
column from 1974 to 2001 in the Catalan Sea [258]. Consequently, temperature
changes of the Earth’s surface leads to the warming up of deep waters. Deep
ocean water warming leads to detrimental consequences by affecting the Antarctic
system and the air-sea heat flux [71, 152].

Marine systems’ relevance to climate change has grasped researchers’ atten-
tion which has been reflected in substantial research and publications on climate
change effects on marine system, which has increased considerably since 1993 [89].
Aquatic systems’ response to climate change is studied both in oceans [89, 181]
and river ecosystems [187]. The link between climate change and marine systems
comes from temperature changes of water body resulting in changes to water body
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circulation, nutrient export and decomposition process [154]. As a consequence,
water body dissolved oxygen is reduced [247].

So far, it has been emphasized that climate change effects on marine sys-
tems can be observed by measuring either CO2 assimilation or O2 production.
However, there is another way to quantify climate change effects on marine sys-
tems and that are annually recurring life cycle events called phenology. Phenology
is the simplest approach to observe the species’ response to climate change [264].
Some phenological events, such as changing migration time, seasonal activities,
changing larva stage can give insight into current climate change. Phytoplankton
are sensitive to any changes in the surrounding environment. Hence any changes
in the climate impact the common behavior of the population, e.g. unpredictable
spring weather results in mismatching of larval release with spring phytoplankton
bloom [57, 248]. In addition, any changes in climate affect marine systems, such as
phytoplankton productivity and abundance of phytoplankton communities [104].
Even if there is no certain effect on species distribution in marine ecosystems, the
interactions of species are affected by climate change [223].

There are some severe ecological consequences in response to the changing
environmental conditions. They are known as hypoxia and anoxia and occur as a
result of oxygen depletion in water body. Hypoxia takes place when the dissolved
oxygen concentration 6 2 mg l−1, whilst anoxia arises when the dissolved oxygen
concentration decreases to 0 mg l−1. The duration and severity of hypoxic and
anoxic events affect growth and reproduction of aquatic organisms and in some
cases can lead to mortality of these organisms [51, 158, 257]. Although there is
a certain threshold for the existence of anoxia, the threshold of hypoxia is not
exact. Hypoxia thresholds vary between species due to the various responses of
oxygen depletion for various marine fauna. Nonetheless, the increase incidence of
hypoxia is one of the crucial ecological results of climate change [174]. Depletion
of oxygen in deep water and its influence on marine systems has been studied
intensively over the past decades, as the declines in dissolved oxygen in bottom
water strongly affect features of marine fauna, such as feeding ability, reproduction,
abundance and even existence [52, 63, 204, 205]. It has been observed that excess
sedimentation affects both marine flora and fauna and leads to hypoxia and a
decrease in marine systems’ population [37, 80, 100, 255]. In the same manner,
oceanic anoxic events affect inhabited marine organisms in these region [128]. It
should be emphasized that this decline in oxygen in water body is higher than in
the past [77].
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1.2 Mathematical approach

Awareness of the importance of mathematical modelling has been growing in re-
cent decades. It provides a framework of the underlying complexity of natural
phenomena in many fields, such as engineering, physics, chemistry [198]. In
particular, mathematical modelling is a powerful research tool in biology and
ecology to understand the real underlying population dynamics and communi-
ties [155, 172, 180, 198, 229]. Modelling marine ecosystems poses a very com-
plex problem due to the vast number of interacting species and sub-communities
[58, 155, 177]. In some cases field observations and experiments become impossi-
ble or expensive, therefore mathematical modelling takes its place to reduce these
problems and contributes to providing further insights into the ecological problems
with the assistance of computer simulations [137, 197].

The earliest plankton studies started as a part of fisheries. Separation of
plankton studies as a field for itself had been originated in the 1940-1950s [189]. At
the end of the 19th century, marine biological laboratories and societies prompted
interest in plankton research in many countries[189]. From then on, there has been
a growing number of publications building on mathematical modelling of plankton
communities [53, 68, 112, 182, 213]. One of the common models of plankton
productivity was given by [15]. Phytoplankton bloom control by zooplankton
via an ordinary differential equation was given by [68]. Spring phytoplankton
bloom due to temperature change was described by a mathematical model in
[249]. For prey-predator interactions between phytoplankton and zooplankton,
Lotka-Volterra equations are used in [54, 132, 159, 224]. Food uptake and growth
empirical relationships among zooplankton and fish have been considered in [55,
109].

Being tiny and growing quickly are features that make phytoplankton very
suitable organisms for both field and laboratory works. Because phenological
events happen rapidly, studying these communities becomes convenient in terms
of data collection and modelling [91, 197]. Plankton dynamics are extensively stud-
ied through field and laboratory experiments. In addition, theoretical studies of
modelling population dynamics are of particular interest as models have the ability
to show the relation between population dynamics and climate change [33, 250]. In
experimental works, field data on phytoplankton temporal and spatial distribution
were detailed with the help of the plankton recorder invention [88]. These were fur-
ther improved by phytoplankton photosynthetic measurements [178]. Moreover,
scuba diving observations and remote camera control systems have contributed to
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deeper understanding of marine systems [87, 98]. The advance of satellite oceanog-
raphy substantially contributed to visualisation of plankton communities and its
spatial distribution [9]. For further historical information on ocean studies see
[189].

As it is mentioned above, marine systems are complex. But here, the
purpose of this study is to make an insight into some basic features of relevant
ecosystems, i.e. to reveal the properties of model dynamics. In this case, the
simplest model can be determined as a starting point. In this simplest form under
the assumption of spatial homogeneity, population density is only a function of
time, but not space. Population models are described by ordinary differential
equations (ODE) [171, 253]. Single species population dynamics can be described
by [195]:

dx(t)

dt
= xf(x), (1.1)

where x is the population density at time t, with per capita growth rate f(x).
Depending on the number of interacting species, the single species population
model can be extended, e.g. multi-species model. One of the simplest models of
two interacting species takes the form of two coupled ODEs:

dx(t)

dt
= f(x, y), (1.2)

dy(t)

dt
= g(x, y), (1.3)

where f and g are continuous functions, x and y are the population densities at
time t and functions f and g represent the population change due to reproduction
and mortality. For such autonomous systems, we can construct a phase plane for
each value of t and each point (x, y) is assigned a unique vector (f(x, y), g(x, y)).
Solutions of the system are assigned to trajectories in the phase plane. So, the
solution curve passing through (x, y) must be tangent to these vectors. The pair
x(t), y(t) is assigned a unique point in the phase plane (x, y). Locations of points
where either f(x, y) or g(x, y) is zero has a special meaning. If f(x, y) = 0, it
means that there is no change on x and the direction vector is parallel to y axis.
Similarly, if g(x, y) = 0, so y does not change and the direction vector is parallel
to the x axis. The point which satisfy one of these conditions is called an isocline.
Steady states of system (1.2-1.3) do not appear to undergo any change. Note that,
system steady states are the intersections of the systems’ x isocline and y isocline.
Here f and g are nonlinear functions and x̄ and ȳ are steady-state solutions of the
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following system:
f(x̄, ȳ) = 0, g(x̄, ȳ) = 0.

The linearised system corresponding to (1.2-1.3) is given as:

dX(t)

dt
= a11X + a12Y, (1.4)

dY (t)

dt
= a21X + a22Y, (1.5)

where X(t) = x(t)− x̄, Y (t) = y(t)− ȳ and the community matrix with fx, fy, gx
and gy denoting first order partial derivatives with respect to (x, y), is given by

A =

(
a11 a12

a21 a22

)
=

(
fx fy

gx gy

)
(x̄,ȳ)

(1.6)

The eigenvalues λ of the matrix A are given as a solution of the following equation:

det(A− λI) = 0

where I is the unit matrix.
By the principle of linear superposition, the general solution of (1.4-1.5) is

a linear combination of eλ1t and eλ2t. In the case of real eigenvalues, the steady
state is called a node (see Figs. 1.1a-b); if at least one of them is of opposite sign,
the steady state (x̄, ȳ) is called a saddle (see Fig. 1.1c); if all are positive, the
steady state is unstable; if all eigenvalues are negative, the steady state is stable.
Furthermore, in the case of complex eigenvalues, the steady state is called a focus
(see Figs. 1.1d-e) [56, 198]. For a graphical illustration of the behavior of system
trajectories near an equilibrium point, see Fig. 1.1.

In reality, densities of populations change both in time and in space. This
leads to the inclusion of space into models resulting in partial differential equations
(PDEs); works on PDEs date back to the work of Fisher [67] with the applica-
tion of PDEs to the spatial spread of diseases and genes. In 1950s, Turing [254],
focussed on pattern formation under diffusion and Skellam [234], applied the dif-
fusion equation of random dispersal modelling to population dynamics.

The simplest form of the reaction-diffusion equations is as follows:

∂x

∂t
= D∆x+ f, (1.7)

∂y

∂t
= D∆y + g, (1.8)
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Figure 1.1: Phase trajectores in the neighborhood of the following types
of points. Image is taken from http://www.maths.lth.se/matematiklth/

courses/FMAN15/media/material/lin2d.pdf.

where D is the diffusion coefficient, f and g are the corresponding functions for
population densities at a given time and location and ∆ is the Laplace opera-
tor. Reaction-diffusion equations have been applied to marine systems, and are
assumed to be an appropriate model based on the effect of water movement on
species distribution [24, 120, 229].

Population distributions are usually heterogeneous in their environments,
and this distribution is often patchy [185]. The patchiness is observed in many field
observations [2, 49, 64, 81, 143, 245]. In particular, plankton patchiness in water
body have been focused on in [27, 90, 94, 156, 184, 202, 239, 241, 244, 251]. The
image of phytoplankton patchy distribution in north of Norway is given in Fig. 1.2.
Similar dynamics of plankton patchy distribution have been observed in reaction
diffusion systems: for instance, zooplankton distribution in the two-dimensional
case is given for different time moments in Fig. 1.3 for an appropriate choice of
functions f and g [147]. Here, phytoplankton distribution is qualitatively similar
with the zooplankton distribution, thereby only predator distribution is given for
the sake of brevity. The irregular patterns in Fig. 1.3d show a qualitatively similar
distribution which is observed in real ecological plankton systems in the ocean; see
Fig. 1.2. In general, patchy distributions have been often observed in prey-predator
system [168, 199].

There exists some research on plankton population dynamics to reveal its
dynamics under the effect of interacting group/groups. One of the interactions
focused on are fish and zooplankton interactions [40, 82, 110, 240]. Indeed, the
prey-predator interaction is the most common interaction among species. But
the ecological relation between these groups cannot be restricted only as a prey-
predator (cf. the classical work by Lotka [139] and Volterra [262]) interaction.

http://www.maths.lth.se/matematiklth/courses/FMAN15/media/material/lin2d.pdf
http://www.maths.lth.se/matematiklth/courses/FMAN15/media/material/lin2d.pdf
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Figure 1.2: Patchy distribution of phytoplankton north of Norway in the
Barents Sea in July 2004. Different densities of phytoplankton are given dif-
ferent shades of blue and green. The pale blue waters contain extremely
high concentrations of the phytoplankton. Image is taken from http :
rsta.royalsocietypublishing.org/content/363/1837/2873/F1 of MODIS Rapid

Response Project at NASA/GSFC.

Figure 1.3: Zooplankton density spatial distribution in two-dimensions for
different time moments (a) t = 125, (b) t = 275, (c) t = 1000, (d) t = 3500.
Phytoplankton density shows qualitatively similar behavior. With permisson

from Malchow et al. [147].
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Another relation is observed as nutrient-plankton interaction, with a simple diffu-
sion model, since the pioneer work of Riley et al. [214]. Moreover, other approach
on the plankton system, which we attempt to build our model on, are resource-
consumer type interactions, when the interacting agents are not biological species,
considered by Feltham and Chaplin [66]. They have focussed on diffused resource
consumed by its consumer. In our case, oxygen (resource) diffuses through the
water body and is consumed by the phytoplankton, which is also its producer.

1.3 Thesis outline

This work intends to study the oxygen dynamics in a plankton system within the
introduced framework of ordinary and reaction-diffusion systems. A special remark
should be made on the observation of the model system. We begin with analysing
both analytically and numerically a system comprising of oxygen-phytoplankton
and then analyse the addition of zooplankton.

This dissertation is organized as follows. Chapter 1 gives a general back-
ground on relevant oxygen and plankton issues in marine ecosystems.

Chapter 2 deals with spatial and nonspatial dynamical behavior of our basic
oxygen-phytoplankton model system.

Chapter 3 gives ecologically more realistic results with the addition of the
zooplankton to our basic resource-consumer model. Therefore, predation effects on
oxygen concentration is taken into account in this chapter. It should be emphasized
here that the improved oxygen-plankton models’ behavior is quite similar to the
prey-predator model dynamical response in [147]. Then the systems’ nonspatial
and corresponding spatial dynamics are given in the one-dimensional case.

In Chapter 4, we have introduced plankton respiration terms and include
them into the improved model system. The results presented include the non-
spatial and spatial case in one-dimension. Contrary to the general structure of
this dissertations’ each chapter, here we give the spatial distribution of oxygen
concentration in water body in two-dimensions by keeping in mind the phyto-
plankton spatial distribution in two dimensional case is qualitatively similar with
the distribution of oxygen concentration.

Chapter 5 focuses on the system’s dynamical response to the changing
environmental condition. Specifically, we consider the effect of a continuously
increasing temperature function with time as a consequence of the global climate
change. The system’s nonspatial and its corresponding spatial case to the changing
surrounding water temperature are given. We will show that a sufficiently large
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increase or decrease in the relevant controlling parameters can result in a sudden
decline in oxygen production and plankton extinction.

Chapter 6 continues the study of changing environmental condition. But in
this case, we focus on the system’s response to the stopping the increase of temper-
ature with time. Therefore, we choose a piecewise linear temperature function and
try to observe the system’s nonspatial and spatial response to this hypothetical
change of environmental condition.

In Chapter 7, I conclude with a summary of results and present new direc-
tions in order to encourage possible future work in hope that subsequent research
will fill the gaps and improve the understanding of underlying properties of marine
ecosystem responses to global climate change.



Chapter 2

Baseline Model

2.1 Introduction

Dynamics of oxygen production due to phytoplankton photosynthetic activity has
long been a focus of research, both in field measurements and in laboratory set-
tings. Oxygen concentration is measured by the level of oxygen production result-
ing from photosynthetic activities. The earliest measurement of oxygen production
(dating back to almost 90 years ago) was made by determining changes in oxygen
concentration in bottles submerged in the water by using Winkler techniques [72].
In his classical book, Harris [91] considered the connection between the growth
rate of oxygen production and photosynthesis, as photosynthesis constitutes the
main source of energy accessible to the cells. Paasche [186] showed that the con-
centration of oxygen in the ocean is due to the photosynthetic activity of phyto-
plankton, which are mainly responsible for the photosynthetic process in oceans.
Phytoplankton, therefore, play an essential role in maintaining life on Earth in
terms of oxygen production [169]1.

Phytoplankton are greatly responsible for photosynthetic process as in the
ocean making them important agents of aquatic system for primary production
[91, 186]. More than one half of the total photosynthetic activity on Earth is
carried out by them, thereby they account for the majority of the oxygen release
to the Earth’s atmosphere [169]. Therefore, oceanic system are responsible for
regulating the atmospheric oxygen budget. This produced oxygen is then utilized
by some marine animals, for organic matter oxidation and the rest is released to
the atmosphere [91].

There is a large body of literature concerned with various aspects of spa-
tiotemporal dynamics of plankton [5, 57, 105, 106, 150, 160, 163]. In particular,

1The majority of this chapter has been published in [227]
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an oxygen-plankton system model combined with nutrient and zooplankton com-
ponents is examined by Mocenni [163]. Based on this model accounting for the
interplay between the physical and chemical processes in coastal ecosystems it
does not address the main relation between plankton populations and oxygen con-
centration. Another plankton-oxygen model has been proposed and analyzed by
Misra [160] including the effect of some ‘exogenous’ factors (such as light, wind in-
tensity, temperature, phosphorus, eutrophication, etc.), hence leaving the internal
plankton-oxygen dynamics out of the focus.

The intricate structure of marine systems lies in the wide variety of species
and their inter-intra species interactions [58, 155, 177]. Therefore, field studies are
not applicable due to their inability to discertain the contribution of all existing
constituents. Hence, a ‘realistic’ ecosystem model can include many equations
[65, 125]. As with all modelling approaches, we aim to simplify the system’s com-
plexity through the choice of key factors. Numerous controlling factors affecting
oxygen production by phytoplankton include temperature, salinity, predation, nu-
trient availability, depth of water, light etc. [34, 208, 238]. Here, we focus on
a reduced model incorporating the conceptual model based on the relationship
between oxygen itself and phytoplankton as its producer.

In this chapter, we introduce a ‘baseline’ model which neglects some ex-
ternal factors to further our understanding of the main interactions (related to
oxygen production in photosynthesis and its consumption) between oxygen and
phytoplankton. Hence, in subsection 2.2, we introduce our oxygen-phytoplankton
model. In subsections 2.2.1 and 2.2.2, steady states and their existence conditions
are examined. In subsection 2.2.3, our two-component system is studied through
extensive numerical simulations both in nonspatial and spatial case to reveal the
properties of the model.

2.2 Model Formulation

The structure of our baseline model describing the interactions between oxygen
and phytoplankton is illustrated by a flow chart (see Fig. 2.1). Flows of matter
through the system are indicated by arrows.

We begin with a simple conceptual model that only takes into account
the temporal dynamics of the oxygen itself and the phytoplankton as its main
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phytoplankton

oxygen

g(c, u)uAf(c)u

Figure 2.1: Interactions between oxygen & phytoplankton. Arrows show the
flows of matter through the system, and the parametrizations of the rates are
as labelled. Phytoplankton produces oxygen through photosynthesis during the
day-time depending on existence of sunlight and consumes it during the night

[36].

producer.

dc(t)

dt
= Af(c)u−mc, (2.1)

du(t)

dt
= g(c, u)u. (2.2)

Here c and u denote the concentration of the dissolved oxygen and the phyto-
plankton density, respectively, at time t, f(c) is the amount of oxygen produced
per unit time and per unit phytoplankton mass, g(c, u) is the per capita phyto-
plankton growth rate, A describes the effect of the environmental factors on the
rate of oxygen production, and the term mc takes into account oxygen losses due
to natural depletion, e.g. its diffusion to the atmosphere, consumption of marine
organisms, etc. Note that Eq. (2.1) is linear with respect to u, and indeed we are
not aware of any evidence that the photosynthesis rate can depend on phytoplank-
ton density. On the contrary, Eq. (2.2) should normally be nonlinear with respect
to u (hence the dependence of g on u) as the high phytoplankton density is known
to damp on its own growth, e.g. due to self shading and/or nutrient depletion.
Moreover, it is known that world’s oxygen output decline can be explained by the
decline in phytoplankton density [259].

In order to understand what can be the properties of functions f and g, we
have to look more closely at the oxygen production and consumption. We consider
f(c) first. Oxygen is produced inside phytoplankton cells through photosynthesis
and then diffuses through the cell membrane into the surrounding water. The
diffusion flux is always directed from areas with higher concentration of the dif-
fusing substance to the areas with lower ones, and this more prominent with the
increasing difference between concentrations (cf. Fick’s law [39]). Therefore, for
the same rate of photosynthesis, the amount of oxygen that gets through the cell
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membrane will be larger the lower the oxygen concentration is in the surrounding
water. Therefore, f should be a monotonously decreasing function of c. We fur-
ther assume that the oxygen flux through the cell membrane tends to zero when
the oxygen concentration in the water is very large, i.e. in physical terms, is close
to its saturating value for c→∞. The above features are qualitatively taken into
account by the following parametrization:

f(c) = 1− c

c+ c0

, (2.3)

where c0 is the half-saturation constant.
Considering phytoplankton multiplication, we assume that g(c, u) = α(c)−

γu where the first term describes the phytoplankton linear growth and the second
term accounts for intraspecific competition for resources. Eq. (2.2) for the phy-
toplankton growth is therefore essentially the logistic growth equation where 1/γ

plays the role of the carrying capacity, which we assume does not depend on c.
However, the linear growth rate α should depend on c, which can be seen from the
following argument. Phytoplankton produce oxygen by photosynthesis during the
daytime, but they need oxygen for their metabolic processes (e.g. breathing) dur-
ing the night; therefore, low oxygen concentration is unfavorable for phytoplankton
and is likely to depress its reproduction [36]. On the other hand, a phytoplankton
cell cannot take more oxygen than it needs. Hence, α should be a monotonously
increasing function of c tending to a constant value for c → ∞. The simplest
parametrization for α is then given by the Monod function, so that for g(c, u) we
obtain:

g(c, u) =
Bc

c+ c1

− γu, (2.4)

where c1 is the half-saturation constant and B is the phytoplankton maximum per
capita growth rate.

With (2.3–2.4), Eqs. (2.1–2.2) take the following form:

dc

dt
= A

(
1− c

c+ c0

)
u−mc, (2.5)

du

dt
=

(
Bc

c+ c1

− γu
)
u. (2.6)

The system (2.5–2.6) contains six parameters; however, their number can be re-
duced by choosing dimensionless variables as follows:

t′ = tm, c′ =
c

c0

, u′ =
γu

m
,
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and renaming new parameters accordingly as

B̂ =
B

m
, Â =

A

c0γ
and ĉ =

c1

c0

.

For convenience, we now simplify the notations by omitting the primes and
hats, i.e. by changing t′ → t, c′ → c, u′ → u, Â → A and B̂ → B and ĉ → c1.
Eqs. (2.5–2.6) then take the following form:

dc

dt
= A

(
1− c

c+ 1

)
u− c ≡ f(c, u), (2.7)

du

dt
=

(
Bc

c+ c1

− u
)
u ≡ g(c, u), (2.8)

where all variables and parameters are now dimensionless. For detailed analytical
work on obtaining the dimensionless form; see Appendix B. The analysis of the
model properties will be done in terms of dimensionless parameters and variables.
A brief discussion of possible parameter values in real ecosystems will be done in
Section 5.3

2.2.1 Examining the steady states and existence

The next step is to reveal the existence of the equilibria (steady states), (c̃, ũ) as
given by the non-negative solutions of the following system:

f(c̃, ũ) = 0, g(c̃, ũ) = 0.

Biologically meaningful system equilibria are non-negative intersection points
of the oxygen zero-growth isocline and the phytoplankton zero-growth isocline.
The shape of these (null-)isoclines is shown in Fig. 2.2. The first isocline (i.e. for
oxygen increase) is given by the curve ũ = c̃

A
(c̃+1) and the second isocline (i.e. for

phytoplankton growth) is given by ũ = 0 and c̃ = ũc1
B−ũ . Correspondingly, Eqs. (2.7–

2.8) have at most two non-negative solutions. One is the extinction state (0, 0)

and the other is the coexistence state (c̃, ũ). The extinction state exists for all
parameter values. The coexistence state exists only under certain conditions.

Parameter B takes values with the range {1, 1.4, 2, 2.4, 3, 3.4, 4, 4.4, 5, 5.4}.
In Fig. 2.2, c̃ and ũ correspond to the steady state of oxygen and phytoplankton,
respectively. From the model system (2.7–2.8), the coexistence steady state is
given by the intersection of the isoclines shown, with a circle, as c̃ and ũ which is
readily seen on Fig. 2.2. The steady state values c̃ and ũ are the solutions of the
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Figure 2.2: The (null-)isoclines of the oxygen-phytoplankton system (2.7–2.8).
Black curve shows the oxygen isocline for A = 0.4 and c1 = 1; red curves show
the phytoplankton isocline for B changes from 1 to 5.4 for the range is given in

the text from bottom to top.

following system:

A

(
1− c̃

c̃+ 1

)
ũ − c̃ = 0, (2.9)(

Bc̃

c̃+ c1

− ũ
)
ũ = 0, (2.10)

from which the equations for the isoclines can be obtained, respectively, as

ũ =
c̃

A
(c̃+ 1) (2.11)

and
ũ =

Bc̃

c̃+ c1

. (2.12)

The corresponding curves are shown in Fig. 2.2.
Note that Eq. (2.12) can be rearranged in terms of c̃ as follows:

c̃ =
ũc1

B − ũ
. (2.13)

Substituting (2.13) into Eq. (2.11), the following quadratic equation is obtained
for ũ:

Aũ2 + (−2AB − c2
1 + c1)ũ+ AB2 − c1B = 0, (2.14)

so that its solution is given by

ũ =
−σ ±

√
σ2 − 4Aκ

2A
and c̃ =

ũc1

B − ũ
, (2.15)



Chapter 2 Baseline Model 19

where
σ = −2AB − c2

1 + c1 and κ = AB2 − c1B. (2.16)

It is readily seen that a unique positive root exists if the following conditions
are satisfied. Consider

ũ =
−σ −

√
σ2 − 4Aκ

2A
> 0, (2.17)

then
σ2 − 4Aκ ≥ 0, σ < 0, (2.18)

and
− σ −

√
σ2 − 4Aκ > 0,

so that
0 > −4Aκ =⇒ κ > 0 =⇒ AB > c1. (2.19)

On the other hand

ũ =
−σ +

√
σ2 − 4Aκ

2A
> 0, (2.20)

then
− σ +

√
σ2 − 4Aκ > 0,

so that
0 < −4Aκ =⇒ κ < 0 =⇒ AB < c1. (2.21)

Therefore, the unique positive root exists for

ũ =
−σ −

√
σ2 − 4Aκ

2A
> 0 for AB > c1. (2.22)

Thus, using the expression (2.17) for ũ, we have arrived at condition given by
Eq. (2.22). Note that the choice of the other root (see (2.20)) instead of (2.17)
results in ũ < 0 and hence it is ecologically meaningless.

The shape of the second isocline, as given by Eq. (2.12) or (2.13), depends
on parameter B, and taking sufficiently small values of B eventually results in
the disappearance of the positive steady state (see the succession of red curves in
Fig. 2.2) so that the only remaining equilibrium is extinction. From the geometric
argument, it is readily seen that the positive steady state exists if and only if the
slope of the oxygen isocline at the origin is less than the slope of the phytoplankton
isocline. Let us define the first (oxygen) isocline’s tangent line and its angle with
the x-axis as α. Similarly, we define the second isocline’s tangent line and its angle
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with the x-axis as β. Then the following holds:

ũ =
1

A
c̃(c̃+ 1), (2.23)

dũ

dc̃
=

1

A
(2c̃+ 1)|c̃=0 =

1

A
, (2.24)

tgα =
1

A
. (2.25)

ũ =
Bc̃

c̃+ c1

, (2.26)

dũ

dc̃
=

Bc1

(c̃+ c1)2
|c̃=0 =

B

c1

(2.27)

tgβ =
B

c1

. (2.28)

α < β ⇒ 1

A
<
B

c1

(2.29)

c1 < AB (2.30)

and similarly,
c1 > AB for α > β. (2.31)

From Eqs. (2.11) and (2.12), we obtain that the isoclines’ slopes are 1/A and B/c1,
respectively. Correspondingly, the condition of their intersection is

1

A
<
B

c1

, so that AB > c1, (2.32)

which obviously coincides with (2.22). We mention here that condition AB > c1

has a clear biological interpretation. Recall that A quantifies the rate of oxygen
production. Therefore, condition (2.32) (or (2.22)) means that, since oxygen is
a vital resource, its production must be high enough in order to support the
phytoplankton existence.

Now, our concern is to ensure that the steady states are always positive
under the assumption of condition given by Eq. (2.22). All results are presented
in dimensionless variables introduced in Section 2.2. In our numerical simulations
we fix one of parameters A, B or c1 and the remaining parameters take fixed
hypothetical values from a meaningful range to ensure a positive steady state.

The steady state results of oxygen-phytoplankton are shown in Fig. 2.3 for
the equilibrium point (c̃, ũ). We fix A = 0.2 and consider B to vary between
10 to 20 and the range of c1 is 1 to 2. P , (P = σ2 − 4Aκ), is a function of



Chapter 2 Baseline Model 21

1

1.5

2

10

15

20
0

20

40

60

80

c
1

B
P

 f
u

n
ct

io
n

(a)

1

1.5

2

10

15

20
0

0.2

0.4

0.6

0.8

1

c
1

B

o
xy

g
en

(b)

1

1.5

2

10

15

20
0

2

4

6

8

10

c
1

B

p
h

yt
o

p
la

n
kt

o
n

(c)

0

0.5

1

0

5

10
0

20

40

60

80

oxygen
phytoplankton

P
 f

u
n

ct
io

n

(d)

Figure 2.3: Steady state values of oxygen and phytoplankton vs. given range
of B and c1 and for A = 0.2. Blue surface with red edge color is given to show

the separation of negative and positive part.

δ, κ (see Eq. (2.16)) and should satisfy the condition P > 0 for the meaningful
solution of ũ (see Eq. (2.22)). P versus oxygen and phytoplankton is shown in
Fig. 2.3d. Under the above set of parameters, we note that condition Eq. (2.22)
is satisfied. The blue planes with red coloured edges that lie the zero surface act
as a visual aid to separate the positive and negative parts ignored to make our
system biologically reasonable; see in Figs. 2.3a-c. System steady states under the
controlling parameters A and c1 for fixed B1 value and the function of P are shown
in Fig. 2.4. In the same sense, system steady states on the controlling parameters
B and A for a fixed c1 value and the function of P are shown in Fig. 2.5.

This subsection 2.2.1 forms the basis of the fundamental analytical part of
our work. The following sections on spatial and nonspatial system dynamics build
on these key concepts. As both components (oxygen and phytoplankton) satisfy
positive existence states our theoretical model agrees with the observed biological
reality; see Figs. 2.3-2.5. Hence, the following subsection 2.2.2 should satisfy the
conditions given by the Eqs. (2.19), (2.32) or (2.22).
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Figure 2.4: Steady state values of oxygen and phytoplankton vs. given range
of A and c1 for B = 2.
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Figure 2.5: Steady state values of system components vs. given range of A
and B for c1 = 1.
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2.2.2 Stability analysis

The nonspatial two-component system (2.7–2.8) has two equilibria with the first
one being the extinction state (0, 0) and the second being the coexistence state
(c̃, ũ); see Section 2.2.1.

The Jacobian matrix of the system given by Eqs. (2.9–2.10) is:

A =

− Au
(1+c)2

− 1 A(1− c
1+c

)

Bc1u
(c+c1)2

Bc
c+c1
− 2u

 . (2.33)

For each of the steady states, the eigenvalues are the solutions of the characteristic
equation:

det(Ai − λI) = 0, (2.34)

where I is the unit matrix and Ai is the matrix (2.33) with the elements calculated
at the steady state Ei, i = 1, 2. Below we give a brief summary of the results,
details of the calculations can be found in Appendix C.

• Extinction state E1

The eigenvalues of matrix A1 are −1 and 0. The fact that one of the eigenvalues
is zero means that linear stability analysis is not informative. Generally speaking,
in this case, one has to perform a higher order stability analysis to determine the
stability of the equilibrium, e.g. by applying the Center Manifold Theory2 [26, 130].
Alternatively, in order to avoid tedious analytical calculations, we can check the
stability by numerical simulations.

• Oxygen-phytoplankton (coexistence) state E2

The eigenvalues of matrix A2 are the solutions of the following characteristic equa-
tion: (

− Aũ

(1 + c̃)2
− 1− λ

)(
Bc̃

c̃+ c1

− 2ũ− λ
)
− A

1 + c̃

Bc1ũ

(c̃+ c1)2
= 0, (2.35)

where c̃ and ũ are given by Eqs. (2.13) and (2.11).
Instead, in Fig. 2.6, we show λ for each of the eigenvalues λ1, λ2 (Figs. 2.6a-

b), accordingly as a function on the controlling parameters A and c1.
2One of the main methods of simplifying the study of dynamical systems is to reduce the

dimensions of the system. Center Manifold Theory is a rigorous mathematical technique to
carry out this reduction near equilibria and provides information on the stability of equilibria
[26, 130].
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Figure 2.6: The eigenvalues of the system (2.5-2.6) linearized in the vicinity
of the E2 shown as functions of parameters A and c1. E2 does not exist on the

left hand side of the plots.

All of the system’s eigenvalues for matrix A2 are real and the stability of
the coexistence steady state (c̃, ũ) is shown by numerical simulations. Note that
Fig. 2.6 is conducted under the condition given by Eq. (2.22). For a given set of
parameter values of A and c1, the eigenvalues are given for steady state (c̃, ũ) in
Fig. (2.6). It is seen that this steady state is always stable when λ2 6= 0. Namely, as
for the stability of the steady states, it is straightforward to see (e.g. by considering
the direction of the flow in different regions of the phase plane) that the coexistence
state (c̃, ũ) is stable for all parameter values when it is feasible, i.e. is situated in
the first quarter of the plane (see Fig. 2.6b). In that case, the extinction state (0, 0)

is unstable and hence (c̃, ũ) is a global attractor. When the coexistence state is
not feasible, then the extinction state is stable and acts as a global attractor. Note
that Fig. 2.6 effectively plays the role of a bifurcation diagram. However, standard
bifurcation diagrams can be shown by choosing hypothetical values of c1 for given
a range of A.

We mention here that the standard bifurcation diagram would not be suf-
ficiently informative here as we are interested in possible changes in the steady
state stability as a response to the changes in two parameters rather than only
one. Fig. 2.7 shows each of the eigenvalues λ1 and λ2 as a function of the con-
trolling parameter A for two hypothetical values c1. It is readily seen that the
equilibrium (c̃, ũ) is always stable for λ2 6= 0. The case of λ2 = 0 and the sta-
bility of the coexistence state (c̃, ũ) will be discussed in subsection 2.2.3 (As it is
observed in subsection 2.2.3, this steady state is always stable when λ2 = 0.).

Figure 2.8 shows the results of the steady states analysis as a map in pa-
rameter plane (A, c1). Here, c1 is chosen as a second controlling parameter due
to its effect on phytoplankton growth. The curve between Domain 1-2 indicates
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Figure 2.7: Eigenvalues vs A, oxygen-phytoplankton state for (a) c1 = 0.4, (b)
c1 = 0.7. The vertical line shows the feasibility condition, for the values of A on

the left of the line coexistence state does not exist.
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Figure 2.8: A map in the parameter plane (A, c1) for B = 1 where different
domains correspond to stability and its feasibility of (c̃, ũ); see details in the
text. Since the map is obtained in numerical simulations, the positions of the

domains boundary is approximate.

where the eigenvalues are equal to zero. Hence, Domain 1 corresponds to the
range where system has no positive equilibrium, while Domain 2 is always stable
for (c̃, ũ). Red crosses represent zero eigenvalues, while the blue stars indicate neg-
ative eigenvalues; see detailed eigenvalue table Appendix C in Table C.1, hence
stability of steady state.

2.2.3 Numerical simulations

In previous sections, properties of the nonspatial system were examined. In this
section we broaden our study of the oxygen-phytoplankton system by incorporat-
ing a spatial dependence. We consider a spatially explicit extension of the model
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(2.7– 2.8), defined by the following system of reaction-diffusion equations:

∂c

∂t
= DT

∂2c

∂x2
+ A

(
1− c

c+ 1

)
u − c, (2.36)

∂u

∂t
= DT

∂2u

∂x2
+

(
Bc

c+ c1

− u
)
u. (2.37)

As before c = c(x, t) denotes the concentration of oxygen and u = u(x, t) is the
density of phytoplankton at time t and position x (where x could be depth (i.e
vertical) or a horizontal coordinate), and DT is the coefficient of the turbulent
diffusion [165, 183].

We mention here that, in reality, the transport of oxygen in the sea water
takes place due to the combined action of molecular3 and turbulent diffusion4,
so that the coefficient in Eq. (2.36) should actually be DT + D0 rather than just
DT , where D0 is the molecular diffusion coefficient. However, on the spatial scales
relevant to plankton dynamics (i.e. 10−1 to 105 meters) the rate of molecular
diffusion is known to be several orders of magnitude smaller than that of turbulent
diffusion. Hence, D0 � DT and DT +D0 ≈ DT .

We also mention here that, having considered appropriate scaling of the
spatial coordinates as x → x′ = x

√
m/DT , cf. the lines after Eqs. (2.5–2.6),

the coefficient DT will disappear from the equations. Correspondingly, below we
consider Eqs. (2.36–2.37) to be dimensionless by setting DT = 1. Also, for the
following numerical simulations, we fix values of two parameters of A, c1, B at
their hypothetical value and focus on the effect of variations of the remaining
one. Equations (2.36–2.37) are considered on a finite domain 0 < x < L where
parameter L is the domain length. At the domain boundaries, the Neumann (zero-
flux) boundary conditions are imposed to describe an environment surrounded by
dispersal barriers.

The choice of initial conditions is a subtle issue as different initial conditions
may result in very different spatiotemporal dynamics [147]. In this chapter, we
consider the initial species distribution describing a phytoplankton patch in a space
with uniformly distributed oxygen:

c(x, 0) = p, (2.38)

u(x, 0) = 0.5 for |xi| < ε, otherwise v(x, 0) = 0, (2.39)
3Molecular diffusion is related with random molecular motion that constitutes heat [183].
4The diffusion is called as turbulent due to turbulence of environmental fluids [183].
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where p and ε are dimensionless variables; for our numerical examples p = 0.2

(initial distribution of oxygen) and ε = 100 (patch diameter). Equations (2.36–
2.37) are solved numerically using the forward finite difference method. Mesh step
values for space, 4x, and time, 4t have been selected to be sufficiently small in
order to ensure accurate approximation and agreement of ecological reality. The
mesh steps are chosen as 4t = 0.01 and 4x = 0.5 and it was checked that these
values are sufficiently small to avoid any significant numerical artifacts.
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Figure 2.9: The density of oxygen (blue) and phytoplankton (green) over space
(i.e. horizontal) with given parameter values, t = 200, A = 0.4, c1 = 1 and B
changes from 1 to 5.4 for curves from bottom to top, respectively (see Fig. 2.2
for corresponding nonspatial system). Below red line the system do not satisfy

the necessary condition given by Eq. (2.22).

Increasing the value of B results in increase in steady state of components
for both oxygen and phytoplankton (see Fig. 2.9). In Fig. 2.9, existence of the
positive steady state depends on parameter B and for sufficiently small values of
B the positive steady state disappears leaving the remaining equilibrium to be the
extinction state. It should be emphasized that the curves below the red line do
not satisfy the necessary condition given by Eq. (2.22). Similar succession (only
extinction state remaining) is valid for a specific choice of parameter values for A
and c1.

Fig. 2.2 and Fig. 2.9, show the coexistence steady state for the nonspatial
and spatial system. The dynamics observed in the nonspatial system corresponds
to the dynamics in its spatial counterparts. This illustration is a remarkable exam-
ple to show the correspondence between obtained spatial and nonspatial system
for a given set of parameters. The distribution of oxygen and phytoplankton forms
a plateau where these quantities are exactly at their steady state values (c̃, ũ) in
Fig. 2.9.
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Figure 2.10: Phytoplankton density and oxygen concentration versus space
(i.e. horizontal) shown at t = 100 (dotted line), t = 200 (dashed-dotted
line) and t = 300 (solid line) obtained for (a) A = 0.2, (b) A = 0.6 and other
parameters are B = 3, c1 = 1 with given initial distribution Eqs. (2.38–2.39).

In Fig. 2.10a, a sketch of oxygen concentration and phytoplankton distri-
bution is given at different moments in time and it is observed that oxygen and
phytoplankton go extinct a large time limit. However, an interesting situation
is observed for an increase in A the species persist through the propagation of
travelling fronts where these quantities are exactly on their steady state values
Fig. 2.10b. Note that the emerging pattern moves right with constant speed (see
Eq. (3.25)) without changing its shape. We want to emphasize that the nonspatial
system steady states fully coincide with the steady states of its spatial counterparts
Fig. 2.10b.

We assume A proportional to temperature. The succession of dynamical
scenarios for different values of B and given an exponential function correspond-
ing A is shown in Fig. 2.11. With an increase in B, oxygen concentration and
phytoplankton density are increased; see Figs. 2.11a-d. Fig. 2.12 shows oxygen
and phytoplankton dynamics for the given exponential temperature function at
different time moments depicted by different colors. As an example, Fig. 2.12
(right) shows the temperature decrease from water surface to the deep. Contrary
to Fig. 2.12, Fig. 2.13 shows oxygen and phytoplankton dynamics for the same
exponential function for small value of B. We have also explored the possibility
of a different functional form for A, A(x) = 1

((0.01+10−4∗x)+ε)
. For a larger time

limit there is an abrupt decay of the system’s components as indicated by the
black curve in Figs. 2.14a-b. It may be explained that if temperature is not at its
optimum value, extinction becomes inevitable for both oxygen and phytoplankton.
As an example of chosen parameter values it can be said that in contrast to large
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Figure 2.11: Phytoplankton density and oxygen concentration over space (i.e.
vertical) for different B values 1, 2, 3 and 4 left to right, top to bottom, respec-
tively, for given parameter values A(x) = exp( ε

x+δ ), δ << ε, δ = 0.01, ε = 1,
c1 = 1 and t = 100 with given initial distributions (see Eqs. (2.38–2.39)).
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Figure 2.12: Oxygen-phytoplankton distributions and temperature function
A(x) = exp( ε

x+δ ), δ << ε vs. space (i.e. vertical) are obtained for given
parameter values δ = 0.01, B = 10, ε = 1, c1 = 1 with given initials (see
Eqs. (2.38–2.39)) for different time values t = 0.1 (magenda), t = 20 (blue),
t = 50 (green), t = 500 (black) and red lines are given for initial condition for

oxygen and phytoplankton.
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Figure 2.13: Oxygen-phytoplankton distribution and temperature function
A(x) = exp( ε

x+δ ), δ << ε versus space (i.e. vertical) for given parameter values
B = 1, ε = 1, c1 = 1 with given initial conditions (see Eqs. (2.38–2.39)) for
different time values t = 0.1 (magenta), t = 100 (blue), t = 1000 (green),
t = 3000 (black) and red line is shown for initial condition of both oxygen and

phytoplankton.
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Figure 2.14: Oxygen-phytoplankton distribution and temperature function A,
A(x) = 1

((0.01+10−4∗x)+ε)
, versus space (i.e. vertical) from left to right for given

parameter values B = 1, ε = 0.1, c1 = 1 with given initial conditions (see
Eqs. (2.38–2.39)) for different time values t = 10 (magenta), t = 500 (blue),
t = 1000 (green), t = 2000 (black) from left to right. Red line is shown for

initial condition of both oxygen and phytoplankton.

values of B (when B = 10; in Fig. 2.12), small values of B drive (when B = 1; in
Figs. 2.14) the system components to extinction at different time moments.
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2.3 Discussion and Concluding Remarks

Oxygen production and consumption is a topic gaining significant importance as
an upcoming environmental problem related to global warming [1, 174, 175, 220].
Our aim is to describe this important environmental issue with a mathematical
model by using diffusion-reaction equations and try to understand the underlying
dynamics. For this reason, this chapter focusses on the basic interaction between
oxygen production and phytoplankton growth. Understanding the basic relation
between oxygen and phytoplankton systems can provide useful information to
many scientific areas in bettering our understanding of global warming (see [29,
268] for further and detailed research on this subject).

In this chapter, we attempt to build a new approach to model the existing
plankton system by using resource-consumer interaction. For specific parameter
set it can be shown that Mocenni’s model [163] is reduced to ours; see Appendix A
for the reduction of a model system to our model system.

We first considered the nonspatial version of the model in Sections 2.2.1–
2.2.2 corresponding to a well-mixed system with a spatially uniform distribution
of species. The properties of this model have been studied both analytically and
numerically. In particular, we found analytical conditions for the existence of a
(unique) positive equilibrium corresponding to the coexistence of two components.
In ecological terms, parameter values corresponding to the existence of the positive
equilibrium ensure oxygen existence, whilst the disappearance of this steady state
should be regarded as an ecological disaster resulting in mass extinction of the
plankton species.

In Section 2.2.3, we then considered a spatially explicit extension of our
model which takes into account the transport of plankton and oxygen by turbulent
diffusion. The model is described by a system of two partial differential equations
of reaction-diffusion type. The properties of the system were studied by extensive
numerical simulations due to its underlying complex analytical solution. From the
spatial system, it is readily seen that there are two steady states which are the
extinction and coexistence state (see Figs. 2.9–2.11). We gained knowledge how
the nonspatial system appears to provide us with an outline of properties of the
spatial system’s dynamics.

The purpose of this chapter is to demonstrate oxygen production by phyto-
plankton through photosynthesis, which has a contribution to the oxygen produc-
tion and to show the temperature effect on our model system (2.5–2.6). Different
types of temperature functions are considered in numerical simulations such as
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A(x) = ε
x+δ

, A(x) = exp( ε
x+δ

) and A(x) = 1
((0.01+0.0001∗x)+ε)

in order to reveal
the system dynamics dependence on varying A. Note that, the chosen hypothetical
functions are decreasing to obtain the system sensitivity in the case of decreasing
oxygen production (see Chapter 5 and Chapter 6) for further detail on system
dynamics dependence to the changing environmental conditions). For Figs. 2.11–
2.13, we choose A to be an exponential function A(x) = exp( ε

x+δ
). However,

A(x) = 1
((0.01+0.0001∗x)+ε)

is used for Fig. 2.14. The obtained results show that tem-
perature affects the dynamical response of oxygen-phytoplankton system, e.g. it
affects oxygen and phytoplankton density (see Figs. 2.11–2.13), it leads to abrupt
decay (see Fig. 2.14). It is known that the water temperature affects phytoplank-
ton growth and abundance [7, 60, 207]. For this reason this issue will become a
focus of the following chapters (Chapter 5 and Chapter 6). The similar succession
of the system properties is observed for A(x) = ε

x+δ
, hence the results obtained

for this function are not presented here for the brevity.
Perhaps the most interesting property of our model is that phytoplankton

are predicted to survive only if the rate of oxygen production is above a certain
critical value; see condition given by Eq. (2.22). Since the rate of oxygen produc-
tion may be expected to depend on the properties of the environment, it makes our
model a convenient and relevant theoretical tool that can be used for the purposes
of nature conservation and marine ecosystems management. This will become a
focus of our following chapters.



Chapter 3

Zooplankton Predation Effect on

Oxygen Dynamics

3.1 Introduction

In this chapter, we introduce an improved model by building upon our basic
oxygen-phytoplankton system, taking into account the predation effect on oxy-
gen dynamics. Phytoplankton play an important role in oxygen production [169],
and on the other hand it is grazed upon by its predator. Therefore, predation
affects water body oxygen concentration by reducing the abundance of phyto-
plankton communities, thereby zooplankton density is affected, in turn due to its
sensitivity to any changes in algal growth [86, 246]. On the other hand predation
response of zooplankton community is affected by the decrease in dissolved oxygen
concentration in the water body [21, 45, 175, 176]. In field observations, low dis-
solved oxygen concentration affects predation, escape behaviour of prey, feeding
and swimming movements of predator. Therefore, zooplankton density decreases
with decreasing oxygen concentration as a result of the inability to escape from
their feeders [21]1.

There is considerable literature concerned with various aspects of spa-
tiotemporal plankton dynamics (in space and time). Conceptual prey-predator-
type models to describe the phytoplankton and zooplankton interactions in ma-
rine ecosystems were considered in much detail in [146, 147, 197] but with no
attention to oxygen production. In another mathematical study, Edwards and
Brindley [57] investigated the dynamics of a coupled plankton-nutrient system,
but did not pay any attention to their possible relation to dissolved oxygen.
There are relatively few papers where oxygen production is considered explicitly

1The majority of this chapter has been published in [227]

33
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[5, 150, 160, 161, 162, 163] but these papers leave out of the scope some important
features of plankton dynamics such as, for instance, the pronounced heterogeneity
of its spatial distribution (known as plankton patchiness). In particular, Marchet-
tini et al. [150] studied the tropic dynamics by developing a mathematical model
of biochemical processes in a lagoon ecosystem. The dissolved oxygen concentra-
tion in a multi-component system is considered by them. In another modelling
study, Allegretto et al. [5] showed the existence of periodic solutions in modelling
Italian coastal lagoons.

In spite of the vast literature concerning marine ecosystem modelling, the
dynamics of the dissolved oxygen concentration as an essential component of plank-
ton systems has not been studied in sufficient detail. Nevertheless, this issue is
obviously of significant practical and theoretical importance. Correspondingly, the
aim of this chapter is to consider the effect of phytoplankton-zooplankton (prey-
predator) interactions on the dynamics of the dissolved oxygen. In turn, this
requires a good understanding of the properties of the baseline two-components
oxygen-phytoplankton system as given in Chapter 2.

In view of the above, this chapter is structured as follows. In the next
section, a new mathematical model of oxygen-plankton dynamics is proposed and
analyzed. In Section 3.2, we extend our model to include zooplankton. In Sec-
tions 3.3.1 and 3.3.2, the properties of the three-component system are studied
by extensive numerical simulations first for the nonspatial system then extended
to include a spatial component, revealing rich spatiotemporal dynamics including
chaos and travelling fronts of extinction. In Section 3.4, the ecological relevance
and potential importance of our findings is discussed.

3.2 The ‘advanced’ three-component model and

results

The baseline oxygen-phytoplankton model focused on in Chapter 2 can be made
biologically more realistic by taking into account zooplankton. Indeed, zooplank-
ton is the main consumer of phytoplankton and it is well known that its effect
can change the system’s properties significantly, usually making the dynamics
more complex, cf. [57, 64, 144]. In the model below, we assume that the phyto-
zooplankton trophic interaction is described by the standard prey-predator model
with the functional response of Holling type II.
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zooplankton

phytoplankton

oxygen

e(u, v)

g(c, u)uAf(c)u

Figure 3.1: Interactions between oxygen & phytoplankton & zooplankton.
Arrows show the flows of matter through the system, and the parametrizations

of the rates are as labelled.

The interaction between oxygen, phytoplankton and zooplankton is given
by a flow chart in Fig. 3.1. Flows of matter through the system are indicated by
arrows.

Therefore, the corresponding temporal dynamic’s are described by the fol-
lowing system of three coupled ordinary differential equations:

dc(t)

dt
= Af(c)u− c, (3.1)

du(t)

dt
= g(c, u)u− e(u, v), (3.2)

dv(t)

dt
= βe(u, v)− µv, (3.3)

where all notations are the same as in Chapter 2. Additionally, here v is the
zooplankton density at time t, and e is the per capita zooplankton growth rate due
to predation. The function of e(u, v) describes growth of the predator population
where β is the (dimensionless) maximum per capita growth rate, whilst µ is the
predator mortality rate. In the model above, we assume that the phytoplankton-
zooplankton interaction is described by the standard prey-predator model with
functional response of Holling type II [166, 167, 195, 198]. The second negative
term of Eq. (3.2) corresponds to the grazing of zooplankton on phytoplankton,
hence this predation contributes to predator (zooplankton) growth term βe(u, v).
The term µv stands for natural mortality of zooplankton.

We consider a Holling type II predator response and use the following
parametrization for predation:

e(u, v) =
uv

u+ h
, (3.4)
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where h is the half-saturation constant. With (3.4), cf. Chapter 2 to Eqs. (2.7–2.8),
then Eqs. (3.5–3.7) take the following form:

dc

dt
= A(1− c

c+ 1
)u − c, (3.5)

du

dt
= (

Bc

c+ c1

− u)γ u− uv

u+ h
, (3.6)

dv

dt
=

βuv

u+ h
− µv. (3.7)

Here, dissolved oxygen depends mainly on the oxygen production by phy-
toplankton photosynthetic activity, while phytoplankton is grazed upon by its
predator zooplankton. The model system (3.5–3.7) is built to reveal the under-
lying dynamics of the predation effect on water body oxygen concentration by
neglecting oxygen consumption due to zooplankton, assuming that zooplankton
density is not very high.

3.2.1 Equilibrium existence and analysis

The nonspatial three-component system (3.5–3.7) has at most three equilibria.

1. The trivial equilibrium E1 = (0, 0, 0) corresponding to extinction. It is read-
ily seen that this equilibrium exists always, regardless what the parameter
values are.

2. The semi-trivial equilibrium E2 = (c̃, ũ, 0). Once v = 0, the system (3.5–
3.7) is reduced to the oxygen-phytoplankton system (2.7–2.8); therefore, the
results obtained in Section 2.2 apply. In particular, the steady state values
c̃ and ũ are given by Eqs. (2.11–2.13), and the condition of the equilibrium
existence is given by the related condition (2.22).

3. The positive (coexistence) equilibrium E3 = (c̄, ū, v̄). This equilibrium exists
under certain conditions that are obtained below.

The steady state values c̄, ū and v̄ are the solutions of the following system:

A(1− c

c+ 1
)u− c = 0, (3.8)

(
Bc

c+ c1

− u)γu− uv

u+ h
= 0, (3.9)

βuv

u+ h
− µv = 0, (3.10)
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that can be solved semi-explicitly as follows:

ū =
µh

β − µ
, c̄ =

−1 +
√

1 + 4Aū

2
, v̄ = γ(ū+ h)

(
Bc̄

c̄+ c1

− ū
)
, (3.11)

(where we have omitted the second root for c̄ because it is always negative and
hence biologically meaningless).

It is then readily seen that all the steady state values (3.11) are positive
under the following conditions:

β > µ,
√

1 + 4Aū > 1 and
Bc̄

c̄+ c1

− ū > 0, (3.12)

which thus gives the conditions of E3 existence. Since all the parameters in (3.12)
are positive due to their biological meaning, the second condition in (3.12) holds
identically; however, the first and third ones impose nontrivial restrictions on the
range of biologically meaningful parameter values.

3.2.2 Stability analysis

In the following, we are going to discuss the stability of the steady states E1, E2

and E3. For this reason we calculate the Jacobian matrix of the system (3.8–3.10):

B =


− Au

(1+c)2
− 1 A(1− c

1+c
) 0

Bc1γu
(c+c1)2

Bcγ
c+c1
− 2γu− vh

(u+h)2
− u
u+h

0 βvh
(u+h)2

βu
u+h
− µ

 . (3.13)

For each of the steady states, the eigenvalues are the solutions of the char-
acteristic equation:

det(Bi − λI) = 0, (3.14)

where I is the unit matrix and Bi is the matrix (3.13) with the elements calculated
at the steady state Ei, i = 1, 2, 3. Below, we give a brief summary of the results,
whilst detailed calculations can be found in Appendix C.

Our system’s equilibrium points are the solutions of dc
dt

= 0, du
dt

= 0 and
dv
dt

= 0, which are all taken to be positive to make our system ecologically meaning-
ful. It means that intersections of these three equilibrium points are the isocline’s
of the system components describing oxygen constant concentration isocline, phy-
toplankton zero growth isocline and zooplankton zero growth isocline [11].

It is readily seen that the steady state position of ū is fixed. It is obvious
that ū from Eq. (3.10) is determined by the half saturation constant, the mortality
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rate of zooplankton and β is the maximum per capita growth rate of zooplankton.
In addition, shape and the position of c̄ and v̄ are characterized by the above
conditions (3.12). These conditions ensure that non-negative steady states are
used for our numerical simulations.

• Extinction state E1

The eigenvalues of matrix B1 are −µ, −1 and 0. The fact that one of the eigenval-
ues is zero tells us that the linear stability analysis is not informative. Therefore,
the same numerical approach to determine the stability of the model system is
considered as in Chapter 2. On the other hand, a theoretical approach can be
used with the application of the Center Manifold Theory [26, 130]. In this way,
we avoid the tedious analytical calculations.

• Zooplankton-free, oxygen-phytoplankton state E2

The eigenvalues of matrix B2 are the solutions of the following characteristic equa-
tion: [(

− Aũ

(1 + c̃)2
− 1− λ

)(
Bc̃

c̃+ c1

− 2ũ− λ
)
− A

1 + c̃

Bc1ũ

(c̃+ c1)2

]
(

βũ

ũ+ h
− µ− λ

)
= 0, (3.15)

where c̃ and ũ are given by Eqs. (2.13) and (2.11). The analytical solution of
Eq. (3.15) is bulky and hence we do not show it here for the sake of brevity (but
see Appendix C for more details).

The goal of the presentation of steady states Figs. 3.2 and 3.5 is to show that
our temporal and spatio-temporal dynamics simulations are based on the case that
the system’s whole components lie in an ecologically reasonable area. In order to
prove validation of the above condition given by Eq. (3.12) is obtained analytically
from Eq.(3.11), the steady state results of oxygen-phytoplankton-zooplankton are
shown in Fig. 3.2. We fix parameter values at some hypothetical values: B = 1,
γ = 1, β = 1, µ = 0.5, h = 0.1 and consider A and c1 changing between 0.1 to
1. Here γ = 1 is to provide the correspondence with the oxygen-phytoplankton
model in Chapter 2.

Figures 3.2a-b show the oxygen and phytoplankton positive steady state
areas, respectively. In this case, it is seen that the relevant condition given by
Eq. (2.22) hold (see Section 2.2.1). In Fig. 3.2, there is a straight line separating
the zero A-c1 surface and the positive oxygen area in which condition given by
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Figure 3.2: Steady state values of oxygen and phytoplankton vs. A and c1 for
(c, u, 0). A and c1 change from 0.1 to 1 and the other parameters are given in

the text.

Eq. (2.22) holds. Therefore, the area to the left side of this line, which lies on
the zero surface, represents the negative part of oxygen and phytoplankton steady
state. To the right side of this line lies the area of our main concern in simulations
(to obtain positive steady state).

Figure 3.3 shows that the three component system steady states and their
eigenvalues completely coincide with our baseline model system when zooplankton
is absent (see in subsection 2.2.2 from Fig. 2.6). It should be emphasized that all of
the eigenvalues are real for E2, while the eigenvalues become complex conjugates
for E3, excluding zero eigenvalues (see Table C.2 and see Table C.3). It can be
predicted that there is no oscillation for temporal dynamics of zooplankton zero
growth system. Figure 3.4 shows each of the eigenvalues λ1, λ2 and λ3 as a function
of the controlling parameter A for two hypothetical values of c1. It is readily seen
that equilibrium E2 can be either stable or unstable. For example, for c1 = 0.4,
E2 is stable for A = 0.42 but it is a saddle point for A = 0.5 (see Table C.2 for
more details on the system eigenvalues for given set of system parameters).

• Oxygen, phytoplankton and zooplankton coexistence state E3

For this equilibrium, the eigenvalues of the corresponding matrix B3 are the solu-
tions of the following characteristic equation:[(

− Aū

(1 + c̄)2
− 1− λ

)(
Bc̄

c̄+ c1

− 2ū− v̄h

(ū+ h)2
− λ
)
− A

1 + c̄

(
Bc1ū

(c̄+ c1)2

)]
(

βū

ū+ h
− µ− λ

)
− βūv̄h

(ū+ h)3

(
Aū

(1 + c̄)2
+ 1 + λ

)
= 0. (3.16)
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Figure 3.3: The eigenvalues of the system (3.5–3.7) linearized in the vicinity
of the (c, u, 0) steady state vs. A and c1. Other parameters are given in the

text.
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Figure 3.4: Eigenvalues vs. A for zooplankton-free state E2 for (a) c1 = 0.4,
(b) c1 = 0.7. The vertical line shows the feasibility condition, for the values of

A on the left of the line E2 does not exist.

The analytical solution of Eq. (3.16) is obtained as it is cumbersome; (see
Appendix C for details). Figure 3.5 shows the steady states of Eq. (3.11) under
condition (3.12). Figs. 3.5a-c show the position of oxygen, phytoplankton and
zooplankton positive steady state area over the range of same parameter values
considered in Fig. 3.2. The phytoplankton steady state is just a plane for given
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Figure 3.5: Steady state values of oxygen, phytoplankton and zooplankton vs.
A and c1 (as given by the system (3.5–3.7)) with other given parameter values

as in the text for given range of A and c1.

range of parameters because there is no dependence on oxygen and zooplankton
concentration. It means that phytoplankton steady state is formed by fixed pa-
rameters seen on Eq. (3.11).

Figure 3.6 shows the real part of eigenvalues for (c̄, ū, v̄) as given in Eq. (3.11).
Depending on the choice of values for A and c1, we obtain instability or stability.
For some values of the pair A and c1, solutions are oscillatory and the amplitudes
of these oscillations rely upon the real part of the related eigenvalues. Also, the
frequency of this oscillatory behavior depends on the amplitude of the related
imaginary part (Section 4.8 in [56]). It is easily recognised that small changes in
system parameters such as A and/or c1 result in significant changes of stability or
oscillatory behavior (see Table C.3).

The imaginary part of eigenvalues for the steady state (c̄, ū, v̄) given by
Eq. (3.11) is presented in Fig. 3.7. As it is seen from Fig. 3.7, one of the eigenvalues
is real and the others are complex. We have a conjugate pair of eigenvalues as
solutions to the quadratic characteristic equation. Complex conjugate pairs of
eigenvalues are presented in Fig. 3.7. Simulations results provide support for our
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Figure 3.6: The eigenvalues real parts of the system (3.5–3.7) linearized in
the vicinity of the (c̄, ū, v̄) steady state vs. A and c1 with other given parameter

values. A and c1 changes from 0.1 to 1.

analytical findings.
Figure 3.8 shows Re(λ) for each of the eigenvalues λ1, λ2 and λ3 as a function

of the controlling parameter A for two hypothetical values c1. Note that in this
case two of the eigenvalues appear to be complex-conjugate, so that Reλ2 = Reλ3.
Of the two different real parts, λ1 is distinctly negative (see solid curve in Fig. 3.8)
whilst Re(λ2) = Re(λ3) is very small (for the given parameter set), positive for
c1 = 0.4 Fig. 3.8a and negative for c1 = 0.7 Fig. 3.8b.

Figure 3.9 shows a sketch of the bifurcation diagram in the parameter plane
(A, c1) for other hypothetical values of parameters, as given in the text. Here, red
crosses dominating Domain 1 show the region for E2 is not feasible, Domain 1
and Domain 2 show the region for E3 is not feasible (see Table C.2), while the
blue stars, i.e. Domain 2 and Domain 3 show the stable region for E2 and E3,
respectively. Therefore, Domain 3 and Domain 4 are the saddle regions for E2.
Domain 2 corresponds to zero eigenvalues for E3. The black circle region, i.e.
Domain 4 is always a saddle for both E2 and E3. It should be emphasized that
Domain 3 and Domain 4 correspond to E2 being an unstable node, while Domain
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Figure 3.7: The eigenvalues imaginary parts of the system (3.5–3.7) linearised
in the vicinity of the (c̄, ū, v̄) steady state vs. A and c1 with other given parame-
ter values as in the text. A and c1 changes from 0.1 to 1 for curves from bottom

to top.
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Figure 3.8: Eigenvalues vs. A oxygen, phytoplankton and zooplankton co-
existence state E3 for (a) c1 = 0.4, (b) c1 = 0.7. The vertical line shows the
feasibility condition, for the values of A on the left of the line E3 does not exist.

4 corresponds to E3 being an unstable focus (see Tables C.2–C.3).
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for E2 is not feasible; see comments in text. The other parameters are given in

the text.

3.3 Numerical Simulations

3.3.1 Temporal dynamics

In this section, we perform numerical simulations of oxygen-phytoplankton- zoo-
plankton nonspatial system (3.5–3.7). Understanding of the temporal dynamics
creates a convenient framework for the understanding of the complex dynamics of
the spatio-temporal system. In all our numerical simulations shown in this sec-
tion, we fix parameters at some hypothetical values as B = 1.8, β = 1, µ = 0.5,
γ = 1 and h = 0.1, and vary A and c1 in a certain range. Our particular interest
is to understand the effect of changes in parameter A as it may, in terms of the
real-world plankton system, account for the effect of environmental changes.

Initial values for all of the numerical simulations are defined under the
relevant figures. It is important to emphasise here that initial values of system
components are fixed for each pair of figures to understand the effect of changes
in the parameter values in A and c1.

Oxygen-phytoplankton-zooplankton densities converge qualitatively to steady
state values in Fig. 3.10a. Figure 3.10a shows the approaches to the extinction
state, whilst Fig.3.10b shows periodic oscillations. This change in stability of the
same steady state is a result of slight changes of system parameter c1. The rea-
soning behind Fig.3.10a is that when zooplankton concentration is zero (see Table
C.3) system’s steady state is stable. When we have all system components already
somehow distributed across the whole domain, the population growth in any given
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Figure 3.10: Effect of changes in parameter c1. The densities of oxygen,
phytoplankton and zooplankton versus time obtained for parameter values (a)
A = 0.4, c1 = 0.9, (b) A = 0.4, c1 = 0.3 and the initials are c0 = 0.0385,

u0 = 0.1, v0 = 0.03. Other parameters are given in the text.

location can happen because of two things, either local population growth or re-
colonization due to diffusion. Comparison of the snapshots at different times show
that in our system the growth from small densities happens because of recoloniza-
tions. Therefore, the so called atto-fox problem is not related here [104].
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Figure 3.11: The effect of changes in parameter c1. The densities of oxygen,
phytoplankton and zooplankton against time obtained for other given parameter
values (a) A = 0.8, c1 = 0.9, (b) A = 0.8, c1 = 0.3 and the initials are c0 =

0.0385, u0 = 0.1, v0 = 0.03. Other parameters are given in the text.

Figure 3.11 illustrates the changes on c1 from c1 = 0.9 (Fig. 3.11a) to
(Fig. 3.11b) c1 = 0.3 for same parameter value A = 0.8. All of the values of
related eigenvalues are easily seen in Table C.3. Fig. 3.11a shows qualitatively the
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same result as in Fig. 3.10a. The absence of zooplankton is represented by the
stable steady state.

In Fig. 3.11b, the system’s trajectories first approach the saddle point and
stay in its vicinity for considerable time but finally then converge to the system’s
stable point. However, in Fig. 3.11a the population densities immediately converge
to their steady state. In Fig. 3.11b, following an initial oscillation, both oxygen
and phytoplankton densities reach a certain level remaining constant.
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Figure 3.12: Effect of changes in parameter A. The density of oxygen,
phytoplankton and zooplankton against time obtained for parameter values
(a)A = 0.3, c1 = 0.8, (b) A = 1, c1 = 0.8. The initial conditions are c0 = 0.0292,

u0 = 0.1, v0 = 0.01. Other parameters are given in the text.
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Figure 3.13: Oxygen, phyto-zooplankton densities over time simulated for
parameters A = 1 and c1 = 0.1, other parameters are the same as in the previous

figure. The initial conditions are c0 = 0.5, u0 = 0.5 and v0 = 0.5.

Fig. 3.12 shows the oxygen concentration and the phytoplankton and zoo-
plankton densities versus time obtained for c1 = 0.8 and two different values of A.
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In the case of A = 0.3 (Fig. 3.12a), all components go extinct in the large-time
limit. This is not surprising as, for these parameter values, the conditions (2.32)
and (3.12) do not hold and hence only the extinction steady state exists. However,
for A = 1 (Fig. 3.12b), conditions (3.12) for the coexistence state existence hold
(but the conditions (2.32) do not) so that, in the large-time limit, the densities
converge to some positive steady state values (although v̄ appears to be quite small
in this case).

These simple results have an underlying biological explanation. Once the
oxygen production rate (as quantified by parameter A) becomes low, e.g. as a result
of environmental changes, the available amount of oxygen may not be sufficient to
support life of the plankton community, which results in plankton extinction.

On a more technical note, we mention here not only the extinction/persis-
tence issue, but also that the rate of convergence can differ greatly for different
parameter values. Figure 3.13 shows the simulation results obtained for A = 1 and
c1 = 0.1. Obviously, all the system’s components go extinct in the course of time.
However, we notice that, whilst for the parameters of Fig. 3.12 the convergence
occurs over the time scale of 103, for the parameters of Fig. 3.13 the convergence
occurs 100 times faster.

Apart from the existence/extinction change in the system’s behavior, the
effect of changes in parameter A may have a somewhat more subtle effect on the
stability of the system. Fig. 3.14 shows the oxygen concentration and the phyto-
zooplankton densities versus time obtained for the same value of c1 = 0.7 and two
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Figure 3.14: Effect of changes in parameter A. The density of oxygen, phy-
toplankton and zooplankton versus time obtained for (a) A = 0.9, c1 = 0.7, (b)
A = 1, c1 = 0.7. In both cases, the initial conditions are c0 = 0.0916, u0 = 0.1

and v0 = 0.0031. Other parameters are given in the text.
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Figure 3.15: Effect of changes in parameter A. The density of oxygen, phyto-
plankton and zooplankton versus time obtained for other given parameter values
(a) A = 0.2, c1 = 0.2, (b) A = 0.9, c1 = 0.2 the initial conditions are c0 = 0.02,

u0 = 0.1, v0 = 0.019.

different values of A. For A = 0.9 (Fig. 3.14a), the densities eventually converge to
the steady state values after a sequence of damping oscillations, which obviously
corresponds to E3 being a stable focus. However, the situation is different for
A = 1 (Fig. 3.14b) where the system eventually develops periodic oscillations.
This change in the system’s properties is in full agreement with our analysis of the
steady state stability undertaken in Section 3.2.1 (see also Appendix); indeed, the
Hopf bifurcation occurs when A changes from 0.9 to 1.

Contrary to Fig. 3.11 (obtained as a response of varying c1), varying A

illustrates almost same dynamical response (see Fig. 3.15). The emerging patterns
immediately converge to its steady state for Fig. 3.15a. It is seen that system
trajectories first approach the saddle point and then they converge to the limit
cycle of large period that lays close to both saddle points, i.e. (c̃, ũ, 0) and (0, 0, 0)

in Fig. 3.15b.
An interesting succession of dynamical regimes observed for a sequence of

increasing values of A is shown in Fig. 3.16. Figure 3.16a obtained for A = 0.41

shows that oxygen and plankton densities converge to the zooplankton-free steady
state E2. Note that the initial zooplankton density drops very fast (so that the
corresponding curve in Fig. 3.16a at this resolution almost coincides with the
vertical axis).

For A = 0.5 (Fig. 3.16b), the system dynamics follows a long-living tran-
sient. Over the first stage of the dynamics (up to t ≈ 1000), the densities appar-
ently converge to the zooplankton-free steady state. However, this state is a saddle
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Figure 3.16: Effect of changes in parameter A. The density of oxygen, phyto-
plankton and zooplankton versus time obtained for (a) A = 0.41, (b) A = 0.5,
(c) A = 0.6 and (d) A = 0.7. In all cases c1 = 0.4, other parameters are the
same as in the previous figures. The initial conditions are c0 = 0.06,u0 = 0.1,

v0 = 0.05.

rather than a stable equilibrium. After staying in its vicinity for a considerable
time (roughly, between t = 400 and t = 1000), the trajectory then shoots away to
the vicinity of E3 (which, for these parameter values, is a stable focus) so that the
densities eventually converge to their steady state values c̄, ū and v̄.

The Hopf bifurcation occurs between A = 0.5 and A = 0.6, so that for
A = 0.6 (Fig. 3.16c) the system dynamics is periodical with the densities obviously
following the stable limit cycle. A further increase in A leads to an increase in the
size of the limit cycle and to an increase in the period of oscillations; see Fig. 3.16d
obtained for A = 0.7.

In conclusion to this section, we mention that the system exhibits a similar
succession of dynamical regimes in response to a change in parameter c1; in par-
ticular, an increase in c1 may result in the loss of stability of the coexistence state
E3 and the emergence of periodical oscillations. We do not show these simulations
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results here for the sake of brevity.

3.3.2 Spatial dynamics

Now we are going to consider the properties of the oxygen-plankton system in
space. For this purpose, we consider a spatially explicit extension of the model
(3.5–3.7) which is described by the following system of reaction-diffusion equations:

∂c

∂t
= DT

∂2c

∂x2
+ A

(
1− c

c+ 1

)
u − c, (3.17)

∂u

∂t
= DT

∂2u

∂x2
+

(
Bc

c+ c1

− u
)
γu− uv

u+ h
, (3.18)

∂v

∂t
= DT

∂2v

∂x2
+

(
βuv

u+ h

)
− µv. (3.19)

Here all of the system components keep their usual meaning as in Chapter 2, i.e.
c = c(x, t) is the concentration of oxygen and u = u(x, t) and v = v(x, t) are the
densities of phytoplankton and zooplankton at time t and position x, and DT is
the coefficient of the turbulent diffusion [165, 183].

Systems’ diffusional and transport tendency is exactly same as in the pre-
vious chapter (see Chapter 2 for more details). Similarly, the transport of zoo-
plankton results from the interplay between the turbulent diffusion and the self-
movement of the zooplankton organisms. However, the mixing due to the self-
movement of zooplankton (which we assume to be random in space and described
by the biodiffusion coefficient Dv) appears to be much smaller compared to the
turbulent mixing [183], i.e. Dv � DT , so that DT +Dv ≈ DT .

Eqs. (3.17–3.19) to be dimensionless by setting DT = 1. Also, we fix some
of parameters as β = 1, γ = 1, µ = 0.5 and h = 0.1 and focus on the effect of
variations in A and c1. Equations (3.17–3.19) are considered in a finite domain
0 < x < L where parameter L is the domain length (i.e. horizontal). At the
domain boundaries, the zero-flux boundary condition is imposed.

The choice of the different initial conditions may result in very different
spatiotemporal dynamics [147]. In this chapter, we consider the initial species
distribution describing a zooplankton patch in a space with uniformly distributed
oxygen and phytoplankton:

c(x, 0) = c0, (3.20)

u(x, 0) = u0, (3.21)

v(x, 0) = v0 for |x| < ε, otherwise v(x, 0) = 0, (3.22)
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where c0, u0 and v0 are thus the initial densities and ε is the patch diameter. The
results shown below are obtained for v0 = 0.5 and ε = 100.

Equations (3.17–3.19) are solved numerically using the forward finite dif-
ference method (see in Appendix D). The mesh steps are chosen as 4t = 0.01 and
4x = 0.5 and it was checked that these values are sufficiently small to avoid any
numerical artifacts.

Note that the insight into the properties of the nonspatial system that we
made in Sections 2.2 and 3.2 creates a useful framework for the understanding of
the properties of the spatiotemporal system (3.17–3.19). In particular, as we have
observed in our numerical simulations (not shown here for the sake of brevity),
if the conditions (3.12) for the existence of the positive steady state E3 do not
hold but the condition (2.32) for the existence of the zooplankton-free equilibrium
E2 holds, zooplankton eventually goes extinct over the whole space and the phy-
toplankton density u and the oxygen concentration c converge, in the course of
time, to the spatially uniform distribution c(x, t) ≡ c̃ and u(x, t) ≡ ũ. In case
the condition given by Eq. (2.32) does not hold either, then all three components
eventually converge to zero everywhere in space.

The following series of Figs. 3.17-3.19 are given as an example of our sys-
tem’s correspondence with the prey-predator model in [147]. For this set of fig-
ures, contrary to previous simulations, we consider a different set of parameters,
whereby the particular choice of system parameters is explicitly stated in figure
captions. Therefore, Fig. 3.17 shows oxygen concentration and plankton densities
versus time obtained for two different time moments. In this case, the succession
of periodic oscillations is the same for different time moments. Oxygen concen-
tration and plankton densities versus time are shown for different time moments
for fixed positions in space in Fig. 3.18. Remarkably, for some parameter values
chosen from [147], the system behaves like a prey-predator system (see Chapter
10 in [147]). The population densities approach the steady state through damped
oscillations only for a sequence of oscillations increasing in amplitude to form lead-
ing to irregular oscillations. For longer times (see Fig. 3.18b), the irregularity of
the oscillations are seen clearly. The phase plane of local population densities
obtained in Fig. 3.19. Parameters are the same as in Fig. 3.18b.

Figures 3.20a-b present the simulation results in the spatial system (3.17–
3.19) obtained for parameters corresponding to nonspatial system simulation re-
sults (Figs. 3.17a-b), respectively. In the wake of population fronts chaotic os-
cillations emerge followed by a plateau corresponding to the system components
steady state. This plateau is short lived and succeeded by oscillations increasing in
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Figure 3.17: Oxygen, phytoplankton and zooplankton distribution over space
(L = 1000) for system (3.5–3.7) for different moments (a) t = 400, (b) t = 600
and for given parameters as B = 1, γ = 1, β = 2, µ = 0.6, h = 0.35, A = 1,

c1 = 0.01. The initial conditions are c0 = 1, u0 = 1, v0 = 0.5.
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Figure 3.18: Oxygen, phytoplankton and zooplankton time evolution space
x = 500 for different time moments (a) t = 500, (b) t = 1500 and the system
other parameters are given as B = 1, c1 = 0.01, γ = 1, β = 2, µ = 0.6, h = 0.35

and A = 1. The initial conditions are c0 = 1, u0 = 1, v0 = 0.5.

amplitude with a tendency to a travelling front. With increasing time the ampli-
tude of chaotic oscillations in the wake of population fronts increase. Eventually,
the domain is dominated by the irregular pattern, after the travelling wave leaves
the domain for t = 1500. The large time simulation is not shown here for the sake
of brevity. Remarkably, for these parameter values (a closer look for parameter
choice [147] from Fig. 10.5 in Chapter 10), our oxygen-plankton model system
almost corresponds to the prey-predator system.

Formation of oxygen and phytoplankton fronts is followed by the growth
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Figure 3.19: Phase plane structure of oxygen-phyto-zooplankton distributions
at a fixed point in space x = 500 vs. time for given parameter values t = 1500,
A = 1, B = 1, c1 = 0.01, γ = 1, β = 2, µ = 0.6, h = 0.35, for initials

c0 = 1,u0 = 1, v0 = 0.5.
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Figure 3.20: Oxygen, phytoplankton and zooplankton distribution over space
(L = 1000) (a) t = 400, (b) t = 600. Parameter values are as given in Fig. 3.17.

The initial conditions are c0 = u0 = 1, v0 as in Eq. (3.22).

of irregular spatial distributions for t = 100 and t = 200 in Fig. 3.21. Eventually,
the waves propagating with given speed as in Eq. (3.25) are connecting the steady
states (c̃, ũ, 0). However, in the case µ = 0.4, h = 0.1 (see Fig. 3.22), formation
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Figure 3.21: The spatial distribution of oxygen, phytoplankton and zooplank-
ton for t = 20, t = 100 and t = 200 from top to bottom acquired at A = 1,
B = 1, c1 = 0.6, γ = 1, β = 2, µ = 0.6, h = 0.35, for (L = 600) and the initial

conditions are c0 = u0 = 1, v0 = 0.5.

of oxygen and phytoplankton front is followed by a regular smooth distribution of
oxygen and phytoplankton. Zooplankton density reaches its maximum position of
the front. Note that the propagating waves are connecting (c̃, ũ, 0). It is readily
seen that the steady states of oxygen and phytoplankton converge to the zero
zooplankton steady state with increasing time.
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Figure 3.22: Oxygen, phytoplankton and zooplankton distribution over space
obtained at different time values t = 100, t = 250 and t = 400 from top to
bottom and A = 1, B = 1, c1 = 0.9, γ = 1, β = 2, µ = 0.4, h = 0.1, for

(L = 800) and the initial conditions are c0 = u0 = 1, v0 = 0.5.
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For large time limit, the system’s succession in Fig. 3.22 is seen as in
Fig. 3.23. The steady state (c̃, ũ, 0) is connected to the steady state (c̄, ū, v̄). It
should be emphasized that as it is seen from Figs. 3.22–3.23, zooplankton density
reaches its maximum and forms a peak when oxygen and phytoplankton densi-
ties stabilise. See the similar succession of the prey-predator system from [198]
in Chapter 6. For all of the given cases Figs. 3.21–3.23, the directions of the
propagation happens from left to right.
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Figure 3.23: Oxygen, phytoplankton and zooplankton distribution over space
for t = 1000, t = 1500, t = 2100 from top to bottom and the system param-
eters are same as previous figure, for (L = 3000) and the initial conditions are

c0 = u0 = 1, v0 = 0.5.

We have extended our analytical results to include calculations of the
asymptotic rate speed of travelling wave by taking system parameter values from
Fig. 3.21 by linearising Eqs. (3.5–3.7) at the leading edge of travelling front [see
Section 3.3 [135] and further references there in]. We consider the time values
from t = 100 to t = 200. It is easy to see that u ∼= 0.27 from Eq. (3.10) and from
Fig. 3.21.

l(c, u, v) =
βuv

u+ h
− µv (3.23)

lv(c, u, v) ∼=
0.27 ∗ 2

0.27 + 0.35
− 0.6 ∼= 0.27 (3.24)

cspeed = 2
√
lv(c, u, 0)D ∼= 1. (3.25)

The front moves to the right with constant speed for different time moments.
The travelling fronts propagate at the asymptotic rate of spread as obtained in
Eq. (3.25).
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Figure 3.24: Distribution of oxygen (blue), phytoplankton (green) and zoo-
plankton (black) over space at t = 100 (dotted line), t = 200 (dashed line)
and t = 300 (solid line) obtained for parameters A = 1 and c1 = 0.1 and the
system parameters are same in Fig. 3.13 as in the text with chosen initials as

c0 = u0 = 1, v0 = 0.5.
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Figure 3.25: Snapshots of the density distribution over space for oxygen, phy-
toplankton and zooplankton at t = 3000 (dashed curves) and t = 5000 (solid
curves) obtained for (a) A = 0.9, c1 = 0.7, (b) A = 1, c1 = 0.7. The cor-
responding nonspatial system is given by Fig. 3.14. The initial conditions are

c0 = 0.0916 and u0 = 0.1, v0 as in Eq. 3.22.

The effect of including a spatial component is often difficult to predict
based on the dynamics of its nonspatial counterpart. In particular, Fig. 3.24 shows
the evolution of the species spatial distribution over time obtained for the same
parameter values as Fig. 3.13. As it should be expected, in the large-time limit
the system goes extinct; however, at an intermediate time, the initial distribution
evolves to a travelling wave. The distribution of oxygen and phytoplankton form
travelling fronts separating the area where these quantities are approximately at
their steady state values c(x, t) = c̃ and u(x, t) = ũ (on the right of the front) from
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the area where these quantities have gone extinct (on the left of the front). The
zooplankton density forms a narrow peak at the position of the front. This solution
of the model (3.17–3.19) apparently describes an interesting ecological situation.
There is not enough oxygen everywhere in the system to support a stable existence
of zooplankton; however, zooplankton can survive transiently (and over a relatively
long time) at the interface between the area of partial depletion of oxygen and the
area with no oxygen.

Figure 3.25 presents the simulation results in the spatial system (3.17–3.19)
obtained for the parameters corresponding to Fig. 3.14. In particular, in Fig. 3.25a
the coexistence state is a stable focus (the corresponding nonspatial dynamics is
shown in Fig. 3.14a). It is readily seen that, in this case, the intermediate-time
solution is given by an oscillating travelling front connecting the two steady states,
i.e. the zooplankton-free state E2 (on the right of the front) and the coexistence
state E3 (on the left of the front). The front propagates to the right so that, in the
large-time limit, the species densities converge to the spatially uniform distribution
c(x, t) = c̄, u(x, t) = ū, v(x, t) = v̄.
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Figure 3.26: The effect of changes in parameter c1. The density of oxygen
(blue), phytoplankton (green) and zooplankton (black) over space at (a) t =
1000, (b) t = 5000 obtained for other given parameter values and A = 0.8,
c1 = 0.3 and the initial conditions are as in Eq. 3.20 with c0 = 0.0385, u0 = 0.1.

In Fig. 3.26, the steady state is unstable; see real part of system steady
states in Fig. 3.6. Remarkably, the travelling waves for oxygen and phytoplankton
converge to the zooplankton-free state E2, which is the saddle for these parameter
values. Irregular spatiotemporal oscillations grow with a large time limit. In both
cases (Figs. 3.26a-b), periodic oscillations follow the onset of chaotic oscillations
in the wake of travelling waves. But, this replacement is much more clear for a
larger time limit (Fig. 3.26b). The irregular spatiotemporal dynamics are followed
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by periodic oscillations increasing in amplitude which adjoin to population fronts
converging to the zooplankton-free state. Biologically, it means that the absence
of zooplankton results in the stability of the oxygen concentration and the phyto-
plankton population (see more simulations on prey-predator system in [147] and
the references there in).
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Figure 3.27: The density of oxygen (blue), phytoplankton (green) and zoo-
plankton (black) over space at (a) t = 500, (b) t = 5000 obtained for other given
parameter values A = 0.4, c1 = 0.4 and initial conditions are as in (3.20–3.22)

with c0 = 0.06, u0 = 0.1.
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Figure 3.28: Distribution of oxygen (blue), phytoplankton (green) and zoo-
plankton (black) over space at (a) t = 3000, (b) t = 5000 obtained for A = 0.6
and c1 = 0.4 with the initial conditions c0 = 0.06, u0 = 0.1. Other parameters

are given in the text, see the beginning of Section 3.3.2.

In Fig. 3.25b, the parameters are beyond the Hopf bifurcation so that the
nonspatial system becomes oscillatory (see Fig. 3.14b). In this case, the spatial
species distribution has somewhat counter-intuitive properties. A part of the spa-
tial solution forms, similarly to the above, an oscillating travelling front connecting



Chapter 3 Predation effect 59

0 1000 2000 3000 4000 5000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Space

P
o

p
u

la
ti

o
n

 d
en

si
ty

, c
,u

,v

(a)

0 1000 2000 3000 4000 5000 6000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Space

P
o

p
u

la
ti

o
n

 d
en

si
ty

, c
,u

,v

(b)

Figure 3.29: The density of oxygen (blue), phytoplankton (green) and zoo-
plankton (black) over space at (a) t = 3000, (b) t = 5000 obtained for other
given parameter values A = 0.7, c1 = 0.4 and initial conditions are c0 = 0.06,

u0 = 0.1 as in Eqs. (3.20–3.22).

E2 on the right and E3 on the left. However, the coexistence state E3 is unsta-
ble and therefore cannot persist indefinitely. As the oscillating travelling front
propagates to the right, far behind the front, i.e. behind the unstable plateau,
irregular oscillations eventually develop; see the left-hand end of Fig. 3.14b. In
the large-time limit, the irregular spatiotemporal oscillations eventually occupy
the whole domain (not shown here). The system dynamics thus follow the generic
scenario well-known for other reaction-diffusion systems, i.e. the onset of chaos in
the wake of the front preceded by the so called dynamical stabilization of unstable
equilibrium [145, 193, 196, 228].

The existence of the travelling front connecting E2 to E3 is not a general
property of the system (3.17–3.19) though. The unstable plateau does not always
exists and, alternatively, the spatially uniform distribution of oxygen and phy-
toplankton (corresponding to the zooplankton-free state E2) may give way to a
band of regular spatial oscillations of varying amplitude; see Fig. 3.28 obtained for
parameters where the nonspatial system is oscillatory. The band of regular spa-
tial oscillations is eventually displaced by the chaotic spatiotemporal oscillations
which, in the course of time, occupy the whole domain.

We mention here that the onset of spatiotemporal chaos in the system
(3.17–3.19) is, when the corresponding nonspatial system is oscillatory, a common
property. A general tendency that we have observed in our simulations is that the
spatial oscillations become more and more irregular with an increase in A (keeping
other parameters fixed), i.e. when the point in the parameter plane moves further
away from the Hopf bifurcation curve. An example of this situation is shown in
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Fig. 3.29.

3.4 Discussion and Concluding remarks

Peculiarities of plankton dynamics in marine ecosystems have been a focus of sig-
nificant interest and intense research for several decades. Considerable progress has
been made in the understanding of factors and mechanisms underlying a variety of
plankton phenomena, and there exists vast literature covering almost every aspect
of plankton research. However, there is at least one aspect that has been rather
poorly investigated on oxygen concentration of water body. Surprisingly, there
are very few studies directly concerned with the dynamics of the oxygen-plankton
coupling. In spite of its obvious importance, this issue remains clearly overlooked
both in theoretical and field studies. Admittedly, plankton is not only the base of
the ocean food chain (which is often mentioned as a practical reason justifying the
effort behind scientific studies), it is also responsible for the production of about
two thirds of the atmospheric oxygen.

In this chapter, we developed a conceptual three-component mathematical
model of the oxygen-phyto-zooplankton system from the baseline model system
given in Chapter 2. The model consists of three ordinary differential equations.
We first consider the nonspatial version of the model which, in real-world terms,
corresponds to a well-mixed system with spatially uniform distribution of species.
The properties of the model have been studied both analytically and by simula-
tions. In particular, we found analytical conditions for the existence of a (unique)
positive equilibrium corresponding to the coexistence of all three components. In
ecological terms, parameter values corresponding to the existence of the positive
equilibrium may be regarded as safe (existence of system components), whilst the
disappearance of this steady state should be regarded as an ecological disaster
resulting in mass extinction of the plankton species.

As a next step, we consider the spatially explicit extension of our model
which takes into account the transport of plankton and oxygen by the turbulent
diffusion. The model is described by a system of three partial differential equa-
tions of reaction-diffusion type. Extensive numerical simulations were performed
to show the properties of the system. We have shown that the model exhibits
rich spatiotemporal dynamics, in particular, resulting in travelling fronts and spa-
tiotemporal chaos. The observed properties of the system are therefore reminiscent
of the dynamics of other ecologically relevant reaction-diffusion systems, e.g. see
[147, 261], which helps to verify the model properties and to interpret the results.
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With this chapter, we have focussed on the predation effect on water body
oxygen concentration. On the other hand, the decrease of dissolved oxygen con-
centration in the water body affects the predation response of zooplankton com-
munity [21, 45, 175]. Therefore, the interaction between zooplankton predation
and oxygen concentration can be extended in future studies.

The most interesting feature of this chapter is that zooplankton addition
to the oxygen-phytoplankton model, results in our model system generating rich
dynamics. In addition, as it is seen for particular parameter choices our oxygen-
plankton model system illustrates similar dynamical successions to those observed
in well known prey-predator system.



Chapter 4

Plankton Respiration Effect on

Oxygen Dynamics

4.1 Introduction

Oxygen depletion in marine ecosystems is a severe ecological problem, often being
responsible for the mass extinction of marine fauna. Therefore, oxygen production
by marine phytoplankton due to its photosynthetic activity is thought to hold the
key to a better understanding and forecasting of ecological disasters. Importantly,
oxygen concentration is not only determined by primary production, but also de-
pends on its consumption through plankton respiration [231]. In this chapter, we
address this issue theoretically by considering an oxygen, phytoplankton and zoo-
plankton model in order to make an insight into the effect of plankton respiration
on oxygen dynamics1.

Oxygen depletion has been a challenging ecological problem, thereby oxy-
gen and plankton dynamics are explicitly included together in a model system to
make an insight into this problem by several researchers [5, 57, 105, 106, 150, 160].
In particular, Marchettini et al. [150] studied a mathematical model of biochem-
ical processes of a lagoon system. In an other study, Allegretto et al. [5] focused
on the existence of periodic fluctuations, which is based on the Italian coastal
lagoon. The dynamics of a plankton-nutrient system and its possible dynami-
cal properties, excluding the dynamics of oxygen concentration was considered by
Edwards and Brindley [57]. Moreover, an oxygen-algae model is introduced to de-
tail oxygen depletion under some controlling external factors in [160]. Hull et al.
[105] investigated dissolved oxygen concentration in a multi-component system,
with the assistance of microbial and environmental forcing function (wind, solar

1The majority of this chapter has been published in [226]
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radiation and temperature) on lagoon dynamics. In another study, Hull et al.
[106] investigated seasonal and daily dynamics of dissolved oxygen measurements
in Mediterranean coastal lagoons, but in the modelling section dissolved oxygen
is considered at sediment level together with C02 and organic matter, thereby
the remaining water body oxygen concentration and its dependence on plankton
respiration activity are overlooked. Therefore, we address the oxygen depletion
problem by considering prey-predator interactions for plankton dynamics com-
bined with water body dissolved oxygen dynamics, based on the model presented
in [227] that describes the marine system oxygen dynamics without taking into
account plankton respiration term.

In this chapter, we focus on the effects of plankton respiration on oxygen
dynamics. We first extend the model presented in Chapter 3 describing predation
effects, by addition of respiration terms accounting for both phytoplankton and
zooplankton respiration. In what follows, oxygen, phytoplankton and zooplankton
steady state stability are examined both analytically and numerically. Extensive
numerical simulations are performed for both the nonspatial and corresponding
spatial system in one-dimension and two-dimensions.

4.2 Model formulation

zooplankton

phytoplankton

oxygen

e(u, v)

g(c, u)uAf(c)u

vr(c, v)

ur(c, u)

Figure 4.1: The structure of our conceptual model describing the interactions
between oxygen, phytoplankton and zooplankton. Arrows show the flows of
matter through the system, and the parametrizations of the rates are as labelled.
Phytoplankton produces oxygen through photosynthesis during the day-time
then consumes it during the night [36]. Zooplankton feeds on phytoplankton
and consumes oxygen through breathing; for further details see in the text.

The model that we investigated is based on the oxygen-phytoplankton-
zooplankton model of [227] which we extend by adding a plankton respiration



Chapter 4 Respiration effect 64

term and its expected consequences on the model structure to further develop the
underlying properties of oxygen dynamics and to make our model system more
‘realistic’. The structure of the model is shown schematically in Fig. 4.1. Flows
of matter through the system are indicated by arrows, and the model components
of these flows are given on each arrow. The three equation coupled model system
(4.1-4.3) illustrates the increase in oxygen concentration as a result of photosyn-
thetic activity, governed mainly by phytoplankton; Then, the produced oxygen
is consumed in metabolic activities involving respiration for both phytoplankton
and zooplankton. Furthermore, phytoplankton are grazed upon by zooplankton.
Therefore, in this model, the importance of zooplankton is twofold: controlling
plankton density by predation and consuming oxygen.

We begin with the nonspatial system which applies to the case of a well-
mixed ecosystem. The dynamics of oxygen, which in turn is being controlled by its
main producer phytoplankton, which in turn is grazed by its predator zooplankton,
is described by the following model:

dc

dt
= Af(c)u−mc− ur(c, u)− vr(c, v), (4.1)

du

dt
= g(c, u)u− e(u, v)− σu, (4.2)

dv

dt
= e(u, v) ϕ(c)− µv, (4.3)

where c, u, and v are the concentration of dissolved oxygen, the density of phyto-
plankton and zooplankton respectively, at time t. The term Af(c) describes the
rate of oxygen production per unit phytoplankton mass, while f(c) is the rate of
increase in the concentration of the dissolved oxygen due to its transport from phy-
toplankton cells to the surrounding water, g(c, u) is the per capita phytoplankton
growth rate, e(u, v) is the per capita zooplankton growth rate, A quantifies the
rate of oxygen production affected by some external factors, and negative terms
in Eq. (4.1) are the losses of oxygen with the coefficient of m due to natural de-
pletion (e.g. due to biochemical reactions in the water), consumption terms by
phytoplankton and zooplankton due to respiration, respectively. The first nega-
tive term of Eq. (4.2) corresponds to the grazing of zooplankton on phytoplankton,
and thus the growth term of zooplankton consists of both predation and respira-
tion. Therefore, function e(u, v) describes predation, and σu describes the natural
mortality of phytoplankton. The consumed phytoplankton biomass is transformed
into the zooplankton biomass with efficiency ϕ, see the first term in the right-hand
side of Eq. (4.3). Since the well-being of zooplankton obviously depends on the
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oxygen concentration (so that, ultimately, it dies if there is not enough oxygen to
breathe), we assume that ϕ = ϕ(c). The term µv stands for the natural mortality
of zooplankton, and stages of the model construction are detailed in [227] and in
Chapters 2 and 3. For more detailed reasoning, (in order to understand the model
formulation) based on prey-predator system, see [226].

An immediate question arising is what kind of interaction exists between
respiration and phytoplankton growth. In view of the biological literature, there is
a direct relation between oxygen concentration of water body and phytoplankton
density [233]. On the other hand, phytoplankton need oxygen as other living
organisms in aquatic environments to use in its metabolic processes, e.g. growth,
respiration, etc. [105, 173, 191, 236]. We consider ur (see the third term in
the right-hand side of Eq. (4.1)) as a function of phytoplankton respiration and
assume it has a functional response of Holling type II. Low oxygen concentration
is unfavorable for phytoplankton and it is likely to depress its reproduction. In
addition, a phytoplankton cell cannot take more oxygen than it needs. For this
reason, ur should be a monotonously increasing function of c tending to a constant
value for c → ∞; for further details see [226]. We neglected the consumption of
oxygen by other living beings due to respiration, however this may be accounted
for by natural depletion of oxygen as first term of Eq. (4.1). Under the above
assumptions, the simplest parametrization for phytoplankton respiration function
is as follows:

ur =
uc

c+ c2

, (4.4)

where c2 is the half-saturation constant.
To construct a zooplankton respiration function, we have to understand the

underlying mechanism of its biological standpoints. Here, the specific breathing
rate (rate for per individual) of zooplankton is neglected. Detailed work on the
relation between zooplankton body mass and respiration rate is found in [6, 35, 97].
Zooplankton respiration depends on oxygen concentration changes of surrounding
water. The respiration rate of zooplankton varies with changing environmental
conditions [31, 43, 76]. Therefore, the consumption rate usually shows a linear
increase at small oxygen concentration but tends to a constant, saturating value
at large oxygen concentration (cf. Fig.1 in [31]). Consider vr as a function of
zooplankton respiration. According to the above biological observations, this term
has the following simplest parametrization:

vr =
νcv

c+ c3

, (4.5)
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where ν is the maximum per capita zooplankton respiration rate and c3 is the
half-saturation constant.

Respiration rate of plankton is affected by some surrounding factors ,i.e.,
water temperature, light intensity, nutrient uptake etc. [8, 69, 252]. In addition,
zooplankton metabolism is complex [69], and as a simplification of biological re-
ality, we have chosen its coefficient ν as a constant to mathematically describe
it.

The feeding efficiency of zooplankton as a function of the oxygen concen-
tration, ϕ(c), (i.e. zooplankton die if there is not enough oxygen to breathe).
This function should be of a sigmoidal shape function under generic biological
arguments, suggesting low efficiency at low oxygen concentration, i.e being ap-
proximately constant for the oxygen concentration above a certain threshold but
promptly decays to zero for concentrations below the threshold [31]. Note that,
proper understanding of respiration and its relation to zooplankton biomass and
also its contribution to the other marine organisms’ growth rate, is detailed in
[7, 97]. The above explanations are quantitatively considered by the following
parametrization:

ϕ(c) = β
c2

c2 + c4
2
, (4.6)

where β is the maximum feeding efficiency and c4 is the half-saturation constant.
We introduce dimensionless variables, t′ = tm, c′ = c

c0
, u′ = u

m
, v′ = v

m

and the new parameters B̂ = B
m
, Â = A

c0
, ν̂ = ν

c0
, σ̂ = σ

m
, µ̂ = µ

m
, β̂ = β

m
,

ĥ = h
m
, ĉi = ci

c0
where i = 1, 2, 3, 4. For notational convenience, primes and hats

are omitted t′ → t, c′ → c, u′ → u, v′ → v, Â → A, B̂ → B, β̂ → β, ν̂ → ν,
σ̂ → σ, µ̂ → µ, ĥ → h and ĉi → ci. In terms of the these new (dimensionless)
variables, equations (4.1–4.3) then turn into the following form:

dc

dt
= A

(
1− c

c+ 1

)
u− c− uc

c+ c2

− νcv

c+ c3

, (4.7)

du

dt
=

(
Bc

c+ c1

− u
)
γu− uv

u+ h
− σu, (4.8)

dv

dt
=

(
βuv

u+ h

)
c2

c2 + c4
2
− µv. (4.9)

In order to understand the ecological background of our model system, we have to
look at oxygen production and consumption issues of marine ecosystems in detail.
Dissolved oxygen level depends mainly on the relative amount of photosynthetic
oxygen production and total plankton respiration [242]. Some amount of produced
oxygen is consumed in the respiration process by phytoplankton and zooplankton
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to use in their metabolic activities and zooplankton then feed on phytoplankton.
So, our model system (4.7-4.9) keeps the idea to reveal the relation between the
prey-predator system and water body oxygen concentration. Further discussion
of possible parameter values in real ecosystems will be done in Section 5.3.

Note that, here, the difference between this model and the model presented
in Chapter 3 is the recognition of the importance of plankton respiration on oxygen
dynamics [23, 73, 105]. But here our main focus is plankton respiration as living
organism contrary to the complex structure of marine system.

4.2.1 Equilibria analysis and steady states

Before proceeding to the spatial case of model system, understanding of nonspatial
properties of the oxygen itself and the phytoplankton as its primary producer
and zooplankton as phytoplanktons’ main consumer becomes useful. System’s
stationary dynamics are solutions of dc/dt = 0, du/dt = 0, dv/dt = 0.

Note that the system (4.7–4.9) has four steady states, one is extinction state
(0, 0, 0) and the other two are zooplankton-free (ċ, u̇, 0) ((ċ1, u̇1, 0), (ċ2, u̇2, 0)) and
the last one is the coexistence state (c̈, ü, v̈), which lies in the domain c > 0, u > 0,
v > 0.

1. The trivial equilibrium E1 = (0, 0, 0) corresponds to the extinction state. It
is readily seen that this equilibrium always exists, without any dependence
on the choice of parameter values.

2. The two semi-trivial equilibra E
(i)
2 = (ċi, u̇i, 0) where i = (1, 2). When

v = 0, the system (4.7–4.9) returns into its oxygen and phytoplankton sys-
tem given by Eqs. (4.10–4.11); therefore, there exist two positive steady
states (E

(1)
2 = (ċ1, u̇1, 0), E

(2)
2 = (ċ2, u̇2, 0)). Note that the dot above a letter

denotes the notation to prevent the confusion with the steady states used
in previous chapters for zooplankton-free state while the double dot above a
letter denotes the steady coexistence steady state.

The system’s steady state values, ċ and u̇, are the solutions of the following
system of equations:

A(1− ċ

ċ+ 1
)u̇− ċ− u̇ċ

ċ+ c2

= 0, (4.10)

(
Bċ

ċ+ c1

− u̇)γu̇− σu̇ = 0, (4.11)
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Equations (4.10–4.11) define two (null)isoclines of the system, which we call
the oxygen isocline and the phytoplankton isocline, respectively. The oxygen
and phytoplankton isoclines can be obtained as

u =
c(c+ 1)(c+ c2)

A(c+ c2)− c(c+ 1)
, (4.12)

c =
c1(uγ + σ)

Bγ − uγ − σ
. (4.13)
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Figure 4.2: (a) The (null)-isoclines of the oxygen phytoplankton system (4.7–
4.9) where v = 0. Black curves show the first (oxygen) isocline for A={1,2,...,10}
from left to right; while red curve shows the second (phytoplankton) isocline.
(b) Intersection points of two isoclines are shown in a (A, c) parameter map (the
steady state values of c) and system other parameters are B = 1.8, γ = 1.2,

σ = 0.1, c1 = 0.7 and c2 = 1.

System equilibria are non-negative intersection points of the oxygen zero
growth isocline and phytoplankton zero growth isocline. The shape of zoo-
plankton free steady states given by Eq. (4.12) and Eq. (4.13), null-cline
figure is given in Fig. 4.2. Oxygen-phytoplankton steady states are obtained
as the intersections points of the two isoclines. These two positive steady
states value of the zooplankton-free state (ċ, u̇, 0) are seen on Fig. 4.2b.

Parameter A determines the shape of the first isocline, as given by Eq. (4.12)
in Fig. 4.2a. The succession of black curves Fig. 4.2a shows that taking
sufficiently small A, the two positive steady states move towards each other,
eventually they merge, and then disappear, thereby the only steady state
remaining is the extinction state; see Fig. 4.2b. The intersection points of
first (black) and second (red) isoclines are shown in Fig. 4.2b for varying
values of A. A is considered as a controlling parameter (for reasons that
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will be expanded upon in Chapter 5). It is readily seen that one of the
positive steady states E(1)

2 always stays close to the extinction state and
the shape of the first isocline succession can be described as convergence of
upper positive steady state (E

(2)
2 ) to the lower one (E

(1)
2 ) . The convergence

of systems’ steady states to E(1)
2 (the lower positive one) brings with it a

most crucial ecological problem called depletion of oxygen concentration in
water body.

We readily observe that (0, 0, 0) is a steady state of the system. As for the
positive equilibria (if any), it does not seem possible to solve Eqs. (4.12–4.13)
explicitly. Instead, since system’s equilibria are the intersection points of the
two isoclines, important conclusions can be made by analyzing the mutual
position of the corresponding curves. Figure 4.2a shows the isoclines given by
Eq. (4.12) and Eq. (4.13) obtained for some hypothetical parameter values.
Therefore, system (4.10-4.11) can have two positive equilibria (ċ1, u̇1, 0) and
(ċ2, u̇2, 0). It is seen that the extinction state always exists, regardless of
what the parameters are. However, the existence of the two positive steady
states depends on the choice of controlling parameter A. These positive
equilibria exist only if A is not too small, i.e. above certain critical value;
see Fig. 4.2b. A similar tendency of the system properties is also observed
as a result of an increase in c1 or decrease in B (obtained results under the
effect of different controlling parameters are not given here for the sake of
brevity).

3. The positive (coexistence) equilibrium E3 = (c̈, ü, v̈).

The steady state values c̈, ü and v̈ are the solutions of the following system:

A(1− c̈

c̈+ 1
) ü − c̈− üc̈

c̈+ c2

− νc̈v̈

c̈+ c3

= 0, (4.14)

(
Bc̈

c̈+ c1

− ü)γ ü− üv̈

ü+ h
− σü = 0, (4.15)

(
βüv̈

ü+ h
)

c̈2

c̈2 + c4
2
− µv̈ = 0. (4.16)

In this case oxygen production is led by not only phytoplankton respiration, but
also zooplankton respiration contrary to the semi-trivial equilibrium case. The
system (4.14-4.16) can be solved as follows:

c̈ =
c1(üγ + v̈

ü+h
+ σ)

Bγ − üγ − v̈
ü+h
− σ

, ü =
µh(c̈2 + c4

2)

βc̈2 − µ(c̈2 + c4
2)
, v̈ =

c̈+ c3

ν

(
Aü

c̈(c̈+ 1)
− 1− ü

c̈+ c2

)
.

(4.17)
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4.2.2 Stability analysis

In this section, a detailed discussion of steady states stability on E1, E
(1)
2 , E(2)

2 and
E3 is presented. (Steady states are the solutions to dc/dt = du/dt = dv/dt = 0).
The stability of system steady states is obtained by the eigenvalues of the Jacobian
matrix. The Jacobian matrix of system (4.14-4.16) is given by:

C =


− Au

(1+c)2
− 1− uc2

(c+c2)2
− νvc3

(c+c3)2
A

1+c
− c

c+c2
− νc
c+c3

Bc1γu
(c+c1)2

Bcγ
c+c1
− 2γu− vh

(u+h)2
− σ − u

u+h
βuv
u+h

2cc42

(c2+c42)2
βvh

(u+h)2
c2

(c2+c42)
βuc2

(u+h)(c2+c42)
− µ

 .

(4.18)
Let Ci be the corresponding matrix with the given steady states Ei where

i = 1, 2, 3. Computation of the corresponding Jacobian matrices for given steady
states are detailed in Appendix C.

• Extinction state E1

For the stability of E1 from matrix C, the eigenvalues of matrix C1 given by
matrix 4.18 are −1, −σ, −µ, thereby the extinction state is always stable.

• Oxygen-phytoplankton existence states E2
(1), E2

(2)

For the oxygen-phytoplankton existence state stability from matrix C2, the eigen-
values are the solutions of the following characteristic equation:

[(
− Au̇

(1 + ċ)2
− 1− u̇c2

(ċ+ c2)2
− λ

)(
Bċγ

ċ+ c1

− 2u̇γ − σ − λ

)
−(

A

1 + ċ
− ċ

ċ+ c2

)(
Bc1γu̇

(ċ+ c1)2

)](
βu̇

u̇+ h
(

ċ2

ċ2 + c4
2
)− µ− λ

)
= 0 (4.19)

where ċ and u̇ are given by Eqs. (4.12–4.13) and the solution of Eq. (4.19) is
denoted by E2

(1) and E2
(2), which are shown in Fig. 4.2 as the first positive steady

state (lower one), and the second positive steady state (upper one), respectively.
Stability of this steady state E2 is shown by extensive numerical simulations and
by a corresponding bifurcation diagram presented in Fig. 4.13.

Steady state values of oxygen and phytoplankton for E2
(1) for the given

range of parameter values A and c1 are shown in Fig. 4.3. We fix other parameter
values at some hypothetical values as B = 1.8, γ = 1.2, σ = 0.1, c2 = 1 and vary
A and c1. Note that for this steady state (zooplankton-free state) zooplankton
steady state is denoted by zero surface and it is not shown here. Figure 4.4 shows
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Figure 4.3: First positive steady state values (E2
(1)) of oxygen and phyto-

plankton vs. A and c1 (as given by the system (4.10-4.11)) with other given
parameter values as in the text.

the eigenvalues of system (4.10-4.11) for E2
(1) vs. A and c1. As it is seen this

steady state is always a saddle as a result of one eigenvalue always being positive
for a given set of parameter values. Figure 4.5 shows the sketch of the eigenvalues
vs. A for two hypothetical values of c1. In this case two of the eigenvalues are
always negative, while the other one is positive. Therefore, for given parameter
values E2

(1) is always a saddle.
The steady state value E2

(2) vs. A and c1 is given in Fig. 4.6. It is obvious
that for chosen parameter values oxygen and phytoplankton are always positive
and reasonable from an ecological stand point. Figure 4.7 shows λ eigenvalues λ1,
λ2 and λ3 as a function of the controlling parameters on the given range of A and
c1. Figure 4.8 present the eigenvalues λ1, λ2 and λ3 as a controlling parameter A
versus two different values of c1 for E2

(2). This steady state for given parameter
values can be stable or a saddle under the choice of system controlling parameters
(see Fig. 4.7). For specific work on system eigenvalues in a large range of values of
A see Table C.4 and for a small range of A see Table C.7 for E2

(1). For a similar
tendency for E2

(2) see Table C.5 and Table C.8 in Appendix C, respectively.

• Oxygen-phytoplankton-zooplankton existence state E3

For the oxygen-phytoplankton-zooplankton existence state stability from
the corresponding matrix C3 can be found in Appendix C. The characteristic
equation of this steady state is rather bulky, thereby stability of this steady state
is solved numerically.

The steady states of oxygen-phytoplankton-zooplankton vs. A and c1 are
given in Fig. 4.9. For this range of A and c1 all system components are always
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Figure 4.4: The eigenvalues of the system (4.10-4.11) linearised in the vicinity
of the (ċ1, u̇1, 0) vs. A and c1 with other given parameter values as given in the

text for given range of A and c1.

positive, thereby the ecological reality holds for the given set of system parameters.
Figure 4.10 shows Reλ (real part of eigenvalues) for each of the eigenvalues λ1,
λ2 and λ3 as a function on the controlling parameter A and c1. As it is seen
the real part of λ1 is always negative. Hence, the stability of this steady state
depends on the signs of λ2 and λ3. They become negative, for a chosen range of
controlling parameters: small A and large c1. For more details on the eigenvalues;
see in Appendix C in Table C.9. Imaginary parts of the λ1, λ2 and λ3 are given in
Fig. 4.11 to show that λ2 and λ3 are complex conjugates. Fig. 4.12 presents real
parts of the eigenvalues λ1, λ2 and λ3 as functions of the controlling parameter
A for two different values of c1 for E3. An important step towards understanding
the behavior of the systems’ trajectories is identification of its eigenvalues. The
oxygen-phytoplankton system eigenvalues, i.e. E

(1)
2 and E

(2)
2 , are always real.

However, the coexistence state, i.e. E3, is characterized by one negative real and
by a pair of complex conjugate eigenvalues where their real part can be positive
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Figure 4.5: Eigenvalues vs. A for zooplankton-free, oxygen-phytoplankton
state E2

(1) for (a) c1 = 0.4, (b) c1 = 0.7.
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Figure 4.6: Second positive steady state E2
(2) values of oxygen and phyto-

plankton vs. A and c1 (as given by the system (4.10-4.11)) for given range of A
and c1 and other system parameters are given in the text.

or negative depending on parameters.
Figure 4.13 summarizes the results of the steady state analysis as a map in

parameter plane (A, c1) for a small/large range of A. Here, again, c1 is chosen as
the controlling parameter because it describes the effect of oxygen on phytoplank-
ton growth. In Fig. 4.13, blue stars show stable regions (negative eigenvalues),
while black circles denote the saddle region (the pair of negative and positive
eigenvalues). In Domain 2, for some intermediate values of A, E3 is stable and
E

(2)
2 is unstable. The system therefore exhibits bistability (recall that E1 is always

stable). With a decrease in A, E(2)
2 becomes stable, so that for the parameters in

Domain 1 the system exhibits tristability. With a further decrease in A, E(2)
2 dis-

appears (the further decrease in A, resulting in more domains beyond Domain 1, is
not shown here for the convenience with the simulations). For approximately the
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Figure 4.7: The eigenvalues of the system (4.10-4.11) linearised in the vicinity
of the (ċ2, u̇2, 0) vs. A and c1 for their given range and other system parameters

are given in the text.
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Figure 4.8: Eigenvalues vs. A for zooplankton-free, oxygen-phytoplankton
state E2

(2) for (a) c1 = 0.4, (b) c1 = 0.7.

same value of A, the coexistence state disappears as well so that, for sufficiently
small values of A, the only attractor of the system is the extinction state.

With an increase in A, in Domain 3, E(2)
2 remains unstable (a saddle point)

and E3 looses its stability to become an unstable focus. For these parameters,
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Figure 4.9: Steady state values of oxygen, phytoplankton and zooplankton vs.
A and c1 as given by the system (4.14–4.16) for given range of A and c1 with

other given parameter values as in the text.
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Figure 4.10: The eigenvalues real parts of the system (4.14-4.16) linearised in
the vicinity of the (c̈, ü, v̈) steady state vs. A and c1 for their given range with

other given parameter values as in the text.
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Figure 4.11: The eigenvalues imaginary parts of the system (4.14-4.16) lin-
earised in the vicinity of the (c̈, ü, v̈) steady state vs. A and c1 for their given

range with other given parameter values as in the text.
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Figure 4.12: Eigenvalues vs. A for oxygen-phytoplankton-zooplankton state
E3 for (a) c1 = 0.4, (b) c1 = 0.7.

the unstable state E3 is surrounded by a stable limit cycle that appears through
the Hopf bifurcation when crossing from Domain 2 to Domain 3. With a further
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Figure 4.13: A map in the parameter plane (A, c1), for system (4.7-4.9), where
different domains correspond to different stability of equilibria E(2)

2 and E3; see
text for further details. Since the map is obtained in numerical simulations, the
position of the domains boundaries is approximate. Other parameters are given

in the text.

increase in A, the limit cycle disappears through a nonlocal bifurcation when
crossing from Domain 3 to Domain 4. For parameter values from Domain 4, the
only attractor of the system is the extinction state E1. Fig. 4.13b is given to show
the system tendency in broadened range of A (see Tables C.4-C.9).

Note that for the eigenvalues versusA figures (Fig. 4.5, Fig. 4.8 and Fig. 4.12)
are the specific form of the eigenvalues versus A-c1 (Fig. 4.4, Fig. 4.7 and Fig. 4.10)
for hypothetically chosen values of c1, respectively.

4.3 Numerical Simulations

4.3.1 Temporal dynamics

In light of steady states and their stability analysis given previously numerical
simulations for the nonspatial system (4.7-4.9) are performed. In all following
numerical simulations, we fix most of the parameters at some hypothetical value:
B = 1.8, γ = 1.2, σ = 0.1, c2 = 1, c3 = 1, c4 = 1, ν = 0.01, β = 0.7, µ = 0.1,
h = 0.1 and vary A and c1 in a broad range. Here, our interest lies in the temporal
dynamics (4.7-4.9) under the effect of plankton respiration.

Figure 4.14 shows the oxygen concentration and phyto-zooplankton densi-
ties versus time obtained for the same value of c1 = 0.659 and two different values
of A chosen in Domain 3 (cf. Fig. 4.13a). For A = 1.95 (Fig. 4.14a), the damp-
ing oscillations were found to diminish in amplitude. However, for same c1, the
situation is different for A = 1.99 (Fig. 4.14b) where the system develops periodic
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oscillations and parameters are further away from the Hopf bifurcation (i.e. the
boundary between Domains 2 and 3) so that the size of the limit cycle is increased.
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Figure 4.14: Effect of changes in parameter A. The density of oxygen, phy-
toplankton and zooplankton against time obtained for other given parameter
values (a) A = 1.95, c1 = 0.659, (b) A = 1.99, c1 = 0.659. The initial conditions

are co = 0.385, uo = 0.3, vo = 0.1. Other parameters are given in the text.
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Figure 4.15: Trajectories of the oxygen-phyto-zooplankton dynamical system
shown in the corresponding 3D phase space. Blue star shows initial values,
red star for end point and red circle for steady state of the (ċ, u̇, 0), while red
diamond for (c̈, ü, v̈) (a) A = 1.95, c1 = 0.659, (b) A = 1.99, c1 = 0.659. The
initial conditions are co = 0.385, uo = 0.3, vo = 0.1; other parameters are the

same as in Fig. 4.14.

The corresponding three dimensional phase space of Figure 4.14 is given
by Figure 4.15 to trace the changes in system properties in another way. Here,
in all phase spaces (Figs. 4.2a-b), red circles represent the positive steady states
belonging to E2 , while red diamond presents the coexistence steady state E3.
The blue star show the initial conditions, i.e. the starting point of the trajectory,
while red star corresponds to end point of system trajectory reached over the given
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simulation time. Special attention should be paid to Fig. 4.15b. There is only one
red circle, meaning that for these specific values of A and c1, system isoclines
do not intersect, they only touch each other at one point; see the illustration in
Fig. 4.2a.
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Figure 4.16: Effect of changes in parameter c1. The density of oxygen, phy-
toplankton and zooplankton against time obtained for other given parameter
values (a) A = 2, c1 = 0.659, (b) A = 2, c1 = 0.685. The initial conditions are

co = 0.44, uo = 0.44, vo = 0.13. Other parameters are given in the text.

Figure 4.16 shows the oxygen concentration and phyto-zooplankton densi-
ties versus time obtained for the same value of A = 2 and two different values of
c1. The limit cycle disappears for parameters of Fig. 4.16a, so that the species
densities go to extinction after just a few oscillations. For c1 = 0.685 (Fig. 4.16b),
parameters are further into Domain 3, and consequently the system eventually
develops periodic oscillations. Figure 4.17 shows the corresponding three dimen-
sional phase space for parameter values given in Fig. 4.16. It is seen that when
initial conditions chosen around E3, the limit cycle grows in size and approaches
the first saddle point, E(1)

2 , and then E(2)
2 see Fig. 4.17a. Eventually, the trajec-

tory goes to origin (extinction state) which is always stable. For an increase in c1

(Fig. 4.17b), the trajectory grows in time then it retains its regular structure.
Figure 4.18 shows the oxygen concentration and plankton densities versus

time for given parameter values. For A = 4 (Fig. 4.18a), system parameters are in
Domain 4, so there is no limit cycle unsurprisingly the initial conditions promptly
converge to zero. Note that extinction is preceded by an outbreak, so that the
initial values first show a significant increase before all system components go
extinct in the course of time and (Fig. 4.18b) the system possesses a stable limit
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Figure 4.17: Trajectories of the oxygen-phyto-zooplankton dynamical system
shown in the corresponding 3D phase space. Blue star show initial values, red
star for end point and red circle for steady state of the (ċ, u̇, 0), while red diamond
for (c̈, ü, v̈) (a) A = 2, c1 = 0.659, (b) A = 2, c1 = 0.685. The initial conditions
are co = 0.44, uo = 0.44, vo = 0.13; other parameters are the same as in Fig. 4.16.
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Figure 4.18: Effect of changes in parameter A. The density of oxygen, phy-
toplankton and zooplankton against time obtained for other given parameter
values (a) A = 4, c1 = 0.7, (b) A = 2.02, c1 = 0.7. The initial conditions are

co = 0.385, uo = 0.3, vo = 0.1. Other parameters are given in the text.

cycle (i.e. the parameters are in Domain 3), where the coexistence state E3 is an
unstable focus2, system develops periodic oscillations.

Fig. 4.19 shows the corresponding three dimensional phase space of Fig. 4.18.
Interestingly, in spite of the choice of the same initial value, the system dynamics
move to different steady states. In the case of A = 4 (Fig. 4.18a and Fig. 4.19a),
all system components go extinct. This is not a surprising ecological issue due to
excessive increase on zooplankton density (see Eq. (4.17)), under the effect of in-
creasing A) makes a decrease on phytoplankton density due to excessive predation

2This type of equilibrium exists when it has one real eigenvalue with the sign same to the
sign of the real part of a pair of complex-conjugate eigenvalues.
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effect and then oxygen concentration decreases below its critical level. However,
for A = 2.02 (Fig. 4.18b), system components develop periodic oscillations with
same amplitudes.
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Figure 4.19: Trajectories of the oxygen-phyto-zooplankton dynamical system
shown in the corresponding 3D phase space. Blue star shows initial values,
red star for end points and red circle for steady state of the (ċ, u̇, 0), while red
diamond for (c̈, ü, v̈) (a) A = 4, c1 = 0.7, (b) A = 2.02, c1 = 0.7. The initial
conditions are co = 0.385, uo = 0.3, vo = 0.1; other parameters are the same as

in Fig. 4.18.

The succession of dynamical regimes observed under the effect of an increase
in parameter A is focused on in Figs. 4.20-4.21 (i.e. the parameters are chosen
through Domain 3 to 4). Oxygen concentration and plankton densities are plotted
against time for different values of A and a fixed value of c1. With increasing A,
we observe an increase in amplitude of periodic oscillations for all components; see
Figs. 4.20a-c. System’s trajectories can be seen from corresponding phase spaces;
see Figs. 4.21a-c and also Appendix C. However, a further increase in A leads to
extinction, after just a few oscillations; see Figs. 4.20d and 4.21d. For initial values
chosen around the coexistence steady state E3, the system remains in the vicinity
of E3 (see Figs. 4.20a-c) and limit cycle evolves around this steady state. The
succession of Fig. 4.20d is an expected result of our dynamical system response to
the further increase on A, as it is seen in Fig. 4.13a and Fig. 4.13b.

It should be emphasized that in the parameter range where the stable limit
cycle exists, i.e Domain 3, the system has two attractors: the limit cycle itself
and the extinction state E1. Hence the dynamics depend on the initial conditions,
i.e. which basin of attraction they belong to. For the results shown in Figs. 4.20a-
c and 4.21a-c, the initial conditions were chosen from the attraction basin of the
limit cycle. In case the initial conditions are chosen from the attraction basin
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Figure 4.20: Effect of changes in parameter A. The density of oxygen, phyto-
plankton and zooplankton versus time obtained for (a) A = 2.01, c1 = 0.7, (b)
A = 2.04, c1 = 0.7, (c) A = 2.0534, c1 = 0.7, (d)A = 2.054, c1 = 0.7. In all
cases, the initial conditions are co = 0.385, uo = 0.3, vo = 0.1. Other parameters

are the same as in previous ones.

of E1, the dynamics are less interesting as the trajectories approach the origin
without any oscillations (not shown here).

Note that, the dynamical response of changing values of A is focused to
understand the underlying properties of the dynamics around the system steady
states. These results hold the key that oxygen production rate A is important to
support the existence and stability of marine plankton systems. Therefore, in the
following chapter (Chapter 5), we will focus on the issue of our systems’ dynamical
response to the changing environmental conditions, i.e. global climate change.



Chapter 4 Respiration effect 83

0

0.5

1

0
0.2

0.4
0.6

0.8
0

0.05

0.1

0.15

0.2

oxygenphytoplankton

zo
o

p
la

n
kt

o
n

(a)

0

0.5

1

0
0.2

0.4
0.6

0.8
0

0.05

0.1

0.15

0.2

oxygenphytoplankton

zo
o

p
la

n
kt

o
n

(b)

0

0.5

1

0
0.2

0.4
0.6

0.8
0

0.05

0.1

0.15

0.2

oxygenphytoplankton

zo
o

p
la

n
kt

o
n

(c)

0

0.5

1

0
0.2

0.4
0.6

0.8
0

0.05

0.1

0.15

0.2

oxygenphytoplankton

zo
o

p
la

n
kt

o
n

(d)

Figure 4.21: Phase space trajectory is given for oxygen-phytoplankton-
zooplankton and blue star for initial values, red star for end points and red
circle for steady state of the (ċ, u̇, 0), while red diamond for (c̈, ü, v̈) of the sys-
tem components (a) A = 2.01, c1 = 0.7, (b) A = 2.04, c1 = 0.7, (c) A = 2.0534,
c1 = 0.7, (d) A = 2.054, c1 = 0.7 and the initials are co = 0.385, uo = 0.3,

vo = 0.1; other parameters are the same as in Fig. 4.20.

4.3.2 Spatial pattern in 1D

We now extend the model to include a spatial components which is described as
follows:

∂c

∂t
= DT

∂2c

∂x2
+ A(1− c

c+ 1
)u − c− uc

c+ c2

− νcv

c+ c3

, (4.20)

∂u

∂t
= DT

∂2u

∂x2
+ (

Bc

c+ c1

− u)γ u− uv

u+ h
− σu, (4.21)

∂v

∂t
= DT

∂2v

∂x2
+ (

βuv

u+ h
)

c2

c2 + c4
2
− µv. (4.22)

Here c, u and v have the previous meanings, i.e. c = c(x, t) is the concen-
tration of oxygen, u = u(x, t) and v = v(x, t) are the densities of phytoplankton
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and zooplankton, respectively, at time t and position x with the coefficient of tur-
bulent diffusion DT [165, 183]. The specific form of the model Eqs. (4.20-4.22)
and assumptions on the model construction can be easily found in [227].

The model system (4.20-4.22) is solved numerically in a finite domain 0 <

x < L where L is the domain length, by the finite difference method with zero-
flux boundary condition and mesh steps chosen to be ∆x = 0.5 and ∆t = 0.01.
The magnitude of mesh steps has been checked to be sufficiently small in order
to avoid numerical artefact. The spatial system (4.20-4.22) is in its dimensionless
form where A, B, σ, γ, β, µ, c1, c2, c3,c4, ν and h are defined through the original
parameters as in Section 4.2.

4.3.3 System spatial dependence to the chosen initial con-

ditions

The choice of the different initial conditions is a subtle issue and may result in
very different spatiotemporal dynamics [147]. Therefore, in this section we focus
on our dynamical system’s (4.20-4.22) response to the different initial conditions.
We assume the initial distributions as describing a zooplankton patch in space
with uniformly distributed oxygen and phytoplankton at the level of their steady
states:

c(x, 0) = c0, (4.23)

u(x, 0) = u0, (4.24)

v(x, 0) = v0 for |xi| < ε, otherwise v(x, 0) = 0, (4.25)

where c0, u0 and v0 are the initial densities (as given by the positive equilibrium
E3 see Section 4.2.1) and ε is the patch diameter. The results shown below are
obtained for v0 = 0.5 and ε = 100. We consider the dynamics of the system (4.20-
4.22) for different values of A and time, while keeping other parameters fixed at
some hypothetical values as B = 1.8, γ = 1.2, σ = 0.1, c2 = 1, c3 = 1, c4 = 1,
ν = 0.01, β = 0.7, µ = 0.1, h = 0.1, L = 1000, c1 = 0.7 and vary A.

Figure 4.22 shows the spatial system’s (4.20-4.22) response to the initial
condition given by Eqs. (4.23–4.25) for two different time moments. In the wake
of the population fronts chaotic oscillations emerge which are preceded by a plateau
corresponding to system’s steady states (see similar succession for prey-predator
system in [147] in Chapter 10.)
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Figure 4.22: The density of oxygen-phytoplankton-zooplankton against space
obtained for (a) A = 2.054, t = 2000, (b) A = 2.054, t = 4000 and system
parameters are same as in nonspatial system with the initials c0 = 0.385, u0 =

0.3, v0 = v0. Other parameters are given in the text.

We now consider the choice of initial conditions as the perturbation of
the homogeneous distribution in terms of zooplankton and the ‘constant-gradient’
distribution is as follows:

c(x, 0) = c0, (4.26)

u(x, 0) = u0, (4.27)

v(x, 0) = v0 + εx+ δ (4.28)

where c0, u0 and v0 are the steady states of the system components and ε, δ are
parameters (see more details on the choice of initials (4.26–4.28) in [147] in Chapter
11). Figure. 4.23 shows the system’s spatial response to the initial conditions (4.26–
4.28) for ε = 10−5, δ = 0.01. The system’s smooth spatial distribution is led by
an irregular structure in space for both t = 1000 and t = 3000. For Fig. 4.23b,
the irregular structure is followed by a plateau.

Figure 4.24 shows the spatial distribution of system (4.20-4.22) for initial
conditions by given Eqs. (4.26–4.28) and for ε = 10−5, δ = −1.5.10−2 for different
time moments. In this case, the irregular dynamical pattern is restricted by a
smooth spatial distribution from both the left and right-hand side. The size of the
irregular structure grows with time. It seems that for the initial by Eqs. (4.26–
4.28), the choice of δ affects the system’s spatial dynamics.

Figures 4.22–4.24 illustrate some technical work done on the choice of ap-
propriate initial conditions. The obtained results from above simulations show
that the spatial distribution of system components are sensitive to the chosen
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Figure 4.23: The density of oxygen-phytoplankton-zooplankton against space
obtained for (a) A = 2.05, t = 1000, (b) A = 2.05, t = 3000. Other parameters

are given in the text.
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Figure 4.24: The density of oxygen-phytoplankton-zooplankton against space
obtained for other given parameter values (a) A = 2.05, t = 1000, (b) A = 2.05,

t = 2000. Other parameters are given in the text.

initial conditions.
Note that in real world systems, plankton’s horizontal distribution in water

body is not homogeneous but rather exhibits patchiness [256]. There are many pa-
pers on plankton patterns [48, 200, 210, 269]. Field research on plankton patchy
structure shows that its spatial distribution is controlled by turbulence mixing
and some biological process of the plankton community, such as growth, mortal-
ity, predation etc. [132, 190, 200, 246] (look further details on plankton patchiness
in Chapter 1). In light of the literature on real plankton distribution, when we
assume initial values as in Eqs.(4.29–4.31), numerical simulations generate appro-
priate patchiness corresponding to plankton distribution in nature. The initial
species distribution is patchy for zooplankton with uniformly distributed oxygen
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and phytoplankton in space:

c(x, 0) = c0, (4.29)

u(x, 0) = u0, (4.30)

v(x, 0) = (x− L

2
)
ε

L
+ v0, (4.31)

where c0, u0 and v0 are the steady states of E3 and ε is the patch diameter which is
ε = 0.02. In all our numerical simulations shown in this section, we fix parameters
at some hypothetical values as B = 1.8, γ = 1.2, σ = 0.1, c2 = 1, c3 = 1,
c4 = 1, ν = 0.01, β = 0.7, µ = 0.1, h = 0.1, ε = 0.02, L = 1000 and vary A

and c1. Note that in all following spatial dynamics this initial distribution is used.
The initial condition given by Eqs. (4.29–4.31) develops patchy structure and this
patchiness is checked for different values of A, i.e. A = 2.02, A = 2.05, A = 2.09

and A = 2.2. The following series of Figs. 4.25–4.27 show the spatial structure
of initial distribution of system components for different values of A. Here, the
patchy structure obtained for A = 2.09 is not shown for the sake of brevity.
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Figure 4.25: Initial distribution of oxygen-phytoplankton-zooplankton against
space obtained for (a) A = 2.02, t = 10000, (b) A = 2.02, t = 12000 and other

parameters are given in the text.

Spatial distributions of oxygen and plankton obtained from Eqs. (4.29–
4.31) are given in Fig. 4.25a (obtained for t = 10000) and Fig. 4.25b (obtained
for t = 12000) for A = 2.02. Spatial variations of the system components become
remarkably irregular and qualitatively similar to what is observed in reality.

Figure 4.26 presents the initial distribution (4.29- 4.31) for A = 2.05, for dif-
ferent time moments. Note that, the system develops more patchiness for Fig. 4.26
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Figure 4.26: Initial distributions of oxygen-phytoplankton-zooplankton over
space obtained for other given parameter values (a) A = 2.05, t = 10000, (b)

A = 2.05, t = 12000 and system other parameters are given in the text.
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Figure 4.27: Initial distributions of oxygen-phytoplankton-zooplankton
against space obtained for (a) A = 2.2, t = 10000, (b) A = 2.2, t = 12000

and other parameters are given in text.

than Fig. 4.25. Figure 4.27 shows the spatial distribution of model system (4.20–
4.22) for A = 2.2 and for different time moments. In this case, the initial distri-
butions (4.29- 4.31) lead to the strongly irregular patch dynamics occupying the
whole domain. Note that for different A parameters spatial distribution of oxygen
and plankton obtained from Eqs. (4.20–4.22) is patchy and there is no notable
qualitative difference between the distributions shown in Fig. 4.25a obtained for
t = 10000 and Fig. 4.25b obtained for t = 12000, which indicates that the sys-
tem has reached its dynamical equilibrium. Therefore, we consider distribution
shown in Fig. 4.25a as ‘inherent’ and use it as the initial condition for the following
simulations.

As a next step, having chosen appropriate initial condition we aim to inves-
tigate the effect of varying A and c1 on plankton dynamics. Figure 4.28 shows the
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Figure 4.28: The effect of changes in parameter c1. The density of oxygen-
phytoplankton-zooplankton over space obtained for (a) A = 2, c1 = 0.659 and
t = 10000, (b) A = 2, c1 = 0.685 and t = 10000 and other parameters are as in

Fig. 4.16. The initial conditions are shown as in Fig. 4.25a.
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Figure 4.29: The effect of changes in parameter A to distributions of oxygen-
phytoplankton-zooplankton over space obtained for other given parameter values
(a) A = 4, t = 150 (dotted line), t = 250 (dashed line), t = 350 (solid line), (b)
A = 2.02, t = 3000, (c) A = 2.02, t = 10000 for c1 = 0.7 and other parameters
are given in the text and same as in Fig. 4.18. The initial conditions are shown

as in Fig. 4.25a.



Chapter 4 Respiration effect 90

0 200 400 600 800 1000
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Space

P
o

p
u

la
ti

o
n

 d
en

si
ty

, c
,u

,v

(a)

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Space

P
o

p
u

la
ti

o
n

 d
en

si
ty

, c
,u

,v

(b)

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Space

P
o

p
u

la
ti

o
n

 d
en

si
ty

, c
,u

,v

(c)

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Space

P
o

p
u

la
ti

o
n

 d
en

si
ty

, c
,u

,v

(d)

Figure 4.30: The effect of changes in parameter A distribution of oxygen,
phytoplankton and zooplankton over space obtained for (a) A = 2.01, (b)A =
2.04, (c)A = 2.0534, (d)A = 2.054 for fixed c1 = 0.7 at t = 3000 and the other
parameters are as in Fig. 4.20. The initial conditions are shown as in Fig. 4.25a.

spatial distribution of corresponding nonspatial system given by Fig. 4.16. The
initials (4.29–4.31) lead to a patchy distribution in the spatial case, while in the
corresponding nonspatial case the local dynamics results in extinction and periodic
oscillations; see Fig. 4.16a and Fig. 4.16b, respectively. In the spatially explicit
case the system dynamics is proven to be sustainable and the irregular pattern
persists.

Fig. 4.29a shows the spatial distribution of the corresponding nonspatial
systems’ oxygen, phytoplankton and zooplankton distribution in time given in
Fig. 4.18. Corresponding to the species extinction in the nonspatial system, the
spatial case results in travelling wave solutions for intermediate time, while the
system components go extinct in the large time limit. In Fig. 4.29a, zooplankton
density reaches its maximum before the moment that oxygen and phytoplankton
reach their maxima. Fig. 4.29b and Fig. 4.29c show the system’s formation of
spatiotemporal patterns for different time moments t = 3000 and t = 10000. For
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this values of A given in Fig. 4.18b, the local dynamics develop periodic oscillations.
Fig. 4.30 shows the evolution of the spatial distribution of system compo-

nents for the same parameter values given in Fig. 4.20. Contrary to the nonspatial
system, where species extinction was observed (Fig. 4.20d), the spatial system per-
sists, and exhibits patchy distribution (Fig. 4.30d). For these value of A (Fig. 4.30),
the nonspatial system develops periodic oscillations of different size depending the
parameter values domain(see Fig.4.13). But in spatial case irregular spatiotempo-
ral pattern persist and no extinction occurs.

So far, we have focused on one spatial dimension. We further this study to
include two spatial dimensions.

4.3.4 Pattern formation in 2D

Throughout this section, we attempt to investigate spatiotemporal dynamics of the
oxygen-plankton system (4.20-4.22) extended to two dimensions which is described
as follows:

∂c(x, y, t)

∂t
= DT (

∂2c

∂x2
+
∂2c

∂y2
) + A(1− c

c+ 1
)u− c− uc

c+ c2

− νcv

c+ c3

,(4.32)

∂u(x, y, t)

∂t
= DT (

∂2u

∂x2
+
∂2u

∂y2
) + (

Bc

c+ c1

− u)γ u− uv

u+ h
− σu, (4.33)

∂v(x, y, t)

∂t
= DT (

∂2v

∂x2
+
∂2v

∂y2
) + (

βuv

u+ h
)

c2

c2 + c4
2
− µv, (4.34)

where all system notations have their usual previous meanings with 0 < x < Lx

and 0 < y < Ly. The length of the domain Lx and the width of the domain Ly
are chosen equal and Neumann-boundary conditions are imposed at the domain
boundaries. In order to examine the behavior of the system’s dynamics, two differ-
ent types of initial conditions are used. The first initial distribution case, describes
spatially homogeneous distributions for both oxygen and phytoplankton at their
steady states, while the second case describes spatially homogeneous distribution
for only oxygen at its steady states with a constant-gradient plankton distribution.
For the first case, the initial distribution of system components is as follows:

c(x, y, 0) = c0, (4.35)

u(x, y, 0) = u0, (4.36)

v(x, y, 0) = v0 − ε2(x− 150)− ε3(y − 150), (4.37)
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where ε2 = 3.10−5 and ε3 = 6.10−5. For more details on initial conditions
choice; see prey-predator system in [156]. Parameter values are chosen as in one-
dimensional case Section 4.3.2 as c1 = 0.7, c2 = 1, c3 = 1, c4 = 1, ν = 0.01,
B = 1.8, γ = 1.2, β = 0.7, µ = 0.1, h = 0.1, σ = 0.1 and for varying A val-
ues. The distribution of phytoplankton and oxygen exhibit qualitatively similar
behavior, hence only the oxygen concentration is shown. Some snapshots of the
system dynamics for initial conditions given by Eqs. (4.35-4.37) are shown for the
following series of Figs. 4.31-4.37.

For the latter case, the initial distribution of system components is as fol-
lows:

c(x, y, 0) = c0, (4.38)

u(x, y, 0) = u0 − ε1(x− 180)(x− 220)− ε2(y − 90)(y − 210), (4.39)

v(x, y, 0) = v0 − ε2(x− 150)− ε3(y − 150), (4.40)

where ε1 = 2.10−7, ε2 = 6.10−7 and ε3 = 3.10−5 (cf. [156] for the choice of the
initial conditions). Some snapshots of the system dynamics for initial conditions
given by Eqs. (4.38-4.40) are shown in the following series of Figs. 4.38-4.41.

Simulations were performed for a larger domain Fig. 4.42 for the following
initials.

c(x, y, 0) = c0, (4.41)

u(x, y, 0) = u0 − ε1(x− 180)(x− 420)− ε2(y − 90)(y − 210), (4.42)

v(x, y, 0) = v0 − ε2(x− 250)− ε3(y − 250), (4.43)

where ε1, ε2 and ε3 have their previous values as in initial distributions (4.38-4.40).
This section begins with an insight into the pattern formation in two-

dimensional case, with special attention paid to the system response to the changes
in parameter A due to the reality on plankton patchiness have controlled by some
environmental factors [47, 70, 192].

In Fig. 4.31, some snapshots of the oxygen concentration arising from the
initial distributions given by Eqs. (4.35-4.37) for different t are shown for A = 2.01

with all other parameters kept as in one-dimension. It should be emphasized here
that in two-dimensional case the scenario seems qualitatively similar to the one-
dimensional case; see Fig. 4.30a. The distribution of oxygen concentration is rather
smooth and persistent in time, except the size of stripes. Here the distribution of
phytoplankton is quite similar with the concentration of oxygen. For this reason,
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Figure 4.31: Spatial distribution of the oxygen concentration in the two-
dimensional case for t = 1, t = 1000, t = 3000, t = 4000, t = 5000, and t = 6000
from left to right, top to bottom for A = 2.01 and the other parameters are as
given in the text with given initials c0 = 0.4616, u0 = 0.4360, v0 = 0.1260. The
initial conditions are given by Eqs. (4.35-4.37). The distribution of phytoplank-
ton exhibits qualitatively similar patterns. For large time limit the distribution

of oxygen retains its shape with changing size of stripes.

we choose only the spatial distribution of oxygen in water body to show in the
two-dimensional case.

Figure 4.32 shows snapshots of oxygen distribution at the same time mo-
ments as in Fig. 4.31. Although the initial distributions given by Eqs. (4.35-4.37)
are same, here the smooth pattern at intermediate time is preceded by the patchy
structure. Note that this patchy structure corresponds to the one dimensional case;
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Figure 4.32: Spatial distribution of the oxygen concentration in the two-
dimensional case for t = 1, t = 1000, t = 3000, t = 4000, t = 5000, and
t = 6000 from left to right, top to bottom for A = 2.02 and the other pa-
rameters are as given in the text with given initials c0 = 0.4618, u0 = 0.4337,
v0 = 0.1271. The initial conditions are given by Eqs. (4.35-4.37). Oxygen
concentration shows qualitatively similar behavior with phytoplankton spatial
distribution. The patchy structure resulted from the destructions of stripy struc-

tures.

see Fig. 4.29b-c. For this value of A, both in one-dimension and in two-dimensions
the system is sustainable and the irregular dynamics persist.

Figure 4.33 shows that the irregular patchy structure is preceded by the
stripy structure; see Fig. 4.26 for the corresponding one dimensional case. It
appears that a hypothesis can be made in relation to A and the evolution of the
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Figure 4.33: Spatial distribution of the oxygen concentration in the two-
dimensional case for t = 1, t = 200, t = 400, t = 600, t = 800, and t = 1100 from
left to right, top to bottom for A = 2.05 and the other parameters are as given
in the text with given initials c0 = 0.4627, u0 = 0.4267, v0 = 0.1304. The initial
conditions are given by Eqs. (4.35-4.37). Oxygen concentration shows quali-
tatively similar behavior with phytoplankton spatial distribution. The patchy

structure resulted in the destructions of stripy structures.

patchy structure: increasing A reduces the time of emergence of the irregular
patchy structure. Again, the irregular patchy structure is preceded by a stripy
structure for A = 2.09; see Fig. 4.34. Formation of the patchy structure starts
around the domain with the destruction of the stripes, then it prevails over the
whole domain by shrinking the stripy rolls in the center.
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Figure 4.34: Spatial distribution of the oxygen concentration in the two-
dimensional case for t = 1, t = 200, t = 500, and t = 1100 from left to right,
top to bottom for A = 2.09 and the other parameters are as given in the text
with the initials c0 = 0.4638, u0 = 0.4179, v0 = 0.1343. The initial conditions
are given by Eqs. (4.35-4.37). The distribution of phytoplankton exhibits qual-
itatively similar patterns. The patchy structure resulted in the destructions of

stripy structures.

Figure 4.35 shows snapshots of the oxygen concentration for given time
moments, arising from given initial distributions given by Eqs. (4.35-4.37). Al-
though the destruction of the spiral is thought to be ended by the evolution of
the patchy structure, the system does not evolve into the patchy structure as the
spiral preserves its shape for larger time limit.

Figure 4.36 shows snapshots of the oxygen concentration at t = 200, t =

2000, t = 2200, t = 2500 from left to right, top to bottom for A = 2.4. The
initial distribution of the oxygen is not given, but it is qualitatively the same with
the previous ones. Again, the stripy structure is followed by spirals which are
somewhat more regular than the previous one. Contrary to the previous cases,
the spiral structure is not persistent in time and extinction happens for a further
increase in time.

Figure 4.37 shows snapshots of the oxygen concentration for A = 2.7 and
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Figure 4.35: Spatial distribution of the oxygen concentration in the two-
dimensional case for t = 1, t = 200, t = 400, t = 700, t = 800, t = 2000
from left to right, top to bottom for A = 2.3 and the other parameters are as
given in the text with the initials c0 = 0.4696, u0 = 0.3775, v0 = 0.1501. The
initial conditions are given by Eqs. (4.35-4.37). The distribution of phytoplank-
ton exhibits qualitatively similar patterns. The destruction of the spiral from
its center is not resulted in patchy structure. The emerging pattern for t = 2000

retains its shape for even t = 6000.

for different time moments. In this case, the emerging stripy patterns leave the
domain, without forming any spirals and then oxygen concentration becomes zero.
We have seen that for the initial distribution given by Eqs. (4.35-4.37) and for small
A values, the stripy structure gives way to a patchy structure, although for large
A values the system ends up with a spiral structure or extinction.
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Figure 4.36: Spatial distribution of the oxygen concentration in the two-
dimensional case for t = 200, t = 2000, t = 2200, t = 2500 from left to right, top
to bottom for A = 2.4 and the other parameters are as given in the text with
given initials as c0 = 0.4723, u0 = 0.3612, v0 = 0.1554. The initial conditions
are given by Eqs. (4.35-4.37). The distribution of phytoplankton exhibits quali-
tatively similar patterns. The emerging spirals leave the domain for larger time

moments.

Figure 4.38 shows snapshots of the spatiotemporal dynamics of oxygen con-
centration for the initial distribution given by Eqs. (4.38-4.40). Contrary to the
case in Fig. 4.32, for the same A value, the dynamics of the system is not suc-
ceeded by the formation of the irregular patchy structure. The formation of the
patchy structure for A = 2.06 is shown in Fig. 4.39 for the initial conditions given
by Eqs. (4.38-4.40).

Snapshots of oxygen concentration are given for A = 2.4 and for the ini-
tial conditions given by Eqs. (4.38-4.40) in Fig. 4.40. The spiral appears in the
middle of the spatial domain in terms of space x and steadily increases in size
and eventually occupies over the whole domain. Figure 4.41 shows snapshots for
A = 2.7 arising from (4.38-4.40). The emerging regular patterns look similar with
previous ones. It should be emphasized that when A = 2.4 and A = 2.7 the initial
distributions given by Eqs. (4.35-4.37) evolve to the extinction state, while for the
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Figure 4.37: Spatial distribution of the oxygen concentration in the two-
dimensional case for t = 1, t = 120, t = 200, t = 300 from left to right, top to
bottom for A = 2.7 and the other parameters are given in the text with given ini-
tials as c0 = 0.4802, u0 = 0.3206, v0 = 0.1658. The initial conditions are given
by Eqs. (4.35-4.37). The distribution of phytoplankton exhibits qualitatively

similar patterns. The emerging strips leave the domain when t > 350

initial distributions given by Eqs. (4.38-4.40) evolve to the regular structure.
Figure 4.42 shows snapshots of the oxygen concentration for a larger spatial

domain and for initials given by Eqs. (4.41-4.43) when A = 2.4. The spatiotem-
poral dynamics are depicted by an elliptical distribution which increases in space
with time. Eventually, the structure leaves the domain and extinction is inevitable.
Regular pattern formation such as observed in our numerical simulations is readily
observed in nature, in particular, by vegetations in arid and semiarid ecosystems
[141, 142, 147].

It can be concluded that the type of system dynamics depends to a large
extent on the choice of the initial distributions. Note that the appearance of the
spirals are observed for larger A values. It may be assumed as an ecological warning
signal for the upcoming extinction state in two-dimensional case; see Fig. 6.17 in
Chapter 6. Interestingly, contrary to the one-dimensional case, for large value
of A (A > 2.28 which is obtained as a critical threshold for extinction case; see
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Figure 4.38: Spatial distribution of the oxygen concentration in the two-
dimensional case for t = 1, t = 300, t = 900, t = 1100, t = 1500, and t = 2000
from left to right, top to bottom for A = 2.02 and the other parameters are as
given in the text with the given initials c0 = 0.4618, u0 = 0.4337, v0 = 0.1271.
The initial conditions are given by Eqs. (4.38-4.40). The distribution of phyto-

plankton exhibits qualitatively similar patterns.

Chapter 6), the system dynamics are sustainable and somehow the regular spiral
type pattern persists in two-dimensional case. Note that, transitions possible
between these structures depending initial conditions and controlling parameter
A. For small values of A, the system evolves stripy structure and for an increase
in A the system results in distinct spirals. For a further increase in A stripes can
leave the domain without evolving spirals.
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Figure 4.39: Spatial distribution of the oxygen concentration in the two-
dimensional case for t = 1, t = 300, t = 500, t = 900 from left to right, top to
bottom for A = 2.06 and the other parameters are as given in the text with the
initials c0 = 0.4630, u0 = 0.4245, v0 = 0.1314. The initial conditions are given
by Eqs. (4.38-4.40). The distribution of phytoplankton exhibits qualitatively

similar patterns.

Figure 4.40: Spatial distribution of the oxygen concentration in the two-
dimensional case for t = 1, t = 120, t = 200, t = 1200 from left to right,
top to bottom for A = 2.4 and the other parameters are as given in the text and
the initials are c0 = 0.4723, u0 = 0.3612, v0 = 0.1554. The initial conditions are

given by Eqs. (4.38-4.40).
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Figure 4.41: Spatial distribution of the oxygen concentration in the two-
dimensional case for t = 1, t = 200, t = 500, and t = 2000 from left to right,
top to bottom for A = 2.7 and the other parameters are as given in the text
with given initials c0 = 0.4802, u0 = 0.3206, v0 = 0.1658. The initial conditions
are given by Eqs. (4.38-4.40). The distribution of phytoplankton exhibits quali-
tatively similar patterns. The irregular patchy structure is not arise for a large

time limit, i.e t = 6000 and still retains its shape.

Figure 4.42: Spatial distribution of the oxygen concentration in the two-
dimensional case and spread of oxygen concentration through expanding ellipse
for t = 1, t = 120, t = 200, and t = 400 from left to right, top to bottom
for A = 2.4 and the other parameters are as given in the text and with given
initials c0 = 0.4723, u0 = 0.3612, v0 = 0.1554. The initial conditions are given
by Eqs. (4.41 -4.43). The species absent both outside and inside the shape. The

distribution of phytoplankton exhibits qualitatively similar patterns.
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4.4 Discussion and Concluding remarks

We have studied the oxygen, phytoplankton and zooplankton dynamics by using
a mathematical model which takes into account both the effect of zooplankton
predation on phytoplankton and plankton respiration. On the other hand, ocean
planktonic respiration allows us to gain a better awareness of the major air-sea
C02 flux [46].

The model is described by a system of three coupled ordinary differential
equations in the nonspatial case and by three corresponding diffusion-reaction
PDEs in the spatially explicit case. The system dynamics have been revealed by
some analytical approaches and by extensive numerical simulations. We first con-
sider a nonspatial system to reveal the structure of the parameter range, namely,
we show that the system is sustainable only for an intermediate value of the oxy-
gen production rate. We also show that for a sufficiently low oxygen production
rate, outside that range, the dynamics are not sustainable resulting in phyto-
plankton extinction which in turn results in oxygen depletion. Therefore, for the
oxygen-phytoplankton system, the system is sustainable unless the production rate
becomes too low (see Fig. 4.13).

We then consider a spatially explicit extension of our model where plankton
and oxygen are carried around by turbulent water flows and the diffusion-reaction
models of phyto-zooplankton dynamics have previously been used to describe this
phenomenon, e.g. see [183], also [146, 147, 156] and references therein. It is shown
that spatiotemporal dynamics result in the formation of patchy patterns. In the
parameter range for which the nonspatial system possesses a stable limit cycle,
the spatial system exhibits the formation of irregular spatiotemporal patterns.
Note that the patterns are self organised, namely, they are not caused by any pre-
defined spatial structure. Here we recall that plankton patchiness is a very common
property of marine ecosystems [2, 64, 81, 143, 245] and our results support this
ecological reality.

We then considered a spatially explicit extension of the one-dimensional
case to two-dimensions and have shown that the model exhibits rich spatiotem-
poral dynamics. In particular one-dimensional case, resulting in strongly irregular
patchy distribution for large A. However, for small A, the system components
distributions are rather smooth spatially. However, in the two-dimensional case,
for small A values the distribution of oxygen is patchy. For a further increase in
value of this controlling parameter would lead to a regular structure, which was
shown in Section 4.3.4. Moreover, a further increase in A would lead to extinction
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regardless of what the initial conditions are. We also want to point out that for
different initial values the patterns in two-dimensions are very different; such as
“mushroom-like” structure, “snaky” structure or different sort of spirally structure
are not shown here for the sake of brevity.



Chapter 5

The Effect of Temperature

5.1 Introduction

As it is mentioned in the previous chapters, marine system dynamics are controlled
by external factors, such as wind intensity, light, salinity, eutrophication, temper-
ature, etc. In particular, temperature is regarded as one of the basic controlling
factors of oxygen concentration in water body, hence it holds the responsibility for
the changes affecting primary production in marine systems [101]. Any changes in
surrounding water temperature prominently affect phytoplankton photosynthetic
mechanisms as this changes limit phytoplankton growth and limit their photosyn-
thetic rates [7, 60, 101, 136, 243]. However, zooplankton predation is decreased
at low temperatures due to a decrease on fish feeding rates [270]. Furthermore,
temperature plays a role on aquatic organisms’ metabolism. Warmer water leads
to faster metabolism and respiration due to an increase of cell division under
the influence of increasing temperature [4, 59, 117]. Due to the relation between
metabolism and respiration, respiration rate of ecosystem increases with increasing
temperature [22, 59, 92, 170]. If we want to support this idea with real field data,
it can be said that the respiration rate of phytoplankton increases slightly when
temperatures are between 5oC and 13oC, and increases steeply when temperatures
are between 17oC and 21oC [117]1.

The effect of water warming on phytoplankton dynamics has not been con-
sidered until now. Therefore, we address this issue theoretically by considering
our oxygen-phytoplankton-zooplankton model in order to make an insight into
the effect of changing environmental conditions. Specifically, we consider how the
system dynamics can be affected by continuously increasing water temperature.

1The majority of this chapter has been published in [226]

105
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Combining analytical investigation of the system’s properties with extensive nu-
merical simulations, we show that oxygen depletion can occur if the temperature
exceeds a certain critical level, where the latter can be a result of the global climate
change.

Interestingly, in spite of recognition of the marine system importance on
global climate change, there is no directly relevant mathematical research on
oxygen-plankton dynamics under the control of increasing/decreasing tempera-
ture in marine systems up until now. Correspondingly, we attempt to model the
effect of global climate change on the oxygen production in marine ecosystems.
This approach is the main factor that distinguishes our work from the models
usually mentioned in the literature. Therefore, we address the oxygen depletion
problem considering prey-predator interactions for plankton dynamics combined
with water body dissolved oxygen dynamics, based on the model presented in
[227] and in Chapter 4 that describes the marine system oxygen dynamics without
taking into account the warming of surrounding water effect.

In this Chapter, we review recent biological advances on the oxygen deple-
tion problem due to global climate change in marine ecosystems and focus on this
issue by means of mathematical modelling and numerical simulations. We first
extend the model in Chapter 4 by taking into account a sufficiently large increase
or decrease in the controlling parameters (in particular, in the rate of oxygen
production and in the phytoplankton growth term) in the manner of addition of
temperature changes in time to the model system to understand the underlying
possible reasons of the oxygen depletion problem under the climate change effect.
We then consider the responses of our mathematical model by extensive numerical
simulations corresponding to both the nonspatial and spatial system. We observe
that a sufficiently large increase in water temperature (presumably as a result
of global warming) leads to an ecological disaster when the oxygen production
suddenly drops to zero.

5.2 Numerical Simulations

Temporal Dynamics

The model that we considered is the same as model in Chapter 4. We show the
model here for the convenience of reading. For the formulation of the model system
and its steady state analysis see Chapter 4 (Sections 4.2–4.2.1).
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The considered model consists of oxygen itself, phytoplankton as oxygen’s
main producer and zooplankton as phytoplankton’s predator and oxygen’s con-
sumer due to respiration:

dc

dt
= A(1− c

c+ 1
)u− c− uc

c+ c2

− νcv

c+ c3

, (5.1)

du

dt
= (

Bc

c+ c1

− u)γu− uv

u+ h
− σu, (5.2)

dv

dt
= (

βuv

u+ h
)

c2

c2 + c4
2
− µv, (5.3)

where c(x, 0) > 0 , u(x, 0) > 0 and v(x, 0) > 0. In the system (5.1-5.3) all notations
keep their usual previous meanings. Some of the system parameters are fixed at
their hypothetical values as in previous chapters (see for details Section 4.3.1):
B = 1.8, γ = 1.2, σ = 0.1, c2 = 1, c3 = 1, c4 = 1, ν = 0.01, β = 0.7, µ = 0.1,
h = 0.1 and we vary A and c1 in a certain range.

Surrounding water temperature can have an effect on the photosynthesis
rate and hence on the net amount of oxygen produced over the daily cycle [85, 217].
In our model (5.1–5.3), the rate of oxygen production is quantified by parameter
A. In order to reflect the effect of temperature T on photosynthesis, A becomes a
function of T . In its turn, the temperature is a function of time, hence A becomes
a function of time too. Therefore, we consider A = A(t) but keep other parameters
fixed for the sake of simplicity.

Water temperature is known to fluctuate significantly on all temporal scales,
e.g. hourly, daily, monthly and annually [105]. A “realistic” function A(t) taking
into account those fluctuations is likely to be very complicated. However, since the
purpose of this study is to consider the effect of global warming conceptually rather
than predictively, this level of details seems to be excessive. Instead, in order to
account for the general trend (and not for details), we consider the simplest possible
choice of A(t), i.e. the linear function (Thus assuming for simplicity that A depend
on T linearly.):

A = A0 for t < t1, A = A0 + ω (t− t1) for t ≥ t1. (5.4)

Here t1 is the moment when the global warming started, A0 is the rate of net
oxygen production ‘before changes’, and parameter ω quantifies the rate of global
warming.

Available data remains unclear on what the typical phytoplankton response
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to an increase in the water temperature is, i.e. whether the rate of oxygen pro-
duction by phytoplankton actually decreases or increases. Therefore, we consider
two possible scenarios: The first one where a higher water temperature facilitates
oxygen production (when ω > 0) and the second one where a higher temperature
hampers oxygen production (when ω < 0). Since global warming is a slow process,
we consider ω to be very small, i.e. |ω| � min{A,B, δ, σ, µ, ν β}. For the initial
value of A, we assume that prior to the climate change the ecosystem was in a
‘safe state’, i.e. with the coexistence steady state E3 either being stable (Domain
2 in Fig. 4.13) or unstable, but surrounded by a stable limit cycle (Domain 3), so
that A0 is chosen accordingly.

Note that, with A now being a function of t, the system (4.7–4.9) be-
comes non-autonomous and strictly speaking, the results of the previous section
do not immediately apply. However, having assumed that A(t) is a slow changing
function, we expect that the properties of the corresponding autonomous system
(i.e. with A = const) in different parameter ranges (see Fig. 4.13) can provide a
convenient backbone for understanding the effect of changes.

5.2.1 Effect of decreasing A

Simulations on different values of oxygen production rate show the importance
of A values for our dynamical system. In the previous chapters, A is assumed
as a constant, but here, contrary to the previous one, A will be considered as
a function in time. It is observed in previous chapters (see Fig. 4.13a-b), that
positive equilibria exist only if A is not too small, i.e. above a certain critical
value. Decreasing A results in the merging of the two positive steady states, E(1)

2

and E(2)
2 , which eventually disappear; see the succession of the system in Figs. 4.2a-

b. For this reason, we will take into account the effect of decreasing A on system
dynamics. It is assumed that the decrease of A can be taken as an evidence of a
catastrophe. Hence we will focus on the systems’ temporal response to decreasing
A to its critical value, in time and by considering ω < 0:

A = A0 for t < t1, A = A0 + ω (t− t1) for t ≥ t1. (5.5)

Here, A is assumed to be a continuously decreasing function in time with upper
initial point A0 and t1 corresponds to the starting moment of global warming; see
Fig. 5.1. A is shown by the thick black line in following simulations.

This appears to be in full agreement with our simulation results. The
system is expected to develop, in the course of time, oscillations of decreasing
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amplitude as A decreases, whereby the system moves into Domain 1, further away
from Domain 2; see bifurcation analysis in Chapter 4 (Section 4.2.2). If the de-
crease continues for a sufficiently long time, resulting in A becoming sufficiently
small, all species go extinct and the only steady state is the extinction one.
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Figure 5.1: Sketch of the continuously decreasing A function as in Eq. (5.5)
for given parameter values, A0 = 2 and ω = −10−5.

An interesting succession of dynamical regimes is observed for a sequence of
decreasing A0 in Fig. 5.2. In the case for A0 = 1.97 (Fig. 5.2a), the system compo-
nents eventually converge to the steady state values after a sequence of damping
oscillations for the rate of decreasing ω = −10−5. However, the convergence of the
steady states happens without any oscillations for smaller A0; ( see Figs. 5.2b–
d). The system converges to the zooplankton free state between A0 = 1.54 and
A0 = 1.4, so that the system dynamics jump from the oxygen-phytoplankton-
zooplankton system to the oxygen-phytoplankton system. A further decrease in
A0, i.e. A0 ≤ 1.33 leads the system dynamics to the extinction state E1. Corre-
spondingly, for Fig. 5.2a, for A = 1.97 the final value of the oxygen production
rate is A = 1.96 which is still in Domain 2 so that the oscillations eventually die
out. However, in case of Fig. 5.2d, the final value of the oxygen production rate is
A0 > 1.33, corresponding to parameters in Domain 1, results in the zooplankton
free state in the course of time. Hence, the corresponding phase space structure
of Fig. 5.2 is given in Fig. 5.3. In case A0 ≤ 1.4, (Figs. 5.2c-d), oxygen and phy-
toplankton lie on zooplankton-free plane in course of time. The system succession
for the catastrophic case when the system jumps from the oxygen-phytoplankton
state to the extinction state can be seen in Figs. 5.4–5.5. In this case system tra-
jectories directly go to the extinction state regardless of what the initial conditions
are. Here, in phase structure, the blue and red star keep the previous meanings.

Since it is difficult to distinguish the ω is small or not too small we performed
numerical simulations choosing the ω by different magnitude. It is observed that
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Figure 5.2: Effect of decrease in parameter A. The density of oxygen-
phytoplankton-zooplankton against time obtained for other given parameter val-
ues (a) A0 = 1.97, (b) A0 = 1.54, (c) A0 = 1.4, (d) A0 = 1.34; ω = −10−5 for
fixed c1 = 0.7 and the initial values c0 = 0.385, u0 = 0.3, v0 = 0.1 and systems’

other parameters are given in the text (see Section 4.3.1).

at least for values of ω = −10−3, the properties of the system are reduced to
the properties of the corresponding system with constant A for relevant values
of A [14, 127]. We mention here that it was necessary to check the validity of
the adiabatic approximation because there are examples when the properties of
similar systems depend on the transition rate [194]. We have also performed these
simulations for the corresponding spatial model, whereby the results are the same
in these sense that the distribution of species converges to a uniform one. Indeed,
it is intuitively expected because as we showed in Fig. 5.2 the system steady states
are always stable and there is no pattern formation. Importantly for small values
of A, (A0 ≤ 1.33), the spatial distribution of system components corresponds to
the temporal dynamics and all species go extinct.

Now, we consider the case when the coefficient of oxygen concentration
is gradually increasing with time; for marine systems it can be consequence of
increasing water temperature.
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Figure 5.3: Phase space structure for corresponding temporal dynamics
Fig. 5.2. (a) A0 = 1.97, (b) A0 = 1.54, (c) A0 = 1.4, (d) A0 = 1.34, ω = −10−5

and fixed c1 = 0.7 and the initial values c0 = 0.385, u0 = 0.3, v0 = 0.1; other
parameters are the same as in previous figure.
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Figure 5.4: Effect of decrease in parameter A. The density of oxygen-
phytoplankton-zooplankton against time obtained for other given parameter
values (a) A0 = 0.8, (b) A0 = 0.5; ω = −10−5 for fixed c1 = 0.7 and the
initial values c0 = 0.385, u0 = 0.3,v0 = 0.1 and systems’ other parameters are

given in the text (see Section 4.3.1).
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Figure 5.5: Phase space structure for corresponding temporal dynamics
Fig. 5.4. (a) A0 = 0.8, (b) A0 = 0.5; ω = −10−5 and fixed c1 = 0.7 and
the initial values c0 = 0.385, u0 = 0.3, v0 = 0.1; other parameters are the same

as in previous figure.
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Figure 5.6: Effect of changes in parameter ω. The density of oxygen-
phytoplankton-zooplankton against time obtained for other given parameter
values (a) ω = −10−4, (b) ω = −10−6 for fixed A0 = 2 and system other param-
eters are as given in the text. In all cases, the initial conditions are c0 = 0.385,

u0 = 0.3, v0 = 0.1.
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Figure 5.7: Phase space structure for corresponding temporal dynamics
Fig. 5.6. (a) ω = −10−4, (b) ω = −10−6 for fixed A0 = 2 and other pa-
rameters are the same as in previous figure. In all cases, the initial conditions

are c0 = 0.385, u0 = 0.3, v0 = 0.1.
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5.2.2 Effect of increasing A

Here we consider the case ω > 0 where an increase in water temperature facilitates
oxygen production. Then A function is as follows:

A = A0 for t < t1, A = A0 + ω (t− t1) for t ≥ t1. (5.6)

A function, with lower limit A0, corresponds to the continuously increasing func-
tion (see Fig. 5.8) where t1 is the moment when the global warming started. We
assume the oxygen concentration is below the solubility limit, which decreases
with increasing temperature [20, 25, 84, 121, 174, 230]. Fig. 5.8 shows the rate
of oxygen production change versus time obtained for c1 = 0.7 with the slope of
ω and the initial time moment t1 = 0. The thick straight black line shows the
function of A in time.
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Figure 5.8: Sketch of the continuously increasing A function in time from
Eq. (5.6) for given parameter values, A0 = 2 and ω = 10−5.

This intuition seems to be in full agreement with the following simulations.
In this case, the system is expected to develop, in the course of time, oscillations of
increasing amplitude with increasing A, i.e. the system moves further into Domain
3. If the temperature keeps increasing for a sufficiently long time, which results in
A becoming sufficiently large, one can expect that all species go extinct once the
system moves to Domain 4, where the only steady state is the extinction.

Fig. 5.9 shows the oxygen concentration and plankton density versus time
obtained for different lower bounds of the temperature function, A0, and for a fixed
value of c1 = 0.7. For A0 = 1.97 (Fig. 5.9a), the system components eventually
converge to its steady state after a sequence of damping oscillations. However, the
system develops periodic oscillations of different amplitude for A0 = 2 (Fig. 5.9b).
In both cases, A0 is in the parameter range where E3 is a stable focus, i.e. Domain
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2. Correspondingly, in both cases, at early times the system dynamics result in
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Figure 5.9: Effect of changes in parameter A. The density of oxygen-
phytoplankton-zooplankton against time obtained for other given parameter
values (a) A0 = 1.97, (b) A0 = 2, ω = 10−5 for fixed c1 = 0.7 and the ini-
tial values c0 = 0.385, u0 = 0.3, v0 = 0.1 and other system parameters are given

in the text.

oscillations of decreasing amplitude as the system converges to the stable steady
state. In the case of Fig. 5.9a, the final value of the oxygen production rate is
A = 2 which is below the Hopf bifurcation value (AHop ≈ 2.01) so the oscillations
decrease. However, for Fig. 5.9b, the final value of the oxygen production rate is
A = 2.03 (A > AHop). As a result, oscillations start increasing when the system
passes the Hopf bifurcation point. The phase space structure of Fig. 5.9 is given
in Fig. 5.10, respectively.
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Figure 5.10: Phase space structure for corresponding temporal dynamics
Fig.5.9 for (a) A0 = 1.97, (b) A0 = 2, ω = 10−5; other parameters are the

same as in Fig. 5.9.

Fig. 5.11 shows the oxygen concentration and plankton densities over time
obtained for two different values of A0 for the rate of warming ω = 10−5 and
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for the same value of c1 = 0.7. In both cases, A0 lies in the parameter range
where E3 is an unstable focus surrounded by a stable limit cycle (Domain 3). For
A0 = 2.024 in Fig. 5.11a, the system develops periodic oscillations with an increase
in period. However, a further increase on A0 results in extinction following a
sequence of oscillations increasing in period, phytoplankton suddenly goes extinct
and the oxygen concentration falls to zero. This dramatic change of the system
occurs when A moves, in the course of time, to the parameter range where there
is no limit cycle and the only attractor of the corresponding autonomous system
is extinction (Domain 4). Figure 5.12 shows the corresponding phase structure of
Fig. 5.11.
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Figure 5.11: Effect of changes in parameter A. The density of oxygen-
phytoplankton-zooplankton against time obtained for other given parameter
values (a) A0 = 2.024, (b) A0 = 2.048, ω = 10−5 and for c1 = 0.7 and the
initial values are c0 = 0.385, u0 = 0.3, v0 = 0.1 and system parameters are given

in the text.
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Figure 5.12: Phase space structure for corresponding temporal dynamics for
(a) A0 = 2.024, (b) A0 = 2.048, ω = 10−5 , c1 = 0.7 and the initial values
c0 = 0.385, u0 = 0.3, v0 = 0.1 other parameters are the same as in Fig. 5.11.
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Figure 5.13: Effect of changes in parameter ω. The density of oxygen-
phytoplankton-zooplankton against time obtained for other given parameter val-
ues (a) ω = 10−4 (b) ω = 10−5 (c) ω = 10−6 for fixed A0 = 2 and system other
parameters are as given in the text for the initial conditions are c0 = 0.385,

u0 = 0.3, v0 = 0.1.

The effect of a decrease in parameter ω may have a more subtle effect
on the system’s dynamical response; see Figs. 5.13a-c. Therefore, we observe an
interesting succession of dynamical regimes obtained for three different values of ω
(slope of A function). Figure 5.13a obtained for ω = 10−4 shows that all system
components go extinct in the course of time. It shows that the dramatic change can
occur for smaller values of A (safe) with higher global warming rate. A close look
at A(t) (black line) shows that the disaster occurs for almost the same value of A as
in Fig. 5.11b, i.e. for A ≈ 2.055. However, the decrease on the slope of temperature
function results in a limit cycle with varying period in size and damping oscillation,
Fig. 5.13b-c, respectively. This dynamical response to the different values of ω
corresponds to its ecological meaning. Once the oxygen production coefficient A
is not large enough, plankton extinction is not observed and oxygen concentration
becomes sufficient to support the life of marine ecosystems.

5.2.3 Effect of decreasing c1

In this section we focus on the issue of what would the response of phytoplankton
growth be to the changing environmental conditions. In particular, here we at-
tempt to observe the system’s response to the change in environmental conditions
induced by reducing c1. It is assumed that this parameter quantifies the growth
rate of phytoplankton under the situation that oxygen concentration in water body
is at the edge of depletion.

In our model system (5.1-5.3), c1 is the half saturation constant for phyto-
plankton density. The varying c1 describes the effect of oxygen on phytoplankton



Chapter 5 Temperature effect 117

growth. The effect of temperature on the release of oxygen molecules to the sur-
rounding water will be considered through varying c1, and we will keep A constant.
Here, we assume c1 is a continuosly decreasing function as follows:

c1 = c0 for t < t1, c1(t) = c0 − ω (t− t1) for t ≥ t1. (5.7)

with upper limit c0, (see Fig. 5.14). The thick straight black line shows the function
of c1 in time. Figure 5.14 shows the changes in c1 in time for c0 = 0.7 with the
given slope of ω and for t = 3000. In this case, the bifurcation diagram should be
evaluated in terms of decreasing tendency of c1 (see Fig. 4.13).
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Figure 5.14: Sketch of the continuously decreasing c1 function as in Eq. (5.7)
for given parameter values, c0 = 0.7 and ω = 10−5.

Figure 5.15 shows the oxygen concentration and plankton density versus
time obtained for different upper bound c0 for fixed A = 2.01. For c0 = 0.721

(Fig. 5.15a), the system components eventually converge to its steady state after
a sequence of damping oscillations. However, the system develops different sort of
periodic oscillations for c0 = 0.71 (Fig. 5.15b). In both cases, at early times the
system exhibits oscillations decreasing in size. In Fig. 5.15a, the final value of c1 is
c1 = 0.691 which is above the Hopf bifurcation. In Fig. 5.15b the final value of c1

is c1 = 0.68 which is a sufficiently large value leading the system to pass the Hopf
bifurcation point, thereby resulting in the oscillations increasing in amplitude.
The system’s dynamic with given parameter values are qualitatively similar with
Fig. 5.9. The Hopf bifurcation occur when c0 value changes from c0 = 0.721 to
c0 = 0.71. The phase space structure for the corresponding temporal dynamics of
Fig. 5.15 is given in Fig. 5.16.

Figure 5.17 shows the oxygen concentration and plankton densities versus
time for a fixed upper bound c0 and two different values of A. For A = 2.01

(Fig. 5.17a), the system develops periodic oscillations decreasing in amplitude
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Figure 5.15: Effect of changes in parameter c0 and for fixed A = 2.01. The
density of oxygen-phytoplankton-zooplankton against time obtained for other
given parameter values (a) c0 = 0.721, (b) c0 = 0.71, ω = 10−5 and the initial
values co = 0.385, uo = 0.3, vo = 0.1 and system parameters are given in the

text.
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Figure 5.16: Phase space structure for corresponding temporal dynamics
Fig. 5.15 (a) c0 = 0.721, (b) c0 = 0.71, ω = 10−5 and the initial values
co = 0.385, uo = 0.3, vo = 0.1 and other parameters are the same as in Fig. 5.15.

at the beginning followed by oscillations increasing in amplitude. However, the
situation is different for an increase in A: when A = 2.05 (Fig. 5.17b), the densities
of plankton goes extinct and the oxygen concentration falls to zero after just a
few sequence of oscillations. This sudden and dramatic change in the dynamics
happens when A increases and moves, in the course of time, from Domain 3 to
Domain 4 (see Fig. 4.13). Corresponding phase space structure of Fig. 5.17 is
given in Fig. 5.18.

The effect of a decrease in parameter ω on the system’s dynamical response
is given in Figs. 5.19a–c. An interesting succession of dynamical regimes is ob-
tained for three different values of ω that is the slope of the decreasing c1 function.
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Figure 5.17: Effect of changes in parameter A. The density of oxygen-
phytoplankton-zooplankton against time obtained for other given parameter val-
ues (a) A = 2.01, (b) A = 2.05, ω = 10−5 and the initial values co = 0.385,
uo = 0.3, vo = 0.1 and system parameters are same with previous figure for fixed

c0 = 0.7.
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Figure 5.18: Phase space structure for corresponding temporal dynamics 5.17
(a) A = 2.01, (b) A = 2.05, ω = 10−5 and the initial values co = 0.385, uo = 0.3,
vo = 0.1 and for fix c0 = 0.7; other parameters are the same as in Fig. 5.17.
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Figure 5.19: Effect of changes in parameter ω. The density of oxygen-
phytoplankton-zooplankton against time obtained for other given parameter val-
ues (a) ω = 10−4, (b) ω = 10−5, (c) ω = 10−6 for fixed A = 2.05, c0 = 0.71
with given parameter values as in text for given initials co = 0.385, uo = 0.3,

vo = 0.1.
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Fig. 5.19a obtained for ω = 10−4 shows that the trajectory shoots away to the ex-
tinction state, which is always stable, and then all system components go extinct
after staying in the vicinity of oxygen-phytoplankton-zooplankton steady state
(E3). Moreover, the decrease in the slope of c1 results in limit cycle behaviour
with increased in a sequence in size; see Fig. 5.19b. In case ω = 10−6 (Fig. 5.19c),
the system dynamics become periodical with the densities obviously following the
stable limit cycle after a some sequence of oscillations. In the case shown in
Fig. 5.19a the final value of c1 is c1 = 0.41 which is below the line crossing from
Domain 3 to Domain 4. For Fig. 5.19b, the final value of c1 is c1 = 0.68 and for
Fig. 5.19c the final value of c1 is c1 = 0.697, which explains the system succession
(see Fig. 4.13).

5.2.4 Spatial dynamics

Throughout this section, we are going to focus on the spatial oxygen-plankton
system under the effect of changing environmental conditions.

∂c

∂t
= DT

∂2c

∂x2
+ A(1− c

c+ 1
)u − c− uc

c+ c2

− νcv

c+ c3

, (5.8)

∂u

∂t
= DT

∂2u

∂x2
+ (

Bc

c+ c1

− u)γ u− uv

u+ h
− σu, (5.9)

∂v

∂t
= DT

∂2v

∂x2
+ (

βuv

u+ h
)

c2

c2 + c4
2
− µv. (5.10)

Here c, u and v have the previous usual meanings at time t and position
x. In numerical simulations we used the initial conditions given by Eqs. (4.29–
4.31) for given parameter values. As it is mentioned in previous chapter, there is
no qualitative difference between the distributions shown in Fig. 4.25a (obtained
for t = 10000) and Fig. 4.25b (obtained for t = 12000). Correspondingly, we
choose Fig. 4.25a as initials for the following simulations to provide a convenient
comparison with Chapter 4.

In Fig. 5.20, the response of system’s spatial dynamics to the increasing
temperature is obtained for the parameters corresponding to the nonspatial system
in Fig. 5.9. In this case, patchy distribution in spatial dynamics corresponds with
nonspatial systems’ limit cycle. It is clear that for different initial values, A0,
spatial variations of the system components become remarkably irregular and fit
well with the biological reality of plankton patchiness [47, 49, 70, 81, 147].
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Figure 5.20: The effect of changing parameter A0 and fix c1 = 0.7 distribution
of oxygen, phytoplankton and zooplankton over space obtained for other given
parameter values (a) A0 = 1.97, (b) A0 = 2, ω = 10−5 for t = 10000 other
parameters are same in Fig. 5.9. The initial conditions are shown as in Fig. 4.25a.
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Figure 5.21: The effect of changing parameter A0 and fix c1 = 0.7 distribu-
tion of oxygen, phytoplankton and zooplankton over space obtained for given
parameter values (a) A0 = 2.024, (b)A0 = 2.048 , ω = 10−5 for t = 10000.
Other parameters are same in Fig. 5.11. The initial conditions are shown as in

Fig. 4.25a.

Figure 5.21 shows the effect of increasing temperature on the system’s spa-
tial dynamics obtained for the same parameters as in the nonspatial system given
by Fig. 5.11. The patches invade the whole domain, with the system dynamics
being sustainable and irregular, in Fig. 5.21a–b, although the species distributions
go extinct in the nonspatial system in Fig. 5.11b.

Figure 5.22 shows the oxygen and plankton distributions obtained at t =

10000 for A0 = 2 for the corresponding nonspatial system in Fig. 5.13. Systems’
species spatial distributions are quite interesting under the influence of decreasing
ω. When ω becomes presumably high enough (ω = 10−4), species go extinct in
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Figure 5.22: The effect of changing parameter ω and fix A0 = 2 distribution of
oxygen, phytoplankton and zooplankton over space obtained for same parameter
values as in Fig. 5.13 for (a) ω = 10−4, (b) ω = 10−5, (c) ω = 10−6 and t = 10000.

The initial conditions are shown as in Fig. 4.25a.

space. However, the whole numerical domain is invaded by species patchy distri-
bution at ω = 10−5. In Fig. 5.13c, in spite of the corresponding nonspatial case,
the spatial structure of the system’s components evolve to a uniform distributions,
i.e. the species densities are constant at their steady state values. Therefore, a
decrease in ω turns the extinction to the one-dimensional patchy structure and a
further decrease in ω leads the patchy structure to the spatially simple uniform
structure.

0 200 400 600 800 1000
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Space

P
o

p
u

la
ti

o
n

 d
en

si
ty

, c
,u

,v

(a)

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Space

P
o

p
u

la
ti

o
n

 d
en

si
ty

, c
,u

,v

(b)

Figure 5.23: The effect of changing parameter c1 and fix c0 = 0.7 for different
A values for distribution of oxygen, phytoplankton and zooplankton over space
obtained for given parameter values (a) A = 2.01, (b)A = 2.05 and t = 10000
and the system other parameters are as in Fig. 5.17. The initial conditions are

shown as in Fig. 4.25a.

Figure 5.23 shows the dynamical response of the system (5.8–5.10) to the
changes in c1 as in Eq. 5.7 for corresponding Fig. 5.17 for two different values of
A. For A = 2.01 (Fig. 5.23a), the distribution of system components are rather
smooth. But, for a slight difference in A, for A = 2.05 (Fig. 5.23b), the domain
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is occupied by irregular distributions. Although, the temporal behavior of the
system components consist of periodic and extinction (see Fig. 5.17), the spatial
distributions of the system are dominated by the irregular structure (see Fig. 5.23).
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Figure 5.24: The effect of changes in parameter ω and fix A = 2.05, c0 = 0.71.
Distribution of oxygen, phytoplankton and zooplankton over space obtained for
given parameter values (a) ω = 10−4, (b) ω = 10−5, (c) ω = 10−6 and t = 10000
and other system parameters are same as in Fig. 5.19. The initial conditions are

shown as in Fig. 4.25a.

Figure 5.24 shows the simulation results in spatial system (5.8–5.10) for
the corresponding nonspatial system (5.1-5.3) in Fig. 5.19. For a different set of
ω, the dynamics of the system show the irregular patchy distribution, in spite
of the corresponding nonspatial system demonstrating a different structure for
different ω; see Fig. 5.19. Recall that, for the parameter values of Figs. 5.24a-b, the
nonspatial system goes extinct already at t ≈ 250 and at t ≈ 1480, cf. Figs. 5.19a-
b, respectively. However, in the spatial case irregular spatiotemporal patterns
persist and no extinction is observed. As a summary of the obtained results, in
this chapter the spatial dynamics can be classified as patchy, regular or extinction;
see Figs. 5.9-5.28.

5.3 Ecology catastrophe and paths to extinction

Throughout this section we will focus on pattern formation resulting in regular,
patchy structure and extinction. To do that, our model’s dynamical response to
the different boundary conditions is detailed. Based on previous numerical simula-
tions with Neumann boundary conditions we have observed some spatial dynamics
resulting in extinction. Correspondingly, in this section we detail the system’s dy-
namics as a response to the different boundary conditions, i.e. Neumann boundary
conditions, (which is used in all previous simulations to describe an environment
surrounded by dispersal barriers), and periodic boundary conditions (in order to
avoid boundary effects on system dynamics).
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Here, we define the spatially averaged densities < c > (t), < u > (t) and
< v > (t) as

< k > =
1

L

∫ L

0

k(x, t) dx, (5.11)

where k = c, u, v. Figure 5.25 shows our system’s (5.8–5.10) response to two
different boundary conditions. The left-top corner figure shows the maximum
(solid line) and minimum (dotted line) values of oxygen concentration and plank-
ton densities in the spatial system for large time limit. The left-bottom corner
shows the corresponding average concentration of oxygen (to understand the un-
derlying reason of extinction scenario to do that the rate of increase/decrease in
size of oxygen concentration per unit time is given by the integration of its spatial
distribution; see Eq. (5.11)). It is obvious that a gradual decrease of the average
densities is followed by a sudden catastrophe after a range of regular distribution.
For t = 60000 the left-top corner of Fig. 5.25, species densities suddenly drop to
zero, after which the system dynamics follow a long-living transient. Extinction
of system components is seen from corresponding average oxygen concentration
versus time figure (see left-bottom corner of Fig. 5.25). Here, we do not give the
temporal extinction scenario of plankton community for the sake of brevity, but
they exhibit qualitatively similar behavior. On the other hand, this extinction
scenario is not present by using different type of boundary conditions. As it is
seen from the right hand side top figure maximum values of system components
follow a line after a sequence of oscillations. The corresponding average oxygen
concentration versus time figure (bottom, right) shows the persistency of system
components for a long time limit. The time is intentionally chosen large to prove
the persistence of system components.

It should be emphasized that for both of the chosen boundary conditions
for the average density of oxygen in Fig. 5.25, there is a narrow regular structure
between the patchy distribution and sudden drop resulting in extinction/persis-
tence. Prompted by these two types of dynamical responses, i.e. extinction or
persistence, a relevant question regarding species spatiotemporal dynamics arises.
In this context, Fig. 5.26 and Fig. 5.27 give snapshots of oxygen concentration
and plankton community densities for periodic boundary conditions for A0 = 2.02

and A0 = 2.05 for ω = 10−3 to illustrate the persistence and extinction scenario
in space. Note that the spatial distribution to illustrate the dynamics persis-
tence and extinction are qualitatively similar to periodic boundary conditions (see
Figs. 5.26–5.27). Even if the system parameters are different in Fig. 5.26 and in
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Fig. 5.27, the extinction and persistence scenario look pretty similar to the case
of Fig. 5.25.

An important question is what is the rate of predicted oxygen depletion in
real time units. It does not seem possible at the moment to give a reliable estimate
all parameter values as the accuracy of such estimate is usually very low and can
differ as much as a few orders of magnitude [113]. However, we can indeed provide
an estimate for parameter m as this parameter that determines the rate of changes
in the system dynamics. In particular, there is some references on real data for
oxygen depletion problem [42, 99, 140].
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Figure 5.25: Maximum (solid line) - minimum (dotted line) values the density
in spatial system of oxygen-phytoplankton-zooplankton and the integration of
oxygen (average) concentration (a) t = 60000 with Neumann boundary condi-
tion, (b) t = 100000 with periodic boundary condition. Initials are chosen for

A = 2.05, t = 12000, (see Fig. 4.26b) for ω = 10−6.

The snapshots of oxygen concentration and phyto-zooplankton density are
shown for different time moments from top to bottom in Fig. 5.26 as an example of
persistence behavior (see the similar succession in Fig. 5.25b bottom). The pattern
is patchy for smaller time moments, but it is not given here for the sake of brevity.
The region seems invaded by groups of patches. The groups of patches interact
with each other and then some of them become extinct. The interaction between
the group of patches becomes on two pulses merge each other and then extinct.
Note that the merging patches phytoplankton community is grazed upon from
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zooplankton community coming from a different direction. Finally the domain is
invaded by only two pulses and remains the same for larger time moments. See
similar succession of the dynamical system on biological invasion and biological
control model in [198].
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Figure 5.26: Snapshots of the spatial distributions of oxygen, phytoplankton
and zooplankton with periodic boundary condition and with given time moments
are given as t = 500, t = 1000, t = 1900, t = 2000, t = 2100 from top to bottom.

A0 = 2.02, ω = 10−3.

Figure 5.27 is shown as an example to illustrate the spatial distribution of
oxygen concentration and plankton densities for different time moments in the case
of extinction (see the similar succession in Fig. 5.26a bottom). In this case, patches
move towards each other and then merge in the middle of the domain. The merging
patches disappear and the new patches are not generated. This scenario happens
until all of the system components go extinct. From an ecological standpoint, this
situation can be interpreted by excessive predation or some kind of environmental
external factors. In terms of predation, we can say that phytoplankton community
in the interacting patches are attacked by zooplankton from the left and right hand
side, thereby there is no way around to escape and to survive. Remarkably, the
attack is continued until there is no survival. Hence, the extinction of primary
producer brings the primary productivity to the edge of extinction.

This observed regularity in species distribution invokes a question about
whether dynamics are actually periodic. To clarify this issue, power spectrum
analysis should be made as a proof of periodicity. In order to address regular
and patchy structure issues, we have to look closer into the corresponding spatial
dynamics. For that purpose, we give spatial distribution of oxygen concentration
and plankton densities versus space as initials conditions A = 2.05 obtained for
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Figure 5.27: Snapshots of the spatial distributions of oxygen, phytoplankton
and zooplankton with periodic boundary condition and with given time moments
are given as t = 3000, t = 3200, t = 3500, t = 3600, t = 3700 from top to bottom.

A0 = 2.05, ω = 10−4.

t = 12000; see the initial distributions for this parameter in Fig. 4.26b. Since the
spatial distribution of system components show a qualitatively similar structure,
we show only the results obtained for oxygen. Hence, we construct two different
columns in Fig. 5.28. Fig. 5.28a shows the system components spatial distributions
for t = 42000 and the Fig. 5.28c shows the corresponding power spectrum analy-
sis and distribution function of oxygen concentration for given spatial dynamics.
Similarly, Fig. 5.28b illustrates the oxygen concentration and plankton densities
distributions for t = 47000 and the Fig. 5.28d shows the power spectrum analysis
and distribution function of oxygen for given spatial distribution.

Power spectrum or spectral density is used to show the distribution of
‘signal’ of a time series over different frequencies to check the periodicity of the
given system [17]. Therefore, power spectrum analysis can be used as evidence
that the model system given by Eqs. (5.8–5.10) is capable of developing periodic
spatial patterns. The spatial distribution remains patchy for t = 42000 (top-left
of Fig. 5.28), in particular being prominently irregular, however at a later time
t = 47000 (top-right of Fig. 5.28) the distribution becomes almost spatially peri-
odical. For regular structure, Fig. 5.28b, some leading frequencies are obviously
distinguished for its corresponding power spectrum figure. But for the patchy
structure top-left in Fig. 5.28, periodicity is not observed and it can be said that
the system is clearly non-periodic.

Figures 5.28e–f show the distribution function of oxygen concentration ob-
tained for exactly the same parameters as in their spatial distribution and power
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Figure 5.28: Spatial distribution of oxygen, phytoplankton and zooplankton
for same initials as A = 2.05 obtained for t = 12000 (see in Fig. 4.26b) (a)
t = 42000, (b) t = 47000, Periodogram power spectrum estimate for oxygen
concentration for (c) t = 42000, (d) t = 47000, and Distribution function with

Histogram (e) t = 42000, (f) t = 47000.
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spectrum analysis. The obtained histogram for patchy distribution and regular
distribution look somewhat similar except for the distinct maximum level where
oxygen concentration equals to zero.
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Figure 5.29: Sketch for paths to extinction for different initials. Blue color
is used for alive and red for extinction, stars for initial conditions obtained at
t = 10000 an diamond for t = 12000, e.g. the stars lie on the line A0 = 2.05
is obtained for chosen initial as in Fig. 4.26a and diamonds in the same line for

the initial for Fig. 4.26b.

Based on the numerous simulations performed, we observe extinction or
persistence of system components for some lower limit A0 and for some values of ω.
Figure. 5.29 is given to understand whether there is any relation between the slope
of the increasing temperature and the initial limit point of the A function between
the system components at extinction or persistence. Moreover, two different initial
conditions are used to show that is there any dependence on existence/persistence
for chosen initial conditions and with periodic boundary conditions. The x-axis
shows the slope of increase (ω) in temperature, while the y-axis shows A0, the
lower limit of temperature function. Stars show the initial conditions obtained
for t = 10000, while the diamonds present the initials for t = 12000 and the
blue color is used for existence and red color is for extinction. The dotted curves
between Domain 1-3 and between Domain 2-3 determine the region for the system
components persistence for both initial conditions. Namely, the right top corner
shape with blue diamond and red star explain that the system components go
extinct for chosen initial conditions A0 = 2.2 and ω = 0.002 when t = 10000.
However, the blue diamond around the red star means that the species persist
for chosen initial conditions when t = 12000. Therefore, in view of the obtained
results we can say that the extinction or persistence of system components do
not pursue any path and in terms of increasing/decreasing slope of temperature,
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and chosen lower limit of A0, i.e. there is no association with the chosen initial
conditions.

5.4 Discussion and Concluding remarks

In this Chapter, we have studied the oxygen-plankton dynamics by using a math-
ematical model taking into account the effect of zooplankton predation on phyto-
plankton and the plankton respiration under the effect of global climate change.
The model is described by a system of three coupled ordinary differential equations
in the nonspatial (well-mixed) case and by three corresponding diffusion-reaction
PDEs in the spatially explicit case. The system’s dynamics have been revealed
by some analytical approaches and through extensive numerical simulations. We
first consider a nonspatial system to reveal the structure of the parameter space.
We then consider the dynamics of the spatially explicit system to show that it ex-
hibits complicated spatiotemporal dynamics typically resulting in the formation of
transient patchy patterns. Here we recall that plankton patchiness is a very com-
mon property of marine ecosystems [2, 64, 81, 143, 245] and the diffusion-reaction
models of phyto-zooplankton dynamics have previously been used to describe this
phenomenon, e.g. see [183], also [146, 147, 156] and references therein.

We then consider the dynamics of the corresponding non-autonomous sys-
tem where some of the parameters slowly change with time to take into account
the increase in the water temperature due to climate change. We show that a suf-
ficiently large increase or decrease in the controlling parameters (in particular, in
the rate of oxygen production and phytoplankton growth) can result in a sequence
of bifurcations leading to a sudden decline in oxygen production and plankton
extinction.

We have focused on the extinction/persistence issue to understand the un-
derlying dynamical properties of our system; see Figure. 6.18. However, we could
not find any tendency to clarify the exact reason of extinction due to the depen-
dence on chosen initials, or slope of increasing temperature, or chosen lower limit
of temperature function or on different type of the chosen boundary conditions.
Importantly, we have observed that the system develops a periodic structure in
time for different initial conditions and for different boundary conditions. Then
follows the question whether this regularity may be used as an early warning sig-
nal as an ecological response to changing environmental conditions. This issue is
going to be the focus of the following chapter.
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On the other hand, our results have important implications. A lot has been
said about detrimental consequences of the global warming such as, for instance,
possible extinction of some species (and the corresponding biodiversity loss) and
the large-scale flooding resulting from melting Antarctic ice. In this work, however,
we have shown that the danger to be stifled is probably more real than to be
drowned. Using a model of coupled oxygen-plankton dynamics, we have identified
another possible consequence of the global warming that can potentially be more
dangerous than all others. We have shown that the oxygen production by marine
phytoplankton can stop suddenly if the water temperature exceeds a certain critical
value. Since the ocean plankton produces altogether more than one half of the
total atmospheric oxygen, it would mean oxygen depletion not only in the water
but also in the air. Should it happen, it would obviously damage the marine life
and ocean health.



Chapter 6

Temperature Effect, Long-living

Transient

6.1 Introduction

Dissolved oxygen concentration (amount of oxygen in solution) changes during day
time due to photosynthesis (existence of sunlight) and respiration (all the time)
in water body [233]. This concentration becomes lowest before the sunrise and
highest in the late afternoon in water body [23]. Oxygen dynamical behavior is
handled in Chapter 5 in terms of increasing surrounding water temperature. Its
importance is concluded and supported by results obtained in the previous chapter.
It determines water body oxygen concentration by affecting primary production
[101]. Therefore, the main reason is that it acts as a controlling factor on phy-
toplankton by changing photosynthetic mechanisms [136, 243], thereby limiting
phytoplankton growth rate and photosynthetic rate by temperature [7, 60, 101]1.

On the other hand, temperature effects on aquatic ecosystem cannot be
restricted only to photosynthetic activity. It also affects the solubility rate of
oxygen. Because, solubility of oxygen concentration in water body decreases under
the effect of increasing temperature [20, 25, 74, 84, 95, 121, 153, 174, 230, 220],
in turn dissolved oxygen concentration decreases in deep water. This process also
has an impact on the rate of salinity and ventilation [153], but these factors are
disregarded in this dissertation.

Temperature also has an effect on the metabolism of aquatic organisms and
so on their growth. The warmer water temperature causes higher metabolism and
respiration rates, within the organisms optimal temperature range [4, 59, 117].
Phytoplankton reproduction rates and upper limit of the growth are related with

1The majority of this chapter has been prepared [225]
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temperature due to the maximum rate of cell division increasing with increasing
temperature [4].

In Chapter 5 we have realized the importance of increasing temperature
on our dynamical system, but we did not observe any distinct result with regards
to what the dynamical response of our system can be, e.g. the relation between
extinction and the rate of global warming, ω, under the influence of a linearly
increasing/decreasing function. To make an insight into the system’s dynamical
response in time, we choose the temperature function as a piecewise linear instead
of linear function, contrary to Chapter 5. For that purpose, we examine the
mathematical model of oxygen-plankton dynamics under the influence of changing
environmental conditions by taking into account the assumption that if somehow
we manage to stop the global climate change, what would the dynamical response
of our model system be. Moreover, can we prevent the extinction of species and
water body oxygen depletion to save aquatic life.

We used the same model system given in Chapter 4 (same model covered by
Chapter 5). We then consider global warming effects on oxygen concentration and
plankton densities where the rate of oxygen production changes by a “hypothetical”
piecewise linear function in time to account for changing global climate. Then we
consider the properties of the model by extensive numerical simulations both in the
spatial and nonspatial case. Finally, we highlight the ecological and mathematical
importance of our results.

6.2 Parametrization of “A” and “c1” functions

The model that we considered is the same model in Chapters 4 and 5. We show
the model here again for the convenience of reading. For more details on the for-
mulation of the model system and the analysis of the steady states; see Chapter 4
(Section 4.2).

dc

dt
= A(1− c

c+ 1
)u− c− uc

c+ c2

− νcv

c+ c3

, (6.1)

du

dt
= (

Bc

c+ c1

− u)γu− uv

u+ h
− σu, (6.2)

dv

dt
= (

βuv

u+ h
)

c2

c2 + c4
2
− µv, (6.3)

where c(x, 0) > 0 , u(x, 0) > 0 and v(x, 0) > 0 and all system components and
parameters have the previous, usual, meanings.
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In this section, we will focus on again the external factor, i.e. temperature.
Contrary to Chapter 5, the temperature function is chosen as a piecewise linear
instead of a linear function to understand the population dynamics under the
control of the constant and varying environmental cases.

In Chapter 5, the richness of our dynamical system is shown by choosing
A and c1 as a linearly decreasing/increasing and decreasing function, respectively.
We assume that at the beginning the external factor is constant in time, then it
linearly decreases or increases until a certain time, and eventually the decrease/
increase stops and stabilises at a constant value. It should be emphasized that in
our model system (6.1–6.3), A quantifies the rate of oxygen production, hence here
we are interested in the case when changing environmental condition affects the
release of oxygen molecule to the surrounding environment. To reflect the effect
of temperature on photosynthesis, A again becomes a function of temperature.
Then, temperature becomes a function of time resulting in A becoming a function
of time with the same approach of the previous chapter. Therefore, A is taken as
A = A(t).

We intentionally choose the continuously changing part of c1 as a decreasing
function where higher temperature hampers phytoplankton growth (

c
(2)
1 −c

(1)
1

t2−t1 < 0).
Since global warming is a slow process, we consider the rate of change in both
A and c1 to be very small (see the similar assumption in Section 5.2). Because,
the increase of temperature is not favour of phytoplankton growth continuously.
There is a certain temperature range for optimum phytoplankton growth. It means
that if temperature exceeds this range, it results in phytoplankton death [16, 34,
208, 211, 238]. Hence, changing temperature response to phytoplankton growth is
taken into account by assuming c1 as a piecewise function decreasing in a range of
time.

Specifically, we use A and c1 functions as follows:

A(t) =


A0, 0 ≤ t ≤ t1

A0 + A1−A0

t2−t1 (t− t1), t1 ≤ t ≤ t2

A1, t2 ≤ t,

(6.4)

c1(t) =


c

(1)
1 , 0 ≤ t ≤ t1

c
(1)
1 +

c
(2)
1 −c

(1)
1

t2−t1 (t− t1), t1 ≤ t ≤ t2

c
(2)
1 , t2 ≤ t.

(6.5)

Here t1 is the moment when the global warming starts, A0 is the rate of oxygen
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production ‘before change’, A1 is the rate of oxygen production ‘after change’ and
the parameter (A1−A0

t2−t1 ) quantifies the rate of global warming. In the same manner,
c1

(1) is the change on growth of phytoplankton ‘before change’ and the parameter
(
c
(2)
1 −c

(1)
1

t2−t1 ) quantifies the rate of global warming; see Figs. 6.1a-b for the sketch of
A and c1 functions versus time. The thick straight black line shows the function
of A and c1 for all other parameters are constant in the course of time.

Note that the system succession for increasing A and decreasing c1 take
our attention. For the initial values of A and c1

(1), we assume that the ecosystem
was in a ‘safe state’, namely, E3 either being stable (Domain 2) in Fig. 4.13 or
unstable and surrounded by a limit cycle (Domain 3), so that A0 and c1

(1) are
chosen accordingly.
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Figure 6.1: Sketch of A and c1 functions vs. time for (a) A0 = 1.9, A1 = 2.06

and fixed c1 = 0.7 for t2 = 2000, t1 = 1000, (b)c(1)
1 = 0.7, c(2)

1 = 0.55 and fixed
A = 1.9 for t2 = 2000, t1 = 1000 and .

6.3 Numerical Simulations

6.3.1 Temporal dynamics

In this section, we perform numerical simulations on the oxygen and plankton non-
spatial system (6.1-6.3). In all following numerical simulations, we fix parameters
at some hypothetical values as in previous chapters: B = 1.8, γ = 1.2, σ = 0.1,
c2 = 1, c3 = 1, c4 = 1, ν = 0.01, β = 0.7, µ = 0.1, h = 0.1 and vary A and c1 in a
certain range. Here we focus on the temporal dynamics response of changes in A
as a piecewise linear function.

The system is expected to develop, in the course of time, oscillations with
an increase in A and eventually the system moves into Domain 3, hence further
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away from the Hopf bifurcation curve. If the warming continues this, results in
A becoming sufficiently large and reaching a critical value whereby the plankton
density should go extinct; therefore the system moves to Domain 4 where the only
steady state of the autonomous system is extinction.

Figure 6.2 shows the oxygen concentration and plankton densities versus
time obtained for two different values of A0 and for fixed c1 = 0.7. For A0 = 2

(Fig. 6.2a), population fronts propagate through decaying oscillations. The am-
plitude of the oscillations decreases at the beginning, it starts increasing when the
system passes the Hopf bifurcation point. The increasing amplitude of oscillations
up to a certain time is followed by species extinction when A ≈ 2.1 depicting an
ecological disaster (cf. Domain 4 in Fig. 4.13). For A0 = 2.048 (Fig. 6.2b), the
system develops periodic oscillations after which all of the species go extinct after
temperature starts to increase. The increase in A (A0 = 2) results in an ecological
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Figure 6.2: Effect of changes in parameter A0. Oxygen concentration (blue)
and phytoplankton and zooplankton densities (green and black, respectively)
against time obtained for other given parameter values (a) A0 = 2, A1 = 2.2,
(b) A0 = 2.048, A1 = 2.2 for the chosen initial values as c0 = 0.385, u0 = 0.3,
v0 = 0.1 for fix c1 = 0.7 and system parameters are given in the text. The thick

black line at the top shows A(t).

disaster where after a number of oscillations of increasing amplitude, plankton ex-
tinction propagates oxygen depletion in time. This dramatic and sudden change
happens when A moves, in the course of time, to the parameter range where there
is no limit cycle and the only existing attractor is extinction. The corresponding
phase space structure for Fig. 6.2 is given by Fig. 6.3. For both of the initial values
of A (A0), the system’s trajectory goes to the extinction steady state (E1) which
is always stable.

Oxygen concentration and plankton density versus time obtained for differ-
ent final values of (A1) and for fixed c1 = 0.7 are shown in Figs. 6.4a-b. Fig. 6.4a,
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Figure 6.3: 3D Phase space structure for corresponding system trajectories
shown in Figs. 6.2a-b. (a) A0 = 2, A1 = 2.2, (b) A0 = 2.048, A1 = 2.2 with
the chosen initial values as c0 = 0.385, u0 = 0.3, v0 = 0.1 for fix c1 = 0.7; other

parameters are the same as in Fig. 6.2.

the dynamics of the system develops periodic oscillations and retains its regular
structure. For a slightly larger value of A1, Fig. 6.4b, system species go to ex-
tinction at the moment when t2 = 2000. The final value of oxygen production
rate determines the system succession being in the Domain 3 and in Domain 4
for Fig. 6.4a (A1 = 2.05) and for Fig. 6.4b (A1 = 2.06), respectively. Therefore,
it can be said that the dramatic change which results in extinction or persistency
happens when A moves to the parameter range in Domain 4 and in Domain 3,
respectively. Figure 6.5 shows the corresponding phase space structure for Fig. 6.4.
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Figure 6.4: Effect of changes in parameter A1. Oxygen concentration (blue)
and phytoplankton and zooplankton densities (green and black, respectively)
against time obtained for other given parameter values (a) A0 = 2, A1 = 2.05,
(b) A0 = 2, A1 = 2.06 for the chosen initial values c0 = 0.385, u0 = 0.3, v0 = 0.1
for fix c1 = 0.7 and system parameters are as given in the text. The thick black

line at the top shows A(t).
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Figure 6.5: 3D Phase space structure of corresponding system trajectories
shown in Figs. 6.4a–b. (a) A0 = 2, A1 = 2.05, (b) A0 = 2, A1 = 2.06 and the
initial values c0 = 0.385, u0 = 0.3, v0 = 0.1 for fix c1 = 0.7; other parameters

are the same as in Fig. 6.4.
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Figure 6.6: Effect of changes in parameter c1. Oxygen concentration (blue)
and phytoplankton and zooplankton densities (green and black, respectively)
against time obtained for other given parameter values (a) c(1)

1 = 0.8, c(2)
1 = 0.73,

(b) c(1)
1 = 0.8, c(2)

1 = 0.74 and the initial values c0 = 0.385, u0 = 0.3, v0 = 0.1
and system parameters are given in the text and for fix A = 2.1. The thick black

line at the top shows c1(t).

The changes in the final value of parameter c1, c
(2)
1 , for fixed A = 2.1 has

a more subtle effect on system dynamical response; see Figs. 6.6a-b. For Fig. 6.6,
oxygen concentration and plankton densities converge to their steady state value
before c1 start to decrease. In both cases, c(1)

1 is in the parameter range where E3

is a stable focus (Domain 3). Correspondingly, in both cases, at early times the
system develops oscillations with a decreasing amplitude as the system converging
to the stable steady state. For Fig. 6.6a, the final value of c1 is c1 = 0.73 which is
below the Hopf bifurcation value so the oscillations decay in the course of time. It
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is seen that, for Fig. 6.6a, the system exhibits oscillations of increasing amplitude
up to a certain time but then suddenly go to extinction. However, for Fig. 6.6b, the
final value of c1 is c1 = 0.74 above the Hopf bifurcation curve, hence oscillations
keep its size in time (in this case bifurcation diagram Fig. 4.13 should be evaluated
in the direction of increasing/decreasing c1 value for fixed A). As it is readily seen
from Figs. 6.6a-b, oxygen and phytoplankton densities stay stable for the region
of emerging plateau, while the density of zooplankton grows steadily in time in
the whole range [t2, t1]. Figure 6.7 shows the corresponding phase space structure
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Figure 6.7: Phase space structure of corresponding Figs. 6.6a–b. (a) c(1)
1 = 0.8,

c
(2)
1 = 0.73, (b) c(1)

1 = 0.8, c(2)
1 = 0.74 for the chosen initial values as c0 = 0.385,

u0 = 0.3, v0 = 0.1 and for fix A = 2.1; other parameters are the same as in
Fig. 6.6.

for Fig. 6.6. Then limit cycle further increases in size and approaches the steady
state of E3, a stable focus, and then eventually goes to extinction; see Fig. 6.7a.
Obviously, the separated limit cycle emerges due to the increase in zooplankton
density in the range of t2-t1 for both cases Figs. 6.7a-b.

The effect of changes in parameter c(1)
1 is given for fixed c

(2)
1 = 0.55 in

Fig. 6.8. For c(1)
1 = 0.735 (Fig. 6.8a), the system components develop periodic

oscillations with constant amplitude t1 and then after a number oscillations of
increasing in amplitude the system eventually goes to extinction. For c(1)

1 = 0.8

(Fig. 6.8b), the properties of the system dynamics are qualitatively similar with
Fig. 6.6a. However, here the system goes extinct when c1 continues to decrease.
For Fig. 6.8a, c1 ≈ 0.698 and for Fig. 6.8b, c1 ≈ 0.675, hence in both cases c1

value drops below the Hopf bifurcation value. The corresponding phase plane is
presented by Fig. 6.9.
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Figure 6.8: Effect of changes in parameter c1. Oxygen concentration (blue)
and phytoplankton and zooplankton densities (green and black, respectively)
against time obtained for other given parameter values (a) c(1)

1 = 0.735, c(2)
1 =

0.55, (b) c(1)
1 = 0.8, c(2)

1 = 0.55 for for fix A = 2.1 and for the chosen initial
values c0 = 0.385, u0 = 0.3, v0 = 0.1 and system parameters are given in the

text. The thick black line at the top shows c1(t).
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Figure 6.9: 3D Phase space structure of corresponding system trajectories
shown in Figs. 6.8a-b, (a) c(1)

1 = 0.735, c(2)
1 = 0.55, (b) c(1)

1 = 0.8, c(2)
1 = 0.55

and the initial values c0 = 0.385, u0 = 0.3, v0 = 0.1 for fix A = 2.1; other
parameters are the same as in Fig. 6.8.

6.3.2 Spatial dynamics

In this section, we will focus on the spatiotemporal dynamics of the oxygen-
plankton system described by the following equations as in previous chapters
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(Chapters 4 and 5):

∂c

∂t
= DT

∂2c

∂x2
+ A(1− c

c+ 1
)u − c− uc

c+ c2

− νcv

c+ c3

, (6.6)

∂u

∂t
= DT

∂2u

∂x2
+ (

Bc

c+ c1

− u)γ u− uv

u+ h
− σu, (6.7)

∂v

∂t
= DT

∂2v

∂x2
+ (

βuv

u+ h
)

c2

c2 + c4
2
− µv. (6.8)

Here c, u and v keeps the usual previous meanings as concentration of
oxygen, densities of phytoplankton and zooplankton, respectively at time t and
position x. The specific form of the model Eqs. (6.6–6.8) and assumptions on the
model structure can be easily found in Chapters 2–4. Eqs. (6.6–6.8) are solved
numerically, in a finite domain 0 < x < L where L is the domain length, by the
finite difference method with zero-flux boundary conditions. The mesh steps are
chosen as ∆x = 0.5 and ∆t = 0.01 and a further decrease in mesh step size is
checked to prevent numerical artifacts.

In this chapter, the initial species distribution is patchy for zooplankton
with uniformly distributed oxygen and phytoplankton at their steady states which
is described in Chapter 4 and Chapter 5 (Eqs. (4.29–4.31)).

Similarly, the results from the previous chapters (Chapter 4–Chapter 5)
show that spatial distributions are classified as patchy, regular (distribution) and
extinction and are valid for this chapter too. For this purpose, the aim of this
chapter is to closer look into the path of extinction and understand the behavior
of our system (6.6–6.8) under the effect of chosen controlling parameters A and c1

as in Eqs. (6.4–6.5).
Figure 6.10 shows simulation results of the spatial system (6.6–6.8). Fig. 6.10,

for A0 = 2, it seems that the domain is invaded separated patches. However, for
A0 = 2.048 (Fig. 6.10), this separation is not obvious. For some parameter values
we have observed more clear separation of patches more than in Fig. 6.10a; see
Fig. 6.11b. Some of the patches disappear as a result of patch interaction and the
remaining patches seem as a separated as in Fig. 6.11b (see the similar succession
in Chapter 5 from Figs. 5.26–5.27).

Figure 6.12 shows the snapshots of oxygen and plankton distribution for
the parameters corresponding to the nonspatial system given in Fig. 6.4. The local
system (see Fig. 6.4) exhibits extinction, however the spatial system’s dynamics
are sustainable with irregular spatiotemporal pattern persisting and no extinction.

Figure 6.13 shows snapshots of oxygen and plankton distribution for the
corresponding nonspatial system given in Fig. 6.6. For a slight change in c(2)

1 the
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Figure 6.10: The effect of changes in parameter A0 and fix c1 = 0.7 on dis-
tribution of oxygen, phytoplankton and zooplankton over space obtained for
other given parameter values (a) A0 = 2, A1 = 2.2, (b)A0 = 2.048, A1 = 2.2,
t = 10000 and time difference (τ = (t2 − t1) = 1000) for t2 = 2000, t1 = 1000;
other parameters are same in Fig. 6.2. The initial conditions are shown as in

Fig. 4.25a.
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Figure 6.11: The density of oxygen-phytoplankton-zooplankton against space
obtained for other given parameter values (a) A0 = 2.05, A1 = 2.2, (b) A0 =
2.05, A1 = 2.25 t = 10000, other system parameters are given in the text. The

initial conditions are shown as in Fig. 4.25a.

system persists through formation of spatiotemporal patterns. However, we recall
that, for this value of c(2)

1 , Fig. 6.6a, the corresponding nonspatial system goes to
extinction.

Figure 6.14 shows simulation results for the spatial system corresponding to
parameter values of the nonspatial system in Fig. 6.8. The corresponding nonspa-
tial system exhibits extinction for both cases of c(1)

1 Figs. 6.8a–b. But in the spatial
system, extinction is observed for only the second case c(1)

1 = 0.8 Fig. 6.14b. For a
lower value of c(1)

1 = 0.735 the system’s spatial dynamics form a regular structure
and the distribution becomes almost spatially periodical.
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Figure 6.12: The effect of changes in parameterA1 and fix c1 = 0.7 distribution
of oxygen, phytoplankton and zooplankton over space obtained for other given
parameter values (a) A0 = 2, A1 = 2.05, (b) A0 = 2, A1 = 2.06, t = 10000 for
t2 = 2000, t1 = 1000 and other system parameters are same as in Fig. 6.4. The

initial conditions are shown as in Fig. 4.25a.
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Figure 6.13: The effect of changes in parameter c(2)
1 and fix A = 2.1 distri-

bution of oxygen, phytoplankton and zooplankton over space obtained for other
given parameter values (a) c(1)

1 = 0.8, c(2)
1 = 0.73, (b) c(1)

1 = 0.8, c(2)
1 = 0.74,

t = 10000 for time difference (τ = 1000) for t2 = 2000, t1 = 1000 , other system
parameters are same in Fig. 6.6 The initial conditions are shown as in Fig. 4.25a.

6.4 Extinction, early warning signals and intermit-

tency

As it is shown in the previous chapters (Chapter 4 and Chapter 5), the model sys-
tem (6.1-6.3) spatial distribution is lead by patchy, regular or extinction structure.
Different types of system spatial distribution invokes a question that the existence
of the early warning signal of the approaching ecological disaster.

For a different values of A1 and for fixed A0, the system’s spatial distribution
is given by Fig. 6.15. As it is seen that for A1 = 2.1 (Fig. 6.15a), the domain is
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Figure 6.14: The effect of changes parameter c(1)
1 and fix A = 2.1 distribution

of oxygen, phytoplankton and zooplankton over space obtained for other given
parameter values (a) c(1)

1 = 0.735, c(2)
1 = 0.55, (b) c(1)

1 = 0.8, c(2)
1 = 0.55,

t = 10000 and time difference (τ = 1000) for t2 = 2000, t1 = 1000 other
system parameters are same as in Fig. 6.8. The initial conditions are shown as

in Fig. 4.25a.

invaded by a strongly irregular patchy structure. Although, for a larger value
of A1, A1 = 2.27789, (Fig. 6.15b), the region is occupied by an almost regular
structure. This regularity is happen for different value of A1; see Fig. 6.15d. A
further increase in A1, A1 = 2.277967, shown in Fig. 6.15c, leads to the formation
of separate patches. Note that, the systems’ A1 values depicted in Fig. 6.17, which
shows the corresponding spatial distribution on line chart.

As before Chapter 5, we need to prove the periodicity of the system. For
this reason, we choose two different values of A1 from Fig. 6.15. The first column
corresponds to A1 = 2.1, (Fig. 6.15a). Left-top corner of Fig. 6.16 shows the
maximum (solid line) and minimum (dotted line) values of oxygen concentration
for corresponding figure (Fig. 6.15a). The below figure, left column second row
shows the average concentration of oxygen (see Eq. (5.11)). For t = 12000 the
left-top corner of Fig. 6.16, oxygen concentration and plankton densities follow a
long-living transient. The corresponding oxygen concentration versus time figure
(second row, left) shows the persistence of oxygen concentration for a long time
limit. The left bottom panel of Fig. 6.16 shows the periodicity of the system
dynamics. Distinct peaks are not observed for the given set of parameters, hence
the system is not periodic (see more details on periodicity in Section 5.3).

The second column of Fig. 6.16 is for A1 = 2.27789, as in Fig. 6.15b. The
system components maximum and minimum values follow a different path from
Fig. 6.16 top-left corner. The system has some irregularity in terms of maximum-
minimum vs. time and average density of oxygen vs. time, it is clear from its
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Figure 6.15: The effect of changes in parameter A1, taking values from
Fig.6.17, on distribution of oxygen, phytoplankton and zooplankton over space
obtained for other given parameter values (a) A0 = 2.05, A1 = 2.1, (b)A0 = 2.05,
A1 = 2.27789, (c)A0 = 2.05, A1 = 2.277967, (d)A0 = 2.05, A1 = 2.283, initial
conditions and time difference (τ = 170) for t2 = 270, t1 = 100 and t = 12000;
other parameters are same as in the text. The initial conditions are shown as in

Fig. 4.25a.

power spectrum analysis that some leading frequencies are observed for Fig. 6.16
(bottom-right). In this case, it can be said that the decrease on A1 lets the
periodicity disappear .

Figure 6.17 shows spatial succession of the pattern formation for fixed A0

and τ (τ = t2 − t1). The x-axis formed by varying A1 values with given order.
Systems’ patchy distribution, periodic structure and extinction are illustrated by
green, yellow and red bars, respectively. For small A1 values, the system results
in the formation of irregular patchy distributions. The patchy distribution is
preceded by a regular structure as it is given in Fig. 6.15b. Interestingly, this
regular spatial distribution is preceded by the extinction of oxygen concentration
and plankton densities. But an increase in A1, plankton densities and oxygen
concentration become patchy and the scenario is followed by this kind of path
(first patchy, second regular and then extinction) as it is defined in Fig. 6.17 from
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Figure 6.16: Maximum-minimum values of oxygen, plankton densities in spa-
tial system, average concentration of oxygen concentration and the power spec-
trum analyse. (a)A0 = 2.05, A1 = 2.1 t = 12000, (b) A0 = 2.05, A1 = 2.27789,
t = 12000 Initials conditions are same A0 = 2.05 and t = 12000. The initial

conditions are shown as in Fig. 4.25a.

left to right in the direction of given arrow. It should be emphasized here that
after the last red column, we did not observe any evidence of the existence of
system components. Therefore, the last red column on the right hand side shows
the final stage of the given system and it is followed by red columns.

To observe this kind of pattern, system spatial dynamics has been checked
by over 4000 numerical simulations to understand underlying structure for different
initial values, where A0 = 2.02, A0 = 2.05, A0 = 2.09 and A0 = 2.09 and for
different τ = 10, τ = 20, τ = 50, τ = 100, τ = 170, τ = 300 and τ = 500. It
is shown that extinction state is preceded by regular structure and the regular
structure is preceded by patchy structure, in turn. The corresponding sketch of
the system structure for given time difference τ = 170 and for A0 = 2.05 is given
by Fig. 6.17. Here A(i)

1 where i = 1, 2, ..., 7 show the first observation points
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Figure 6.17: The oxygen-plankton system pattern formation for time differ-
ence τ = 170 for t2 = 270, t1 = 100 for A0 = 2.05 and t = 12000, yellow bar

(regular), red bar (extinction), green bar (existence).

of extinction. These values are given to show the general structure of system
dynamics, but they can be enhanced by choosing their closest values.

The biological standpoint, in reality, increasing temperature is highly con-
nected with changes in plankton dynamics and subsequently affecting species life
cycle and food web dynamics [222]. It is observed that, there is a recovery on
plankton community to support life being in oxygen prodution is not too small
or high. For this reason dynamical scheme of model system is formed as cascade
pattern as it is seen in Fig. 6.17.
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Figure 6.18: The oxygen-plankton system extinction diagram for different
initial values of A0. The extinction tendency of these initial values are roughly

shown by dashed line with given colors.

Critical thresholds are observed in many complex dynamical systems. In
this case, early warning signal may be an important indicator of future catastrophic
ecological events [221]. Fig. 6.18 shows the collection of data points for detection
of extinction for different initial values A0 = 2.02, A0 = 2.05, A0 = 2.09, A0 = 2.2,
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which are shown for different signs shown as in figure label and for different time
difference, i.e. τ . The line chart in Fig. 6.17 is a specific illustration for τ = 170

for Fig. 6.18. The most interesting part of this result is that for different time
differences, i.e. τ , we can draw a threshold line for the extinction. It can be seen
in Fig. 6.18 that the difference in lower limits of the net oxygen production rate
before changes, A0, does not effect the threshold level. If we call the threshold
level as θ, we can say that the level of the threshold θ ≈ 2.29. Remarkably, the
interesting point here is that when the system parameters are close to the threshold
value, the spatial distributions of system dynamics show a regular structure for a
large range of A1; see the yellows charts for the given range, i.e. (2.281, 2.2855),
which can be regarded as an early warning signal of the approaching catastrophe.

6.5 Discussion and Concluding remarks

In aquatic system, plankton spatial distribution is highly inhomogeneous and many
external factors play a role in the formation of the plankton patches such as nu-
trients availability, temperature, predation etc. [2, 64, 81, 143, 245]. But here,
we only concentrate on the temperature factor by taking into account the effect
of temperature on oxygen production rate and oxygen production effect on phy-
toplankton growth.

This issue is addressed theoretically by considering a model of a coupled
plankton-oxygen dynamics where the rate of oxygen production and its effect on
phytoplankton growth change as a piecewise function with time to account for the
global climate change.

The model is described by a system of three coupled ODEs in the non-
spatial case and by three corresponding diffusion-reaction PDEs in the spatially
explicit case. The system dynamics have been revealed by some extensive nu-
merical simulation under the effect of changing temperature response to oxygen
production rate and phytoplankton growth with time, respectively. We showed
that a sufficiently large increase in the oxygen production rate results in a sudden
plankton extinction and oxygen depletion. Similarly, we showed that a sufficiently
large increase in the oxygen production effect on phytoplankton growth is resulted
in the same ecological disaster.

The results (extinction case) shown in Figs. 6.2, 6.4b, 6.8, 6.14b are sup-
ported by the oxygen minimum zone biological study. According to this biological
observation, plankton density is undetectable when oxygen concentration is mini-
mum, whilst it is detectable when oxygen exceeds its certain critical level (0.2 ml
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l−1) [50, 151]. Moreover, respiration and photosynthesis increase with increasing
temperature up to a certain level, but the increase in respiration is more rapid
than photosynthetic rate [138].

Our study leaves a number of open questions on changing temperatures.
At high temperatures, oxygen concentration becomes low which explains some
ecological events such as decline on oxygen solubility, the increase on the decom-
position of sediment and the increase on respiration [28]. Generally, higher oxygen
consumption rates occur at higher temperatures due to the temperature effect on
metabolic activities [32]. However, our results show that the further increase of
the final value of A (A1) of the temperature function resulted in extinction. Also,
if water temperature exceeds the optimum temperature level for algal growth, pro-
duced algal biomass and amount of algae that enter the water body from outside
is decreased. Thereby, increasing temperature causes decrease of oxygen level due
to decrease of existing plankton population [95].



Chapter 7

Conclusions

Plankton dynamics in marine ecosystem have been a focus of significant interest
for several decades. There is a plenitude of literature addressing various aspects of
plankton functioning by using mathematical modelling and numerical simulations,
usually regarding the phytoplankton and zooplankton coupling as a prey-predator
system. However, neither oxygen production by phytoplankton nor the effect of
oxygen on the plankton dynamics have been considered systematically. Moreover,
to the best of our knowledge, the plankton-oxygen dynamics subject to the cli-
mate change has never been considered at all, in spite of its obvious ecological
importance.

Understanding of the temporal dynamics creates a convenient framework for
the understanding of the complex dynamics skeleton of the spatiotemporal system,
thus in this dissertation our main goal was to examine oxygen-plankton system in
the sense of both temporal and spatial pattern formation. The underlying struc-
ture of this work can be summarized as follows: the basic oxygen-phytoplankton
model is improved by taking into account the effect of predation together with
plankton respiration. The model also considered how the system dynamics can be
affected by changing water temperature. We observe that the impact of increas-
ing water temperature induces oxygen depletion in aquatic systems. This result
has been supported through numerous simulations which give rise to interesting
nonspatial and spatial plankton dynamics. A consequence of changing global tem-
peratures includes the sudden stop of photosynthetic activity of phytoplankton
which results in oxygen depletion.

In all of the performed numerical simulations one controlling parameter
(oxygen production rate A) is chosen and the changes in temporal and spatial
structure is considered subject to its variation, while all other system parameters
are fixed at their hypothetical values to provide relevant comparisons between the
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different models.
Chapter 1 provides a biological literature review of oxygen and plankton dy-

namics thereby enhancing the understanding of underlying ecological mechanisms
of our subsequent models. In Chapter 2 we present the two-component (oxygen-
phytoplankton) mathematical model which we refer to as the “baseline model”.
The nonspatial case is described by a system of two coupled ordinary differential
equations and its spatially explicit counterpart takes into account the transport of
phytoplankton and oxygen through turbulent diffusion which results in a system
of two coupled reaction diffusion equations. It should be emphasized here that in
this thesis we are interested in the possibility of non-Turing patterns, hence the
diffusivity is chosen same for all of the system components and it is assumed that
this situation stems from the same turbulent mixing. Results presented include a
combination of analytical and numerical simulations for the temporal case, whilst
the results for the considerably more complex spatial case were solved numeri-
cally. Since our model takes into account only very general, generic interactions
in the oxygen-plankton system, we believe that the model predictions possess a
considerable degree of generality.

Our first observation here is that for our oxygen-phytoplankton system,
the concentration of oxygen and density of phytoplankton remain close to their
steady state or go to extinction where the baseline model has two steady states (see
Chapter 2 for further details). The observed properties of the system are there-
fore reminiscent of the dynamics of other ecologically relevant reaction-diffusion
systems, e.g. see [147, 261], which helps to verify the model properties and to inter-
pret the results. Perhaps the most interesting property of our ‘baseline’ oxygen-
phytoplankton model is that phytoplankton is predicted to survive only if the
rate of oxygen production is above a certain critical value; see condition given by
Eq. (2.22). Since the rate of oxygen production may be expected to depend on the
properties of the environment, it makes our model a convenient and relevant the-
oretical tool that can be used for the purposes of nature conservation and marine
ecosystem management.

To make our model more realistic we incorporate the effects of predation
keeping in mind the properties of the well known prey-predator model [147]. There-
fore, in Chapter 3, we consider oxygen-phytoplankton-zooplankton model dynam-
ics to make an insight into the basic properties of the plankton-oxygen interactions
and in particular the effect of predation on oxygen dynamics. The system dynam-
ics have been revealed by some analytical approaches and by extensive numerical
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simulations. We first consider the nonspatial model and show that it predicts pos-
sible oxygen depletion under certain environmental conditions. We then consider
the spatially explicit model and show that it exhibits a rich variety of spatiotempo-
ral patterns including travelling fronts of oxygen depletion, dynamical stabilization
of unstable equilibrium and spatiotemporal chaos.

Understanding the predation effect on our oxygen-plankton model system
led us to develop more comprehensive model. Therefore, the model presented in
Chapter 4 extends the existing model through the addition of plankton respiration.
We focus on the stability analysis of the system’s steady states through bifurca-
tion diagrams. As a next step we investigate the system’s spatial distribution
dependence on the chosen initial conditions to ensure phytoplankton patchiness,
as observed in nature. In particular, the one dimensional case resulted in a strongly
irregular patchy distribution for large values of A. However, for small values of A,
the system’s spatial distribution becomes smooth. Finally, we present how these
results can be extended to the two-dimensional case. In the two-dimensional case,
small values of A lead to the patchy distribution of oxygen and an increase in A
results in a more regular structure. Perhaps the most interesting result of this
chapter is that a further increase in A would lead to extinction regardless of the
initial conditions. For larger values of A in the two-dimensional case, a pattern
of stripes is observed rather than patches. In some cases, the stripes keep their
position for the course of time or leave the domain by moving to the boundary.

In Chapter 5 we revisit the model presented in Chapter 4 and extend our
interest to the effects of global climate change. Namely, we consider the dynamics
of the corresponding nonspatial system with parameters as linear functions of time.
The increase/decrease in controlling parameters (in particular, oxygen production
rate and phytoplankton growth) results in a sequence of bifurcations leading to
a sudden plankton extinction and oxygen depletion. The decreasing values of A
effect in Section 5.2.1 and the increasing values of A effect in Section 5.2.2, it can
probably be said that the system dynamics always leads to system components
extinction for sufficiently large decrease in A (low oxygen production rate) and for
sufficiently large increase in A (high oxygen production rate). Recall that in corre-
sponding model the global warming is assumed to continue indefinitely. Therefore,
there is a safe parameter range of A for the persistence of all system components.
Another focus of interest was to investigate how the chosen boundary conditions
affect the emergence of extinction. Is there any difference on system’s species
sustainability in the one dimensional system’s (4.7-4.9) dynamics with zero-flux
Neumann boundary conditions compared to periodic boundary conditions? In
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both cases, it is observed that the system evolves into a periodical spatiotempo-
ral structure. However, as it is seen in Fig. 6.18, there is no dependence for the
emergence of the periodical structure to the chosen boundary conditions.

Prompted by the existing results we were interested in investigating whether
extinction can be stopped by stabilising the increase/decrease in A as a piecewise
function. For this reason, in Chapter 6 we revisit the model presented in Chapter 4.
We investigate the power spectra of plankton time series to prove the system’s
species regular distribution. We have found the pattern of extinction emergence.
For increasing A, the patchy distribution is displaced by regular pattern formation
and this structure persists until the species eventually goes extinct. Extinction
occurs when the surrounding water temperature reaches a certain (intermediate)
critical threshold value. This sequence of regular-patchy-extinction repeats itself
several times for increasing A. However, when A reaches it’s final critical value,
species go extinct and oxygen is depleted.

Note that it was not our aim here to calculate precise critical values of the
oxygen production rate. Instead, our aim is to identify the new threat in principle
rather than to link our analysis to specific plankton species or specific marine
ecosystems. Similarly, we do not attempt to estimate the value of the model
parameters. In contrast to other simulation studies where complicated ‘realistic’
marine ecosystem models were used (e.g. [28, 65, 106]), our model is relatively
simple. One benefit of this approach is that the model becomes tractable semi-
analytically (see Sections 2.2.1, 3.2.1, 4.2.1) and the change in model’s properties
in response to relevant factors can be revealed and understood relatively easy,
cf. Sections 2.2.1, 4.2.1.

The downside of the model’s simplicity is that many processes are left out
of the scope. Thus, our study leaves a number of open questions. Firstly, in our
model, the ocean hydrodynamics is taken into account very schematically (i.e. as
the turbulent diffusion). However, the amount of oxygen entering the atmosphere
through the ocean surface is known to depend on details of the ocean circulation
[84, 95, 121, 153, 220]. Although it does not seem likely that ocean hydrodynamics
can alter the dependence of oxygen production on temperature, it seems probable
that it can delay the oxygen transport through the sea-air interface. How this
delay may affect the atmospheric oxygen budget remains to be investigated. Sec-
ondly, our model does not take into account the effect of oxygen saturation and
its dependence on temperature. Meanwhile, the solubility of oxygen in water is
known to decline with water temperature, which can be another factor reducing
the oxygen concentration [4, 95]. Thirdly, phytoplankton community consists of
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hundreds of different species. To the best of our knowledge, data on the temper-
ature dependence of the oxygen production rate are currently available only for a
handful of species [85, 217]. How general is the observed response to an increase
in water temperature remains to be seen.

Further recognition on sedimentation importance on water body oxygen
concentration issue can be extended with a proper mathematical model as a fu-
ture work. Phytoplankton is a major oxygen producer, both phytoplankton and
zooplankton as well as macrophytes are also oxygen consumers [160], in particular
through the decomposition process of marine sediment in bottom of the ocean.
The importance of plankton decomposition process in relation to oxygen balance
in aquatic ecosystems is discussed in [265]. In addition to what is happening in
the pelagic zone, marine sediments are formed by dead algae and macrophytes.
These particles sink to the bottom of the ocean and are exposed to a biochemical
process. Large amounts of dissolved oxygen are utilized by these biochemical pro-
cesses [18, 41, 57, 93, 106, 179, 215, 231, 237, 260]. Sediment decomposition process
needs oxygen and dissolved oxygen is utilized for this process. This, in turn, can
cause the ocean’s dissolved oxygen concentration to become low. Addressing these
questions should become a subject of future research.

So far as from the obtained results, it can be said that they have impor-
tant implications. A lot has been said about detrimental consequences of global
climate change, such as possible extinction of some species resulting in corre-
sponding biodiversity loss and the large scale of flooding as a result of melting
glaciers. In this dissertation, we have identified another possible consequence of
the global climate change that can be more dangerous than all others by using
coupled oxygen-plankton model. It is shown that the oxygen production by ma-
rine phytoplankton can stop suddenly if the water temperature exceeds a certain
critical value (θ ≈ 2.29). As a result, since the ocean plankton produce more
than one half of the total atmospheric oxygen, it would mean oxygen depletion is
not restricted only to water but also to the Earth’s surface. If these results can
be linked and supported by ecological field data, it would be encouraging as this
approach can predict and potentially prevent future ecological disasters.



Appendix A

Simplifying a Model System

A complex mathematical model can be reduced to our model system by ignoring
some external factors. For this reason, Mocenni’s model Eqs. (A.1–A.5) is trans-
formed to our ‘baseline’ model system to understand the fundamental properties
of the dissolved oxygen produced by phytoplankton.

Eqs. (A.1–A.5) consist of four coupled differential equations where x1 is
phytoplankton density, x2 is herbivore consumers biomass (zooplankton), x3 is
the concentration of dissolved oxygen, while x4 is the nutrient variable, consisting
of nitrogen and phosphorus compounds in water and sediments [163]. In this
model system, it is assumed that u1(t) is photo-period annual variation, u2(t)

is temperature and u3(t) is average wind intensity. Growth of phytoplankton is
affected by some restricting external factors shown as u4(t) and ki describe model
coefficients for i=0,1,...,12. System coefficients (kAN , kAE, kP , kT and kX) are
all nonnegative due to their ecological meanings and kP shows the half saturation
value. The model system A.1–A.5 takes into account phytoplankton, zooplankton,
dissolved oxygen and nutrients, respectively [163].

Phytoplankton density x1 is given by

dx1

dt
= k1u1u4x1

(
x4

k0 + x4

)
− k2x

2
1 − k3x2

(
x1

kp + x1

)
. (A.1)

The first term of Eq. (A.1) corresponds to photosynthetic activity leading to the
increase of phytoplankton biomass. This term is mainly controlled by light inten-
sity and restricted by temperature and nutrient availability. The second term of
Eq. (A.1) accounts for natural mortality. Therefore, the combination of growth
and mortality term can be described by logistic type dynamics [172]. The last
term of Eq. (A.1) represents grazing of zooplankton.
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Zooplankton growth x2 is described by

dx2

dt
= k4x2

(
x1

kp + x1

)
− k5x2. (A.2)

The first term of Eq. (A.2) represents the growth rate of zooplankton due to
predation. The second term of Eq. (A.2) is natural mortality and intraspecific
competition.

Dissolved oxygen concentration x3 is given by

dx3

dt
= k6u3 + k7u1u4x1

(
x4

k0 + x4

)
− k8fα(x3)− (A.3)

k9fβ(x3) + k10

(
Cs(u2)− x3

kT + x2

)
− k11x1x3 − k12x2x3, (A.4)

where fα(x3) =
(

x32

kAE+x23

)
and fβ(x3) =

(
x3

kAN+x32

)
.

The first two positive terms of Eq. (A.3) represent wind re-aeration and oxy-
gen production due to photosynthesis. The third and fourth terms of Eq. (A.3)
account for the decreases due to bacterial activity and the last two terms account
for decrease on oxygen concentration due to phytoplankton and zooplankton res-
piration, respectively. The fifth term of Eq. (A.3) represents the equilibrium of
the physical-chemical reaction between gaseous oxygen and dissolved oxygen due
to the effect of changing temperature in water body; for more details see [163] and
the references therein. Temperature is one of the limiting factor represented by
kT . The biochemical process [Cs(u2) − x3] is associated with the over/under sat-
urated level of water body oxygen concentration x3. Functions fα and fβ account
for aerobic and anaerobic activities dependence accounted for dissolved oxygen
concentration in Eq. (A.3), respectively, and fα and fβ are determined by kAE and
kAN .

The nutrient variable growth can be modelled by

dx4

dt
= k13fα(x3) + k14fβ(x3)− k15u1u4x1

(
x4

k0 + x4

)
− k16

(
x4

kX + x4

)
, (A.5)

where x4 indicates nitrogen and phosphorus compounds in water and sediments.
The nutrient fixation half saturation constant is represented by kX . The first
two terms of Eq. (A.5) refer to aerobic and anaerobic production of nitrogen and
phosphorus due to the mineralization of organic matter, respectively. The loss
terms of Eq. (A.5) stem from photosynthetic activity and fixation in the sediment.
The system formulation has been studied in much detail by [163].
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As it is seen, the model system (A.1–A.5) contains many external factors.
Instead of using all of these factors, here we simplify the model to better under-
standing the relation between oxygen and phytoplankton. For this reason, some
components from model system (A.1–A.5) are ignored by assuming them as con-
stants. Hence, herbivore consumers’ biomass is not of interest for our baseline
model system in Chapter 2. Therefore, we disregard Eq. (A.2) and the consump-
tion term due to zooplankton respiration of Eq. (A.1). This means that the her-
bivore density x2 kept constant, so differentiation of x2 equals to zero, i.e. ẋ2 = 0.
This assumption is not at all ecologically unrealistic and may be supported by
the fact that zooplanktons’ dynamics change more slower than phytoplanktons’.
A similar assumption can be made for x4 and hence phosphor and nitrogen com-
pounds are also not of interest for this work. It means that x4 is assumed as a
constant and ẋ4 = 0. In addition, wind-reaeration, bacterial activity, and zoo-
plankton respiration terms are neglected. Following these simplifications, we form
our basic model, and rename components: c is oxygen concentration (instead of
x3) and u is phytoplankton density (instead of x1).

In view of above the discussions, we construct a mathematical model which
concentrates on phytoplankton and oxygen components to understand the under-
lying dynamics.

The dynamical equation of phytoplankton is

ẋ1 = k1u1u4(
x4

k0 + x4

) x1 − k2x
2
1 − k3x2(

x1

kP + x1

). (A.6)

with the assumption of
ẋ2 = 0 and ẋ4 = 0, (A.7)

and the first term is constant in Eq. (A.3). The steps to deriving our model are
as follows:

1. It is assumed x1 << kP for Eq. (A.6), therefore the last consumption
term of Eq. (A.6) converges to zero.

ẋ1 = B̃x1 − γ1x
2
1, (A.8)

where k2 = γ1, then
ẋ1 = (B̃ − γ1x1)x1, (A.9)

2. Assume B̃ = B̃(c) is an increasing function.
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Choose B̃ = Bc
c+c1

where x1 is replaced with u in our model system.Therefore,

du

dt
=

(
Bc

c+ c1

− γ1u

)
u, (A.10)

using the previous expressions for u, we have derived the equation for phytoplank-
ton as Eq. (A.10).

The dynamical system of oxygen is

ẋ3 = Z + Ax1 − k8fα(x3) − k9fβ(x3) + k10(
Cs(u2)− x3

kT + x2

)−mx3 − k12x2x3

here Z corresponds with k6u3 and assumed as constant, A is replaced with the term
(k7u1u4x1( x4

k0+x4
)), while m is replaced with k11x2 and the zooplankton respiration

term (k12x2x3) is neglected.
In Mocenni’s model equation β = 2, but in our model system it is assumed

that β = 1, where fα(x3) =
xβ3

c0+xβ3
in [163].

3. Assume that anaerobic activity is not make any change on oxygen dy-
namics. Therefore, we neglect the term by taking it as fβ ≡ 0 and where x3 is
named as c in our model system.

Then, the oxygen concentration dynamical equation becomes as follows:

dc

dt
= Z + Au−mc− Ãc

c+ c0

. (A.11)

We assume Z = 0 by ignoring the wind effect on our model system.
4. Assume that rate of decomposition of death phytoplankton should de-

pend on phytoplankton concentration in per unit. This means that Ã ∼ u.
Assume Ã(u) = Au. Then we obtain:

dc

dt
= A

(
1− c

c+ 1

)
u− c, (A.12)

Following these assumptions we get our baseline model system (2.5–2.6).
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Dimensionless Form

In order to simplify analytical and numerical calculations we rescale our model,
thereby decreasing the number of parameters. Referring back to the system (2.5–
2.6), it is easily seen that the system contains six free parameters which are A, c0,
m, B, c1 and γ. However, their number can be reduced by choosing dimensionless
variables. The scaled mathematical model has only three free parameters.

We scale the model to dimensionless variables as follows:
dc
dt

= A
(

1− c
c+c0

)
u −mc,

du
dt

=
(

Bc
c+c1
− γu

)
u,

(B.1)

this transformation is performed by t̂ = tm and acquire
dc
dt̂

= A
m

(
1− c

c+c0

)
u − c,

du
dt̂

= 1
m

(
Bc
c+c1
− γu

)
u,

(B.2)

We then chooseÂ = A
m
, B̂ = B

m
, γ̂ = γ

m
,

dc
dt̂

= Â
(

1− c
c+c0

)
u − c,

du
dt̂

=
(
B̂ c
c+c1
− γ̂u

)
u,

(B.3)

and ĉ = c
c0 

dĉ
dt̂

= Â
c0

(
1− ĉ

ĉ+1

)
u − ĉ,

du
dt̂

=

(
B̂ĉ
ĉ+

c1
c0

− γ̂u
)
u,

(B.4)

and û = γ̂1u 
dĉ
dt̂

= Â
c0

(
1− ĉ

ĉ+1

)
û
γ̂
− ĉ,

dû
dt̂

=

(
B̂ ĉ
ĉ+

c1
c0

− û
)
û,

(B.5)
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so that 
dĉ
dt̂

= Â
c0γ̂1

(
1− ĉ

ĉ+1

)
û − ĉ,

dû
dt̂

=

(
B̂ ĉ
ĉ+

c1
c0

− û
)
û.

(B.6)

Therefore, the last step to obtain the dimensionless equation is to choose ˆ̂A = Â
c0γ̂1

and ˆ̂c = c1
c0 

dĉ
dt̂

= ˆ̂A
(
1− ĉ

ĉ+1

)
û − ĉ,

dû
dt̂

=
(
B̂ ĉ

ĉ+ˆ̂c
− û
)
û,

(B.7)

For convenience, we now simplify the notations by omitting the hats and
double hats, i.e. by changing ˆ̂A → A, ĉ → c and û → u. To reiterate, Eqs. (B.7)
then take the following form:

dc

dt
= A

(
1− c

c+ 1

)
u− c ≡ f(c, u), (B.8)

du

dt
=

(
Bc

c+ c1

− u
)
u ≡ g(c, u). (B.9)

where all variables and parameters are now dimensionless.
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Linearized System Matrix

C.0.1 Baseline model linearized system

The linearized system’s matrix is as follows:

A =

− Au
(1+c)2

− 1 A(1− c
1+c

)

Bc1u
(c+c1)2

Bc
c+c1
− 2u

 . (C.1)

• Extinction steady state: (0, 0).

Matrix C.1 takes the following form:

det(A(0,0) − λI) =

∣∣∣∣∣−1− λ A

0 −λ

∣∣∣∣∣ = 0,

so that the characteristic equation is defined by

⇒ (0− λ)(−1− λ) = 0. (C.2)

From Eq. (C.2), λ1 = −1 and λ2 = 0. Therefore, the origin has one negative real
eigenvalue and one zero eigenvalue.

• Oxygen-phytoplankton steady state: (c̃, ũ).

The corresponding form is:

det(A(c̃,ũ) − λI) =

∣∣∣∣∣∣
− Aũ

(1+c̃)2
− 1− λ A(1− c̃

1+c̃
)

Bc1ũ
(c̃+c1)2

Bc̃
c̃+c1
− 2ũ− λ

∣∣∣∣∣∣ = 0,
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so that

det(A(c̃,ũ) − λI) =(
− Aũ

(1 + c̃)2
− 1− λ

)(
Bc̃

c̃+ c1

− 2ũ− λ
)
− A

1 + c̃

Bc1ũ

(c̃+ c1)2
= 0, (C.3)

where ũ and c̃ defined as in Eq. (2.11) and Eq.( 2.13).

λ1,2 =
−ρ±

√
ρ2 − 4∆

2
(C.4)

where
ρ =

Aũ

(1 + c̃)2
− Bc̃

c̃+ c1

+ 2ũ+ 1 (C.5)

∆ =
2Aũ2

(1 + c̃)2
− ABũc̃

(1 + c̃)2(c̃+ c1)
− Bc̃

c̃+ c1

− ABc1ũ

(1 + c̃)(c̃+ c1)2
+ 2ũ (C.6)

C.0.2 Linearized system for predation effect model

The linearized system’s matrix is as follows:

B =


− Au

(1+c)2
− 1 A(1− c

1+c
) 0

Bc1u
(c+c1)2

Bc
c+c1
− 2u− vh

(u+h)2
− u
u+h

0 βvh
(u+h)2

βu
u+h
− µ

 . (C.7)

• Extinction steady state: (0, 0, 0).

Matrix C.7 takes the following form:

det(B(0,0,0) − λI) =

∣∣∣∣∣∣∣∣
−1− λ A 0

0 −λ 0

0 0 −µ− λ

∣∣∣∣∣∣∣∣ = 0,

so that the characteristic equation is defined by

⇒ (−µ− λ)(0− λ)(−1− λ) = 0. (C.8)

From Eq. (C.8), λ1 = −µ, λ2 = 0 and λ3 = −1. Therefore, the origin has two
negative real eigenvalues and one zero eigenvalue.

• Zooplankton-free steady state: (c̃, ũ, 0).
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The corresponding form is:

det(B(c̃,ũ,0) − λI) =

∣∣∣∣∣∣∣∣∣
− Aũ

(1+c̃)2
− 1− λ A(1− c̃

1+c̃
) 0

Bc1ũ
(c̃+c1)2

Bc̃
c̃+c1
− 2ũ− λ − ũ

ũ+h

0 0 βũ
ũ+h
− µ− λ

∣∣∣∣∣∣∣∣∣ = 0,

so that

det(B(c̃,ũ,0) − λI) =

[(
− Aũ

(1 + c̃)2
− 1− λ

)(
Bc̃

c̃+ c1

− 2ũ− λ
)

− A

1 + c̃

Bc1ũ

(c̃+ c1)2

](
βũ

ũ+ h
− µ− λ

)
= 0, (C.9)

where ũ and c̃ defined as in Eqs. (2.11) and (2.13).

λ1 =
βũ

ũ+ h
− µ and λ2,3 =

−ρ±
√
ρ2 − 4∆

2
, (C.10)

where
ρ =

Aũ

(1 + c̃)2
− Bc̃

c̃+ c1

+ 2ũ+ 1, (C.11)

∆ =
2Aũ2

(1 + c̃)2
− ABũc̃

(1 + c̃)2(c̃+ c1)
− Bc̃

c̃+ c1

− ABc1ũ

(1 + c̃)(c̃+ c1)2
+ 2ũ. (C.12)

• Coexistence steady state: (c̄, ū, v̄).

det(B(c̄,ū,v̄) − λI) =

∣∣∣∣∣∣∣∣∣
− Aū

(1+c̄)2
− 1− λ A(1− c̄

1+c̄
) 0

Bc1ū
(c̄+c1)2

Bc̄
c̄+c1
− 2ū− v̄h

(ū+h)2
− λ − ū

ū+h

0 βv̄h
(ū+h)2

βū
ū+h
− µ− λ

∣∣∣∣∣∣∣∣∣ = 0,

so that

det(B(c̄,ū,v̄) − λI) =
βūv̄h

(ū+ h)3

(
− Aū

(1 + c̄)2
− 1− λ

)
+

(
βū

ū+ h
− µ− λ

)
(C.13)[(

− Aū

(1 + c̄)2
− 1− λ

)(
Bc̄

c̄+ c1

− 2ū− v̄h

(ū+ h)2
− λ
)
− A

1 + c̄
· Bc1ū

(c̄+ c1)2

]
= 0,

where c̄, ū and v̄ defined by Eq. (3.11).
Let

φ =
βū

ū+ h
− µ− Aū

(1 + c̄)2
− 1 +

Bc̄

c̄+ c1

− 2ū− v̄h

(ū+ h)2
,
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ε =
Aβū2

(1 + c̄)2(ū+ h)
+

βū

ū+ h
− βBūc̄

(c̄+ c1)(ū+ h)
+

2ū2β

ū+ h
− Aūµ

(1 + c̄)2
− µ

+
Bc̄µ

c̄+ c1

− 2ūµ− v̄hµ

(ū+ h)2
+

ABūc̄

(1 + c̄)2(c̄+ c1)
− 2Aū2

(1 + c̄)2
− Aūv̄h

(1 + c̄)2(ū+ h)2

+
Bc̄

c̄+ c1

− 2ū− v̄h

(ū+ h)2
+

ABūc1

(1 + c̄)(c̄+ c1)2
,

and

ρ = − Aβū2v̄h

(ū+ h)3(1 + c̄)2
− βūv̄h

(ū+ h)3
− ABβū2c̄

(1 + c̄)2(c̄+ c1)(ū+ h)
+

2Aū3β

(1 + c̄)2(ū+ h)

+
Aβū2v̄h

(1 + c̄)2(ū+ h)3
− Bβūc̄

(c̄+ c1)(ū+ h)
+

2βū2

ū+ h
+

βūv̄h

(ū+ h)3

− ABβū2c1

(1 + c̄)(c̄+ c1)2(ū+ h)
+

ABūc̄µ

(1 + c̄)2(c̄+ c1)
− 2Aū2µ

(1 + c̄)2
− Aūv̄hµ

(1 + c̄)2(ū+ h)2

+
Bc̄µ

c̄+ c1

− 2ūµ− v̄hµ

(ū+ h)2
+

ABc1ūµ

(1 + c̄)(c̄+ c1)2
.

Then the eigenvalues of system (C.13) are the solutions of the following
cubic equation:

λ3 − φλ2 − ελ− ρ = 0, (C.14)

The roots of Eq. (C.14) are:

λ1 =
φ

3
+

2
1
3 (−φ2 − 3ε)

3(−27ρ− 2φ3 − 9φε+ 3
√

3
√

27ρ2 + 4ρφ3 + 18ρφε− φ2ε2 − 4ε3)
1
3

−(−27ρ− 2φ3 − 9φε+ 3
√

3
√

27ρ2 + 4ρφ3 + 18ρφε− φ2ε2 − 4ε3)
1
3

3 · 2 1
3

,

λ2 =
φ

3
− (1 + i

√
3)(−φ2 − 3ε)

3 · 2 2
3 (−27ρ− 2φ3 − 9φε+ 3

√
3
√

27ρ2 + 4ρφ3 + 18ρφε− φ2ε2 − 4ε3)
1
3

+
(1− i

√
3)(−27ρ− 2φ3 − 9φε+ 3

√
3
√

27ρ2 + 4ρφ3 + 18ρφε− φ2ε2 − 4ε3)
1
3

6 · 2 1
3

,

λ3 =
φ

3
− (1− i

√
3)(−φ2 − 3ε)

3 · 2 2
3 (−27ρ− 2φ3 − 9φε+ 3

√
3
√

27ρ2 + 4ρφ3 + 18ρφε− φ2ε2 − 4ε3)
1
3

+
(1 + i

√
3)(−27ρ− 2φ3 − 9φε+ 3

√
3
√

27ρ2 + 4ρφ3 + 18ρφε− φ2ε2 − 4ε3)
1
3

6 · 2 1
3

.

Therefore, the equilibrium (c̄, ū, v̄) has one real and two complex conjugate
eigenvalues; hence, it is a mixed focus-type equilibrium.
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Eigenvalue Tables C.2 and C.3 are presented to show the scheme of eigen-
values magnitude and sign. These two tables represent the eigenvalues for param-
eters A and c1 changing from 0.1 to 1, while other parameters are fixed at some
hypothetical values as B = 1, γ = 1, β = 1, µ = 0.5, h = 0.1, ε = 0.001. The only
difference between Table C.2 and Table C.3 are the steady state values.

Table C.2 shows the (c̃, ũ, 0) steady state associated with real eigenvalues. It
is seen that for the negative steady state area (see Fig. 3.2 and Fig. 3.5) one of the
eigenvalues is always equal to zero. In this case, we use numerical simulations to
determine the stability of the given steady state instead of using some theoretical
and analytical calculations. Note that, the zooplankton-free state (c̃, ũ, 0) corre-
sponds to the basic model oxygen-phytoplankton steady state (c̃, ũ); cf. Table C.1
and Table C.2.

Table C.3 demonstrates the eigenvalues for (c̄, ū, v̄) given by Eq.(3.11). Ta-
ble C.2’s zero eigenvalues area corresponds with the Table C.3’s real eigenvalues
area. Table C.3 is used to understand the steady state behaviour of the coexistence
state while Table C.2 is for the zooplankton-free state. However, demonstration
of both tables is a powerful tool to investigate and predict the system’s behavior
in two dimensions without zooplankton and in three dimension with zooplankton
in terms of phase plane/space structure 1.

Both of the tables are given to distinguish between the different behavior
of system dynamic in two and in three dimensions. The steady state’s (c̃, ũ, 0)

dynamics shows the dynamical system in two dimensions with respect to the ab-
sence of zooplankton. The steady state’s (c̄, ū, v̄) dynamics represent the dynami-
cal system in three dimensions. Having these two different steady state dynamical
system’s provide information regarding the effect of zooplankton concentration on
our baseline model.

The behavior of the system’s dynamical response can be identified by the
points chosen in Table C.2 and in Fig. 3.3. For example, the point defined by
A = 1 and c1 = 0.1 with other given parameters as in Fig.3.3 behaves as a saddle
point. However, when A = 0.9 and c1 = 0.8 are as defined, the system’s steady
state is stable. The corresponding oxygen-phytoplankton steady state can be seen
from Fig. 3.2 and Fig. 3.5.

1Here the word dimension is used to define the phase plane or phase space, i.e. oxygen-
phytoplankton system trajectories lie on the phase plane (two-dimensions), while oxygen-phyto-
zooplankton system trajectories lie on the phase space structure (three-dimensions)



Appendix C Linearized system 167

T
a
bl

e
C

.2
:
E
ig
en
va
lu
es

fo
r

(c̃
,ũ
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C.0.3 Linearized system for respiration effect model

The linearised system matrix is as follows:

C =


− Au

(1+c)2
− 1− uc2

(c+c2)2
− νvc3

(c+c3)2
A

1+c
− c

c+c2
− νc
c+c3

Bc1γu
(c+c1)2

Bcγ
c+c1
− 2γu− vh

(u+h)2
− σ − u

u+h
βuv
u+h

2cc42

(c2+c42)2
βvh

(u+h)2
c2

(c2+c42)
βuc2

(u+h)(c2+c42)
− µ

 .

(C.15)

• Extinction state stability: E1.

Matrix C.15 takes the following form:

det(C(0,0,0) − λI) =

∣∣∣∣∣∣∣∣
−1− λ A 0

0 −σ − λ 0

0 0 −µ− λ

∣∣∣∣∣∣∣∣ = 0

so the characteristic equation is defined by

⇒ (−1− λ)(−σ − λ)(−µ− λ) = 0 (C.16)

from Eq. (C.16) λ1 = −1, λ2 = −σ and λ3 = −µ. Therefore, the origin is always
stable.

• Oxygen-phytoplankton existence state: E2 = (ċ, u̇, 0)

For oxygen-phytoplankton existence state (E2)

det(C(ċ,u̇,0)−λI) =

∣∣∣∣∣∣∣∣
− Au̇

(1+ċ)2
− 1− u̇c2

(ċ+c2)2
− λ A

ċ+1
− ċ

ċ+c2
− νċ
ċ+c3

Bc1γu̇
(ċ+c1)2

Bċγ
ċ+c1
− 2γu̇− σ − λ − u̇

u̇+h

0 0 βu̇
u̇+h

ċ2

ċ2+c42
− µ− λ

∣∣∣∣∣∣∣∣ = 0

det(C(ċ,u̇,0) − λI) =

(
(− Au̇

(1 + ċ)2
− 1− u̇c2

(ċ+ c2)2
− λ)(

Bċγ

ċ+ c1

− 2γu̇− σ − λ)

−(
Bc1γu̇

(ċ+ c1)2
)(

A

ċ+ 1
− ċ

ċ+ c2

)

)(
βu̇

u̇+ h

ċ2

ċ2 + c4
2
− µ− λ

)
= 0 (C.17)

where u̇ and ċ defined in Eqs. (4.12-4.13).

• Oxygen-phytoplankton-zooplankton coexistence steady state: E3 = (c̈, ü, v̈)
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det(C(c̈,ü,v̈) − λI) =

(C.18)∣∣∣∣∣∣∣∣
− Aü

(1+c̈)2
− 1− üc2

(c̈+c2)2
− νv̈c3

(c̈+c3)2
− λ A

1+c̈ −
c̈

c̈+c2
− νc̈
c̈+c3

Bc1γü
(c̈+c1)2

Bc̈γ
c̈+c1
− 2γü− v̈h

(ü+h)2
− σ − λ − ü

ü+h
βüv
ü+h

2c̈c42

(c̈2+c42)2
βv̈h

(ü+h)2
c2

(c̈2+c42)
βüc2

(ü+h)(c̈2+c42)
− µ− λ

∣∣∣∣∣∣∣∣ = 0

where c̈, ü and v̈ defined in Eq. (3.11). The stability of the coexistence state (c̈, ü, v̈) is

detailed with extensive numerical simulations in Chapter 4.
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,ü
,v̈

)

A
1.

9
2

2.
01

2.
02

2.
03

2.
04

2.
05

2.
06

2.
07

2.
08

2.
09

0.
1

-1
.8

28
5

0.
27

48
+

0.
20

78
i

0.
27

48
-0

.2
07

8i

-1
.8

10
0

0.
29

82
+

0.
18

70
i

0.
29

82
-0

.1
87

0i

-1
.8

08
3

0.
30

04
+

0.
18

48
i

0.
30

04
-0

.1
84

8i

-1
.8

06
6

0.
30

25
+

0.
18

27
i

0.
30

25
-0

.1
82

7i

-1
.8

04
9

0.
30

46
+

0.
18

05
i

0.
30

46
-0

.1
80

5i

-1
.8

03
3

0.
30

67
+

0.
17

83
i

0.
30

67
-0

.1
78

3i

-1
.8

01
6

0.
30

87
+

0.
17

61
i

0.
30

87
-0

.1
76

1i

-1
.8

00
0

0.
31

07
+

0.
17

40
i

0.
31

07
-0

.1
74

0i

-1
.7

98
5

0.
31

27
+

0.
17

17
i

0.
31

27
-0

.1
71

7i

-1
.7

96
9

0.
31

46
+

0.
16

95
i

0.
31

46
-0

.1
69

5i

-1
.7

95
3

0.
31

65
+

0.
16

73
i

0.
31

65
-0

.1
67

3i

0.
2

-1
.8

96
8

0.
19

91
+

0.
21

72
i

0.
19

91
-0

.2
17

2i

-1
.8

77
0

0.
22

33
+

0.
20

42
i

0.
22

33
-0

.2
04

2i

-1
.8

75
1

0.
22

56
+

0.
20

28
i

0.
22

56
-0

.2
02

8i

-1
.8

73
3

0.
22

78
+

0.
20

14
i

0.
22

78
-0

.2
01

4i

-1
.8

71
5

0.
22

99
+

0.
20

01
i

0.
22

99
-0

.2
00

1i

-1
.8

69
8

0.
23

21
+

0.
19

87
i

0.
23

21
-0

.1
98

7i

-1
.8

68
0

0.
23

42
+

0.
19

73
i

0.
23

42
-0

.1
97

3i

-1
.8

66
3

0.
23

63
+

0.
19

59
i

0.
23

63
-0

.1
95

9i

-1
.8

64
6

0.
23

83
+

0.
19

45
i

0.
23

83
-0

.1
94

5i

-1
.8

63
0

0.
24

03
+

0.
19

31
i

0.
24

03
-0

.1
93

1i

-1
.8

61
3

0.
24

23
+

0.
19

17
i

0.
24

23
-0

.1
91

7i

0.
3

-1
.9

34
5

0.
13

72
+

0.
21

54
i

0.
13

72
-0

.2
15

4i

-1
.9

13
9

0.
16

19
+

0.
20

83
i

0.
16

19
-0

.2
08

3i

-1
.9

12
0

0.
16

42
+

0.
20

75
i

0.
16

42
-0

.2
07

5i

-1
.9

10
1

0.
16

65
+

0.
20

67
i

0.
16

65
-0

.2
06

7i

-1
.9

08
3

0.
16

87
+

0.
20

59
i

0.
16

87
-0

.2
05

9i

-1
.9

06
5

0.
17

09
+

0.
20

51
i

0.
17

09
-0

.2
05

1i

-1
.9

04
7

0.
17

31
+

0.
20

43
i

0.
17

31
-0

.2
04

3i

-1
.9

02
9

0.
17

52
+

0.
20

34
i

0.
17

52
-0

.2
03

4i

-1
.9

01
1

0.
17

73
+

0.
20

26
i

0.
17

73
-0

.2
02

6i

-1
.8

99
4

0.
17

94
+

0.
20

17
i

0.
17

94
-0

.2
01

7i

-1
.9

55
3

0.
18

15
+

0.
20

08
i

0.
18

15
-0

.2
00

8i

0.
4

-1
.9

34
2

0.
08

56
+

0.
20

51
i

0.
08

56
-0

.2
05

1i

-1
.9

32
2

0.
11

07
+

0.
20

32
i

0.
11

07
-0

.2
03

2i

-1
.9

30
3

0.
11

31
+

0.
20

29
i

0.
11

31
-0

.2
02

9i

-1
.9

28
4

0.
11

54
+

0.
20

26
i

0.
11

54
-0

.2
02

6i

-1
.9

26
5

0.
11

76
+

0.
20

22
i

0.
11

76
-0

.2
02

2i

-1
.9

24
7

0.
11

99
+

0.
20

19
i

0.
11

99
-0

.2
01

9i

-1
.9

22
9

0.
12

21
+

0.
20

15
i

0.
12

21
-0

.2
01

5i

-1
.9

21
1

0.
12

43
+

0.
20

11
i

0.
12

43
-0

.2
01

1i

-1
.9

19
3

0.
12

64
+

0.
20

07
i

0.
12

64
-0

.2
00

7i

-1
.9

17
6

0.
12

85
+

0.
20

03
i

0.
12

85
-0

.2
00

3i

-1
.9

66
0

0.
13

06
+

0.
19

98
i

0.
13

06
-0

.1
99

8i

c 1

0.
5

-1
.9

66
0

0.
04

19
+

0.
18

83
i

0.
04

19
-0

.1
88

3i

-1
.9

44
6

0.
06

74
+

0.
19

15
i

0.
06

74
-0

.1
91

5i

-1
.9

42
6

0.
06

97
+

0.
19

16
i

0.
06

97
-0

.1
91

6i

-1
.9

40
6

0.
07

21
+

0.
19

17
i

0.
07

21
-0

.1
91

7i

-1
.9

38
7

0.
07

44
+

0.
19

18
i

0.
07

44
-0

.1
91

8i

-1
.9

36
8

0.
07

66
+

0.
19

19
i

0.
07

66
-0

.1
91

9i

-1
.9

34
9

0.
07

89
+

0.
19

19
i

0.
07

89
-0

.1
91

9i

-1
.9

33
1

0.
08

11
+

0.
19

19
i

0.
08

11
-0

.1
91

9i

-1
.9

31
3

0.
08

33
+

0.
19

19
i

0.
08

33
-0

.1
91

9i

-1
.9

29
5

0.
08

54
+

0.
19

19
i

0.
08

54
-0

.1
91

9i

-1
.9

27
7

0.
08

76
+

0.
19

19
i

0.
08

76
-0

.1
91

9i

0.
6

-1
.9

70
5

0.
00

44
+

0.
16

58
i

0.
00

44
-0

.1
65

8i

-1
.9

48
9

0.
03

01
+

0.
17

44
i

0.
03

01
-0

.1
74

4i

-1
.9

46
9

0.
03

25
+

0.
17

50
i

0.
03

25
-0

.1
75

0i

-1
.9

44
9

0.
03

49
+

0.
17

60
i

0.
03

49
-0

.1
76

0i

-1
.9

42
9

0.
03

72
+

0.
17

61
i

0.
03

72
-0

.1
76

1i

-1
.9

41
0

0.
03

95
+

0.
17

67
i

0.
03

95
-0

.1
76

7i

-1
.9

39
1

0.
04

18
+

0.
17

71
i

0.
04

18
-0

.1
77

1i

-1
.9

37
3

0.
04

40
+

0.
17

76
i

0.
04

40
-0

.1
77

6i

-1
.9

35
4

0.
04

62
+

0.
17

80
i

0.
04

62
-0

.1
78

0i

-1
.9

33
6

0.
04

84
+

0.
17

84
i

0.
04

84
-0

.1
78

4i

-1
.9

31
8

0.
05

06
+

0.
17

87
i

0.
05

06
-0

.1
78

7i

0.
7

-1
.9

71
2

-0
.0

28
1+

0.
13

69
i

-0
.0

28
1-

0.
13

69
i

-1
.9

49
3

-0
.0

02
3+

0.
15

24
i

-0
.0

02
3-

0.
15

24
i

-1
.9

47
3

0.
00

01
+

0.
15

36
i

0.
00

01
-0

.1
53

6i

-1
.9

45
3

0.
00

25
+

0.
15

47
i

0.
00

25
-0

.1
54

7i

-1
.9

43
3

0.
00

49
+

0.
15

57
i

0.
00

49
-0

.1
55

7i

-1
.9

41
4

0.
00

72
+

0.
15

68
i

0.
00

72
-0

.1
56

8i

-1
.9

39
5

0.
00

95
+

0.
15

77
i

0.
00

95
-0

.1
57

7i

-1
.9

37
6

0.
01

17
+

0.
15

86
i

0.
01

17
-0

.1
58

6i

-1
.9

35
8

0.
01

40
+

0.
15

95
i

0.
01

40
-0

.1
59

5i

-1
.9

34
0

0.
01

62
+

0.
16

03
i

0.
01

62
-0

.1
60

3i

-1
.9

32
2

0.
01

83
+

0.
16

11
i

0.
01

83
-0

.1
61

1i

0.
8

-1
.9

69
2

-0
.0

56
8+

0.
09

81
i

-0
.0

56
8-

0.
09

81
i

-1
.9

47
3

-0
.0

30
7+

0.
12

45
i

-0
.0

30
7-

0.
12

45
i

-1
.9

45
2

-0
.0

28
3+

0.
12

64
i

-0
.0

28
3-

0.
12

64
i

-1
.9

43
2

-0
.0

25
9+

0.
12

83
i

-0
.0

25
9-

0.
12

83
i

-1
.9

41
3

-0
.0

23
6+

0.
13

00
i

-0
.0

23
6-

0.
13

00
i

-1
.9

39
3

-0
.0

21
2+

0.
13

17
i

-0
.0

21
2-

0.
13

17
i

-1
.9

37
4

-0
.0

18
9+

0.
13

33
i

-0
.0

18
9-

0.
13

33
i

-1
.9

35
5

-0
.0

16
6+

0.
13

48
i

-0
.0

16
6-

0.
13

48
i

-1
.9

33
7

-0
.0

14
4+

0.
13

63
i

-0
.0

14
4-

0.
13

63
i

-1
.9

31
8

-0
.0

12
2+

0.
13

77
i

-0
.0

12
2-

0.
13

77
i

-1
.9

30
0

-0
.0

10
0+

0.
13

90
i

-0
.0

10
0-

0.
13

90
i

0.
9

-1
.9

65
6

-0
.0

82
1+

0.
02

01
i

-0
.0

82
1-

0.
02

01
i

-1
.9

43
6

-0
.0

56
0+

0.
08

67
i

-0
.0

56
0-

0.
08

67
i

-1
.9

41
5

-0
.0

53
5+

0.
09

01
i

-0
.0

53
5-

0.
09

01
i

-1
.9

39
5

-0
.0

51
1+

0.
09

33
i

-0
.0

51
1-

0.
09

33
i

-1
.9

37
6

-0
.0

48
8+

0.
09

63
i

-0
.0

48
8-

0.
09

63
i

-1
.9

35
6

-0
.0

46
4+

0.
09

91
i

-0
.0

46
4-

0.
09

91
i

-1
.9

33
7

-0
.0

44
1+

0.
10

17
i

-0
.0

44
1-

0.
10

17
i

-1
.9

31
8

-0
.0

41
8+

0.
10

43
i

-0
.0

41
8-

0.
10

43
i

-1
.9

29
9

-0
.0

39
5+

0.
10

66
i

-0
.0

39
5-

0.
10

66
i

-1
.9

28
1

-0
.0

37
3+

0.
10

89
i

-0
.0

37
3-

0.
10

89
i

-1
.9

26
3

-0
.0

35
1+

0.
11

10
i

-0
.0

35
1-

0.
11

10
i

1
-1

.9
60

9
-0

.1
98

5
-0

.0
11

2

-1
.9

38
8

-0
.1

01
5

-0
.0

55
6

-1
.9

36
8

-0
.0

76
1+

0.
01

34
i

-0
.0

76
1-

0.
01

34
i

-1
.9

34
8

-0
.0

73
7+

0.
02

94
i

-0
.0

73
7-

0.
02

94
i

-1
.9

32
8

-0
.0

71
3+

0.
03

92
i

-0
.0

71
3-

0.
03

92
i

-1
.9

30
9

-0
.0

68
9+

0.
04

67
i

-0
.0

68
9-

0.
04

67
i

-1
.9

28
9

-0
.0

66
6+

0.
05

31
i

-0
.0

66
6-

0.
05

31
i

-1
.9

27
0

-0
.0

64
3+

0.
05

86
i

-0
.0

64
3-

0.
05

86
i

-1
.9

25
2

-0
.0

62
0+

0.
06

35
i

-0
.0

62
0-

0.
06

35
i

-1
.9

23
3

-0
.0

59
7+

0.
06

79
i

-0
.0

59
7-

0.
06

79
i

-1
.9

21
5

-0
.0

57
5+

0.
07

19
i

-0
.0

57
5-

0.
07

19
i

E
ig

en
va

lu
es

ar
e

pr
od

uc
ed

by
gi

ve
n

pa
ra

m
et

er
va

lu
es
c 2

=
1
,
c 3

=
1
,
c 4

=
1
,
B

=
1
.8

,
γ

=
1
.2

,
β

=
0
.7

,
µ

=
0
.1

,
h

=
0
.1

,
σ

=
0
.1

.
A

ch
an

ge
s

fr
om

1.
9

to
2.

09
an

d
c 1

ch
an

ge
s

fr
om

0.
1

to
1

as
se

en
on

ta
bl

e.



Appendix D

Numerical Method: Finite

Differences

In this section, we will concentrate on computational methods for partial differential

equations, in particular the finite difference method for diffusion-reaction equations with

matching initial and boundary conditions.

Diffusion-reaction systems are frequently used to model ecological pattern for-

mation. Firstly, diffusion-reaction systems were utilized to describe ecological pattern

formation processes by [254] and after by [224]. A similar approach was used in modelling

plankton pattern formation [124, 132].

We assume that the space-domain and time-domain are [a, b] ⊂ R and [0, Tf ] for

final time Tf , respectively. We build equally distributed grid points for both space and

time as follows:

a = x1, x2 = x1 + hx, x3 = x2 + hx,...,xNx = b, and 0 = t1, t2 = t1 + τ , t3 =

t2 + τ ,...,tNt = Tf . where i = 1, 2, ... , Nx and n = 1, 2, ... , Nt.

Therefore, we have hx = (b− a)/(Nx − 1) and τ = h2
x/4D where L = b− a. τ

is rather small in the interest of accuracy of our numerical simulations. We want to find

an approximate solution of diffusion-reaction equation, such that

ct(x, t) = Dcxx(x, t) + f(c, u) (D.1)

ut(x, t) = Duxx(x, t) + g(c, u) (D.2)

for all x ∈ [a, b] and t ∈ [0, Tf ],

with the initial conditions

c(x, 0) = c0(xi) = p (D.3)

u(x, 0) = u0(xi) = 0.5 if |x| < ε; otherwise u(x, 0) = 0 (D.4)
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where p and ε are dimensionless variables; in our baseline model p = 0.2, ε = 100 and

xi = (i− 1)hx for i = 1, 2, ... , Nx.

We will show numerical simulations only for u as the only dissimilarity between

c and u is the functional response.

Neumann-boundary conditions can be given, such as

u0 = 0 and ui = 0. (D.5)

ui = Eiui+1 + Fi (D.6)

Indeed, we look forEi and Fi. The left-side Neumann-boundary condition from Eq. (D.5):

∂u(0, t)

∂x
= 0 (D.7)

u1 − u0

∆x
= 0 (D.8)

⇒ u1 = u0 (D.9)

From (D.6)

u0 = E0u1 + F0 (D.10)

⇒ E0 = 1 and F0 = 0. (D.11)

The right-side Neumann- boundary condition:

∂u(L, t)

∂x
= 0 (D.12)

uNx − uNx−1

∆x
= 0 (D.13)

⇒ uNx = uNx−1 (D.14)

From Eq. (D.6)

uNx−1 = ENx−1uNx + FNx−1 (D.15)

uNx = ENx−1uNx + FNx−1 (D.16)

⇒ uNx =
FNx−1

1− ENx−1
. (D.17)

Dirichlet boundary condition can be given by

un0 = 0 = unNx n = 0, 1, ..., Nt (D.18)

Our aim is to find approximations uni for function values u(xi, tn) and cni for function

values c(xi, tn) for i = 1, 2, ... , Nx and n = 1, 2, ... , Nt. We construct the following

approximations, using the backward difference and central second difference method for
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time and space derivatives, respectively. The approximation is as follows:

u(xi, tn+1)− u(xi, tn)

τ
= D

u(xi+1, tn+1)− 2u(xi, tn+1) + u(xi−1, tn+1)

hx
2 + (D.19)

g(c(xi, tn), u(xi, tn)), (D.20)

The key is to find approximations uni for function values u(xi, tn) from Eq. (D.2). Then

we obtain the following system of equations:

un+1
i − uin

τ
= D

un+1
i+1 − 2un+1

i + un+1
i−1

hx
2 + g(cni , u

n
i ), (D.21)

when multiplying by τ and rearranged becomes,

un+1
i − uin =

Dτ

hx
2 (un+1

i+1 − 2un+1
i + un+1

i−1 ) + g(cni , u
n
i )τ, (D.22)

− µun+1
i+1 + (1 + 2µ)un+1

i − µun+1
i−1 = uni + g(cni , u

n
i )τ, (D.23)

where µ := τD
hx

2 is called the Courant number.

Ai = µ, Bi = 1 + 2µ, Ci = µ and Di = uni (D.24)

⇒ −Aiun+1
i+1 +Biu

n+1
i − Ciun+1

i−1 = Di + g(cni , u
n
i )τ. (D.25)

Our aim is to determine Ei and Fi in Eq. (D.6) from Eq. (D.25). The result can be

written by uni and un+1
i+1 as

uni =
Ai

Bi − CiEi−1
un+1
i+1 +

Di + CiFi−1

Bi − CiEi−1
+

g(cni , u
n
i )τ

Bi − CiEi−1
(D.26)

where

Ei =
Ai

Bi − CiEi−1
and Fi =

Di + CiFi−1

Bi − CiEi−1
. (D.27)

Taking larger time-steps (τ ) resulted in a decrease in convergence. For this reason to

reduce computation time we have used τ = 0.1. All numerical simulations were tested

with smaller time steps to ensure the accuracy of results.



Appendix E

Different Parametrizations of

Oxygen-Phytoplankton Model

Model 1

In this section we show that the system’s steady states behaviour remains qualitatively

similar under the choice of different coupled oxygen-phytoplankton system; see the fol-

lowing series of different model system isocline figures. Some of the system parameters

are fixed at their hypothetical values as c1 = 1, B = 5, γ = 2.5, h = 0.5, m = 1 and

σ = 0.1.

The first model system is:

dc

dt
= A(1− c

c+ 1
)u−mc− uc, (E.1)

du

dt
= (

Bc

c+ c1
− γu)u− σu, (E.2)

where all system notations keep their usual meaning as in Chapter 2. The dif-

ference of system (E.1–E.2) comes from the sedimentation term. Plankton die out and

sink to the bottom of the lake forming detritus (sediment). This component is converted

into nutrients through biochemical processes. In this process huge amounts of dissolved

oxygen are utilized [44, 106, 122, 123, 164, 260]. Therefore, the oxygen consumption

term comes from the decomposition process too. Current climate change promotes the

eutrophication (excessive sedimentation) [206, 231] and this model may be enhanced by

this point of view as a future work.

The system (E.1–E.2) isoclines are as follows:

u =
mc(c+ 1)

A− c(c+ 1)
(I), u =

Bc− σ(c+ c1)

(c+ c1)γ1
(II). (E.3)
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Figure E.1: (a) The (null)-isoclines of the oxygen-phytoplankton system for
Model 1. Black curves show the oxygen isocline for A = 3.5, 8, 9, 10, 11 from
left to right; while red curve shows the phytoplankton isocline. (b) Intersection
points of two (red-black curves) isoclines are shown by A vs. phytoplankton
steady states for various A values and the other parameters are given in the

text.

Model 2

A Holling type II predator response is used for the consumption term of phytoplankton,

while one of the consumption term of oxygen comes from sedimentation. But here we

focus on the relation between oxygen and phytoplankton, so the term of zooplankton is

chosen as a constant (v = 0.3). For more details see Chapter 4 for consumption term of

phytoplankton.

dc

dt
= A(1− c

c+ 1
)u−mc− uc, (E.4)

du

dt
= (

Bc

c+ c1
− u)γu− uv

u+ h
. (E.5)

The system E.4–E.5 isoclines are as follows:

u =
c(c+ 1)

A− c(c+ 1)
(I), c =

c1( v
(u+h)γ + u)

B − ( v
(u+h)γ + u)

(II). (E.6)

Model 3

In model 3, a Holling type II predator response with a constant v = 0.3 and an oxygen

loss term due to sedimentation is chosen.

dc

dt
= A(1− c

c+ 1
)u−mc− uc, (E.7)

du

dt
= (

Bc

c+ c1
− u)γu− uv

u+ h
− σu. (E.8)
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Figure E.2: The (null)-isoclines of the oxygen-phytoplankton system for Model
2. Black curves show the oxygen isocline forA = 3.5, 8, 9, 10, 11 from left to right;
while red curve shows the phytoplankton isocline. (b) Intersection points of two
(red-black curves) isoclines are shown by A vs. phytoplankton steady states for
various A values and the other parameters are c1 = 1, B = 5, γ1 = 2.5, m = 1,

σ = 0.1, h = 0.5, v = 0.3.

The system (E.7–E.8) isoclines are as follows:

u =
c(c+ 1)

A− c(c+ 1)
(I), c =

c1( v
u+h + σ + uγ)

Bγ − ( v
u+h + σ + uγ)

(II). (E.9)
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Figure E.3: The (null)-isoclines of the oxygen-phytoplankton system for Model
3. Black curves show the oxygen isocline forA = 3.5, 8, 9, 10, 11 from left to right;
while red curve shows the phytoplankton isocline. (b) Intersection points of two
(red-black curves) isoclines are shown by A vs. phytoplankton steady states for

various A values and the other parameters are given in the text.
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Model 4

In model 4, the consumption term of oxygen comes from the respiration term of phyto-

plankton. For more details see Chapter 4 for model formulation.

dc

dt
= A(1− c

c+ 1
)u−mc− uc

c+ c2
, (E.10)

du

dt
= (

Bc

c+ c1
− u)γu− uv

u+ h
. (E.11)

The system (E.10–E.11) isoclines are as follows:

u =
c(c+ 1)(c+ c2)

A(c+ c2)− c(c+ 1)
(I) c =

c1( v
(u+h)γ + u)

B − ( v
(u+h)γ + u)

(II) (E.12)
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Figure E.4: The (null)-isoclines of the oxygen-phytoplankton system for Model
4. Black curves show the oxygen isocline for A = {3.5, 8, 9, 10, 11} from left to
right; while red curve shows the phytoplankton isocline. (b) Intersection points
of two (red-black curves) isoclines are shown by A vs. phytoplankton steady

states for various A values and the other parameters are given in the text.

Model 5

In model 5, the phytoplankton respiration term is considered in terms of oxygen con-

sumption, while the Holing type II predation response assumes the zooplankton density

as a constant.

dc

dt
= A(1− c

c+ 1
)u−mc− uc

c+ c2
, (E.13)

du

dt
= (

Bc

c+ c1
− u)γu− uv

u+ h
− σu. (E.14)

The system (E.13–E.14) isoclines are as follows:

u =
c(c+ 1)(c+ c2)

A(c+ c2)− c(c+ 1)
(I), c =

c1( v
u+h + σ + uγ)

Bγ − ( v
u+h + σ + uγ)

(II). (E.15)
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Figure E.5: The (null)-isoclines of the oxygen-phytoplankton system for Model
5. Black curves show the oxygen isocline forA = 3.5, 8, 9, 10, 11 from left to right;
while red curve shows the phytoplankton isocline. (b) Intersection points of two
(red-black curves) isoclines are shown by A vs. phytoplankton steady states for

various A values and the other parameters are given in the text.

Model 6

In model 6, phytoplankton respiration is considered oxygen consumption.

dc

dt
= A(1− c

c+ 1
)u−mc− uc

c+ c2
, (E.16)

du

dt
= (

Bc

c+ c1
− u)γu− σu. (E.17)

The system (E.16–E.17) isoclines are as follows:

u =
c(c+ 1)(c+ c2)

A(c+ c2)− c(c+ 1)
(I), u =

Bcγ − σ(c+ c1)

γ(c+ c1)
(II). (E.18)

Model 7

Model 7 is the improved version of our baseline model system with the addition of plank-

ton respiration terms accounting for loss of oxygen and a Holling type predatory response

accounting for phytoplankton loss. For detailed model formulation see Chapter 4.

dc

dt
= A(1− c

c+ 1
)u−mc− uc

c+ c2
− νcv

c+ c3
, (E.19)

du

dt
= (

Bc

c+ c1
− u)γu− uv

u+ h
− σu. (E.20)
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Figure E.6: The (null)-isoclines of the oxygen-phytoplankton system for Model
6. Black curves show the oxygen isocline forA = 3.5, 8, 9, 10, 11 from left to right;
while red curve shows the phytoplankton isoscline. (b) Intersection points of two
(red-black curves) isoclines are shown by A vs. phytoplankton steady states for

various A values and the other parameters are given in the text.

The system (E.19–E.20) isoclines are as follows:

u =
c+ νcv

c+c3
A
c+1 −

c
c+c2

(I), c =
c1( v

u+h + σ + uγ)

Bγ − ( v
u+h + σ + uγ)

(II). (E.21)
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Figure E.7: The (null)-isoclines of the oxygen-phytoplankton system for Model
7. Black curves show the oxygen isocline for A = 3.5, 8, 9, 10, 11 from left to
right; while red curve shows the phytoplankton isocline. (b) Intersection points
of two (red-black curves) isoclines are shown by A vs. phytoplankton steady
states for various A values and the other parameters are given in the text with

c3 = 1, v = 0.01.

It should be emphasized that the behavior of the system steady states are quali-

tatively similar, regardless of the choice of different model formulations.
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