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1. Introduction. Let (X,%U;) and (Y,U;) be uniform spaces. Families {dﬁ riel
being indexing set}, {dé 11 € I} of pseudometrics on X, Y, respectively, are called
associated families for uniformities Ay, Uy, respectively, if families

Br1={viti,r):iel, r >0},

B2 ={Vali,r):iel, r >0}, (1.1)

where

Vi(i,r) = {(x,x) 1 x,x" € X, di (x,x) <7},
. (1.2)
Voli,r) = {(v, ")y, €Y, di(y,y") <7},

are subbases for the uniformities AUy, U, respectively. We may assume that f1, 8, them-
selves are a base by adjoining finite intersections of members of S, B2, if necessary.
The corresponding families of pseudometrics are called an augmented associated fam-
ilies for U4, AU,. An associated family for A, U, will be denoted by %1, %>, respectively.
For details, the reader is referred to [1, 4, 5, 6, 7, 8, 9, 10, 11].

Let A, B be a nonempty subset of a uniform space X, Y, respectively. Define

P (A) =sup{di(x,x') :x,x €A, iell,
. (1.3)
PS(B) =sup{d.(y,y'):y,y €B,icl},

where {di(x,x'):x,x' € A, i € I} = P}, {d’(y,y’) : v,y € B, i € I} = P}. Then,
P[(A), PS(B) are called an augmented diameter of A, B. Further, A, B are said to be
P (A) < o0, PS(B) < 0. Let

2% = {A: A is a nonempty P;*-bounded subset of X},
(1.4)
2Y = {B: B is a nonempty P;-bounded subset of Y}.
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Foreachieland A;,A, € 2X, B;,B> € 2Y, define

51 (A1,Az) =sup {di(x,x') :x € Ay, X' € Ay},
. . (1.5)
65 (B1,B2) =sup{dy(y,y’) : v € B, ¥' € B2}

Let (X,%;) and (X,%U) be uniform spaces and let U; € U, and U, € AU, be arbitrary
entourages. For each A € 2%, B € 2V, define

Ui[A] = {x' € X:(x,x") € U for some x € A},

Ux[Bl=1{y €Y:(y,y') € U, for some vy € B}. (1.6
The uniformities 21 on 2% and 2%2 on 2" are defined by bases
2B =10 U ey}, 2P ={0h:Us €y}, 1.7)
where
Up = {(A},Ar) €2Xx2¥ 1 A; x Ay c Up}UA, 08

U, = {(B1,B2) € 2Y x2Y : By x B C Uz} UA,

where A denotes the diagonal of X x X and Y xY.
The augmented associated families P, Py also induce uniformities U} on 2%, U3 on
2Y defined by bases

F={vVift,r:iel, r >0},

By ={Vy,r):iel, r> 0}, (1.9)

where

ViE(i,7) = {(A1,A2) 1 A1, Ap € 2% 1 81 (A1, Ar) <71} UA,

. (1.10)
VS (i,7) = {(B1,B2) : B1,B, € 2V : §5(By,B2) <} UA.
Uniformities 2™ and U on 2X are uniformly isomorphic and uniformities 2"2 and U3
on 2Y are uniformly isomorphic. The space (2¥,U}) is thus a uniform space called the
hyperspace of (X,;). The (2¥,%3) is also a uniform space called the hyperspace of
(Y,U).

Now, let {A, : n = 1,2,...} be a sequence of nonempty subsets of uniform space

(X,). We say that sequence {A,} converges to subset A of X if
(i) each pointin a in A is the limit of a convergent sequence {a, }, where a, is in

Ay, forn=1,2,...,

(ii) for arbitrary € > 0, there exists an integer N such that A,, € A, for n > N, where

A =UxeaU(x)={y € X:d;(x,y) < & for some x in A, i €I}. (1.11)

A is then said to be a limit of the sequence {A,,}.
It follows easily from the definition that if A is the limit of a sequence {A,}, then A
is closed.
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LEMMA 1.1. If{A,} and {B,} are sequences of bounded, nonempty subsets of a com-
plete uniform space (X,U) which converge to the bounded subsets A and B, respectively,
then sequence {6;(Ay,By,)} converges to 6;(A,B).

PROOEF. For arbitrary € > 0, there exists an integer N such that
6i(An,By) <6;(A¢,B:) =sup{d;(a’,b"):a" € A;, b" € B;} (1.12)
for n > N. Now, for each a’ in A; and b’ in B, we can find a in A and b in B with
di(a’,a) <&, di(b’,b) <&, and so
di(a',b’) <di(a’,a)+d;(a,b")
sdi(a',a)+di(a,b)+di(b,b') (1.13)
<di(a,b)+2¢.
It follows that

Si(An,By) <sup{di(a,b):ac A, b € B} +2e=0;(A,B)+2¢ (1.14)

for n > N. Further, there exists an integer N’ such that for each a in A and b in B we
can find a, in A,, and b,, in B,, with

di(a,a,) < e, di(b,by) < ¢ (1.15)

for n > N’, and so
di(a,b) <di(a,an) +d;i(an,b)
<di(a,an) +di(an,bn) +di(bn,b) (1.16)
<di(an,by) +2¢.

It follows that
6i(A,B) =sup{d;(a,b):a €A, beB}
<sup{di(an,bn) :an € An, by € By} +2¢ (1.17)

for n > N’. The result of the lemma follows from inequalities (1.14) and (1.17). O

REMARK 1.2. If we replace the uniform space (X,9) in Lemma 1.1 by a metric space
(i.e., a metrizable uniform space), then the result of the second author [2] will follow as
special case of our result.

THEOREM 1.3. Let (X,%U,) and (Y,U;) be complete Hausdor{f uniform spaces defined
by {di, ieI} =Py, {d, i €1} =PS, and (2X,90%), (2¥,%) hyperspaces, let F: X — 2¥
and G : Y — 2% satisfy inequalities

581 (GFx,GFx') < cimax {d! (x,x'),8t (x,GFx),8 (x',GFx'),55 (Fx,Fx')},
>

, o . , ) (1.18)
05(FGy,FGy') < cimax{d;(y,y"),05(v,FGY),65(y',FGY'),61(Gy,Gy')}



3786 D. TURKOGLU AND B. FISHER

foralliel and x,x" € X, v,y' € Y, where 0 < ¢; < 1. If F is continuous, then GF has
a unique fixed point z in X and FG has a unique fixed point w in Y. Further, Fz = {w}
and Gw = {z}.

PROOF. Let x; be an arbitrary point in X. Define sequences {x,} and {y,} in X and
Y, respectively, as follows. Choose a point y; in Fx; and then a point x; in Gy;. In
general, having chosen x, in X and y, in Y, choose x,; in Gy, and then y,,; in
Fxu.q forn=1,2,....

Let U; € U, be an arbitrary entourage. Since f; is a base for U, there exists V; (i,7) €
B1 such that Vi (i,7) < U,. We have

di (Xns1,Xn+2)
<8V (GFxn,GFxp11)
< cimax {dl (xn, Xni1),0% (X0, GFxy), 88 (Xns1,GFXns1),05 (FxXn,FXni1)}  (1.19)
< cimax {8} (GFxyn_1,GFxy),8 (GFxyn,GFxyy1),05(Fxn,Fxni1)}
= c;max {8} (GFxp_1,GFxy), 85 (Fxn,Fxp:1)}

and, similarly let U, € AU, be an arbitrary entourage. Since f, is a base for U,, there
exists V»(i,7) € B> such that V,(i,7) < U,. We have

AL (Vni1, Yns2) < 05 (FGyn, FGYpi1)

) ) (1.20)
< cimax {05 (FGyYn-1,FGyn),61(GYn,GYn+1)}.

It follows that

A} (xn, Xnim) < di (Xn, Xna1) + AL (X1, Xna2) + - - + A4 (Xnom-1,Xnsm)
<8 (GFxy_1,GFxp) + -+ 6 (GFXpnim—2,GFXnim_1)
<cimax {8} (GFxyn_2,GFxpn_1),05(FxXn_1,Fxn)}
+o- -+ cmax {6 (GFxXnim-3,GFXnim—2),05 (FXnim-2,FXnim-1)}

<(clh+cel gm0 5t (xy,GFx1)

i

(1.21)

for n greater than some N. Since c¢; < 1, it follows that there exists p such that dﬁ (Xn,
Xm) <7 and hence (x,,Xx;,) € U; for all n,m > p. Therefore, sequence {x,} is Cauchy
sequence in the dﬁ-uniformity on X.

Let S, = {xy : n = p} for all positive integers p and let %, be the filter basis {S, :
p =1,2,...}. Then, since {x,} is a d‘i—Cauchy sequence for each i € I, it is easy to see
that the filter basis %, is a Cauchy filter in the uniform space (X,;). To see this, we
first note that family {V;(i,»):i €I, v > 0} is a base for U, as P}* = {dﬁ :iel}. Now,
since {x,} is a d‘i-Cauchy sequence in X, there exists a positive integer p such that
dli (Xn,xm) <¥ for m = p, n = p. This implies that S, xS, C Vi (i,7). Thus, given any
Uy € Uy, we can find an S, € B, such that S, xS, C U;. Hence, %, is a Cauchy filter
in (X,U;). Since (X,U;) is a complete Hausdorff space, the Cauchy filter B; = {S,}
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converges to a unique point z € X. Similarly, the Cauchy filter %, = {Sx} converges to
a unique pointw €Y.

Further,
81(z,GFSy) <di(z,Sm+1) + 6} (Sm+1,GFSp)
<di(z,Sm+1) + 8% (GFSm,GFS,) (1:22)
since S;,+1 € GFSy,. Thus, on using inequality (1.20), we have
51(z,GFSy) <di(z,Sm+1) +& (1.23)
for n,m > p. Letting m tend to infinity, it follows that
84 (z,GFS,) <& (1.24)
for n > p, and so
ylliII}oGFSp ={z} (1.25)
since ¢ is arbitrary. Similarly,
Tllif{,loFGSk: {w} =71L15510F5p (1.26)
since Si.1 € GSk. Using the continuity of F, we see that
})%FSp:Fz:{w}. (1.27)

Now, let W € al; be an arbitrary entourage. Since f; is a base for U, there exists
V1(j,t) € By such that V;(j,t) < W. Using inequality (1.14), we now have

8' (GFS,,GFz) < cimax {d} (S,,z),5%(Sy,GFS,),81(z,GFz),85(Fz,FS,)}.  (1.28)
Letting p tend to infinity and using (1.24) and (1.26), we have
8!(z,GFz) < ¢i8}(z,GFz). (1.29)
Since ¢; < 1, we have 6‘i(z,GFz) =0 < t. Hence, (z,GFz) € V1(j,t) < W. Again, since
W is arbitrary and X is Hausdorff, we must have GFz = {z}, proving that z is a fixed
point of GF.
Further, using (1.26), we have

FGw =FGFz=w, (1.30)

proving that w is a fixed point of FG.
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Now, suppose that GF has a second fixed point z’. Then, using inequalities (1.18),
we have

6i(z',GFz') < 81 (GFZ',GFZ')
<c;max{di(z',z'),6\(z',GFz'),55(FZ',FZ')}
<c;65(FZ',FZ') < ¢;65(Fz' ,FGFZ') < ¢;{8(FGFZ',FGFZz') (1.31)
< c?max {6} (Fz',FGFZ'),5%(FZz' ,FGFz'),8' (GFZ',GFZ')}
<c?85(GFz',GFZ'),

and so FZz’ is a singleton and GFz' = {z'}, since ¢; < 1. Thus,

di(z,z') <61 (GFz,GFz')

) ) . ) (1.32)
<cimax{di(z,z'),6\(z,GFz),8%(z',GFz"),85(Fz,Fz')}.

But

d}(Fz,Fz') < 85 (FGFz,FGFZ')
<c;max {8} (Fz,Fz'),85(Fz,FGFz),85(FZz' ,FGFZz'),5! (GFz,GFZz')}
=c;max {d}(Fz,FZ'),d}(Fz,Fz),d}(FZ',FZ'),di (z,2")}
= cidi(z,2),
(1.33)

and so

di(z,2') <c?di(z,2'). (1.34)
Since ¢; < 1, the uniqueness of z follows.

Similarly, w is the unique fixed point of FG. This completes the proof of the theorem.

O

If we let F be a single-valued mapping T of X into Y and G a single-valued mapping
S of Y into X, we obtain the following result.

COROLLARY 1.4. Let (X,U,) and (Y,U) be complete Hausdor(ff uniform spaces. If
T is a continuous mapping of X into'Y and S is a mapping of Y into X satisfying the
inequalities

di (STx,STx') < c;max {d! (x,x"),d} (x,STx),d} (x',STx"),d,(Tx,Tx")},

. ) : o . o (1.3
d;(TSy,TSy') < cimax {ds(y,y"),dy (¥, TSy),dy (¥, TSy"),di (Sy,Sy")}

forall x,x" € X and v,y €Y,iel where0 < c; <1, then ST has a unique fixed point
z in X and TS has a unique fixed point w in Y. Further, Tz = w and Sw = z.
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THEOREM 1.5. Let (X,U;) and (Y,U;) be compact uniform spaces defined by {dli :
iel} =P and {d}:ic I} =PS, and, (2X,9F) and (2¥,U}) hyperspaces. If F is a
continuous mapping of X into 2¥ and G is a continuous mapping of Y into 2X satisfying
the inequalities

8 (GFx,GFx') <max {d} (x,x"),8! (x,GFx),8% (x',GFx'),85 (Fx,Fx')},

) , , o o S , (1.36)
85(FGy,FGy') <max{d}(y,y'),85(y,FGy),85(y',FGY'),81(Gy,Gy")}
for all x,x" € X and y,y’ €Y, i €1 for which the right-hand sides of the inequalities
are positive, then, FG has a unique fixed point z € X and GF has a unique fixed point
w €Y. Further, FGz = {z} and GFw = {w}.

PROOF. We denote the right-hand sides of inequalities (1.35) by h(x,x’) and
k(y,y"), respectively. First of all, suppose that h(x,x’) # 0 for all x,x" € X and
k(y,y") #0 for all y,y’ € Y. Define the real-valued function f(x,x") on X x X by

. 01(GFx,GFx')
X,X')=——F—""7"> 1.37
Sf(x,x") n(x,x') (1.37)
Then, if {(xy,X;,)} is an arbitrary sequence in X x X converging to (x,x’), it follows
from the lemma and the continuity of F and G that the sequence { f(x,,x;,)} converges
to f(x,x"). The function f is therefore a continuous function defined on the compact
uniform space X x X and so achieves its maximum value c! < 1.
Thus,

8! (GFx,GFx') < cimax {d! (x,x),8! (x,GFx),8% (x',GFx'),85(Fx,Fx')}  (1.38)

forall x,x'in X,iel.
Similarly, there exists cé < 1 such that

S5 (FGy,FGy') < cimax {di(y,y'),85(y,FGy),85 (', FGY'),51(Gy,Gy')} (1.39)

for all v,y’ €Y, i el It follows that the conditions of Theorem 1.3 are satisfied with
ci = max{c{,cé'} and so, once again there exists z in X and w in Y such that GFz = {z}
and FGw = {w}.

Now, suppose that h(x,x’) = 0 for some x,x’ in X. Then, GFx = GFx' = {x} = {x'}
is a singleton {w}. It follows that z is a fixed point of GF and GFz = {z}. Further,

FGw =FGFz=Fz = {w} (1.40)

and so w is a fixed point of FG.
It follows similarly that if k(y,y’) = 0 for some y,y’ € Y, then again GF has a fixed
point z and FG has a fixed point w.
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Now, we suppose that GF has a second fixed point z" in X so that z’ isin GFz'. Then,
on using inequalities (1.36), we have, on assuming that 6§ (Fz',Fz') # 0 for eachi €1,

8 (z/,GFz') < 61 (GFZ',GFZz')
<max{di(z',z'),5i(z',GFz'),8}(Fz',Fz')}
= 0L (Fz',FZ') < 65(Fz',FGFZ') < 65(FGFz',FGFZ') (1.41)
<max {8} (Fz',Fz'),8%(Fz',FGFZ'),8! (GFz',GFZ')}
= 084(GFz',GFZ'),

a contradiction, and so Fz' is a singleton and GFz’' = {z'}. Thus, if z + z’

di(z,z') = 8! (GFz,GFZ')
<max{d!(z,z'),8!(z,GFz),8'(z',GFz'),5}(Fz,FZ')} (1.42)
=d}(Fz,Fz').

But if Fz # Fz’', we have

dy(Fz,Fz') < 65 (FGFz,FGFZ')
< max{é% (Fz,lfz’),éiz.(Fz,FGFz).,éf2 (Fz’,FGFg'),éi(GFz,GFz’)} (1.43)
=max {6, (Fz,Fz'),d,(Fz,Fz),d,(Fz',Fz'),d}(z,2")}
=di(z,2'),

and so
di(z,z2') <di(z,2'), (1.44)

a contradiction. The uniqueness of z follows.
Similarly, w is the unique fixed point of FG. This completes the proof of the theorem.
O

If we let F be a single-valued mapping T of X into Y and G a single-valued mapping
of Y into X, we obtain the following result.

COROLLARY 1.6. Let (X,,) and (Y,U,) be compact Hausdorf{f uniform spaces. If T
is a continuous mapping of X intoY and S is a continuous mapping of Y into X satisfying
the inequalities

di(STx,STx') <max {d! (x,x’),d} (x,STx),d} (x',STx"),ds(Tx,Tx")},

_ ) _ o o o i (1.45)
dy(TSy,TSy') <max {d5(y,»"),d5(y, TSy),dy(y', TSy"),d; (Sy,Sy")}
for all x,x" € X and y,y’ €Y, i €1 for which the right-hand sides of the inequalities
are positive, then ST has a unique fixed point z in X and TS has a unique fixed point w
inY. Further, Tz =w and Sw = z.
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REMARK 1.7. If we replace the uniform spaces (X,a;) and (Y,U,) in Theorems 1.3
and 1.5 and Corollaries 1.4 and 1.6, by a metric space (i.e., a metrizable uniform space),
then the results of the authors [3] will follow as special cases of our results.
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