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Abstract 

 

Single-trial analysis of event-related potentials 

It is a common practice to study the dynamics of sensory and cognitive 

processes using event-related potentials (ERPs) measured by placing electrodes on 

the scalp. These ERPs are very small in comparison with the on-going 

electroencephalogram (EEG) and are barely visible in the individual trials. Therefore, 

most ERP research relies on the identification of different waves after averaging 

several presentations of the same stimulus pattern. Although ensemble averaging 

improves the signal-to-noise-ratio, it implies a loss of information related to variations 

between the single-trials.  

 

In this thesis, I present an automatic denoising method based on the wavelet 

transform to obtain single-trial evoked potentials. The method is based on the inter- 

and intra-scale variability of the wavelet coefficients and their deviations from 

baseline values. The performance of the method is tested with simulated ERPs and 

with real visual and auditory ERPs. For the simulated data the method gives a 

significant improvement in the visualisation of single-trial ERPs as well as in the 

estimation of their amplitudes and latencies in comparison with the standard 

denoising technique (Donoho’s thresholding) and in comparison with the noisy 

single-trials. For the real data, the proposed method helps the identification of single-

trial ERPs, providing a simple, automatic and fast tool that allows the study of single-

trial responses and their correlations with behaviour. 

 

We used our proposed denoising algorithm to study the amplitude modulation of 

the ERP responses to the flashes of faces and to investigate whether the ERP 

responses in a visual and an auditory oddball paradigm were due to phase-resetting 

of on-going EEG (phase-resetting model) or due to additive neural responses adding 

to the background EEG in response to the stimulus presentation (additive model).  
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1 Background 

1.1 Electroencephalography (EEG) 

In 1875, Caton, a physician practicing in Liverpool, measured the electrical 

activity in animal brains by recording the current variations in the skull surface of 

monkeys and rabbits. He reported distinct current changes which increased during 

sleep and stopped after death. About fifty years after Caton’s report of his discovery, 

at the British Medical Association in Edinburgh, Hans Berger recorded the electrical 

activity in the human brain by placing electrodes on the scalp. He published this 

observation in 1929 and he called this electrical activity Electroencephalogram 

(EEG). Berger’s findings weren’t accepted by neurophysiologists of his time, until 

Lord Edgar Adrian (a respected physiologist at the University of Cambridge) among 

others confirmed his findings. Since then, the EEG has been used in scientific and 

clinical applications such as diagnosis of epilepsy, tumours, stroke, coma and brain 

death. Moreover, it is also used to study sleep disorders as well as brain sensory 

and cognitive processing non-invasively in normal subjects. 

 

1.2 EEG recordings 

The EEG signal represents a mix up of synchronous activity of many neurons 

(Freeman, 1975; Lopes da Silva, 2005a) and can be recorded by placing electrodes 

on the human scalp based on the so-called international 10-20 system (Jasper, 

1958). The international 10-20 system is a standard method to describe the 

placement of the scalp electrodes for recording EEG signals. This system is based 

on the correspondence between the location of the electrodes and the underlying 

area of the cerebral cortex. Numbers "10" and "20" refer to the fact that the 
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electrodes are placed at 10% or 20% of the measured distance from nasion (the 

point between the forehead and the nose) to inion (the lowest point of the skull from 

the back of the head) and from right to left preauricular (the bony indentations in front 

of ears). The electrode placements are labelled by a letter followed by a number. 

The letter refers to the lobe in which the electrode is placed. The letters F, T, C, P, 

and O stand for Frontal, Temporal, Central, Parietal and Occipital lobe respectively 

(there is no Central lobe and C is just used for identification purposes). The letter Z is 

defined for the electrode locations in the midline. The number refers to the 

hemisphere location. Odd numbers are used for the left hemisphere electrode 

positions, while even numbers for the right hemisphere ones. A schematic of the 

international 10-20 electrodes placement for the human EEG recording is shown in 

Figure 1.1. 

EEG data is recorded as the voltage difference between an electrode and a 

reference site (monoploar or referential recordings) or the voltage difference 

between two electrodes (bipolar recordings). In monopolar recording the reference 

site can be a neutral electrode (an electrode with little or no brain activity, e.g. at the 

earlobes) or can be the average of all the electrodes (Reilly, 2005).  

 

1.2.1 Electrodes 

To record non-invasively the electrical activity of the human brain an electrode 

cap with 32, 64 or 128 electrode holders can be used to place the electrodes over 

the scalp in accordance with the international 10-20 system (Jasper, 1958). In this 

work, we used 64 silver-silver chloride (Ag/AgCl) active electrodes, each of which 

containing a preamplifier with high input and low output impedances.  
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Figure 1.1 The international 10-20 electrode placements. The numbers refer to 
the hemisphere location. Odd numbers are used for electrodes in the left 
hemisphere, even numbers for the ones in the right hemisphere and Z or zero 
indicates the midline electrodes. Front of the head is up. 
 

To improve the connections, conductive gel is inserted between the electrodes and 

the surface of the scalp.  

 

1.2.2 Analogue to digital conversion 

The EEG signals collected continuously by the active electrodes over time are 

converted to digital signals in order to be stored and processed by computers. This 

process is accomplished by using analogue-to-digital converters (ADC). To ensure 

that the frequency content of the recorded EEG signal is limited, an anti-aliasing filter 

needs to be added before the ADC. The anti-aliasing filter is a low pass filter which 

restricts the frequency range of the recorded signal to be less than the half of the 

sampling rate. According to the Nyquist theorem, the sampling rate of the ADC 

should be at least twice the highest frequency of interest of the EEG signal, ensuring 
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that the critical contents of the EEG recordings are preserved. Therefore, the cut-off 

frequency of the anti-aliasing filter should be less than half of the sampling rate. 

Figure 1.2 illustrates 3 seconds of EEG traces recorded with 64 active electrodes. 

 

1.2.3 Sources of Artefacts in the EEG recordings 

There are several sources of artefacts that can contaminate the EEG signals, 

including eye movements, blinks and muscle activities. In most cases these artefacts 

are very large compared to the EEG data and the brain signals are buried under 

these large artefacts. Eye movements and blink artefacts are the result of the 

electrical gradient (the difference in electrical charge) of the eyes. The eyeball acts 

like a dipole with positive pole at the front (cornea) and the negative pole at the back 

of the eye (retina) (Reilly, 2005). When the eyes are stationary, a constant DC 

voltage is propagated across the scalp which is eliminated by the high pass filter of 

the recording apparatus. However, when the eyes move, the voltage gradient across 

the scalp becomes more positive towards the eye movement direction and more 

negative on the opposite direction (Luck, 2005).   

Blinking changes the cornea position and since the cornea is more positive 

compared to the retina, the electrodes closer to the cornea become more positive 

(Reilly, 2005) than those further away. Blinking generates a monophasic voltage 

deflection which lasts for 200 to 400 ms and is especially captured by the electrodes 

near the eye (Luck, 2005).  

Muscle artefacts or electromyogram (EMG) activity are voltages generated by 

muscle contractions. It is possible to reduce these high frequency artefacts by asking 

the subject to seat still and relax the muscles closer to the scalp, such as neck, jaw 

and forehead.  
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Figure 1.2 EEG traces. 3 seconds EEG signals recorded with 64 electrodes while 
the subject’s eyes are closed (sampling rate 512, maximum frequency 70 Hz). 

 

 

 
Figure 1.3 Blink artifact. 3 seconds EEG traces. Eye blinks could be identified by 
checking the EEG recordings from the frontal electrodes; high amplitude fluctuations 
in the frontal electrodes that vanish from frontal to occipital sites were considered to 
be eye blinks (red oval).  
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Muscles below the neck have negligible effect on the EEG signals since the 

EMG does not propagate very far (Luck, 2005). Figure 1.3 depicts traces of EEG 

recordings with the blink artefact. The blink artefacts can be recognized as high 

amplitude “bell shape” fluctuations in the frontal electrodes that vanish from frontal to 

occipital lobes. Note that after the recordings, epochs containing these artefacts can 

be discarded from the data set. 

 

1.3 Event-related potentials (ERPs) 

Embedded within the EEG are patterns associated with responses to sensory, 

cognitive or motor events, which are called event-related potentials (ERPs). ERPs 

are very small in comparison with the on-going EEG and are barely visible in the 

individual trials. Therefore, most ERP research relies on the identification of different 

waves after averaging several presentations of the same stimulus pattern (Dawson, 

1954; Lopes da Silva, 2005b).  

ERP responses to sensory (visual, auditory or somatosensory) stimulations are 

called sensory evoked potentials (EPs) (Lopes da Silva, 2005b).  Figure 1.4 depicts 

an example of 20 single-trial EPs (responses to visual stimulations) and the 

corresponding average ERP recorded on the left occipital electrode (O1). In this 

figure the vertical line represents the onset time of the stimulus presentation for each 

trial. Note that the potential changes due to the stimulus presentation are not visible 

(or barely visible) in the single-trials due to the large amount of the background EEG. 

However by averaging a large number of trials the background noise will cancel and 

we will end up with the average of the time-locked ERPs responses. In the following 

sections brain sensory responses to visual, auditory and somatosensory stimulations 

are explained in more detail. 
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Figure 1.4 Single-trials ERPs. 20 trials of ERPs recorded on the left occipital 
location (up) and the average ERP (bottom). The vertical line indicates the 
onset time of the stimulus presentation. Note that ERP components are not 
visible in the single-trials however they are clearly visible in the average signal. 

 

 

1.3.1 Visual evoked potentials (VEPs) 

Brain responses to visual stimuli are called visual evoked potentials (VEPs). 

Due to their small amplitude, non-invasive VEP recordings were not feasible 

until the introduction of the ensemble averaging by Dawson (Figure 1.4) 

(Dawson, 1954). Since then, VEPs have been widely studied non-invasively by 

recording scalp potentials overlying the visual cortex. The VEPs are elicited by 

visual patterns such as checkerboard (pattern reversal or pattern onset/offset), 

by light flashes or by the presentation of other visual stimuli (faces, etc.).  

1.3.1.1 Pattern reversal visual evoked potential (PRVEP) 

The pattern reversal stimulus consists of a checkerboard pattern with black 

and white checks (constant mean luminance) which alternatively reverse colour 
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(Celesia and Peachey, 2005; Odom et al., 2004). The important characteristics 

of the stimuli are the check size, the total field size, the stimulus luminance, the 

contrast level, the reversal frequency and the number of reversals (Odom et al., 

2004). In particular, the VEP waveform depends on the reversal frequency of 

the stimulus; high reversal frequencies elicit steady-state visual evoked 

potentials (SSVEPs) while low frequencies elicit transient visual evoked 

potentials (TVEPs) (Odom et al., 2009). The waveform of the SSVEPs has rapid 

changes and looks like a sinusoid, while the waveform of the TVEPs has a 

number of distinct deflections (Celesia and Peachey, 2005; Odom et al., 2009). 

The term VEP or pattern reversal visual evoked potential (PRVEP) refers to the 

TVEPs typically elicited with the colour reversals of a checkerboard (Odom et 

al., 2009).  

In general, components of event-related potentials can be separated into 

two sets: exogenous components that are related to the physical character of a 

stimulus, and endogenous components that are related to the information 

content of a stimulus (Sutton et al., 1965; Sutton et al., 1967).  

A PRVEP has two main components: P1 and N2. The P1 component is a 

positive peak at about 100 ms post-stimulus. It is largest at lateral occipital 

electrode sites with an onset of 60-90 ms and a peak at approximately 90-120 

ms post-stimulus. It is sensitive to stimulus parameters such the check size, 

which variation results in changes in latency and amplitude of the P1 (Kurita-

Tashima et al., 1991). The P1 component of the PRVEP is an exogenous 

component and its amplitude and latency changes with properties of the 

physical characteristics of the stimuli, such as stimulus luminance, contrast, size 

of the total field and the check size (Celesia and Peachey, 2005). 
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 The N2 is a negative deflection at about 200 ms after stimulus 

presentation. It has been claimed that N2 consists of several subcomponents, 

the earliest one peaks at 100-150 ms post-stimulus at posterior parietal cortex, 

while the other components peak at 150-200 ms post-stimulus at occipital 

cortex (Di Russo et al., 2005). Like P1, the amplitude and latency of the N2 can 

vary when the stimulus parameters are changed. Figure 1.5 illustrates an 

example of an average VEP elicited by the checkerboard pattern (stimulus 

duration: 1 s). In this figure the P1 and the N2 responses are marked after the 

stimulus onset.  

VEPs can be used clinically for the identification of a dysfunction along the 

visual pathway. For example, in 1972 Halliday showed that a delay or an 

absence of VEPs in response to the pattern reversal stimuli can be used for the 

detection of optic nerve pathologies such as inflammation of the optic nerve 

(optic neuritis) (Halliday et al., 1973). Moreover a delay or an absence of VEPs 

in a patient with evidence of central nerve disorders is used as a hallmark for 

diagnosing multiple sclerosis (Celesia and Peachey, 2005; Mason, 2004).  

 
1.3.2 Auditory evoked potentials 

Brain electrical responses to auditory stimuli can be recorded by presenting 

click or tone stimuli. Based on their latencies, they are subdivided into three 

groups: early, middle and late latency AEPs (Davis, 1976; Regan, 1989). Early 

waves are elicited between 1 and 12 ms following an auditory stimulus, which 

reflects responses from the brain stem and are called brain stem auditory 

evoked potentials (BSAEP) (Jewett and Williston, 1971).  
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Figure 1.5 Major components of average VEP and AEP. For VEP the first 
positive peak around 100 ms post-stimulus the P1 and the negative component 
around 200 ms N2 and for AEP the first negative deflection around 100 ms is 
N1 and the positive peak around 200 ms is P2.  
  

BSAEPs are mainly used for testing the integrity of the auditory pathway 

especially for infants and uncooperative adults (Mason, 2004; Celesia and 

Brigell, 2005). Moreover BSAEPs are used during surgery to monitor the 

function of auditory pathway (Celesia and Brigell, 2005). 

Middle waves are evoked between 12 and 50 ms after stimulus onset; this 

type of evoked potentials is commonly used for testing hearing threshold in 

infants and children and for identification of malfunction in central auditory 

pathway (Celesia and Brigell, 2005). 

The longer latency waves of the human auditory evoked potentials are 

elicited 50 ms after stimulus presentation (Celesia and Brigell, 2005). The term 

auditory evoked potential (AEP) is mostly related to this type of auditory 

response. AEPs have two main components, the N1 and the P2 which have the 

highest amplitudes in vertex locations. The N1 arises from different sources in 

temporal and frontal cortex (Burkard et al., 2006) and has three 
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subcomponents. The earliest one peaks around 75 ms after the stimulus 

presentation. This component is maximum over frontocentral regions and 

originates from the auditory cortex (Luck, 2005). The second one peaks at 

about 100 ms post-stimulus and it is maximum in vertex. The origin of this 

component is unknown (Luck, 2005). The third one peaks around 150 ms and it 

has a lateral distribution. This subcomponent originates in the superior temporal 

gyrus (Luck, 2005). Like the early components of VEPs (P1 and N2) the N1 is 

exogenous (stimulus-related) and its latency and amplitude change based on 

the characteristics of the external stimulus (Luck, 2005).  

The following positive peak, P2, has a latency of 120-200 ms. It has been 

suggested to originate from the frontal association cortex and/or auditory 

association cortex and it is maximum over frontocentral regions (Picton et al., 

1974). Like the N1 component, the P2 is an exogenous component.  

Although abnormal late latency AEPs were reported in different cases of 

psychopathologies, these potentials haven’t been used in clinical diagnosis 

because of a large inter and intra-subject variability (Celesia and Brigell, 2005). 

Figure 1.5 illustrates an example of an AEP elicited by 1000 Hz tones (stimulus 

duration: 100 ms). In this figure the N1 and the P2 fluctuations are marked after 

the presentation onset.  

 

1.3.3 Somatosensory evoked potentials (SEPs) 

Somatosensory evoked potentials (SEP) are extracted by applying 

electrical pulses to peripheral nerves such as the median nerve and are 

recorded from the patient’s scalp (somatosensory cortex). The first cortical 

components of SEP are evoked between 20 to 100 ms post-stimulus followed 
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by a N1 and a P2 component, evoked about 150 and 200 ms post-stimulus 

(Luck, 2005; Nuwer, 1998). This type of sensory evoked potential is mainly 

used for the diagnosis of abnormalities in the somatosensory pathway, such as 

multiple sclerosis. It is also used for monitoring spinal cord during surgeries, 

such as scoliosis surgery (Nuwer, 1998; Mauguiere, 2005).  

 

1.3.4 ERPs in cognitive neuroscience 

ERPs are also widely used in neuroscience research, given that the 

amplitude, latency and localisation of different peaks or oscillatory patterns have 

been correlated to a large variety of sensory and cognitive functions (Feng et 

al., 2012; Hillyard and Anllo-Vento L., 1998; Jongsma et al., 2005; Jongsma et 

al., 2012; Polich, 2007; Quian Quiroga et al., 2007; Romero and Polich, 1996; 

Sambeth et al., 2004a; Sambeth et al., 2004b). Compared to single neuron 

studies, the gold standard in neuroscience, ERPs and EEGs in general, give 

only an indirect and noisy measure of the neuronal activity as they are recorded 

from scalp. The large advantage of ERPs, however, is that, unlike single-cell 

recordings which are rarely performed in humans (Quian Quiroga et al., 2005; 

Quian Quiroga et al., 2008a), their recording involves a non-invasive procedure 

with a relatively simple setup, and therefore, they continue to be one of the 

preferred tools for studying sensory and cognitive processes in human subjects. 

 

1.4 Oddball paradigm 

The oddball paradigm is a sequence of pseudo-randomly intermixed non-

target and target stimuli presented to the subject. The non-target (or standard) 

stimuli appear more frequently and the target ones appear less often and 
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unexpectedly. The subject is asked to respond to the target stimuli by pressing 

a button whenever the target stimulus appears, or by counting the number of 

target appearances in a session (Duncan-Johnson and Donchin, 1977; Duncan-

Johnson and Donchin, 1982; Squires et al., 1975). Target and non-target stimuli 

in an oddball paradigm can be tones with different frequencies, for AEPs, or 

figures with different shape or colour, for VEPs (Freeman and Quian Quiroga, 

2013). An example of non-target and target VEPs elicited by a checkerboard 

pattern reversal oddball paradigm is shown in Figure 1.6 and Figure 1.7 

respectively. Note the positive deflection around 100 ms and the negative 

deflection around 200 ms post-stimulus visible in parietal and occipital regions 

with both target and non-target responses. These relatively shorter latency VEP 

components are task irrelevant components, meaning that irrespective of 

whether a target or a non-target stimulus is presented; these responses will be 

observed (Freeman and Quian Quiroga, 2013). These components are sensory 

related and have their highest amplitude in the primary visual area. The longer 

latency positive fluctuation upon target stimuli, the so called P3, is elicited in 

response to the rare and unexpected stimulus (Sutton et al., 1965). It has been 

shown that the amplitude of the P3 response depends on the probability of 

target occurrence; the more improbable the target the larger the P3 elicited by 

the stimulus (Tueting et al., 1971).  

 

1.4.1 P3 and cognition 

P3 is a long latency event-related potential with the largest amplitude at the 

parietal, central and frontal locations (Hillyard et al., 1976; Vaughan and Ritter, 

1970). It is a positive wave occurring 250 to 500 ms (the latency can vary 
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depending on stimulus modality, task conditions and subject age, etc.) post-

stimulus (Polich, 2007). Many studies have linked the P3 component to 

processes involving cognition, attention and memory (Polich, 2007; Donchin, 

1978; Karis et al., 1984). P3a and P3b are two distinguishable ERP 

components in the time range of the P3 which are elicited by unpredictable, 

infrequent changes in the presented stimuli. However, P3b is only present when 

the subject attends to the stimuli by either counting the target stimuli or by 

pressing a key in response to the target appearances (Squires et al., 1975). 

P3a has its maximum amplitude in the frontal site and it is related to the 

engagement of attention (Polich, 2007). However P3b is maximal in parietal 

sites and is associated with the engagement of attention when followed by 

memory processing (e.g. counting the number of target stimuli) (Polich, 2007). 

The latency of the P3 component is directly related to the latency of 

decision processes and is measured by behavioural reaction times. However its 

amplitude depends on the probability of the target stimuli and it is also sensitive 

to the subject’s certainty in decision making. The P3 amplitude is larger if the 

subject devotes more attention and effort to the task while it is smaller when the 

subject is uncertain in his/her decision of whether the presented stimulus is the 

target or the non-target (Tueting et al., 1971). Researchers almost always use 

P3 or P300 to refer to P3b (Luck, 2005).  
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Figure 1.6 Responses to non-target VEPs at different scalp locations.  
Note a positive fluctuation around 100 ms (the P1) and a negative deflection 
around 200 ms (the N2) after the stimulus onset (zero) which varies across the 
scalp locations and have their highest amplitude in the occipital region. Vertical 
line indicates the stimulus onset. 

 

 

Figure 1.7 Responses to target VEP. Note that besides the early components 
of the VEP, P1 and N2, there is a large positive peak between 400 to 600 ms 
corresponding to target responses. Vertical line indicates the stimulus onset. 
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1.5 Neural basis of ERP generation 

Although ERPs are one of the most frequently used techniques to obtain 

brain neural responses to sensory and cognitive processes, there is a large 

debate about the basis of ERP generation. There are  three hypotheses in this 

regard: the first one states that ERPs arise from fixed-latency and fixed-polarity 

neural responses adding to the background EEG (Hillyard, 1985; Jervis et al., 

1983; Schroeder et al., 1995). The second one sees ERPs as a reorganization 

of the on-going EEG upon the stimulus presentation (Başar, 1999; Jansen et 

al., 2003; Makeig et al., 2002; Sayers et al., 1974). The third one states that 

both above hypotheses partially contribute to generate ERPs (Fell et al., 2004; 

Fuentemilla et al., 2005; Min et al., 2007). 

 

1.6  Organisation of the thesis 

This thesis is organised as follows:  

Chapter one gives a brief introduction of EEG and ERP signals and recordings.  

Chapter two describes the mathematical background of wavelet transform and 

wavelet denoising.  

Chapter three describes the implementation of the denoising ERPs together 

with the discussion of automatic single-trial ERPs denoising. 

Chapters four and five describe the applications of the proposed NZT denoising 

method in the study of the mechanisms of conscious face perception and the 

study of the basis of ERP generations. 

Chapter six includes the final discussion and conclusion of the thesis. 
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2 Wavelet transform 

2.1 Background and history 

The Fourier transform is one of the most common data processing tools 

used in the field of signal and image processing. It provides a frequency 

decomposition of the signal. The Fourier transform represents a signal as a 

superposition of complex sinusoids of varying frequencies and phases, and the 

Fourier coefficients of the transformed signal represent the activity at each 

frequency. The Fourier transform assumes that the signal is stationary (the 

signal spectrum is not time dependent) however, many real world signals have 

time-varying features so having time dependent spectra.   

The short time Fourier transform (STFT) or windowed Fourier transform is a 

modification of the Fourier transform for analysing non-stationary signals. It 

overcomes the Fourier transform’s drawback by analysing the signal in pieces 

using a window function such as Gaussian, and applying the Fourier transform 

to each piece. In the other words, the STFT multiplies the signal by a window 

function calculating the Fourier transform as the window is sliding along the time 

axis. Although the STFT provides information about the time evolution of the 

different frequencies, it uses a fixed window length. In this regard, the choice of 

window length is crucial, since short windows lead to good time resolution but 

poor frequency resolution, while long windows lead to good frequency 

resolution and poor time resolution (Mallat, 1999). In general, low frequency 

patterns have a longer duration compared to high frequency patterns. For 

instance, comparing the P3 component of Figure 1.7 in the O1 electrode site 

with the P1 component, the P3 has a lower frequency (less that 4 Hz) and 

spans in a wider time range (about 200 ms) while the P1 has a higher frequency 
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(about 10 Hz) and spans in a shorter time range (about 30 ms); therefore, it is 

difficult to find a window length that gives good compromise between time and 

frequency resolution and that is suitable for both frequencies. 

In the late 1970s, Jean Morlet, a geophysical engineer who was analysing 

seismic data having low frequency components with a long time span and high 

frequency components with a short time span, came up with the idea of using 

different window lengths by scaling the original window for the analysis of 

different frequency bands. In 1980 with the help of A. Grossman, the wavelet 

transform (WT) and the inverse wavelet transform (IWT) were developed 

(Graps, 1995; Mallat, 1999). In later years, Mallat developed the idea of 

multiresolution decomposition to calculate the wavelet transform using a series 

of low pass and high pass filters.      

 

2.2 Uncertainty principle 

The STFT uses a single window with a fixed time interval to analyse all 

frequencies while, the WT uses long time intervals for analysing low frequencies 

(high scales) and shorter intervals for high frequencies (low scales). Using long 

time intervals, increases frequency resolution at the cost of time resolution. On 

the contrary, using shorter time intervals, increases time resolution at the cost of 

frequency resolution. There is always a trade-off between time and frequency 

resolution. Analogous to Heisenberg’s uncertainty principle in quantum 

mechanics, which states that there is a limit to the precision of obtaining 

position and velocity of a particle at the same time, it is not possible to have 

arbitrary high resolutions in time and frequency simultaneously (Mallat, 1999). 
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Considering t  as the time uncertainty and w  as the frequency uncertainty, 

the uncertainty principle can be mathematically expressed as: 

2

1
wt           (2.1) 

 The time-frequency localisations of the window function in the STFT and in 

the WT are represented as Heisenberg boxes, located in the time-frequency 

plane. The Heisenberg time-frequency boxes for the STFT and the WT are 

shown in Figure 2.1. It is clear from the figure that the location and the width of 

the Heisenberg boxes for the WT are variable while they are fixed for the STFT. 

Thus with the WT it is possible to extract fine details of the signal in the higher 

frequency scales and coarser details of the signal in the lower frequency scales. 

Therefore, the WT is a very good candidate to analyse signals having a wide 

range of frequencies as in the case of EEG signals. For instance, in the case of 

analysing the PRVEP, the P1 and the N2 with higher frequency and shorter 

time span can be detected and analysed in higher frequency scales and the P3 

component with lower frequency and wider time span can be analysed in a 

lower frequency scale. 

 

2.3 Continuous wavelet transform  

The continuous wavelet transform (CWT) is formalised as the inner product 

of a given signal with dilated and translated versions of a wavelet basis function. 

For a given signal )(ts  and a wavelet function )(, tba  the wavelet transform is 

defined as: 
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Figure 2.1 Time-frequency boxes of STFT and WT. 
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Where * denotes complex conjugation, )(t is the mother wavelet or basis 

function and  ba ,0  are the scale and translation parameters respectively. 

The translation parameter, b , changes the time localization of the wavelet 

function while the scaling parameter, a , dilates or compresses the wavelet 

function (Figure 2.2). The factor 2

1

a  is a normalizing factor (Grossmann and 

Morlet, 1984). Equation (2.2) can be inverted to reconstruct the original signal

)(ts .  
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where )(,

~

tba is the dual function of )(, tba .  
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Figure 2.2 Continuous wavelet transform (CWT). The scaling parameter 
either stretches or compresses the mother wavelet in each scale. The signal is 
then filtered at each scale by shifting the wavelet function in time and 
convolving it with the original signal.     
 

2.4 Discrete wavelet transform 

The Discrete wavelet transform (DWT) is obtained by discretising the 

translation and the scale parameters. One way to do this is by choosing a  and 

b  using a dyadic scale: 

j

ja 2   kb j

kj 2,    Zkj ,        (2.5)  

which gives the dyadic wavelet family )(, tkj : 

)2(2)( 2/

, ktt jj

kj           (2.6) 

that forms a basis of the Hilbert space 
2L .The DWT is then defined as the inner 

product of the signal and the dyadic wavelets of equation (2.6).  
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2.5 Multiresolution approximation and filter banks 

Multiresolution approximation computes an approximation of a given signal 

at different scales of resolutions. Let us assume that jV is a subspace of 

multiresolution approximations of a function 
2)( Lts  , in which for: 

j

j

j VktsVtsZkj  )2()(,),(       (2.7) 

1,  jj VVZj          (2.8) 

The piece of )(ts  in subspace jV  is called )(ts j , and the one in the coarser 

subspace 1jV  is called )(1 ts j  and their difference can be obtained as: 

 )()()( 1 tststs jjj                                                      (2.9)  

which is the detail at level j . Rewriting (2.9): 

)()()(1 tststs jjj                   (2.10)  

and from the viewpoint of subspaces: 

jjj VWV 1                  (2.11) 

where   denotes the summation of the subspaces. jW  ,the difference between 

1jV  and jV , is called the wavelet space.  By induction:  

  21 jjj WWV                 (2.12) 

and expanding (2.12): 




 
Zj

jj WV 1
 or   



 
J

jj

jJj WVV 1
                      (2.13) 

where 0J  is the coarser scale.  
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Now let us assume that there is a unique basis for each subspace. The jV

has the basis )2( ktj  , the so called scaling function, and jW  has the basis 

)2( ktj  , the so called wavelet function. Then, we can obtain the 

approximation of the function )(ts  in the scale 1j  using the scaling and 

wavelet functions as: 

)()()2()()(
1

,1 tkCkttsts
J

j k

kjj

k

J

Jj 




               (2.14) 

where  


k

kjjj tkCts )()()( ,  is the detail in scale j  and )(tsJ  is the approximation of 

the signal in the scale J . )(kC j  are the wavelet coefficients and can be 

interpreted as the difference between the successive signal approximations at 

scales j  and 1j .  

Mallat showed that for discrete time series, the multiresolution 

decomposition can also be accomplished by applying filter banks (Mallat, 1999; 

Strang and Nguyen, 1996). Figure 2.3 shows the two-channel filter bank 

proposed by Mallat. In the decomposition part of this filter bank, by applying 

high pass and low pass filters, g and h, the signal splits into two new signals, 

one with the upper half frequency components and one with the lower half 

frequency components. This decomposition scheme results in twice as many 

samples as in the original data. To avoid redundancy, both signals are 

decimated by a factor of two, which means one of every two samples is 

removed (down sampling), thus giving the first scale (level) detail 1D   and the 

first scale approximation 1A  respectively.  The decomposition can be iterated 
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by successively decomposing the approximations in each level, so each level 

contains a lower resolution of the signal. For a J  level decomposition, the 

signal is decomposed into the 1D  to JD   details and the last approximation

JA . After the decomposition, the number of data points of the last 

approximation plus all data points of the J  levels details is equal to the number 

of data points of the original signal, thus avoiding redundancy.  

In the reconstruction part, a similar procedure is done to reconstruct the 

original signal. In each level, signals are up sampled (inserting zeros between 

samples) and then filtered using the reverse filters rg and rh (Mallat, 1999; 

Mallat, 1989). Figure 2.4 shows an example of the multiresolution 

decomposition and reconstruction of an average ERP signal. In this figure the 

upper plot shows the average ERP and the lower left plot illustrates a 5 scales 

wavelet decomposition. The five scales details are denoted 1D   to JD   and 

JA , refers to the final approximation (bottom left). In each scale, the 

coefficients show how closely the signal matches the wavelet function at that 

scale. The signal can be then reconstructed in each scale, using the inverse 

wavelet transform (bottom right).  
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Figure 2.3 Multiresolution decomposition and reconstruction. h and g are 
decomposition low and high pass filters, respectively. rh and rg are the 
reconstruction low and high pass filters respectively. Downward and upward 
arrows indicate down-sampling and up-sampling respectively. 

 

 

 

Figure 2.4 ERP Multiresolution decomposition and reconstruction. Five 

scales decomposition (bottom left) of an average ERP (top). 1D  to 5D  are the 

decomposition details and 5A  is the last approximation (the lowest frequency 

band of the signal). In each scale, the coefficients show how closely the signal 
matches the wavelet function at that scale. In each scale the signal can be 
reconstructed using the inverse wavelet transform (bottom right). 
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2.6 Wavelet Families 

The wavelet decomposition of a signal depends on the characteristics of 

the chosen mother wavelet. One can choose a specific mother wavelet based 

on the application at hand: Figure 2.5 illustrates four commonly used mother 

wavelets. The first one is the Haar wavelet. It is orthogonal (its inner product 

with a Harr wavelet at a different time and scale is zero) and anti-symmetric. It 

has compact support (has a finite duration in time) and can be used both for the 

CWT and the DWT. The second one is a Daubechies wavelet. Daubechies 

wavelets are non-symmetric, orthonormal, smooth and have compact support. 

Like Haar wavelets they can be used both for the CWT and the DWT 

(Daubechies, 1992). The third one is a B-Spline wavelet. B-Spline wavelets are 

anti-symmetric, smooth, not orthogonal and have compact support. They are 

suitable for both CWT and DWT (Unser, 1997). The last example is the Morlet 

wavelet. This wavelet is complex (it has a real and an imaginary part), thus 

providing a complex value that can be used to define an instantaneous phase 

(Freeman and Quian Quiroga, 2013). Morlet wavelets are symmetric and 

smooth, but they are not orthogonal and they do not have compact support. 

Morlet wavelets can only be used with CWT.  

Along with the mathematical properties that make a wavelet function 

suitable for data processing, it is advisable the wavelet function to be used is 

similar to the patterns of interest in the analysed signal. In this thesis, Quadratic 

B-Spline wavelet functions were selected for analysing ERPs (Cohen et al., 

1992; Quian Quiroga and Garcia, 2003). The B-Spline decomposition and 

reconstruction filters used in this study are shown in Figure 2.6 along with the 

filter coefficients listed in Figure 2.7. 
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Figure 2.5 Wavelet functions. Harr, Daubechies, B-Spline and Morlet (real 
part) wavelet functions. The wavelet functions were generated using the Matlab 
function “wavefun”.  

 

 

 

 
Figure 2.6 B-Spline (3.15) wavelet filters. h, g are the decomposition low pass 
and high pass filters while rh and rg are the reconstruction filters respectively. 
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Figure 2.7 B-Spline (3.15) filter coefficients. h and g are the decomposition 
low pass filters while rh and rg are the reconstruction filters respectively. 
 

The nearly optimal time-frequency resolution of B-Spline wavelets along 

with their shape, which is similar to the evoked responses, makes them a good 

candidate for wavelet analysis of the ERP signals (Freeman and Quian 

Quiroga, 2013; Unser et al., 1992; Unser, 1999) 
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2.7 Wavelet Denoising 

If the chosen wavelet function has a shape similar to the patterns of interest 

in the analysed signal, the number of coefficients correlated with the signal of 

interest will be small (the decomposition will have a good time-frequency 

localization), thus the signal can be reconstructed accurately using those 

coefficients (Strang and Nguyen, 1996). Hence, one could formulate the 

wavelet denoising problem as recovering the significant coefficients in each 

scale of the decomposition. Such coefficients could be selected by thresholding 

(Donoho, 1995). The denoising technique can be summarised as follows: 

1. Decompose a noisy signal with the discrete wavelet transform to obtain 

the noisy wavelet coefficients. 

2. Choose a threshold value T  for each level of decomposition, and do 

hard or soft thresholding. 


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3. Reconstruct the signal from the new coefficients using the inverse wavelet 

transform. 

One should calculate the threshold value for each scale of the 

decomposition (Donoho, 1993; Donoho and Johnstone, 1994; Johnstone and 

Silverman, 1997). In the case of hard thresholding, coefficients with the 

absolute value above the threshold should be kept and those less than the 

threshold should be set to zero, while with soft thresholding coefficients less 

than the threshold should be set to zero and those above the threshold should 
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be pulled towards zero by a factor which is proportional to the difference with 

the threshold (Donoho, 1995). The denoised signal is then obtained by a 

wavelet reconstruction using the denoised coefficients (Donoho 1995; Donoho 

1992). Figure 2.8 shows an example of the hard and soft thresholding of an 

average VEP. In this example we set the threshold to 1, thus both thresholding 

techniques removed the values between -1 and 1. However the rest of the 

values were kept unchanged with the hard thresholding but they were pulled 

towards zero with the soft thresholding. As it is shown, the soft thresholding 

changes the amplitude of the ERP components, so in this thesis we used hard 

thresholding to avoid amplitude changes in ERP peaks 

 

 

Figure 2.8 Hard and soft Thresholding. The threshold was set to 1. Note that, 
although soft thresholding is more effective in removing the baseline noise, it 
reduces the amplitude of the original ERP and smoothes the signal. 
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Chapter 3 
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3 Automatic denoising of single-trial event-related Potentials 

3.1 Background 

ERPs have a very small amplitude compared to the on-going EEG in which 

they are embedded. By far the most popular technique to enhance the 

observation of ERPs is by averaging several repetitions of the stimulus 

(Dawson, 1954; Lopes da Silva, 2005b). However, the drawback of ensemble 

averaging is that critical information about trial-by-trial changes of the evoked 

responses is lost. In particular, the conventional approach in the design of an 

ERP paradigm is to try to avoid these single-trial fluctuations in order to get 

better average responses. But there are many interesting questions that are in 

fact related to systematic or unsystematic trial-by-trial variations, such as those 

related to the study of learning processes (Quian Quiroga et al., 2007). Thus the 

need to develop algorithms to filter the background EEG activity in order to 

observe the single-trial evoked responses. For this, the use of Wiener filtering 

was suggested (Walter, 1968). Wiener filtering minimizes the mean square 

estimation error of average evoked potentials and could in principle be used to 

denoise single-trials. However, it is a time-invariant method –i.e. it assumes 

stationary of the signal– and it does not give optimal results when applied to 

time-varying transient signals such as ERPs (Quian Quiroga and Garcia, 2003; 

Quian Quiroga, 2000). For the same reason, other standard digital filters are not 

suitable for the analysis of single-trial ERPs, given that ERPs are a series of 

waves appearing at different times and with different frequency compositions. 

To deal with the non-stationary issue, De Weerd and co-workers proposed a 

time-varying Wiener filter, which, however, couldn’t provide a good 

reconstruction of the signal (De Weerd, 1981; De Weerd and Kap, 1981). 
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Another set of algorithms to filter the single-trial ERPs use wavelets. The 

wavelet transform has been used in the analysis of ERPs since the early 1990’s 

(Bartnik et al., 1992; Hanrahan, 1990; Quian Quiroga et al., 2001; Thakor et al., 

1993). In particular, Bartnik and co-workers (Bartnik et al., 1992) proposed to 

use an algorithm based on a wavelet decomposition to extract single-trial 

auditory evoked potentials from the on-going EEG. This algorithm was 

unsupervised, but it led to large errors in the estimation of the single-trial ERPs. 

Following this approach, an ad-hoc wavelet denoising technique was proposed 

for the identification of the single-trial responses (Quian Quiroga, 2000). Given 

that ERPs have specific time and frequency localizations, after wavelet 

decomposition, the idea is to reconstruct the signal using only those coefficients 

related to the evoked responses (deleting the ones related to the on-going 

EEG). An analysis with synthetic ERP data showed that this ad-hoc 

implementation improved the signal to noise ratio of the single-trial responses, 

as well as the estimation of their latencies and amplitudes (Quian Quiroga and 

Garcia, 2003; Quian Quiroga, 2000). But the main caveat of this method is that 

it requires a manual selection of the stimulus-related coefficients, using prior 

knowledge of the time and frequency ranges of the ERPs. This makes the 

denoising procedure subjective, time consuming and not practical for the 

analysis of large number of channels (given that the selection of wavelet 

coefficients is not necessarily the same for the different channels). To overcome 

these problems, in this study we propose an automatic denoising 

implementation to visualize the single-trial evoked responses. The method is 

based on the wavelet transform and it introduces an automatic selection of 

wavelet coefficients based on the inter- and intra-scale correlation of 
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neighbouring wavelet coefficients, and how their values deviate from baseline. 

We show its performance with synthetic ERP data, as well as with real visual 

and auditory ERPs. 

 

3.2  Materials and methods 

3.2.1 Real data recording 

Recordings were performed in an electrically shielded chamber in 25 

voluntary healthy subjects (18-30 years old). Subjects were seated comfortably 

in a chair and were asked to remain still and relax while they did a visual and an 

auditory oddball paradigm (see below). The EEG data was recorded 

continuously using 64 electrodes placed according to the international 10-20 

system, band pass filtered between 0.1Hz and 250Hz and sampled at 512 Hz, 

using an average reference, Figure 3.1. After the recording, the EEG signals 

were re-referenced to the average of the left and right mastoids and trials that 

were contaminated with eye blinks, eye movements and other artefacts were 

removed manually from each data set. For each trial, one second pre- and one 

second post-stimulation were stored for further analysis. 

3.2.1.1 Visual oddball paradigm 

As in previous studies (Quian Quiroga and Schürmann, 1999), pattern 

visual event-related potentials (PVEPs) were obtained with a checkerboard 

pattern (side length of checks: 50΄ visual angle).  A sequence with two different 

stimuli was presented pseudo randomly (N=250 stimuli): the frequent or non-

target stimuli were a colour reversal of checks (80% of the stimuli), while the 

less frequent or target stimuli were colour reversals with a half check  
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Figure 3.1 EEG recording in the NeuroEngineering Lab 

 

displacement (both horizontal and vertical) of the pattern (20% of the stimuli). 

Subjects were asked to ignore the non-target stimuli and press a key whenever 

they saw the target ones. Each pattern reversal was shown for 1 s and the inter 

stimulus interval varied pseudo-randomly between 2 to 2.2 s. No two target 

stimuli appeared in succession. Subjects were asked to fixate on a small red 

circle in the centre of the screen during the recording (Quian Quiroga and 

Schürmann, 1999; Schürmann et al., 1995). 

3.2.1.2 Auditory oddball paradigm 

Auditory event-related potentials (AEPs) were obtained with an oddball 

paradigm, using a sequence with two different tones: non-target stimuli (80%) 

had a frequency 2000 Hz and target stimuli (20%) a frequency 1000 Hz (Goodin 

et al., 1978). Subjects were instructed to press a key whenever they heard the 

target tone and ignore the non-target ones. Each stimulus was presented for 

100 ms, the inter stimulus interval varied pseudo randomly between 1.5 and 1.7 
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s and the reverted pattern lasted for 100 ms. As with the VEP, subjects were 

asked to gaze on a small red circle in the centre of the screen during the 

recording to avoid eye movements. 

 

3.2.2 Synthetic data 

To evaluate the performance of the proposed algorithm, as in previous 

works (Quian Quiroga and Garcia, 2003), the typical ERP components obtained 

with a visual oddball, the P1, N2 and P3, were simulated using three Gaussian 

functions added to background EEG activity (Figure 3.2). Random fluctuations 

in the latency of the simulated components were introduced in order to 

resemble the latency variability across single-trials (ranges, P1: 90-125 ms, N2: 

120-155 ms and P3: 400-700 ms). The background EEG activity was taken 

from the recording of one subject with eyes open fixating on a red circle in the 

centre of the screen. Thirty single-trials of the noisy ERPs, 2 s each, were 

generated with different signal to noise ratios (SNR). The SNR was defined as 

the ratio between the standard deviation of the simulated ERPs and the one of 

the background EEG activity. Figure 3.2(a) shows the average simulated visual 

ERP with SNR=1. As with real data (see Figure 3.7(a)), it has a positive peak at 

about 100 ms post-stimulus, the P1, a negative deflection about 200 ms post-

stimulus, the N2, and a positive peak at about 400-500 ms after stimulus 

presentation, the P3 (Quian Quiroga and Schürmann, 1999). 
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Figure 3.2 Simulated ERP. (a) Average simulated ERPs, with (grey) and 
without (black) the background “noisy” EEG activity for SNR=1. (b) First 5 out of 
30 simulated single-trials. 

 

The performance of the algorithm was quantified by the root mean square 

error (RMS) of the denoised single-trial ERPs – i.e. the difference between the 

denoised signal and the simulated ERPs without background EEG – and was 

compared to the performance obtained with the simulated noisy ERPs – i.e. the 

difference between the simulated noisy ERPs and the simulated ERPs without 

noise –  and the one obtained using a standard denoising implementation 

(Donoho, 1993) (see next section). Moreover, given that the most important 

information to be extracted from a single-trial ERP analysis is typically the 

amplitude and latency of the single-trial responses, we also quantified the error 

in the estimation of the single-trial amplitudes and latencies of the ERPs. For 

this, for each peak in each single-trial, a time window around each component 

was chosen (P1: 55-155 ms, N2: 95-170 ms, P3: 300-700 ms) and the 

maximum (or minimum) peak in the corresponding window was identified. The 
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error for each single-trial amplitude (latency) was defined as: 
iii xxe  ˆ , 

where ix  is the actual and ix̂
 
is the estimated amplitude (latency) of the 

simulated ERP component. For each SNR, the statistical difference between 

the different methods was assessed with pairwise t-tests.   

 

3.3 Wavelet denoising   

In this study we used a 5-scale decomposition of the ERPs, obtaining the 

detail levels 1D  to 5D  and a final approximation 5A . The lower scales provide 

information of the high frequency components, while the high scales and the 

final approximation give the information about the low frequency ones (Figure 

3.4). 

As in previous works (Quian Quiroga and Garcia, 2003; Quian Quiroga, 

2000), we used a quadratic B-Spline mother wavelet. B-Splines are very 

suitable for the analysis of ERPs as they have a similar shape to the ERP 

waveforms, thus providing an optimal time-frequency resolution – i.e. the 

evoked responses are localized in a few wavelet coefficients (Quian Quiroga, 

2000; Quian Quiroga et al., 2001), thus facilitating the denoising procedure.  

 

3.3.1 Donoho’s denoising implementation 

The ERP signals contain a mixture of on-going EEG background activity 

and evoked potentials. For the purpose of denoising the data, we considered 

the former as the noise to be removed and the latter as the signal of interest to 

be extracted. Using the wavelet formalism, Donoho and Johnstone proposed a 

denoising implementation where, for each scale, the wavelet coefficients are 
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selected by thresholding (Donoho, 1993; Johnstone and Silverman, 1997). 

Following this approach, for each scale j  a threshold jT   is calculated as: 

NT ejj log2                                                                                     (3.1) 

Where N is the number of wavelet coefficients and j  is an estimation of the 

standard deviation of the noise for each scale:  

  6745.0/....,,........., ,2,1, jkjjjjjj SSSSSSMedian 
 (3.2) 

The normalizing factor 0.6745 is introduced to give a value of 1 for a Gaussian 

signal with unitary standard deviation (Johnstone and Silverman, 1997). 

Denoising is done by hard thresholding the coefficients of each scale as follows:  
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The denoised average ERP is then obtained by doing a wavelet 

reconstruction from the denoised coefficients. Then, this same set of 

coefficients can be used to denoise the single-trial data. The rationale of this 

procedure is that one in principle expects to find the single-trial evoked activity 

in the same time and frequency ranges of the average evoked responses. 

However, it should be noted that this does not necessarily need to be the case. 

For example, there could be some latency jitter in the single-trials that may lead 

to broader peaks (i.e. lower frequency composition) in the average responses. 

 

3.3.2  Neighbouring and Zerotrees (NZT) denoising  

Using Donoho’s implementation we found that it is not always possible to 

separate the ERP from the background EEG (see Figure 3.4). The problem is 

that with Donoho’s method each wavelet coefficient is considered individually, 
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irrespective of the value of other neighbouring coefficients at the same or at the 

next scales, whereas the patterns of a signal are typically distributed across a 

set of nearby coefficients; in other words no pattern is localized at one and only 

one coefficient. It has been proposed that considering the value of nearby 

coefficients can improve denoising results (Cai and Silverman, 2001; Shapiro, 

1993). Our proposed algorithm thus combines two such improvements: the first 

one is to decide whether each coefficient should be kept or not based not only 

on its value but also on the value of its closest neighbours in the same scale 

(Cai and Silverman, 2001); and the second one is to also use information from 

the decomposition at the higher scales, what is known as Zerotrees denoising 

(Shapiro, 1993).  

3.3.2.1 Denoising using neighbour coefficients and level dependency 

We implemented the method by Cai and Silverman (Cai and Silverman, 

2001), which incorporates information of neighbouring coefficients in the 

thresholding process. With this denoising scheme, a coefficient is set to zero if 

the sum of the squares of the coefficient and its immediate neighbours in the 

same scale is less than a certain threshold. In particular, given the set of 

wavelet coefficients kjS , , we apply the following thresholding criterion:  
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Following Cai and Silverman (Cai and Silverman, 2001) the threshold for each 

scale was defined as: 

)log2(22 NT ejj  ,                                                                                    (3.5) 

where j  was estimated as in equation (3.2). 
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3.3.2.2 Zerotrees denoising 

As a second denoising step, we used the Zerotrees implementation 

proposed by Shapiro (Shapiro, 1993), which considers the dependency of the 

current coefficient to its “parent coefficient” in the higher scale. The basic idea of 

the method is that, except for the final approximation, if a wavelet coefficient is 

not significant (and should be deleted) with respect to a given threshold, most 

likely the coefficients in the same time location at the lower levels are also not 

significant and should be deleted as well. Coefficients of coarser scales are the 

“parents” and those of the finer scales at the same location are called the 

“children”, so in the case of a 1D multi-resolution decomposition each parent 

has two children in the finer scale (except for the last detail, which has only 1 

child per parent). Then, the basic idea of the zerotree denosing is that if a 

parent coefficient is removed, all its children should be removed as well. Figure 

3.3 illustrates the parent-children dependency in the Zerotrees denoising 

algorithm. This figure shows a 5 level decomposition of an average VEP. 

Coefficients in the coarser scales are parents of the coefficients in finer scales. 

For instance the coefficients in the green circles are the parents of those in the 

red circles. The coefficient in the last approximation ( 5A ) has only one “child” 

in the last detail, 5D , while the one in the 5D  has two “children” in the 4D  

scale.  
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Figure 3.3 Parent-children dependency in the Zerotrees denoising 
algorithm. Coefficients of coarser scales are the “parents” (coefficients in the 
green ovals) of those coefficients in finer scales (coefficients in the red ovals). 
According to the DWT the number of coefficients in each coarser scale is equal 
to half of the number of coefficients in the previous finer scale, except for the 

last approximation ( 5A ) which has the same number of coefficients as in the last 

detail ( 5D ). Therefore each parent has two children in the next finer scale, 

except for the last approximation. Each parent in the last approximation ( 5A ) 

has only one child in the last detail ( 5D ). Note that based on the Zerotrees 

denoising algorithm, if the mother is not significant with respect to a given 
threshold and removed by the thresholding procedure, the children in the finer 
scales should be deleted as well.       

 

 

3.3.3 Denoising of ERPs 

Compared to the NZT denoising implementations described above, in our 

case we introduced two modifications for the analysis of ERP signals. First, for 

the estimation of the thresholds in equation (3.1) and equation (3.5) we used 

only baseline coefficients (i.e. before stimulus onset). Second, instead of the 
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total number of wavelet coefficients (N), in both equations we used the number 

of coefficients in each scale (K), which gave better results.  

Figure 3.4 shows the 5 level decomposition of an average visual ERP, and 

its denoising using Donoho’s and the NZT methods. With Donoho’s method, 

each coefficient is considered independently, which, as shown in the figure, it 

doesn’t give an optimal removal of the baseline or a reconstruction of the ERP 

responses. For example, the coefficients in level 5D  and 5A  highlighted in 

black correlate with the P1-N2 components, but they are relatively small and are 

deleted with Donoho’s method, thus affecting the shape of these ERP 

responses. On the contrary, based on the values of neighbouring coefficients 

and its “parent”, these coefficients are kept by the NZT method and the 

reconstruction of the average ERP looks more accurate. Analogously, the 

baseline coefficient in 5D  marked in blue is relatively large and it is not deleted 

by Donoho’s method, thus introducing some baseline fluctuations. Given the 

value of its neighbours in the same scale and the value of its parent in level 5A , 

this coefficient was deleted with the NZT method – hence improving the 

denoising outcome. The performance of these two methods is quantified and 

compared with synthetic data in the following sections.  
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Figure 3.4 Wavelet decomposition and denoising using Donoho’s method 
and the NZT algorithm. Note that compared to the NZT, Donoho’s method 
does not completely remove the baseline activity (e.g. the coefficient highlighted 
with a blue circle) and, it removes coefficients that are correlated with the ERP 
(e.g. the coefficients highlighted with a black circle). Note that with the NZT, the 
highlighted coefficient in the baseline is removed, because its parent in the last 
approximation is not selected by the thresholding criterion. However the 
highlighted coefficients in the black circles are selected since the combination of 
each of the coefficients and its neighbours is higher than the threshold. For both 
methods, the coefficients automatically chosen for denoising are shown in red.  
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3.3.4 Summary of the NZT algorithm 

The automatic single-trial ERPs denoising method proposed here consists of 

the following steps: 

1. Construct the average ERP. 

2. Perform a wavelet decomposition of the average ERP. 

3. Perform a hard thresholding of the wavelet coefficients using (3.4).  

4. Apply Zerotrees to the denoised coefficients. 

5. Reconstruct the denoised average ERP using the denoised coefficients. 

6. Use the same set of coefficients for the single-trial ERPs. 

 

 

3.4 Results 

3.4.1 Simulated data  

To quantify denoising performance, we applied the NZT method to the 

simulated ERPs and compared its results with those obtained with the standard 

denoising implementation by Donoho.  

The root mean square (RMS) error of the simulated single-trials without 

denoising, denoised with the NZT method and with Donoho’s implementation 

for different SNR values are depicted in Figure 3.5. For all SNRs both denoising 

methods significantly improve the single-trial ERPs estimation and except for 

SNR=0.5, the lowest RMS error is obtained with the NZT method.  

The error e  in the estimation of the amplitudes and latencies of the three 

ERP peaks are shown in Figure 3.6(a). Compared to the original signals, with 

NZT denoising we had a general improvement in the extraction of P1 amplitude 

and latency (except for the P1 latency with SNR=0.5). On the contrary, in most 
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cases Donoho’s implementation gave errors that were larger than the ones 

obtained with the original signal. For all SNRs the estimation of the single-trial 

N2 amplitudes was significantly improved (P<0.05) with the NZT compared to 

the original data, while differences with Donoho’s method were not significant. 

Both denoising methods improved the N2 latency estimation, except for 

SNR=0.5, where Donoho’s method gave a much larger error than NZT and the 

original signal. Furthermore, both denoising methods significantly improved the 

estimation of the single-trial P3 amplitudes (P<0.001) compared to the original 

data. In general, NZT also gave the best estimation of the single-trial latency of 

the P3.  

Figure 3.6(b) shows the mean percentage improvement in the estimation of 

the single-trial amplitudes and latencies with Donoho and NZT, averaging 

across ERP components and SNRs. With the NZT the improvement in the 

single-trial amplitude and latency estimations was significantly larger than zero 

(P<0.001, T-test). 

 

 

Figure 3.5 RMS error. RMS error for the original (not-denoised) single-trials 
and denoised with Donoho’s and the NZT method for different SNR values. 
Note that in all cases the NZT method gives the lowest RMS errors. 
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Compared to Donoho’s method, NZT gave a better estimation of the 

amplitudes and latencies of the single-trial ERPs (and this difference was highly 

significant, with P<0.001 for the amplitude estimations). 

Altogether, NZT denoising significantly improved the estimation of the 

amplitude and latency of the single-trial ERP components and gave a lower 

RMS error compared to the original (not denoised) signals. The performance of 

Donoho’s method was in general poorer than the one with NZT. In fact, it was 

more variable and less reliable, as in many cases it introduced systematic 

errors (e.g. deleting relevant coefficients) that worsened the estimations 

obtained from the original data without any denoising. 

 

3.4.2 Real data 

Next we studied the application of the NZT method to the real VEP and 

AEP recordings. For the VEPs we studied the response in the occipital (O1) 

electrode and for the AEPs the central (Cz) electrode. We chose these two sites 

because they are located close to the primary visual and auditory cortical 

sensory areas, respectively. For the visual ERPs, (Figure 3.7 (a)) the P1, N2 

and P3 are clearly recognizable in the average signal and the NZT denoising 

removed most of the background EEG activity. The wavelet coefficients 

selected by the NZT denoising algorithm are shown in Figure 3.7(b) in red. Note 

that the P1-N2 components are mainly correlated with the coefficients at around 

100 ms after stimulation in the scales 52 DD  . The NZT method also kept the 

coefficients in level 5A , which are correlated with the P3.  
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Figure 3.6 Error in the estimation of ERP components. (a) Error in the 
estimation of the single-trial amplitudes and latencies for the 3 ERP peaks, 
using the original (not-denoised) data, Donoho’s denoising and the NZT 
implementation. Note that the NZT gives an overall improvement in the 
estimation of amplitudes and latencies of single-trial ERPs. (b) Average 
improvement (across ERP components and SNRs) with Donoho and NZT in the 
estimation of the single-trial amplitude and latency. 
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Figure 3.7(c) and (d) show the contour plots of the original and denoised 

single-trials and from these plots it is clear that the denoising algorithm 

improves the identification of the single-trial ERPs. In particular, in the denoised 

contour plot the background EEG activity has been largely removed and one 

can see a yellow/red pattern at about 100ms followed by a blue pattern 

corresponding to the P1-N2 peaks, and a wider yellow/red pattern at about 400-

600 ms corresponding to the P3. In this plot, it is also possible to observe 

variations in the single-trial responses, or the absence of them in some trials 

(e.g: the P1 response is absent in trials #11, #12 and #13).  

Figure 3.8(a) shows the average target AEP recorded from the Cz 

electrode. The five scale wavelet decomposition coefficients (in grey) and the 

denoised coefficients (in red) are shown in Figure 3.8(b). Notice that the N1-P2 

components are mainly correlated with the earlier coefficients in the 52 DD   

details while the P3 component is mostly correlated with the later coefficients in 

the last approximation 5A , which were the coefficients automatically chosen by 

the NZT algorithm. The contour plots of the original and the denoised single-trial 

ERPs are depicted in Figure 3.8(c) and (d) respectively. From Figure 3.8(c) it is 

difficult to discriminate the AEP components from the background EEG, while 

after denoising it is easier to distinguish them (Figure 3.8 (d)). The blue pattern 

at about 100ms followed by a yellow/red pattern at about 200 ms corresponds 

to the N1-P2 components and the wider yellow/red pattern between 200 ms to 

400 ms corresponds to the P3 component.  Notice the variations of the ERP 

components across the single-trials.  
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Figure 3.7 Automatic wavelet denoising of a visual ERP recorded from a 
left occipital (O1) location. (a) Original (grey) and denoised (red) average 
ERP. (b) Full wavelet decomposition (grey) and wavelet coefficients 
automatically chosen by the NZT algorithm (red). (c) Contour plot of the original 
data. (d) Contour plot of the denoised data. Note that the single-trial responses 
are more clearly identifiable with the denoised data. 
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Figure 3.8 Automatic wavelet denoising of an auditory ERP recorded from 
a central location (Cz). (a) Original (grey) and denoised (red) average AEP. (b) 
Full decomposition (grey) and coefficients chosen with the NZT algorithm (red). 
Contour plot of the original (c) and denoised (d) data. As in the previous figure, 
after denoising it is possible to identify and trace the evolution of the single-trial 
responses. 
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Figure 3.9 Performance of Donoho’s (blue) and NZT (red) denoising 
methods with real average evoked potentials. The original signals (in grey) 
correspond to average visual evoked potentials in electrode O1 recorded in 10 
subjects (VEP #1-10) and auditory evoked potentials in electrode Cz in 5 
subjects (AEP #1-5). Note NZT deletes most of the background activity and 
improves the visualization of the evoked components, whereas Donoho’s 
method changes the shape of the components (e.g. VEP #2) and does not 
completely delete the ongoing and baseline activity (e.g. VEP #5). 

 

Figure 3.9 shows the denoising of the real visual and auditory average 

ERPs for all subjects, using the NZT and Donoho’s method. In general, note 

that the NZT-denoised traces (in red) follow the original signals (in grey) and the 

method largely gets rid of the ongoing and background activity. In contrast, 

Donoho’s denoising tends to alter the evoked responses (e.g. subjects VEP #1, 

VEP #2, VEP #3, VEP #9, AEP #1, AEP #2, AEP #4) and it is not so efficient in 

removing the ongoing and baseline activity.  

Figure 3.3, Figure 3.4, Figure 3.7 and Figure 3.8 are the output of a software 

package for the NZT denoising technique (EP_den) freely available at: 

http://www2.le.ac.uk/centres/csn/software/ep_den. 

 

http://www2.le.ac.uk/centres/csn/software/ep_den
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3.5 Discussion 

Event-related potentials have a very small amplitude compared to the 

background EEG and are barely visible in the single-trials. By far the most 

popular technique to enhance the ERPs is by averaging the single-trials 

(Dawson, 1954; Lopes da Silva, 2005b). However, the averaging technique 

assumes that single-trial ERPs are very similar while noise sources are 

unrelated to the stimulus presentations, so that by averaging a large number of 

trials the random noise cancels out, thus improving the observation of the 

average ERP. This assumption is not true in reality and the dynamics of ERPs 

vary from one trial to the next and, by averaging, information related to this 

variation between trials is lost (Rugg and Coles, 1996). In particular, the 

conventional approach in the design of an ERP paradigm is to try to avoid these 

single-trial fluctuations in order to get better defined average responses. 

However, there are many interesting questions that are in fact related to 

systematic or unsystematic trial-by-trial variations, such as those related to the 

study of learning processes (Quian Quiroga et al., 2007; Jongsma et al., 2006). 

Thus the importance of single-trial analyses and the development of algorithms 

to filter the background EEG activity in order to observe the single-trial evoked 

responses.  

Single-trial ERPs have been previously detected using a denoising 

implementation based on discrete wavelet decomposition (Quian Quiroga and 

Garcia, 2003; Quian Quiroga, 2000). The denoising was obtained by manually 

selecting coefficients correlated with the ERPs in each scale of the 

decomposition, then setting to zero the uncorrelated coefficients and finally 

reconstructing the signal from the remaining coefficients. However the manual 
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selection of coefficients is a very subjective and time consuming task. In this 

study we improved this approach and presented an automatic denoising 

method (NZT method) for the extraction of the single-trial ERPs from the noisy 

background EEG.  

The performance of the method was tested with simulated ERPs and with 

real visual and auditory ERPs. For the synthetic data the performance of the 

method was compared with a standard denoising technique: Donoho’s level 

dependent thresholding. Compared to the data without denoising and compared 

also to Donoho’s technique, the presented method gave a significant 

improvement in the observation of single-trial ERPs and also in the estimation 

of the amplitude and latency of the single-trial responses. For the real data, NZT 

denoising removed most of the baseline and background EEG activity and 

improved visualization of the ERPs in single-trials. Most importantly the 

selection of coefficients was very similar to the one done manually in the 

previous studies (Quian Quiroga and Garcia, 2003; Quian Quiroga, 2000), but 

in this case the selection was fully automatic. 

The presented denoising method overcomes the drawbacks of the time-

invariant approaches such as Wiener filtering, since the wavelet transform 

matches the varying time-frequency patterns of the different ERP components. 

Closer to our proposed method, Wang and co-workers applied wavelet 

transform in order to automatically estimate the single-trial evoked potentials of 

intracortical recordings by using a Donoho level dependent soft thresholding 

(Wang et al., 2007). However, there are two drawbacks of this approach: first, 

the soft thresholding reduces the amplitude of the coefficients and smoothes the 

reconstructed evoked potentials and second, with Donoho’s thresholding is not 
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always possible to extract ERPs since the amplitudes of the ERPs are of the 

order of or sometimes smaller than the background EEG. In particular we 

showed that the NZT method proposed here overcomes this problem by 

incorporating the information of neighbouring coefficients in the thresholding 

process, which resulted in a more robust estimation and a better performance. 
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Chapter 4 
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4 Single-trial analysis of conscious face perception  

4.1 Background 

ERP are widely used to study time courses of brain cognitive processes. An 

example of such processes is the study of visual object categorisation in the 

human brain and particularly the study of face processing in visual cognition. It 

is known that when potentials evoked by the presentation of faces are 

compared to those evoked by non-faces stimuli, the former show a larger 

negative peak between 130 to 200 ms post-stimulus presentations (Bentin et 

al., 1996; Botzel et al., 1995). This component is termed the N170 and it is 

larger on lateral occipital and occipito-temporal sites (Bentin et al., 1996). The 

N170 is associated with face processing stages (face encoding) prior to the 

individual face identification (Eimer, 2000a). Studies of the N170 in face 

inverted stimuli compared to upright faces showed latency modulations of the 

N170 (Bentin et al., 1996; Eimer, 2000b; Rossion et al., 2000; Sagiv and Bentin, 

2001), while studies of scrambled faces (George et al., 1996), misalignment 

face halves (Letourneau and Mitchell, 2008) and Mooney faces (George et al., 

2005) showed amplitude modulations of this component. The amplitude and 

latency modulation of the N170 suggest that this component is sensitive to 

facial configuration. Perceptual expertise has also been reported to modulate 

the N170 (Gauthier et al., 2003; McKone et al., 2007; Rossion et al., 2002; 

Tanaka and Curran, 2001). In these studies the N170 in response to pictures of 

objects within the individual field of expertise were compared to the responses 

to objects outside of this field. For instance, Tanaka and Curran found a larger 

N170 in response to the pictures of dogs and birds when they were presented 

to group of dog and bird experts respectively (Tanaka and Curran, 2001). The 
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modulation of the N170 by perceptual expertise would suggest that these non-

face stimuli may also processed configurally as with the face selective N170 

responses.  

Along with numerous studies reporting the type of stimuli that elicit and 

modulate the N170, several studies reported the correlation of the N170 

component with conscious face perception (Fisch et al., 2009; Genetti et al., 

2009; Rodríguez et al., 2012). In these studies the recognition performance was 

examined by the so-called “backward masking” paradigm (Breitmeyer, 1984). In 

each trial, after a short presentation of a target stimulus (a face or an object) a 

meaningless image (a mask) was presented to disrupt the recognition process. 

The subject was then asked to report whether he/she saw the face or not (see 

Figure 4.1 for a specific implementation).  

Previous studies have aimed to manipulate human visual awareness by 

changing the physical properties of the stimuli, such as presenting the stimulus 

with varying time duration (Genetti et al., 2009) or adding different amounts of 

noise to the stimulus (Jemel et al., 2003). But changing the physical properties 

of the stimuli mixes up the effect of conscious face perception with the one 

elicited by the different physical properties of the stimuli. In this study we 

presented a backward masking paradigm using faces (cars) with varying 

degrees of Gaussian noise. The Gaussian noise was added during the 

experiment using a double-staircase procedure, thus obtaining different levels 

of noise in which subjects failed to recognise the stimuli. This experiment 

enabled us to study the effect of conscious face perception using identical 

stimuli at a fixed noise level as well as studying the effect of stimulus 

uncertainty by comparing the N170 responses in the different noise levels. 
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Moreover, we studied the single-trial N170 to reveal the mechanism underlying 

the changes in the average N170 responses due to the conscious face 

perception and stimulus uncertainty.   

My main contribution to this study was to perform the single-trial analysis of 

the evoked responses, allowing extracting information about the mechanisms 

underlying conscious face perception and stimulus uncertainty that was 

otherwise impossible to extract using classical ERP analysis.  

 

4.2 Materials and methods 

4.2.1 EEG recordings 

Recordings were performed in the sound proof chamber at the Neuro-

Engineering lab. Twenty-two participants (mean age 27.9, range 21-37, 2 left-

handed, 12 females) were seated comfortably in a chair 50 cm from the viewing 

point and were asked to remain still and relaxed while performing a backward 

masking experiment. The subjects had normal or corrected-to-normal vision 

with no report of neurological impairments. The EEG data was recorded 

continuously using 64 electrodes placed according to the international 10-20 

system, band pass filtered between 0.1 Hz and 100 Hz and sampled at 256 Hz, 

using a common average reference. 

 

4.2.2 Stimuli 

Two sets of pictures: twenty pictures of faces and twenty pictures of cars, 

both in frontal view, were selected. Faces were selected from the Stirling 

Psychological Image Collection (http://pics.psych.stir.ac.uk/) while cars were 

downloaded from different websites. A backward mask was generated using 

http://pics.psych.stir.ac.uk/
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randomly shuffled pieces of different images (Quian Quiroga et al., 2008b). 

Each picture was converted to grayscale, cropped to a resolution of 411 x 527 

pixels and its mean brightness was normalised across all the images. Zero 

mean Gaussian noise, was added to each picture of cars and faces.  The added 

noise had 10 different variances increasing linearly form 0 to 1, relative to the 

mean brightness of the picture. Images were presented in the center of a CRT 

Monitor with a grey background, a resolution of 1024 x 768 pixels and a refresh 

rate of 70 Hz. 

 

4.2.3 Paradigm 

Trials started with a fixation cross, appearing in the middle of the screen for 

a varying time between 500 to 700 ms, followed by a picture of a face or a car 

with a certain degree of noise shown for 57 ms, and a mask shown for 443 ms. 

The subject was instructed to report if he/she saw a face or not by clicking the 

left or right mouse respectively. Figure 4.1 shows the timing and the order of the 

stimulus presentations in one trial. 

A double-staircase procedure for the face images was implemented by 

changing the variance of the added Gaussian noise to obtain the threshold of 

perception (a 50% performance at detecting faces). The descending staircase 

started with the highest level of variance, 1, and went to the lowest variance, 0 

(no noise) with a step size of 0.1, while the ascending staircase started with 

variance of 0 and went to variance of 1. Along with the threshold of perception, 

50%, for each subject a lower and a higher noise level in which the detection 

performance was around 70% and 30% were also selected. In the following we 
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refer to these noise levels as the supra-threshold and sub-threshold 

respectively. 

The experiment consisted of 1200 trials divided in 5 blocks of 240 trials 

each. Each block consisted of 40 randomly interleaved of trials of faces without 

noise, 40 trials of cars without noise, 70 trials of ascending and 70 trials of 

descending staircases and 20 trials of cars with the threshold condition as 

determined by the staircase procedure for the current block. The last 20 trials, 

the catch trials, were added to assess the performance of the subject in terms 

of the number of false positives (trials in which the subject reported the 

appearance of a face while a car was presented). After each block the subject 

had a chance to take a short break. The whole experiment lasted approximately 

1 h and 15 min.  

 

Figure 4.1 Structure of a trial. Trial started with a fixation cross (500-700 ms) 
followed by a face or a car image (57 ms) and followed by a backward mask 
(443 ms). Finally the subject was asked to report if the presented image was 
face or not (adapted from (Navajas et al., 2013)). 
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4.2.4 ERP analysis 

After recordings, the EEG signals were re-referenced to the average 

electrodes and trials that were contaminated with eye movements, eye blinks 

and other artefacts were removed by visual inspection. For each trial, 500 ms 

pre- and 500 ms post-stimulation were extracted and filtered between 1 to 70 

Hz using a second order Butterworth filter. The PO7 and PO8 electrode sites 

were selected for further analysis given that a visual inspection of the evoked 

topographies and average ERPs showed the best ERP responses of the P1, 

N170 and P2 in these two sites.  

Trials were classified according to the subject’s report (seen and unseen) 

and according to the level of noise (sub-threshold, threshold and supra-

threshold), thus having six different conditions (i.e. sub-threshold seen, 

threshold seen, supra-threshold seen, sub-threshold unseen, threshold unseen 

and supra-threshold unseen).  For each noise level the average ERP of the 

seen and unseen trials were obtained.  

Evoked responses to non-face stimuli were obtained from the correct 

rejections of catch trials (i.e., trials in which the presented stimulus was a car 

and the subject reported correctly not seeing a face). The average evoked 

responses of the non-face stimuli were compared with the seen and unseen 

evoked responses in the threshold condition.  

For the statistical analysis the average N170 was identified as the local 

minima between 150 and 190 ms and the average P1 and P2 components were 

identified as the local maxima between 80 and 120 ms and between 200 and 

240 ms respectively.  
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4.2.5 Single-trial ERP analysis 

The single-trial ERPs were obtained using the proposed NZT denoising 

algorithm. We used the NZT to denoise an average evoked response in the 

threshold seen condition and then we kept the same set of wavelet coefficients 

to denoise all the channels for all the subjects in the six conditions. For each 

channel the single-trial N170 responses were identified as the local minima 

between 120 and 200 ms. The single-trial P1 responses were identified as the 

local maxima between the 80 ms and the latency of the N170 peak and  the P2 

responses were identified as the local maxima between the latency of the N170 

peak and 240 ms. This information was used to study the mechanism 

underlying differences in the average responses in different conditions. More 

precisely it was used to figure out if any increase (decrease) in the average 

ERP was due to the increase (decrease) of the single-trial amplitudes or to a 

better (poorer) time locking to the stimulus onset; i.e. a lower (higher) latency 

jitter. The latency jitters were estimated as the standard deviation (SD) of 

single-trial latencies of each component.  

A linear discriminant analysis (Fisher, 1936) was implemented to assess 

the correlation between the subjects’ report and the single-trial responses. 

Moreover, we used a leave-one-out cross-validation procedure to decode the 

subjects’ behavioral responses using the single-trial peak amplitudes of the P1, 

N170 and P2 recorded in channels PO7 and PO8. Furthermore the statistical 

significance (the p-value) of the decoding performance was estimated using:  





n

kj

jPvaluep         (4.1) 

where  
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is the probability of getting k hits in n trials (Quian Quiroga and Panzeri, 2009).  

 

4.3 Results 

4.3.1 Average ERP analysis 

Firstly we assessed the existence of the N170 response by comparing the 

average ERPs responses to faces and cars without noise. An ANOVA analysis 

showed a significant difference for the N170 face-sensitive response (p<0.001) 

compared to the cars but not for the P1 and P2 components. Secondly we 

studied the dependency of the N170 with conscious face perception and with 

the uncertainty introduced by adding noise, by analysing the seen and unseen 

evoked responses in the three threshold conditions. Note that the double-

staircase procedure introduced a mean noise variance of 0.20 ± 0.12 for supra-

threshold condition, 0.32 ± 0.17 for threshold, and 4.5 ± 0.21 for the sub-

threshold condition.  

Grand averages of the evoked potentials for all the six conditions and the 

scalp topographies of seen and unseen evoked responses in the threshold 

condition at the time of N170 are shown in Figure 4.2. The scalp topographies 

show a larger activity at the time of N170 with the seen trials compare to the 

unseen trials. Comparing the three noise levels, we found that the only 

component significantly modulated by the noise level (p<0.001) and conscious 

face perception (p<0.001) was the N170. Moreover, at the threshold condition, 

the average ERP responses elicited by seen trials showed a significantly larger  
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Figure 4.2 Neural correlates of conscious versus unconscious face 
perception. a) Grand average ERPs for the sub-threshold, threshold and 
supra-threshold conditions recorded from PO8 electrode. b) Scalp topographies 
for the seen, unseen and seen-unseen faces at the time of N170 response at 
the threshold condition. The unit of the colour bar in b is microvolt (adapted from 
(Navajas et al., 2013)). 
 

N170 compared to the average signal elicited by cars and by unseen trials 

(p<0.001).   

 

4.3.2 Single-trial analysis 

We used the NZT denoising method to denoise the single-trial ERPs and 

from there we extracted the peak amplitudes of the P1, N170 and P2 as the 

local maxima (minima) of the denoisied trials in different windows (time windows 

as defined in section 4.2.5). Figure 4.3(a) illustrates an average ERP, 15 single-

trial ERPs and the extracted P1, N170 and P2 peaks for a typical subject. 

Analysis of the extracted single-trial peaks showed that the N170 amplitudes 

were significantly (p<0.001) larger for the seen trials compared to the unseen 

trials. However no significant differences were observed with the single-trials P1 

and P2 components.  
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Figure 4.3 Decoding the subjects’ report with single-trial ERPs. a) 
Denoised average and single-trial ERPs recorded at PO8 in a typical subject. 
The ERP components are indicated with the marks. b) Distribution of single-trial 
N170 used for decoding. Blue (red) dots represent the single-trial N170 for seen 
(unseen) trials recorded at PO7 and PO8 electrodes. The black line indicates 
the linear discriminant. The blue and red lines represent the projection of the 
normalised single-trial N170 to the axis perpendicular to the linear discriminant. 
c) The p-values of the decoding performance in a logarithmic scale. Red lines 
show the median of the distribution of the p-values for each component 
(adapted from (Navajas et al., 2013)). 

 

Knowing the significant differences in the single-trial N170 responses, we 

applied a linear discriminant analysis to use this feature to decode the subjects’ 

report (have seen a face or not). We used the amplitudes of N170 responses in 

the seen and unseen trials at PO7 and PO8 electrodes as two sets of features 

for decoding. Figure 4.3(b) shows the single-trial N170 at electrode PO7 and 

PO8 in seen (blue) and unseen (red) trials. The black line indicates the linear 

discriminant. The decoding performances were significantly (p<0.05) above 

chance for most of the subjects (18 out of 22 subjects) with mean decoding 

performance of 60.1% and SD of 4.2%. We also examined if we could decode 
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the subject’s report using the P1 and P2 components, but with these two 

components the decoding performance was at the chance level for most 

subjects (16 out of 22 subjects). The mean decoding performance for the P1 

component was 50.04% with a SD of 11.0% and for the P2 component, 54.8% 

with a SD of 6.3%. The p-values of the decoding performance are shown in 

Figure 4.3(c) in a logarithmic scale. Red lines show the median of the 

distribution of the p-values for P1 (0.26), N170 (0.01) and P2 (0.11).   

Next, we studied the single-trial amplitude and latency changes of the 

ERPs with the different noise levels. No significant differences in the amplitude 

of the P1, N170 and P2 components were observed comparing the three 

threshold conditions. With the N170 the amplitude differences observed in the 

average signal, but not in the single-trials, suggested different latency variability 

for the different noise levels. To assess these differences in latency variations, 

we calculated the latency-corrected average ERPs for the three threshold 

conditions, by aligning the single-trial N170 responses to the average N170 

peak. Figure 4.4 (top) depicts the grand average ERPs for seen trials in the 

three noise levels and their latency-corrected grand averages.  

As shown in this figure, the N170 differences in the three threshold 

conditions vanished after the latency alignment and the differences between 

these three noise levels became non-significant. However, the differences 

between the seen and unseen trials remained significant (p<0.05) even after the 

latency alignment, Figure 4.4 (bottom). An ANOVA test reveled a significant 

modulation of the N170 latency jitter by noise level but not by conscious report. 

No significant differences were observed with the P1 and P2 latency jitter in 

either case. 
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Figure 4.4 Single-trial analysis of ERPs. Grand average ERPs and their 
latency-corrected in the three threshold conditions (up) and in threshold 
condition for seen and unseen trials (bottom). Note with the noise effect 
vanished after the latency alignment while it was remained for the conscious 
face perception. Bands around mean values denote SEM (adapted from 
(Navajas et al., 2013)). 
 

 

4.4 Discussion 

 Neural correlates of face perception have been widely studied in visual 

perception and object categorisations. Studies with functional brain imaging 

(fMRI) have shown that the inferotemporal cortex around the fusiform gyrus 

responds more to the flashes of faces rather than the other object categories 

(Kanwisher et al., 1997). Evidence for face selective responses has been also 

obtained from intracranial (Allison et al., 1999) and the single-cell recordings 

(Quian Quiroga et al., 2008b; Tsao et al., 2006) in humans and monkeys.  

Several studies have reported the correlation of the N170 component with 

conscious face perception (Fisch et al., 2009; Genetti et al., 2009; Jemel et al., 

2003; Pegna et al., 2011). However in most of these studies, conscious face 

perception effects were assessed by changing the physical properties of the 
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stimuli. In this work, using identical stimuli, we studied the effects of conscious 

face perception and stimulus uncertainty, by adding different degrees of 

Gaussian noise. 

Analysing the average ERPs, we showed larger N170 responses with the 

recognised trials compared to the unrecognised trials in all the threshold 

conditions. Moreover, we showed that the amplitude of the average N170 

diminished with increasing the noise level. However these two effects were only 

observed with the N170 component and not with the average P1 and P2 

components.  

In addition we investigated the mechanism underlying the modulation of the 

average ERP components by studying the single-trial amplitudes and latencies 

of these components. We showed that the amplitude modulation introduced by 

the conscious face perception was due to the attenuation of the single-trial 

amplitudes of the unseen trials. However the amplitude modulation introduced 

by stimulus uncertainty (adding more noise) was due to the larger latency 

variations across trials.  
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Chapter 5 
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5  A method to evaluate the presence of phase-resetting and 

additive components in the generation of ERPs 

5.1 Introduction 

In spite of the wide usage of ERPs in clinical and cognitive neuroscience, 

there is still a large debate about the mechanisms underlying their generation. 

There are two main antagonist theories: the first one, known as the additive 

model, states that ERPs arise as relatively fixed-latency and polarity neural 

responses adding to the background EEG (Hillyard, 1985; Jervis et al., 1983; 

Schroeder et al., 1995; Makinen et al., 2004). More specifically, it is assumed 

that an ERP waveform arises from a burst of firing of multiple single neurons in 

response to stimulation. The second theory, known as phase-resetting model, 

claims that ERPs are due to a phase locking of ongoing EEG rhythms in 

response to the stimulus. (Sayers et al., 1974; Brandt, 1997; Başar, 1999; 

Makeig et al., 2002; Jansen et al., 2003). Alternatively, ERP generation may be 

due to a mix of both mechanisms (Min et al., 2007). 

For nearly 40 years, a large number of papers have been published 

discussing these two opposing theories, and proposing evidence in support of 

either ERP generation mechanism. In support of the phase-resetting model 

some works reported that, from a uniform distribution of phases, the 

presentation of the stimuli triggered a phase concentration across trials, i.e. 

phases are reset to a similar value after stimulation (Makeig et al., 2002; 

Rizzuto et al., 2003; Klimesch et al., 2004; Hamada, 2006).  

However the finding of a phase concentration doesn’t assure a phase-

resetting mechanism because, given that oscillations are usually not clear in the 

on-going EEG, it is necessary to apply band-pass filtering (or more 
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sophisticated techniques such as wavelets) to have a reliable estimation of the 

phases (Hamada, 2006; Rizzuto et al., 2003). The problem is that filtering 

introduces ringing artefacts that may make a single pulse look like an oscillation 

(Freeman and Quian Quiroga, 2013). To illustrate this, in Figure 5.1(a) we 

filtered a delta function (upper plot) with a broad and narrow band elliptic filter 

(middle and lower plots, respectively). Note that the original delta function 

turned into an oscillation after filtering, especially with the narrow band filter. 

Thus, oscillations observed after ERP filtering may be artificial, that means 

arising from ringing effects produced by the filters used Figure 5.1(b)). Due to 

the use of band-pass filtering it is then difficult form the analysis of phase 

concentration or the observation of evoked oscillations to dissociate between 

the phase-resetting and additive models. 

 

 

 
Figure 5.1 Ringing effect introduced by digital filtering. a) A delta function 
(upper plot) with a broad and narrow band elliptic filter (middle and lower plot 
respectively). Note that the original delta function turns into an oscillation after 
filtering, especially with the narrow band filter. b) An ERP waveform before and 
after filtering. Note that filtering introduces ringing effects and the presence of 
spurious oscillations. 
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Further studies combined the phase concentration analysing with the 

information of post-stimulus power changes in the single-trials (Klimesch et al., 

2004; Fell et al., 2004; Fuentemilla et al., 2006; Hanslmayr et al., 2007). These 

studies proposed that the pure phase-resetting model would be supported by 

the finding of a phase concentration but without any changes in the signal 

power, while the additive model would give a power increase after stimulus 

onset (Fell et al., 2004; Fuentemilla et al., 2006). However, this test is based on 

the lack of statistical significance, which could be due to a real lack of a power 

increase, or to a low number of trials, signal to noise ratio, etc. Moreover, the 

statistics to obtain power and phase-resetting values involve different measures 

with different sensitivities and specificities, which are difficult to compare. In 

other words, a not significant change in power (with a significant phase-

resetting) may also turn significant if more trials are analysed. Moreover, it is 

possible that the actual mechanism is not one or the other, but a mix of both 

models. Therefore, it is problematic to take no changes in post-stimulus power 

as evidence for phase-resetting model. Conversely, changes in post-stimulus 

power do not falsify the existence of phase-resetting. 

In this chapter, with the help of the NZT denoising algorithm, we proposed a 

novel discrimination technique  to observe whether ERPs can be explained by 

the presence of phase-resetting or by additive components. The key aspect is 

that we avoid the use of filtering and therefore, artefacts due to ringing effects. 

Our main assumption is that if two components of an ERP are part of an 

oscillation, their latencies should in principle co-vary. We remark that this does 

not necessarily needs to be the case as: i) the two components could be 

generated by the resetting of two independents oscillations, and ii) it is also 
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possible that two additive components may co-vary, e.g. given by a first tonic 

excitation of neurons followed by hyperpolarization. In any case, we argue that 

the first of these alternative hypotheses would already challenge the standard 

model of phase-resetting (as ERPs would be generated by a more complex 

mechanism than the resetting of single oscillations) and second, the finding of 

no co-variation between the main ERPs would give a good indication of the 

presence of additive components. 

The method we propose relies on aligning the latencies of the ERPs, 

analysing the peak amplitude increases or decreases before and after the 

alignment. We hypothesize that for ERPs generated purely by phase resetting 

aligning one component should also align the other one (due to latency co-

variation), thus obtaining an increase in the value of both ERP peaks. On the 

contrary, if the two components are independent, aligning one of them should 

have no effect or even decrease the peak value of the other one (as it would 

disrupt the alignment to stimulus onset). This method has also two underlying 

assumptions: i) we assume some latency variability between trials, so that 

latency alignment is meaningful and ii) we assume we start from a well-defined 

ERP – i.e. with a sufficient SNR – or otherwise, if no clear ERP is present, we 

would be aligning ongoing oscillations. We then quantify the contribution of 

additive evoked components and phase-resetting to the generation of the ERPs 

and show the use of the method with real visual and auditory ERPs.    
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5.2 Materials and methods 

5.2.1 Simulation of the additive model 

For different signal to noise ratios (SNRs), 100 trials of visual event-related 

potentials (VEPs), sampled at 512 Hz and going from -1 s to 1 s, were 

simulated by adding two phasic peaks onto background EEG noise (Yeung et 

al., 2004; Yeung et al., 2007). The positive peak corresponded to a half-cycle of 

9 Hz sinusoid with varying latency across trials (mean latency =109 ms; latency 

jitter=21 ms). This component simulated the P1, while the N2 was simulated 

with the negative half-cycle of a 9 Hz sinusoid with varying latency across 

single-trials (mean latency=157 ms and latency jitter= 25 ms). Figure 5.2(a) 

shows five simulated trials with those two components, in red. To simulate the 

background EEG recordings, we used the surrogates of a short segment of a 

real EEG activity of one subject recorded from occipital site (O1 electrode) with 

eyes open fixating on a red circle in the centre of screen. The surrogates were 

constructed by applying the Fourier Transform, shuffling the phases and then 

applying the Inverse Fourier Transform (Schreiber and Schmitz, 2000). The 

algorithm preserves the power spectrum of the original signal. The simulated 

ERPs were obtained by adding the simulated P1 and N2 peaks to the surrogate 

EEGs (with different amplitudes, to model different SNRs) as shown Figure 

5.2(a), in black. The average VEPs of the hundred simulated single-trial VEPs is 

also shown in the same figure in blue. 
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5.2.2 Simulation of the phase-resetting model 

As with the additive model, for different SNRs, hundred epochs of VEPs, 

elicited by phase-resetting (sampled at 512 Hz and running from -1 s to 1 s) 

were simulated. Phase-resetting VEPs were generated using sinusoidal signals 

with a randomly varying frequency (Yeung et al., 2004; Yeung et al., 2007) 

between 5 Hz to 12 Hz over different trials. The random phase prior to the 

stimulus onset turned to a fixed phase after the stimulus onset. The resetting 

time was varied randomly across the single-trials (mean resetting time=75 ms; 

SD=4 ms). As a result we obtained simulated P1 and N2 peaks with varying 

latency across single-trials (P1: mean latency=107.5 ms; latency jitter=20 ms 

and N2: mean latency=161 ms; latency jitter=23 ms). As before (see Sec. 

5.2.1), surrogate signals of an EEG recording were used to simulate the on-

going EEG.  

Figure 5.2(b) illustrates five trials of the simulated ERP oscillations in red, 

the simulated single-trial ERPs (the simulated oscillations + the simulated 

background EEG) in black and the average VEPs of 100 ERP trials in blue. The 

simulated ERPs were generated in a way that the latency variability of the 

components did not differ significantly from each model, as the measure we will 

describe for assessing additive contribution or phase-resetting relies on a 

latency alignment. 
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Figure 5.2 Simulated VEPs based on the additive and oscillation models. 
The additive model (black traces) simulated by adding two phasic peaks (red 
traces) to the background EEG. The phase-resetting model (black traces) 
synthesised by adding different oscillations (traces in red), with random phases 
prior to the stimulus onset which turned to a fix phase after the onset, to the 
background EEG. Averages (blue) were obtained by adding 100 trials of the 
simulated ERPs. 

 

5.3  Experimental set up and empirical data 

For this study, we used the same real VEP and AEP signals from 25 

voluntary healthy subjects (18-30 years old) described in Chapter 3 of this 

thesis. Similar to Chapter 3 for the VEPs we studied the response in the 

occipital (O1) electrode and for the AEPs the central (Cz) electrode, but here we 

used non-target responses (mean number of trials=100) to investigate the basis 

of visual and auditory evoked potentials generation.  

 

5.4 Description of the method 

As mentioned above, filtering introduces spurious oscillations, thus 

confounding the dissociation between the phase-resetting model and the 

additive models.  The key issue is to assess whether ERPs are due to a phase 

resetting of on-going oscillations or due to additive components avoiding 
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filtering. Here, our main assumption is that if two ERP components, such as P1 

and N2, are part of an oscillation, their latency should co-vary. This means that 

if we identify the latency of the single-trial responses, doing a latency-corrected 

average for one peak (P1) will not only increase the amplitude of the same peak 

but also the following one (N2). In contrast, if the P1 and N2 are two 

independent additive components, then aligning one peak should have no effect 

or even decrease the amplitude of the second one (as both can be 

independently locked to the stimulus). 

To clarify this idea Figure 5.3 shows an average VEP simulated based on 

the additive model (black, see Sec. 5.2.1) and an average VEP given by pure 

phase-resetting model (black, see Sec. 5.2.2). In both cases the latency-

corrected averages (red) were obtained by first denoising the single-trial ERPs 

(using the method described in Chapter 3, see below) then aligning the P1 

latencies across single-trials, and finally averaging the aligned trials. With the 

additive VEPs, aligning the latencies of the first peak (P1) gives a larger P1 (P1 

< latency-corrected P1 (P1_lc)), but reduces the amplitude of the N2 (latency-

corrected N2 (N2_lc) < N2). In contrast, with the VEPs generated by phase-

resetting, aligning the latencies of the first peak (P1) gives a larger value not 

only of the P1 (P1 < P1_lc) but also of the N2 (N2_lc > N2). In the next section, 

we propose a measure to quantify this observation. 
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Figure 5.3 Average simulated ERPs before and after correcting the latency 
jitter. (a) An average VEP generated based on the additive model before 
(black) and after (red) latency correction. (b) An average VEP generated based 
on the phase-resetting model before (black) and after (red) latency correction.  
 

5.4.1 Estimation of the single-trial ERP latencies  

We used the NZT denoising method to estimate the latencies of the single-

trial ERP responses. First we obtained the denoised single-trial responses of 

the real VEPs (AEPs) and the simulated VEPs using the NZT algorithm and 

then we estimated the ERP components in each trial. For both the real and 

simulated VEPs the single-trial P1 responses were identified as the local 

maxima between 70 and 160 ms and the single-trial N2 responses were 

identified as the local minima between the latency of the P1 and 70 ms after the 

latency of the P1.  

Analogously, for the real AEPs the single trial N1 responses were identified 

as the local minima between 60 and 150 ms and the single-trial P2 were 
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identified as the local maxima between the latency of the N1 and 90 ms after 

the latency of the N1. 

 

5.4.2 Aligning of the single-trial latencies 

Having estimated the latencies of the single-trial ERPs, the raw single-trial 

responses (i.e. without any filtering) were aligned to the P1 latency of the 

average signal, thus obtaining latency-corrected averages. 

 

5.4.3 Quantification of phase-resetting 

Here our main goal was to quantify the peak amplitude changes of the ERP 

components after latency correction. Based on our hypothesis, if two ERP 

components, such as P1 and N2, are part of an oscillation, their changes in 

amplitude should co-vary. In other words, if the amplitude of one increases after 

alignment, we should expect an increase of the amplitude in the second one. 

We measured the original amplitudes of the P1 and N2 and then we aligned the 

latencies of the P1 (similar results were obtained aligning to N2) and calculated 

the differences as: 

1_11 PlcPP          (5.1) 

2_22 NlcNN         (5.2) 

and their ratio as:  

1

2

P

N
PR




          (5.3) 

In the phase-resetting case, we expect to have a positive value for PR  

since an increase in P1 after alignment gives an increase in N2, which is close 

to 1 for a pure oscillation. For the additive model we expect to have a value 
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close to zero (no increase in N2 when aligning P1) or negative (a decrease in 

N2 when aligning P1). 

 

5.5 Results 

5.5.1 Simulated data 

To evaluate the performance of the proposed method we applied it to 

simulated VEPs. Figure 5.4 shows an average simulated VEP based on the 

additive model (a) and its five levels of decomposition (b), in grey. The average 

ERPs were obtained by averaging 100 simulated trials. The average signal was 

decomposed in to five scales using wavelet decomposition. The coefficients in 

each scale were denoised using the NZT method (coefficients in red) and the 

denoised signal (top, red) was obtained by wavelet reconstruction using the 

denoised coefficients. Subsequently, the denoised single-trial ERPs were 

reconstructed by using the same set of coefficients in each trial. The same set 

of denoised coefficients was also kept constant to denoise all the simulated 

VEPs with different SNRs. Figure 5.4(d) illustrates 15 single-trial responses of 

the simulated VEP (in grey) and the denoised signals (in red).  

Moreover, the average and single-trial P1 and N2 responses were 

extracted by identifying the local maxima and minima of the denoised signals in 

different time windows (Figure 5.4 blue and green asterisks respectively) and 

the original single-trials were aligned to the P1 latency of the average denoised 

signals. Then the latency-corrected averages were obtained by averaging the 

aligned single-trials.  
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Figure 5.4 Automatic wavelet denoising of an average VEP simulated 
based on the additive model. (a & c) Original (grey) and denoised (red) 
average VEP. (b) Full wavelet decomposition (grey) and wavelet coefficients 
automatically chosen by the NZT denoising algorithm (red). (d) Original (grey) 
and denoised (red) single-trials. Blue and green asterisks indicate the estimated 
P1 and N2 responses respectively. 

 

 

 
Figure 5.5 Automatic wavelet denoising of an average VEP simulated 
based on the phase-resetting model. (a & c) Original (grey) and denoised 
(red) average VEP. (b) Full wavelet decomposition (grey) and wavelet 
coefficients automatically chosen by the NZT denoising algorithm (red). (d) 
Original (grey) and denoised (red) single-trials. Blue and green asterisks 
indicate the estimated P1 and N2 responses respectively. 
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Figure 5.3(a) illustrates the average VEP of Figure 5.4 in black, and its 

latency-corrected in red. As it is shown, aligning the single-trial P1 latencies 

increased the P1_lc amplitude but decreased the N2_lc amplitude.  

The same analysis was done with the simulated VEP signals created using 

the phase-resetting model. Figure 5.5 illustrates the average (a) and its 5 level 

decomposition coefficients (b) before and after the denoising, as well as the 

original (d) and the denoisied single-trials, in grey and red respectively. The P1 

and N2 peaks were estimated as before, and the latency-corrected average 

was obtained (Figure 5.3(b)).Unlike the case of additive model, here aligning 

the P1 latencies not only increased the P1_lc but also increased the N2_lc.  

Finally, the PR  values were obtained using equation 5.3. Figure 5.6 

illustrates the PR  values for the simulated ERPs based on the additive model 

(107 simulations, blue dots) and based on the phase-resetting model (120 

simulations, red dots) for different signal to noise ratios. Low SNRs (SNRs < 13) 

indicate small evoked potentials compared to the baseline EEG, while high 

SNRs indicate high evoked potentials. As expected, for all SNRs (except one), 

the PR  values of ERPs simulated by phase-resetting were positive. In contrast, 

for the additive ERPs smaller values were obtained. For the lower SNRs, the 

additive components were very small compared to the background noise and 

the average signals mainly contained the on-going EEG, so we should expect 

similar PR  values as the ones obtained by the VEPs simulated by phase-

resetting (as we are just aligning ongoing oscillations). Next we implemented a 

linear discriminant analysis (Fisher, 1936) to separate the PR  values of the 

additive VEPs from those of the phase-resetting VEPs (the cyan line in Figure 

5.6). We used the PR  values obtained with the additive and phase-resetting 
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model as two sets of features for decoding. Furthermore, to assess the 

decoding performance we used a leave-one-out cross-validation procedure 

(performance 90%, 216 hits out of 240 PR  values). We estimated the statistical 

significance (the p-value) of the decoding performance using equation (4.1) and 

we found that it was highly significant (p<0.001).  

 

 

Figure 5.6 The PR  values for the simulated ERPs. Blue dots represent the  

PR  values for the simulated VEPs based on additive model and the red ones 

the PR  values of the phase-resetting model at different signal to noise ratios. 

The cyan line indicates the linear discriminant which separates the PR  values 
of the additive model from the ones of the phase-resetting model. Note that 

compare to the phase-resetting model, smaller PR  values are obtained with the 
additive model and for SNRs > 13 we have a clear separation of two models.   
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5.5.2 Real data 

5.5.2.1 Real VEPs 

For the real VEPs we studied the responses in the occipital (O1) electrode. 

Figure 5.7 shows an average VEP (a) and its five levels of decomposition (b), in 

grey. The average ERPs were obtained by averaging several single-trial 

responses. In each trial the stimulus was presented at time zero and the 

corresponding visual ERP components were triggered within the first 300 ms 

after the onset time. The averages were decomposed in to five scales using 

wavelet decomposition and the denoised average signals (top, red) were 

reconstructed using the denoised coefficients obtained with the NZT method 

(coefficients in red). Subsequently, the denoised single-trial ERPs were 

reconstructed by using the same set of coefficients in each trial. Figure 5.7(d) 

illustrates 15 single-trial responses of the average VEP (in grey) and the 

denoised single-trials (in red). Note that the same set of denoised coefficients 

was kept constant to denoise all the VEPs. 

Next, for each subject, the average and single-trial P1 and N2 responses 

were extracted by identifying the local maxima and minima of the denoised 

signals in certain time windows (Figure 5.7 blue and green asterisks 

respectively) and the original single-trials were aligned to the P1 latency of the 

average denoised signals. Then the latency-corrected averages were obtained 

by averaging the aligned single-trials. Figure 5.9(a) illustrates the average VEP 

of Figure 5.7 in black, and its latency-corrected in red. As it is shown, aligning 

the single-trial P1 latencies increased the P1_lc amplitude while decreasing the 

N2_lc amplitude.  
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Figure 5.7 Automatic wavelet denoising of an average VEP recorded from 
O1 electrode. (a & c) Original (grey) and denoised (red) average VEP. (b) Full 
wavelet decomposition (grey) and wavelet coefficients automatically chosen by 
the NZT denoising algorithm (red). (d) Original (grey) and denoised (red) single-
trials. Blue and green asterisks indicate the estimated P1 and the N2 responses 
respectively. 

 

 

 
Figure 5.8 Automatic wavelet denoising of an average AEP recorded from 
Cz electrode. (a & c) Original (grey) and denoised (red) average AEP. (b) Full 
wavelet decomposition (grey) and wavelet coefficients automatically chosen by 
the NZT denoising algorithm (red). (d) Original (grey) and denoised (red) single-
trials. Blue and green asterisks indicate the estimated N1 and the P2 responses 
respectively. 
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5.5.2.2 Real AEPs 

For the real AEPs we used the responses in the central (Cz) electrode. 

Figure 5.8 shows an average AEP (a) and its five decomposition levels (b), in 

grey. As with the real VEPs, the stimulus was presented at time zero and the 

corresponding auditory ERP components were triggered within the first 300 ms 

after the onset time at each trial. The denoising was performed in each scale of 

decomposition ((b) coefficients in red) and the denoised average AEPs were 

obtained by reconstructing the signal using the denoised coefficients ((a) and 

(c) in red). Subsequently, the denoised single-trials were reconstructed by using 

the same set of coefficients in each trial. Note that, the same set of denoised 

coefficients was kept constant to denoise all the AEPs.  

Figure 5.8(d) illustrated 15 single-trial responses of the average AEP (in 

grey) and the denoised single-trials (in red). For each subject, the average and 

single-trial N1 and P2 responses were estimated by identifying the local minima 

and maxima of the denoised signals in different time window (Figure 5.8(d) blue 

and green asterisks respectively). Then the original single-trials were aligned to 

the N1 latency of the average denoised signals and the latency-corrected 

averages were obtained by averaging the aligned single-trials. Figure 5.9 

illustrate the average AEP of Figure 5.8 in black, and its latency-corrected 

average in red. As we expected, aligning the single-trial N1 latencies increased 

the N1_lc amplitude while decreasing the P2_lc amplitude. 
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Figure 5.9 Latency-corrected averages of real VEP and AEP. (a) Original 
average VEP (black) and its latency-corrected average (red). (b) Original 
average AEP (black) and its latency-corrected average (red). Note that aligning 
single-trial P1 (N1) latencies increases the P1_lc (N1_lc) while decreases the 
N2_lc (P2_lc). 

 

Furthermore, for both modalities, the PR  values were calculated for each 

subject using equation 5.3. Figure 5.10 illustrates the PR  values for the real 

VEPs (black asterisks) and AEPs (pink asterisks). As shown in this figure, for 

most subjects the PR  values are mainly negative or close to zero, under the 

separatrix line, thus favouring the additive model. 
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Figure 5.10 The PR  values for the real and simulated ERPs. Asterisks 

indicate the PR  values for the real VEPs (black) and AEPs (pink). Blue dots 

represent the  PR  values for the simulated VEPs based on the additive model 

and the red dots represent the PR  values of the phase-resetting model at 
different signal to noise ratios. The cyan line indicates the linear discriminant 

which separates the PR  values of the additive model from those of the phase-

resetting model. Note that the PR  values for the real ERPs are mostly under 

the separatix line in the additive part. ERPs with significant PR  values in the 
additive part are highlighted with the red circles.  

 

5.5.2.3 Baseline controls 

It is widely known that the background EEG consists of oscillations with 

random phases. Therefore, analysing the EEG signals, prior to the stimulus 

onset (the baseline EEG), we expected to have similar PR  values to the ones 

obtained with the phase-resetting model (positive PR  values). 

For both simulated modalities (VEPs and AEPs), we further assessed our 

results by generating hundreds of surrogate background EEGs, finding the PR  

values for the surrogate data and comparing them with the PR  values obtained 
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from the real ERPs. This simple procedure allows statistically testing whether 

the ERPs are generated by a phase-resetting of ongoing oscillations or whether 

there was an additive component present. 

For each subject, hundreds of surrogate background EEGs were calculated 

from the background EEG signals in each single-trial. Then we obtained 100 

sets of surrogates, each of which having 100 single-trials. For each set the 

average and the latency-corrected averages were obtained, thus obtaining 100 

averages with their corresponding latency-corrected averages for each subject.  

Then for each subject we measured the PR  values for the surrogates and 

we used a nonparametric test to check if the PR  value of their corresponding 

ERP was placed significantly out of the distribution of the surrogates. We 

estimated the P value as the ratio of the number of the surrogates PR  values 

placed lower than the PR  value of the ERP. Subjects with PR  values 

significantly out of the distribution of the background oscillations are highlighted 

with the red circles in Figure 5.10.  

With the real VEPs, we assessed our findings by identifying a window 

between 640 to 540 ms prior to the stimulus onset and we obtained the most 

positive value in this window. Analogous to the post-stimulus ERPs we obtained 

the most negative peak between the latency of the positive peak and 70ms after 

this latency. Then we formed the latency-corrected averages for each subject 

as shown in Figure 5.11(a). We did the same analysis for the real AEPs, but 

finding the negative peak first and then obtaining the latency-corrected average 

based on the negative peak, (Figure 5.11(b)).  
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Figure 5.11 Latency-corrected averages in the baseline of real VEP and 
AEP. (a) Original average VEP (black) and its latency-corrected average (red). 
(b) Original average AEP (black) and its latency-corrected average (red). Note 
that in the baseline aligning single-trial P1 (N1) latencies not only increases the 
P1_lc (N1_lc) but also the N2_lc (P2_lc). 
 

Compared to the latency-corrected averages of the post-stimulus ERPs 

with the baseline analysis, (for both modalities) aligning one peak increased not 

only the peak itself but also the following peak, as expected. 

Furthermore, for both modalities we measured the PR  values (Figure 5.12 

green asterisks) and compared them with the one obtained from the post-

stimulus ERPs. Unlike the PRs  of the post-stimulus ERPs, the baseline PRs  

were positive and placed above the separatrix line, indicating oscillatory nature 

of the background EEGs. Notice that, since there is no evoked component in 

the baselines, these PR  values are placed close by and have small SNRs. 
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Figure 5.12 The PR  values for the real ERPs, baselines and simulated 

ERPs. Asterisks indicates the PR  values for the real VEPs (black), AEPs (pink) 

and baselines (green). Dots represents the PR  values for the simulated VEPs 
generated based on additive model (blue) and the phase-resetting model (red) 
with different signal to noise ratios. The cyan line indicates the linear 

discriminant which separates the PR  values of the additive model from the 

ones of the phase-resetting model. Note that the baseline PR  values are 
positive and placed above the separatrix line. 

 

5.6 Discussion 

Since at least the mid 1970’s there has been a large debate regarding the 

neural basis of ERP generation (Sayers et al., 1974; Jervis et al., 1983; Hillyard, 

1985; Başar, 1999; Makeig et al., 2002; Lopes da Silva, 2006; Yeung et al., 

2007; Turi et al., 2012). The so-called additive model considers ERPs as phasic 

bursts of neural activities added to the background EEG due to stimulation. 

According to this hypothesis, ERP components are generated by activation of 

different brain areas upon stimulus presentation (Mangun, 1992) which results 
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in post-stimulus power increase and amplitude enhancement (Shah et al., 

2004).   

Many studies have challenged the “pure additive model” (i.e. ERPs being 

generated only by additive components) by presenting evidence of 

synchronized oscillations in response to a stimulus (Makeig et al., 2002; Rizzuto 

et al., 2003; Fuentemilla et al., 2006; Duzel et al., 2005; Gruber et al., 2005; Luu 

and Tucker, 2001; Mazaheri and Picton, 2005). Moreover, the finding of  a 

phase concentration across the single-trials has been accounted as evidence 

supporting the phase-resetting model (Makeig et al., 2002; Hamada, 2006; 

Klimesch et al., 2004; Rizzuto et al., 2003). The caveat of these studies  is that 

ERP responses are typically band-pass filtered in order to visualize evoked 

oscillations or to estimate the phase of the signal to assess a  phase 

concentration. Filtering, however, introduces ringing effects that can make a 

single phasic component look like an oscillation, thus compromising the 

interpretation of the results.  

Yeung and colleagues evaluated the most common analysis methods 

supporting the phase-resetting hypothesis by applying them to the analysis of 

simulated ERP data based on the additive model (Yeung et al., 2004; Yeung et 

al., 2007). In line with our arguments above, they concluded that conventional 

evidence for phase-resetting presented in previous works should be taken with 

caution. In particular,  Luu and Tucker proposed that the appearance of 

synchronised oscillations in the single-trial traces proves the phase-resetting 

hypothesis (Luu and Tucker, 2001). They used narrow band filters to show 

synchronised oscillation in the EEG and ERPs. However, Yeung and colleagues 

showed that narrow band pass filtering produces artificial oscillations in the 



96 

 

filtered data and one might see a similar type of oscillation by filtering a 

simulated additive ERP (Yeung et al., 2004). Analogously, they showed that the 

phase synchronization measured by the phase-locking factor (Tallon Baudry et 

al., 1996) can be also seen with phasic bursts of neural activity. Likewise, they 

argued that the shared scalp distribution of spectral power in the EEG and 

ERPs and the correlation between spectral power in the EEG and ERP 

amplitude cannot be taken as evidence of phase-resetting hypothesis.  

In this thesis we presented a novel technique to assess the degree of 

phase-resetting and additive components in the generation of ERPs. Based on 

our proposed hypothesis if two components of an average ERP are part of an 

oscillation, their latency should co-vary and increasing (decreasing) the 

amplitude of one component should increase (decrease) the amplitude of the 

second one. We quantified these amplitude changes after latency alignment 

and introduced a quantification factor, the PR , which we applied to simulated 

data and to real VEPs and AEPs. According to our quantification factor, if the 

ERP components are generated based on the phase-resetting model, the PR  

value will have a positive value, while if the ERPs are generated based on the 

additive hypothesis, the PR  value will be zero or a negative value greater than 

or equal to minus one.  

In order to evaluate our results we simulated ERP with different SNRs 

based on the phase-resetting model and the additive model and we measured 

their PR  values. For SNRs greater than about 13, which was the case for most 

of the real VEPs and AEPs, the PR  values of the ERPs simulated by phase-

resetting model were above zero, while those simulated by the additive model 

were smaller and placed below zero. The method holds for SNRs > 13 since for 
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the lower SNRs the additive components were small and we mainly aligned the 

background oscillations.  

We also measured the PR  values for the post-stimulus ERP components 

and for the pre-stimulus baselines of the real VEPs and AEPs. Similar to the 

additive model, the post-stimulus ERPs had negative or close to zero PR  

values. In contrast, all the pre-stimulus EEG signals had positive PR  values, in 

accordance with phase-resetting model.  

The main objective of this chapter was to offer a quantitative method which 

avoids filtering the signal, and the consequent filtering artefacts. We tried the 

method with the real VEPs and AEPs, and we showed that at least these 

particular evoked responses are more in line with the additive than the phase-

resetting model. However, these results shouldn’t be generalized to ERPs 

evoked using different tasks, in different conditions and in different brain areas. 

As it is shown by Shah and colleagues (Shah et al., 2004), different 

mechanisms may underlie the generation of brain responses at different 

processing levels. In particular they studied local field potentials and current 

source density (CSD) at both low and high levels of visual processing - at 

primary visual cortex V1 and inferotemporal (IT) cortex, respectively. They 

showed that in area V1 an obvious evoked response (net local excitation) 

appeared following the stimulus onset, with a very small pre-stimulus oscillation, 

thus supporting the additive model. However in IT the ratio of pre to post-

stimulus oscillatory activity was shown to be larger compared to V1, indicating 

IT to be more in line with phase-resetting model. 

Closer to our work, Mazaheri and Jensen (Mazaheri and Jensen, 2006) 

introduced a quantitative tool, termed as the phase-preservation index (PPI), to 
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evaluate phase-resetting by quantifying the phase relationship between pre and 

post-stimulus oscillatory activity in the alpha frequency band of event-related 

fields (ERFs), measured using magnetoencephalography (MEG). They 

examined whether the phase of the background alpha oscillations is affected by 

the visual stimuli and they showed a phase consistency up to 300 ms post-

stimulus. However, they found a power increase accompanied with a phase-

alignment in the theta frequency band after the stimulus onset, while no 

significant theta activity was found prior to the stimulus presentation. 

Considering that the power increase they found suggested the presence of an 

additive model, they argued that the relationship between neural generations of 

the ongoing alpha activities and the ERFs can be explained by the so-called 

dual-generator hypothesis. This hypothesis indicates that two different neural 

events generate the ERFs and the alpha oscillations. Based on dual-generator 

model the ERF generators are quiescent prior to stimulus onset and become 

active after the presentation of the stimulus (Mazaheri and Jensen, 2006). 
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6 General discussion and conclusion 

6.1 General discussion 

6.1.1 Automatic denoising of single-trial event-related potentials 

Event-related potentials are hardly recognisable in the single-trial traces 

due to their low amplitude compared to the on-going EEG. Conventional 

analysis of ERPs was mainly based on averaging several single-trial responses 

to identical stimuli and studying the average signal without considering 

variations in the single-trials. However, different studies have shown the links 

between changes in the single-trials responses and cognitive processes, such 

as learning, sensitization and habituation (Quian Quiroga et al., 2007; Jongsma 

et al., 2006). The use of the wavelet transform to extract the single-trial ERPs 

has been reported in different studies (Quian Quiroga and Garcia, 2003; Quian 

Quiroga, 2000; Bartnik et al., 1992; Effern et al., 2000b; Effern et al., 2000a). 

Previously, an ad-hoc wavelet denoising scheme was proposed to enhance the 

visualisation of ERPs in the single-trials (Quian Quiroga and Garcia, 2003; 

Quian Quiroga, 2000). This method was based on denoising the average ERPs 

considering the time and frequency ranges in which the single-trial ERPs are 

expected to occur. Although this method has proven very useful for different 

applications of single-trial analyses, its main disadvantage is that one needs 

prior knowledge about the time and frequency ranges of the ERPs and the input 

of an expert user to select the wavelet coefficients manually (Quian Quiroga et 

al., 2007). This adds subjectivity to the denoising process and it is not practical 

for large number of channels, where different channels may require different 

selection of coefficients. In this thesis we improved this approach and presented 

an automatic denoising method (NZT method) for the extraction of the single-
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trial ERPs from the noisy background EEG. We evaluated the performance of 

the proposed method with simulated ERPs as well as real visual and auditory 

ERPs. 

With the synthetic ERPs, the denoising performance was better than the 

one obtained with Donoho’s level dependent thresholding and with the non-

denoised data. The NZT method provided the lowest RMS error (P<0.001) in 

the extraction of the single-trial ERPs. The errors of the amplitudes and 

latencies of the extracted ERP components were also compared with the ones 

in the original data and the ones extracted by Donoho’s technique and in 

general, the NZT denoising method gave the lowest estimation error.  

For the real data, besides the very different characteristics of the ERPs in 

the visual and auditory modalities and at different electrodes, NZT denoising 

removed most of the baseline and background EEG activity; the single-trial 

ERPs were more clearly traceable with the denoised data. Most importantly, the 

selection of coefficients was very similar to the one done manually in the 

previous studies (Quian Quiroga and Garcia, 2003; Quian Quiroga, 2000), but 

in this case the selection was fully automatic. 

The possibility of single-trial analyses opens the opportunity of a paradigm 

shift and the development of new experiments to study the identification of 

evoked responses in trial-by-trial bases.  One such example has been the 

development of the learning oddball paradigm, where the predictability of a 

target stimuli is changed half-way through a series of stimuli and a single-trial 

analyses allowed tracking changes in the P3 response and how it correlated 

with the implicit learning of the sequence (Jongsma et al., 2006). A similar 

paradigm has been also used to study how bold and ERP responses correlate 
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on trial by trial bases, thus enabling combining the optimal time resolution of the 

ERP with the spatial resolution of fMRI (Eichele et al., 2005).   

In this thesis, we used the proposed denoising algorithm to investigate the 

neural correlates of conscious face perception and the neural basis of ERPs 

generation by studying evoked responses in the single-trial level. Analysing 

trial-by-trial changes of latencies and amplitudes of evoked responses can 

provide crucial information about the mechanism underlying the modulation of 

average responses (Quian Quiroga et al., 2007). An example of such analysis is 

the study of modulation of an average mismatch negativity (MMN), a negative 

component in response to an odd stimulus in a series of regular stimuli, in 

sleep-deprived subjects after performing an auditory discriminating task (Quian 

Quiroga et al., 2007; Atienza et al., 2004). In this study with the analysis of the 

average ERPs it was first assumed that the reduced MMN in sleep-deprived 

subjects was due to a recruitment of a larger number of neurons involved in the 

task during sleep (Atienza et al., 2004) however single-trial analysis showed 

that this reduction was due to a larger latency jitter of the MMN responses 

(Atienza et al., 2005) in sleep-deprived subjects. Another example is the single-

trial analysis of omission evoked potentials (OEPs), evoked responses to 

stimulus omission within a regular sequence of stimuli, in musicians versus non-

musicians which revealed a lower latency jitter in the OEPs of the musicians 

compared to the non-musicians (Quian Quiroga et al., 2007; Jongsma et al., 

2004). 
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6.1.2 Single-trial analysis of conscious face perception 

Several studies have reported the correlation of the N170 component with 

conscious face perception (Fisch et al., 2009; Genetti et al., 2009; Jemel et al., 

2003; Pegna et al., 2011). In line with these works, the study described in 

Chapter 4 investigated the effect of conscious face perception and stimulus 

uncertainty (introduced by adding Gaussian noise) with the average ERPs. 

Moreover, we studied the underlying mechanisms of the amplitude and latency 

variations in the average N170 by analysing the single-trial responses.  

Single-trial analyses have been used previously to study the N170 

response to face and non-face stimuli (Gaspar et al., 2011; Philiastides and 

Sajda, 2006; Rousselet et al., 2007). For example Rousselet and his colleagues 

showed an amplitude increase in the single-trial responses to faces compared 

to non-faces stimuli (noise, textures and houses), which was maximum at 

frequency range of 5 to 15 Hz (Rousselet et al., 2007). While these works 

mainly focused on the study of the modulation of the N170 responses to face 

versus non-face stimuli, in this thesis we investigated the mechanism underlying 

amplitude modulation introduced by conscious face perception and stimulus 

uncertainty. 

The analysis of the average N170 responses showed that the amplitude of 

the N170 was larger for the recognised compared to the non-recognised faces. 

Moreover, the average signals decreased as the noise level increased. The 

analysis of the single-trial amplitudes and latencies of the N170 showed that 

while the amplitude modulation introduced by the conscious face perception 

was due to the attenuation of the single-trial amplitudes of the unseen trials, the 
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amplitude modulation introduced by stimulus uncertainty (adding more noise) 

was due to a larger latency jitter.  

 

6.1.3 Neural basis of ERP generation 

Although ERPs are one of the most popular techniques in the analysis of 

human brain responses to sensory and cognitive tasks, the neural basis 

underlying the ERP generation, and its relation to the spontaneous EEG, is still 

under debate. In this thesis, we proposed a novel technique to dissociate the 

phase-resetting model from the additive model without the use of filtering. 

Based on our hypothesis, if two components of an average ERP are part of an 

oscillation, their latency should co-vary, i.e. increasing (decreasing) the 

amplitude of one should result in increasing (decreasing) the amplitude of the 

second one.  

We obtained latency-corrected average ERPs and quantified the amplitude 

differences between the ERP components of the original signal and those of the 

latency-corrected signal. We used the NZT denoising algorithm in order to 

estimate the single-trial ERP latencies to generate the latency-corrected 

averages. We introduced a quantification factor to estimate the contribution of 

the evoked and/or phase-resetting activities underlying ERPs generations, the 

so called phase resetting value ( PR  value). Finally, in order to evaluate our 

hypothesis we applied the proposed method to the simulated VEPs based on 

the additive model and the phase-resetting model.  

According to our quantification factor if the ERP components are generated 

based on the phase-resetting model, the PR  value will be positive and typically 

less or equal to one ( 10  PR ) while if the ERPs are generated based on the 
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additive hypothesis, the PR  value will be zero or negative, typically  not below 

minus one ( 01  PR ). 

We quantified the PR  values for the simulated ERPs generated with the 

additive and phase-resetting model. The results revealed positive PR  values for 

the ERPs generated by phase-resetting and negative (or close to zero) PR

values for the ERPs simulated with the additive model, thus indicating the ability 

of our measure to distinguish the two models.  

We further analysed the real ERPs (15 VEPs and 10 AEPs) both the pre-

stimulus background EEG and the post-stimulus ERP components. For all the 

real data, as a control, we calculated the PR  values obtained from the baseline 

EEG, which, as expected, were positive, thus indicating an alignment of on-

going oscillations. However, the post-stimulus PR  values were negative or 

close to zero suggesting the additive model as the mechanism underlying ERPs 

generations. Overall, the proposed method supports the contribution of additive 

evoked components and also presents a measure to quantify the contribution of 

the two models in ERP generation. 

In line with our results, Turi et al. (Turi et al., 2012) evaluated the presence 

of additive evoked components in local field potential (LFP) recordings from 

awake behaving macaques performing a visuo-motor integration task, and in 

human magnetoencephalography (MEG) recordings of steady-state visual 

evoked fields (SSVEFs). SSVEF is a sinusoidal oscillatory response of brain to 

a repetitive visual stimulus such as a flickering light that follows the repetition 

frequency of the stimulus. In this study the SSVEF obtained by flickering LEDs 

at different rates between 10 to 84.2 Hz. They used constrained ICA to remove 

the spontaneous, induced and phase-resetting components to isolate the 
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additive evoked components and they verified the contribution of additive 

evoked components in the visual areas V2/4 in the LFP recordings and in MEG-

SSVEFs.  

 

6.2 General conclusion 

In this thesis we developed a fully automatic denoising algorithm in order to 

visualise event-related potentials (ERPs) in single-trial traces. Moreover, we 

used this method to extract information about the mechanisms underlying 

conscious face perception, and to investigate the neural basis underlying ERP 

generations. 

The description of the implementation of our automatic denoising method, 

the so called NZT denoising technique, was presented in Chapter 3. The NZT is 

based on the wavelet transform and it introduces an automatic selection of 

wavelet coefficients based on the inter- and intra-scale correlation of 

neighbouring wavelet coefficients and how their values deviated from baseline. 

We tested the performance of the NZT with the simulated ERPs and with real 

visual and auditory ERPs. With the simulated ERPs we showed that, compared 

to the data without denoising and compared to Donoho’s denoising technique, 

the NZT significantly improved the observation of the single-trial ERPs and also 

the estimation of the amplitudes and latencies of the single-trial responses. With 

the real data we showed that the NZT removed most of the baseline and 

background EEG activity and improved visualisation of the ERPs in single-trials.  

In Chapter 4 we used the NZT denoising algorithm to study conscious face 

perception and we showed the advantage of single-trial analysis over the study 

of the average ERPs. In this chapter we showed that, with the average signal, a 
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larger N170 was observed for the recognised trials compared to the not 

recognised trials for all the threshold conditions (different noise levels). We also 

showed that the amplitude of the average N170 diminished when increasing the 

noise level. However, by studying the N170 responses in the single-trials we 

found that different neural mechanisms were responsible for these two 

amplitude modulations. More specifically, we showed that the amplitude 

modulation introduced by the conscious face perception was due to the 

attenuation of the single-trial amplitudes of the unseen trials, whereas the 

amplitude modulation introduced by stimulus uncertainty (adding more noise) 

was due to the generation of the higher latency variations across single-trials.  

In Chapter 5, we proposed a novel technique to study whether ERPs are 

due to phase-resetting of ongoing EEG, or due to additive neural responses 

adding to the background EEG in response to the stimulus presentation. To test 

the method we used ERPs simulated based on the phase-resetting model and 

based on the additive model. This analysis also applied to real data and it 

revealed that the sensory components of VEPs and AEPs are mainly generated 

based on the additive model rather than the phase-resetting model. 

After more than half a century of using average evoked potentials and 

designing paradigms to avoid single-trial fluctuations for getting better averages, 

the implementation of fully automatic single-trial analyses, and in particular, the 

identification of the evoked responses in the single-trials, opens the opportunity 

of a paradigm shift and the development of new experiments, where single-trial 

variations and the study of their correlation with behaviour is not avoided, but 

seeked. This will be of particular interest to neuroscientists who are studying 

cognitive processes, for example, those studying the dynamics underlying 
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learning processes. Furthermore, this can have clinical relevance to study 

patients with different types of learning problems such as attention deficit 

hyperactivity disorder (ADHD), dementia, mild cognitive impairment, etc. 
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