
SA FE T R A JE C T O R Y P L A N N IN G T E C H N IQ U E S

FO R A U T O N O M O U S A IR V EH ICLES

Thesis submitted for the degree of

Doctor of Philosophy

at the University of Leicester

by

Waseem Ahmed Kamal MSc (UMIST)

Department of Engineering

University of Leicester

November 2005

UMI Number: U207728

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U207728
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Abstract

This dissertation explores optimal path planning techniques for safe navigation

of autonomous air vehicles. Finding trajectories for multiple vehicles moving

in a dynamic environment while satisfying all constraints is a challenging prob­

lem. No single technique can be used independently for this problem. Differ­

ent techniques for real time path planning have been developed and compared.

First the problem was addressed using optimal control theory. Equations gov­

erning necessary conditions were derived for a combined objective of terrain

avoidance, radar avoidance and minimum path length. Using these equations,

analytical solutions for radar risk minimization problem have been derived. A

gradient method was used to get an optimal solution for different radar ge­

ometries. Mixed integer linear programming (MILP) formulation employing

branch and bound techniques was investigated for both single and multiple au­

tonomous air vehicle trajectory planning. A novel real-time receding horizon

approach using MILP has been proposed that uses binary variables to model

the soft and hard constraints for radar zones. A three dimensional probabilis­

tic approach for the path planning unmanned air vehicles(UAVs) has been

considered as well. For this approach a probabilistic cost function has been

developed that accounts the various factors of fuel, collision, crash to ground

objects etc. The novelty of the algorithm relies in its ability to be used in real

time due to very low computational load in spite of the fact that it finds a

path in three dimensions. The paths are locally optimal and are feasible for

the UAV to follow. For graph-based global optimality, a software has been

developed that includes extra subroutines to modify the already implemented

Voronoi code in order to remove the infinity and far away nodes and also

includes the corner points of the operational area. This software has been

employed to find the Length Constraint Least Risk (LCLR) paths and also

different techniques were compared. Although the aim of the research was to

explore and develop different real time techniques for the safe navigation of

UAVs, the thesis also concludes by considering the cooperative control of a

team of UAVs and proposes an architecture for this purpose.

Acknowledgement

First of all I thank Almighty ALLAH for blessing me with ability, courage and

strength to complete my studies.

I would like to express my gratitude to Professor Ian Postlethwaite and

Dr Da-Wei Gu for their invaluable supervision and help throughout my PhD

studies. The research work was supported by TROSS Scholarship Scheme of

the Government of Pakistan and the UK Engineering and Physical Sciences

Research Council and BAE Systems. Support from all these organisations

is gratefully acknowledged. The later stages of my studies benefited from

involvement in the EPSRC/BAE Systems Integrated Project in Aeronautical

Engineering. I am grateful for this opportunity.

I would also like to thank my research colleagues Dr Muhammed Khalid

Khan and Dr Li Qun Yao from the University of Leicester for not only their

invaluable help throughout this work but also for their friendship and the

working environment they provided during the times spent at university.

I wish to thank all my colleagues in the Control and Instrumentation Group

at Department of Engineering, University of Leicester for their friendship and

lively environment they provided. Dr Mathew Turner, Dr Sarah Gatley, Dr

Guido Herrmann, Dr Yoonsoo Kim, Dr Jongrae Kim are some of the people

whom I cannot express how grateful I am. I am grateful to my parents for

their prayers, guidance and support throughout this journey. Also my wife

and children Talha, Montaha and Maheen gave me support and inspired me

throughout during my stay at Leicester. I could never have done this without

them.

ii

Contents

1 Introduction 1

1.1 Motivation.. 1

1.1.1 Areas of A pplication.. 1

1.1.2 Advantages of UAVs over Manned A ircraft........................ 2

1.2 Controlling Autonomous U A V s .. 3

1.2.1 Sensor Technology... 4

1.2.2 Estimation Algorithms... 5

1.2.3 Communication Technology.. 5

1.2.4 Robust Adaptive Control Systems...................................... 6

1.3 Motion P la n n in g .. 7

1.4 Assumptions...10

1.5 Contributions and Structure of the T h e s is11

2 Literature Review 14

2.1 Single Vehicle Path Planning...14

2.1.1 Graph-based Approaches... 15

2.1.2 Probabilistic Road Map P lan n e rs ..18

2.1.3 Evolution-based Approaches..20

2.1.4 Analogous Formulation Approaches.......................................23

2.1.5 Potential Field as an Off-line P lanner....................................25

2.2 Multi-Vehicle P lanning..31

2.2.1 Centralized Approaches ...31

2.2.2 Decentralized A pproaches..32

2.2.3 Market-Based Approaches...33

2.3 Dynamic P la n n in g .. 34

iii

2.4 Cooperative Planning... 35

2.5 Conclusion..36

3 Multi-Objective Trajectory Design 38

3.1 Introduction...38

3.2 A Brief R ev iew ...38

3.3 Radar Equation ...41

3.4 Equations of M o tio n ..45

3.5 Derivation of Optimal T ra jec to ry .. 47

3.5.1 Case 1: #3 = 0 .. 50

3.5.2 Case 2: q2 = 0, G = 0, M = 1, sx = 151

3.6 Single Radar Risk Minimization... 52

3.6.1 Special C a s e s ..57

3.7 Risk Minimization Two R a d a r s ... 58

3.7.1 Problem Formulation and Scenarios.......................................58

3.7.2 Performance Index and its Discrete Approximation . . . 60

3.8 Two Radar Case: Results and Comparison.......................................61

3.8.1 Comparison Path for Equal Power R a d a r s 61

3.8.2 Comparison Path for Unequal Power R a d a rs 62

3.8.3 Scenario 1: Varying Downrange Between R adars 66

3.8.4 Scenario 2: Varying Crossrange Separation Between Radars 69

3.8.5 Scenario 3: Varying Separation Between Initial and Fi­

nal Positions... 72

3.9 Conclusion... 75

4 MILP and its Application in Flight Path Planning 76

4.1 Introduction.. 76

4.2 Model of the A ircraft... 77

4.3 Constraints to Avoid Radar Zones..77

4.4 Collision Avoidance Constraints...80

4.5 Speed and Acceleration Constraints...81

4.6 Turning Rate Constraints ..82

4.7 Vehicle Capabilities and Time Dependency C onstrain ts 83

iv

4.8 Cost Function Selection .. 84

4.9 Example 1 ...86

4.10 MILP for Real Time Path Planning.. 90

4.10.1 Model Predictive Control or Receding Horizon Control . 91

4.10.2 Possible Infeasibility with Receding H o rizo n 93

4.10.3 Safe Feasible Mechanism.. 93

4.11 Example 2 ... 94

4.12 Modeling the Risk Area with Dynamical Boundaries.....................100

4.13 Conclusion... 105

5 A Probabilistic Framework for Path Planning of UAVs 107

5.1 Introduction.. 107

5.2 Problem Formulation... 108

5.2.1 Environment ..108

5.2.2 Risk M odelling.. 108

5.3 Probabilistic Local Minimization ..I l l

5.3.1 Algorithm In p u ts ... 116

5.3.2 Algorithm D escription.. 117

5.4 Simulation R e s u lts ..119

5.5 Modifications to Incorporate C onstraints....................................... 125

5.6 Temporal C onstra in t...130

5.7 Comparison With the Other S trateg ies..131

5.8 Conclusion...136

6 Global Optimality of Flight Path 138

6.1 Introduction..138

6.2 Voronoi Diagram Method ... 138

6.2.1 Voronoi Graph .. 138

6.2.2 Matlab Code to Generate the Voronoi G raph.......................139

6.2.3 Complete Voronoi Algorithm...140

6.2.4 Extended Voronoi G raph ...143

6.3 Optimal Path Selection..146

6.3.1 Objective F unction .. 146

6.3.2 Optimization A lgorithm .. 147

6.4 Way Point Generation using Developed Software..........................150

6.4.1 Local Optimization..151

6.5 Constraint O ptim ization.. 152

6.5.1 Dynamic Programming Approach to L C L R P P153

6.5.2 Length Constraint Optimal P a t h 155

6.5.3 Time Complexity of the A lgo rithm 157

6.6 Comparison of Different Approaches ...159

6.6.1 Flight Environment.. 159

6.6.2 Measured Q uan tities...159

6.6.3 Methods Compared.. 160

6.7 Conclusion... 167

7 A Decentralized Cooperative Control Architecture 169

7.1 Introduction..169

7.1.1 Motivation... 169

7.1.2 Problem D escription...170

7.2 Proposed A rchitecture... 172

7.3 UAV S ta te ...173

7.4 Sequential Trajectory P la n n in g ..174

7.4.1 Type 1 collision avoidance constraints.................. 177

7.4.2 Type 2 collision avoidance constraints.................................177

7.5 Map D ynam ics ... 179

7.5.1 Derivation of the Map Update E q u a tio n180

7.6 Tasks for U A V s... 181

7.6.1 Primary T a s k ...181

7.6.2 Secondary Tasks .. 182

7.7 Target A ssignm ent... 183

7.8 Working Procedure... 186

7.9 Conclusion...187

8 Conclusions and Suggestions for Further Research 188

vi

Appendices 193

A Software Package for Waypoint Selection 193

A.l Main file of the so ftw are.. 193

A.2 Function to remove infinity n o d e s ... 197

A.3 Function to include corner points in the node list 208

A.4 Function to move outside points to the b o u n d a ry 219

A.5 Function to augment the initial and final p o in t..............................224

References...228

vii

List of Figures

1.1 A two degree of freedom motion con tro ller................................... 3

2.1 Possible paths on rectilinear grid .. 16

2.2 Path selected by UAV on rectilinear g r i d ..16

2.3 Visibility graph approach..17

2.4 Voronoi graph for 50 th re a ts ... 18

2.5 Trap situation due to local m in im a ... 24

2.6 No passage between closely spaced radars..25

2.7 Mass spring damper system showing ith mass under the influence

of fo rce s .. 26

3.1 Coordinate s y s te m .. 46

3.2 Relation between 0 and i p .. 52

3.3 Optimal tra je c to ry ...54

3.4 Optimal trajectory for Ro = Rf = 1 and Of = 4 5 ° 55

3.5 Optimal trajectory for the special case where Of = 0 57

3.6 Possible locations of radars and end p o in ts59

3.7 Geometry of two radar p rob lem ...60

3.8 Comparison path for radars of equal transmission power, ot.\ = a2 62

3.9 Comparison path for radars of unequal transmission powers . . . 64

3.10 Optimal trajectories for equal power radars for scenario 1 67

3.11 Optimal trajectories for unequal power radars for scenario 1 . . 67

3.12 Cost of the optimal trajectories for equal power radars for sce­

nario 1 ...68

3.13 Cost of the optimal trajectories for unequal power radars for

scenario 1 ...68

3.14 Optimal trajectories for equal power radars for scenario 2 70

3.15 Optimal trajectories for unequal power radars for scenario 2 . . 71

3.16 Cost of the optimal trajectories for equal power radars for sce­

nario 2 ... 71

3.17 Cost of the optimal trajectories for unequal power radars for

scenario 2 ...71

3.18 Optimal trajectories for scenario 3 using equal radar powers . . 73

3.19 Optimal trajectories for scenario 3 using unequal radar powers . 74

3.20 Cost of optimal trajectories for scenario 3 using equal radar powers 74

3.21 Cost of optimal trajectories for scenario 3 using unequal radar

pow ers... 74

4.1 Single vehicle single obstacle path for N = 120 and without any

constraints on the minimum velocity and acceleration................... 87

4.2 Single vehicle single obstacle path for V = 130 and without any

constraints on the minimum velocity and acceleration................... 87

4.3 Single vehicle single obstacle speed map for N = 130 and with­

out any constraints on the minimum speed and acceleration . . 88

4.4 Single vehicle single obstacle acceleration map for N = 130 and

without any constraints on the minimum speed and acceleration 88

4.5 Single vehicle three obstacles path for N = 155 and without any

constraints on the minimum velocity and acceleration...................89

4.6 Single vehicle three obstacles speed for N = 155 and without

any constraints on the minimum velocity and acceleration . . . 90

4.7 Single vehicle three obstacles acceleration for N = 155 and with­

out any constraints on the minimum velocity and acceleration . 90

4.8 Model Predictive Control Schem e...92

4.9 Optimal trajectories calculated using modified finite receding

horizon control for three UAVs moving towards the same target

with upper and lower bounds on speed and acceleration................. 95

4.10 Speed and acceleration for UAV1 .. 95

4.11 Speed and acceleration for UAV2 ...96

4.12 Speed and acceleration for U A V 3 ...97

ix

4.13 Points on the trajectory with maximum solution time for both

UAV1 and U A V 2.. 98

4.14 Time taken by MILP to solve the problem at each time step for

full simulation...98

4.15 Time taken by MILP to solve the problem at each time step for

two different time ranges...99

4.16 Turning rates for UAV1, UAV2 and U A V 3.......................................99

4.17 Dynamical boundaries for risk a r e a ... 100

4.18 Peak and total computation time for 100 randomly generated

data s e ts ...103

4.19 Average risk and total flight time for 100 randomly generated

data s e ts ...104

4.20 A multi-vehicle scenario and trajectories for three UAVs using

dynamic boundary formulation ...105

4.21 Distances between the UAVs during flight105

5.1 The function softStep(x,5,s) with s = 0.5,1,2 109

5.2 Hit probability for long range S A M ... 110

5.3 Different crash probabilities with /ifree = 20 and s = 1,2,3 . . . 1 1 1

5.4 Search D is k .. 113

5.5 Local minimisation and maximum turn angle................................. 114

5.6 Paths obtained for thresholds, a = 0.01,0.5,1 121

5.7 Variation of distance covered with th re sh o ld 121

5.8 Variation of Average Risk with threshold 122

5.9 Minimum risk path for order 1 ..122

5.10 Minimum risk path for order 2 ..123

5.11 Minimum risk path for order 3 ..123

5.12 Minimum risk path for order 4 ..123

5.13 Minimum risk path for order 5 ..124

5.14 Path obtained in 3D for all targets in the same plane without

considering any restriction to maximum heigh t..............................124

5.15 Path obtained in 3D for all targets in the same plane and con­

sidering a cost due to h e ig h t.. 125

5.16 Local minimization scheme with constraints when the target is

outside the search cone and is nearest to the left boundary of

the c o n e ..127

5.17 Local minimization scheme with constraints when the target is

inside the search cone.. 127

5.18 Local minimization scheme with constraints when the target is

outside the search cone and is nearest to right the boundary of

the c o n e .. 127

5.19 Incremental distance in one simulation s tep 128

5.20 Threat exposure level along the trajectory of each strategy . . .132

5.21 Comparison of the trajectories at time 6 m in133

5.22 Comparison of the trajectories at time 50 m i n133

5.23 Comparison of the trajectories at time 60 m i n133

5.24 Comparison of the trajectories at time 80 m i n134

5.25 Comparison of the trajectories at time 90 m i n134

5.26 Comparison of the trajectories at time 100 min134

5.27 Comparison of the trajectories at time 110 min135

5.28 Comparison of the trajectories at time 120 min135

5.29 Comparison of the trajectories at time 130 min135

5.30 Comparison of the trajectories at time 158 min136

6.1 Incomplete Voronoi diagram for 30 th re a ts139

6.2 Delaunay Triangulation for 30 th rea ts ... 140

6.3 Complete Voronoi diagram for 30 th re a ts143

6.4 Incomplete Voronoi graph for 50 randomly generated threats

scattered in 200 x 200 square unit a r e a ..144

6.5 Complete Voronoi graph for 50 randomly generated threats scat­

tered in 200 x 200 square unit a r e a .. 144

6.6 Incomplete Voronoi graph for 100 randomly generated threats

scattered in 200 x 200 square unit a r e a ..145

6.7 Complete Voronoi graph for 100 randomly generated threats

scattered in 200 x 200 square unit a r e a ..145

6.8 Threat cost calculation... 146

xi

6.9 A selected Voronoi path (red) and the tuned path (pink) using

local optimization.. 152

6.10 Typical waypoints w^s generated from the bouncing algorithm:

Wi and w7 are given initial and targets points, respectively. The

intervals [u/i, u>2] and [ŵ , w7\ correspond to the first phase, and

the interval [w2 ,ws] the second phase. The shaded cells denote

obstacles..162

6.11 23rd scenario.. 163

6.12 Minimum risk trajectory using MILP for 23rd scenario 163

6.13 Minimum risk trajectory using visibility approach for 23rd scenario 163

6.14 Minimum risk trajectory using probabilistic local minimization

approach for 23rd scen ario ..164

6.15 Minimum risk trajectory using modified voronoi approach for

23rd scenario.. 164

6.16 Minimum risk trajectory using bouncing technique for 23rd sce­

nario when risk threshold was set at 0.08. The path starts from

“A”and ends at “L”via “B”, “C”, “D”, “E”, “F”, “G”, “H”,

“G”, “F , “F”, “E”, “D”, “C”, “J”, “K” and “J”. Note that the

path from “G”to “I” involves the numerous transitions between

phase I and phase II. As the UAV approaches “F”from “I”, it

finally turns its heading towards “E”, not “G”, because this

choice minimizes the distance to the target point at “F”...............165

6.17 Minimum risk trajectory using bouncing technique for 23rd sce­

nario when risk threshold was set at 0.1. As oppose to the pre­

vious case, there exist another safe path passing through “F” as

a result of increasing risk threshold...165

6.18 Peak computation time for one hundred simulations................... 166

6.19 Peak risk for one hundred simulations..166

6.20 Average risk for one hundred simulations......................................166

6.21 Total computation time for one hundred simulations................... 167

6.22 Flight time for one hundred simulations...167

7.1 Cooperative control architecture... 171

xii

7.2 Parking or loiter circles for the UAV ... 178

xiii

List of Tables

3.1 Scenarios for trajectory optimization against two rad ars 59

3.2 Calculated data for two equal power radars for scenario 1 67

3.3 Calculated data for two equal power radars for scenario 2 70

3.4 Calculated results for two equal power radars for scenario 3 . . . 73

4.1 Parameters used in the simulation.. 96

4.2 Parameters used in the simulation using dynamic boundary for­

mulation 103

5.1 Radars locations and their ran g es ... 120

5.2 Data for different orders of visits .. 122

6.1 Summarized comparison re s u l ts ...160

6.2 Success rate for different m ethods..160

xiv

Chapter 1

Introduction

1.1 M otivation

The capabilities and roles of Unmanned Air Vehicles (UAVs) are evolving

and new concepts are required for their control [19]. Today’s UAVs typically

require several ground based operators per aircraft but future UAVs will be

designed to make tactical decisions autonomously and will be integrated into

coordinated teams to achieve high level goals, thereby allowing one operator

to control a group of vehicles. New methods in planning and execution are

required to coordinate the operation of a fleet of UAVs. An overall control

system architecture must be developed that can perform optimal coordination

of the vehicles, evaluate the overall system performance in real time and quickly

reconfigure to account for changes in the environment. Cooperative control

of multiple UAVs is a subject to which interest is increasing in the research

community. Research has focused primarily on three areas: UAV formation

flight, cooperative path planning (e.g. rendezvous), and resource allocation

(e.g. target assignment).

1.1.1 Areas of Application

The use of UAVs is vast and development in many different areas of applica­

tions is possible. Examples include:

Telecommunications A UAV could be used to provide live video for news

1

and sports events. An internet link could also be provided to include the

same content on the web.

W eather and atm ospheric m onitoring UAVs could be used to obtain tem­

porary weather information and they could be launched at any time when

needed. Also UAVs could be used for atmospheric monitoring of pollu­

tion.

Em ergency com m unication node In the event of an emergency, UAVs

could be used to act as communication relays to assist in the coordi­

nation of relief efforts. This could be accomplished even in the midst of

widespread destruction since UAVs could be sent from a distant location.

Security and border pa tro l UAVs could be used in conjunction with ground

personnel to give real time information on the location of trespassers.

Also, this same information could be used to identify a suspect.

M ilitary There are many military applications such as the suppression of

enemy air defences and there will be an emphasis on this area in the

thesis.

1.1.2 Advantages of UAVs over M anned Aircraft

The potential advantages of UAVs over their manned counterparts are sub­

stantial and provide the motivation to further developments.

M anoeuvrability Due to the absence of a pilot, the forces that a UAV can

sustain are limited only by the material made to construct it. This

can significantly increase the manoeuvrability of a UAV relative to its

manned counterpart. Instead of the usual 9g limit for a manned aircraft,

UAVs could potentially be designed to achieve the 40g to 50g perfor­

mance of a modern missile.

Low hum an risk UAVs are ideal for situations in which the risk to the pilot

of a manned aircraft would be unacceptably high. One example of this

situation is the SEAD (suppression of enemy air defences) mission which

2

involves attacking well defended areas containing a high concentration

of enemy surface to air missiles (SAMs). Such missions are extremely

risky as the chance of being attacked by these defensive forces is high.

Therefore UAVs are well suited for this type of mission since there is

no risk to any pilot. After UAVs have made the initial attack manned

aircraft could come in for subsequent strikes at the target.

Low cost UAVs could cost significantly less than manned aircraft. Most of

these savings will come from there being no need for highly trained pilots.

W eight savings Because the UAV contains no pilot, it also does not need to

contain any of the support equipment that a pilot requires such as an

ejection system or instrumentation. This weight saving can be dedicated

to improving the performance of the UAV or to increasing its payload of

sensors or weapons.

Xd

Xo

Tracker Plant

Observer

Trajectory
Generator

Figure 1.1: A two degree of freedom motion controller

1.2 Controlling Autonomous UAVs

Controlling a vehicle is not a simple task, because the environment as well

as the dynamics of the vehicle must be taken into account while planning its

motion. A typical two degree of freedom motion controller is given in Figure

1.1. The motion controller consists of two parts: a trajectory generator (high

level control) and a trajectory tracker (low level control). Higher level control

or intelligent motion planning resides at the upper level of the architecture and

3

is an essential part of an autonomous vehicle. A set of goals is fed into a tra­

jectory generator which also receives information about the system states from

the system observer along with information about the environment. The error

between planned and actual trajectories is passed on to the trajectory tracker

which generates a corrective action. The performance of these main blocks

depends on the performance of sensors, estimation algorithms and communi­

cation. The vehicle can be a free flying robot, spacecraft, aircraft, helicopter,

mobile robot or any autonomous guided vehicle. The aforementioned objects

are quite different with respect to their motion abilities and ranges of envi­

ronmental perception. For example, fixed wing aircraft cannot fly with low

velocities and their turning radii are quite large compared to mobile robots

which can stop almost immediately and they can relatively easily reorient

themselves. Moreover, in direct contrast to mobile robots, aircraft can detect

obstacles at long distances and the number of obstacles in their environment

is usually relatively small. This variety of vehicles makes the development of a

general motion planning algorithm difficult. Before describing motion planning

in detail in the next section, the other key technologies, which are necessary

to achieve the goal of increased autonomy of unmanned vehicles to perform a

mission, will be described.

1.2.1 Sensor Technology

To enable autonomy of unmanned vehicles, each vehicle must be equipped with

sensors that can provide the necessary information for the controller and the

planner to make decisions and operate in the environment. Dynamic planning

cannot be done without the data from the on-board sensors that detect not

only objects in the environment, but also the states of the vehicle itself. Ex­

amples of sensors used to measure the states of a vehicle are optical encoders,

tachometers, Inertial Measurement Units (IMUs), Global Positioning Systems

(GPSs). A range of devices can be used to sense the environment in which a

vehicle operates. Ultrasonic and infrared sensors are proximity sensors which

can detect a nearby obstacle. A more efficient proximity sensor is a laser range

finder. An optical device like a CCD camera can be used to detect objects

4

in the environment, but it requires image processing to interpret the recorded

images. An advantage of optical devices is that they can not only detect the

position of an object but can also identify the type of the object and its shape.

1.2.2 E stim ation Algorithm s

The raw data detected from sensors is often unusable by the controller and

the planner of each vehicle. The data must first be processed by an estimation

algorithm. Estimation of the current position of the vehicle alone is not a

trivial problem, especially for indoor applications where GPS cannot be used.

One approach for this estimation problem is Markov localization proposed by

Fox et al. [35]. A similar method based on particle filters is Monte Carlo

localization proposed by Thrun et al. [101]. Both of these approaches provide

an estimate of the current position of the vehicle using on-board proximity

sensors. In order to compute future actions, the planner of each vehicle also

requires information about the environment which can be represented as a

2D or 3D map of the environment. In uncertain environments, the estimator

must be able to generate and update the map in real-time while the vehicle

is operating in the field. A more interesting estimation problem is how to

fuse all the sensor data detected by multiple vehicles in the field and use it to

build a map of the environment. The vehicle estimator must also be able to

identify and monitor failures that might occur during the mission using the

sensor data. A failure can result in reduced capabilities or limitations on the

vehicle performance. In addition, the estimator must be capable of predicting

the future states and capabilities of the vehicle. The planner requires this

information in order to adapt the action plans according to the failure and to

insure the completion of the mission objectives.

1.2.3 Com m unication Technology

Communication is essential for the implementation of autonomous vehicles, es­

pecially in a distributed planning architecture where each vehicle plans its own

actions. It is the basis for the interactions among the vehicles and also with hu­

5

man operators. Vehicles cannot cooperate and coordinate their actions if they

cannot communicate and share information. The structure or the pattern of

the flow of the exchanged information among the vehicles is called a communi­

cation network. The number of research efforts in networking has skyrocketed

recently with the popularity of the internet. However, more research is needed

to improve robustness, reliability, and security.

1.2.4 R obust A daptive Control System s

An autonomous vehicle must have an on-board control system that receives the

commands from the planner and controls the actuators in response to the input

commands. The control system must be robust to the noise, disturbances and

un-modelled dynamics in the system. A typical controller is designed using a

model of the system which is free of noise and disturbances. This situation is

unlikely to exist in real-world systems. To handle this problem, the controller

must be designed with the consideration that these uncertainties exist in the

system. The design must not only consider the performance of the control

system, but also the robustness and stability of the system to the unknown

(or partially known) uncertainties. Another desirable feature of the controller

is the ability to adapt the characteristics of the controller in order to maintain

the desired behaviour and response of the system in the event of failure or

an unpredicted situation. There is an extensive literature on adaptive control

systems [103], [50], [87]. Adaptive control has been an active research subject

especially in aerial vehicle applications. Aircraft operate over a wide range of

speeds and altitudes, and their dynamics are complex and nonlinear. Typical

flight control designs are based on linearized models of the aircraft at a certain

operating point. To control an aeroplane at different operating points, gain

scheduling can be used to select the controller gains from a pre-computed

lookup table based on the current operating point. However, this approach

may involve many different operation points, and the unpredicted changes in

the system may lead to instability of the system or a loss of performance. Thus,

to improve the robustness and performance of autonomous systems, unmanned

vehicles should be equipped with robust adaptive control systems.

6

1.3 M otion Planning

Usually the task of motion planning is divided into two stages: path planning

and trajectory planning. Path planning has an environmental description as an

input along with start and goal points. It generates a geometrical path which

the vehicle needs to follow. This path, in sequence, is then time-parameterized

by a trajectory planner. The trajectory planner, based on the dynamic char­

acteristics of the vehicle, determines the time-dependent characteristics like

positions, velocities and accelerations.

Motion planning is an important issue in the development of autonomous

air vehicles. Without a pilot, computer algorithms must be developed that

generate a flight path in real time. This is a challenging problem for several

reasons. For military applications, the algorithm must compute a stealthy

path, steering the aircraft’s radar signature around known enemy radar loca­

tions. In addition, it is often desirable to have trajectories that correspond

to an optimal performance according to some criteria, e.g. minimum energy

consumption and minimum time usage. An important role of the trajectory

generator is to provide the tracking controller with feasible reference trajec­

tories that comply with constraints inherent to the system or externally im­

posed such as system dynamics, path and actuator constraints, and end-point

conditions. Trajectories that do not comply with a system’s dynamics and

constraints have a small likelihood of implementation, since they might place

demands on the controller beyond its limitations. The algorithm must allow

for coordination among multiple UAVs and it must run in real time, since

enemy threats can change during a mission, forcing a path replan. It must

be memory and computationally efficient, since it will be run on an airborne

processor.

Path planners are generally divided into local and global and do not usu­

ally take into account the dynamics of the vehicle. The former group works

in on-line mode while the later both on-line and off-line modes. Global path

planning requires all information before any motion of a vehicle is performed.

When global information is known in advance but it is neither perfect nor

7

predictable, then there is a tendency to design so called local path planners

[9, 27]. Although such planners lead to the loss of path optimality but their

actions are still focused on target reaching while avoiding threats. The known

approaches to path planning might be divided into four categories: determin­

istic, stochastic, learning-based, and reflexive (behavioural).

Deterministic approaches are used most often in global path planners. Two

such approaches are Voronoi diagrams [99] and the visibility graphs [47]. A

clear disadvantage of all global motion planners is the replanning needed each

time the environment changes. This happens frequently with moving threats.

A local path planner does not suffer from this disadvantage.

When moveable obstacles are considered and their characteristics are known

in advance, they may be incorporated in the global path/trajectory planner

by adding to spatial variables a time variable and solving the task problem in

such an augmented space [59]. More often, to represent dynamic environments,

i.e. with moveable obstacles and unknown or partly unknown characteristics,

a stochastic approach is used [14, 108]. In stochastic approaches, planners

usually work as local planners and the decision to move a vehicle in a partic­

ular direction is made on the basis of minimizing a risk probability function.

The popular probabilistic approaches to path planning are randomized kino-

dynamics [45, 62] and probabilistic road map (PRM) approaches [51, 60, 61]

etc.

Machine learning techniques are applied in unknown environments [46].

These techniques are based on the assumption that the world is not known in

advance, but knowledge about it may be acquired. There are some regularities

in the environment and the vehicle can gain knowledge about them while

navigating.

All methods mentioned above build a model of the world and plan actions

consistent with this model. Also, there are other methods which do not employ

any world model building procedures and they act behaviourally (reflexively).

Instead of building models, reflexive planners act quickly to avoid the nearest

obstacles. Unfortunately they do not exhibit intelligent behaviour, so usually

they are implemented as a low level control system controlled by higher levels.

Such a hierarchical architecture organized in layers has been proposed in [11].

The problem of trajectory planning has been studied for decades in a variety

of different contexts. The aerospace path planning problems of the 1960’s were

solved largely through the application of the calculus of variations, itself in­

vented hundred of years earlier, e.g. [13, 57, 64]. The development of industrial

robotic manipulators in the 1970s and 1980s encouraged researchers to study

new path planning methods largely motivated by collision avoidance. More

recently the focus in robotics has shifted to path planning for autonomous mo­

bile robots. Although most of this work concerns wheeled vehicles, e.g. [20],

path planning algorithms have been developed for UAVs as well as underwater

robots.

A mixed integer linear programming (MILP) formulation of the autonomous

vehicle path planning problem is proposed in Richards et al. [84, 85], Richards

and How [86], Schouwenaars et al. [89]. The MILP formulation of the cost,

obstacle avoidance and collision avoidance were considered in [89] and two so­

lution strategies proposed: a receding horizon strategy and a fixed arrival time

approach. It was shown that receding horizon strategies, while computation­

ally more attractive than strategies aimed at computing complete trajectories

a priori can lead the system to unsafe conditions where the MILP is no longer

feasible. In [84, 86], constraints to enforce upper limits to both velocity and

acceleration were further included and the MILP formulation was extended to

consider multiple waypoint path planning in which each vehicle is required to

visit a set of points in an order decided during the optimization for minimum

completion time. The approach proposed in [84] decomposes this large problem

into assignment and trajectory problems, while capturing key features of the

coupling between them. This allows the control architecture to solve an alloca­

tion problem first to determine a sequence of waypoints for each vehicle to visit

and then concentrate on designing paths to visit these pre-assigned waypoints.

Since the assignment is based on a reasonable estimate of the trajectories, this

separation causes a minimal degradation in the overall performance but still

it cannot be used in real time.

9

1.4 Assum ptions

The algorithms developed in the thesis are based on the following assumptions:

• The UAVs have limitations on speed, acceleration and duration of flight.

• The environment in which UAV operates is assumed to consists of a

number of surface to air missiles (SAMs).

• A SAM fire unit is assumed to consist of one radar used for both surveil­

lance and tracking and a number of missile launchers.

• The fire units are integrated to form an integrated air defence system.

The radar can be switched off, if an incoming anti-radiation missile is

detected.

• Some of the surveillance radars are on alert using continuous transmis­

sion, while the other air defence units remain silent and serve as pop-up

threats.

• Each UAV is equipped with suitable sensors:

- An inertial measurement unit (IMU), which can be used to measure

the system states.

- a proximity sensor (e.g. infrared sensor), which can be used to sense

the environment in which a vehicle operates.

- a radar warning receiver (RWR), which gives a bearing on an emit­

ting radar with certain accuracy. The range of RWR mounted on­

board a UAV is assumed slightly higher than the range of the of the

radar as defined in the design challenge of the GARTEUR Flight

Mechanics Action Group 14 [36].

• Each vehicle contains a guidance system that is capable of guiding the

vehicle along the path generated by the planner.

• Each vehicle has a perfect controller to activate the on-board payload

according to the planned actions.

10

• Each vehicle has communication devices to communicate and share infor­

mation with the other vehicles and the ground station. The bandwidth

and quality of those communication channels may be limited.

• Each vehicle has an estimator which merges data provided by the on­

board sensors and shared information from the other vehicles in order to

estimate the necessary states of the system needed by the planner.

1.5 Contributions and Structure o f the Thesis

Most of the previous work in path planning to the targets that avoids threats

is either computationally extensive which does not allow re-planning when

the environment changes or gives trajectories that are not feasible within the

dynamic constraints of the UAVs. There are also factors like terrain avoid­

ance, collision avoidance, fuel consumption etc that need to considered while

planning paths. The development of a comprehensive theory of cooperative

control for UAVs is a vast problem, beyond the scope of a single dissertation.

A realistic, yet challenging problem statement for this dissertation is as follows:

The objective is to develop real time approaches to a problem of UAVs path

planning that increase the UAVs survivability, while meeting mission specifi­

cations, by decreasing susceptibility to threats containing multiple radars, col­

located with launch sites for radar-guided SAMs and also seeking fundamental

truths concerning autonomous air vehicle and their cooperative control.

On the basis of the research carried out, four papers have been published

[43], [52], [54], [53]. The main contribution of the thesis are:

• An optimal control formulation for safe navigation considering multiple

objectives is proposed and necessary conditions governing the optimal

solution are derived. The overall objective consists of the sub-objectives

of terrain avoidance, radar avoidance and minimum path length. Fur­

thermore the analytical solution for the optimal trajectory and cost func­

tion for single radar risk minimization has been derived and a gradient

method is proposed to get an optimal numerical solution for different

radar geometries.

11

• A novel real time receding horizon control technique using mixed integer

linear programming is proposed that solves the problem of infeasibility

encountered by using finite horizon, and its efficiency is demonstrated

through example scenarios. The strategy uses the novel dynamical soft

boundary concept for modelling of the radar zones and collision avoidance

constraints.

• A three dimensional probabilistic approach for unmanned air vehicles

(UAVs) path planning is presented. For this approach, a probabilistic

cost function is developed that accounts for various factors in the model

like limited fuel, collisions, crashes with ground objects etc. The novelty

of the algorithm relies in its real time applicability due to a very low

computational load in spite of the fact that it finds a path in three

dimensions. The paths are locally optimal and are feasible for the UAV

to follow by keeping the turn angle within certain maximum limits.

• Software is developed (see Appendix A) that includes extra subroutines

to modify the available Voronoi code in order to remove the infinity and

far away nodes and also includes the corner points of the operational

area. Local optimizations are used to best tune the path obtained from

this software. The software is used to find the Length Constraint Least

Risk (LCLR) paths.

• All the above techniques are compared for different parameters includ­

ing success rate, peak risk, average risk, maximum time to compute a

waypoint and total flight time.

• Finally, a decentralized cooperative control architecture is proposed that

can be used for a fleet of UAVs.

The structure of the thesis is as follows:

After the introduction in chapter 1, Chapter 2 presents an extensive lit­

erature survey and discusses some techniques in detail. Chapter 3 is about

the optimal control approach to the design of a safe UAV path. Chapter 4

discusses the mixed/integer linear programming method and uses a receding

12

horizon strategy with soft dynamical boundaries for radar zone modelling to

solve the problem. Chapter 5 presents the novel probabilistic formulation.

Chapter 6 introduces the Voronoi diagram approach as a global path plan­

ner. It gives details of the software developed and uses it to find the length

constraint path for a UAV. A comparison of the different path planning tech­

niques is given at the end of this chapter. The proposed cooperative control

architecture is given in Chapter 7.

Finally conclusions and future directions of research are given in Chapter 8.

13

Chapter 2

Literature Review

Planning is a main part of an array of engineering problems especially in op­

erations research and artificial intelligence. In the past several decades, many

researchers have put considerable efforts into research related to planning. For

robot path planning alone, there exists a great number of different proposed

approaches and system architectures having prose and cones over the others.

The recent advancements in the technology of sensors, estimation and commu­

nication have opened the door to the possibility of using multiple autonomous

vehicles to perform complex missions. Therefore multi-vehicle coordination

has been one of the most active areas in the last decade. This chapter reviews

some of the previously presented research with emphasis on those areas related

to the topics of this thesis. The research presented here is a combination of

several subproblems: path planning, multi-vehicle coordination, dynamic plan­

ning, and cooperative planning. Most of the work previously presented in this

field has focused on a subset of these subproblems. Very little published work

is targeted at the combined problem. The following sections review previous

research related to each of the subproblems.

2.1 Single Vehicle Path Planning

One of the main functions of an autonomous vehicle is to move itself from

some initial location to locations that are required for the vehicle to execute

assigned tasks. This simple function actually involve several issues. First, the

14

vehicle must know where it currently is and the next location it should go.

Secondly, it must also have the ability to plan a route between the locations

and then navigate itself along the planned route. In this section, we discuss in

detail, the several different techniques of path planning for a single vehicle to

navigate in a given environment.

2.1.1 Graph-based Approaches

One of the most popular approaches to path planning is graph-based search.

In this approach, as described by Murphy [71], the environment in which the

vehicle operates is discretised and represented by a graph which is composed

of a number of nodes linked together with arcs. Each node corresponds to a

location in the environment and an arc links two adjacent nodes. There is

cost associated with an arc. A path in this graph representation is a series of

connected arcs. There is a trade off between how much detail is included in

the graph structure and how long it takes to search the graph for an optimal

solution. The most popular approaches are the rectilinear graph, the visibil­

ity graph and the Voronoi graph. In the rectilinear grid approach, the path

planning area is quantized into M x N locations corresponding to the x and

y directions of the two dimensional space. Node spacing is critical in UAV

applications due to the turning rate constraint and the computations required

to solve the problem in real time. Heading can also be added to the graph

structure. It can be quantised to any desired level but a reasonable number

seems to be eight different headings at each of the M x N nodes. If we put a

turning rate constraint of 45 degrees on a grid of equal spacing in each direc­

tion, then at each node, the UAV may either continue in the current direction,

turn 45 degrees to the left or turn 45 degrees to right. Figure 2.1 shows the

possible paths for a UAV which starts from node (1,1) and whose destination

is the node (4,1). The path chosen by the UAV is shown with bold lines in

Figure 2.2.

Thrun [100] investigated the problem of high speed navigation of indoor

mobile robots using a grid based algorithm called value iteration. In this

work the map of the environment is created autonomously using sonar and

15

a " ■ n i l r

f (2,3) 0 4)

04)

Figure 2.1: Possible paths on rectilinear grid

• # • •
CM) CM) CM) (4 ,4)

04)

Figure 2.2: Path selected by UAV on rectilinear grid

camera information. The robot location and the map are estimated using

Bayesian analysis techniques. This work was tested on various mobile robots

and showed that the robots can effectively react to unanticipated obstacles in

the test environment.

In the visibility graph approach, the obstacles are usually polygons and

the set of possible paths for the UAV are the straight line segments. For each

obstacle, the vertices of each polygon are connected to all other vertices of

any other polygon provided an unobstructed straight line can be connected

between these vertices. In order to avoid collisions with the obstacles, the

vehicle in Figure 2.3 is represented by a point and the obstacles are expanded

by an amount sufficient so that the real vehicle will not collide with them.

The combination of the dotted lines and solid lines (obstacle boundary) gives

16

Target ̂ Af

Figure 2.3: Visibility graph approach

the possible paths for the vehicle to follow. Each of the visibility graph line

segments are assigned a cost based on many different criteria such as segment

length or proximity to an obstacle. These segments are then searched using

Dijkstra’s algorithm [22] to find the lowest cost path. Neus and Maouche [72]

used the visibility graph to solve the path planning problem.

In the Voronoi diagram approach (see Figure 2.4)which is used in many

different fields, including computational fluid dynamics, computer graphics

and statistics, complete knowledge of the number and location of each obstacle

or in our case radar site will be assumed. Such a graph is constructed using

Delaunay triangulation and its geometric dual, Voronoi polygons. For every

triplet of radar sites, there exists a unique circle that passes through all three.

Consider only those triplets whose circle does not enclose any other radar site.

The set of all such triplets is called the Delaunay triangulation and the centres

of the circles are called Voronoi points, we may now construct a graph by

defining the vertices as the voronoi points. Edges are drawn to connect two

Voronoi points if and only if their associated Delaunay triangles share an edge.

By drawing all such edges, we construct the Voronoi diagram or graph. A

graph search algorithm such as Dijkstra’s algorithm or the A* algorithm [73]

can be used to find the shortest path. Several researchers have worked on this

17

Figure 2.4: Voronoi graph for 50 threats

graph based planning concept and exercised it on many applications.

Mata and Mitchell [66] proposed a new algorithm for path planning on

planar polyhedral surfaces. The terrain is presented as a sparse graph called

a pathnet which links selected pairs of vertices of subdivisions of the terrain.

They also gave analytical and experimental results which showed that the

algorithm can provide highly competitive solutions compared with other ap­

proaches. One advantage of this method is that the discretisation of the terrain

is independent of the scale of the available information about the terrain.

Bander [6] developed an adaptive A * algorithm which used a heuristic func­

tion to guide the search process of the A* algorithm to converge faster. The

heuristic function is derived from a set of pre-determined optimal paths and

a set of desirable paths which may or may not be optimal. This work also

investigates mechanisms for incorporating several sources of knowledge and

possibly human inputs to accelerate the search process.

2.1.2 Probabilistic Road Map Planners

Probabilistic Road Map (PRM) planning is one of the most efficient methods to

compute collision free paths for vehicles or robots of virtually any type [55]. It

is, in particular, suitable for robots with many degrees of freedom. This method

consists of two phases: a building phase and a query phase. The building phase

is the construction of a graph called the road map. The nodes in the road are

collision free configurations and the edges linking the nodes are collision free

paths for a robot to move from one configuration to another. The road map

18

is constructed by repeating the following two steps. First, a point is randomly

picked in the configuration space and tested to see if it is in the collision

free space. This step is repeated until the randomly chosen configuration is

collision free. The second step is to connect the chosen configuration to the

road map using a fast local planner. The above mentioned two steps are

repeated by adding nodes and edges to the road map until a certain limit is

reached. This limit has to be chosen based on the application. One possibility

would be to impose a limit on the size of the road map. Another possibility

would be to terminate the algorithm after a specified time has elapsed. The

most important part in the road map construction algorithm (and also the

query phase described later) is played by the local planner used. This sub­

planner within the road map planner is used to compute paths between two

configurations within the road map. Unlike the road map planner, this local

planner is simple and not very powerful. An example for a possible local

planner is a straight line planner that tries to connect two configurations with

a straight line. It is obvious that this planner will fail if an obstacle is present

between two nodes or configurations. For that reason the local planner is not

very useful on its own. Together with an algorithm to find a way within the

road map graph, however, the local planner can be used to find very complex

paths around arbitrary obstacles. The general idea is that the road map graph

describes the global structure of collision free space while the local planner

is responsible for the details. Only the local planner actually computes the

intermediate configurations of the final path. The query phase is finding a

path between initial and goal configurations by connecting these configuration

nodes to the road map and searching the road map for a sequence of edges

linking the two nodes. This method was originally developed for holonomic

robots in a static environment. One problem associated with query phase

is that the paths returned may be twisted and overly long. For that reason

smoothing and short-cutting the returned path is often required. One possible

way is to try and skip waypoints. This is done by trying if the local planner

can find a path between waypoint i and waypoint z + 2, thus skipping waypoint

i + 1. A way to smooth the path for a rigid body robot would be to compute

19

some kind of spline using the waypoints as orientation, instead of connecting

them with the local planner. Care must be taken to ensure that this spline

path does not collide with an obstacle. Another problem is how powerful the

local planner should be, considering that more powerful planners take more

time to compute. Speed is more important than power because the running

time of the local planner is the main component in the running time of the

building phase as well as the query phase.

Overmars and Svestka [75] applied probabilistic road map techniques to

simple holonomic robots such as free flying planner robots as well as non-

holonomic robots with constrained kinematics and high degrees of freedom.

This work shows that this technique can be extended to handle kinematic

constraints in car like robots.

Lavalle and Kuffner [62] proposed a randomised path planning technique

related to PRMs. This technique is used to compute collision free kinodynamic

trajectories for high degrees of freedom robots with kinematic and dynamic

constraints. Using a state space formulation, it transforms an n-dimensional

planning problem in configuration space into a 2n-dimensional problem in state

space. The key to this approach is the construction of a tree that can be used

to explore the state space. This technique was applied to the path planning of

hovercraft and satellites in cluttered environments.

Song et al. [94] proposed a new method of building and querying probabilis­

tic roadmaps. In this method, some of the validation checks in the building

phase are postponed to the querying phase. A coarse roadmap is built dur­

ing the building phase and then further refined in the querying phase in the

area of interest for the query. The roadmap is also customised to any spe­

cific query preferences such as maximum number of sharp turns. The results

showed substantial improvement in performance and efficiency of the planning

process.

2.1.3 Evolution-based Approaches

There are heuristic approaches that are gaining popularity. One of the most

widely used is neural networks. Neural networks are loosely modeled on how

20

the brain works. They are an attempt to simulate within specialized hardware

or sophisticated software, the multiple layers of simple processing elements

called neurons. Each neuron is linked to certain of its neighbors with varying

coefficients of connectivity called weights that represents the strengths of these

connections. Learning is accomplished by adjusting these weights to cause the

overall network to output appropriate results. Before a neural network can be

used, these weights need to be determined and this is referred to as training the

network. To accomplish this, many inputs are given to the neural network as

well as the associated desired outputs. The network weights are then adjusted

to make the network output resemble as closely as possible the desired output.

Once this training is finished, the output of the neural network is interpreted

as the solution to the problem. Glasius in [39] is among many people to

implement a neural network path planner. While they report good results for

their planner, there are several disadvantages of neural networks. One of the

most important is that training a neural network can consume a vast amount

of computer time, sometimes months, depending upon the application.

Genetic algorithms have been used to solve the path planning problem,

both in robotics and for UAV path planning. GAs are adaptive heuristic search

algorithms based on the evolutionary ideas of natural selection and genetics.

GAs simulate the survival of the fittest among individuals over consecutive

generations for solving a problem. Each individual represents a point in a

search space and a possible solution. A fitness score is assigned to each solution

representing the abilities of an individual to compete. The individual with

the optimal fitness score is sought. The GA aims to use selective breeding

of the solutions to produce offspring better than the parents by combining

information from both the parents. Parents are selected to mate, on the basis of

their fitness, producing offspring via a reproductive plan. Consequently highly

fit solutions are given more opportunities to reproduce, so that offspring inherit

characteristics from each parent. As parents mate and produce offspring, room

must be made for the new arrivals since the population is kept at a static

size. Individuals in the population die and are replaced by the new solutions,

eventually creating a new generation once all mating opportunities in the old

21

population have been exhausted. In this way, it is hoped that over successive

generations better solutions will thrive while the least fit solutions die out.

New generations of solutions are produced containing, on average, more good

solutions than in a previous generation. Eventually, once the population has

converged and is not producing offspring noticeably different from those in

previous generations, the algorithm itself is said to have converged to a set of

solutions to the problem at hand. One of the advantages of GAs over other

methods is that they can simultaneously search multiple regions of the search

space. This has the potential to be useful in UAV trajectory planning as

multiple good trajectories can be developed in parallel.

Sugihara and Smith [97] describe their method of using a rectangular grid

to parameterize the path and then employing genetic algorithms to find a

good sequence of waypoints from the start location to the goal location whilst

avoiding obstacles. Also Pellazar [79] describes his genetic algorithm approach

to solving the UAV path planning problem. While both authors agree that

genetic algorithms can provide high quality solutions, they also admit at the

same time that one of the major disadvantages of the approach is the high

level of computation that is required.

Fogel and Fogel [32] applied evolutionary programming to an optimal rout­

ing problem of autonomous underwater vehicles (AUVs). This work shows

that the planning algorithm can handle unexpected changes in dynamic envi­

ronments. They also consider a number of problems including multiple goal

locations, detection avoidance and cooperative goal observation for a pair of

AUVs. These complex problems were addressed by only modifying the perfor­

mance objective function.

Xiao and Zhang [106] presented an adaptive evolutionary path planner for

mobile robots. This approach combines off-line planning and on-line planning

in the same evolutionary algorithm. In this approach, a path is represented as

a set of waypoints chosen at random connecting the initial and goal locations.

The probability of selecting different mutation operators is adapted during the

search to improve performance.

Potter and Jong [81] developed the cooperative coevolution algorithm for

22

complex planning problems. This technique divides evolving solutions into

several interacting coadapted subcomponents described as cooperating species.

This work provides a case study involving the evolution of artificial neural

networks and shows that this planning architecture can solve very complex

problems which might not be possible with standard evolutionary algorithms.

Capozzi and Vagners [16, 17] presented an evolutionary technique for path

planning of an aerial vehicle in a simulated dynamic environment. The plan­

ning algorithm was tested in several complex scenarios: varying terrain, wind

variations, dynamic obstacles and moving targets. The simulation results show

that the algorithm can efficiently search simultaneously in space and time to

find feasible, near-optimal solutions.

Hocaoglu and Sanderson [44] developed an evolution based planning algo­

rithm using a multi-resolution path representation. This approach does not

require a map of the free configuration space. The use of the multi-resolution

path representation reduces the complexity of the planning problem and in turn

reduces the computation time. This work shows that the planning system can

be applied to mobile robots or manipulators with many degrees of freedom

and provides effective results. In addition, they also proposed a multi path

planning algorithm that generates multiple alternative paths simultaneously.

2.1.4 Analogous Formulation Approaches

Analogous formulation entails transforming the path planning problem to an

entirely different problem which has either already been solved or has conve­

nient methods of solution. An example is the potential field method which

can be used as an on-line planner or it can be used as off-line planner in the

mass-spring-damper case or a chain link system.

Potential Field as an On-line Planner

The idea of using the physical principle of potential fields has been used to

determine optimal paths for autonomous air vehicles. In this approach, the ve­

hicle is treated as a point mass under the influence of an artificial potential field

whose variations reflect the configuration of radars/obstacles. A radar exerts

23

a repulsive force while the goal location exerts an attractive force. The arti­

ficial force induced by the potential function at the the current configuration

is regarded as the most promising direction of motion, and path generation

proceeds along this direction by some increment in an iterative way. So at

each iteration the vehicle simply follows the path of steepest decent along the

negative gradient of this virtual field. In this way the vehicle will make its

way towards the goal point while avoiding the obstacles. This can be used

as an online path planning approach. McFarland [67] employed the potential

field approach against mono-static radars while studying the effects of min­

imising radar cross section through vehicle orientation. However, there are

some drawbacks with this approach [58].

Target

★

Obstacle

Vehicle

Figure 2.5: Trap situation due to local minima

Disadvantages: The two most important disadvantages are:

Trap Situation: Encountering traps, which are local minima in the po­

tential function due to the arrangement of the obstacles is one of the most

common problems with potential fields. This situation may occur when the

vehicle runs into a dead end such as a U-shaped obstacle. Figure2.5 illustrate

this problem, where R represents the resultant force of the potential field. This

situation can be prevented by the use of various algorithms resulting in paths

that are non-optimal.

No Passage Between Closely Spaced Obstacles: This situation arises when

a vehicle tries to pass between two closely spaced radars. The combined force

of repulsion of both radars along with the attractive force of the goal location

24

will prevent the vehicle from using a path that in realty it should be able to

take. In Figure 2.6, Fr is the resultant repulsive force from the two radars

and Fa is the attractive force pulling the robot towards the goal location. The

vector sum of these two forces is R and this will be the vector that the robot

will follow. Although the vehicle could physically fit between the two obstacles,

the potential field approach does not generate this solution.

Radar 2

Target

Vehicle

Radar 1

Figure 2.6: No passage between closely spaced radars

2.1.5 P o ten tia l F ield as an Off-line P la n n e r

In these methods, the potential field approach is used as an off-line approach

to find a complete solution to the problem from the start to the goal locations.

M ass-Spring-Damper System

This approach likens the path planning problem to a physical system with the

resulting steady state solution describing the path. In [10] Bortoff has used this

method to solve the path planning problem. In this method, the UAV path is

considered to be made up of a series of point masses connected to one another

by springs and dampers as shown in Figure 2.7. One end of the chain is fixed

to the UAV location, while the other is attached to the target location. The

length of the path can be adjusted by assuming constant speed of the UAV,

which we may normalise to 1 without loss of generality. This assumption is

made only for planning purposes. The actual speed may be adjusted along the

path in order to meet other requirements, e.g. rendezvous with other aircraft.

25

Let to be the time at the present UAV location and t f be the final location

time. The constant speed assumption simplifies the problem because the path

length is just t f — to. For proper adjustment of the path length, t f may be

fixed or free.

Radar

Figure 2.7: Mass spring damper system showing i th mass under the influence

of forces

Each threat location is the source of a repulsive force field that acts against

each mass according to an inverse fourth law (1 /d4). This causes the series

of masses to move away from the threats. This system is given an initial

configuration and then allowed to come to a steady state condition. At steady

state the point masses define the way-points that should be followed. The

steady state solution is calculated by solving a nonlinear, stable initial value

problem. Taking n* as the normal unit vector pointing from ith mass to (i — l)th

mass
{%i— 1 %i) / di

(yi-1 - Vi)/di
n i =

26

where

di = \J f a - 1 - Xi)2 + (yi-i - Vi)2

The two spring forces acting at ra* are

Fjfci = kdiUi

F /-2 =

The two linear viscous damping forces acting on mass i are given by

(2.1.1)

F « = 6

F&2 = b

X i - l

Vi-i

Xi

Vi

n, -

•n»+i

Xi

Vi

&i+1

Vi+1

n, n*

n*+i I n*+i

(2 .1.2)

The repulsive force acting on mass i is given by

QF = —n
r d f r

Where Q is the design parameter that represents the strength of the radar and

dr, n r are given by

nr =

dr — \J{Xi T (%fi 2/r)̂

•̂'7’) I df

{.Vi Vr) / dr

If there are N radars, the total repulsive force is

N N n
r= 1 r=l r

The equation of motion for the ith mass is given by

(2.1.3)

rru
Xi

Vi
— Ffci + Ffc2 + F{,i + F&2 + F r (2.1.4)

Disadvantages: When the chain of masses is nearby a set of radar sites,

the virtual force pulls the masses away from each other, stretching out the

chain. Conversely, in areas that are devoid of radar stations, the masses tend

to draw close together. This effect is undesirable because the masses are then

interpreted as way points. It would be more desirable to have a higher density

27

of way points near the radar sites, since one would expect the path to turn more

often in these areas. In other words, the approach provides its lowest resolution

data in the areas where high resolution is required. Also in this formulation,

damping is only provided along the direction of the line connecting one mass

to its neighbors. Thus, transverse modes that develop in the chain during

simulation are not well-damped. This increase the time required to reach the

stable equilibrium. By adding damping in the transverse direction, the solution

should converge faster.

Chain-Link System One way to overcome some of the difficulties of the

mass-spring-damper system is to replace the spring-damper sections of the

model with rigid links of equal lengths. This approach was developed by

McLain and Beard [69] and is based on the work of Udwadia and Kalaba

[102]. In this approach, the threats continue to exhibit the 1/d4 repulsive force

law but now instead of using springs and dampers, a straightening force from

within the chain of rigid links is used to take out sharp corners resulting a

flyable path for the UAV. The goal is to approximate the steady state shape

of the chain. A brief description of the approach is given below:

Consider a path made up of n + 2 point masses each having unit mass

constrained to a two dimensional surface. Let zq = [x0, yo]T, Z\ = [x\, yi]T, z2 =

[%2 , y2]T, " ' ,zn = [£n> yn]T, Zf = [;Tf, yf]T G 5ft2 be the locations of the masses,

where z0 and z/ are the fixed initial and final positions respectively. If there

are no constraints, then the dynamic equations describing the motion of the

remaining n point masses are
Zi= Ui

z2 — u2
.1.5)

Zn Un

where iti, u2, • • • , un G 9?2 are the applied forces. Define 2 = [z[, z j, * '' > zn Y

and u = [uj, U2 , • • • , «^]T, then we can write (2.1.5) as

z = u (2.1.6)

28

Each Ui consists of two terms given by

Ui F t h r e a t ^ Z i) " t " F s t r a i g h t e n f e i) (2.1.7)

where
R

such that pr G 5ft2 is the position of the r th threat, 7 is a weighting factor and

R is the total number of threats. Also

i W « e ,(*) = S I ^ +2„ + *
\ Z i - Z i + 2 \\ \ \ Z i - Z i - 2 \

where 8 is a weighting factor for the straightening force which consists of two

terms. The first force pulls the ith node until the sub-chain composed of the

(i — 2)nd, (i — l)st and ith are in a straight line. The second force pushes the

ith node in such a way that i, i + 1 and i + 2 nodes form a straight line.

Suppose that all point masses remain at a constant distance L from each

other. This constraint, in matrix form, is given by

<t> =

11*1 - Zoll2 - L2
W z i - z ^ - L 2

11*/ - * n l |2 - L2

= 0 (2.1.8)

Differentiating this constraint with respect to time results in the velocity con­

straint
2 (^ i - z q) t { z 1 - i 0)

2(z 2 - z 1) t (z 2 - ii)
= = 0 (2.1.9)

2(zf - zn)T(zf - zn)

Differentiating once again results in the acceleration constraint, which in ma­

trix form is given by

A(z)z = b(z) (2.1.10)

29

where

M*) =

(zi - z0)T 0

- (Z 2 - Z 1) T (Z2 - Z i) T

~ { z n ~ Zn - l) T (Zn - 2n_ i) T

0 ~{zf - zn)T

b(z) =
(z i - i 0) T (i i - i o)

(zf - zn)T(zf - zn)

Udwadia and Kalaba [102] show that using Gauss’s principle from ana­

lytic dynamics, that the equation of motion (2.1.6), subject to the constraint

(2.1.10), is given by the equation

z = u + A+(z)(b(z) — A(z)u) (2 .1.11)

where A+ is the pseudo-inverse of A. The initial conditions for the system

(2.1.11) must be chosen such that both 0 = 0 and 0 = 0 are satisfied. While

solving system (2.1.11) numerical errors may cause the constraints (2.1.8) and

(2.1.9) to drift from zero. When the constraints drift from zero, equation

(2.1.11) no longer models the physical dynamics of the chain and there is

no mechanism in equation (2.1.11) to bring the constraints back to zero. To

overcome this problem, equation (2.1.11) can be modified to

ddF d'ibT
z = u + A+(z)(b(z) - A(z)u) — oc-^—(f) — /?-£— 0oz oz

(2 .1.12)

The two additional terms force the constrained accelerations to descend the

gradient of the constraints until they are no longer violated. Large values of a

and (3 ensure that the modified equation approximately models the dynamics of

the constrained physical system. The dynamics of the chain can now be evolved

using equation (2.1.12) and an adaptive step size ODE solver such as Matlab’s

ode45 algorithm. But the primary disadvantage of using that algorithm in

this application is that the solution of the chain dynamics cannot be carried

out in real time situation due to the adaptive step size of the algorithm. To

30

obtain a real time solution, equation (2.1.12) can be solved using an Euler type

approximation like

z k+i = z k + h u dcfP
+ (&(**) - A(zk)u) - a -^< p - dzk

(2.1.13)

where h is the step size.

2.2 M ulti-Vehicle Planning

The driving force in the research related to planning for multiple autonomous

vehicles is increasing demand of autonomous systems in the applications where

a single vehicle is no longer capable of performing the necessary tasks. We

categorize the efforts in this field into three groups: centralized approaches,

decentralized approaches and market-based approaches.

2.2.1 Centralized Approaches

Centralized approaches are characterized by their system architectures in which

there is only one control agent to manage the entire system. This control agent

can be one of the vehicles in the system or the central command authority.

The following research is relevant.

Adams et al. [1] presented a hierarchical architecture to control distributed

teams of unmanned aerial vehicles (UAVs) in a military operational environ­

ment. This approach decomposes the system into several levels each of which

contains decision making nodes that exchange information and interact with

one another. The planning algorithm also accounts for uncertainty in esti­

mated states and the risk of losing team members during a mission. The

proposed structure allows human operators to interact with the system at any

level.

Bellingham et al. [8] presented a planning system for a fleet of UAVs using

mixed-integer linear programming (MILP). The planning algorithm accounts

for the probability of losing UAVs during the mission which affects the oper­

ation of the other vehicles. The results show that the proposed system can

31

improve the probability of success of the mission and the probability of survival

of the vehicles.

Maddula et al. [65] considered the problem of assigning targets to UAVs

in a way that minimizes the maximum path length required for the vehicles

to visit all the targets and minimizes the number of threats faced by each

UAV. In Maddula’s work, the environment is represented by a Voronoi diagram

which is a graph of potential collision-free paths and waypoints. Assuming

the environment is static, the planning algorithm computes an initial target

assignment using a semi-greedy heuristic. The target assignment is further

refined using constrained exchange of subpaths in the Voronoi diagram among

the UAVs.

Capozzi [15] developed an evolution-based planning system which is ca­

pable of coordinating and generating paths for multiple autonomous vehicles.

He applied this system to coordinated rendezvous and coordinated coverage

of target problems. In this approach, the target assignment is based on the

proximity of each vehicles trial path to the targets during the evolution process.

2.2.2 D ecentralized Approaches

Problems often arise when applying centralized approaches to manage sys­

tems with a large number of vehicles in complex missions. These problems

usually result in a lack of responsiveness of the system to changes in the en­

vironment. Decentralized approaches divide a complicated problem into man­

ageable subproblems which can be solved by the components of the system.

Some researchers have considered this idea and applied it to the problem of

multi-vehicle coordination.

Estlin et al. [28], [29] did considerable work related to coordinating multiple

rovers at the Jet Propulsion Laboratory. They developed a dynamic planning

system to coordinate rovers in performing tasks for planetary science. The

planning system is distributed and capable of coordinating activities among the

rovers and monitoring plan execution, and performing replanning if necessary.

Many Artificial Intelligence (Al) techniques are used in this planning system.

32

Parker [76], [77] developed a software architecture named ALLIANCE for

fault tolerant cooperative control of teams of heterogeneous mobile robots.

ALLIANCE is a fully distributed, behaviour-based architecture. Each robot

is autonomous and individually has the ability to perform high-level functions

and to select appropriate actions based on the requirement of the assigned

tasks. This system was implemented on a team of mobile robots to perform a

hazardous waste cleanup mission.

Aicardi [2] presented a decentralized approach to coordinate motion of a

team of mobile robots based on team theory. The planned motion is computed

using an algorithm derived from classical conservative force field techniques.

Each decision maker computes its motion plan using sensor data and shared

information. The results showed that the planning system is implementable

in real-time.

Feddema et al. [30] demonstrated the use of decentralized control theory

to analyze the problem of coordinating multiple robotic vehicles. This work

focuses on the theoretical analysis of several properties of a system such as

stability, observability and controllability. Stability analysis was used to de­

termine limits on system parameters.

2.2.3 M arket-Based Approaches

The concept of market-based approaches was introduced by Smith in his work

on the Contract Net Protocol (CNP) [93]. This concept uses an economic

model to coordinate multi-agent systems. Several researchers have adopted the

concept and extended it to be applicable to many different related problems.

Sandholm [88] formalized the bidding and awarding decision process that

was undefined in the original contract net task allocation protocol by using

marginal cost calculations. Each agent is self-interest motivated so that it

makes decisions based on its own local criteria. This work also extends the

contract net protocol to allow for bidding clusters of tasks.

Fischer et al. [31] developed the MARS system which is designed for coop­

erative transportation scheduling of shipping companies. This work presents

an extension of the contract net protocol for task decomposition and task

33

allocation. This approach provides increased flexibility that allows dynamic

scheduling and execution.

Wellman and Wurman [104] developed a market-oriented programming

technique for solving distributed resource allocation problems. Autonomous

agents in the system interact by offering to buy or sell commodities at fixed

unit prices. The computation of the resource allocation is finished when trad­

ing in the system reaches an equilibrium point. The market system is modelled

analytically for equilibrium analysis.

Golfarelli et al. [41], [40], [42] proposed an approach using a negotiation

protocol based on the contract net protocol. In this approach, the only possible

type of contract is task swapping. No money or price system is used in the

approach. The performance of the system can be improved by allowing tasks

to be swapped in clusters. A clustering algorithm, which considers both spatial

and temporal distances between tasks, is also presented.

Dias and Stentz [25] presented an architecture for coordinating multiple

robots based on the concept of free market systems. The proposed market

architecture defines explicit revenue and cost functions for the computation of

bid prices. The results show that the overall team profit can be maximized by

allowing agents to be self-interested.

2.3 Dynamic Planning

In most real-world applications, autonomous vehicles operate in dynamic un­

certain environments. Therefore, a practical planning system must have the

ability to dynamically replan in the face of unexpected circumstances. This

section presents some example work in dynamic planning.

Stentz [95] developed the D* algorithm which is a dynamic variant of the

classic A* graph search algorithm. It is designed to generate motion plans for

a mobile robot operating in a partially known environment. He shows that the

algorithm can handle situations where path cost parameters change during the

search process by propagating these changes over only the effected portions of

the search space. The planning algorithm is proved to be optimal and efficient

34

for sensor-equipped robots.

Brumitt and Stentz [12] developed a planning system for multiple mobile

robots using the D* search algorithm. The planning system is capable of

dynamically reassigning tasks to robots in order to minimize the time to com­

plete a mission and generating optimal paths for the vehicles to accomplish

the tasks. In this approach, a set of dynamic planners are used to continually

update the paths of all robots to all goals during the mission. The mission

planner updates the task assignment plans based on cost information provided

by the dynamic planners.

Chien et al. [21] discussed the use of iterative repair techniques for contin­

uous planning in space applications. They present an approach to integrate

planning and execution in a feedback control fashion. This continuous plan­

ning framework is implemented on a system called CASPER. They showed

that this approach can improve the responsiveness of the on-board planning

process to changes in the environment or mission objectives.

2.4 Cooperative Planning

There has been increased interest in research related to cooperative planning.

The goal of this research is to achieve cooperative behaviour in a system with

multiple autonomous vehicles. Work by Cao [107] provides some definitions of

cooperative behaviour and presents an extensive survey of the research in this

field of study.

Gillen and Jacques [37] presented a system developed for finding and engag­

ing targets using multiple autonomous wide area search munitions in unknown

environments. This work investigates methods to improve the cooperative be­

haviour of the system which in turn increases the overall mission effectiveness.

The cooperative engagement is controlled by a parameterized decision rule.

A study of the sensitivities of the parameters to the precision of autonomous

target recognition is also given.

McLain and Beard [70] presented a cooperative path planning approach for

teams of multiple UAVs under timing constraints. This approach introduces

35

the use of coordination variables and coordination functions which define the

cooperative strategy. The path planning problem is solved using a Voronoi

diagram and Eppsteins k-best paths algorithm. The results show that the

approach provides effective solutions to cooperative planning problems with

three types of timing constraints: simultaneous arrival, tight sequencing, loose

sequencing.

Polycarpou et al. [80], [78] developed a distributed planning system for

cooperative search by a team of autonomous vehicles. Vehicles are equipped

with sensors with limited viewing regions and wireless communication devices.

The proposed system is capable of on-line learning of the environment and

generating a search map which is shared between the vehicles. Each vehicle

uses this search map and the predicted states of the other vehicles to compute

its own collision-free trajectory that maximizes the team search coverage. The

path planning algorithm is based on a q-step dynamic programming algorithm.

2.5 Conclusion

Different existing techniques in literature for autonomous vehicle path planning

have been explored. The most popular approach to path planning is graph-

based search and to use it efficiently there should be a trade off between how

much detail is included in the graph structure and how long it takes to search

the graph for an optimal solution. Potential field method has been studied as

an on-line planar as well as an off-line planar. But it has certain drawbacks

like trap situation and passage between closely spaced vehicles. Also in mass-

spring-damper case, when the chain of masses is nearby a set of radar sites,

the virtual force pulls the masses away from each other, stretching out the

chain and the masses converge in the area which is far from radar sites. This is

undesirable because the masses are then interpreted as way points. It would be

more desirable to have a higher density of way points near the radar sites, since

one would expect the path to turn more often in these areas. This difficulty

was removed by chain link system assuming the each mass remain at a fixed

distance from its neighbors. The damping force is provided along the direction

36

of the line connecting one mass to its neighbors. The transverse modes that

develop in the chain during simulation are not well damped. This increases the

time required to reach stable equilibrium. By adding damping in the transverse

direction, the solution should converge faster. The main problem with neural

network approach is that training a network can consume a vast amount of

computer time, sometimes months, depending upon the application. One of

the advantages of GAs over other methods is that they can simultaneously

search multiple regions of the search space. This has the potential to be useful

in UAV trajectory planning as multiple good trajectories can be developed in

parallel. In PRM query phase, the paths returned may be twisted and overly

long and due to this reason smoothing and short-cutting the returned path is

often required. Another problem is how powerful the local planner should be,

considering that more powerful planners take more time to compute. Speed is

more important than power because the running time of the local planner is

the main component in the running time of the building phase as well as the

query phase.

37

Chapter 3

M ulti-Objective Trajectory

Design

3.1 Introduction

Due to well established theory and mathematical structure, optimal control

will be investigated for the safe navigation of autonomous air vehicles. Start­

ing with a brief review, the problem will be formulated considering different

objectives. Necessary equations will be derived and solved for different cases

to get analytical solutions since they give good insight into the problem. In

some cases, analytic solutions are impossible and then numerical techniques

are used to find the solution.

3.2 A Brief Review

Optimal control is a method that can be used to find the safe trajectories for

UAVs by modeling different objectives and incorporating these objectives into

a single performance index. It attempts to optimize by finding the control

histories for a dynamical system for a given time period. Thus it is an indirect

method of determining the optimum. The performance index is minimized by

finding the time history of the control vector u(t) instead of looking for the

38

states x(t) themselves. The performance index to minimize is

ntf

'to

subject to differential constraints

r t f
J = <f>[x(tf), tf] + / L[x(t),u(t),t]dt (3.2.1)

J t o

X = f[x(t),u(t),t] (3.2.2)

and boundary constraints

x(t0) = xQ (3.2.3)

V#(*/)»*/] = 0 (3-2-4)

In order to find the optimal solution, we need to clarify some preliminary ideas.

If x (t) is a continuous function of time t , then the differentials dx(t) and dt

are not independent. But a change in x(t) can be defined that is independent

of dt. The variation 5x(t) in x(t) is defined as the incremental change in x(t)

when t is held fixed. The relation between dx and Sx is given by [64]

dx(t) = 5x(t) + xdt (3.2.5)

Also if x(t) G is a function of t and

'to

then

nts

'to

This is called the Leibniz rule and will be used here.

The performance index (3.2.1) is augmented by adjoining the differential

constraints (3.2.2) and the boundary constraint (3.2.4) using lagrange multi­

pliers A(t) and

'f

f tfF = h[x(t),t]dt (3.2.6)
J t o

r t f
dF = h[x(tf),tf\dtf — h[x(to),t0]dto + / hx[x(t), t]5xdt (3.2.7)

J t o

J = 0[5(t/) ,t /]+z/T^[x(t/) ,t/]+ f {L[x(t),u(t),t]+\T{t)(f[x(t),u(t),t]-x)}dt
Jt o

The Hamiltonian is defined as

H(t) = L[x(t),u(t),t] + AT(t)f[x(t), u(t), t]

39

The above augmented performance index in terms of the Hamiltonian is written

as
f tf mJ = <j>(tf)+ / [H(t) - XT{t)x]dt

J t o

where

$(t f) = <t>[x{tf),tf] + vTJp[x(tf) , t f }

By Leibniz’s rule, the increment in J as a function of increments in A, i/, u

and t is

r*i>TdJ = ($x + dx _ + Pt + vT\j)̂ j t

+ [{H - \ Ti) d t \ ‘ - [(H - XTi) dt\t_

+
t = t f

dis
t=tf

+
f tf
/ [Hx6x + Hu6u — XT5x + (H\ — xT) <5A] dt (3.2.8)

J t 0

To eliminate the variation in x , we integrate the term — f** XT5xdt by parts:

— f XT5xdt = — [XT5x]t=tf + [XT5x]t=t0 + f XT5xdt
J t o J to

= -[ATdx\t=tf + [ATxdt\t=tf + [ATdx]t=to - [ATxdt]t=to
rtf

+ / A Sxdt (3.2.9)
J t o

where we have used the relation (3.2.5). Substituting this in (3.2.8), we have

dJ = (̂ f)x + — AT ̂dx + '̂4>t + vT,ij)t + XTx + H — XTx̂ j dt t=tf

to

t = t f
du — [(i/ — XTx + XTx) dt] + [ATdx]t=tI t _ tQ , L ' J I'—to

(^Hx + At ̂S x + Hu5u — X t 6 x + (H\ — xT) 5X dt (3.2.10)

According to Lagrange theory, the constrained minimum of J is attained at the

unconstrained minimum of J. This is achieved when dJ = 0 for all independent

increments it its arguments. Here we have assumed that to and x(t0) are both

fixed and known so that dto and dx(t0) are both zero. Summarising the above

results: the optimal control input u(t) that minimizes the performance index

J must satisfy

f tf<i>[x(tf),tf]+ / L[x(t),u(t),t]dt(3.2.11)
J t 0

x = = f (x ,u , t) (3.2.12)

AT = - H i = - L i - ATf i (3.2.13)

x(t0) = i 0 (3.2.14)

Performance Index:

Differential Constraints:

Co-State Equations:

Initial Conditions:

40

Terminal Constraints: i>[x(tf), tf] = 0 (3.2.15)

Boundary Condition: [($* — AT)dx]t=tf + [($t + H)dt]t=tf = 0

(3.2.16)

Optimality Condition: Hu = Lu + ATf u = 0 (3.2.17)

The time derivative of the Hamiltonian is

H = Ht + H x i + Huii + \ T f

= Ht + Huu + { H i + \ T) f

(3.2.18)

For the optimal solution Hu = 0 and Hj. + A7 = 0. Hence

H = H, (3.2.19)

In the case when H is not an explicit function of t , then

H = 0 (3.2.20)

Hence for time invariant systems and cost functions, the Hamiltonian is a

constant on the optimal trajectory

3.3 Radar Equation

A radar transmits an electromagnetic signal and this signal is reflected back

from the target. A monostatic radar configuration consists of a collocated

transmitter and receiver. When the transmitter and receiver are separated

geographically, this is known as a bistatic radar configuration. By observing

the time interval between the transmitted pulse and the reflected echo, the

range to the target can be determined and is given by

cAt

where c is the velocity of the radar signal and A t is the time elapsed from

transmission to reception of the echo signal. Consider a radar radiating a

signal of power P which is uniformly distributed on the surface of a sphere of

41

radius d having the radar at its centre. Since radars use a directional antenna,

we can adjust the signal power by a gain factor G. So the power density at

the target which is at a distance d from the radar is given by

Suppose there is no absorption of energy by the target and after colliding with

the surface of the target, it is fully reflected back. Suppose a is the radar cross

section of the target which varies significantly with the attitude (elevation and

azimuth angles 6ei and 9az, respectively) of the UAV with respect to the radar

and Ae is the effective area of the receiving antenna, then the power of the

reflected signal at radar receiver is given by

The ratio of the received radar power to the transmitted power is called the

radar equation and is given by

Hence for a(9ei, 9az) = 1 this ratio is inversely proportional to the fourth power

of the distance between the radar and the target.

Theorem 1 If the cost of a UAV at a distance di from a radar site located at

(xi,yi) and having strength cti is J = then the cost to go from an initial

Power density at the target = -——
47rcr

echo power at the radar receiver =
PGcr(6ei, 9az)Ae

(47rd2) 2

received radar power GcrAe constant
transmitted power (47r)2d4 d4

point (a:}, y\) to a final point (x^, y£f) on a path consisting of N line segments

for a single radar exposure minimization can be written as

“ (cj — 2/* -f- mfxi)3

where

9{ = arctan[
oc{(1 -f m?2) + m?c? — mPyi — Xi

9\ — arctan[

cJ - yi + m^Xi
icj(l + m i 2) + n d c? — mj yi — X{

ci — 2/* -h mj Xi

with (xj, y{) and (xJ2, y2) are initial and final points of the the j th line segment

and v is the speed of a UAV respectively.

Proof: The cost to travel a path can be obtained by integrating the radar

equation and is given by
Ctf a-

J t= ~^dt (3.3.21)
Jto

where cn* is the strength of the radar located at (x^ yi). Suppose the vehicle is

moving with constant speed v. Then ^ = v or dt = ^ which can be written

as

* . j/iEiL,
V

Hence the cost becomes

•*/ a iSJ l + (%)2dxfJ xnJl X O Vi(X - Xi)2 + (y - Vi)2]2

The path consists of N straight line segments, and so the above equation can

be written as a sum of integrations over each segment j

n \ / l + (^-)2dx

Ji = ^ 1L 1 [(x - x;)2 + { y - y i W (3'3'22)

We will consider the integral cost to travel for the j th edge only

rx2 J l + (^) 2dx
J ' i = / T?— I'iTV wi2 (3'3'23)Jx{ l (x - Xi) 2 + (y - yf)2]2

The equation of the line segment passing through (xj, y[) and (xj, i/j) is given
j _ j •

by y = m?x + c7. Where ra-7 = yj_y) is the slope and c-7 = yj — mj x\ is the
x 2 ~ X 1

y-intercept. Putting these values in the above expression, we have

_ /*x2 y/ l + mJ2dx
^ J j r(nr — n r 2 -L- (m .7 nr _1_ r*j — n .\X\2

Jij —

i [(x - X i)2 + (mJx + c-7 - yi)2]

^ rm i 2) 2 Jxi
dx

(1 + mi2) 2 I 2 (m i c j - m i y i - X j) , x i + (c 3 - y i)‘2
1+mJ2 1+m-)

Let a = W and b = then
1 + m r 1+rnJ ’

i r* dx
tJ (1 + mJ2) 1 Jx{ [x2 + 2ax + 6]2

43

or
1 f x* dx

%J (1 + mj2)i Jx{ l(x + a)2 + (b — a2)]2

Now 6 — a2 can be simplified as

2 = X1 + ~ ̂) 2 lmJV ~ ?/*) ~ ̂ l 2
1 + m-?2 [1 + raj2]2

c> - y{ + mjXi
1 + ra-?2

= c2(sow/)

Therefore we can write
i

dxi r
lJ ~ (1 + m̂ 2) Ic4 J xiJi. n —

Let X = => dx = cdX\ at a; = x { ,X = = Xi and at x = xJ2, X =

= X2. Then the above integral becomes

J i j —
X2 dX

(1 + m?2)2<? Jxi (1 + X 2)2

Let us substitute X = tan# => dX = sec2 OdQ; at X = Xi, #i = arctanXi and

at X = X2,#2 = arctanX2. Then after simplification

j _ (l + mJ2)§ r rctanX2 _ j e ^ 6 d 6 _
13 (CJ - Vi + m P X i f J irctanXi (1 + ^ n 2 #)2

(1 + mj2)i rarctanX2
2(cj - yi + r a ^) 3 u’ arctan Vi

(1 + cos 29) d6

2 \ 3(1 + mP) 2
2(^ - yi + ra^) 3

n 4 . 779 j 2 ̂ §
■[(0£ - 0J) + cos(#2 + 0j) sin (#2 - #j)]

{&i _ f + sin 2 d{ — sin 2flj

2(d> - yi + mPXi)3

Hence the cost to travel with constant speed v for the whole path J* is given

by

| E A i = f g 2 (e / - w T X) » [(̂ “ ^ + C°S(̂ + ^ Sin{9i ~

or

Ji = £ £ (0/-y.+J?x.)3l(di - + C0S(^ + 0i)®in(̂ 2 - «i)] (3.3.24)

44

where

6\ = arctan X\ = arctan — arctan r j (l + raj2) + m3cP — m?yi — Xi
cj - Vi + r a ^

Similarly

#2 = arctan X 2 = arctan —----- — arctan
+ m?2) + m3cP — rrpyt — Xi

cj - yi + mPxi

and

mPn’ = 4 ^ 4
x2 X1

(P = yl — m3xJ1

Rem ark: If there are M radars, then the cost to travel from one point to

another point on a piecewise linear path is the sum of the costs due to each

radar and is given by

3.4 Equations of M otion

The UAV is constrained to fly above the terrain profile at an altitude of hc

which is called terrain clearance. The terrain clearance may be constant or a

specified function of downrange and crossrange. Two coordinate systems will

be used to extract the equations of motion as shown in Figure 3.1. A local

coordinate system (xi,yi,zi) is taken with its origin located on the terrain

profile and the xiyi—plane coincident with the local tangent plane with z\

defining the outward normal. The inertial coordinate system (x,y,h) is defined

with the xy—plane coincide with the flat ground and h is the height axis taken

positive in the upward direction. The x/—axis of the local level frame is taken

parallel to the xh—plane of the inertial coordinate system. So the velocity

vector is constrained to lie in the xiyi—plane making a heading angle 'ip with

the xi—axis. The equations of motion in the local level frame can be written

(cj ~ Vi + mPXi)3
[(0J2 — 9{) + cos ($2 + #j) sin(#2 — #j)]

(3.3.25)

45

as
Xi= v cos ip

yi = vsmip (3.4.26)

k = 0

Taking g(x, y) as the terrain profile in inertial frame and defining G(x, y) as

the algebraic sum of the terrain profile and terrain clearance, then the the

UAV height in inertial frame is given by

h = G(x, y) = g(x, y) + hc (3.4.27)

\ / - tangent plank
TERRAIN PROFILE

HEADING ANGLE

Figure 3.1: Coordinate system

In order to transform the system (3.4.26) to the inertial frame, unit vectors

(i, j, k) along the local level frame need to be determined. The outward drawn

unit normal vector k and the unit tangent vector i on the terrain profile G(x,y)

are given by

r - G x
k = 1 w - G y (3.4.28)

1

i =

1

0

a
y r r c f

The unit vector j can be obtained by the cross product k x i

1
J = y/1 +GI + G^y/1 + G2X

■GxGy

(3.4.29)

(3.4.30)

46

where Gx and Gy are the partial derivatives of G with respect to x and y

respectively. Taking I ,J, K as the unit vectors along inertial frame and

transforming the velocity from the local level tangent plane to the inertial

frame

(3.4.31)

X i . I j . I k . I X l

y
= i . J j . J k . J m

h i . K j . K k . K Zl

which implies that

x

V =

v cos ip GxGyv sin ip

V 1 + G* ^ (l + G l) (l + G l + G D

y/ l + Glv sin 'ip (3.4.32)
y/ l + CTi + Gi

h = v sin 7

where 7 is the flight path angle given by

Gxx + Gyy
7 = arcsin 1 (3.4.33)

3.5 Derivation of Optimal Trajectory

The performance index to be minimized in its most general form is the tradeoff

among different objective functions of flight time, radar exposure and terrain

following:

J = / 'J o

M

q i + q2G { x , y) + q3 ^ Sk
d t

dt_ _ (3.5.34)
fcT1 “fc.

where d^ is the distance of the current position of the UAV from the k th radar

which is assumed to lie on the terrain profile and Sk is the strength of that

radar.

d k = V (x ~ xk)2 + (y ~ Vk)2 + (G (x , y) - g (x k , Vk))2

subject to

(3.5.35)

x(0) = x0, y(0) = ?/o, h(0) = g(x0, y0) + hc = h0 (3.5.36)

x(tf) = x f , yitf) = yf , h(tf) = g(xf ,yf) + hc = hf (3.5.37)

47

If hc is constant, the height at any point depends on g(x,y), which in turn

depends upon the states x and y. Here

x(tf) - xf

y(tf) - Vf

$ = 0 + v T $ = v x (x (t f) - X f) + V y (y (t f) - yf)

The Hamiltonian is

(3.5.38)

(3.5.39)

H(x, y, v, 0, A, t) = L(x,y,v,il>,t) + AT/(x , y, u, 0, t)
M

= Qi + q2G(x,y) + q3y 2 ^

+ Aa
U COS 0 vGxGy sin0

+ A„
Ciusin0

L CiC2 j L 2̂ J

c , = y r + G f

where

■ X ' ” y

Suppose v is constant, then from (3.2.13), the costate equations are

M

Co = J 1 + Gl + Gl

(3.5.40)

(3.5.41)

(3.5.42)

~ Ax — Q2 Gx — 4(̂ 3 Skdkx XxvGxGa
5

fc=i

, Xxv(GX X Gy + GXGXy) . cos 0 ------------- - 0—---------— sm 0

+

d5, Cf CjCa

A xvGxGy(CiGxGxx + ClGyGXy + C'f CzxCrxx)
CfCi

Xyv{Gi GXGXX + ClGyGXy — C%GXGXX) . t
C ^C l s m p

sin 0

(3.5.43)

M
-A„ = g2GB - 4 q 3 ^ c o s i } _ A X ^ C V h G x G y y) g i n ^

fc=l k

+

C? r CiC2

AX'l’GXGy(C,2 GXGXy + C^GyGyy + C^G XG Xy)
c ? c 23

AyU(Cj GXGXy + CfGyGyy ~ C^GXGXy)

sin 0

CiC |

By the optimality condition (3.2.17)

u sin 0 vGxGy cos 0

sin0 (3.5.44)

A,
AT.C1UCOS0

48

C2 sin xp + GxGy cos xp
A“ = c f ^ j , Al (3-5-45)

The proposed optimal control problem has a constant of motion because the

variational Hamiltonian is not explicitly dependent on time and the final time

is free

=> H (t) = 0, 0 < t < t f

or
M

+ 2̂ G + qz + Ax
v cos ip GxGyVsimp
~C i ChC2

+ X ^ ± = 0(3.5.46)
Co.

Then substituting Xy from (3.5.45) into (3.5.46), we get
M

SkQi + Q̂ G + qz ^ -jl + A,
fc=i k

v cos ip G xG y V s i n ,ip

C 1

+
Civsinxp

Co

C &
C2 sin ip + GxGy cos xp

M

Ax — — (91 + q2G + qz 4
V fc=i ak

Cl cos xp

Sk \ C\ cos xp

A,

V

and using equation (3.5.47) in (3.5.45)

Ay — (C2 sin xp + GxGy cos xp)
M

qi + q2G + qz -4
k= 1 k

(3.5.47)

(3.5.48)

Now substituting Ax and Xy from (3.5.47) and (3.5.48) in equation (3.5.43)

gives
M Skdkx GXG3- X x - q2Gx ~ 4qz ^ + 2

fc=i dk Gl

M

qi + q2G + qz -4

+
GxxGy + G XG xy

Co

M

qi + <72 G + 93 ^

GxGy{GxG xx + GyGxy)
Ci

x y
CIC2

qi + q2G + qz £ -4
fc=i dk

M

Sk_
— 4k=1 k

cos xp sin xp

M

cos2 xp

cos xp sin xp

+

qi + q2G + qz ^4
fc=i k -

(ClGxGxx + ClGyGxy - ClGxGxx)
c i c i

cos xp sin xp

qi + q2G + qz y ^
M

GxGy{GxGX X T GyGxy)

/~i2s~i si ^
qi + q2G + qz y

M

G^GyGxX
cic2

qi + q2G + qz £ -4
k= i

M
Sk

— 4k=l k

49

Sk
— 4k=1

cos xp sin xp

sin2 xp

cos xp sin xp (3.5.49)

or
M M

Qi + Q2 G + qz
Sk

- Ak= 1
Ax ?2Gx 4,3 g ^ + c f C 3

[C|GXGXX cos2 ^ -f C2 (C^GyGxx + ClGxGxy — 2G,2(jryGxx) cos^sin^

+ (C2GxGXx + C\GyGXy — C^GxGxx) sin2 ip] (3.5.50)

Now differentiating equation (3.5.47) with respect to time and using the values

of x and y from (3.4.32)

M
qi + q2G + qz y :At

1
>(C?C2)

Sk
- Ak=i

+

C2GxGxxn cos2 ip + (C2GxGxy - G 2xG y G Xx)v cos ip sin ip - C \ C 2 sin ipip

q2 cos ip
C 2

\C2G X cos ip — G \ G y sin ip + C2Gy sin -0]

M
4g3 cos ip y-v S| cos ^ _ d kxG xGy sin ip + C ?4 W sin

° 2 fc=i dk
(3.5.51)

where

du =

die.. —

(x - x k) + (G - gk) G a

dk
(V — Vk) + (G — gk)Gy

dk

(3.5.52)

(3.5.53)

Finally equating (3.5.50) and (3.5.51), we will get a differential equation in­

volving ip, which together with (3.4.32), defines the motion of the UAV over

terrain. Hence, using an adjoint-control transformation, the optimal control

problem solution was reduced to a search for the initial value of the heading

angle. Two cases will be considered to get a differential equation for ip.

3.5.1 Case 1 : <73 = 0

In this case, there are no threats and the optimal trajectory is found to avoid

the terrain while minimising the formulated performance index. Equating the

50

right hand sides of equations (3.5.50) and (3.5.51):

Q2Gx + Q2 G\

\C2GxGxx cos2 ip + C*2 (C 2GyGxx + C 2GxGXy — 2G2 GyGxx) cosipsinip

- f {C\GxGXx + ClGyGxy — C%GxGXx) s in 2 ip]

v(Ci C2)

C2GxGxxv cos2 ip + (C i ^ x ^ x y — G2xGyGXx)vcosip sin ip — C\C2 sin ipip

+ q2 [C2Gx cos ip - G2xGy sin ip C 2 Gy sin
02

Simplifying above equation

^ (^i + (I2G) [C2 (C2GyGXx — GlGyGxx) cos ip

-\-{C\GxGxx + C 2GyGXy — C%GxGXx) s in ip]

= —C \C l (qi + q2G) Ip + q2vC lC 2 [— sin ip

—G2 Gy cos ip -h C 2 Gy cos ip]

A cos ip + B sin ip
* * = ------- c -------

where

A = C 2C2vq2 (C2Gy — G2Gy) — C2v(q\ + q2G)GyGxx

B = v{q i + q 2G) (G xGlGxx- C l G y G Xy) - C l C 22vq2Gx

C = C l C l (qi + q2G)

3.5.2 Case 2 : q2 = 0 , G = 0 , M = 1 , si = 1

This is the case when the objective is to find the optimal minimum risk tra­

jectory due to one radar without terrain and the UAV is constrained to fly in

the xy—plane. Equating (3.5.49) and (3.5.51)

Aq3dx 1 / , <73\ , • / n 4g3 c o s ^ , . n
 = - (f t + J (- sin ipip) — (dx cos ip-\-dy sin ip)

Using the values of dx and dy from (3.5.52), (3.5.53) in the above equation and

rearranging to find ip, we get

(3.5.54)

(3.5.55)

(3.5.56)

(3.5.57)

and when q\ = 0, the above equation reduces to

4u [(x — x{) sin ip — (y — y\) cos \p\ip =
d2

(3.5.59)

Next an analytical solution for a single radar risk minimization will be derived

and discussed using the simplified equation (3.5.59).

3.6 Single Radar Risk M inim ization

Consider a radar located at the origin as shown in Figure 3.3. It is desired to

find the optimal aircraft trajectory that connects two prescribed points A and

B in the plane such that the radio frequency energy reflected from the aircraft

is minimized. Using the polar coordinates

x = R cos 6

y = R sin 6

in Figure 3.2, we have

Rdl

(3.6.60)

(3.6.61)

Figure 3.2: Relation between 6 and pi

tp = 6 + a (3.6.62)

RdO
sin a = ——

ds
(3.6.63)

dR
cos a = ——

ds
(3.6.64)

RdO
tan a = ——

dR
(3.6.65)

52

Prom these expressions and equation (3.5.59) we can obtain ip as

; ivlRcosOsinip — RsinOcosip] /n „
ip = — ^ ^ n (by (3.6.60) and (3.6.61))

4u sin(,0 — 6)
R

4usina n
= — ^ — (by (3.6.62))

= (by (3.6.63)) (3.6.66)ds

This can be written as
4vdO ,,

dip = ^ dt (3.6.67)

Now v = which implies dt — ^ and substituting into equation (3.6.67), we

get the differential form of control law as

dip = 4 dd (3.6.68)

Integrating the above equation implies

$ = 40 + Ci (3.6.69)

which is the optimal control law and is dependent on the angle 0. C\ is the

constant of integration to be determined. Putting the value of ip from (3.6.62)

in the optimal control law (3.6.69), we get an optimal relation between a and

6 as

a = 30 + Ci (3.6.70)

Taking the tangent of both sides

tan(30 + Ci) = tan a
RrlQ

= ^ (by (3.6.65)) (3.6.71)

Rearranging the above equation, we have

1 3 cos(30 + Ci) _ dR
3 sin(30 + Ci) =

and integrating this gives

In C2 + ^ ln[sin(30 + Ci)] = In R
O

In C2[sin(30 + Ci)]5 = In R

53

or

R = C2[sin(30 + Ci)]* (3.6.72)

After obtaining this expression for the optimal trajectory, the next step is to

determine the two constants C\ and C2. When R = R f , 0 = Of which implies

c 2 = ------- ^ -------r (3.6.73)
[sin (30 f + Ci)] 3

Putting this value of C2 back into equation (3.6.72) gives

sin(36> + Cx) 1 ^
 ̂ sin(3S/ + Ci)

Also when R = R q, 0 = 90, so from the above equation

(3.6.74)

Figure 3.3: Optimal trajectory

Ro sin(3fl0 + Ci)
sin(3 Of + Ci)

From here we can write

cos 30o — cos 3Of
cos C\ = —----- 3— ^ -----------sinCx

(jj j) sin 36f — sin 30o

Finally, the optimal trajectory is

7^) cos3df

R = R f

cos 30o
sin 3 0- — nr

sin 30^—sin 30q

+ COS 36

300— (^] cos 30/
sin3O f- x3 ■■■----------h cos30/

^ ^ /) sin 3 0 /—sin 30o

which can be simplified to

sin(30 — 30O) — sin(30 — 3Of)
R = R f

sin(3 Of — 30q)

(3.6.75)

(3.6.76)

54

For the special case of 0o = 0,

R = R f
sin 30 — (7̂) sin(30 — 30/)

sin 30/
(3.6.77)

When sin30/ = 0 or 0/ = | , the equation (3.6.77) becomes undefined which

means no optimal trajectory exists for this angle and a path length constraint

or time constraint must be introduced to recover the solution. Hence to get

an unconstrained solution for single radar exposure minimization, one must

have 0 < 0/ < | . Figure 3.4 shows the optimal trajectory for Ro = R f = 1

and Of = 45°. The optimal cost while travelling the optimal trajectory can be

os
0.7

0.6

0.5
x 0.4

0.3

0,2

0.1

-0.1
0.4 0.60 02 0.8 1.21

Figure 3.4: Optimal trajectory for R 0 = R f = 1 and 0/ = 45°

derived by considering expression (3.5.34), which for this simplified case has

the form
/•*/ £?

(3.6.78)[’> s ,
J = Jo ^

Taking qz = 1 and using polar coordinates

v ^ 7

From equation (3.6.71)

J =

dR

s n
V Jo

dR
dj9 dO (3.6.79)

R
dO tan(30 + Ci)

55

and therefore

. ' d R y o2 R
R I ~7T I = R2 +dO J tan2(30 4-Ci)

R2 [tan2 (30 + Ci) + 1]
tan2 (30 + Ci)

R2 sec2(30 + Ci)
tan2 (30 + Ci)

R2
sin (30 + Ci)

d R \ 2 R
s ‘ + ' T t) ' w m T c T) <“ -80>

Putting this in (3.6.79) and after simplifying

dO
J

fl3sin(30 + Ci)

v j 0 C ^ s i n t S f f + C O s m f W + C i) (b y (3 ' 6 ' 7 2))

s r»t
vCl

ref
/ esc (35 + Ci)«W

JO

s
3vC$

[cot (Ci) — cot (30/ + Ci)]

ssin(30f + Ci) r x „ x,
 ^ 3 [cot(Cj) - cot(30/ + Ci)]

ssin(30/) (3.6.81)
3vR3 sin(Ci)

where Ci is given in equation (3.6.75). Note that when 0/ approaches

Ci approaches 0 and hence equation (3.6.81) becomes indeterminate i.e., (§).

So in order to extract useful information about the existence of J we apply

L’Hospital’s rule. From equation (3.6.81)

r _ s sin (30/)
j0/= i 3ui?3sin(Ci)

■jgjs sin(35/)
lim

6 f -&}3v R 3fsin{Ci)

s cos (30/)= lim
0/ - f vR3fCos(Ci)-£jCi

(3'6 '82)Of-* 3 v R f dey i

56

Now differentiating equation (3.6.75) with respect to Of, we have

1 _ (^) COs36 ‘ 3 (j^) sin2 30,

from which

Finally, using this in (3.6.82), we get

s i 1 _ „ _ _ V
J* '- * = a t M + Hj (3-68 3)

This reveals that for Of —> | , the trajectory approaches infinity but the optimal

cost approaches a finite value. The expression for the optimal path length I*

is not in closed form. Numerical integration can be employed to work out this

integral.

3.6.1 Special Cases

Several interesting special cases concerning the optimal trajectory given in

(3.6.77) can now be considered. In the case when Of = 0 and Rf > Ro, the

origin O and the points A and B are co-linear and the optimal trajectory is a

straight line as shown in Figure 3.5.

y

O A B x

Figure 3.5: Optimal trajectory for the special case where Of = 0

57

Theorem 2 The optimal trajectory which connects points A and B at a dis­

tance Ro = Rf from the radar located at the origin O and minimizes exposure

to the radar is

R*(o) = Ro
cos (3 0

o < o < ef
cos (S t)

where Of is the angle ZAOB. This result holds provided 0 < Of < |

Proof: When R f = Rq, we can write (3.6.77) as

sin(30) — sin(30 — 3 Of)

(3.6.84)

R = R q

O lR = R q

sin(3 Of)

0 / 30+30-30/\ . (3 0/\
2 COS (-----2---) Sm (2 j

2sin (t 1) cos (t -̂)

otR = R q

\
COS (30 —

COS(?)
, 0 < 0 < Of

The optimal trajectory is shown in Figure 3.4 for the case where = 1

and Of = 45°. By inspection of Figure 3.4 we see that the extremal trajectory

is indeed symmetric when Rq = R f as expected.

3.7 Risk M inimization Two Radars

3.7.1 Problem Formulation and Scenarios

After understanding the nature of the one radar exposure minimization prob­

lem, the next stage is to extend the formulation to multiple radars. For this

purpose, risk minimization problem due to two radars will be examined. An

analytical solution as in the single radar case would be desirable but due to the

complexity of the problem a numerical technique using gradient method will be

employed to obtain optimal trajectories for different scenarios. The geometry

of the possible locations of the radars and end points is shown in Figure 3.6.

Three parameters were varied to examine the effects upon the optimal trajec­

tories: the downrange distance between the radar locations (P), the crossrange

58

-«— p— ►

<Vo> (x,yp (3

* H

<V2>

Figure 3.6: Possible locations of radars and end points

distance between the radar locations (Q) and the downrange distance between

the initial and final points (R). When varying P and Q, the end points of the

path were fixed at (xq, yo) = (0,0) and (xf,yf) = (20, 0) and when varying P,

the radars were fixed at (sq, yi) = (5,5) and (, 2/2) = (15, —5). Two ratios of

the radar transmission power were examined for each of the cases: ol\/ol2 = 1/1

and oli/cx.2 = 2/1. The ordinary or weighted Voronoi trajectory, as applicable,

was computed to be compared with the optimal trajectory. Table 3.1 sum­

marises the scenarios examined, where A is the incremental distance for the

varying parameters P, Q and R. A common graphical technique for optimal

Scenario P Q R Range A

1 Varied Fixed Fixed 10 - 6.5 0.5

2 Fixed Varied Fixed 1 0 -5 .5 0.5

3 Fixed Fixed Varied 20 - 15.5 0.5

Table 3.1: Scenarios for trajectory optimization against two radars

path planning against multiple radars is to make use of the Voronoi diagram.

Starting with full knowledge of the radar locations, the Voronoi diagram is

constructed of polygons whose edges are equidistant from all of the neighbour­

ing radars. Hence, travel along the Voronoi edge ensures that an equal amount

of power is reflected to each radar. This is true, however, only for the case

59

where the transmission powers of the radars are equal. When the radars have

different transmission powers, i.e. aq ^ a 2, the Voronoi edge is no longer a line

but a circular arc. It is easy to see that if the points have equal weight, the

path planning technique, it provides a useful comparison to the path length

and objective cost of the calculated optimal trajectories.

3.7.2 Perform ance Index and its D iscrete Approxim a­

tion

For the case of a single flight against two radars, the power received by the

radar is now considered a function of each radar’s transmission power and

range

the distances of a UAV at time t from radars located at (a; 1, 2/1) and (£1,2/1)

If the optimal trajectory is considered to be made up of small line segments,

resulting locus is a circle of infinite radius or a line. Since this is a widely used

Pr = Pt/d“ (3.7.85)

The geometry of the problem is shown in Figure 3.7, where d\(t) and d2(t) are

respectively. Cartesian coordinates will be used for the formulation of flight

against two radar threats. The performance index is given by

(3.7.86)

Figure 3.7: Geometry of two radar problem

then the approximate cost while travelling along the optimal trajectory can

60

be deduced from (3.3.25) by setting taking M = 2 and N according to the

accuracy required.

3.8 Two Radar Case: R esults and Compari­

son

This section examines the case of air vehicle flight against two radars. A short

development of the camparison path is presented first, followed by the results

of the optimization.

3.8.1 Comparison Path for Equal Power Radars

Given two equal power radars located at (sq, 2/1) and (x2, 2/2)5 the perpendicular

bisector of the line segment connecting the radars will be the optimal path

between these two radars. The equation of the line connecting the radars is

y(x) = m(x - x2) + 2/2 (3.8.87)

m = (3.8.88)
X 2 — X \

The perpendicular bisector of the line has slope —1/m and passes through the

midpoint (xm, ym) of the line

y ± (x) = - — (x - xm) + ?/m (3.8.89)
m

= (3.8.90)

ym = V-1~ 1 (3.8.91)

The comparison path will be constructed from three line segments: the shortest

path line from the initial point, the perpendicular bisector and the shortest

path line to the final point completing the curve shown in Figure 3.8. The

equation of the perpendicular from (x0, 2/0) to the Voronoi line (3.8.89) is

y(x) = m(x - x0) + 2/0 (3.8.92)

61

X

(X2'y2>

Figure 3.8: Comparison path for radars of equal transmission power, ai = a2

The first intercept point (xn,yu) is a common point on the lines (3.8.89) and

(3.8.92). Equating y to equation (3.8.89) and solving for x yields

m2xo + m(ym - y0) + xm
X i l 2 I i (3 .8 .9 3)777/ + 1

Back substitution of xn into y gives

m2ym + m(xm - z0) + yo (Q c Q/A
Hu = --------------o i i------------ (3.8.94)777 -f- 1

Taking a similar approach at the final line segment results in

= m*xf + m(y - y ,) + xm
777 + 1

m2ym + m{xm - x f) + y f /0 0
Va = (3-8,98)

where 777, xm and ym are given by (3.8.88), (3.8.90) and (3.8.91) respectively.

3.8.2 Comparison Path for U nequal Power Radars

For the case when the radars are of unequal power, a weighted path is used.

The weighted path can found by equating the power received by each radar as

follows

73 = (3.8.97)R\ K ’
=> a . \ = a2

y/^ lR2 = ±yfiT2R\ (3.8.98)

62

where

Ri = y/(x ~ x i)2 + (V ~ 2/i)2 (3.8.99)

R2 = y/(x ~ x 2)2 + (y ~ IJ2)2 (3.8.100)

Substituting these values of R\ and R2 into equation (3.8.98) yields

V'aT [(x - x2)2 + (y - y2)2] = ±y/a i [(x - x i)2 + (2/ - 2/i)2] (3.8.101)

First, considering the positive sign and rearranging the above equation, we can

write

(1 - \ / —)x2 - 2 (x 2 - x/ — Xi)x + (1 - A/ —)y2 - 2 (y 2 - J — yx)y
ol\ v aiOLi Oil

Ol2 2 1 ^ 2 2 2„ xi + \ — Vi -Xi-Vi OL\ V a l

Dividing the above equation throughout by 1 — A/ ^ gives

x 2 2 -

x2 ‘X \

-x + y2 - 2-
2/2 ‘yi

Now completing the square by adding
X 2 -

-x 2Xl
1- Xi.

V " 1 J

+
V2 - . / 2 a y 1

and right hand sides of the above equation results in

to the left

x2 ‘Xl
x +

2/2 ‘y 1

+

2J * ? + x / ^ y 2! - A - y 22

X 2 ‘Xl

1 — 1 s 1* £*1
+

2/2 _ 22.y 1

1 — l^2-* ai

x2 - LX \

x —
1 -

+
2/2 " 2 / i

y- V (x 2 - X i) 2 + (2/2 - 2 / 1 F

(3.8.102)

63

Similarly by considering the case of the with negative sign in equation (3.8.101),

we obtain the final expression

x —
*2 + \ I % * 1

V Qi

+
2/2 +

! + a/5?V a i l + J 9*-' ' ai
V (®2 - X l) 2 + (*/2 - Vi) 2

(3.8.103)

Equations (3.8.102) and (3.8.103) are equations of circles but (3.8.103) has an

imaginary radius and so will be discarded. Hence, the path between two radars

of unequal powers is a circle with

X2 ~ \ / % x 1 y2 - J % y i
centre at

and radius

a i

1
V(ai2 — Zi)2 + (2/2 - yi)2

(3.8.104)

(3.8.105)

The complete comparison path is obtained by joining the starting and final

points of the path to the circle along the shortest distance lines as shown in

Figure 3.9. This path will be used for comparison with other paths. The

Figure 3.9: Comparison path for radars of unequal transmission powers

comparison path consists of three path segments: a shortest distance straight

line path from the starting point (xo,yo) to the circle at (xn,yn), the circular

path from (xn,yn) to (Xi2,yi2) and the shortest distance straight line path

from the destination point (Xf , yf) to the circular segment at (3̂ 2, 2/12)- The

64

intercept (xn,yn) will be along the line through (xQ, yQ) and (xc, yc) given by

2/2 L2/i ~ 2/o
y = 2/0 + o - y i F) (x - x0) (3.8.106)

12 _ \J%Xl “ *0 (l - y/%)

To find the intersection point we substitute y from the above equation into

(3.8.102) to give

x —
1 — A ai

+
2/2 - \ /%yi - 2/0

2/o +
(l ~ - J W)

V (x 2 - Xy)2 + (y2 - 2/1)2

1 -

Solving for a: we obtain

(^2 — x\)2 + (2/2 — 2/1)2
x2 /£2 xi

W S f
- x0

> - v f x7 '■ V >- V1
Since we are concerned with the path that passes between the radars, we select

the negative sign and substitute this value of x in (3.8.106) to give

1/2 /£2 V °i y 1
- 2/0

Xn =
Xi 1- \J (x2 — X i) 2 + (2/2 — 2 / l) 2

X2 _ . / 2 2 “l x i

- (To

1 - V2 VI
'V £2

“ 1

- 2/0

(3.8.107)

2/2 — L2 / i
2/il =

1_ / £ 2
V al

a/ (a;2 — :ri)2 + (2/2 — 2/1)2
! /2 -

£2“l
- 2/0

1 - 2/2 - 2/1

V “1
2/o

(3.8.108)

Similarly, the other intercept point (xi2,2/i2) is given by

3.8.3 Scenario 1 : Varying Downrange B etw een Radars

The first case explores changing the downrange location of the radars and the

effect on the optimal trajectories. Eight optimal trajectories were produced

corresponding to eight different symmetric radar geometries. A summary of

the optimal trajectory cost J * (obtained using the gradient method and the

analytical relation of the discrete approximation of the performance index)

and path length /*, the comparison path cost Jvor and path length lvor and the

straight line cost Jiine and path length lune is presented in Table 3.2. Intuitively,

it is expected that the paths will be symmetric about the midpoint of the line

connecting the radars and the path will bend away from the nearest radar. The

results of the optimization do in fact prove this to be true. In Figure 3.10, the

optimal path bends away from the nearest radar and intersects the downrange

axis at the mid point of the radars as the radars move towards the endpoints.

From Table 3.2, the optimal path length increases as P increases. From Figure

3.10, it can be inferred that when the radars are at the same x-coordinate, the

path length will be the shortest than the previous trajectories and is a straight

line. The variation of the optimal costs with P are shown in Figure 3.12. Since

the gradient method was used to calculate the optimal trajectories, the cost

is determined at discrete points ignoring contributions between the segments

of these points. This is why the cost by the gradient method is lower than

for others. The largest cost arises from the direct line path between the end

points. The analytical expression (3.3.25), after simplifying for the two radar

case, was used to calculate the exact optimal cost for the optimal trajectory

obtained from the gradient method. By comparing this discrete optimal cost

with comparison path cost, one can see from Figure 3.12 that they are almost

p 7*° grad. 7*Jdis I* Jcomp I comp Jline hine

10 0.0108 0.0217 24.8883 0.0231 28.2843 0.0454 20

9.5 0.0119 0.0238 24.3770 0.0247 28.2452 0.0460 20

9 0.0131 0.0262 23.8328 0.0269 28.1113 0.0466 20

8.5 0.0146 0.0291 23.1759 0.0297 27.8539 0.0470 20

8 0.0162 0.0324 22.4685 0.0329 27.4398 0.0474 20

7.5 0.0180 0.0360 21.8474 0.0365 26.8328 0.0477 20

7 0.0198 0.0396 21.2407 .0.0402 25.9973 0.0479 20

6.5 0.0215 0.0430 20.7224 0.0436 24.9035 0.0480 20

Table 3.2: Calculated data for two equal power radars for scenario 1

Figure 3.10: Optimal trajectories for equal power radars for scenario 1

1

o

-1

-3

-4

-50 2 64 8 10 12 14 16 18 20

Figure 3.11: Optimal trajectories for unequal power radars for scenario 1

67

I

p

Figure 3.12: Cost of the optimal trajectories for equal power radars for scenario

1

0.07 ■

0.06 • ' v v

I 0 05:_______________ _ / -
0.04 ■

0.03 -

0.02 ■

0.01 ■

°0 1 2 3 4 5 6 7 8 9 10

P

Figure 3.13: Cost of the optimal trajectories for unequal power radars for

scenario 1

The costs decrease as P increases and this decrease is much steeper for the

optimal trajectory. Hence for equal power case, it is recommended to follow

the optimal trajectory to minimize the risk. The maximum value of the objec­

tive cost of the optimal trajectory is when R /P —> oo or when P —> 0. Since

for this case, optimal path and comparison path have nearly equal cost but the

relationship between the optimal path and the comparison path is not evident

from this scenario. It appears at first that the optimal curve is a smoothed

function of the comparison path or viewed from another perspective, the com­

parison path is a rough linear approximation to the curve. In the limit as P

gets very large, however the comparison edge will become perpendicular to the

optimal path and the comparison path intercepts will move to a single point,

68

the midpoint of the comparison edge between the radars. The only consistent

common point is the midpoint of the paths and this is due to the symmetry

of the problem. Thus, graphically there appears to be little similarity between

the comparison path and the optimal path. Comparing the objective cost of

the three paths, however, the cost of the comparison path is very close to the

optimal path. This indicates that while it is a suboptimal path, it is a better

approximation of the optimal path than the straight line. For case of unequal

power radars when P < 6.7, the cost of the straight line path is less than the

the optimal path cost due to gradient method and also it is less than compari­

son path cost. But for P > 6.7, the optimal path is the least risk path. Hence

in this case it is recommended to follow straight line path for downrange sep­

aration of P < 6.7 but for P > 6.7, optimal path is the best choice. The trend

of the optimal trajectories in Figure 3.11 is similar to that shown in Figure

3.10 with the only difference that the trajectories bends more near that radar

having higher power.

3.8.4 Scenario 2 : Varying Crossrange Separation B e­

tween Radars

In this case, the radars are kept at a fixed downrange separation P while

the crossrange Q is progressively varied. Results similar to those observed

in scenario 1 are expected and are tabulated in Table 3.3. As the crossrange

Q —*■ oo, the optimal path will approach a straight line. Indeed, this is observed

in the optimal trajectories for this case as shown in Figures 3.14, 3.15. For this

scenario, numerical difficulties preempted finding solutions as Q —► 0. This is

likely to be due to the optimal path wanting to travel around the radars instead

of between them. The path length of the optimal trajectories increases sharply

for a small decrease in Q around 5.5. In reality, the vehicle would never follow

this path, instead, it would travel around the radars at a much lower cost.

From Figures 3.16, 3.17, inferences can still be drawn by observing the affects

of varying Q. As Q is very small the cost to travel along the direct line path will

be very high. This fact is also evident from the comparison path but the cost in

69

that case is slightly higher than the optimal. The optimal costs are very small

whether calculated from the gradient method or using the optimal trajectory

and the discrete approximation of cost. When Q is increased, the optimal

cost J*iia will go to zero and the optimal path will become a straight line. In

addition, the comparison path will also flatten to a straight line. The results

of the first two scenarios follow our expectations of how the optimal trajectory

should react to different radar geometries, and reinforce our understanding

Q 7*grad T*J dis I* J com p I com p J lin e h in e

10 0.0108 0.0217 0.25 x 106 0.0231 28.2843 0.0454 20

9.5 0.0129 0.0258 0.26 x 106 0.0284 28.2452 0.0634 20

9 0.0154 0.0307 0.28 x 106 0.0355 28.1113 0.0920 20

8.5 0.0182 0.0363 0.29 x 106 0.0454 27.8539 0.1396 20

8 0.0213 0.0427 0.32 x 106 0.0606 27.4398 0.2250 20

7.5 0.0253 0.0506 0.47 x 106 0.0865 26.8328 0.3936 20

7 0.0300 0.0600 1.02 x 106 .0.1395 25.9973 0.7761 20

6.5 0.0344 0.0689 2.77 x 106 0.2801 24.9035 1.8517 20

6 0.0363 0.0727 12.12 x 106 0.8432 23.5339 6.2726 20

5.5 0.0449 0.0898 136.24 x 106 6.3788 21.8908 50.2545 20

Table 3.3: Calculated data for two equal power radars for scenario 2

25

20

15

10

5

>. 0

-10

-15

-20

-250 2 4 6 8 10 12 14 16 18 20

Figure 3.14: Optimal trajectories for equal power radars for scenario 2

70

' 70 2 4 6 8 10 12 14 16 18 20

Figure 3.15: Optimal trajectories for unequal power radars for scenario 2

I

Q

Figure 3.16: Cost of the optimal trajectories for equal power radars for scenario

2

Q

Figure 3.17: Cost of the optimal trajectories for unequal power radars for

scenario 2

that the path will bend away from the radars when they are close and

71

approach the direct path as the radars move away from the end points. In

scenario 3, the radar geometry is held fixed and a path end points separation

is progressively varied. Since the radars do not move, the comparison edge will

be constant and the only variable in the comparison path will be the length

of the segments connecting the end points. The resulting optimal trajectories

reveal an opportunity to exploit the comparison path for on-line utilization.

3.8.5 Scenario 3: Varying Separation B etw een In itial

and Final P ositions

For this scenario, the distance between a path’s end points is iteratively varied

while the radar locations are fixed. This means that the comparison path edge

is constant and the comparison path just gets progressively longer as the end

point separation gets larger. The results are summarized in Table 3.4. As the

end points move outward from the radars, the path extends further and further

out and the optimal trajectory approaches a straight line for a very small end

point separation as shown in Figures 3.18, 3.19. From Figure 3.20, it is evident

that the costs for the straight line trajectory, comparison trajectory and the

optimal trajectory are nearly the same for a variation in R up to 8.4. After

that there is a big increase in the cost of the straight line trajectory while the

costs of the optimal and comparison trajectories remain almost equal, with the

comparison trajectories slightly higher. A similar observation cane be made

by looking into the Figure 3.21 for unequal radar powers. This very small

difference between the comparison path and optimal path remains constant

for all values of R. Thus the question is no longer how to get from the initial

point the final point; the question now is how to optimally approach to the

comparison path edge from an initial point and how to optimally depart from

the comparison path edge to get to the final point. This has crucial implications

for on-line path planning. Instead of a full path optimization being performed,

utilizing valuable on-line system resources, one only needs to optimize the

approach to and departure from the comparison edge. The total cost of the

optimal trajectory at the discrete points are also drawn. This is very small

72

with compared to all other cost as already predicted. By further increasing

R , the cost values for both optimal and comparison trajectories approach a

constant value of 0.02.

Q T*u grad
7 *

dis r Jcom p I com p J lin e h in e

20 0.0108 0.0217 24.8883 0.0231 28.2843 0.0454 20

19.5 0.0110 0.0220 23.7390 0.0235 26.8701 0.0444 19

19 0.0111 0.0223 22.4924 0.0240 25.4558 0.0433 18

18.5 0.0113 0.0225 21.1851 0.0244 24.0416 0.0420 17

18 0.0114 0.0228 19.8742 0.0247 22.6274 0.0403 16

17.5 0.0114 0.0229 18.4999 0.0249 21.2132 0.0384 15

17 0.0115 0.0229 17.0428 0.0248 19.7990 0.0361 14

16.5 0.0113 0.0226 15.6273 0.0246 18.3848 0.0335 13

16 0.0111 0.0221 14.1197 0.0240 16.9706 0.0306 12

15.5 0.0106 0.0213 12.5921 0.0230 15.5563 0.0274 11

Table 3.4: Calculated results for two equal power radars for scenario 3

6

4

2

\\\\V

-2

-4

-€0 2 4 6 8 10 12 14 16 18 20

Figure 3.18: Optimal trajectories for scenario 3 using equal radar powers

73

Figure 3.19: Optimal trajectories for scenario 3 using unequal radar powers

1

R

Figure 3.20: Cost of optimal trajectories for scenario 3 using equal radar powers

I

R

Figure 3.21: Cost of optimal trajectories for scenario 3 using unequal radar

powers

3.9 Conclusion

The trajectory synthesis problem was addressed using an optimal control ap­

proach and necessary equations governing safe navigation for UAVs were de­

rived. The objective function incorporates many real life scenarios: minimum

flight time, terrain masking and least risk due to SAM sites. Using an adjoint-

control transformation, the optimal control problem solution was reduced to a

search for the initial value of the heading angle. Because of the complexity of

the problem, it was simplified into two radar risk minimization problems, one

with a single radar and the other with two radars. An analytical solution was

obtained for the single radar case. The two radar case for different strength

ratios was compared with the developed comparison paths using numerical

technique such as the gradient method when the UAV has to sought a path

between the radars. For the single radar, it was found that trajectories do

not exist for Of > 60°. So a path length constraint must be introduced to re­

cover the solution. If there are a number of threats, then an analytic solution

becomes difficult. Constraints such as velocity and acceleration are hard to

incorporate in the above formulation. Replanning, as is required in real time

situations must also be considered.

In the next chapter, we will present a mixed integer linear formulation

technique and formulate it in such a way that will be useful for real scenarios

satisfying constraints.

75

Chapter 4

MILP and its Application in

Flight Path Planning

4.1 Introduction

If the problem of path planning can be written as a linear program with mixed

integer/linear constraints, then it can be solved using commercially available

software AMPL/CPLEX. The optimization problem can easily translated into

the AMPL modelling language [33]. The structure of the problem and con­

straints are written into an AMPL model file while the data is written to an

AMPL data file. The data file can be easily edited directly or generated by

simple Matlab scripts. The CPLEX optimizer is used to solve the problem

[48]. A series of scripts in Matlab and AMPL allow the entire path planning

problem to be invoked by a single command. Other Matlab scripts then plot

the path and visualize the state and input sequence. A linear aircraft model is

needed in this formulation. The next section describes a simple aircraft model

for a point mass which will be used in the formulation. This chapter then de­

scribes the modelling of different mixed integer/linear constraints using binary

variables and also presents simulation results using CPLEX as an optimizer.

76

4.2 M odel of the Aircraft

The model used in section 3.4 is nonlinear and can not be used within MILP

framework. As an alternate, the point mass dynamics of a UAV subject to

two norm constraints form an approximate model for limited turn rate vehi­

cles provided that the optimization favours the minimum time or minimum

distance path [86]. The UAV dynamics are expressed as a simple point mass

with positions and velocities [:v,y,vx,vy]T as state variables and accelerations

[ux, uy]T as control inputs:

d_
dt

X 0 0 1 0 X 0 0

y 0 0 0 1 y 0 0= +
vx 0 0 0 0 Vx 1 0

V y 0 0 0 0 V y 0 1

iia

Ut,

or

s = Acs + Bc u

The zero-order hold equivalent discrete time system is

(4.2.1)

X 1 0 At 0 X (A t f / 2 0

y 0 1 0 At y 0 (Ai)2/2= +
vx 0 0 1 0 vx A t 0

. vv . *+1 0 0 0 1 . V y . k 1

<1o

1

or

Si+i = Asi + Bui (4.2.2)

Where i is the time step and At is the time interval between two time steps.

The control input [ux, uy]J stays constant over each time interval At under the

zero-order hold assumption.

4.3 Constraints to Avoid Radar Zones

The radar areas are modeled as rectangles with (x™?n,y™?n) and (x™£x, y™*x)

as the coordinates of the lower left and upper right corner points of the zone.

77

At each time step i the position (a;*, yi) of the vehicle must lie in the area

outside of the radar zone which can be formulated as:

Vi e [1 ,..., TV] : Xj < xr£fn

(4.3.3)
or Xi > x ^ x

or ia < y™fn

or yi > yT̂ x

The or-constraints can be transformed to and-constraints by the introduction

of binary slack variables [98]. Let b^d be a binary variable (0 or 1) and let £lrad

be a large arbitrary positive number. Then the above constraints (4.3.3) can

be replaced by the following mixed integer/linear constraints [89]:

V i e [i , . . . , N] : x i < x ' Z i + sr°dV3d

and - X i < - x ^ x + QTaib l f

and y i < y rr l + ^ radbri f

and - Vi< - jC L + Qradbri t (4-3'4)
4

E 6̂ 3
fc=i

b [f = 0 or 1

If their are Ny vehicles and Nr stationary radars, equation (4.3.4) can be

generalized as:

V pe[l,...,T V v],V ce[l,...,T V «],V ie[l,...,T V]:

rr . < 'rrad 4 - n r a d i r a dJ'pi — J'c,min ^ updl

and - x v i< - x l ad + W adb™dV1 — c,max 1 pci 2

a n d ii < n rad 4 - O ra d hradana i/pt yc,min + 1L °pci3

a n d — 1 1 • < — i i r a d 4- O r a d h r a d (4.3.5)ana 2: yc,max + “ °pci4

E 6^ 3
fc=i

VpcUs = 0 or 1

This radar avoidance technique is not restricted to rectangular planar geometry

since any arbitrary shaped planar radar zone can be described by a surrounding

78

polygon of which the edges give rise to anti-collision constraints in both x and

y coordinates. The extension to 3D motion with 3D radar zones is straight­

forward. We only need to formulate extra constraints in the z coordinate and

a 3D radar area can be described by a surrounding polyhedron. A moving

SAM unit with predefined motion can also be considered. The coordinates of

the radar zone change at every time step according to its predefined motion.

The straightforward approach is to define new forbidden regions at every time

step corresponding to the positions of the moving SAM unit at that instant.

For translational motion of rectangular zones, the format of binary constraints

(4.3.4) remains the same. Rotational motion on the other hand and motion of

non-rectangular zones yields constraints in both x and y coordinates.

For overlapping zones, a receding horizon approach may not find a feasible

solution in the face of such hard constraints. In this case, the hard constraints

can be transformed to soft constraints by the introduction of small variables

as in the following:

where are very small decision variables between 0

and 1. The idea is to reduce these variables to zero by incorporating them into

the objective (cost) function. The problem formulation returns to the original

setting when these m's are zero. If it is not possible to reduce them to zero, i.e.

Vp € [1 ,..., Nv], Vc 6 [1 ,..., N r], Vi 6 [1 ,..., N] :

z* < * s L (i - »»«&) +

** < - * S L (1 - mSa) +

Vpi < ! C L (1 - < f 3) +

Vpi < - v Z 1 ,(1 - *n&) +
(4.3.6)

4

the original hard constraints cannot be satisfied, the algorithm will have have

the flexibility to generate solutions which violate these constraints as little as

possible. An alternative formulation of the above constraints relevant to radar

79

avoidance is the following:

(4.3.7)
4

k=i

0 < < 1

where NR is the total number of radars and (xrrad,yrTad), Rrrad are the position

and radius of the rth radar. So either (4.12.36) as discussed later, or (4.3.7)

can be used to avoid danger zones.

In the case of a fleet of UAVs, it is obviously desirable to consider collision

with in a way similar to obstacle avoidance. At each time step every pair of

vehicles p and q must be a minimum distance apart from each other in the x

or/and y directions. If at the ith time step, we let (rc^, ypi) and (xqi, yqi) be the

positions of the vehicles p and q respectively and d°°l and dy°l are the safety

distances in the x and y directions, then the collision avoidance constraint can

be written as:

The condition q > p avoids duplication of the constraints on the positions.

Alternatively we can write:

4.4 Collision Avoidance Constraints

avoidance in path planning. Collision avoidance between vehicles can be dealt

V ie [1, • • •, N], Vp, q\q>p:

| *Tpi %qi | ^ dx

or I Vpi - y qi\> dcy°l
(4.4.8)

Vi G [1,.. •, N], Vp, q\q > p :

80

'Epi qi ^ d xcol

or X q i - X p i > d l

or ypi - yqi > dcal

col

(4.4.9)
<i

y
color yqi - ypi > d[

These constraints can be formulated as mixed integer/linear constraints by

introducing appropriate binary variables b™lik [89]:

Vi G [l , . . . , iV],Vp G [1,... , Nv],Vq G [p + 1, . . . , Nv] :

and xqi - x,„ > d,:f - Q€olbrpgti2

and Vpi - ygi > d f - (4.4.10)pqiZ

col
pqiAand ygi - y,„ > dc"1 - ficolbcoi

V^ik = 0 or 1
Similarly these constraints can be converted to soft constraint by the intro­

duction of small variables:

Vi e [1 , . . . , N\, Vp € [1 , . . . , Nv], Vq € [p + 1 , JVv] :

d f (1 - m £ a) -

and xqi - Xpi > d‘f (1 - mpgli) - flco‘b‘"la

and Vpi - yqi > d f (1 - r < 2) - Sr ' < l3

and ygi — ypi > dc°l(l — m ĉ a) — ficol6“ (4 (4.4.11)

fe= 1

b^ik = 0 or 1

0 < mĉ a , m c£ a < 1

4.5 Speed and Acceleration Constraints

The maximum speed vmax is enforced by an approximation to a circular region

in the velocity plane [84, 86]. The velocity vector is projected to different

directions to obtain

Vm g [1, . . . ,N£],Vi € [1, . . . , N], Vp e [1, . . . , Nv] :

81

,277771. . . ,271771. - .
cos(^ r) + ^ sm(-) — Umax (4.5.12)

c c
The above constraints require that the velocity vector be inside a regular poly­

gon with Ng sides circumscribed about a circle of radius vmax. A constraint on

the minimum speed can be expressed in a similar way. However, it is different

from the maximum speed constraint in that at least one of the constraints

must be active instead of all of them:

3m G [l , . . . , iV£],VzG [l , . . . , iV] ,VpG [1, . . . ,AV] :

.277777 . . .27rm. ^ _ .
zPiCos(——) + %,* sm(- ^ Vmin (4.5.13)

iVc -/vc
where N£ is the order of the discretization of the circle. Equation (4.5) is a

non-convex constraint and can be written as mixed integer/linear constraints:

V m € [1 , . . . , jV £], Vi 6 [1 , . . . , N], Vp € [1, . . . , AV] :

, 27rm. . . 27rm .
xpi cosy-jpr) + sin(7 7 r) ^ ^ - f t { i - b ^ j

Nq (4.5.14)

E bv- > 1pim —

m — 1

Similarly, the constraint for the upper bound on acceleration can be written

as:

Vm G [1, . . . , NX], Vi G [1, . . . , N], Vp G [1,. . . , N v] :

27Tm .. . 27T777 r
x p i c o s (~ \ r u ~) + V p i sin("TT-) ^ ^ m a x (4.5.15)

4.6 Turning Rate Constraints

The minimum constraints on speed and acceleration involve binary variables

which make the optimization hard. One way to get rid of these constraints is

to assume that the UAV moves with constant speed but there is a minimum

turning radius bound rmin which satisfies

v2
rmin < r = — (4.6.16)u

This constraint turns out to be a constraint on the maximum magnitude of

lateral acceleration as
u2

U ^max (4.6.17)
V1 m in

82

where u is the magnitude of the acceleration vector and umax is the maximum

acceleration magnitude. To enforce minimum turning radius constraint in a

linear framework, one can use only (4.6.17), where umax = -JL~-x 7 'min

4.7 Vehicle Capabilities and Tim e D ependency

Constraints

The set of constraints to detect if a vehicle visits a waypoint can be written as

The waypoints which must be visited by some vehicles with suitable capability

are specified in the matrix W of order N w x 2 where (W ™ 1, Wy™lt) is the

of order Ny x Nw where Kpw = 1 if vehicle p can visit the wth way point,

otherwise Kfm = 0. Time dependencies, forcing one way point to be visited

after another, separated by some interval can be included in a matrix A. Each

row of the matrix represents a time dependency and it has a column for each

waypoint. Thus if there are Nd time dependencies, the matrix A is of order

Nd x Nw- A dependency is encoded —1 in the column corresponding to the

first waypoint and +1 in the column for the second. The corresponding element

in the vector To is the interval between the two visits and

where Tw is vector of the times of visit to each waypoint. If it is required that

each way point is visited exactly once by a vehicle of suitable capabilities, then

the constraint to enforce this is

(4.7.18)

position of the wth way point. A vehicle capability matrix K can be defined

A Tw > Td (4.7.19)

N N v

Vtu 6 [1,... , Nw] : = 1 (4.7.20).visit

83

Time dependencies are enforced by the following constraint

N w N N y

Vd 6 [1,... , ND] £ A dw £ £ > TDd (4.7.21)
W=1 1=1 p= 1

The summation Ylp=i extracts the time of visit for the wth way­

point.

4.8 Cost Function Selection

The objective function can be taken as the sum of two costs: a quadratic cost

function and a cost to minimize the violation of constraints. We can minimize

a quadratic function whose variables must satisfy the state space equation of

the dynamical system (4.2.1) as follows
p o o

min J = min / (sTQs + uTRu)dt (4.8.22)s,u s,u J 0

subject to

s = Acs + Bc u

where s G 3?n is the state vector and u G is the control. The system is as­

sumed to start from some initial state s0. Alternatively we can replace weight­

ing matrices Q and R of the quadratic formulation by nonnegative weighting

vectors q and r to give the following convex cost function:
p o o

J — / (qT|s| + rT|u|)d£ (4.8.23)
J o

where |s| and |u| are vectors with non-negative components. When combined

with the constraints this 1-norm formulation yields a mixed integer/linear

program which is much easier to solve than the mixed/quadratic program

that would be obtained using the quadratic cost. To solve this fuel optimal

control problem numerically, one must discretise the system and use a finite

time horizon T. The finite horizon T transforms into N = T /A t discrete time

steps, where At is the sample time. The original optimization problem is thus

transformed into
N - 1

min J = min (qT|sj| + rT|uj|)At + / (s^r) (4.8.24)
Si ,U i S i ,U i t — '

i = 0

84

subject to

si+i = Asi + Bui (4.8.25)

where A and B are the discrete system matrices. Neglecting the constant term

qT|s0|, writing / (s) as p T|s;v|A(t) and dividing by At gives:
N - l N - 1

minJ = m in(y^ qT|s;| + Y"' rT|uj| + p T|s^|) (4.8.26)
Si,Ui Si,Uj 'i=l i=0

This is a convex, piecewise linear cost function that can be transformed into a

linear form by introducing slack variables Wij(i = 1, . . . , N, j = 1, . . . , n) and

Vik(i = 0, . . . , N - 1, k = 1, . . . , nu) to give
N - l N - l

min J = min(qTw* + rTVj + pTwjv) (4.8.27)
W W i,Vi • J * Ji= 1 z=0

subject to
S{j ^ W{j

S{j ^ Wij

Uik < Vik (4.8.28)

'U'ik — Vik

®i+l = Ad&i -(- BjVli

where j and k denote the components of the state and input vectors respec­

tively. The cost function can be modified to minimize the difference between

the state and final state spf. For multiple vehicles, the cost function for the
pth vehicle is given by

N - l N - l

Jp = Y qp ls^ ~ spf I + Y rp IM + Pp ISP^ ~~ SP/I (4.8.29)
i=l i=0

The overall linear optimization problem for Ny vehicles becomes
N v N v N - l N - l

min , Y ^ p = m i n Y ^ Y q p + Y rp'vPi + Pp WP^) (4.8.30)

subject to
p = 1 p — 1 1 = 1 1 = 0

s p i j s p f j 5 ; w p i j

~ S p i j + S p f j < W p i j

'Upik — Vpik (4.8.31)

Upik — Vpik

®p,i+l A pS pd T BpWpi

85

where spfj are the given final values of the j th state. In order to keep the

violation of constraints to a minimum we define another cost function that

includes small variables m's of the soft constraints with proper adjustment of

weights icrad, wco1 as follows:

To demonstrate the idea clearly, we first examine a simple case of one vehicle

and one obstacle. Consider a radar with a short range of 7 km situated at

(14,14). This circular range can be enclosed in a square region having ver­

tices (7, 7), (21,7), (7, 21), (21, 21). By doing this, the radar avoidance problem

becomes an obstacle avoidance problem and we can apply the above formu­

lation. The vehicle moves with certain constraints. These constraints are on

the velocity and acceleration. The minimum and maximum magnitudes of

velocity with which the vehicle can move are 100 m/s and 300 m/s, respec­

tively. Similarly, the minimum and maximum accelerations are —10 m /s/s

and 10 m/s/s, respectively. But for this case only the upper bounds for these

constraints will be applied. The vehicle starts at (0,14) with speed 100m /s

along the positive-x direction and ends at (30,14). When the time length is

fixed at N = 120, where N is the total number of time steps and each step is

of one second, then the path obtained as a solution of the MILP formulation

is shown in Figure 4.1. The vehicle is unable to reach its destination within

this time interval. The value of the cost using the cost function given in equa­

tion (4.8.30) is 3013492.086. The time taken by the solver to determine this

optimal path is 35.5160 seconds. At this point by increasing N iteratively, it

was found that for N = 130 the vehicle achieved its target as shown in Figure

mm17 (XU ~
p c i / ’ pqig p = l

N y N q N 4 N y N 2

ip = mm
m d m lin .„, £ E E O

'pqig p = l ■■''pcif’""pqig p - i c = i i - i f - i q = p + 1 i = 1 5 = 1q = p + 1 i = 1 5 = 1

(4.8.32)

So the overall cost function will be the combination of the objective function

of (4.8.32) and the later developed (4.12.37), as follows:

mm mm
rr»yvm',m —P*’ P*’ pet/’ pqig p — 1 p i ’ V p i , m p c i f , " l ' p q i g p = 1

(4.8.33)

4.9 Example 1

86

4.2. A question that immediately comes to mind is why did the UAV adopt

a route from below the obstacle. The answer is of course that the UAV could

follow a route from above of the obstacle but due to the inclusion of the states

in the cost function it adopted a route from below to minimize the cost. In

this way not only do the states and control remain small but a unique solution

is also obtained. The cost value for this is 2691453.035 which is smaller than

the previous value but the computation time for this trajectory increases and

is found to be 72.4680 seconds which is much higher (nearly double) than the

simulation for N = 120. The corresponding graphs for velocity and acceler-

Figure 4.1: Single vehicle single obstacle path for N = 120 and without any

constraints on the minimum velocity and acceleration

Figure 4.2: Single vehicle single obstacle path for N = 130 and without any

constraints on the minimum velocity and acceleration

ation are shown in Figures 4.3 and 4.4 respectively. From Figure 4.3, it can

87

be seen that the speed of the vehicle for most of the time stays near to the

maximum speed. For the fist 20 seconds, it almost increases linearly from 100

m/s to 300 m/s and then from 118 seconds to 130 seconds it decreases linearly.

The speed at the target point was found to be 203.4341ra/s. Figure 4.4 shows

sudden variations in acceleration but all these variations in speed and acceler­

ation are within specified limits in spite of the fact that minimum constraints

for these values have not been applied.

Figure 4.3: Single vehicle single obstacle speed map for N = 130 and without

any constraints on the minimum speed and acceleration

1T5

tifne(8]

Figure 4.4: Single vehicle single obstacle acceleration map for N = 130 and

without any constraints on the minimum speed and acceleration

In the next scenario two more short range SAM units are added which are

located at (30,6) and (30,22). This will be helpful in seeing how much com­

plexity is added when the number of radars is increased. Again for this case,

the lower bounds on velocity and acceleration are ignored. These constraints

involve integer variables which will make the problem hard. The path obtained

by minimising the cost given by (4.8.30) and also that for minimum time is

shown in Figure 4.5. Again for the minimum time objective, the simulation

is performed iteratively each time changing the time window given by N from

some initial value until the destination is reached. The value of N is found

to be 155 seconds while the computation time and cost are 652.2340 seconds,

2953218.281, respectively. Although the cost is almost the same as for one

radar but the computation time increases enormously (almost 9 times). The

speed map in Figure 4.6 shows that for this case the vehicle speed starts de­

creasing at nearly 73 seconds where the position is (15.8586,4.7793) which is a

minimum point of the trajectory below the first obstacle. This indicates that

the UAV prepares itself to pass though the narrow passage between the two

following obstacles from the lower end point of the first obstacle. So in order

to pass though this passage without violating the constraints, the UAV has to

reduce its speed. Again at nearly 93 seconds, the speed starts increasing at a

trajectory point of (20.6737,6.8219) which is the point that coincides with the

right lower corner of the first obstacle. After that for the rest of the part of

the trajectory, a similar variation in speed can be seen. On the other hand,

the acceleration in Figure 4.7 shows sudden variations around 60 seconds but

for the rest of the time it stays near to its maximum value. These variations

occur when vehicle encounters the lower left corner of the first obstacle.

o 5 1510 20 25 30 35 40

Figure 4.5: Single vehicle three obstacles path for N = 155 and without any

constraints on the minimum velocity and acceleration

89

I
I

Figure 4.6: Single vehicle three obstacles speed for N = 155 and without any

constraints on the minimum velocity and acceleration

Figure 4.7: Single vehicle three obstacles acceleration for N = 155 and without

any constraints on the minimum velocity and acceleration

4.10 MILP for Real Time Path Planning

The main difficulty in using MILP is the computation demand it requires and

also we do not know the optimal planning horizon in advance. If there are

more constraints, the process may be very slow even taking days to complete

the optimization process. Hence for real time computation, a receding horizon

approach can be used, in which the path is computed online by solving a MILP

over a limited horizon at each time step. In this case, the path of the vehicle

is composed of a sequence of locally optimal segments. At a certain time step,

the MILP is solved for T future time steps, where the length T of the planning

90

horizon is chosen as a function of the available computation resources. Solving

this local MILP provides the input commands for the T future time steps.

However only a subset of these T input commands is actually implemented.

The process is then repeated and a new set of commands is developed for the

next time window. Usually the applied subset is restricted to the first control

input, such that a new set of input commands is calculated at each time step.

4.10.1 M odel Predictive Control or R eceding H orizon

Control

Originally developed to meet the specialized control needs of power plants

and petroleum refineries, Model Predictive Control (MPC) technology can

now be found in a wide variety of application areas including chemicals, food

processing, automotive, aerospace, metallurgy, and pulp and paper [83]. MPC

is a control strategy that explicitly uses a model of the system in order to

predict system behaviour. This is then used to find the best control signal

possible by minimizing an objective function. There are several advantages of

using MPC to control a UAV; some of them are listed below:

• The concept is equally applicable to single-input single-output (SISO) as

well as multi-input multi-output (MIMO) systems.

• MPC can be applied to linear and nonlinear systems.

• It can handle the constraints in a systematic way during the controller

design.

• The controller is designed at every sampling instant so disturbances can

easily be dealt with.

• Explicit use of a model to predict the system output at future time

instants (also called horizon).

• Obtaining a control signal by minimizing an objective function.

The MPC strategy can be compared to driving a car. The driver knows

the desired reference trajectory for a finite horizon, and by taking the car

91

Reference Trajectory

Current State
Predicted Outputs

Future
Inputs

Future Errors

Cost Constraints

CPLEX

Model

Function

Figure 4.8: Model Predictive Control Scheme

characteristic into account, he or she decides which control actions to take in

order to follow the desired trajectory. Only the first control actions (using the

accelerator, brakes and steering) are taken at each instant and the procedure

is then repeated. This can be described mathematically in more detail by the

following steps:

1. The future outputs for a determined horizon N, called the prediction

horizon, are predicted at each instant t using the system model. These

predicted outputs y(k+j\k) for j = 1 ... N depend on x(k\k), the current

state and on future control signals u(k + j\k), j = 0 . . . N — 1.

2. The set of future control signals is calculated by optimizing a criterion

in order to keep the process as close as possible to a reference trajectory

r(k + j\k). The criterion usually takes the form of a quadratic func­

tion of errors between the predicted output and the predicted reference

trajectory. The control effort is also included in the objective function

in most cases. An explicit solution can be obtained if the criterion is

quadratic, the model is linear and there are no constraints, otherwise

some optimization method like C P L E X must be used.

3. The control signal u(k\k) is sent to the system while the control signals

u(k+j\k),j = 1. . . N —l are rejected and step 1 is repeated with all states

brought up to date. As the horizon moves forward and new information

92

becomes available, the u(k + l|fc + 1) calculated at the next time step

will be different from u(k + l\k).

The basic structure of MPC is shown in Figure 4.8. If there is no model mis­

match i.e. the model is identical to the process and there are no disturbances

and constraints, the process will track the reference trajectory on the sampling

instants.

4.10.2 Possible Infeasibility w ith R eceding H orizon

When using the receding horizon approach, the problems of non-existence of

feasible solutions may occur during the optimization procedure even though,

in theory there are solutions to the whole problem. This is because the look

ahead horizon is limited. The vehicle can be led to a critical state for which

MILP has no solution at the next iteration. In other words, a feasible solution

for future T time steps at time step i does not guarantee a feasible MILP at

time step i + 1. This can be further explained for the situation in which at

the last time step of the planning horizon, the vehicle is moving at maximum

speed, while its position is just outside an obstacle that has not been spotted

yet. Since the position of the vehicle satisfies the anti-collision constraints,

this situation corresponds to a feasible solution of the MILP. At the next time

step, the obstacle is identified and the vehicle needs to brake or turn which

however exceeds the constraints on acceleration or on the available manoeuvre

space. Hence, a collision with the obstacle will result and MILP is unable to

find a feasible solution in the next time step. Increasing the horizon will ease

this kind of situation, but will raise computational demand.

4.10.3 Safe Feasible M echanism

In the radar/SAM exposure minimization problem, there are no physical ob­

stacles. Rather we have radars of various detection ranges. We may have,

say, three types: a long range SAM unit with a nominal range of 65 km, a

medium range SAM unit (25 km range) and a short range SAM unit (7 km

range). We can approximately model these circular regions with squares of

93

length equal to the diameters of these circles. These radar ranges can overlap

with one another. So if the path is totally blocked by these overlapping radars

or due to the use of the receding horizon approach with hard constraints in

(4.4.10), (4.3.5) and the cost (4.8.30), MILP may lead to infeasible solutions.

But by using the soft constraints (4.3.7), (4.4.11) and the cost (4.8.33), we can

always get a feasible solution. These violations are kept to a minimum by the

use of the small variables (the m's) in the cost. If further reduction of these

violations is required, we may model the threats as squares of flexible size,

slightly greater than the actual fitted square. This increment can be taken as

ten percent of the actual square. In this way, a vehicle can enter the radar

zone but have to follow the safest possible path by optimizing this flexibility

to a minimum.

4.11 Example 2

The scenario considered here has 10 radars shown as circles in Figure 4.9.

Five radars are of medium range (25 km) centred at (100,100), (125,65),

(125,135), (50,155), (50,45) while five radars are of short range (7 km) centred

at (42,102), (167,182), (167,127), (167,37), (167,77). The initial positions of

UAV1, UAV2, UAV3 are (10,10), (10,120), (10,180) respectively. The three

UAVs start at the same time and move towards the common goal at (170,100)

with the same speed of 200 m/s making an angle of 40° with the horizontal. In

order to apply the previous formulation, the radars are modelled as rectangular

flexible constraints enclosing the circular range. In the finite receding horizon

scheme to prevent infeasibility, the vehicles can enter the threat zone keeping

violations at a minimum. Therefore the modified formulation forces the UAV

to leave the threat zone as soon as possible. The maximum violation will occur

when the vehicle enters the threat zone at maximum speed perpendicular to

the rectangular boundary at a point where this boundary line touches the

circular boundary region. In such a situation, there is a chance that a vehicle

may travel deep inside the threat zone before turning away. To reduce this

deep penetration, an additional safety measure was taken by extending the

94

180

160

140

120

I 100

80

60

40

20

0
0 20 40 60 80 100 120 140 160 180xflun]

Figure 4.9: Optimal trajectories calculated using modified finite receding hori­

zon control for three UAVs moving towards the same target with upper and

lower bounds on speed and acceleration

rectangular boundary say ten percent. This is shown clearly in Figure 4.9

by dotted lines enclosing the region. The finite horizon T was chosen as 10

seconds which means at each iteration MILP finds the optimized solution for

10 seconds and hence a control sequence for the next 10 seconds is obtained

but only the first current control input is implemented. The parameters used

in the simulation are shown in Table 4.1. The parameters vmin, vmax, Umax,

dc°l, d°°l were kept fixed. The other parameters are tuned to get the desired

response.

400 1000600

(a) Speed for UAV1 (b) Acceleration for UAV1

Figure 4.10: Speed and acceleration for UAV1

Trajectories obtained by solving this centralized problem are shown in Fig-

95

UAV3

UAV2

Destination

UAV1

Parameter Value Parameter Value
T

% [i,i, 1, 1] Trp [i,i]
Tp i [i,i, i , i] wobs

OO

W c°l o o d f 1000

d f 1000 Qco1 800,000

t tobs 800,000 nv 900

nu 50 Nvc 20

Nvc 20 N£ 20

V*max 10 St 1

Vmin 100 Vmax 300

Table 4.1: Parameters used in the simulation

(a) Speed for UAV2 (b) Acceleration for UAV2

Figure 4.11: Speed and acceleration for UAV2

ure 4.9 and the velocity and acceleration profiles for UAV1, UAV2, UAV3 are

illustrated in Figures (4.10), (4.11), (4.12) respectively. The simulation was

performed on a machine with a CPU of 2.66 GHz and 1.048 Gb of RAM.

The computation time for the full simulation is 27844 seconds (the time when

the last vehicle, which is UAV1, reaches the destination) and total cost is

1.1899e + 013. The simulation times to destination for UAV2 and UAV3 are

27595 and 6386.3 seconds, respectively. The actual times taken by UAV1,

UAV2, UAV3 to move on these trajectories are 1286, 1216, 856 seconds, re­

spectively. By comparing these simulation and actual times, it is concluded

that the simulation times are very high for use in online trajectory calculations.

96

(a) Speed for UAV3 (b) Acceleration for UAV3

Figure 4.12: Speed and acceleration for UAV3

It will be interesting to analyse the time taken to solve this finite receding hori­

zon MILP problem at each time step. This is shown in Figure (4.14) where the

peak variations in the MILP solution time are limited to the interval from 1030

to 1102 seconds where the maximum time taken is 5473 seconds, which occurs

at the iteration time of 1036 seconds and at this time the trajectory points

for UAV1 and UAV2 are shown in Figure (4.13). These points occur near the

imaginary boundary of the short range radar which is the last obstacle before

reaching the destination. It can be seen in Figure (4.13) that at this time

UAV1 takes a full turn to correct its direction to reach the goal immediately

after emerging out from the imaginary boundary of the short range obstacle.

So in order to take the maximum turn, UAV1 has to reduce its speed to a

minimum. On the other hand, at this time instant UAV2 is traveling exactly

on the imaginary boundary with minimum speed. So the minimum speed con­

straint is active at the 1036 time step for both UAV1 and UAV2 and as this

constraint is non convex involving integer variables, which make the problem

hard. For other points of the peak simulation time interval (1030 — 1102) sec­

onds, the minimum velocity constraint is active for either UAV1 or UAV2 but

not for both. Due to these huge variations in solution time for that particular

interval, the variations for other parts of the Figure 4.14 are not visible. For

this purpose Figures 4.15(a) and 4.15(b) are provided.

97

Point a t which maximum
solution tim e occu rs for UAV2

160

- Point a t which maximum
solution time occurs for UAV1

150

140

I 130

120

110

100

160 162 164 166 168 170 172 174 176 178
x[km]

Figure 4.13: Points on the trajectory with maximum solution time for both

UAV1 and UAV2

6000

5000

4000

3000

w

2000

1000

200 400 600 800
time[s]

1000 1200 1400

Figure 4.14: Time taken by MILP to solve the problem at each time step for

full simulation

98

I

a

(a) For time values from 0 to (b) For time values from 1103

1029 seconds to 1286 seconds

Figure 4.15: Time taken by MILP to solve the problem at each time step for

two different time ranges

1

(a) UAV1 (b) UAV2

(c) UAV2

Figure 4.16: Turning rates for UAV1, UAV2 and UAV3

The turning or heading rate for UAV1, UAV2 and UAV3 are shown in

Figure 4.16.

99

4.12 M odeling the Risk Area with Dynam ical

Boundaries

In the previous sections, we modelled the risk area with soft rectangular bound­

aries parallel to the coordinate axes and softness parameters were included in

the cost function with fixed weights. The reason of taking the soft boundaries

is described in those sections. From simulation, it has been observed that

sometimes near the imaginary boundary of the risk area a UAV will loiter for

a long time. This is because of the turning of a UAV off a wall again and again

without finding a path to direct it towards the target either due to the lim­

ited horizon or due to the fixed weights on the softness parameters in the cost

function described in section 4.8. This problem can be fixed by modelling the

PS;

>rad

p r a d '

Figure 4.17: Dynamical boundaries for risk area

risk area with soft dynamic rectangular boundaries. At each simulation time

step, two of the boundaries for each radar are taken parallel to the line of sight

of the current point to the target while the other two boundaries are taken

perpendicular to the line of sight as shown in Figure 4.17. Also the weights on

the softness parameters in the auxiliary cost function can be chosen dynami­

cally according to the distance of the current point to the target so that when

a UAV is near to the boundary of the detected SAM unit, it will be directed

towards the target by sliding along the walls of the boundary due to these

different weights. The range of the radar warning receivers (RWR) mounted

onboard on the UAV is assumed slightly higher than the range of the of the

radar as defined in the design challenge of the GARTEUR Flight Mechanics

100

Action Group 14 [36]. This assumption is very crude and does not reflect the

real situation. So in this section, it is assumed that a SAM site is considered

to be known in position and range when its range comes within a distance of

Vmax * T to the UAV, where T is the time horizon and vmax is the maximum

velocity of the UAV. Consider a radar situated at a point Pr{xr,yr) having

nominal range Rr enclosed in a rectangular boundary as shown in Figure 4.17.

The position of the pth UAV at the current simulation time step is (a;£, yjj)

and (icjj, yf,) is the target point for this vehicle. Therefore the equations of the

boundary lines, shown bold in Figure 4.17 of a radar situated at (xrrad,yrrad),

which are parallel to the line of sight are

(vl - ycP)(xp - - (4 - xl)(yp - y^) = ± R r̂ d cp (4.12.34)

Similarly, the equation of the boundary lines perpendicular to the line of sight

are

(4 - xcp)(xp - x'-f) + (yf - y;)(yp - y;°d) = ± B ^ d ; (4.12.35)

where dp = J { x cp — xp)2 + (yrp — y\,)1 is the distance of the current point of the

UAV from the target. In the situation of overlapped obstacles, the receding

horizon algorithm may not work out a feasible solution because of such for­

mulated hard constraints. For this consideration, the hard constraints can be

transformed to soft constraints by the introduction of small variables. At each

time step i the position (xt, yi) of the vehicle must lie in an area outside of the

risk area. If their are Ny vehicles and Nr radar sites, then the general mixed

integer linear form of the radar avoidance constraints [54] can be written as:

Mp G [1,..., AV],Vr G [1,..., Afe],Vz G [1,... ,N] :

[vt - ycP)(xPi - x?d) - (4 ~ 4)(v* ~ yrrad)
<

(vl - ycP)(xpi - xrul) - (4 ~ xD̂ Vpi - y?d)

(4 ~ xl)(xpi - x7 d) + (vl - yP)(ypi - v?d)
<-%K°im'g2 + Qr°dv£3

101

(x fp - X p) (x p i - x rr a d) + (y f - ycp){ypi - yrrad)
j c 'D 'rad^.rad o r a d i r a d

— p r ^ p c i 2 pgiA

£ ^ < 3
fc=l

m™'' < 1 (4.12.36)

where ra^® -m™f2 are small decision variables between 0 and 1. The idea is to

increase these variables to 1 by incorporating them into the auxiliary objective

(cost) function. The problem formulation returns to the original setting when

these m's are 1. If it is not possible to reduce them to 1, i.e. the original

hard constraints cannot be satisfied, the algorithm will have the flexibility to

generate solutions which violate these constraints as little as possible.

As discussed previously, one way to increase solvability of the problem while

keeping the violation of constraints to a minimum is to soften the constraints

by including small variables (m's) in the cost function. Prom this and the

above discussion, the second component of the cost function will be modified

and is
N v N v N v N 2

J S t - £ Jp = ro, “ ^ £ ("'“< £ £ £ m&
p d f ' p q i g p= i p c i f ' p q i g p — i q= p+ 1 g— 1

2 N r N 4

- £ < d£ £ £ m^) (4.12.37)
h = l c —1 i = 1 / = 1

So the overall objective function is Jp + Jp for the pth vehicle. In equation

(4.12.37), the weights (w[ad = a x dcp, wr2ad = (3 x dcp) are selected dynamically

according to the distance of the current position of the UAV from the target

and the constant a is given a smaller value than (3. To avoid collision, the

weight wcd is given a very large value. The simulation for one vehicle case

was performed for 100 randomly created scenarios consisting of short range (7

km) and medium range (25 km) SAM units distributed over a 200 km x 200 km

area. The random parameters are number, location and strength of the SAM

units. The number of the SAM units were limited between 5 and 10. Since

the focus was to make the technique useful for real time computation so an

upper limit on computation time or optimisation process for CPLEX was set to

1.5 seconds. The justification for this is that large and difficult problems may

102

Parameter Value Parameter Value
T

% [1,1,1,1] Trp [1,1]

p; [1,1,1,1] w rad 3 x dp
W c°l 1010 d f 1000

< 1000 nc°l 8 x 105

Qrad 8 x 1011 nv 9000

nu 50 N vc 30

N vc 30 N q 30

V'max 10 wr2ad 6 x

Vm in 100 V m ax 300

Table 4.2: Parameters used in the simulation using dynamic boundary formu­

lation

take hours or days to prove for optimality and the optimal solution might have

been obtained at very early stages of calculation. The parameters used in all

simulations are summarised in Table 4.2. The measured quantities are success

rate, peak computation time (maximum time to compute a way point), peak

risk, average risk and total flight length. The results are shown in Figures 4.18

and 4.19. The horizon T is chosen as 5 seconds, i.e, the trajectory is evaluated

for five time steps of 1 seconds duration each.

(a) Peak computation time (b) Total computation time

Figure 4.18: Peak and total computation time for 100 randomly generated

data sets

103

1

!
* 1 1 500

(a) Average risk (b) Total flight time

Figure 4.19: Average risk and total flight time for 100 randomly generated

data sets

The success rate was 99% i.e, the solution was obtained for 99 random

scenarios. For 80th scenario, the solution was not obtained within set time

limits. Figure 4.18(a) shows a little violation of the set time limit for a few

scenarios. The cause for these violations are not clear. This extra delay might

be due to the internal setting of the commercially available solver CPLEX while

communicating with AMPL/CPLEX from within Matlab environment. The

risk was evaluated with the nonlinear probabilistic risk model described in the

next chapter. As shown in Figure 4.19(a), the average risk for each trajectory

while travelling to the selected path for most of the scenarios is reasonable

except for the 41s* and 23rd scenarios. The average risk for 41s* scenario is

16%. The highest values of the total distance travelled, total computation

time, total flight time and peak risk occurs at 24th scenario. This is due to

the very high risk experienced by the UAV as it moves towards the target and

due to that it starts loitering in order to find a safe path. This formulation is

applied to the same multi-vehicle scenario as discussed in Example 2 and the

simulation results are presented in Figure 4.20. From this Figure, we can see

that the violations of the dangerous zones are very small when compared to

Figure 4.9 and also it removes long time loitering of a UAV with the boundary.

In this exercise the horizon T is chosen as 25 seconds, that is, the trajectory

is evaluated for five time steps of 5 seconds duration each but only the first

control input is implemented. The collision avoidance can be seen in Figure

104

200

180

160

140

120

100

80

60

40

2 0 -UAV 1

00 20 40 60 80 100 120 140 160 180

x [km]

Figure 4.20: A multi-vehicle scenario and trajectories for three UAVs using

dynamic boundary formulation

g 100

Time [s]

Figure 4.21: Distances between the UAVs during flight

4.21 which shows the distances between each two vehicles at different times.

4.13 Conclusion

A mixed integer linear problem was formulated for different constraints and

applied to different case study examples. Using MILP, however, to design a

whole trajectory with a planning horizon fixed at the goal is very difficult to

perform in real time because the computational effort required grows rapidly

with problem size. It was shown that this limitation can be avoided by using

105

a receding planning horizon in which MILP is used to form a shorter plan that

extends towards the goal but does not necessarily reach it. The performance

of a RHC strongly depends on the proper evaluation of the weights w[ad and

W2ad. Care must be taken in selecting these weights when the feasibility of

the path beyond the plan must be ensured. Robustness of receding horizon

control against infeasibility is guaranteed by modelling the constraints as soft.

The efficiency of the technique depends upon proper modelling of the mixed

linear constraint, on the time horizon and also on proper adjustment of the

weights on the pairs of the dynamic boundaries described in Section 4.12. The

dynamic boundaries are used because of the turning of a UAV off a wall again

and again without finding a path to direct it towards the target either due to

the limited horizon or due to the fixed weights on the softness parameters in

the cost function described in Section 4.8. The optimality can be increased

by increasing the time window but by doing this the computational load will

increase. A practical compromise between optimality and computational load

is essential.

Due to the inherent complexity and probabilistic nature of the problem, a

probabilistic technique will be presented in the next chapter that will model

a nonlinear performance index to incorporate coupling between different pa­

rameters.

106

Chapter 5

A Probabilistic Framework for

Path Planning of UAVs

5.1 Introduction

A three dimensional probabilistic approach for the path planning of UAVs is

presented. This approach to local path planning is proposed for the three main

reasons: first, the inevitable uncertainty of the measurements from the sensors;

second, the intrinsic uncertainty of an unknown environment; and finally, the

structure of reasoning of any intelligent system is naturally probabilistic. The

novelty of the algorithm lies in its real time applicability due to a very low

computational load in spite of the fact that it finds a path in three dimensions.

The paths are locally optimal and are feasible for the UAV to follow by keeping

the turn angle within certain maximum limits. Furthermore, vehicle collisions

are avoided by maintaining a minimum distance between vehicles. Also UAVs

are prevented flying at very low altitudes because of the danger of crashing

into ground objects. Finally, since each UAV has limited fuel, a compromise

can be made between risk and fuel consumption by limiting height and search

angle.

107

5.2 Problem Formulation

5.2.1 Environment

The environment consists of a number of surface to air missiles (SAMs). A

SAM fire unit is assumed to consist of one radar used for both surveillance and

tracking and a number of missile launchers. The surveillance/tracking radar

has a nominal detection range against UAVs. The fire units are integrated to

form an integrated air defence system. The radar can be switched off, if an

incoming anti-radiation missile is detected. The air defence units are randomly

deployed in the operational area. Some of the surveillance radars are on alert

using continuous transmission, while the other air defence units remain silent

and serve as pop-up threats.

The UAVs fly in three dimensions with limitations on speed, acceleration

and duration of flight. They are equipped with a radar warning receiver

(RWR), which gives a bearing on an emitting radar with certain accuracy.

The RWR has a range greater than the radar’s detection range. To make the

problem simpler, it is first assumed that minimum ideal communication exists

between UAVs and each UAV calculates its own path using the information

received from other UAVs and thus we have a decentralized control problem.

The problem is to find the safest path for a UAV from one point to another.

Suppose the UAVs move with constant speed and p7(x, y, z) represents the risk

at position (x , y , z) faced by the I th UAV due to the SAMs. The safest path in

going from point P0 to Pt is a sequence of points in 3D obtained by minimizing

the cost function
pPT

J = P7(z,2/,2)d£ (5.2.1)
J P q

over all points (x, y, z).

5.2.2 Risk M odelling

The overall UAV risk function is complicated due to the influence of differ­

ent factors and can be modelled adequately in a probabilistic frame work as

described below.

108

Probability of H it For each defence unit (radar and SAM) aimed at a

UAV there is a hit probability. Within the given range of SAM, this probability

depends on the position of the UAV when the missile reaches it. This can be

taken as a function of height (h) and distance (d) and is given by

pk(h, d) =(1 - softStep(d, Rs,m,h sfcl)).softStep(d, 0.1 sk2)
(5.2.2)

.softStep(arcsin(/i/d), 7 , Sk3)

where

softStep(z, xq, s) = i (1 + X X° = =] (5.2.3)
1 \ s /s2 + [x - x0)2J

7 is the lower coverage angle of the radar and s^ is the softness of the step

function as shown in the Figure 5.1. Rs,m,i is the range of the missile which

may be short, medium or long range. The hit probability for a long range

SAM (R = 65 km) is shown in Figure 5.2 for s^ = 12, Sk2 = 2.4, Sk3 = 0.1,

with numbers on different contours indicating the probability of hit.

x

Figure 5.1: The function softStep(x,5,s) with s = 0.5,1,2

Probability of D estruction If a UAV is within the reach of M SAM

sites, the hit probability is increased by possible cooperation such as alter­

nating radar transmission or choice of launch site. This effect is modelled by

evaluating the hit probability of all covering SAM sites p£(/i, d) and using the

relation
M

P d e s (h , d) = 1 - J | (l - pj(/i, d)) (5.2.4)
3 = 1

109

I2f

10 -

-100 -80 -40 0
d(km)

20 40 60 80 100-60 -20

Figure 5.2: Hit probability for long range SAM

Probability of C rash When a UAV flies at very low altitude, there is a

possibility of crashing with ground objects, like trees or hills. So in order to

prevent all UAVs from flying around at zero altitude, this can be modelled as

a crash probability by

P c r (h) = 1 — SoftStep(h , h e r , S c r) (5.2.5)

where h c r is the nominal critical height and each UAV is forced to fly above

this height for safety reasons, is the softness parameter of the above prob­

ability function which can be tuned according to the situation. This softness

parameter is used to relax or strictly follow the critical height. If there is a

hilly area, its value may be low, and in valleys it may have higher values to

increase the softness because in this situation there may be objects like trees

and buildings which may not be very high.

P robability of Survival

Due to small sizes, UAVs have limited fuel capacity. Typically, flight times of

UAVs are 30 (min). The risk decreases with increasing height after a critical

height but on the hand fuel decreases. So a compromise can be made between

risk and fuel consumption by limiting the height.This effect can be modeled

as survival probability psur similar to the crash probability.

Probability of Collision

When the mission involves a group of UAVs, risk of collision with other vehicles

110

is a function of the distance of the vehicle from other UAVs and can be modeled

as

P c o { D) = 1 - softStep(.D, d c o , sco) (5.2.6)

Where d is the safety distance to avoid collision.

P robability of Risk The overall risk probability can be calculated due to

all the above factors as

j/(m) = i - [a -PcOjT1 - pi) l b 1 -p»)i <5-2-7)
3

Where I represent the index of that particular UAV on which these calculations

are being carried out. Since each vehicle has its own computing capabilities

and decides its own path and this makes the problem as decentralized. The

crash probability is shown in Figure 5.3.

Figure 5.3: Different crash probabilities with htree — 20 and s = 1,2,3

5.3 Probabilistic Local M inimization

The algorithm is based upon a point search for local minima on a disc whose

centre passes through the line of sight of the target from the current point and

which is also perpendicular to that line. The radius of the disc is decided by

the maximum search angle and which in turn can be decided by the maximum

turn angle. The disc is divided into a suitable number of lines all passing

through its centre as shown in Figure 5.4 below and local minima points are

111

searched for along these lines. The distance of the search disc from the current

point is chosen according to the type and range of the search sensor mounted

on the UAV and all points on the disc should be within the range of the search

sensors. The search angle could be different for different search lines in the

disk. This is because the maximum climb rate may be different in different

directions. To find the coordinates of each point on the disc, it is necessary to

specify a known reference line lying in the disc and passing through its centre.

The reference line (RL) is selected to be parallel to the horizontal plane. For

the two dimensional case, the search is limited to the reference line only but

in three dimensions, we have to search the whole disc along various lines. To

reduce the computational load, we can also limit our search to the reference

line only, which finds a point in 3D in the inclined plane containing the line of

sight and reference line and which changes with the line of sight as the search

progresses. But since a minimum point can be found at a place which is not

along the reference line, so for this purpose other lines are also searched. In

the absence of the other searches, although the UAV will find a stealthy path

but is limited to the reference line only.

Consider such a disc having its centre at the point Pc(xc , yc, zc) which is at

a distance h from the current point Pi(xi, yi} Zi) on the line of sight of target

having coordinates Pt {x t , Vt , %t) as shown in Figure 5.4. The equation of the

plane containing the disc and P (x , y, z) representing any point on the plane is

given by

P^Pt -PcP = 0

=> (xT - Xi)(x - xc) + (yT - y i)(y - yc) + (zT - Zi)(z - zc) = 0

=> a(x - xc) + b(y - yc) + c(z - z c) = 0 (5.3.8)

where

a = (xT - Xi), b = (;yT - y j , c = (zT - z {) (5.3.9)

are the direction ratios of the line of sight of the target. Consider the j th

search line in the search disc making an angle of 6j with the reference line

having direction cosines l,m, 0. Let P (x , y , z) be the point on the line at a

distance r from Pc where r is less than or equal to Rj (the radius of the j th

112

search line). Then we can write

(x - x c)l + (y - y c)m + (z - z c)Q a1

J v 'K * - O)2 + (» - Vcf + (* - * c)V «2 + m2 + O2

But

(x - xc)2 + (y - yc)2 + (x - 2C)2 = r2 (5.3.11)

and

l2 + m2 = l (5.3.12)

Hence, equation (5.3.10) can be written as

(x — xc)l + (2/ — 2/c)^ = r cos 6j (5.3.13)

Horizontal
reference line

VJ

Figure 5.4: Search Disk

l.a + m.b = 0 (5.3.14)

By solving equations (5.3.12) and (5.3.14), we will get two sets of values rep­

resenting two parallel unit vectors in opposite directions. Select one set as

. b a
I = ---- . , m = —= = = , n = 0

V a? + b2 Va2 + 62

113

Figure 5.5: Local minimisation and maximum turn angle

Hence, equation (5.3.13) becomes

—b(x — xc) + a(y — yc) = r cos OjVa2 + b2 (5.3.15)

Solving equations (5.3.8) and (5.3.15) for x — xc and y — yc in terms of z — z c,

we have

x ~ x‘ = - - j s h w rcos,ei (5 - 3 - 1 6)

v - y' = - t f T v { z - z') + V t h w rC086*(5'3'17)
Putting these values in equation (5.3.11), the values of (z — z c) can be calculated

as
J a 2 4- b2

z - z‘ = ± ^ T W T (5-3-18)
So there will be two points Pl(^l? Vl -, zl) and Pr (x r , yR, z r) on either sides of

the search line which are at a distance r from the point Pc and can written in

the form

114

X i = x c — r d x (X r = xc + r d x)

yL = yc + r d y (y R = yc ~ r d y) (5.3.19)

Zl = z c + r d z (z R = z c - r d z)

where

b ac . .dx = , — cos H— , = sin 07-
y/a2 + IP y/a2 + b2y/a2 + b2 + c2

= { 5 - 3 ' 2 0)

y/a2 + V2 .
dz = . sin 6j

y/a2 + b2 + c2

For a line in the disc, the search is initialized from the point Pc and which goes

along the line with equal small steps. The line is also limited by maximum

search angle ipj from both left and right sides. When a local minimum point

Pm(Xm,ym,zm) is found after searching all lines, the UAV will move to that

direction by a distance h. From simulation, it has been observed that by

moving exactly to the local minimum point along the chosen safe direction,

the vehicle may find itself in a danger zone in the next iteration. That is,

although the point is safe, it may be very near to the threat, so it is better

to cover a shorter distance (in our case h) to leave a safety margin. The next

point of the path can be calculated as

O P i+1 = OPi + hhm

where hm is the unit vector in the direction of the local minima Pm(xm, ym-, zm)

from point Pi and is calculated by

^ \Xm X{ , ym ?/j, Zm ZiJ

y j (x m Xi)2 -f- (ym {Zm Z{)2

In scalar form, the next decided point to move can be written as

OCm.
y/(xm Xi)2 T (ym y i T (zm Zi)2

^ Vi + k Vi*™ ~ XiY + (L - Vif + (4 , - ^i)2 (5'3'21)
, Zm. ZiZi+i = Zi + h-

y j (x m Xi)2 T (y m yi)^ T (z m Zi)2

115

The process of local minimization for the case of a circular disc and the strong

dependence of the maximum turn angle on the search angle can be seen from

Figure 5.5.

From Figure 5.5, the maximum turn angle (3 is given by

/3 = ZCBG = 2^ + 0 (5.3.22)

Also
a BD ABsinjp hsin'ip

tan = A T - A D = AT — AB cos ip = d -h c o s ip

(3 = 2ijj + arctan (5.3.23)
a — h cos ip

where h is the forward step size and d is the distance of the current point

from the destination T. For constant h and if), the maximum turn angle only

depends on d. When d is very large, then tan# —► 0 ==> ^ —> 0 ==̂ /5 —̂ 2ip.

On the other hand f3 goes on increasing when a UAV approaches its targets.

Suppose now that we want to find the optimal path between two points Pq

and Pt in 3D space.

5.3.1 A lgorithm Inputs

• Range of the rectangular operational area in terms of minimum and

maximum values of the x ,y and z coordinates.

• Radar (threat) locations in terms of x, y and z coordinates.

• Strength of threats e.g., short, medium and long range missile

• Starting and target points P0 and Pt respectively.

• Risk threshold a. This threshold is in the sense that the risk evaluated

at some point due to all radar sites using relation (5.2.7) is less than

this value. The UAV is then considered to be in a safe region and one

would like to continue in the same direction without searching the disk

at that point. This user given value can be used to adjust the tolerable

risk one can afford. By decreasing this value, very long but safe paths

116

result; where as increasing it gives short dangerous paths. Hence, this

parameter serves as a compromise between threat avoidance and path

length (fuel consumption).

• Forward step size h and lateral step angle Sip. The forward step size

is used to move in the selected direction while the lateral step angle is

employed for search purposes along the lines in small steps.

• A vector [0j]f^“x of search directions

• A vector [ipj]JP lx of maximum angles of search along each search line

starting from a point on the line of sight of the target at a forward step

size distance and then moving on either side of that point for each line.

The angles should be less than 90° because otherwise the vehicle might

then divert from its path. A longer but safer path results by choosing a

higher value of these angles and vice versa

• Tolerance is used to terminate the algorithm. When the UAV is near to

the target, then instead of converging, it begins to loiter. So this limit is

set to avoid this phenomenon. When the vehicle is within this tolerance,

then it is assumed that the target is achieved.

5.3.2 Algorithm D escription

Step 1 Initialize the path vector with starting point and declare it the current

point and set the indices i = 1, j = 1, dip = Sip.

Step 2 Find the distance \J(xp — Xi)2 + (yT — yi)2 + (zT — Zi)2 of the current

point to the target. If this distance is less than the tolerance limit, go to

last Step 10. Otherwise go to next step.

Step 3 Find the direction ratios a, b, c of the line of sight of the target using

(5.3.9).

Step 4 Find a point Pc on the line of sight at a distance h from the current

point Pi using (5.3.21) (Pm should be replaced by Pp) and calculate the

risk value p c at this point using the relation (5.2.7).

117

Step 5 If this value of the risk probability is less than the threshold a , then

there is no need to worry about the safety of this point. Therefore add

the point to the list, set i = i + 1 and go to Step 3. Otherwise, declare

it to be an expected point of the optimal path by assigning it to a point

Pe and go to the next step.

Step 6 Set r = h tan dip and find two points Pl and Pr on the left and right

side respectively of the point Pc at a search angle Sip along the j th search

line which makes an angle 9j with the reference line using (5.3.20) and

(5.3.19). Find the risk probabilities p l and p r at these points using the

relation (5.2.7).

Step 7 If the risk pe is less than or equal to the risks P l and P r , then go to

step 10. Otherwise go to the next step.

Step 8 If the risk probability p l (p r) is less than the risk pe and also it is

less than or equal to the risk pr (p l), then P l (Pr) is the minimal risk

point among these points and there is a chance of getting a further low

risk point on the left (right) side. Repeat the following:

xe = xL (xe = xR)

Ve = VL (Ve = Vr)

Ze = ZL (ze = Zr)

dip = dip + 5ip

r = h tan dip

x l = x l — rdx (x r = x r -f rdx)

VL = yL + rdy (yR = yR - rdy)

ZL = zL + rdz (zR = Zr - rdz)

until one of the following occurs:

• the search angle exceeds its maximum value which means dip > ip

• a local minimum is found which means risk pe < risk Pl (pr)

118

Step 9 If j < jmax) then assign point Pe to Pj and the risk pe to pj and set

j = j -h i , d'tp = 8ip and go to step 6. Otherwise find the minimum

risk point Pm{xm,yrn̂ zrn) on the disk by comparing the minimum risk

Pj found from all the search lines. Set i = i + 1 and find new safe path

point using (5.3.21). Add this point to the path list and also set j = 1,

dip = Sip. Go to Step 2

Step 10 Output the result in the form of

• Optimal path which consists of way points.

• Total and average risk on this path

5.4 Simulation Results

The example scenario used here consists of 23 radar threats scattered in a

300 km x 300 km rectangular region of the xy-plane. The radars are considered

to be medium range SAM units with a range varying from 15 km to 35 km.

Table 5.1 shows their positions and ranges. For ease of demonstration, the

approach will first be applied to a problem of finding a path in two dimensions

and later it will be extended to the three dimensional case. For this purpose a

plane parallel to the xy- plane at a height of 10 km was selected. The starting

point of the UAV is (10,100,10) and the destination is (250,240,10). The

parameters of maximum lateral search angle, lateral search angle step, path

step, and stopping tolerance were first taken as fixed with values of are 60°,

5.7°, 1 km and 2 km respectively. The risk threshold parameter was varied

by taking values 0.001,0.01,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1. Figure 5.6

shows three different paths obtained for three different values of the threshold

parameter a. Contours around each threat show different risk levels varying

from 0.1 to 0.9 with the outer most showing a hit probability of 0.1 and the

inner most a value of 0.9. By increasing the value of the risk threshold a the

path becomes shorter and shorter and for a = 1 it becomes a straight line.

The variation of distance covered and average risk with threshold can be seen

in Figure 5.7 and 5.8, respectively.

119

X(km) Y(km) Z(km) Range(km)

142.00 270.84 0 15

135.32 241.36 0 20

248.66 49.88 0 25

118.17 156.23 0 25

215.44 170.76 0 30

170.00 140.00 0 20

26.32 133.05 0 30

109.89 90.76 0 35

230.00 120.00 0 20

284.93 167.38 0 15

4.27 178.85 0 15

244.86 293.13 0 20

66.57 211.11 0 20

156.62 279.87 0 20

214.01 68.41 0 25

134.89 51.66 0 25

180.00 20.00 0 30

220.00 230.00 0 30

70.00 130.00 0 30

80.00 260.00 0 25

166.00 190.00 0 35

280.00 80.00 0 35

60.00 30.00 0 15

Table 5.1: Radars locations and their ranges

The target assignment aspects of the algorithm can be explored by visiting

more than one target in some specific order. Consider a UAV which starts

at a position (250,240,10) and intends to visit a set of targets (110,270,10),

(260,200,10), (213,38,10), (130,160,10). We will label these points in the

order given as 1,2,3,4 respectively. We are interested in finding a path to

120

Figure 5.6: Paths obtained for thresholds, a = 0.01,0.5,1

? 3 6 0

260
0.2 0.3

Risk threshold

Figure 5.7: Variation of distance covered with threshold

visit these targets and the effect on the path and other parameters of different

sequences. The results are summarized in Table 5.2 and the paths for fire

target sequeces are shown in Figures 5.9 to 5.13. It is interesting to note that

in the first order of visits when the vehicle is on its way to visit the second

target after visiting first target, then at one time it comes within the range

of three SAM units. Sometimes this situation cannot be avoided and one way

to minimize the risk to a UAV during such situations is to pass as quickly as

possible with maximum speed.

121

0 0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Risk threshold

Figure 5.8: Variation of Average Risk with threshold

Order Targets Distance Covered (km) Average Risk (%)

1 1 2 3 4 924 19.48

2 4 1 2 3 767 23.52

3 1 4 3 2 838 20.45

4 2 1 4 3 914 16.02

5 3 4 1 2 845 16.85

Table 5.2: Data for different orders of visits

300

Target 1

Target 2
250

200

Start

I '<§>■
Target 3

100 250 300

Figure 5.9: Minimum risk path for order 1

\ j) Target 3,

Figure 5.10: Minimum risk path for order 2

Figure 5.11: Minimum risk path for order 3

Figure 5.12: Minimum risk path for order 4

Target 4

T arget 2

Ja rg e t3

123

Target 1

200 Target 2

£>v| ta rget 4

150

100

Target 3

200 300

Figure 5.13: Minimum risk path for order 5

In order to demonstrate the working of the algorithm in 3D, consider the

case of multiple targets to be visited by a UAV that all lie in the same plane.

The same height of the targets is selected again for demonstration purpose in

3 dimensional space and the way point path for targets at different heights can

obtained in a similar way. For this purpose the 5th order of target visits from

Table 5.2 is selected. Now the full version of the algorithm is applied so that

the UAV can not only move in the same plane but can move up and down to

find a stealthy path. The resulting path is shown in Figure 5.14.

70-

60-

50-

30.

2 0 -

Target 2
10-

300
Target 1

Target 4
Targets

Figure 5.14: Path obtained in 3D for all targets in the same plane without

considering any restriction to maximum height

On its approach to the third target, the UAV remained close to the hori­

zontal plane but when it got near to the target it started moving up due to the

124

high risk. For the other target visits high altitudes were used to escape from

danger. However due to limited fuel, low climb rates and sometimes timing

constraint, it is not always possible to reach the heights shown in Figure 5.14.

For this reason, a cost due to height becomes necessary to include into the

cost function. After inclusion of such a cost the path shown in Figure 5.15 is

obtained.

Target 210s Target 1

300 Target 4

250 Target 3
200

300
150 Start

200100 150100

Figure 5.15: Path obtained in 3D for all targets in the same plane and consid­

ering a cost due to height

5.5 Modifications to Incorporate Constraints

Equation (5.3.23) reveals that when the UAV is very far from the target, the

maximum turn angle is nearly twice the maximum search angle and it increases

when the UAV approaches the target. In order to make the local minimization

approach more realistic and realizable, one needs to impose the dynamical

constraints of the vehicle. These constraints needs to be implemented for

turn angle or heading angle, speed and acceleration. The proposed algorithm

will be modified to include these constraints. The UAV cannot change its

heading instantaneously. The rate of change of heading is limited by the vehicle

dynamics. This can modelled by a maximum heading constraint ipmax which

is the maximum heading angle change the UAV can make in each simulation

step, ipmax is a function of the speed. With this strategy, the current UAV

125

heading will always lie along the symmetrical axis of a cone in 3D, which moves

with the UAV. The UAV heading at the next time step will along the point of

minima within this cone. The heading search procedure is illustrated for the

three different cases as shown in Figures 5.16, 5.17 and 5.18. The strategy is

designed taking into consideration the following four main objectives:

• restricted areas should be avoided

• the threat exposure level should be minimized

• proximity of the target must be achieved

• time to reach the target should be minimized

In order to achieve these objective in the order of priority, the algorithm will

generate the UAVs heading and acceleration commands while considering the

dynamic constraints. The UAV will be flying in an area with multiple threat

sources. The threat environment may be static or dynamic with popup threats.

So when the UAV is flying in an area with multiple threat sources with time

varying properties, then probability of risk is a function of time as well as

position. However, once the probabilistic risk map is constructed, it is not

necessary to distinguish between moving and stationary threats, only the local

value of the map is used to minimize the threat exposure. As mentioned above,

the next position of the UAV can be varied by changing the heading of the

UAV and the time to reach the next position can be varied by changing the

speed of the UAV. If the UAV maintains its current speed Vc, the incremental

distance that the UAV travels from its current position Pi to the next position

Pi+1 until the next computation time, is computed by the current speed and

simulation time step At as shown in Figure 5.19. This incremental distance

and the heading of the UAV along with the current position will determine the

next position of the UAV. The speed variation is limited by the acceleration

constraints because the UAV needs to reach the next position in a specified

amount of time which is the simulation step time. The acceleration range that

will not violate the speed constraints of the UAV is calculated as follows.

126

Figure 5.16: Local minimization scheme with constraints when the target is

outside the search cone and is nearest to the left boundary of the cone

P,,vc

Figure 5.17: Local minimization scheme with constraints when the target is

inside the search cone.

Figure 5.18: Local minimization scheme with constraints when the target is

outside the search cone and is nearest to right the boundary of the cone

Figure 5.19: Incremental distance in one simulation step

Assuming that the UAV maintains a constant acceleration in the next sim­

ulation interval

= Vm% Vc (5-5.24)

which is the acceleration that will increase the UAV speed to its maximum

value. Similarly

(5-5.25)

which is the acceleration that will reduce the UAV speed to its minimum value.

So the acceleration range due to the speed constraints is defined by

Rai — [^Vminl aVmax] (5.5.26)

The UAV acceleration should be in this range, because otherwise the UAV

speed will be higher than vmax or lower than vmin, which is a direct violation

of the speed constraints. But the given range of acceleration constraints is

-R<Z2 = ^mai] (5.5.27)

Hence the admissible acceleration range is the intersection of these two ranges

R a f l o w e r i &upper] = R ai n R a 2 (5.5.28)

which implies that

l̂ower — ^
a V m i n i a Vm in — a m i n

{o.b.zy j
O 'm in i ^ v-m in ^ Q 'm in

l V m a x i a V m a x — a m a x
1upper — A Û.O.oUJ

^max 5 ^Vmax ^ Q"ma,x

where a/o^er is the lower limit and aupper is the upper limit on the admissible

acceleration range. The distance travelled in time interval At will be maximum

if the UAV moves with acceleration aupper and minimum if the acceleration is

diower- So the admissible distance range is

Rd, — [di oweri dUpper\ (5.5.31)

where

dlower — ncAt 0.5 CLioyjQfAt (5.5.32)

dupper 0.5 Clipper At (5.5.33)

Also by considering the acceleration range, the admissible speed range is ob­

tained as follows:

Ry [̂ Zotoer) ûpper] (5.5.34)

where

Vlower — Vc T CLlower ̂At (5.5.35)

Vupper Vc CLupper ̂At (5.5.36)

Due to these considerations, the previous algorithm will be modified. For

the 2D case, two searches are involved: a heading search and an acceleration

search. The heading search is constrained on a circular arc shown by dicrete

dots in Figures 5.16 to 5.17. These dots are labelled with numbers showing

the order of search and are at a distance diQwer + 5d from the current position,

where di^er is the minimum distance for a UAV to reach. Search is not useful

below the distance because a UAV with dynamical constraint must cover

this distance in time interval At and the small distance Sd is for UAV safety

considerations. One objective is to go to the destination point in minimum

time which can be accomplished if the UAV moves with maximum possible

acceleration in At. The acceleration search starts from a;au,eT. to aupper. In

other words, the search starts from d i^ r and moves towards dupper in small

steps. The search finishes when the risk becomes greater than its value at the

previous search.

129

5.6 Temporal Constraint

Driven by battle space management needs, real world threats can be much

more complex than those modelled in the previous trajectory generation work.

In an area that is dense with threats, path planning that relies primarily on

threat zones avoidance may be insufficient to achieve the simultaneous goals

of reaching to a destination way point in a high risk area and avoiding threats.

On the other hand by modelling and managing the observability of the paths,

path planning algorithm can be designed that have the potential to achieve

these objectives. The detectability of an aircraft travelling near an enemy

radar depends on more than just the distance to the radar, it also depends

on the UAV attitude and configuration. This feature in the threat model in­

troduces non-convexities and path dependencies as well as sharp gradients in

the underlying optimization problems for trajectory generation. Therefore we

propose temporal constraints or precedence constraints that include perform­

ing an activity only after another activity has been performed or performing

simultaneous activities. The low observability routing problem could be con­

sidered to be temporal in nature by allowing periods of high observability

interspersed with periods of low observability. This is desirable because of the

way the enemy’s systems work. Although it might not be possible to get close

to an opponent’s territories while maintaining low observability at all times;

by strategically flying low observable paths for part of the time, it might be

possible to drive the enemy’s systems into a condition called lock-loss. This

condition aborts the enemy’s plans after a specified time of no detection. If an

opponent detects a UAV, then an engagement is initiated, the only way the

enemy will disengage is if there is a period of time (lock-loss time) in which

the UAV may trigger the opponent into disengaging if high observability flight

is constrained to occur for limited durations. Incorporating features into the

path planner where high observability times are limited and interspersed with

low observability times can be a beneficial strategy. So in regions where there

are multiple radars, path planning incorporating risk and temporal constraints

in this manner may be required to satisfy the requirements.

130

5.7 Comparison W ith the Other Strategies

The effectiveness of adjusting UAV acceleration as well as heading based on

the current map information can be seen by comparing the proposed algorithm

(PA) (as explained in the previous section) with two other strategies:

• Heading control with current map (HCCM): With this strategy, at each

computation, the current probabilistic map is used to find the heading

that would minimize the threat exposure level. The strategy uses the

same algorithm as PA to conduct the heading search. Even if this strat­

egy is provided with the current map it does not adjust its acceleration

and the UAV maintains its initial speed throughout the mission.

• Heading control with initial map (HCIM): This strategy is the same as

HCCM except it is provided with only the initial map of the area. Thus

even if the probabilistic map is changing, it makes decisions for the com­

manded heading based on the initial status of the threats. Furthermore,

it also commands the initial speed throughout the mission.

For comparison purposes, two threats are considered to be time-variant. One

of the threats has a changing the concentration point, i.e. location. This threat

is initially located at (—2,4) and moves along the positive y-axis as shown in

Figures 5.21-5.30. The other threat is located at (—20,0) and has a changing

area of effectiveness, i.e. the range of the SAM between 90 and 150 minutes.

This threat initially has a range of 30 km. As the time increases from 90

minutes to 120 minutes, the range decreases linearly to 15 km and goes back

to its initial value linearly between 120 and 150 minutes. The PA trajectory is

shown with a solid line, the HCCM trajectory is shown with a dashed line and

the HCIM trajectory is shown with a dashed-dotted line in Figures 5.21-5.30.

For this simulation a and (3 are selected to be 0.0001 and 0.005 respectively

which are also shown in Figures 5.21-5.30. As seen from Figures 5.21-5.24

all three strategies command the same trajectories up to 50 minutes. This

can also be seen from Figure 5.20 where it is clear they have the same threat

exposure level up to 50 minutes. When there is a high threat area approaching

the UAV, the UAV using the PA starts to manoeuvre earlier than the others

131

to avoid the approaching threat. At 60 minutes the UAV with PA starts to

manoeuvre to the right and flies with a speed 9% higher than its initial speed

This is because there is a threat approaching the UAV. In other words, the

threat exposure level is increasing in the direction the UAV is heading. Since

PA recognises that the threat level will increase, it changes the heading and

increases the speed to pass through the region before the probability in that

region gets higher. Since HCCM uses only the current map, it recognises the

approaching threat later than the PA does and starts to manoeuvre later. Also,

it cannot adjust speed and therefore it is exposed to a higher level of threat

than the PA. However, HCIM is exposed to the highest threat level, since

it does not know anything about the time-variation of the map as it passes

through the threat region, which is shown in Figures 5.21-5.24. It is also shown

in Figure 5.20 that the threat exposure level increases significantly in HCIM

as the threat approaches. HCCM has a smaller threat and PA the least. As

seen from Figure 5.20 between 85 and 110 minutes, as the UAVs approach

the second target position, there is another significant increase in the level of

threat exposure. This is because the UAVs pass between two threat regions

to get to the target as seen from Figures 5.25-5.28. Since the UAVs guided by

HCCM and HCIM pass from this region before the UAV guided by PA, they

are exposed to the threat region earlier. They are also expose to a higher level

of threat than the UAV guided by PA.

j L jt ________| L..!r t i lf j !

HU~~...i

HCCM
L________ , L.! k f ; | |

i....
I

j 1i]ifiw,

——— !...... I
|I l ;rjm... :

S N j PA
. . . . ! •jK J

I ^

Figure 5.20: Threat exposure level along the trajectory of each strategy

132

Figure 5.21: Comparison of the trajectories at time 6 min

Figure 5.22: Comparison of the trajectories at time 50 min

Figure 5.23: Comparison of the trajectories at time 60 min

| j ; j J j | |

-30 -20 -10 0 10 20 30 40**n)

Figure 5.24: Comparison of the traiectories at time 80 min

i
f.

-40 -30 -20 -10 0 10

Figure 5.25: Comparison of the trajectories at time 90 min

tm« ts 100mm

i

-40 -30 -20 -10 0 10 2C*t«m)

Figure 5.26: Comparison of the trajectories at time 100 min

*fl0rMi

J I i i i i i i
20 30 40

134

tm *i» llOmin
40 r* -

- 4 0 1------------- 1------------- 1--------------1------------- 1------------- l i--------------u — . _ j
-40 -30 -20 -10 0 10 20 30 40

xfton)

Figure 5.27: Comparison of the trajectories at time 110 min

fcm* n 120mn

- 4 0 1------------- *------------- 1------------- •------------- •------------- 1------------- •-------------1-------- - J
-40 -30 -20 -10 0 10 20 30 40*km>

Figure 5.28: Comparison of the trajectories at time 120 min

tnw » 130mm

-4>:' I i i i i i i i
-40 -30 -20 -10 0 10 20 30 40

« 0 n)

Figure 5.29: Comparison of the trajectories at time 130 min

135

It ISSmln

-10

-30

-30 -20 -10

Figure 5.30: Comparison of the trajectories at time 158 min

This is because, since one of the threats located in front of the target

changes its area of effectiveness, the threat exposure level decreases between

90 and 120 minutes. Thus, PA recognises that the threat exposure level will

decrease in the direction that the UAV is heading and thus decreases the UAV

speed significantly to get to the region where the probability gets smaller.

5.8 Conclusion

A real time three dimensional probabilistic approach for the path planning of

autonomous vehicles has been presented. It is not only capable of finding a

safe path but also takes into account real world constraints. The problems

of collision avoidance with other vehicles, low fuel consumption and crash

prevention with ground objects have also been dealt with. The paths are

locally optimal and feasible for the UAV to follow by keeping the turn angle

within some certain maximum limit. The algorithm is applied in decentralized

mode, that is, each vehicle has its own processor and applies the algorithm to

find its path. It addresses the collisions avoidance with consideration of the

collision with other vehicles by keeping itself at some minimum distance from

others. The UAVs are prevented from flying at very low altitudes because of

the danger of crashing with ground objects. Since each UAV has some limited

fuel, a compromise has to be made between risk and fuel consumption by

136

limiting the height and search angle.

The real time techniques discussed so far are based on local optimizations

and perform well for planning within some limit area at each time step. If

we have some global knowledge of the world then this information can be

combined with the local optimization technique for improved optimality. In

the next chapter, a graphical global technique is presented.

137

Chapter 6

Global Optimality of Flight

Path

6.1 Introduction

Without complete knowledge of the environment an agent can only plan a

path which is optimal with respect to the information at the time of planning.

But if some global information is available, then it can be incorporated in the

planning process for improved optimality. Hence the need for global planners.

Deterministic approaches are used most often in global path planners. Two

deterministic approaches are: the Voronoi diagram and the Visibility graph.

In this chapter a hybrid approach is described which is based on the Voronoi

graph, local optimization and grid search methods.

6.2 Voronoi Diagram M ethod

6 .2.1 Voronoi Graph

This procedure, which is used in many different fields including computational

fluid dynamics, computer graphics and statistics, begins with complete knowl­

edge of the number and locations of the radar sites. Such a graph is constructed

using Delaunay triangulation and its geometric dual, Voronoi polygons. For

every triplet of radar sites, there exists a unique circle that passes through

138

all three. Consider only those triplets whose circle does not enclose any other

radar site. The set of all such triplets is called the Delaunay triangulation and

the centres of the circles are called Voronoi points. We may now construct

a graph by defining the vertices as the Voronoi points. Edges are drawn to

connect two Voronoi points if and only if their associated Delaunay triangle

share an edge. By drawing all such edges, we construct the Voronoi diagram

or graph. Figure 6.1 a shows Voronoi diagram for 30 threats spread over a

250 x 250 square unit area and Figure 6.2 shows its geometric dual. The edges

of the Voronoi diagram have the property that they are equidistant from a

pair of radar sites. One important property of the Voronoi polygon is that it is

the perimeter of the set of all points in the plane closest to the Voronoi point

containing it.

250

2 0 0 , p

150

100

250200100 150

Figure 6.1: Incomplete Voronoi diagram for 30 threats

6.2.2 M atlab Code to G enerate the Voronoi Graph

The construction of Voronoi graphs has been implemented in Matlab. How­

ever, Voronoi function (voronoin.m) in the Matlab is not complete in the sense

that it does not divide the operational area completely and explicitly. As seen

in Figure 6.1, it stops at some nodes such as the points D, E, F , G, H , / , J, K

referred to as the infinity nodes in Matlab routine which are connected to infin-

139

250

200

150

100

150 200 250100

Figure 6.2: Delaunay Triangulation for 30 threats

ity. There should be straight lines from these points extending to the boundary

of the area. On the other hand, the Matlab routine produces such nodes which

are actually beyond the area considered. When the graph is restricted to the

area under consideration, the intersection points A, B , L , M, N, X in Figure 6.1

between Voronoi edges and area borders are not included in the Voronoi node

list. As can be seen the intersection points of the edges that have L, M inter­

section point with the boundary will be very far away from boundary. Since

for Voronoi diagram path planning, the paths are restricted to line segments

connecting the Voronoi points, so it would be impractical if not impossible for

a UAV to travel along such long line segments.

6.2.3 Com plete Voronoi Algorithm

Extra subroutines are hence needed and have been developed at Leicester (see

Appendix A). These subroutines expand the node list by adding nodes on the

borders for those segment connected to the infinity nodes and by inclusion of

corner points. Furthermore, they remove those nodes outside the considered

area and include instead the intersections of the corresponding edges and the

border lines. Hence, the area is explicitly and completely partitioned into cells.

The number of the cells is the same as that of the threats, and each threat

140

is located within one cell. The threat in a cell is the nearest one, among all

threats, to any point in that cell. Several steps are taken in this completion of

Voronoi graph coding. They are explained below.

We first describe what is meant by an infinity node. The infinity node is

an imaginary node and is labeled as Node 1 in the Matlab code. Each cell

has a list of nodes which form the perimeter of the polygon of the cell. A

cell containing the infinity node in its node list indicates that its perimeter

is not complete/closed. In other words, the corresponding threat is not yet

completely separated from other threats. In order to separate this threat from

others, at least one straight line, sometimes more lines, should be drawn from

one of its nodes (the one either in front of or after the infinity node in the cell

node list) to infinity.

The first step in our coding is to remove the infinity node from each cell’s

node list. This step consists of the following parts.

• Expand the operational area to include all finite Voronoi nodes (as inte­

rior points) to form a lager rectangular region.

• In a cell with the infinity node, identify the neighbouring nodes of the

infinity node and search for other cells with the infinity node and with

the same neighbouring node.

• Draw a middle line between the two corresponding threat points and

record the intersections with the boundaries.

• Decide which intersection point is required and append it to the total

list of Voronoi nodes.

• Modify the node lists of those two relevant cells and the connection map

which shows links between Voronoi nodes.

The second step is to include the 4 corners of the expanded rectangle in

the total Voronoi nodes. The following have to be applied to each corner point

in turn:

141

• Check if the corner point is already in the total node list; if not, identify

the threat point to which the corner is the nearest, i.e. the cell to which

the corner point should belong.

• Insert the corner point at the right place in the node list of that cell.

• Append the corner point to the total node list and modify the connection

map.

The third step deals with those nodes beyond the originally required oper­

ation (rectangular) region.

• In the total Voronoi node list, find out all the nodes which are beyond

that required region and define them as the outside nodes.

• Using the connection map, decide all the Voronoi edges, and correspond­

ing nodes, which link an outside node.

• Check if that edge intersects with the (required) boundary lines.

• Identify the cells which ought to have the intersections and modify the

node lists of the cells.

• Append the intersections to the total Voronoi node list and modify the

connection map.

• Delete all outside nodes from the total Voronoi node list and tidy up the

connection map.

The fourth step is similar to Step 2, i.e. to include the corner points of

the required region as Voronoi nodes. In the scenario considered here, a UAV

flying along an edge is as far as it can be from the two nearest threats.

The complete Voronoi diagram for this selection of threat points is shown

Figure 6.3. As can be seen from this figure, these subroutines expand the node

list by adding nodes:

• D 1, E l, F 1, Gl, HI, II, J l , K l on borders for the line segments connect­

ing each other at infinity

142

• Al, B l, D2,X1, LI, M l, N l for line segments connecting very far away

• Corner points S, T, U, V of the rectangular operational area making it a

complete polygonal cell

It is worth while to note that node D is connected to two new nodes D 1, D2

where D l is the node for the line segment intersecting at infinity and D2 is

the node for the line segment intersecting at a far away point. We tested the

algorithm for different scenarios and found that it worked perfectly. Figures

6.4-6.7 show the working of the algorithm for the cases of 50 and 100 randomly

created scenarios.

250

200, p

150

M1
100

02
200 250100 X1 150

Figure 6.3: Complete Voronoi diagram for 30 threats

6.2.4 Extended Voronoi Graph

Once the complete Voronoi graph is constructed using threat locations, the

next stage is to augment it with starting and end points of the vehicle. The

augmented graph is called the extended Voronoi graph. A few ways can be

used to link these two nodes with others. They can be simply connected to the

nearest node [69], they can be linked to the nearest edge or additional edges

are defined by the shortest distance lines from the starting (end) point to each

143

200

♦1+
150

100

-50

-150 -100 -50 0 50 100 150 200 250

Figure 6.4: Incomplete Voronoi graph for 50 randomly generated threats scat­

tered in 200 x 200 square unit area

200

180

160

140

120

100

100 120 140 160 180 200

Figure 6.5: Complete Voronoi graph for 50 randomly generated threats scat­

tered in 200 x 200 square unit area

144

400

200

-200

-400

-600

-800

-1000

-1200

-1500 -1000 -500 0 500

Figure 6.6: Incomplete Voronoi graph for 100 randomly generated threats

scattered in 200 x 200 square unit area

200

180

160

140

120

100

100 120 140 160 180 200

Figure 6.7: Complete Voronoi graph for 100 randomly generated threats scat­

tered in 200 x 200 square unit area

145

edge of the Voronoi cell in which the starting (end) point is located. In the

following sections, the last method is used (see Appendix A).

6.3 Optimal Path Selection

6.3.1 Objective Function

The cost associated with travelling along an edge of the Voronoi graph can be

taken as the weighted sum of two terms:

• threat cost

• fuel cost

The threat cost is based on a UAV’s exposure to enemy radar which is the

strength of a UAV’s radar signature and is proportional to 1/d4, where d is the

distance to the threat. An exact threat cost calculation for travelling along

an edge would involve the integration of the cost along the edge. In order to

reduce the computational load, a simpler approach would be to calculate the

threat cost at several locations along an edge while taking into account the

length of the edge. For this purpose, the threat cost was calculated at three

points: Li/6, L»/2, 5L*/6 along each edge, where Li is the length of edge i.

This is shown in Figure 6.8. The threat cost associated with the ith edge is

i-l
•7-2

Figure 6.8: Threat cost calculation

146

given by the expression

(6.3.1)

where N is the number of threats and d\ . . is the distance from the l /6 th point

on the ith edge to the j th threat. If the UAVs are flying at constant speed, the

The total cost for travelling along an edge is the weighted sum of the threat

and fuel costs

By selecting different values of k between 0 and 1, we can make a compromise

between threat exposure and fuel consumption. A dynamic programming ap-

6.3.2 Optimization Algorithm

Once the Voronoi diagram is available. The optimal path can be searched using

Dijkstra’s algorithm. The algorithm proceeds by assigning labels to each node

which may be temporary or permanent. A temporary label can be changed,

whereas a permanent one cannot. For example, if node p has a permanent

label (<7, r), then r is the cost in going from ns to p which is cost(ns,p) and q

is the node on the shortest cost path ns —* p. If the label is temporary, then

it has the same meaning but it refers only to the shortest path found so far. A

shorter path may found later, in which case the label may become permanent.

The functional form of the routine used is

[splen, path] = OptAlg(n, ns, ne, nnz, D , row, col)

The inputs of the algorithm are:

• n is total number of nodes

fuel required to travel (or time of travel) along one edge of the Voronoi diagram

will be proportional to the length of the edge. The fuel cost associated with

the ith edge is given by

(6.3.2)

Ji — kJt,i + (1 — k)Jfj 0 < A; < 1 (6.3.3)

proach or Dijkstra’s algorithm can be used to search the graph for an optimal

path.

147

• ns is the starting point node number

• ne is the end point node number

• nnz is the number of non-zero elements of the connection matrix

• D is the cost vector of non-zero elements of the connection matrix ordered

by increasing row index and increasing column index within each row

• row and col contain the row and column indices respectively of the

nonzero elements of the connection matrix

The main steps of the algorithm are:

Step 1 Assign the permanent label (0,0) to the node ns and temporary labels

(0, oo) to every other node. A zero in the first place indicates that

no assignment has been made for the previous node position. Adjust

initially the permanent node variable k as k = ns.

Step 2 Consider each node y connected to the node k with a temporary label

in turn. Let the label at k be (p, q) and at y{r, s). If q + cost(k, y) < s,

then a new temporary label (k,q + cost(k,y)) is assigned to node y.

Otherwise no change is made in the label of y. When all nodes y with

temporary label adjacent to k have been considered, then move to the

next step.

Step 3 Prom the set of temporary labels, select the one with the smallest

second component and declare that label to be permanent. The node it

is attached to becomes the new node k. If A: = ne, go to the next step.

Otherwise, go to step 2 unless no new node can be found. So this will

be the case when the set of temporary labels is empty but k ^ ne, in

which case no connected network exists between nodes ns and ne and

the algorithm terminates.

Step 4 If the label of ne is (x,z), then z gives the total cost of the optimal

path from ns to ne, while x gives the vector of nodes that links back to

the previous node on the shortest path.

148

Dynamic programming-like algorithms can be applied as well. We de­

scribe such an algorithm below. The algorithm starts from the desti­

nation node Pe and works out the optimal path, with lowest cost, from

each other node to Pe. This algorithm is particularly useful for the chal­

lenge problem described in the Introduction, because there will be several

UAVs possibly starting from different positions and flying towards the

same destination.

Similarly, two-component labels are assigned to all nodes. The algorithm

takes the following steps.

Step 1 Assign the label (0,0) to the final node Pe and (0, oo) to all other

nodes. Initialize the level variable i = 1, and define = {Pe} and

an empty set.

Step 2 For each node p G — $i_i, define tyitP = {q}, such that q is a

node directly connected to p. Define = (J ^ i jP.

Step 3 For all q(r,(3) G if a + cost(p,q) < /?, a new label (p,a +

cost(p,q)) is assigned to the node q\ else, if f3 + cost(q,p) < a, a

new label (q, (3 + cost(q,p)) is assigned to the node p\ where p has a

label (n, a) and cost(p,q) (or cost(q,p)) denotes the cost along the

edge from p to q (q to p, though the two are of the same value in

this problem). Repeat the above for all ^ itP.

Step 4 Define If <Fi+i = the algorithm terminates;

otherwise, set i = i -I-1, goto Step 2.

When the algorithm finishes, the second component of the label of each

node gives the optimal total cost to reach Pe from that node. From the

first component of the label, a vector of all nodes which form the optimal

path can be traced. If the final <£* is a strict subset of the node set, it

indicates that not all nodes are connected to the final node Pe.

When used in finding an optimal path between a given pair of starting

and end points, there is no obvious difference in terms of computational

149

efficiency between Dijkstra’s algorithm and the dynamic programming

approach (slightly modified version of above algorithm).

6.4 Way Point Generation using Developed Soft­

ware

The software which uses the modified Voronoi diagram with a dynamic pro­

gramming approach can be utilized to find the optimal path. The way point

selection procedure is summarized below:

1. For a given set of threat coordinates, the modified Voronoi diagram is

constructed, which gives its output in terms of nodes and the cells.

2. For a given pair of starting and end points, the extended Voronoi graph

is evaluated.

3. A connection matrix having binary entries is constructed which gives

the connection detail of the nodes i.e. which node is connected to which

node. If two nodes are connected then the corresponding element in the

matrix is one otherwise it is zero.

4. Each line segment of the graph has some associated cost. The cost is

calculated using (6.3.1). A cost vector is constructed for the non-zero

elements of the connection matrix.

5. The optimization algorithm described in Section 6.3.2 is applied to find

out the optimal path and the associated risk.

The good points of the above algorithm are:

• Computationally efficient and the solution is available at once.

• The memory usage with this approach is very small.

• If the vehicle sensor detects some changes in the environment in the form

of a popup threat, then a new diagram can be constructed and searched

with the same procedure.

150

• It gives a global solution with respect to the graph.

The drawbacks of this approach are:

• Since the graph is constructed by considering radars of equal powers, the

line segments formed are at equal distance from the pairs of radar sites

and so the search is limited to these lines only. But in reality the radars

may have different powers e.g.short range, medium range and long range.

Hence the optimality of this approach is not global with respect to real

scenario.

• When the initial and final nodes are connected to the nearest segment,

then it may happen that this path could fall into a dangerous area

In order to best tune the path, the Voronoi approach can be combined with

a local search technique and will be described in the next section.

6.4.1 Local Optimization

After a flight path has been selected using a Voronoi graph based method, local

optimization and grid search techniques can be used to fine tune the path. Two

local searches are involved. The first is to perturb the end-point of each sector

of the selected path, except of course the last one of which the end-point is the

required destination. Secondly, once the starting and end points of a sector

have been decided, another local search will be employed along the straight

line connecting these two points. The first kind of search is called “end-point”

search and the second one “along-path” search.

Various methods can be used in these searches, for instance, methods based

on gradients, simplex algorithms, or point-wise search. The important factor

to be considered in adopting a search algorithm is the efficiency, due to the

real-time environment. Another consideration is that original points and paths

are preferred over new ones unless “significantly” lower risk is estimated.

In the end-point search, a search radius has to be decided first. In the

example shown in Figure 6.9, the radius is calculated based on the distance

between the end-point and its nearest threat and on the length of that line

151

segment ended at that end point. In the along-path search, the width of

the search band should be similarly defined. For the sake of efficiency (e.g.

for the calculation of waypoints in 3-dimensions) and consideration of flight

constraints, a few more steps have been adopted in the algorithm code which,

for example, eliminate intermediate points along a (nearly) straight-fine path

sector and/or skip over “sharp” turns.

Figure 6.9: A selected Voronoi path (red) and the tuned path (pink) using

local optimization

6.5 Constraint Optimization

When the number of threats is small, then the graph produced using the

Voronoi method has few arcs. Since the path of the UAV is restricted to these

arcs, it is then difficult to implement the path length constraint. One way

to do this is to assume some fictitious threats along with real threats. These

fictitious threats can be positioned in different ways. Here we will generate

these randomly. Since the Voronoi approach is fast, for a reasonable number

of fictitious threats, the computation can be run in real time. The path length

constraint can be implemented as an upper bound on the selected path. The

constraint minimum risk problem is also closely related to many other real life

problems. For instance, in a routing query on a road system, people are always

152

interested in finding the shortest rout from one place to another. If the road

system has cost associated with using each specific road, and the query requires

the total cost of the selected route to be less than some cost limit, then this is a

typical constraint optimization problem, which attempts to find a shortest path

while the cost of travelling along the path does not exceed some specified value.

Another example would be the packet sending problem in internet traffic. A

packet is sent from location A to location B. The server always tries to find

the shortest path for the packet while obeying the time-out mechanism of the

internet protocol. In fact this kind of constraint optimization problem is a 2-

dimensional optimization problem. It seeks an optimal solution with respect to

one criterion, while not violating the other. The Length Constraint Least Risk

Path Problem(LCLRPP) [24] consists of finding the least risk route between

two specified nodes, s (source) and t (target), such that the total weight is less

than a specific value lub [24]. The next section describe an approach to solve

this kind of problem.

6.5.1 Dynam ic Programming Approach to LCLRPP

In this section, a dynamic programming approach will be developed that will

combine the label setting algorithm described in [24] with a preprocessing

procedure to simplify the problem. There may be many ways to simplify the

LCLRPP. Here the preprocessing idea is based on the fact that finding the

least risk path from source node s to every node i G V requires no more

computational efforts than finding the shortest path from s to the target node

t. Both need to perform Dijkstra’s algorithm once. Similarly, finding the

minimum risk path from every node i G V to t requires no more extra cost

than finding the shortest minimum risk path from s to t. Hence by applying

the least objective (risk or length) calculation 4 times, we get the following for

each node i G V.

V lsi = least length path from s to i

V lit = least length path from i to t

Vai — least risk path from s to i

Vlt = least risk path from i to t

153

If Vlst > lub or simply there exists no path from s to t, then the problem

is infeasible. So in order to have a feasible problem we need to introduce

fictitious threats again. Further, if the length of the least risk path is less

than the upper bound lub, this is the optimal solution, since it also satisfies the

length constraint. Rather than these simple cases, the graph can be simplified

by scanning through each node and each arc and dealing those which connect

least length paths from s and t greater than the upper bound. This says that

the length of the least length path from s to node i plus the length of the least

length path from i to t is greater than the length limit, so we can ignore this

node from the optimal path search i.e. we could remove this node i and all its

incident arcs from the graph G. Also by the same argument as above an arc

< i , j > can be removed. Further, let V lst be the path that attains the least

length, set M = R(Vlst). If a path has a cost greater than Af, then this path

will not be considered any more in the future optimal path search process,

since the least length path Vlst has a better risk. With this idea if the risk of

a path connecting an arc with the least risk path from both ends exceeds M,

then we can remove that arc.

After preprocessing, the next stage is to sort out the best path from the

graph by using a set of labels on each node. Each label consists of a (risk,

length) tuple which corresponds to a different path from the source node s to

that node. The risk and length represent the total risk and total length of

the path from s to that node respectively. In the set of labels of each node,

no two labels have the same risk or the same length. Moreover, if label A

has a larger risk than label B and A is stored, then the length in label A

must be smaller than the length in label B. These can be defined formally as

“dominant-relation” [24] more below.

Definition 1 Let (LJJj-RS) and (Lf^Rff) be two different labels on node i,

corresponding to two different paths Vsi and Qs{. We say (L j, R̂ f) dominates

Rfd if and only if Lvsi < L% and R% < R%.

Definition 2 A label (Lj, i?2) said 1° be efficient if it is not dominated by

any other label at node i. In other words, at node i, there exists no path Q

such that L(Q) < L j and R(Q) < i?2-

154

The sorting procedure will find all the efficient labels for each node. The

reason why we also keep track of these paths with larger risk but smaller

length is that, any potential optimal path must first satisfy the length limit

constraint. It might be the case that at node i , a path with smaller risk and

larger length will violate the length limit when the procedure moves onto the

next step, in which case the smaller risk does not help us at all. That is

why we find all efficient labels instead of the least-risk labels. It starts from

the source node, and expands the search process to the neighbouring nodes of

the already searched nodes. In particular, the algorithm starts with no labels

on any node, except for the label {(0,0)} on source node s, then it extends

the set of all labels on a node by extending the path along all outgoing arcs

of that node. More specifically, when the procedure is operated on path V si

on a label (L ^ R ^) of node z, it considers each arc < i , j >E £+(i) where

Z/J + lij + L j t < lub• Further, if (L j + ltj, + ry) is not dominated by any

existing labels of node j , then the algorithm extends path VSi via arc < i , j >

to node j. Next, we will describe the above in a systematic way in.

6.5.2 Length Constraint Optimal P ath

Step 1 Let M = oo and T r = { (zf, z f , a f) : i = 1, . . . , Ur} be the set of

hr real threats such that (ref, y f , zf1) are position coordinates and a* is

the strength of the ith threat.

Step 2 Define rip, the number of fictitious threats with zero strength. Gener­

ate randomly the rip fictitious threats Tp and set T = TrUTf. Construct

the complete Voronoi graph for T threats using the procedure described

in section 6.2.3 and find the extended Voronoi graph by augmenting the

starting and end points as detailed in section 6.2.4.

Step 3 Assign the risk cost (due to the real threats T r only) and the length

cost kj for each of the arc < i , j >E A of the graph.

Step 4 Find the least length path from s to f using the algorithm given in

section 6.3.2. If the length of this path is greater than the given upper

155

bound for the path length, then the problem is infeasible; go to Step 2.

Otherwise if R{Vlst) < M, then set M = R (K)-

Step 5 Using the algorithm given in section 6.3.2, find the minimum risk

paths from the source node s to all nodes j G V\{s}. Let PJ. be the

least risk path from s to j and the RSj is the total risk such that RSj =

R(Vrsj) = rij. If there is no path from source node s to sink node t,

then the posed problem is infeasible, STOP. If L(Vgt) < /*, then Vgt is

the optimal path and no need to proceed further, STOP.

Step 6 Using the algorithm given in section 6.3.2, find the minimum risk

paths from the sink node t to all nodes j G V\{s, t}. Let Vjt be the least

risk path from j to t and the RJt is the total risk such that Rjt = R(Vjt).

Step 7 Using the algorithm given in section 6.3.2, find the minimum length

paths from the source node s to all nodes j G V\{s,t}. Let V lsj be

the least length path from s to j and LSj the total length such that

Lsj = L(V‘sj) = Y ,lir

Step 8 Using the algorithm given in section 6.3.2, find the minimum length

paths from the sink node t to all nodes j G V\{s, t}. Let P jt be the least

length path from j to t and L j t the total length such that Ljt = L(Vljt).

Step 9 For all j G V\{s, £}, check if Lsj + Ljt > lub or RSj + Rjt > M, then

delete node j and all arcs incident on it.

Step 10 Similarly, for all arcs < i , j > G A, check if Lsi + kj + Ljt > lub or

Rsi + rij + Rjt > M, then delete < i , j >. Otherwise if L(Vrsi) + kj +

L{Vjt) < lub, then M = Rsi + rfj- + Rjt.

Step 11 If during Steps 9 and 10, the graph changes, then go to Step 5.

Otherwise go to next Step.

Step 12 Set the initial labels for all nodes such that Cs = {(0,0)} and Ci = $

for alH G V \ {s}.

156

Step 13 Selection of the label to be extended:

If all labels have been marked, which means all efficient labels have been

generated, then go to Step 16. Otherwise choose z G V such that there

is an unmarked label in Ci and is minimal, where Q is the path that

attains this weight value.

Step 14 Extend label

For all (z, j) G S+(i) with + ltj + Ljt < lub and R® + r i<7- + Rjt < M , if

(Lg + /« ,ijg + r«) is not dominated by (L^-, R1̂) for any existing label

at node j through path /C, then set Cj = Cj U {(L ® + hj, R® + zy,)}.

Step 15 Mark label (L^> #2) an<̂ S° Step 13.

Step 16 Select from the label set Ct of the destination node, the label with

the second component minimal and from this trace back the optimal

path.

6.5.3 Tim e C om plexity of the A lgorithm

Assuming the graph generated has a feasible solution. Then the time com­

plexity of the above algorithm is equal to the complexity of the Steps from

5 to 16. The time complexity of the preprocessing (Step 5 to Step 11) is

0(\A \ * |V| * log |V|). It is not hard to see that the preprocessing will scan

through all arcs and nodes and \A\ = |V|2/2 in the case of a complete graph.

So the entire preprocessing will be repeated at most \A\ times. In each step,

if a node or an arc is removed, then we need to apply algorithm 1 again to

update Rai, Rti, Ls.*, Lit which takes 0(|V| *log |V|). Hence in total, the pre­

processing time complexity is 0(|A | * |V| * log|V|). Also the time complexity

of the LCLRPP procedure (Steps 12 to 16) is 0(\A \ * lub), where \A\ is the

size of the arc set and lub is length limit. This is quite a loose bound. The

idea is that the algorithm starts extending the labels from the source node.

At each node z, the algorithm considers all outgoing arcs, so accumulatively

it goes through all arcs. Note that each arc will be used in Step 14 for at

most lub times, since we only consider non-negative weights (lengths) and by

157

the definition of dominant and efficient labels, no two labels at one node have

the same weight. So if we use a bucket data structure to sort the labels in

increasing order of weight, the algorithm will each time pick a label at node

i of increasing weights. Hence there shall be at most lub labels in each node,

which means each outgoing arc at node i will be used on Step 14 for at most

lUb. Moreover, by using a bucket data structure, the least length label will be

always at the top of the bucket, so step 13 is essentially a constant operation.

Hence, altogether the time complexity is 0(\A\ * |V| * log\V\ + |*4| * lub).

158

6.6 Comparison of Different Approaches

In order to compare the different approaches, simulations were performed for

one hundred randomly created scenarios in virtual flight environment. The re­

sults from these simulations were compared for different parameters to evaluate

their effectiveness for real time use.

6.6.1 Flight Environment

• Height was fixed at 2 km.

• Operational area was taken 200 x 200 km2.

• Initial and final positions for UAV (20,20,2) and (180,180,2) respec­

tively.

• Number of SAM sites 5 —> 10 (randomly generated).

• Range of missiles: 7 or 27 km (randomly generated).

• Point mass dynamics.

• If risk probability is less than 0.08, it is considered as 0.

• The magnitude of velocity and control inputs are bounded by [100 300] m/s

and [—10 10] m /s2, respectively.

6 .6 . 2 M easured Quantities

The following quantities were measured and compared for each method.

• Success rate

• Maximum time to compute a waypoint

• Peak risk

• Total flight length

• Total flight time

• Average risk

159

6.6.3 M ethods Compared

• M\: Tuned Voronoi approach

• M2 ’. Visibility line approach

• M3: Probabilistic local minimization

• M4: MILP

• M5: Bouncing approach [56]

Parameters Positive - - Negative

Threat Modelling m3 Mi M5 m 2 m 4

Safety m5 m2 m4 m 3 Mi

Fast convergence m3 Mi m 2 m 4 Ms

Simplicity M5 m3 m 2 M i m4

Global Optimality m 2 Mi m4 m 3 Ms

Fast computation m3 Mi m2 m 4 Ms

Flexibility m4 m3 M5 Mi m 2

Table 6.1: Summarized comparison results

Mi m2 m3 m4 Ms

100/100 100/100 100/100 99/100 98/100

Table 6.2: Success rate for different methods

Results for different parameters are summarized in Table 6.1. Among the

hundred random simulations, the 23rd scenario was chosen as representative

(Figure 6.11) and trajectories for this scenario for the above mentioned meth­

ods are shown in Figures 6.12, 6.13, 6.14, 6.15, 6.16. MILP does not use the

exact threat model but rather uses the nominal range of the SAM to find the

next way point and encloses the nominal range into rectangular region. Due

to the highly nonlinear nature of the exact cost function, MILP defines an

160

auxiliary cost function that uses these rectangular threat zones. The other

methods use the exact risk models but in the case of Mi and M2, the exact

risk function is used to find the optimal path and this is restricted to a search

on the Voronoi and Visible edges, respectively. Looking at vehicle safety, the

bouncing method finds the safest path by bouncing against the virtual risk

boundaries again and again as shown in Figures 6.19 and 6.20. So if there is

no gap between the risk boundaries, it will not find a path. Also M3 and M4

for most of the cases found the safest path. The Voronoi method sometimes

gives a path that passes through highly risky areas as shown in Figures 6.19.

Other methods find trajectories at medium risk level. Bouncing is the simplest

method that consists of two phases (see Figure 6.10). The first corresponds

to a part of the optimization phase in which a UAV tries to find an optimal

flight path over a pre-defined period of flight time along which an underlying

objective, e.g., distance to a target point is minimized. This can be readily

done by solving a mathematical programming problem or performing a simple

search. This phase repeats itself and continues until a UAV confronts obstacles

or threats where the second phase begins. In second phase, operational area

is considered to be consists of cells instead of points. The size of the cell of

the cell directly impacts on the closeness to the original threat model and the

speed of the convergence to the aimed target. This cell approach also needs

the concept of risk probability of a cell and which is calculated as the average

of the probabilities of several representative points within that cell. The next

direction to proceed is determined by seeking the most desirable cell among

neighboring cells around the current position. In this phase,the optimality

part regarding minimizing distance to aimed target is ignored and a UAV is

asked to follow the surface of the forbidden region with the same direction

which was set when the most recent transition from the first to second phase

occurs. The transition from the second to first phase occurs when the mini­

mization of the distance to the target point becomes possible again and the

current cell is visited the first time for this transition purpose. Results using

this approach are as shown in Figures 6.16, 6.17. When the risk threshold was

fixed at 0.08, UAV did find the way to direct it towards the target for the 23rd

161

scenario after many bounces and hence a long time was consumed as shown in

Figure 6.16 but when this threshold was relaxed to 0.1, a path becomes avail­

able as shown in Figure 6.17. MILP is the most complex method including

the binary variables and the complexity of the other methods is evident by the

placement order in Table 6.1. If global optimality is concerned, then Visibility

and Voronoi are preferable while the others are based on local searches. For

real time applications, fast computation is usually required, then probabilistic

local minimization has been proved to be the fastest way point generator as

shown in Figure 6.18. Flexibility means how easy the methods can incorporate

constraints on velocity and acceleration. MILP (by using binary variables) and

probabilistic methods can easily accommodate these constraints. Also in the

case of the Voronoi approach, path length constraints can be imposed as de­

scribed in section 6.5.2 but for the Visibility method, this is is still an issue.

Probabilistic local minimization seems to be the fastest convergent technique

while the flight time for the bouncing algorithm is the highest. Table shows

the success percentage of all methods; MILP and bouncing do not give an

optimal solution for two scenarios in the specified time.

7

Figure 6.10: Typical waypoints W{ s generated from the bouncing algorithm:

w\ and W7 are given initial and targets points, respectively. The intervals

[w\, W2] and [w5, wj\ correspond to the first phase, and the interval [w2, w5] the

second phase. The shaded cells denote obstacles.

W5
/s

w 4
/ /

W3

WZ
✓

w l %

162

Target point
0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

Starting point

0.2 0.4 0.6

Figure 6.11: 23rd scenario

0.8

0.7

* 0.6

0.5

0.4

0.3

0.2

0.1

0.2 0.4 0.6x (x 200 km)

Figure 6.12: Minimum risk trajectory using MILP for 23rd scenario

0.8

0.7

0.6

o 0.5

0.4

0.3

0.2

0.1

0.2 0.4 0.6 0.8x (x 200 km)

Figure 6.13: Minimum risk trajectory using visibility approach for 23rd scenario

163

0 .9

0 .7

•g- 0 .6

o 0 5

>• 0 .4

0 .3

0.2

0.2 0.4 0.6
x (x 200 km)

Figure 6.14: Minimum risk trajectory using probabilistic local minimization

approach for 23rd scenario

0 .9

0 .7

"S' 0-6

0 .5

>• 0 .4

0 .3

0.2

0.2 0 .4 0.6 0.8
x (x 200 km)

Figure 6.15: Minimum risk trajectory using modified voronoi approach for 23rd

scenario

164

Target point

0.7

* ■ 0.6

o 0 .5rvi

>■ 0 .4

0 .3

0.2
P = 0 .08

0.1
Starting point

0.2 0.4 0.6
x (x 200 km)

Figure 6.16: Minimum risk trajectory using bouncing technique for 23rd sce­

nario when risk threshold was set at 0.08. The path starts from “A” and ends

at “L”via “B”, “C”, “D”, “E”, “F”, “G”, “H”, “G”, “I”, “F”, “E”, “D”, “C”,

“J”, “K”and “J”. Note that the path from “G”to “I” involves the numerous

transitions between phase I and phase II. As the UAV approaches “F”from “I”,

it finally turns its heading towards “E”, not “G”, because this choice minimizes

the distance to the target point at “F”.

T arget point

0 .7

"c 0-6
S 0-5

=» 0 .4

0.3

0.2
P = 0.1

0.1
Starting point

0.2 0.4 0.6 0.8
x (x 200 km)

Figure 6.17: Minimum risk trajectory using bouncing technique for 23rd sce­

nario when risk threshold was set at 0.1. As oppose to the previous case,

there exist another safe path passing through “F”as a result of increasing risk

threshold.

165

1
“o 0.5
D)
.2
CDI
(0I3

MILP

Vorortoi
ClE
8

-0 .5

Visibility=£•
toE -1 .5

B ouncing

Local M inim isation

100Simulation number

Figure 6.18: Peak computation time for one hundred simulations

lim isation

Visibility line

Simulation number

V oronoi

Figure 6.19: Peak risk for one hundred simulations

Voronoi

Visibility line

10 20 30 40 50 60 70 80 90 100
Simulation number

Figure 6.20: Average risk for one hundred simulations

166

Total C om putation Time

Tuned Voronoi

200

150

Figure 6.21: Total computation time for one hundred simulations

4.5

CD

Bouncing
o

3.5

<0
o
I - MILP

2.5

Visibility line, Voronoi, Local M inimisation

20 100
Simulation number

Figure 6.22: Flight time for one hundred simulations

6.7 Conclusion

If some global information is available, then it can be incorporated to the

planning process for better optimality and hence sometimes a global planner

is needed. A hybrid approach has been presented which is based on the Voronoi

graph, local optimization and grid search methods. A software package has

been developed at Leicester (see Appendix A) that adds extra subroutines to

modify the Voronoi code. These subroutines expand the node list by adding in

nodes on borders connecting the infinity nodes and by the inclusion of corner

167

points. Furthermore, they remove those nodes outside of the considered area

and include instead the intersections of the corresponding edges and the border

lines. Hence, the area is explicitly and completely partitioned into cells. The

efficiency of the software has been demonstrated with some example scenarios

that uses a dynamic programming optimization approach to select the optimal

path. Constraint optimization has also been discussed. Also a comparison of

different techniques has been presented and discussed. This comparison reveals

that most techniques have some advantages and drawbacks over the others and

hence should not be used independently in all situations. MILP is very flexible

in adopting the constraints on velocity and acceleration but for large problems

in a centralized mode, it may become intractable for real time use. Therefore,

it should be used in a decentralized fashion to reduce the computational effort

and also in combination with a global technique like the modified Voronoi

graph.

In the next chapter as an additional work, we will propose a systematic

decentralized cooperative control architecture for a team of autonomous UAVs.

168

Chapter 7

A Decentralized Cooperative

Control Architecture

7.1 Introduction

7.1.1 M otivation

Advances in computation, sensors, and communication have provided the en­

abling technologies for achieving cooperative control of multiple vehicle sys­

tems. However, research in the cooperative control of UAVs has been limited.

Much of the work reported in the literature focuses on close formation flight

of multiple vehicle systems. The dynamics of these formations are tightly

coupled either by control laws governing the formation behaviour [3] or by a

combination of aerodynamics and formation control laws [82, 105]. Because

these systems are coupled dynamically, they can be analysed as a single large

scale system. Unlike formation flight problems, cooperative path planning and

resource allocation problems usually involve UAVs that are physically indepen­

dent of one another, although they may be coupled dynamically by their co­

operative control algorithms. The scaling problem is also apparent in the field

of unmanned aerial vehicles. In applications where path planning and coordi­

nation of a large fleet of autonomous vehicles is required, centralized solutions

quickly become computationally intractable. Moreover, in these applications,

the planning problem typically needs to be resolved multiple times, as new in­

169

formation about the environment is often gathered while the mission unfolds.

Thus, a decentralized receding horizon (or model predictive control) planning

strategy seems a natural approach to solving the multi-vehicle trajectory gen­

eration problem. One such method is proposed in [92], where static obstacles

and other moving agents are accounted for by potential functions. Although

computationally attractive, the use of potential functions does not guarantee

safety due to collision with other UAVs because vehicles are captured using

soft constraints in the cost function. In [49], an alternative algorithm based

on an iterative bargaining scheme is given. However, as the iteration might

converge to an infeasible equilibrium, again only soft safety guarantees exist.

Several important UAV cooperative control problems can be formulated as re­

source allocation problems. This includes target assignment problems [7, 74],

cooperative classification problems[18] and cooperative search problems [91].

The majority of the cooperative path planning problems considered in the lit­

erature involve timing or sequencing of UAVs for arrival at targets or other

specified locations. A cooperative control strategy for UAV rendezvous was

presented in [68]. Cooperative path planning is also employed in cooperative

search and cooperative classification problems [19]. There is also an extensive

literature on multi-robot systems [4, 5, 23, 26, 34, 63, 77].

7.1.2 Problem Description

Here we propose a theoretical cooperative control architecture for a team of

N heterogeneous UAVs that are initially engaged on a mission through known

target locations in the presence of dynamic threats. Each UAV plans its own

trajectory using a receding horizon strategy based on mixed integer linear

programming (MILP). Several different types of targets may be considered.

M target locations are suspected a priori with a certain probability, while the

others are initially unknown. The problem is decomposed into the following

subproblems:

• cooperative target assignment

• path planning

170

• feasible trajectory generation

• trajectory following

During the mission, at each target location, the UAVs perform Confirm, Attack

and Loss Assessment tasks . Other target and threat locations are detected

gradually during flight towards a known target, while the tasks are determined

in real-time by the actions of all UAVs and their results (e.g., sensor readings),

which makes the task dynamics stochastic. The tasks must, therefore, be al­

located to UAVs in real-time as they arise. Each class of UAVs has its own

sensing and attack capabilities with respect to the different target types, so the

need for appropriate and efficient assignment is paramount. This produces a

simple, flexible, scalable and inherently decentralizable method for task alloca­

tion. Every UAV while on its way also monitors the changes in the environment

and accommodates this information in planning its path. We incorporate the

effect of various decision parameters, target distributions, and the UAV team

characteristics in our approach.

Information to other UAVs
SAM locations
& strengths

Target
locationInformation

from other
UAVs

Assigned
target

Assigned
target

FH trajectory +
Loiter circle

Waypoint

Control
inputs

Sensor information

Targets to be
assigned

TM PP

Controller

UAV

RHC
MILP

Figure 7.1: Cooperative control architecture

171

7.2 Proposed Architecture

Figure 7.1 shows the proposed architecture. At the lowest level of the architec­

ture is the physical UAV. The target manager (TM), path planner (PP), and

information base (IB) work together to assign a target for the UAV. Sensor

measurements from the current planning and other UAVs go to the informa­

tion base, which also broadcasts its own data to other UAVs. The TM receives

from IB the available targets to be assigned and sends target locations one by

one to the PP. In turn PP sends TM the approximate cost of achieving the

target. The path planner receives location and strength of the SAM sites from

IB and make use of the modified Voronoi diagram with fictitious threats to find

out the minimum risk path. The optimum path is selected using the dynamic

programming approach described in Section 6.3.2, which make use of the cost

function given in equation (6.3.3). This cost function takes into account both

risk and distance to the target and the compromise between these two can

be adjusted by the parameter k which varies from 0 to 1. After the target

has been selected, the next stage is the feasible trajectory generation param­

eterized with time. By feasible, we mean that in the absence of disturbances

and modelling errors, an input trajectory causes the UAV to fly the trajectory

without violating its velocity and heading rate constraints. We assume that

each UAV is equipped with a trajectory tracking controller. This is accom­

plished using a receding horizon control (RHC) strategy employing a mixed

integer linear programming (MILP) technique that finds a trajectory over a

finite horizon ending in a loiter pattern. The trajectory generation process

makes use of soft dynamic threat zone modelling developed in Section 4.12

but with hard constraints for collision avoidance. The trajectory is calculated

in a sequential order after target assignment and is detailed in section 7.4. The

trajectory generator outputs a flag that indicates when a new waypoint path

is needed. Several events may necessitate a new path. First, the UAV may

successfully complete its path. Second, a pop-up threat may be detected in the

environment. Third, because of disturbances, the tracking error may become

unacceptably large. The IB shown in Figure 7.1 facilitates communication be-

172

tween different UAVs. Each UAV implements a separate target manager, path

planner, trajectory generator and tracking controller. Therefore, the decisions

reached by these functional blocks must be synchronized among the different

UAVs. The primary role of the IB is to ensure synchronization. The design

of communication managers for multiple cooperating autonomous vehicles has

been discussed in [38] for UAVs, and [96] for autonomous underwater vehicles.

7.3 UAV State

The state, Siit = [s' t 7r't x^]', of the ith UAV, at time t has two parts:

• A physical state s^t = \j/i t v 'J ': including information on its

1. position pi,t at time t

2. speed v^t at time t

3. heading rpitt at time t

• A functional state 7ri>t = [idijt tdit c^t p^t Ji,tY ’ including the

1. identity id^t of the task if any

2. location of the specific task (if any) Kijt to which the UAV is com­

mitted or has bid for

3. nature of the task d^t which can take values from the set {confirm, attack,

loss assessment}

4. the corresponding commitment status p^t which can take values

from the set {open, competing, comitted} indicating whether the

UAV has no commitment (open), has bid on a task or been associ­

ated with one (competing), or is assigned to a task and, possibly, is

performing it (committed)

5. the UAV’s expected cost for performing this task Jijt

The functional state of an open UAV has null values in its other fields.

The ignore tasks require no commitment, and correspond to an open

functional state.

7.4 Sequential Trajectory Planning

Each UAV plans its trajectory individually using a receding horizon strategy

based on mixed integer linear programming (MILP). A first order discrete

zero order hold system is used to capture the dynamics and kinematics of the

vehicle (see Section 4.2). At each time step, a dynamically feasible trajectory

for each aircraft that terminates in a loiter pattern is calculated by taking into

account: risk due to SAM sites and also risk due to collision with vehicles.

Dynamical soft constraints are used to model radar zones while the loiter

pattern guarantees safety due to collision with vehicles. Conflicts between

multiple UAVs are resolved in a sequential, decentralized fashion, in which

each UAV takes into account the latest trajectory and loiter pattern of the

other UAVs. Besides maintaining feasibility, if the problem is too complex to

be solved within the time constraints of a real- time system, this approach also

provides an a priori safe rescue solution consisting of the previous trajectories

and individual loiter patterns.

Each UAV individually computes its trajectory towards a destination way­

point, accounting for the intentions of the other UAVs and also minimizing

risk due to SAM units. Since information on the latter is gathered online

and changes as they update their own trajectories, each UAV adopts a reced­

ing horizon planning strategy: a new segment of the total path towards the

destination is computed at each time step by solving an optimization prob­

lem over a limited horizon of length T. The cost function to be minimized

is a measure of time or fuel and observability or risk. The solution to the

optimization problem provides the trajectory points and corresponding input

commands to the aircraft for the next T time steps. However, only the first

of these input commands is actually implemented, and the process is repeated

at the next time step. As such, new information about the state and actions

of the (other) UAVs can be accounted for at each iteration. Assume that

si j = [p'ij vlj]' is the destination state vector of the ith UAV. It consists of

a final position pij and a corresponding speed vector Vij with respect to an

inertial coordinate frame. This waypoint is assigned by the target manager to

174

the UAV. Given the state sijt at a certain time step t, the trajectory resulting

from solving the path planning problem towards Xij consists of a sequence

of (T + 1) states sijt+k, k = 0, . . . , T, and a corresponding sequence T inputs

Uit+u I = 0, . . . , (T — 1). The plan starting at time step t must be computed

during time step t - 1, i.e. when the UAV is on its way to x ijt. The latter state

is part of the previous plan, which we assume to be accurately tracked. As

such, the UAV will be in the predicted state x i>t when the next plan is executed.

It implies that each UAV can reliably assume that all other UAVs are exactly

following their trajectories as planned. Including robustness to uncertainties

in the latter is a topic of future research. Safety of the vehicle is concerned

with two things: collisions with other vehicles and danger from SAM units.

Since a SAM unit may have variable range and there is no physical boundary,

safety due to this means following a trajectory that is of minimum risk. The

prevention of collisions with other vehicles is most important. Hence a UAV

will be in a safe state, if from that state, there exists a known dynamically fea­

sible trajectory to a sequence of states ending in a circular loiter pattern that

is collision free [90], has minimum risk and in which the vehicle can remain for

a long time to avoid collision with other vehicles.

Conflict A rea Let Ai,t be C 5ft2 the subset of the inertial space which repre­

sents the area in which the dynamically feasible trajectory lies that start

at Sitt and ends in a feasible loiter pattern where Tijt U C t̂+T C

Conflict Set The UAV i is involved in a conflict with UAV j ^ i at time step

t , if Aij fl Aj,t 7̂ 0 and the set of all such UAVs is called a conflict

set.

P lan The sequence of trajectory points starting at time step t and the coordi­

nates of the rectangle that is aligned with the inertial coordinate frame

and surrounds the loiter pattern C^t+T is called the plan of the aircraft i

and is denoted by V l t.

Planning O rder Each UAV is given the same upper bound At on the time

interval during which the UAV must solve its optimization problem and

175

the central information base will determine the orders Ot of the UAVs

in which the conflicts are resolved.

The conflict area Ai of the UAV i can be taken as a circle whose radius is the

sum of the maximum distance that can be travelled over the length of the plan­

ning horizon including a margin for parking circle and is y/ (TAtumax)2 + 4r^ax,

where rmax is the maximum achievable radius of the parking circle. Initially at

t = 0, we assume ^i,on^42,o> • • • > rL4i)0 = 0- Now the path planning algorithm

given in can be described as:

Step 1 Start at time t.

Step 2 Send the next predicted position p t̂+i to the central information base

and in response receive the conflict set Bij+i, the planning order and

planning starting time tord̂)>s

Step 3 If conflict set Bid+i is non-empty, then broadcast the current plan V id

to all UAVs in Bid+i and go to Step 5 else go to next Step.

Step 4 Solve the receding horizon optimization problem for the ith UAV. If

an acceptable solution is found within time St, let the new plan =

Titt+i U Cip+t+i else let V ijt+1 - V id \ p id. Go to last Step.

Step 5 At time Grd(i),s) solve the optimization problem by taking into account

the latest plans for all UAVs j whose order in the conflict set is less than

the order of the ithUAV and taking the earlier plans for all UAVs k whose

order is greater than the order of the ith UAV.

Step 6 If an acceptable solution is found at time tord̂ + St, let the new plan

be = Tid+1 UCw+t+i else let V itt+i = V id \ p ijt. Go to next Step.

Step 7 During [tord(i) + St, tord̂) + St + StcomTn\ broadcast V itt+i to all UAVs

k whose order is greater than the ith UAV.

Step 8 End by time t + 1 and repeat.

The trajectory at each iteration for each UAV is constrained to terminate in

a loiter pattern (parking circle) by taking into account dynamic soft constraint

176

for radar zone modelling developed in Section 4.12 and hard constraints for col­

lision avoidance. Further the hard constraints for collision avoidance consists of

two types of constraints: rectangular constraints for each finite horizon trajec­

tory point (Type 1 collision avoidance constraints) and rectangular constraints

surrounded by the corresponding parking circles (Type 2 collision avoidance

constraints).

7.4.1 Type 1 collision avoidance constraints

Each trajectory point pj^ of UAV j E Bitt is considered an obstacle that is

present at time step k in the planning horizon, if that point lies in the con­

flict area A of the planning UAV i. The time steps for which pj^ £ A are

T j C T = [0 , . . . ,T \ . These points are considered square obstacles of dimen­

sion ds = 2 (max(vmaxAt, d sa f e) + vmaxA t), where dsaf e is the required safety

distance around each UAV. The lower left corner of the waypoint obstacle is

then given by (x ^ jk, y^Zjk) = (xjk ~ y , ~ y) and the upper right corner

by (xZTxjki v Z tjk) = (xjk + y , Vjk + y)• The constraint for this type can be

formulated as described in equation (4.4.10) of Section 4.4.

7.4.2 Type 2 collision avoidance constraints

Again this is a hard constraint formed by enclosing the parking circles within

a tight square of side 2 * R, where R is the radius of the parking circle which
2

is given by R = As can be seen in Figure 7.2, this radius is decided by the

magnitudes of the terminal velocity vT and the maximum centripetal force Fc

for a unit mass UAV.

The position vector of a point at an angle 9 on the right circle can be

written as
cos 9 — sin i

sin 9 cos 9

where prcl9ht is the centre of the right circle. Also if v ? = [— v VT v x t]t is the

r igh t _ r igh t
Pff Pc + (p T ~ P c'g h t) (7.4.1)

177

V 'J '

leftPc

right

Figure 7.2: Parking or loiter circles for the UAV

orthogonal complement of vT = [vXT uyT]T, then

. 2

Pt Pright _ VT -_L
“ fcVt

VT -> ±

Fc T

Using this in (7.4.1), we have

or

right ^T -*]_ .Pe = P T ~ y V £ +
cos 9 — sin 6

sin 9 cos 9
vt

(7.4.2)

(7.4.3)

rightXq xT Vt —yT
+

cos# — sin# Vt —Vt
„ right
Ve Vt ~~FC XT sin# cos# ~FC xT

(7.4.4)

Xright _
e ~
right

r\)r£ UfP
xT — —Vt{cos9 — 1) — —XTsin#

Fz Fc
‘U'j1 'Urj'

yT + y xT(cos 9 - 1) - — yT sin 9

Similarly for a left parking circle

xleft = xT + -pryri cos 9 — 1) + - ^-Xt sin
Vj'

Fc
ylgeft = y r - y X T(cos 9 - 1) + y V T sin I

(7.4.5)

(7.4.6)

(7.4.7)

(7.4.8)

Let the parking circle of each UAV j having conflict with the planning UAV i

be constrained within a square with lower left corner (^ S J , Vminj) aRd upper

right corner (a j J j J j J S e l e c t equally spaced discrete points NP on the

parking circle of the UAV i such that 9S is the sampling angle. The above

178

dimensions include continuous segments of the parking circle of the UAV i

between its discrete sample points. So the constraint to avoid parking circles

of UAV j involved in conflict with the planning UAV i can be modelled using

equation (4.4.10) by the introduction of binary variable bLR which select either

the left or right circle, Vj and VA; E [1,..., NP] such that

xiT - ^-yiT(cos k6 s - 1) - ~ x iT sin k6 s < x ^ j + Wtfki + ^ pbLR
■ T C C

- x iT + y y iT(cosk$1- l) + y i iTsmk0s < - x X j + ClVjk2 + iVbLR

yiT + y X iT{cosk0s - l) - y y iTsmk$3 < y ^ j + Opbjk3 + OpbLR

-y>T - y i T(cos k6s - 1) + y y lT sin k0„ < + Qpbjki + 0?bLR

(7.4.9)

< + IT (1 - bLR)

< + « P(1 - bLR)

< & & + + 0p(l - bLR)

< - I ® + + «P(1 - bLR)

(7.4.10)

7.5 Map Dynamics

As Ui moves in the environment towards the assigned target, it performs an

action, aijt. A canonical action set is denoted by D, which includes sensor

readings, firing of munitions and null actions. Since the UAVs have limited

weapons, so the firing of munitions is done on the high valued targets and is

rarely performed on threats. The threats are avoided by selecting a minimum

risk path based on the threat probability map. If the action is a sensor reading,

it returns an observation value, bitt, which is a stochastic quantity that is used

to update the threat map M thr(x, y , t), the target occupancy map A i tar(x, y, t)

and the task status map M tas{xTj, yTj, t) V current targets Tj, j = 1, . . . , M lo­

cated at (xTj, yTj). If multiple UAVs collect observations at the same time,

updates due to their actions are applied sequentially. This determines the up-

U'jf1 U'J1xiT + — yiT (cos kQs - 1) + — xiT sin k0 s
r c -t* c

fUrp
- x iT - — yiT(coskOs - 1) - 7 - x iT sink0 s

f C f C
V T X)'j'

yiT - — xiT(coskOs - 1) + — yiT sin k6 s
f C f c

U'j' U'j1
- y iT + y X T(cos k6 s - 1) - — yir sin kQs

179

dates of the different maps at (x, y) through a possibly stochastic map update

function.

7.5.1 Derivation of the Map U pdate Equation

Consider the case where a UAV takes a measurement in cell (x , y) at time t.

sensor reading taken by the UAV, where bt = 1 indicates target detection and

bt = 0 for no detection. Further, B t_i is the vector of all sensor readings for

cell (x , y) by all UAVs taken up to time t — 1, that is before time t.

Based on the above definitions, P(A\Bt-i) is the probability of target exis­

tence at time t — 1 and P(A\Bt_i, bt) is the updated probability after obtaining

the new reading bt. So

We assume that the sensor measurements in any cell are conditionally in­

dependent given the state of the cell, i.e.

Let A be the event that a target is located in cell (x,y) and bt is the binary

(7.5.11)

P(t) = P(A\Bt^ , b t) (7.5.12)

n

(7.5.13)

Now
P{Bt. u bt\A)P(A) (7.5.14)

P(Bt^ , b t \A)P(A) (7.5.15)

Dividing equation (7.5.14) by (7.5.15), we can write

P(Bt. u bt \A)P(A)
P(Bt-i,b t \A)P(A)
P(Bt-i\A)P(bt |yl)P(^)
P(Bt^\A)P(bt \A)P{A)
P(A\Bt—i)P(Bt~i) p f i I a \ tP(bt\A)P(A)
P(A\Bt- i) P (B t - i) p fh

P(A) P(bt\A)P(A)

P(A\Bt. 1)P{bt \A)
(7.5.16)

180

Taking a = p j ^ j and solving (7.5.16) for P(A\Bt„i, bt)

a i [1 “ B*)1 (7-5-17)

or
P(A|Bf_1)

i + a . ' r ,1: : : " . b ^ ib^ a) = Ql f (7.5.18)

^ - ^ ^ “TTcST^kn (7 - 5 - 1 9)

Hence, when the UAVs search sensors report a target present in cell {x,y), i.e.

bi(x,y,t) = 1, the update is

p̂ t+1) = aT T ^ h r) (7 - 5 - 2 0)

When the UAVs search sensors report that there is no target in the cell at

(x,y), i.e., bi(x,y,t) = 0, then the update will be according to the equation

7.6 Tasks for UAVs

We categorize the tasks for UAVs into two main classes when it starts moving

towards the assigned target.

7.6.1 Prim ary Task

This task is performed by each UAV at all time.

Detection: UAV, ui: makes a sensor reading bi(x,y,t) = 1 if the sensor

detects a target or threat and bi(x, y,t) = 0 if it does not. Each UAV is assumed

to be equipped with proper identification algorithms that help in differentiating

between a target and threat. The sensor is assumed to be imperfect and the

detection accuracy of the sensor is characterized by

a P(bt \A)
P(bt\A)

181

where A is the event that a target or threat is actually located in the cell

being scanned. The threat map M ihr(x,y,t) and target map M iar(x,y,t) are

updated based on a Bayesian formulation

* W * + 1) = [1 ~bi(x,y,t)}l + +bi(x,y,t) 1 + (q

(7.6.22)

A cell with the search status transitions to ignore if the probability falls below

the resolution threshold, pr, and to confirm if the probability exceeds the

suspicion threshold, ptar for target detection.

7.6.2 Secondary Tasks

These tasks are only performed at the target locations.

Confirm: The cuing of a confirm task at cell (x , y) indicates that a UAV

with the appropriate sensors should move towards the cell and scan it. All cells

with a priori suspected targets are initialized with the confirm task and given

a target occupancy probability of ps. The confirm task is functionally identical

to detection, and the probabilistic map update function is the same as given

in equation (7.6.22). However, unlike detection, it is assignable to UAVs with

the appropriate expertise. The sensors used may also be different in the two

cases. The cell transitions to search if its detection probability falls below ps

(as a result of failure to confirm suspicions), and to attack if it exceeds the

certainty threshold, patt- UAVs don’t perform confirmation tasks for threats

and only update the threat map based on sensor data. An object is considered

a threat if its threat probability exceeds the threshold pthr-

Attack: The attack status indicates that an appropriately armed UAV

should proceed to the location and attack the target with the correct munition.

In this case the updated probability for target existence Pf£r f t+ 1) is the same

as the probability of target existence at time step t + 1 given that the target

has been attacked. And which is turn equals the probability that the target

is present at (x , y) at time step t and not destroyed given that the target has

been attacked. This can be calculated from the product of two probabilities:

probability of target presence at (re, y) at time step t and the probability that

182

target not destroyed given that the target has been attacked. The attacking

UAV then changes the probability for target existence P ^ y){t + 1) at that

location to:

P^y) (t + 1) — — pro6(target destroyed | target attacked)

= P £) (t) (l - p 0)] (7.6.23)

where 0 < po < 1 is the probability that the target is destroyed in the attack.

Different types of UAVs can have different values of po for different target

types. If the updated P ^ ry){t + 1) becomes less than the exit threshold, p#,

the cell transitions to status LA.

Loss assessment: The purpose in the loss assessment (LA) task is to

verify that the PTaE has indeed fallen below p s . Like detection and confirm,

this is a purely observational task, and uses the same update equation (7.6.22).

If the result of the update produces P ^ y) (t + 1) > p#, the cell transitions

back to attack provided it still has weapons (otherwise it returns to base). If

P(x,y , t + 1) <Pe, the cell position is assumed to be target free and the UAV

heads towards the next assigned target.

Ignore: This status applies to cells that are known a priori to harbour no

targets or where the absence of targets has been confirmed. Figure 1 shows

the transitions between states using an automaton formulation.

7.7 Target Assignment

Suppose that there are N UAVs Ui, i = 1, . . . , V, M targets ctj, j = 1, . . . , M

and L threats (3k, k = 1, . . . , L. These targets and threats are known initially

while more can be discovered while flying towards a known target. The new

target or threat is discovered within the limited sensor range. The aim is to

destroy as many targets as possible while moving on minimum risk paths to

avoid threats. The UAVs will be gathering information online while heading

towards a pre assigned target and to perform confirm, attack and loss assess­

ment tasks on the target location such that the overall group cost is optimized.

We consider UAVs drawn from two classes: Target recognition (TR) UAVs;

183

and attack (A) UAVs. The TR UAVs are best suited for the confirm, attack

and loss assessment tasks, while A UAVs are needed for attack. All UAVs are

assumed to have equal capability to detect a target or a SAM site. UAVs of

any class X have a class-specific expertise vector, [£*], with respect to the four

tasks, Tj,j = 1, . . . , 4, in the task set. The expertise of class X UAV Ui for task

Tj is, therefore, denoted by £■*•. All are between 0 and 1. In keeping with

the capability designations, we set: £[R =

For this type of decision problem, the standard approach is to create an objec­

tive function that encodes the desired objectives of the decision problem. An

optimal solution is one that minimizes this objective function. The complexity

of the problem for finding an optimal solution increases with the number of

targets. For agents with targets, we must search through possible assignments.

The target and task assignment process is done initially at time t = 0 and is

repeated again whenever a new threat or target is discovered. Whenever the

target assignment becomes necessary, it is done in a sequential order before the

trajectory generation process for that vehicle as described earlier. Each vehicle

is assigned only one target at a time. Multiple target assignments to one UAV

will be a topic of further research. A cost function is evaluated sequentially

for each UAV (that has not been assigned any target in the current assign­

ment) with respect to all suspected target locations. The target which has the

smaller value of objective function is assigned to that UAV. The sub-objectives

for each assignment are:

Objective 1 Maximize the number of vehicles prosecuting each target (to

maximize survivability). This objective can be represented by assigning

a value to the team size for each assigned target. A number can be

identified that encodes how much better a larger team is than a smaller

team. A monotonically increasing function that increases dramatically

between 1 and 3 team members, indicating that a minimally acceptable

team consists of two members. So if rrij is the number of vehicles already

assigned to a target j, then the following objective will determine the

184

cost for assigning rrij + 1 UAVs to that target

M " b) = \ (l + , " h ~ - — I (7-7-24)2 V + (m , - 2Y

where sjx is the softness parameter of the above function. The choice

depends upon the designer but a reasonable value is 2.

Objective 2 Maximize the number of targets visited. This heuristic drives

the team towards visiting as many targets as possible. This is modelled

in the objective function so that each target should be visited by at least

one UAV

A W = \ (1 - , m i ~ 1 -) (7.7.25)
2 v y ^ + K - 1)2/

As can be observed from the above equation, after rrij = 1, J2 decreases

rapidly with the number of UAVs. For different targets, this objective

function may have different values.

Objective 3 Maximize the effectiveness for target service. This means that

an appropriate UAV either T R class or A class or both should proceed

to the location for the best demanded action. The probability of target

existence at that location also affects the choice of the UAV class and is

modelled as

= (1 ~ P j) * ex p (-f$) (7.7.26)

Objective 4 Minimize the path length to the target using

J4 = dj (7.7.27)

where dij is the normalized distance of the UAV i to the target j.

Objective 5 Minimize the threat exposure. The hit probability has been

described earlier and can be used here as the objective function

J5 = Pm (7-7.28)

All objectives except the second are myopic objectives whereas second is a

team objective. For each task, the team must try to use UAVs best suited to

185

it. The values for all the sub-objectives described above lie between 0 and 1

and can be combined into a single objective as

J = min(l — Ji) * J2 * J3 * J4 * J5 (7.7.29)
jeTj

J is evaluated for each target and the target with the minimum value of J is

selected. All UAVs have instantaneous and noise-free access to a centralized

information base (IB), which comprises the following items:

1. The target map M tar(x, y , t) V(x, y).

2. The threat map M thr(x,y,t) V(x,y).

3. The task status map A i tas(xTj, yTj, t) V current targets Tj, j = 1, . . . , M

located at (xTj, yTj) and idTj is the identity of the task to be performed

at target Tj i.e., whether it is confirm (idTj = 2), attack (idTj = 3), or

loss assessment (idTj = 4).

4. The UAV state vector, S(t) = {Si(t)} Vu*.

7.8 Working Procedure

Each UAV reads and updates the IB at each step. Initially each cell has some

probability of existence for a target or threat which varies from 0 to 1. The cells

which have a probability for target existence greater than the threshold paU are

needed to be treated as a priority. These cells are believed to be without any

doubt for target existence and so confirmation is not necessary there. Therefore

the first task to be performed there is attack and after that other classes of UAV

can come forward for loss assessment. Similarly the threshold for threat (SAM

site) existence at any location (x, y) is pthr■ The cells where targets and threats

are not suspected or impossible have Ptar(x,y, 0) < p3 and Ptar(x ,y , 0) < p3

respectively and these cells have ignore status. The UAVs’ initial positions are

also given. All UAVs initially have open status. When a UAV has no task

to choose (which happens when all the targets are neutralized or the UAV is

ineligible for all available or associated assignable tasks), it can join a UAV

which has a committed status. After all the targets are neutralized, the UAVs

186

come back to their base. Each UAV reports its best choice to the central

information base. UAVs that have small value of the performance index J

are assigned to its preferred task while other UAVs compete for the remaining

choices in a sequential order until every UAV has an initial assignment. When

two UAVs prefer the same task, the conflict is resolved in favour of the UAV

with the smaller distance. Thus, initial assignment is purely cooperative and

semi-greedy. After the initial assignment, each UAV moves towards its assigned

or associated task, updating both the probability of target and threat existence

in each cell it passes. When it reaches its assigned target, it performs the task

and updates all the maps there and the UAV’s status reverts to open. Each

new assignable task is cued with an available status. At all times, all open and

competing UAVs are considered for all available and associated tasks. The

UAVs are processed in an order determined by the central hub. The process

continues until all locations have an ignore status or some time threshold is

met.

7.9 Conclusion

A decentralized cooperative control architecture has been proposed which up­

dates target maps, threat maps in a probabilistic way using a Baysian for­

mulation. The tasks are assigned and conflicts are removed in a sequential

way. Each UAV designs its trajectory using a receding horizon formulation of

the MILP that ends in a loiter pattern. A novel objective function has been

developed that helps in assigning tasks to UAVs. Theoretically this architec­

ture looks promising but extensive simulation needs to be done to validate it

experimentally. Future work could incorporate learning and adaptation at the

UAV and team levels so that decision-making can improve with experience and

individual UAVs can develop specialized expertise. Also, including dynamics

in the expertise vector for each UAV could be helpful to model losses in UAV

capabilities in the event of munition use or damage.

187

Chapter 8

Conclusions and Suggestions for

Further Research

In this thesis, high level control issues for autonomous air vehicles have been

addressed. In particular, autonomous vehicle trajectory planing has been ex­

plored and several techniques developed and compared with an emphasis on

real time use. First, the problem was formulated using an optimal control

approach and necessary equations were derived for safe navigation of UAVs.

The objective function incorporates many real life scenarios: minimum time,

terrain avoidance and least risk due to SAM sites. Because of the complexity

of the problem, it was simplified into smaller problems: single radar and two

radar exposure minimization problems, with the the intention finding analyt­

ical solutions. An analytical solution was obtained for the single radar case.

The two radar case for different strength ratios was compared with the devel­

oped Voronoi paths using numerical techniques such as the gradient method.

For the single radar, it was found that trajectories do not exist for Of > 60°. So

a path length or time constraint must be introduced to recover the solution. If

there are a number of threats, then analytic solutions becomes difficult. Con­

straints such as velocity and acceleration are hard to incorporate in the above

formulation as is replanning which is required in real time situations.

Next it was shown that the problem of path planning can be formulated

as a mixed integer/linear constraints optimization problem (MILP). Different

constraints were formulated and applied to two case study examples. Using

188

MILP, however, to design a whole trajectory with a planning horizon fixed at

the goal, is very difficult to perform in real time because the computational

effort required grows so rapidly with problem size. On the other hand big time

steps can lead to inaccurate or non-implementable solutions. It was shown that

this limitation can be avoided by using a receding planning horizon strategy in

which MILP is used to form a shorter plan that extends towards the goal but

does not necessarily reach it. When using this receding horizon approach with

hard constraints for obstacle and collision avoidance, an infeasible problem can

often arise, though in theory there are solutions to the whole problem. This

is because the look ahead horizon is limited, and the vehicle can be led to a

critical state for which MILP has no solution at the next iteration. In other

words, a feasible solution for future time steps at a current time step does not

guarantee a feasible MILP at each time step. The performance of a receding

horizon strongly depends on the proper evaluation of the terminal penalty

on the shorter plan. This evaluation is difficult when the feasibility of the

path beyond the plan must be ensured. This can be further explained by the

situation in which at the last time step of the planning horizon the vehicle is

moving at maximum speed while its position is close to an obstacle which has

not yet been spotted. Since the position of the vehicle satisfies the anti-collision

constraints, this situation corresponds to a feasible solution of the MILP. At

the next time step, however, the obstacle is identified and the vehicle needs

to brake or turn which then exceeds the constraints on acceleration or on the

vehicle manoeuvre space, a solution will not therefore be found. The proposed

approach modifies the hard constraints for obstacle and collision avoidance into

soft constraints in such a way that the MILP formulation remains stable with

no or minimum violation of the constraints. Robustness of receding horizon

control is guaranteed by modelling the constraints as soft. The efficiency of

the techniques depends upon proper modelling of the mixed linear constraints

and also on the time horizon. The optimality can be increased by increasing

the time window but by doing this the computational load will increase. There

should be a realistic compromise between optimality and computational load.

The MILP is solved using commercially available software AMPL/CPLEX that

189

uses the well known branch and bound algorithm.

The probabilistic nature of the problem is evident for three main reasons:

first of all because of the inevitable uncertainty of the measurements from

the sensors, secondly for the intrinsic uncertainty of an unknown environment

and finally the structure of reasoning of any intelligent system is naturally

probabilistic. Due to the inherent complexity and probabilistic nature of the

problem, a three dimensional probabilistic approach was suggested that de­

pends on a nonlinear performance index. The strategy was designed by taking

into consideration three main objectives: restricted areas should be avoided,

threat exposure levels should be minimized and proximity of the target must

be achieved. The proposed algorithm is based upon a search of a point for

local minima on a disc whose centre passes through the line of sight of the

target from the current point and is also perpendicular to that line. The ra­

dius of the disc is decided upon by a maximum search angle and which in

turn can be decided by the maximum turn angle. The disc is divided into a

suitable number of lines all passing through its centre and a point is searched

along these lines. The algorithm is not only capable of finding the safe path

but also takes into account real world practical constraints. The algorithm is

applied in a decentralized mode, that is, each vehicle has its own processor

and applies the algorithm to find its own path with consideration of collisions

with other vehicles by keeping itself at at some fixed distance from the others.

The novelty of the algorithm lies in its ability for use in real time due a to

very low computational load in spite of the fact that it finds a path in three

dimensions. The paths are locally optimal and are feasible for the UAV to fol­

low by keeping the turn angle within certain maximum limits. The UAVs are

prevented from flying at very low altitudes because of the danger of crashing

into ground objects. Since each UAV has limited fuel, a compromise has to

be made between risk and fuel consumption by limiting the height and search

angle. One important observation of this algorithm is that while evaluating

the stealthy path for the UAV, the direct distance of the vehicle from the tar­

get decreases at each path step. This property can be utilized to explore the

coordinated rendezvous aspects; a topic for future work.

190

All the real time techniques discussed so far are based on local optimiza­

tions and perform well for planning within some limit area at each time step. If

we have some global knowledge of the world then this information can be com­

bined with local optimization techniques for improved optimality and hence

sometimes a global planner is needed. Deterministic approaches are used most

often in global path planners. Two deterministic techniques are the Voronoi

Diagram and Visibility Graph. A hybrid approach has been presented which

is based on the Voronoi graph, local optimization and grid search methods. A

software package has been developed at Leicester (see Appendix A) that adds

extra subroutines to modify the Voronoi code. These subroutines expand the

node list by adding in nodes on borders connecting the infinity nodes and by

inclusion of corner points. Furthermore, they remove those nodes outside of

the considered area and include instead the intersections of the correspond­

ing edges and the border lines. Hence, the area is explicitly and completely

partitioned into cells. The efficiency of the software has been demonstrated

with some example scenarios that use a dynamic programming optimization

approach to select the optimal path. Constraint optimization has also been

discussed. The comparison reveals that most techniques have some advantages

(and drawbacks) over the other and hence should not be used independently

in all situations. MILP is very flexible in adopting the constraints on velocity

and acceleration but for large problems in a centralized mode, it may become

intractable for real time use. Therefore, it should be used in a decentralized

fashion to reduce the computational effort and also to enhance the variety and

flexibility of mission goals, tighter integration with other algorithms such as

optimal control capturing important analytical features for an optimal path,

extended Voronoi approach for global optimality and probabilistic local mini­

mization technique to incorporate probabilistic nature of the problem, tempo­

ral planing for low observability while moving in the high risk region needs to

be explored.

As a final study, a systematic decentralized cooperative control architec­

ture for a team of cooperating autonomous UAVs was proposed which updates

the target map and threat maps in a probabilistic way using a Baysian for­

191

mulation. The tasks are assigned and conflicts removed in a sequential way.

Each UAV designs its own trajectory using a receding horizon formulation of

the MILP that ends in a loiter pattern. A novel objective function has been

developed that helps in deciding tasks for the UAVs. Theoretically, this archi­

tecture looks promising but extensive simulations need to be done to validate

it experimentally. Further research work could be testing of this architecture,

while incorporating learning and adaptation at the UAV and team levels, so

that decision-making can improve with experience and individual UAVs can

develop specialized expertise. Including dynamics in an expertise vector for

each UAV could also be helpful in modelling losses in a UAV’s capabilities in

the event of munition use or damage. Also including prediction in the assign­

ment process, so that UAVs can anticipate tasks likely to become available

in the near future and include them in their plans. Further future research

directions are:

• to model and incorporate the non-isotropic UAV radar cross (RCS)

showing coupling with vehicle dynamics into the integrated probabilis­

tic model suggested in chapter 5 to reflect the risk minimization with

orientation. Also the actual dynamics of a UAV are much more compli­

cated and so ways will have to be determined that take these additional

features into account but do not significantly increase computational re­

sources required to compute a trajectory.

• Two radar case for different strength ratios was compared in section

3.7 with the developed Voronoi paths using numerical technique such

as gradient method when the UAV has to sought a path between the

radars. A similar numerical study could be undertaken to determine

some guidelines for the UAV to decide when to go around the radars.

• A model containing additional details such as landscape features, wind

conditions would be more realistic with keeping computational complex­

ity of the method at a practical level.

192

A ppendix A

Software Package for W aypoint
Selection

A .l Main file of the software

%%
%% Main program of the way—point generator — 3—dimension case.
%% Waseem Kamal, Dawei Gu and Ian Postlethwaite
%% Dept of Engineering, University of Leicester

clear all
close all

MyTol = l.Oe—6;
%
% Input data
%
disp(,Pleasewdefineuthe^boundaries^oLthe^operation^area.’);

xMin = input (’Enter ̂ theanin^of^x—coordinates: J);
xMax = input (’Enter ̂ therniax^ofjc—coordinates: J);
yMin = input(’Enter^the^min^oLy—coordinates: J);
yMax = input(’Enter^themiax^oLy—coordinates: J);

Range = [xMin xMax yMin yMax];
xRange = xMax — xMin;
yRange = yMax — yMin;

nthreat = input (’Enter ̂ theaiumber^oLthreats: J);

for i=l:nthreat,
fprintf(’EnterJ;hejc~and^y^coordmates^ofJT]ueat J vTumber^%3.0f\n’, i);

% threat(i,l) = xMin + rand*xRange;
threat (i,l) = input(’The^x—coordinate:^’);

% threat(i,2) = yMin + rand*yRange;
threat(i,2) = input (’The_y—coordinate:—’);

fprintf(’Enter^the^strengthuoLThreatJMumber^%3.0f\n’, i);

193

strength(i) = input(’The^strength^(l,2^3):^J);
end % end of the ’’for” loop

disp(’Positions^of^the^threats^are:’);
threat
disp(’Please^press^any Jkey^to^continue. ’);
pause;
% Add extra threats at the (four) corners to prevent the path along box edges.
%nthreat = nthreat + 1;
%threat(nthreat,l) = xMin;
%threat (nthreat, 2) = yMin;
%strength(nthreat) = 2;

%nthreat = nthreat + 1;
%threat (nthreat, 1) = xMax;
%threat (nthreat, 2) = yMin;
%strength(nthreat) = 2;

%nthreat — nthreat + 1;
%threat (nthreat, 1) = xMax;
%threat(nthreat,2) = yMax;
%strength(nthreat) = 2;

%nthreat = nthreat + 1;
%threat (nthreat, 1) = xMin;
%threat (nthreat, 2) = yMax;
%strength (nthreat) = 2;
%
% May include input data correction option here to amend the coordinates of threats.
%
% Plot threat locations.
%
figure(l),
plot (threat (:,1), threat (:,2), ’r+ \ ’linewidth’ ,3);
axis([xMin xMax yMin yMax]);
title (’Threat ..Locations’);
disp(’Please^presSuJany Jcey-to-continue. ’);
pause;
%
% Create Voronoi graph.
%
figure (2),
[vtemp ,ctemp]—voronoin (threat);
voronoi(threat (:,1), threat (:,2));
title (’ VoronoLGraphJrom JVlatlab’);
axis([xMin max(xMax,max(vtemp(:,l))) yMin max(yMax,max(vtemp(:,2)))]);
disp(’Please^press^anyJcey^to^continue.’);
pause;

[NodeList 1, Cell Array 1 ,NodeList 0, Cell Array 0, RangeExtend] = Infty Points
(threat, Range, My Tol);

194

[NodeList2, Cell Array 2] = CornerPoints(threat,RangeExtend,NodeListl,CellArrayl,MyTol);

[NodeList3,CellArray3] = OutsideNodes(threat,Range,NodeList2,CellArray2,MyTol);

[NodeList4,CellArray4] = CornerPoints(threat, Range, NodeList3,CellArray3,MyTol);
%
% Plot the Voronoi graph.
%
figure (3),
disp(’Plotting^the^Voronoi^Diagram’);
PlotCells (Range,threat,NodeList4,CellArray4);
title (’ Improved JVoronoi diagram ’)
disp(’Please^press^any Jcey^to^continue. ’);
pause;
%hold off
%
% Enter the starting (Ps) and end (Pe) points of the mission.
%
%Ps = [xMin+rand*xRange yMin+rand*yRange];
Ps = input (’Enter J;he^(x,y) —coordinates^oLthe^starting^point Jn^the Jorm^x-y]: J);
zPs = input(’Enter^the^altitude^oLthe^starting^point^(between^l^andcJ10): J);
%Pe = [xMin+rand*xRange yMin+rand*yRange];
Pe = input (’Enter J;he^(x,y) —coordinates^oLthe^end^point JnJiheJbrm^x-y]: J);
zPe = input(’Enter^the^altitude^oLthe^end^point^(between^l^and^lO): J);
disp(’Position~of J;he^starting~pointMs);
Ps
disp(’Position^of^the^end^point J s);
Pe
disp(’Please^press^any Jcey^to^continue. ’);
pause;

[TotalNodes,FirstNode,LastNode,FinalNodeList,FinalConMatrix] = augment (Range, threat,
NodeList4, Cell Array 4, Ps, Pe, My Tol);
%
% Calculation of cost for all edges (sides).
%
w = 0.5; % weighting factor between the flight length and risk

height = 7; % set the height in the 2—dim path case, roughly the average in risk in terms of
% altitude

[nnz,D,row,col] = CostCalculation(threat,strength,FinalNodeList,FinalConMatrix,w,height);
%
% Calculation of optimal path (a series of way points).
%

[splen, path] = DijkstraAlgorithm(TotalNodes,FirstNode,LastNode,nnz,D,row,col);
%
% Output restuls.
%
WayPoints = [FinalNodeList(path,l) FinalNodeList(path,2)];

195

figure (4),
disp(’Plotting^OptimaLPath’);
PlotCells (Range, threat, NodeList4,CellArray4);
hold on
axis(Range);
plot(WayPoints(:,l),WayPoints(:,2),,r , , ’linewidth’ ,2);
% title (’Optimal Path 1 (based on Voronoi graph)’)
disp(’Please^press^any Jcey^to^continue. ’);
pause;

ContourThreat (Range, threat, strength, height);
disp(’Please_press^any Jcey^to„continue. ’);
pause;
riskTol =0.1; % at 90% confidence level
MinStep = 0.5; % minimum search step (should consider the actual flight constraints)
%
% Local optimization to best tune the path
%
path2D = LocMinPer2(Range,threat,strength, WayPoints,riskTol,MinStep,height,MyTol);
hold on
p lo t(path2D(:, 1),path2D(:,2), ’m’, ’linewidth’ ,2);
hold off
fprintf(’ Coordinates^oLthe^optimaLpath^(way^points)^after Jocal ̂ searches ̂ are:\n’);
path2D
%
% 3D path below
%
zMin = 1; % define the altitude range , (1:10, or 5:10)
zMax = 10;
zStep = 0.5;
Ps3D = [Ps zPs]; % starting point
Pe3D = [Pe zPe]; % end point
[OptCost,path3D,Node3D] = PathGen3D(path2D,zMin,zMax,zStep,Ps3D,Pe3D,threat,
strength, w, MyTol);
WayPoint3D = [Node3D(path3D,l) Node3D(path3D,2) Node3D(path3D,3)]
[TotalRisk,TotalLength,WorstNode,PeakRisk,PRiskThreat] = PathEvaluate3D(WayPoint3D,
threat, strength, w,MyTol);
n3D = size(WayPoint3D,l);
hn3D = floor (n3D/2);
figure (5),
plot3(WayPoint3D(l:hn3D,l),WayPoint3D(l:hn3D,2),WayPoint3D(l:hn3D,3),’r’,’linewidth’,2),
grid,xlabel(’x’),ylabel(’y’),zlabel(’z ’);
hold on
plot3(WayPoint3D(hn3D:n3D,l),WayPoint3D(hn3D:n3D,2),WayPoint3D(hn3D:n3D,3),’b’,
’linewidth’ ,2);
title (’3—D ̂ Flight JPath’)
hold off
TotalRisk
TotalLength
PeakRisk
PRiskThreat

196

A .2 Function to remove infinity nodes

function [NewNodeList,NewCellArray,NodeList,CellArray,RangeExtend] = InftyPoints
(threat, Range, MyTol)
% Codes for removing infty nodes, with new nodes on (an extended) boundaries.
%
% Inputs for this part: threat, Range
% where, threat coordinate list of threats
% Range — fixed boundaries
% MyTol — user—set tolerance
%
% Outpus: NewNodeList — NB. It still contains infty node as No.l (but
% not appear in cells).
% NewCellArray — cell array, without infty nodes
% NodeList — coordinate list of nodes (vertice) including infty nodes
% Cell Array — cell array,
% RangeExtend — extended boundaries
%
% NB. Using ’’end” in cell call may increase computation; could be improved later on.
%
% dwg 17-01-04
%
[v,c] = voronoin(threat);
n = size(v,l); % number of (original) nodes
nthreat = size(threat ,1); % number of threats (and cells)
NodeList = v;
CellArray = c;
%
% Get the boundaries
%
xminR = Range(l);
xmaxR = Range(2);
yminR = Range(3);
ymaxR = Range(4);
%
% Calculate the extended boundaries
%
xvec = [v(2:end,l)’ threat (:,1)’];
yvec = [v(2:end,2)’ threat (:,2)’];
xMin = min(min(xvec), xminR);
xMax = max (max (xvec), xmaxR);
yMin = min(min(yvec), yminR);
yMax = max(max(y vec),ymaxR);

BB = max([abs(xMin) abs(xMax) abs(yMin) abs(yMax)]);
%
% Expand further 10%
%
if(xMin<0)

xmin = l.l*xMin;
elseif(xMin>0)

197

xmin = 0.9*xMin;
else

xmin = — 0.1*BB;
end

if (xMax<0)
xmax = 0.9*xMax;

elseif (xMax>0)
xmax = l.l*xMax;

else
xmax = 0.1*BB;

end

if (yMin<0)
ymin = l.l*yMin;

elseif (yMin>0)
ymin = 0.9*yMin;

else
ymin = — 0.1*BB;

end

if (yMax<0)
ymax = 0.9*yMax;

elseif (yMax>0)
ymax = l.l*yMax;

else
ymax = 0.1*BB;

end

RangeExtend = [xmin xmax ymin ymax];
%
% Move the infty node to the end of node list, if there is one in the cell.
%
for i=l:nthreat,

ff = find(c{i} = = 1);
if(~isempty(ff)) % cell has infty node

tt = length(c{i});
while(c{i}(tt) ~= 1) % shift node forward by one, and move 1st to last

tempi = c{i}(l);
for j = 1: tt — 1,

°{i}(j) = c{i}(j+l);
end
c{i}(tt) = tempi;

end % end of while loop
end % end of cells containing infty

end % end of i loop
%
% Create working cell arrays (cc will be the final one)
%
cc = c;
vv = v;

198

nNewNodes = 0;

for i=l:nthreat—1,
tti = length(cc{i});

if(cc{i}(end) == 1) % cell has infty node
NodeFirst = cc{i}(l);
NodeLast = cc{i}(end—1);

for j=i+l:nthreat, % Consider NodeLast case
ttj = length(cc{j});

if(cc{j}(end) == 1) % cell j has infty node
if (cc{j}(end—1) == NodeLast) % the last but one node is a common node
if (abs (threat (i, 2)—threat (j,2)) <MyTol) % vertical line, 2 intersection points

xxl = (threat(i,l)+threat(j ,l))/2;
yyl = ymin;
xx2 = xxl;
yy2 = ymax;

if(IsNearest(xxl,yy 1,j ,threat,MyTol)) % threat j(i) is the (strictly) nearest
nNewNodes = nNewNodes -f- 1;
vv(n+nNewNodes, 1) = xxl;
vv(n+nNewNodes, 2) = yyl;
cc{i}(end) = n+nNewNodes;
cc{i}(end-|-l) = 1;
cc{j}(end) = n+nNewNodes;
cc{j}(end+l) = 1;

elseif (IsNearest (xx2,yy2, j , threat, MyTol)) % (xx2,yy2)
nNewNodes = nNewNodes + 1;
vv(n+nNewNodes, 1) = xx2;
vv(n+nNewNodes, 2) = yy2;
cc{i}(end) = n+nNewNodes;
cc{i}(end+l) = 1;
cc{j}(end) = n+nNewNodes;
cc{j}(end+l) = 1;

end % end of vertical line case
elseif (abs (threat (i, 1) — threat (j , 1)) < MyTol)

% horizontal line , 2 intersection points
xxl = xmin;
yyl = (threat(i,2)+threat(j ,2))/2;
xx2 = xmax;
yy2 - yyl;

if (IsNearest (xxl,yyl, j , threat, MyTol)) % threat j(i) is the (strictly) nearest
nNewNodes = nNewNodes -F 1;
vv(n+nNewNodes, 1) = xxl;
vv(n+nNewNodes, 2) = yyl;
cc{i}(end) = n+nNewNodes;
cc{i}(end+l) = 1;
cc{j}(end) = n+nNewNodes;
cc{j}(end+l) = 1;

elseif (IsNearest (xx2,yy2,j, threat, MyTol)) % (xx2,yy2)
nNewNodes = nNewNodes + 1;
vv(n+nNewNodes, 1) = xx2;

199

vv(n+nNewNodes, 2) = yy2;
cc{i}(end) = n+nNewNodes;
cc{i}(end+l) = 1;
cc{j}(end) = n+nNewNodes;
cc{j}(end+l) = 1;

e n d % end of horizontal line case
e l s e % general case, will have 4 intersection points

slope = (threat(j,l)—threat(i ,l))/(threat(i,2)— threat(j ,2));
xxl = xmin; % intersection point on x=xmin
yyl = w(NodeLast,2) + slope*(xmin — vv(NodeLast,l));
xx2 = xmax; % intersection point on x=xmax
yy2 = vv(NodeLast,2) + slope*(xmax — vv(NodeLast,l));
xx3 = vv(NodeLast,l) -f (ymin — vv(NodeLast,2))/slope;
% intersection point on y=ymin
yy3 = ymin;
xx4 = w(NodeLast,l) + (ymax — vv(NodeLast,2))/slope;
% intersection point on y=ymax
yy4 = ymax;

if ((yyl <= ymax+MyTol) Sz (ymin—MyTol <= yyl) &; IsNearest
(xxl,yyl,j,threat,MyTol)) % threat j(i) is the (strictly) nearest

nNewNodes = nNewNodes + 1;
vv(n+nNewNodes, 1) = xxl;
vv(n+nNewNodes, 2) = yyl;
cc{i}(end) = n+nNewNodes;
cc{i}(end+l) = 1;
cc{j}(end) = n+nNewNodes;
cc{j}(end+l) = 1;

elseif ((yy2 <= ymax+MyTol) Sz (ymin—MyTol <= yy2) & IsNearest
(xx2,yy2,j,threat,MyTol)) % (xx2,yy2)

nNewNodes = nNewNodes + 1;
vv(n+nNewNodes, 1) = xx2;
vv(n+nNewNodes, 2) = yy2;
cc{i}(end) = n+nNewNodes;
cc{i}(end+l) = 1;
cc{j}(end) = n+nNewNodes;
cc{j}(end+l) = 1;

elseif ((xx3 <= xmax+MyTol) Sz (xmin—MyTol <= xx3) Sz IsNearest
(xx3,yy3,j,threat,MyTol)) % (xx3,yy3)

nNewNodes = nNewNodes + 1;
vv(n+nNewNodcs, 1) = xx3;
vv(n+nNewNodes, 2) = yy3;
cc{i}(end) = n+nNewNodes;
cc{i}(end+l) = 1;
cc{j}(end) = n+nNewNodes;
cc{j}(end+l) = 1;

elseif ((xx4 <= xmax+MyTol) Sz (xmin—MyTol <= xx4) Sz IsNearest
(xx4,yy4,j,threat,MyTol)) % (xx4,yy4)

nNewNodes = nNewNodes + 1;
vv(n+nNewNodes, 1) = xx4;
vv(n+nNewNodes, 2) = yy4;
cc{i}(end) = n+nNewNodes;

2 0 0

cc{i}(end+l) = 1;
cc{j}(end) = n+nNewNodes;
cc{j}(end+l) = 1;

end %
end

elseif ((ttj > 2) k. (cc{j}(l) == NodeLast))
% common node is the first node of cell j ,
% and cell j has more than two nodes (including infty)

if (abs(threat(i,2)—threat(j ,2))<MyTol)
% vertical line , 2 intersection points
xxl = (threat(i,l)+threat(j ,l))/2;
yyl = ymin;
xx2 = xxl;
yy2 = ymax;

if (IsNearest (xxl ,yy 1, j , threat, MyTol))
% threat j (i) is the (strictly) nearest
nNewNodes = nNewNodes + 1;
vv(n+nNewNodes, 1) = xxl;
vv(n+nNewNodes, 2) = yyl;
cc{i}(end) = n+nNewNodes;
cc{i}(end+l) = 1;
cc{j} = [n+nNewNodes cc{j}];

% add new node as the first node, and shift the rest
elseif (IsNearest (xx2,yy2, j , threat, MyTol)) % (xx2,yy2)

nNewNodes = nNewNodes + 1;
vv(n+nNewNodes, 1) = xx2;
vv(n-fnNewNodes, 2) = yy2;
cc{i}(end) = n+nNewNodes;
cc{i}(end+l) = 1;
cc{j} = [n+nNewNodes cc{j}];

% add new node as the first node, and shift the rest
end % end of vertical line case

elseif (abs (threat (i, 1)—threat (j , 1)) < MyTol)
% horizontal line , 2 intersection points

xxl = xmin;
yyl = (threat(i,2)+threat(j ,2))/2;
xx2 = xmax;;
yy2 = yyl;

if (IsNearest (xxl,yyl, j , threat, MyTol))
% threat j (i) is the (strictly) nearest

nNewNodes = nNewNodes + 1;
vv(n+nNewNodes, 1) = xxl;
vv(n+nNewNodes, 2) = yyl;
cc{i}(end) = n+nNewNodes;
cc{i}(end+l) = 1;
cc{j} = [n+nNewNodes cc{j}];
% add new node as the first node, and shift the rest

elseif(IsNearest(xx2,yy2,j,threat,MyTol)) % (xx2,yy2)
nNewNodes = nNewNodes + 1;
vv(n+nNewNodes, 1) = xx2;
vv(n+nNewNodes, 2) = yy2;

2 0 1

cc{i}(end) = n+nNewNodes;
cc{i}(end+l) = 1;
cc(j} = [n+nNewNodes cc{j}];
% add new node as the first node, and shift the rest

end % end of horizontal line case
else % general case, will have 4 intersection points

slope = (threat(j,l)—threat(i,l))/(threat(i,2)—threat(j ,2));
xxl = xmin; % intersection point on x=xmin
yyl = vv(NodeLast,2) + slope*(xmin — w(NodeLast,l));
xx2 = xmax; % intersection point on x=xmax
yy2 = vv(NodeLast,2) + slope*(xmax — vv(NodeLast,l));
xx3 = vv(NodeLast,l) + (ymin — vv(NodeLast,2))/slope;
% intersection point on y=ymin
yy3 = ymin;
xx4 = vv(NodeLast,l) + (ymax — vv(NodeLast,2))/slope;
% intersection point on y=ymax
yy4 = ymax;

if ((yyl <= ymax+MyTol) Sz (ymin—MyTol <= yyl) Sz IsNearest
(xxl,yy 1,j ,threat,MyTol)) % threat j(i) is the (strictly) nearest

nNewNodes = nNewNodes + 1;
vv(n+nNewNodes, 1) = xxl;
vv(n+nNewNodes, 2) = yyl;
cc{i}(end) = n+nNewNodes;
cc{i}(end+l) = 1;
cc{j} = [n+nNewNodes cc{j}];
% add new node as the first node, and shift the rest

elseif ((yy2 <= ymax+MyTol) & (ymin—MyTol <= yy2) Sz IsNearest
(xx2,yy2,j,threat,MyTol)) % (xx2,yy2)

nNewNodes = nNewNodes + 1;
vv(n+nNewNodes, 1) = xx2;
vv(n+nNewNodes, 2) = yy2;
cc{i}(end) = n+nNewNodes;
cc{i}(end+l) = 1;
cc{j} = [n+nNewNodes cc{j}];

% add new node as the first node, and shift the rest
elseif ((xx3 <= xmax+MyTol) Sz (xmin—MyTol <= xx3) & IsNearest

(xx3,yy3,j,threat,MyTol)) % (xx3,yy3)
nNewNodes = nNewNodes + 1;
vv(n+nNewNodes, 1) = xx3;
vv (n+nNewNodes, 2) = yy3;
cc{i}(end) = n+nNewNodes;
cc{i}(end+l) = 1;
cc{j} = [n+nNewNodes cc{j}];
% add new node as the first node, and shift the rest

elseif ((xx4 <= xmax+MyTol) Sz (xmin—MyTol <= xx4) Sz IsNearest
(xx4,yy4,j,threat,MyTol)) % (xx4,yy4)

nNewNodes = nNewNodes + 1;
vv(n+nNewNodes, 1) = xx4;
vv(n+nNewNodes, 2) = yy4;
cc{i}(end) = n+nNewNodes;
cc{i}(end+l) = 1;

2 0 2

cc{j} = [n+nNewNodes cc{j}];
% add new node as the first node, and shift the rest

end
end
elseif((t t i>2) & (cc{j}(end—1) == NodeFirst))

% the last but one node is a common node
if (abs(threat(i,2)—threat(j ,2))<MyTol)

% vertical line , 2 intersection points
xxl = (threat(i,l)+threat(j ,l))/2;
yyl = ymin;
xx2 = xxl;
yy2 = ymax;

if (IsNearest (xxl,yyl,j, threat, MyTol))
% threat j (i) is the (strictly) nearest

nNewNodes = nNewNodes + 1;
vv(n+nNewNodes, 1) = xxl;
vv(n+nNewNodes, 2) = yyl;
cc{i} = [n+nNewNodes cc{i}];

% add new node as the 1st one, and shift the rest backwards
cc{j}(end) = n+nNewNodes;
cc{j}(end+l) = 1;

elseif(IsNearest(xx2,yy2,j,threat,MyTol)) % (xx2,yy2)
nNewNodes = nNewNodes + 1;
vv(n+nNewNodes, 1) = xx2;
vv(n+nNewNodes, 2) = yy2;
cc{i} = [n+nNewNodes cc{i}];

% add new node as the 1st one, and shift the rest backwards
cc{j}(end) = n+nNewNodes;
cc{j}(end+l) = 1;

end % end of vertical line case
elseif (abs (threat (i, 1)—threat (j , 1)) < MyTol)

% horizontal line , 2 intersection points
xxl = xmin;
yyl = (threat(i,2)+threat(j ,2))/2;
xx2 = xmax;
yy2 = yyl;

if (IsNearest (xxl ,yy 1, j , threat, MyTol))
% threat j (i) is the (strictly) nearest

nNewNodes = nNewNodes + 1;
vv(n+nNewNodes, 1) = xxl;
vv(n+nNewNodes, 2) = yyl;

cc{i} = [n+nNewNodes cc{i}];
% add new node as the 1st one, and shift the rest backwards

cc{j}(end) = n+nNewNodes;
cc{j}(end+l) = 1;

elseif (IsNearest(xx2,yy2,j, threat,MyTol)) % (xx2,yy2)
nNewNodes = nNewNodes + 1;
vv(n+nNewNodes, 1) = xx2;
vv(n+nNewNodes, 2) = yy2;
cc{i} = [n+nNewNodes cc{i}];

% add new node as the 1st one, and shift the rest backwards

203

cc{j}(end) = n+nNewNodes;
cc{j}(end+l) = 1;

end % end of horizontal line case
else % general case, will have 4 intersection points

slope = (threat(j,l)—threat(i,l))/(threat(i,2)—threat(j ,2));
xxl = xmin; % intersection point on x=xmin
yyl = v(NodeFirst,2) + slope*(xmin — vv(NodeFirst,l));
xx2 = xmax; % intersection point on x=xmax
yy2 = v(NodeFirst,2) + slope*(xmax — vv(NodeFirst,l));
xx3 = v(NodeFirst,l) + (ymin — vv(NodeFirst,2))/slope;

% intersection point on y=ymin
yy3 = ymin;
xx4 = v(NodeFirst,l) + (ymax — vv(NodeFirst,2))/slope;

% intersection point on y=ymax
yy4 = ymax;

if ((yyl <= ymax+MyTol) k (ymin—MyTol <= yyl) k IsNearest
(xxl, yy 1, j , threat, MyTol)) % threat j(i) is the (strictly) nearest
nNewNodes = nNewNodes + 1;
vv(n+nNewNodes, 1) = xxl;
vv(n+nNewNodes, 2) = yyl;
cc{i} = [n+nNewNodes cc{i}];
% add new node as the 1st one, and shift the rest backwards
cc{j}(end) = n+nNewNodes;
cc{j}(end+l) = 1;

elseif ((yy2 <= ymax+MyTol) k (ymin—MyTol <= yy2) k IsNearest
(xx2,yy2,j,threat,MyTol)) % (xx2,yy2)
nNewNodes = nNewNodes + 1;
vv(n+nNewNodes, 1) = xx2;
vv(n+nNewNodes, 2) = yy2;
cc{i} = [n+nNewNodes cc{i}];

% add new node as the 1st one, and shift the rest backwards
cc{j}(end) = n+nNewNodes;
cc{j}(end+l) = 1;

elseif ((xx3 <= xmax+MyTol) k (xmin—MyTol <= xx3) k IsNearest
(xx3,yy3,j,threat,MyTol)) % (xx3,yy3)

nNewNodes = nNewNodes + 1;
vv(n+nNewNodes, 1) = xx3;
vv(n+nNewNodes, 2) = yy3;
cc{i} = [n+nNewNodes cc{i}];

% add new node as the 1st one, and shift the rest backwards
cc{j}(end) = n+nNewNodes;
cc{j}(end+l) = 1;

elseif ((xx4 <= xmax+MyTol) k (xmin—MyTol <= xx4) k IsNearest
(xx4,yy4,j,threat,MyTol)) % (xx4,yy4)

nNewNodes = nNewNodes + 1;
vv(n+nNewNodes, 1) = xx4;
vv(n+nNewNodes, 2) = yy4;
cc{i} = [n+nNewNodes cc{i}];

% add new node as the 1st one, and shift the rest backwards
cc{j}(end) = n+nNewNodes;
cc{j}(end+l) = 1;

204

end %
end
elseif ((tti> 2) & (ttj > 2) & (cc{j}(l) == NodeFirst))

% common node is the first node of cell j ,
% and cell j has more than 2 nodes (including infty node)

if(abs(threat(i,2)—threat(j,2))<MyTol)
% vertical line , 2 intersection point

xxl = (threat(i,l)+threat(j ,l))/2;
yyl = ymin;
xx2 = xxl;
yy2 = ymax;

if (IsNearest (xxl ,yy 1, j , threat, MyTol))
% threat j (i) is the (strictly) nearest

nNewNodes = nNewNodes + 1;
vv(n+nNewNodes, 1) = xxl;
vv(n+nNewNodes, 2) = yyl;
cc{i} = [n+nNewNodes cc{i}];

% add new node as the 1st one, and shift the rest backwards
cc{j} = [n+nNewNodes cc{j}];

% add new node as the first node, and shift the rest
elseif (IsNearest (xx2, yy2, j , threat, MyTol)) % (xx2,yy2)

nNewNodes = nNewNodes + 1;
vv(n+nNewNodes, 1) = xx2;
vv(n-fnNewNodes, 2) = yy2;
cc{i} = [n+nNewNodes cc{i}];

% add new node as the 1st one, and shift the rest backwards
cc{j} = [n+nNewNodes cc{j}];

% add new node as the first node, and shift the rest
% disp (’xx2 yy2’)
end % end of vertical line case
elseif (abs (threat (i, 1)—threat (j , 1)) < MyTol)

% horizontal line , 2 intersection points
xxl = xmin;
yyl = (threat(i,2)+threat(j ,2))/2;
xx 2 = xmax;
yy2 = yyl;

if (IsNearest (xxl ,yy 1, j , threat, MyTol))
% threat j (i) is the (strictly) nearest

nNewNodes = nNewNodes + 1;
vv(n+nNewNodes, 1) = xxl;
vv(n-fnNewNodes, 2) = yyl;
cc{i} = [n+nNewNodes cc{i}];

% add new node as the 1st one, and shift the rest backwards
cc{j} = [n+nNewNodes cc{j}];

% add new node as the first node, and shift the rest
elseif (IsNearest (xx2, yy2, j , threat, MyTol)) % (xx2,yy2)

nNewNodes = nNewNodes + 1;
vv(n-fnNewNodes, 1) = xx2;
vv(n+nNewNodes, 2) = yy2;
cc{i} = [n+nNewNodes cc{i}];

% add new node as the 1st one, and shift the rest backwards

205

cc{j} = [n+nNewNodes cc{j}];
% add new node as the first node, and shift the rest

end % end of horizontal line case
else % general case, will have 4 intersection points

slope = (threat(j,l)—threat(i ,l))/(threat(i,2)—threat(j ,2));
xxl = xmin; % intersection point on x=xmin
yyl = v(NodeFirst,2) + slope*(xmin — vv(NodeFirst,l));
xx2 = xmax; % intersection point on x=xmax
yy2 = v(NodeFirst,2) + slope* (xmax — vv(NodeFirst,l));
xx3 = v(NodeFirst,l) + (ymin — vv(NodeFirst,2))/slope;

% intersection point on y=ymin
yy3 = ymin;
xx4 = v(NodeFirst,l) + (ymax — vv(NodeFirst,2))/slope;

% intersection point on y=ymax
yy4 = ymax;

if ((yyl <= ymax+MyTol) & (ymin—MyTol <= yyl) Sz IsNearest
(xxl,yy 1,j ,threat,MyTol)) % threat j(i) is the (strictly) nearest
nNewNodes = nNewNodes + 1;
vv(n+nNewNodes, 1) = xxl;
vv(n+nNewNodes, 2) = yyl;
cc{i} = [n+nNewNodes cc{i}];

% add new node as the 1st one, and shift the rest backwards
cc{j} = [n+nNewNodes cc{j}];

% add new node as the first node, and shift the rest
% disp(’xxl yyl’)
elseif ((yy2 <= ymax+MyTol) Sz (ymin—MyTol <= yy2) Sz IsNearest

(xx2,yy2,j,threat,MyTol)) % (xx2,yy2)
nNewNodes = nNewNodes + 1;
vv(n+nNewNodes, 1) = xx2;
vv(n+nNewNodes, 2) = yy2;
cc{i} = [n+nNewNodes cc{i}];

% add new node as the 1st one, and shift the rest backwards
cc{j} = [n+nNewNodes cc{j}];

% add new node as the first node, and shift the rest
% disp (’xx2 yy2’)
elseif ((xx3 <= xmax+MyTol) Sz (xmin—MyTol <= xx3) Sz IsNearest

(xx3,yy3,j,threat,MyTol)) % (xx3,yy3)
nNewNodes = nNewNodes + 1;
vv(n+nNewNodes, 1) = xx3;
vv(n+nNewNodes, 2) = yy3;
cc{i} = [n+nNewNodes cc{i}];

% add new node as the 1st one, and shift the rest backwards
cc{j} = [n+nNewNodes cc{j}];

% add new node as the first node, and shift the rest
% disp(’xx3 yy3’)
elseif ((xx4 <= xmax+MyTol) Sz (xmin—MyTol <= xx4) Sz IsNearest

(xx4,yy4,j,threat,MyTol)) % (xx4,yy4)
nNewNodes = nNewNodes + 1;
vv(n+nNewNodes, 1) = xx4;
vv(n+nNewNodes, 2) = yy4;
cc{i} = [n+nNewNodes cc{i}];

206

% add new node as the 1st one, and shift the rest backwards
cc{j} = [n+nNewNodes cc{j}];

% add new node as the first node, and shift the rest
% disp(’xx4 yy4’)
end %
end % end of cell{i}(l)=cell{j}(l)
end % end of cases which will produce new nodes
% (cells i and j share common finite node)
end % end of cell j having infty node
end % end of j loop
end % end of if loop (cell i has infty node)
end % end of i loop

for i=l:nthreat, % delete the infty node in cells
tti = length(cc{i});
if (cc{i}(t t i) == 1)

cc{i} = cc{i}(l: tti — 1);
end

end

%
% Prepare output data
%

NewNodeList = vv;
NewCellArray = cc;

%

207

A .3 Function to include corner points in the
node list

function [NewNodeList,NewCellArray] = CornerPoints(threat,Range,v,c,MyTol)

% Codes for including corner points in the node list (if they are not already there).
%
% Inputs: threat, Range, v, c
% where, threat — coordinate list of threats
% Range — fixed boundaries
% v — coordinate list of nodes (vertice)
% c — cell array
% MyTol — user—defined tolerance
%
% Outpus: NewNodeList — NB. It still contains infty node as No.l (but
% not appear in cells).
% NewCellArray
%
% dwg 24—01—04
% Could be simplified.

n = size(v,l); % number of (original) nodes
nthreat = size(threat ,1); % number of threats (and cells)

%
% Create working array and vector
%
cc = c;
vv = v;
Corner Alreadyln = zeros(4,l);

% record the node number, if the corner is already a node
%
% Corners 1 — 4, from the bottom—left corner, in anti—clockwise rotation
%
Corners V(1,1) = Range(l);
CornersV(l,2) = Range(3);
CornersV(2,l) = Range(2);
CornersV(2,2) = Range(3);
CornersV(3,l) = Range(2);
CornersV(3,2) = Range(4);
CornersV(4,l) = Range(l);
CornersV(4,2) = Range (4);
%
% use a new range vector RangeN; perhaps can make corners 2—4 a loop
%
RangeN = zeros(4,l);
RangeN(l) = Range(l);
RangeN(2) = Range(3);
RangeN(3) = Range(2);
RangeN(4) = Range(4);

208

CornerFlag = zeros(4,l);
%
% Check if a corner is already in a cell
%
cFlag = 0;
for i=l:4,

xx = CornersV(i,l);
yy = CornersV(i,2);
for j = 2:n, % search vv to see if Corner i is already in

if (SameNodes(xx,yy,vv(j, 1) ,vv(j ,2),MyTol))
CornerFlag(i) = j;
cFlag = cFlag + 1;

end
end

end
%
% Now, work with 4 corners
%
% Case 1, the bottom—left corner
%
if(CornerFlag(l) == 0) % Corner 1 is not already in the node list

xx = CornersV(l,l);
yy = CornersV(l,2);
CellNumber = WhichCell(threat,xx,yy, MyTol);

% Find out the cell the point belongs to.
tt = length(cc{CellNumber});
nlndex = zeros(tt,l);
nTotal = 0;
nFront = 0;

% will record the node in front of Corner 1, in anti—clockwise direction
for j = 1:t t , % find the node(s) which is (are) on the left edge

if (abs(RangeN(l)—vv(cc{ CellNumber} (j),l)) < MyTol) % node on left edge
nlndex(j) = cc{CellNumber}(j);
nTotal = nTotal + 1;
nFront = nlndex(j);

end
end

%
if (nTotal > 1) % find the lowest node on the left edge

for j = 1: t t ,
if ((nlndex(j) > 0) &. (vv(nlndex(j),2) < vv(nFront,2)))

nFront = cc{CellNumber}(j);
end

end
end

%
if (nTotal == 0) % no node on the left edge, has to search on top edge

for j = 1:t t , % find the node(s) which is (are) on the top edge
if (abs(RangeN(4)—vv(cc{CellNumber}(j),2)) < MyTol) % node on top edge

nlndex(j) = cc{ CellNumber} (j);

209

nTotal = nTotal + 1;
nFront = nlndex(j);

end
end
if (nTotal > 1) % find the most left node on the top edge

for j = 1: t t ,
if ((nlndex(j) > 0) Sz (vv(nlndex(j),l) < vv(nFront,l)))

nFront = cc{CellNumber}(j);
end

end
end

end
%

if (nTotal == 0) % no node on the top edge either
for j = 1:t t , % find the node(s) which is (are) on the right edge

if (abs(RangeN(3)—vv(cc{CellNumber}(j),l)) < MyTol) % node on right edge
nlndex(j) = cc{CellNumber}(j);
nTotal = nTotal + 1;
nFront = nlndex(j);

end
end
if (nTotal > 1) % find the highest node on the right edge

for j = 1: t t ,
if ((nlndex(j) > 0) & (vv(nlndex(j),2) > vv(nFront,2)))

nFront = cc{CellNumber}(j);
end

end
end

end %end of searching on the right edge
%
% Now, find the node next nNext
%

nlndex = zeros(tt,l);
nTotal = 0;
nNext = 0; % will record the node after Corner 1, in anti—clockwise direction
for j = 1:t t , % find the node(s) which is (are) on the bottom edge

if(abs(RangeN(2)—vv(cc{CellNumber}(j),2)) < MyTol) % node on bottom edge
nlndex(j) = cc{CellNumber}(j);
nTotal = nTotal + 1;
nNext = nlndex(j);

end
end

%
if (nTotal > 1)

% find the most left node on the bottom edge, if there are more than 1
for j = 1: t t ,

if ((nlndex(j) > 0) &: (vv(nlndex(j),l) < vv(nNext,l)))
nNext = cc{CellNumber}(j);

end
end

end

210

%
if (nTotal == 0) % no node on the bottom edge, has to search on right edge

for j = 1:t t , % find the node(s) which is (are) on the right edge
if (abs(RangeN(3)—vv(cc{CellNumber}(j),l)) < MyTol) % node on right edge

nlndex(j) = cc{CellNumber}(j);
nTotal = nTotal + 1;
nNext = nlndex(j);

end
end
if (nTotal > 1) % find the lowest node on the right edge

for j = l:tt,
if ((nlndex(j) > 0) Sz (vv(nlndex(j),2) < w(nNext,2)))

nNext = cc{CellNumber}(j);
end

end
end

end
%

if (nTotal == 0) % no node on the right edge either
for j = 1:t t , % find the node(s) which is (are) on the top edge

if(abs(RangeN(4)—vv(cc{CellNumber}(j),2)) < MyTol) % node on top edge
nlndex(j) = cc{CellNumber}(j);
nTotal = nTotal + 1;
nNext = nlndex(j);

end
end
if (nTotal >1) % find the most right node on the top edge

for j = 1: t t ,
if ((nlndex(j) > 0) Sz (vv(nlndex(j),l) > vv(nNext,l)))

nNext = cc{CellNumber}(j);
end

end
end

end %end of searching on the top edge
%
% Move nFront to the end of node list.
%
while(cc{CellNumber}(tt) ~= nFront)% shift node forward by one, and move 1st to last

tempi = cc{CellNumber}(l);
for j = 1: t t—1,

cc{CellNumber}(j) = cc{CellNumber}(j+l);
end
cc{CellNumber}(tt) = tempi;

end % end of while loop

%
% Now, insert (xx,yy) between nFront and nNext
%

n = n + 1;
vv(n,l) = xx;
w(n,2) = yy;

211

if (cc{CellNumber}(l) == nNext)
cc{CellNumber}(tt+l) = n;

elseif(cc{CellNumber}(tt—1) == nNext)
cc{CellNumber}(tt+l) = cc{CellNumber}(tt);
cc{CellNumber}(tt) = n;

else
disp(’ JError: ̂ in^ inclusion ̂ of ̂ Corner M ’)

end
end % end of Corner 1 case
%
% Case 2, the bottom—right corner
%
if (CornerFlag(2) == 0) % Corner 2 is not already in the node list

xx = CornersV(2,l);
yy = CornersV(2,2);
CellNumber = WhichCell(threat,xx,yy,MyTol);

% Find out the cell the point belongs to.
tt = length(cc{CellNumber});
nlndex = zeros(tt,l);
nTotal = 0;
nFront = length(vv);

% record the most right node on the bottom edge (there must be one node on that edge)
for j = 1:t t , % find the node(s) which is (are) on the bottom edge

if (abs(RangeN(2)—vv(cc{CellNumber}(j),2)) < MyTol) % node on bottom edge
nlndex(j) = cc{ CellNumber} (j);
nTotal = nTotal + 1;
nFront = nlndex (j);

end
end

%
if (nTotal > 1) % find the most right node on the bottom edge

for j = 1: t t ,
if ((nlndex(j) > 0) Sz (vv(nlndex(j),l) > vv(nFront,l)))

nFront = cc{ CellNumber} (j);
end

end
end

%
% Now, find the node next nNext
%

nlndex = zeros(tt,l);
nTotal = 0;
nNext = 0; % will record the node after Corner 2, in anti—clockwise direction
for j = 1:t t , % find the node(s) which is (are) on the right edge

if(abs(RangeN(3)—vv(cc{CellNumber}(j),l)) < MyTol) % node on right edge
nlndex(j) = cc{CellNumber}(j);
nTotal = nTotal + 1;
nNext = nlndex(j);

end
end

212

if (nTotal > 1)
% find the lowest node on the right edge, if there are more than 1

for j = T.tt,
if ((nlndex(j) > 0) & (vv(nlndex(j),2) < vv(nNext,2)))

nNext = cc{ CellNumber} (j);
e n d

e n d

e n d

%
if (nTotal == 0) % no node on the right edge, has to search on top edge

for j = l : t t , % find the node(s) which is (are) on the top edge
if(abs(RangeN(4)—vv(cc{CellNumber}(j),2)) < MyTol) % node on top edge

nlndex(j) = cc{ CellNumber} (j);
nTotal = nTotal + 1;
nNext = nlndex(j);

e n d

e n d

if (nTotal > 1) % find the most right node on the top edge
for j = 1: t t ,

if ((nlndex(j) > 0) Sz (vv(nlndex(j),l) > vv(nNext,l)))
nNext = cc{CellNumber}(j);

e n d

e n d

e n d

e n d

%
if (nTotal == 0) % no node on the top edge either
for j = 1:t t , % find the node(s) which is (are) on the left edge

if(abs(RangeN(l)—vv(cc{CellNumber}(j),l)) < MyTol) % node on left edge
nlndex(j) = cc{CellNumber}(j);
nTotal = nTotal + 1;
nNext = nlndex(j);

e n d

e n d

if (nTotal > 1) % find the highest node on the left edge
for j = 1: t t ,

if ((nlndex(j) > 0) Sz (vv(nlndex(j),2) > vv(nNext,2)))
nNext = cc{CellNumber}(j);

e n d

e n d

e n d

e n d %end of searching on the left edge
%
% Move nFront to the end of node list.
%
while(cc{CellNumber}(tt) ~= nFront)

% shift node forward by one, and move 1st to last
tempi = cc{CellNumber}(l);
for j = 1: t t—1,

cc{CellNumber}(j) = cc{CellNumber}(j+l);
e n d

213

cc{C ellN u m b er}(tt) = tem p i;
e n d % end of w hile loop

%
% Now, insert (xx,yy) b etw een nFront and n N ext
%

n = n + 1;
vv(n,l) = xx;
w(n,2) = yy;
if (cc{CellNumber}(l) == nNext)

cc{CellNumber}(tt+l) = n;
elseif(cc{CellNumber}(tt—1) == nNext)

cc{CellNumber}(tt+l) = cc{C ellN u m b er}(tt);
cc{CellNumber}(tt) = n;

e l s e

d i s p (’ -Error: mn inclusion ̂ of ̂ Corner J2,’)
e n d

e n d % end of Corner 2 case
%
% Case 3, the top—right corner
%
if(CornerFlag(3) == 0) % Corner 3 is not already in the node list

xx = CornersV(3,l);
y y = CornersV(3,2);
CellNumber = W h ich C ell(th reat,xx ,yy , M yTol);

% F ind out th e cell th e point belongs to.
tt = length(cc{CellNum ber});
nlndex = zeros(tt,l);
nTotal = 0;
nFront = length(vv);

% record the highest node on the right edge (there must be one node on that edge)
for j = 1:t t , % find the n od e(s) w hich is (axe) on the right edge

if (abs(RangeN(3)—v v (c c {C e llN u m b e r }(j) ,l)) < MyTol) % node on right edge
nlndex(j) = cc{ C ellN um ber} (j);
nTotal = nT otal + 1;
nFront = n lnd ex(j);

e n d

e n d

%
if (nTotal > 1) % find th e h ighest node on th e right edge

for j = l:tt,
i f ((nlndex(j) > 0) & (v v (n ln d ex (j),2) > vv(nFront,2)))

nFront = cc{ C ellN um ber} (j);
e n d

e n d

e n d

%
% Now, find the node next n N ext
%
nlndex = zeros(tt,l);
nTotal = 0;
nNext = 0; % will record the node after Corner 3, in anti—clockwise direction

214

for j = 1:t t , % find the node(s) which is (are) on the top edge
if (abs(RangeN(4)—vv(cc{CellNumber}(j),2)) < MyTol) % node on right edge

nlndex(j) = cc{ CellNumber} (j);
nTotal = nTotal + 1;
nNext = nlndex(j);

end
end

%
if (nTotal >1)

% find the most right node on the top edge, if there are more than 1
for j = l:tt,

if ((nlndex(j) > 0) Sz (vv(nlndex(j),l) > vv(nNext,l)))
nNext = cc{CellNumber}(j);

end
end

end
%

if (nTotal == 0) % no node on the top edge, has to search on left edge
for j = 1:t t , % find the node(s) which is (are) on the left edge

if(abs(RangeN(l)—vv(cc{CellNumber}(j),l)) < MyTol) % node on top edge
nlndex(j) = cc{ CellNumber} (j);
nTotal = nTotal + 1;
nNext = nlndex(j);

end
end
if (nTotal > 1) % find the highest node on the left edge

for j = 1: t t ,
i f ((nlndex(j) > 0) &: (vv(nlndex(j),2) > vv(nNext,2)))

nNext = cc{CellNumber}(j);
end

end
end

end
%

if (nTotal == 0) % no node on the left edge either
for j = 1:t t , % find the node(s) which is (are) on the bottom edge

if (abs(RangeN(2)—vv(cc{CellNumber}(j),2)) < MyTol) % node on bottom edge
nlndex(j) = cc{CellNumber}(j);
nTotal = nTotal + 1;
nNext = nlndex(j);

end
end

if (nTotal > 1) % find the most left node on the bottom edge
for j = 1: t t ,

if ((nlndex(j) > 0) & (vv(nlndex(j),l) < vv(nNext,l)))
nNext = cc{ CellNumber} (j);

end
end

end
end %end of searching on the bottom edge

215

% Move nFront to the end of node list.
%

while(cc{CellNumber}(tt) ~= nFront)
% shift node forward by one, and move 1st to last

tempi = cc{CellNumber}(l);
for j = 1: t t—1,

cc{CellNumber}(j) = cc{CellNumber}(j+l);
end
cc{CellNumber}(tt) = tempi;

end % end of while loop
%
% Now, insert (xx,yy) between nFront and nNext
%

n = n + 1;
vv(n,l) = xx;
vv(n,2) = yy;
if (cc{CellNumber}(l) == nNext)

cc{CellNumber}(tt+l) = n;
elseif(cc{CellNumber}(tt—1) == nNext)

cc{CellNumber}(tt+l) = cc{CellNumber}(tt);
cc{CellNumber}(tt) = n;

else
disp (’ J3rror: ̂ in^ inclusion ..of ̂ Corner J3 ’)

end
end % end of Corner 3 case

%
% Case 4, the top—left corner
%
if(CornerFlag(4) == 0) % Corner 4 is not already in the node list

xx = CornersV(4,l);
yy = CornersV(4,2);
CellNumber = WhichCell(threat,xx,yy,MyTol);

% Find out the cell the point belongs to.
tt = length(cc{CellNumber});
nlndex = zeros(tt,l);
nTotal = 0;
nFront = length(vv);

% record the most left node on the top edge (there must be one node on that edge)
for j = 1:t t , % find the node(s) which is (are) on the top edge

if(abs(RangeN(4)—vv(cc{CellNumber}(j),2)) < MyTol) % node on top edge
nlndex(j) = cc{ CellNumber }(j);
nTotal = nTotal + 1;
nFront = nlndex(j);

end
end

%
if (nTotal > 1) % find the most left node on the top edge

for j = 1: t t ,
if ((nlndex(j) > 0) &; (vv(nlndex(j),l) < vv(nFront,l)))

nFront = cc{CellNumber}(j);

216

end
end

end
%
% Now, find the node next nNext
%

nlndex = zeros(tt,l);
nTotal = 0;
nNext = 0;
% will record the node after Corner 4, in anti—clockwise direction
for j = 1:t t , % find the node(s) which is (are) on the left edge

if (abs(RangeN(l)—vv(cc{CellNumber}(j),l)) < MyTol) % node on right edge
nlndex(j) = cc{CellNumber}(j);
nTotal = nTotal + 1;
nNext = nlndex (j);

end
end

%
if (nTotal > 1)

% find the highest node on the left edge, if there axe more than 1
for j — 1: t t ,

if ((nlndex(j) > 0) &; (vv(nlndex(j),2) > vv(nNext,2)))
nNext = cc{CellNumber}(j);

end
end

end
%

if (nTotal == 0) % no node on the left edge, has to search on bottom edge
for j = 1:t t , % find the node(s) which is (are) on the bottom edge

if(abs(RangeN(2)—vv(cc{CellNumber}(j),2)) < MyTol) % node on bottom edge
nlndex(j) = cc{ CellNumber} (j);
nTotal = nTotal + 1;
nNext = nlndex(j);

end
end
if (nTotal > 1) % find the most left node on the bottom edge

for j = 1: t t ,
if ((nlndex(j) > 0) & (vv(nlndex(j),l) < vv(nNext,l)))

nNext = cc{CellNumber}(j);
end

end
end

end
%

if (nTotal == 0) % no node on the bottom edge either
for j = 1:t t , % find the node(s) which is (are) on the right edge

if (abs(RangeN(3)—vv(cc{CellNumber}(j),l)) < MyTol) % node on right edge
nlndex(j) = cc{CellNumber}(j);
nTotal = nTotal + 1;
nNext = nlndex(j);

end

217

end
if (nTotal >1) % find the lowest node on the right edge

for j = 1: t t ,
if ((nlndex(j) > 0) & (vv(nlndex(j),2) < vv(nNext,2)))

nNext = cc{ CellNumber} (j);
end

end
end

end %end of searching on the right edge
%
% Move nFront to the end of node list.
%

while(cc{CellNumber}(tt) ~= nFront)
% shift node forward by one, and move 1st to last

tempi = cc{CellNumber}(l);
for j = 1: t t—1,

cc{CellNumber}(j) = cc{CellNumber}(j+l);
end
cc{CellNumber}(tt) = tempi;

end % end of while loop
%
% Now, insert (xx,yy) between nFront and nNext
%

n = n + 1;
vv(n,l) = xx;
w(n,2) = yy;
if(cc{CellNumber}(l) == nNext)

cc{CellNumber}(tt+l) = n;
elseif(cc{CellNumber}(tt—1) == nNext)

cc{CellNumber}(tt+l) = cc{ CellNumber }(tt);
cc{CellNumber}(tt) = n;

else
disp(’Jilrror r în ̂inclusion ̂ of^Corner^4’)

end
end % end of Corner 4 case

%
% Assign output data.
%

NewNodeList = vv;

NewCellArray = cc;

%

218

A .4 Function to move outside points to the
boundary

function [vNew, Cell Array New] = OutsideNodes(threat, Range, NodeList,CellArray, MyTol)
%
% Codes for moving outside points to the boundary
% Inputs for this part: threat, Range, NodeList, CellArray,
% all nodes are within an extended boundary already
% no infty nodes in CellArray
% (the input threat is not necessary, nthreat=size(CellArray,l))
% dwg 17-01-04

n = size(NodeList,l); % number of (original) nodes
nthreat = size(threat ,1); % number of threats (and cells)
c = CellArray;
v = NodeList;
%
% Get the boundaries
%
xmin = Range(l);
xmax = Range (2);
ymin = Range(3);
ymax = Range(4);

BB = max([abs(xmin) abs(xmax) abs(ymin) abs(ymax)]);
BB = 10*BB; %%%temp
%
% Now, create a connection matrix which may contain zero rows/columns,
% infty nodes have not been deleted from v (but cells should contain
% no infty node).
%
dTemp = zeros (n);
for i= l:nthreat,

tt = length(c{i});
for j = 1: t t —1,

dTemp(c{i}(j),c{i}(j+l)) = 1;
dTemp(c{i}(j+l),c{i}(j)) = 1;

end
dTemp(c{i}(tt),c{i}(l)) = 1;
dTemp(c{i}(l),c{i}(tt)) = 1;

end

for i = l:n,
% zero out 1st row and 1st column and diagonal elements (should be zero already)

dTemp(l,i) = 0;
dTemp(i,l) = 0;
dTemp(i,i) = 0;

end

%

219

% Create a dlndex, and dTemp2 to store boundary nodes (their numbers)
%

dTemp2 = zeros (n);
dlndex = zeros(n); % use of dlndex to delete repeated computation

%
% Create a vNew to store nodes, including original and new nodes (new nodes
% are on boundaries).
% Create NodesOutside (a single cell) to store nodes (in the original list) which are
% beyond the given area Range.
%

vNew = v;
NodesOutside = cell(l);
NodeOutside{l}(l) = 1; % infty node

nNew = n; % will be the number of total nodes later on

%
% Now, check all (original) nodes.
% Outside regions are ordered anti—clockwise, from bottom—left.
%

for i = 2:n, % node 1 is infty
nRegioni = WhichSubRegion(Range,v(i,l),v(i,2),MyTol);
if(nRegioni ~= 9) % node i is outside

NodesOutside{l}(end+l) = i;
for j = 2:n,
% any cell will have 2 or more finite nodes (InftyPoints.m has been implemented)

vFlag = 0; % vFlag = 1 , 2 new nodes
TempV = zeros(5,2);
TempV(l,l) = — BB*1.0e6; % a point not in the intersection list
TempV(l,2) = — BB*1.0e6;

if ((dTemp(i,j)> MyTol) & (dlndex(i,j) == 0))
% there is connection (edge) and hasn’t been done yet
TempV(2,l) = xmin;
% cooridnates of all 4 possible intersection points (with the boundaries)
TempV(3,l) = xmax;

if(v(j,l) == v(i,l)) % nodes i and j form a vertical line
TempV(2,2) = ymin — BB;
TempV(3,2) = ymax + BB;

else
TempV (2 ,2) = v(j,2) + (v(j,2)-v(i,2))»(xmm-vG,l))/(v0,l)-v(i,l));
TempV (3,2) = v(j,2) + (v(j,2)-v(i,2))*(xmax-v(j,l))/(v(j,l)-v(i,l));

end
TempV(4,2) = ymin;
TempV(5,2) = ymax;
if(v(j,2) == v(i,2)) % nodes i and j form a horizontal line

TempV(4,1) - xmin — BB;
TempV(5,l) = xmax + BB;

220

else
TempV(4,l) = v(j,l) + (v(j,l)-v(i,l))*(ymin-v(j,2))/(v(j,2)-v(i,2));
TempV(5,l) = v(j,l) + (v(j,l)-v(i,l))*(ymax-v(j,2))/(v(j,2)-v(i,2));

end
disp(’TempV = ’)
TempV

for k=2:5,
kFlag = 0;
for 1 = l:k—1,

if (SameNodes(TempV (k, 1),TempV (k,2),TempV (1,1),TempV (1,2),MyTol))
kFlag = 1;

end
end

%
if(OnBoundary(Range,TempV(k,l),TempV(k,2),MyTol) &; (kFlag == 0))

alpha = — BB; % negative number
if(v(j,l) == v(i,l))

alpha = (TempV(k,2) - v(i,2))/(v(j,2)-v(i,2));
else

alpha = (TempV(k,l) - v(i,l))/(v(j,l)-v(i,l));
end

if ((alpha > 0) & (alpha < 1)) % point to be added (TempV(k) between nodes i and j)
if (vFlag > MyTol) % positive

nNew = nNew + 1;
vNew(nNew,l) = TempV(k,l);
vNew(nNew,2) = TempV(k,2);
dTemp2(i,j) = -dTemp2(i,j);
dTemp2(j,i) = -dTemp2(j,i);
vFlag = vFlag + 1;

else
nNew = nNew + 1;
vNew(nNew,l) = TempV(k,l);
vNew(nNew,2) = TempV(k,2);
dTemp2(i,j) = nNew;
dTemp2(j,i) = nNew;
vFlag = vFlag + 1;

end
end % end of if (test if the intersection point is required)
if (vFlag > 2)

disp(’Error^----- jmoreJihan^ Jntersection^points Jn^OutsideNodes’)
disp(Vm=J)
i
disp(Vj=J)
j
disp(’Jc=J)
k
vFlag
dTemp2(i,j)
pause;

end
end % end of if

221

end % end of k loop
end % end of if (for connected nodes)
dlndex(i,j) = 1;
dlndex(j,i) = 1;

end % end of j loop
end % end of if (for outside nodes, do nothing for node i inside)

end % end of i loop

%
% Now, a new cell array, with new boundary nodes.
%

cc = cell (nthreat, 1);

for i = 1:nthreat,
nNewCell = 0; % index for the nodes of the new cell
c{i} = [c{i}(end) c{i}];
%% repeat the last node at the beginning in cell i node list
nnn = length(c{i});
for j = l:nnn—1,

if (MyFind(NodesOutside{l},c{i}(j),MyTol)) % outside node
if (~ My Find (Nodes Out side {l},c{i}(j+l), MyTol))

% check the next node, if inside
nNewCell = nNewCell + 1;
cc{i} (nNewCell) = dTemp2(c{i}(j),c{i}(j+l));

elseif(dTemp2(c{i}(j),c{i}(j+l)) < —MyTol)
% next node outside, but has intersection points

nNode = -dTemp2(c{i}(j),c{i}(j+l));
nNodeNext = nNode + 1;
xxl = vNew(c{i}(j),l); % coordinates of c{i}(j) and 2 intersection points
yyl = vNew(c{i}(j),2);
xx2 = vNew(nNode,l);
yy2 = vNew(nNode,2);
xx3 = vNew(nNodeNext,l);
yy3 = vNew(nNodeNext,2);
distl = sqrt((xxl—xx2)"2+(yyl— yy2)~2);
dist2 = sqrt((xxl—xx3)"2+(yyl— yy3)"2);
if (distl < dist2)

% always choose nearer point as the next node (all on a straight line)
nNewCell = nNewCell + 1;
cc{i} (nNewCell) = nNode;
nNewCell = nNewCell + 1;
cc{i} (nNewCell) = nNodeNext;

else
nNewCell = nNewCell + 1;
cc{i}(nNewCell) = nNodeNext;
nNewCell = nNewCell + 1;
cc{i} (nNewCell) = nNode;

end
end

else % an inside node

222

nNewCell = nNewCell + 1;
cc{i} (nNewCell) = c{i}(j);
if (MyFind(NodesOutside{l},c{i}(j+l),MyTol))

% check the next node: if outside, record a new node
nNewCell = nNewCell + 1;
cc{i} (nNewCell) = dTemp2(c{i}(j),c{i}(j+l));

end
end

end % end of j loop
end % i looop

CellArrayNew = cc;

%

223

A .5 Function to augment the initial and final
point

function [NumofNodes,nPs,nPe,VV,DD] = augment (Range, threat,vv,cc,Ps,Pe, MyTol)

% Input:
% Output:
% NumofNodes is the total number of nodes of voronoi diagram
% nPs is starting node
% nPe is the end node
% VV contains the vertices of the nodes
% CC is the cell array
% DD is the connection matrix of nodes

n = size(vv,l);
nthreat = size(threat ,1);
xs = Ps(l);
ys = Ps(2);
xe = Pe(l);
ye = Pe(2);

nPs = n+1; % Next 6 lines added by DWG, 21—05—04
vv(nPs,l) = xs;
vv(nPs,2) = ys;

nPe = n+2;
vv(nPe,l) = xe;
vv(nPe,2) = ye;

%
% Get the boundaries
%

xmin = Range(l);
xmax = Range (2);
ymin = Range (3);
ymax = Range (4);

%
% Build a connection matrix dd
%

n = size(vv,l); % DWG 21—05—04

dd = zeros (n);
for i= 1:nthreat,

tt = length(cc{i});
for j = 1: tt — 1,

dd(cc{i}(j),cc{i}(j+l)) = 1;

224

dd(cc{i}(j-f l),cc{i}(j)) = 1;
end
dd(cc{i}(tt), cc{ i} (1)) = 1;
dd(cc{i}(l),cc{i}(tt)) = 1;

end

% Identify the cells for Ps and Pe
j =0;
for i=l:nthreat, % May use WhichCell. dwg

DisThreatS(i) = sqrt((xs—threat(i,l))~2+(ys—threat(i,2))~2);
DisThreatE(i) = sqrt((xe—threat(i,l))~2+(ye—threat(i,2))~2);

end

[DisS,indS] = sort(DisThreatS);
[DisE,indE] = sort(DisThreatE);
indS = indS(l);
DisS = DisS(l);
cellS = cc{indS};
indE = indE(l);
DisE = DisE(l);
cellE = cc{indE};

cellS = [cellS cellS (1)];

for i = l:length(cellS) — 1,
xl = vv(cellS(i),1);
yl = vv(cellS(i),2);
x2 = vv(cellS(i+l),l);
y2 = vv(cellS(i+l),2);
[xQ,yQ] = intersect(xl,yl,x2,y2,xs,ys,MyTol);

if ((xmin<=xQ) & (xQ<=xmax) & (ymin<=yQ) & (yQ<=ymax)),
% intersection point could be beyond the Range
if (IsNearest (xQ ,y Q ,indS, threat, MyTol)),

% include intersection points on the cell edges only
n = n + 1;
vv(n,l) = xQ; % add into vv
w(n,2) = yQ;

ddd = zeros(n—1,1); % now expand and update dd
dddd = zeros(l,n);
dd = [dd ddd;dddd];
dd(n,cellS(i)) = 1;
dd(cellS(i),n) = 1;
dd(n,cellS(i+l)) = 1;
dd(cellS(i+l),n) = 1;
dd(n,nPs) = 1;
dd(nPs,n) = 1;

end

225

end
end

cellE = [cellE cellE (1)];

for i = l:length(cellE) — 1,
xl = vv(cellE(i),1);
yl = vv(cellE(i),2);
x2 = vv(cellE(i+l),l);
y2 = vv(cellE(i+l),2);
[xQ,yQ] = intersect(xl,yl,x2,y2,xe,y e ,MyTol);

if ((xmin<=xQ) Sz (xQ<=xmax) & (ymin<=yQ) & (yQ<=ymax)),
if (IsN earest (xQ, y Q, indE, threat, My Tol)),

n = n + 1;
vv(n,l) = xQ; % add into vv
w(n,2) = yQ;

ddd = zeros(n—1,1); % now expand and update dd
dddd = zeros(l,n);
dd = [dd ddd;dddd];
dd(n,cellE(i)) = 1;
dd(cellE(i),n) = 1;
dd(n,cellE(i+l)) = 1;
dd(cellE(i+l),n) = 1;
dd(n,nPe) = 1;
dd(nPe,n) = 1;

end
end

end

dd=dd(2:end,2:end);
% Deleting 1st row and 1st col because they corresponds to
% the 1st node of the voronoi diagram (in vv) which is at infinity
vv = vv(2:end,:);
% Deleting 1st node of the voronoi diagram which is at infinity

nPs = nPs—1;
nPe = nPe—1;

k=l;
for i = l:size(vv,l),%l

if (vv(i,l)>=xmin & vv(i,l)<=xmax & vv(i,2)>=ymin & vv(i,2)<=ymax),%2
W(k,:) = vv(i,:);
DD(k,:) = dd(i,:);
I(k) = i;
k = k-fl;

else%2
if(i < nPs),%3

nPs = nPs—1;

226

nPe = nPe— 1;
end%3

end%2
end%l

DD = DD(:,I);

NumofNodes = size(VV,l);

227

References

[1] M. Adams, W. Hall, M. Hanson, and G. Zacharias. Mixed initiative
planning and control under uncertainty. In Proceedings of the 1 st AIAA
Unmanned Aerospace Vehicles, Systems, Technologies, and Operations
Conference and Workshop, Portsmouth, VA, May 2002.

[2] M. Aicardi. Coordination and control of a team of mobile robots. In Pro­
ceedings of the 1995INRIA/IEEE Symposium on Emerging Technologies
and Factory Automation, Paris, Prance, October 1995.

[3] M. R. Anderson and A. C. Robbins. Formation flight as a cooperative
game. In Proc. of the AIAA GN&C Conf, pages 244-251, 1998.

[4] T. Arai and L.E. Parker. Editorial: Advances in multi-robot systems.
IEEE Transactions on Robotics and Automation, 18:655-661, 2002.

[5] T. Balch and R.C. Arkin. Behavior-based formation control for multi­
robot teams. IEEE Transactions on Robotics and Automation, 14:926-
939, 1998.

[6] J. L. Bander and C. C. White. A heuristic search algorithm for path
determination with learning. IEEE Transactions of Systems,Man, and
Cybernetics - Part A: Systems and Humans, January 1998.

[7] R. Beard, T. McLain, M. Goodrich, and E. Anderson. Coordinated target
assignment and intercept for unmanned air vehicles. IEEE Transactions
on Robotics and Automation, 2002.

[8] J. Bellingham, M. Tillerson, M. Alighanbari, and J. How. cooperative
path planning for multiple UAVs in dynamic and uncertain environ­
ments. In Proceedings of the 41st IEEE Conference on Decision and
Control, page 28162822, December 2002.

[9] J. Borenstein and Y. Koren. The vector field histogram, fast obstacle
avoidance for mobile robots. IEEE Journal of Robotics and Automation,
7(3):278-288, June 1991.

[10] S. A. Bortoff. Path planning for unmanned air vehicles. Technical report,
Air Force Research Laboratory, Air Vehicle Directorate, September 1999.

[11] R. Brooks. A robust layered control system for a mobile robot. IEEE
Journal of Robotics and Automation, 2(1): 14—23, April 1986.

228

[12] B. Brumitt and A. Stentz. Dynamic mission planning for multiple mobile
robots. In Proceedings of the IEEE International Conference on Robotics
and Automation, Minneapolis, MN, April 1996.

[13] A. E. Bryson and Y. C. Ho. Applied Optimal Control Waltham, MA:
Ginn and company, 1969.

[14] P. Burlina, D. DeMenthon, and L. S. Davis. Navigation with uncer­
tainty: Reaching a goal in a high collision risk region. In Proc. of IEEE
International Conf. on Robotics and Automation, pages 2440-2445, Nice,
Prance, 1992.

[15] B. J. Capozzi. Evolution-Based Path Planning and Management for
Autonomous Vehicles. Phd thesis, University of Washington, 2001.

[16] B. J. Capozzi and J. Vagners. An evolution-based alternative for au­
tonomous motion planning. In Proceedings of the 7th International Joint
Conference on Artificial Intelligence, Seattle, WA, August 2001.

[17] B. J. Capozzi and J. Vagners. Evolving (semi)-autonomous vehicles. In
Proceedings of the AIAA Guidance, Navigation, and Control Conference,
Montreal, Canada, August 2001.

[18] P. Chandler, M. Pachter, K. Nygard, and D. Swaroop. Cooperative Con­
trol and Optimization, chapter Distributed Cooperation and Control for
Autonomous Air Vehicles. Kluwer, 2001.

[19] P. Chandler, M. Pachter, D. Swaroop, J. Fowler, J. Howlett, S. Ras­
mussen, C. Schumacher, and K. Nygard. Complexity in UAV cooperative
control. In Proc. of the ACC, June 2002.

[20] M. Cherif. Motion planning for all terrain vehicles: A physical modelling
approach for coping with dynamic and contact interaction constraints.
IEEE Transaction on Robotics and Automation, 15(2):202—218, April
1999.

[21] S. Chien, R. Knight, A. Stechert, R. Sherwood, and G. Rabideau. Using
iterative repair to improve the responsiveness of planning and scheduling
for autonomous spacecraft. In IJCAI99 Workshop on Scheduling and
Planning meet Real-time Monitoring in a Dynamic and Uncertain World,
Stockholm, Sweden, August 1999.

[22] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algo­
rithms. MIT Press, 1990.

[23] J.P. Desai, J. Ostrowski, and V. Kumar. Controlling formations of mul­
tiple mobile robots. In Proceedings of IEEE International Conference
on Robotics and Automation, pages 2864-2869, Leuven, Belgium, May
1998.

[24] M. Desrochers and F. Soumis. A generalized permanent labelling algo­
rithm for the shortest path problem with time windows. Information
Systems and Operations Research, (26): 191-212, 1988.

229

[25] M. B. Dias and A. Stentz. A free market architecture for distributed
control of a multirobot system. In Proceedings of the 6 th International
conference on intelligent autonomous systems, page 115122, July 2000.

[26] W.B. Dunbar and R.M. Murray. Model predictive control of coordinated
multi-vehicle formations. In Proceedings of the 41st IEEE Internatinal
Conference on Decision and Control, 2002.

[27] A. Elnagar and A. Base. Heuristics for local path planning. IEEE Trans­
actions on Systems Man and Cybernetics, 23(2):624-634, 1993.

[28] T. Estlin, G. Rabideau, D.Mutz, and S. Chien. Using continuous plan­
ning techniques to coordinate multiple rovers, chapter IJCAI Workshop
on Scheduling and Planning. Stockholm, Sweden, August 1999.

[29] T. Estlin et al. An integrated architecture for cooperating rovers. In
Proceedings of the International Symposium on Artificial Intelligence
Robotics and Automation in Space (ISAIRAS), Noordwijk, The Nether­
lands, June 1999.

[30] J. T. Feddema, C. Lewis, and D. A. Schoenwald. Decentralized control
of cooperative robotic vehicles: Theory and application. IEEE Transac­
tions on Robotics and Automation, 18:852864, October 2002.

[31] K. Fischer, J.P. Mller, and M. Pischel. A model for cooperative trans­
portation scheduling. In Proceedings of the 1st International Conference
on Multiagent Systems (ICMAS95), pages 109-116, 1995.

[32] D. B. Fogel and L. J. Fogel. Optimal routing of multiple autonomous un­
derwater vehicles through evolutionary programming. In Proc. of Sym­
posium on Autonomous Underwater Vehicle Technology, pages 44-47,
Washington D.C., 1990.

[33] R. Fourer, D. M. Gay, and B. W. Kernighar. AMPL, A modeling language
for mathematical programming. The Scientific Press, 1993.

[34] D. Fox, W. Burgard, H. Kruppa, and S. Thrun. A probabilistic approach
to collaborative multi-robot localization. In Autonomous Robots, volume
8(3), 2000.

[35] D. Fox, W. Burgard, and S. Thrun. Active markov localization for mobile
robots. Roboticsand Autonomous Systems, 25:195-207, 1998.

[36] GARTEUR Action Group AG14. Autonomy in UAVs: A design chal­
lenge. http://www.nlr.nl/projects/garteur.wan/inde x2.html, 2003.

[37] D. P. Gillen and D. R. Jacques. Cooperative behavior schemes for im­
proving the effectiveness of autonomous wide area search munitions.
In Proceeding of the Cooperative Control and Optimization Workshop,
Gainesville FL, December 2000.

[38] F. Giulietti, L. Pollini, and M. Innocenti. Autonomous formation flight.
IEEE Control System Magazine, 20:34-44, December 2000.

230

http://www.nlr.nl/projects/garteur.wan/inde

[39] R. Glasius, A. Komoda, and S. Gielen. Neural network dynamics for
path planning and obstacle avoidance. In Neural Networks, March 1994.

[40] M. Golfarelli, D. Maio, and S. Rizzi. Multi-agent path planning based
on task-swap negotiation. In Proceedings of the 16th UK Planning and
Scheduling SIG Workshop, Durham, England, 1997.

[41] M. Golfarelli, D. Maio, and S. Rizzi. A task-swap negotiation protocol
based on the contract net paradigm. Technical report, Technical Report
005-97, Research Center for Computer Science and Telecommunication
Systems, University of Bologna, Bologna, Italy, 1997.

[42] M. Golfarelli and S. Rizzi. Spatio-temporal clustering of tasks for
swap-based negotiation protocols in multi-agent systems. In Proceed­
ings 6th International Conference on Intelligent Autonomous Systems,
page 172179, Venice, Italy, 2000.

[43] D.W. Gu, W. Kamal, and I. Postlethwaite. A UAV waypoint generator.
In AIAA 1st Intelligent Systems Technical Conference, Chicago, Illinois,
September 2004.

[44] C. Hocaoglu and A. C. Sanderson. Plannning multiple paths with evo­
lutionary speciation. IEEE Transctions on Evolutionary Computation,
5:169-191, 2001.

[45] D. Hsu, R. Kindel, J.C. Latombe, and S. Rock. Randomized kinody-
namic motion planning with moving obstacles. International Journal of
Robotics Research, 21:233-255, 2002.

[46] Y. K. Hwang and N. Ahuja. A potential field approach to path planning.
IEEE Transactions on Robotics and Automation, 8(l):23-32, Febuary
1992.

[47] J. Ilari and C. Torras. 2D path planning: a configuration space heuris­
tic approach. International Journal of Robotics Research, 9(1):75 - 91,
February 1990.

[48] ILOG CPLEX User’s guide. ILOG, 1999.

[49] G. Inalhan, D. Stipanovic, and C. Tomlin. Decentralized optimization
with application to multiple aircraft coordination. In Proceedings of the
41st IEEE Conference on Decision and Control, Las Vegas, NV, Decem­
ber 2002.

[50] P. A. Ioannou and J. Sun. Robust Adaptive Control Upper Saddle River,
NJ: PrenticeHall, 1996.

[51] M. Jun, A.I Chaudhry, and R. D’Andrea. The navigation of autonomous
vehicles in uncertain dynamic environments: A case study. In Proceedings
of IEEE Conference on Decision and Control, Las Vegas, NV, December
2002 .

231

[52] W. A. Kamal, D. W. Gu, and I. Postlethwaite. A decentralised prob­
abilistic framework for the path planning of autonomous vehicles. In
Proceedings of the 16th IFAC World Congress, Prague, July 2005.

[53] W. A. Kamal, D. W. Gu, and I. Postlethwaite. Real time trajectory
planning for UAVs using MILP. In to be presented at the CDC-ECC
Conference, Seville, Spain, December 2005.

[54] W. A. Kamal, D. W. Gu, and I. Postlethwaite. MILP and its application
in flight path planning. In Proceedings of the 16th IFAC World Congress,
Prague, July 2005.

[55] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars. Prob­
abilistic roadmaps for path planning in high-dimensional configuration
spaces. IEEE Transactions on Robotics and Automation, 12(4):566580,
1996.

[56] Y. Kim, D. W. Gu, and I. Postlethwaite. Real-time path planning with
limited information for UAVs. Technical report, Department of Engi­
neering, University of Leicester, December 2005.

[57] D. E. Kirk. Optimal Control Theory: An Introduction. Englewood Cliffs,
NJ: Prentice Hall, 1970.

[58] Y. Koren and J. Borenstein. Potential field methods and their inherent
limitations for mobile robot navigation. In Proc. of the IEEE Conf. on
Robotics and Automation, pages 1398-1404, 1991.

[59] K. J. Kyriakopoulos and G. N. Saridis. An integrated collision prediction
and avoidance scheme for mobile robots in non-stationary environments.
In Proc. of IEEE International Conf. on Robotics and Automation, pages
194-199, Nice, France, May 1992.

[60] T. Simon. L. Jaillet. A PRM-based motion planner for dynamically
changing environments. In IEEE Int. Conf. on Int. Robots and Systems,
2004.

[61] J.P. Laumond. Motion planning for PLM: State of the art and per­
spectives. Technical report, Rapport LAAS No 04328, ISICAD-2004,
Novosibirsk, Russia, June 2004.

[62] S. Lavalle and J. Kuffner. Randomized kinodynamic planning. Interna­
tional Journal of Robotics Research, 20:378-400, 2001.

[63] N.E. Leonard and E. Fiorelli. Virtual leaders, artificial potentials and
coordinated control of groups. In Proceedings of IEEE Conference on
Decision and Control, pages 2986-2973, Orlando, FL, December 2001.

[64] F. L. Lewis. Optimal Control. New York: John Wiley &; Sons, 1986.

[65] T. Maddula, A. A. Minai, and M. M. Polycarpou. Multi-target assign­
ment and path planning for groups of uavs. In Proceedings of the Con­
ference on Cooperative Control and Optimization, Gainesville, FL, 2002.

232

[66] C. S. Mata and J. S. B. Mitchell, a new algorithm for computing shortest
paths in weighted planar subdivisions. In Symposium on Computational
Geometry, page 264273, 1997.

[67] M. B. McFarland, R. A. Zachery, and B. K. Taylor. Motion planning for
reduced observability of autonomous aerial vehicles. In Proc. of the 1999
IEEE conf. on Control Applications, pages 231-235. IEEE press, 1999.

[68] T. McLain, P. Chandler, S. Rasmussen, and M. Pachter. Cooperative
control of UAV rendezvous. In Proc. of the ACC, pages 2309-2314, June
2001 .

[69] T. W. McLain and R. W. Beard. Trajectory planning for coordinated
rendezvous of unmanned air vehicles. In Proc. of the AIAA GN&C Conf,
2000.

[70] T. W. McLain and R. W. Beard. Cooperative path planning for timing-
critical missions. In Proceedings of the American Control Conference,
Denver, Colorado, June 2003.

[71] R. R. Murphy. Introduction to A I Robotics. MIT Press,, 2000.

[72] M. Neus and S. Maouche. Motion planning using the modified visibility
graph. In Proceedings of the IEEE International Conference on Systems,
Man and Cybernetics, volume 4, pages 12-15, October 1999.

[73] N. J. Nilsson. Principles of Artificial Intelligence. Palo Alto, CA: Tioga
Publisher Company, 1980.

[74] K. Nygard, P. Chandler, and M. Pachter. Dynamic network optimization
models for air vehicle resource allocation. In Proc. of the ACC, pages
1853-1856, June 2001.

[75] M. H. Overmars and P. Svestka. A probabilistic learning approach to
motion planning. In Proceedings of the workshop on Algorithmic Founda­
tions of Robotics, The 1994 Workshop on the Algorithmic Foundations
of Robotics, number ISBN: 1-56881-045-8, pages 19-37, San Francisco,
California, United States, 1995.

[76] L. E. Parker. On the design of behavior-based multi-robot teams. Journal
of Advanced Robotics, 10(6), 1996.

[77] L.E. Parker. Alliance: An architecture for fault-tolerant multi-robot
cooperation. IEEE Transactions on Robotics and Automation, 14:220-
240, 1998.

[78] K. Passino. Cooperative control for autonomous air vehicles. In Proceed­
ings of the Cooperative Control and Optimization Workshop, Gainesville
FL, 2000.

[79] M. B. Pellazar. Vehicle route planning with constraints using genetic
algorithms. In IEEE National Aerospace and Electronics Conference,
pages 111-119, 1998.

233

[66] C. S. Mata and J. S. B. Mitchell, a new algorithm for computing shortest
paths in weighted planar subdivisions. In Symposium on Computational
Geometry, page 264273, 1997.

[67] M. B. McFarland, R. A. Zachery, and B. K. Taylor. Motion planning for
reduced observability of autonomous aerial vehicles. In Proc. of the 1999
IEEE conf. on Control Applications, pages 231-235. IEEE press, 1999.

[68] T. McLain, P. Chandler, S. Rasmussen, and M. Pachter. Cooperative
control of UAV rendezvous. In Proc. of the ACC, pages 2309-2314, June
2001 .

[69] T. W. McLain and R. W. Beard. Trajectory planning for coordinated
rendezvous of unmanned air vehicles. In Proc. of the AIAA GN&C Conf,
2000 .

[70] T. W. McLain and R. W. Beard. Cooperative path planning for timing-
critical missions. In Proceedings of the American Control Conference,
Denver, Colorado, June 2003.

[71] R. R. Murphy. Introduction to A I Robotics. MIT Press,, 2000.

[72] M. Neus and S. Maouche. Motion planning using the modified visibility
graph. In Proceedings of the IEEE International Conference on Systems,
Man and Cybernetics, volume 4, pages 12-15, October 1999.

[73] N. J. Nilsson. Principles of Artificial Intelligence. Palo Alto, CA: Tioga
Publisher Company, 1980.

[74] K. Nygard, P. Chandler, and M. Pachter. Dynamic network optimization
models for air vehicle resource allocation. In Proc. of the ACC, pages
1853-1856, June 2001.

[75] M. H. Overmars and P. Svestka. A probabilistic learning approach to
motion planning. In Proceedings of the workshop on Algorithmic Founda­
tions of Robotics, The 1994 Workshop on the Algorithmic Foundations
of Robotics, number ISBN: 1-56881-045-8, pages 19-37, San Francisco,
California, United States, 1995.

[76] L. E. Parker. On the design of behavior-based multi-robot teams. Journal
of Advanced Robotics, 10(6), 1996.

[77] L.E. Parker. Alliance: An architecture for fault-tolerant multi-robot
cooperation. IEEE Transactions on Robotics and Automation, 14:220-
240, 1998.

[78] K. Passino. Cooperative control for autonomous air vehicles. In Proceed­
ings of the Cooperative Control and Optimization Workshop, Gainesville
FL, 2000.

[79] M. B. Pellazar. Vehicle route planning with constraints using genetic
algorithms. In IEEE National Aerospace and Electronics Conference,
pages 111-119, 1998.

233

[80] M. M. Polycarpou, Y. Yang, and K. M. Passino. A cooperative search
framework for distributed agents. In Proceedings of the 2001 IEEE In­
ternational Symposium on Intelligent Control, pages 1-6, Mexico City,
Mexico, September 2001.

[81] M. A. Potter and K. A. D. Jong. Cooperative coevolution: An architec­
ture for evolving coadapted subcomponents. Evolutionary Computation,
8:1-29, 2000.

[82] A. Proud, M. Pachter, and J. D’Azzo. Close formation control. In Proc.
of the AIAA GN&C Conf., August 1999.

[83] S. J. Qin and T. A. Badge well. An overview of industrial model predictive
control technology. In Chemical Process Control- V, volume 93, pages
232-256, AlChe Symp. Ser. New York, American Institute of Chemical
Engineers, 1997.

[84] A. Richards, J. Bellingham, M. Tillerson, and J. P. How. Coordination
and control of multiple UAVs. In Proc. of the AIAA GN&C Conf., Aug
2002.

[85] A. Richards, J. P. How, T. Schouwenaars, and E. Feron. Plume avoidance
maneuver planning using mixed integer linear programming. In Proc. of
AIAA GN&C Conf., August 2001.

[86] A. Richards and J.P. How. Aircraft trajectory planning with collision
avoidance using mixed integer linear programming. In Proceedings of the
American Control Conference, May 2002.

[87] R. T. Rysdyk and A. J. Calise. Nonlinear adaptive flight control using
neural networks. IEEE Control Systems Magazine, 18, December 1998.

[88] T. W. Sandholm. An implementation of the contract net protocol based
on marginal cost calculations. In Proceedings of the 12th International
Workshop on Distributed Artificial Intelligence, page 295308, Hidden
Valley, Pennsylvania, 1993.

[89] T. Schouwenaars, B. DeMoor, E. Feron, and J. P. How. Mixed integer
programming for multi-vehicle path planning. In Proc. of the ECC Conf.,
pages 2603-2608, Porto, Portugal, September 2001.

[90] T. Schouwenaars, J. How, and E. Feron. Decentralized cooperative tra­
jectory planning of multiple aircraft with hard safety guarantees. In
AIAA Guidance, Navigation and Control Conference, Rhode Island,
Agust 2004.

[91] C. Schumacher, P. Chandler, and S. Rasmussen. Task allocation for
wide area search munitions via network flow optimization. In Proc. of
the AIAA GN&C Conf., August 2001.

234

[92] D. H. Shim, H. J. Kim, and S. Sastry. Decentralized nonlinear model
predictive control of multiple flying robots in dynamic environments. In
Proceedings of the 44th IEEE Conference on Decision and Control, Maui,
HI, December 2003.

[93] R. G. Smith. The contract net protocol: High-level communication and
control in a distributed problem solver. IEEE Transactions on Comput­
ers, 10:11041113, December 1980.

[94] G. Song, S. Miller, , and N. Amato. Customizing PRM roadmaps at
query time. In Proceedings of IEEE International Conference on Robotics
and Automation, 2001.

[95] A. Stentz. Optimal and efficient path planning for partially-known en­
vironments. In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA 94), page 33103317, May 1994.

[96] D. J. Stilwell and B. E. Bishop. Platoons of underwater vehicles. IEEE
Control System Magazine, 20:45-52, December 2000.

[97] K. Sugihara and J. Smith. Genetic algorithms for adaptive planning of
path and trajectory of a mobile robot in 2D terrains. In IEICE Trans­
actions on Information and Systems, pages 309-317, 1999.

[98] Hamdy A. Taha. Operation Research, An Introduction. Macmillan Pub­
lishing Company, New York, 4 edition, 1987.

[99] O. Takahashi and R. J. Schilling. Motion planning in a plane using
generalized voronoi diagrams. IEEE Transactions on Robotics and Au­
tomation, 5(2): 143-150, April 1989.

[100] S. Thrun, A. Bucken, W. Burgard, D. Fox, T. Frohlinghaus, D. Hennig,
M. Krell T. Hofmann, and T. Schimdt. Map learning and high-speed
navigation in rhino. Cambridge, MA: MIT Press, 1998.

[101] S. Thrun, D. Fox, W. Burgard, and F. Dellaert. Robust monte carlo
localization for mobile robots. Artificial Intelligence, 128(1-2), 2001.

[102] F. E. Udwadia and R. E. Kalaba. Analytic Dynamics: A new Approach.
Cambridge University Press, 1996.

[103] P. Wahi, R. Raina, and F. N. Chowdhury. A survey of recent work in
adaptive flight control. In Proceedings of the 33rd Southeastern Sympo­
sium on System Theory, page 711, 2001.

[104] M. P. Wellman and P. R. Wurman. Market-aware agents for a multiagent
world. Robotics and Autonomous Systems, 24:115125, September 1998.

[105] J. D. Wolfe, D. F. Chichka, and J. L. Speyer. Decentralized controllers for
unmanned aerial vehicle formation flight. In Proc. of the AIAA GN&C
Conf., 1996.

235

[106] J. Xiao and L. Zhang. Adaptive evolutionary planner/navigator for mo­
bile robots. IEEE Transactions on Evolutionary Computation, 1(1): 18-
28, April 1997.

[107] A. B. Kahng Y. U. Cao, A. S. Fukunaga and F. Meng. Cooperative
mobile robotics: Antecedents and directions. Technical report, Tech.
Rep. 950049, 1995.

[108] Q. Zhu. Hidden markov model for dynamic obstacles avoidance of mobile
robot navigation. IEEE Transactions on Robotics and Automation, 7(3):
390-397, June 1991.

236

