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Abstract

This dissertation explores optimal path planning techniques for safe navigation 

of autonomous air vehicles. Finding trajectories for multiple vehicles moving 

in a dynamic environment while satisfying all constraints is a challenging prob­

lem. No single technique can be used independently for this problem. Differ­

ent techniques for real time path planning have been developed and compared. 

First the problem was addressed using optimal control theory. Equations gov­

erning necessary conditions were derived for a combined objective of terrain 

avoidance, radar avoidance and minimum path length. Using these equations, 

analytical solutions for radar risk minimization problem have been derived. A 

gradient method was used to get an optimal solution for different radar ge­

ometries. Mixed integer linear programming (MILP) formulation employing 

branch and bound techniques was investigated for both single and multiple au­

tonomous air vehicle trajectory planning. A novel real-time receding horizon 

approach using MILP has been proposed that uses binary variables to model 

the soft and hard constraints for radar zones. A three dimensional probabilis­

tic approach for the path planning unmanned air vehicles(UAVs) has been 

considered as well. For this approach a probabilistic cost function has been 

developed that accounts the various factors of fuel, collision, crash to ground 

objects etc. The novelty of the algorithm relies in its ability to be used in real 

time due to very low computational load in spite of the fact that it finds a 

path in three dimensions. The paths are locally optimal and are feasible for 

the UAV to follow. For graph-based global optimality, a software has been 

developed that includes extra subroutines to modify the already implemented 

Voronoi code in order to remove the infinity and far away nodes and also 

includes the corner points of the operational area. This software has been 

employed to find the Length Constraint Least Risk (LCLR) paths and also 

different techniques were compared. Although the aim of the research was to 

explore and develop different real time techniques for the safe navigation of 

UAVs, the thesis also concludes by considering the cooperative control of a 

team of UAVs and proposes an architecture for this purpose.
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Chapter 1

Introduction

1.1 M otivation

The capabilities and roles of Unmanned Air Vehicles (UAVs) are evolving 

and new concepts are required for their control [19]. Today’s UAVs typically 

require several ground based operators per aircraft but future UAVs will be 

designed to make tactical decisions autonomously and will be integrated into 

coordinated teams to achieve high level goals, thereby allowing one operator 

to control a group of vehicles. New methods in planning and execution are 

required to coordinate the operation of a fleet of UAVs. An overall control 

system architecture must be developed that can perform optimal coordination 

of the vehicles, evaluate the overall system performance in real time and quickly 

reconfigure to account for changes in the environment. Cooperative control 

of multiple UAVs is a subject to which interest is increasing in the research 

community. Research has focused primarily on three areas: UAV formation 

flight, cooperative path planning (e.g. rendezvous), and resource allocation 

(e.g. target assignment).

1.1.1 Areas of Application

The use of UAVs is vast and development in many different areas of applica­

tions is possible. Examples include:

Telecommunications A UAV could be used to provide live video for news
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and sports events. An internet link could also be provided to include the 

same content on the web.

W eather and atm ospheric m onitoring UAVs could be used to obtain tem­

porary weather information and they could be launched at any time when 

needed. Also UAVs could be used for atmospheric monitoring of pollu­

tion.

Em ergency com m unication node In the event of an emergency, UAVs 

could be used to act as communication relays to assist in the coordi­

nation of relief efforts. This could be accomplished even in the midst of 

widespread destruction since UAVs could be sent from a distant location.

Security and border pa tro l UAVs could be used in conjunction with ground 

personnel to give real time information on the location of trespassers. 

Also, this same information could be used to identify a suspect.

M ilitary There are many military applications such as the suppression of 

enemy air defences and there will be an emphasis on this area in the 

thesis.

1.1.2 Advantages of UAVs over M anned Aircraft

The potential advantages of UAVs over their manned counterparts are sub­

stantial and provide the motivation to further developments.

M anoeuvrability  Due to the absence of a pilot, the forces that a UAV can 

sustain are limited only by the material made to construct it. This 

can significantly increase the manoeuvrability of a UAV relative to its 

manned counterpart. Instead of the usual 9g limit for a manned aircraft, 

UAVs could potentially be designed to achieve the 40g to 50g perfor­

mance of a modern missile.

Low hum an risk UAVs are ideal for situations in which the risk to the pilot 

of a manned aircraft would be unacceptably high. One example of this 

situation is the SEAD (suppression of enemy air defences) mission which

2



involves attacking well defended areas containing a high concentration 

of enemy surface to air missiles (SAMs). Such missions are extremely 

risky as the chance of being attacked by these defensive forces is high. 

Therefore UAVs are well suited for this type of mission since there is 

no risk to any pilot. After UAVs have made the initial attack manned 

aircraft could come in for subsequent strikes at the target.

Low cost UAVs could cost significantly less than manned aircraft. Most of 

these savings will come from there being no need for highly trained pilots.

W eight savings Because the UAV contains no pilot, it also does not need to 

contain any of the support equipment that a pilot requires such as an 

ejection system or instrumentation. This weight saving can be dedicated 

to improving the performance of the UAV or to increasing its payload of 

sensors or weapons.

Xd

Xo

Tracker Plant

Observer

Trajectory
Generator

Figure 1.1: A two degree of freedom motion controller

1.2 Controlling Autonomous UAVs

Controlling a vehicle is not a simple task, because the environment as well 

as the dynamics of the vehicle must be taken into account while planning its 

motion. A typical two degree of freedom motion controller is given in Figure 

1.1. The motion controller consists of two parts: a trajectory generator (high 

level control) and a trajectory tracker (low level control). Higher level control 

or intelligent motion planning resides at the upper level of the architecture and
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is an essential part of an autonomous vehicle. A set of goals is fed into a tra­

jectory generator which also receives information about the system states from 

the system observer along with information about the environment. The error 

between planned and actual trajectories is passed on to the trajectory tracker 

which generates a corrective action. The performance of these main blocks 

depends on the performance of sensors, estimation algorithms and communi­

cation. The vehicle can be a free flying robot, spacecraft, aircraft, helicopter, 

mobile robot or any autonomous guided vehicle. The aforementioned objects 

are quite different with respect to their motion abilities and ranges of envi­

ronmental perception. For example, fixed wing aircraft cannot fly with low 

velocities and their turning radii are quite large compared to mobile robots 

which can stop almost immediately and they can relatively easily reorient 

themselves. Moreover, in direct contrast to mobile robots, aircraft can detect 

obstacles at long distances and the number of obstacles in their environment 

is usually relatively small. This variety of vehicles makes the development of a 

general motion planning algorithm difficult. Before describing motion planning 

in detail in the next section, the other key technologies, which are necessary 

to achieve the goal of increased autonomy of unmanned vehicles to perform a 

mission, will be described.

1.2.1 Sensor Technology

To enable autonomy of unmanned vehicles, each vehicle must be equipped with 

sensors that can provide the necessary information for the controller and the 

planner to make decisions and operate in the environment. Dynamic planning 

cannot be done without the data from the on-board sensors that detect not 

only objects in the environment, but also the states of the vehicle itself. Ex­

amples of sensors used to measure the states of a vehicle are optical encoders, 

tachometers, Inertial Measurement Units (IMUs), Global Positioning Systems 

(GPSs). A range of devices can be used to sense the environment in which a 

vehicle operates. Ultrasonic and infrared sensors are proximity sensors which 

can detect a nearby obstacle. A more efficient proximity sensor is a laser range 

finder. An optical device like a CCD camera can be used to detect objects

4



in the environment, but it requires image processing to interpret the recorded 

images. An advantage of optical devices is that they can not only detect the 

position of an object but can also identify the type of the object and its shape.

1.2.2 E stim ation Algorithm s

The raw data detected from sensors is often unusable by the controller and 

the planner of each vehicle. The data must first be processed by an estimation 

algorithm. Estimation of the current position of the vehicle alone is not a 

trivial problem, especially for indoor applications where GPS cannot be used. 

One approach for this estimation problem is Markov localization proposed by 

Fox et al. [35]. A similar method based on particle filters is Monte Carlo 

localization proposed by Thrun et al. [101]. Both of these approaches provide 

an estimate of the current position of the vehicle using on-board proximity 

sensors. In order to compute future actions, the planner of each vehicle also 

requires information about the environment which can be represented as a 

2D or 3D map of the environment. In uncertain environments, the estimator 

must be able to generate and update the map in real-time while the vehicle 

is operating in the field. A more interesting estimation problem is how to 

fuse all the sensor data detected by multiple vehicles in the field and use it to 

build a map of the environment. The vehicle estimator must also be able to 

identify and monitor failures that might occur during the mission using the 

sensor data. A failure can result in reduced capabilities or limitations on the 

vehicle performance. In addition, the estimator must be capable of predicting 

the future states and capabilities of the vehicle. The planner requires this 

information in order to adapt the action plans according to the failure and to 

insure the completion of the mission objectives.

1.2.3 Com m unication Technology

Communication is essential for the implementation of autonomous vehicles, es­

pecially in a distributed planning architecture where each vehicle plans its own 

actions. It is the basis for the interactions among the vehicles and also with hu­
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man operators. Vehicles cannot cooperate and coordinate their actions if they 

cannot communicate and share information. The structure or the pattern of 

the flow of the exchanged information among the vehicles is called a communi­

cation network. The number of research efforts in networking has skyrocketed 

recently with the popularity of the internet. However, more research is needed 

to improve robustness, reliability, and security.

1.2.4 R obust A daptive Control System s

An autonomous vehicle must have an on-board control system that receives the 

commands from the planner and controls the actuators in response to the input 

commands. The control system must be robust to the noise, disturbances and 

un-modelled dynamics in the system. A typical controller is designed using a 

model of the system which is free of noise and disturbances. This situation is 

unlikely to exist in real-world systems. To handle this problem, the controller 

must be designed with the consideration that these uncertainties exist in the 

system. The design must not only consider the performance of the control 

system, but also the robustness and stability of the system to the unknown 

(or partially known) uncertainties. Another desirable feature of the controller 

is the ability to adapt the characteristics of the controller in order to maintain 

the desired behaviour and response of the system in the event of failure or 

an unpredicted situation. There is an extensive literature on adaptive control 

systems [103], [50], [87]. Adaptive control has been an active research subject 

especially in aerial vehicle applications. Aircraft operate over a wide range of 

speeds and altitudes, and their dynamics are complex and nonlinear. Typical 

flight control designs are based on linearized models of the aircraft at a certain 

operating point. To control an aeroplane at different operating points, gain 

scheduling can be used to select the controller gains from a pre-computed 

lookup table based on the current operating point. However, this approach 

may involve many different operation points, and the unpredicted changes in 

the system may lead to instability of the system or a loss of performance. Thus, 

to improve the robustness and performance of autonomous systems, unmanned 

vehicles should be equipped with robust adaptive control systems.
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1.3 M otion Planning

Usually the task of motion planning is divided into two stages: path planning 

and trajectory planning. Path planning has an environmental description as an 

input along with start and goal points. It generates a geometrical path which 

the vehicle needs to follow. This path, in sequence, is then time-parameterized 

by a trajectory planner. The trajectory planner, based on the dynamic char­

acteristics of the vehicle, determines the time-dependent characteristics like 

positions, velocities and accelerations.

Motion planning is an important issue in the development of autonomous 

air vehicles. Without a pilot, computer algorithms must be developed that 

generate a flight path in real time. This is a challenging problem for several 

reasons. For military applications, the algorithm must compute a stealthy 

path, steering the aircraft’s radar signature around known enemy radar loca­

tions. In addition, it is often desirable to have trajectories that correspond 

to an optimal performance according to some criteria, e.g. minimum energy 

consumption and minimum time usage. An important role of the trajectory 

generator is to provide the tracking controller with feasible reference trajec­

tories that comply with constraints inherent to the system or externally im­

posed such as system dynamics, path and actuator constraints, and end-point 

conditions. Trajectories that do not comply with a system’s dynamics and 

constraints have a small likelihood of implementation, since they might place 

demands on the controller beyond its limitations. The algorithm must allow 

for coordination among multiple UAVs and it must run in real time, since 

enemy threats can change during a mission, forcing a path replan. It must 

be memory and computationally efficient, since it will be run on an airborne 

processor.

Path planners are generally divided into local and global and do not usu­

ally take into account the dynamics of the vehicle. The former group works 

in on-line mode while the later both on-line and off-line modes. Global path 

planning requires all information before any motion of a vehicle is performed. 

When global information is known in advance but it is neither perfect nor
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predictable, then there is a tendency to design so called local path planners 

[9, 27]. Although such planners lead to the loss of path optimality but their 

actions are still focused on target reaching while avoiding threats. The known 

approaches to path planning might be divided into four categories: determin­

istic, stochastic, learning-based, and reflexive (behavioural).

Deterministic approaches are used most often in global path planners. Two 

such approaches are Voronoi diagrams [99] and the visibility graphs [47]. A 

clear disadvantage of all global motion planners is the replanning needed each 

time the environment changes. This happens frequently with moving threats. 

A local path planner does not suffer from this disadvantage.

When moveable obstacles are considered and their characteristics are known 

in advance, they may be incorporated in the global path/trajectory planner 

by adding to spatial variables a time variable and solving the task problem in 

such an augmented space [59]. More often, to represent dynamic environments, 

i.e. with moveable obstacles and unknown or partly unknown characteristics, 

a stochastic approach is used [14, 108]. In stochastic approaches, planners 

usually work as local planners and the decision to move a vehicle in a partic­

ular direction is made on the basis of minimizing a risk probability function. 

The popular probabilistic approaches to path planning are randomized kino- 

dynamics [45, 62] and probabilistic road map (PRM) approaches [51, 60, 61] 

etc.

Machine learning techniques are applied in unknown environments [46]. 

These techniques are based on the assumption that the world is not known in 

advance, but knowledge about it may be acquired. There are some regularities 

in the environment and the vehicle can gain knowledge about them while 

navigating.

All methods mentioned above build a model of the world and plan actions 

consistent with this model. Also, there are other methods which do not employ 

any world model building procedures and they act behaviourally (reflexively). 

Instead of building models, reflexive planners act quickly to avoid the nearest 

obstacles. Unfortunately they do not exhibit intelligent behaviour, so usually 

they are implemented as a low level control system controlled by higher levels.



Such a hierarchical architecture organized in layers has been proposed in [11]. 

The problem of trajectory planning has been studied for decades in a variety 

of different contexts. The aerospace path planning problems of the 1960’s were 

solved largely through the application of the calculus of variations, itself in­

vented hundred of years earlier, e.g. [13, 57, 64]. The development of industrial 

robotic manipulators in the 1970s and 1980s encouraged researchers to study 

new path planning methods largely motivated by collision avoidance. More 

recently the focus in robotics has shifted to path planning for autonomous mo­

bile robots. Although most of this work concerns wheeled vehicles, e.g. [20], 

path planning algorithms have been developed for UAVs as well as underwater 

robots.

A mixed integer linear programming (MILP) formulation of the autonomous 

vehicle path planning problem is proposed in Richards et al. [84, 85], Richards 

and How [86], Schouwenaars et al. [89]. The MILP formulation of the cost, 

obstacle avoidance and collision avoidance were considered in [89] and two so­

lution strategies proposed: a receding horizon strategy and a fixed arrival time 

approach. It was shown that receding horizon strategies, while computation­

ally more attractive than strategies aimed at computing complete trajectories 

a priori can lead the system to unsafe conditions where the MILP is no longer 

feasible. In [84, 86], constraints to enforce upper limits to both velocity and 

acceleration were further included and the MILP formulation was extended to 

consider multiple waypoint path planning in which each vehicle is required to 

visit a set of points in an order decided during the optimization for minimum 

completion time. The approach proposed in [84] decomposes this large problem 

into assignment and trajectory problems, while capturing key features of the 

coupling between them. This allows the control architecture to solve an alloca­

tion problem first to determine a sequence of waypoints for each vehicle to visit 

and then concentrate on designing paths to visit these pre-assigned waypoints. 

Since the assignment is based on a reasonable estimate of the trajectories, this 

separation causes a minimal degradation in the overall performance but still 

it cannot be used in real time.
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1.4 Assum ptions

The algorithms developed in the thesis are based on the following assumptions:

• The UAVs have limitations on speed, acceleration and duration of flight.

• The environment in which UAV operates is assumed to consists of a 

number of surface to air missiles (SAMs).

• A SAM fire unit is assumed to consist of one radar used for both surveil­

lance and tracking and a number of missile launchers.

• The fire units are integrated to form an integrated air defence system. 

The radar can be switched off, if an incoming anti-radiation missile is 

detected.

• Some of the surveillance radars are on alert using continuous transmis­

sion, while the other air defence units remain silent and serve as pop-up 

threats.

• Each UAV is equipped with suitable sensors:

-  An inertial measurement unit (IMU), which can be used to measure 

the system states.

-  a proximity sensor (e.g. infrared sensor), which can be used to sense 

the environment in which a vehicle operates.

-  a radar warning receiver (RWR), which gives a bearing on an emit­

ting radar with certain accuracy. The range of RWR mounted on­

board a UAV is assumed slightly higher than the range of the of the 

radar as defined in the design challenge of the GARTEUR Flight 

Mechanics Action Group 14 [36].

• Each vehicle contains a guidance system that is capable of guiding the 

vehicle along the path generated by the planner.

• Each vehicle has a perfect controller to activate the on-board payload 

according to the planned actions.
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• Each vehicle has communication devices to communicate and share infor­

mation with the other vehicles and the ground station. The bandwidth 

and quality of those communication channels may be limited.

• Each vehicle has an estimator which merges data provided by the on­

board sensors and shared information from the other vehicles in order to 

estimate the necessary states of the system needed by the planner.

1.5 Contributions and Structure o f the Thesis

Most of the previous work in path planning to the targets that avoids threats 

is either computationally extensive which does not allow re-planning when 

the environment changes or gives trajectories that are not feasible within the 

dynamic constraints of the UAVs. There are also factors like terrain avoid­

ance, collision avoidance, fuel consumption etc that need to considered while 

planning paths. The development of a comprehensive theory of cooperative 

control for UAVs is a vast problem, beyond the scope of a single dissertation. 

A realistic, yet challenging problem statement for this dissertation is as follows:

The objective is to develop real time approaches to a problem of UAVs path 

planning that increase the UAVs survivability, while meeting mission specifi­

cations, by decreasing susceptibility to threats containing multiple radars, col­

located with launch sites for radar-guided SAMs and also seeking fundamental 

truths concerning autonomous air vehicle and their cooperative control.

On the basis of the research carried out, four papers have been published 

[43], [52], [54], [53]. The main contribution of the thesis are:

• An optimal control formulation for safe navigation considering multiple 

objectives is proposed and necessary conditions governing the optimal 

solution are derived. The overall objective consists of the sub-objectives 

of terrain avoidance, radar avoidance and minimum path length. Fur­

thermore the analytical solution for the optimal trajectory and cost func­

tion for single radar risk minimization has been derived and a gradient 

method is proposed to get an optimal numerical solution for different 

radar geometries.
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• A novel real time receding horizon control technique using mixed integer 

linear programming is proposed that solves the problem of infeasibility 

encountered by using finite horizon, and its efficiency is demonstrated 

through example scenarios. The strategy uses the novel dynamical soft 

boundary concept for modelling of the radar zones and collision avoidance 

constraints.

• A three dimensional probabilistic approach for unmanned air vehicles 

(UAVs) path planning is presented. For this approach, a probabilistic 

cost function is developed that accounts for various factors in the model 

like limited fuel, collisions, crashes with ground objects etc. The novelty 

of the algorithm relies in its real time applicability due to a very low 

computational load in spite of the fact that it finds a path in three 

dimensions. The paths are locally optimal and are feasible for the UAV 

to follow by keeping the turn angle within certain maximum limits.

• Software is developed (see Appendix A) that includes extra subroutines 

to modify the available Voronoi code in order to remove the infinity and 

far away nodes and also includes the corner points of the operational 

area. Local optimizations are used to best tune the path obtained from 

this software. The software is used to find the Length Constraint Least 

Risk (LCLR) paths.

• All the above techniques are compared for different parameters includ­

ing success rate, peak risk, average risk, maximum time to compute a 

waypoint and total flight time.

• Finally, a decentralized cooperative control architecture is proposed that 

can be used for a fleet of UAVs.

The structure of the thesis is as follows:

After the introduction in chapter 1, Chapter 2 presents an extensive lit­

erature survey and discusses some techniques in detail. Chapter 3 is about 

the optimal control approach to the design of a safe UAV path. Chapter 4 

discusses the mixed/integer linear programming method and uses a receding

12



horizon strategy with soft dynamical boundaries for radar zone modelling to 

solve the problem. Chapter 5 presents the novel probabilistic formulation. 

Chapter 6 introduces the Voronoi diagram approach as a global path plan­

ner. It gives details of the software developed and uses it to find the length 

constraint path for a UAV. A comparison of the different path planning tech­

niques is given at the end of this chapter. The proposed cooperative control 

architecture is given in Chapter 7.

Finally conclusions and future directions of research are given in Chapter 8.
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Chapter 2

Literature Review

Planning is a main part of an array of engineering problems especially in op­

erations research and artificial intelligence. In the past several decades, many 

researchers have put considerable efforts into research related to planning. For 

robot path planning alone, there exists a great number of different proposed 

approaches and system architectures having prose and cones over the others. 

The recent advancements in the technology of sensors, estimation and commu­

nication have opened the door to the possibility of using multiple autonomous 

vehicles to perform complex missions. Therefore multi-vehicle coordination 

has been one of the most active areas in the last decade. This chapter reviews 

some of the previously presented research with emphasis on those areas related 

to the topics of this thesis. The research presented here is a combination of 

several subproblems: path planning, multi-vehicle coordination, dynamic plan­

ning, and cooperative planning. Most of the work previously presented in this 

field has focused on a subset of these subproblems. Very little published work 

is targeted at the combined problem. The following sections review previous 

research related to each of the subproblems.

2.1 Single Vehicle Path Planning

One of the main functions of an autonomous vehicle is to move itself from 

some initial location to locations that are required for the vehicle to execute 

assigned tasks. This simple function actually involve several issues. First, the
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vehicle must know where it currently is and the next location it should go. 

Secondly, it must also have the ability to plan a route between the locations 

and then navigate itself along the planned route. In this section, we discuss in 

detail, the several different techniques of path planning for a single vehicle to 

navigate in a given environment.

2.1.1 Graph-based Approaches

One of the most popular approaches to path planning is graph-based search. 

In this approach, as described by Murphy [71], the environment in which the 

vehicle operates is discretised and represented by a graph which is composed 

of a number of nodes linked together with arcs. Each node corresponds to a 

location in the environment and an arc links two adjacent nodes. There is 

cost associated with an arc. A path in this graph representation is a series of 

connected arcs. There is a trade off between how much detail is included in 

the graph structure and how long it takes to search the graph for an optimal 

solution. The most popular approaches are the rectilinear graph, the visibil­

ity graph and the Voronoi graph. In the rectilinear grid approach, the path 

planning area is quantized into M  x N  locations corresponding to the x and 

y directions of the two dimensional space. Node spacing is critical in UAV 

applications due to the turning rate constraint and the computations required 

to solve the problem in real time. Heading can also be added to the graph 

structure. It can be quantised to any desired level but a reasonable number 

seems to be eight different headings at each of the M  x N  nodes. If we put a 

turning rate constraint of 45 degrees on a grid of equal spacing in each direc­

tion, then at each node, the UAV may either continue in the current direction, 

turn 45 degrees to the left or turn 45 degrees to right. Figure 2.1 shows the 

possible paths for a UAV which starts from node (1,1) and whose destination 

is the node (4,1). The path chosen by the UAV is shown with bold lines in 

Figure 2.2.

Thrun [100] investigated the problem of high speed navigation of indoor 

mobile robots using a grid based algorithm called value iteration. In this 

work the map of the environment is created autonomously using sonar and
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Figure 2.1: Possible paths on rectilinear grid
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Figure 2.2: Path selected by UAV on rectilinear grid

camera information. The robot location and the map are estimated using 

Bayesian analysis techniques. This work was tested on various mobile robots 

and showed that the robots can effectively react to unanticipated obstacles in 

the test environment.

In the visibility graph approach, the obstacles are usually polygons and 

the set of possible paths for the UAV are the straight line segments. For each 

obstacle, the vertices of each polygon are connected to all other vertices of 

any other polygon provided an unobstructed straight line can be connected 

between these vertices. In order to avoid collisions with the obstacles, the 

vehicle in Figure 2.3 is represented by a point and the obstacles are expanded 

by an amount sufficient so that the real vehicle will not collide with them. 

The combination of the dotted lines and solid lines (obstacle boundary) gives
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Figure 2.3: Visibility graph approach

the possible paths for the vehicle to follow. Each of the visibility graph line 

segments are assigned a cost based on many different criteria such as segment 

length or proximity to an obstacle. These segments are then searched using 

Dijkstra’s algorithm [22] to find the lowest cost path. Neus and Maouche [72] 

used the visibility graph to solve the path planning problem.

In the Voronoi diagram approach (see Figure 2.4)which is used in many 

different fields, including computational fluid dynamics, computer graphics 

and statistics, complete knowledge of the number and location of each obstacle 

or in our case radar site will be assumed. Such a graph is constructed using 

Delaunay triangulation and its geometric dual, Voronoi polygons. For every 

triplet of radar sites, there exists a unique circle that passes through all three. 

Consider only those triplets whose circle does not enclose any other radar site. 

The set of all such triplets is called the Delaunay triangulation and the centres 

of the circles are called Voronoi points, we may now construct a graph by 

defining the vertices as the voronoi points. Edges are drawn to connect two 

Voronoi points if and only if their associated Delaunay triangles share an edge. 

By drawing all such edges, we construct the Voronoi diagram or graph. A 

graph search algorithm such as Dijkstra’s algorithm or the A* algorithm [73] 

can be used to find the shortest path. Several researchers have worked on this
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Figure 2.4: Voronoi graph for 50 threats

graph based planning concept and exercised it on many applications.

Mata and Mitchell [66] proposed a new algorithm for path planning on 

planar polyhedral surfaces. The terrain is presented as a sparse graph called 

a pathnet which links selected pairs of vertices of subdivisions of the terrain. 

They also gave analytical and experimental results which showed that the 

algorithm can provide highly competitive solutions compared with other ap­

proaches. One advantage of this method is that the discretisation of the terrain 

is independent of the scale of the available information about the terrain.

Bander [6] developed an adaptive A * algorithm which used a heuristic func­

tion to guide the search process of the A* algorithm to converge faster. The 

heuristic function is derived from a set of pre-determined optimal paths and 

a set of desirable paths which may or may not be optimal. This work also 

investigates mechanisms for incorporating several sources of knowledge and 

possibly human inputs to accelerate the search process.

2.1.2 Probabilistic Road Map Planners

Probabilistic Road Map (PRM) planning is one of the most efficient methods to 

compute collision free paths for vehicles or robots of virtually any type [55]. It 

is, in particular, suitable for robots with many degrees of freedom. This method 

consists of two phases: a building phase and a query phase. The building phase 

is the construction of a graph called the road map. The nodes in the road are 

collision free configurations and the edges linking the nodes are collision free 

paths for a robot to move from one configuration to another. The road map
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is constructed by repeating the following two steps. First, a point is randomly 

picked in the configuration space and tested to see if it is in the collision 

free space. This step is repeated until the randomly chosen configuration is 

collision free. The second step is to connect the chosen configuration to the 

road map using a fast local planner. The above mentioned two steps are 

repeated by adding nodes and edges to the road map until a certain limit is 

reached. This limit has to be chosen based on the application. One possibility 

would be to impose a limit on the size of the road map. Another possibility 

would be to terminate the algorithm after a specified time has elapsed. The 

most important part in the road map construction algorithm (and also the 

query phase described later) is played by the local planner used. This sub­

planner within the road map planner is used to compute paths between two 

configurations within the road map. Unlike the road map planner, this local 

planner is simple and not very powerful. An example for a possible local 

planner is a straight line planner that tries to connect two configurations with 

a straight line. It is obvious that this planner will fail if an obstacle is present 

between two nodes or configurations. For that reason the local planner is not 

very useful on its own. Together with an algorithm to find a way within the 

road map graph, however, the local planner can be used to find very complex 

paths around arbitrary obstacles. The general idea is that the road map graph 

describes the global structure of collision free space while the local planner 

is responsible for the details. Only the local planner actually computes the 

intermediate configurations of the final path. The query phase is finding a 

path between initial and goal configurations by connecting these configuration 

nodes to the road map and searching the road map for a sequence of edges 

linking the two nodes. This method was originally developed for holonomic 

robots in a static environment. One problem associated with query phase 

is that the paths returned may be twisted and overly long. For that reason 

smoothing and short-cutting the returned path is often required. One possible 

way is to try and skip waypoints. This is done by trying if the local planner 

can find a path between waypoint i and waypoint z +  2, thus skipping waypoint 

i +  1. A way to smooth the path for a rigid body robot would be to compute
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some kind of spline using the waypoints as orientation, instead of connecting 

them with the local planner. Care must be taken to ensure that this spline 

path does not collide with an obstacle. Another problem is how powerful the 

local planner should be, considering that more powerful planners take more 

time to compute. Speed is more important than power because the running 

time of the local planner is the main component in the running time of the 

building phase as well as the query phase.

Overmars and Svestka [75] applied probabilistic road map techniques to 

simple holonomic robots such as free flying planner robots as well as non- 

holonomic robots with constrained kinematics and high degrees of freedom. 

This work shows that this technique can be extended to handle kinematic 

constraints in car like robots.

Lavalle and Kuffner [62] proposed a randomised path planning technique 

related to PRMs. This technique is used to compute collision free kinodynamic 

trajectories for high degrees of freedom robots with kinematic and dynamic 

constraints. Using a state space formulation, it transforms an n-dimensional 

planning problem in configuration space into a 2n-dimensional problem in state 

space. The key to this approach is the construction of a tree that can be used 

to explore the state space. This technique was applied to the path planning of 

hovercraft and satellites in cluttered environments.

Song et al. [94] proposed a new method of building and querying probabilis­

tic roadmaps. In this method, some of the validation checks in the building 

phase are postponed to the querying phase. A coarse roadmap is built dur­

ing the building phase and then further refined in the querying phase in the 

area of interest for the query. The roadmap is also customised to any spe­

cific query preferences such as maximum number of sharp turns. The results 

showed substantial improvement in performance and efficiency of the planning 

process.

2.1.3 Evolution-based Approaches

There are heuristic approaches that are gaining popularity. One of the most 

widely used is neural networks. Neural networks are loosely modeled on how
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the brain works. They are an attempt to simulate within specialized hardware 

or sophisticated software, the multiple layers of simple processing elements 

called neurons. Each neuron is linked to certain of its neighbors with varying 

coefficients of connectivity called weights that represents the strengths of these 

connections. Learning is accomplished by adjusting these weights to cause the 

overall network to output appropriate results. Before a neural network can be 

used, these weights need to be determined and this is referred to as training the 

network. To accomplish this, many inputs are given to the neural network as 

well as the associated desired outputs. The network weights are then adjusted 

to make the network output resemble as closely as possible the desired output. 

Once this training is finished, the output of the neural network is interpreted 

as the solution to the problem. Glasius in [39] is among many people to 

implement a neural network path planner. While they report good results for 

their planner, there are several disadvantages of neural networks. One of the 

most important is that training a neural network can consume a vast amount 

of computer time, sometimes months, depending upon the application.

Genetic algorithms have been used to solve the path planning problem, 

both in robotics and for UAV path planning. GAs are adaptive heuristic search 

algorithms based on the evolutionary ideas of natural selection and genetics. 

GAs simulate the survival of the fittest among individuals over consecutive 

generations for solving a problem. Each individual represents a point in a 

search space and a possible solution. A fitness score is assigned to each solution 

representing the abilities of an individual to compete. The individual with 

the optimal fitness score is sought. The GA aims to use selective breeding 

of the solutions to produce offspring better than the parents by combining 

information from both the parents. Parents are selected to mate, on the basis of 

their fitness, producing offspring via a reproductive plan. Consequently highly 

fit solutions are given more opportunities to reproduce, so that offspring inherit 

characteristics from each parent. As parents mate and produce offspring, room 

must be made for the new arrivals since the population is kept at a static 

size. Individuals in the population die and are replaced by the new solutions, 

eventually creating a new generation once all mating opportunities in the old
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population have been exhausted. In this way, it is hoped that over successive 

generations better solutions will thrive while the least fit solutions die out. 

New generations of solutions are produced containing, on average, more good 

solutions than in a previous generation. Eventually, once the population has 

converged and is not producing offspring noticeably different from those in 

previous generations, the algorithm itself is said to have converged to a set of 

solutions to the problem at hand. One of the advantages of GAs over other 

methods is that they can simultaneously search multiple regions of the search 

space. This has the potential to be useful in UAV trajectory planning as 

multiple good trajectories can be developed in parallel.

Sugihara and Smith [97] describe their method of using a rectangular grid 

to parameterize the path and then employing genetic algorithms to find a 

good sequence of waypoints from the start location to the goal location whilst 

avoiding obstacles. Also Pellazar [79] describes his genetic algorithm approach 

to solving the UAV path planning problem. While both authors agree that 

genetic algorithms can provide high quality solutions, they also admit at the 

same time that one of the major disadvantages of the approach is the high 

level of computation that is required.

Fogel and Fogel [32] applied evolutionary programming to an optimal rout­

ing problem of autonomous underwater vehicles (AUVs). This work shows 

that the planning algorithm can handle unexpected changes in dynamic envi­

ronments. They also consider a number of problems including multiple goal 

locations, detection avoidance and cooperative goal observation for a pair of 

AUVs. These complex problems were addressed by only modifying the perfor­

mance objective function.

Xiao and Zhang [106] presented an adaptive evolutionary path planner for 

mobile robots. This approach combines off-line planning and on-line planning 

in the same evolutionary algorithm. In this approach, a path is represented as 

a set of waypoints chosen at random connecting the initial and goal locations. 

The probability of selecting different mutation operators is adapted during the 

search to improve performance.

Potter and Jong [81] developed the cooperative coevolution algorithm for
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complex planning problems. This technique divides evolving solutions into 

several interacting coadapted subcomponents described as cooperating species. 

This work provides a case study involving the evolution of artificial neural 

networks and shows that this planning architecture can solve very complex 

problems which might not be possible with standard evolutionary algorithms.

Capozzi and Vagners [16, 17] presented an evolutionary technique for path 

planning of an aerial vehicle in a simulated dynamic environment. The plan­

ning algorithm was tested in several complex scenarios: varying terrain, wind 

variations, dynamic obstacles and moving targets. The simulation results show 

that the algorithm can efficiently search simultaneously in space and time to 

find feasible, near-optimal solutions.

Hocaoglu and Sanderson [44] developed an evolution based planning algo­

rithm using a multi-resolution path representation. This approach does not 

require a map of the free configuration space. The use of the multi-resolution 

path representation reduces the complexity of the planning problem and in turn 

reduces the computation time. This work shows that the planning system can 

be applied to mobile robots or manipulators with many degrees of freedom 

and provides effective results. In addition, they also proposed a multi path 

planning algorithm that generates multiple alternative paths simultaneously.

2.1.4 Analogous Formulation Approaches

Analogous formulation entails transforming the path planning problem to an 

entirely different problem which has either already been solved or has conve­

nient methods of solution. An example is the potential field method which 

can be used as an on-line planner or it can be used as off-line planner in the 

mass-spring-damper case or a chain link system.

Potential Field as an On-line Planner

The idea of using the physical principle of potential fields has been used to 

determine optimal paths for autonomous air vehicles. In this approach, the ve­

hicle is treated as a point mass under the influence of an artificial potential field 

whose variations reflect the configuration of radars/obstacles. A radar exerts
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a repulsive force while the goal location exerts an attractive force. The arti­

ficial force induced by the potential function at the the current configuration 

is regarded as the most promising direction of motion, and path generation 

proceeds along this direction by some increment in an iterative way. So at 

each iteration the vehicle simply follows the path of steepest decent along the 

negative gradient of this virtual field. In this way the vehicle will make its 

way towards the goal point while avoiding the obstacles. This can be used 

as an online path planning approach. McFarland [67] employed the potential 

field approach against mono-static radars while studying the effects of min­

imising radar cross section through vehicle orientation. However, there are 

some drawbacks with this approach [58].

Target

★

Obstacle

Vehicle

Figure 2.5: Trap situation due to local minima

Disadvantages: The two most important disadvantages are:

Trap Situation: Encountering traps, which are local minima in the po­

tential function due to the arrangement of the obstacles is one of the most 

common problems with potential fields. This situation may occur when the 

vehicle runs into a dead end such as a U-shaped obstacle. Figure2.5 illustrate 

this problem, where R represents the resultant force of the potential field. This 

situation can be prevented by the use of various algorithms resulting in paths 

that are non-optimal.

No Passage Between Closely Spaced Obstacles: This situation arises when 

a vehicle tries to pass between two closely spaced radars. The combined force 

of repulsion of both radars along with the attractive force of the goal location
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will prevent the vehicle from using a path that in realty it should be able to 

take. In Figure 2.6, Fr is the resultant repulsive force from the two radars 

and Fa is the attractive force pulling the robot towards the goal location. The 

vector sum of these two forces is R  and this will be the vector that the robot 

will follow. Although the vehicle could physically fit between the two obstacles, 

the potential field approach does not generate this solution.

Radar 2

Target

Vehicle

Radar 1

Figure 2.6: No passage between closely spaced radars

2.1.5 P o ten tia l F ield  as an  Off-line P la n n e r

In these methods, the potential field approach is used as an off-line approach 

to find a complete solution to the problem from the start to the goal locations.

M ass-Spring-Damper System

This approach likens the path planning problem to a physical system with the 

resulting steady state solution describing the path. In [10] Bortoff has used this 

method to solve the path planning problem. In this method, the UAV path is 

considered to be made up of a series of point masses connected to one another 

by springs and dampers as shown in Figure 2.7. One end of the chain is fixed 

to the UAV location, while the other is attached to the target location. The 

length of the path can be adjusted by assuming constant speed of the UAV, 

which we may normalise to 1 without loss of generality. This assumption is 

made only for planning purposes. The actual speed may be adjusted along the 

path in order to meet other requirements, e.g. rendezvous with other aircraft.
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Let to be the time at the present UAV location and t f  be the final location 

time. The constant speed assumption simplifies the problem because the path 

length is just t f  — to. For proper adjustment of the path length, t f  may be 

fixed or free.

Radar

Figure 2.7: Mass spring damper system showing i th mass under the influence 

of forces

Each threat location is the source of a repulsive force field that acts against 

each mass according to an inverse fourth law (1 /d4). This causes the series 

of masses to move away from the threats. This system is given an initial 

configuration and then allowed to come to a steady state condition. At steady 

state the point masses define the way-points that should be followed. The 

steady state solution is calculated by solving a nonlinear, stable initial value 

problem. Taking n* as the normal unit vector pointing from ith mass to (i — l)th 

mass
{%i— 1 %i) /  di

(yi-1 -  Vi)/di
n i =
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where

di = \J f a - 1 -  Xi)2 +  (yi-i -  Vi)2 

The two spring forces acting at ra* are

Fjfci =  kdiUi

F /-2 =

The two linear viscous damping forces acting on mass i are given by

(2.1.1)

F « =  6

F&2 = b

X i - l  

Vi-i 

Xi  

Vi

n, -

•n»+i

Xi

Vi

&i+1

Vi+1

n, n*

n*+i I n*+i

(2 .1.2)

The repulsive force acting on mass i is given by

QF = —n
r d f r

Where Q is the design parameter that represents the strength of the radar and 

dr, n r are given by

nr =

dr — \J{Xi T (%fi 2/r)̂

•̂'7’) I df 

{.Vi Vr) /  dr

If there are N  radars, the total repulsive force is

N N n
r= 1 r=l r

The equation of motion for the ith mass is given by

(2.1.3)

rru
Xi

Vi
—  Ffci + Ffc2 + F{,i +  F&2 + F r (2.1.4)

Disadvantages: When the chain of masses is nearby a set of radar sites,

the virtual force pulls the masses away from each other, stretching out the 

chain. Conversely, in areas that are devoid of radar stations, the masses tend 

to draw close together. This effect is undesirable because the masses are then 

interpreted as way points. It would be more desirable to have a higher density
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of way points near the radar sites, since one would expect the path to turn more 

often in these areas. In other words, the approach provides its lowest resolution 

data in the areas where high resolution is required. Also in this formulation, 

damping is only provided along the direction of the line connecting one mass 

to its neighbors. Thus, transverse modes that develop in the chain during 

simulation are not well-damped. This increase the time required to reach the 

stable equilibrium. By adding damping in the transverse direction, the solution 

should converge faster.

Chain-Link System One way to overcome some of the difficulties of the 

mass-spring-damper system is to replace the spring-damper sections of the 

model with rigid links of equal lengths. This approach was developed by 

McLain and Beard [69] and is based on the work of Udwadia and Kalaba 

[102]. In this approach, the threats continue to exhibit the 1/d4 repulsive force 

law but now instead of using springs and dampers, a straightening force from 

within the chain of rigid links is used to take out sharp corners resulting a 

flyable path for the UAV. The goal is to approximate the steady state shape 

of the chain. A brief description of the approach is given below:

Consider a path made up of n +  2 point masses each having unit mass 

constrained to a two dimensional surface. Let zq = [x0, yo]T, Z\ = [x\, yi]T, z2 = 

[%2 , y2]T, "  ' ,zn = [£n> yn]T, Zf = [;Tf, yf]T G 5ft2 be the locations of the masses, 

where z0 and z/ are the fixed initial and final positions respectively. If there 

are no constraints, then the dynamic equations describing the motion of the 

remaining n point masses are
Zi= Ui

z2 — u2
.1.5)

Zn Un

where iti, u2, • • • , un G 9?2 are the applied forces. Define 2 =  [z[ , z j, * '' > zn Y  

and u = [uj, U2 , • • • , «^]T, then we can write (2.1.5) as

z = u (2.1.6)
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Each Ui consists of two terms given by

Ui F t h r e a t ^ Z i )  " t "  F s t r a i g h t e n f e i ) (2.1.7)

where
R

such that pr G 5ft2 is the position of the r th threat, 7 is a weighting factor and 

R  is the total number of threats. Also

i W « e ,(* )  =  S I ^ +2„ +  *
\ Z i - Z i + 2 \\ \ \ Z i - Z i - 2 \

where 8 is a weighting factor for the straightening force which consists of two 

terms. The first force pulls the ith node until the sub-chain composed of the 

(i — 2)nd, (i — l )st and ith are in a straight line. The second force pushes the 

ith node in such a way that i, i +  1 and i +  2 nodes form a straight line.

Suppose that all point masses remain at a constant distance L from each 

other. This constraint, in matrix form, is given by

<t> =

11*1 -  Zoll2 -  L2 
W z i - z ^ - L 2

11*/ -  * n l |2 -  L2

=  0 (2.1.8)

Differentiating this constraint with respect to time results in the velocity con­

straint
2 ( ^ i  -  z q ) t { z  1 -  i 0)

2( z 2 -  z 1) t ( z 2 -  ii)
= =  0 (2.1.9)

2(zf  -  zn)T(zf -  zn)

Differentiating once again results in the acceleration constraint, which in ma­

trix form is given by

A(z)z = b(z) (2.1.10)
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where

M*) =

(zi -  z0)T 0

- ( Z 2 - Z 1) T  (Z2 - Z i ) T

~ { z n ~  Zn - l ) T  ( Zn -  2n_ i ) T

0 ~{zf  -  zn)T

b(z ) =
( z i  -  i 0 ) T ( i i  -  i o )

(zf  -  zn)T(zf  -  zn)

Udwadia and Kalaba [102] show that using Gauss’s principle from ana­

lytic dynamics, that the equation of motion (2.1.6), subject to the constraint

(2.1.10), is given by the equation

z =  u + A+(z)(b(z) — A(z)u) (2 .1.11)

where A+ is the pseudo-inverse of A. The initial conditions for the system

(2.1.11) must be chosen such that both 0 =  0 and 0  =  0 are satisfied. While 

solving system (2.1.11) numerical errors may cause the constraints (2.1.8) and 

(2.1.9) to drift from zero. When the constraints drift from zero, equation

(2.1.11) no longer models the physical dynamics of the chain and there is 

no mechanism in equation (2.1.11) to bring the constraints back to zero. To 

overcome this problem, equation (2.1.11) can be modified to

ddF d'ibT
z = u + A+(z)(b(z) -  A(z)u) — oc-^—(f) — /?-£— 0oz oz

(2 .1.12)

The two additional terms force the constrained accelerations to descend the 

gradient of the constraints until they are no longer violated. Large values of a  

and (3 ensure that the modified equation approximately models the dynamics of 

the constrained physical system. The dynamics of the chain can now be evolved 

using equation (2.1.12) and an adaptive step size ODE solver such as Matlab’s 

ode45 algorithm. But the primary disadvantage of using that algorithm in 

this application is that the solution of the chain dynamics cannot be carried 

out in real time situation due to the adaptive step size of the algorithm. To
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obtain a real time solution, equation (2.1.12) can be solved using an Euler type 

approximation like

z k+i = z k +  h u dcfP
+ (&(**) -  A(zk)u) -  a -^< p  - dzk

(2.1.13)

where h is the step size.

2.2 M ulti-Vehicle Planning

The driving force in the research related to planning for multiple autonomous 

vehicles is increasing demand of autonomous systems in the applications where 

a single vehicle is no longer capable of performing the necessary tasks. We 

categorize the efforts in this field into three groups: centralized approaches, 

decentralized approaches and market-based approaches.

2.2.1 Centralized Approaches

Centralized approaches are characterized by their system architectures in which 

there is only one control agent to manage the entire system. This control agent 

can be one of the vehicles in the system or the central command authority. 

The following research is relevant.

Adams et al. [1] presented a hierarchical architecture to control distributed 

teams of unmanned aerial vehicles (UAVs) in a military operational environ­

ment. This approach decomposes the system into several levels each of which 

contains decision making nodes that exchange information and interact with 

one another. The planning algorithm also accounts for uncertainty in esti­

mated states and the risk of losing team members during a mission. The 

proposed structure allows human operators to interact with the system at any 

level.

Bellingham et al. [8] presented a planning system for a fleet of UAVs using 

mixed-integer linear programming (MILP). The planning algorithm accounts 

for the probability of losing UAVs during the mission which affects the oper­

ation of the other vehicles. The results show that the proposed system can
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improve the probability of success of the mission and the probability of survival 

of the vehicles.

Maddula et al. [65] considered the problem of assigning targets to UAVs 

in a way that minimizes the maximum path length required for the vehicles 

to visit all the targets and minimizes the number of threats faced by each 

UAV. In Maddula’s work, the environment is represented by a Voronoi diagram 

which is a graph of potential collision-free paths and waypoints. Assuming 

the environment is static, the planning algorithm computes an initial target 

assignment using a semi-greedy heuristic. The target assignment is further 

refined using constrained exchange of subpaths in the Voronoi diagram among 

the UAVs.

Capozzi [15] developed an evolution-based planning system which is ca­

pable of coordinating and generating paths for multiple autonomous vehicles. 

He applied this system to coordinated rendezvous and coordinated coverage 

of target problems. In this approach, the target assignment is based on the 

proximity of each vehicles trial path to the targets during the evolution process.

2.2.2 D ecentralized Approaches

Problems often arise when applying centralized approaches to manage sys­

tems with a large number of vehicles in complex missions. These problems 

usually result in a lack of responsiveness of the system to changes in the en­

vironment. Decentralized approaches divide a complicated problem into man­

ageable subproblems which can be solved by the components of the system. 

Some researchers have considered this idea and applied it to the problem of 

multi-vehicle coordination.

Estlin et al. [28], [29] did considerable work related to coordinating multiple 

rovers at the Jet Propulsion Laboratory. They developed a dynamic planning 

system to coordinate rovers in performing tasks for planetary science. The 

planning system is distributed and capable of coordinating activities among the 

rovers and monitoring plan execution, and performing replanning if necessary. 

Many Artificial Intelligence (Al) techniques are used in this planning system.
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Parker [76], [77] developed a software architecture named ALLIANCE for 

fault tolerant cooperative control of teams of heterogeneous mobile robots. 

ALLIANCE is a fully distributed, behaviour-based architecture. Each robot 

is autonomous and individually has the ability to perform high-level functions 

and to select appropriate actions based on the requirement of the assigned 

tasks. This system was implemented on a team of mobile robots to perform a 

hazardous waste cleanup mission.

Aicardi [2] presented a decentralized approach to coordinate motion of a 

team of mobile robots based on team theory. The planned motion is computed 

using an algorithm derived from classical conservative force field techniques. 

Each decision maker computes its motion plan using sensor data and shared 

information. The results showed that the planning system is implementable 

in real-time.

Feddema et al. [30] demonstrated the use of decentralized control theory 

to analyze the problem of coordinating multiple robotic vehicles. This work 

focuses on the theoretical analysis of several properties of a system such as 

stability, observability and controllability. Stability analysis was used to de­

termine limits on system parameters.

2.2.3 M arket-Based Approaches

The concept of market-based approaches was introduced by Smith in his work 

on the Contract Net Protocol (CNP) [93]. This concept uses an economic 

model to coordinate multi-agent systems. Several researchers have adopted the 

concept and extended it to be applicable to many different related problems.

Sandholm [88] formalized the bidding and awarding decision process that 

was undefined in the original contract net task allocation protocol by using 

marginal cost calculations. Each agent is self-interest motivated so that it 

makes decisions based on its own local criteria. This work also extends the 

contract net protocol to allow for bidding clusters of tasks.

Fischer et al. [31] developed the MARS system which is designed for coop­

erative transportation scheduling of shipping companies. This work presents 

an extension of the contract net protocol for task decomposition and task
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allocation. This approach provides increased flexibility that allows dynamic 

scheduling and execution.

Wellman and Wurman [104] developed a market-oriented programming 

technique for solving distributed resource allocation problems. Autonomous 

agents in the system interact by offering to buy or sell commodities at fixed 

unit prices. The computation of the resource allocation is finished when trad­

ing in the system reaches an equilibrium point. The market system is modelled 

analytically for equilibrium analysis.

Golfarelli et al. [41], [40], [42] proposed an approach using a negotiation 

protocol based on the contract net protocol. In this approach, the only possible 

type of contract is task swapping. No money or price system is used in the 

approach. The performance of the system can be improved by allowing tasks 

to be swapped in clusters. A clustering algorithm, which considers both spatial 

and temporal distances between tasks, is also presented.

Dias and Stentz [25] presented an architecture for coordinating multiple 

robots based on the concept of free market systems. The proposed market 

architecture defines explicit revenue and cost functions for the computation of 

bid prices. The results show that the overall team profit can be maximized by 

allowing agents to be self-interested.

2.3 Dynamic Planning

In most real-world applications, autonomous vehicles operate in dynamic un­

certain environments. Therefore, a practical planning system must have the 

ability to dynamically replan in the face of unexpected circumstances. This 

section presents some example work in dynamic planning.

Stentz [95] developed the D* algorithm which is a dynamic variant of the 

classic A* graph search algorithm. It is designed to generate motion plans for 

a mobile robot operating in a partially known environment. He shows that the 

algorithm can handle situations where path cost parameters change during the 

search process by propagating these changes over only the effected portions of 

the search space. The planning algorithm is proved to be optimal and efficient
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for sensor-equipped robots.

Brumitt and Stentz [12] developed a planning system for multiple mobile 

robots using the D* search algorithm. The planning system is capable of 

dynamically reassigning tasks to robots in order to minimize the time to com­

plete a mission and generating optimal paths for the vehicles to accomplish 

the tasks. In this approach, a set of dynamic planners are used to continually 

update the paths of all robots to all goals during the mission. The mission 

planner updates the task assignment plans based on cost information provided 

by the dynamic planners.

Chien et al. [21] discussed the use of iterative repair techniques for contin­

uous planning in space applications. They present an approach to integrate 

planning and execution in a feedback control fashion. This continuous plan­

ning framework is implemented on a system called CASPER. They showed 

that this approach can improve the responsiveness of the on-board planning 

process to changes in the environment or mission objectives.

2.4 Cooperative Planning

There has been increased interest in research related to cooperative planning. 

The goal of this research is to achieve cooperative behaviour in a system with 

multiple autonomous vehicles. Work by Cao [107] provides some definitions of 

cooperative behaviour and presents an extensive survey of the research in this 

field of study.

Gillen and Jacques [37] presented a system developed for finding and engag­

ing targets using multiple autonomous wide area search munitions in unknown 

environments. This work investigates methods to improve the cooperative be­

haviour of the system which in turn increases the overall mission effectiveness. 

The cooperative engagement is controlled by a parameterized decision rule. 

A study of the sensitivities of the parameters to the precision of autonomous 

target recognition is also given.

McLain and Beard [70] presented a cooperative path planning approach for 

teams of multiple UAVs under timing constraints. This approach introduces
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the use of coordination variables and coordination functions which define the 

cooperative strategy. The path planning problem is solved using a Voronoi 

diagram and Eppsteins k-best paths algorithm. The results show that the 

approach provides effective solutions to cooperative planning problems with 

three types of timing constraints: simultaneous arrival, tight sequencing, loose 

sequencing.

Polycarpou et al. [80], [78] developed a distributed planning system for 

cooperative search by a team of autonomous vehicles. Vehicles are equipped 

with sensors with limited viewing regions and wireless communication devices. 

The proposed system is capable of on-line learning of the environment and 

generating a search map which is shared between the vehicles. Each vehicle 

uses this search map and the predicted states of the other vehicles to compute 

its own collision-free trajectory that maximizes the team search coverage. The 

path planning algorithm is based on a q-step dynamic programming algorithm.

2.5 Conclusion

Different existing techniques in literature for autonomous vehicle path planning 

have been explored. The most popular approach to path planning is graph- 

based search and to use it efficiently there should be a trade off between how 

much detail is included in the graph structure and how long it takes to search 

the graph for an optimal solution. Potential field method has been studied as 

an on-line planar as well as an off-line planar. But it has certain drawbacks 

like trap situation and passage between closely spaced vehicles. Also in mass- 

spring-damper case, when the chain of masses is nearby a set of radar sites, 

the virtual force pulls the masses away from each other, stretching out the 

chain and the masses converge in the area which is far from radar sites. This is 

undesirable because the masses are then interpreted as way points. It would be 

more desirable to have a higher density of way points near the radar sites, since 

one would expect the path to turn more often in these areas. This difficulty 

was removed by chain link system assuming the each mass remain at a fixed 

distance from its neighbors. The damping force is provided along the direction
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of the line connecting one mass to its neighbors. The transverse modes that 

develop in the chain during simulation are not well damped. This increases the 

time required to reach stable equilibrium. By adding damping in the transverse 

direction, the solution should converge faster. The main problem with neural 

network approach is that training a network can consume a vast amount of 

computer time, sometimes months, depending upon the application. One of 

the advantages of GAs over other methods is that they can simultaneously 

search multiple regions of the search space. This has the potential to be useful 

in UAV trajectory planning as multiple good trajectories can be developed in 

parallel. In PRM query phase, the paths returned may be twisted and overly 

long and due to this reason smoothing and short-cutting the returned path is 

often required. Another problem is how powerful the local planner should be, 

considering that more powerful planners take more time to compute. Speed is 

more important than power because the running time of the local planner is 

the main component in the running time of the building phase as well as the 

query phase.
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Chapter 3 

M ulti-Objective Trajectory 

Design

3.1 Introduction

Due to well established theory and mathematical structure, optimal control 

will be investigated for the safe navigation of autonomous air vehicles. Start­

ing with a brief review, the problem will be formulated considering different 

objectives. Necessary equations will be derived and solved for different cases 

to get analytical solutions since they give good insight into the problem. In 

some cases, analytic solutions are impossible and then numerical techniques 

are used to find the solution.

3.2 A Brief Review

Optimal control is a method that can be used to find the safe trajectories for 

UAVs by modeling different objectives and incorporating these objectives into 

a single performance index. It attempts to optimize by finding the control 

histories for a dynamical system for a given time period. Thus it is an indirect 

method of determining the optimum. The performance index is minimized by 

finding the time history of the control vector u(t) instead of looking for the
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states x(t) themselves. The performance index to minimize is

ntf  

'to

subject to differential constraints

r t f
J  = <f>[x(tf), tf] + / L[x(t),u(t),t]dt (3.2.1)

J t o

X  = f[x(t),u(t),t] (3.2.2)

and boundary constraints

x(t0) = xQ (3.2.3)

V#(*/)»*/] = 0  (3-2-4)

In order to find the optimal solution, we need to clarify some preliminary ideas. 

If x (t) is a continuous function of time t , then the differentials dx(t) and dt

are not independent. But a change in x(t) can be defined that is independent

of dt. The variation 5x(t) in x(t) is defined as the incremental change in x(t)

when t is held fixed. The relation between dx and Sx is given by [64]

dx(t) = 5x(t) + xdt (3.2.5)

Also if x(t) G is a function of t and

'to

then

nts

'to

This is called the Leibniz rule and will be used here.

The performance index (3.2.1) is augmented by adjoining the differential 

constraints (3.2.2) and the boundary constraint (3.2.4) using lagrange multi­

pliers A(t) and

'f

f tfF =  h[x(t),t]dt (3.2.6)
J t o

r t f
dF = h[x(tf),tf\dtf — h[x(to),t0]dto + / hx[x(t), t]5xdt (3.2.7)

J t o

J  = 0[5(t/ ) ,t / ]+z/T^[x(t/ ) ,t/ ]+ f  {L[x(t),u(t),t]+\T{t)(f[x(t),u(t),t]-x)}dt
Jt o

The Hamiltonian is defined as

H(t) = L[x(t),u(t),t] + AT(t)f[x(t), u(t), t]
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The above augmented performance index in terms of the Hamiltonian is written 

as
f tf mJ = <j>(tf)+ /  [H(t) -  XT{t)x]dt

J t o

where

$(t f ) = <t>[x{tf),tf ] + vTJp[x(tf ) , t f }

By Leibniz’s rule, the increment in J  as a function of increments in A, i/, u 

and t is

r*i>TdJ = ($x +  dx _ +  Pt +  vT\j)̂ j t

+ [{H -  \ Ti )  d t \ ‘ -  [(H -  XTi )  dt\t_

+
t = t f

dis
t=tf

+
f tf
/ [Hx6x + Hu6u — XT5x +  (H\  — xT) <5A] dt (3.2.8)

J t 0

To eliminate the variation in x , we integrate the term — f** XT5xdt by parts: 

— f  XT5xdt = — [XT5x]t=tf + [XT5x]t=t0 +  f  XT5xdt
J t o  J  to

= -[ATdx\t=tf + [ATxdt\t=tf +  [ATdx]t=to -  [ATxdt]t=to
rtf

+ / A Sxdt (3.2.9)
J t o

where we have used the relation (3.2.5). Substituting this in (3.2.8), we have

dJ = (̂ f)x + — AT  ̂dx + '̂4>t +  vT,ij)t +  XTx +  H — XTx̂ j dt t=tf

to

t = t f
du — [(i/ — XTx + XTx ) dt] +  [ATdx]t=tI t _ tQ , L '  J I'—to

(^Hx +  At  ̂S x  + Hu5u — X t 6 x  + (H\ — xT) 5X dt (3.2.10)

According to Lagrange theory, the constrained minimum of J  is attained at the 

unconstrained minimum of J. This is achieved when dJ  = 0 for all independent 

increments it its arguments. Here we have assumed that to and x(t0) are both 

fixed and known so that dto and dx(t0) are both zero. Summarising the above 

results: the optimal control input u(t) that minimizes the performance index 

J  must satisfy

f tf<i>[x(tf),tf]+ / L[x(t),u(t),t]dt( 3.2.11) 
J t 0

x = = f (x ,u , t )  (3.2.12)

AT = - H i  = - L i  -  ATf i  (3.2.13)

x(t0) = i 0 (3.2.14)

Performance Index: 

Differential Constraints: 

Co-State Equations: 

Initial Conditions:
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Terminal Constraints: i>[x(tf), tf] = 0 (3.2.15)

Boundary Condition: [($* — AT)dx]t=tf +  [($t +  H)dt]t=tf = 0

(3.2.16)

Optimality Condition: Hu = Lu + ATf u = 0 (3.2.17)

The time derivative of the Hamiltonian is

H =  Ht + H x i  +  Huii +  \ T f  

= Ht + Huu + { H i  + \ T) f

(3.2.18)

For the optimal solution Hu = 0 and Hj. + A7 =  0. Hence

H = H, (3.2.19)

In the case when H  is not an explicit function of t , then

H = 0 (3.2.20)

Hence for time invariant systems and cost functions, the Hamiltonian is a 

constant on the optimal trajectory

3.3 Radar Equation

A radar transmits an electromagnetic signal and this signal is reflected back 

from the target. A monostatic radar configuration consists of a collocated 

transmitter and receiver. When the transmitter and receiver are separated 

geographically, this is known as a bistatic radar configuration. By observing 

the time interval between the transmitted pulse and the reflected echo, the 

range to the target can be determined and is given by

cAt

where c is the velocity of the radar signal and A t is the time elapsed from 

transmission to reception of the echo signal. Consider a radar radiating a 

signal of power P  which is uniformly distributed on the surface of a sphere of
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radius d having the radar at its centre. Since radars use a directional antenna, 

we can adjust the signal power by a gain factor G. So the power density at 

the target which is at a distance d from the radar is given by

Suppose there is no absorption of energy by the target and after colliding with 

the surface of the target, it is fully reflected back. Suppose a is the radar cross 

section of the target which varies significantly with the attitude (elevation and 

azimuth angles 6ei and 9az, respectively) of the UAV with respect to the radar 

and Ae is the effective area of the receiving antenna, then the power of the 

reflected signal at radar receiver is given by

The ratio of the received radar power to the transmitted power is called the 

radar equation and is given by

Hence for a(9ei, 9az) =  1 this ratio is inversely proportional to the fourth power 

of the distance between the radar and the target.

Theorem  1 If the cost of a UAV at a distance di from a radar site located at 

(xi,yi) and having strength cti is J  = then the cost to go from an initial

Power density at the target =  -——
47rcr

echo power at the radar receiver =
PGcr(6ei, 9az)Ae 

(47rd2) 2

received radar power GcrAe constant
transmitted power (47r)2d4 d4

point (a:}, y\) to a final point (x^, y£f) on a path consisting of N  line segments 

for a single radar exposure minimization can be written as

“  (cj — 2/* -f- mfxi)3

where

9{ = arctan[
oc{( 1 -f m?2) +  m?c? — mPyi — Xi

9\ — arctan[

cJ -  yi +  m^Xi 
icj(l + m i 2) + n d  c? — mj yi — X{

ci — 2/* -h mj Xi



with (xj, y{) and (xJ2, y2) are initial and final points of the the j th line segment 

and v is the speed of a UAV respectively.

Proof: The cost to travel a path can be obtained by integrating the radar 

equation and is given by
Ctf a-

J t=  ~^dt (3.3.21)
Jto

where cn* is the strength of the radar located at (x^ yi). Suppose the vehicle is 

moving with constant speed v. Then ^  = v or dt = ^  which can be written 

as

* .  j/iEiL,
V

Hence the cost becomes

•*/ a iSJ l  + (%)2dxfJ xnJl X O  Vi(X -  Xi)2 +  (y -  Vi)2]2

The path consists of N  straight line segments, and so the above equation can 

be written as a sum of integrations over each segment j

n \ / l  +  (^-)2dx

Ji = ^ 1L 1 [(x -  x;)2 + { y -  y i W  (3'3'22)

We will consider the integral cost to travel for the j th edge only

rx2 J l  +  ( ^ ) 2dx
J ' i =  /  T?— I'iTV wi2 (3'3'23)Jx{ l (x  -  Xi ) 2 + (y -  yf)2]2

The equation of the line segment passing through (xj, y[) and (xj, i/j) is given
j _ j •

by y = m?x +  c7. Where ra-7 = yj_y) is the slope and c-7 =  yj — mj x\ is the
x 2 ~  X 1

y-intercept. Putting these values in the above expression, we have 

_  /*x2 y/ l  +  mJ2dx
^ J  j  r(nr — n r 2 -L- ( m .7 nr _1_ r*j — n  .\X\2

Jij —

i [(x -  X i )2 + (mJx +  c-7 -  yi)2]

^  rm i 2) 2 Jxi
dx

(1 + mi2) 2 I 2 ( m i c j - m i y i - X j )  , x i + ( c 3 - y i )‘2
1+mJ2 1+m-)

Let a = W and b = then
1 + m r  1+rnJ ’

i r*  dx
tJ (1 + mJ2) 1 Jx{ [x2 + 2ax +  6]2 
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or
1 f x* dx

%J (1 + mj2)i Jx{ l(x  +  a)2 + (b — a2)]2 

Now 6 — a2 can be simplified as

2 =  X1 + ~ ̂ ) 2 lmJV  ~ ?/*) ~  ̂ l 2
1 +  m-?2 [1 +  raj2]2

c> -  y{ + mjXi
1 +  ra-?2

= c2(sow/)

Therefore we can write
i

dxi r
lJ ~  (1 + m̂ 2) Ic4 J xiJi. n —

Let X = => dx = cdX\ at a; = x { ,X  = =  Xi and at x = xJ2, X  =

= X2. Then the above integral becomes

J i j  —
X2 dX

(1 + m?2)2<? Jxi (1 + X 2)2

Let us substitute X  = tan# => dX  = sec2 OdQ; at X  =  Xi, #i =  arctanXi and 

at X  = X2,#2 = arctanX2. Then after simplification

j  _  (l +  mJ2)§ r rctanX2 _ j e ^ 6 d 6 _
13 (CJ -  Vi + m P X i f  J irctanXi (1 + ^ n 2 #)2

(1 +  mj2)i rarctanX2
2(cj -  yi + r a ^ ) 3 u’ arctan Vi

(1 +  cos 29) d6

2 \  3(1 +  mP ) 2
2( ^  -  yi + ra^ ) 3

n  4 . 779 j  2 ̂  §
■[(0£ -  0J) + cos(#2 + 0j) sin (#2 -  #j)]

{&i _  f  + sin 2 d{  — sin 2flj

2(d> -  yi + mPXi)3

Hence the cost to travel with constant speed v for the whole path J* is given 

by

|  E A i  = f  g  2 ( e / - w T X ) » [(̂  “ ^  + C°S(̂  + ^  Sin{9i ~

or

Ji = £  £  (0/-y.+J?x.)3l(di -  +  C0S(^ + 0i)®in(̂ 2 -  «i)] (3.3.24)

44



where

6\ =  arctan X\ = arctan — arctan r j ( l  +  raj2) +  m3cP — m?yi — Xi
cj -  Vi + r a ^

Similarly

#2 =  arctan X 2 = arctan —----- — arctan
+ m?2) +  m3cP — rrpyt — Xi

cj -  yi +  mPxi

and

mPn’ = 4 ^ 4
x2 X1

(P = yl — m3xJ1

Rem ark: If there are M  radars, then the cost to travel from one point to 

another point on a piecewise linear path is the sum of the costs due to each 

radar and is given by

3.4 Equations of M otion

The UAV is constrained to fly above the terrain profile at an altitude of hc 

which is called terrain clearance. The terrain clearance may be constant or a 

specified function of downrange and crossrange. Two coordinate systems will 

be used to extract the equations of motion as shown in Figure 3.1. A local 

coordinate system (xi,yi,zi) is taken with its origin located on the terrain 

profile and the xiyi—plane coincident with the local tangent plane with z\ 

defining the outward normal. The inertial coordinate system (x,y,h)  is defined 

with the xy—plane coincide with the flat ground and h is the height axis taken 

positive in the upward direction. The x/—axis of the local level frame is taken 

parallel to the xh—plane of the inertial coordinate system. So the velocity 

vector is constrained to lie in the xiyi—plane making a heading angle 'ip with 

the xi—axis. The equations of motion in the local level frame can be written

(cj ~ Vi +  mPXi)3
[(0J2 — 9{) +  cos ($2 +  #j) sin(#2 — #j)]

(3.3.25)
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as
Xi= v cos ip

yi = vsmip (3.4.26)

k  = 0

Taking g(x, y) as the terrain profile in inertial frame and defining G(x, y) as

the algebraic sum of the terrain profile and terrain clearance, then the the

UAV height in inertial frame is given by

h = G(x, y) = g(x, y) +  hc (3.4.27)

\  / -  tangent plank
TERRAIN PROFILE

HEADING ANGLE

Figure 3.1: Coordinate system

In order to transform the system (3.4.26) to the inertial frame, unit vectors 

(i, j, k) along the local level frame need to be determined. The outward drawn 

unit normal vector k and the unit tangent vector i on the terrain profile G(x,y) 

are given by

r - G x
k = ....... 1  w  - G y (3.4.28)

1

i =

1

0

a
y r r c f

The unit vector j  can be obtained by the cross product k x i

1
J = y/1 +GI + G^y/1 + G2X

■GxGy

(3.4.29)

(3.4.30)
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where Gx and Gy are the partial derivatives of G with respect to x and y 

respectively. Taking I  ,J, K  as the unit vectors along inertial frame and 

transforming the velocity from the local level tangent plane to the inertial 

frame

(3.4.31)

X i . I  j . I  k . I X l

y
= i . J  j . J  k . J m

h i . K  j . K  k . K Zl

which implies that

x

V =

v cos ip GxGyv sin ip

V 1 +  G* ^ ( l  +  G l ) ( l  +  G l  +  G D

y/ l  +  Glv sin 'ip (3.4.32)
y/ l  + CTi + Gi

h = v sin 7 

where 7 is the flight path angle given by

Gxx +  Gyy
7 =  arcsin 1 (3.4.33)

3.5 Derivation of Optimal Trajectory

The performance index to be minimized in its most general form is the tradeoff 

among different objective functions of flight time, radar exposure and terrain 

following:

J = / 'J o

M

q i  + q2G { x , y) + q3 ^ Sk
d t

dt_  _ (3.5.34)
fcT1 “fc.

where d^ is the distance of the current position of the UAV from the k th radar 

which is assumed to lie on the terrain profile and Sk is the strength of that 

radar.

d k =  V ( x ~  xk)2 +  ( y ~  Vk)2 + ( G ( x ,  y) -  g ( x k , Vk))2

subject to

(3.5.35)

x(0) = x0, y(0) =  ?/o, h(0) = g(x0, y0) +  hc = h0 (3.5.36) 

x(tf ) = x f , yitf) = yf , h(tf ) = g(xf ,yf ) + hc = hf  (3.5.37)
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If hc is constant, the height at any point depends on g(x,y), which in turn 

depends upon the states x and y. Here

x(tf ) -  xf

y(tf) -  Vf

$ = 0 + v T $  =  v x ( x ( t f )  -  X f )  + V y ( y ( t f )  -  yf ) 

The Hamiltonian is

(3.5.38)

(3.5.39)

H(x, y, v, 0, A, t) = L(x,y,v,il>,t) +  AT/(x , y, u, 0, t)
M

= Qi + q2G(x,y) + q3y 2 ^

+ Aa
U COS 0 vGxGy sin0

+  A„
Ciusin0

L CiC2 j L 2̂ J

c ,  =  y r + G f

where

■ X  ' ”  y

Suppose v is constant, then from (3.2.13), the costate equations are

M

Co = J 1 + Gl +  Gl

(3.5.40)

(3.5.41)

(3.5.42)

~ Ax — Q2 Gx — 4(̂ 3 Skdkx XxvGxGa
5

fc=i

, Xxv(GX X Gy +  GXGXy) . cos 0 ------------- - 0—---------— sm 0

+

d5, Cf CjCa

A xvGxGy(CiGxGxx + ClGyGXy + C'f CzxCrxx)
CfCi

Xyv{Gi GXGXX + ClGyGXy — C%GXGXX) . t 
C ^C l s m p

sin 0

(3.5.43)

M
-A„ =  g2GB -  4 q 3 ^  c o s i }  _  A X ^ C V h  G x G y y )  g i n ^

fc=l k

+

C? r CiC2

AX'l’GXGy(C,2 GXGXy + C^GyGyy + C^G XG Xy)
c ? c 23

AyU(Cj GXGXy + CfGyGyy ~ C^GXGXy)

sin 0

CiC |

By the optimality condition (3.2.17)

u sin 0  vGxGy cos 0

sin0 (3.5.44)

A,
AT.C1UCOS0
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C2 sin xp + GxGy cos xp
A“ =  c f ^ j ,  Al (3-5-45)

The proposed optimal control problem has a constant of motion because the 

variational Hamiltonian is not explicitly dependent on time and the final time 

is free

=> H (t )  =  0, 0 <  t  <  t f

or
M

+  2̂ G  + qz +  Ax
v cos ip GxGyVsimp
~C i  ChC2

+  X ^ ±  =  0(3.5.46)
Co.

Then substituting Xy from (3.5.45) into (3.5.46), we get
M

SkQi + Q̂ G +  qz ^  -jl +  A,
fc=i k

v cos ip G xG y V s i n ,ip

C 1

+
Civsinxp

Co

C &
C2 sin ip +  GxGy cos xp

M

Ax — — ( 91 + q2G +  qz 4
V fc=i ak

Cl cos xp 

Sk \  C\ cos xp

A,

V

and using equation (3.5.47) in (3.5.45)

Ay — (C2 sin xp + GxGy cos xp)
M

qi +  q2G +  qz -4
k= 1 k

(3.5.47)

(3.5.48)

Now substituting Ax and Xy from (3.5.47) and (3.5.48) in equation (3.5.43) 

gives
M Skdkx GXG3- X x -  q2Gx ~  4qz ^  + 2

fc=i dk Gl

M

qi + q2G + qz -4

+
GxxGy +  G XG xy

Co

M

qi +  <72 G  +  93 ^

GxGy{GxG xx +  GyGxy)
Ci

x y
CIC2

qi + q2G + qz £  -4
fc=i dk

M

Sk_
— 4k=1 k 

cos xp sin xp 

M

cos2 xp

cos xp sin xp

+

qi + q2G +  qz ^4 
fc=i k -

(ClGxGxx + ClGyGxy -  ClGxGxx)
c i c i

cos xp sin xp

qi +  q2G +  qz y ^
M

GxGy{GxGX X  T GyGxy)

/~i2s~i si  ^
qi + q2G +  qz y

M

G^GyGxX
cic2

qi + q2G + qz £  -4
k= i

M
Sk

— 4k=l k
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Sk
— 4k=1

cos xp sin xp

sin2 xp

cos xp sin xp (3.5.49)



or
M M

Qi  +  Q2 G  +  qz
Sk

- Ak= 1
Ax ?2Gx 4,3 g  ^  + c f C 3

[C|GXGXX cos2 ^  -f C2 (C^GyGxx + ClGxGxy — 2G,2(jryGxx) cos^sin^  

+  (C2GxGXx +  C\GyGXy — C^GxGxx) sin2 ip] (3.5.50)

Now differentiating equation (3.5.47) with respect to time and using the values 

of x  and y  from (3.4.32)

M
qi + q2G + qz y :At

1
>(C?C2)

Sk
- Ak=i

+

C2GxGxxn cos2 ip + (C2GxGxy -  G 2xG y G Xx)v  cos ip sin ip -  C \ C 2 sin ipip 

q2 cos ip
C 2

\C2G X cos ip — G \ G y sin ip +  C2Gy sin -0]

M
4g3 cos ip y-v S| cos ^  _  d kxG xGy sin ip +  C ?4 W sin

° 2 fc=i dk
(3.5.51)

where

du =

die.. —

(x -  x k) +  (G  -  gk) G a 

dk
( V — Vk) + (G — gk)Gy

dk

(3.5.52)

(3.5.53)

Finally equating (3.5.50) and (3.5.51), we will get a differential equation in­

volving ip, which together with (3.4.32), defines the motion of the UAV over 

terrain. Hence, using an adjoint-control transformation, the optimal control 

problem solution was reduced to a search for the initial value of the heading 

angle. Two cases will be considered to get a differential equation for ip.

3.5.1 Case 1 : <73 =  0

In this case, there are no threats and the optimal trajectory is found to avoid 

the terrain while minimising the formulated performance index. Equating the
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right hand sides of equations (3.5.50) and (3.5.51):

Q2Gx +  Q2 G\

\C2GxGxx cos2 ip + C*2 (C 2GyGxx +  C 2GxGXy — 2G2 GyGxx) cosipsinip 

- f  {C\GxGXx +  ClGyGxy — C%GxGXx) s in 2 ip]

v(Ci C2)

C2GxGxxv cos2 ip +  ( C i ^ x ^ x y  — G2xGyGXx)vcosip sin ip — C\C2  sin ipip

+ q2 [C2Gx cos ip -  G2xGy sin ip C 2 Gy sin 
02

Simplifying above equation

^ (^i +  (I2G) [C2 (C2GyGXx — GlGyGxx) cos ip

-\-{C\GxGxx +  C 2GyGXy — C%GxGXx) s in  ip]

= —C \C l  (qi + q2G) Ip + q2vC lC 2 [— sin ip

—G2 Gy cos ip -h C 2 Gy cos ip]

A  cos ip + B  sin ip
*  *  = ------- c -------

where

A  = C 2C2vq2 (C2Gy — G2Gy )  — C2v(q\  +  q2G)GyGxx 

B  =  v{q i + q 2G ) ( G xGlGxx- C l G y G Xy ) - C l C 22vq2Gx 

C  =  C l C l ( qi +  q2G)

3.5.2 Case 2 : q2 =  0 , G  =  0 , M  =  1 , si =  1

This is the case when the objective is to find the optimal minimum risk tra­

jectory due to one radar without terrain and the UAV is constrained to fly in 

the xy—plane. Equating (3.5.49) and (3.5.51)

Aq3dx 1 /  , <73\ ,  • / n  4g3 c o s ^ ,  . n
 =  -  ( f t  +  J ( -  sin ipip) — (dx cos ip-\-dy sin ip)

Using the values of dx and dy from (3.5.52), (3.5.53) in the above equation and 

rearranging to find ip, we get

(3.5.54)

(3.5.55)

(3.5.56)

(3.5.57)



and when q\ = 0, the above equation reduces to

4u [(x — x{) sin ip — (y — y\) cos \p\ip =
d2

(3.5.59)

Next an analytical solution for a single radar risk minimization will be derived 

and discussed using the simplified equation (3.5.59).

3.6 Single Radar Risk M inim ization

Consider a radar located at the origin as shown in Figure 3.3. It is desired to 

find the optimal aircraft trajectory that connects two prescribed points A and 

B in the plane such that the radio frequency energy reflected from the aircraft 

is minimized. Using the polar coordinates

x = R  cos 6 

y = R  sin 6

in Figure 3.2, we have

Rdl

(3.6.60)

(3.6.61)

Figure 3.2: Relation between 6 and pi

tp = 6 + a (3.6.62)

RdO
sin a = —— 

ds
(3.6.63)

dR
cos a = —— 

ds
(3.6.64)

RdO
tan a = —— 

dR
(3.6.65)
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Prom these expressions and equation (3.5.59) we can obtain ip  as

; ivlRcosOsinip — RsinOcosip] /n „
ip = — ^ ^ n  (by (3.6.60) and (3.6.61))

4u sin(,0 — 6)
R

4usina n
= — ^ —  (by (3.6.62))

= (by (3.6.63)) (3.6.66)ds

This can be written as
4vdO ,,

dip = ^  dt (3.6.67)

Now v =  which implies dt — ^  and substituting into equation (3.6.67), we 

get the differential form of control law as

dip =  4 dd (3.6.68)

Integrating the above equation implies

$  =  40 + Ci (3.6.69)

which is the optimal control law and is dependent on the angle 0. C\  is the 

constant of integration to be determined. Putting the value of ip from (3.6.62) 

in the optimal control law (3.6.69), we get an optimal relation between a  and 

6 as

a = 30 + Ci (3.6.70)

Taking the tangent of both sides

tan(30 +  Ci) = tan a
RrlQ

= ^  (by (3.6.65)) (3.6.71)

Rearranging the above equation, we have

1 3 cos(30 + Ci) _  dR 
3 sin(30 +  Ci) =

and integrating this gives

In C2 +  ^ ln[sin(30 +  Ci)] =  In R
O

In C2[sin(30 +  Ci)]5 =  In R  
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or

R  = C2[sin(30 +  Ci)]* (3.6.72)

After obtaining this expression for the optimal trajectory, the next step is to 

determine the two constants C\  and C2. When R  =  R f ,  0 = Of which implies

c 2 =   ------- ^ -------r (3.6.73)
[sin (30 f  + Ci)] 3

Putting this value of C2 back into equation (3.6.72) gives

sin(36> +  Cx) 1 ^
 ̂ sin(3S/ +  Ci)

Also when R  =  R q, 0 = 90, so from the above equation

(3.6.74)

Figure 3.3: Optimal trajectory

Ro sin(3fl0 +  Ci) 
sin(3 Of +  Ci)

From here we can write

cos 30o — cos 3Of
cos C\ = —----- 3— ^ -----------sinCx

( jj j)  sin 36f  — sin 30o

Finally, the optimal trajectory is

7^) cos3df

R  =  R f

cos 30o
sin 3 0- — nr

sin 30^—sin 30q

+ COS 36

300— ( ^ ]  cos 30/
sin3O f-  x3 ■■■----------h cos30/

^ ^ / )  sin 3 0 /—sin 30o 

which can be simplified to

sin(30 — 30O) — sin(30 — 3Of)
R  =  R f

sin(3 Of — 30q)

(3.6.75)

(3.6.76)
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For the special case of 0o =  0, 

R  =  R f
sin 30 — ( 7̂ )  sin(30 — 30/) 

sin 30/
(3.6.77)

When sin30/ =  0 or 0/ =  | ,  the equation (3.6.77) becomes undefined which 

means no optimal trajectory exists for this angle and a path length constraint 

or time constraint must be introduced to recover the solution. Hence to get 

an unconstrained solution for single radar exposure minimization, one must 

have 0 < 0/ < | .  Figure 3.4 shows the optimal trajectory for Ro = R f  =  1 

and Of =  45°. The optimal cost while travelling the optimal trajectory can be

os
0.7

0.6

0.5
x  0.4 

0.3

0,2

0.1

-0.1
0.4 0.60 02 0.8 1.21

Figure 3.4: Optimal trajectory for R 0 =  R f  =  1 and 0/ =  45°

derived by considering expression (3.5.34), which for this simplified case has 

the form
/•*/ £?

(3.6.78)[ ’> s ,
J  =  Jo ^

Taking qz =  1 and using polar coordinates

v ^ 7

From equation (3.6.71)

J  =

dR

s n  
V Jo

dR
dj9 dO (3.6.79)

R
dO tan(30 +  Ci)
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and therefore

. ' d R y  o2 R
R I ~7T I = R2 +dO J tan2(30 4-Ci)

R2 [tan2 (30 +  Ci) +  1] 
tan2 (30 + Ci)

R2 sec2(30 + Ci) 
tan2 (30 +  Ci)

R2
sin (30 +  Ci)

d R \ 2 R
s ‘ + ' T t )  ' w m T c T) <“ -80>

Putting this in (3.6.79) and after simplifying

dO
J

fl3sin(30 +  Ci) 

v j 0 C ^ s i n t S f f  +  C O s m f W  +  C i )  ( b y  ( 3 ' 6 ' 7 2 ) )

_s_ r»t
vCl

ref
/  esc (35 + Ci)«W

JO

s
3vC$

[cot (Ci) — cot (30/ +  Ci)]

ssin(30f +  Ci) r x „ x,
 ^ 3  [cot(Cj) -  cot(30/ +  Ci)]

ssin(30/) (3.6.81)
3vR3 sin(Ci)

where Ci is given in equation (3.6.75). Note that when 0/ approaches 

Ci approaches 0 and hence equation (3.6.81) becomes indeterminate i.e., (§). 

So in order to extract useful information about the existence of J  we apply 

L’Hospital’s rule. From equation (3.6.81)

r _  s sin (30/)
j0/= i 3ui?3sin(Ci)

■jgjs sin(35/)
lim

6 f -&}3v R 3fsin{Ci) 

s cos (30/)=  lim
0/ - f  vR3fCos(Ci)-£jCi

(3'6 '82)Of-* 3 v R f dey i
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Now differentiating equation (3.6.75) with respect to Of, we have

1 _ ( ^ ) COs36 ‘ 3 ( j^ )  sin2 30,

from which

Finally, using this in (3.6.82), we get

s i  1 _ „ _ _ V
J* '- * = a t  M  + Hj  (3-68 3 )

This reveals that for Of —> | ,  the trajectory approaches infinity but the optimal 

cost approaches a finite value. The expression for the optimal path length I* 

is not in closed form. Numerical integration can be employed to work out this 

integral.

3.6.1 Special Cases

Several interesting special cases concerning the optimal trajectory given in 

(3.6.77) can now be considered. In the case when Of = 0 and Rf  > Ro, the 

origin O  and the points A  and B  are co-linear and the optimal trajectory is a 

straight line as shown in Figure 3.5.

y

O A B x

Figure 3.5: Optimal trajectory for the special case where Of = 0
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Theorem  2 The optimal trajectory which connects points A and B  at a dis­

tance Ro =  Rf  from the radar located at the origin O and minimizes exposure 

to the radar is

R*(o) =  Ro
cos (3 0

o  <  o < ef
cos (S t)

where Of is the angle ZAOB. This result holds provided 0 < Of < |  

Proof: When R f  = Rq, we can write (3.6.77) as

sin(30) — sin(30 — 3 Of)

(3.6.84)

R  =  R q

O lR  =  R q

sin(3 Of)

0 / 30+30-30/\  . ( 3  0/\
2 COS ( -----2---  ) Sm ( 2 j

2sin ( t 1) cos ( t -̂)

otR  =  R q

\
COS (30  —

COS(?)
, 0 < 0 <  Of

The optimal trajectory is shown in Figure 3.4 for the case where = 1 

and Of = 45°. By inspection of Figure 3.4 we see that the extremal trajectory 

is indeed symmetric when Rq =  R f  as expected.

3.7 Risk M inimization Two Radars

3.7.1 Problem  Formulation and Scenarios

After understanding the nature of the one radar exposure minimization prob­

lem, the next stage is to extend the formulation to multiple radars. For this 

purpose, risk minimization problem due to two radars will be examined. An 

analytical solution as in the single radar case would be desirable but due to the 

complexity of the problem a numerical technique using gradient method will be 

employed to obtain optimal trajectories for different scenarios. The geometry 

of the possible locations of the radars and end points is shown in Figure 3.6. 

Three parameters were varied to examine the effects upon the optimal trajec­

tories: the downrange distance between the radar locations (P), the crossrange
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Figure 3.6: Possible locations of radars and end points

distance between the radar locations (Q) and the downrange distance between 

the initial and final points (R ). When varying P  and Q, the end points of the 

path were fixed at (xq, yo) =  (0,0) and (xf,yf )  =  (20, 0) and when varying P, 

the radars were fixed at (sq, yi) = (5,5) and ( ,  2/2) =  (15, —5). Two ratios of 

the radar transmission power were examined for each of the cases: ol\/ol2 = 1/1 

and oli/cx.2 =  2/1. The ordinary or weighted Voronoi trajectory, as applicable, 

was computed to be compared with the optimal trajectory. Table 3.1 sum­

marises the scenarios examined, where A is the incremental distance for the 

varying parameters P, Q and R. A common graphical technique for optimal

Scenario P Q R Range A

1 Varied Fixed Fixed 10 -  6.5 0.5

2 Fixed Varied Fixed 1 0 -5 .5 0.5

3 Fixed Fixed Varied 20 -  15.5 0.5

Table 3.1: Scenarios for trajectory optimization against two radars

path planning against multiple radars is to make use of the Voronoi diagram. 

Starting with full knowledge of the radar locations, the Voronoi diagram is 

constructed of polygons whose edges are equidistant from all of the neighbour­

ing radars. Hence, travel along the Voronoi edge ensures that an equal amount 

of power is reflected to each radar. This is true, however, only for the case
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where the transmission powers of the radars are equal. When the radars have 

different transmission powers, i.e. aq ^  a 2, the Voronoi edge is no longer a line 

but a circular arc. It is easy to see that if the points have equal weight, the

path planning technique, it provides a useful comparison to the path length 

and objective cost of the calculated optimal trajectories.

3.7.2 Perform ance Index and its D iscrete Approxim a­

tion

For the case of a single flight against two radars, the power received by the 

radar is now considered a function of each radar’s transmission power and 

range

the distances of a UAV at time t from radars located at (a; 1, 2/1) and (£1,2/1)

If the optimal trajectory is considered to be made up of small line segments,

resulting locus is a circle of infinite radius or a line. Since this is a widely used

Pr = Pt/d“ (3.7.85)

The geometry of the problem is shown in Figure 3.7, where d\(t) and d2(t) are

respectively. Cartesian coordinates will be used for the formulation of flight 

against two radar threats. The performance index is given by

(3.7.86)

Figure 3.7: Geometry of two radar problem

then the approximate cost while travelling along the optimal trajectory can
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be deduced from (3.3.25) by setting taking M  = 2 and N  according to the 

accuracy required.

3.8 Two Radar Case: R esults and Compari­

son

This section examines the case of air vehicle flight against two radars. A short 

development of the camparison path is presented first, followed by the results 

of the optimization.

3.8.1 Comparison Path  for Equal Power Radars

Given two equal power radars located at (sq, 2/1) and (x2, 2/2)5 the perpendicular 

bisector of the line segment connecting the radars will be the optimal path 

between these two radars. The equation of the line connecting the radars is

y(x) =  m(x -  x2) +  2/2 (3.8.87)

m  = (3.8.88)
X 2 — X \

The perpendicular bisector of the line has slope —1/m and passes through the 

midpoint (xm, ym) of the line

y ± ( x )  = -  — (x -  xm) +  ?/m (3.8.89)
m

= (3.8.90)

ym =  V-1~ 1  (3.8.91)

The comparison path will be constructed from three line segments: the shortest 

path line from the initial point, the perpendicular bisector and the shortest

path line to the final point completing the curve shown in Figure 3.8. The

equation of the perpendicular from (x0, 2/0) to the Voronoi line (3.8.89) is

y(x) = m(x -  x0) +  2/0 (3.8.92)
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Figure 3.8: Comparison path for radars of equal transmission power, ai  = a2

The first intercept point (xn,yu) is a common point on the lines (3.8.89) and

(3.8.92). Equating y to equation (3.8.89) and solving for x  yields

m2xo +  m(ym -  y0) + xm 
X i l  2 I i  ( 3 .8 .9 3 )777/ +  1

Back substitution of xn  into y gives

m2ym +  m(xm -  z0) +  yo (Q c Q/A
Hu = --------------o i i------------  (3.8.94)777 -f- 1

Taking a similar approach at the final line segment results in

= m*xf  + m(y - y , )  + xm
777 + 1

m2ym +  m{xm -  x f ) + y f  /0 0
Va =    (3-8,98)

where 777, xm and ym are given by (3.8.88), (3.8.90) and (3.8.91) respectively.

3.8.2 Comparison Path  for U nequal Power Radars

For the case when the radars are of unequal power, a weighted path is used.

The weighted path can found by equating the power received by each radar as

follows

73 =  (3.8.97)R\ K ’
=> a . \ = a2 

y/^ lR2 = ±yfiT2R\  (3.8.98)
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where

Ri = y/(x ~ x i)2 +  (V ~  2/i)2 (3.8.99)

R2 = y/(x ~ x 2)2 + (y ~ IJ2)2 (3.8.100)

Substituting these values of R\ and R2 into equation (3.8.98) yields

V'aT [(x -  x2)2 +  (y -  y2)2] =  ±y/a i  [(x -  x i)2 +  (2/ -  2/i)2] (3.8.101)

First, considering the positive sign and rearranging the above equation, we can

write

(1 -  \ / —  )x2 - 2 ( x 2 -  x/ — Xi)x +  (1 -  A/ — )y2 - 2 ( y 2 -  J — yx)y
ol\ v aiOLi Oil

Ol2 2 1 ^  2 2 2„ xi +  \ — Vi -Xi-Vi OL\ V a l

Dividing the above equation throughout by 1 — A/ ^  gives

x 2  2 -

x2 ‘X \

-x + y2 -  2-
2/2 ‘yi

Now completing the square by adding
X 2 -

-x 2Xl
1- Xi.

V  " 1  J

+
V2 - . / 2 a y 1

and right hand sides of the above equation results in

to the left

x2 ‘Xl
x +

2/2 ‘y 1

+

2J * ?  +  x / ^ y 2! -  A  -  y 22

X 2 ‘Xl

1 — 1 s 1* £*1
+

2/2 _ 22.y 1

1 — l^2-* ai

x2 - LX \

x —
1 -

+
2/2 " 2 / i

y- V ( x 2 - X i ) 2 +  (2/2 - 2 / 1 F

(3.8.102)
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Similarly by considering the case of the with negative sign in equation (3.8.101), 

we obtain the final expression

x —
*2 +  \ I % * 1  

V  Qi

+
2/2 +

! +  a/5?V a i l  + J 9*-' ' ai
V (®2 -  X l ) 2 +  (*/2 -  Vi ) 2

(3.8.103)

Equations (3.8.102) and (3.8.103) are equations of circles but (3.8.103) has an 

imaginary radius and so will be discarded. Hence, the path between two radars 

of unequal powers is a circle with

X2 ~ \ / % x 1 y2 -  J % y i
centre at

and radius

a i

1
V(ai2 — Zi)2 + (2/2 -  yi)2

(3.8.104)

(3.8.105)

The complete comparison path is obtained by joining the starting and final 

points of the path to the circle along the shortest distance lines as shown in 

Figure 3.9. This path will be used for comparison with other paths. The

Figure 3.9: Comparison path for radars of unequal transmission powers

comparison path consists of three path segments: a shortest distance straight 

line path from the starting point (xo,yo) to the circle at (xn,yn),  the circular 

path from (xn,yn)  to (Xi2,yi2 ) and the shortest distance straight line path 

from the destination point (Xf , yf ) to the circular segment at (3̂ 2, 2/12)- The
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intercept (xn,yn) will be along the line through (xQ, yQ) and (xc, yc) given by

2/2 L2/i ~ 2/o
y = 2/0 + o - y i F ) (x -  x0) (3.8.106)

12 _  \J%Xl “  *0 ( l  -  y/%)

To find the intersection point we substitute y from the above equation into 

(3.8.102) to give

x —
1 — A ai

+
2/2 -  \ /%yi  - 2/0

2/o +
( l ~ - J W )

V (x 2 -  Xy)2 + (y2 -  2/1 )2

1 -

Solving for a: we obtain

(^2 — x\)2 + (2/2 — 2/1 )2
x2 /£2 xi

W S f
-  x0

> - v f  x7  '■ V >- V1
Since we are concerned with the path that passes between the radars, we select 

the negative sign and substitute this value of x in (3.8.106) to give

1/2 /£2  V °i y 1
- 2/0

Xn =
Xi 1- \J (x2 — X i ) 2 +  ( 2/2 — 2 / l ) 2

X2 _ . / 2 2  “l x i

-  (To

1 - V2 VI
'V £2

“ 1

- 2/0

(3.8.107)

2/2 — L2 / i
2/il =

1_  / £ 2  
V al

a/ (a;2 — :ri)2 + (2/2 — 2/1 )2
! /2 -

£2“l
- 2/0

1 - 2/2  - 2/1

V “1
2/o

(3.8.108)

Similarly, the other intercept point (xi2,2/i2) is given by



3.8.3 Scenario 1 : Varying Downrange B etw een  Radars

The first case explores changing the downrange location of the radars and the 

effect on the optimal trajectories. Eight optimal trajectories were produced 

corresponding to eight different symmetric radar geometries. A summary of 

the optimal trajectory cost J * (obtained using the gradient method and the 

analytical relation of the discrete approximation of the performance index) 

and path length /*, the comparison path cost Jvor and path length lvor and the 

straight line cost Jiine and path length lune is presented in Table 3.2. Intuitively, 

it is expected that the paths will be symmetric about the midpoint of the line 

connecting the radars and the path will bend away from the nearest radar. The 

results of the optimization do in fact prove this to be true. In Figure 3.10, the 

optimal path bends away from the nearest radar and intersects the downrange 

axis at the mid point of the radars as the radars move towards the endpoints. 

From Table 3.2, the optimal path length increases as P  increases. From Figure 

3.10, it can be inferred that when the radars are at the same x-coordinate, the 

path length will be the shortest than the previous trajectories and is a straight 

line. The variation of the optimal costs with P  are shown in Figure 3.12. Since 

the gradient method was used to calculate the optimal trajectories, the cost 

is determined at discrete points ignoring contributions between the segments 

of these points. This is why the cost by the gradient method is lower than 

for others. The largest cost arises from the direct line path between the end 

points. The analytical expression (3.3.25), after simplifying for the two radar 

case, was used to calculate the exact optimal cost for the optimal trajectory 

obtained from the gradient method. By comparing this discrete optimal cost 

with comparison path cost, one can see from Figure 3.12 that they are almost



p 7*° grad. 7*Jdis I* Jcomp I comp Jline hine

10 0.0108 0.0217 24.8883 0.0231 28.2843 0.0454 20

9.5 0.0119 0.0238 24.3770 0.0247 28.2452 0.0460 20

9 0.0131 0.0262 23.8328 0.0269 28.1113 0.0466 20

8.5 0.0146 0.0291 23.1759 0.0297 27.8539 0.0470 20

8 0.0162 0.0324 22.4685 0.0329 27.4398 0.0474 20

7.5 0.0180 0.0360 21.8474 0.0365 26.8328 0.0477 20

7 0.0198 0.0396 21.2407 .0.0402 25.9973 0.0479 20

6.5 0.0215 0.0430 20.7224 0.0436 24.9035 0.0480 20

Table 3.2: Calculated data for two equal power radars for scenario 1

Figure 3.10: Optimal trajectories for equal power radars for scenario 1
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Figure 3.11: Optimal trajectories for unequal power radars for scenario 1
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Figure 3.12: Cost of the optimal trajectories for equal power radars for scenario 
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Figure 3.13: Cost of the optimal trajectories for unequal power radars for 

scenario 1

The costs decrease as P increases and this decrease is much steeper for the 

optimal trajectory. Hence for equal power case, it is recommended to follow 

the optimal trajectory to minimize the risk. The maximum value of the objec­

tive cost of the optimal trajectory is when R /P  —> oo or when P —> 0. Since 

for this case, optimal path and comparison path have nearly equal cost but the 

relationship between the optimal path and the comparison path is not evident 

from this scenario. It appears at first that the optimal curve is a smoothed 

function of the comparison path or viewed from another perspective, the com­

parison path is a rough linear approximation to the curve. In the limit as P  

gets very large, however the comparison edge will become perpendicular to the 

optimal path and the comparison path intercepts will move to a single point,
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the midpoint of the comparison edge between the radars. The only consistent 

common point is the midpoint of the paths and this is due to the symmetry 

of the problem. Thus, graphically there appears to be little similarity between 

the comparison path and the optimal path. Comparing the objective cost of 

the three paths, however, the cost of the comparison path is very close to the 

optimal path. This indicates that while it is a suboptimal path, it is a better 

approximation of the optimal path than the straight line. For case of unequal 

power radars when P  < 6.7, the cost of the straight line path is less than the 

the optimal path cost due to gradient method and also it is less than compari­

son path cost. But for P > 6.7, the optimal path is the least risk path. Hence 

in this case it is recommended to follow straight line path for downrange sep­

aration of P  < 6.7 but for P > 6.7, optimal path is the best choice. The trend 

of the optimal trajectories in Figure 3.11 is similar to that shown in Figure 

3.10 with the only difference that the trajectories bends more near that radar 

having higher power.

3.8.4 Scenario 2 : Varying Crossrange Separation B e­

tween Radars

In this case, the radars are kept at a fixed downrange separation P  while 

the crossrange Q is progressively varied. Results similar to those observed 

in scenario 1 are expected and are tabulated in Table 3.3. As the crossrange 

Q —*■ oo, the optimal path will approach a straight line. Indeed, this is observed 

in the optimal trajectories for this case as shown in Figures 3.14, 3.15. For this 

scenario, numerical difficulties preempted finding solutions as Q —► 0. This is 

likely to be due to the optimal path wanting to travel around the radars instead 

of between them. The path length of the optimal trajectories increases sharply 

for a small decrease in Q around 5.5. In reality, the vehicle would never follow 

this path, instead, it would travel around the radars at a much lower cost. 

From Figures 3.16, 3.17, inferences can still be drawn by observing the affects 

of varying Q. As Q is very small the cost to travel along the direct line path will 

be very high. This fact is also evident from the comparison path but the cost in
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that case is slightly higher than the optimal. The optimal costs are very small 

whether calculated from the gradient method or using the optimal trajectory 

and the discrete approximation of cost. When Q is increased, the optimal 

cost J*iia will go to zero and the optimal path will become a straight line. In 

addition, the comparison path will also flatten to a straight line. The results 

of the first two scenarios follow our expectations of how the optimal trajectory 

should react to different radar geometries, and reinforce our understanding

Q 7*grad T*J  dis I* J  com p I com p J lin e h in e

10 0.0108 0.0217 0.25 x 106 0.0231 28.2843 0.0454 20

9.5 0.0129 0.0258 0.26 x 106 0.0284 28.2452 0.0634 20

9 0.0154 0.0307 0.28 x 106 0.0355 28.1113 0.0920 20

8.5 0.0182 0.0363 0.29 x 106 0.0454 27.8539 0.1396 20

8 0.0213 0.0427 0.32 x 106 0.0606 27.4398 0.2250 20

7.5 0.0253 0.0506 0.47 x 106 0.0865 26.8328 0.3936 20

7 0.0300 0.0600 1.02 x 106 .0.1395 25.9973 0.7761 20

6.5 0.0344 0.0689 2.77 x 106 0.2801 24.9035 1.8517 20

6 0.0363 0.0727 12.12 x 106 0.8432 23.5339 6.2726 20

5.5 0.0449 0.0898 136.24 x 106 6.3788 21.8908 50.2545 20

Table 3.3: Calculated data for two equal power radars for scenario 2
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Figure 3.14: Optimal trajectories for equal power radars for scenario 2
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Figure 3.15: Optimal trajectories for unequal power radars for scenario 2
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Figure 3.16: Cost of the optimal trajectories for equal power radars for scenario 
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Figure 3.17: Cost of the optimal trajectories for unequal power radars for 

scenario 2

that the path will bend away from the radars when they are close and
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approach the direct path as the radars move away from the end points. In 

scenario 3, the radar geometry is held fixed and a path end points separation 

is progressively varied. Since the radars do not move, the comparison edge will 

be constant and the only variable in the comparison path will be the length 

of the segments connecting the end points. The resulting optimal trajectories 

reveal an opportunity to exploit the comparison path for on-line utilization.

3.8.5 Scenario 3: Varying Separation B etw een  In itial 

and Final P ositions

For this scenario, the distance between a path’s end points is iteratively varied 

while the radar locations are fixed. This means that the comparison path edge 

is constant and the comparison path just gets progressively longer as the end 

point separation gets larger. The results are summarized in Table 3.4. As the 

end points move outward from the radars, the path extends further and further 

out and the optimal trajectory approaches a straight line for a very small end 

point separation as shown in Figures 3.18, 3.19. From Figure 3.20, it is evident 

that the costs for the straight line trajectory, comparison trajectory and the 

optimal trajectory are nearly the same for a variation in R  up to 8.4. After 

that there is a big increase in the cost of the straight line trajectory while the 

costs of the optimal and comparison trajectories remain almost equal, with the 

comparison trajectories slightly higher. A similar observation cane be made 

by looking into the Figure 3.21 for unequal radar powers. This very small 

difference between the comparison path and optimal path remains constant 

for all values of R. Thus the question is no longer how to get from the initial 

point the final point; the question now is how to optimally approach to the 

comparison path edge from an initial point and how to optimally depart from 

the comparison path edge to get to the final point. This has crucial implications 

for on-line path planning. Instead of a full path optimization being performed, 

utilizing valuable on-line system resources, one only needs to optimize the 

approach to and departure from the comparison edge. The total cost of the 

optimal trajectory at the discrete points are also drawn. This is very small
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with compared to all other cost as already predicted. By further increasing 

R , the cost values for both optimal and comparison trajectories approach a 

constant value of 0.02.

Q T*u grad
7 *

dis r Jcom p I com p J lin e h in e

20 0.0108 0.0217 24.8883 0.0231 28.2843 0.0454 20

19.5 0.0110 0.0220 23.7390 0.0235 26.8701 0.0444 19

19 0.0111 0.0223 22.4924 0.0240 25.4558 0.0433 18

18.5 0.0113 0.0225 21.1851 0.0244 24.0416 0.0420 17

18 0.0114 0.0228 19.8742 0.0247 22.6274 0.0403 16

17.5 0.0114 0.0229 18.4999 0.0249 21.2132 0.0384 15

17 0.0115 0.0229 17.0428 0.0248 19.7990 0.0361 14

16.5 0.0113 0.0226 15.6273 0.0246 18.3848 0.0335 13

16 0.0111 0.0221 14.1197 0.0240 16.9706 0.0306 12

15.5 0.0106 0.0213 12.5921 0.0230 15.5563 0.0274 11

Table 3.4: Calculated results for two equal power radars for scenario 3
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Figure 3.18: Optimal trajectories for scenario 3 using equal radar powers
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Figure 3.19: Optimal trajectories for scenario 3 using unequal radar powers
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Figure 3.20: Cost of optimal trajectories for scenario 3 using equal radar powers
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Figure 3.21: Cost of optimal trajectories for scenario 3 using unequal radar 

powers



3.9 Conclusion

The trajectory synthesis problem was addressed using an optimal control ap­

proach and necessary equations governing safe navigation for UAVs were de­

rived. The objective function incorporates many real life scenarios: minimum 

flight time, terrain masking and least risk due to SAM sites. Using an adjoint- 

control transformation, the optimal control problem solution was reduced to a 

search for the initial value of the heading angle. Because of the complexity of 

the problem, it was simplified into two radar risk minimization problems, one 

with a single radar and the other with two radars. An analytical solution was 

obtained for the single radar case. The two radar case for different strength 

ratios was compared with the developed comparison paths using numerical 

technique such as the gradient method when the UAV has to sought a path 

between the radars. For the single radar, it was found that trajectories do 

not exist for Of > 60°. So a path length constraint must be introduced to re­

cover the solution. If there are a number of threats, then an analytic solution 

becomes difficult. Constraints such as velocity and acceleration are hard to 

incorporate in the above formulation. Replanning, as is required in real time 

situations must also be considered.

In the next chapter, we will present a mixed integer linear formulation 

technique and formulate it in such a way that will be useful for real scenarios 

satisfying constraints.
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Chapter 4 

MILP and its Application in 

Flight Path Planning

4.1 Introduction

If the problem of path planning can be written as a linear program with mixed 

integer/linear constraints, then it can be solved using commercially available 

software AMPL/CPLEX. The optimization problem can easily translated into 

the AMPL modelling language [33]. The structure of the problem and con­

straints are written into an AMPL model file while the data is written to an 

AMPL data file. The data file can be easily edited directly or generated by 

simple Matlab scripts. The CPLEX optimizer is used to solve the problem 

[48]. A series of scripts in Matlab and AMPL allow the entire path planning 

problem to be invoked by a single command. Other Matlab scripts then plot 

the path and visualize the state and input sequence. A linear aircraft model is 

needed in this formulation. The next section describes a simple aircraft model 

for a point mass which will be used in the formulation. This chapter then de­

scribes the modelling of different mixed integer/linear constraints using binary 

variables and also presents simulation results using CPLEX as an optimizer.
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4.2 M odel of the Aircraft

The model used in section 3.4 is nonlinear and can not be used within MILP 

framework. As an alternate, the point mass dynamics of a UAV subject to 

two norm constraints form an approximate model for limited turn rate vehi­

cles provided that the optimization favours the minimum time or minimum 

distance path [86]. The UAV dynamics are expressed as a simple point mass 

with positions and velocities [:v,y,vx,vy]T as state variables and accelerations 

[ux, uy]T as control inputs:

d_
dt

X 0 0 1 0 X 0 0

y 0 0 0 1 y 0 0= +
vx 0 0 0 0 Vx 1 0

V y 0 0 0 0 V y 0 1

iia

Ut,

or

s =  Acs +  Bc u 

The zero-order hold equivalent discrete time system is

(4.2.1)

X 1 0 At 0 X ( A t f / 2  0

y 0 1 0 At y 0 (Ai)2/2= +
vx 0 0 1 0 vx A t  0

.  vv . *+1 0 0 0 1 . V y . k 1

<1o

1

or

Si+i = Asi +  Bui (4.2.2)

Where i is the time step and At is the time interval between two time steps. 

The control input [ux, uy]J stays constant over each time interval At  under the 

zero-order hold assumption.

4.3 Constraints to Avoid Radar Zones

The radar areas are modeled as rectangles with (x™?n,y™?n) and (x™£x, y™*x) 

as the coordinates of the lower left and upper right corner points of the zone.
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At each time step i the position (a;*, yi) of the vehicle must lie in the area 

outside of the radar zone which can be formulated as:

Vi e  [1 ,..., TV] : Xj <  xr£fn

(4.3.3)
or Xi > x ^ x

or ia < y™fn

or yi > yT̂ x

The or-constraints can be transformed to and-constraints by the introduction 

of binary slack variables [98]. Let b^d be a binary variable (0 or 1) and let £lrad 

be a large arbitrary positive number. Then the above constraints (4.3.3) can 

be replaced by the following mixed integer/linear constraints [89]:

V i e [ i , . . . , N ] : x i < x ' Z i  +  sr°dV3d 

and - X i < - x ^ x + QTaib l f

and y i < y rr l  + ^ radbri f

and - Vi< - jC L  +  Qradbri t  (4-3'4)
4

E 6̂ 3
fc=i

b [f  =  0 or 1

If their are Ny  vehicles and Nr stationary radars, equation (4.3.4) can be 

generalized as:

V pe[l,...,T V v],V ce[l,...,T V «],V ie[l,...,T V ]:

rr . <  'rrad 4 -  n r a d i r a dJ'pi — J'c,min ^  updl

and - x v i< - x l ad +  W adb™dV1 — c,max 1 pci 2

a n d  ii  <  n rad  4 - O ra d hradana i/pt yc,min +  1L °pci3

a n d  —  1 1  • <  —  i i r a d  4-  O r a d h r a d  (4.3.5)ana 2: yc,max +  “  °pci4

E 6^ 3
fc=i

VpcUs =  0 or 1

This radar avoidance technique is not restricted to rectangular planar geometry 

since any arbitrary shaped planar radar zone can be described by a surrounding
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polygon of which the edges give rise to anti-collision constraints in both x and 

y coordinates. The extension to 3D motion with 3D radar zones is straight­

forward. We only need to formulate extra constraints in the z coordinate and 

a 3D radar area can be described by a surrounding polyhedron. A moving 

SAM unit with predefined motion can also be considered. The coordinates of 

the radar zone change at every time step according to its predefined motion. 

The straightforward approach is to define new forbidden regions at every time 

step corresponding to the positions of the moving SAM unit at that instant. 

For translational motion of rectangular zones, the format of binary constraints 

(4.3.4) remains the same. Rotational motion on the other hand and motion of 

non-rectangular zones yields constraints in both x and y coordinates.

For overlapping zones, a receding horizon approach may not find a feasible 

solution in the face of such hard constraints. In this case, the hard constraints 

can be transformed to soft constraints by the introduction of small variables 

as in the following:

where are very small decision variables between 0

and 1. The idea is to reduce these variables to zero by incorporating them into 

the objective (cost) function. The problem formulation returns to the original 

setting when these m's are zero. If it is not possible to reduce them to zero, i.e.

Vp € [1 ,..., Nv], Vc 6 [1 ,..., N r ], Vi 6 [1 ,..., N] :

z* < * s L ( i  -  »»«&) +  

** < - * S L ( 1  -  mSa)  +

Vpi < ! C L (1 -  < f 3) +  

Vpi <  - v Z 1 ,(1  -  *n&) +
(4.3.6)

4

the original hard constraints cannot be satisfied, the algorithm will have have 

the flexibility to generate solutions which violate these constraints as little as 

possible. An alternative formulation of the above constraints relevant to radar
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avoidance is the following:

(4.3.7)
4

k=i

0 < < 1

where NR is the total number of radars and (xrrad,yrTad), Rrrad are the position 

and radius of the rth radar. So either (4.12.36) as discussed later, or (4.3.7) 

can be used to avoid danger zones.

In the case of a fleet of UAVs, it is obviously desirable to consider collision

with in a way similar to obstacle avoidance. At each time step every pair of 

vehicles p and q must be a minimum distance apart from each other in the x 

or/and y directions. If at the ith time step, we let (rc^, ypi) and (xqi, yqi) be the 

positions of the vehicles p and q respectively and d°°l and dy°l are the safety 

distances in the x and y directions, then the collision avoidance constraint can 

be written as:

The condition q > p avoids duplication of the constraints on the positions. 

Alternatively we can write:

4.4 Collision Avoidance Constraints

avoidance in path planning. Collision avoidance between vehicles can be dealt

V ie [1, • • •, N], Vp, q\q>p:

| *Tpi %qi | ^  dx

or I Vpi - y qi\> dcy°l
(4.4.8)

Vi G [1,.. •, N], Vp, q\q > p :
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'Epi qi ^  d xcol

or X q i  -  X p i  >  d l

or ypi -  yqi > dcal

col

(4.4.9)
<i

y
color yqi -  ypi > d[

These constraints can be formulated as mixed integer/linear constraints by 

introducing appropriate binary variables b™lik [89]:

Vi G [l , . . . , iV],Vp G [1,... ,  Nv ],Vq G [p +  1, . . . ,  Nv ] :

and xqi -  x,„ > d,:f  -  Q€olbrpgti2

and Vpi -  ygi > d f  -  (4.4.10)pqiZ

col
pqiAand ygi -  y,„ > dc"1 -  ficolbcoi 

V^ik =  0 or 1
Similarly these constraints can be converted to soft constraint by the intro­

duction of small variables:

Vi e  [ 1 , . . . ,  N\,  Vp €  [ 1 , . . . ,  Nv],  Vq € [p +  1 , . . . .  JVv ] :

d f (  1 -  m £ a ) -

and xqi -  Xpi > d‘f  (1 -  mpgli) -  flco‘b‘"la

and Vpi -  yqi > d f (  1 -  r < 2) -  Sr ' < l3

and ygi — ypi > dc°l(l — m ĉ a ) — ficol6“ (4 (4.4.11)

fe= 1

b^ik =  0 or 1

0 < mĉ a , m c£ a < 1

4.5 Speed and Acceleration Constraints

The maximum speed vmax is enforced by an approximation to a circular region 

in the velocity plane [84, 86]. The velocity vector is projected to different 

directions to obtain

Vm g [1, . . .  ,N£],Vi € [1, . . . ,  N], Vp e [1, . . . ,  Nv] :
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,277771. . . ,271771. - .
cos( ^ r )  + ^ sm(- ) — Umax (4.5.12)

c c
The above constraints require that the velocity vector be inside a regular poly­

gon with Ng sides circumscribed about a circle of radius vmax. A constraint on 

the minimum speed can be expressed in a similar way. However, it is different 

from the maximum speed constraint in that at least one of the constraints 

must be active instead of all of them:

3m G [l , . . . , iV£],VzG [ l , . . . , iV] ,VpG [1, . . . ,AV] :

.277777 . . .27rm. ^ _ .
zPiCos(—— ) + %,* sm(- ^  Vmin (4.5.13)

iVc -/vc
where N£ is the order of the discretization of the circle. Equation (4.5) is a 

non-convex constraint and can be written as mixed integer/linear constraints:

V m  €  [ 1 , . . . ,  jV £], Vi 6  [ 1 , . . . ,  N],  Vp €  [1, . . . ,  AV]  :

, 27rm. . . 27rm .
xpi cosy-jpr) +  sin(7 7 r )  ^  ^  - f t  { i -  b ^ j

Nq (4.5.14)

E bv- > 1pim  —

m — 1

Similarly, the constraint for the upper bound on acceleration can be written

as:

Vm G [1, . . . , NX], Vi G [1, . . . ,  N], Vp G [1,. . . ,  N v ] :

27Tm .. . 27T777 r
x p i  c o s ( ~ \ r u ~) +  V p i sin("TT-) ^  ^ m a x  (4.5.15)

4.6 Turning Rate Constraints

The minimum constraints on speed and acceleration involve binary variables 

which make the optimization hard. One way to get rid of these constraints is 

to assume that the UAV moves with constant speed but there is a minimum 

turning radius bound rmin which satisfies

v2
rmin < r = — (4.6.16)u

This constraint turns out to be a constraint on the maximum magnitude of 

lateral acceleration as
u2

U ^max (4.6.17)
V1 m in  
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where u is the magnitude of the acceleration vector and umax is the maximum 

acceleration magnitude. To enforce minimum turning radius constraint in a 

linear framework, one can use only (4.6.17), where umax = -JL~-x 7 'min

4.7 Vehicle Capabilities and Tim e D ependency  

Constraints

The set of constraints to detect if a vehicle visits a waypoint can be written as

The waypoints which must be visited by some vehicles with suitable capability 

are specified in the matrix W  of order N w x 2 where (W ™ 1, Wy™lt) is the

of order Ny x Nw where Kpw =  1 if vehicle p can visit the wth way point, 

otherwise Kfm =  0. Time dependencies, forcing one way point to be visited 

after another, separated by some interval can be included in a matrix A. Each 

row of the matrix represents a time dependency and it has a column for each 

waypoint. Thus if there are Nd time dependencies, the matrix A is of order 

Nd x Nw- A dependency is encoded —1 in the column corresponding to the 

first waypoint and +1 in the column for the second. The corresponding element 

in the vector To is the interval between the two visits and

where Tw is vector of the times of visit to each waypoint. If it is required that 

each way point is visited exactly once by a vehicle of suitable capabilities, then 

the constraint to enforce this is

(4.7.18)

position of the wth way point. A vehicle capability matrix K  can be defined

A Tw > Td (4.7.19)

N  N v

Vtu 6 [1,... ,  Nw] : =  1 (4.7.20).visit
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Time dependencies are enforced by the following constraint

N w  N  N y

Vd 6 [1,... ,  ND] £  A dw £  £  > TDd (4.7.21)
W=1 1=1 p= 1

The summation Ylp=i extracts the time of visit for the wth way­

point.

4.8 Cost Function Selection

The objective function can be taken as the sum of two costs: a quadratic cost 

function and a cost to minimize the violation of constraints. We can minimize 

a quadratic function whose variables must satisfy the state space equation of 

the dynamical system (4.2.1) as follows
p o o

min J  = min / (sTQs +  uTRu)dt (4.8.22)s,u s,u J 0

subject to

s = Acs +  Bc u

where s G 3?n is the state vector and u G is the control. The system is as­

sumed to start from some initial state s0. Alternatively we can replace weight­

ing matrices Q and R  of the quadratic formulation by nonnegative weighting 

vectors q and r to give the following convex cost function:
p o o

J — / (qT|s| + rT|u|)d£ (4.8.23)
J o

where |s| and |u| are vectors with non-negative components. When combined 

with the constraints this 1-norm formulation yields a mixed integer/linear 

program which is much easier to solve than the mixed/quadratic program 

that would be obtained using the quadratic cost. To solve this fuel optimal 

control problem numerically, one must discretise the system and use a finite 

time horizon T. The finite horizon T transforms into N  = T /A t  discrete time

steps, where At  is the sample time. The original optimization problem is thus

transformed into
N - 1

min J  = min (qT|sj| +  rT|uj|)At + / ( s^r) (4.8.24)
Si ,U i  S i ,U i  t — '

i = 0
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subject to

si+i = Asi +  Bui (4.8.25)

where A  and B  are the discrete system matrices. Neglecting the constant term

qT|s0|, writing / ( s) as p T|s;v|A(t) and dividing by At gives:
N - l  N - 1

minJ  =  m in(y^ qT|s;| + Y"' rT|uj| +  p T|s^|) (4.8.26)
Si,Ui Si,Uj 'i=l i=0

This is a convex, piecewise linear cost function that can be transformed into a 

linear form by introducing slack variables Wij(i = 1, . . . ,  N, j  = 1, . . . ,  n) and 

Vik(i = 0, . . . ,  N  -  1, k = 1, . . . ,  nu) to give
N - l  N - l

min J  = min( qTw* + rTVj +  pTwjv) (4.8.27)
W W i,Vi • J  * Ji= 1 z=0

subject to
S{j ^  W{j

S{j ^  Wij

Uik < Vik (4.8.28)

'U'ik — Vik 

®i+l = Ad&i -(- BjVli

where j  and k denote the components of the state and input vectors respec­

tively. The cost function can be modified to minimize the difference between

the state and final state spf. For multiple vehicles, the cost function for the 
pth vehicle is given by

N - l  N - l

Jp = Y  qp ls^  ~ spf I +  Y  rp IM  +  Pp ISP^ ~~ SP/I (4.8.29)
i=l i=0

The overall linear optimization problem for Ny  vehicles becomes
N v  N v  N - l  N - l

min , Y ^ p  =  m i n  Y ^ Y  q p + Y  rp'vPi +  Pp WP^) (4.8.30)

subject to
p =  1 p — 1 1 = 1  1 = 0

s p i j  s p f j  5 ;  w p i j

~ S p i j  +  S p f j  <  W p i j

'Upik — Vpik (4.8.31)

Upik — Vpik

®p,i+l A pS pd  T  BpWpi 
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where spfj are the given final values of the j th state. In order to keep the

violation of constraints to a minimum we define another cost function that 

includes small variables m's of the soft constraints with proper adjustment of 

weights icrad, wco1 as follows:

To demonstrate the idea clearly, we first examine a simple case of one vehicle 

and one obstacle. Consider a radar with a short range of 7 km situated at 

(14,14). This circular range can be enclosed in a square region having ver­

tices (7, 7), (21,7), (7, 21), (21, 21). By doing this, the radar avoidance problem 

becomes an obstacle avoidance problem and we can apply the above formu­

lation. The vehicle moves with certain constraints. These constraints are on 

the velocity and acceleration. The minimum and maximum magnitudes of 

velocity with which the vehicle can move are 100 m/s and 300 m/s, respec­

tively. Similarly, the minimum and maximum accelerations are —10 m /s/s 

and 10 m/s/s, respectively. But for this case only the upper bounds for these 

constraints will be applied. The vehicle starts at (0,14) with speed 100m /s  

along the positive-x direction and ends at (30,14). When the time length is 

fixed at N  =  120, where N  is the total number of time steps and each step is 

of one second, then the path obtained as a solution of the MILP formulation 

is shown in Figure 4.1. The vehicle is unable to reach its destination within 

this time interval. The value of the cost using the cost function given in equa­

tion (4.8.30) is 3013492.086. The time taken by the solver to determine this 

optimal path is 35.5160 seconds. At this point by increasing N  iteratively, it 

was found that for N  = 130 the vehicle achieved its target as shown in Figure

mm17 (XU ~
p c i / ’ pqig p = l

N y  N q  N  4 N y  N  2

ip = mm
m d  m lin .„, £  E E O

'pqig p =  l  ■■''pcif’""pqig p - i  c = i  i - i  f - i  q = p + 1 i =  1 5 = 1q = p + 1 i =  1 5 = 1

(4.8.32)

So the overall cost function will be the combination of the objective function 

of (4.8.32) and the later developed (4.12.37), as follows:

mm mm
rr»yvm',m  —P*’ P*’ pet/’ pqig  p — 1 p i ’ V p i , m p c i f , " l ' p q i g  p = 1

(4.8.33)

4.9 Example 1
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4.2. A question that immediately comes to mind is why did the UAV adopt 

a route from below the obstacle. The answer is of course that the UAV could 

follow a route from above of the obstacle but due to the inclusion of the states 

in the cost function it adopted a route from below to minimize the cost. In 

this way not only do the states and control remain small but a unique solution 

is also obtained. The cost value for this is 2691453.035 which is smaller than 

the previous value but the computation time for this trajectory increases and 

is found to be 72.4680 seconds which is much higher (nearly double) than the 

simulation for N  = 120. The corresponding graphs for velocity and acceler-

Figure 4.1: Single vehicle single obstacle path for N  = 120 and without any 

constraints on the minimum velocity and acceleration

Figure 4.2: Single vehicle single obstacle path for N  = 130 and without any 

constraints on the minimum velocity and acceleration

ation are shown in Figures 4.3 and 4.4 respectively. From Figure 4.3, it can
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be seen that the speed of the vehicle for most of the time stays near to the 

maximum speed. For the fist 20 seconds, it almost increases linearly from 100 

m/s to 300 m/s and then from 118 seconds to 130 seconds it decreases linearly. 

The speed at the target point was found to be 203.4341ra/s. Figure 4.4 shows 

sudden variations in acceleration but all these variations in speed and acceler­

ation are within specified limits in spite of the fact that minimum constraints 

for these values have not been applied.

Figure 4.3: Single vehicle single obstacle speed map for N  =  130 and without 

any constraints on the minimum speed and acceleration

1T5

tifne(8]

Figure 4.4: Single vehicle single obstacle acceleration map for N  = 130 and 

without any constraints on the minimum speed and acceleration

In the next scenario two more short range SAM units are added which are 

located at (30,6) and (30,22). This will be helpful in seeing how much com­

plexity is added when the number of radars is increased. Again for this case,



the lower bounds on velocity and acceleration are ignored. These constraints 

involve integer variables which will make the problem hard. The path obtained 

by minimising the cost given by (4.8.30) and also that for minimum time is 

shown in Figure 4.5. Again for the minimum time objective, the simulation 

is performed iteratively each time changing the time window given by N  from 

some initial value until the destination is reached. The value of N  is found 

to be 155 seconds while the computation time and cost are 652.2340 seconds, 

2953218.281, respectively. Although the cost is almost the same as for one 

radar but the computation time increases enormously (almost 9 times). The 

speed map in Figure 4.6 shows that for this case the vehicle speed starts de­

creasing at nearly 73 seconds where the position is (15.8586,4.7793) which is a 

minimum point of the trajectory below the first obstacle. This indicates that 

the UAV prepares itself to pass though the narrow passage between the two 

following obstacles from the lower end point of the first obstacle. So in order 

to pass though this passage without violating the constraints, the UAV has to 

reduce its speed. Again at nearly 93 seconds, the speed starts increasing at a 

trajectory point of (20.6737,6.8219) which is the point that coincides with the 

right lower corner of the first obstacle. After that for the rest of the part of 

the trajectory, a similar variation in speed can be seen. On the other hand, 

the acceleration in Figure 4.7 shows sudden variations around 60 seconds but 

for the rest of the time it stays near to its maximum value. These variations 

occur when vehicle encounters the lower left corner of the first obstacle.

o 5 1510 20 25 30 35 40

Figure 4.5: Single vehicle three obstacles path for N  = 155 and without any 

constraints on the minimum velocity and acceleration
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Figure 4.6: Single vehicle three obstacles speed for N  = 155 and without any 

constraints on the minimum velocity and acceleration

Figure 4.7: Single vehicle three obstacles acceleration for N  = 155 and without 

any constraints on the minimum velocity and acceleration

4.10 MILP for Real Time Path Planning

The main difficulty in using MILP is the computation demand it requires and 

also we do not know the optimal planning horizon in advance. If there are 

more constraints, the process may be very slow even taking days to complete 

the optimization process. Hence for real time computation, a receding horizon 

approach can be used, in which the path is computed online by solving a MILP 

over a limited horizon at each time step. In this case, the path of the vehicle 

is composed of a sequence of locally optimal segments. At a certain time step, 

the MILP is solved for T  future time steps, where the length T  of the planning
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horizon is chosen as a function of the available computation resources. Solving 

this local MILP provides the input commands for the T  future time steps. 

However only a subset of these T  input commands is actually implemented. 

The process is then repeated and a new set of commands is developed for the 

next time window. Usually the applied subset is restricted to the first control 

input, such that a new set of input commands is calculated at each time step.

4.10.1 M odel Predictive Control or R eceding H orizon  

Control

Originally developed to meet the specialized control needs of power plants 

and petroleum refineries, Model Predictive Control (MPC) technology can 

now be found in a wide variety of application areas including chemicals, food 

processing, automotive, aerospace, metallurgy, and pulp and paper [83]. MPC 

is a control strategy that explicitly uses a model of the system in order to 

predict system behaviour. This is then used to find the best control signal 

possible by minimizing an objective function. There are several advantages of 

using MPC to control a UAV; some of them are listed below:

• The concept is equally applicable to single-input single-output (SISO) as 

well as multi-input multi-output (MIMO) systems.

• MPC can be applied to linear and nonlinear systems.

• It can handle the constraints in a systematic way during the controller 

design.

• The controller is designed at every sampling instant so disturbances can 

easily be dealt with.

• Explicit use of a model to predict the system output at future time 

instants (also called horizon).

• Obtaining a control signal by minimizing an objective function.

The MPC strategy can be compared to driving a car. The driver knows 

the desired reference trajectory for a finite horizon, and by taking the car
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Figure 4.8: Model Predictive Control Scheme

characteristic into account, he or she decides which control actions to take in 

order to follow the desired trajectory. Only the first control actions (using the 

accelerator, brakes and steering) are taken at each instant and the procedure 

is then repeated. This can be described mathematically in more detail by the 

following steps:

1. The future outputs for a determined horizon N, called the prediction 

horizon, are predicted at each instant t using the system model. These 

predicted outputs y(k+j\k) for j  = 1 ...  N  depend on x(k\k), the current 

state and on future control signals u(k +  j\k), j  = 0 . . .  N  — 1.

2. The set of future control signals is calculated by optimizing a criterion 

in order to keep the process as close as possible to a reference trajectory 

r(k + j\k). The criterion usually takes the form of a quadratic func­

tion of errors between the predicted output and the predicted reference 

trajectory. The control effort is also included in the objective function 

in most cases. An explicit solution can be obtained if the criterion is 

quadratic, the model is linear and there are no constraints, otherwise 

some optimization method like C P L E X  must be used.

3. The control signal u(k\k) is sent to the system while the control signals 

u(k+j\k),j = 1. . .  N —l are rejected and step 1 is repeated with all states 

brought up to date. As the horizon moves forward and new information
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becomes available, the u(k + l|fc + 1) calculated at the next time step 

will be different from u(k + l\k).

The basic structure of MPC is shown in Figure 4.8. If there is no model mis­

match i.e. the model is identical to the process and there are no disturbances 

and constraints, the process will track the reference trajectory on the sampling 

instants.

4.10.2 Possible Infeasibility w ith R eceding H orizon

When using the receding horizon approach, the problems of non-existence of 

feasible solutions may occur during the optimization procedure even though, 

in theory there are solutions to the whole problem. This is because the look 

ahead horizon is limited. The vehicle can be led to a critical state for which 

MILP has no solution at the next iteration. In other words, a feasible solution 

for future T  time steps at time step i does not guarantee a feasible MILP at 

time step i + 1. This can be further explained for the situation in which at 

the last time step of the planning horizon, the vehicle is moving at maximum 

speed, while its position is just outside an obstacle that has not been spotted 

yet. Since the position of the vehicle satisfies the anti-collision constraints, 

this situation corresponds to a feasible solution of the MILP. At the next time 

step, the obstacle is identified and the vehicle needs to brake or turn which 

however exceeds the constraints on acceleration or on the available manoeuvre 

space. Hence, a collision with the obstacle will result and MILP is unable to 

find a feasible solution in the next time step. Increasing the horizon will ease 

this kind of situation, but will raise computational demand.

4.10.3 Safe Feasible M echanism

In the radar/SAM exposure minimization problem, there are no physical ob­

stacles. Rather we have radars of various detection ranges. We may have, 

say, three types: a long range SAM unit with a nominal range of 65 km, a 

medium range SAM unit (25 km range) and a short range SAM unit (7 km 

range). We can approximately model these circular regions with squares of
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length equal to the diameters of these circles. These radar ranges can overlap 

with one another. So if the path is totally blocked by these overlapping radars 

or due to the use of the receding horizon approach with hard constraints in

(4.4.10), (4.3.5) and the cost (4.8.30), MILP may lead to infeasible solutions. 

But by using the soft constraints (4.3.7), (4.4.11) and the cost (4.8.33), we can 

always get a feasible solution. These violations are kept to a minimum by the 

use of the small variables (the m's) in the cost. If further reduction of these 

violations is required, we may model the threats as squares of flexible size, 

slightly greater than the actual fitted square. This increment can be taken as 

ten percent of the actual square. In this way, a vehicle can enter the radar 

zone but have to follow the safest possible path by optimizing this flexibility 

to a minimum.

4.11 Example 2

The scenario considered here has 10 radars shown as circles in Figure 4.9. 

Five radars are of medium range (25 km) centred at (100,100), (125,65), 

(125,135), (50,155), (50,45) while five radars are of short range (7 km) centred 

at (42,102), (167,182), (167,127), (167,37), (167,77). The initial positions of 

UAV1, UAV2, UAV3 are (10,10), (10,120), (10,180) respectively. The three 

UAVs start at the same time and move towards the common goal at (170,100) 

with the same speed of 200 m/s making an angle of 40° with the horizontal. In 

order to apply the previous formulation, the radars are modelled as rectangular 

flexible constraints enclosing the circular range. In the finite receding horizon 

scheme to prevent infeasibility, the vehicles can enter the threat zone keeping 

violations at a minimum. Therefore the modified formulation forces the UAV 

to leave the threat zone as soon as possible. The maximum violation will occur 

when the vehicle enters the threat zone at maximum speed perpendicular to 

the rectangular boundary at a point where this boundary line touches the 

circular boundary region. In such a situation, there is a chance that a vehicle 

may travel deep inside the threat zone before turning away. To reduce this 

deep penetration, an additional safety measure was taken by extending the

94



180 

160 

140 

120 

I  100 

80 

60 

40 

20 

0
0 20 40 60 80 100 120 140 160 180xflun]

Figure 4.9: Optimal trajectories calculated using modified finite receding hori­

zon control for three UAVs moving towards the same target with upper and 

lower bounds on speed and acceleration

rectangular boundary say ten percent. This is shown clearly in Figure 4.9 

by dotted lines enclosing the region. The finite horizon T  was chosen as 10 

seconds which means at each iteration MILP finds the optimized solution for 

10 seconds and hence a control sequence for the next 10 seconds is obtained 

but only the first current control input is implemented. The parameters used 

in the simulation are shown in Table 4.1. The parameters vmin, vmax, Umax, 

dc°l, d°°l were kept fixed. The other parameters are tuned to get the desired 

response.

400 1000600

(a) Speed for UAV1 (b) Acceleration for UAV1

Figure 4.10: Speed and acceleration for UAV1

Trajectories obtained by solving this centralized problem are shown in Fig-
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Parameter Value Parameter Value
T

% [i,i, 1, 1] Trp [i,i]
Tp i [i,i, i , i] wobs

OO

W c°l o o d f 1000

d f 1000 Qco1 800,000

t tobs 800,000 nv 900

nu 50 Nvc 20

Nvc 20 N£ 20

V*max 10 St 1

Vmin 100 Vmax 300

Table 4.1: Parameters used in the simulation

(a) Speed for UAV2 (b) Acceleration for UAV2

Figure 4.11: Speed and acceleration for UAV2

ure 4.9 and the velocity and acceleration profiles for UAV1, UAV2, UAV3 are 

illustrated in Figures (4.10), (4.11), (4.12) respectively. The simulation was 

performed on a machine with a CPU of 2.66 GHz and 1.048 Gb of RAM. 

The computation time for the full simulation is 27844 seconds (the time when 

the last vehicle, which is UAV1, reaches the destination) and total cost is 

1.1899e +  013. The simulation times to destination for UAV2 and UAV3 are 

27595 and 6386.3 seconds, respectively. The actual times taken by UAV1, 

UAV2, UAV3 to move on these trajectories are 1286, 1216, 856 seconds, re­

spectively. By comparing these simulation and actual times, it is concluded 

that the simulation times are very high for use in online trajectory calculations.
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(a) Speed for UAV3 (b) Acceleration for UAV3

Figure 4.12: Speed and acceleration for UAV3

It will be interesting to analyse the time taken to solve this finite receding hori­

zon MILP problem at each time step. This is shown in Figure (4.14) where the 

peak variations in the MILP solution time are limited to the interval from 1030 

to 1102 seconds where the maximum time taken is 5473 seconds, which occurs 

at the iteration time of 1036 seconds and at this time the trajectory points 

for UAV1 and UAV2 are shown in Figure (4.13). These points occur near the 

imaginary boundary of the short range radar which is the last obstacle before 

reaching the destination. It can be seen in Figure (4.13) that at this time 

UAV1 takes a full turn to correct its direction to reach the goal immediately 

after emerging out from the imaginary boundary of the short range obstacle. 

So in order to take the maximum turn, UAV1 has to reduce its speed to a 

minimum. On the other hand, at this time instant UAV2 is traveling exactly 

on the imaginary boundary with minimum speed. So the minimum speed con­

straint is active at the 1036 time step for both UAV1 and UAV2 and as this 

constraint is non convex involving integer variables, which make the problem 

hard. For other points of the peak simulation time interval (1030 — 1102) sec­

onds, the minimum velocity constraint is active for either UAV1 or UAV2 but 

not for both. Due to these huge variations in solution time for that particular 

interval, the variations for other parts of the Figure 4.14 are not visible. For 

this purpose Figures 4.15(a) and 4.15(b) are provided.
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Figure 4.13: Points on the trajectory with maximum solution time for both 

UAV1 and UAV2
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Figure 4.14: Time taken by MILP to solve the problem at each time step for 

full simulation
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a

(a) For time values from 0 to (b) For time values from 1103

1029 seconds to 1286 seconds

Figure 4.15: Time taken by MILP to solve the problem at each time step for 

two different time ranges

1

(a) UAV1 (b) UAV2

(c) UAV2

Figure 4.16: Turning rates for UAV1, UAV2 and UAV3

The turning or heading rate for UAV1, UAV2 and UAV3 are shown in 

Figure 4.16.

99



4.12 M odeling the Risk Area with Dynam ical 

Boundaries

In the previous sections, we modelled the risk area with soft rectangular bound­

aries parallel to the coordinate axes and softness parameters were included in 

the cost function with fixed weights. The reason of taking the soft boundaries 

is described in those sections. From simulation, it has been observed that 

sometimes near the imaginary boundary of the risk area a UAV will loiter for 

a long time. This is because of the turning of a UAV off a wall again and again 

without finding a path to direct it towards the target either due to the lim­

ited horizon or due to the fixed weights on the softness parameters in the cost 

function described in section 4.8. This problem can be fixed by modelling the

PS;

>rad

p r a d '

Figure 4.17: Dynamical boundaries for risk area

risk area with soft dynamic rectangular boundaries. At each simulation time 

step, two of the boundaries for each radar are taken parallel to the line of sight 

of the current point to the target while the other two boundaries are taken 

perpendicular to the line of sight as shown in Figure 4.17. Also the weights on 

the softness parameters in the auxiliary cost function can be chosen dynami­

cally according to the distance of the current point to the target so that when 

a UAV is near to the boundary of the detected SAM unit, it will be directed 

towards the target by sliding along the walls of the boundary due to these 

different weights. The range of the radar warning receivers (RWR) mounted 

onboard on the UAV is assumed slightly higher than the range of the of the 

radar as defined in the design challenge of the GARTEUR Flight Mechanics
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Action Group 14 [36]. This assumption is very crude and does not reflect the 

real situation. So in this section, it is assumed that a SAM site is considered 

to be known in position and range when its range comes within a distance of 

Vmax * T  to the UAV, where T  is the time horizon and vmax is the maximum 

velocity of the UAV. Consider a radar situated at a point Pr{xr,yr) having 

nominal range Rr enclosed in a rectangular boundary as shown in Figure 4.17. 

The position of the pth UAV at the current simulation time step is (a;£, yjj) 

and (icjj, yf,) is the target point for this vehicle. Therefore the equations of the 

boundary lines, shown bold in Figure 4.17 of a radar situated at (xrrad,yrrad), 

which are parallel to the line of sight are

(vl -  ycP)(xp -  -  (4  -  xl)(yp -  y^)  = ± R r̂ d cp (4.12.34)

Similarly, the equation of the boundary lines perpendicular to the line of sight 

are

(4  -  xcp)(xp -  x'-f) +  (yf -  y;)(yp -  y;°d) =  ± B ^ d ;  (4.12.35)

where dp = J { x cp — xp)2 + (yrp — y\, )1 is the distance of the current point of the

UAV from the target. In the situation of overlapped obstacles, the receding 

horizon algorithm may not work out a feasible solution because of such for­

mulated hard constraints. For this consideration, the hard constraints can be 

transformed to soft constraints by the introduction of small variables. At each 

time step i the position (xt, yi) of the vehicle must lie in an area outside of the 

risk area. If their are Ny vehicles and Nr  radar sites, then the general mixed 

integer linear form of the radar avoidance constraints [54] can be written as: 

Mp G [1,...,  AV],Vr G [1,..., Afe],Vz G [1,... ,N] :

[vt -  ycP)(xPi - x?d) - (4 ~ 4)(v* ~ yrrad)
<

(vl -  ycP)(xpi -  xrul) -  (4  ~ xD̂ Vpi -  y?d)

(4  ~ xl)(xpi -  x7 d) + (vl -  yP)(ypi -  v?d)
<-%K°im'g2 + Qr°dv£3
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( x fp  -  X p ) ( x p i  -  x rr a d ) + ( y f  -  ycp){ypi -  yrrad)
j c  'D 'rad^.rad o r a d i r a d  

— p r  ^ p c i 2 pgiA

£ ^ < 3
fc=l

m™'' < 1  (4.12.36)

where ra^® -m™f2 are small decision variables between 0 and 1. The idea is to 

increase these variables to 1 by incorporating them into the auxiliary objective 

(cost) function. The problem formulation returns to the original setting when

these m's are 1. If it is not possible to reduce them to 1, i.e. the original

hard constraints cannot be satisfied, the algorithm will have the flexibility to 

generate solutions which violate these constraints as little as possible.

As discussed previously, one way to increase solvability of the problem while 

keeping the violation of constraints to a minimum is to soften the constraints 

by including small variables (m's) in the cost function. Prom this and the 

above discussion, the second component of the cost function will be modified 

and is
N v  N v  N v  N  2

J S t -  £ Jp = ro, “ ^  £ ("'“< £  £ £ m&
p d f '  p q i g  p= i  p c i f '  p q i g  p — i  q= p+ 1 g— 1

2 N r  N  4

- £ < d£ £ £ m^ )  (4.12.37)
h = l  c —1 i =  1 / =  1

So the overall objective function is Jp +  Jp for the pth vehicle. In equation 

(4.12.37), the weights (w[ad = a x dcp, wr2ad = (3 x dcp) are selected dynamically 

according to the distance of the current position of the UAV from the target 

and the constant a is given a smaller value than (3. To avoid collision, the 

weight wcd is given a very large value. The simulation for one vehicle case

was performed for 100 randomly created scenarios consisting of short range (7

km) and medium range (25 km) SAM units distributed over a 200 km x 200 km 

area. The random parameters are number, location and strength of the SAM 

units. The number of the SAM units were limited between 5 and 10. Since 

the focus was to make the technique useful for real time computation so an 

upper limit on computation time or optimisation process for CPLEX was set to 

1.5 seconds. The justification for this is that large and difficult problems may
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Parameter Value Parameter Value
T

% [1,1,1,1] Trp [1,1]

p; [1,1,1,1] w rad 3 x dp
W c°l 1010 d f 1000

< 1000 nc°l 8 x 105

Qrad 8 x 1011 nv 9000

nu 50 N vc 30

N vc 30 N q 30

V'max 10 wr2ad 6 x

Vm in 100 V m ax 300

Table 4.2: Parameters used in the simulation using dynamic boundary formu­

lation

take hours or days to prove for optimality and the optimal solution might have 

been obtained at very early stages of calculation. The parameters used in all 

simulations are summarised in Table 4.2. The measured quantities are success 

rate, peak computation time (maximum time to compute a way point), peak 

risk, average risk and total flight length. The results are shown in Figures 4.18 

and 4.19. The horizon T  is chosen as 5 seconds, i.e, the trajectory is evaluated 

for five time steps of 1 seconds duration each.

(a) Peak computation time (b) Total computation time

Figure 4.18: Peak and total computation time for 100 randomly generated 

data sets
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(a) Average risk (b) Total flight time

Figure 4.19: Average risk and total flight time for 100 randomly generated 

data sets

The success rate was 99% i.e, the solution was obtained for 99 random 

scenarios. For 80th scenario, the solution was not obtained within set time 

limits. Figure 4.18(a) shows a little violation of the set time limit for a few 

scenarios. The cause for these violations are not clear. This extra delay might 

be due to the internal setting of the commercially available solver CPLEX while 

communicating with AMPL/CPLEX from within Matlab environment. The 

risk was evaluated with the nonlinear probabilistic risk model described in the 

next chapter. As shown in Figure 4.19(a), the average risk for each trajectory 

while travelling to the selected path for most of the scenarios is reasonable 

except for the 41s* and 23rd scenarios. The average risk for 41s* scenario is 

16%. The highest values of the total distance travelled, total computation 

time, total flight time and peak risk occurs at 24th scenario. This is due to 

the very high risk experienced by the UAV as it moves towards the target and 

due to that it starts loitering in order to find a safe path. This formulation is 

applied to the same multi-vehicle scenario as discussed in Example 2 and the 

simulation results are presented in Figure 4.20. From this Figure, we can see 

that the violations of the dangerous zones are very small when compared to 

Figure 4.9 and also it removes long time loitering of a UAV with the boundary. 

In this exercise the horizon T  is chosen as 25 seconds, that is, the trajectory 

is evaluated for five time steps of 5 seconds duration each but only the first 

control input is implemented. The collision avoidance can be seen in Figure
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Figure 4.20: A multi-vehicle scenario and trajectories for three UAVs using 

dynamic boundary formulation
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Figure 4.21: Distances between the UAVs during flight 

4.21 which shows the distances between each two vehicles at different times.

4.13 Conclusion

A mixed integer linear problem was formulated for different constraints and 

applied to different case study examples. Using MILP, however, to design a 

whole trajectory with a planning horizon fixed at the goal is very difficult to 

perform in real time because the computational effort required grows rapidly 

with problem size. It was shown that this limitation can be avoided by using
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a receding planning horizon in which MILP is used to form a shorter plan that 

extends towards the goal but does not necessarily reach it. The performance 

of a RHC strongly depends on the proper evaluation of the weights w[ad and 

W2ad. Care must be taken in selecting these weights when the feasibility of 

the path beyond the plan must be ensured. Robustness of receding horizon 

control against infeasibility is guaranteed by modelling the constraints as soft. 

The efficiency of the technique depends upon proper modelling of the mixed 

linear constraint, on the time horizon and also on proper adjustment of the 

weights on the pairs of the dynamic boundaries described in Section 4.12. The 

dynamic boundaries are used because of the turning of a UAV off a wall again 

and again without finding a path to direct it towards the target either due to 

the limited horizon or due to the fixed weights on the softness parameters in 

the cost function described in Section 4.8. The optimality can be increased 

by increasing the time window but by doing this the computational load will 

increase. A practical compromise between optimality and computational load 

is essential.

Due to the inherent complexity and probabilistic nature of the problem, a 

probabilistic technique will be presented in the next chapter that will model 

a nonlinear performance index to incorporate coupling between different pa­

rameters.
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Chapter 5 

A Probabilistic Framework for 

Path Planning of UAVs

5.1 Introduction

A three dimensional probabilistic approach for the path planning of UAVs is 

presented. This approach to local path planning is proposed for the three main 

reasons: first, the inevitable uncertainty of the measurements from the sensors; 

second, the intrinsic uncertainty of an unknown environment; and finally, the 

structure of reasoning of any intelligent system is naturally probabilistic. The 

novelty of the algorithm lies in its real time applicability due to a very low 

computational load in spite of the fact that it finds a path in three dimensions. 

The paths are locally optimal and are feasible for the UAV to follow by keeping 

the turn angle within certain maximum limits. Furthermore, vehicle collisions 

are avoided by maintaining a minimum distance between vehicles. Also UAVs 

are prevented flying at very low altitudes because of the danger of crashing 

into ground objects. Finally, since each UAV has limited fuel, a compromise 

can be made between risk and fuel consumption by limiting height and search 

angle.
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5.2 Problem Formulation

5.2.1 Environment

The environment consists of a number of surface to air missiles (SAMs). A 

SAM fire unit is assumed to consist of one radar used for both surveillance and 

tracking and a number of missile launchers. The surveillance/tracking radar 

has a nominal detection range against UAVs. The fire units are integrated to 

form an integrated air defence system. The radar can be switched off, if an 

incoming anti-radiation missile is detected. The air defence units are randomly 

deployed in the operational area. Some of the surveillance radars are on alert 

using continuous transmission, while the other air defence units remain silent 

and serve as pop-up threats.

The UAVs fly in three dimensions with limitations on speed, acceleration 

and duration of flight. They are equipped with a radar warning receiver 

(RWR), which gives a bearing on an emitting radar with certain accuracy. 

The RWR has a range greater than the radar’s detection range. To make the 

problem simpler, it is first assumed that minimum ideal communication exists 

between UAVs and each UAV calculates its own path using the information 

received from other UAVs and thus we have a decentralized control problem.

The problem is to find the safest path for a UAV from one point to another. 

Suppose the UAVs move with constant speed and p7(x, y, z) represents the risk 

at position (x , y , z) faced by the I th UAV due to the SAMs. The safest path in 

going from point P0 to Pt is a sequence of points in 3D obtained by minimizing 

the cost function
pPT

J = P7(z,2/,2)d£ (5.2.1)
J P q

over all points (x, y, z).

5.2.2 Risk M odelling

The overall UAV risk function is complicated due to the influence of differ­

ent factors and can be modelled adequately in a probabilistic frame work as 

described below.
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Probability  of H it For each defence unit (radar and SAM) aimed at a 

UAV there is a hit probability. Within the given range of SAM, this probability 

depends on the position of the UAV when the missile reaches it. This can be 

taken as a function of height (h) and distance (d) and is given by

pk(h, d) =(1 -  softStep(d, Rs,m,h sfcl)).softStep(d, 0.1 sk2)
(5.2.2)

.softStep(arcsin(/i/d), 7 , Sk3)

where

softStep(z, xq, s) =  i  ( 1 +  X X° = = ]  (5.2.3)
1 \  s /s2 +  [x -  x0)2J

7 is the lower coverage angle of the radar and s^ is the softness of the step

function as shown in the Figure 5.1. Rs,m,i is the range of the missile which

may be short, medium or long range. The hit probability for a long range

SAM (R  = 65 km) is shown in Figure 5.2 for s^  =  12, Sk2 = 2.4, Sk3 = 0.1,

with numbers on different contours indicating the probability of hit.

x

Figure 5.1: The function softStep(x,5,s) with s = 0.5,1,2

Probability  of D estruction If a UAV is within the reach of M  SAM 

sites, the hit probability is increased by possible cooperation such as alter­

nating radar transmission or choice of launch site. This effect is modelled by 

evaluating the hit probability of all covering SAM sites p£(/i, d) and using the 

relation
M

P d e s ( h , d) = 1 -  J | ( l  -  pj(/i, d)) (5.2.4)
3 = 1
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Figure 5.2: Hit probability for long range SAM

Probability  of C rash When a UAV flies at very low altitude, there is a 

possibility of crashing with ground objects, like trees or hills. So in order to 

prevent all UAVs from flying around at zero altitude, this can be modelled as 

a crash probability by

P c r ( h )  = 1 — SoftStep( h ,  h e r , S c r )  (5.2.5)

where h c r  is the nominal critical height and each UAV is forced to fly above 

this height for safety reasons, is the softness parameter of the above prob­

ability function which can be tuned according to the situation. This softness 

parameter is used to relax or strictly follow the critical height. If there is a 

hilly area, its value may be low, and in valleys it may have higher values to 

increase the softness because in this situation there may be objects like trees 

and buildings which may not be very high.

P robability  of Survival 

Due to small sizes, UAVs have limited fuel capacity. Typically, flight times of 

UAVs are 30 (min). The risk decreases with increasing height after a critical 

height but on the hand fuel decreases. So a compromise can be made between 

risk and fuel consumption by limiting the height.This effect can be modeled 

as survival probability psur similar to the crash probability.

Probability  of Collision 

When the mission involves a group of UAVs, risk of collision with other vehicles
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is a function of the distance of the vehicle from other UAVs and can be modeled 

as

P c o { D )  = 1 -  softStep(.D, d c o ,  sco) (5.2.6)

Where d is the safety distance to avoid collision.

P robability  of Risk The overall risk probability can be calculated due to 

all the above factors as

j/(m) = i -  [a -PcOjT1 -  pi) l b 1 -p»)i <5-2-7)
3

Where I  represent the index of that particular UAV on which these calculations 

are being carried out. Since each vehicle has its own computing capabilities 

and decides its own path and this makes the problem as decentralized. The 

crash probability is shown in Figure 5.3.

Figure 5.3: Different crash probabilities with htree — 20 and s = 1,2,3

5.3 Probabilistic Local M inimization

The algorithm is based upon a point search for local minima on a disc whose 

centre passes through the line of sight of the target from the current point and 

which is also perpendicular to that line. The radius of the disc is decided by 

the maximum search angle and which in turn can be decided by the maximum 

turn angle. The disc is divided into a suitable number of lines all passing 

through its centre as shown in Figure 5.4 below and local minima points are
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searched for along these lines. The distance of the search disc from the current 

point is chosen according to the type and range of the search sensor mounted 

on the UAV and all points on the disc should be within the range of the search 

sensors. The search angle could be different for different search lines in the 

disk. This is because the maximum climb rate may be different in different 

directions. To find the coordinates of each point on the disc, it is necessary to 

specify a known reference line lying in the disc and passing through its centre. 

The reference line (RL) is selected to be parallel to the horizontal plane. For 

the two dimensional case, the search is limited to the reference line only but 

in three dimensions, we have to search the whole disc along various lines. To 

reduce the computational load, we can also limit our search to the reference 

line only, which finds a point in 3D in the inclined plane containing the line of 

sight and reference line and which changes with the line of sight as the search 

progresses. But since a minimum point can be found at a place which is not 

along the reference line, so for this purpose other lines are also searched. In 

the absence of the other searches, although the UAV will find a stealthy path 

but is limited to the reference line only.

Consider such a disc having its centre at the point Pc(xc , yc, zc) which is at 

a distance h from the current point Pi(xi, yi} Zi) on the line of sight of target 

having coordinates Pt {x t , Vt , %t ) as shown in Figure 5.4. The equation of the 

plane containing the disc and P ( x , y, z)  representing any point on the plane is 

given by

P^Pt -PcP = 0

=> (xT -  Xi)(x -  xc) +  (yT -  y i)(y -  yc) +  (zT -  Zi)(z -  zc) =  0

=> a(x  -  xc) +  b(y -  yc) + c(z -  z c) =  0 (5.3.8)

where

a = (xT -  Xi), b = (;yT - y j ,  c =  (zT -  z {) (5.3.9)

are the direction ratios of the line of sight of the target. Consider the j th

search line in the search disc making an angle of 6j with the reference line 

having direction cosines l,m, 0. Let P ( x , y , z )  be the point on the line at a 

distance r from Pc where r is less than or equal to Rj (the radius of the j th
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search line). Then we can write

( x - x c)l + ( y - y c)m + ( z - z c )Q a1

J v 'K * -  O )2 +  (» -  Vcf  +  (* -  * c )V «2 +  m2 +  O2

But

(x -  xc)2 +  (y -  yc)2 +  (x -  2C)2 =  r2 (5.3.11)

and

l2 + m2 = l (5.3.12)

Hence, equation (5.3.10) can be written as

(x — xc)l + (2/ — 2/c)^ =  r cos 6j (5.3.13)

Horizontal 
reference line

VJ

Figure 5.4: Search Disk

l.a + m.b = 0 (5.3.14)

By solving equations (5.3.12) and (5.3.14), we will get two sets of values rep­

resenting two parallel unit vectors in opposite directions. Select one set as

. b a
I = ---- . , m = —= = = , n =  0

V  a? + b2 Va2 + 62
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Figure 5.5: Local minimisation and maximum turn angle 

Hence, equation (5.3.13) becomes

—b(x — xc) +  a(y — yc) =  r cos OjVa2 +  b2 (5.3.15)

Solving equations (5.3.8) and (5.3.15) for x  — xc and y  — yc in terms of z  — z c, 

we have

x ~ x‘ = -  - j s h w rcos,ei ( 5 - 3 - 1 6 )

v - y'  = - t f T v { z - z' ) + V t h w rC086*(5'3'17)
Putting these values in equation (5.3.11), the values of ( z — z c ) can be calculated 

as
J a 2 4- b2

z - z‘ = ± ^ T W T  (5-3-18)
So there will be two points Pl(^l? Vl -, zl) and Pr (x r , yR, z r )  on either sides of 

the search line which are at a distance r  from the point Pc and can written in 

the form
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X i  =  x c — r d x  (X r  = xc +  r d x )

yL =  yc +  r d y  ( y R  = yc ~ r d y ) (5.3.19)

Zl  =  z c +  r d z  (z R  =  z c -  r d z )

where

b ac . .dx =  , ....... — cos H—  ......  . , =  sin 07-
y/a2 +  IP y/a2 +  b2y/a2 +  b2 +  c2

=  { 5 - 3 ' 2 0 )

y/a2 + V2 . 
dz =  . sin 6j

y/a2 + b2 + c2

For a line in the disc, the search is initialized from the point Pc and which goes

along the line with equal small steps. The line is also limited by maximum

search angle ipj from both left and right sides. When a local minimum point 

Pm(Xm,ym,zm) is found after searching all lines, the UAV will move to that

direction by a distance h. From simulation, it has been observed that by

moving exactly to the local minimum point along the chosen safe direction, 

the vehicle may find itself in a danger zone in the next iteration. That is, 

although the point is safe, it may be very near to the threat, so it is better 

to cover a shorter distance (in our case h) to leave a safety margin. The next 

point of the path can be calculated as

O P i+1 = OPi  + hhm

where hm is the unit vector in the direction of the local minima Pm(xm, ym-, zm) 

from point Pi and is calculated by

^    \Xm X{ , ym ?/j, Zm ZiJ

y j ( x m Xi)2 -f- (ym {Zm Z{)2

In scalar form, the next decided point to move can be written as

OCm.
y/(xm Xi)2 T (ym y i T (zm Zi)2

^  Vi + k Vi*™ ~ XiY + ( L  -  Vif +  (4 , -  ^i)2 (5'3'21)
, Zm. ZiZi+i = Zi +  h-

y j ( x m Xi)2 T (y m  yi )^ T ( z m  Zi)2
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The process of local minimization for the case of a circular disc and the strong 

dependence of the maximum turn angle on the search angle can be seen from 

Figure 5.5.

From Figure 5.5, the maximum turn angle (3 is given by

/3 = ZCBG = 2^ + 0 (5.3.22)

Also
a BD ABsinjp hsin'ip

tan = A T - A D  = AT  — AB  cos ip = d -h c o s ip

(3 = 2ijj +  arctan (5.3.23)
a — h cos ip

where h is the forward step size and d is the distance of the current point 

from the destination T. For constant h and if), the maximum turn angle only 

depends on d. When d is very large, then tan# —► 0 ==> ^ —> 0 ==̂ /5 —̂ 2ip.

On the other hand f3 goes on increasing when a UAV approaches its targets.

Suppose now that we want to find the optimal path between two points Pq 

and Pt in 3D space.

5.3.1 A lgorithm  Inputs

• Range of the rectangular operational area in terms of minimum and 

maximum values of the x ,y and z  coordinates.

• Radar (threat) locations in terms of x, y  and z  coordinates.

• Strength of threats e.g., short, medium and long range missile

• Starting and target points P0 and Pt respectively.

• Risk threshold a. This threshold is in the sense that the risk evaluated 

at some point due to all radar sites using relation (5.2.7) is less than 

this value. The UAV is then considered to be in a safe region and one 

would like to continue in the same direction without searching the disk 

at that point. This user given value can be used to adjust the tolerable 

risk one can afford. By decreasing this value, very long but safe paths
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result; where as increasing it gives short dangerous paths. Hence, this 

parameter serves as a compromise between threat avoidance and path 

length (fuel consumption).

• Forward step size h and lateral step angle Sip. The forward step size 

is used to move in the selected direction while the lateral step angle is 

employed for search purposes along the lines in small steps.

• A vector [0j]f^“x of search directions

• A vector [ipj]JP lx of maximum angles of search along each search line 

starting from a point on the line of sight of the target at a forward step 

size distance and then moving on either side of that point for each line. 

The angles should be less than 90° because otherwise the vehicle might 

then divert from its path. A longer but safer path results by choosing a 

higher value of these angles and vice versa

• Tolerance is used to terminate the algorithm. When the UAV is near to 

the target, then instead of converging, it begins to loiter. So this limit is 

set to avoid this phenomenon. When the vehicle is within this tolerance, 

then it is assumed that the target is achieved.

5.3.2 Algorithm  D escription

Step 1 Initialize the path vector with starting point and declare it the current 

point and set the indices i = 1, j  = 1, dip = Sip.

Step 2 Find the distance \J(xp — Xi)2 +  (yT — yi)2 +  (zT — Zi)2 of the current 

point to the target. If this distance is less than the tolerance limit, go to 

last Step 10. Otherwise go to next step.

Step 3 Find the direction ratios a, b, c of the line of sight of the target using 

(5.3.9).

Step 4 Find a point Pc on the line of sight at a distance h from the current 

point Pi using (5.3.21) (Pm should be replaced by Pp) and calculate the 

risk value p c at this point using the relation (5.2.7).
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Step 5 If this value of the risk probability is less than the threshold a , then 

there is no need to worry about the safety of this point. Therefore add 

the point to the list, set i =  i +  1 and go to Step 3. Otherwise, declare 

it to be an expected point of the optimal path by assigning it to a point 

Pe and go to the next step.

Step 6 Set r = h tan dip and find two points Pl and Pr on the left and right 

side respectively of the point Pc at a search angle Sip along the j th search 

line which makes an angle 9j with the reference line using (5.3.20) and 

(5.3.19). Find the risk probabilities p l  and p r  at these points using the 

relation (5.2.7).

Step 7 If the risk pe is less than or equal to the risks P l  and P r , then go to 

step 10. Otherwise go to the next step.

Step 8 If the risk probability p l  (p r ) is less than the risk pe and also it is

less than or equal to the risk pr (p l ), then P l  (Pr)  is the minimal risk

point among these points and there is a chance of getting a further low 

risk point on the left (right) side. Repeat the following:

xe = xL (xe = xR)

Ve = VL (Ve = Vr )

Ze =  ZL (ze = Zr)

dip = dip + 5ip 

r = h tan dip 

x l  = x l  — rdx ( x r  = x r  -f rdx)

VL = yL + rdy (yR = yR -  rdy)

ZL = zL + rdz (zR = Zr -  rdz)

until one of the following occurs:

• the search angle exceeds its maximum value which means dip > ip

• a local minimum is found which means risk pe < risk Pl (pr)
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Step 9 If j  < jmax) then assign point Pe to Pj and the risk pe to pj and set 

j  = j  -h i ,  d'tp = 8ip and go to step 6. Otherwise find the minimum 

risk point Pm{xm,yrn̂ zrn) on the disk by comparing the minimum risk 

Pj found from all the search lines. Set i = i +  1 and find new safe path 

point using (5.3.21). Add this point to the path list and also set j  =  1, 

dip = Sip. Go to Step 2

Step 10 Output the result in the form of

• Optimal path which consists of way points.

• Total and average risk on this path

5.4 Simulation Results

The example scenario used here consists of 23 radar threats scattered in a 

300 km x 300 km rectangular region of the xy-plane. The radars are considered 

to be medium range SAM units with a range varying from 15 km to 35 km. 

Table 5.1 shows their positions and ranges. For ease of demonstration, the 

approach will first be applied to a problem of finding a path in two dimensions 

and later it will be extended to the three dimensional case. For this purpose a 

plane parallel to the xy- plane at a height of 10 km was selected. The starting 

point of the UAV is (10,100,10) and the destination is (250,240,10). The 

parameters of maximum lateral search angle, lateral search angle step, path 

step, and stopping tolerance were first taken as fixed with values of are 60°, 

5.7°, 1 km and 2 km respectively. The risk threshold parameter was varied 

by taking values 0.001,0.01,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1. Figure 5.6 

shows three different paths obtained for three different values of the threshold 

parameter a. Contours around each threat show different risk levels varying 

from 0.1 to 0.9 with the outer most showing a hit probability of 0.1 and the 

inner most a value of 0.9. By increasing the value of the risk threshold a the 

path becomes shorter and shorter and for a = 1 it becomes a straight line. 

The variation of distance covered and average risk with threshold can be seen 

in Figure 5.7 and 5.8, respectively.
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X(km) Y(km) Z(km) Range(km)

142.00 270.84 0 15

135.32 241.36 0 20

248.66 49.88 0 25

118.17 156.23 0 25

215.44 170.76 0 30

170.00 140.00 0 20

26.32 133.05 0 30

109.89 90.76 0 35

230.00 120.00 0 20

284.93 167.38 0 15

4.27 178.85 0 15

244.86 293.13 0 20

66.57 211.11 0 20

156.62 279.87 0 20

214.01 68.41 0 25

134.89 51.66 0 25

180.00 20.00 0 30

220.00 230.00 0 30

70.00 130.00 0 30

80.00 260.00 0 25

166.00 190.00 0 35

280.00 80.00 0 35

60.00 30.00 0 15

Table 5.1: Radars locations and their ranges

The target assignment aspects of the algorithm can be explored by visiting 

more than one target in some specific order. Consider a UAV which starts 

at a position (250,240,10) and intends to visit a set of targets (110,270,10), 

(260,200,10), (213,38,10), (130,160,10). We will label these points in the 

order given as 1,2,3,4 respectively. We are interested in finding a path to
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Figure 5.6: Paths obtained for thresholds, a  = 0.01,0.5,1

? 3 6 0

260
0.2 0.3

Risk threshold

Figure 5.7: Variation of distance covered with threshold

visit these targets and the effect on the path and other parameters of different 

sequences. The results are summarized in Table 5.2 and the paths for fire 

target sequeces are shown in Figures 5.9 to 5.13. It is interesting to note that 

in the first order of visits when the vehicle is on its way to visit the second 

target after visiting first target, then at one time it comes within the range 

of three SAM units. Sometimes this situation cannot be avoided and one way 

to minimize the risk to a UAV during such situations is to pass as quickly as 

possible with maximum speed.
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Figure 5.8: Variation of Average Risk with threshold

Order Targets Distance Covered (km) Average Risk (%)

1 1 2 3 4 924 19.48

2 4 1 2 3 767 23.52

3 1 4 3 2 838 20.45

4 2 1 4 3 914 16.02

5 3 4 1 2 845 16.85

Table 5.2: Data for different orders of visits
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Figure 5.9: Minimum risk path for order 1
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Figure 5.10: Minimum risk path for order 2

Figure 5.11: Minimum risk path for order 3

Figure 5.12: Minimum risk path for order 4
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Figure 5.13: Minimum risk path for order 5

In order to demonstrate the working of the algorithm in 3D, consider the 

case of multiple targets to be visited by a UAV that all lie in the same plane. 

The same height of the targets is selected again for demonstration purpose in 

3 dimensional space and the way point path for targets at different heights can 

obtained in a similar way. For this purpose the 5th order of target visits from 

Table 5.2 is selected. Now the full version of the algorithm is applied so that 

the UAV can not only move in the same plane but can move up and down to 

find a stealthy path. The resulting path is shown in Figure 5.14.

70-

60-

50-

30.

2 0 -

Target 2
10-

300
Target 1

Target 4
Targets

Figure 5.14: Path obtained in 3D for all targets in the same plane without 

considering any restriction to maximum height

On its approach to the third target, the UAV remained close to the hori­

zontal plane but when it got near to the target it started moving up due to the
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high risk. For the other target visits high altitudes were used to escape from 

danger. However due to limited fuel, low climb rates and sometimes timing 

constraint, it is not always possible to reach the heights shown in Figure 5.14. 

For this reason, a cost due to height becomes necessary to include into the 

cost function. After inclusion of such a cost the path shown in Figure 5.15 is 

obtained.

Target 210s Target 1

300 Target 4

250 Target 3
200

300
150 Start

200100 150100

Figure 5.15: Path obtained in 3D for all targets in the same plane and consid­

ering a cost due to height

5.5 Modifications to Incorporate Constraints

Equation (5.3.23) reveals that when the UAV is very far from the target, the 

maximum turn angle is nearly twice the maximum search angle and it increases 

when the UAV approaches the target. In order to make the local minimization 

approach more realistic and realizable, one needs to impose the dynamical 

constraints of the vehicle. These constraints needs to be implemented for 

turn angle or heading angle, speed and acceleration. The proposed algorithm 

will be modified to include these constraints. The UAV cannot change its 

heading instantaneously. The rate of change of heading is limited by the vehicle 

dynamics. This can modelled by a maximum heading constraint ipmax which 

is the maximum heading angle change the UAV can make in each simulation 

step, ipmax is a function of the speed. With this strategy, the current UAV
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heading will always lie along the symmetrical axis of a cone in 3D, which moves 

with the UAV. The UAV heading at the next time step will along the point of 

minima within this cone. The heading search procedure is illustrated for the 

three different cases as shown in Figures 5.16, 5.17 and 5.18. The strategy is 

designed taking into consideration the following four main objectives:

• restricted areas should be avoided

• the threat exposure level should be minimized

• proximity of the target must be achieved

• time to reach the target should be minimized

In order to achieve these objective in the order of priority, the algorithm will 

generate the UAVs heading and acceleration commands while considering the 

dynamic constraints. The UAV will be flying in an area with multiple threat 

sources. The threat environment may be static or dynamic with popup threats. 

So when the UAV is flying in an area with multiple threat sources with time 

varying properties, then probability of risk is a function of time as well as 

position. However, once the probabilistic risk map is constructed, it is not 

necessary to distinguish between moving and stationary threats, only the local 

value of the map is used to minimize the threat exposure. As mentioned above, 

the next position of the UAV can be varied by changing the heading of the 

UAV and the time to reach the next position can be varied by changing the 

speed of the UAV. If the UAV maintains its current speed Vc, the incremental 

distance that the UAV travels from its current position Pi to the next position 

Pi+1 until the next computation time, is computed by the current speed and 

simulation time step At as shown in Figure 5.19. This incremental distance 

and the heading of the UAV along with the current position will determine the 

next position of the UAV. The speed variation is limited by the acceleration 

constraints because the UAV needs to reach the next position in a specified 

amount of time which is the simulation step time. The acceleration range that 

will not violate the speed constraints of the UAV is calculated as follows.
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Figure 5.16: Local minimization scheme with constraints when the target is 

outside the search cone and is nearest to the left boundary of the cone

P,,vc

Figure 5.17: Local minimization scheme with constraints when the target is 

inside the search cone.

Figure 5.18: Local minimization scheme with constraints when the target is 

outside the search cone and is nearest to right the boundary of the cone



Figure 5.19: Incremental distance in one simulation step

Assuming that the UAV maintains a constant acceleration in the next sim­

ulation interval

= Vm%  Vc (5-5.24)

which is the acceleration that will increase the UAV speed to its maximum 

value. Similarly

(5-5.25)

which is the acceleration that will reduce the UAV speed to its minimum value. 

So the acceleration range due to the speed constraints is defined by

Rai — [^Vminl aVmax] (5.5.26)

The UAV acceleration should be in this range, because otherwise the UAV 

speed will be higher than vmax or lower than vmin, which is a direct violation 

of the speed constraints. But the given range of acceleration constraints is

-R<Z2 = ^mai] (5.5.27)

Hence the admissible acceleration range is the intersection of these two ranges

R a  f l o w e r  i &upper ] =  R ai n R a 2 (5.5.28)

which implies that

l̂ower — ^
a V m i n i a Vm in —  a m i n

{o.b.zy j
O 'm in i ^ v-m in  ^  Q 'm in



l V m a x i a V m a x  —  a m a x  
1upper — A Û.O.oUJ

^max 5 ^Vmax ^  Q"ma,x

where a/o^er is the lower limit and aupper is the upper limit on the admissible

acceleration range. The distance travelled in time interval At will be maximum

if the UAV moves with acceleration aupper and minimum if the acceleration is 

diower- So the admissible distance range is

Rd, — [di oweri dUpper\ (5.5.31)

where

dlower — ncAt 0.5 CLioyjQfAt (5.5.32)

dupper 0.5 Clipper At (5.5.33)

Also by considering the acceleration range, the admissible speed range is ob­

tained as follows:

Ry [̂ Zotoer) ûpper] (5.5.34)

where

Vlower — Vc T CLlower  ̂At (5.5.35)

Vupper Vc CLupper  ̂At (5.5.36)

Due to these considerations, the previous algorithm will be modified. For 

the 2D case, two searches are involved: a heading search and an acceleration 

search. The heading search is constrained on a circular arc shown by dicrete 

dots in Figures 5.16 to 5.17. These dots are labelled with numbers showing 

the order of search and are at a distance diQwer +  5d from the current position, 

where di^er is the minimum distance for a UAV to reach. Search is not useful 

below the distance because a UAV with dynamical constraint must cover 

this distance in time interval At and the small distance Sd is for UAV safety 

considerations. One objective is to go to the destination point in minimum 

time which can be accomplished if the UAV moves with maximum possible 

acceleration in At. The acceleration search starts from a;au,eT. to aupper. In 

other words, the search starts from d i^ r  and moves towards dupper in small 

steps. The search finishes when the risk becomes greater than its value at the 

previous search.
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5.6 Temporal Constraint

Driven by battle space management needs, real world threats can be much 

more complex than those modelled in the previous trajectory generation work. 

In an area that is dense with threats, path planning that relies primarily on 

threat zones avoidance may be insufficient to achieve the simultaneous goals 

of reaching to a destination way point in a high risk area and avoiding threats. 

On the other hand by modelling and managing the observability of the paths, 

path planning algorithm can be designed that have the potential to achieve 

these objectives. The detectability of an aircraft travelling near an enemy 

radar depends on more than just the distance to the radar, it also depends 

on the UAV attitude and configuration. This feature in the threat model in­

troduces non-convexities and path dependencies as well as sharp gradients in 

the underlying optimization problems for trajectory generation. Therefore we 

propose temporal constraints or precedence constraints that include perform­

ing an activity only after another activity has been performed or performing 

simultaneous activities. The low observability routing problem could be con­

sidered to be temporal in nature by allowing periods of high observability 

interspersed with periods of low observability. This is desirable because of the 

way the enemy’s systems work. Although it might not be possible to get close 

to an opponent’s territories while maintaining low observability at all times; 

by strategically flying low observable paths for part of the time, it might be 

possible to drive the enemy’s systems into a condition called lock-loss. This 

condition aborts the enemy’s plans after a specified time of no detection. If an 

opponent detects a UAV, then an engagement is initiated, the only way the 

enemy will disengage is if there is a period of time (lock-loss time) in which 

the UAV may trigger the opponent into disengaging if high observability flight 

is constrained to occur for limited durations. Incorporating features into the 

path planner where high observability times are limited and interspersed with 

low observability times can be a beneficial strategy. So in regions where there 

are multiple radars, path planning incorporating risk and temporal constraints 

in this manner may be required to satisfy the requirements.
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5.7 Comparison W ith the Other Strategies

The effectiveness of adjusting UAV acceleration as well as heading based on 

the current map information can be seen by comparing the proposed algorithm 

(PA) (as explained in the previous section) with two other strategies:

• Heading control with current map (HCCM): With this strategy, at each 

computation, the current probabilistic map is used to find the heading 

that would minimize the threat exposure level. The strategy uses the 

same algorithm as PA to conduct the heading search. Even if this strat­

egy is provided with the current map it does not adjust its acceleration 

and the UAV maintains its initial speed throughout the mission.

• Heading control with initial map (HCIM): This strategy is the same as 

HCCM except it is provided with only the initial map of the area. Thus 

even if the probabilistic map is changing, it makes decisions for the com­

manded heading based on the initial status of the threats. Furthermore, 

it also commands the initial speed throughout the mission.

For comparison purposes, two threats are considered to be time-variant. One 

of the threats has a changing the concentration point, i.e. location. This threat 

is initially located at (—2,4) and moves along the positive y-axis as shown in 

Figures 5.21-5.30. The other threat is located at (—20,0) and has a changing 

area of effectiveness, i.e. the range of the SAM between 90 and 150 minutes. 

This threat initially has a range of 30 km. As the time increases from 90 

minutes to 120 minutes, the range decreases linearly to 15 km and goes back 

to its initial value linearly between 120 and 150 minutes. The PA trajectory is 

shown with a solid line, the HCCM trajectory is shown with a dashed line and 

the HCIM trajectory is shown with a dashed-dotted line in Figures 5.21-5.30. 

For this simulation a and (3 are selected to be 0.0001 and 0.005 respectively 

which are also shown in Figures 5.21-5.30. As seen from Figures 5.21-5.24 

all three strategies command the same trajectories up to 50 minutes. This 

can also be seen from Figure 5.20 where it is clear they have the same threat 

exposure level up to 50 minutes. When there is a high threat area approaching 

the UAV, the UAV using the PA starts to manoeuvre earlier than the others
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to avoid the approaching threat. At 60 minutes the UAV with PA starts to 

manoeuvre to the right and flies with a speed 9% higher than its initial speed 

This is because there is a threat approaching the UAV. In other words, the 

threat exposure level is increasing in the direction the UAV is heading. Since 

PA recognises that the threat level will increase, it changes the heading and 

increases the speed to pass through the region before the probability in that 

region gets higher. Since HCCM uses only the current map, it recognises the 

approaching threat later than the PA does and starts to manoeuvre later. Also, 

it cannot adjust speed and therefore it is exposed to a higher level of threat 

than the PA. However, HCIM is exposed to the highest threat level, since 

it does not know anything about the time-variation of the map as it passes 

through the threat region, which is shown in Figures 5.21-5.24. It is also shown 

in Figure 5.20 that the threat exposure level increases significantly in HCIM 

as the threat approaches. HCCM has a smaller threat and PA the least. As 

seen from Figure 5.20 between 85 and 110 minutes, as the UAVs approach 

the second target position, there is another significant increase in the level of 

threat exposure. This is because the UAVs pass between two threat regions 

to get to the target as seen from Figures 5.25-5.28. Since the UAVs guided by 

HCCM and HCIM pass from this region before the UAV guided by PA, they 

are exposed to the threat region earlier. They are also expose to a higher level 

of threat than the UAV guided by PA.
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Figure 5.20: Threat exposure level along the trajectory of each strategy
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Figure 5.21: Comparison of the trajectories at time 6 min

Figure 5.22: Comparison of the trajectories at time 50 min

Figure 5.23: Comparison of the trajectories at time 60 min
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Figure 5.24: Comparison of the traiectories at time 80 min
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Figure 5.25: Comparison of the trajectories at time 90 min
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Figure 5.26: Comparison of the trajectories at time 100 min
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Figure 5.27: Comparison of the trajectories at time 110 min
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Figure 5.28: Comparison of the trajectories at time 120 min
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Figure 5.29: Comparison of the trajectories at time 130 min
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Figure 5.30: Comparison of the trajectories at time 158 min

This is because, since one of the threats located in front of the target 

changes its area of effectiveness, the threat exposure level decreases between 

90 and 120 minutes. Thus, PA recognises that the threat exposure level will 

decrease in the direction that the UAV is heading and thus decreases the UAV 

speed significantly to get to the region where the probability gets smaller.

5.8 Conclusion

A real time three dimensional probabilistic approach for the path planning of 

autonomous vehicles has been presented. It is not only capable of finding a 

safe path but also takes into account real world constraints. The problems 

of collision avoidance with other vehicles, low fuel consumption and crash 

prevention with ground objects have also been dealt with. The paths are 

locally optimal and feasible for the UAV to follow by keeping the turn angle 

within some certain maximum limit. The algorithm is applied in decentralized 

mode, that is, each vehicle has its own processor and applies the algorithm to 

find its path. It addresses the collisions avoidance with consideration of the 

collision with other vehicles by keeping itself at some minimum distance from 

others. The UAVs are prevented from flying at very low altitudes because of 

the danger of crashing with ground objects. Since each UAV has some limited 

fuel, a compromise has to be made between risk and fuel consumption by
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limiting the height and search angle.

The real time techniques discussed so far are based on local optimizations 

and perform well for planning within some limit area at each time step. If 

we have some global knowledge of the world then this information can be 

combined with the local optimization technique for improved optimality. In 

the next chapter, a graphical global technique is presented.
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Chapter 6 

Global Optimality of Flight 

Path

6.1 Introduction

Without complete knowledge of the environment an agent can only plan a 

path which is optimal with respect to the information at the time of planning. 

But if some global information is available, then it can be incorporated in the 

planning process for improved optimality. Hence the need for global planners. 

Deterministic approaches are used most often in global path planners. Two 

deterministic approaches are: the Voronoi diagram and the Visibility graph. 

In this chapter a hybrid approach is described which is based on the Voronoi 

graph, local optimization and grid search methods.

6.2 Voronoi Diagram M ethod

6 .2.1 Voronoi Graph

This procedure, which is used in many different fields including computational 

fluid dynamics, computer graphics and statistics, begins with complete knowl­

edge of the number and locations of the radar sites. Such a graph is constructed 

using Delaunay triangulation and its geometric dual, Voronoi polygons. For 

every triplet of radar sites, there exists a unique circle that passes through
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all three. Consider only those triplets whose circle does not enclose any other 

radar site. The set of all such triplets is called the Delaunay triangulation and 

the centres of the circles are called Voronoi points. We may now construct 

a graph by defining the vertices as the Voronoi points. Edges are drawn to 

connect two Voronoi points if and only if their associated Delaunay triangle 

share an edge. By drawing all such edges, we construct the Voronoi diagram 

or graph. Figure 6.1 a shows Voronoi diagram for 30 threats spread over a 

250 x 250 square unit area and Figure 6.2 shows its geometric dual. The edges 

of the Voronoi diagram have the property that they are equidistant from a 

pair of radar sites. One important property of the Voronoi polygon is that it is 

the perimeter of the set of all points in the plane closest to the Voronoi point 

containing it.

250

2 0 0 , p

150

100

250200100 150

Figure 6.1: Incomplete Voronoi diagram for 30 threats

6.2.2 M atlab Code to G enerate the Voronoi Graph

The construction of Voronoi graphs has been implemented in Matlab. How­

ever, Voronoi function (voronoin.m) in the Matlab is not complete in the sense 

that it does not divide the operational area completely and explicitly. As seen 

in Figure 6.1, it stops at some nodes such as the points D, E, F , G, H , / ,  J, K  

referred to as the infinity nodes in Matlab routine which are connected to infin-
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Figure 6.2: Delaunay Triangulation for 30 threats

ity. There should be straight lines from these points extending to the boundary 

of the area. On the other hand, the Matlab routine produces such nodes which 

are actually beyond the area considered. When the graph is restricted to the 

area under consideration, the intersection points A, B , L , M, N, X  in Figure 6.1 

between Voronoi edges and area borders are not included in the Voronoi node 

list. As can be seen the intersection points of the edges that have L, M  inter­

section point with the boundary will be very far away from boundary. Since 

for Voronoi diagram path planning, the paths are restricted to line segments 

connecting the Voronoi points, so it would be impractical if not impossible for 

a UAV to travel along such long line segments.

6.2.3 Com plete Voronoi Algorithm

Extra subroutines are hence needed and have been developed at Leicester (see 

Appendix A). These subroutines expand the node list by adding nodes on the 

borders for those segment connected to the infinity nodes and by inclusion of 

corner points. Furthermore, they remove those nodes outside the considered 

area and include instead the intersections of the corresponding edges and the 

border lines. Hence, the area is explicitly and completely partitioned into cells. 

The number of the cells is the same as that of the threats, and each threat

140



is located within one cell. The threat in a cell is the nearest one, among all 

threats, to any point in that cell. Several steps are taken in this completion of 

Voronoi graph coding. They are explained below.

We first describe what is meant by an infinity node. The infinity node is 

an imaginary node and is labeled as Node 1 in the Matlab code. Each cell 

has a list of nodes which form the perimeter of the polygon of the cell. A 

cell containing the infinity node in its node list indicates that its perimeter 

is not complete/closed. In other words, the corresponding threat is not yet 

completely separated from other threats. In order to separate this threat from 

others, at least one straight line, sometimes more lines, should be drawn from 

one of its nodes (the one either in front of or after the infinity node in the cell 

node list) to infinity.

The first step in our coding is to remove the infinity node from each cell’s 

node list. This step consists of the following parts.

• Expand the operational area to include all finite Voronoi nodes (as inte­

rior points) to form a lager rectangular region.

• In a cell with the infinity node, identify the neighbouring nodes of the 

infinity node and search for other cells with the infinity node and with 

the same neighbouring node.

• Draw a middle line between the two corresponding threat points and 

record the intersections with the boundaries.

• Decide which intersection point is required and append it to the total 

list of Voronoi nodes.

• Modify the node lists of those two relevant cells and the connection map 

which shows links between Voronoi nodes.

The second step is to include the 4 corners of the expanded rectangle in 

the total Voronoi nodes. The following have to be applied to each corner point 

in turn:
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• Check if the corner point is already in the total node list; if not, identify 

the threat point to which the corner is the nearest, i.e. the cell to which 

the corner point should belong.

• Insert the corner point at the right place in the node list of that cell.

• Append the corner point to the total node list and modify the connection 

map.

The third step deals with those nodes beyond the originally required oper­

ation (rectangular) region.

• In the total Voronoi node list, find out all the nodes which are beyond 

that required region and define them as the outside nodes.

• Using the connection map, decide all the Voronoi edges, and correspond­

ing nodes, which link an outside node.

• Check if that edge intersects with the (required) boundary lines.

• Identify the cells which ought to have the intersections and modify the 

node lists of the cells.

• Append the intersections to the total Voronoi node list and modify the 

connection map.

• Delete all outside nodes from the total Voronoi node list and tidy up the 

connection map.

The fourth step is similar to Step 2, i.e. to include the corner points of 

the required region as Voronoi nodes. In the scenario considered here, a UAV 

flying along an edge is as far as it can be from the two nearest threats.

The complete Voronoi diagram for this selection of threat points is shown 

Figure 6.3. As can be seen from this figure, these subroutines expand the node 

list by adding nodes:

• D 1, E l, F 1, Gl, HI, II, J l ,  K l  on borders for the line segments connect­

ing each other at infinity
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• Al, B l, D2,X1, LI, M l, N l  for line segments connecting very far away

• Corner points S, T, U, V of the rectangular operational area making it a 

complete polygonal cell

It is worth while to note that node D is connected to two new nodes D 1, D2 

where D l is the node for the line segment intersecting at infinity and D2 is 

the node for the line segment intersecting at a far away point. We tested the 

algorithm for different scenarios and found that it worked perfectly. Figures 

6.4-6.7 show the working of the algorithm for the cases of 50 and 100 randomly 

created scenarios.

250

200, p

150

M1
100

02
200 250100 X1 150

Figure 6.3: Complete Voronoi diagram for 30 threats 

6.2.4 Extended Voronoi Graph

Once the complete Voronoi graph is constructed using threat locations, the 

next stage is to augment it with starting and end points of the vehicle. The 

augmented graph is called the extended Voronoi graph. A few ways can be 

used to link these two nodes with others. They can be simply connected to the 

nearest node [69], they can be linked to the nearest edge or additional edges 

are defined by the shortest distance lines from the starting (end) point to each
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Figure 6.4: Incomplete Voronoi graph for 50 randomly generated threats scat­

tered in 200 x 200 square unit area
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Figure 6.5: Complete Voronoi graph for 50 randomly generated threats scat­

tered in 200 x 200 square unit area
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Figure 6.6: Incomplete Voronoi graph for 100 randomly generated threats 

scattered in 200 x 200 square unit area
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Figure 6.7: Complete Voronoi graph for 100 randomly generated threats scat­

tered in 200 x 200 square unit area
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edge of the Voronoi cell in which the starting (end) point is located. In the 

following sections, the last method is used (see Appendix A).

6.3 Optimal Path Selection

6.3.1 Objective Function

The cost associated with travelling along an edge of the Voronoi graph can be 

taken as the weighted sum of two terms:

• threat cost

• fuel cost

The threat cost is based on a UAV’s exposure to enemy radar which is the 

strength of a UAV’s radar signature and is proportional to 1/d4, where d is the 

distance to the threat. An exact threat cost calculation for travelling along 

an edge would involve the integration of the cost along the edge. In order to 

reduce the computational load, a simpler approach would be to calculate the 

threat cost at several locations along an edge while taking into account the 

length of the edge. For this purpose, the threat cost was calculated at three 

points: Li/6, L»/2, 5L*/6 along each edge, where Li is the length of edge i. 

This is shown in Figure 6.8. The threat cost associated with the ith edge is

i-l
•7-2

Figure 6.8: Threat cost calculation
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given by the expression

(6.3.1)

where N  is the number of threats and d\ . . is the distance from the l /6 th point

on the ith edge to the j th threat. If the UAVs are flying at constant speed, the

The total cost for travelling along an edge is the weighted sum of the threat 

and fuel costs

By selecting different values of k between 0 and 1, we can make a compromise 

between threat exposure and fuel consumption. A dynamic programming ap-

6.3.2 Optimization Algorithm

Once the Voronoi diagram is available. The optimal path can be searched using 

Dijkstra’s algorithm. The algorithm proceeds by assigning labels to each node 

which may be temporary or permanent. A temporary label can be changed, 

whereas a permanent one cannot. For example, if node p has a permanent 

label (<7, r), then r is the cost in going from ns to p which is cost(ns,p) and q 

is the node on the shortest cost path ns —* p. If the label is temporary, then 

it has the same meaning but it refers only to the shortest path found so far. A 

shorter path may found later, in which case the label may become permanent. 

The functional form of the routine used is 

[splen, path] = OptAlg(n, ns, ne, nnz, D , row, col)

The inputs of the algorithm are:

• n is total number of nodes

fuel required to travel (or time of travel) along one edge of the Voronoi diagram 

will be proportional to the length of the edge. The fuel cost associated with 

the ith edge is given by

(6.3.2)

Ji — kJt,i +  (1 — k)Jfj  0 <  A; <  1 (6.3.3)

proach or Dijkstra’s algorithm can be used to search the graph for an optimal 

path.
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• ns is the starting point node number

• ne is the end point node number

• nnz is the number of non-zero elements of the connection matrix

• D is the cost vector of non-zero elements of the connection matrix ordered 

by increasing row index and increasing column index within each row

• row and col contain the row and column indices respectively of the 

nonzero elements of the connection matrix

The main steps of the algorithm are:

Step 1 Assign the permanent label (0,0) to the node ns and temporary labels 

(0, oo) to every other node. A zero in the first place indicates that 

no assignment has been made for the previous node position. Adjust 

initially the permanent node variable k as k = ns.

Step 2 Consider each node y connected to the node k with a temporary label 

in turn. Let the label at k be (p, q) and at y{r, s). If q +  cost(k, y) < s, 

then a new temporary label (k,q +  cost(k,y)) is assigned to node y. 

Otherwise no change is made in the label of y. When all nodes y with 

temporary label adjacent to k have been considered, then move to the 

next step.

Step 3 Prom the set of temporary labels, select the one with the smallest 

second component and declare that label to be permanent. The node it 

is attached to becomes the new node k. If A: =  ne, go to the next step. 

Otherwise, go to step 2 unless no new node can be found. So this will 

be the case when the set of temporary labels is empty but k ^  ne, in 

which case no connected network exists between nodes ns and ne and 

the algorithm terminates.

Step 4 If the label of ne is (x,z), then z gives the total cost of the optimal 

path from ns to ne, while x gives the vector of nodes that links back to 

the previous node on the shortest path.
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Dynamic programming-like algorithms can be applied as well. We de­

scribe such an algorithm below. The algorithm starts from the desti­

nation node Pe and works out the optimal path, with lowest cost, from 

each other node to Pe. This algorithm is particularly useful for the chal­

lenge problem described in the Introduction, because there will be several 

UAVs possibly starting from different positions and flying towards the 

same destination.

Similarly, two-component labels are assigned to all nodes. The algorithm 

takes the following steps.

Step 1 Assign the label (0,0) to the final node Pe and (0, oo) to all other 

nodes. Initialize the level variable i = 1, and define =  {Pe} and 

an empty set.

Step 2 For each node p G — $i_i, define tyitP = {q}, such that q is a 

node directly connected to p. Define = (J ^ i jP.

Step 3 For all q(r,(3) G if a + cost(p,q) < /?, a new label (p,a +  

cost(p,q)) is assigned to the node q\ else, if f3 +  cost(q,p) < a, a 

new label (q, (3 + cost(q,p)) is assigned to the node p\ where p has a 

label (n, a) and cost(p,q) (or cost(q,p)) denotes the cost along the 

edge from p to q (q to p, though the two are of the same value in 

this problem). Repeat the above for all ^ itP.

Step 4 Define If <Fi+i =  the algorithm terminates;

otherwise, set i = i -I-1, goto Step 2.

When the algorithm finishes, the second component of the label of each 

node gives the optimal total cost to reach Pe from that node. From the 

first component of the label, a vector of all nodes which form the optimal 

path can be traced. If the final <£* is a strict subset of the node set, it 

indicates that not all nodes are connected to the final node Pe.

When used in finding an optimal path between a given pair of starting 

and end points, there is no obvious difference in terms of computational
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efficiency between Dijkstra’s algorithm and the dynamic programming 

approach (slightly modified version of above algorithm).

6.4 Way Point Generation using Developed Soft­

ware

The software which uses the modified Voronoi diagram with a dynamic pro­

gramming approach can be utilized to find the optimal path. The way point 

selection procedure is summarized below:

1. For a given set of threat coordinates, the modified Voronoi diagram is 

constructed, which gives its output in terms of nodes and the cells.

2. For a given pair of starting and end points, the extended Voronoi graph 

is evaluated.

3. A connection matrix having binary entries is constructed which gives 

the connection detail of the nodes i.e. which node is connected to which 

node. If two nodes are connected then the corresponding element in the 

matrix is one otherwise it is zero.

4. Each line segment of the graph has some associated cost. The cost is 

calculated using (6.3.1). A cost vector is constructed for the non-zero 

elements of the connection matrix.

5. The optimization algorithm described in Section 6.3.2 is applied to find 

out the optimal path and the associated risk.

The good points of the above algorithm are:

• Computationally efficient and the solution is available at once.

• The memory usage with this approach is very small.

• If the vehicle sensor detects some changes in the environment in the form 

of a popup threat, then a new diagram can be constructed and searched 

with the same procedure.
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• It gives a global solution with respect to the graph.

The drawbacks of this approach are:

• Since the graph is constructed by considering radars of equal powers, the 

line segments formed are at equal distance from the pairs of radar sites 

and so the search is limited to these lines only. But in reality the radars 

may have different powers e.g.short range, medium range and long range. 

Hence the optimality of this approach is not global with respect to real 

scenario.

• When the initial and final nodes are connected to the nearest segment, 

then it may happen that this path could fall into a dangerous area

In order to best tune the path, the Voronoi approach can be combined with 

a local search technique and will be described in the next section.

6.4.1 Local Optimization

After a flight path has been selected using a Voronoi graph based method, local 

optimization and grid search techniques can be used to fine tune the path. Two 

local searches are involved. The first is to perturb the end-point of each sector 

of the selected path, except of course the last one of which the end-point is the 

required destination. Secondly, once the starting and end points of a sector 

have been decided, another local search will be employed along the straight 

line connecting these two points. The first kind of search is called “end-point” 

search and the second one “along-path” search.

Various methods can be used in these searches, for instance, methods based 

on gradients, simplex algorithms, or point-wise search. The important factor 

to be considered in adopting a search algorithm is the efficiency, due to the 

real-time environment. Another consideration is that original points and paths 

are preferred over new ones unless “significantly” lower risk is estimated.

In the end-point search, a search radius has to be decided first. In the 

example shown in Figure 6.9, the radius is calculated based on the distance 

between the end-point and its nearest threat and on the length of that line

151



segment ended at that end point. In the along-path search, the width of 

the search band should be similarly defined. For the sake of efficiency (e.g. 

for the calculation of waypoints in 3-dimensions) and consideration of flight 

constraints, a few more steps have been adopted in the algorithm code which, 

for example, eliminate intermediate points along a (nearly) straight-fine path 

sector and/or skip over “sharp” turns.

Figure 6.9: A selected Voronoi path (red) and the tuned path (pink) using 

local optimization

6.5 Constraint Optimization

When the number of threats is small, then the graph produced using the 

Voronoi method has few arcs. Since the path of the UAV is restricted to these 

arcs, it is then difficult to implement the path length constraint. One way 

to do this is to assume some fictitious threats along with real threats. These 

fictitious threats can be positioned in different ways. Here we will generate 

these randomly. Since the Voronoi approach is fast, for a reasonable number 

of fictitious threats, the computation can be run in real time. The path length 

constraint can be implemented as an upper bound on the selected path. The 

constraint minimum risk problem is also closely related to many other real life 

problems. For instance, in a routing query on a road system, people are always
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interested in finding the shortest rout from one place to another. If the road 

system has cost associated with using each specific road, and the query requires 

the total cost of the selected route to be less than some cost limit, then this is a 

typical constraint optimization problem, which attempts to find a shortest path 

while the cost of travelling along the path does not exceed some specified value. 

Another example would be the packet sending problem in internet traffic. A 

packet is sent from location A  to location B. The server always tries to find 

the shortest path for the packet while obeying the time-out mechanism of the 

internet protocol. In fact this kind of constraint optimization problem is a 2- 

dimensional optimization problem. It seeks an optimal solution with respect to 

one criterion, while not violating the other. The Length Constraint Least Risk 

Path Problem(LCLRPP) [24] consists of finding the least risk route between 

two specified nodes, s (source) and t (target), such that the total weight is less 

than a specific value lub [24]. The next section describe an approach to solve 

this kind of problem.

6.5.1 Dynam ic Programming Approach to  LCLRPP

In this section, a dynamic programming approach will be developed that will 

combine the label setting algorithm described in [24] with a preprocessing 

procedure to simplify the problem. There may be many ways to simplify the 

LCLRPP. Here the preprocessing idea is based on the fact that finding the 

least risk path from source node s to every node i G V requires no more 

computational efforts than finding the shortest path from s to the target node 

t. Both need to perform Dijkstra’s algorithm once. Similarly, finding the 

minimum risk path from every node i G V to t requires no more extra cost 

than finding the shortest minimum risk path from s to t. Hence by applying 

the least objective (risk or length) calculation 4 times, we get the following for 

each node i G V.

V lsi =  least length path from s to i 

V lit = least length path from i to t 

Vai — least risk path from s to i 

Vlt =  least risk path from i to t
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If Vlst > lub or simply there exists no path from s to t, then the problem 

is infeasible. So in order to have a feasible problem we need to introduce 

fictitious threats again. Further, if the length of the least risk path is less 

than the upper bound lub, this is the optimal solution, since it also satisfies the 

length constraint. Rather than these simple cases, the graph can be simplified 

by scanning through each node and each arc and dealing those which connect 

least length paths from s and t greater than the upper bound. This says that 

the length of the least length path from s to node i plus the length of the least 

length path from i to t is greater than the length limit, so we can ignore this 

node from the optimal path search i.e. we could remove this node i and all its 

incident arcs from the graph G. Also by the same argument as above an arc 

< i , j  > can be removed. Further, let V lst be the path that attains the least 

length, set M  = R(Vlst). If a path has a cost greater than Af, then this path 

will not be considered any more in the future optimal path search process, 

since the least length path Vlst has a better risk. With this idea if the risk of 

a path connecting an arc with the least risk path from both ends exceeds M, 

then we can remove that arc.

After preprocessing, the next stage is to sort out the best path from the 

graph by using a set of labels on each node. Each label consists of a (risk, 

length) tuple which corresponds to a different path from the source node s to 

that node. The risk and length represent the total risk and total length of 

the path from s to that node respectively. In the set of labels of each node, 

no two labels have the same risk or the same length. Moreover, if label A 

has a larger risk than label B  and A is stored, then the length in label A 

must be smaller than the length in label B. These can be defined formally as 

“dominant-relation” [24] more below.

Definition 1 Let (LJJj-RS) and (Lf^Rff) be two different labels on node i, 

corresponding to two different paths Vsi and Qs{. We say (L j, R̂ f) dominates 

Rfd if and only if Lvsi < L% and R% < R%.

Definition 2 A label (Lj, i?2) said 1° be efficient if it is not dominated by 

any other label at node i. In other words, at node i, there exists no path Q 

such that L(Q) < L j  and R(Q) < i?2-
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The sorting procedure will find all the efficient labels for each node. The 

reason why we also keep track of these paths with larger risk but smaller 

length is that, any potential optimal path must first satisfy the length limit 

constraint. It might be the case that at node i , a path with smaller risk and 

larger length will violate the length limit when the procedure moves onto the 

next step, in which case the smaller risk does not help us at all. That is 

why we find all efficient labels instead of the least-risk labels. It starts from 

the source node, and expands the search process to the neighbouring nodes of 

the already searched nodes. In particular, the algorithm starts with no labels 

on any node, except for the label {(0,0)} on source node s, then it extends 

the set of all labels on a node by extending the path along all outgoing arcs 

of that node. More specifically, when the procedure is operated on path V si 

on a label (L ^ R ^ )  of node z, it considers each arc < i , j  >E £+(i) where 

Z/J + lij +  L j t <  lub• Further, if (L j + ltj, + ry) is not dominated by any 

existing labels of node j , then the algorithm extends path VSi via arc < i , j  > 

to node j. Next, we will describe the above in a systematic way in.

6.5.2 Length Constraint Optimal P ath

Step 1 Let M  = oo and T r  = { (zf, z f , a f ) : i = 1, . . . ,  Ur} be the set of 

hr  real threats such that (ref, y f , zf1) are position coordinates and a* is 

the strength of the ith threat.

Step 2 Define rip, the number of fictitious threats with zero strength. Gener­

ate randomly the rip fictitious threats Tp and set T = TrUTf. Construct 

the complete Voronoi graph for T  threats using the procedure described 

in section 6.2.3 and find the extended Voronoi graph by augmenting the 

starting and end points as detailed in section 6.2.4.

Step 3 Assign the risk cost (due to the real threats T r  only) and the length 

cost kj for each of the arc < i , j  >E A  of the graph.

Step 4 Find the least length path from s to f using the algorithm given in 

section 6.3.2. If the length of this path is greater than the given upper
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bound for the path length, then the problem is infeasible; go to Step 2. 

Otherwise if R{Vlst) < M, then set M  =  R (K )-

Step 5 Using the algorithm given in section 6.3.2, find the minimum risk 

paths from the source node s  to all nodes j  G V\{s}. Let PJ. be the 

least risk path from s to j  and the RSj is the total risk such that RSj = 

R(Vrsj) = rij. If there is no path from source node s to sink node t, 

then the posed problem is infeasible, STOP. If L(Vgt) < /*, then Vgt is 

the optimal path and no need to proceed further, STOP.

Step 6 Using the algorithm given in section 6.3.2, find the minimum risk 

paths from the sink node t to all nodes j  G V\{s, t}. Let Vjt be the least 

risk path from j  to t and the RJt is the total risk such that Rjt = R(Vjt).

Step 7 Using the algorithm given in section 6.3.2, find the minimum length 

paths from the source node s  to all nodes j  G V\{s,t}. Let V lsj be 

the least length path from s  to j  and LSj the total length such that

Lsj = L(V‘sj) = Y ,lir

Step 8 Using the algorithm given in section 6.3.2, find the minimum length 

paths from the sink node t to all nodes j  G V\{s, t}. Let P jt be the least 

length path from j  to t and L j t  the total length such that Ljt = L(Vljt).

Step 9 For all j  G V\{s, £}, check if Lsj + Ljt > lub or RSj +  Rjt > M, then 

delete node j  and all arcs incident on it.

Step 10 Similarly, for all arcs < i , j  > G  A, check if Lsi +  kj +  Ljt > lub or 

Rsi +  rij + Rjt > M, then delete < i , j  >. Otherwise if L(Vrsi) +  kj + 

L{Vjt) < lub, then M  = Rsi + rfj- + Rjt.

Step 11 If during Steps 9 and 10, the graph changes, then go to Step 5. 

Otherwise go to next Step.

Step 12 Set the initial labels for all nodes such that Cs =  {(0,0)} and Ci = $  

for alH G V \  {s}.
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Step 13 Selection of the label to be extended:

If all labels have been marked, which means all efficient labels have been 

generated, then go to Step 16. Otherwise choose z G V such that there 

is an unmarked label in Ci and is minimal, where Q is the path that 

attains this weight value.

Step 14 Extend label

For all (z, j ) G S+(i) with + ltj + Ljt < lub and R® +  r i<7- +  Rjt < M , if 

(Lg +  /« ,ijg  + r«) is not dominated by (L^-, R1̂)  for any existing label 

at node j  through path /C, then set Cj = Cj U {(L ® +  hj, R® +  zy,)}.

Step 15 Mark label (L^> #2) an<̂  S° Step 13.

Step 16 Select from the label set Ct of the destination node, the label with 

the second component minimal and from this trace back the optimal 

path.

6.5.3 Tim e C om plexity of the A lgorithm

Assuming the graph generated has a feasible solution. Then the time com­

plexity of the above algorithm is equal to the complexity of the Steps from 

5 to 16. The time complexity of the preprocessing (Step 5 to Step 11) is 

0(\A \  * |V| * log |V|). It is not hard to see that the preprocessing will scan 

through all arcs and nodes and \A\ = |V|2/2 in the case of a complete graph. 

So the entire preprocessing will be repeated at most \A\ times. In each step, 

if a node or an arc is removed, then we need to apply algorithm 1 again to 

update Rai, Rti, Ls.*, Lit which takes 0(|V| *log |V|). Hence in total, the pre­

processing time complexity is 0(|A | * |V| * log|V|). Also the time complexity 

of the LCLRPP procedure (Steps 12 to 16) is 0(\A \  * lub), where \A\ is the 

size of the arc set and lub is length limit. This is quite a loose bound. The 

idea is that the algorithm starts extending the labels from the source node. 

At each node z, the algorithm considers all outgoing arcs, so accumulatively 

it goes through all arcs. Note that each arc will be used in Step 14 for at 

most lub times, since we only consider non-negative weights (lengths) and by
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the definition of dominant and efficient labels, no two labels at one node have 

the same weight. So if we use a bucket data structure to sort the labels in 

increasing order of weight, the algorithm will each time pick a label at node 

i of increasing weights. Hence there shall be at most lub labels in each node, 

which means each outgoing arc at node i will be used on Step 14 for at most 

lUb. Moreover, by using a bucket data structure, the least length label will be 

always at the top of the bucket, so step 13 is essentially a constant operation. 

Hence, altogether the time complexity is 0(\A\ * |V| * log\V\ +  |*4| * lub).
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6.6 Comparison of Different Approaches

In order to compare the different approaches, simulations were performed for 

one hundred randomly created scenarios in virtual flight environment. The re­

sults from these simulations were compared for different parameters to evaluate 

their effectiveness for real time use.

6.6.1 Flight Environment

• Height was fixed at 2 km.

• Operational area was taken 200 x 200 km2.

• Initial and final positions for UAV (20,20,2) and (180,180,2) respec­

tively.

• Number of SAM sites 5 —> 10 (randomly generated).

• Range of missiles: 7 or 27 km (randomly generated).

• Point mass dynamics.

• If risk probability is less than 0.08, it is considered as 0.

• The magnitude of velocity and control inputs are bounded by [100 300] m/s  

and [—10 10] m /s2, respectively.

6 .6 . 2  M easured Quantities

The following quantities were measured and compared for each method.

• Success rate

• Maximum time to compute a waypoint

• Peak risk

• Total flight length

• Total flight time

• Average risk
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6.6.3 M ethods Compared

• M\: Tuned Voronoi approach

• M2 ’. Visibility line approach

• M3: Probabilistic local minimization

• M4: MILP

• M5: Bouncing approach [56]

Parameters Positive - - Negative

Threat Modelling m3 Mi M5 m 2 m 4

Safety m5 m2 m4 m 3 Mi

Fast convergence m3 Mi m 2 m 4 Ms

Simplicity M5 m3 m 2 M i m4

Global Optimality m 2 Mi m4 m 3 Ms

Fast computation m3 Mi m2 m 4 Ms

Flexibility m4 m3 M5 Mi m 2

Table 6.1: Summarized comparison results

Mi m2 m3 m4 Ms

100/100 100/100 100/100 99/100 98/100

Table 6.2: Success rate for different methods

Results for different parameters are summarized in Table 6.1. Among the 

hundred random simulations, the 23rd scenario was chosen as representative 

(Figure 6.11) and trajectories for this scenario for the above mentioned meth­

ods are shown in Figures 6.12, 6.13, 6.14, 6.15, 6.16. MILP does not use the 

exact threat model but rather uses the nominal range of the SAM to find the 

next way point and encloses the nominal range into rectangular region. Due 

to the highly nonlinear nature of the exact cost function, MILP defines an
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auxiliary cost function that uses these rectangular threat zones. The other 

methods use the exact risk models but in the case of Mi and M2, the exact 

risk function is used to find the optimal path and this is restricted to a search 

on the Voronoi and Visible edges, respectively. Looking at vehicle safety, the 

bouncing method finds the safest path by bouncing against the virtual risk 

boundaries again and again as shown in Figures 6.19 and 6.20. So if there is 

no gap between the risk boundaries, it will not find a path. Also M3 and M4 

for most of the cases found the safest path. The Voronoi method sometimes 

gives a path that passes through highly risky areas as shown in Figures 6.19. 

Other methods find trajectories at medium risk level. Bouncing is the simplest 

method that consists of two phases (see Figure 6.10). The first corresponds 

to a part of the optimization phase in which a UAV tries to find an optimal 

flight path over a pre-defined period of flight time along which an underlying 

objective, e.g., distance to a target point is minimized. This can be readily 

done by solving a mathematical programming problem or performing a simple 

search. This phase repeats itself and continues until a UAV confronts obstacles 

or threats where the second phase begins. In second phase, operational area 

is considered to be consists of cells instead of points. The size of the cell of 

the cell directly impacts on the closeness to the original threat model and the 

speed of the convergence to the aimed target. This cell approach also needs 

the concept of risk probability of a cell and which is calculated as the average 

of the probabilities of several representative points within that cell. The next 

direction to proceed is determined by seeking the most desirable cell among 

neighboring cells around the current position. In this phase,the optimality 

part regarding minimizing distance to aimed target is ignored and a UAV is 

asked to follow the surface of the forbidden region with the same direction 

which was set when the most recent transition from the first to second phase 

occurs. The transition from the second to first phase occurs when the mini­

mization of the distance to the target point becomes possible again and the 

current cell is visited the first time for this transition purpose. Results using 

this approach are as shown in Figures 6.16, 6.17. When the risk threshold was 

fixed at 0.08, UAV did find the way to direct it towards the target for the 23rd
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scenario after many bounces and hence a long time was consumed as shown in 

Figure 6.16 but when this threshold was relaxed to 0.1, a path becomes avail­

able as shown in Figure 6.17. MILP is the most complex method including 

the binary variables and the complexity of the other methods is evident by the 

placement order in Table 6.1. If global optimality is concerned, then Visibility 

and Voronoi are preferable while the others are based on local searches. For 

real time applications, fast computation is usually required, then probabilistic 

local minimization has been proved to be the fastest way point generator as 

shown in Figure 6.18. Flexibility means how easy the methods can incorporate 

constraints on velocity and acceleration. MILP (by using binary variables) and 

probabilistic methods can easily accommodate these constraints. Also in the 

case of the Voronoi approach, path length constraints can be imposed as de­

scribed in section 6.5.2 but for the Visibility method, this is is still an issue. 

Probabilistic local minimization seems to be the fastest convergent technique 

while the flight time for the bouncing algorithm is the highest. Table shows 

the success percentage of all methods; MILP and bouncing do not give an 

optimal solution for two scenarios in the specified time.

7

Figure 6.10: Typical waypoints W{ s generated from the bouncing algorithm: 

w\ and W7 are given initial and targets points, respectively. The intervals 

[w\, W2] and [w5, wj\ correspond to the first phase, and the interval [w2, w5] the 

second phase. The shaded cells denote obstacles.
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Figure 6.11: 23rd scenario
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Figure 6.12: Minimum risk trajectory using MILP for 23rd scenario
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Figure 6.13: Minimum risk trajectory using visibility approach for 23rd scenario
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Figure 6.14: Minimum risk trajectory using probabilistic local minimization 

approach for 23rd scenario
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Figure 6.15: Minimum risk trajectory using modified voronoi approach for 23rd 

scenario
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Figure 6.16: Minimum risk trajectory using bouncing technique for 23rd sce­

nario when risk threshold was set at 0.08. The path starts from “A” and ends 

at “L”via “B”, “C”, “D”, “E”, “F”, “G”, “H”, “G”, “I”, “F”, “E”, “D”, “C”, 

“J”, “K”and “J”. Note that the path from “G”to “I” involves the numerous 

transitions between phase I and phase II. As the UAV approaches “F”from “I”, 

it finally turns its heading towards “E”, not “G”, because this choice minimizes 

the distance to the target point at “F”.

T arget point

0 .7

"c 0-6
S  0-5

=» 0 .4

0.3

0.2
P = 0.1

0.1
Starting point

0.2 0.4 0.6 0.8
x (x 200 km)

Figure 6.17: Minimum risk trajectory using bouncing technique for 23rd sce­

nario when risk threshold was set at 0.1. As oppose to the previous case, 

there exist another safe path passing through “F”as a result of increasing risk 

threshold.
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Figure 6.18: Peak computation time for one hundred simulations
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Figure 6.20: Average risk for one hundred simulations
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Figure 6.22: Flight time for one hundred simulations

6.7 Conclusion

If some global information is available, then it can be incorporated to the 

planning process for better optimality and hence sometimes a global planner 

is needed. A hybrid approach has been presented which is based on the Voronoi 

graph, local optimization and grid search methods. A software package has 

been developed at Leicester (see Appendix A) that adds extra subroutines to 

modify the Voronoi code. These subroutines expand the node list by adding in 

nodes on borders connecting the infinity nodes and by the inclusion of corner
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points. Furthermore, they remove those nodes outside of the considered area 

and include instead the intersections of the corresponding edges and the border 

lines. Hence, the area is explicitly and completely partitioned into cells. The 

efficiency of the software has been demonstrated with some example scenarios 

that uses a dynamic programming optimization approach to select the optimal 

path. Constraint optimization has also been discussed. Also a comparison of 

different techniques has been presented and discussed. This comparison reveals 

that most techniques have some advantages and drawbacks over the others and 

hence should not be used independently in all situations. MILP is very flexible 

in adopting the constraints on velocity and acceleration but for large problems 

in a centralized mode, it may become intractable for real time use. Therefore, 

it should be used in a decentralized fashion to reduce the computational effort 

and also in combination with a global technique like the modified Voronoi 

graph.

In the next chapter as an additional work, we will propose a systematic 

decentralized cooperative control architecture for a team of autonomous UAVs.
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Chapter 7 

A Decentralized Cooperative 

Control Architecture

7.1 Introduction

7.1.1 M otivation

Advances in computation, sensors, and communication have provided the en­

abling technologies for achieving cooperative control of multiple vehicle sys­

tems. However, research in the cooperative control of UAVs has been limited. 

Much of the work reported in the literature focuses on close formation flight 

of multiple vehicle systems. The dynamics of these formations are tightly 

coupled either by control laws governing the formation behaviour [3] or by a 

combination of aerodynamics and formation control laws [82, 105]. Because 

these systems are coupled dynamically, they can be analysed as a single large 

scale system. Unlike formation flight problems, cooperative path planning and 

resource allocation problems usually involve UAVs that are physically indepen­

dent of one another, although they may be coupled dynamically by their co­

operative control algorithms. The scaling problem is also apparent in the field 

of unmanned aerial vehicles. In applications where path planning and coordi­

nation of a large fleet of autonomous vehicles is required, centralized solutions 

quickly become computationally intractable. Moreover, in these applications, 

the planning problem typically needs to be resolved multiple times, as new in­
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formation about the environment is often gathered while the mission unfolds. 

Thus, a decentralized receding horizon (or model predictive control) planning 

strategy seems a natural approach to solving the multi-vehicle trajectory gen­

eration problem. One such method is proposed in [92], where static obstacles 

and other moving agents are accounted for by potential functions. Although 

computationally attractive, the use of potential functions does not guarantee 

safety due to collision with other UAVs because vehicles are captured using 

soft constraints in the cost function. In [49], an alternative algorithm based 

on an iterative bargaining scheme is given. However, as the iteration might 

converge to an infeasible equilibrium, again only soft safety guarantees exist. 

Several important UAV cooperative control problems can be formulated as re­

source allocation problems. This includes target assignment problems [7, 74], 

cooperative classification problems[18] and cooperative search problems [91]. 

The majority of the cooperative path planning problems considered in the lit­

erature involve timing or sequencing of UAVs for arrival at targets or other 

specified locations. A cooperative control strategy for UAV rendezvous was 

presented in [68]. Cooperative path planning is also employed in cooperative 

search and cooperative classification problems [19]. There is also an extensive 

literature on multi-robot systems [4, 5, 23, 26, 34, 63, 77].

7.1.2 Problem  Description

Here we propose a theoretical cooperative control architecture for a team of 

N  heterogeneous UAVs that are initially engaged on a mission through known 

target locations in the presence of dynamic threats. Each UAV plans its own 

trajectory using a receding horizon strategy based on mixed integer linear 

programming (MILP). Several different types of targets may be considered. 

M  target locations are suspected a priori with a certain probability, while the 

others are initially unknown. The problem is decomposed into the following 

subproblems:

• cooperative target assignment

• path planning
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• feasible trajectory generation

• trajectory following

During the mission, at each target location, the UAVs perform Confirm, Attack 

and Loss Assessment tasks . Other target and threat locations are detected 

gradually during flight towards a known target, while the tasks are determined 

in real-time by the actions of all UAVs and their results (e.g., sensor readings), 

which makes the task dynamics stochastic. The tasks must, therefore, be al­

located to UAVs in real-time as they arise. Each class of UAVs has its own 

sensing and attack capabilities with respect to the different target types, so the 

need for appropriate and efficient assignment is paramount. This produces a 

simple, flexible, scalable and inherently decentralizable method for task alloca­

tion. Every UAV while on its way also monitors the changes in the environment 

and accommodates this information in planning its path. We incorporate the 

effect of various decision parameters, target distributions, and the UAV team 

characteristics in our approach.

Information to other UAVs
SAM locations
& strengths

Target
locationInformation 

from other
UAVs

Assigned
target

Assigned
target

FH trajectory + 
Loiter circle

Waypoint

Control
inputs

Sensor information

Targets to be 
assigned

TM PP

Controller

UAV

RHC
MILP

Figure 7.1: Cooperative control architecture
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7.2 Proposed Architecture

Figure 7.1 shows the proposed architecture. At the lowest level of the architec­

ture is the physical UAV. The target manager (TM), path planner (PP), and 

information base (IB) work together to assign a target for the UAV. Sensor 

measurements from the current planning and other UAVs go to the informa­

tion base, which also broadcasts its own data to other UAVs. The TM receives 

from IB the available targets to be assigned and sends target locations one by 

one to the PP. In turn PP sends TM the approximate cost of achieving the 

target. The path planner receives location and strength of the SAM sites from 

IB and make use of the modified Voronoi diagram with fictitious threats to find 

out the minimum risk path. The optimum path is selected using the dynamic 

programming approach described in Section 6.3.2, which make use of the cost 

function given in equation (6.3.3). This cost function takes into account both 

risk and distance to the target and the compromise between these two can 

be adjusted by the parameter k which varies from 0 to 1. After the target 

has been selected, the next stage is the feasible trajectory generation param­

eterized with time. By feasible, we mean that in the absence of disturbances 

and modelling errors, an input trajectory causes the UAV to fly the trajectory 

without violating its velocity and heading rate constraints. We assume that 

each UAV is equipped with a trajectory tracking controller. This is accom­

plished using a receding horizon control (RHC) strategy employing a mixed 

integer linear programming (MILP) technique that finds a trajectory over a 

finite horizon ending in a loiter pattern. The trajectory generation process 

makes use of soft dynamic threat zone modelling developed in Section 4.12 

but with hard constraints for collision avoidance. The trajectory is calculated 

in a sequential order after target assignment and is detailed in section 7.4. The 

trajectory generator outputs a flag that indicates when a new waypoint path 

is needed. Several events may necessitate a new path. First, the UAV may 

successfully complete its path. Second, a pop-up threat may be detected in the 

environment. Third, because of disturbances, the tracking error may become 

unacceptably large. The IB shown in Figure 7.1 facilitates communication be-
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tween different UAVs. Each UAV implements a separate target manager, path 

planner, trajectory generator and tracking controller. Therefore, the decisions 

reached by these functional blocks must be synchronized among the different 

UAVs. The primary role of the IB is to ensure synchronization. The design 

of communication managers for multiple cooperating autonomous vehicles has 

been discussed in [38] for UAVs, and [96] for autonomous underwater vehicles.

7.3 UAV State

The state, Siit =  [s' t 7r't x^]', of the ith UAV, at time t has two parts:

• A physical state s^t = \j/i t v 'J ': including information on its

1. position pi,t at time t

2. speed v^t at time t

3. heading rpitt at time t

• A functional state 7ri>t =  [idijt tdit c^t p^t Ji,tY ’ including the

1. identity id^t of the task if any

2. location of the specific task (if any) Kijt to which the UAV is com­

mitted or has bid for

3. nature of the task d^t which can take values from the set {confirm, attack, 

loss assessment}

4. the corresponding commitment status p^t which can take values 

from the set {open, competing, comitted} indicating whether the 

UAV has no commitment (open), has bid on a task or been associ­

ated with one (competing), or is assigned to a task and, possibly, is 

performing it (committed)

5. the UAV’s expected cost for performing this task Jijt

The functional state of an open UAV has null values in its other fields.

The ignore tasks require no commitment, and correspond to an open 

functional state.



7.4 Sequential Trajectory Planning

Each UAV plans its trajectory individually using a receding horizon strategy 

based on mixed integer linear programming (MILP). A first order discrete 

zero order hold system is used to capture the dynamics and kinematics of the 

vehicle (see Section 4.2). At each time step, a dynamically feasible trajectory 

for each aircraft that terminates in a loiter pattern is calculated by taking into 

account: risk due to SAM sites and also risk due to collision with vehicles. 

Dynamical soft constraints are used to model radar zones while the loiter 

pattern guarantees safety due to collision with vehicles. Conflicts between 

multiple UAVs are resolved in a sequential, decentralized fashion, in which 

each UAV takes into account the latest trajectory and loiter pattern of the 

other UAVs. Besides maintaining feasibility, if the problem is too complex to 

be solved within the time constraints of a real- time system, this approach also 

provides an a priori safe rescue solution consisting of the previous trajectories 

and individual loiter patterns.

Each UAV individually computes its trajectory towards a destination way­

point, accounting for the intentions of the other UAVs and also minimizing 

risk due to SAM units. Since information on the latter is gathered online 

and changes as they update their own trajectories, each UAV adopts a reced­

ing horizon planning strategy: a new segment of the total path towards the 

destination is computed at each time step by solving an optimization prob­

lem over a limited horizon of length T. The cost function to be minimized 

is a measure of time or fuel and observability or risk. The solution to the 

optimization problem provides the trajectory points and corresponding input 

commands to the aircraft for the next T  time steps. However, only the first 

of these input commands is actually implemented, and the process is repeated 

at the next time step. As such, new information about the state and actions 

of the (other) UAVs can be accounted for at each iteration. Assume that 

si j  = [p'ij vlj]' is the destination state vector of the ith UAV. It consists of 

a final position pij  and a corresponding speed vector Vij with respect to an 

inertial coordinate frame. This waypoint is assigned by the target manager to
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the UAV. Given the state sijt at a certain time step t, the trajectory resulting 

from solving the path planning problem towards Xij consists of a sequence 

of (T + 1) states sijt+k, k = 0, . . . ,  T, and a corresponding sequence T  inputs 

Uit+u I = 0, . . . ,  (T — 1). The plan starting at time step t must be computed 

during time step t - 1, i.e. when the UAV is on its way to x ijt. The latter state 

is part of the previous plan, which we assume to be accurately tracked. As 

such, the UAV will be in the predicted state x i>t when the next plan is executed. 

It implies that each UAV can reliably assume that all other UAVs are exactly 

following their trajectories as planned. Including robustness to uncertainties 

in the latter is a topic of future research. Safety of the vehicle is concerned 

with two things: collisions with other vehicles and danger from SAM units. 

Since a SAM unit may have variable range and there is no physical boundary, 

safety due to this means following a trajectory that is of minimum risk. The 

prevention of collisions with other vehicles is most important. Hence a UAV 

will be in a safe state, if from that state, there exists a known dynamically fea­

sible trajectory to a sequence of states ending in a circular loiter pattern that 

is collision free [90], has minimum risk and in which the vehicle can remain for 

a long time to avoid collision with other vehicles.

Conflict A rea Let Ai,t be C 5ft2 the subset of the inertial space which repre­

sents the area in which the dynamically feasible trajectory lies that start 

at Sitt and ends in a feasible loiter pattern where Tijt U C t̂+T C

Conflict Set The UAV i is involved in a conflict with UAV j  ^  i at time step 

t , if Aij fl Aj,t 7̂  0 and the set of all such UAVs is called a conflict 

set.

P lan  The sequence of trajectory points starting at time step t  and the coordi­

nates of the rectangle that is aligned with the inertial coordinate frame 

and surrounds the loiter pattern C^t+T is called the plan of the aircraft i 

and is denoted by V l t.

Planning O rder Each UAV is given the same upper bound At  on the time 

interval during which the UAV must solve its optimization problem and
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the central information base will determine the orders Ot of the UAVs 

in which the conflicts are resolved.

The conflict area Ai of the UAV i can be taken as a circle whose radius is the 

sum of the maximum distance that can be travelled over the length of the plan­

ning horizon including a margin for parking circle and is y/ (TAtumax)2 + 4r^ax, 

where rmax is the maximum achievable radius of the parking circle. Initially at 

t = 0, we assume ^i,on^42,o> • • • > rL4i)0 = 0- Now the path planning algorithm 

given in can be described as:

Step 1 Start at time t.

Step 2 Send the next predicted position p t̂+i to the central information base 

and in response receive the conflict set Bij+i, the planning order and 

planning starting time tord̂ )>s

Step 3 If conflict set Bid+i is non-empty, then broadcast the current plan V id 

to all UAVs in Bid+i and go to Step 5 else go to next Step.

Step 4 Solve the receding horizon optimization problem for the ith UAV. If 

an acceptable solution is found within time St, let the new plan =

Titt+i U Cip+t+i else let V ijt+1 -  V id \ p id. Go to last Step.

Step 5 At time Grd(i),s) solve the optimization problem by taking into account 

the latest plans for all UAVs j  whose order in the conflict set is less than 

the order of the ithUAV and taking the earlier plans for all UAVs k whose 

order is greater than the order of the ith UAV.

Step 6 If an acceptable solution is found at time tord̂  +  St, let the new plan 

be = Tid+1 UCw+t+i else let V itt+i = V id \ p ijt. Go to next Step.

Step 7 During [tord(i) + St, tord̂ ) + St +  StcomTn\ broadcast V itt+i to all UAVs 

k whose order is greater than the ith UAV.

Step 8 End by time t + 1 and repeat.

The trajectory at each iteration for each UAV is constrained to terminate in 

a loiter pattern (parking circle) by taking into account dynamic soft constraint
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for radar zone modelling developed in Section 4.12 and hard constraints for col­

lision avoidance. Further the hard constraints for collision avoidance consists of 

two types of constraints: rectangular constraints for each finite horizon trajec­

tory point (Type 1 collision avoidance constraints) and rectangular constraints 

surrounded by the corresponding parking circles (Type 2 collision avoidance 

constraints).

7.4.1 Type 1 collision avoidance constraints

Each trajectory point pj^ of UAV j  E Bitt is considered an obstacle that is 

present at time step k in the planning horizon, if that point lies in the con­

flict area A  of the planning UAV i. The time steps for which pj^ £ A  are 

T j C T = [ 0 , . . . ,T \ .  These points are considered square obstacles of dimen­

sion ds = 2 (max(vmaxAt, d sa f e ) + vmaxA t), where dsaf e is the required safety 

distance around each UAV. The lower left corner of the waypoint obstacle is 

then given by ( x ^ jk, y^Zjk) = (xjk ~ y , ~  y )  and the upper right corner

by (xZTxjki v Z tjk )  = (xjk + y , Vjk + y  )• The constraint for this type can be 

formulated as described in equation (4.4.10) of Section 4.4.

7.4.2 Type 2 collision avoidance constraints

Again this is a hard constraint formed by enclosing the parking circles within

a tight square of side 2 * R, where R  is the radius of the parking circle which 
2

is given by R = As can be seen in Figure 7.2, this radius is decided by the 

magnitudes of the terminal velocity vT and the maximum centripetal force Fc 

for a unit mass UAV.

The position vector of a point at an angle 9 on the right circle can be 

written as
cos 9 — sin i 

sin 9 cos 9

where prcl9ht is the centre of the right circle. Also if v ?  = [— v VT v x t ]t  is the

r igh t _  r igh t
Pff Pc + ( p T  ~  P c'g h t) (7.4.1)
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Figure 7.2: Parking or loiter circles for the UAV

orthogonal complement of vT = [vXT uyT]T, then

. 2

Pt Pright _  VT -_L
“  fcVt

VT -> ±

Fc T

Using this in (7.4.1), we have

or

right ^T -*]_ .Pe = P T ~ y V  £ +
cos 9 — sin 6 

sin 9 cos 9
vt

(7.4.2)

(7.4.3)

rightXq xT Vt —yT
+

cos# — sin# Vt —Vt
„ right
Ve Vt ~~FC XT sin# cos# ~FC xT

(7.4.4)

Xright _
e ~
right

r\)r£ UfP
xT — —Vt{cos9 — 1) — —XTsin# 

Fz Fc
‘U'j1 'Urj'

yT + y  xT(cos 9 - 1 ) -  — yT sin 9

Similarly for a left parking circle

xleft = xT + -pryri cos 9 — 1) + - ^-Xt sin
Vj'

Fc
ylgeft = y r -  y X T(cos 9 -  1) + y V T  sin I

(7.4.5)

(7.4.6)

(7.4.7)

(7.4.8)

Let the parking circle of each UAV j  having conflict with the planning UAV i 

be constrained within a square with lower left corner ( ^ S J ,  Vminj) aRd upper 

right corner ( a j J j J j J S e l e c t  equally spaced discrete points NP on the 

parking circle of the UAV i such that 9S is the sampling angle. The above
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dimensions include continuous segments of the parking circle of the UAV i 

between its discrete sample points. So the constraint to avoid parking circles

of UAV j  involved in conflict with the planning UAV i can be modelled using

equation (4.4.10) by the introduction of binary variable bLR which select either 

the left or right circle, Vj and VA; E [1,...,  NP] such that

xiT -  ^-yiT(cos k6 s -  1) -  ~ x iT sin k6 s < x ^ j  +  Wtfki +  ^ pbLR
■ T C  C

- x iT + y y iT(cosk$1- l )  + y i iTsmk0s < - x X j  + ClVjk2 + iVbLR

yiT + y X iT{cosk0s - l ) - y y iTsmk$3 < y ^ j  + Opbjk3 + OpbLR

-y>T -  y i T(cos k6s -  1) + y y lT sin k0„ < + Qpbjki +  0?bLR

(7.4.9)

< + IT ( 1  -  bLR)

< +  « P(1 -  bLR)

< & &  +  +  0p( l -  bLR)

< - I ®  +  +  «P(1 -  bLR)

(7.4.10)

7.5 Map Dynamics

As Ui moves in the environment towards the assigned target, it performs an 

action, aijt. A canonical action set is denoted by D, which includes sensor 

readings, firing of munitions and null actions. Since the UAVs have limited 

weapons, so the firing of munitions is done on the high valued targets and is 

rarely performed on threats. The threats are avoided by selecting a minimum 

risk path based on the threat probability map. If the action is a sensor reading, 

it returns an observation value, bitt, which is a stochastic quantity that is used 

to update the threat map M thr(x, y , t), the target occupancy map A i tar(x, y, t) 

and the task status map M tas{xTj, yTj, t) V current targets Tj, j  = 1, . . . ,  M  lo­

cated at (xTj, yTj). If multiple UAVs collect observations at the same time, 

updates due to their actions are applied sequentially. This determines the up-

U'jf1 U'J1xiT +  — yiT (cos kQs -  1) + — xiT sin k0 s
r c  -t*  c

fUrp
- x iT -  — yiT(coskOs -  1) -  7 - x iT sink0 s

f C  f  C
V T  X)'j'

yiT -  — xiT(coskOs -  1) + — yiT sin k6 s
f  C f  c

U'j' U'j1
- y iT +  y X T(cos k6 s -  1) -  — yir sin kQs
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dates of the different maps at (x, y) through a possibly stochastic map update 

function.

7.5.1 Derivation of the Map U pdate Equation

Consider the case where a UAV takes a measurement in cell (x , y) at time t.

sensor reading taken by the UAV, where bt = 1 indicates target detection and 

bt = 0 for no detection. Further, B t_i is the vector of all sensor readings for 

cell (x , y) by all UAVs taken up to time t — 1, that is before time t.

Based on the above definitions, P(A\Bt-i)  is the probability of target exis­

tence at time t — 1 and P(A\Bt_i, bt) is the updated probability after obtaining 

the new reading bt. So

We assume that the sensor measurements in any cell are conditionally in­

dependent given the state of the cell, i.e.

Let A  be the event that a target is located in cell (x,y) and bt is the binary

(7.5.11)

P(t) = P(A\Bt^ , b t) (7.5.12)

n

(7.5.13)

Now
P{Bt. u bt\A)P(A) (7.5.14)

P(Bt^ , b t \A)P(A) (7.5.15)

Dividing equation (7.5.14) by (7.5.15), we can write

P(Bt. u bt \A)P(A)
P(Bt-i,b t \A)P(A) 
P(Bt-i\A)P(bt |yl)P(^)
P(Bt^\A)P(bt \A)P{A)
P(A\Bt—i)P(Bt~i)  p f i  I a \ tP(bt\A)P(A)
P(A\Bt- i ) P ( B t - i )  p fh 

P(A ) P(bt\A)P(A)

P(A\Bt. 1)P{bt \A)
(7.5.16)
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Taking a =  p j ^ j  and solving (7.5.16) for P(A\Bt„i, bt)

a i [1 “  B*)1 (7-5-17)

or
P(A|Bf_1)

i + a . ' r ,1: : : "  . b ^ ib^ a ) =  Ql  f  (7.5.18)

^ - ^ ^ “TTcST^kn ( 7 - 5 - 1 9 )

Hence, when the UAVs search sensors report a target present in cell {x,y), i.e. 

bi(x,y,t) =  1, the update is

p̂ t+1) = aT T ^ h r )  ( 7 - 5 - 2 0 )

When the UAVs search sensors report that there is no target in the cell at 

(x,y), i.e., bi(x,y,t) = 0, then the update will be according to the equation

7.6 Tasks for UAVs

We categorize the tasks for UAVs into two main classes when it starts moving 

towards the assigned target.

7.6.1 Prim ary Task

This task is performed by each UAV at all time.

Detection: UAV, ui: makes a sensor reading bi(x,y,t) =  1 if the sensor 

detects a target or threat and bi(x, y,t) = 0  if it does not. Each UAV is assumed 

to be equipped with proper identification algorithms that help in differentiating 

between a target and threat. The sensor is assumed to be imperfect and the 

detection accuracy of the sensor is characterized by

a P(bt \A)
P(bt\A)
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where A is the event that a target or threat is actually located in the cell 

being scanned. The threat map M ihr(x,y,t) and target map M iar(x,y,t)  are 

updated based on a Bayesian formulation

* W * + 1 )  =  [1 ~bi(x,y,t)}l + +bi(x,y,t ) 1 + (q

(7.6.22)

A cell with the search status transitions to ignore if the probability falls below 

the resolution threshold, pr, and to confirm if the probability exceeds the 

suspicion threshold, ptar for target detection.

7.6.2 Secondary Tasks

These tasks are only performed at the target locations.

Confirm: The cuing of a confirm task at cell (x , y) indicates that a UAV 

with the appropriate sensors should move towards the cell and scan it. All cells 

with a priori suspected targets are initialized with the confirm task and given 

a target occupancy probability of ps. The confirm task is functionally identical 

to detection, and the probabilistic map update function is the same as given 

in equation (7.6.22). However, unlike detection, it is assignable to UAVs with 

the appropriate expertise. The sensors used may also be different in the two 

cases. The cell transitions to search if its detection probability falls below ps 

(as a result of failure to confirm suspicions), and to attack if it exceeds the 

certainty threshold, patt- UAVs don’t perform confirmation tasks for threats 

and only update the threat map based on sensor data. An object is considered 

a threat if its threat probability exceeds the threshold pthr-

Attack: The attack status indicates that an appropriately armed UAV 

should proceed to the location and attack the target with the correct munition. 

In this case the updated probability for target existence Pf£r f t+ 1 )  is the same 

as the probability of target existence at time step t +  1 given that the target 

has been attacked. And which is turn equals the probability that the target 

is present at (x , y) at time step t and not destroyed given that the target has 

been attacked. This can be calculated from the product of two probabilities: 

probability of target presence at (re, y) at time step t  and the probability that
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target not destroyed given that the target has been attacked. The attacking 

UAV then changes the probability for target existence P ^ y){t +  1) at that 

location to:

P^y) (t + 1) — — pro6(target destroyed | target attacked)

= P £ ) ( t ) ( l - p 0 )] (7.6.23)

where 0 < po < 1 is the probability that the target is destroyed in the attack. 

Different types of UAVs can have different values of po for different target 

types. If the updated P ^ ry){t + 1) becomes less than the exit threshold, p#, 

the cell transitions to status LA.

Loss assessment: The purpose in the loss assessment (LA) task is to 

verify that the PTaE has indeed fallen below p s . Like detection and confirm, 

this is a purely observational task, and uses the same update equation (7.6.22). 

If the result of the update produces P ^ y) (t +  1) > p#, the cell transitions 

back to attack provided it still has weapons (otherwise it returns to base). If 

P(x,y , t  + 1) <Pe, the cell position is assumed to be target free and the UAV 

heads towards the next assigned target.

Ignore: This status applies to cells that are known a priori to harbour no 

targets or where the absence of targets has been confirmed. Figure 1 shows 

the transitions between states using an automaton formulation.

7.7 Target Assignment

Suppose that there are N  UAVs Ui, i =  1, . . . ,  V, M  targets ctj, j  =  1, . . . ,  M  

and L threats (3k, k = 1, . . . ,  L. These targets and threats are known initially 

while more can be discovered while flying towards a known target. The new 

target or threat is discovered within the limited sensor range. The aim is to 

destroy as many targets as possible while moving on minimum risk paths to 

avoid threats. The UAVs will be gathering information online while heading 

towards a pre assigned target and to perform confirm, attack and loss assess­

ment tasks on the target location such that the overall group cost is optimized. 

We consider UAVs drawn from two classes: Target recognition (TR) UAVs;
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and attack (A) UAVs. The TR UAVs are best suited for the confirm, attack 

and loss assessment tasks, while A UAVs are needed for attack. All UAVs are 

assumed to have equal capability to detect a target or a SAM site. UAVs of 

any class X have a class-specific expertise vector, [£*], with respect to the four 

tasks, Tj,j  =  1, . . . ,  4, in the task set. The expertise of class X  UAV Ui for task 

Tj is, therefore, denoted by £■*•. All are between 0 and 1. In keeping with 

the capability designations, we set: £[R =

For this type of decision problem, the standard approach is to create an objec­

tive function that encodes the desired objectives of the decision problem. An 

optimal solution is one that minimizes this objective function. The complexity 

of the problem for finding an optimal solution increases with the number of 

targets. For agents with targets, we must search through possible assignments. 

The target and task assignment process is done initially at time t =  0 and is 

repeated again whenever a new threat or target is discovered. Whenever the 

target assignment becomes necessary, it is done in a sequential order before the 

trajectory generation process for that vehicle as described earlier. Each vehicle 

is assigned only one target at a time. Multiple target assignments to one UAV 

will be a topic of further research. A cost function is evaluated sequentially 

for each UAV (that has not been assigned any target in the current assign­

ment) with respect to all suspected target locations. The target which has the 

smaller value of objective function is assigned to that UAV. The sub-objectives 

for each assignment are:

Objective 1 Maximize the number of vehicles prosecuting each target (to 

maximize survivability). This objective can be represented by assigning 

a value to the team size for each assigned target. A number can be 

identified that encodes how much better a larger team is than a smaller 

team. A monotonically increasing function that increases dramatically 

between 1 and 3 team members, indicating that a minimally acceptable 

team consists of two members. So if rrij is the number of vehicles already 

assigned to a target j, then the following objective will determine the
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cost for assigning rrij + 1 UAVs to that target

M " b )  = \ ( l + , " h ~ -  —  I (7-7-24)2  V  +  ( m ,  -  2Y

where sjx is the softness parameter of the above function. The choice 

depends upon the designer but a reasonable value is 2.

Objective 2 Maximize the number of targets visited. This heuristic drives 

the team towards visiting as many targets as possible. This is modelled 

in the objective function so that each target should be visited by at least 

one UAV

A W  = \  (1 -  , m i ~ 1 - ) (7.7.25)
2 v y ^ + K - 1)2/

As can be observed from the above equation, after rrij = 1, J2 decreases 

rapidly with the number of UAVs. For different targets, this objective 

function may have different values.

Objective 3 Maximize the effectiveness for target service. This means that 

an appropriate UAV either T R  class or A  class or both should proceed 

to the location for the best demanded action. The probability of target 

existence at that location also affects the choice of the UAV class and is 

modelled as

=  (1 ~ P j )  * ex p (-f$ ) (7.7.26)

Objective 4 Minimize the path length to the target using

J4 =  dj (7.7.27)

where dij is the normalized distance of the UAV i to the target j.

Objective 5 Minimize the threat exposure. The hit probability has been 

described earlier and can be used here as the objective function

J5 = Pm (7-7.28)

All objectives except the second are myopic objectives whereas second is a

team objective. For each task, the team must try to use UAVs best suited to
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it. The values for all the sub-objectives described above lie between 0 and 1 

and can be combined into a single objective as

J  = min(l — Ji) * J2 * J3 * J4 * J5 (7.7.29)
jeTj

J is evaluated for each target and the target with the minimum value of J  is 

selected. All UAVs have instantaneous and noise-free access to a centralized 

information base (IB), which comprises the following items:

1. The target map M tar(x, y , t) V(x, y).

2. The threat map M thr(x,y,t) V(x,y).

3. The task status map A i tas(xTj, yTj, t) V current targets Tj, j  =  1, . . . ,  M  

located at (xTj, yTj) and idTj is the identity of the task to be performed 

at target Tj i.e., whether it is confirm ( idTj = 2), attack ( idTj =  3), or 

loss assessment ( idTj = 4).

4. The UAV state vector, S(t) = {Si(t)} Vu*.

7.8 Working Procedure

Each UAV reads and updates the IB at each step. Initially each cell has some 

probability of existence for a target or threat which varies from 0 to 1. The cells 

which have a probability for target existence greater than the threshold paU are 

needed to be treated as a priority. These cells are believed to be without any 

doubt for target existence and so confirmation is not necessary there. Therefore 

the first task to be performed there is attack and after that other classes of UAV 

can come forward for loss assessment. Similarly the threshold for threat (SAM 

site) existence at any location (x, y) is pthr■ The cells where targets and threats 

are not suspected or impossible have Ptar(x,y, 0) < p3 and Ptar(x ,y , 0) < p3 

respectively and these cells have ignore status. The UAVs’ initial positions are 

also given. All UAVs initially have open status. When a UAV has no task 

to choose (which happens when all the targets are neutralized or the UAV is 

ineligible for all available or associated assignable tasks ), it can join a UAV 

which has a committed status. After all the targets are neutralized, the UAVs
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come back to their base. Each UAV reports its best choice to the central 

information base. UAVs that have small value of the performance index J  

are assigned to its preferred task while other UAVs compete for the remaining 

choices in a sequential order until every UAV has an initial assignment. When 

two UAVs prefer the same task, the conflict is resolved in favour of the UAV 

with the smaller distance. Thus, initial assignment is purely cooperative and 

semi-greedy. After the initial assignment, each UAV moves towards its assigned 

or associated task, updating both the probability of target and threat existence 

in each cell it passes. When it reaches its assigned target, it performs the task 

and updates all the maps there and the UAV’s status reverts to open. Each 

new assignable task is cued with an available status. At all times, all open and 

competing UAVs are considered for all available and associated tasks. The 

UAVs are processed in an order determined by the central hub. The process 

continues until all locations have an ignore status or some time threshold is 

met.

7.9 Conclusion

A decentralized cooperative control architecture has been proposed which up­

dates target maps, threat maps in a probabilistic way using a Baysian for­

mulation. The tasks are assigned and conflicts are removed in a sequential 

way. Each UAV designs its trajectory using a receding horizon formulation of 

the MILP that ends in a loiter pattern. A novel objective function has been 

developed that helps in assigning tasks to UAVs. Theoretically this architec­

ture looks promising but extensive simulation needs to be done to validate it 

experimentally. Future work could incorporate learning and adaptation at the 

UAV and team levels so that decision-making can improve with experience and 

individual UAVs can develop specialized expertise. Also, including dynamics 

in the expertise vector for each UAV could be helpful to model losses in UAV 

capabilities in the event of munition use or damage.
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Chapter 8 

Conclusions and Suggestions for 

Further Research

In this thesis, high level control issues for autonomous air vehicles have been 

addressed. In particular, autonomous vehicle trajectory planing has been ex­

plored and several techniques developed and compared with an emphasis on 

real time use. First, the problem was formulated using an optimal control 

approach and necessary equations were derived for safe navigation of UAVs. 

The objective function incorporates many real life scenarios: minimum time, 

terrain avoidance and least risk due to SAM sites. Because of the complexity 

of the problem, it was simplified into smaller problems: single radar and two 

radar exposure minimization problems, with the the intention finding analyt­

ical solutions. An analytical solution was obtained for the single radar case. 

The two radar case for different strength ratios was compared with the devel­

oped Voronoi paths using numerical techniques such as the gradient method. 

For the single radar, it was found that trajectories do not exist for Of > 60°. So 

a path length or time constraint must be introduced to recover the solution. If 

there are a number of threats, then analytic solutions becomes difficult. Con­

straints such as velocity and acceleration are hard to incorporate in the above 

formulation as is replanning which is required in real time situations.

Next it was shown that the problem of path planning can be formulated 

as a mixed integer/linear constraints optimization problem (MILP). Different 

constraints were formulated and applied to two case study examples. Using
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MILP, however, to design a whole trajectory with a planning horizon fixed at 

the goal, is very difficult to perform in real time because the computational 

effort required grows so rapidly with problem size. On the other hand big time 

steps can lead to inaccurate or non-implementable solutions. It was shown that 

this limitation can be avoided by using a receding planning horizon strategy in 

which MILP is used to form a shorter plan that extends towards the goal but 

does not necessarily reach it. When using this receding horizon approach with 

hard constraints for obstacle and collision avoidance, an infeasible problem can 

often arise, though in theory there are solutions to the whole problem. This 

is because the look ahead horizon is limited, and the vehicle can be led to a 

critical state for which MILP has no solution at the next iteration. In other 

words, a feasible solution for future time steps at a current time step does not 

guarantee a feasible MILP at each time step. The performance of a receding 

horizon strongly depends on the proper evaluation of the terminal penalty 

on the shorter plan. This evaluation is difficult when the feasibility of the 

path beyond the plan must be ensured. This can be further explained by the 

situation in which at the last time step of the planning horizon the vehicle is 

moving at maximum speed while its position is close to an obstacle which has 

not yet been spotted. Since the position of the vehicle satisfies the anti-collision 

constraints, this situation corresponds to a feasible solution of the MILP. At 

the next time step, however, the obstacle is identified and the vehicle needs 

to brake or turn which then exceeds the constraints on acceleration or on the 

vehicle manoeuvre space, a solution will not therefore be found. The proposed 

approach modifies the hard constraints for obstacle and collision avoidance into 

soft constraints in such a way that the MILP formulation remains stable with 

no or minimum violation of the constraints. Robustness of receding horizon 

control is guaranteed by modelling the constraints as soft. The efficiency of 

the techniques depends upon proper modelling of the mixed linear constraints 

and also on the time horizon. The optimality can be increased by increasing 

the time window but by doing this the computational load will increase. There 

should be a realistic compromise between optimality and computational load. 

The MILP is solved using commercially available software AMPL/CPLEX that
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uses the well known branch and bound algorithm.

The probabilistic nature of the problem is evident for three main reasons: 

first of all because of the inevitable uncertainty of the measurements from 

the sensors, secondly for the intrinsic uncertainty of an unknown environment 

and finally the structure of reasoning of any intelligent system is naturally 

probabilistic. Due to the inherent complexity and probabilistic nature of the 

problem, a three dimensional probabilistic approach was suggested that de­

pends on a nonlinear performance index. The strategy was designed by taking 

into consideration three main objectives: restricted areas should be avoided, 

threat exposure levels should be minimized and proximity of the target must 

be achieved. The proposed algorithm is based upon a search of a point for 

local minima on a disc whose centre passes through the line of sight of the 

target from the current point and is also perpendicular to that line. The ra­

dius of the disc is decided upon by a maximum search angle and which in 

turn can be decided by the maximum turn angle. The disc is divided into a 

suitable number of lines all passing through its centre and a point is searched 

along these lines. The algorithm is not only capable of finding the safe path 

but also takes into account real world practical constraints. The algorithm is 

applied in a decentralized mode, that is, each vehicle has its own processor 

and applies the algorithm to find its own path with consideration of collisions 

with other vehicles by keeping itself at at some fixed distance from the others. 

The novelty of the algorithm lies in its ability for use in real time due a to 

very low computational load in spite of the fact that it finds a path in three 

dimensions. The paths are locally optimal and are feasible for the UAV to fol­

low by keeping the turn angle within certain maximum limits. The UAVs are 

prevented from flying at very low altitudes because of the danger of crashing 

into ground objects. Since each UAV has limited fuel, a compromise has to 

be made between risk and fuel consumption by limiting the height and search 

angle. One important observation of this algorithm is that while evaluating 

the stealthy path for the UAV, the direct distance of the vehicle from the tar­

get decreases at each path step. This property can be utilized to explore the 

coordinated rendezvous aspects; a topic for future work.
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All the real time techniques discussed so far are based on local optimiza­

tions and perform well for planning within some limit area at each time step. If 

we have some global knowledge of the world then this information can be com­

bined with local optimization techniques for improved optimality and hence 

sometimes a global planner is needed. Deterministic approaches are used most 

often in global path planners. Two deterministic techniques are the Voronoi 

Diagram and Visibility Graph. A hybrid approach has been presented which 

is based on the Voronoi graph, local optimization and grid search methods. A 

software package has been developed at Leicester (see Appendix A) that adds 

extra subroutines to modify the Voronoi code. These subroutines expand the 

node list by adding in nodes on borders connecting the infinity nodes and by 

inclusion of corner points. Furthermore, they remove those nodes outside of 

the considered area and include instead the intersections of the correspond­

ing edges and the border lines. Hence, the area is explicitly and completely 

partitioned into cells. The efficiency of the software has been demonstrated 

with some example scenarios that use a dynamic programming optimization 

approach to select the optimal path. Constraint optimization has also been 

discussed. The comparison reveals that most techniques have some advantages 

(and drawbacks) over the other and hence should not be used independently 

in all situations. MILP is very flexible in adopting the constraints on velocity 

and acceleration but for large problems in a centralized mode, it may become 

intractable for real time use. Therefore, it should be used in a decentralized 

fashion to reduce the computational effort and also to enhance the variety and 

flexibility of mission goals, tighter integration with other algorithms such as 

optimal control capturing important analytical features for an optimal path, 

extended Voronoi approach for global optimality and probabilistic local mini­

mization technique to incorporate probabilistic nature of the problem, tempo­

ral planing for low observability while moving in the high risk region needs to 

be explored.

As a final study, a systematic decentralized cooperative control architec­

ture for a team of cooperating autonomous UAVs was proposed which updates 

the target map and threat maps in a probabilistic way using a Baysian for­
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mulation. The tasks are assigned and conflicts removed in a sequential way. 

Each UAV designs its own trajectory using a receding horizon formulation of 

the MILP that ends in a loiter pattern. A novel objective function has been 

developed that helps in deciding tasks for the UAVs. Theoretically, this archi­

tecture looks promising but extensive simulations need to be done to validate 

it experimentally. Further research work could be testing of this architecture, 

while incorporating learning and adaptation at the UAV and team levels, so 

that decision-making can improve with experience and individual UAVs can 

develop specialized expertise. Including dynamics in an expertise vector for 

each UAV could also be helpful in modelling losses in a UAV’s capabilities in 

the event of munition use or damage. Also including prediction in the assign­

ment process, so that UAVs can anticipate tasks likely to become available 

in the near future and include them in their plans. Further future research 

directions are:

• to model and incorporate the non-isotropic UAV radar cross (RCS) 

showing coupling with vehicle dynamics into the integrated probabilis­

tic model suggested in chapter 5 to reflect the risk minimization with 

orientation. Also the actual dynamics of a UAV are much more compli­

cated and so ways will have to be determined that take these additional 

features into account but do not significantly increase computational re­

sources required to compute a trajectory.

• Two radar case for different strength ratios was compared in section 

3.7 with the developed Voronoi paths using numerical technique such 

as gradient method when the UAV has to sought a path between the 

radars. A similar numerical study could be undertaken to determine 

some guidelines for the UAV to decide when to go around the radars.

• A model containing additional details such as landscape features, wind 

conditions would be more realistic with keeping computational complex­

ity of the method at a practical level.
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A ppendix A  

Software Package for W aypoint 
Selection

A .l  Main file of the software

%%
%% Main program of the way—point generator —  3—dimension case.
%% Waseem Kamal, Dawei Gu and Ian Postlethwaite 
%% Dept of Engineering, University of Leicester

clear all 
close all

MyTol = l.Oe—6;
%
% Input data 
%
disp(,Pleasewdefineuthe^boundaries^oLthe^operation^area.’);

xMin = input (’Enter ̂ theanin^of^x—coordinates: J); 
xMax = input (’Enter ̂ therniax^ofjc—coordinates: J); 
yMin = input(’Enter^the^min^oLy—coordinates: J); 
yMax = input(’Enter^themiax^oLy—coordinates: J);

Range = [xMin xMax yMin yMax]; 
xRange = xMax — xMin; 
yRange = yMax — yMin;

nthreat = input (’Enter ̂ theaiumber^oLthreats: J); 

for i=l:nthreat,
fprintf( ’EnterJ;hejc~and^y^coordmates^ofJT]ueat J vTumber^%3.0f\n’, i);

% threat(i,l) = xMin + rand*xRange; 
threat (i,l) = input(’The^x—coordinate:^’);

% threat(i,2) = yMin + rand*yRange; 
threat(i,2) = input (’The_y—coordinate:—’); 

fprintf(’Enter^the^strengthuoLThreatJMumber^%3.0f\n’, i);
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strength(i) = input(’The^strength^(l,2^3):^J); 
end % end of the ’’for” loop

disp(’Positions^of^the^threats^are:’ ); 
threat
disp(’Please^press^any Jkey^to^continue. ’); 
pause;
% Add extra threats at the (four) corners to prevent the path along box edges. 
%nthreat = nthreat + 1;
%threat(nthreat,l) = xMin;
%threat (nthreat, 2) = yMin;
%strength(nthreat) = 2;

%nthreat = nthreat + 1;
%threat (nthreat, 1) = xMax;
%threat (nthreat, 2) = yMin;
%strength(nthreat) = 2;

%nthreat — nthreat + 1;
%threat (nthreat, 1) = xMax;
%threat(nthreat,2) = yMax;
%strength(nthreat) = 2;

%nthreat = nthreat + 1;
%threat (nthreat, 1) = xMin;
%threat (nthreat, 2) = yMax;
%strength (nthreat) = 2;
%
% May include input data correction option here to amend the coordinates of threats.
%
% Plot threat locations.
%
figure(l),
plot (threat (:,1), threat (:,2), ’r+ \ ’linewidth’ ,3); 
axis([xMin xMax yMin yMax]); 
title ( ’Threat ..Locations’); 
disp(’Please^presSuJany Jcey-to-continue. ’); 
pause;
%
% Create Voronoi graph.
%
figure (2),
[ vtemp ,ctemp]—voronoin (threat); 
voronoi(threat (:,1), threat (:,2)); 
title ( ’ VoronoLGraphJrom JVlatlab’);
axis([xMin max(xMax,max(vtemp(:,l))) yMin max(yMax,max(vtemp(:,2)))]);
disp(’Please^press^anyJcey^to^continue.’);
pause;

[ NodeList 1, Cell Array 1 ,NodeList 0, Cell Array 0, RangeExtend] = Infty Points 
(threat, Range, My Tol);
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[NodeList2, Cell Array 2] = CornerPoints(threat,RangeExtend,NodeListl,CellArrayl,MyTol); 

[NodeList3,CellArray3] = OutsideNodes(threat,Range,NodeList2,CellArray2,MyTol);

[NodeList4,CellArray4] = CornerPoints(threat, Range, NodeList3,CellArray3,MyTol);
%
% Plot the Voronoi graph.
%
figure (3),
disp(’Plotting^the^Voronoi^Diagram’);
PlotCells (Range,threat,NodeList4,CellArray4); 
title  ( ’ Improved JVoronoi diagram ’) 
disp(’Please^press^any Jcey^to^continue. ’); 
pause;
%hold off 
%
% Enter the starting (Ps) and end (Pe) points of the mission.
%
%Ps = [xMin+rand*xRange yMin+rand*yRange];
Ps = input (’Enter J;he^(x,y) —coordinates^oLthe^starting^point Jn^the Jorm^x-y]: J); 
zPs = input(’Enter^the^altitude^oLthe^starting^point^(between^l^andcJ10): J);
%Pe = [xMin+rand*xRange yMin+rand*yRange];
Pe = input (’Enter J;he^(x,y) —coordinates^oLthe^end^point JnJiheJbrm^x-y]: J); 
zPe = input(’Enter^the^altitude^oLthe^end^point^(between^l^and^lO): J); 
disp(’Position~of J;he^starting~pointMs );
Ps
disp(’Position^of^the^end^point J s );
Pe
disp(’Please^press^any Jcey^to^continue. ’); 
pause;

[TotalNodes,FirstNode,LastNode,FinalNodeList,FinalConMatrix] = augment (Range, threat, 
NodeList4, Cell Array 4, Ps, Pe, My Tol);
%
% Calculation of cost for all edges (sides).
%
w = 0.5; % weighting factor between the flight length and risk

height = 7; % set the height in the 2—dim path case, roughly the average in risk in terms of 
% altitude

[nnz,D,row,col] = CostCalculation(threat,strength,FinalNodeList,FinalConMatrix,w,height);
%
% Calculation of optimal path (a series of way points).
%

[splen, path] = DijkstraAlgorithm(TotalNodes,FirstNode,LastNode,nnz,D,row,col);
%
% Output restuls.
%
WayPoints = [FinalNodeList(path,l) FinalNodeList(path,2)];
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figure (4),
disp(’Plotting^OptimaLPath’);
PlotCells (Range, threat, NodeList4,CellArray4);
hold on
axis(Range);
plot(WayPoints(:,l),WayPoints(:,2),,r , , ’linewidth’ ,2);
% title (’Optimal Path 1 (based on Voronoi graph)’) 
disp(’Please^press^any Jcey^to^continue. ’); 
pause;

ContourThreat (Range, threat, strength, height); 
disp(’Please_press^any Jcey^to„continue. ’); 
pause;
riskTol =0.1; % at 90% confidence level
MinStep = 0.5; % minimum search step (should consider the actual flight constraints)
%
% Local optimization to best tune the path 
%
path2D = LocMinPer2(Range,threat,strength, WayPoints,riskTol,MinStep,height,MyTol); 
hold on
p lo t(path2D(:, 1),path2D(:,2), ’m’, ’linewidth’ ,2); 
hold off
fprintf( ’ Coordinates^oLthe^optimaLpath^(way^points)^after Jocal ̂ searches ̂ are:\n’); 
path2D
%
% 3D path below 
%
zMin = 1; % define the altitude range , (1:10, or 5:10) 
zMax = 10; 
zStep = 0.5;
Ps3D = [Ps zPs]; % starting point 
Pe3D = [Pe zPe]; % end point
[OptCost,path3D,Node3D] = PathGen3D(path2D,zMin,zMax,zStep,Ps3D,Pe3D,threat, 
strength, w, MyTol);
WayPoint3D = [Node3D(path3D,l) Node3D(path3D,2) Node3D(path3D,3)]
[TotalRisk,TotalLength,WorstNode,PeakRisk,PRiskThreat] = PathEvaluate3D(WayPoint3D,
threat, strength, w,MyTol);
n3D = size(WayPoint3D,l);
hn3D = floor (n3D/2);
figure (5),
plot3(WayPoint3D(l:hn3D,l),WayPoint3D(l:hn3D,2),WayPoint3D(l:hn3D,3),’r’,’linewidth’,2), 
grid,xlabel(’x’),ylabel(’y’),zlabel(’z ’ ); 
hold on
plot3(WayPoint3D(hn3D:n3D,l),WayPoint3D(hn3D:n3D,2),WayPoint3D(hn3D:n3D,3),’b’,
’linewidth’ ,2);
title ( ’3—D ̂ Flight JPath’)
hold off
TotalRisk
TotalLength
PeakRisk
PRiskThreat
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A .2 Function to remove infinity nodes

function [NewNodeList,NewCellArray,NodeList,CellArray,RangeExtend] = InftyPoints 
(threat, Range, MyTol)
% Codes for removing infty nodes, with new nodes on (an extended) boundaries.
%
% Inputs for this part: threat, Range
% where, threat coordinate list of threats
% Range —  fixed boundaries
% MyTol —  user—set tolerance
%
% Outpus: NewNodeList —  NB. It still contains infty node as No.l (but 
% not appear in cells ).
% NewCellArray —  cell array, without infty nodes
% NodeList —  coordinate list of nodes (vertice) including infty nodes
% Cell Array —  cell array,
% RangeExtend —  extended boundaries
%
% NB. Using ’’end” in cell call may increase computation; could be improved later on. 
%
% dwg 17-01-04 
%
[v,c] = voronoin(threat);
n = size(v,l); % number of (original) nodes
nthreat = size(threat ,1); % number of threats (and cells)
NodeList = v;
CellArray = c;
%
% Get the boundaries 
%
xminR = Range(l); 
xmaxR = Range(2); 
yminR = Range(3); 
ymaxR = Range(4);
%
% Calculate the extended boundaries 
%
xvec = [v(2:end,l)’ threat (:,1)’]; 
yvec = [v(2:end,2)’ threat (:,2)’]; 
xMin = min(min(xvec), xminR); 
xMax = max (max (xvec), xmaxR); 
yMin = min(min(yvec), yminR); 
yMax = max(max(y vec),ymaxR);

BB = max([abs(xMin) abs(xMax) abs(yMin) abs(yMax)]);
%
% Expand further 10%
%
if(xMin<0)

xmin = l.l*xMin; 
elseif(xMin>0)
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xmin = 0.9*xMin; 
else

xmin = — 0.1*BB; 
end

if (xMax<0)
xmax = 0.9*xMax; 

elseif (xMax>0) 
xmax = l.l*xMax; 

else
xmax = 0.1*BB; 

end

if (yMin<0)
ymin = l.l*yMin; 

elseif (yMin>0) 
ymin = 0.9*yMin; 

else
ymin = — 0.1*BB; 

end

if (yMax<0)
ymax = 0.9*yMax; 

elseif (yMax>0) 
ymax = l.l*yMax; 

else
ymax = 0.1*BB; 

end

RangeExtend = [xmin xmax ymin ymax];
%
% Move the infty node to the end of node list, if there is one in the cell.
%
for i=l:nthreat,

ff = find(c{i} = =  1); 
if(~isempty(ff)) % cell has infty node 

tt = length(c{i});
while(c{i}(tt) ~= 1) % shift node forward by one, and move 1st to last 

tempi = c{i}(l); 
for j = 1: tt — 1,

°{i}(j) = c{i}(j+l);
end
c{i}(tt) = tempi; 

end % end of while loop 
end % end of cells containing infty 

end % end of i loop 
%
% Create working cell arrays (cc will be the final one)
%
cc = c; 
vv = v;
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nNewNodes = 0;

for i=l:nthreat—1,
tti = length(cc{i}); 

if(cc{i}(end) == 1) % cell has infty node 
NodeFirst = cc{i}(l);
NodeLast = cc{i}(end—1); 

for j=i+l:nthreat, % Consider NodeLast case
ttj = length(cc{j}); 

if(cc{j}(end) == 1) % cell j has infty node
if (cc{j}(end—1) == NodeLast) % the last but one node is a common node 
if (abs (threat (i, 2)—threat (j,2)) <MyTol) % vertical line, 2 intersection points 

xxl = (threat(i,l)+threat(j ,l))/2; 
yyl = ymin; 
xx2 = xxl; 
yy2 = ymax;

if(IsNearest(xxl,yy 1,j ,threat,MyTol)) % threat j(i) is the ( strictly ) nearest 
nNewNodes = nNewNodes -f- 1; 
vv(n+nNewNodes, 1) = xxl; 
vv(n+nNewNodes, 2) = yyl; 
cc{i}(end) = n+nNewNodes; 
cc{i}(end-|-l) = 1; 
cc{j}(end) = n+nNewNodes; 
cc{j}(end+l) = 1; 

elseif (IsNearest (xx2,yy2, j , threat, MyTol)) % (xx2,yy2) 
nNewNodes = nNewNodes + 1; 
vv(n+nNewNodes, 1) = xx2; 
vv(n+nNewNodes, 2) = yy2; 
cc{i}(end) = n+nNewNodes; 
cc{i}(end+l) = 1; 
cc{j}(end) = n+nNewNodes; 
cc{j}(end+l) = 1; 

end % end of vertical line case 
elseif (abs (threat (i, 1) — threat (j , 1)) < MyTol)

% horizontal line , 2 intersection points
xxl = xmin;
yyl = (threat(i,2)+threat(j ,2))/2;
xx2 = xmax;
yy2 -  yyl;

if (IsNearest (xxl,yyl, j , threat, MyTol)) % threat j(i) is the ( strictly ) nearest 
nNewNodes = nNewNodes -F 1; 
vv(n+nNewNodes, 1) = xxl; 
vv(n+nNewNodes, 2) = yyl; 
cc{i}(end) = n+nNewNodes; 
cc{i}(end+l) = 1; 
cc{j}(end) = n+nNewNodes; 
cc{j}(end+l) = 1; 

elseif (IsNearest (xx2,yy2,j, threat, MyTol)) % (xx2,yy2)
nNewNodes = nNewNodes + 1; 
vv(n+nNewNodes, 1) = xx2;
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vv(n+nNewNodes, 2) = yy2; 
cc{i}(end) = n+nNewNodes; 
cc{i}(end+l) = 1; 
cc{j}(end) = n+nNewNodes; 
cc{j}(end+l) = 1; 

e n d  % end of horizontal line case
e l s e  % general case, will have 4 intersection points

slope = (threat(j,l)—threat(i ,l))/(threat(i,2)— threat(j ,2)); 
xxl = xmin; % intersection point on x=xmin 
yyl = w(NodeLast,2) + slope*(xmin — vv(NodeLast,l)); 
xx2 = xmax; % intersection point on x=xmax 
yy2 = vv(NodeLast,2) + slope*(xmax — vv(NodeLast,l)); 
xx3 = vv(NodeLast,l) -f (ymin — vv(NodeLast,2))/slope;
% intersection point on y=ymin 
yy3 = ymin;
xx4 = w(NodeLast,l) + (ymax — vv(NodeLast,2))/slope;
% intersection point on y=ymax 
yy4 = ymax;

if ((yyl <= ymax+MyTol) Sz (ymin—MyTol <= yyl) &; IsNearest 
(xxl,yyl,j,threat,MyTol)) % threat j(i) is the ( strictly ) nearest 

nNewNodes = nNewNodes + 1; 
vv(n+nNewNodes, 1) = xxl; 
vv(n+nNewNodes, 2) = yyl; 
cc{i}(end) = n+nNewNodes; 
cc{i}(end+l) = 1; 
cc{j}(end) = n+nNewNodes; 
cc{j}(end+l) = 1; 

elseif ((yy2 <= ymax+MyTol) Sz (ymin—MyTol <= yy2) & IsNearest 
(xx2,yy2,j,threat,MyTol)) % (xx2,yy2) 

nNewNodes = nNewNodes + 1; 
vv(n+nNewNodes, 1) = xx2; 
vv(n+nNewNodes, 2) = yy2; 
cc{i}(end) = n+nNewNodes; 
cc{i}(end+l) = 1; 
cc{j}(end) = n+nNewNodes; 
cc{j}(end+l) = 1; 

elseif ((xx3 <= xmax+MyTol) Sz (xmin—MyTol <= xx3) Sz IsNearest 
(xx3,yy3,j,threat,MyTol)) % (xx3,yy3) 

nNewNodes = nNewNodes + 1; 
vv(n+nNewNodcs, 1) = xx3; 
vv(n+nNewNodes, 2) = yy3; 
cc{i}(end) = n+nNewNodes; 
cc{i}(end+l) = 1; 
cc{j}(end) = n+nNewNodes; 
cc{j}(end+l) = 1; 

elseif ((xx4 <= xmax+MyTol) Sz (xmin—MyTol <= xx4) Sz IsNearest 
(xx4,yy4,j,threat,MyTol)) % (xx4,yy4) 

nNewNodes = nNewNodes + 1; 
vv(n+nNewNodes, 1) = xx4; 
vv(n+nNewNodes, 2) = yy4; 
cc{i}(end) = n+nNewNodes;
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cc{i}(end+l) = 1; 
cc{j}(end) = n+nNewNodes; 
cc{j}(end+l) = 1; 

end % 
end

elseif ((ttj > 2) k. (cc{j}(l) == NodeLast))
% common node is the first node of cell j ,
% and cell j has more than two nodes (including infty) 

if (abs(threat(i,2)—threat(j ,2))<MyTol)
% vertical line , 2 intersection points 
xxl = (threat(i,l)+threat(j ,l))/2; 
yyl = ymin; 
xx2 = xxl; 
yy2 = ymax; 

if (IsNearest (xxl ,yy 1, j , threat, MyTol))
% threat j (i ) is the ( strictly ) nearest 
nNewNodes = nNewNodes + 1; 
vv(n+nNewNodes, 1) = xxl; 
vv(n+nNewNodes, 2) = yyl; 
cc{i}(end) = n+nNewNodes; 
cc{i}(end+l) = 1; 
cc{j} = [n+nNewNodes cc{j}];

% add new node as the first node, and shift the rest 
elseif (IsNearest (xx2,yy2, j , threat, MyTol)) % (xx2,yy2) 

nNewNodes = nNewNodes + 1; 
vv(n+nNewNodes, 1) = xx2; 
vv(n-fnNewNodes, 2) = yy2; 
cc{i}(end) = n+nNewNodes; 
cc{i}(end+l) = 1; 
cc{j} = [n+nNewNodes cc{j}];

% add new node as the first node, and shift the rest 
end % end of vertical line case 

elseif (abs (threat (i, 1)—threat (j , 1)) < MyTol)
% horizontal line , 2 intersection points 

xxl = xmin;
yyl = (threat(i,2)+threat(j ,2))/2; 
xx2 = xmax;;
yy2 = yyl; 

if (IsNearest (xxl,yyl, j , threat, MyTol))
% threat j ( i ) is the ( strictly ) nearest 

nNewNodes = nNewNodes + 1; 
vv(n+nNewNodes, 1) = xxl; 
vv(n+nNewNodes, 2) = yyl; 
cc{i}(end) = n+nNewNodes; 
cc{i}(end+l) = 1; 
cc{j} = [n+nNewNodes cc{j}];
% add new node as the first node, and shift the rest 

elseif(IsNearest(xx2,yy2,j,threat,MyTol)) % (xx2,yy2) 
nNewNodes = nNewNodes + 1; 
vv(n+nNewNodes, 1) = xx2; 
vv(n+nNewNodes, 2) = yy2;
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cc{i}(end) = n+nNewNodes;
cc{i}(end+l) = 1;
cc( j} = [n+nNewNodes cc{j}];
% add new node as the first node, and shift the rest 

end % end of horizontal line case 
else % general case, will have 4 intersection points

slope = (threat(j,l)—threat(i,l))/(threat(i,2)—threat(j ,2)); 
xxl = xmin; % intersection point on x=xmin 
yyl = vv(NodeLast,2) + slope*(xmin — w(NodeLast,l)); 
xx2 = xmax; % intersection point on x=xmax 
yy2 = vv(NodeLast,2) + slope*(xmax — vv(NodeLast,l)); 
xx3 = vv(NodeLast,l) + (ymin — vv(NodeLast,2))/slope;
% intersection point on y=ymin 
yy3 = ymin;
xx4 = vv(NodeLast,l) + (ymax — vv(NodeLast,2))/slope;
% intersection point on y=ymax 
yy4 = ymax;

if ((yyl <= ymax+MyTol) Sz (ymin—MyTol <= yyl) Sz IsNearest 
(xxl,yy 1,j ,threat,MyTol)) % threat j(i) is the ( strictly ) nearest 

nNewNodes = nNewNodes + 1; 
vv(n+nNewNodes, 1) = xxl; 
vv(n+nNewNodes, 2) = yyl; 
cc{i}(end) = n+nNewNodes; 
cc{i}(end+l) = 1; 
cc{j} = [n+nNewNodes cc{j}];
% add new node as the first node, and shift the rest 

elseif ((yy2 <= ymax+MyTol) & (ymin—MyTol <= yy2) Sz IsNearest
(xx2,yy2,j,threat,MyTol)) % (xx2,yy2) 

nNewNodes = nNewNodes + 1; 
vv(n+nNewNodes, 1) = xx2; 
vv(n+nNewNodes, 2) = yy2; 
cc{i}(end) = n+nNewNodes; 
cc{i}(end+l) = 1; 
cc{j} = [n+nNewNodes cc{j}];

% add new node as the first node, and shift the rest 
elseif ((xx3 <= xmax+MyTol) Sz (xmin—MyTol <= xx3) & IsNearest 

(xx3,yy3,j,threat,MyTol)) % (xx3,yy3) 
nNewNodes = nNewNodes + 1; 
vv(n+nNewNodes, 1) = xx3; 
vv (n+nNewNodes, 2) = yy3; 
cc{i}(end) = n+nNewNodes; 
cc{i}(end+l) = 1; 
cc{j} = [n+nNewNodes cc{j}];
% add new node as the first node, and shift the rest 

elseif ((xx4 <= xmax+MyTol) Sz (xmin—MyTol <= xx4) Sz IsNearest
(xx4,yy4,j,threat,MyTol)) % (xx4,yy4) 

nNewNodes = nNewNodes + 1; 
vv(n+nNewNodes, 1) = xx4; 
vv(n+nNewNodes, 2) = yy4; 
cc{i}(end) = n+nNewNodes; 
cc{i}(end+l) = 1;
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cc{j} = [n+nNewNodes cc{j}];
% add new node as the first node, and shift the rest

end
end
elseif((t t i>2) & (cc{j}(end—1) == NodeFirst))

% the last but one node is a common node 
if (abs(threat(i,2)—threat(j ,2))<MyTol)

% vertical line , 2 intersection points 
xxl = (threat(i,l)+threat(j ,l))/2; 
yyl = ymin; 
xx2 = xxl; 
yy2 = ymax; 

if (IsNearest (xxl,yyl,j, threat, MyTol))
% threat j (i ) is the ( strictly ) nearest 

nNewNodes = nNewNodes + 1; 
vv(n+nNewNodes, 1) = xxl; 
vv(n+nNewNodes, 2) = yyl; 
cc{i} = [n+nNewNodes cc{i}];

% add new node as the 1st one, and shift the rest backwards 
cc{j}(end) = n+nNewNodes; 
cc{j}(end+l) = 1; 

elseif(IsNearest(xx2,yy2,j,threat,MyTol)) % (xx2,yy2) 
nNewNodes = nNewNodes + 1; 
vv(n+nNewNodes, 1) = xx2; 
vv(n+nNewNodes, 2) = yy2; 
cc{i} = [n+nNewNodes cc{i}];

% add new node as the 1st one, and shift the rest backwards 
cc{j}(end) = n+nNewNodes; 
cc{j}(end+l) = 1; 

end % end of vertical line case 
elseif (abs (threat (i, 1)—threat (j , 1)) < MyTol)

% horizontal line , 2 intersection points
xxl = xmin;
yyl = (threat(i,2)+threat(j ,2))/2; 
xx2 = xmax;
yy2 = yyl; 

if (IsNearest (xxl ,yy 1, j , threat, MyTol))
% threat j (i ) is the ( strictly ) nearest 

nNewNodes = nNewNodes + 1; 
vv(n+nNewNodes, 1) = xxl; 
vv(n+nNewNodes, 2) = yyl; 

cc{i} = [n+nNewNodes cc{i}];
% add new node as the 1st one, and shift the rest backwards 

cc{j}(end) = n+nNewNodes; 
cc{j}(end+l) = 1; 

elseif (IsNearest(xx2,yy2,j, threat,MyTol)) % (xx2,yy2) 
nNewNodes = nNewNodes + 1; 
vv(n+nNewNodes, 1) = xx2; 
vv(n+nNewNodes, 2) = yy2; 
cc{i} = [n+nNewNodes cc{i}];

% add new node as the 1st one, and shift the rest backwards
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cc{j}(end) = n+nNewNodes; 
cc{j}(end+l) = 1; 

end % end of horizontal line case
else % general case, will have 4 intersection points

slope = (threat(j,l)—threat(i,l))/(threat(i,2)—threat(j ,2)); 
xxl = xmin; % intersection point on x=xmin 
yyl = v(NodeFirst,2) + slope*(xmin — vv(NodeFirst,l)); 
xx2 = xmax; % intersection point on x=xmax 
yy2 = v(NodeFirst,2) + slope*(xmax — vv(NodeFirst,l)); 
xx3 = v(NodeFirst,l) + (ymin — vv(NodeFirst,2))/slope;

% intersection point on y=ymin
yy3 = ymin;
xx4 = v(NodeFirst,l) + (ymax — vv(NodeFirst,2))/slope;

% intersection point on y=ymax
yy4 = ymax;

if ((yyl <= ymax+MyTol) k  (ymin—MyTol <= yyl) k IsNearest
(xxl, yy 1, j , threat, MyTol)) % threat j(i) is the (strictly) nearest
nNewNodes = nNewNodes + 1;
vv(n+nNewNodes, 1) = xxl;
vv(n+nNewNodes, 2) = yyl;
cc{i} = [n+nNewNodes cc{i}];
% add new node as the 1st one, and shift the rest backwards 
cc{j}(end) = n+nNewNodes; 
cc{j}(end+l) = 1; 

elseif ((yy2 <= ymax+MyTol) k  (ymin—MyTol <= yy2) k IsNearest 
(xx2,yy2,j,threat,MyTol)) % (xx2,yy2) 
nNewNodes = nNewNodes + 1; 
vv(n+nNewNodes, 1) = xx2; 
vv(n+nNewNodes, 2) = yy2; 
cc{i} = [n+nNewNodes cc{i}];

% add new node as the 1st one, and shift the rest backwards 
cc{j}(end) = n+nNewNodes; 
cc{j}(end+l) = 1; 

elseif ((xx3 <= xmax+MyTol) k  (xmin—MyTol <= xx3) k IsNearest
(xx3,yy3,j,threat,MyTol)) % (xx3,yy3) 

nNewNodes = nNewNodes + 1; 
vv(n+nNewNodes, 1) = xx3; 
vv(n+nNewNodes, 2) = yy3; 
cc{i} = [n+nNewNodes cc{i}];

% add new node as the 1st one, and shift the rest backwards 
cc{j}(end) = n+nNewNodes; 
cc{j}(end+l) = 1; 

elseif ((xx4 <= xmax+MyTol) k  (xmin—MyTol <= xx4) k IsNearest
(xx4,yy4,j,threat,MyTol)) % (xx4,yy4) 

nNewNodes = nNewNodes + 1; 
vv(n+nNewNodes, 1) = xx4; 
vv(n+nNewNodes, 2) = yy4; 
cc{i} = [n+nNewNodes cc{i}];

% add new node as the 1st one, and shift the rest backwards 
cc{j}(end) = n+nNewNodes; 
cc{j}(end+l) = 1;

204



end % 
end
elseif (( tti> 2) & (ttj > 2) & (cc{j}(l) == NodeFirst))

% common node is the first node of cell j ,
% and cell j has more than 2 nodes (including infty node) 

if(abs(threat(i,2)—threat(j,2))<MyTol)
% vertical line , 2 intersection point 

xxl = (threat(i,l)+threat(j ,l))/2; 
yyl = ymin; 
xx2 = xxl; 
yy2 = ymax; 

if (IsNearest (xxl ,yy 1, j , threat, MyTol))
% threat j (i ) is the ( strictly ) nearest 

nNewNodes = nNewNodes + 1; 
vv(n+nNewNodes, 1) = xxl; 
vv(n+nNewNodes, 2) = yyl; 
cc{i} = [n+nNewNodes cc{i}];

% add new node as the 1st one, and shift the rest backwards 
cc{j} = [n+nNewNodes cc{j}];

% add new node as the first node, and shift the rest 
elseif (IsNearest (xx2, yy2, j , threat, MyTol)) % (xx2,yy2) 

nNewNodes = nNewNodes + 1; 
vv(n+nNewNodes, 1) = xx2; 
vv(n-fnNewNodes, 2) = yy2; 
cc{i} = [n+nNewNodes cc{i}];

% add new node as the 1st one, and shift the rest backwards 
cc{j} = [n+nNewNodes cc{j}];

% add new node as the first node, and shift the rest 
% disp (’xx2 yy2’)
end % end of vertical line case 
elseif (abs (threat (i, 1)—threat (j , 1)) < MyTol)

% horizontal line , 2 intersection points
xxl = xmin;
yyl = (threat(i,2)+threat(j ,2))/2; 
xx 2 = xmax;
yy2 = yyl; 

if (IsNearest (xxl ,yy 1, j , threat, MyTol))
% threat j (i ) is the ( strictly ) nearest 

nNewNodes = nNewNodes + 1; 
vv(n+nNewNodes, 1) = xxl; 
vv(n-fnNewNodes, 2) = yyl; 
cc{i} = [n+nNewNodes cc{i}];

% add new node as the 1st one, and shift the rest backwards 
cc{j} = [n+nNewNodes cc{j}];

% add new node as the first node, and shift the rest 
elseif (IsNearest (xx2, yy2, j , threat, MyTol)) % (xx2,yy2) 

nNewNodes = nNewNodes + 1; 
vv(n-fnNewNodes, 1) = xx2; 
vv(n+nNewNodes, 2) = yy2; 
cc{i} = [n+nNewNodes cc{i}];

% add new node as the 1st one, and shift the rest backwards
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cc{j} = [n+nNewNodes cc{j}];
% add new node as the first node, and shift the rest 

end % end of horizontal line case
else % general case, will have 4 intersection points

slope = (threat(j,l)—threat(i ,l))/(threat(i,2)—threat(j ,2)); 
xxl = xmin; % intersection point on x=xmin 
yyl = v(NodeFirst,2) + slope*(xmin — vv(NodeFirst,l)); 
xx2 = xmax; % intersection point on x=xmax 
yy2 = v(NodeFirst,2) + slope* (xmax — vv(NodeFirst,l)); 
xx3 = v(NodeFirst,l) + (ymin — vv(NodeFirst,2))/slope;

% intersection point on y=ymin
yy3 = ymin;
xx4 = v(NodeFirst,l) + (ymax — vv(NodeFirst,2))/slope;

% intersection point on y=ymax
yy4 = ymax;

if ((yyl <= ymax+MyTol) & (ymin—MyTol <= yyl) Sz IsNearest 
(xxl,yy 1,j ,threat,MyTol)) % threat j(i) is the ( strictly ) nearest 
nNewNodes = nNewNodes + 1; 
vv(n+nNewNodes, 1) = xxl; 
vv(n+nNewNodes, 2) = yyl; 
cc{i} = [n+nNewNodes cc{i}];

% add new node as the 1st one, and shift the rest backwards 
cc{j} = [n+nNewNodes cc{j}];

% add new node as the first node, and shift the rest 
% disp(’xxl yyl’)
elseif ((yy2 <= ymax+MyTol) Sz (ymin—MyTol <= yy2) Sz IsNearest

(xx2,yy2,j,threat,MyTol)) % (xx2,yy2) 
nNewNodes = nNewNodes + 1; 
vv(n+nNewNodes, 1) = xx2; 
vv(n+nNewNodes, 2) = yy2; 
cc{i} = [n+nNewNodes cc{i}];

% add new node as the 1st one, and shift the rest backwards 
cc{j} = [n+nNewNodes cc{j}];

% add new node as the first node, and shift the rest 
% disp (’xx2 yy2’)
elseif ((xx3 <= xmax+MyTol) Sz (xmin—MyTol <= xx3) Sz IsNearest

(xx3,yy3,j,threat,MyTol)) % (xx3,yy3) 
nNewNodes = nNewNodes + 1; 
vv(n+nNewNodes, 1) = xx3; 
vv(n+nNewNodes, 2) = yy3; 
cc{i} = [n+nNewNodes cc{i}];

% add new node as the 1st one, and shift the rest backwards 
cc{j} = [n+nNewNodes cc{j}];

% add new node as the first node, and shift the rest 
% disp(’xx3 yy3’)
elseif ((xx4 <= xmax+MyTol) Sz (xmin—MyTol <= xx4) Sz IsNearest

(xx4,yy4,j,threat,MyTol)) % (xx4,yy4)
nNewNodes = nNewNodes + 1; 
vv(n+nNewNodes, 1) = xx4; 
vv(n+nNewNodes, 2) = yy4; 
cc{i} = [n+nNewNodes cc{i}];
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% add new node as the 1st one, and shift the rest backwards 
cc{j} = [n+nNewNodes cc{j}];

% add new node as the first node, and shift the rest
% disp(’xx4 yy4’) 
end %
end % end of cell{i}(l)=cell{j}(l)
end % end of cases which will produce new nodes
% ( cells i and j share common finite node)
end % end of cell j having infty node
end % end of j loop
end % end of if loop ( cell i has infty node) 
end % end of i loop

for i=l:nthreat, % delete the infty node in cells 
tti = length(cc{i}); 
if (cc{i}( t t i) == 1)

cc{i} = cc{i}(l: tti — 1); 
end 

end

%
% Prepare output data 
%

NewNodeList = vv;
NewCellArray = cc;

%
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A .3 Function to include corner points in the 
node list

function [NewNodeList,NewCellArray] = CornerPoints(threat,Range,v,c,MyTol)

% Codes for including corner points in the node list (if they are not already there).
%
% Inputs: threat, Range, v, c 
% where, threat —  coordinate list of threats 
% Range —  fixed boundaries
% v  —  coordinate list of nodes (vertice)
% c —  cell array
% MyTol —  user—defined tolerance
%
% Outpus: NewNodeList —  NB. It still contains infty node as No.l (but 
% not appear in cells ).
% NewCellArray
%
% dwg 24—01—04
% Could be simplified.

n = size(v,l); % number of (original) nodes
nthreat = size(threat ,1); % number of threats (and cells)

%
% Create working array and vector 
%
cc = c; 
vv = v;
Corner Alreadyln = zeros(4,l);

% record the node number, if the corner is already a node
%
% Corners 1 —  4, from the bottom—left corner, in anti—clockwise rotation 
%
Corners V( 1,1) = Range(l);
CornersV(l,2) = Range(3);
CornersV(2,l) = Range(2);
CornersV(2,2) = Range(3);
CornersV(3,l) = Range(2);
CornersV(3,2) = Range(4);
CornersV(4,l) = Range(l);
CornersV(4,2) = Range (4);
%
% use a new range vector RangeN; perhaps can make corners 2—4 a loop
%
RangeN = zeros(4,l);
RangeN(l) = Range(l);
RangeN(2) = Range(3);
RangeN(3) = Range(2);
RangeN(4) = Range(4);
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CornerFlag = zeros(4,l);
%
% Check if a corner is already in a cell 
%
cFlag = 0; 
for i=l:4,

xx = CornersV(i,l); 
yy = CornersV(i,2);
for j = 2:n, % search vv to see if Corner i is already in

if (SameNodes(xx,yy,vv(j, 1) ,vv(j ,2),MyTol))
CornerFlag(i) = j; 
cFlag = cFlag + 1; 

end 
end 

end  
%
% Now, work with 4 corners 
%
% Case 1, the bottom—left corner 
%
if(CornerFlag(l) == 0) % Corner 1 is not already in the node list 

xx = CornersV(l,l); 
yy = CornersV(l,2);
CellNumber = WhichCell(threat,xx,yy, MyTol);

% Find out the cell the point belongs to. 
tt = length(cc{CellNumber}); 
nlndex = zeros(tt,l); 
nTotal = 0; 
nFront = 0;

% will record the node in front of Corner 1, in anti—clockwise direction 
for j = 1:t t , % find the node(s) which is (are) on the left edge

if (abs(RangeN(l)—vv(cc{ CellNumber} (j),l)) < MyTol) % node on left edge 
nlndex(j) = cc{CellNumber}(j); 
nTotal = nTotal + 1; 
nFront = nlndex(j);

end
end

%
if (nTotal > 1) % find the lowest node on the left edge 

for j = 1: t t ,
if ((nlndex(j) > 0) &. (vv(nlndex(j),2) < vv(nFront,2))) 

nFront = cc{CellNumber}(j); 
end 

end 
end

%
if (nTotal == 0) % no node on the left edge, has to search on top edge 

for j = 1:t t , % find the node(s) which is (are) on the top edge
if (abs(RangeN(4)—vv(cc{CellNumber}(j),2)) < MyTol) % node on top edge 

nlndex(j) = cc{ CellNumber} (j);
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nTotal = nTotal + 1; 
nFront = nlndex(j); 

end 
end
if (nTotal > 1) % find the most left node on the top edge 

for j = 1: t t ,
if ((nlndex(j) > 0) Sz (vv(nlndex(j),l) < vv(nFront,l))) 

nFront = cc{CellNumber}(j); 
end 

end 
end 

end
%

if (nTotal == 0) % no node on the top edge either
for j = 1:t t , % find the node(s) which is (are) on the right edge

if (abs(RangeN(3)—vv(cc{CellNumber}(j),l)) < MyTol) % node on right edge 
nlndex(j) = cc{CellNumber}(j); 
nTotal = nTotal + 1; 
nFront = nlndex(j); 

end 
end
if (nTotal > 1) % find the highest node on the right edge 

for j = 1: t t ,
if ((nlndex(j) > 0) & (vv(nlndex(j),2) > vv(nFront,2))) 

nFront = cc{CellNumber}(j); 
end 

end 
end

end %end of searching on the right edge
%
% Now, find the node next nNext
%

nlndex = zeros(tt,l); 
nTotal = 0;
nNext = 0; % will record the node after Corner 1, in anti—clockwise direction
for j = 1:t t , % find the node(s) which is (are) on the bottom edge

if(abs(RangeN(2)—vv(cc{CellNumber}(j),2)) < MyTol) % node on bottom edge 
nlndex(j) = cc{CellNumber}(j); 
nTotal = nTotal + 1; 
nNext = nlndex(j); 

end 
end

%
if (nTotal > 1)

% find the most left node on the bottom edge, if there are more than 1 
for j = 1: t t ,

if ((nlndex(j) > 0) &: (vv(nlndex(j),l) < vv(nNext,l))) 
nNext = cc{CellNumber}(j); 

end 
end 

end
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%
if (nTotal == 0) % no node on the bottom edge, has to search on right edge 

for j = 1:t t , % find the node(s) which is (are) on the right edge
if (abs(RangeN(3)—vv(cc{CellNumber}(j),l)) < MyTol) % node on right edge 

nlndex(j) = cc{CellNumber}(j); 
nTotal = nTotal + 1; 
nNext = nlndex(j); 

end 
end
if (nTotal > 1) % find the lowest node on the right edge 

for j = l:tt,
if ((nlndex(j) > 0) Sz (vv(nlndex(j),2) < w(nNext,2))) 

nNext = cc{CellNumber}(j); 
end 

end 
end 

end
%

if (nTotal == 0) % no node on the right edge either
for j = 1:t t , % find the node(s) which is (are) on the top edge

if(abs(RangeN(4)—vv(cc{CellNumber}(j),2)) < MyTol) % node on top edge 
nlndex(j) = cc{CellNumber}(j); 
nTotal = nTotal + 1; 
nNext = nlndex(j); 

end 
end
if (nTotal >1) % find the most right node on the top edge 

for j = 1: t t ,
if ((nlndex(j) > 0) Sz (vv(nlndex(j),l) > vv(nNext,l))) 

nNext = cc{CellNumber}(j); 
end 

end 
end

end %end of searching on the top edge
%
% Move nFront to the end of node list.
%
while(cc{CellNumber}(tt) ~= nFront)% shift node forward by one, and move 1st to last 

tempi = cc{CellNumber}(l); 
for j = 1: t t—1,

cc{CellNumber}(j) = cc{CellNumber}(j+l); 
end
cc{CellNumber}(tt) = tempi; 

end % end of while loop

%
% Now, insert (xx,yy) between nFront and nNext 
%

n = n + 1; 
vv(n,l) = xx; 
w(n,2) = yy;
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if (cc{CellNumber}(l) == nNext) 
cc{CellNumber}(tt+l) = n; 

elseif(cc{CellNumber}(tt—1) == nNext)
cc{CellNumber}(tt+l) = cc{CellNumber}(tt); 
cc{CellNumber}(tt) = n; 

else
disp( ’ JError: ̂ in^ inclusion ̂ of ̂ Corner M ’) 

end
end % end of Corner 1 case 
%
% Case 2, the bottom—right corner 
%
if (CornerFlag(2) == 0) % Corner 2 is not already in the node list 

xx = CornersV(2,l); 
yy = CornersV(2,2);
CellNumber = WhichCell(threat,xx,yy,MyTol);

% Find out the cell the point belongs to.
tt = length(cc{CellNumber}); 
nlndex = zeros(tt,l); 
nTotal = 0; 
nFront = length(vv);

% record the most right node on the bottom edge (there must be one node on that edge) 
for j = 1:t t , % find the node(s) which is (are) on the bottom edge

if (abs(RangeN(2)—vv(cc{CellNumber}(j),2)) < MyTol) % node on bottom edge 
nlndex(j) = cc{ CellNumber} (j); 
nTotal = nTotal + 1; 
nFront = nlndex (j); 

end 
end

%
if (nTotal > 1) % find the most right node on the bottom edge 

for j = 1: t t ,
if ((nlndex(j) > 0) Sz (vv(nlndex(j),l) > vv(nFront,l))) 

nFront = cc{ CellNumber} (j); 
end 

end 
end

%
% Now, find the node next nNext 
%

nlndex = zeros(tt,l); 
nTotal = 0;
nNext = 0; % will record the node after Corner 2, in anti—clockwise direction
for j = 1:t t , % find the node(s) which is (are) on the right edge

if(abs(RangeN(3)—vv(cc{CellNumber}(j),l)) < MyTol) % node on right edge 
nlndex(j) = cc{CellNumber}(j); 
nTotal = nTotal + 1; 
nNext = nlndex(j); 

end 
end
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if (nTotal > 1)
% find the lowest node on the right edge, if there are more than 1 

for j = T.tt,
if ((nlndex(j) > 0) & (vv(nlndex(j),2) < vv(nNext,2))) 

nNext = cc{ CellNumber} (j); 
e n d  

e n d  

e n d

%
if (nTotal == 0) % no node on the right edge, has to search on top edge 

for j = l : t t , % find the node(s) which is (are) on the top edge
if(abs(RangeN(4)—vv(cc{CellNumber}(j),2)) < MyTol) % node on top edge 

nlndex(j) = cc{ CellNumber} (j); 
nTotal = nTotal + 1; 
nNext = nlndex(j);

e n d

e n d

if (nTotal > 1) % find the most right node on the top edge 
for j = 1: t t ,

if ((nlndex(j) > 0) Sz (vv(nlndex(j),l) > vv(nNext,l))) 
nNext = cc{CellNumber}(j); 

e n d  

e n d  

e n d  

e n d

%
if (nTotal == 0) % no node on the top edge either 
for j = 1:t t , % find the node(s) which is (are) on the left edge

if(abs(RangeN(l)—vv(cc{CellNumber}(j),l)) < MyTol) % node on left edge 
nlndex(j) = cc{CellNumber}(j); 
nTotal = nTotal + 1; 
nNext = nlndex(j);

e n d

e n d

if (nTotal > 1) % find the highest node on the left edge 
for j = 1: t t ,

if ((nlndex(j) > 0) Sz (vv(nlndex(j),2) > vv(nNext,2))) 
nNext = cc{CellNumber}(j); 

e n d  

e n d  

e n d

e n d  %end of searching on the left edge
%
% Move nFront to the end of node list.
%
while(cc{CellNumber}(tt) ~= nFront)

% shift node forward by one, and move 1st to last 
tempi = cc{CellNumber}(l); 
for j = 1: t t—1,

cc{CellNumber}(j) = cc{CellNumber}(j+l); 
e n d
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cc{C ellN u m b er}(tt)  =  tem p i;  
e n d  % end of w hile loop

%
% Now, insert (xx,yy) b etw een  nFront and n N ext 
%

n = n + 1; 
vv(n,l) = xx; 
w(n,2) = yy;
if (cc{CellNumber}(l) == nNext) 

cc{CellNumber}(tt+l) = n; 
elseif(cc{CellNumber}(tt—1) == nNext)

cc{CellNumber}(tt+l) = cc{C ellN u m b er}(tt);  
cc{CellNumber}(tt) = n; 

e l s e

d i s p  (’ -Error: mn inclusion  ̂ of ̂ Corner J2,’) 
e n d

e n d  % end of Corner 2 case 
%
% Case 3, the top—right corner 
%
if(CornerFlag(3) == 0) % Corner 3 is not already in the node list 

xx = CornersV(3,l); 
y y  = CornersV(3,2);
CellNumber = W h ich C ell(th reat,xx ,yy , M yTol);

% F ind  out th e cell th e point belongs to. 
tt = length(cc{CellNum ber}); 
nlndex = zeros(tt,l); 
nTotal = 0; 
nFront = length(vv);

% record the highest node on the right edge (there must be one node on that edge) 
for j = 1:t t , % find the n od e(s) w hich is (axe) on the right edge

if (abs(RangeN(3)—v v (c c {C e llN u m b e r }(j) ,l))  < MyTol) % node on right edge 
nlndex(j) = cc{ C ellN um ber} (j); 
nTotal = nT otal + 1; 
nFront = n lnd ex(j);  

e n d  

e n d

%
if (nTotal > 1) % find th e h ighest node on  th e right edge 

for j = l:tt,
i f  ((nlndex(j) > 0) & (v v (n ln d ex (j),2 ) > vv(nFront,2))) 

nFront = cc{ C ellN um ber} (j); 
e n d  

e n d  

e n d

%
% Now, find the node next n N ext  
%
nlndex = zeros(tt,l); 
nTotal = 0;
nNext = 0; % will record the node after Corner 3, in anti—clockwise direction
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for j = 1:t t , % find the node(s) which is (are) on the top edge
if (abs(RangeN(4)—vv(cc{CellNumber}(j),2)) < MyTol) % node on right edge 

nlndex(j) = cc{ CellNumber} (j); 
nTotal = nTotal + 1; 
nNext = nlndex(j); 

end 
end

%
if (nTotal >1)

% find the most right node on the top edge, if there are more than 1 
for j = l:tt,

if ((nlndex(j) > 0) Sz (vv(nlndex(j),l) > vv(nNext,l))) 
nNext = cc{CellNumber}(j); 

end 
end 

end
%

if (nTotal == 0) % no node on the top edge, has to search on left edge 
for j = 1:t t , % find the node(s) which is (are) on the left edge

if(abs(RangeN(l)—vv(cc{CellNumber}(j),l)) < MyTol) % node on top edge 
nlndex(j) = cc{ CellNumber} (j); 
nTotal = nTotal + 1; 
nNext = nlndex(j); 

end 
end
if (nTotal > 1) % find the highest node on the left edge 

for j = 1: t t ,
i f ((nlndex(j) > 0) &: (vv(nlndex(j),2) > vv(nNext,2))) 

nNext = cc{CellNumber}(j); 
end 

end 
end 

end
%

if (nTotal == 0) % no node on the left edge either 
for j = 1:t t , % find the node(s) which is (are) on the bottom edge

if (abs(RangeN(2)—vv(cc{CellNumber}(j),2)) < MyTol) % node on bottom edge 
nlndex(j) = cc{CellNumber}(j); 
nTotal = nTotal + 1; 
nNext = nlndex(j);

end
end

if (nTotal > 1) % find the most left node on the bottom edge 
for j = 1: t t ,

if ((nlndex(j) > 0) & (vv(nlndex(j),l) < vv(nNext,l))) 
nNext = cc{ CellNumber} (j); 

end 
end 

end
end %end of searching on the bottom edge

215



% Move nFront to the end of node list.
%

while(cc{CellNumber}(tt) ~= nFront)
% shift node forward by one, and move 1st to last 

tempi = cc{CellNumber}(l); 
for j = 1: t t—1,

cc{CellNumber}(j) = cc{CellNumber}(j+l); 
end
cc{CellNumber}(tt) = tempi; 

end % end of while loop
%
% Now, insert (xx,yy) between nFront and nNext 
%

n = n + 1; 
vv(n,l) = xx; 
vv(n,2) = yy;
if (cc{CellNumber}(l) == nNext) 

cc{CellNumber}(tt+l) = n; 
elseif(cc{CellNumber}(tt—1) == nNext)

cc{CellNumber}(tt+l) = cc{CellNumber}(tt); 
cc{CellNumber}(tt) = n; 

else
disp (’ J3rror: ̂ in^ inclusion ..of ̂ Corner J3 ’) 

end
end % end of Corner 3 case 

%
% Case 4, the top—left corner 
%
if(CornerFlag(4) == 0) % Corner 4 is not already in the node list 

xx = CornersV(4,l); 
yy = CornersV(4,2);
CellNumber = WhichCell(threat,xx,yy,MyTol);

% Find out the cell the point belongs to. 
tt = length(cc{CellNumber}); 
nlndex = zeros(tt,l); 
nTotal = 0; 
nFront = length(vv);

% record the most left node on the top edge (there must be one node on that edge) 
for j = 1:t t , % find the node(s) which is (are) on the top edge

if(abs(RangeN(4)—vv(cc{CellNumber}(j),2)) < MyTol) % node on top edge 
nlndex(j) = cc{ CellNumber }(j); 
nTotal = nTotal + 1; 
nFront = nlndex(j); 

end 
end

%
if (nTotal > 1) % find the most left node on the top edge 

for j = 1: t t ,
if ((nlndex(j) > 0) &; (vv(nlndex(j),l) < vv(nFront,l))) 

nFront = cc{CellNumber}(j);
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end
end

end
%
% Now, find the node next nNext 
%

nlndex = zeros(tt,l); 
nTotal = 0; 
nNext = 0;
% will record the node after Corner 4, in anti—clockwise direction 
for j = 1:t t , % find the node(s) which is (are) on the left edge

if (abs(RangeN(l)—vv(cc{CellNumber}(j),l)) < MyTol) % node on right edge 
nlndex(j) = cc{CellNumber}(j); 
nTotal = nTotal + 1; 
nNext = nlndex (j);

end
end

%
if (nTotal > 1)

% find the highest node on the left edge, if there axe more than 1 
for j — 1: t t ,

if ((nlndex(j) > 0) &; (vv(nlndex(j),2) > vv(nNext,2))) 
nNext = cc{CellNumber}(j); 

end 
end 

end
%

if (nTotal == 0) % no node on the left edge, has to search on bottom edge 
for j = 1:t t , % find the node(s) which is (are) on the bottom edge

if(abs(RangeN(2)—vv(cc{CellNumber}(j),2)) < MyTol) % node on bottom edge 
nlndex(j) = cc{ CellNumber} (j); 
nTotal = nTotal + 1; 
nNext = nlndex(j);

end
end
if (nTotal > 1) % find the most left node on the bottom edge 

for j = 1: t t ,
if ((nlndex(j) > 0) & (vv(nlndex(j),l) < vv(nNext,l))) 

nNext = cc{CellNumber}(j); 
end 

end 
end 

end
%

if (nTotal == 0) % no node on the bottom edge either
for j = 1:t t , % find the node(s) which is (are) on the right edge

if (abs(RangeN(3)—vv(cc{CellNumber}(j),l)) < MyTol) % node on right edge 
nlndex(j) = cc{CellNumber}(j); 
nTotal = nTotal + 1; 
nNext = nlndex(j);

end
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end
if (nTotal >1) % find the lowest node on the right edge 

for j = 1: t t ,
if ((nlndex(j) > 0) & (vv(nlndex(j),2) < vv(nNext,2))) 

nNext = cc{ CellNumber} (j); 
end 

end 
end

end %end of searching on the right edge
%
% Move nFront to the end of node list.
%

while(cc{CellNumber}(tt) ~= nFront)
% shift node forward by one, and move 1st to last 

tempi = cc{CellNumber}(l); 
for j = 1: t t—1,

cc{CellNumber}(j) = cc{CellNumber}(j+l); 
end
cc{CellNumber}(tt) = tempi; 

end % end of while loop
%
% Now, insert (xx,yy) between nFront and nNext 
%

n = n + 1; 
vv(n,l) = xx; 
w(n,2) = yy;
if(cc{CellNumber}(l) == nNext) 

cc{CellNumber}(tt+l) = n; 
elseif(cc{CellNumber}(tt—1) == nNext)

cc{CellNumber}(tt+l) = cc{ CellNumber }(tt); 
cc{CellNumber}(tt) = n; 

else
disp(’Jilrror r în  ̂inclusion ̂ of^Corner^4’) 

end
end % end of Corner 4 case 

%
% Assign output data.
%

NewNodeList = vv;

NewCellArray = cc;

%
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A .4 Function to move outside points to  the  
boundary

function [vNew, Cell Array New] = OutsideNodes(threat, Range, NodeList,CellArray, MyTol) 
%
% Codes for moving outside points to the boundary 
% Inputs for this part: threat, Range, NodeList, CellArray,
% all nodes are within an extended boundary already 
% no infty nodes in CellArray
% (the input threat is not necessary, nthreat=size(CellArray,l) )
% dwg 17-01-04

n = size(NodeList,l); % number of (original) nodes 
nthreat = size(threat ,1); % number of threats (and cells) 
c = CellArray; 
v = NodeList;
%
% Get the boundaries
%
xmin = Range(l); 
xmax = Range (2); 
ymin = Range(3); 
ymax = Range(4);

BB = max([abs(xmin) abs(xmax) abs(ymin) abs(ymax)]);
BB = 10*BB; %%%temp 
%
% Now, create a connection matrix which may contain zero rows/columns,
% infty nodes have not been deleted from v (but cells should contain 
% no infty node).
%
dTemp = zeros (n); 
for i=  l:nthreat, 

tt = length(c{i}); 
for j = 1: t t —1,

dTemp(c{i}(j),c{i}(j+l)) = 1; 
dTemp(c{i}(j+l),c{i}(j)) = 1; 

end
dTemp(c{i}(tt),c{i}(l)) = 1; 
dTemp(c{i}(l),c{i}(tt)) = 1; 

end

for i = l:n,
% zero out 1st row and 1st column and diagonal elements (should be zero already) 

dTemp(l,i) = 0; 
dTemp(i,l) = 0; 
dTemp(i,i) = 0;

end

%
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% Create a dlndex, and dTemp2 to store boundary nodes (their numbers)
%

dTemp2 = zeros (n);
dlndex = zeros(n); % use of dlndex to delete repeated computation

%
% Create a vNew to store nodes, including original and new nodes (new nodes 
% are on boundaries).
% Create NodesOutside (a single cell) to store nodes (in the original list ) which are 
% beyond the given area Range.
%

vNew = v;
NodesOutside = cell(l);
NodeOutside{l}(l) = 1; % infty node

nNew = n; % will be the number of total nodes later on 

%
% Now, check all (original) nodes.
% Outside regions are ordered anti—clockwise, from bottom—left.
%

for i = 2:n, % node 1 is infty
nRegioni = WhichSubRegion(Range,v(i,l),v(i,2),MyTol); 
if(nRegioni ~= 9) % node i is outside

NodesOutside{l}(end+l) = i; 
for j = 2:n,
% any cell will have 2 or more finite nodes (InftyPoints.m has been implemented) 

vFlag = 0; % vFlag = 1 , 2  new nodes
TempV = zeros(5,2);
TempV(l,l) = — BB*1.0e6; % a point not in the intersection list 
TempV(l,2) = — BB*1.0e6; 

if ((dTemp(i,j)> MyTol) & (dlndex(i,j) == 0))
% there is connection (edge) and hasn’t been done yet 
TempV(2,l) = xmin;
% cooridnates of all 4 possible intersection points (with the boundaries) 
TempV(3,l) = xmax; 

if(v(j,l) == v(i,l)) % nodes i and j form a vertical line
TempV(2,2) = ymin — BB;
TempV(3,2) = ymax + BB; 

else
TempV (2 ,2 ) = v(j,2 ) + (v(j,2)-v(i,2))»(xmm-vG,l))/(v0,l)-v(i,l)); 
TempV (3,2) = v(j,2) + (v(j,2)-v(i,2))*(xmax-v(j,l))/(v(j,l)-v(i,l)); 

end
TempV(4,2) = ymin;
TempV(5,2) = ymax;
if(v(j,2) == v(i,2)) % nodes i and j form a horizontal line

TempV(4,1) - xmin — BB;
TempV(5,l) = xmax + BB;
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else
TempV(4,l) = v(j,l) + (v(j,l)-v(i,l))*(ymin-v(j,2))/(v(j,2)-v(i,2)); 
TempV(5,l) = v(j,l) + (v(j,l)-v(i,l))*(ymax-v(j,2))/(v(j,2)-v(i,2)); 

end
disp(’TempV = ’)
TempV 

for k=2:5, 
kFlag = 0; 
for 1 = l:k—1,

if (SameNodes(TempV (k, 1),TempV (k,2),TempV (1,1),TempV (1,2),MyTol)) 
kFlag = 1; 

end 
end

%
if(OnBoundary(Range,TempV(k,l),TempV(k,2),MyTol) &; (kFlag == 0)) 

alpha = — BB; % negative number 
if(v(j,l) == v(i,l))

alpha = (TempV(k,2) -  v(i,2))/(v(j,2)-v(i,2)); 
else

alpha = (TempV(k,l) -  v(i,l))/(v(j,l)-v(i,l)); 
end

if ((alpha > 0) & (alpha < 1)) % point to be added (TempV(k) between nodes i and j) 
if (vFlag > MyTol) % positive 

nNew = nNew + 1; 
vNew(nNew,l) = TempV(k,l); 
vNew(nNew,2) = TempV(k,2); 
dTemp2(i,j) = -dTemp2(i,j); 
dTemp2(j,i) = -dTemp2(j,i); 
vFlag = vFlag + 1; 

else
nNew = nNew + 1; 
vNew(nNew,l) = TempV(k,l); 
vNew(nNew,2) = TempV(k,2); 
dTemp2(i,j) = nNew; 
dTemp2(j,i) = nNew; 
vFlag = vFlag + 1; 

end
end % end of if ( test if the intersection point is required) 
if (vFlag > 2)

disp(’Error^----- jmoreJihan^ Jntersection^points Jn^OutsideNodes’)
disp(Vm=J)
i
disp(Vj=J)
j
disp(’Jc=J) 
k
vFlag
dTemp2(i,j)
pause;

end
end % end of if
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end % end of k loop 
end % end of if ( for connected nodes) 
dlndex(i,j) = 1; 
dlndex(j,i) = 1; 

end % end of j loop 
end % end of if (for outside nodes, do nothing for node i inside)

end % end of i loop

%
% Now, a new cell array, with new boundary nodes.
%

cc = cell (nthreat, 1);

for i = 1:nthreat,
nNewCell = 0; % index for the nodes of the new cell 
c{i} = [c{i}(end) c{i}];
%% repeat the last node at the beginning in cell i node list 
nnn = length(c{i}); 
for j = l:nnn—1,

if (MyFind(NodesOutside{l},c{i}(j),MyTol)) % outside node 
if (~ My Find (Nodes Out side {l},c{i}(j+l), MyTol))

% check the next node, if inside 
nNewCell = nNewCell + 1; 
cc{i} (nNewCell) = dTemp2(c{i}(j),c{i}(j+l)); 

elseif(dTemp2(c{i}(j),c{i}(j+l)) < —MyTol)
% next node outside, but has intersection points 

nNode = -dTemp2(c{i}(j),c{i}(j+l)); 
nNodeNext = nNode + 1;
xxl = vNew(c{i}(j),l); % coordinates of c{i}(j) and 2 intersection points
yyl = vNew(c{i}(j),2);
xx2 = vNew(nNode,l);
yy2 = vNew(nNode,2);
xx3 = vNew(nNodeNext,l);
yy3 = vNew(nNodeNext,2);
distl = sqrt((xxl—xx2)"2+(yyl— yy2)~2);
dist2 = sqrt((xxl—xx3)"2+(yyl— yy3)"2);
if (distl < dist2)

% always choose nearer point as the next node (all on a straight line) 
nNewCell = nNewCell + 1; 
cc{i} (nNewCell) = nNode; 
nNewCell = nNewCell + 1; 
cc{i} (nNewCell) = nNodeNext; 

else
nNewCell = nNewCell + 1; 
cc{i}(nNewCell) = nNodeNext; 
nNewCell = nNewCell + 1; 
cc{i} (nNewCell) = nNode; 

end 
end

else % an inside node
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nNewCell = nNewCell + 1; 
cc{i} (nNewCell) = c{i}(j);
if (MyFind(NodesOutside{l},c{i}(j+l),MyTol))

% check the next node: if outside, record a new node 
nNewCell = nNewCell + 1; 
cc{i} (nNewCell) = dTemp2(c{i}(j),c{i}(j+l)); 

end 
end

end % end of j loop 
end % i looop

CellArrayNew = cc;

%
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A .5 Function to augment the initial and final 
point

function [NumofNodes,nPs,nPe,VV,DD] = augment (Range, threat,vv,cc,Ps,Pe, MyTol)

% Input:
% Output:
% NumofNodes is the total number of nodes of voronoi diagram
% nPs is starting node
% nPe is the end node
% VV contains the vertices of the nodes
% CC is the cell array
% DD is the connection matrix of nodes

n = size(vv,l);
nthreat = size(threat ,1);
xs = Ps(l);
ys = Ps(2);
xe = Pe(l);
ye = Pe(2);

nPs = n+1; % Next 6 lines added by DWG, 21—05—04
vv(nPs,l) = xs; 
vv(nPs,2) = ys;

nPe = n+2; 
vv(nPe,l) = xe; 
vv(nPe,2) = ye;

%
% Get the boundaries
%

xmin = Range(l); 
xmax = Range (2); 
ymin = Range (3); 
ymax = Range (4);

%
% Build a connection matrix dd 
%

n = size(vv,l); % DWG 21—05—04

dd = zeros (n); 
for i= 1:nthreat, 

tt = length(cc{i}); 
for j = 1: tt — 1, 

dd(cc{i}(j),cc{i}(j+l)) = 1;
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dd(cc{i}(j-f l),cc{i}(j)) = 1; 
end
dd(cc{i}(tt), cc{ i} (1)) = 1; 
dd(cc{i}(l),cc{i}(tt)) = 1; 

end

% Identify the cells for Ps and Pe
j =0;
for i=l:nthreat, % May use WhichCell. dwg

DisThreatS(i) = sqrt((xs—threat(i,l))~2+(ys—threat(i,2))~2); 
DisThreatE(i) = sqrt((xe—threat(i,l))~2+(ye—threat(i,2))~2);

end

[DisS,indS] = sort(DisThreatS);
[DisE,indE] = sort(DisThreatE); 
indS = indS(l);
DisS = DisS(l); 
cellS = cc{indS}; 
indE = indE(l);
DisE = DisE(l); 
cellE = cc{indE};

cellS = [cellS cellS (1)];

for i = l:length(cellS) — 1, 
xl = vv(cellS(i ),1); 
yl = vv(cellS(i ),2); 
x2 = vv(cellS(i+l),l); 
y2 = vv(cellS(i+l),2);
[xQ,yQ] = intersect(xl,yl,x2,y2,xs,ys,MyTol);

if ((xmin<=xQ) & (xQ<=xmax) & (ymin<=yQ) & (yQ<=ymax)), 
% intersection point could be beyond the Range 
if (IsNearest (xQ ,y Q ,indS, threat, MyTol)),

% include intersection points on the cell edges only 
n = n + 1;
vv(n,l) = xQ; % add into vv 
w(n,2) = yQ;

ddd = zeros(n—1,1); % now expand and update dd 
dddd = zeros(l,n); 
dd = [dd ddd;dddd]; 
dd(n,cellS(i)) = 1; 
dd(cellS(i ),n) = 1; 
dd(n,cellS(i+l)) = 1; 
dd(cellS(i+l),n) = 1; 
dd(n,nPs) = 1; 
dd(nPs,n) = 1; 

end
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end
end

cellE = [cellE cellE (1)];

for i = l:length(cellE) — 1, 
xl = vv(cellE(i ),1); 
yl = vv(cellE(i ),2); 
x2 = vv(cellE(i+l),l); 
y2 = vv(cellE(i+l),2);
[xQ,yQ] = intersect(xl,yl,x2,y2,xe,y e ,MyTol);

if ((xmin<=xQ) Sz (xQ<=xmax) & (ymin<=yQ) & (yQ<=ymax)), 
if (IsN earest (xQ, y Q, indE, threat, My Tol)), 

n = n + 1;
vv(n,l) = xQ; % add into vv 
w(n,2) = yQ;

ddd = zeros(n—1,1); % now expand and update dd 
dddd = zeros(l,n); 
dd = [dd ddd;dddd]; 
dd(n,cellE(i)) = 1; 
dd(cellE(i ),n) = 1; 
dd(n,cellE(i+l)) = 1; 
dd(cellE(i+l),n) = 1; 
dd(n,nPe) = 1; 
dd(nPe,n) = 1; 

end 
end 

end

dd=dd(2:end,2:end);
% Deleting 1st row and 1st col because they corresponds to 
% the 1st node of the voronoi diagram (in vv) which is at infinity 
vv = vv(2:end,:);
% Deleting 1st node of the voronoi diagram which is at infinity

nPs = nPs—1; 
nPe = nPe—1;

k=l;
for i = l:size(vv,l),%l

if (vv(i,l)>=xmin & vv(i,l)<=xmax & vv(i,2)>=ymin & vv(i,2)<=ymax),%2 
W(k,:) = vv(i,:);
DD(k,:) = dd(i,:);
I(k) = i;
k = k-fl; 

else%2
if(i < nPs),%3 

nPs = nPs—1;
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nPe = nPe— 1; 
end%3 

end%2 
end%l

DD = DD(:,I);

NumofNodes = size(VV,l);
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