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Abstract

Claire Irving 

Euler characteristics and cohomology for quasiperiodic 
projection patterns

This thesis investigates quasiperiodic patterns and, in particular, polytopal projection 
patterns, which are produced using the projection method by choosing the acceptance do­
main to be a polytope. Cohomology theories applicable in this setting are defined, together 
with the Euler characteristic.

Formulae for the Cech cohomology H * ( M V ) and Euler characteristic e-p are determined 
for polytopal projection patterns of codimension 2 and calculations are carried out for several 
examples. The Euler characteristic is shown to be undefined for certain codimension 3 
polytopal projection patterns. The Euler characteristic e-p is proved to  be always defined 
for a particular class of codimension n polytopal projection patterns V  and a formula for 
ep for such patterns is given. The finiteness or otherwise of the rank of H m(MV)  ® Q 
for m  ^  0 is also discussed for various classes of polytopal projection patterns. Lastly, a 
model for M V  is considered which leads to an alternative method for computing the rank 
of H m( M V ) ® Q for V  a d-dimensional codimension n  polytopal projection pattern with 
d > n.
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Introduction

Patterns have fascinated people for thousands of years, both for their aesthetic and their 

mathematical properties [18]. The patterns we are most familiar with in everyday life axe 

periodic. For example, a periodic pattern in the plane consists of a motif (fundamental 

domain) which repeats in a regular way (so the pattern is invariant under translations in 

two linearly independent directions).

Figure 1: A periodic pattern, showing the translations under which it is invariant

Another type of pattern is repetitive, in the sense that any motif appears infinitely 

often throughout the whole plane, but the motifs do not repeat in a regular way (so the 

pattern is not periodic in any direction and hence not invariant under translation by any 

non-zero vector in the plane). These ideas are made more precise in Section 1.1 of Chapter 1.
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Patterns with such properties are called quasiperiodic and they are the main kind of pattern 

considered in this document. An example can be seen in Figure 2 below.

Quasiperiodic patterns have been studied for many years. Perhaps the most well-known 

examples are the Penrose tilings of the plane, which were developed in the 1970s [29]. Note 

that a tiling of the plane is a division of the plane into regions called tiles. There are many 

other examples of quasiperiodic tilings of the plane, such as the Octagonal tiling below, 

which is discussed in more detail in Example 1.23.

Figure 2: The Octagonal tiling

In recent years, interest in quasiperiodic patterns has increased following the publication 

in 1984 of a paper [33] identifying the existence of minerals with atoms arranged in patterns 

of this type. These minerals have come to be known as quasicrystals.

Theoretically, it is possible to construct quasiperiodic patterns in Euclidean space (or 

even hyperbolic space) in arbitrary dimensions. In this document, we consider tilings and
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patterns in d-dimensional Euclidean space Rd. One-dimensional quasiperiodic tilings have 

been known for hundreds of years, such as [1] a pattern in R arising from the Fibonacci 

sequence. Such patterns have been extensively studied in the literature, so they axe not con­

sidered in great detail in this document. Patterns in two- and three-dimensional Euclidean 

space will be considered in most detail, although some results are given which can be ap­

plied to patterns in higher dimensions. Developing an understanding of these patterns is of 

importance to physicists as well as mathematicians, as described in the following sections.

Physical m otivation

From the perspective of physics, quasiperiodic patterns are of interest because [24] such 

patterns in two- and three-dimensional space can be used as models for quasicrystals. Thus 

an understanding of the mathematical properties of the quasiperiodic pattern associated to 

a quasicrystal may lead to an understanding of the physical properties of the quasicrystal.

Quasicrystals were first discovered through consideration of diffraction patterns, which 

are patterns produced on radiation-sensitive film by passing X-rays through thin slices of 

minerals. If the structure of the atomic arrangement within an object is sufficiently regular, 

the diffraction pattern will contain clear bright spots. The symmetries of the diffraction 

pattern are related to the symmetries of the arrangement of atoms in the object. Crystals 

are minerals which have periodic atomic arrangements and it was believed that only crystals 

had atomic structure regular enough to give rise to diffraction patterns with bright spots. 

A pattern arising from a periodic arrangement of atoms can [34, p6] only exhibit rotational 

symmetry of order 2, 3, 4 or 6 — any other orders are classically forbidden. The substances 

studied in the early 1980s, such as the one pictured in Figure 3 below, had diffraction 

patterns exhibiting such ‘forbidden symmetry’, so their atomic arrangements could not be 

periodic. This fact, together with the fact that sharp diffraction patterns were produced 

from these minerals, so the atomic arrangements were not totally random, indicated that
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Figure 3: A quasicrystal and its diffraction pattern

the atoms must have been arranged in quasiperiodic patterns. Hence such minerals have 

come to be called quasicrystals.

Physicists study the properties of quasicrystals with the aim of finding uses for these 

substances in industry. One quasicrystal, an alloy of Aluminium, Iron and Copper, is 

currently [35] being manufactured into frying pans because it exhibits non-stick properties. 

Also [36] an alloy of Zirconium, Nickel and Titanium, another quasicrystal, is being studied 

with the aim of developing containers for the storage of hydrogen.

M athematical methods

From the mathematical perspective, since a pattern is essentially a decoration of Rd, a 

contractible space, its topology is uninteresting. An alternative way to study a pattern V  is 

to form a topological space from V  and then use tools from algebraic topology to investigate 

the (much more interesting) structure of this object.

D E FIN IT IO N  0.1 The continuous hull M V  for a pattern V  is the set of all patterns V  

locally congruent to V  (so any bounded region II in V  G M V  can be found somewhere in 

V) with topology defined by a particular metric on patterns, such as Definition 1.9 ahead.

There are several metrics which can be defined on the set of locally congruent patterns, 

but the metric of Definition 1.9 is chosen because the topology defined by this metric yields
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information about the properties of patterns in M V . For more information about these 

ideas, see Section 1.1 in Chapter 1.

There are various tools in algebraic topology which can be applied to the continuous hull 

M V  to investigate its structure. Since it provides a link between algebraic topology and 

physics, ff-theory is briefly introduced in Section 1.6.1 in Chapter 1, but in this document 

we focus on cohomology, in particular Cech cohomology (defined in Section 1.6.2), group 

cohomology (defined in Section 1.6.3), and the Euler characteristic (considered in detail in 

Chapter 2) whose definition involves Cech cohomology in the first instance.

Apart from providing models for quasicrystals, quasiperiodic patterns have applications 

in other areas of mathematics, such as dynamical systems. A further aim of the study of 

quasiperiodic patterns is to find a classification of all such patterns up to  some notion of 

equivalence.

We now consider a way of generating quasiperiodic patterns, called the projection method, 

which will be used in Chapters 2 and 3. The basic idea of this construction is that given a 

periodic pattern A in some large-dimensional Euclidean space RN, a pattern  can be produced 

in a subspace E  of by projecting to E  a subset of A. Careful choice of E  and the points 

to be projected ensures that the resulting pattern in E  is quasiperiodic. We now make 

these ideas more precise, although the projection method is considered in most detail in 

Chapter 1.

The standard projection method for producing a quasiperiodic point pattern V  is set 

up by taking A an ^-dimensional periodic point pattern (which will also be referred to 

as a lattice), a d-dimensional subspace E  of R N for d < N  called the pattern space, with 

orthogonal complement E L , and K  a compact subset of E 1- which is the closure of its 

interior, called the acceptance domain for V. Those points of A which lie in the strip K  + E  

axe projected orthogonally to E, creating a point pattern in E. An example of a projection 

scheme with N  =  2 and d =  1 is shown below. The lattice is Z2 and the d-dimensional
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space is E  ^  R. Also E 1- R and the acceptance domain is a closed interval. To avoid 

cluttering the diagram, the orthogonal projections to E  of only three points in the strip 

K  +  E  axe shown. The point pattern in E  generated by this projection scheme is produced 

by projecting all points in K  +  E  to E.

. K .+  E

Figure 4: Diagram illustrating the projection method

To ensure tha t the pattern in E  is quasiperiodic, we impose two conditions. The first is 

that E  fl A =  {0}. This implies [34, Prop 2.17] that the resulting pattern is non-periodic. 

We also assume that no points of A lie on d K  -I- E , the boundary of the strip K  +  E , since 

this ensures that the pattern is repetitive.

Call a projection pattern canonical if the acceptance domain is (a translate of) the subset 

of E L formed by projection of a unit cell in the lattice A to the space E 1-. An example of 

a projection to R2 of a unit cell in Z4 is shown in Figure 5 below.

Figure 5: An example of a projection to R2 of a four-dimensional hypercube

In this document, we are interested in a class of quasiperiodic patterns whose acceptance 

domain is more general than those of canonical projection patterns. These will be referred to 

as polytopal projection patterns in this document (Def 1.33) and they are projection patterns 

with acceptance domains which are polytopes (Def 1.27). Examples include closed intervals 

in R, polygons in R2 and polyhedra in R3.
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M ain R esults and D ocum ent Layout

After conducting a survey of existing literature on quasiperiodic tilings and patterns, includ­

ing [1], [12] and [20], it became apparent th a t topological invariants, such as cohomology, for 

canonical projection patterns have been extensively studied, but less is known about topo­

logical invariants for projection patterns which are not canonical. Also, the patterns which 

have been studied in most detail are those for which the cohomology groups, for example, 

are finitely generated. Different models for the continuous hull M V  which enable the Cech 

cohomology groups H * ( M V ) to be described in terms of the structure of M V  are of interest 

as well (see [12, Chapter III] and [20] for example). Thus in this thesis, we consider the 

following questions.

Q U E S T IO N  0.1 Given a polytopal projection pattern V , to what extent can the Cech 

cohomology H* ( M V ) of the continuous hull M V  for V  be determined, and can the Euler 

characteristic be computed?

Q U E S T IO N  0.2 I f  the Euler characteristic can be computed for a given polytopal projec­

tion pattern V , what values can it take?

Q U E S T IO N  0.3 Given a polytopal projection pattern, under what circumstances is the Eu­

ler characteristic finite and for what values of m  are the Cech cohomology groups H m(MV)  

finitely generated?

Q U E S T IO N  0.4 Can models for the continuous hull M V  of a polytopal projection pattern 

V  be produced analogous to those of [20] which enable the Cech cohomology H*( MV)  groups 

to be computed in a more straightforward way?

In tackling these questions, work has been divided into three main sections. Firstly, 

various constructions from [12] for canonical projection patterns have been generalised to
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polytopal projection patterns. Secondly, the Euler characteristic has been defined for gen­

eral patterns and then computed where possible for several classes of polytopal projection 

patterns. Applications to the calculation of the cohomology of the continuous hull for such 

patterns have also been investigated, which lead to generalisations of other results from 

[12]. Lastly, models for the continuous hull M V  of particular classes of polytopal projection 

patterns have been developed, which provide an alternative method for the calculation of 

the cohomology of M V  and generalise results of [12, Chapter III] and [20].

The document is organised as follows. In Chapter 1, a more detailed discussion is given of 

quasiperiodic patterns, the projection method, polytopes and polytopal projection patterns, 

and the topological invariants which can be defined in this setting, in order to establish 

the context of this work and fix notation. Results extending some of the ideas in [12] 

(which were applicable only to canonical projection patterns) to the larger class of polytopal 

projection patterns are also provided. The Euler characteristic is introduced in Chapter 2 

and calculated in various cases. The cohomology groups H*( MV)  for polytopal projection 

patterns V  are considered in Chapter 2 as well, and in particular some results are given 

indicating when these groups are finitely generated. Several examples of polytopal projection 

patterns axe also presented. Chapter 3 presents an alternative model of the continuous hull 

M V  for polytopal projection patterns which facilitates a more straightforward computation 

of the Cech cohomology H*{MV).  A concluding chapter summarises the results obtained 

in this document and describes several open problems which were not satisfactorily dealt 

with during the period of study, and so present opportunities for further research. An 

appendix follows, containing the precise definitions and results relating to if-theory which 

are referred to in Chapter 1. Finally, lists of definitions and figures are provided, followed 

by the bibliography.
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C hapter 1

General Setup

This chapter gives an overview of the main ideas in the study of patterns, and quasiperiodic 

patterns in particular. In the remainder of this document, we use the term pattern to refer 

to a set of points, but we will also make use of the term tiling to denote the division of 

a space into bounded regions called tiles. Tilings are more visually appealing than sets of 

points, so examples of quasiperiodic patterns, such as the Octagonal tiling in Figure 2 in the 

Introduction, will be drawn as tilings, but most results in this document will be stated for 

patterns only. The distinction between patterns and tilings is discussed further in Section

1.1.1 ahead. This chapter also contains a description of the projection method for generat­

ing quasiperiodic patterns. Polytopal projection patterns sure introduced and properties of 

polytopes relevant to the calculations in Chapters 2 and 3 are investigated. Finally, various 

tools from algebraic topology which can be applied in this setting are discussed.

1.1 Patterns and tilings

In this section, definitions of patterns and tilings are given, which are not the most general 

(see [18] or [34], for example, for alternative descriptions) but they are suitable for the pur­

poses of this document. Methods for constructing quasiperiodic patterns are introduced, 

and in particular the projection method is considered in greater detail than in the Intro­

duction. Assumptions imposed on ail patterns and tilings in later chapters are also stated
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here. We begin by giving definitions which enable the notion of a quasiperiodic pattern or 

tiling to be made precise.

D E F IN IT IO N  1.1 A (point) pattern V  in d-dimensional Euclidean space is a countable 

set of points.

For a point pattern V , a patch of radius r  is the set of points in V  which are contained 

in a ball B r (x) of radius r with centre at some point x  € Rd.

D E F IN IT IO N  1.2 A tiling o f R d consists of a countable family T  =  {7i,X2, ...} of closed

sets called tiles, with the properties that (Ji^i T* =  Rd, each tile is homeomorphic to a d-

dimensional disc, the interiors of any two distinct tiles are disjoint and the intersection of

any two tiles is a connected set.

Define a prototile for a tiling T  to be an equivalence class of tiles in T  with respect to

some notion of equivalence, such as congruence or translation.

Define a patch in a tiling T  to be a subset II of tiles in T  whose union is homeomorphic

to a d-dimensional disc.

Say a patch II in a tiling T  has radius r  if there is x  6 Rd such that II C B r(x) and

r = inf ( r ' : II C B r>(x)}. 
xeRd

Thus a patch II in a tiling T  has radius r  if there is x  € Rd such th a t the ball B r (x) 

contains all the tiles in the patch, and any ball of smaller radius does not contain all the 

tiles.

1.1.1 Equivalences o f tilings and patterns

Given a tiling T , a point pattern V  can be constructed from it in various ways. For ex­

ample, each prototile for T  could be ‘punctured’ (so a distinguished point on each tile is 

selected). The point pattern V  is then the set of punctures in the tiling T  as a subset of 

Rd. Alternatively, a point pattern can be produced from a tiling by taking the vertices of 

each tile. Conversely, given a point pattern V,  one way of producing a tiling T  from V  is to
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define the faces of the tiles in T  to be the perpendicular bisectors of the lines joining pairs 

of points (a process known as the Voronoi construction [12, 1.4]). Another way to form a 

tiling is to join those pairs of points at a specified distance apart by line segments which 

form the 1-dimensional faces of tiles. Note that such processes are not necessarily inverse to 

one another, so if we take a tiling T , produce a point pattern V  and then construct a tiling 

T ', the tiling T ' need not look like T . There could be some notion of equivalence between 

the two tilings, but in general they could be quite different.

For example, the Octagonal tiling (Fig 2 in the Introduction) is formed from the point 

pattern produced by the Projection method by joining pairs of points which lie at a certain 

distance from one another. However, it is not always the case that quasiperiodic patterns 

give rise to quasiperiodic tilings and vice-versa since for example [18] we could consider a 

quasiperiodic tiling consisting of a periodic tiling of the plane by unit squares which are 

then coloured to break the periodicity. Taking the vertices of these tiles and then joining 

points at a distance 1 from each other recovers the periodic tiling by squares.

There are several equivalences which can be defined on tilings and patterns. In this 

document, we will use local congruence, mutual local derivability and topological conjugacy.

D E F IN IT IO N  1.3 The local congruence class (LC class) of a pattern V  is the set of all 

patterns that look locally like (translates of) V , so any patch in a pattern V  in the LC class 

o fV  is also a patch in V.

Note that in the literature, local congruence is also referred to as local isomorphism. The 

former term is used in this document since it fits with the notion that a pattern V  is locally 

congruent to V  if bounded patches in V  are congruent up to translation to patches in V.

D E F IN IT IO N  1.4 [8] Given two d-dimensional patterns V , V , and vectors x i , £ 2  £ 

say V  is locally derivable from V  if there is R  > 0 such that i fV  — X \ agrees with V  — X2
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on a ball of radius R  about the origin, then V  — x \ agrees with V  — £ 2  on a ball of radius 

1 about the origin.

I f V  is locally derivable from V  and vice versa, then V  and V  are said to be mutually 

locally derivable (MLD).

Hence if two patterns V  and V  are mutually locally derivable, then the positions of 

patches in V  are determined by the positions of patches in V.

D E F IN IT IO N  1.5 [12,1.4.5] Two patterns V  and V  in with Rd-action by translation, 

are topologically conjugate if there is an Rd-equivariant homeomorphism M V  — M V .

For other types of equivalence, see [12, 1.4], for example.

The following definitions are applicable to both tilings and patterns, but will be stated 

only for patterns.

D E F IN IT IO N  1.6 A pattern V  in Rd is periodic if it is invariant under translations by 

d linearly independent vectors V{ € so V  + = V  for i =  1 , . . . ,  d.

Say V  is subperiodic if it is invariant under translations by k linearly independent vec­

tors, for 0 < k < d.

Say V is non-periodic if it is invariant under no translations by vectors i n R d, so V + v  ^  

V for all 0 /  u € Rd.

D E F IN IT IO N  1.7 A pattern V  is repetitive if for every patch II of finite radius in V, 

there is an R  satisfying 0 < R  < 00 such that for every x  € Md, there is a translate of n  

contained in Br(x) .

D E F IN IT IO N  1.8 A pattern V  is called quasiperiodic if it is non-periodic and repetitive.

As in the Introduction, a topological space (in fact a metrisable space) can be constructed 

from a pattern V  as follows. Take the set V  + of all distinct patterns produced by 

translating the points of V  by vectors in Rd. Several metrics can be defined on this space, 

but the metric used in this document, taken from [12, 1.3.1], is defined below.
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D E F IN IT IO N  1.9 For a pattern V in Rd, define a metric on V  + Rd by

*V>uV2) = in f{ l/(r  +  1) : dH{Br{Vi ) ,Br{V2)) < 1/r}

where B r {V) =  'Pn(i?r (0)U d£r (0)) and dn  is the Hausdorff metric, which is defined on two 

non-empty closed subsets A  and B of Rd by dn{A,  B):  = inf{e > 0 : N e(A) D B  k, Ne( B ) D 

A},  where N ((A) denotes an epsilon neighbourhood of A.

Essentially, this metric says that patterns axe close if they agree (up to a small trans­

lation) on a large patch around the origin. Note that l / ( r  +  1) is used to ensure that the 

value of p  is at most 1.

There is [13] a similarly-defined metric on the set T  + Rd of translates of a tiling which 

has the property that tilings are close if they agree up to a small translation on a large 

patch around the origin. Since we mainly consider point patterns in the remainder of this 

document, we do not state the precise definition of the metric for tilings here.

D E F IN IT IO N  1.10 The continuous hull M V  for a pattern V  is the completion o fV  + M.d 

with respect to the metric p defined above.

The action by translation of Rd on V  is continuous with respect to the metric p and so 

[22] can be extended to an action on M V  which takes limit points to limit points.

Note that the continuous hull is defined with respect to the metric p  above rather than 

some other choice of metric since [13] sets {Uu +  x : x G i?e(0)}, for Un the set of patterns 

V  G M V  which contain a given patch II, are open in M V  so the topology of M V  encodes 

information about the patterns in M V . Also as shown in Lemma 1.14 ahead, with this 

metric M V  is a compact space if V  satisfies a certain condition (Def 1.13).

For example, suppose V  is a periodic pattern  in R2, such as the one in Figure 1 in the 

Introduction, with a point at the origin of R2, so it is invariant under translations by two 

vectors v \ , v2 in R2 and all integral linear combinations of these vectors. Distinct patterns
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in V  +  R2 only arise when V  is translated so that the origin of R2 lies within a half-open 

unit parallelogram with edges given by the vectors t>i,i>2 , since V  is invariant under unit 

translations by these vectors. As the origin approaches an open side of the parallelogram, 

by periodicity the pattern with the origin in this position gets closer (with respect to the 

metric /z) to the pattern with origin on the closed boundary of the parallelogram. Hence 

taking the closure of the half-open unit parallelogram under p gives M V  homeomorphic to a 

torus. Similarly for d-dimensional periodic patterns V , the continuous hull is homeomorphic 

to a d-dimensional torus.

When V  is quasiperiodic, so it is not invariant under translations by any vector in 

Rd, new patterns are obtained when V  is translated by any 0 v € Rd. However, since 

a quasiperiodic pattern V  is repetitive, so any patch n  of finite radius R  in V  appears 

infinitely often throughout Rd, translations of V  can be chosen so that the new patterns 

V  + i  and V  +  y are closer than 1 / (R  + 1) in the metric /x. Patches can be selected of 

any radius R, thus ensuring that two distinct translates of V  can be arbitrarily close with 

respect to /x. Thus the continuous hull M V  is similar to a torus when V  is quasiperiodic, 

since large translates V  +  x of a pattern V  can be found arbitrarily close to V , but M V  

has richer topological structure than a torus because P  +  x ^ P f o r x ^ O .  The torus-like 

nature of M V  provides the focus for the work of Chapter 3.

The continuous hull M V  of a pattern V  encodes information about the local congruence 

(LC) class of V  by the lemma below.

L E M M A  1.11 A pattern V  is an element of the continuous hull M V  for some other tiling 

or pattern V  if and only i f V '  is in the LC class of V .

P ro o f  First suppose V  is in the LC class of V, so any patch n  in V  is found somewhere 

in V. Take n  of radius R  > 0 in V  about the origin in Rd. Then there is x E Rd with the 

property that the patch about the origin of radius R  in V  +  x agrees with n  (up to some
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small translation). Thus V 4- x is within a distance 1 / (R +  1) of V  in the metric p. Hence 

taking a sequence of patches n r of V  of increasing radii r  produces a sequence of translates

V  +  x r of V  which converges to V . Hence V  G M V .

Now suppose V  is not in the LC class of V  so there is some patch n  of radius R  in

V  which does not appear in V. We can suppose (by taking a translate of V  if necessary, 

since if V  G M V  then V  + x  G M V  for all x  G Rd) that n  contains the origin. Then any 

translate V  +  x  of V  is at a distance greater than \ / { R  +  1) > 0 from V  in the metric p 

since the two patterns can only agree on a ball of radius less than R  about the origin as V  

does not contain n . Thus there is no sequence of translates of V  which converges to V  and 

hence V  & MV .  |

1.1.2 Standard assumptions

In order to produce quasiperiodic tilings and patterns which can be used as models for 

quasicrystals, certain assumptions are imposed. To simplify the model of a quasicrystal, we 

suppose that there is an infinite amount of the substance, so there is no boundary, and we 

also assume that atoms are distributed homogeneously within the substance, so there are no 

empty spaces of radius larger than some allowed amount. Note also tha t in any crystalline 

structure which gives rise to a sharp diffraction pattern, there is a minimum distance between 

atoms due to the action of interatomic forces. Hence we make the assumptions that there 

is a minimum distance between all points in a pattern and any chosen point in a pattern is 

surrounded by other points. These two concepts are formalised in the following definition.

D E F IN IT IO N  1.12 Say a point pattern V  is a Delone set if it is uniformly discrete, 

so there is an e > 0 such that for all p  G V , the ball of radius e centred at p satisfies 

B e{p) D V  — {p}> and relatively dense, so there is a p > 0 such that any ball of radius 

greater than or equal to p contains at least one element o f V .
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It is shown in [34] that patterns produced by the projection method are Delone sets.

It is also known from physics that crystalline structures contain only a finite number of 

different atomic configurations, so in this document, we assume the set of prototiles for any 

tiling is finite, and we make the  assumption that any tiling or pattern satisfies the following 

condition.

D E F IN IT IO N  1.13 Let 'P be a point pattern. Then V  satisfies the Finite Local Com­

plexity (FLC) condition if fo r  any Ro > 0 there are, up to translation, only finitely many 

different {finite) subsets U o f V  in the set {{V — x) n  3 /^ (0 ): x  G Rd}.

For a tiling T , we say that T  has Finite Local Complexity if for any R q  > 0 there are, 

up to translation, only finitely many patches in T  with radius R q .

Note that not all tilings satisfy FLC. The standard counterexample is the Pinwheel tiling. 

This is constructed using the substitution method (see Section 1.2.1 ahead). Its prototile is 

pictured below, showing the decomposition u  which leads to a tiling of the plane when the 

prototile is successively decomposed by uj and expanded by a factor of A =  y / E .

Figure 1.1: Prototile for the Pinwheel Tiling

This tiling contains an infinite number of configurations up to translation because the 

smallest angle in the prototile is irrational with respect to 7r, so the prototile appears in 

infinitely many orientations when infinitely many decompositions and expansions are carried 

out. Further details about this tiling can be found in [34].
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Making the assumption that the tilings and patterns we consider have the FLC property 

means that the following result holds, which simplifies the study of the continuous hull MV  

(Def 1.10).

L E M M A  1.14 I f  a pattern or tiling V satisfies the Finite Local Complexity condition, then 

the continuous hull M V  is compact.

P ro o f  For metric spaces, compactness is [4, p25] equivalent to every sequence of points in 

the space having a convergent subsequence.

Thus we take (Vm) an infinite sequence of patterns in MV.  Also take an infinite un­

bounded monotone increasing sequence (R*) of real numbers. By FLC, there are only 

finitely many patches in V  (up to translation) of radius .Ro, so a t least one patch IIo must 

appear somewhere in infinitely many patterns Vm. Similarly, there are only finitely many 

patches of radius R i, so at least one patch must appear in infinitely many patterns Vm 

which also contain IIo. Continuing in this way produces a subsequence (V mi) of patterns 

for which Vmi contains the patches II of radius Rj  for j  ^  i. This subsequence converges 

in the metric p  (Def 1.9) to a limit pattern Voo which contains the patches 11* for all i.

Therefore every sequence of patterns in M V  contains a convergent subsequence and 

hence M V  is compact. |

1.2 M ethods for constructing quasiperiodic patterns

There are two main methods of generating quasiperiodic patterns or tilings, namely substi­

tution and projection. In this document, we focus on the projection method, since the extra 

structure associated to patterns produced in this way will be used to compute topological 

invariants such as cohomology and the Euler characteristic. The projection method is also 

highly valuable to the study of quasicrystals, since it is known [24] that models for such 

minerals can be provided by projection schemes of some kind (possibly more general than 

those described here). The substitution method also gives rise to important examples of
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quasiperiodic tilings and patterns. Several papers have been published on such patterns 

and the topological invariants which can be associated to their continuous hulls, such as [1] 

and [22]. For completeness, the substitution method is described here, although it will not 

be used much in the remainder of this document.

1.2.1 The Substitution M ethod

One way of defining the substitution method for constructing quasiperiodic tilings is as 

follows.

D E F IN IT IO N  1.15 [22] A substitution tiling T  in Rd consists of a set { T \ , . . .  ,Tm} of 

prototiles which are equivalence classes of tiles with respect to translation only, a scaling 

factor A > 1, and a substitution rule u . These satisfy the properties that u)(T{) is a finite 

collection of tiles which overlap only on their boundaries, and the union of these tiles is 

exactly A(T*).

The substitution rule u  creates patches from prototiles, and the definition of u  can be 

extended to translates of the prototiles T{ by setting u(Ti + x) = cj(Ti) + Xx for x e R d. 

Also, if P  is a patch in the tiling T,  then we can define uj(P) : = {u>(T) : T  € P }, which

means that lj can be iterated, forming a sequence of patches u k(P) for A; =  1 ,2 ,___ As A;

increases, the radius of the patches increases, producing a tiling of the whole of Md in the 

limit as A; oo. Finally note that if T  is a tiling, then so is u{T) .

Examples of substitution tilings are the Pinwheel Tiling whose prototile is in Figure 

1.1, and the Octagonal Tiling (Fig 2 in the Introduction) whose prototiles axe pictured in 

Figure 1.3 ahead.

There are other ways of defining substitutions, which are slightly more general than the 

method above. In particular, we need not have uj(T{) =  AT* as u  may replace by a 

collection of tiles which are not contained entirely within the boundary of A7*. For example 

[1], the Penrose tiling can be described as a substitution tiling of this more general type. 

One example of a set of prototiles 7* for the Penrose tiling is shown below, together with 

the collections cj(Tj).
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Figure 1.2: Prototiles and substitution for the Penrose tiling

1.2.2 The Projection M ethod

In this section, we give a more detailed construction of the projection method than that 

given in the Introduction.

As before, take an iV-dimensional lattice A, a d-dimensional subspace E  of RN (the 

pattern space) which only intersects the lattice at the origin, and an acceptance domain K  

in the (N  — d)-dimensiona! subspace E L of RN which is the orthogonal complement of E.  

Denote by 7r and 7T1- the orthogonal projections to E  and 1 respectively.

Note that the projection 7tj-(A) of the lattice A to E 1- may not be dense in E L . It is 

important for later work to consider a space V  in which the group n ± (A.) n  V  is dense, so 

we make the following constructions.

D E F IN IT IO N  1.16 Define A to be the real vector space generated by the discrete group 

E ± r I A.
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L E M M A  1.17 [12, 1.2.11] The Euclidean closure 7r-L(A) of the projection of the lattice A 

to the subspace E ± of RN can be decomposed into a sum V  © A, for V  a linear subspace 

o f E |

Note that A may be trivial. For example, it is trivial for the Octagonal tiling (Example 

1.23) but [12, 1.2.7] for the Penrose tiling A is 1-dimensional.

Now recall that for a projection pattern to be quasiperiodic, we needed the space E  to 

be totally irrational, meaning that the only lattice point contained in E  is the origin. We 

also required no lattice points to lie on the boundary of the strip K  + E.

D E F IN IT IO N  1.18 Points v G RN causing A + v to intersect the boundary of K  + E  are 

called singular points. I f the boundary of K  +  E  does not intersect A +  u then v is called 

non-singular, or regular. Write N S  to denote the set of all non-singular points in RN .

D E F IN IT IO N  1.19 The projection pattern Vv is the set of points {7r(x) : i G A  +  v , d G  

Kn  non-singular, 7rJ-(x ) G K }. We say V v is determined by the data (A, E , K , v ) .

Note that in the following work, we will generally suppress the data and simply write V  

for polytopal projection patterns.

We next introduce an alternative description of the continuous hull M V  (Def 1.10) for 

projection patterns.

L E M M A  1.20 [13, Cor 30] The continuous hull M V  for a projection pattern V is homeo- 

morphic to 11/A, where II is the completion of the set N S  of non-singular points with respect 

to the metric p defined by p(u,v) = p(Vu,V v) +  ||u — v|| for u , v  G N S .  |

We can equivalently say that v G is non-singular if the boundary of (K + E)  + v 

does not intersect the lattice A. This means that, since the projection 7T1- has kernel E,  the 

singular points can alternatively be viewed in V  as arising from translates by ^ ( A )  fl V
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of the component of the boundary of K  which is in V. Hence the set N S  of non-singular

points can be considered in V  via n ± (N S )r \V . This perspective will be used in Section 1.4.

The results of Section 1.6.3 ahead show that we can restrict attention to V  rather than

E 1- ^  V  © A. We thus make the following definitions.

D E F IN IT IO N  1.21 Given a projection pattern V , the dimension n of V is called the 

codimension of V  and the dimension of V  is the dimension d of the pattern space E.

D E F IN IT IO N  1.22 Say a projection pattern is canonical if it can be produced from a

for U a unit cell in the lattice A.

To illustrate the above constructions, we now consider an example of a tiling which can 

be produced using both the substitution and projection methods.

E X A M P L E  1.23 The Octagonal Tiling

This tiling is pictured in Figure 2 in the Introduction. There are 12 prototiles up to 

translation for this tiling. The substitution rules for each congruence class of prototiles are 

shown below, and the substitution rules for the other prototiles can be obtained by rotations 

by kn /4  of the diagrams below, for k = 0 , . . .  7. The expansion factor is A =  1 4- \/2.

projection scheme in which the acceptance domain K  C V  is the component of 71"1 (U) in V

Figure 1.3: Substitution rules for the Octagonal Tiling
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To generate the Octagonal Tiling using the projection method, the lattice A is chosen 

to be Z4 in standard position as a subspace of R4. Take 

E  =  Span{(v/2 /2 ,1/2,0, - 1 / 2 ), (0 , 1 / 2 , v ^ /2 , 1 / 2 )}

E x =  Spon{(\/2 / 2 , - 1 / 2 , 0 , 1 / 2 ), (0 , - 1 / 2 , V 2 / 2 , - 1 / 2 )}.

The acceptance domain is the projection to E ± of the four-dimensional unit hypercube in 

Z 4 shown below. The projection of A to E ± is dense in E-1, so the Octagonal Tiling is a 

2 -dimensional codimension 2  canonical projection pattern.

es

Figure 1.4: Acceptance domain for the Octagonal tiling

Although canonical projection patterns are of interest in this document, we also want to 

consider tilings and patterns whose acceptance domain is a polytope. The following section 

contains a definition of poly topes, together with a discussion of the properties which are 

applicable to the study of polytopal projection patterns.

1.3 P olytop es

The term polytope has been used in several different ways in the literature (see [7],[26] 

for example). A definition is given below which encapsulates the notions required for the 

purposes of this document. In particular, the polytopes considered here are compact subsets 

of Rn, they have only a finite number of (n — l)-dimensional faces and they need not be 

convex. Several properties of these poly topes which will be used in later sections are also 

described below.

D E F IN IT IO N  1.24 An m-cell c is a space which is homeomorphic to an m-dimensional 

closed ball B m . Call a 0-cell a vertex.
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D E F IN IT IO N  1.25 A regular cell complex is a space X  and a collection of cells ca with 

the following properties.

1. X  is Hausdorff.

3. For each m-cell ca , there is a homeomorphism f a : B m -> ca and dca is equal to a 

finite union of cells of X , each of dimension less than m.

4. A set A is closed in X  if A  fl ca is closed in ca for each a.

A regular cell complex is a locally finite CW complex with the added properties that cells 

are homeomorphic to balls and the boundary of a cell ca is equal to a union of finitely many 

cells of X, whereas in a general CW complex, the map f a need only be a homeomorphism 

between the interior of B m and the interior of ca , and in general f a takes the boundary of 

B m to a subset of a union of finitely many cells of X  of dimension less than m  (see Fig 1.5 

below).

Figure 1.5: A locally finite CW complex which is not a regular cell complex

In the above diagram, the boundary of the 2-cell is contained in but not homeomorphic 

to the the union of the 1 -cell and the 0 -cell.

2. \Ja ca = X .
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D E F IN IT IO N  1.26 For a regular cell complex X , define an edge-path between vertices 

a and b to be a finite set {eo, e i , . . . ,  ek- i }  of 1-dimensional cells of X  such that for i = 

0 , . . . ,  k — 1 each cell e, has boundary vertices Vi and Vi+i, so ei fl ej+i =  t>i+i, and a = Vo, 

b = vk .

Call a maximal edge-connected subset of X  an edge-path component.

Say a regular cell complex X  is edge-connected if there is an edge path between any pair 

a, b of vertices in X .

Note that [4, IV.9] an orientation of a CW complex, and hence of a regular cell complex, 

can be determined.

We are now in a position to give the definition of a polytope.

D E F IN IT IO N  1.27 An n-dimensional polytope L C Rn is the underlying space of a 

connected oriented regular cell complex consisting of finitely many cells ck with the following 

properties.

a) Cells have dimension at most n and there is at least one cell c of dimension n.

b) Allm-cells are m-dimensional affine subspaces o fW 1 with boundary consisting o f(m  — 

1 )-cells, for 1 ^  m ^  n.

c) The interiors of any pair of cells Cj ^  Cj are disjoint. The intersection of any two 

m-cells Ci /  Cj is either empty or a cell c* of dimension less than m  for 1 ^  m ^  n.

d) Every m-cell is at the intersection of at least two (m +  1 )-cells for 0 ^  m  ^  n — 2. All 

(n — 1 )-cells lie in the boundary of at least one n-cell.

A 1 -dimensional polytope is a subset of R consisting of a finite union of closed intervals 

[ai , 0 2 ] U [0 2 , 0 3 ] U . . .  U [afc_2 , afc_i] U [a*_i, a*], a 2-dimensional polytope is a collection of 

polygons intersecting in complete 1-cells, and a 3-dimensional polytope is a collection of 

polyhedra intersecting in complete 2 -cells.
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D E F IN IT IO N  1.28 Say an n-dimensional polytope L  has inradius r  if the supremum of 

all radii of spheres S n~l which can be inscribed in the n-dimensional cells of L is r.

A useful tool in the study of polytopes is the notion of a flag.

D E F IN IT IO N  1.29 A flag T  in an n-dimensional polytope L is a set of cells {c{ : i = 

0 , . . . ,n} of L, where Cj is i-dimensional and c* C  c*+i for each i.

Note that given any cell c in a polytope L, a flag T  (not unique in general) can be

constructed which contains c.

L E M M A  1.30 [26] Flags in a polytope satisfy the following.

1. For each i, there is a unique flag T ' differing from a given flag T  by exactly one 

element Ci.

2. Given a pair of flags T  and T ' , there is a chain (0i)ie{o,...,Jfc} of flags T  = 6q,9\, . .. ,6k =  

T* in which $i differs by exactly one element from 9i+1 and T V \T ' C  9\ for each i. |

We now describe two properties of polytopes which will be of use in subsequent sections.

L E M M A  1.31 A polytope L is a compact subset o /R n which is the closure of its interior.

P ro o f  Since a polytope is the underlying space of a regular cell complex containing finitely 

many compact cells, it is compact.

As L  is compact, it is closed in Rn and we write L = L. Now the interior In t(L )  is a

subset of L, so In t(L )  C i  =  L. It remains to show that L  C  In t(L ). We have In t(L )  =

In t{\J i£N d )  D U ie T v ^ f (c t )  so In t(L ) D U ieN =  U ieN Int(ci) =  U i e N c*» where

N  enumerates the n-cells in L, as each n-cell Cj is homeomorphic to a closed ball and so is 

the closure of its interior in Rn. Note that U*gn ci — L  since the boundaries of the n-cells 

contain all other cells of lower dimension in L. Hence In t(L ) = L  as required. |
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L E M M A  1.32 A polytope L is edge-connected.

P ro o f  A 1-dimensional polytope is edge-connected by definition since it consists only of 

1 -dimensional cells intersecting at vertices.

Now consider a general n-dimensional polytope L and suppose there Eire two edge-path 

components. Take two 1-dimensional cells c, c', one in each component. Take two flags 

T  D c and T ' D c'. By Lemma 1.30, since L  is a polytope, statement 1 tells us there is a 

chain of flags between T  and T \  and statement 2 gives that any two 1 -dimensional cells in 

the chain share a common vertex and hence form an edge-path. Thus there is an edge-path 

between c and d  and hence between vertices in both edge-path components, which is a 

contradiction. Therefore the polytope is edge-connected, as required. |

We now return to projection patterns. Lemma 1.31 shows that a polytope is a valid 

choice for the acceptance domain K . Thus we make the following definition.

D E F IN IT IO N  1.33 Say a projection pattern is polytopal if it can be produced from a 

projection scheme in which the acceptance domain K  C V is a polytope.

Note that canonical projection patterns are also polytopal since a unit cell in the lattice 

A is an iV-dimensional polytope and its projection to V  is again a polytope. However, not 

all polytopes arise as projections of hypercubes, so the class of polytopal projection patterns 

is larger than the class of canonical projection patterns.

1.4 Singular points

Given a polytopal projection pattern V  with lattice A, acceptance domain K , and 7rJ-(A )n F  

dense in a space V, singular points in V  are [13] those in the set V  H[JpGaK+A rc^ip). Thus, 

since the acceptance domain K  is a polytope, the singular points in K  are arranged into 

lines, planes and so on. We call these objects singular spaces. Note that singular spaces 

are not just formed by the faces of K  and its translates in V, but they also arise a t the 

intersections of translates of faces of K . The notion of a singular space is made more precise 

in the definitions below.
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D E F IN IT IO N  1.34 Write T : = tt-l (A) n  V and denote by S  + T the set {S  +  7  : 7  € T} 

for S  any subset of V .

D E F IN IT IO N  1.35 Define K to be the set of subsets o f V ^ R n consisting of the follow­

ing.

• K  + r : = { Jftr + 7 : 7 e r } .

• F  + 7  for all 7  € T, where F  is a cell of any dimension in the boundary d K  of K .

• + 7 *) fintte intersections of translates of cells F{ in the boundary of K .

• All i-dimensional subsets s of i-dimensional elements F  of K which are polytopes such 

that the boundary of s is a union of (i — 1)-dimensional elements, for i = 1, . . .  n.

An i-dimensional element of K, is thus a subset of an i-dimensional face of some translate 

of K  which is bounded by subsets of (i — l)-dimensional faces of other translates of K . 

The n-dimensional elements arise only from the translates of K  itself. The intersection of 

singular n-spaces does not produce any singular (n — 1 ) spaces other than those contained 

in d K  since the only way for two n-dimensional polytopes in n-dimensional space to have 

(n -  l)-dimensional intersection is if they intersect only at their boundaries.

Compare this construction with the algebra A u associated to a projection pattern V u, 

defined in [12, 1.9.3], which consists of subsets of N S  fl (E  4 - A -1- u) D V  and is generated by 

N S  fl (E  +  A +  u) fl K  -1- V  fl n-1 (u) under finite unions, finite intersections and symmetric 

difference. The set K  of subsets of the set of singular points is defined as above so as to rule 

out the difference s \ s ' , for s' a singular space of dimension strictly less than the dimension 

of s, but to include subsets of elements which do not arise as intersections of other elements, 

such as s in the diagram below, which is a subset of the 1-dimensional element F  but not 

in the intersection of F  with the two-dimensional elements F\ , F2, F 3 .
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D E F IN IT IO N  1.36 Denote by I k  the set of (n — 1)-dimensional boundary faces of the 

acceptance domain K  which are distinct up to T-translation.

Write JO to denote the closure under finite union of the set of i-dimensional elements 

of K and call the elements of JCX singular i-spaces.

Write Ii for the set ofT-orbits of singular i-spaces, which are the elements of /C*/r. 

Define L , : = \Ii\ to be the cardinality of this set.

Note that since singular (n — l)-spaces arise only from T-translates of the (n — 1)- 

dimensional faces of the acceptance domain K , and the fact that K  is assumed to be a 

polytope implies that there are finitely many T-orbits of singular (n — l)-spaces, so I k  is 

always a set of finite cardinality.

Of particular note in this document is the set /C° of singular 0 -spaces.

D E F IN IT IO N  1.37 Say K° is finitely generated if it is the union of finitely many T-orbits 

of singular 0 -spaces, and say it is infinitely generated otherwise. Write Lq for the number 

of Y-orbits of singular 0-spaces, so Lq =  |/C ° /r |.

As an example of how singular spaces arise from a given projection scheme, consider the 

Octagonal tiling from Example 1.23, a 2-dimensional codimension 2  canonical projection 

pattern. Its acceptance domain K  is an octagon with vertices at points of T, so translating 

K  by elements of T produces lines of infinite length in four distinct directions in V. These 

singular 1-spaces intersect at the vertices of K  (elements of T) which form a T-orbit of 

singular 0 -spaces but singular 0 -spaces also arise at the intersection of pairs of orthogonal 

singular 1-spaces, and these are not vertices of K  or its translates and hence are not elements



Since any canonical projection pattern of arbitrary codimension n ^  2  has acceptance 

domain K  with vertices at points of T, the T-orbits of the (n — l)-dimensional faces of 

K  consist of sets of (n — l)-dimensional hyperplanes. However, for a general polytopal 

projection pattern V, the T-orbit of any face F  of the acceptance domain K  for V  need not 

contain the hyperplane spanned by F. In addition, it is possible tha t two T-translates of

parallel singular i-spaces 5, S ' for i ^  n — 1 may have i-dimensional intersection s C 5, S ' ,

even if there is no 7  € T with S ' = S  + 7 . This fact also contrasts with the canonical 

case, where parallel singular i-spaces are in the same T-orbit, which has the form of sets of 

disjoint hyperplanes. Thus we make the following definition.

D E F IN IT IO N  1.38 Take the set consisting of translates under the action of T of all 

singular i-spaces parallel to a given i-dimensional face 6 of K . Denote a typical element of 

the set l fc of connected components in the resulting space by D .

Denote by I{c the set containing the elements of i fc for all faces 6.

Write V  to denote the orbit class of D under the action o fT .

By definition, D  is an element of K x so is also referred to as a singular i-space.

We now describe some properties of singular spaces.

L E M M A  1.39 There is a dense set of singular j-spaces contained in any singular i-space, 

for 0  < i ^  n and 0  ^  j  ^  i — 1 .
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P r o o f  Note first that since T is dense in V, the translates of singular (n — l)-spaces (arising 

from the boundary faces of K )  are dense in any translate K  + 7  for 7  € T.

We now show that there is a dense set of singular (n — 2)-spaces in any singular (n — 1)- 

space. Take a singular (n — l)-space F  and note th a t since the acceptance domain K  is 

bounded in V, there is a singular (n — l)-space F ' whose translates intersect F  in singular 

(n — 2)-spaces. The set of all translates of F' within an n-dimensional ball B  containing F  

is dense in B  by the density of T in V. Thus the translates of F' intersect F  in a dense set 

of singular (n — 2)-spaces since otherwise there would be an n-dimensional subset F  -1- F' of 

V  which could contain no translates of F \  contradicting the density of T in V.

The above two results imply that singular (n — 2)-spaces are also dense in singular n- 

spaces K  +  7 . Thus the result follows if we show that singular (i — l)-spaces are dense in 

singular i-spaces for 0  < i < n — 1 .

Take a singular i-space S  and an n-dimensional ball B  containing S. There is a singular 

(n — l)-space F  which intersects 5  in a singular (i — l)-space since K  is bounded in V-, so 

has boundary faces with normals spanning V, and hence contains a t least one face which 

does not have 5  as a subset. The T-translates of F  are dense in the ball B  by the density 

of T in V, and these translates intersect 5  in a dense set of singular i-spaces since if not, 

then the n-dimensional region in V , of the form S  + F , would contain no translates of F, 

contradicting the density of T in V. |

L E M M A  1.40 Every element of K? lies in the intersection of at least two elements of fC1.

P r o o f  If the acceptance domain K  is 1-dimensional, then the lemma holds since elements 

of /C° are contained in K  +  T, which covers V  ^  R, a  1-dimensional space, so any singular

0-space is the end point of two singular 1-spaces. If K  is 2-dimensional, then any singular

0-space arises at the intersection of boundary faces of K , which are elements of /C1, so the 

result holds in this case also.
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If AT is 3-dimensional, at least three 2-dimensional faces of translates of K  with normals 

linearly independent in V  intersect to form any singular 0-space p. If p  is a vertex of a face 

F , then the (1-dimensional) boundary edges of F  intersecting at p  are the required elements 

of JC1. If p is not a vertex then it is either in the interior of all three faces, or it is in the 

boundary of at least one face F. In the former case, any two of the faces intersect in a 

line through p and there at least two distinct lines arising from the intersection of the three 

faces, giving the required elements of JC1. In the latter case, the singular 1-space containing 

p  in the boundary of F  is one of the elements of K l . At least one other face F' of some 

translate of K  intersects F  to form p, so p  is either in the (1-dimensional) boundary of F' 

as well, or F' intersects F  in a line segment through p. Thus in all cases, there are a t least 

two elements of K} intersecting at p, as required.

Now if K  is n-dimensional, then a singular 0-space p  is either a vertex of a translate K + 7  

of K  or is in the interior of some i-dimensional face F  of K  +  7 , for 1 ^  i ^  n — 1 and 7  € I \  

In the first case, the result holds since K  is a polytope so by definition the vertex is at the 

intersection of two 1-dimensional faces of K . In the latter case, either p  is at the intersection 

of two 1 -dimensional boundary faces of T-translates of K , so the result holds immediately, 

or p is in the interior of a face F  of dimension i greater than 1. Then since n  faces of K  of 

dimension n — 1 with linearly independent normal vectors intersect to form p, and singular 

j-spaces arise at the intersection of n — j  of the translates of (n — l)-dimensional faces of K , 

there axe at least two singular (j = n — (i — l))-spaces which intersect F  in distinct singular

1 -spaces containing p. |

L E M M A  1.41 There is a finite path of singular 1 -spaces from any singular 0 -space p in 

V  to a singular 0-space in a 1-dimensional boundary face of a translate of K  containing p.

P r o o f A path of singular 1-spaces can be constructed which starts at p since by Lemma 

1.40 there is a singular 1-space containing p  and by Lemma 1.39 this space also contains
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another singular 0-space which by Lemma 1.40 lies in another singular 1-space and so on. 

As singular 1-spaces I are contained in faces of K  by definition, and by Lemma 1.39 there 

are infinitely many singular 0 -spaces q in /, the point q cam be chosen so that the second 

singular 1 -space V passing through q e I has length greater than or equal to r, the smallest 

inradius of all faces containing q. Hence the path can be constructed between p and a 

singular 0 -space arbitrarily far from p and so the path will intersect the boundary of the 

translate of K  containing p in finitely many steps since K  is bounded in V.

Suppose the point of intersection q of the path with d K  is contained in a face F  of 

dimension i. By Lemma 1.40, there is a singular 1-space containing q and we can suppose 

the singular 1-space is contained in F. This is because if not, then q must be a vertex of 

some face F ‘ of another translate of K  and hence the result holds immediately because K  is 

a polytope so its vertices are contained in 1 -dimensional boundary faces. As above, a finite 

path of singular 1 -spaces can be constructed from q to the boundary of F. Similarly construct 

paths in the lower dimensional faces of K  until a singular 1-space intersects a 1 -dimensional 

face of K  in a point, as required to complete the path from p  to the 1-dimensional boundary 

of i f .  |

L E M M A  1.42 The set K° is edge-connected, in the sense that for any pair vo ,Vk of sin­

gular 0 -spaces in K° there is a finite set {eo ,e i,. . .  ,ejt_i} of singular 1 -spaces in which e* 

has boundary {vi,Ui+i}.

P ro o f  Take two singular 0-spaces v and v' in /C° and the translates K v, K v> of K  which 

contain them. As K  has positive inradius and V  ^  Rn is locally compact, we can take 

finitely many translates {if* : i =  1 , . . .  m} of K  such that K{ fl ifj+ i ^  0, ifo =  K v and 

K m =  K v>. By the above lemma there are paths from v to a 1-dimensional boundary face 

of K v. By Lemma 1.32 there is a path of singular 1-spaces between any singular 0-spaces in 

the 1-dimensional boundary of K v and hence to a singular 0-space in K v f\K \.  Lemma 1.41
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then tells us that there is a path between singular 0-spaces in K VC\K\ and singular 0-spaces 

in the 1 -dimensional boundary of K \.  Applying Lemma 1.32 again links these points to 

points in K \ fl K 2. Lemma 1.41 gives paths between singular 0-spaces in K i fl Ki+\ and 

singular 0-spaces in the 1-dimensional boundary of Ki+1 for each i. Hence there is a finite 

path of singular 1 -spaces between v and v ' . |

L E M M A  1.43 Suppose the orbits of the (n—1)-dimensional faces of the acceptance domain 

K  contain the hyperplanes spanned by the faces. Then the singular i-spaces are arranged 

into i-dimensional hyperplanes, for 0  < i < n  — 1 .

P r o o f Take a singular (n — 2)-space F  at the intersection of two (n — l)-dimensional faces 

Fu F2 of translates oi K . By assumption, each of these faces is contained in a hyperplane 

composed of singular (n — l)-spaces (arising from translates of (n — 1 )-dimensional faces of 

K ). The hyperplanes associated to F\ and F2 intersect in a (n — 2)-dimensional hyperplane 

H  which contains F. The hyperplane H  consists of a union of singular (n — 2)-spaces, since 

singular (n — 2)-spaces arise by definition at intersections of singular (n — l)-spaces. Hence 

if the orbits of the (n — 1)-dimensional faces of K  contain the hyperplanes spanned by the 

faces, the singular (n — 2 )-spaces form (n — 2 )-dimensional hyperplanes.

Similarly, given a singular (n — 3)-space F ', it is at the intersection of two singular (n —2)- 

spaces. The hyperplanes containing these singular (n — 2)-spaces intersect to produce a (n — 

3)-dimensional hyperplane (composed of singular (n — 3)-spaces) containing F '. Repeating 

this argument shows that given a singular 1 -space /, it is at the intersection of two singular

2-spaces which are contained in planes. These planes intersect in an infinite line which 

contains Z. Hence, if the orbits of the (n — l)-dimensional faces of K  contain the hyperplanes 

spanned by the faces then the singular i-spaces are arranged into i-dimensional hyperplanes, 

for 0  < i < n — 1 . |

D E F IN IT IO N  1.44 Take a singular i-space D G Iic with T-action 7 (D): = D -1- 7  for 

7  G T. Define the stabiliser of D to be the subset { 7  G T : 7 (D) = D } of T.
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Note that the stabiliser of an element D  depends only on its orbit class, since the stabiliser 

of D  +  7 ' is { 7  € T : 7 (D +  7 ') =  D +  7 '} =  { 7  € T : 7 (D) +  7 ' =  D + 7 '} =  { 7  € T : 7 (D) = 

D }, which is the stabiliser of D.

D E F IN IT IO N  1.45 Denote the stabiliser of a connected component D in the orbit class 

V  by

We now consider some general properties of the group T : =  7rJ-(A) fl V  and stabilisers 

of singular spaces.

L E M M A  1.46 The group T /T v  is torsion free.

P r o o f Suppose 7  € T does not stabilise D but 7 m is an element of Yv  for some m > 0. 

Then 7 m{D) = D + m y = D and 7 mp(D) = D  for p G Z so, as D  is connected, it contains 

a 1 -dimensional affine subspace I. Since 7  is a translation vector, if y m is a vector parallel 

to I, then so must 7  =  ^ 7 m be. Thus 7  is a translation in the direction of I and so takes 

points of D to points of D. Hence 7 (D) =  D. Therefore 7  is an element of the stabiliser of 

D , which is a contradiction to the initial assumption. |

L E M M A  1.47  The rank o fT  is n + d.

P r o o f The lattice A has rank N  by definition. Also, the dimension of the vector space 

E  +  E ± ^  is N . Recall from Definition 1.16 that E 1- =* V  ® A for V  of dimension n 

and A the real vector space generated by E 1- fl A. Thus N  = d + n  + dim A. We can write 

A =  (E 1- (1 A) © A' where A' =  {g £ A : Tr± {g) € V}, so rk A' =  N  — dim A =  n +  d. The 

definition of A' implies that T =  7r-L(A/). Since n 1- has kernel E  but EC 1 A =  {0}, no two 

elements of A' project to the same vector in V  so rk T = rk A' =  n +  d as required. |

C O R O L LA R Y  1.48 The group T splits as 0  T /T v .

P r o o f Since T ^  Z n+d is torsion-free, the subgroup Tv  is torsion-free. Also, by Lemma 

1.46, r / r v  is torsion-free. Hence the result follows. |
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Note that the rank of the stabiliser of any connected component is bounded above by 

the rank of I \  The following lemma makes this bound more precise.

L E M M A  1.49 For a connected component D in the orbit class V  with stabiliser Tv , we 

have

rk Tv  ^  rkT  — n + dim D — 1 = dim D + d — 1.

P r o o f Suppose D has codimension c in V, so c = n — dimD. To ensure that T spans 

V, there must be c generators 7 i of T whose span is a hyperplane H  complementary to D 

in V. To ensure that T is dense in V, there must be at least one additional generator 7 , 

rationally independent of the c generators 7 *, in H  with the property tha t integral linear 

combinations of the vectors 7 , 7 , densely fill the fundamental domain for the action of the 

c generators of T on H. Hence the rank of the stabiliser T13 is at most rk T — (c +  1) =  

n + d — n + dim D — 1 =  dim D +  d — 1, as required. |

We now give the definitions of two special classes of polytopal projection patterns.

D E F IN IT IO N  1.50 Call a polytopal projection pattern V  hypergeneric if all singular

i-spaces D associated to V  are i-dimensional hyperplanes with stabilisers Yv  satisfying 

rk Tv  — i.

Hypergeneric projection patterns have the property that the T-orbits of the (n — 1)- 

dimensional boundary faces of the acceptance domain K  contain the hyperplanes spanned 

by the faces. Such patterns were referred to as generic in [1 2 ] since they axe the kind most 

likely to occur in a randomly selected canonical projection scheme. However, we reserve the 

term generic for the following class of projection patterns, which are the ones most likely to 

occur in a randomly selected polytopal projection scheme.

D E F IN IT IO N  1.51 A polytopal projection pattern in which the stabilisers of all singular 

spaces are trivial is called generic.
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Lastly, to simplify terminology we make the following definition.

D E F IN IT IO N  1.52 Suppose V is a codimension n polytopal projection pattern with ac­

ceptance domain K . Call V  a hyperplane polytopal projection pattern if all connected 

components D  G In-ic in the set ofT-orbits of (n — 1)-dimensional faces of K  are (n — 1)- 

dimensional hyperplanes.

The following results yield information about the stabilisers of singular spaces when the 

number Lo of T-orbits of singular 0 -spaces is finite.

LE M M A  1.53 I f  Lo is finite, then the stabilisers of all i-dimensional connected compo­

nents D are non-trivial, for 0 < i ^  n — 1.

P ro o f Suppose there exists D of dimension i with trivial stabiliser.

By Lemma 1.39, there are infinitely many singular 0-spaces in D. Suppose two of these 

singular 0-spaces p\ and p2 are in the same orbit. Then there exists 7  G T with P2 =  pi +  7 . 

This means that D  fl  (D +  7 ) D {p2} 0 since P2 G D  and p i + 7  =  P2 £ D  +  7 . Since D  is

a connected component in the set of T-orbits of singular spaces, D f l  (D +  7 ) ^  0, and 7  acts 

by translation only, this implies that D  +  7  =  D, so 7  stabilises D , which is a contradiction. 

Hence the singular 0-spaces in D must be in distinct T-orbits. Thus we have shown that if 

the stabiliser of some D G /*c is trivial then Lo is infinite. |

LE M M A  1.54 I f  Lq is finite, then the singular i-spaces D  G hc are i-dimensional hyper­

planes for i — 1, . . .  n — 1 .

P r o o f By Lemma 1.43 it suffices to prove this result for i = n — 1.

First note that when Lo is finite, singular 1-spaces have the form of lines of infinite 

length. This is because if there were a singular 1-space I which was only a line segment, 

then its stabiliser would be trivial and so any two singular 0 -spaces in I would be in distinct
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T-orbits. However, by Lemma 1.39 since there are infinitely many singular 0-spaces in any

singular 1 -space, this would imply that Lo was infinite.

Lemma 1.39 also gives that singular 1-spaces are dense in D. Singular 1-spaces in n  — 1

linearly independent directions are contained in D because D contains translates of at least

one (n — l)-dimensional face F  of the acceptance domain K  for the polytopal projection

pattern under consideration and F  is a polytope which is bounded in Rn _ 1  and hence

contains at least one set of singular 1-spaces linearly independent in En_1. Thus D contains

dense sets of lines of infinite length in n — 1 linearly independent directions.

Now singular 0-spaces in D  in the same T-orbit are translates of one another by elements

in the stabiliser T23 of D  since if they differed by some element not in the stabiliser of D

then at least one of the points could not lie in D. As singular 0-spaces are dense in D  by

Lemma 1.39, but there are only finitely many T-orbits of singular 0-spaces by assumption, 

r i> is dense in D. Thus taking translates F  +  7  of at least one of the faces F  giving rise 

to D for 7  € T23, every point in the hyperplane H d spanned by D  is contained in the set 

{F  +  7  : 7  e T23}, which shows that H d C D.

Hence since D C H d by definition of H d , we have shown that D  is an (n —l)-dimensional 

hyperplane and so all singular i-spaces in Uc for 0  < i < n are i-dimensional hyperplanes, 

as required. |

CO RO LLA R Y 1.55 I f  Lo is finite then the dimension of the real vector space which is 

the span of the stabiliser of an (n — 1)-dimensional singular space D  € In-i,c  is n — 1.

P r o o f As above, D contains singular 1 -spaces in n —1 linearly independent directions. Since 

the singular 1-spaces are lines of infinite length, their stabilisers are non-trivial. Hence the 

stabiliser T23 of D contains n — 1 linearly independent elements which span D (an (n — 1)- 

dimensional affine subspace of V). |

L E M M A  1.56 For a polytopal projection pattern, if Lo is finite, then the rank of the 

stabiliser of an i-dimensional connected component D is rk T23 =  —£^i-
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P r o o f  By the above results, when Lo is finite, the connected components form hyperplanes 

so the argument of [12, IV.6.7] can be used to show that the above statement holds for 

polytopal projection patterns with Lo < oo. |

The results of this section imply that there are three distinct cases to consider.

• Lo finite, so the orbits of singular z-spaces contain the hyperplanes spanned by the 

spaces for all z.

• At least one orbit of singular (n — l)-spaces does not contain the hyperplanes spanned 

by the spaces, so Lo is infinite.

• Lo is infinite but the orbits of singular spaces contain the hyperplanes spanned by the 

spaces.

1.5 M odules from singular spaces

In analogy with [1 2 , V.3.1], given the set K x of singular z-spaces, a T-module C x can be

defined, for z =  1 , . . . ,  n  as follows.

D E F IN IT IO N  1.57 For 0 ^  i ^  n, define C x, to be the Z-module of compactly-supported 

Z-valued functions on singular i-spaces generated by indicator functions [17] on i-dimensional 

elements U of 1C, subject to the relation [Ui] + [U2] = \U\ UC/2 ] +  \U\ n t / 2 ], with zero element

0 =  [W] for W  the empty set or, if i > 0, a singular j-space for j  ^  z — 1.

Note in particular tha t C° is a free Z-module.

There is an action of T on Cx for each i given by 7  • [£/] =  [U +  7 ] for 7  € T and [£/] € C*. 

We now use these modules to define a complex analogous to that given in [12, V.3.2].

LE M M A  1.58 For C x as above, there is a complex of V-modules 0 —► C n A  C n ~ 1 —> 

• • ■ —> C 1 A  C° —► 0  for T -equivariant maps 6.
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P ro o f  Let 71 be the set of all Delone subsets R  C  T such that all connected components 

of VR : = V \  {dK  +  7  : 7  G R} are bounded and nonempty. Since K  is polytopal with 

inradius r, the Delone set R  which is such that any ball of radius r /2  contains a point of R  

is sufficient to ensure that the connected components of V  \  {dK  +  7 : 7  E R}  are bounded 

and non-empty. Thus 7Z is non-empty. Clearly, it is also closed under finite union. Hence 

71 is a directed system under inclusion and Urterc R = T.

For R  G 71 and 0 ^  i ^  n =  dim V, define modules CR in the same way as C x above, but 

only for elements of K,x which arise from the translates {K  -1- 7  : 7  G R )  of the acceptance 

domain K . Define maps Sr : ClR -» ClR x on generators by [U] t-4 YljeJ  ôr ^  t îe set

enumerating ail singular (i — l)-spaces in the boundary of the singular i-spaces making up 

the space U and the sign of an indicator function [Vj] is determined by the orientation of the 

singular (i — l)-space Vj. The orientation of singular i-spaces arising from {K  +  7 : 7  £ R} 

(a CW complex) can be chosen to ensure that Sr 6 r [U] = 0 for [U] € C r  by orienting K  

and assigning the same orientations to singular i-spaces parallel to i-dimensional faces of K  

(note that the orientation of all singular n-spaces will be the same). Hence these modules 

and maps form a chain complex

0  -> Cg ^4 Ĉ " 1 0 . (1 .1 )

For R ,R 'e  71 with R  C  R 1, the module CXR can be identified with a submodule of CR, 

and under this identification we have < 5 r [ £ / ]  =  6r >[ U]  for all [U] €  C XR. Thus, the direct limit 

of the modules Ck  for R  € 71 is Cx for each i. Hence the complexes (1.1) for R  G 71 form 

a direct system with direct limit again a chain complex. Note also that R  G 71 implies that 

R  -I- 7  G 71 for all 7  G T, and if [17], [17 4 - 7 ] are elements of CXR, then S r [ U  +  7 ] =  & r [ U )  +  7 , 

so the limit complex is a complex of T-modules and the maps 6 are T-equivariant. |

LE M M A  1.59 The sequence

0 -+ C n S 1 Cn~l - >  >Cl 6A C °  4  Z -> 0 (1 .2 )

is exact at C n, C° and Z, where e[U] = 1 for all [17] G C°.
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P r o o f  Take an element /  =  X) niWi] ^  0 in C n and suppose <Sn_ i ( / )  =  $3 X3 ± n i\Vij] =  0* 

The element /  is a compactly supported function on singular n-spaces in V  = Rn. The 

compact subset of Rn formed by the singular n-spaces is bounded in Mn so it has non­

empty boundary components Va and there are only finitely many such components since 

the singular n-spaces Ui are poly topes by definition. Now find a linearly independent set 

[V^] within the (finite) set of all elements [V^] in Sn- i ( f )  and write [Vij] = X)m*[ îfc] so

Since 6n- i ( f )  =  0, we must have 71*771*; =  0 for ail i ,k . As 

at least one of the [Vij] are non-zero for each i, there exists at least one k  with mk[Vfk\ ^  0 

so m* ^  0. This implies that n* =  0 for all i, so the element /  =  =  0, which

is a contradiction. Hence if /  € C n is non-zero then <5n_ i( / )  ^  0 in C n_1 and hence 

KerSn - 1 =  0  as required for the sequence to be exact at C n.

To see exactness at C°, note that any element in the image of <5o has the form X) a([p*] — 

[pj]) for a G Z and singular 0 -spaces. Thus e(X>([P»] -  [Pj])) =  Z ae([P*] “  \Pj)) = 

^ a ( l  — 1) =  0 and hence ImSo C Kere. The fact that Kere  C Im6o is provided by 

Lemma 1.42.

Finally, the sequence is exact at Z. This is because there is a t least one singular point p 

in / C ° ,  so taking integer multiples of the indicator function [p] € C° on p gives elements of 

C° which map to a G Z for any a. Hence the map e is surjective, as required for exactness 

at Z. |

Unlike in the canonical case [12], for a polytopal projection pattern, it is not straight­

forward to show that the sequence is exact everywhere, and in fact it is possible that the 

sequence may not be exact in general. However, as shown in Section 2.2, the sequence is 

exact for all polytopal projection patterns of codimension 2  and for higher codimensions, 

there is one class of polytopal projection patterns for which the sequence is always exact.

LEM M A  1.60 I f  the orbits of faces of K  contain the hyperplanes spanned by the faces, 

then the sequence (1.2) is exact.
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P r o o f Exactness at Z, C° and Cn is provided by Lemma 1.59. The removal of hyperplanes 

translated by elements of a Delone subset R  of T decomposes the space V  =  Rn into convex 

(and hence contractible) sets. Thus the complex (1.1) of modules CXR is acyclic so the limit 

complex (1 .2 ) of modules Cx is acyclic for 0  < i < n. |

Thus, whether Lq is finite or infinite, if the orbits of singular spaces contain the hyper- 

planes spanned by the spaces, then the sequence will again be exact.

Now note that the modules C x can be decomposed into various submodules, as follows.

D E F IN IT IO N  1.61 For D £ In- i , c in the orbit class V  (Def 1.38), define Cp- 1  to be the 

submodule of Cn _ 1  generated by indicator functions on all singular (n — l)-spaces D in the 

T-orbit V . Also, define Cp- 1  to be the submodule of C n~x generated by indicator functions 

on a single representative D of the T-orbit V .

Similarly for 0 ^  i < n — 1 , define CXD for D £ In-ic to be the submodule of C x 

generated only by indicator functions on singular i-spaces which are contained in D and 

its T-translates. Lastly, define C xv  as the submodule generated by singular i-spaces in one 

representative of the T-orbit V .

Note in particular that Cp and Cp are free modules with generators consisting of indi­

cator functions on singular points contained in D + T and D £ V  respectively.

For canonical projection patterns, there is exactly one T-orbit of singular (n — l)-spaces 

D  parallel to 6 for each 6 £ I k  (Def 1.36), but in general, parallel singular (n — l)-spaces 

could he in distinct orbits (although there will be only finitely many such orbits by the 

remark following Definition 1.36). Also note that for non-canonical projection patterns, the 

T-orbits of faces of K  need not be disjoint, which means that the connected components 

D could be composed of translates of more than one distinct (up to T-translation) (n — 1)- 

dimensional face of K , whereas for canonical projection patterns connected components D  

are formed from translates of only one face of K .
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Since all parallel connected components D £ In-ic  are disjoint, and the intersection of 

two non-parallel components is a singular space of dimension s < n — 1 which gives rise to the 

zero element in C n_1, there is a decomposition ®£>e/n_lc . A further decomposition

of C n _ 1  is provided by the following lemma.

LEM M A  1.62 The module C n~l splits as ® PG/n_lc/r C%~1 ® Z [T /T V] for Z \Y /Y v ) the 

free Z-module with basis consisting of elements of T/T13.

P r o o f Given the above decomposition C n~l =  ®£>G/n_le note that C£>- 1  =  C£ _ 1  0

Z[r/rp]. This is because T> is the equivalence class of connected components D  £ / n-ic  

under the relation D  ~  D' if D =  D' +  7  for 7  £ T, and since D — D + 7  for 7  £ r p , 

distinct elements of C£>- 1  arise only from translations of D  by Y /T 73. |

Lastly, note that the submodules defined above also fit into complexes analogous to the 

one in Lemma 1.58.

0  -» C^T1 -> C l~ 2 -)*------>C%-+ 0

The exactness and other properties of this sequence will be considered in greater detail in 

Chapter 2. However, we note here that the sequence is exact at C£-1 , since the singular (n — 

l)-spaces underlying an element ni[Ui] of C n _ 1  axe bounded in the connected components 

D in the orbit V  and hence the proof of Lemma 1.59 can be applied in this case.

1.6 Algebraic Topology and M V

In this section, we introduce the main tools from algebraic topology which are used in the 

study of the continuous hull M V  (Def 1.10) and hence, by Lemma 1.11, of a pattern V. 

Relationships between the following topological invariants are stated in Theorem 1.76 ahead.
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1.6.1 C*-algebra Ff-theory

One way of investigating the structure of M V  is provided by first obtaining a C*-algebra from 

M V , written C (M V ) x Rd, and then considering the if-theory of this object. Essentially, 

a C*-algebra A  is a complex vector space equipped with a product and another operation, 

* : A  —» A called the adjoint, together with a norm || • || such that A  is complete with respect 

to this norm and elements a G A  satisfy the C*-algebra condition ||a*a|| =  ||a ||2. For the 

precise definition of C*-algebras, and the construction of the crossed-product C (Y) x G for 

a group G acting on a compact Hausdorff topological space Y , see Appendix 1. To study 

such objects, C*-algebra if-theory is used. This is defined using projections in A, which 

are elements p € A  such that p =  p* = p2. If A is unital, then K q(A) is defined to be 

the Grothendieck group of the semigroup of stable equivalence classes of projections in A. 

Appendix 1 contains the precise definition of the equivalence relation on projections and the 

definition of Ko(A) when A  is not unital. The group ifi(A ) can also be calculated, which 

is defined using suspensions of A  (Def 4.4). By Bott periodicity, given in Appendix 1 as 

Theorem 4.5, these are the only distinct If-groups for C*-algebras. Other properties of C*- 

algebra if-theory which axe utilised in the study of C*-algebras arising from quasiperiodic 

patterns are also stated in Appendix 1 . The simplest example of a C*-algebra is the set C 

of complex numbers together with the usual addition, multiplication, complex conjugation 

and the modulus norm. The if-theory is Ko(C) = Z and ifi(<C) =  0.

The C*-algebra if-theory has applications to the study of particles moving within qua­

sicrystals. A discussion of the link between if-theory and physics can be found in [22]. The 

main ideas giving rise to this connection are as follows.

Under certain simplifying assumptions, such as no external forces acting, the motion 

of a particle in Euclidean space can be modelled (in quantum mechanics) by its position 

and momentum operators. These operators generate an algebra, known as the algebra of 

observables of the particle, which in turn gives rise to the C*-algebra of observables A.
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The tight-binding model for a particle moving in a solid is used. In this model, a solid 

is represented by a tiling in which each tile corresponds to an atom. The motion of a 

particle in this structure is then discrete - the particle essentially jumps from tile to tile. 

The position operator of the particle is replaced by a tile in the tiling and the momentum 

operator is replaced by finite translations. Now consider the Hamiltonian operator H  6  A  

(which encodes kinetic and potential energy) of a particle moving in a solid, in accordance 

with the tight-binding model. The Hamiltonian is a bounded operator, so its spectrum S  

of eigenvalues is a bounded subset of R. Define a gap in the spectrum to be a maximal 

connected subset of the complement of S  in R. Note that since 5  is bounded in R, there 

exist real numbers a and 6  such that the intervals — oo: =  (—oo,a) and oo: =  (b,oo) are 

gaps. The C*-algebra theory labels the gaps, as follows.

Writing Gap(H) for the set of all gaps in the spectrum of i f ,  there is a map Gap(H) -» 

K 0{A) which sends a gap g to the class [ P 9 ] of Pg, the spectral projection of the interval 

(—oo,g). Then [Pg] is called a label for the gap g. It has the properties that [ P - o o ]  =  0  and 

[P o o ] = 1- If H  is perturbed such that the gaps change in size but do not disappear, then 

the labels do not change, so the map Gap(H) —> K q{A) is injective. This result is useful 

if Ko{A) can be computed, since the number of gaps in the spectrum of H  is then known 

even if the precise nature of the spectrum is unknown. For more details about these ideas, 

see [2 2 ].

1.6.2 Cech cohomology

Given the topological space M V , the Cech cohomology H *(M V ;Z ) can be defined. To 

do this [27], first take the set J  of all open covers U of M V , and say U\ < U2 if U2 is 

a refinement of U\, so for all U € U2, there is at least one U' G U\ containing U. Next 

define the nerve N(U) of a cover U to be the simplicial complex with vertices the elements 

of U and n-simplices consisting of finite subsets {U\ , . . . ,  Un) of elements of U with the 

property that U\ f l . . .  fl Un /  0. Given two open covers U\,U2 of M V  with U\ < U2, there
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is a map / :  U2 —► U\ given by choosing f(U )  to be an element U' € U\ which contains 

U € Uz- Note that if U\ fl • • • D Un ^  0 ,  then U' =  f{U \ fl • • • fl £/„) ^  0 because U' contains 

JJ\ fl- • -nUn by definition. Thus /  induces a map / :  iV(Z72) —► N(U \), which in turn induces 

a homomorphism /* : H k(N(Ui)] Z) —>• H k(N (It2)] %)■ Choosing a different map does not 

affect this construction since if we have two maps /  and / '  with the property tha t f {U)  and 

f ' (U)  are elements of U\ containing U, then C  r i i ! = i ( / ( ^ i )  n  / / (^* ) ) i  so  t h e  induced 

maps /* and /'*  are the same.

D E F IN IT IO N  1.63 The kth  Cech cohomology group of M V  with coefficients in Z is 

defined to be

H k(MV]  Z): =  \im H k(N(U)-,Z).
ueJ

Cech cohomology is used in Chapters 2 and 3. It is a good cohomology theory to use 

for the study of topological spaces like M V ,  which is not a CW complex. Also, M V  can be 

described [31] in terms of an inverse limit lim K n, so the property [27] that H *(\im Kn) =

lim H*(Kn) means that Cech cohomology is suitable for use in this setting. Theorem 1.76—►

below provides further evidence that Cech cohomology is appropriate, since this theorem 

supplies isomorphisms linking the if-theory to the Cech cohomology of the topological space 

MV.  By Theorem 1.76, Cech cohomology is also isomorphic to group cohomology, which is 

defined in the following section. This invariant is more straightforward to compute and so 

will be used in Chapter 2 .

1.6.3 Group (co)homology and dynamical system s

Later in this document, and in Chapter 2 in particular, we wish to compute the group 

homology ii* (r;C ) of T: =  ^ ( A )  fl V  with coefficients in a T-module C. Following [12, 

V.4], this section gives the definition of group homology and states properties which will be 

used to facilitate calculations later in this document. Note that group cohomology can be 

obtained from group homology via Poincare duality.
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Group homology of a group T is defined to be the homology of a projective resolution of 

Z by modules over Z[r], the free Z-module with basis consisting of ail elements of I \  The 

resolution we choose [1 2 ] is given below.

D E F IN IT IO N  1.64 Denote by {ei , . . . ,  en+d} ol basis o f Y .  Write AT for the exterior 

module of the group T, which is A T : = 0  A^T, and AjT is the Z-module with basis denoted 

by {ej1 A ej2  A . . .  A eĵ  : jk G {1 , . . . ,  n +  d}} for A subject to relations ejx A . . .  A eJfc A eJfc+1 A 

. . .  A ej{ = —ejj A . . .  A eJfc+1 A ejk A . . .  A eji , for k =  1 , . . .  n +  d — 1.

Note that the relations imply that if jk =  j m for some j k , jm G {1,. . .  ,n  +  d}, then 

e ĵ A . . .  A ej{ =  0.

Also Z[T] can be viewed as the ring of Laurent polynomials on n+ d  variables {7 1 , . . . ,  7 n+d} 

with integer coefficients, and hence is also referred to as the integral group ring of T.

A free resolution of Z as a trivial Z[r]-module is [14]

0 —y An+dT ®z Z[T] —̂ • • • —y AoT ®z ^ P ]  —̂ ^   ̂ 0

where €[7 ] =  1 for all basis elements [7 ] of Z[T] and d is determined uniquely as the Z[T]- 

linear map of degree 1 satisfying d(e{) =  f* — 1. The Z[r]-£iction is trivial on the first factor 

and permutation on Z[T].

Applying the functor — ®r C gives the complex below.

0  -+ An+dr  ® z[r] ®r  c  a4* An+d_ i r  <g> z [r] ®r c  a4* • • •

a4* A ir  ® z[r] ®r c  a4* A0r  ® z [r] <g> c  -+ o (1 .4 )

The boundary operator is given on basis elements by

t

d ® l((ej, A . . .  A eji) ®c)  = ^ ( - l ) fc(eJ1 A . . .  ejk . . .  A e*) ® (eih ■c - c )
k= 1

where eJfc signifies that eJfc is omitted and 7  • c denotes the action by translation of 7  G T

on c € C, so 7  • c =  c +  7 . Group homology H m(T; C) is the homology of this complex.

We now list some results which will be useful for later calculations.
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L E M M A  1.65 With the above constructions, where T acts freely on Z[T], we have

ifm(r ;z[r])=‘ {  *  ™ = Q°

P r o o f Since Z[T] is a free T-module, the functor — 0 r  Z[T] is exact, meaning that tensoring 

over T by Z[T] does not alter the exactness of the sequence (1.3). Hence i/fc(T;Z[T]) =  0 

for k > 0 .

The fact that the free resolution (1.3) of Z is exact after applying — 0 r  Z[T] implies that 

Ker(d:  AoF 0  Z[T] -» 0) /Im (d:  AiT 0  Z[T] ->• Aor 0  Z[T]) is equal to Z since from (1.3) 

we have AoT 0  Z[T] Z. Thus Ho(T; Z[T]) ^  Z. |

Now suppose T splits as Ti 0 T2 - Write Z f^ ]  for the free Z-module generated by T2 - 

This is also a T-module under the action (7 1  © 7 2 ) • x  =  x  +  7 2 . Then we have the following 

result.

L E M M A  1.66

it /p .  u  ~  J Zĵ  m ) 0  ^  771 ^  rk T 1Hm(r,z[r2)) = |  Q gthenj.se

P r o o f We have A 0  Z[T2] — ®  AjTi 0  A7T 2 0  Z [r2 ] so, under the above action 

by T, the boundary operator dk becomes (—1 )* 0  d'k for d'k the boundary of the complex 

AT2 0  Z[T2]. Hence H*(T;Z[T2]) =  ® i+<7=* AjTi 0 /fj(T 2 ;Z [r2]) s  A*Ti. The fact that 

AfcTi ^  Z^ fc gives the required result. |

C O R O LLA R Y  1.67 H k(T]Z ) S  Z ^ ) .  |

C O R O LLA R Y  1.68 ez : =  E m = o (-1)m'*  H ™(T;Z) 0 Q = 0. |

C O R O LLA R Y  1.69 For C any T-module, ffm(Ti ©  T2; C 0 r Z[T2]) =  ffm(Ti; C). |

L E M M A  1.70 I f  C = 0 i Ci tfcen R m( r ; C) 9f 0 . f f m( r ; C<). |
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Note that since the complex used to define group homology is bounded below, we have 

77m (r; C) =  0 for m < 0.

Now consider the modules C* in Definition 1.57, which arise from consideration of singu­

lar i-spaces (Def 1.36). There are several results which we collect here for use in Chapter 2.

C O R O LLA R Y  1.71 Group homology 77m(r;Cn_1) splits as a direct sum of groups

P€/n-lc/r

P ro o f  Lemmas 1.62, 1.70 and Corollary 1.66 give 77m( r ;C n_1) S  ® p €/n lc / r  i f m( r x> 0

r /r25; Cp-1 ® z[r/r®]) a ®pG/n_lc/r e g - 1)- |

LEM M A  1.72 For a singular i-space D  6  /»c in T-orfcit D with stabiliser of rank r ^  i, 

the homology groups Cp) ore non-trivial only for m  ^  rk Tv  — dim D.

P r o o f  If the rank of T25 is equal to i, then there is a fundamental domain Y  for the action 

of r v  on elements D in T>, and Tv  acts freely on F , so Cp decomposes as Cy <S) Z[TV], for 

C y  the submodule of Cp generated by singular i-spaces contained in Y . By Corollary 1.69 

we have 77,( r 23; Cp) ^  77,(1; Cy) so only 770 (Tv ; Cp) is non-trivied. Similarly, if rk T23 > i, 

then T7m( r p ;C p) ^  77m(r i  © r 2; Cy ® Z [r2]), where T2 acts freely on Y  C D  and hence 

has rank i. By Corollary 1.69 we have 77m( r p ;C p) ^  H m{T i\C y). Since Ti has rank 

rk Tv  — dim D, the result follows. |

CO RO LLA R Y  1.73 I f  the rank of the stabiliser Tv  of a singular i-space D is i, then 

77m(r2?;Cp) = 0 for m > 0. |

S pectra l seq u en ces

Now suppose we have a d-dimensional codimension n polytopal projection pattern with 

associated exact sequence (1 .2 ) of T-modules 0  —► C n -A C n _ 1  -► •••-» C 1 A C° Z -> 0 . 

Spectral sequences can be produced from the double complex (APT ® C 9, d, (—l) p <8 > 6) as 

follows.
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The first spectral sequence which can arise, denoted Epq, is produced by taking the 

homology of the complex with respect to (—l) p ® S. Since the sequence (1.2) above is exact, 

E lpq = HS{APT <g> C q) =  K er(ApT <g> C q -> APT <g> / Im {ApT ® C «+ 1  -> APT <g> Cq)

is trivial for <7 > 0. Hence the higher differentials arising from the map d  are trivial and 

E pq = E™ is the limit of the spectral sequence. Thus [12] © p+g=fc E™ = A*r and E™ = 0 

for q > 0. Hence when q = 0, we have E™ =* APT 2* HP(T;Z). The spectral sequence is 

said to converge to /fp(T;Z).

The second spectral sequence which can be produced from the above double complex is 

denoted Epq and is derived by taking the homology of the complex APT ® Cq with respect to 

d, so Epq =  Hp(T]Cq) and the first differential is ((—l)p®<5).. The first differential is a map 

from Ep q to Epq_ 1. There are also higher differentials from Epq to ^ p_ r)9_r_! Note that 

the limit term E™ is equal to the term Epq if all higher differentials Epq —>• E tp_t q_ t_ 1 are 

trivial for t ^  r. Again, the spectral sequence is said to converge to H m (T; Z) and we write 

Epq => Hp+q (T; Z). This means that the vector spaces E™ <8 > Q satisfy ® p+9=* E ^  <8 > Q =  

Hk (T; Z) ® <Q> and hence the ranks of the terms on the diagonals p +  q = k of the table sum 

to the rank of if* (r;Z ).

There are maps i fn+p(T;Z) —► ifp( r ;C n) for 0 ^  p ^  d, which will be referred to 

as edge homomorphisms in this document. They axe defined as the composition of the 

boundary homomorphisms in the long exact sequences in homology arising from the short 

exact seqences
0 -> Cn -)• C n _ 1  -> C£~2 -> 0 

0  -> C£~2 -> Cn~2 -> c s ~ 3 -> 0

0 -> C§ -+ C° -> Z -► 0.

Spectral sequences associated to the complex (1.2) can be illustrated by drawing a table

with n  columns. For the terms Epq, the ith  column contains C x), with Ho(T] Cl) in the 

0 th  row, Hi(T\ Cl) in the first row and so on. Examples of tables for the E 1 and E 3 =  E°° 

terms in the spectral sequence of a 3-dimensional codimension 3 polytopal projection pattern
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with Lo finite are shown below. The non-zero entries in the table are determined by Lemmas 

1.56 and 1.72.

0 0 0 H 3{T-,C3)

0 0 H2{T,C 2) i -H 2(T;C 3)

0

2.H0(T;C2) i ^ 0 ( r - ,c 3)

0 0 0 H 3{r-,c3)
0 0 K erd22/Im d 32 K erd32
0 (i/i (T; C 1 )/ Im d 2i) /  Im di K erd2\ /  Im d 3\ K erfy

H oiTiC Pyim dio K erd io /Im d2o K erd2o /Im d 3o K erd\

In this case, there are short exact sequences 0 —> Hm+i(T; C l ) /Im d 2 m̂+i —> H m+2 (T; Z) 

-» Kerd2m -> 0  and so on associated to the terms on the diagonals of the table, so

rk Hm+i(T ',C 1) /Im d 2,m+i -I-rk K erd2m =  (  ***\ m  +  2 /

For more information about spectral sequences in general, see [25], and for more detail 

about this particular spectral sequence, see [12]. In Chapter 2  we study this spectral se­

quence in detail in order to determine the rational ranks of the groups Hp{T\C q), which are 

used in the calculation of the Euler characteristic.

D yn am ical sy stem s

We now consider an application of group homology, following [12]. Take a projection system 

(A,E ,K ,v ) .  Decompose A =  ZN into Ao © Ai in such a way that Ao spans a space E 1 

complementary to E. Recall the definition of the metric fl on the set N S  of non-singular 

points given in Lemma 1.20 by fl{u,v) =  n(Vu,V v) +  ||u — u||.

D E F IN IT IO N  1 .74  Write Q = E  + Z N for the Euclidean closure of E  + Z N .

Define E ’u = E ' fl N S  fl (Q +  u), the completion of this space with respect to the metric fl. 

Define a map <f>: E'u E ' fl (E  +  Z N + u) which is such that ||</>- 1 (v)|| =  1 for v € 

N S n E 'n { Q  + u).

50



The map 4> ‘closes’ the ‘gaps’ made by removing singular points and completing with respect 

to jl. It is one-to-one on non-singular points and m-to-one, for finite m, elsewhere.

Decompose E' fl Q into V  + A, where 7r'(A), the Euclidean closure of the projection of 

A to E 1, is dense in V.

D E F IN IT IO N  1.75 Define Vu : =  {x € E'u : <f>{x) € V  +  tt'(u)}.

With this definition, there is [12, II.4.3] a decomposition Cc{E'^\Z) S  Cc(Vu; Z )® zZ [E 'n 

A], where Cc(y ;Z ) denotes the continuous integer-valued functions on Y  with compact 

support and Z [E' fl A] denotes the free Z-module on the discrete group E' fl A which gives 

rise to the vector space A in Definition 1.16.

Decompose A as A' © (A fl E'), for A': =  {g G A : n'{g) G V}. Note that A' =  

(A' fl Ao) © Ai and 7r'(A') =  T = 7r'(A) fl V. Then [12, II.4.4] there is a decomposition 

Z[A] =  Z[A'] <8 > Z[A fl E ‘] and each component of Z[A] acts on the corresponding compo­

nent of Cc{E'u\ Z). Thus by Corollary 1.69 there is an isomorphism i/*(A; Cc(E'u] Z)) ^  

H m{T; Cc(Vu\Z)). Hence when calculating the cohomology of projection patterns we can 

restrict attention to V  rather than the whole of E' (which is isomorphic to via the 

projection 7T-1- with kernel E).

Now split Ao into A0 © A& so that Aa has rank equal to the dimension of V  and V  is 

the span of A0. Take a fundamental domain X  for the action of Aa on Vu. Then [12, 1.10] 

there is a dynamical system consisting of the space X : =  Vu/A a with action by At, =* Zd. 

Provided EC I A =  {0}, so the pattern produced by the projection system is non-periodic, 

the space X  is a Cantor set and the Zd-action is minimal, meaning tha t every orbit is dense 

in X .

The continuous hull M V  with action by Rd is the mapping torus of this dynamical 

system: M V  ^  {X  x Rd)/  ~ , where (x ,y  + a) ~  (a a(x ) ,y ) for all a € Zd, and a  denotes 

the Zd-action on X .
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For C (X ; Z) the continuous integer-valued functions on X ,  we have group cohomology 

H m(Zd\C ( X ;!*)), defined as in Section 1.6.3. The relationships between this invariant, 

those defined above, and the If-theory and Cech cohomology of the continuous hull M V  is 

discussed in the following section.

1.6.4 Isomorphisms between invariants

This section contains the theorem providing links between the invariants defined above. 

Note H *(—) denotes Cech cohomology, H *(—) indicates group cohomology, H*(—) denotes 

group homology and K m(—) signifies C*-algebra If-theory.

T H E O R E M  1.76 For d-dimensional codimension n projection patterns, there are isomor­

phisms of groups for each m as follows.

1 . H m(M V) “  2  H d- m(A\ Cc(E'u] Z)).

2 . H d. m(A;Ce(K ;Z ))  Si / f i - m(r;Cc(V«;Z)) Si ffd_m(Zd;C (Jr;Z )) a  H™(Zd-,C(X-,Z)).

3. K m(C (X) x Zd) ® Q a  © “  ^  H d+m+V{Zd; C ( X \Z)) ® Q.

P ro o f  Item 1 is proved in [12, II.4.2]. The second statement follows from the decomposition 

of E ’u, the definition of X ,  Lemma 1.69 and Poincare duality. The final statement is proved 

in [1 1 ]. |

Note that for patterns of codimension n ^  3 the result of item 3 has been strengthened 

[15, Thm 7.3] to an isomorphism K m{C(X) x Zd) £  t f d+m+2j (Zd; C(X; Z)). It

is not yet known whether this result is true for general n, but for the purposes of this 

document, the result of the above theorem is enough.

CO R O LLA RY  1.77 The homology and cohomology groups described above are non-trivial 

only for 0  ^  m ^  d.

P ro o f  The homology groups 7fm(Zd; C (X; Z)) are non-trivial only for m  in this range. |
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1.6.5 The Euler characteristic

The final tool which will be considered here and which can be used to investigate the 

continuous hull M V  is the Euler characteristic.

As we will see in Chapter 2, there are several equivalent definitions of the Euler char­

acteristic. For general patterns V , one possible description is given in Definition 2.1 in 

Chapter 2. Alternative formulations of the Euler characteristic, for V  a polytopal projec­

tion pattern, arise from the results of Theorem 1.76, and hence axe equivalent to Definition 

2.1. Corollaries 2.2 and 2.4 give two such alternatives. The Euler characteristic is a ratio­

nal invariant, so it does not detect torsion, for example. Hence it encodes less information 

than Cech cohomology or C *-algebra if-theory. However, the Euler characteristic is rela­

tively straightforward to compute from the combinatorics of the acceptance domain and the 

singular spaces (Def 1.36) arising from it. In cases when quantities required for the compu­

tation of Cech cohomology or if-theory cannot be determined, the Euler characteristic can 

therefore often yield information.
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Chapter 2

The Euler Characteristic

The main aim of this chapter is to define a topological invariant (the Euler characteristic) 

for polytopal projection patterns and carry out computations of this invariant in several 

cases. In order to achieve this aim, we first extend various ideas in [12] (which were appli­

cable only to canonical projection patterns) to the class of polytopal projection patterns. 

We then derive several formulae for calculating the Euler characteristic and examine some 

consequences of the values obtained from such calculations.

Whereas cohomology is explicitly computed in [12] for canonical projection patterns, 

formulae for determining the cohomology of the continuous hull M V  of polytopal projection 

patterns were not considered. For codimension 2 polytopal projection patterns, the method 

of calculation of the Euler characteristic in all possible cases can be adapted to enable a 

formula for the cohomology of such patterns to be determined, as shown in Section 2.2.2.

For polytopal projection patterns of higher codimension, it is shown in Section 2.3 that 

the Euler characteristic is not always defined. A discussion is given in Section 2.4 about how 

much can be said in such cases and formulae are provided for the calculation of the Euler 

characteristic in cases when it is defined. The chapter concludes with some applications of 

the results obtained.

We begin by defining the Euler characteristic for general point patterns before special­

ising to polytopal projection patterns for which a more tractable definition is available.
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D E F IN IT IO N  2.1 For a d-dimensional pattern V , the Euler characteristic is defined to 

be
d

ev : = ] T ( - l ) d- ir*I2'i (M P )® Q ,
»=o

where H  denotes Cech cohomology, provided no two terms are infinite and of opposite sign.

If any two terms are infinite and have opposite sign, then the Euler characteristic is said 

to be not defined.

Note that since some of the cohomology groups H '(M V )  could have infinite rank, the 

Euler characteristic is allowed to take the value ± 0 0  if infinite terms in the expression for 

e-p have the same sign.

The sign (—l)d_* is chosen to ensure that the term involving rk H d(M V) <g>Q is positive, 

so that the values of the Euler characteristic correspond to those given in [14] and [16] for 

various examples of patterns.

This definition is applicable to any point pattern V. For the remainder of this chapter, we 

consider patterns which arise from a projection scheme with polytopal acceptance domain. 

By Theorem 1.76, in the case when V  is a polytopal projection pattern, there is an alternative 

description of the Euler characteristic, as follows.

C O RO LLA R Y  2.2 For a d-dimensional codimension n polytopal projection pattern V

d
ep =  £ ( - l ) ‘f* Cc(V„; Z)) ® Q,

t= 0

when it is defined, where H  denotes group homology and Cc(Vu; Z) is the module of compactly 

supported continuous Z -valued functions on Vu (Def 1.75). |

In order to produce yet another description of the Euler characteristic for a polytopal 

projection pattern V, we first recall that there is a complex (1 .2 ) 0  —► C n —>■ C n~l 

C° —> 7L —► 0 of T-modules C l (Def 1.57) arising from singular i-spaces associated to V. The 

following lemmas show that this complex (1.2) is applicable to the calculation of the Euler 

characteristic.
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L E M M A  2.3 For a codimension n polytopal projection pattern V , there is a group isomor­

phism Cn ^ C c(Vu; Z).

P ro o f  By the remark preceding [13, Prop 61], the isomorphism is given by sending an 

element [U] to the indicator function on the closure of U \  ((d K  + T) DU). |

The following expression gives the definition of the Euler characteristic which will be 

most useful in the remainder of this chapter.

CO R O LLA R Y  2.4 For a codimension n polytopal projection pattern V , the Euler char­

acteristic is
d

ev = ' £ ( - i y r k  H iiT iC ”) ®Q-
i—0

P ro o f  An immediate corollary of the above lemma is that C^Vr; Z)) =  H m(T-,Cn).

Substituting this into the expression for the Euler characteristic in Corollary 2.2 gives the 

result. |

If the sequence in Lemma 1.59 is exact everywhere, then the lemma below shows that 

the Euler characteristic can be computed by considering the modules Cl for i < n. We first 

define some notation.

D E F IN IT IO N  2.5 For Y  : = 0 -> C n~l -> . . .  -► C 1 -> C° -> 0, define er  to be 

5ZPS g ( - 1 )p+9r*: Hp(T-,Cq) ® Q and for a Z-module C denote X)P(- 1 )Pr^ HP(T\C) ® Q 

by ec .

L EM M A  2.6 For a codimension n polytopal projection pattern V  such that the sequence 

0 —> Cn —> •••—► C ° —> Z —> 0 w  exact everywhere, e*p =  (—l ) n+1e y .

P ro o f  Tfike the exact sequence 0 —>■ Cn C 1 C° Z —)• 0. This can be split up

into a series of short exact sequences 0  -* Cq —> Cl —> Cq- 1  -> 0 , for 0  ^  i ^  n — 1 , where
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Cq = Im (6: Ci+l C '). Note Cq 1 =  C n and C0 1 =  Z. These exact sequences give rise 

to long exact sequences in homology of the form shown below.

■ • ■ A  ff 2 ( r ; c j )  — ► /feo rjc* ) — ♦

A  f f i ( r ; c j )  — > f f a r j c 1) — * ^ ( r j c j - 1)

A  H0 ( r : c j )  — >if0 ( r ; c ‘) — ►H o (r; c r ‘ ) — > o

Thus we have

rk iJoQH; C*) = rk H0{T; Cj) + rk fT0 ( r ; C’” 1) -  rk f t ,

rk H ^ T ;& )  =  rk H\(T] Cl0) +  rk tfiQT; C f 1) -  rk f t  -  rk f t ,

rk H2{T] C {) =  rk tf2(r; Q )  +  rk t f 2 ( r ; Ci~l ) -  rk f t  -  rk f t

and so on. This means that in the alternating sum eC‘ = E ^ = o (-1)9rk HqiTiC*) the 

terms rk f t  cancel so that e<?i = ec < +  eCi- 1 . Similarly =  e ^ - i  — ec <-2 . Thus

eCi = ec < +  e^i-i — ec <-2 . Continuing in this way produces an expression ec« = e^n - 1 —
n

ec " - 2  +  . . .  ±  eco ez- By Corollary 1.68, we have ez =  0. Thus ^ ( —l)pecp = 0, which
p=o

n <i
means £  £ ( - 1)’>+,rk H,(T; C») ® Q =  0.

p=0 9=0
Prom this result, we have

d n—1 d
£ ( - l ) n+’r k f l , ( r ;C " )® Q  =  - ^ ^ ( - l ) ' H-’r k i f , ( r ; C '>)® Q . (2 .1 )
9=0 p=0 9=0

Since the Euler characteristic e-p =  ^ =o (~ l)?rk Cn) ® <Q> by Corollary 2.4, the

left hand side of (2.1) gives (—l)”e-p. The right hand side (without the minus sign) is 

precisely ey_-

Hence e-p = (—l) n+1ey as required. |

Hence, when it can be shown to be exact, the sequence (1.2) in Lemma 1.59 is of use in 

the calculation of the Euler characteristic of a projection method pattern.
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By the results of Chapter 1, there are three different cases to consider. In the case when 

Lq is finite, by Lemma 1.54 the connected components in d K  + T are hyperplanes, so by 

Lemma 1.60 the sequence (1.2) is exact and, as shown in Section 2.4.1, a formula for the 

Euler characteristic of a polytopal projection pattern of any codimension can be determined 

in this case. In the second case, when Lq is infinite and the connected components axe 

hyperplanes, then the sequence (1.2) is again exact. However, it will be seen in Section 

2.3 that the Euler characteristic cannot always be determined in this case. Lastly, in the 

case when connected components in d K  +  T axe not all hyperplanes, then exactness of the 

sequence (1.2) is not guaranteed. However, there axe some results which can be deduced in 

this most general case, such as Theorems 2.28 and 2.60 ahead.

The following three sections consider projection patterns with low codimensions, for 

which calculations axe easiest to visualise.

2.1 Codim ension 1 projection patterns

This case was considered in full generality in [12, Chapter III]. We present the results here 

for completeness and note their applications to the Euler characteristic. Recall (Def 1.37) 

that Lq denotes the number of T-orbits of singular 0-spaces in tC° and Lq may be finite or

and if Lq =  oo then Z°° denotes the countably infinite direct sum of copies of Z.

Examples of calculations of the cohomology of codimension 1 projection patterns can be 

found in [2 2 ], for example.

CO RO LLA R Y  2.8 For a d-dimensional codimension 1 projection pattern V , the Euler 

characteristic is equal to Lq.

infinite.

T H E O R E M  2.7 [12] For a d-dimensional codimension 1 projection pattern V ,

for 0  ^  m ^  d — 1 

for m  = d
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P ro o f  By the above theorem, e-p =  d+Lo + ^  (—l) d+m and since
m=0 v 7 m—0

Q~r J- / d i 1 \
0 we have e-p =  d +  Lq +  ^  (—l) d+m f J — (d +  1) +  1 =  Lq. I

C O R O LLA R Y  2.9 ForV  a codimension 1 projection pattern, the Euler characteristic e-p

C O R O LLA R Y  2.10 F orV  a codimension 1 projection pattern, e-p ^  1.

P ro o f  There is at least one point in the boundary of a 1-dimensional polytope, so there is

Finally, note that in the codimension 1 case, there is an immediate corollary of Lemma 1.59. 

CO RO LLA R Y  2.11 Associated to a codimension 1 projection pattern V , there is an exact

2.2 Codim ension 2 projection patterns

In this section, the cohomology and Euler characteristics ep for codimension 2 polytopal 

projection patterns V  are investigated. For canonical projection patterns, this case was 

considered in detail in [12]. The results relevant to this work are stated below. We then 

consider the more general class of codimension 2  polytopal projection patterns and show 

that the complex (1.2) for these patterns is always exact. The two cases Lo < oo and 

L q =  oo, for Lo the number of orbit classes of singular O-spaces are considered separately. A 

formula for the Euler characteristic is determined in Lemma 2.19 when Lo is finite, which, 

when V  is a canonical projection pattern, agrees with the formula from [1 2 ] given in the 

theorem below. We also show that the Euler characteristic is always defined for codimension 

2 polytopal projection patterns. In the special case of a canonical projection pattern, the 

results obtained in this chapter yield an alternative proof of the theorem from [12, Chap 

IV,V] that the rational rank of the Cech cohomology group H d(M V )  is finite if and only if

is finite if and only if Lq is finite. I

at least one T-orbit of singular O-spaees. Hence ep = Lq ^  1. i

sequence 0 -» C l —► C° -» Z -» 0. I
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Lq is finite. A stronger statement, that the Euler characteristic for a polytopal projection 

pattern is defined and is finite if and only if Lo is finite, is also proved in Theorems 2.23 

and 2.26. This section concludes by considering the other Cech cohomology groups of M V  

and investigating torsion in

T H E O R E M  2.12 [12, V.2.6] For a d-dimensional codimension 2 canonical projection pat­

tern V  with Lo finite,

rkH p(r-,C2)® Q  =  + £ 1 ( ^ 1 ) “ V n - r p f o r p > 0

rk H0(T-, C2) ® Q =  ( d + 2)  -  (d + 2 ) + 1 +  -  1) +  ev  -  n

where L\ — |i i |,  the number of T-orbits of singular 1 -spaces, rp = rk (Ap+il^ : f  € Ii) ,

and the Euler characteristic is e-p =  —Lo +  Lq, where Lq is the number of T-orbits of
teh

singular 1 -spaces contained in singular 1 -spaces in the orbit f  6  I\- |

T H E O R E M  2.13 [12, IV.2.9,V.2.4] For a codimension 2 canonical projection pattern, Lo 

is finite if and only if rk Ho(T; C2) <8 > Q is finite. |

E X A M PL E  2.14 The Octagonal Tiling (Example 1.23)

Consider again the Octagonal tiling. Its acceptance domain is the octagon in Figure 1.4. 

The T-orbits of the edges e i,e 2 ,e 3 ,e 4 give rise to singular 0-spaces in three T-orbits — the 

vertices of the octagon, points at the intersection of e\ and e3 and points at the intersection 

of e2 and e4 , as shown in the diagram below.

On e\ there are singular 0-spaces in the first and second T-orbits described above. On 

e2 , singular 0 -spaces are in the first and third T-orbits above. Similarly, there are two 

T-orbits of singular 0-spaces with representatives on e3 and e4 . Hence for this pattern V  

we have L0 = 3, and Lq = 2 for f  =  e,-, i = 1 , . . .  ,4, and so the Euler characteristic is 

e-p — —3 + 4 x 2  = 5.
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Figure 2.1: Translates of the Octagonal tiling acceptance domain

We also have d =  2, L\ =  4, rp = 0 for p > 1 and r\ =  3 since e\ A (ei -  64) + e2 A (e3 +  

ei) + e3 A (e2 +  €4) +  64 A (e3 — ei) = 0 . Thus the ranks of the cohomology groups for the 

Octagonal tiling axe those stated below.

rk H q(T-,C2) = 9

rk i2 i ( r ; C2) =  5

rk H2(T-C2) = 1

Other examples of codimension 2 canonical projection patterns are considered in [16].

2.2.1 Polytopal projection patterns

We now consider codimension 2 polytopal projection patterns and first investigate the con­

sequences of the results of Section 1.5 for this case.

LEM M A  2.15 For modules Cx (Def 1.57), there is an exact sequence

0 -► C2 ^  C 1 ^  C° A  Z -» 0 .

P ro o f  By Lemma 1.59, the sequence is exact at C2, C° and Z so to prove this result, it 

remains to show exactness at C1.

Take a cycle z in C l , which consists of compactly-supported integer-valued functions on 

a set of singular 1 -spaces. Since C1 is generated by indicator functions on singular 1 -spaces,
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z can be viewed as a collection of copies of singular 1-spaces. Now from the proof of Lemma

1.58, the module C 1 is a direct limit limCp for R  a Delone subset of T and so z  can be 

considered to be a cycle in a locally finite CW decomposition of V  =  1R2. Thus [27, §5] the 

cycle z has the form of a finite union of simple loops, each of which bounds a disc in K2 by 

the Jordan Curve theorem [27, §36] and hence is the boundary of an element of C2. Hence 

any cycle in C l is the boundary of an element of C2, so the sequence is exact at C 1, as 

required. |

Note also that the submodules C'v (Def 1.61) fit into an exact sequence, as described in 

the Lemma below.

L E M M A  2.16 For V  G i i c/ r ,  there is an exact sequence 0 —► C\j —»• Cp —► Z —> 0.

P r o o f By the remark at the end of Section 1.5, the sequence is exact at Cp. Since rep­

resentatives D of the T-orbit V  are singular 1-spaces, any pair of singular 0-spaces in D is 

the set of end points of some singular 1-space in D, so K er(C p  Z) C  /m (C p  -* Cp). 

Also, Im (6 : Cp Cp) C  K er(e: Cp -* Z) because ni[Uaibi]) = S n i([°*] ~  &]) and 

e(!C n t([a*] — [^t])) =  -  1) =  0. Thus the sequence is exact at Cp. As in Lemma

1.59, the sequence is exact at Z because the map Cp —> Z is a surjection. |

Finally, we state the results of Lemma 1.62 and Corollary 1.71 which are applicable in

this situation.

L E M M A  2.17

c l  -  ©  c v  ® z f r / r 25]

I

CO R O LLA R Y  2.18 Group homology H m{I^ C 1) splits as a direct sum of groups

® v e iu /r H m(T I
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T h e F in ite  C ase

Consider first the case when the number Lo of T-orbits of singular 0-spaces is finite. By 

Lemma 1.53, we know that the stabilisers of the connected components in the T-orbits of 

faces of K  are non-trivial, so the orbits contain the lines spanned by the faces and hence 

the singular 1-spaces D  € I \c are lines of infinite length. Note that in this case, the set 

I ic /T  of T-orbits V  of singular 1 -spaces D  is equal to the set 7i of T-orbits of 1-dimensional 

faces of the acceptance domain K  since singular 0-spaces are dense in D  and in finitely 

many T-orbits so the stabiliser T73 is dense in D. Thus the T^-orbit of one distinct (up to 

T-translation) face of K  gives rise to D and hence the T-orbit of this face is the T-orbit T> 

of D. We write £ for a typical element of I\.

L E M M A  2.19 For a codimension 2 polytopal projection pattern V  with Lo finite, e-p = 

—Lo +  ^ 0* where Lq is the number of distinct (up to T-translation) singular 0-spaces

which are contained in any singular 1 -space in the orbit £.

P r o o f By Lemma 2.6, we compute ep =  —ey =  — e^o. Firstly, by the remark following

Definition 1.57, C° is the free T-module with generators in one-to-one correspondence with 

the generators of KP, so i7m(T; C°) =  0 for m > 0 and rk Hq(T; C°) ® Q =  Lo, since Lo is 

the number of T-orbits of singular 0 -spaces in KP. Hence ec° =  Lo.

To compute ep, it remains to determine e ^ i. Since in this case I \ c/T  = I \ ,  we decompose 

C 1 as ® £€/! Cj ® Z [r/r* ] as in Lemma 2.17 and consider for £ € I \.  This module fits 

into an exact sequence 0 -* -4  -¥ Z 0 by Lemma 2.16. Write eCi to denote
oo oo

£  ( - l ) irk J f i( r « ;C |) ® Q a n d  set (—l)*rk ifj(r^ ;Z ) ® Q. We then have
i=  —oo i=  —oo

ec\ =  ec° — ez- As t îe stabilisers are non-trivial in this case, rk 77m(T^;Z) 0  Q =  (r^ )  

by Corollary 1.67 and hence e'z =  0. Thus ec i =  ec o which is equal to the number L q  of 

T-orbits of singular 0-spaces contained in any singular 1-space in the orbit £. Note that Lq is 

well-defined since if there are distinct singular 0 -spaces 0 \ , . . . , 0k in some singular 1 -space
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I, then the singular 0 -spaces Pi +  7 , . . . ,  Pk +  7 are contained in I + 7 and if P is in I +  7 

then P — 7 is in I.

Hence ep =  —e^o +  ec-i =  —Lo +  -̂ o> 3 5  required. |

When P  is a canonical projection pattern, this clearly gives the same result for the Euler 

characteristic e-p as that given in [12]. We next provide an alternative description of the 

Euler characteristic in terms of multiplicities of singular 0-spaces.

D E F IN IT IO N  2.20 The multiplicity q$ of a representative P of a T-orbit of singular

0-spaces is the number of distinct directions 6 £ Ik  of singular 1 -spaces which intersect 

at p.

The multiplicity is well-defined since if there were two representatives P, P' of an orbit 

of singular points with P' = p~1-7, then taking / +  7 for all lines I intersecting at P produces 

lines which contribute to the multiplicity of P' . Similarly, those lines intersecting at P' give 

rise to lines contributing to the multiplicity of p. Hence qp = qp>.

T H E O R E M  2.21 For a codimension 2 polytopal projection pattern V  with L q < 0 0 , the 

Euler characteristic is ep = ^2pej0 (QP ~  !)•

P ro o f  Given that ep = — Lo +  Y lszh  -̂ o> note that elements P € Iq contributing to L q will 

be counted more than once as f varies. Each P £ lo will be counted qp times in the sum 

over £ G I\. Thus the sum can be rewritten as — YLpeio ^

required. |

The above results can be used to put bounds on the values tha t the Euler characteristic 

can take. First note the following points.

Any poly tope has a vertex, and the orbit of this vertex under the action of T gives 

an element of J0, so Lo ^  1. For t the number of distinct directions of faces of K ,  the 

multiplicity of a singular 0-space can be at most t (if all edges of K  in distinct directions
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intersect at that point). We must also have E^e/o qp ^  t, since if this were not true then 

there would be faces in the boundary of K  which did not contribute to the multiplicity of 

any singular point fl, but the faces intersect at vertices of K  by definition of i f  as a polytope.

L E M M A  2.22 For a codimension 2 polytopal projection pattern V  with acceptance domain 

K  having t distinct directions of faces, the Euler characteristic e-p is bounded as follows, 

t — 1 ^  e-p ^  Lo(t — 1 )

P ro o f  To find an upper bound for ep, suppose every vertex has multiplicity t. Then 

e-p ^  Lo(t — 1). For a lower bound, first suppose Lq = 1, so e-p = qp — 1. Then using 

the property that Ylpeio Q& ^  we ^ave ev  ^  t — \  in this case. Now suppose Lo =  2, 

so ep =  qp -f qp> — 2. As before, we know qp + qp> ^  t but note that at least one singular

1-space must appear twice in qp +  qp>. This is because if every singular 1 -space arising from 

the faces of K  contained singular 0-spaces in the T-orbits of either fl or fl1 but not both, 

then K  would not be edge-connected (Def 1.26) but K  is a polytope so is edge-connected 

by Lemma 1.32. Hence ep =  qp +  qp> — 2 ^  t +  1 — 2 =  t — 1 . Similarly for Lo = 3, two 

or more singular 1-spaces are counted at least twice each since K  is edge-connected, again 

giving ep ^  t — 1 . Continuing in this way shows that for every extra singular 0-space fl1 

arising, at least one singular 1 -space containing some other singular 0 -space fl is counted in 

qp and qp> and so qp> +  E ^e/o  q p ^ t + l .  Hence 'E,pei0(qp -  1) ^  t +  (L0 -  1 ) -  L0 =  t -  1 

as required. |

This bound implies the following results since in this document a  polytope is assumed to 

have a finite number of faces, so t < oo, but there must be at least t  — 2  distinct directions 

in order for the polygon to be bounded in V  =  R2.

T H E O R E M  2.23 For a codimension 2  polytopal projection pattern V , if  Lq is finite, then 

the Euler characteristic ep is finite. |
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C O R O LLA R Y  2.24 F orV  a codimension 2 polytopal projection pattern, e-p ^  1. |

Note that when Lo =  1 , the lower bound on ep is attainable provided there is a pattern 

V  with polytopal acceptance domain having faces in t distinct directions but with singular 

0-spaces in one orbit class. Patterns with this property include the Penrose tiling [1], for 

which t = 5, and [16] the Heptagonal tiling of R4, which has t = 7.

Examples with t = 2 and hence ep =  1 also exist, since we can choose acceptance 

domains with Lo =  1 and t = 2 , giving ep —t — 1 =  1 .

E X A M P L E  2.25 The Rhombus tiling.

This is a pattern with t — 2 which is polytopal and not canonical. It is formed by taking 

the data (A, E, K , v) which give rise to the Octagonal tiling (see Example 1.23), but instead 

of taking the acceptance domain K  to be the projection of a four-dimensioned hypercube, 

simply take the rhombus formed from the two non-orthogonal directions ei and e-i in the 

projected hypercube of Figure 1.4. Since the positions of E  and E 1- are the same as those for 

the Octagonal tiling, the rhombus acceptance domain is not the projection of any hypercube 

in Z4 to E L and hence the Rhombus tiling is not canonical.

Clearly t =  2  and, as we exclude the directions ez and e4, only singular 0 -spaces which 

axe in the same T-orbit as the vertices of the Octagonal tiling’s acceptance domain arise 

from T-translates of the above rhombus. Hence Lo =  1 in this case. The tiling associated 

to this setup is pictured in Figure 2 .2 .

Similarly taking the setup (A ,E ,K ,v )  for the Penrose tiling but replacing K  by the 

polygon formed by 3 or 4 of the distinct directions of faces of K  yields tilings with Euler 

characteristic 2 or 3, respectively.
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Figure 2.2: The Rhombus tiling and its acceptance domain 

T he In fin ite  C ase

Now consider the case when Lq is infinite. The converse of Theorem 2.23, stated in Theorem 

2.26, is also true, and is proved below. The argument given covers both the case when the 

connected components D  are lines of infinite length (with non-trivial stabiliser) and when the 

stabilisers of components D are trivial, since the exact sequence (2.15) exists in both cases. 

Note that if the connected components have trivial stabilisers then they may arise from 

parallel faces in distinct T-orbits whose translates have non-empty intersection. Connected 

components which are lines of infinite length may arise in the T-orbits of single faces of the 

acceptance domain K  for the pattern under consideration but it is also possible tha t they 

arise only in the set of translates of all parallel faces of the acceptance domain, and the



T-orbits of individual faces axe not connected. Hence i i c/ r  need not be equal to I\ in this 

case, so we use the notation V  E h c/F  instead of f  E Ii which was used in the Lo finite 

case.

T H E O R E M  2.26 For a codimension 2 projection pattern with polytopal acceptance do­

main such that Lo is infinite, the Euler characteristic e-p is defined and is infinite.

In order to prove this statement, and in particular demonstrate tha t ep is defined, we 

make use of the following result. Note th a t the Euler characteristic is a rational invariant, 

so we need to compute the rank rk (G <g> Q) of various groups G as rational vector spaces. 

In the following work, we abbreviate rk (G <g> Q) by rk G.

T H E O R E M  2.27 For a codimension 2 projection pattern with polytopal acceptance do­

main, rk H m(T;C2) is finite for m  > 0.

P ro o f  First note that the sequence 0 -» C 2 —> C 1 —► C° -> Z —> 0 is exact by Lemma 

2.15, so there is a spectral sequence Ef,q => Hp+q(T; Z) with E^q =  HP{T; C 9), as in Section 

1.6.3. The E 1 terms are shown in the table below. Note that by Lemma 1.72 the groups 

H m(T; C 1) are non-zero only for m < r  =  max{rk Tv  : V  G Iic /T ).

0 0 H d(T-,C‘ )

0 0

0 j f r _ ! ( r ; c 2)

0

H o (r; c ° ) L° Ho(T;Cl ) i i-0 i /o ( r ; c 2)

To prove the required result, we begin by showing tha t £fm(r; C 1) is of finite rank for 

m > 0. By Lemma 2.17 and Corollary 2.18, there is a decomposition C 1 ^  © p e/ lc/ r  C v  ® 

Z [r /T v ] and Hm(T; C 1) splits as a direct sum of groups f7m( r x>; C^,). By Lemma 2.16, 

there is also an exact sequence

0 C i  -> C% -> Z -> 0. (2.2)
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Applying the functor H m(rv ; —) to this short exact sequence gives the long exact sequence 

in homology below.

 ► if2(rp ;Z) — ► — ► h x(r c ;z)

— ► H o p ” -, C£) — > Ho{Tv -, C ° ) — ► H0{TV ; Z) — > 0 

Since Cp is a free T-module, i fm(T;Cp) = 0 for m > 0 so there is an isomorphism 

Cp) Hm+1 (T^; Z) for m > 0. Thus in particular rk Hm(Yv ',C\?) is finite for posi­

tive m. Now Hm(T; C1) S  ^  iTm(rp ;Cp) and since K  is a polytope, by the remark fol-
vehc/r

lowing Definition 1.36, the set I \c/T  is finite. Thus rk / f m(T; C 1) = rk [ H m(Tv ; Cp)]
x>€/ic/r

is finite for m > 0 .

We now examine the rank of H m(T; C 2). The E 2 terms in the spectral sequence (which 

are the E°° terms since the second differentials Hp(T-,Cq) -* Hp+i(T-,Cq~2) are zero for 

q ^  2) are shown in the table below.

0 0 i?d(r;c5)
0 0
0 Hr-i{r-,Cl)/Imd2 ,r-i K erd2yT- i

0 H i(T ;C i ) /Im d 2i K erd2\
H o(T;C°)/Imdio K erd io /Im d20 K erd20

From this we can see that i / m(T; C2) ^  Hm+2 (T; Z) S  Z ("*+») for m ^  r  since the edge 

homomorphisms are isomorphisms for these values of m. Also K e rd ^^ -i — iTr+ i(F ;Z ) — 

z(»-+i). Thus these groups have finite rank over Q. For 0 ^  m  < r, there are short 

exact sequences 0 —> Hm+i(T;C,1 ) //m d 2)m+i ->• i / m+2 (r;Z )  -» K erd2m —► 0, which give 

rk (iTm+i ( r ;C 1 )/Jm d 2 )m+i) + rk K erd2m =  (,^+22). The finiteness of rk iTp(r;C '1) implies 

finiteness ofrk Im (d2>p: HP(T;C2) -> -H^TjC1)) forp > 0 , sork (i7m+i(T; C l ) /Im d 2,m+i) 

is finite and hence the remaining term rk Kerd2m must be finite for m > 0. Therefore 

rk H m(r ; C2) =  rk K erd2m +  rk Im d 2m is finite for m  > 0 . |
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P ro o f  of Theorem 2.26

It remains to determine rk Ho(T]C2) =  rk Kerd,2o +  rk Im d 2o. Since the ranks of 

the terms on the diagonals of the above table sum to the rank of #*(17; Z), we have 

Ho(T-,C°)/Imdio S  i70(r;Z) S  Z so rk Imdio = Lq — 1, which is infinite since Lq is 

infinite, and rk Kerd\o — rk Tmc^o =  rk # i(T ;Z ). If we can show that rk Kerdio  is in­

finite, then rk /me^o must be infinite since rk # i(T ;Z ) is finite. Hence rk Ho(T;C2) =  

rk K erd2o -I- rk 7 md20 will be infinite. Note that rk K erd2o is finite since rk K erd2o +  

rk H ifi^ C 1) — rk Im d2\ =  rk # 2 (r ;Z )  and rk # i ( r ;  C 1), rk Im cki and # 2 (r ;Z )  are all 

finite quantities.

When Lo is infinite, since there are only finitely many 1-dimensional faces of the ac­

ceptance domain K , and hence only finitely many T-orbits of singular 1-spaces D  G I \c 

there must be at least one orbit V \ whose representatives D\ contain singular 0-spaces in 

infinitely many orbits. The finite number of edges in K  also implies that there must be 

at least one # 2 » transverse to # i ,  with the property that infinitely many translates of D2 

intersect D\ at singular 0-spaces which are in distinct T-orbits. Infinitely many of the trans­

lates of D2 extend beyond at least one side of D\ by some positive distance e, since D2 has 

positive length. Hence a translate # 1 + 7  can be found (by the density of T) which intersects 

infinitely many of the translates of D2.

Consider the indicator function f qiq2 on the singular 1-space in D\ which joins the 

singular 0-spaces q\ and 92 in the diagram above. Applying dio to this function gives 

f (11 fq\i the difference of the indicator functions on the end points of the singular 1 - 

space. Next consider the function /  =  f qiPl + f PlP2 +  f P2Q2 € C l , where Pi is the point 

of intersection of D\ +  7  with the translate of D2 passing through qi. This function is
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distinct from f qiq2 since there is no translation of the line segment between q\ and <72 to 

the line segment between qi and pi, for example, so /  ^  f qiQ2 + 7  for 7  € T. Applying 

dio to /  gives f q2 — f qi, the difference of indicator functions on the end points of the path 

qiPi,PiP2,P2Q2 of singular 1-spaces. Thus we have found distinct elements of C 1 which 

map to the same element of C° under di0 , so the element f qiQ2 — f  is in the kernel of dio- 

Taking similar elements of C l corresponding to points q\ and qi for all points qi in distinct 

T-orbits gives rise to infinitely many elements of Kerdio- These elements are all distinct 

in Ho^TiC1) =  C 1 /Im (6:  AiT ® C 1 -> AoT <g> C 1) because of the fact that there is no 

element of T taking qi to any other point qj in D \ , so any two of the elements of the kernel 

constructed above do not differ by elements in ImS. Note that this infinite set of elements 

is also rationally independent. This is because if there were a finite set {/* : i = 1 , . . .  ,m} 

of elements such that any elements could be expressed as a linear combination Y l ia^ i  f°r 

a, € Q, then there would be a finite set B = {pi,qi,Pi,qi : i =  2, . . . ,m }  of indicator 

functions on end points of the singular 1-spaces associated to each /*. However, since Lq is 

infinite, we can find an I with associated singular points p i,q i,p ,q  for p ,q not in B  which is 

not a linear combination of the elements U with coefficients in Q since the distance between 

q and any qi € B  is irrational.

Thus, we have shown that rk Kerdio is infinite, and hence Imd^o has infinite rank over 

Q, which means that rk Hq{T\C2) =  0 0 . However, rk Hm(T] C2) is finite for m > 0 by 

Theorem 2.27, so the Euler characteristic is defined and is infinite. |

Hence in this section, we have proved the following result.

T H E O R E M  2.28 For a codimension 2 polytopal projection pattern V , the Euler charac­

teristic e-p is always defined, takes only positive values, and is finite if and only if Lo is 

finite. |
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2.2.2 Cohomology formulae

For codimension 2 polytopal projection patterns, by Lemma 2.15 we have an exact sequence 

0  —> C2 ->• C l —> C° —> Z -> 0  in all cases. In this section, we use this sequence to determine 

formulae (analogous to those in Theorem 2.12) for the cohomology of the continuous hull for 

all polytopal projection patterns of codimension 2. These formulae agree with the previous 

results when the pattern under consideration is canonical.

T H E O R E M  2.29 For a d-dimensional codimension 2 polytopal projection pattern V , the 

torsion-free parts of the Cech cohomology groups of the continuous hull M V  are given by

r k H d(M V )® Q  = ev  + ( d * 2') -  {d + 2) +  1 +  ^  {rkTv  -  I) -  rx
'  '  -Dehc/T

r k H “- m(MP)<S Q =  ( ^ 22) +  Y .  ( ^ T̂ - r m - r m + l f o r 0 ^ r n < d
vehc/r

where e-p is the Euler characteristic and rm =  rk (Am+iT15 : V  G / i c/F).

The rank of H m(M V) is always finite for m  < d but rk H d(M V) <8 > Q is infinite if L q, 

the number of T-orbits of singular 0 -spaces, is infinite.

P ro o f  Consider the exact sequence 0 —> C2 —► C1 ^  C° -> Z -> 0. Writing Cq : = <5o(C>1) 

means that we can break the sequence into two short exact sequences, which is the technique 

used in [14].

0 — > Cg — > C° — » Z — >0

0  — ► C2 — > C 1 — > CS — ► 0

Note by Theorem 1.76 and Lemma 2.3 that H m(MV)  5* Hd-miX \C2). Thus we apply the 

functor 77* (T; —) to these sequences, to get long exact sequences of homology groups. The 

first sequence yields

 ► T72(r;Z ) — > H ^ c g )  — y 72 i(r; C0) — > T ^ Z )

— ► H0(T] Cg) — ► 7To(r; C°) — > 72o(r; Z) — > 0.
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Since C° is a free T-module, Hm(T;C°) =  0 for m  > 0 so i f m(r; Cg) — Hm+i( r ;Z )  = 

^(m+x). Also, rk Hq(T; C°) =  L0, which means that rk Ho(T] Cfj) = (d +  2) +  L q — 1.

Now H m(T\C l ) S* 0 p € /lc /rHm(r v ]C^) by Corollary 2.18. Applying the functor 

to the short exact sequence 0 —> Cp -> Cp -> Z -> 0 gives the long exact 

sequence in homology below.

 ► H2(TV-Z) — ► H — ► tf i( r® ;c j,)  — ► H i(r® ; z)

- 4  ^ o ( r c ; C£) — > Ho(Tv ; C$) — > i*o(rp ; Z) — ► 0 (2.3)

Since Cp is a free T^-module with rk i /o ( rp ;Cp) =  Lq\ for the number of T- 

orbits of singular 0-spaces in representatives of V , the above homology sequence yields 

rk Hm(r®; CL) =  rk H m+l (Tv ; Z) =  (r̂ ” ) for m  > 0 and rk H o p ” ; CL) = rk T® +  i f  -  

1. Hence

rk H (T-CM = i ^vehc/r  (m+i)
ml ’ '  1  E , e W r ( ' k r C

for m > 0 
-1- Lq5 — 1) for m = 0

Next examine the long exact sequence arising from the second sequence above.

 > H2(T-,c$) — » H ,(r ;c 2) — ► f f , ( r ;c ‘) A  H ^r-.cg) 

— y H o(r;c 2) — y Ho(r-,cl ) A  h 0(t -,c S) — > o

This can be divided up into 5-term exact sequences

0 -> Im/3m+1 -* Hm+1(r-,C°) -> Hm(T;C2) -> H rn ^ C 1) -> Jm0ra -> 0.

Write rm for the rank of the image of the map /3m, which is identified with © p €/lc/r Am+i r p 

Am+iT for m > 0, as in [15]. This gives rk Hm{T;C2) = ( £ £ )  + J2ve i lc/r (m+i) ~ r™ ~ 

rm+1 for m > 0 as required.

Lastly, consider 0 -> Imfii -> J f i(r ;Cg) -> H0(T-C2) -> -> H0{T\CS) -> 0.

This yields

rkJJo(r;C2) = rkffo(r;C1)-rkHo(r;C°) + l - ( d  + 2 ) + ( d  ̂ 2) - n

73



If Lo is finite, then all the above ranks are finite so the formulae are well-defined, so we can 

substitute i/oCTjC1) and Ho(T;C°) for the values obtained above to obtain

t k H 0(T;C2) =  Y ,  ( r k r D +  I ? - l ) - L 0 +  l - ( d  +  2 ) + - r ,
veh c /r  '  '

= ev  +  ( d *  -  (d +  2 ) +  1 +  ^ 2  (rkTv  -  1 ) -  n
'  '  ^e /ic /r

as required, since by Lemma 2.19 the Euler characteristic is e-p =  — Lo +  r  f°r

L q the number of T-orbits of singular 0-spaces in singular 1-spaces in the orbit V . By 

Theorem 2.27, rk H m(M V) <8> Q is finite for m > 0 so the Euler characteristic is always 

defined and by Theorem 2.26, if Lo is infinite then e-p is infinite. Therefore H d(M V ) is of 

infinite rank if Lo is infinite and hence e-p is infinite. This is consistent with the formula 

given above. |

If Lo is finite, then Lemma 1.56 gives rk T* =  for all f  6  I\ =  Lc/T , so the formula

for rk H *(M V) reduces to that given in Theorem 2.12.

T orsion  in  H*(M V)

Note that, as in [15], we can also investigate when torsion can arise in the cohomology of 

M V . Given that H P(M V) S  i2d_p(T;C2), we consider torsion in H m(T\C 2).

First consider the long exact sequence in homology (2.3) which is associated to the short 

exact sequence 0 -»■ Cp -* Cp —> Z —> 0. The fact that Cp is a free T-module implies
/rfcrI? \

that iTm(Tx,;Cp) is torsion-free for all m  and iLm(Tx>;Z) =  lS  m '  is torsion-free for all 

m, so the same is true for Hence f ^ ^ C 1) S  ®x>e/lc/ r  Cp) is

torsion-free.

Next consider the long exact sequence in homology associated to the short exact se­

quence 0 -* C2 -> C 1 -> Cq -> 0, described in the proof of the above theorem. Here we 

break the sequence in homology into short exact sequences 0 -> iTm+i(T; Co)/Im/3m+i —> 

H m(T-C 2) -> KerPm -> 0 so i / m(T;C2) 2  KerPm © Cg)//m /?m+i)- For m > 0
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[15] we identify f3m with the homomorphism ®£>e/lc/ r  Am +ir23 —> Am+ ir  and fio is iden­

tified with ®x»G/ic/ r ( ^ 1̂ P ® K erc0 ) -» AiT © K ert, for ev : —>• Z.

Since K er0m is a subgroup of the free abelian group Hm(I"; C 1), and hence torsion-free, 

it remains to consider Hm+i ( r ;  C q ) / Now Hm(T] Cq) is of finite rank and torsion- 

free for m  > 0 since it is isomorphic to the torsion-free group Hm+i(r;Z ), as shown in the 

proof of Theorem 2.29. This means that if Im/3m+i is trivial then i f m(T; C2) is torsion-free.

The map f3m+1 will be zero if k m+2^ v  is trivial for all V  € /»c/r , and this is the case 

if m -I- 2 > rk T15. By Lemma 1.49, for d-dimensional codimension 2 polytopal projection 

patterns the rank of the stabiliser Tv  of a singular 1-space may have rank d, so the homol­

ogy groups are always torsion-free for 771 ^  d — 2. Thus for a 2-dimensional codimension 

2 polytopal projection pattern, torsion may appear in Ho(T-,C2) only, for 4-dimensional 

patterns, torsion may appear in H q(T,C2) and H \{T \C 2) and for 6-dimensional patterns, 

torsion may appear in Ho(T',C2) to H3(T;C 2) ^  H 3(M V ). Compare this with the results 

in [15] for canonical projection patterns, which have stabilisers T23 of rank In this case, 

torsion can only arise in Hm(T;C2) for m  < d/2. Thus for a 6-dimensional codimension 2 

canonical projection pattern ^ ( T ;  C2) ^  H 3(M V) is always torsion free.

C onsequences

There are several corollaries of the above results.

CO RO LLA RY 2.30 For codimension 2 hypergeneric polytopal projection patterns (Def 

1.50), rk Hm(T]C2) =  rk tfm+2(r ;Z) for m  > 0 and rk H0(T-C 2) = 00 .

P ro o f In this case, Lo =  00 so rk Hq(T]C2) = 00 and the ranks of the stabilisers of all 

singular 1-spaces are 1 so r m = 0 and i f ^ I ^ C 1) = 0 = Hm(T]C0) for all m > 0, which 

implies that the edge homomorphisms Hm+2(T]Z) —)• Hm(T;C2) in the spectral sequence 

(Page 48) axe isomorphisms and hence rk i f m(r;C '2) =  ( ^ . 2 ) =  Hm+2(r;Z). |
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C O R O L LA R Y  2.31 For codimension 2 hypergeneric polytopal projection patterns the groups 

H m(T]C2) are torsion-free for all m.

P ro o f  In this case, we have rk T15 =  1 for all V  € f ic/ r  so Am+2 r x> is trivial and hence 

0m+ 1 : ©  Am+2 r x> -» Am+2r  is zero for all m, as required for H m(T]C2) to be torsion-free 

by the results of the above section. |

CO R O L LA R Y  2.32 For codimension 2 generic polytopal projection patterns (Def 1.51), 

we have rk Hm(T; C2) =  rk / fm+2 (r; Z) for m  > 0 and rk Ho(T]C2)) =  oo.

P ro o f  Again Lo =  oo so rk Hq(T; C2) = oo and since rk Tv  =  0 for all V  6  I u fF  we have 

rm — 0 for all m and rk C2) — (^+ 2) =  #m + 2 (r; Z) as required. |

As the stabilisers Tv  axe all trivial in this case, we have Am+2 r x> trivial for all m. Thus 

H m {T\C2) is torsion-free for all m for generic polytopal projection patterns as well.

Note that it is shown in Section 2.4 that in fact for generic and hypergeneric polytopal 

projection patterns Hm(T\C2) is isomorphic to Zfm+2 (r;Z ) so these groups are not just of 

equal rank as rational vector spaces.

If the singular 1-spaces have stabilisers of different ranks, then Lo will be infinite, so 

rk Ho{T;C2) will be infinite, and if the stabilisers of singular 1 -spaces are all less than or 

equal to 1 then we will again have Hm( r ; C2) =  / f m+2 (T; Z) for m  > 0. If the ranks of some 

stabilisers are greater than 1 then the formula of Theorem 2.29 will give rk Hm(T]C2) for 

m > 0 .

Note that for codimension 2 polytopal projection patterns which are not generic or 

hypergeneric, to compute the cohomology Hm(r-,C2) we need to know the quantities r m, 

whereas they do not appear in the Euler characteristic formula. Hence in general the Euler 

characteristic e-p is more straightforward to compute than the ranks of the Cech cohomology 

groups H*(M V) of the continuous hull M V .
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2.2.3 Examples

To show how the above ideas work in practice, we now consider some specific examples. 

E X A M P L E  2.33 The Rhombus tiling (Example 2.25).

This is a tiling whose acceptance domain contains singular 0-spaces in a single T-orbit 

and gives rise to two distinct orbits of singular 1-spaces, each with stabiliser of rank 2. By 

the earlier calculations, we have Lo =  1, L\ =  2 (since I\ =  {ei,e2 } for e\ and e2 as in 

Example 2.25) and e-p =  1. Lemma 1.56 gives that the ranks of the stabilisers of the T-orbits 

of ei and e2 are 2  and in fact TCl is generated by e\ and e2 — e4 and T62 is generated by 

e2 and e\ 4 - e^. This means that r\ =  rk (A2 ^  : f  G h )  =  2 since A2 Tei is of rank 1, 

generated by e\ A (e2 — 6 4 ), and A2 Te2 is generated by e2 A (e3 +  ei) and these two vectors 

axe rationally independent. Thus for this tiling

rk H 2{M V) = e +  3 +  L i - n  = 4
rk H ' iM V ) = 4 + L i - n  = 4
rk H °(M V )  =  1 = 1 .

Compare this with the cohomology calculations for the Octagonal tiling in Example 2.14. 

E X A M P L E  2.34 Degenerate Octagonal tiling

Consider again the setup for the Octagonal tiling (Example 1.23). Altering the position 

of E , and hence that of E ± , the unit hypercube can be projected to E 1- so that e\ to e4 are 

arranged into two pairs of parallel vectors with rationally independent lengths, as shown in 

Figure 2.3 below.

The singular 0-spaces marked on the acceptance domain K  in Figure 2.3, and any others 

arising from translates of K  axe all in the same T-orbit.
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Figure 2.3: A degenerate canonical projection pattern and its acceptance domain

This is because any 7  6  T is a linear combination of elements in the stabilisers of the 

two singular 1 -spaces a and b and so any point /3 at the intersection of translates of a and 

b is in the same T-orbit as the end points of a and b, which are lattice points (as shown in 

the diagram above). Thus L q =  1 and the Euler characteristic for patterns of this form also 

has the value e-p =  2  — 1 =  1 .

This tiling is a two-dimensional example of a class of patterns discussed in [2 1 ] and 

described briefly below; namely it is the product of two 1 -dimensional codimension 1 canon­

ical projection patterns with acceptance domains consisting of the non-parallel edges of the 

acceptance domain in Figure 2.3.

E X A M PL E  2.35 Cartesian products of 1-dimensional tilings.

Given a set of d tilings 'Pl of R, form the d-dimensional tiling V — V\ x  . . .  x Vd- Tiles 

in this tiling are d-dimensional rhombs formed from the Cartesian product of intervals of
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R. The continuous hull of this tiling [21] can be expressed in terms of the hulls of the 

1 -dimensional tilings as M V  = M V\ x . . .  x MVd, with the product topology.

Using Definition 2.1 and Theorem 1.76, we have the following equivalent formulation of 

the Euler characteristic.

C O RO LLA R Y  2.36 The Euler characteristic for a d-dimensional pattern V is

ev : = rk K 0(C(M V) x Rd) ® Q -  rk K i(C {M V) x Rd) ® Q

when this makes sense. |

For a product V  of two 1-dimensional tilings V\, V2, it is shown in [21] that the K - 

theory of the C '-algebra C (M V ) x  R2 decomposes as Kq(C(M V) x R2) =  K o(C (M V  1 ) x  

R) 0  K 0{C(MV2) x R) © K i(C (M V i) x R ) ®  K l {C{MV2) * R) and K ^ C iM V )  x  R2) “  

K 0(C(M Vi) x R ) ®  K i(C (M V 2) x R) ® K ^ C iM V i)  x R) ® K 0{C{M V2) x  R). There 

are similar (but more long-winded) formulae for products of three or more 1-dimensional 

tilings. Thus, if all quantities are finite, the Euler characteristic e-p is equal to epx x ep2, 

the product of the Euler characteristics of the 1-dimensional tilings. Given the formula for 

the A-theory of a d-dimensional product tiling, it can also be shown that ep = n f= i e"Pi 

general.

Sum m ary

This section has provided a generalisation of Theorem 2.12 ([12, V.2.6]) to polytopal pro­

jection patterns and has also determined where torsion may arise, in analogy with [15]. For 

codimension 2  projection patterns, we have also given an alternative proof of the result from 

[1 2 ] that in the canonical case H d(M V) is of finite rank over Q if and only if Lo is finite. 

In fact, we proved the stronger result that the Euler characteristic is defined and finite for 

codimension 2 polytopal projection patterns if and only if Lo is finite. Formulate for the 

computation of the Euler characteristic of polytopal projection patterns were also derived 

and several examples were considered.
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2.3 The codim ension 3 case

In [15, Thm 5.1], formulae for the cohomology groups H *(M V) of a codimension 3 canonical

projection pattern V  with Lo finite were given, and an expression for the Euler characteristic 

in this case was provided in [12, V.2.7], The main results are stated below. In this section, 

we also obtain an expression for the Euler characteristic e-p for codimension 3 polytopal 

projection patterns V  with Lq finite, before considering ep for patterns V  with Lo =  oo.

T H E O R E M  2.37 [15, Thm 5.1] For a d-dimensional codimension 3 canonical projection 

pattern V with Lq finite,

|J?| and R p = rk (Ap+2r ” : r, e / , )  +  E , e/a rk (Ap_,r< : i  e  /,”) +  rk Ap+1r<) n

(Ker0%: Ap+il^ -* Ap+iT) : T) € h )- The Euler characteristic is given by ep =

T H E O R E M  2.38 [12, Thm IV.2.9,Thm V.2.4] The quantity Lq is finite if and only if

Several examples of cohomology calculations for codimension 3 canonical projection pat­

terns are provided in [15].

2.3.1 Polytopal projection patterns

We now turn to polytopal projection patterns of codimension 3. To simplify calculations, 

we consider separately the cases introduced at the end of Section 1.4.

where is the set of T-orbits of singular 1 -spaces £ contained in r) a singular 2-space, L^ =

I

rk H0(T ; G'3) 0  Q is finite. I



C ase 1: Lo fin ite

When Lo < oo, we know by Lemma 1.54 that the T-orbits of the 2-dimensional faces of 

K  contain the planes spanned by the faces and the orbits of singular 1-spaces consist of 

lines of infinite length. Also, the set IiC/T  of T-orbits of connected components in the 

orbits of singular i-spaces is equal to the set 7* (Def 1.36) of T-orbits of faces of K  in this 

case since by Lemma 1.39 singular 0-spaces axe dense in a connected component D and as 

there are only finitely many T-orbits of singular 0-spaces, the stabiliser of D is dense in 

D. Hence the orbit of a single face of K  gives rise to D. By Lemma 1.60, the sequence 

0 —» C3 -» C2 —► C1 -» C° -¥ Z -> 0 of T-modules is exact. Using this sequence, and group 

homology i7*(r; Cx) as defined in Section 1.6.3, a formula for the Euler characteristic can 

be determined in this case, as follows. Note that denotes the set enumerating distinct 

orbit classes of singular i-spaces contained in the singular 2-space 77 G 72 •

T H E O R E M  2.39 For a codimension 3 polytopal projection pattern V  with Lo finite, the 

Euler characteristic is given by

e r  = L0 - Y i L i + ' £ ' E Lo - Y , Ll
Ce/i veh sei? v£h 

P ro o f By Lemma 2.6, we need to compute ey_ =  ec 2 — ^ c l +  e^o. By Lemma 2.19 we have

eCo =  Lo and e^i =  ^ 0  since C 1 can again be decomposed as ® ^ G/ 1 <8 > Z[r/I^].

It thus remains to compute ec 2 . There is a decomposition of C2 by Lemma 1.62 a s C 2 =

0 ^ / 2  C2 ® Z[r/r>]. For each T-orbit of singular 2-spaces 77 G / 2, there is a sequence

0 -» C2 C* -¥ ->■ Z -» 0, where C ‘ is the module generated as in Definition 1.57

but only by singular i-spaces contained in singular 2-spaces in the T-orbit 77 € 72. This

sequence is exact by Lemma 2.15 since we consider singular 0- and 1-spaces in a  plane

D = R2 in the orbit 77. Exactness of the sequence implies =  e^i — ec 0 +  e'z , using

the notation of Definition 2.5 and Lemma 2.19. Since the orbits 77 G 72 are sets of infinite

planes, the stabilisers are non-trivial by Lemma 1.53 and hence Corollary 1.68 gives



=  5^(—l)J'ZZj(r,?; Z) =  0. Thus, by Lemma 2.19, we have ec-2 =  — L q 4- E ^ g / ? q ,  

for IJ as above. Hence eC 2 =  E ^ g / ^ J  -  E^g/? Lo) and so ec s =  L 0 -  E*g/i +

Y ,veh  ^ € / 1T' 4  ~ E t̂jG/ 2 L o- I

As in the codimension 2 case, there is an alternative expression of this formula in terms 

of the number of distinct directions of singular 1 -spaces intersecting at each singular 0 -space.

D E F IN IT IO N  2.40 Define the multiplicity qp of a singular 0-space (3 to be the number 

of distinct directions of singular 1 -spaces in the set K.1 intersecting at /?. Write q^ for the 

number of such singular 1 -spaces intersecting at (3 but lying in any plane in the T-orbit

r) € h -

As in the remark following Definition 2.20, these quantities are well-defined for any 

singular 0-space in the same T-orbit as /?.

L E M M A  2.41 For a codimension 3 polytopal projection pattern V  with Lo finite

e* =  £  E f o Z - 1 ) - E f e - 1)-
veh pei% peio

P ro o f  As in Lemma 2.21, we can write — Lo +  E»jg/ 2 Lo ~  Yjpei0 (qp — 1 ) and similarly

~Lo  +  Yizeii Lo =  Ylpzi'iQp ~  1) so E ^ g / 2^ o  ~  E ^ g / ? o )  =  X )tje/2 E )/3g /,? (^  ~  !)• 

Substituting these quantities into the formula of Theorem 2.39 gives the result. |

Of most use later in this section is a formula for the Euler characteristic in which the 

calculation is carried out by taking each singular 0 -space /3 6  Jo in turn and examining the 

singular 1- and 2-spaces which intersect at (3. With the aim of producing such a formula, 

we first define some notation.

D E F IN IT IO N  2.42 Write pp to denote the number of singular 2-spaces rj 6  h  with dis­

tinct normal vectors intersecting to form a given singular 0-space (3. Write Ip for the set 

enumerating all distinct directions of singular 1 -spaces intersecting at f3, so \Ip\ =  qp. Fi­

nally, write qf for the number of distinct singular 2-spaces intersecting to form the singular 

1 -space I € Ip-
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Note that pp is well-defined since if we take two singular 0-spaces P\,P2 in the same 

T-orbit, so # 2  =  Pi + 7  then any singular 2 -space D  which passes through P\ and hence 

contributes to ppr will be such that D +  7  contributes to pp^. Similarly any D passing 

through P2 has the property that jD — 7  passes through Pi. Hence ppl = pp2. Also note 

that Lo < 0 0  implies that the T-orbits of singular 1 - and 2 -spaces axe lines and planes 

respectively, so if a singular 2-space D  contains a singular 1-space /, and hence contributes 

to g f , then D +  7  will pass through another line V = I-1- 7  in the same orbit as I, so gf — q®, 

which means that gf is well-defined.

T H E O R E M  2.43 For a codimension 3 polytopal projection pattern with Lq finite,

ev= 52
P€h

-(P£  -  1 ) +  ] > > f  -  1 )
leip

P ro o f  From the formula in Lemma 2.41, we have

e,p = 521_52 + H 5Z ql ~ 52 qp= L° ~ 52 L<>+ 52 52 qp ~ 52 qv-
Pzh r,ehp€i^ vehpeiZ Peio vei2 fiehpeq  P g/ 0

Now in the term YlV£i2 singular 0-spaces P are counted pp times in the sum over all

77 e I2 since if P has multiplicity pp then by definition it lies in pp non-parallel planes n, 
each in some orbit 77. Thus Lo =  T,pei0 PP- Hence ~ L o +  £ „ G/ 2 Lo = ~ T ,pei0 1 +

«  =  'Epelo&P ~  ^

Next consider ^ p e i ^ qP’ The quantity q^ counts the number of lines passing

through P but which lie in a given 77 € h -  Thus in the sum over all 7 7 , each line I passing 

through P e I0 will be counted gf times. Hence J2nei2 9? =  T,peiQ T ,ie i0 «?• For

any given P G 7o, singular 1 -spaces passing through P axe counted exactly once by qp, so

^ P e h  q& =  S Peh leif} Thus ^2V£i2 ^ Pei% qp ~ 52p£i0 q& =  ^ P e h  Y ,ie i0(qi ~  *)• 

Combining these results gives e-p =  ^2peIo -{pp — 1) + Y^i£i0 iQi ~  *)] ^  required. |

As for polytopal projection patterns of codimension 2, we can consider bounds on the 

Euler characteristic in terms of the number t of 2-dimensional faces of the acceptance domain 

K  with distinct normal vectors.
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L E M M A  2.44 For a codimension 3 polytopal projection pattern V  with Lo finite and ac­

ceptance domain K  having t faces with distinct normal vectors, the Euler characteristic is 

bounded and Lo ^  e-p ^  ^  [t3 — 2f 2 +  t — 4].

P ro o f  Given the formula in the above theorem, note that for a given (3 G Jo, we have 

pp ^  YlieipiQ? ~  !)• This is because firstly gf ^  2, as any singular 1-space lies a t the 

intersection of two or more faces of K , so Yhieip^i — 1) ^  1 =  9/3- Secondly, if pp

faces intersect at a singular point /?, then the number of distinct lines which intersect a t (3 

(the multiplicity qp) is at least pp. To see this, note that each face of K  could intersect only 

two others, or pp — 1 faces could intersect in a single line and the remaining face, which 

must be transverse to the others as i f  is a polytope, intersects all the other faces, creating 

1 + pp — 1 = pp lines through ft. However, if neither of these cases occur, then qp > pp 

since, for example, one plane D could intersect three others, D i, D 2, D3, producing three 

lines in D  plus the three or more lines arising at the intersection of D \ , D2 and D 3 with one 

another.

Hence £ /€//3(gf -  I) -  {pp -  I) ^  1 so ev  = T ,p£i0 [~(P/3 -  1) +  “  *)] ^

X)/3e/ 0 1 =  ^o-

To determine the upper bound, note the following points. Firstly, qi t — 1 for any 

I £ Ip, since at most t — 1 distinct faces of K  can intersect in any one line, as there must be 

at least one face transverse to I to ensure that K  is bounded. Also, the number qp = \Ip\ of 

lines through (3 satisfies \Ip\ ^  (*) since the greatest number of lines through (3 is produced 

when all faces of K  intersect at (3 and each pair of faces intersects in a distinct line. Lastly, 

Pp ^  3 since singular points {3 arise at the intersection of three or more planes in V  =  R3.

These results give ep ^  Z,0 [ - 2 + ( 2 ) ( £ - l - l ) ]  = ^ [ t ( t - l ) ( t - 2 ) - 4 ]  =  I f[ t3- 3 t 2+ 2t-4]. 

Note that since t ^  3, we have ^ [ £ 3 — 3£2 +  2t — 4] ^  Lq. |
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This result shows that for codimension 3 polytopal projection patterns with Lq finite, 

ep ^  1- This is because the acceptance domain K  is a polytope and so has at least one 

vertex, which gives rise to a T-orbit of singular 0-spaces, so Lo ^  1. Thus ep ^  Lo ^  1, as 

required.

The lower bound e-p =  1 is attainable for some codimension 3 polytopal projection 

pattern, since we can take a pattern consisting of the product of three 1 -dimensional codi­

mension 1 patterns (as described in Example 2.35), each with Euler characteristic e = 1 to 

give a 3-dimensional codimension 3 pattern V  with ep = 1 .

As t is assumed to be finite by definition of a polytope, there is another corollary of the 

above result.

CO RO LLA R Y  2.45 For a codimension 3 polytopal projection pattern V , if  Lq is finite, 

then the Euler characteristic ep is defined and is finite. |

Unlike for codimension 2 polytopal projection patterns, we will see later in this section 

that if Lq is infinite then it is not always the case that the Euler characteristic is defined and 

infinite, since for some codimension 3 polytopal projection patterns the Euler characteristic 

is not defined. However, note that for a codimension 3 polytopal projection pattern with Lq 

finite, so the Euler characteristic ep is defined, it is more straightforward to compute this 

invariant than the Cech cohomology groups H *(M V) for V. This is because the quantities 

Rp defined in Theorem 2.37 arising from ranks of maps in the spectral sequence (Section 

1.6.3) are [12, V.6 ] hard to compute in general. However, they are not required for the Euler 

characteristic calculations.

The Euler characteristic has a particularly neat formulation in the case when there is 

one T-orbit of singular 0 -spaces and exactly two singular 2 -spaces intersect a t any singular 

1 -space.

LEM M A  2.46 For a codimension 3 polytopal projection pattern V  with Lq = 1 and such 

that exactly two singular 2-spaces intersect at any singular 1 -space, ep =  ^ ( t  — l)( t  — 2 ).
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P ro o f  In this case, qp =  (*) since a line through /3 is produced at the intersection of any 

pair of singular 2-spaces. Also, for each 77, in this situation we have = (t — 1) since the 

t — 1 planes transverse to a plane D in the orbit 77 intersect D  in distinct lines through /?. 

Substituting these values into the formula in Lemma 2.41 gives e-p = ~  — —

(I) + i] = t ( t - l ) - t  -  t- ^ -  +  1 =  - 2 t  + 2 = | ( t 2 -  3f +  2) =  | ( t  -  l)(f -  2) |

An example of a pattern satisfying these conditions is the Danzer tiling, described in 

[14]. This pattern is canonical, Lq = \  and its acceptance domain has 6  faces in distinct 

orbit classes, each pair of which has 1-dimensional intersection, so its Euler characteristic is 

|( 5  x 4) = 10.

C ase 2: Lq in fin ite  but orbits o f  faces o f  K  con ta in  p lanes

Unlike codimension 3 polytopal projection patterns V  with a finite number of T-orbits of 

singular 0-spaces, for which the T-orbits of the faces of the acceptance K  for V  automatically 

have the form of planes by Lemma 1.54, when Lq is infinite and singular 2-spaces D € he 

are planes, there are two possibilities. Firstly, the T-orbit of any face of K  may consist of 

planes. Secondly, the T-orbit of a single 2-dimensional face of the acceptance domain K  may 

not consist of planes, but in the set of T-orbits of all faces of K  the connected components D 

are planes. Recall (Def 1.52) that we refer to patterns V  in this case as hyperplane polytopal 

projection patterns. By Lemma 1.60 the sequence 0 C 3 -» C2 -» C 1 -> C° -* Z 0 is 

exact for hyperplane polytopal projection patterns and so a spectral sequence can be set up 

as in Section 1.6.3. However, as we shall see in Theorem 2.50 below, even in the simplest 

case of a three-dimensional codimension 3 hyperplane polytopal projection pattern, the 

Euler characteristic (Def 2.1) is not always defined. There are cases in which the Euler 

characteristic of such a codimension 3 pattern is defined, namely under the conditions of 

Theorem 2.53 or Corollaries 2.55 and 2.56. To state and prove these results, we show in 

Lemma 2.49 that for codimension 3 hyperplane polytopal patterns, the finiteness of the 

rational rank of H*(T;C3) S  H d~*(M V ) depends in part on the rank of H ^T;*?1). We 

begin with a result about rk i/*(T; C 1).
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L E M M A  2.47 For a codimension 3 hyperplane polytopal projection pattern, if the number 

Lie of T-orbits of singular 1 -spaces V  G I i c/T  is finite, then rk Hm (T] C 1) <8 > Q is finite for 

m > 0 .

P ro o f  First decompose the module C 1 as ®-pe/ lc/r  ® ^[T/Tp ] by Lemma 1.62, where 

Cp is the submodule of C 1 arising from singular 1 -spaces contained in a single representative 

of the T-orbit V. Corollary 1.71 then gives / fm(T;C1) ^  ® p G/lc/ r  i2m(Tp ; Cp). Now we 

can use Lemma 2.16 to show that for each V  € he IT, the module Cp fits into a sequence 

0 —» Cp -> Cp -¥ Z —► 0 which is exact. Applying the functor H m{Tv \ —) to this short 

exact sequence yields a long exact sequence in homology

 ► tf 2 ( r p ;Z) — ► H i(T ^ jC i)  — ► Hi{Tv -,Cl) — > fTi(r®;Z)

— > H0{TV -C)>) — ► tf 0 (Tp ;C °) — ► Ho(Tv -,Z) — > 0  

and since Cp is a free T^-module, i f m(Tx>;Cp) = 0  for m > 0. This implies that 

ffm(T'D;Cp) — Hm+i (T®; Z) for m  > 0. In particular, rk Cp) < oo.

Returning to i/i(T ; C 1) =  ® p e/ lc/ r  -^ i( rp ; Cp), since L ic =  | / i c/T | is finite by assump­

tion, H\ (T; C 1) is a finite sum of groups of finite rank over Q and hence rk Hi (T; C 1) ® Q < 

oo, as required. |

As in the codimension 2  case (Section 2.2), for a hyperplane polytopal projection pattern

V  with exact sequence 0 -> C 3 —► C 2 —» C 1 —> C° -> Z -» 0, we can obtain other exact

sequences, as shown in the following lemma.

LEM M A  2.48 Given a codimension 3 hyperplane polytopal projection pattern, and T- 

modules C'd for i =  0 ,1 ,2  (Def 1.61), there is an exact sequence

0 — > C2d — * C lD — ► C°D — ► Z* — ► 0. (2.4)

P ro o f  In this case, singular 2-spaces are planes. Since parallel planes are disjoint, and 

non-parallel planes in distinct T-orbits intersect in at most singular 1 -spaces, which give rise
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to the zero element in C2, we can decompose C2 as ®£>gj2c Cp. Note that, as in Lemma 

1.62, we could write C2D =  Cp ® Z [ r / r p ], for Cp the module defined on singular 2 -spaces 

in a single representative of the orbit V  with action by Tv , but in this section we generally 

want to consider the module Cp  with action by the whole of I \

Note that the sequence 0 —» Cp -4 Cp -4 Cp -4 Z -4 0 is exact by Lemma 2.15, as we 

are restricting to an orbit V  of a (two-dimensional) plane D  in which the singular 1-spaces are 

lines of infinite length by Lemma 1.43. Thus the sequence 0 - 4  Cp  - 4  Cp - 4  Cp  4  Z* 4  0 

is exact, because the functor — <g) Z f r / r 15] is exact. Note that Z ®r Z [ r / r I>] =  Z® is of 

infinite rank. |

Tables for the E 1 and E 3 terms of the spectral sequence described in Section 1.6.3 are 

given below for a 3-dimensional codimension 3 hyperplane polytopal projection pattern V. 

Note that E 3 = E°° since only the first and second differentials are non-zero in this case. 

The groups in the table which are possibly non-trivial are determined by Lemma 1.72. As 

we will always be working rationally in the work which follows, we again suppress Q by 

writing E^q for E*q <g> Q and rk G for rk (G <8 > Q).

0 0 0 tf3(r;C3)
0 m 2{r  ;C3)
0 i i ? i ( r ; c 3)

ffo (r;C ° ) 2 1H0(T-,C1)Z »H 0 ( r ; c 3)

0 0 0 H s(r;C 3)
0 ( tf2 ( r ; C ^ /I m d z ^ /I m d t K erd22/Im dzi Kerd32
0 ( i? i(r; C1)/Im d 2i)JIm di K erd2 \/1  mdz\ Kerd2

H„<X-,Ca) /Im d 10 Kerdio/Imd2o Kerd2ojImdzQ Kerd\

L E M M A  2.49 For a codimension 3 hyperplane polytopal projection pattern V , if the rank 

of Hm(r ; C 1) over Q is infinite, then the rank over Q of C 3) is infinite for m > 0.

88



P ro o f  To prove that rk i7m(T;C3) is infinite, consideration of the spectral sequence ta­

bles above indicates that it suffices to show Ker(d,2m • Hm(T]C2) -> i f m( r ;C 1)) is of in­

finite rank over Q. This is because of the fact that rk (Kerd2m/ Imd^m) is a summand of 

rk Hm+2 (r;Z ), which is finite by Lemma 1.66, so if rk Kerd2m =  oo then rk Im d^m =  oo 

and hence rk H m(T) C3) =  rk Kerd^m  +  rk 7md3m =  oo.

In order to prove rk K erd2m =  oo, in analogy with the proof of Theorem 2.26 we 

essentially find (infinitely many) linearly independent pairs of elements [x], [y] € f2 m (r; C 2) 

with the property that d2m[x] =  d2m[y] in i 2 m(T;C'1) so their difference [x] — [y] is in the 

kernel of cfem- In fact, we establish the following diagram, in which Hm(T] C lDD,) is an 

infinite rank subgroup of i / m(T; C 1) with the property that an infinite rank subspace A f\A '  

lifts to distinct summands Hm(T; Cp) and i7m(r; Cp,) of Hm(T ; C2), thus producing the 

required (infinite) set of pairs of elements of Hm(T]C2) whose images under d2m are equal.

A n A 'r

^ m (r ;C ]?Do c— - t f m( r ; c iO

We first produce the group Hm(T; C lDD,). By Lemma 2.47, there are an infinite number 

Lie of orbits of singular 1-spaces since rk Hm(T] C 1) is infinite. Since the number of T-orbits 

of singular 2-spaces is finite for a codimension 3 polytopal projection pattern, by the remark 

following Definition 1.36, at least one pair D, D‘ of singular 2-spaces has the property that 

the translates of D and D' under T intersect in singular 1-spaces in infinitely many T-orbits. 

We can also suppose that these singular 1-spaces have stabilisers of rank m +  1 or greater, 

and hence cause 77m(T; C1) to be non-trivial and of infinite rank.
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Consider the exact sequence (2.4) in Lemma 2.48. In Cp, there is a submodule ClDD, 

of functions on singular 1-spaces at the intersection of singular 2-spaces D  and D' and 

their T-translates. As the singular 1-spaces (D +  7 ) n  (D ' +  7 ') as 7  and 7 ' vary are all 

parallel, there is a decomposition ClDD, =  © ^€/dd' (g>Z[T/T^], where is the T-module

generated by indicator functions on a single representative of a T-orbit of singular 1-spaces 

(D +  7 ) fl (D ' + 7 ') and if*0 ' is the set of all such orbits. By Corollary 1.71 we have 

#m(T; CpD,) — 0 ^ €/dd' 27m(T^;C |). Now we assumed that the singular 1 -spaces at the 

intersection of D and D' had stabilisers of rank strictly greater than m, so C^) is

non-trivial, and we assumed the singular 1-spaces were in infinitely many T-orbits, so I OD 

is an infinite set. Hence we have produced a group H m(T; ClDD,) of infinite rank over Q.

Note that there is an inclusion i / m(T;CpD,) Hm(T;Cp) induced by the inclusion 

C pD, C Cp. Thus rk i / m(T; Cp) is also infinite and the inclusion Cp C C 1 induces a map 

Hm(T-,Cp) t-> i2m(T;C 1).

We now show that H m(T;C2) is of infinite rank over <Q>. Consider again the sequence 

(2.4). We can break this sequence into two short exact sequences

0  -> C2d -» C], Cg3 -> 0 (2.5)

0 ^ C (g ^ C Op ^ Z 8 -+0  (2 .6)

where C*p is the image of the map So: Cp —► Cp. Note that T acts on these modules, as 

mentioned in Lemma 2.48, so we apply the functor 12* (T; —) to both sequences.

The long exact sequence in homology associated to (2.6) is

-> Hm(r  ;Cg>) - t  Hm(r-,C°D) -> -> ffm_1(r ;Cg>) ->■■■. (2.7)

Now H m(V;Cp) is trivial for m > 0 since C°D is a free T-module, so we have —

2fm+i(T ;Z 8) for m > 0. By definition of s and Corollary 1.71, we have Hm(T; Zs) =
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H m(Tv ® T/Tv ; Z(8 >Z[r/rp ]) “  Hm{Tv -,Z), which is of finite rank over Q. Thus Hm{T; Cg>) 

has finite rank over Q for m  > 0 .

The sequence in homology associated to (2.5) is as follows.

■■■-* Hm(T;Cl) Hm{r-,Cb) % Hm(r;C$)  - f  tfm_i(r;C%) -> ••• (2.8)

As shown above, rk H m(T] Cp) =  oo but rk Hm(T ]C ^)  < oo so Ker8™ must be of in­

finite rank over Q. The exactness of the sequence (2.8) implies that there is a surjection 

-»  K er8?  and so H m(T\ Cp) is of infinite rank over Q. The inclusion of the 

summand Cp into C2 induces an inclusion ifTO(r;Cp) «-)■ Hm(T;C2) so H m(T ; C2) is of 

infinite rank over <Q> for m > 0 .

We could equivalently have made the above constructions using the summand Cp, of 

C2, so we also have Hm( r ; C p ,) an infinite rank summand of Hm( r ; C2) and C p ,)

of infinite rank, with inclusions Hm( 17; C pp,) t—>• Hm(T; Cp,) <—► # m(r; C 1).

Given the diagrams

^ m (r;C ^ p ,)  H m(r-,Cb) and H m i^ C b o ,)  ^  Hm{T\C\y)
I S ?  iS 'Qm

tfm(r;c£°) H m(r-,c& )

we can decompose Hm(T] C pp,) as a direct sum A ® B  for A  C # m(r; C pp,) C / f m(r; Cp) 

in the kernel of and B  such that the restriction 8™\b  of <5™ to B  is an inclusion. As 

Hm (r; C p )  is of finite rank, B  is of finite rank, so A  is of infinite rank since rk H m (T; Cp p ,) =

oo. Similarly there is a decomposition of H m(T] C pp,) as A '® B ' for A' C KerS ™ of infinite 

rank and B ' of finite rank.

The intersection AC\A' is of infinite rank. To see this, consider 7r : A® B  -* B  and n ' : A'® 

B ' —y B ' projection maps with kernel A  and A' respectively. The kernel of H m(r ; C pD,)

B  ® B ' is precisely A n A' but this is of infinite rank since rk Hm(T; C pp,) =  oo and B  ® B ' 

is of finite rank.

Now since i /m(r;Cp) surjects onto K erS?  by exactness of the long exact sequence in 

homology above and A D A 1 is contained in KerS? ,  the elements of A  fl A' can be lifted
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to elements of / ^ ( T ;  Cf>). Similarly, the elements of A  fl  A' can be lifted to Cp,).

Thus we can find two non-zero elements [x] € Hm(T] Cp) and [y] € Cp,) which both

map to some element [z] € A  fl  A 1 C # m(T;Cpp,) under efem' #m (T ;C 2) -> i fm( r ;C 1). 

Since [x] and [y] are in different direct summands of Hm(T;C2) their difference [x] — [y] is 

non-zero in iTm(T;C2) but d2m{[x] -  [y]) =  [z] — [z] =  0. As A fl  A' is of infinite rank, 

there exist infinitely many such elements [z] associated to linearly independent pairs [x], [y] 

of elements of Hm(T; C 2). Thus Kerdim  is of infinite rank, so rk H m{r ;  C3) is infinite. |

We can now formulate a theorem giving conditions under which the Euler characteristic 

is not defined.

T H E O R E M  2.50 Given a codimension 3 hyperplane polytopal projection pattern for which 

the rank of Hi (T; C 1 ) is infinite, the Euler characteristic is not defined.

P ro o f  Since rk /^ (T jC 1) =  oo by assumption, setting m  = 1 in Lemma 2.49 gives that 

tf i(T ;C 3) is of infinite rank over Q. If we can show that rk H q(T ; C3) is also infinite, 

then since it has a sign opposite to that of rk ifi(T ;C 3) in the expression for the Euler 

characteristic in Corollary 2.4, the Euler characteristic is not defined in this case.

First note that under the above assumptions, Lo is infinite since rk iT i ( T ;  C 1) =  oo 

implies that L \c =  |7ic/T | is infinite by Lemma 2.47 and this in turn gives that Lq is 

infinite, since each T-orbit of singular 1-spaces in / i c/T  contains at least one T-orbit of 

singular 0-spaces by Lemma 1.39. Hence to show that rk f T o ( T ; C 3 ) =  oo, we could use 

Theorem 2.60 ahead, but in this relatively low dimensional case for which we know by 

Lemma 1.60 the sequence 0 —► C 3 —> C 2 - *  C 1 C° —> Z  —> 0 is exact, we prove the 

result as follows. The argument used is similar to that of Lemma 2.49 — we show that the 

kernel of the map d2o '■ Ho(T;C2) —» H0(T; C 1) is of infinite rank by finding an infinite set of 

elements in i f o ( T ;  C 1) which lift to two distinct summands of i / o ( T ;  C2) so their difference 

is non-trivial in H0(T-,C2) but zero in HoiT^C1).
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For a codimension 3 polytopal projection pattern, there are only finitely many T-orbits 

of singular 2-spaces and hence at least one, denoted D, must contain singular 0-spaces in 

infinitely many T-orbits. As in Lemma 2.49, we consider the exact sequence 0 -> Cp —> 

C p  -* Cq —> I f  -> 0 and the short exact sequences (2.5) and (2.6).

The long exact sequence arising from (2.6) yields rk Hq(T; C^f) =  rk Hq(T ; CQD) — 

rk t f 0 (T;Z8)+rk # i(T ;Z s) and this is equal to rk H0(TV] C& J-rk H0{TV -, Z)+rk H 1(TV -,Z) 

by Corollary 1.69, for Tv  the stabiliser of all singular 2-spaces D in the orbit V. Hence, 

writing for the number of T-orbits of singular 0-spaces in D  (or any other singular 2- 

spaces in the T-orbit V  of D) we have rk Hq(T] C^0) =  Lq +  rk Tp — 1 which is infinite 

since Lff is infinite by the choice of D.

Next considering the long exact sequence (2.7) arising from (2.6), the map H0(T ; C lD) —► 

Ho(T,C£,°) is a surjection so rk H q ( T ; Cp) is infinite and hence iTo(T; C 1) D ifo(T;C ^) is 

of infinite rank.

Now there is a singular 1-space in D  which contains singular 0-spaces in an infinite 

number of T-orbits. To see this, note first that there are infinitely many T-orbits of singular

0-spaces in D but any singular 0-space arises at the intersection of three or more singular 2- 

spaces and since there are only finitely many T-orbits of singular 2-spaces for a codimension 

3 polytopal projection pattern, there is at least one set D \D "  of singular 2-spaces whose 

translates intersect D in singular 0-spaces in infinitely many T-orbits. If the intersection of 

translates of D" with the singular 1-space D  fl (D1 -I- 7 ) and the intersection of translates 

of D' with D fl (D" +  7 ') were in finitely many T-orbits for some 7 , 7 ' € T then there could 

be only finitely many T-orbits of singular 0-spaces arising at the intersection of translates 

of D ,D ' and D ", which is a contradiction to the choice of D' and D " . Thus a t least one of 

the lines D  fl (D' +  7 ) or Z) fl (D" +  7 ') contain infinitely many T-orbits of singular 0-spaces. 

Denote this singular 1-space by I and write U for the set of parallel singular 1 -spaces which 

intersect I at the singular 0-spaces in infinitely many T-orbits and which are formed at the 

intersection of D with the singular 2-space D' or D" not used to form I.



The above construction enables us to be able to apply the argument in the proof of 

Theorem 2.26. Namely we produce infinitely many elements U of Cp giving rise to dis­

tinct elements of K erd io : Hq(T; Cp) —► Ho(T',C^), which is thus of infinite rank. Hence, 

since Ho(T;Cp) surjects onto K erdio : H0(T ; Cp) -> Ho(T\Cj^) by exactness of (2.8) at 

Ho(T]C\y) we have rk Ho(T] Cp) infinite.

We now proceed by constructing an infinite set of elements in the kernel of the map 

<5q : # o (r; Cp) -> Hq{T\ C*p) which lifts to two distinct summands of Ho(T] C2) , thus giving 

rise to pairs of elements whose difference in Ho(T; C2) is non-trivial, but which are in the 

kernel of d20: H0{T- C2) -»> H0(T] C 1).

Take the set Si of singular 2-spaces in D which are bounded by the singular 1-spaces 

associated to the elements t{ G Kerb®, where U is the indicator function on the loop formed 

by the singular 1 -spaces I, Iq, h and V for V parallel to I and lo parallel to U formed by the 

same pairs of singular 2-spaces as I and U respectively, as shown in the diagram below. These 

singular 2 -spaces then give rise to elements Si of Cp whose images under 6 1 : Cp  —>■ Cp  are 

li which in turn yield distinct elements [^] in Ker(H o(T ; Cp) —> Ho(T] C 'p)) as in the proof 

of Theorem 2.26. Hence {£i} is a set of elements in Ho(T; Cp) which lifts to Hq(T; Cp).

---------------------V = D n ( D ‘ + V )

--------------------- / =  D  n  (£>' +  7 )
i0 = D  n (D" +-,0) l i  = d  n (£>" +-ri)

Now translates of D, D 1 and D" can be found which form parallelepipeds n* having base 

Si since each singular 1-space in the boundary of 5* is at the intersection of D  with some 

translate of D ’ or D" and since D , D' and D" are planes of infinite extent by assumption a 

translate D + y  of D can be taken which intersects the translates of D' and D" in singular 

1-spaces forming the boundary of 5* -I- 7 . Thus as above the element [ii\ -I- [£i +• 7 ] G 

Ker(H 0(T-, C'p) ^ 0 ( r ; <?£)) lifts to H0(T; C2D) C H0(T; C2), but it lifts to H 0(T-, C2D,) 0  

Ho(T]Cp„) C Ho(T;C2) as well, since the singular 1 -spaces associated to li  also form the 

boundary of the cylinder in n* arising from D \ D" and their translates.
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H en ce w e h ave fo u n d  e lem en ts [x] €  Hq(T] Cq)  an d  [y] €  Ho(T] Cp,) ®Hq(T] Cp,,) such  

th a t  [x] — [y] is  n o n -tr iv ia l b u t d2o([x] — [y]) =  [-£»] +  [̂ * +  7] — ([̂ i] +  [£i +  7]) =  0 and  sin ce  

th ere  are in fin ite ly  m a n y  e lem en ts [£*], w e h ave rk Ker(d.2o: Ho(T; C2) ->  Ho(T; C1)) =  00, 

w h ich  m ean s th a t rk Ho(T-, C3) =  00 as required . |

The above theorem established criteria under which the Euler characteristic of a codimen­

sion 3 polytopal projection pattern is not defined. We now consider an example satisfying 

these conditions.

E X A M PL E  2.51 A 3-dimensional codimension 3 degenerate canonical projection pattern.

To produce such a pattern, we take a canonical 3-dimensional codimension 3 projection 

pattern, so the acceptance domain K  is the projection to V  of a six-dimensional hypercube. 

The projection is chosen so that three of the 1-dimensional faces of K  coincide but with 

lengths that are mutually irrational. Any singular 1 -space I in the direction of these three 

faces thus has stabiliser of rank 3 since there axe three elements of T in the direction of I 

and they are rationally independent. Note by Lemma 1.49 that the stabiliser of any singular 

1-space associated to a 3-dimensional codimension 3 projection pattern cannot be of rank 

larger than 3. To show that a pattern with this property satisfies the criteria above, note 

the following lemma.

LEM M A  2.52 For a 3-dimensional codimension 3 hyperplane polytopal projection pattern 

such that at least one singular 1 -space has stabiliser Tl of rank 3 , then the number of orbit 

classes of singular 1 -spaces with rk Tl = 3 is infinite.

P ro o f Under these assumptions, and using Lemma 1.49, the rank of the stabiliser of any 

singular 2-space D is at most 4, so if there is a singular 1-space / with stabiliser Tl =  

(ei,e2 ,e 3 ) of rank 3 in some singular 2-space D , then there must be another singular 1 - 

space V in D with stabiliser of rank 1. This is because D is a plane by assumption, but
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there are only finitely many T-orbits of singular 2-spaces for a codimension 3 polytopal 

projection pattern so the vector space span of the stabiliser of D must be two-dimensional. 

Hence all stabiliser vectors cannot be parallel to the singular 1-space /.

Now suppose the singular 1-space I is formed at the intersection of singular 2-spaces 

D and D '. Then as in Lemma 1.39 the lines formed at the intersection of D and D' are 

dense in D by the density of T in V  (which implies that the projection of T to D along 

D' is dense in D). Similarly, the singular 0-spaces at the intersection of V and the singular 

1-spaces parallel to I are dense in I'. The singular 0 -spaces in V are thus not all in the same 

T-orbit since the stabiliser of V is of rank 1 so singular 0 -spaces closer than the length of 

the generator of Tl are in distinct T-orbit s.

Note that the elements of the stabiliser T13 of D  are linear combinations of the elements 

of Tl and Tl . This means that the orbit of I under T13 is not dense in D  because in the 

direction of I' (not parallel to I) the only translates are of length ||v|| for v the generator of 

Tl . Since singular 1-spaces parallel to / are dense in D, there are infinitely many which are 

closer than ||v|| to I and to each other and hence must be in distinct T-orbits. |

The above lemma shows that H \ (T; C l ) is infinite for this pattern so Lemma 2.49 tells us 

that i2i(T; C3) is of infinite rank over Q. Lemma 2.47 also gives L q infinite for this pattern 

so rk Ho(T] C3) is infinite by the result in the proof of Theorem 2.50 or by Theorem 2.60. 

Hence the Euler characteristic of this pattern is not defined.

We now give three results considering situations when the Euler characteristic is defined 

for a codimension 3 hyperplane polytopal projection pattern with Lo infinite.

T H E O R E M  2.53 For a d-dimensional codimension 3 hyperplane polytopal projection pat­

tern V  with Lo infinite, if Hm(T',Cl ) is of finite rank over Q for all m  > 0 then the Euler 

characteristic e-p is defined and is infinite.
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P ro o f  To prove this result, we begin by showing that rk Hm(T-,C3) is finite for m > 0  by 

showing that the kernel and image of the map d3m: Hm(T] C3) —>• Hm(T]C2) have finite 

rank over Q.

By Lemma 1.62, we can decompose C 2 as © p e/2c/r  ® l ^ V] f°r T-module

in Definition 1.61. From the proof of Lemma 2.48 there is an associated exact sequence 

0  -> Cp -> Cp —> Cp Z 4  0. Break this sequence into two short exact sequences 

0  -> C|> -> C i  -► Cg> -> OandO Cg3 Cg -> Z  -> 0 , whereCg3 =  Jm<5: Cg -> Cg and 

apply the functor ^ ( T 13; —) to obtain long exact sequences in homology. From the sequence 

. . .  -> Hm(Tv ;C<g) -> Hm{Tv -,Cl) -+ Hm(rv -Z) -> . . .  we see that Hrn{Tv -iC^°) S  

i / m+i ( r p ; Z )  for m > 0  since Cg is a free T-module so Hm(Tv ', Cg) =  0  for m  >  0 . Now in 

the long exact sequence •••-»• Cp) -» i?m( r 23; Cp) -> i f m(Tp ; Cg°) -* • • • ,  for m >

0  we have Hm(T13; Cp3) of finite rank over Q and Hm(Tv ] Cp) of finite rank by assumption, 

so Hm(Tv \ Cp) is of finite rank. Hence, as the set J2C/ r  of T-orbits of singular 2-spaces is 

finite for codimension 3 polytopal projection patterns, i / m(T; C2) =  ®x»e/2c/ r  - ^ ( T 23; Cp) 

is of finite rank. Thus the map d3m: H m (T', C3) —► H m(T; C2) has image of finite rank.

Note that Kerd^m is also of finite rank, since from the E 3 = E°° terms in the spectral 

sequence (in the table preceding Lemma 2 .4 9 )  rk K erdm+i is a summand of i 7 m + 3 ( T ; Z ) ,  

which is of finite rank. This implies that rk Kerdzm  is finite since if Kerd$m were of infinite 

rank, then the image of the second differential dm+ i : JTm ( T ; C 3 ) —»• i f m + i ( T ;  C 1) would 

have infinite rank. However, i f m ( T ; C 1 ) is of finite rank by assumption, so rk Kerd^m  

cannot be infinite. Hence rk i f m (T ; C 3 ) =  rk iTerd3m + rk /m d3m is finite for m  >  0 . Thus 

the Euler characteristic is defined in this case. The proof of Theorem 2 .5 0  or Theorem 2 .6 0  

ahead imply that i f o ( T ;  C 3) is of infinite rank over Q and hence the Euler characteristic is 

infinite. |

CORO LLARY 2.54 The Euler characteristic for a codimension 3 polytopal projection 

pattern is defined if and only if rk i / m (T ; C 1) is finite for all m > 0 . |
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C O R O LLA R Y  2.55 For a codimension 3 hyperplane polytopal projection pattern with Lo 

infinite and such that the stabilisers of all singular 1 -spaces have rank 1, the Euler charac­

teristic is defined and is infinite.

P ro o f  By Lemma 1.72, in this situation the homology groups i f m(r^ ;C |)  are trivial for 

m  > 0, where £ 6  i i c/T  are T-orbits of singular 1 -spaces and is the T-module (Def 1.57) 

defined only for one singular 1-space in the T-orbit £. Note that C 1 =  © £e/ic/r  C\ ®Z[T/T^] 

since by assumption the singular 1 -spaces are lines of infinite length, so parallel singular

1 -spaces are disjoint and non-parallel lines intersect in at most a point, which gives the 

zero element in C 1. Thus i f m(T;C'1) S  © £€/ic/ r  ^m(T*; C |)  is trivial. In particular 

rk H m(T; C 1) is finite, so Theorem 2.53 tells us that Hm(T; C3) is of finite rank over Q for 

7Ti > 0, which means that the Euler characteristic is defined. Again, by the proof of Theorem

2.50 or Theorem 2.60, the group Ho(T; C3) is of infinite rank. Thus the Euler characteristic 

is infinite. |

CO R O LLA R Y  2.56 For a hypergeneric codimension 3 polytopal projection pattern of ar­

bitrary dimension, the Euler characteristic is defined and is infinite.

P ro o f  If the stabilisers of singular i-spaces are i-dimensional, for i =  1,2, then by Lemma 

1.72 the groups Hm(T; C l) ^  © 0 G/ic/r  C xe) are trivial for m > 0. Thus in particular

i7m(T; C 1) is of finite rank over Q for m > 0 so Theorem 2.53 gives tha t rk ffm(T; C3) is 

finite for m  in this range, and so the Euler characteristic is defined.

By Theorem 2.50 or Theorem 2.60, we know that Hq(T ,C 3) is of infinite rank, so the 

Euler characteristic is infinite. |

Note that something more can be said about the (co)homology of hypergeneric polytopal 

projection patterns than is yielded by the Euler characteristic. Considering the spectral 

sequence tables on Page 8 8 , if H m(T; C 1) =  0 =  i / m(T; C2) for m  > 0, then the edge 

homomorphisms i fm+3 (T;Z) —> i / m(T; C3) are isomorphisms, so we have the following 

result.
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T H E O R E M  2.57 The rational ranks of the Cech cohomology groups of the continuous 

hull M V  for a codimension 3 hypergeneric polytopal projection pattern are as follows.

We conclude consideration of this case with a general result giving a necessary condition 

for Hm(T; C3) to be of finite rank.

T H E O R E M  2.58 For a d-dimensional codimension 3 hyperplane polytopal projection pat­

tern, the homology groups Hm(r]C 3) have finite rank over Q for m  > r — 1, where r = 

max{rfc f  € I\} .

P ro o f By Lemma 1.72, the group i / m( r ;C 1) is trivial for m > r  — 1, where r  is the 

maximum of the ranks of stabilisers of singular 1 -spaces (which are lines of infinite length 

in this case). Thus the second differentials d: C3) ->■ H m(T; C 1) will be zero maps

for such values of m and so Kerd-sm is of finite rank over Q since K erd  is of finite rank, 

being a summand of Hm+3(T-,Z), and Im d  is of finite (zero) rank. Also, the images of the 

first differentials d^m: Hm(T; C3) —* Hm (Y ; C2) have finite rank for m > r — 1 by Theorem 

2.53, since rk i7m(T;C'1) =  0 < oo for m  > r — 1. Thus the groups i f m(T;C3) are of finite 

rank for m > r — 1 . |

Case 3: Lo infinite and orb its n o t h yperp lanes

For a codimension 3 polytopal projection pattern V, if the T-orbits of singular 2-spaces do 

not contain the planes spanned by the spaces, then it is possible that the sequence (1 .2 ) of 

modules Cx (Def 1.57) may not be exact. However, if there is such an exact sequence, then 

we may proceed in the same way as in the previous cases to obtain various results about 

the Euler characteristic in this situation.

H P(M V) = | for 0 ^  p  ^  d — 1 
for p = d

I
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Note that when the T-orbits of singular 2-spaces do not consist of planes, then there 

axe three possibilities. Firstly, the connected components may be homeomorphic to 2- 

dimensional balls and hence have trivial stabilisers. Secondly, the connected components 

could have the form of strips of infinite length, with stabiliser having real span of dimension

1. Thirdly, the connected component may have the form of a plane with holes in, so 

the stabiliser has real span of dimension 2  but there are some points in the span of a 2 - 

dimensional face F  of the acceptance domain K  for V  which are not in the orbit F  +  T of 

F. In the latter two cases, singular 1-spaces I € I \c could have the form of lines of infinite 

length.

The result below considers polytopal projection patterns with connected components 

D € he  having trivial stabiliser (referred to as generic polytopal projection patterns in 

Definition 1.51).

T H E O R E M  2.59 For a codimension 3 generic polytopal projection pattern for which the 

exact sequence (1.2) exists, then the Euler characteristic is defined and is infinite.

P ro o f Given the exact sequence 0 —► C 3 —> C2 —> C 1 —> C° —► Z —► 0, a spectral sequence 

can be set up as in Section 1.6.3. In this case, the stabilisers Tl of singular 1 -spaces I are 

trivial so Hm(T; C 1) = © £6/lc/ r  C |)  =  0 for m  > 0 and similarly Hm(T-,C2) =  0 for

m  > 0. This means that the edge homomorphisms i / m+3 (T; Z) —► H m(T; C3) in the spectral 

sequence are isomorphisms for m  > 0 so rk i / ’Tn(T; C3) is finite for m > 0 and hence the 

Euler characteristic is defined since at most one group in the expression given in Corollary 

2 .2 , namely i7o(T;C3), can be of infinite rank.

Since L0 is infinite for generic patterns (because the stabiliser of any singular 2-space D 

is trivial and so any two singular 0-spaces in D must be in different T-orbits and there are 

infinitely many singular 0-spaces in D  by Lemma 1.39), by Theorem 2.60 ahead or Theorem

2.50 we have Hq(T;C3) of infinite rank. Hence the Euler characteristic is infinite. |
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When the stabilisers of singular 2 -spaces axe non-trivial, but the singular spaces are 

not hyperplanes, then subject to the modification of the exact sequence associated to Cp 

described below, the results of Case 2  can be applied here to yield similar results.

There is an exact sequence 0 —> C|> —>• Cp —>■ Cp -> Zs —► 0, for Cp the T-module in 

Definition 1.61. This is because within the 2-dimensional affine subspace D of V  =  M3, we 

can apply Lemma 2.15 to give exactness at Cp and Cp. However, since singular 2-spaces 

in 12c are not hyperplanes, it is possible that there are singular 0-spaces in D which are not 

contained in singular 1-spaces. These can only arise from the intersection with D of vertices 

of translates of the acceptance domain K , since if p  is a singular 0-space at the intersection 

of singular 2-spaces D and D' which is in the interior of D and not a vertex of D 1, then 

D CiD' consists of a line segment containing p. Thus there are singular 0-spaces for which 

the difference of their indicator functions is in the kernel of Cp -> TL but not in the image of 

Cp —> Cp since there is no path of singular 1-spaces between the singular 0 -spaces. Hence 

for exactness at Cp, we require a map Cp —> TLa for s the number of edge-path components 

(Def 1.26) in D. There can only be finitely many singular 0-spaces in D  not contained in 

any singular 1-space since there are only finitely many vertices of K  and as the stabiliser of 

D is trivial, no more than one singular 0-space in the same T-orbit can lie in D. All other 

singular 0-spaces in D are in the same edge-path component by Lemma 1.42 so s is finite.

Sum m ary

This section has shown that for codimension 3 polytopal projection patterns when Lo is 

finite we can produce formulae for the calculation of the Euler characteristic, as we did in 

the codimension 2 case. However, when Lo is infinite, codimension 3 polytopal projection 

patterns differ from patterns of codimension 2 since we have seen that the Euler charac­

teristic is not always defined in this case. Lastly, we showed that the Euler characteristic 

is always defined and infinite for generic and hypergeneric polytopal projection patterns of 

codimension 3.

Having considered low-codimension patterns, the next section gives a discussion of poly­

topal projection patterns of arbitrary codimension.
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2.4 Higher codim ensions

This section produces results generalising the statements made above for polytopal projec­

tion patterns of low codimensions to patterns of any codimension. We begin with the proof 

of the result referred to in previous sections, namely that (no matter whether the sequence

(1 .2 ) of modules C% is exact or not) if L q is infinite for a polytopal projection pattern V  

then H d(M V ) =  Ho(T]Cn) is of infinite rank over <Q>. The result generalises [1 2 , IV.2.9], 

which was only applicable to canonical projection patterns.

T H E O R E M  2.60 For a codimension n polytopal projection pattern with Lo infinite, we 

have rk Ho(T]Cn) ® Q =  oo.

P ro o f To prove this result, we restrict to a region small with respect to the inradii of faces 

of K  so that there are infinitely many translates of singular (n — l)-spaces with the property 

that the region intersects the spaces in their interior only. Thus we recover the setup for 

[1 2 , IV.2.9], namely a region containing a dense set of hyperplanes whose normals span the 

region, and so the method of proof of [1 2 , IV.2.9] can be applied here.

Since Lo is infinite, but the number of T-orbits of (n — l)-dimensional faces of the accep­

tance domain K  is finite, there is an (n — 1)-dimensional face F  containing representatives 

of infinitely many orbit classes of singular 0-spaces. Take a singular 0-space ft in F. This 

point is formed at the intersection of at least n faces of K , including F, and there must be 

a subset of n faces with linearly independent normal vectors for the intersection of these 

faces to be a single point.

Since there are infinitely many orbit classes of singular points, and K  is a polytope so 

has a finite number of vertices by definition, without loss of generality we can take a singular 

0-space ft which is not a vertex of K . Thus it lies in the interior of F  and all the other faces 

F{ intersecting F  to form ft. Since 0  is in the interior of these faces, there is some e > 0 such 

that (n — l)-dimensional balls B e(0) of radius e centred at 0  can be contained in each face
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intersecting at fi. We can suppose that there is another point fi' in F which is not in the 

same orbit as fi and is formed at the intersection of translates Fi +  7 * of the same faces that 

form fi (but note that given translates F* +  7 *, Fj +  7 j of the faces forming fi, the elements 

7 i and 7 j need not be equal). This is because if all singular 0-spaces in F were formed at 

the intersection of different faces, then there would have to be an infinite number of distinct 

faces in K , which is not true since K  is a poly tope. We can also suppose that fi' lies in the 

ball B f (fi) in F since if there were no translates of the faces Fi intersecting F at a point 

within this ball, then the n-dimensional region v x  B ( (fi) of the n-dimensional space V  could 

contain no translates of at least one of the faces F' of K , for v a vector in F' but not F. 

This contradicts the density of T in V, so fi' is within e of fi, as stated. Thus, the translates 

of faces forming fi' intersect the faces forming fi. Taking a translate of F within t o i f i  then 

produces a bounded region II, which is an n-dimensional generalisation of a parallelepiped. 

Since II encloses an n-dimensional subset of V , it is also a singular n-space.

Thus we have constructed the required region and so the proof of [12, IV.2.9] can be 

applied to give the result. The basic idea behind the proof is to construct a map (f>: C n —> 

0  Jo Z/2 for Jo the set of flags (Def 1.29) on all singular n-spaces in II such that the image 

of 0 is an infinitely generated subgroup of 0 j o Z/2, so then taking quotients by T and 

writing J  =  Jo /T  for the set of T-orbits of flags associated to singular n-spaces, there is a 

homomorphism Ho(T-,Cn) —> 0 j -  Z /2  whose image is infinitely generated. By [12, IV.2.10], 

this implies that Ho(T-, Cn) <8 )Q is infinite-dimensional as a Q-vector space as required. |

In the next section, a formula for the calculation of the Euler characteristic is presented, 

which generalises the results of the low codimension cases. This formula only applies to 

polytopal projection patterns for which Lo is finite, so the result below shows that the Euler 

characteristic is defined and finite in this case.

T H E O R E M  2.61 For a d-dimensional codimension n projection pattern V , if L q is finite, 

then the Euler characteristic is defined and is finite.
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P ro o f To prove that the Euler characteristic is defined and finite, we need to show that 

rk Hm(T; C n) is finite for all m. We proceed as in [12, V.2.4] by induction on the codimension 

n  of the pattern V. The result is true for n =  1 since rk ifo (r;C °) =  Lo is finite by 

assumption so using the formulae in Theorem 2.7 rk HoiT^C1) = Lo +  d is finite and 

rk C 1) =  rk J7m(T; Z )  is also finite for m > 0.

Now suppose the result is true for patterns of codimension q < n. As Lo is finite, Lemma 

1.54 gives that the orbits of the faces of the acceptance domain K  contain the hyperplanes 

spanned by the faces and by Lemma 1.60 the sequence 0 ->■ Cn -» • • • —> C° -> Z —> 0 is 

exact. From Section 1.6.3, there is also a spectral sequence with E^q =  Hp(T-,Cq). Note 

that the module Cn~l decomposes as ® g e / n _ 1 Cg-1 <g> Z[T/Tfl], for T-modules Cq 1 as 

in Definition 1.57 but only for singular (n — l)-spaces in the T-orbit 6. This is because 

Lo is finite so any singular (n  — l)-space is a hyperplane arising from the T-orbit of one 

face of K  (so 7n_ ic/T  =  J„_i) and non-parallel hyperplanes intersect in singular spaces of 

dimension less than n — 1 which give the zero element in Cn_1. Hence by Corollary 1.71 

there is a decomposition ® # € / n _ 1 Hp{Te\C g_1) of i7p(T; Cn_1). Also note that by Lemma 

1.60 applied to 6 (since the singular spaces in 6 are hyperplanes by Lemma 1.43) there is 

an exact sequence 0 —► Cg - 1  —>• Cg~2 - » • • • —» Cg -» Z —> 0 and we can view this as 

arising from a codimension n — 1 projection scheme. Hence by the induction hypothesis, 

is of finite rank for all p. Note that the number Ln_i =  | / n- i |  of T-orbits of 

singular (n — l)-spaces is finite, since singular (n — l)-spaces arise only from T-translates 

of faces of K , and the fact that K  is a poly tope implies that there are only finitely many 

T-orbits of faces. Thus Hp(T ,C n~x) =  ® 0 G/n_j HP(T6;Cg~1) is of finite rank for all p for 

a codimension n pattern.

When Lo is finite [12, V.2.3], the number L q of T-orbits of singular g-spaces is also finite, 

for q < n — 1 . Thus a similar argument to the one given above shows tha t Hp(T ,C q) is of 

finite rank for all p.
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Using the notation of spectral sequences (Page 48), we have shown that E^q has finite 

rational rank for q < n. Since the terms E*q for k > 1 are produced as quotients of kernels 

by images of the differential maps, Epq of finite rank implies that rk Epq is finite. Now £££ 

is produced by successively taking kernels of higher differentials, so if rk E^n =  oo, then the 

rank of the image of some differential d must be infinite. However, the fact that rk E*q < oo 

for all k and q < n implies that the images of the higher differentials must have finite rank. 

Hence rk Hp(T;Cn) <8> Q < oo for all p.

Thus the Euler characteristic e-p =  l)*rk H{(T; Cn) ® Q is defined and it is finite

as it is a finite sum of finite quantities. |

2.4.1 General formula for the Euler characteristic

The aim of this section is to produce a formula for the Euler characteristic for codimension n 

polytopal projection patterns when Lo is finite, generalising the formulae found for polytopal 

projection patterns of codimension 1, 2 and 3. We begin by producing a formula describing 

the Euler characteristic in codimension n in terms of the Euler characteristic for codimension 

n — 1 patterns.

For a codimension n polytopal projection pattern with Lo finite and acceptance domain 

K , recall (Lemma 1.54) that the T-orbits of (n — l)-dimensional faces of K  consist of sets 

of (n -  l)-dimensional hyperplanes. We thus make the following definition.

D E F IN IT IO N  2.62 Denote by Oi a T-orbit of singular i-spaces and write /* for the set

8  •of all such orbits. Write I t } to denote the set of orbit classes of i -dimensional hyperplanes 

which are contained in singular j-spaces in the T-orbit 6j.

In the notation of previous sections, we have /3 = 6 q , f  = 6\ and 77 =  62- 

Now from Lemma 1.60, for a codimension n polytopal projection pattern V  with Lo 

finite, the sequence (1.2) 0 —> Cn —> • • • -» C° —> Z -> 0 is exact and hence by Lemma 2.6, 

we have e-p =  (—l)n+1ey_ = e o - i  — e^n- 2 +  • • • 4 - (—l ) n+1eco. This expression arises by
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breaking the exact sequence (1 .2 ) into short exact sequences 0 —>• C n —> C n _ 1  —> Cq~2 —> 0,

0 -» Cq~2 -> Cn~2 -> Cq“ 3 ->• 0 and so on. This means that e-p =  ec« =  eCn-i +  ec n-a 

for er n- 2  =  ±ecrn- 2  qp e^n-i ±  • ■ • ±  eco.uO

D E F IN IT IO N  2.63 For a codimension n polytopal projection pattern V  with Lo finite, 

write e„ to denote the Euler characteristic e-p = Y l i = o ( ~ l)*rk #*(!"; C n) <S> Q and let eeq 

denote the formula for the Euler characteristic Y ^ = o ( ~ H i ( T e\Cg). Write eq for the 

Euler characteristic er q-\ =  ec ,-i +  ec * - 2 -̂----±  eco.

LEM M A  2.64 The Euler characteristic en for a codimension n polytopal projection pattern 

with Lo finite can be expressed as

en = - e ° _ !  +  ^  en -i
#n —lG/n-l

for n ^  2 and ei =  Lo.

P ro o f  Use proof by induction. By the results of Section 2.1, e\ =  ec° =  Lo. Also, Lemma

2.19 gives 62 =  -L q  +  Lq° =  -e °  +  ef1 since ec o = eco =  Lo as this module

fits into a short exact sequence 0 - > C ' o - > C ° - > Z - > 0  and ez =  0 by Corollary 1.68.

Now suppose the result is true for k. Thus we suppose that we have a formula of the 

above form for the Euler characteristic e*. Since Lo is finite, there is an exact sequence 

0 -> Ck ->• Ck~l - » • • • - »  C° —► Z —► 0 by Lemma 1.60. Using the notation of Lemma 2.6, 

by Corollary 1.68 we have ez =  0 so e* =  e^k =  eCk- 1 — eCk- 2 +  • • • ±  eco.

For ejk+i = e^fc+i, we have an exact sequence 0 —>• Ck+1 —> C k —> • • • —> C 1 —► C° —►

Z 0, and we need to compute e<?k — e^k-i H ±  eco. Since we assume a formula for e*

has already been determined, we have an expression for ec k- 1 =  e^k-i — • • • ±  eco. Thus 

ec-k+i = eck — e®.

It remains to compute eCk. Decompose Ck as ® 0fcGjfc ® Z [ r / r 0fc] as in Lemma 

1.62. Since Lo is finite, by Lemma 1.60 there is also an exact sequence 0 —*• Cfjk —> • • • —>•
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Cgk —t Z —► 0. By the induction hypothesis, the formula for the Euler characteristic

ec ^  =  l ] ( - l ) irk H i(r°h]Cjk) =  e jfc is known. Hence eCk = 'Z/6heIk eekh and ek+\ =

Note that in the same way that e2 can be equivalently written as Y^>pei0(Qt9 ~1) (Theorem 

2.21) for qp the multiplicity of a singular 0-space fi, there is a similar formulation for en. In 

order to produce this equivalent formula, we begin with some definitions and notation.

D E F IN IT IO N  2.65 Write N n for the set {2,3, . . . ,  n — 2, n — 1} and set N\ = 0 =  iV2.

Define a fc-multi-index to be i: =  { i i , .. . i k) for k ^  1, where ik > i k - 1  > .. .  > i\ and 

ij 6  N n. Set i: = 0 for k =  0.

D E F IN IT IO N  2.66 Define q$0 for 6q € Iq to be the multiplicity of a singular 0-space 9q,

0 ’that is the number of non-parallel singular 1 -spaces intersecting at 9q. I f  6{ € I{}, then the 

multiplicity of 6o is counted only over those singular 1 -spaces contained in singular j-spaces 

in the T-orbit 0j.

D E F IN IT IO N  2.67 We define the following notation.

T H E O R E M  2.68 With the above constructions, the Euler characteristic associated to a 

codimension n polytopal projection pattern with Lq finite is

n—2

e°k + T,gke ik el ‘eek as required. I

I f i  = 0 then Z e L€iL(<l0o -  1) =  £<?oe/ofa0o -  !)•

en =  ( - l ) n 1 ^ ( - 1 ) * +1 ^ 2  (too -  I) for 2
j  a k-multi-index 0 j £ 11

and e\ — L q .
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P ro o f  Using Lemma 2.64, we prove this result by induction on the codimension n.

For n =  1, by Section 2.1, e\ =  Lo as required.

For n = 2, we have jV2 =  0 and k =  0, so the expression reduces to

e2 =  (—I ) 1 (—I ) 1 (q°o “  1) =  H  ~  ^
0o€/o 0o€/o

which is equivalent to the result of Theorem 2.21.

Now suppose the result is true for m, so

m—2
era = ( - 1 ) ” * - 1 £  ( - 1 ) ‘ + 1  £  £  -  1 ).

f c = 0  J  a  f c - m u l t i - in d e x

By the recursion formula for the Euler characteristic (Lemma 2.64), we have em+i =  — + 

J2emeim em • Thus

/  m—2
em+i = ( - 1 ) ” - 1 - £  ( - 1 )*+I £  £  too - 1 )

V k = 0  j  a  & - m u l t i - in d e x

m—2 \
+ £  £ ( - D ‘+I £  £ t o o - D  •

G / m  f c = 0  j  a  ^ - m u l t i - i n d e x  J

Now the second term in the expression has a sum indexed by (k + 1)-multi-indices, where 

ijfc+i = m, for A: =  0, . . .  ,m — 2. Equivalently, we can think of this as a sum indexed by 

fc-multi-indices with i* =  m  for k = 1 , . . . ,  m  — 1. In the first term, there will also be sums 

indexed by fc-multi-indices, for A; =  0 , . . .  m — 2. In particular, there are no multi-indices 

with ik = m. Thus no multi-indices appear in both the first and second terms. However, 

all possible A;-multi-indices on {2 , . . . ,  m — l ,m )  for k =  0 , . . . ,  m — 1 appear in either one 

term or the other since the only (m — l)-multi-indices are those with im_i =  m, the only 

0 -multi-index is 0, and a A;-multi-index j_ for k = 1 , . . .  ,m — 2 either has jk = m  and the 

other entries in j_ have the form of a (A: — l)-multi-index on {2 , . . . ,  m  — 1} (since j k = m  > ji 

for I < k by definition) which appears in the second term, or j k ^  m in which case j_ is a 

multi-index on {2, . . .  ,m — 1}, appearing in the first term. Thus we can combine terms to
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give

e m + l  =  ( “ I )”1 1 (QOo ~  1)
j  a  A c -m u lti- in d e x

m—1

+ £ ( - ! ) *  E  £ ( « . - * )
J fc = l  i  *  f c - m u l t i - in d e x  O j E l j

w i t h  i j ^ s m

E ^ - 1)
fc— 0  j  a  & - m u l t i - in d e x

( m + l )-2
(-ijim + D -i 5 3  (_!)*+* 5 3  e  ( « .  - 1 )

j  a  A l-m u lt i- in d e x

which is the required result for a codimension (m-f 1) projection pattern. Hence by induction,

Given the results of the sections investigating polytopal projection patterns with codi-

Euler characteristic for a codimension 4 polytopal projection pattern, as shown below.

T H E O R E M  2.69 For a codimension n polytopal projection pattern, if L q is finite, then 

the Euler characteristic satisfies en ^  Lo > 0 for n ^  4.

P ro o f  For n = 1, we have e\ =  Lo ^  1 by Corollary 2.8 and the fact that the polytope 

K  (the acceptance domain for the pattern) has at least one vertex, which gives rise to a 

T-orbit of singular 0-spaces.

For n =  2, we have e2 =  — Lo +  €l Lq1 . Now every singular 0-space is at the 

intersection of at least two singular 1-spaces 9\ and 9[, so a given singular 0-space 6q 

appears in both Lq1 and Lq1 . Thus ^ 0 , e/j -̂ o1 ^  2Lo as every singular 0-space appears at 

least twice in the sum. Hence e2 ^  —L0 + 2Lo =  Lo > 0.

When n = 3, by Lemma 2.44 we have ez ^  Lo ^  1. This result was obtained by first 

writing ez as a sum over 6q € Iq and then showing that the terms in the sum had value at 

least Lq.

the result holds for all m. I

mensions n ^  3, the above results enable us in particular to determine a result about the
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For n =  4, we use e\ =  —e° +  J2e3ei3 e3S the formula ez =  £ 0oe/o[— (pe0 ~  1) + 

£ / e / 8o (qi° ~  Lemma 2.44, where the notation is as in Definition 2.42. Given an element 

d0 G lo, in the sum Yle3eh  ^ e 0e i°3 ^ ° ’ eac^ P^3116 passing through do is counted at least 

twice since planes 02 axe at the intersection of at least two elements of I3. Also every plane 

passing through do contributes at least two to the sum Ylo3ei3 Yle0̂ i63 E ie / fio qi° s n̂ce the 

plane passes through at least one singular 1 -space I through do and is counted at least twice. 

Thus if £ ff, €/, ^ e 0e i603 P0 increases by some amount, then Y,e3zh  ^ e Qe ie03 £ie/*„ qi° in'  

creases by at least the same amount. Also note that pe0 > 1 and qf° > 1 since singular 

0 -spaces and singular 1 -spaces are at the intersection of at least two singular 2 -spaces in 

03. Hence since £ 0 3 6 /3  Le03 ^  2L0 we have J2o3ei3 E^ e / * 3 ^  +  £ ieie0 (« “  *)] >

2  E * o € / 0 [“ ( P flo “  ! )  +  Y ' l e h o  ( q i  ~  1 )1 w h i c h  m e a n s  t h a t  e 4 =  ~ 4  +  E 0 3 6 / 3  e 3 3 ^  e 3 ^  L 0 ,

as required. |

Potentially, Lemma 2.64 and the methods used in the proof of the above result lead to 

an induction argument on the codimension n which could be used to show that en ^  Lo 

for polytopal projection patterns of arbitrary codimension n. However, the notation which 

would be required in order to do this becomes rather more complicated, so es,e6 and so on 

are not considered here.

CO RO LLA RY  2.70 For a codimension n polytopal projection pattern with n ^  4, if en is 

defined and finite then Lq is finite. |

Finally note that by Theorem 2.61, if Lo is finite then en is finite.

We now move on to consideration of some codimension n polytopal projection patterns 

for which Lq is infinite.
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2.4.2 The hypergeneric case

For hypergeneric polytopal projection patterns (Def 1.50) we have Lq infinite, but the sta­

bilisers of all singular spaces have rank equal to the dimensions of the spaces they sta­

bilise, and the singular spaces are arranged into hyperplanes. This means that the sequence

(1.2) is exact everywhere and a spectral sequence exists for computing the group homology 

H m(T-,Cn). The argument of the proof of Corollary 2.56 immediately generalises to verify 

the following result.

T H E O R E M  2.71 For a hypergeneric codimension n polytopal projection pattern V , the 

Euler characteristic is defined and is infinite. |

Also, the ranks of the cohomology groups H *(M V) can be determined in this case, 

because the methods of Corollary 2.56 can again be used to show that H m(T]Cn) =  

H m+n(T-,Z) for m > 0 and rk Ho(T]Cn) =  oo.

As in the codimension 2 case, we can also consider whether torsion can arise in the 

cohomology of hypergeneric projection patterns of codimension n. By the above result, 

since Hm(T;Cn) = Hm+n(T-,Z) S  z ( m+«) for m > 0, these groups are torsion-free, so it 

remains to check Ho(T\Cn). Now we can break the sequence 0 —► Cn <5̂ 1 C n_1 - > • • • - *  

C 1 ^  C° -» Z —> 0 (1.2), which is exact in the hypergeneric case, into short exact sequences

0 — > Cn — > Cn~x — > C”- 2 — > 0

0 — > Cq~2 — > Cn~2 — > CZ~3 — ► 0

0 — > Cq1 — ► C 1 —> Cg — > 0

0 — > C ° — >0

where Cq is the image of Sq: Cq+1 -> Cq. Note that C° is free, so Hq(T] C°) is torsion-free, 

and so is Hq(T;Z). Thus Hq(T;Cq) is torsion-free. Applying the techniques described for
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the codimension 2 case on Page 74 to the sequence 0 Cq C1 C° —> Z ->• 0 gives that 

H0(r; Cq) is torsion-free since singular 1-spaces have stabilisers of rank 1 in this case so 

0 i : 0 £ e / le/ r : —► A2 I1 is the zero map. Similarly, considering C2 £  0x>e/2c/r ^x> ®

Z f r / r 25], the methods for codimension 2 patterns yield i7o(rP ; Cp) torsion-free in this case, 

so H0(T-, C2) is torsion-free. Thus from the long exact sequence in homology associated to 

the short exact sequence 0 —► Cq ->• C2 —> Cq —► 0, since Hq{T\C2) and Hq(T] Cq) axe 

torsion-free, we see that Ho(T; Cq) is torsion-free as well. Similarly considering the sequence 

0 - t  C J  -> C |  -» C  -* 0 for D 6 I3c/ r  gives H0( r ;C3) S  ® v e h , /r H0(Tv -,Cl) 

torsion-free. Proceeding in the same way for Cq and CA and so on shows that Ho(T\ C n) is 

torsion-free.

Note also that Ho(T; C n) £  Z® for s =  0 0  since HP(T; Z) = Z^ ** ) and Ho(T) C°) =  ZLo 

so the spectral sequences of Section 1.6.3 and induction on n give the result. Hence we have 

the following.

T H E O R E M  2.72 For a hypergeneric codimension n polytopal projection pattern, we have 

H m(M V) torsion-free for all m  and

H m(M V) £  1 fo rm  < d
^ Z°° for m  = d

where Z°° denotes a countable direct sum of copies o fL . |

2.4.3 Infinite generation of cohomology groups

In the low codimension cases, we saw that there are circumstances under which the coho­

mology groups H *(M V ) £  Hd-*(T;Cn) for polytopal projection patterns V  have infinite 

rank over Q. This section contains some general results determining when rk i f m(r-,Cn) 

will be finite or infinite. We have already seen in Theorem 2.60 that if Lo is infinite, then 

Ho(T;Cn) is of infinite rank, so we next give a corollary of Lemma 2.49. Note that we 

always assume in this section that the sequence (1.2) of T-modules C x is exact.
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T H E O R E M  2.73 I f  rk Hm(T',Cn 2) is infinite and the stabilisers of singular (n — 3)- 

spaces have rank less than m + n — 3 for some m  > 0, then rk C n) is infinite.

P ro o f With these assumptions, by Lemma 1.72 we know H m(T; Cn~3) = 0. Also HP(T , Cq) =  

0 for q < n  — 3 and p ^  m since the stabilisers of singular spaces contained in a singular 

(n — 3)-space D have ranks which are not greater than the rank of the stabiliser of D. This 

means that in the spectral sequence (Section 1.6.3) the higher differentials with domain 

H m ^ C ”- 1) and Hm(T]Cn~2) axe trivial so we can use the proof of Theorem 2.50 with 

n =  3 replaced by n and C replaced by to give rk Ker(dn- i jTn: H m{T\ Cn~x) —►

Hm(T] Cn~2)) infinite, and hence rk Im d nm infinite. Thus rk Hm(T]Cn) =  rk K erdnm +  

rk Im dnTn is infinite, as required. |

There axe also cases when the ranks of groups Hm {T;Cn) axe known to be finite, as 

shown by the next two results.

T H E O R E M  2.74 For a codimension n polytopal projection pattern V , if the stabilisers of 

singular (n — l)-spaces are of rank less than m  + n — 1 for some m  > 0 then Hm(T;Cn) = 

H d~m(M V) is of finite rank over Q.

P ro o f With these assumptions, Hm(F] Cn_1) = 0 and, as in the proof of the above theorem, 

Hm(T]Cq) =  0 for all q < n. This means that the edge homomorphisms Hm+n(T;Z) —>■ 

Hm(T;Cn) axe isomorphisms, so Hm(T; Cn) =  H d~m(M V )  =  is of finite rank. |

T H E O R E M  2.75 For a codimension n polytopal projection pattern V , if only finitely many 

T-orbits of singular q-spaces have stabilisers of rank r ^  m  + q for all q < n then HP(T; Cn) 

is of finite rank for p ^  m.

P ro o f With these assumptions, HP(T', Cq) is finite for p ^  m  by Lemma 1.72. Hence in the 

spectral sequence with E^n = HP(T; C n), the images of all differentials with domain E* for
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any k will be of finite rank. In particular Im (dpn: Hp(T]Cn) —► ffp(r; C "-1 )) is of finite 

rank for p ^  m.

The kernels of the differentials with domain E*n = are also of finite rank because 

rk Kerd  is a summand of rk Hp+n(T\Z) for some differential d  with domain E pn, so is 

finite. If any other differential with domain E*n for r < k had kernel of infinite rank, then 

the image of a higher differential would thus have to be of infinite rank, which is impossible 

by the first paragraph. In particular K er(dpn: Hp( r ; C n) —► ffp(r;C 'n_1) is of finite rank 

for p  ^  m.

Hence rk HP(T; C n) — rk Kerdpn +  rk Im dpn is finite for p ^  m. |

The above discussion does not enable the finiteness or otherwise of all groups Hm (T; C n) 

to be determined. For example, given a codimension 4 polytopal projection pattern with 

H m iTiC1) of infinite rank, the methods used in Lemma 2.49 are not strong enough to 

tell us whether Hm(r;C 4) is of infinite rank. We suspect that r k i / m( r ; C 4) =  oo if 

rk Hm(T',Cl ) =  oo, since expressions like those for the Euler characteristics in Lemma

2.19 or Theorem 2.39 arise when computing cohomology for higher-codimension projection 

patterns, but with Lo replaced by L i, and if the Euler characteristic is defined and infinite, 

then so should these quantities be. For example, for a codimension 3 canonical projection 

pattern V, in the formula of Theorem 2.37 for the rank of H *(M V) ® Q, terms of the form 

—Li +  aPPe a r 5 which are analogous to the formula for the Euler characteristic for

a codimension 2 canonical projection pattern. Thus if e-p is infinite, then such expressions 

should also be infinite and hence the homology groups i fm(T; Cn) are likely to have infinite 

rank. However, in order to prove such results, more work is needed.

2.5 Applications

In this section, we consider several applications of the calculations and results obtained in 

this chapter.



2.5.1 Euler characteristic 0

Note that the Euler characteristic e-p is zero for a two-dimensional periodic point pattern 

V, since the continuous hull M V  is a torus in this case. Thus the work of this chapter, and 

in particular corollary 2.24, shows that periodic patterns do not arise as projection patterns 

as described above. In fact, periodic patterns have the form of codimension 0 projection 

patterns, since they can be produced by taking a lattice A of any dimension and choosing 

the space E  so that it intersects A at more than one point. Then [34] a periodic pattern 

consisting of points from A automatically appears in E , without the need for any projection.

There are two-dimensional quasiperiodic patterns which have e-p =  0. One example is the 

Pinwheel tiling in Figure 1.1. Since this tiling does not satisfy the Finite Local Complexity 

condition (Def 1.13), the above theory cannot be used to compute its Euler characteristic 

ep, but [28] the continuous hull M V  of this tiling can be viewed as an S 1-bundle over a 

certain simplicial complex and its Cech cohomology (with rational coefficients) is related 

to the cohomology of the circle S 1, for which the Euler characteristic is 0. Since ep =  0, 

Corollary 2.24 tells us that the Pinwheel tiling cannot be produced from the projection of 

points in a lattice selected by a polytopal acceptance domain.

2.5.2 Canonical projection patterns

Since canonical projection patterns have acceptance domains which are polytopal, the above 

work is applicable in this more specific case. In particular, we have shown that for canonical 

projection patterns, the group H d(M V) is of infinite rank over Q if and only if the number 

Lo of T-orbits of singular 0-spaces is infinite, a result which appears in [12]. We have also 

extended the work of [12] to consideration of higher homology groups Hm(T; Cn) and what 

can be said about their ranks over Q. In the codimension 2 case, we obtained the result 

that the Euler characteristic is always defined, which is stronger than the above result for 

H d(M V) only, since its proof entailed showing th a t the groups H m(M V) are always of finite 

rank for m < d.
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2.5.3 if-theory

Consider the isomorphism K*~d(M V) 0  Q — ® ° ^ _ o<0 H 2i +t(M V) 0  Q from Theorem 1.76 

for V  a codimension 2 polytopal projection pattern. In this case we have seen that if 

Lo = oo then H d(M V) has infinite rank over Q, but all other cohomology groups have finite 

rational rank, so rk K °(M V )  0  Q =  rk H d(M V) 0  Q + rk H d~2(M V) 0  Q +  • • • could be 

infinite, but rk K 1(M'P) 0  Q =  rk H d~1(M V) 0  Q +  rk H d~3(M V) 0  Q +  • • • will always 

be finite. Additionally, for 3-dimensional codimension 3 patterns, since rk K °(M V ) = 

rk H 3{M V) + rk H ^ M V )  and rk K 1(M V )® Q  = rk H 2(M V )®  Q + r k  H °(M V )® Q , both 

K °(M V ) and K 1 {MV) could be of infinite rank over Q. For polytopal projection patterns 

of higher dimension and codimension, it is again possible that both rk K °(M V )  0  Q and 

rk K l (M V) 0  Q could be infinite.

This has applications to ideas related to those in Section 1.6.1. In Section 1.6.1, we 

saw the gap labelling map Gap(H) —> Ko{A) for Gap(H) a set of subsets of R and A  the 

C*-algebra associated to tilings V  in M V . A related concept is to consider the topological 

if-theory of M V , for which there is a trace map K °(M V ) —> R sending projections to 

intervals of R which has image consisting of finitely many intervals since the Hamiltonian 

H  has bounded spectrum in R. Thus if rk K °(M V )  is infinite, then the kernel of this map 

is of infinite rank over Q. Elements in the kernel are called infinitesimals, and are of interest 

as knowledge of these elements should yield more information about the structure of the 

space M V  than is detected by the trace, especially since the group of infinitesimals has been 

shown by the results of this chapter to be of infinite rank in many cases. Work in this area 

is being carried out by Bellissard, Bendetti and Gambaudo [2] amongst others.

2.5.4 Deformations

In [8], deformations of tilings are considered. Given a d-dimensional tiling T  (Def 1.2), a 

deformation is a tiling T ' which is combinatorially identical to T , so the tiles in T  and T7
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can be labelled in such a way that if tiles meet in T  then they correspond to tiles which 

meet in T 1, but the tiling T '  differs geometrically from T, so the shapes and positions of 

tiles in T ' could be different from the shapes and positions of tiles in T. A deformation /  

is [8 ] given by a set of vectors specifying the one-dimensional edges of each prototile in a 

tiling so that if two prototiles meet at an edge in a tiling, then the vectors associated to the 

edge are the same. The sum of all vectors associated to a prototile should be zero. Such 

deformations [32] do not alter the topology of the continuous hull — given two deformations 

/ ,  g , and the associated tilings 7/ and Tg then M T f  is homeomorphic to M T g . However, 

the relationship between the tilings in the spaces M T f  and M T g is more interesting. In 

[8 ], a map X  is defined from the space E of deformations to H 1( M V ; Rd) =  H 1( M V )  <g> Md. 

The image of this map is then investigated to produce conditions for when tilings in M T f  

and M T g are related, and how strong the relationship is. For example [8 ], if / ,  g G E, and 

1 ( f)  = 1(g), then given an Rd-equivariant homeomorphism (f>: M T f  -> M T g the patterns 

T '  G M T f  and 4>(T') G M T g are mutually locally derivable.

Since we have shown that for codimension 2  polytopal projection patterns the group 

H X( M V )  is of finite rank, this means that for associated tilings, deformations only produce 

finitely many MLD classes (Def 1.4). For higher codimensions, there are possibly infinitely 

many MLD classes, but Chapter 2 gives conditions when this is not the case. In particular, 

for tilings associated to hypergeneric (Def 1.50) or generic (Def 1.51) polytopal projection 

patterns for which the cohomology can be computed, there are only finitely many possible 

MLD classes produced by deformations.

We have seen in this chapter a consideration of one particular topological invariant for 

polytopal projection patterns V  — the Euler characteristic. Since this invariant was defined 

using the Cech cohomology H * ( M V )  of the continuous hull M V  for V ,  some results about 

these cohomology groups were also obtained. The next chapter contains further discussion of 

Cech cohomology H * ( M V )  for polytopal projection patterns and models for the continuous 

hull M V  which simplify the computation of H * ( M V ) .
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Chapter 3

Cohomology and models for M V

The cohomology H * ( M V ) of the continuous hull M V  for a canonical projection pattern 

V  can be calculated as in [1 2 ], but recent work in this area aims to produce alternative 

models for M V  whose cohomology is more straightforward to compute and gives a more 

intuitive idea of the structure of M V  which is detected by the cohomology. It was shown 

in [12, Chapter III] that for a d-dimensional codimension 1 projection pattern (which need 

not be canonical), the continuous hull in that case is homeomorphic to a punctured (d+  1 )- 

dimensional torus, where the number of punctures depends on the number of T-orbit classes 

of points in the boundary of the acceptance domain K .  These ideas were extended in a 

paper by Pavel Kalugin [20] to provide a geometric interpretation of the continuous hull 

and its cohomology, for certain projection patterns of codimension n > 1 .

More specifically, in [20], a d-dimensional codimension n canonical projection pattern V  

is considered, for which n — d and which satisfies the following (referred to in [2 0 ] as the 

rationality condition).

Firstly, there should be two vectors, k{ G V  and n* G E  associated to each face Fi  in 

the boundary of the acceptance domain K  of V ,  with the properties that the hyperplane 

Hi  spanned by Fi has ki as its normal vector and n, is normal to some hyperplane H[  in 

E  which intersects Fi at a point. Secondly, the space Hi  + H[  should be an affine torus in 

Tn+d of dimension n +  d — 2 =  2( d — 1) orthogonal to n* and k{.
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It is shown in [20] that the cohomology of M V  is isomorphic to the cohomology of 

Tn+d \  A, where A  is an arrangement of (2(d — l))-dimensional tori, thickened so that A  is a 

2 d-dimensional submanifold of T2d. Note that the tori in A  correspond to the tori Hi +  H[ 

defined above.

Further work in this area is being carried out by Pavel Kalugin, Franz Gahler and others. 

However, on studying [20] a generalisation readily suggested itself, so the following results 

have been obtained independently. It is shown in this chapter that results analogous to those 

of [1 2 ] hold for the larger class of d-dimensional codimension n polytopal projection patterns 

with the number Lo of T-orbits of singular 0-spaces finite (for which n divides d by Lemma 

1.56 but n need not be equal to d). Also in this chapter, we consider a further generalisation 

which potentially yields results for polytopal projection patterns of codimension 2  with Lo 

infinite.

We begin by setting out the methodology and main results of [20].

3.1 Setup and existing result

In [20], projection patterns are viewed in a different way from those described in Section 1.1. 

As before, we have a lattice A in R N, a subspace E  of M.N , a space V  orthogonal to E  with 

the property that n 1- (A) fl V  is dense in V  for it1- the projection map with kernel E, and an 

acceptance domain K  in V. However, in this setting, the projection scheme is considered 

to be within the torus Tn+d, formed as the quotient (F  -I- E )/A ', where V  +  E  = Rn+d and 

A' = Zn+d is the subset of A with the property that ^ ( A ' )  fl V  =  T for T as in Definition 

1.34. If the tiling space E  intersects A' only at the origin, then E  is dense in Tn+d.

V
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The paper [20] proceeds by noting that for a canonical projection pattern V  in the 

space E  with L q finite, if E  intersects the hyperplane Hi which is the span of an (n — 1)- 

dimensional boundary face F* of the acceptance domain K  at some point, then in the torus 

Tn+d it intersects Hi in a dense set of points. Viewed in E, this set of points is a Delone 

set in a hyperplane subspace of E.

Since Hi is of dimension n — 1, it has codimension 1 in V  and hence the vector fc* in 

the rationality condition is a normal to Hi .  When n =  d, if the pattern V  satisfies the 

rationality condition, then [20] the hyperplane H[  in E  containing the Delone set of points 

of intersection with Hi is of codimension 1 in E  with normal n*. The rationality condition 

also gives that the space Hi  +  H[  is an affine torus of codimension 2 in Tn+d orthogonal to 

Hi and £». Note that if hyperplanes associated to faces of K  are in the same T-orbit, then 

their associated vectors will be of equal magnitude and direction, so we need only consider 

distinct T-orbits of faces of K .

The fact that the set of points E(~\Fi is a  Delone set, and in particular is relatively dense 

so there exists R  > 0 such that any ball in Hi of radius R  contains a point of E  fl Fi, implies 

that a (thickened) hyperplane containing these points can be produced by taking balls in E  

of radius R  about each point, as shown in the diagram below.

This leads to consideration in [20] of the set Yr  = Uie/* ^  +  B r -> whose intersection 

with E  is the set of hyperplanes thickened by some amount in the direction n ,, for

I k  the set enumerating the T-orbits of faces of K . Note that more than one translate of the 

acceptance domain K  may be needed in order for all possible T-orbits of singular spaces to 

appear in Yr , but since Lo is finite by assumption, there axe only a finite number of T-orbits 

of singular spaces of any dimension, so finitely many translates of K  are sufficient. In fact,
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since the intention below is to excise Y r  from Tn+d and then complete the resulting space, 

to ensure that the completion of Tn+d \  Y r  is not Tn+d the space Y r  must be of dimension 

n +  d. This means that we instead consider Y r  =  [JieiK((Hi +  &Y) +  B r)  where BY  is 

a one-dimensional space in V  of fixed length e containing the vector k{ which ‘thickens’ 

the hyperplane Hi, for e small with respect to the inradius of the smallest n-cell in the 

set [J (K  +  7 ) of translates of K  in which representatives of all T-orbits of singular spaces 

appear. Thus (Hi + BY) + B fl is an (n+d)-dimensional object and Y r  is (n +  d)-dimensional 

as well.

The next step in [20] is to show that the continuous hull M V  for V  is homeomorphic 

to the inverse limit limX# as R  increases, where X r  is the completion of Tn+d \  Y r  with 

respect to the metric p defined below. First note that there is a metric in Tn+d =  Mn+d/Z n+d 

induced from the Euclidean metric on Kn+d. This in turn induces the following metric on

jn+d \  Yr .

D E F IN IT IO N  3.1 Define p to be the metric on Tn+d \  Y r  which gives p(a,b) as the 

infimum of the lengths of all paths connecting the points a and b in Tn+d but avoiding Y r  .

D E F IN IT IO N  3.2 Define X : =  limXrfc for (r*) a monotone increasing sequence of real 

numbers 7-* ^  R, where the maps i* : X rie+1 —> X rk are the extensions of the maps ik : Tn+d\  

Frfc+1 -» Tn+d \  Yrk (which are continuous with respect to p). Write itk' X  -> X Tk for the 

projection maps.

It is then shown in [20] that there is an isomorphism H *(M V) =  H *(Tn+d \  Yro) for 

some r0. Denoting by A, by definition A  is an arrangement of thickened tori of the form 

(H i+ B Y ) +  B %. A formula for the rank of H* (Tn+d \  A) over Q is then determined in [20] as 

follows, using the long exact sequence in relative cohomology for the pair (Tn+d, Tn+d \  A).

• • • Tn+d \  A) H m(Tn+d, Tn+d \ A ) ° ^  H m(Tn+d) ffm ^jn+d  \  ^ ) . . .
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Since Tn+d is a compact orientable manifold containing the compact subset Tn+d \  A,  

by Poincare-Alexander-Lefschetz duality [4, Thm 8.3], we have H m (Tn+d, Tn+d \  A) — 

H n + d -m { A ) .  Hence the long exact sequence can be broken into five-term exact sequences 

of the form

0 ->• /m(/3m~1) -+ H ”1- ^ Tn+d \  A)  H n+d. m {A)  ^  H m {Tn+d) -> Jm(/3m) -> 0. (3.1)

From this, we obtain one of the main results of [20], stated in the following theorem. Recall 

that rk G denotes rk (G ® Q ).

T H E O R E M  3.3 For a d-dimensional codimension n canonical projection pattern V  which 

satisfies the rationality condition, the torsion-free part of H m~ 1 ( M V ) )  = H m~ l ( T n+d \ A )  

is given by the formula

rk iT " - i(T n+d \ A )  = rk H n+d. m ( A ) + rk +  rk ^  ^ . (3.2)

I

3.2 Extension o f existing result

For canonical projection patterns with d > n, the rationality condition fails to hold as 

stated, because the hyperplane in E  defined by the points of intersection with a face F{ 

of the acceptance domain K  will be of codimension greater than one. To see this, we 

begin by assuming that Lo, the number of orbit classes of singular 0-spaces, is finite. This 

then implies that the cohomology H * { M V )  is finitely generated over Q (see Theorem 2.61) 

and also that the orbits of the faces of K  contain the hyperplanes spanned by the faces 

by Lemma 1.54. By Lemma 1.56 the rank of the stabiliser of a  hyperplane Hi  associated 

to an (n — l)-dimensional face of K  is n- ^ ( n  — 1). Hence, in the quotient with respect 

to A', the real span of those vectors A v  in A' which project to the stabiliser Vv  of an 

(n — l)-dimensional hyperplane D forms a ( ^ ^ ( n  — l))-dimensional torus of codimension



n + d — n^ ( n  -  1) =  = : win Tn+d “  (V + E ) /A '. If d > n then v  > 2 so the subtori of

Tn+d have dimension u{n — 1) = n + d — v < n + d — 2 and hence the rationality condition 

does not hold.

However, the theory of [20] does not break down if we extend to the more general setting 

of d-dimensional codimension n polytopal projection patterns with Lo finite and d ^  n. The 

proof of [20, Corollary 1 ], which asserts that M V  is homeomorphic to the space X ,  is still 

valid since it does not use the assumption that Hi is of codimension 1 in E. The vectors fcj 

and rii are used explicitly in the proof of [20, Corollary 2], which gives that the cohomology 

of M V  is isomorphic to that of Tn+d \  A. They axe used to define a local coordinate system 

on Tn+d \  A  and then to define hyperplanes {x G V : x  • ki = 0} and {x G E  : x • rii =  0). An 

amendment can be made to this result to ensure that the conclusion of the therorem still 

holds for projection patterns with n ^  d. When d > n, the hyperplane H[ is of codimension 

greater than 1 in E, so there is a hyperplane of vectors normal to H[ in E. Associate to Fi 

the vector ki as before, but now also associate to Fi a set of vectors {n^} which forms a basis 

of the hyperplane normal to H[. Irrespective of the choice of basis {n^}, the torus Hi -I- H ■ 

is orthogonal to all the vectors n\. Thus if we replace the vector n* by the set {n\YjZ\ and 

consider the hyperplane {x € E  : x • n\ =  0 for all j }  instead of {x G E  : x • rii = 0}, the 

result from [2 0 ] holds in this setting.

The cohomology of Tn+d\  A  is computed in exactly the same way as before, using relative 

cohomology for the pair (Tn+d,T n+d \  A), so we have the following result.

T H E O R E M  3.4 For a d-dimensional codimension n polytopal projection pattern V  with 

Lo finite, the torsion-free part of H m~1(M V)) — H m- 1(Yn+d \  A) is given by the formula

rk H m~ 1 (Tn+d \  A) =  rk Hn+d. m(A) +  rk I m (/T1" 1) +  rk ^  ^ . (3.3)

I
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3.2.1 The codimension 2 case

We now consider the codimension 2 case and investigate the consequences of Theorem 3.4 in 

more detail. In particular, we show that the formula (3.3) is equivalent to the formula stated 

in Theorem 2.12 in Chapter 2 (taken from [12]). A specific example of a 4-dimensional codi­

mension 2  polytopal projection pattern is considered, which does not satisfy the rationality 

condition of [20] but whose cohomology is isomorphic to that of T6 \  A, a  six-dimensional 

torus with an arrangement A  of three-dimensional tori removed from it. Several examples of 

2 -dimensional codimension 2  polytopal projection patterns which do satisfy the rationality 

condition can be found in [2 0 ].

Note that for a codimension 2 pattern with L q finite, we have v — ^±1 g Z so in 

particular the dimension of the pattern must be even. Also in this case, the faces of the 

acceptance domain K  give rise to lines of infinite length which intersect in points. This 

means that the quantities in the formula are straightforward to compute. We do not discuss 

codimension 3 patterns here, for which the faces are planes intersecting in lines, giving rise 

to tori which intersect in circles, since the calculations are not so straightforward. One 

example of a 3-dimensional codimension 3 pattern is discussed in [20].

It is shown in [20] that the arrangement A  of tori arising from the F i , . . . ,  Ft of K  in 

distinct T-orbits have 0-dimensional intersection only, since the faces of K  (which are 1- 

dimensional) intersect at points. Note that, for codimension n  =  2 polytopal projection 

patterns, these codimension v tori in Tn+d also have dimension n + d — v = n + d — (n + 

d)/2 = v. The following result gives the homology groups for the arrangement A, in which 

= X Z o ( - l ) ir k l I i (A)<8>Q.

LEM M A  3.5 The homology groups H*(A) of an arrangement A  of t tori of dimension v, 

intersecting only at points, with p connected components are the following.
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H0(A) = Zp 

Hi(A) = z ^ - l)t~eA+p

h 2{a)  =  z &y  

h 3(A) = z(»)‘

Hv- i(A )  =  z i ^ y  

H V(A) =  Z‘

P ro o f  Consider the spectral sequence with ® i f *  (T") in the E qp column and ®  if* (T? fi 

. . . f lT - .)  in the Ej_ lp  column, for j  = 2 , . . . ,  t.

© L , h „ cr n 0 0 0

© L .f f i f r r )  <* 0 0 0

© L iffo fr r )  i -  © ^ o ^ n T r j  1» . . .  i Ls H-o(nL,T?)

Since the tori in the arrangement A  intersect only in points, we have if* (T£. f l . . .flT*'.) =  0 

for * > 0 and j  =  2 , . . .  ,t. On the level of chain complexes, we have an exact sequence

0 -> c . ( n U Tr) -> © c . ( n £ a,Ts;) -> -► © c.cr?  m r?) -+
®C*(TJ') —y C*(A) -¥ 0. This can be split into a series of short exact sequences 0 —>

<?.(n,‘=i T» -> © C .(n l;l T?,) -> -> O, then 0 -> TmSt-1 -» ©C .fl^I? V!,) -»
ImS t - 2 —>■ 0 and so on, until 0  —> Im S3 -y ®  C *(f|j= i T?) -> ImS2 -> 0 and finally 

0 -> ImS2 -> ®C'*(TJ'i n T £ )  -y ®C*(TJ') -* C*(A) -> 0. In homology, we then have 

short exact sequences 0 -* H0{Im8i) ->■ ®  ifo(Dj=i H0( Im 6i - i )  -y 0 since (1 ^ = 1

consists only of points for i = 2 , . . . , t  — 1 so i f m (flj= i ) =  0  and hence i f m(5i_i) =  0  for 

m > 0. The spectral sequence splices all such short exact sequences in homology together

[4] so the zeroth row of the spectral sequence table is exact up to ®  ifo(Dj=i ) • Passing 

to the E 2 page thus gives the following result. There axe only two non-zero columns, so 

E 2 =  E°°.
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©L, 0 0

©Li 0 0
©Li H o { T \ ) f I m d l x K e r d h /  I m d o 2 0

The alternating sum of all the entries in the spectral sequence table gives [6 ] the Euler 

characteristic e^. However, the Euler characteristic of a torus T" is zero, so the alternating 

sum of the groups is zero. Hence =  0  — rk Imd^  — rk K erd \x -f rk Im d q2. As

the arrangement A  has p  connected components, Ho(A)  = Z p , so the rank of the image of 

doi must be t — p. Hence rk K erd h  — rk I m d = — eA — (t — p).

Therefore, H0(A) = Z*>, H X{A) = Z ^  Hm(A) = z(-)*  for 2 ^  m ^  i/, as 

required. |

Some results about the Euler characteristic of codimension 2  polytopal projection pat­

terns (see Chapter 2 ) can also be deduced in this setting.

L EM M A  3.6 The Euler characteristic eA = —e, where e is (Def 2.1) the Euler character­

istic of M V.

P ro o f The isomorphism H * ( M V )  = H * ( T d+2 \  A)  implies that the Euler characteristic of 

H * ( T d+2 \  A)  is e. The isomorphism H m ( T d+2 ,T d+2 \  A)  =  Hd+ 2 - m ( A ) ,  together with the 

fact that n =  2  is even and d is even since Lo is finite so the parity of m is equal to the 

parity of d + 2 — m, implies that the Euler characteristic of Ar*(Td+2, T d + 2  \  A)  is e^. Also 

Lemma 1.68 gives that the Euler characteristic of the torus Tn+d is zero.

From the sequence (3.1) we thus see that 0 =  eA +  e, that is the Euler characteristic of 

H * ( Tn+d) is equal to the sum of the Euler characteristic of H * ( Tn+d, Tn+d \  A)  and that of 

H * {Tn+d \  A).  Hence e =  —eA, as required. |

COROLLARY 3.7 For a codimension 2 polytopal projection pattern with L q finite, its 

Euler characteristic e is positive.
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Proof The Euler characteristic of a one-point union A  of t  tori of dimension v  is e \  —

0 — (1 — t) =  1 — £ as the Euler characteristic of a single torus is 0 and to create the one-point 

union, we add in t — 1 1-simplices (homotopy equivalent to points) which each contribute 

—1 to 6a- Since there are at least two tori in the arrangement A  arising from a codimension 

2  polytopal projection pattern (because the acceptance domains for such patterns have at 

least two faces) we have < 0  and hence by the above lemma e =  —6a > 0 . |

This provides an alternative proof of Corollary 2.24 in Chapter 2.

Next consider the maps in the relative cohomology sequence (3.1). Since H{(A) =  0 for

1 > u, the map /3m is an isomorphism for m  < u so rk Im (Pm) = (n*d) in these cases.

The map a d+1: Hi(A) -» H d+1 (Td+2) =  H i(T d+2) is surjective. To see this, note that 

e ^  t — 1 by Lemma 2.22 and the number t of distinct faces of the acceptance domain K  

is at least 2 since K  is bounded in the 2-dimensional space V. This then gives rk Hi (A) = 

^2-t — t + e + 1 ^  4 ^ 2  = d + 2 =  rk H d+1(T2+d). It thus remains to show that the d +  2 

generators of H d+1(Td+2) =  H \(Td+2) correspond to elements of H\(A)  under a d+1.

Note the following points. Every 7  G T is in at least one stabiliser when Lo is finite 

since the stabilisers of singular 1-spaces have rank and there are at least n  such spaces 

because K  is of positive volume, so if there were fewer than n linearly independent lines 

Vi intersecting at any vertex of K  then the parallelepiped formed by these lines and some 

of their translates would have volume v\ A . . .  A vn =  0 which is a contradiction. Also, the 

tori in A  are formed from the real span of the vectors in A' projecting to the stabilisers of 

hyperplanes. Thus in the quotient Tn+d ^  (V  +  E ) / A', the tori in A  are embedded in Tn+d 

(as a simplicial complex) so that they contain cycles which generate Hi (Tn+d) and hence 

Hi (A) —» Hi (Tn+d) as required.

The above results give that 0 d+1 and 0 d+2 are zero and hence H m(Td + 2  \  A) =  0 for 

m > d.
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Now rk Im((3m) =  (d+2) -  rd+2_(m+i) for v  ^ m  ^ d, where r m (which arises in

Substituting these results into the formula (3.3) gives the following, in which we write

This is in accordance with the formulae given in [12], which were only applicable to canonical 

projection patterns.

Hence we have proved the following result.

T H E O R E M  3.8 For a d-dimensional codimension 2 polytopal projection pattern with Lo 

finite (so d is even)

I

Compare this with the results of Section 2.2.2.

EX A M PL E  3.9 The Heptagonal tiling

This tiling was described in [16]. It is a codimension 2 tiling of four-dimensional space 

whose acceptance domain is a polygon with 14 sides. The sides are arranged into seven

the calculations of [12]) is the rank of the map S in the sequence • • • -> Hm( r ; C 1) -4 

Hm(r ;C§) -> C2) where Hm(F;Cg) = H m+i ( r ;Z) “  Hm+1(Tl+a) for

m > 0  and rk H0(F-,C$) =  rk Hl (Td+2) + rk H0(r ;C0) -  rk H0(T'+2).

rk i f d-p(T2+d\ A) = rk Hp+l(A) + rk /m(/3‘,- p) +  rk Im(f3d- p+1) -  (  , d + 2 , )
\d  — p +  1 /

rk H d(T2+d \  A)

r d + 2 -(d -p -t- l- t - l)
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T-orbits. There is only one T-orbit of singular 0-spaces, corresponding to the projection of 

the lattice points in Z6 to the two-dimensional space V. Thus, the arrangement A consists 

of seven tori of dimension v =  2±£ = 3, all intersecting at a single point.

By Lemma 3.5, the homology of A is as follows. Note that the Euler characteristic for a 

one-point union of seven 3-tori (as cellular complexes) is e,* =  1 — 3 x 7  +  3 x 7  — 1 x 7  =  —6 .

H0(A) “  Z, HX{A) “  Z2x7" (" 6)+1 = Z21, H2{A) S  Z21, H3{A) “  Z7

Now rk /m/3° = (®) =  1 , rk /m/31 =  6  and rk /m/32 =  15. Also, we know /m/35 — /m/36 =

0. Lastly, rk /m/3m — (£J — r5_m for m =  3,4. Note [16] that r i =  12 and r 2 =  4 for this 

tiling. The formula (3.3) then tells us that the rational ranks of the cohomology of T6 \  A , 

and hence of the Cech cohomology of the continuous hull M V  for V  the Heptagona! tiling, 

are the following.

rk H °(M V) =  0  +  1 +  6  — 6 =  1

rk H \ M V ) =  0 +  6  +  1 5 -1 5 =  6

rk H 2(MV) =  7 +  15 + 20 -  r 2 -  20 =  18
rk H 3(MV) — 21 +  20 — r 2 +  15 — T\ — 15 =  25
rk H 4(MV) =  21 +  15 — n  + 0  — 6 =  18
rk H*(MV) =  1 + 0 + 0 - 1 =  0

These results agree with those calculated in [16].

3.3 Possible further extensions

If we weaken the hypotheses of the constructions from [20] by supposing that there are an 

infinite number of T-orbits of singular 0-spaces, so Lo =  oo, then it is likely that similar 

results hold, which are analogous to those obtained in Chapter 2 for polytopal projection 

patterns with Lo infinite. As before, we need to describe the continuous hull M V  as an 

inverse limit space, but in the cases below, the description X '  we produce has to be rather 

different from that given in Section 3.1 so the methods of [20] cannot be used to show that 

M V  is homeomorphic to X '.  We first restrict to consideration of hypergeneric patterns 

(Def 1.50).
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3.3.1 Hypergeneric polytopal projection patterns

Hypergeneric polytopal projection patterns V  are such that the T-orbits of the (n — 1)- 

dimensional faces of the acceptance domain K  consist of hyperplanes, but the number Lo of 

T-orbits of singular 0-spaces is infinite. Thus any finite set of translates of K  will not contain 

representatives of all T-orbits of singular spaces. To describe the continuous hull M V  for 

such patterns V, the construction of Section 3.1 is therefore not good enough. However, if 

an inverse limit space can be produced which is homeomorphic to M V  then results can be 

obtained in a similar way as before.

Note also that for hypergeneric polytopal projection patterns, the stabilisers of (n — 1)- 

dimensional hyperplanes are of rank n  — 1 and there is at least one set of n hyperplanes with 

linearly independent normals since the acceptance domain is bounded in the n-dimensional 

space V. As in Section 3.2, the stabilisers of hyperplanes are projections to V of elements 

of A' and each set of these elements defines an (n — l)-dimensional torus in the quotient 

(V + E ) /A'. Define T*: =  (Hi +  E )/A '  C (V + E ) /A ' ^  Tn+d, which is homotopy equivalent 

to an (n — l)-dimensional torus since E  is totally irrational with respect to A' and hence is 

contractible in (V  + E)/A '.

Again, in order to be able to remove the objects T* from Tn+d and obtain a non-trivial 

space, the T{ need to be thickened to ensure they are (n +  d)-dimensional. This leads to 

problems when trying to find an inverse limit homeomorphic to M V  since there are infinitely 

many T, which need to be considered in order to include all the singular 0 -spaces which arise 

at the intersection of the hyperplanes Hi. If A: objects T{ are each thickened by an amount 

e, then A: +1  objects T{ must each be thickened by less than e to ensure that the limit space 

is non-trivial. In the remainder of this section, we proceed as if we had such an inverse limit 

construction for M V  and investigate the consequences for the cohomology of M V .
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The codim ension 2 case

We consider codimension n =  2 hypergeneric polytopal projection patterns, so that we are

again dealing with sets of lines intersecting in points in V. The hyperplanes Hi are lines of

infinite length with stabilisers THi C T = 7rJ-(A/) of rank 1 in this case which thus give rise 

to circular cuts in the quotient (V +  E ) /A'.

A collection of t = \Ik \ circles 5 1 intersecting in various points is homotopy equivalent 

to a one-point union of k circles, for k ^  t, by a homotopy which collapses the arcs of circles 

between points. The homology of such an object is straightforward to compute, as follows.

« ( 7L m  =  0

Hm{\J S1) — < Z« m =  1
i=i  ̂ 0  otherwise

Note that the objects T, =  (Hi + E ) /A '  are cylinders and hence are homotopy equivalent 

to circles S 1.

To compute the cohomology of Td + 2  \  Yk : =  Tn+d \  {T* -1- 7 j : j j  € T, j  =  1 , . . .  k, i € /} , 

we again consider the relative cohomology of the pair (Td+2, Td + 2  \1* ), so as before we need 

to determine rk tf™ ~i(Td + 2 \  Yk) =  rk H d+2-m (Yk) +  rk +  rk Im(/3m) -  (d+2).

Now Hd+2-m(Yk ) — -ffd+2 —m(Vi=i S 1) — 0 f°r m ^  d + 1, d + 2. From the long exact 

sequence (3.1) in relative cohomology, this implies that H m~1(Td+2 \  Yk) = H m~1(Td+2) 

for such m.

It remains to consider H d(Yd+2 \  Yk) and H d+1(Td + 2  \  Yk). For m  — d -f 1, we have 

rk t f d(Td+2 \y*) =  rk H iiY ^ + r k  Im 0 d+Tk Im/3d+1-(d+ 2) = « + ( dJ 2)+ rk  I m 0 d+l- (d +  

2). For m =  d + 2, we have rk i f d+1 (Td+2 \ y fc) =  rk H0(Yk) + ik  I m @d+1 + rk  Im/3d+2 - 1  =  

rk Im/3d+1 -I- rk /m/?d+2. We thus need to determine the ranks of /3d + 1  and 0 d~‘ 2.

As in the case for patterns with Lo finite, we again have Ho(Yk) =  Z ^  Ho(Td+2) ^  

/ f d+2 (Td+2) and the generators of H \(Yk) = H i (\/*=1 S 1) map to generators of H i(T d+2) ^  

i f d+1 (Td+2) under a d+1, so 0 d+2 =  0 and if k  ^  d + 2 then a: Z K —> Z d + 2  will be surjective 

and 0d+1 =  0 .
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LEM M A  3.10 For Yk — Vr=i a subset of Td + 2  arising from a d-dimensional codimen­

sion 2 hyperplane polytopal projection pattern as above, d + 2.

P ro o f  If there axe t ^  d+2 distinct T-orbits of faces of K,  then the result holds immediately, 

as in the above case of patterns with Lo finite, since Yk contains lines Hi for i € Ik  and 

\IK \ = t , s o K ^ t ^ d  + 2as  required.

Now suppose that there are only t < rk T orbit classes of singular 1-spaces, so the vectors 

giving the directions of the corresponding lines in Rd + 2  do not span this space. We still have 

k  ^  d + 2 in this case as well, for the number k of translates of the acceptance domain K  

large enough. This is because by Lemma 1.42 any pair of points in d K  + T can be connected 

by a path of singular 1-spaces. Hence any two points in the same T-orbit differing by an 

element 7  6  T =  ^ ( A ')  which is not a linear combination of the stabilisers of singular 

1 -spaces can be connected by a path of singular 1 -spaces and so these singular 1 -spaces with 

end points in the same T-orbit form circles in the quotient (V + E )/A ' = Td + 2  which are 

embedded non-trivially and correspond to cycles in Td+2. Only finitely many translates of 

lines Hi are needed to create circular cuts in the compact space Td + 2  because the lines are 

of positive length, not of irrational slope with respect to T (since their stabilisers are non­

trivial, so they each contain two points in the same T-orbit) and two or more lines contain 

a given singular 0-space in any T-orbit, so the required paths can be formed which give rise 

to the circles in Td+2.

Hence in Yk for k large enough we have d + 2  circles which are embedded non-trivially 

in Td + 2  so k ^  d +  2 in all cases. |

T H E O R E M  3.11 A (d +  2)-dimensional torus with a one-point union of infinitely many 

circles removed (denoted M) has Cech cohomology groups with ranks

rk H d(M) 0 0
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P ro o f The above calculations show that H m(M) =  H m(Td+2) for m < d. Given that 

rk H d(Td+2 \  Yk) =  (d+2) + K - ( d  + 2), in the limit as the number of T-orbits of singular 

0 -spaces arising at intersections of elements in the set Yk increases with increasing k, and 

hence the number k  of circles in the one-point union VJLi increases, rk H d(M) =  0 0 . |

These results are in accordance with the results for hypergeneric projection patterns 

computed in Theorem 2.71, giving evidence for a link between the continuous hull M V  and 

the cut torus M.

3.3.2 Non-hyperplane polytopal projection patterns

In this section, we weaken the assumptions still further and suppose that the patterns under 

consideration are not hypergeneric so the T-orbits of singular (n—l)-spaces do not all contain 

the hyperplanes spanned by the spaces. Note that Lo =  0 0  in this case as well.

We again need to describe the continuous hull as an inverse limit, but similar problems 

to those discussed in the previous section arise here, since Lo is infinite so infinitely many 

translates of the acceptance domain for the pattern under consideration need to be taken 

in order for representatives of all T-orbits of singular 0-spaces to appear. We consider the 

space Tn+d \  Yk formed by removing finitely many translates of the acceptance domain from 

the torus. More precisely, we define Yk = (U t=i((^-^ +  +  7 i) ■ 7 * € T}.

Suppose that T n+d \  Yk can be used to describe M V  as an inverse limit and consider 

codimension 2  generic polytopal projection patterns only. Some consequences of this are 

given below.

C odim ension  2 generic p attern s

In this case, by Definition 1.51 the stabilisers of the faces of the acceptance domain K  for any 

generic polytopal projection pattern V  are trivial, so no two singular 0 -spaces in the same 

orbit appear on any singular 1-space. However, as in the case of hypergeneric patterns, 

since the singular 0-spaces can be connected by paths of singular 1-spaces in d K  -f T, if
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enough translates of K  axe taken, then there will be paths between two points in the same

T-orbit, which become circles in the quotient (V  -I- E ) /A' as T =  7t j-(A/). Note that only 

finitely many translates are required to form the paths since Td + 2  is compact and the faces 

of K  have positive length. Hence, as before, for A K the (d +  2 )-dimensional submanifold of 

Td + 2  consisting of the one-point union of k  circles V£=i &1» which is homotopy equivalent 

to Yfc, we have H m{ Td + 2 \  A K) “  H m{ Td+2) for m  < d  and H d+1( Td + 2  \  A K) =  0. Now 

as the number of translates of d K  in Y* increases, the number of singular 0-spaces arising 

increases. Since paths can be constructed between representatives of each orbit appearing, 

as k increases, the number k  of circles which arise increases. Thus we again have H d{T d + 2  \  

A k) =  (d̂ 2) + k, — (d + 2), giving the following result.

T H E O R E M  3.12 For M :  =  Tn+d \  A, where A is a one-point union of a countably 

infinite number of circles S 1 we have

P ro o f  The above calculations show that H m (M) = H m(Td+2) for m < d and, given that 

rk H d( Td + 2  \  A K) = (d+2) + K - { d  + 2), in the limit as the number of T-orbits of singular 

0-spaces arising at intersections of elements in the set A K increases with increasing k , we

Again, this is consistent with the results for generic polytopal projection patterns ob­

tained in Chapter 2 .

N on-hyperp lane  po ly topa l p ro jec tio n  p a tte rn s  w ith  n o n -tr iv ia l stab ilisers

Lastly, consider a general codimension 2 polytopal projection pattern V  with Lo infinite. In 

this situation, problems with describing the continuous hull as an inverse limit still arise but 

the constructions of all the cases discussed above can be combined to yield similar results,

have rk H d{M) =  oo. I
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where the dimensions of the tori which axe removed from Tn+d depend on the ranks of 

the stabilisers of the (n — l)-dimensional faces of the acceptance domain K  for "P. If the 

stabilisers of all (n — l)-dimensional faces of K  axe less than or equal to (n — 1), then the 

space Tn+d \  A  which arises has Cech cohomology as given in Theorem 3.12 above, but if a 

face has stabiliser of rank greater than (n — 1 ) then / f m(Tn+d \  A) will not be isomorphic 

to H m+2 (Td+2) for 0 < m < d and will have rank greater than rk H m+2(Td+2).
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Chapter 4

Conclusion

This document has established two sets of results. Firstly, a theory has been developed in 

analogy with work in [1 2 ] for investigating projection patterns with polytopal acceptance 

domains, a class which contains the set of canonical projection patterns. Explicit calculations 

of the Euler characteristic were carried out for such patterns in codimension 2 and 3. In 

particular, we showed for a polytopal projection pattern that H d{M V ) is finite if and only 

if Lo, the number of orbit classes of singular 0-spaces, is finite. As a corollary, this reproves 

a result of [1 2 ] which gives that H d(M V )  has finite rank if and only if Lo is finite, for 

V  a canonical projection pattern. A formula for computing the Euler characteristic of a 

polytopal projection pattern of any codimension, provided Lo is finite, was produced, and 

patterns with Lo infinite wore also considered. Secondly, it has shown that for codimension 

2 polytopal projection patterns of arbitrary dimension with Lo finite, the Cech cohomology 

of the continuous hull can be calculated and also can be expressed as the cohomology of 

a (d +  2)-dimensional torus with an arrangement of lower-dimensional tori removed. This 

extends ideas presented in [1 2 ] and [2 0 ].

Thus, in answer to Question 0.1 we have shown that for codimension 2 polytopal pro­

jection patterns, the Euler characteristic, as defined in Definition 2.1, always exists, but 

under certain circumstances it takes the value infinity. Also, the rational ranks of the Cech 

cohomology groups H*(M V)  can be computed, although rk H d(M V)  is infinite if Lo is in­

finite. However, in general, the Euler characteristic of a codimension n polytopal projection
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pattern for n ^  3 is not defined according to Definition 2.1. There are classes of codimension 

n  polytopal projection patterns for which the Euler characteristic can be computed: in par­

ticular, for a codimension n polytopal projection pattern with Lo finite, a formula yielding 

the Euler characteristic of a  pattern of any codimension was produced in Chapter 2. Also 

the Euler characteristic is defined for a given polytopal projection pattern if the stabilisers 

r p  of singular spaces have sufficiently small ranks. With regard to Question 0.2, in Chapter 

2, when the Euler characteristic is finite, bounds on the values it could take were found, 

in particular for patterns of codimension 2 and 3. Such calculations, plus consideration of 

patterns with Lo infinite enabled Question 0.3 to be addressed, since necessary conditions 

for certain cohomology groups of polytopal projection patterns to be of infinite rank were 

determined. However, the question was not answered in complete generality since there are 

some cohomology groups, for polytopal projection patterns of codimension 4 or more, to 

which the methods developed in this document cannot be applied. Finally, Question 0.4, 

which asked about alternative models of the continuous hull, was answered positively for 

polytopal projection patterns with Lo finite, and calculations were carried out for patterns 

of codimension 2. Thus the work of [20] was generalised to a larger class of projection 

patterns than previously considered.

There are various questions which have arisen during the period of study but which are 

still unresolved due to the time constraints associated to this project, and so provide scope 

for future research.

The continuous hull M V  for polytopal projection patterns V  with Lo infinite could be 

investigated further, in particular to find models which yield the results described at the 

end of Chapter 3. Since [15] the cohomology of M V  is not always torsion-free, the work of 

Chapter 3 could be re-evaluated with the aim of determining H*(M V)  with coefficients in 

Z rather than Q. Also, the tools of Chapter 3 were not used to investigate the structure 

of the continuous hull of codimension 3 polytopal projection patterns, even though an ex­

ample of a canonical projection pattern was considered in [2 0 ], because the geometry of the
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singular spaces in this higher-dimensional situation is more complicated. Thus the methods 

of Chapter 3 and [20] could also be considered in more depth with respect to polytopal 

projection patterns of codimension 3 in order to produce further examples of computations 

of the Cech cohomology of the continuous hull in this case.

A method for determining when the sequence (1 .2 ) of T-modules C* is exact could be 

developed, so more specific conditions on the theorems of Chapter 2 could be obtained. 

If the sequence (1.2) is not always exact, then the spectral sequences described in Section 

1.6.3 could be considered more carefully with the aim of producing similar results. A full 

characterisation of when the ranks of the cohomology groups H*{MV)  axe infinite could be 

produced. Alternative definitions of the Euler characteristic could also be considered, which 

may be applicable in more cases where Definition 2.1 is not always suitable, such as for 3- 

dimensional codimension 3 patterns with Ho(T]C°) and H i (T; C 1) of infinite rank. Lastly, 

geometric interpretations of the higher cohomology groups H m(MV)  for m  > 1 could be 

considered which would also extend the results of [8 ].
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Appendix 1: C*-algebras and 
A-theory

This appendix consists of the definition of C*-algebras and the definition of C*-algebra K-  

theory. Crossed-product C*-algebras are also constructed here. The main references are [3] 

and [37].

C*- algebras

D E F IN IT IO N  4.1 A C ’-algebra is an algebra A  over C together with an operation, called 

the adjoint and an algebra norm | • where

1. A is complete with respect to the norm f • j.

2. for all a,b € A and A € C the adjoint satisfies

• (a + b)* =  a* +b*.

• (A a)* =  Aa*.

• a** = a.

• (a&)* =  b* a*.

3. |a*a|| =  | a |2.

A C*-algebra A  does not necessarily have to contain a unit, which is an element 1 E A  

with l.o  = a = o.l for all a € A. However, we can always adjoin a unit to A  by embedding 

A  into a larger, unital, C*-algebra. This (7*-algebra, A~, contains A as an ideal and is such
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that if A  is unital, then A~ =  A  and if A  is not unital, then A ~ /A  ~  C. Further details 

about this construction can be found in [37, p l 6 ], for example.

Given two C*-algebras A  and B, say a map A  —► B  is a *-homomorphism if it pre­

serves the addition, scalar multiplication, product and adjoint operations. In general, *- 

homomorphisms are norm-decreasing. Lastly, define a *-representation of a C*-algebra A  

to be a *-homomorphism 7r: A  -» B(7i) from A  to the algebra of bounded linear operators 

on a Hilbert space l i .

Examples of C*-algebras are the set C(Y)  of continuous complex-valued functions on 

a compact Hausdorff space Y ,  together with the operations pointwise addition, pointwise 

multiplication and complex conjugation, and the supremum norm, and, for a C*-algebra A, 

the matrix algebra Mn(A) of all n x n matrices with entries in A , with the usual matrix 

operations and norm.

The definition of the crossed-product C*-algebra A x a G is given in full generality in

[10]. For tiling theory, we use A  =  C(Y)  for Y  either M V  or X \  the group G is Rd or 

Zd respectively and a  is a homomorphism of G into the group of automorphisms of C(Y)  

(the action of G on C(Y)). First take the space Cc(G ,C (Y),a )  of compactly supported 

C(Y)-valued functions on G. Write f (g ,y )  to denote the element of C which is the value of 

the function f (g)  6  C(Y)  on the element y G Y.  Define the product of two such elements 

f i  and f 2 by

for g G G and y G C(Y). Define a norm on this algebra by ||/ | |  =  sup ||<t(/)||, where <7 

runs over all ^-representations of Cc(G ,C (Y ) ,a )  on a Hilbert space 'H. The completion of 

Cc{G, C(Y),a)  with respect to this norm is the (7*-algebra C(Y) G, the crossed-product 

of C{Y) by G.

and define the adjoint operation by

f i(9>y) = f ( 9 , y ~  9)
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K -  th eo ry

Given the C*-algebra C(Y)  x G, we can define its C*-algebra K-theory K .{C (Y )  x G), as 

described below.

For a G*-algebra A , say an element p € M n(A) is a projection if it satisfies p =  p* = p2.
OO

Write P{A) = [ J  {projections in M n(A)}. Say projections p £ M n(A) and q £ M m(A),
n —  1

for m  ^  n  are *-equivalent if there exists u  in M m(A) with the property that q =  cj*uj and 

^ q 0  )  =  ww* ’ w^ere (  J  o )  denotes the m atrix p with sufficiently many zero entries 

added to give an m  x m  matrix. Say p,q  G P{A) are stably equivalent, and write p ~  q, if 

there exists e G P(A)  such that the block diagonal projection matrix p © e: =  ^ q 

is *-equivalent to <7 © e : =  ^ ^ e )  ‘ ^ enote st able equivalence class of p. The

operation © induces a commutative associative semigroup operation [p] +  [<7] =  [p © q] on 

the set P {A )/  ~  of stable equivalence classes of projections. Define A+ to be A~  if A  is 

non-unital, or A  © C if A  is unital. Writing K q(A+) to denote the Grothendieck group of 

P (A +)/  ~ , we can then make the following definition.

D E F IN IT IO N  4.2 The zeroth K-group of the C*-algebra A  is

K 0(A) : =  K e r ^ . : K 0(A+) -> Z),

where n . is induced from the map n : C —> A+ which takes the unit in C to the adjoined unit 

in A~ or to the second factor in A  © C.

To define K \{ A ), first write GL{A) =  U^Li G Ln(A) the nested union of all n x n invert-

a 0ible matrices with entries in A. Inclusion G Ln (A) <—> GLn+i(A) is given by o h  ( ^ ^

Finally, denote by GL{A+)o the connected component of GL{A+) which contains the unit,

i.e. it is the set of elements which are homotopic to the unit in G L(A+). We then have the 

following.

D E F IN IT IO N  4.3 K X{A) = GL{A+)/G L(A + ) 0
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An alternative way of defining K \(A),  in analogy with the construction of K 1(Y)  in 

topological If-theory, is to use suspensions.

D E F IN IT IO N  4.4 [37] The suspension of a C*-algebra A is the C*-algebra SA: = A  ® 

Co(R) for  Co(E) the algebra of continuous functions on E with compact support.

It is shown in [37, Thm 7.2.5] that there is an isomorphism 6 a '■ I f i (A) -* K 0(SA).

The process of suspension can be iterated, giving S nA = A <g> C o ( E n ) ,  and hence higher 

If-groups can be defined as K n(A ): =  K o(SnA). However, [37, Chap 9] for a C*-algebra A 

there is also an isomorphism Pa • Ko{A) —> K i(S A ) .  This result gives rise to Bott periodicity 

for C *-algebra K - theory.

T H E O R E M  4.5 [37] The Bott Periodicity Theorem

For a C*-algebra A, there is an isomorphism Ki(A)  ^  K{+2(A). |

Note that the most useful notion of equivalence of C *-algebras is Morita equivalence. 

A precise definition is given in [30]. The main point to note is tha t Morita equivalent C*- 

algebras have isomorphic I f -theory. Finally, two other properties of C*-algebra I f -theory 

relevant to the study of C *-algebras arising from quasiperiodic patterns axe listed below.

T H E O R E M  4.6 [5] The Serre-Swan Theorem

For a compact Hausdorff topological space Y> there is an isomorphism K m(C(Y))  ^  

K*(Y)  of the C*-algebra K-theory of the algebra of continuous functions on Y  with the 

ordinary topological K-theory of the space Y .  |

T H E O R E M  4.7 [9] Connes’ Generalised Thom Isomorphism Theorem 

For a C*-algebra A, there is an isomorphism

K i ( A  x  E " )  as I f t —n (A ),

where i — n denotes (i — n) mod 2. |
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