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36 % (Cohen’s kappa κ ≈ 0.3, P < 0.0001). Using revised 
thresholds found using receiver operating characteristic 
curves [NavX: CFE-Mean  ≤  84  ms, CFE-SD  ≤  47  ms; 
CARTO: ICL ≥  4, ACI ≤  82  ms, SCI ≤  58  ms], NavX 
classified 45  %, while CARTO detected 42  % (κ ≈  0.5, 
P  <  0.0001). Our results show that CFAE target identifi-
cation is dependent on the system and thresholds used by 
the electrophysiological study. The thresholds found in this 
work counterbalance the differences in automated CFAE 
classification performed by each system. This could facili-
tate comparisons of CFAE ablation outcomes guided by 
either NavX or CARTO in future works.

Keywords  Atrial fibrillation · Substrate · Mapping · 
Electrogram fractionation · CFAE · Statistical classification

1  Introduction

Atrial fibrillation (AF) is the most common sustained 
arrhythmia in clinical practice and a leading cause of hos-
pitalization and cardiovascular complications, particularly 
stroke. It is defined as a supraventricular tachyarrhythmia 
characterized by uncoordinated atrial activation with con-
sequent deterioration of atrial mechanical function [4]. AF 
management consists of anticoagulation, antiarrhythmic 
drugs, electrical cardioversion, and radiofrequency catheter 
ablation [4]. The latter has been consolidated as the most 
accepted percutaneous procedure for AF treatment, achiev-
ing success rate as high as 90 % in patients with paroxys-
mal AF [4, 9]. Ablation is still suboptimal in patients with 
persistent or permanent atrial fibrillation (persAF) due to 
an incomplete understanding of the mechanistic interac-
tion between relevant atrial substrate and the initiation and 
maintenance of AF.

Abstract  Ablation of persistent atrial fibrillation (per-
sAF) targeting complex fractionated atrial electrograms 
(CFAEs) detected by automated algorithms has produced 
conflicting outcomes in previous electrophysiological stud-
ies. We hypothesize that the differences in these algorithms 
could lead to discordant CFAE classifications by the avail-
able mapping systems, giving rise to potential disparities 
in CFAE-guided ablation. This study reports the results of 
a head-to-head comparison of CFAE detection performed 
by NavX (St. Jude Medical) versus CARTO (Biosense 
Webster) on the same bipolar electrogram data (797 elec-
trograms) from 18 persAF patients. We propose revised 
thresholds for both primary and complementary indices to 
minimize the differences in CFAE classification performed 
by either system. Using the default thresholds [NavX: CFE-
Mean ≤ 120 ms; CARTO: ICL ≥ 7], NavX classified 70 % 
of the electrograms as CFAEs, while CARTO detected 
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Sustained AF causes changes in the cardiac tissue char-
acteristics, inducing structural and electric remodeling 
[6]. These regions can potentially host tissue with slow 
or inhomogeneous conduction, inducing reentry circuits, 
resulting in fractionated fibrillatory conduction [2], and 
are important in triggering and perpetuating atrial arrhyth-
mias. Atrial electrograms (AEGs) acquired from such atrial 
substrate regions demonstrate the low amplitude, multiple 
deflection activations that characterize fractionated activity 
(Fig.  1). The ablation of atrial substrate hosting complex 

fractionated atrial electrograms (CFAEs) has been accepted 
by many as a useful additional therapy for persAF treat-
ment [4]. Disparities in CFAE-guided ablation outcomes 
have, however, cast doubt on the efficacy of this approach 
(Table 1) [7, 14, 16, 19–21, 30, 31].

Automated CFAE detection can be performed during 
electrophysiological studies by algorithms embedded in 
commercial three-dimensional electroanatomical map-
ping (3D EAM) systems [15, 31]. The two EAM systems 
being used in clinical practice for CFAE mapping are the 

Fig. 1   NavX (left) and CARTO (right) 3D atrial geometry rep-
resentation for the same patient, with their respective automated 
CFAE detection algorithms. On the bottom part of the figure, the 
top traces refer to a segment of fractionated bipolar AEG (AEG 1), 
and bottom traces refer to a non-fractionated segment of bipolar 
AEG (AEG 2), both recorded from the LA endocardium. The AEG 
1 has CFE-Mean =  50.42  ms and ICL =  6. The AEG 2 has CFE-

Mean = 123 ms and ICL = 1. Explanation regarding the algorithms 
is provided in the text. AEG atrial electrogram, CFE-Mean index used 
by NavX to quantify AEG fractionation, FI fractionated interval, ICL 
interval confidence level: index used by CARTO to quantify AEG, 
LPV left pulmonary veins, MV mitral valve, RPV right pulmonary 
veins. These abbreviations were used in the subsequent figures

Table 1   Review of CFAE 
mapping systems, EGM 
settings, and success rate in 
different clinical studies

Previous studies conducted either additional or lone CFAE-guided ablation using different mapping sys-
tems and varying operator-defined settings, resulting in conflicting outcomes

Study EGM settings Mapping system No. patients Success rate (%)

Amplitude (mV) Time (ms)

Elayi et al. [7] – ≤120 NavX 49 61

Lin et al. [14] – ≤50 NavX 30 53

Nademanee et al. [16] ≤0.15 ≤120 CARTO 121 95

Oral et al. [19] – ≤120 CARTO 100 16

Oral et al. [20] – ≤120 CARTO 50 18

Porter et al. [21] 0.05–0.15 60–120 CARTO 67 20

Verma et al. [30] – 40–120 NavX 30 14

Verma et al. [31] 0.05≤ 30–120 NavX 35 54
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NavX™ (St. Jude Medical, St. Paul, Minnesota) [31] and 
the CARTO (Biosense Webster, Diamond Bar, California) 
(Fig.  1) [15]. The algorithms embedded in those systems 
incorporate CFAE characteristics as initially described by 
Nademanee et al. [16]. Each algorithm, however, considers 
different premises to quantify fractionation, and the clas-
sification by the different systems does not always agree 
[13]. We hypothesized that the discordances between sys-
tems might result in different ablation target identification 
and generate discordant clinical results. In this study, we 
report a direct comparison of the automated CFAE classifi-
cation performed by the algorithms embedded in NavX and 
CARTO. We also propose new thresholds for both primary 
and complementary indices to minimize the differences in 
CFAE classification performed by either system.

2 � Materials and methods

2.1 � Automated CFAE detection

NavX and CARTO provide primary indices to assess 
CFAE objectively, and complementary indices to further 
inform the electrophysiological study. Previous works 
have attempted to optimize CFAE detection using only the 
primary indices provided by the EAM systems [1]. There 
are currently no defined thresholds for the complementary 
indices to characterize CFAEs. Additionally, both systems 
allow for operator-defined settings—in this work referred 
to as “EGM settings”—to tune CFAE detection. Previous 
studies had attempted to optimize CFAE detection using 
these algorithms by varying EGM settings with different 
ablation outcomes (Table 1) [7, 14, 16, 19–21, 30, 31].

2.1.1 � The NavX algorithm (EnSite System Version 8.0 
Software, 2008)

NavX provides 3D EAM (Fig. 1 left) and online automated 
CFAE detection based on CFE-Mean. CFE-Mean is defined 
as the average fractionated interval (FI) between consecu-
tive negative deflections (-dV/dt) inside a time window set 
by the user (from 1 to 8-s) of sequentially recorded bipolar 
AEGs (Fig.  1 bottom left) [31]. The negative deflections 
must meet three criteria in order to be marked: (1) exceed 
a peak-to-peak threshold greater than baseline noise; (2) 
have time duration within a threshold to avoid detection 
of ventricular far-field events; and (3) exceed a refrac-
tory period after the previous marked deflection to mini-
mize multiple detections on a single deflection. NavX’s 
default EGM settings include a peak-to-peak sensitivity of 
0.05 mV, deflection duration of less than 10 ms, and refrac-
tory period of 30  ms. AEGs with CFE-Mean within the 
range of 30–120 ms are considered to be fractionated [31]. 

These settings can be changed by the user (Table 1) [31]. 
NavX also computes the standard deviation of FI distribu-
tion inside a predefined time window as a complementary 
index, known as CFE-SD.

2.1.2 � The CARTO algorithm (CARTO 3 System, 2008–
2014, Version 4.3)

CARTO provides 3D EAM (Fig. 1 right) and online auto-
mated CFAE detection based on complex intervals occur-
ring inside a 2.5-s window of sequentially recorded bipo-
lar AEGs [15]. The algorithm identifies voltage peaks 
and troughs of bipolar AEGs that exceed a lower voltage 
threshold—to exclude noise—but do not exceed an upper 
voltage threshold. Similar to the NavX algorithm, the user 
can alter these CARTO thresholds (Table  1). The time 
intervals between successive peaks and troughs occurring 
within the voltage window are automatically marked by the 
system. The complex intervals marked within a time inter-
val duration—defined by the operator—are identified dur-
ing a 2.5-s time window (Fig. 1 bottom right). The number 
of identified complex intervals is referred to as the interval 
confidence level (ICL) and characterizes the repetitiveness 
of the CFAE complexes. CARTO’s default EGM settings 
consider a voltage window of 0.05–0.15  mV and a pro-
grammable time interval of 50–110 ms. Typically, ICL < 4 
represents low fractionation, 4 ≤ ICL < 7 refers to moder-
ate fractionation, and ICL ≥ 7 indicates high fractionation 
[15]. CARTO software also finds, as complementary indi-
ces, the average of the identified interval, referred to as the 
average complex interval (ACI), and the shortest identified 
interval, referred to as the shortest complex interval (SCI).

2.2 � Study population

The study population consisted of 18 persAF patients 
(16 male; mean age 56.1  ±  9.3  years; history of AF 
67.2 ±  45.6  months) referred to our institution for first-
time catheter ablation. Details of the clinical characteristics 
of the study subjects have been provided elsewhere [28]. 
Study approval was obtained from the local ethics commit-
tee, and all procedures were performed with full informed 
consent.

2.3 � Electrophysiological Study

Details of the electrophysiological study and mapping 
procedure have been described elsewhere [28]. Briefly, 
3D left atrium (LA) geometry was created within [Ensite] 
NavX using a deflectable, variable loop circular PV map-
ping catheter (Inquiry Optima, St. Jude Medical). Pulmo-
nary vein isolation (PVI) was performed, followed by the 
creation of a single roof line (Cool Path Duo irrigated RF 
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catheter, St. Jude Medical). No additional ablation targeting 
CFAE was performed in this study. Sequential point-by-
point bipolar AEGs were collected from 15 predetermined 
atrial regions before and after LA ablation with the ablation 
catheter [28]. A total of 797 AEGs were recorded from the 
LA, with a sampling frequency of 1.2 kHz, and band-pass 
filtered within 30–300  Hz. When an improvement of sig-
nal-to-noise ratio was necessary, a 50-Hz Notch filter was 
applied.

2.4 � Comparing CFAE definitions between EAM 
systems

2.4.1 � Signal analysis

Each AEG, its corresponding CFE-Mean, and CFE-
SD were exported from NavX with three time window 
lengths (2.5, 5, and 8-s). A validated off-line MATLAB 
algorithm was used to compute the ICL, ACI, and SCI of 
each exported AEG for CFAE identification as defined by 
CARTO—see Supplemental Materials.

Currently, the CARTO system considers only 2.5-s 
AEGs for CFAE detection. Hence, there is no validated 
ICL threshold for CFAE classification using time win-
dows longer than 2.5 s. Nevertheless, the effects of differ-
ent time windows—2.5, 5, 8 s—were assessed on ICL and 
CFE-Mean for the completeness of the investigation—see 

Supplemental Materials. Little influence on overall CFE-
Mean was found when using different time windows. 
Therefore, for the remaining parts of the study, NavX and 
CARTO indices were measured using fixed 2.5-s AEG 
duration to allow a like-for-like comparison [15, 31].

2.4.2 � Influence of EGM settings on CFAE classification

CFE-Mean and ICL were individually assessed, explor-
ing the effects of varying EGM settings: NavX EGM 
settings (30–120  ms) and CARTO EGM settings (50–
110 ms). Hence, the threshold for CFAE classification was 
30–120 ms if CFE-Mean was measured using NavX EGM 
settings, and 50–110  ms for CARTO EGM settings [15, 
31]. ICL ≥ 7 was used as the default threshold for CARTO 
CFAE categorization to assess the impact of both NavX 
and CARTO EGM settings [21].

2.4.3 � CFAE detection thresholds for CFE‑Mean and ICL

CFAE detection and classification were performed on 697 
randomly sampled AEGs (out of the total 797), first using 
CFE-Mean and then ICL. This dataset was used to create 
receiver operating characteristic (ROC) curves and hence 
obtain the optimum sensitivity and specificity thresholds 
for both indices, using the counterpart index as the com-
parator (Fig.  2a) [8]. The ICL-based classification was 

Fig. 2   Illustration of the 
method for training the ROC 
curves and validating the 
proposed revised thresholds. 
a Thirty datasets—with 679 
randomly selected AEGs each—
were used to train and create the 
ROC curves. b For each of the 
30 datasets, the remaining 118 
AEGs were used to validate the 
thresholds found in the ROC 
curves
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assessed by creating a ROC curve, using CFE-Mean and 
the NavX EGM settings (CFE-Mean ≤ 120 ms) as the ref-
erence classification (CFAE/non-CFAE) [31]. The revised 
threshold for ICL was identified based on the optimum sen-
sitivity and specificity on the ROC curve—defined as the 
point on the curve with the shortest distance to the top left 
corner of the graph. Similarly, the CFE-Mean-based clas-
sification was assessed by creating a ROC curve, using ICL 
and the CARTO EGM settings (ICL ≥ 7) as the reference 
classification (CFAE/non-CFAE) [21]. The revised thresh-
old for CFE-Mean was identified based on the optimum 
sensitivity and specificity on the ROC curve. Area under the 
ROC curve (AUROC) and the P value were also calculated.

This process was iterated 30 times, each time with a dif-
ferent dataset of randomly sampled AEGs for ROC curve 
construction (697 AEGs), giving a total of 30 ROC curves 
for ICL and 30 for CFE-Mean in order to minimize data 
sampling and selection biasing.

2.4.4 � CFAE detection thresholds for CFE‑SD, ACI, 
and SCI

The revised thresholds for both CFE-Mean and ICL found 
in the ROC curves were used to perform a new CFAE clas-
sification on the 30 sets of 697 randomly sampled AEGs. 
In this new classification, an AEG was classified as CFAE 
only if both CFE-Mean and ICL agreed with the classifi-
cation using their revised thresholds. These classifications 
were used to create ROC curves and hence obtain the opti-
mum sensitivity and specificity thresholds for the comple-
mentary indices—CFE-SD, ACI, and SCI.

2.4.5 � Validation of the revised thresholds for CFAE 
detection performed by NavX and CARTO

The revised thresholds found in the ROC curves for both 
NavX—CFE-Mean and CFE-SD—and CARTO—ICL, 
ACI, and SCI—were validated using the remaining 118 
AEGs (30 sets of 118 AEGs randomly selected) (Fig. 2b).

For each of the 30 datasets, CFAE classification was per-
formed using the combined assessment of both primary and 
complementary indices. Explicitly, an AEG was classified 
as CFAE if it complied with both CFE-Mean and CFE-SD 
for NavX classification. Similarly, an AEG was classified 
as CFAE if it complied with ICL, ACI, and SCI for CARTO 
classification.

2.5 � Statistical analysis

All continuous normally distributed variables are expressed 
as mean ±  standard deviation (SD). Continuous non-nor-
mally distributed variables are expressed as median ± inter-
quartile interval. Nonparametric paired multiple data were 

analyzed using the Friedman test with Dunn’s correction, 
while nonparametric unpaired data were analyzed using 
the Mann–Whitney test. Categorical data were expressed 
as percentages and analyzed using the two-sided Yates-
corrected Chi-square test. The quantification of the agree-
ment between the rankings made by CFE-Mean and ICL—
as measured using their default settings—was assessed by 
the Spearman’s correlation between both indices. The level 
of agreement in the CFAE classification performed by the 
two systems was assessed by the Cohen’s kappa (κ) score 
[5]. Kappa score within range 0 ≤ κ < 0.4 suggests mar-
ginal agreement between two indices; 0.4 ≤ κ ≤ 0.75 good 
agreement; and κ > 0.75 excellent agreement [12]. P values 
less than 0.05 were considered statistically significant.

3 � Results

3.1 � Influence of EGM settings on CFAE classification

CFAE classification differed as performed by CFE-Mean 
and ICL using their respective default EGM settings. CFE-
Mean classified 70 % of the AEGs as CFAEs using NavX 
EGM settings, while ICL classified 36  % using CARTO 
EGM settings (P < 0.0001).

Changing the EGM settings alters CFAE classification. 
Figure  3 demonstrates the importance of EGM settings 
for CFAE classification. It illustrates the 3D CFAE map 
(anterior and posterior views) of one of the patients accord-
ing to CFE-Mean and ICL, using different EGM settings. 
CFE-Mean measured using NavX’s settings identified more 
atrial regions as CFAEs, while ICL measured using CAR-
TO’s settings showed fewer regions as fractionated. When 
analyzing the entire database, the NavX EGM settings con-
sistently categorized more AEGs as fractionated than the 
CARTO EGM settings (70 vs. 54 %, P < 0.0001 for CFE-
Mean; 62 vs. 36 %, P < 0.0001 for ICL).

3.2 � CFAE detection thresholds for CFE‑Mean and ICL

The comparison between CFE-Mean and ICL (measured 
using their default settings) for each of the 797 AEGs is 
illustrated in Fig.  4a. The respective default thresholds for 
both CFAE detection techniques are highlighted. The four 
quadrants delimited by the thresholds illustrate the zones of 
agreement and disagreement between CFE-Mean and ICL. 
Spearman’s correlation between the classifications by the 
two indices was ρ = −0.563 (P < 0.0001). 230 (out of 797) 
AEGs with organized activations were found in the non-frac-
tionated agreement zone (green). When looking at the AEGs 
corresponding to the disagreement quadrants (gray), 282 
AEGs have been classified as CFAEs by NavX but not by 
CARTO in one gray region (bottom left). In the other gray 
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Fig. 3   3D CFAE map showing the anterior (upper) and posterior 
(bottom) view of the LA from one patient according to CFE-Mean 
(left-hand side) and ICL (right-hand side), using different EGM set-

tings. NavX EGM settings identify more regions of the LA as CFAE 
than CARTO’s when applied to either CFE-Mean or ICL

Fig. 4   a Comparison between CFE-Mean and ICL measured for all 
797 AEGs, as determined by default NavX and CARTO EGM set-
tings, respectively. Their respective default thresholds are highlighted 
(CFE-Mean ≤ 120 ms; ICL ≥ 7). Four quadrants were delimited: two 
quadrants where ICL and CFE-Mean agreed in terms of categoriza-
tion, i.e., whether an AEG is fractionated or not fractionated, and two 
quadrants in which they disagreed. Examples of AEGs for each of the 
quadrants are shown, to illustrate the characteristics of each group. 
230 (out of 797) AEGs with organized activations were found in the 
non-fractionated agreement zone (green). When looking at the AEGs 

corresponding to the disagreement quadrants (gray), one notices that 
they are less organized, still with distinguishable activations. In one 
gray region (bottom left), 282 AEGs have been classified as CFAEs 
by NavX but not by CARTO. In the other gray region (top right), 12 
AEGs have been classified as CFAEs by CARTO, but not by NavX. 
Finally, 273 highly fractionated AEGs were found in the CFAE agree-
ment zone (red). The distributions for the AEGs classified as non-
CFAEs or CFAEs by both systems, as well as AEGs that had different 
classifications for each system, are shown according to CFE-Mean 
(b), ICL (c), CFE-SD (d), ACI (e), and SCI (f). ****P < 0.0001
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region (top right), 12 AEGs have been classified as CFAEs 
by CARTO, but not by NavX. Finally, 273 highly fraction-
ated AEGs were found in the CFAE agreement zone (red).

Quantitative results are provided in Fig.  4b–f to char-
acterize the AEGs after the objective comparison between 
CFE-Mean and ICL. The results show the distributions 
for primary and complementary indices (CFE-Mean, ICL, 
CFE-SD, ACI, and SCI, respectively) for the AEGs classi-
fied as non-CFAEs or CFAEs by both systems, as well as 
AEGs that had different classifications for each system. 
For all indices, the distributions for the AEGs classified as 
CFAE (red) were significantly different (P > 0.0001) than 
the combined distributions of non-CFAEs together with 
those AEGs with different classifications for each system 
(green + gray).

Figure  5a, b shows the ROC curves according to the 
CFAE classification performed by CFE-Mean and ICL. 
Table  2 provides the sensitivity, specificity, and AUROC 
values for each case. The details of the ROC curves from the 
30 datasets are provided in the Supplemental Materials.

The ICL-based classification suggests that the default 
threshold for CARTO (ICL  ≥  7) provides high speci-
ficity but poor sensitivity for CFAE detection (Fig.  5a; 
Table  2A). The revised threshold found from the ROC 
curves (ICL  ≥  3.8  ±  0.4) provides optimum sensitivity 
and specificity for CFAE detection and classification using 
CFE-Mean ≤ 120 ms as the reference classification.

The CFE-Mean-based classification suggests that the 
default threshold for NavX (CFE-Mean  ≤  120  ms) pro-
vides high sensitivity but poor specificity for CFAE detec-
tion (Fig. 5b; Table 2B). The revised threshold found from 
the ROC curves (CFE-Mean ≤ 84 ± 0.4 ms) provides opti-
mum sensitivity and specificity for CFAE detection and 
classification using ICL ≥ 7 as the reference classification.

Other thresholds for CFE-Mean- and ICL-based classifi-
cation have been explored and support the present findings. 
Details are provided in the Supplemental Materials.

3.3 � CFAE detection thresholds for CFE‑SD, ACI, 
and SCI

Figure 5c–e shows the ROC curves for CFE-SD, ACI, and 
SCI according to the CFAE classification performed by 
both CFE-Mean and ICL, using their revised thresholds. 
Table  3 provides the sensitivity, specificity, and AUROC 
values. The details of the ROC curves from the 30 datasets 
are also provided in the Supplemental Materials.

The ROC curves suggest that CFE-SD ≤ 46.6 ± 0.8 ms 
(Fig.  5c), ACI  ≤  82.2  ±  0.3  ms (Fig.  5d), and 
SCI ≤ 58.6 ± 0.4 ms (Fig. 5e) provide optimum sensitiv-
ity and specificity for CFAE detection, when consider-
ing the agreement between CFE-Mean and ICL for CFAE 
classification.

3.4 � Validation of the revised thresholds for CFAE 
detection performed by NavX and CARTO

Using the default thresholds (NavX: CFE-Mean ≤ 120 ms; 
CARTO: ICL  ≥  7), NavX classified 69  ±  5  % of the 
AEGs from the internal validation datasets as CFAEs, 
while CARTO detected 35 ± 5 % (P < 0.0001). With the 
revised thresholds (NavX: CFE-Mean  ≤  84.1  ±  0.4  ms 
and CFE-SD ≤ 46.6 ± 0.8 ms; CARTO: ICL ≥ 3.8 ± 0.4, 
ACI ≤  82.2 ±  0.3 ms and SCI ≤  58.6 ±  0.4 ms), NavX 
classified 45 ±  4  %, while CARTO detected 42 ±  5  % 
(P < 0.0001). These results are illustrated in Fig. 5f.

Figure  5g illustrates CFAE classification performed 
by NavX and CARTO using the default (left-hand side) 
and revised (right-hand side) thresholds for the same 
patient. The CFAE maps produced by both systems using 
their default thresholds are very discordant, and these dif-
ferences were minimized when each system used their 
revised thresholds. The CFAE maps created by both sys-
tems using their revised thresholds identified more simi-
lar atrial regions as target for ablation. The Kappa score 
between the CFAE categorization performed by NavX 
and CARTO significantly increased (P  <  0.0001) from 
κ = 0.34 ± 0.07 (marginal agreement, P < 0.0001) using 
their default thresholds to κ =  0.45 ±  0.10 (good agree-
ment, P < 0.0001) with the proposed revised thresholds.

4 � Discussion

This is the first study that uses the same bipolar AEG data 
collected during persAF ablation to compare CFAE detec-
tion performed by the algorithms embedded in NavX and 
CARTO systems. Additionally, the thresholds for the indices 
used by both systems were adjusted to minimize the differ-
ences between them. The results presented here highlight the 
discordances in CFAE classification between both systems, 
which could produce potential disparities in CFAE-guided 
ablation. The proposed revised thresholds counterbalance the 
differences in automated CFAE classification performed by 
the algorithms embedded in each system and reduce the dis-
cordances between them. Unifying methods of CFAE classi-
fication would allow comparable CFAE maps to be generated 
which could then act as a standard for future clinical studies.

4.1 � Atrial substrate characterized by CFAE

The true significance of CFAE in the pathophysiology of 
AF remains to be determined. Although it is believed that 
CFAEs represent atrial substrate during persAF [2, 4, 16, 
23, 32], recent investigations have shown that fractionated 
AEGs during AF may characterize remote atrial far-field 
activity [3, 17] and passive wavefront collision within the 
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atrial anatomy [24]. Recent work has reported no ben-
efit when ablation of CFAEs was performed in addition to 
PVI in persAF patients [29]. However, this work has been 
openly criticized for (1) not considering the combination 

of PVI, anatomical lines creation and CFAE ablation, 
and (2) the CFAE mapping algorithm used [26]. Discord-
ances in CFAE mapping algorithms create significant dif-
ficulty in comparing CFAE ablation studies. Minimizing 
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the differences in CFAE classification between NavX and 
CARTO may help to clarify the significance of CFAE as a 
driver of persAF. Therefore, prudence is needed when com-
paring the outcomes in AF ablation incorporating CFAE-
targeted approaches in different electrophysiological studies 
using different mapping systems [7, 14, 16, 19–21, 29–31].

4.2 � The lack of a gold standard for CFAE definition

There is currently no gold standard for CFAE classification 
in human persAF. This remains one of the biggest chal-
lenges for CFAE-based ablation. Visual assessment per-
formed by experts could help on arbitration of fractiona-
tion, but would also introduce subjectivity to the method as 
each specialist has his/her own perception of what defines 

fractionation [1, 10, 18]. Additionally, even if the experts 
were able to visually identify if an AEG is a CFAE, still this 
would not be sufficient to effectively conclude that the AEG 
is a true representation of atrial substrate (these would cor-
respond to atrial regions that organize AF when ablated). 
This ultimate conclusion is only possible by assessing if 
AF becomes more organized after ablating this particular 
atrial region by assessing if there is an appreciable change 
in the rhythm—either AF termination or increase in AF 
cycle length. Any “external reference” other than “AEGs 
that organized AF after ablation” would only introduce 
subjectivity to the method and would contribute little to 
objectively identifying LA regions as a surrogate of pro-
arrhythmogenic sites. Therefore, visual assessment of frac-
tionation for the recorded signals performed by clinicians 
was not included in this study. The present study focused on 
the classification performed automatically by both systems 
as currently performed in CFAE-guided ablation therapy, 
without the interference and subjectivity induced by opera-
tors. This allowed for an objective investigation of CFAE 
detection by investigating each system—one at a time—as 
being the “gold” standard for CFAE classification.

4.3 � CFAE detection performed by NavX and CARTO 
algorithms

We have shown that CFAE target identification is depend-
ent on the system used and settings applied during the 

Table 2   Sensitivity and specificity for A ICL-based classification using CFE-Mean ≤ 120 ms as the reference classification, and B CFE-Mean-
based classification using ICL ≥ 7 as the reference classification

Mean (± SD) of each sensitivity/specificity point from the 30 receiver operating characteristic (ROC) curves according to the CFAE classifica-
tion performed by CFE-Mean and ICL. The mean (± SD) area under the ROC curve (AUROC) and optimum sensitivity and specificity for each 
measure are listed

AUROC area under receiver operating characteristic curve, ICL interval confidence level

**** P < 0.0001

Reference classifier Classifier being tested Sensitivity 1-Specificity AUROC P value

A CFE-Mean ≤ 120 ms ICLDefault ≥ 7 0.492 ± 0.008 0.050 ± 0.005 0.852 ± 0.005 ****

ICLRevised ≥ 3.8 ± 0.4 0.777 ± 0.022 0.162 ± 0.022

B ICL ≥ 7 CFE-MeanDefault ≤ 120 ms 0.958 ± 0.005 0.552 ± 0.009 0.755 ± 0.005 ****

CFE-MeanRevised ≤ 84.1 ± 0.4 ms 0.807 ± 0.010 0.362 ± 0.006

Table 3   Sensitivity and 
specificity for CFE-SD, ACI, 
and SCI according to CFAE 
classification agreement 
between CFE-Mean and ICL

Mean (±  SD) of each sensitivity/specificity point from the 30 receiver operating characteristic (ROC) 
curves according to the CFAE classification performed concurrently by both CFE-Mean and ICL. The 
mean (± SD) area under the ROC curve (AUROC) and optimum sensitivity and specificity for each meas-
ure are listed. **** P < 0.0001

Thresholds Sensitivity 1-Specificity AUROC P value

CFE-SD ≤ 46.6 ± 0.8 ms 0.905 ± 0.012 0.185 ± 0.008 0.877 ± 0.014 ****

ACI ≤ 82.2 ± 0.3 ms 0.827 ± 0.010 0.360 ± 0.009 0.759 ± 0.006 ****

SCI ≤ 58.6 ± 0.4 ms 0.816 ± 0.012 0.300 ± 0.009 0.812 ± 0.005 ****

Fig. 5   Mean (black lines) and individual (gray lines) receiver operat-
ing characteristic (ROC) curves used to adjust CFAE classification. 
ROC curve of a ICL-based classification using CFE-Mean ≤ 120 ms 
as the reference classification and; b CFE-Mean-based classification 
using ICL ≥  7 as the reference classification. The CFAE classifica-
tion in agreement with CFE-Mean and ICL using their revised thresh-
olds (CFE-Mean ≤ 84.1 ± 0.4 ms; ICL ≥ 3.8 ± 0.4) was used to cre-
ate ROC curves of c–e. c CFE-SD; d ACI and; e SCI. The area under 
the ROC curve (AUROC) and optimum sensitivity and specificity for 
each measure are listed in Tables 2 and 3. f Validation of the revised 
thresholds for CFAE classification. g Illustration of CFAE classifi-
cation performed by NavX and CARTO in the LA from one patient 
using their default (left) and revised (right) thresholds. Explanations 
are provided in the text

◂
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procedure. Different CFAE mapping algorithms are 
based on different premises to measure fractionation. For 
instance, NavX identifies AEGs with a very short cycle 
length with or without multiple potentials. CARTO, on the 
other hand, mostly measures AEGs that are composed of 
two deflections or more and/or have a perturbation of the 
baseline with continuous deflections [16].

The comparison between both mapping systems 
using their default settings produced a low correlation 
(ρ = −0.563, P  <  0.0001), which supports recently pub-
lished data [13]. However, the Spearman’s correlation does 
not consider the thresholds for CFAE classification. The 
values—and correlation—of CFE-Mean and ICL only have 
a full electrophysiological meaning when linked with the 
thresholds used. This information is provided by the Kappa 
score.

It is known that both systems are not used simultane-
ously during atrial substrate mapping and that physicians 
frequently vary the settings for CFAE mapping in a patient-
specific manner [7, 14, 16, 19–21, 29–31]. Our results 
propose revised thresholds for CFAE detection to be used 
independently by NavX and CARTO to even out the dis-
cordances between them. Therefore, a CFAE map created 
with NavX utilizing the revised NavX’s thresholds will 
look more similar to the one that would have been created 
with CARTO utilizing CARTO’s revised thresholds pro-
posed in this work, as illustrated in Fig. 5g.

The use of both primary and complementary indices is 
an additional way to even out differences in CFAE clas-
sification performed by each system. There are little data 
available about the complementary indices measured by 
automated algorithms being used to either target or sup-
port CFAE identification during atrial substrate mapping 
[22, 25, 27]. However, the ROC curves generated using the 
agreement between CFE-Mean and ICL as the reference 
for the classification of CFE-SD, ACI, and SCI (Fig. 5c–e) 
provide evidence that these complementary indices can 
help to distinguish CFAE from non-CFAE effectively. This 
would further improve the agreement of CFAE classifica-
tion performed by both systems.

5 � Limitations

The current study was limited to retrospective data. Fur-
ther understanding of the underlying cardiac electrophysi-
ological mechanisms behind CFAEs would be helpful for 
the validation of the suggested revised thresholds, such as 
in (1) computational intracardiac models that simulate both 
atrial electrical activity and ablation procedures during AF 
[11], and (2) prospective studies using the revised thresh-
olds in the identification of ablation targets during substrate 
mapping.

6 � Conclusions

This study provides a direct quantitative comparison of 
CFAE detection during persAF, applying the automated 
algorithms embedded in NavX and CARTO systems to 
the same bipolar AEG data. We have demonstrated that 
CFAE mapping (and thus ablation target identification) 
varies significantly for the same individual, depending on 
the system and its settings. Our work takes a first step to 
understanding and minimizing the discordance between 
NavX and CARTO. We propose revised thresholds that 
adjust sensitivity and specificity of CFAE detection as 
independently performed by NavX (CFE-Mean ≤  84  ms; 
CFE-SD ≤ 47 ms) and CARTO (ICL ≥ 4; ACI ≤ 82 ms; 
SCI ≤ 58 ms). These thresholds counterbalance the intrin-
sic differences between the CFAE algorithms embedded in 
each system, allowing comparable CFAE maps to be gener-
ated which would facilitate the direct comparison of CFAE-
guided ablation outcomes in future studies.
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